ML20076J936
| ML20076J936 | |
| Person / Time | |
|---|---|
| Site: | Hatch |
| Issue date: | 02/28/1983 |
| From: | BECHTEL GROUP, INC. |
| To: | |
| Shared Package | |
| ML20076J934 | List: |
| References | |
| NUDOCS 8307070072 | |
| Download: ML20076J936 (106) | |
Text
{{#Wiki_filter:_ _ _ _ i i GEORGI A POWER COMPANY EDWIN I. HATCH NUCLEAR PLANT i UNIT I I PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT l FEBRUARY 1983 i BECHTEL JOB NO. 6511-041 i i PREPARED BY BECHTEL POWER CORPORATION i l SAN FRANCISCO, CA A KO P l
TABLE OF CONTENTS Page 1. INTRODUCTION 1 2.
SUMMARY
2 Test Data Summary Table 3 3. DISCUS SION 5 4. TEST SEQUENCE 5 5. INSTRUMENTATION AND DATA ACQUISITION 6 Sensor Locations and Volume Fractions Table 7 6. TEST METi10D 8 APPENDICES A. Description of Bechtel ILRT Computer Program B. Stabilization Summary Data C. ILRT Trend Report D. ILRT Summary Data; Mass Point, Total Time E. ILRT and Verification Plots F. Verification Flow Summary and Data G. ISG Calculations 11. LLRT Report L I Dil-149
ILRT REPORT FOR E. I. HATCll PLANT UNIT 1 i O 1. INTRODUCTION i s The reactor containment building Integrated Leakage Rate Test (Type A) is performed to demonstrate that leakage through the primary reactor containment and penetrations does not exceed allowable leakage rate values as specified in the Plant Technical Specifications. This report describes the second periodic Integrated Leakage Rate Test at plant E.1. Hatch, Unit 1, per 10CFR50, Appendix J requirements. The preoperational ILRT was successfully completed on May 27, 1974. Containment pressurization was initiated on February 1,1983, at 2:10 a.m. ILRT duration was 8.0 hours, followed by a verification test which was completed at 10:15 a.m. on February 2. Depressurization to atmospheric pressure was started at 10:30 a.m. on February 2. Prior to the test, a surveillance of reactor containment pene trations and a general containment inspection was performed on the accessible surfaces in accordance with Section V of 10CFR50, Appendix'J. The following documents contain the test requirements and acceptance criteria for this ILRT:, s 1. E. I. Hatch Unit 1 Technical Specifications 4 2. ANSI N45.4 - 1972, Leakage Rate Testing of Containment StVuctures for Nuclear Reactors. 3. Appendix J to 10CFR Part 50, " Reactor Containment Leakage Testing for Water Cooled Power Reactors". 4. U.S. Nuclear Regulatory Commission Regulatory Guide 1.68, " Pre-operational and Initial Startup Test Program for Water Cooled Power Re acto rs". 5. Bechtel Topical Report BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants". 6. ANSI /ANS 56.8-1981 - Containment System Leakage Testing Requirements. 7. E. I. llatch Nuclear Plant Procedure HNP-1-10131, " Primary Reactor Containment Integrated Leakage Rate Test". \\p I 3 u Dil-149 1 1 1 9 _s. ,y-
2.
SUMMARY
(p) The containment building Integrated. Lenkage Rate Test (Type A) was suc-cessfully completed meeting all acceptance criteria set forth in the governing documents. The test results nre reported in accordance with the requirements of 10CFR50, Appendix J, Section V.B.3. The calculated leakage rates were 0.429 wt.%/ day using the Mass Point Analysis technique and 0.434 wt.%/ day using the Total Time Analysis t echniq ue. The 9 5% upper confidence limits were 0.4'42 wt.%/ day for Mass Point and 0.555 wt.%/ day for Total Time Analysis techniques. The acceptance criteria 'of 7 5% of La is 0.90 wt.%/ day. The results listed above include a total of 0.145 we.%/ day for reactor water makeup during the ILRT period. 2.5" of water (.066 wt.%/ day) was added at 19:4 5 and 3" of water (.079 wt.%/ day) was added at 21:11 (eas tern standard time), a total of : .066 +.079 =.14 5 wt.%/ day. Following the completion of the ILRT, a successful verification test was pe rf o rmed. The Mass Point' calculated leakage rate was 1.46 5 wt.%/ day with a lower limit of 1~.329 wt.%/ day and upper limit of 1.929 wt.%/ day. The Total Time calculated leakage rate was 1.462 wt.%/ day with a lower limit of 1.334 wt.%/ day and upper limit of 1.934 wt.%/ day. No water was added during the ve rification tes t. [mh Pressurization started on February 1 at 2:10 a.m. Test presaure was \\, ,/ reached at 13:10 on the same day. The four hour stabilization period was followed by a 8 hour leakage rate test, completed at 3:00 a.m. on February 2. A verification flow was initiated and the 4 hour verifica-tion test was completed at 10:15 on February 2. s s s ) ~ \\ \\ l 'w/ Dil-149 2 N Y 4 g s s
Test Data Summary A. Plant Information Owner Georgia Power Company Plant Edwin I. Hatch Nuclear Plant Unit 1 Loca tion Baxley, Georgia Containment Type Mark I, BWR Date Test Comple ted February 2,1982 B. Technical Data 1. Containment Net Free Air Volume (Max) 262,340 cu. f t. Volume as tes ted* 253,380 cu. f t. 2. Design Pressure 56 psig 3. Design Temperature 340 4. Containment ILRT Average Temperature Limits 50-12 0* F C. Test Results - Type A Test t 1. Test Method Absolute 2. Data Analysis Techniques Leakage Rate (Total-Time per BN-TOP-1) and Mass Point (pe r ANS 56.8-1981) 3. Peak Test Pressure 59.0 psig + 1.0 -0 4. Maximum Allowable Leakage Rate, La 1.2 wt.%/ day 5. 7 5% of La 0.9 wt.%/ day 6. Integrated Leakage Rate Leakage Rate, wt.%/ day From Regression At Upper 9 5% Line (Lam) Confidence Limit a. Mass Point Analysis 0.429** 0.442** b. Total Time Analysis 0.434** 0.555** i As tested condition is due to torus water level at 153.2 inches. l
- Includes 0.145 wt.%/ day for reactor water makeup.
DH-149 3
7. Verification Tes t Imposed 10.6 scfm G 1eakage Rate, Lt. wt.%/ day 1.2 wt.%/ day 8. Verification Test Results Leakage Rate, wt.%/ day a. Mass Point Analysis 1.465 b. Total Time Analysis 1.462 9. Verification Test Limits Test Limit, we.%/ day a. Mass Point Analysis (1) Upper Limit ( Li + Lam + 0. 2 5 La ) 1.929 (2) Lower Limit (Li + Lam - 0.25 La) 1.329 b. Total Time Analysis (1) Upper Limit (Li + Lam + 0.25 La) 1.934 (2) Lowet Limit ( Li + Lam - 0. 2 5 La ) 1.334 D. Adjustments and Other Penalties : .145 wt.%/ day for reactor water makeup. E. LLRT Results LIRT, Subtotal of Type C Tests: 15,965 acem;.320%/ day Subtotal of Type B Tests: 2,035 acem:.041%/ day TOTAL LLRT T_c:iage : .361%/ day <.6 La =.72 wt.%/ day O DH-?A9 4
3. DISCUSSION (b)i Prior to the tes t, the suppression chamber water level was recorded at 153.2 inchen. The original volume fractions were based on a free air vo lume a t a minimum water level of 146 inches. Conseq uently, the volume fractions were adjusted accordingly by increasing the drywell and decreasing the torus volume fractions. The containment was visually inspected per Appendix J requirements for cracks, corrosion, and general deterioration. No damage was found. All valves were lined up in post LOCA condition in accordance with the ILRT Procedure, Appendix B. During the stabilization period, dewpoint sensor No. 6, in the suppres-sion chamber started malfunctioning when the humidity reached saturation. Subsequently this sensor was deleted from the test. The drybulb tem-perature readings of RTD No. 13 (in torus) was utilized for dewpoint temperatures, since drybulb and dewpoint temperatures were the same at saturated conditions. The containment cooling and ventilation fans were not used during the leak test pe riod. Fans and chillers were in operation through the pressurization and initial stabilization period, however, all f ans and coole rs were turned off at the beginning of the stabilization period and remained of f for the remainde r of the tes t. f The only containment penetration in service during the ILRT was the \\m,, RIIR system loop B, lined up for reactor cooling. The reactor cleanup was not in operation. During containment pressurization an incomplete leaking weld was isola ted in the torus level ins trument line by closing valve E51-F062. A new loop was being added and the work was incomplete prior to ILRT. The pressurization system consisted of two rented Ingersoll-Rand, oil-free, electric motor driven rotary compressors, 1800 cfm capacity each, with a ref rigerated air dryer and moisture separator. The maximum pressurization rate was 9.5 psi /hr. 4 TEST SEQUENCE Cont ainme nt pressurization started on February 1,1983, with two compres-sors running. Pressurization was stopped when one of the pressurizing val ve s, F102 was automatically closed on the 2 psi isolation signal. The signal was defeated and pressurization resumed. When a tes t pressure of 59.2 psig was reached, the compressors were isolated. The drywell pressure was rising due to the temperature increase. At 14:32, the drywell pressure was vented to 59.1 psig, and it was followed by a 4 hour stabilization period. The ILRT was comple-ted during an 8 hour test period, and it was followed by a 4 hour CN ve ri f icat ion. (v) D11-149 5
The Test Phases were as fo llows : 73 ( \\ ~~ Time Duration l Date Test Chaae v/ Pressurization 2:10 - 13:10 11 hr February 1 Stabilization 14:45 - 18:45 4 hr February 1 ILRT 19:00 - 3:00 8 br Feb rua ry 1-2 Stabilization 3:00 - 6:15 3.25 hr Februa ry 2 Verification 1 6:15 - 10:15 4 hr February 2 Depressurization 10:30 - N/A Februa ry 2 5. INSTRUMENTATION AND DATA ACOUISITION The following ins trument system was used: No. Required Descriptio:3 Data 1 A. Absolute Pressure i 2 Precision Pressure Gauge Range: 0-100 psia Mensor Model 10100-001 Accuracy: 1 0.02% F.S. Sensitivity: .001 psia Re peat ability: .0005% F.S. Calibration Date: 12/17/82 B. Drybulb Temperature l \\ l x,,/ 14 Tempe rature sensors, Range: 0-150
- F Rosemount 100 ohm.
Accuracy: + 0.10 *F l Platinum Model 78-65-17 Sensitivity: 0.01 *F l Repeatability: 0.003 *F l Calibration Date: 12/17/82 C. Dewpoint Temperature t ) 6 Dewpoint Detectors, Calibrated Raram: 4 0-100
- F l
EGSG, Model 660-52 Accuracy: i.54 *F I Sensitivity: 0.10 *F Re peat abili ty : 0.05 *F Calibration Date: 1/3/83 D. Flow Meters f l 2 tbss Flowmeter, Range: 0-10 scfm Model 500-9 Accuraev: + 1% F.S. Sensitivity: 1% F.S. Re peat abili ty: 0.0 scfm Calibration Date: 12/21/82 'N DH-149 6
DRYBULB AND DEWPOINT TEMPERATURE SENSOR LOCATIONS \\ lTE Elevation l Azimuth Distance Volume Fractions lNo. Tag No. (Ft) l ( Degrees) From Center ILRT RTD - DRYWELL 1 125067 120 345 28 .0505 2 125068 120 16 5 28 .0505 3 127899 130 90 28 .0 21 4 125075 134 205 24 .100 5 125071 134 345 20 .100 6 125081 154 35 24 .0485 7 127901 1 54 27 0 20 .0485 8 127902 195 115 13 .079 9 127913 19 5 29 5 13 .079 RTD - TORUS 10 125039 108 250 65 .0846 11 125046 108 25 65 .0846 12 125092 108 90 65 .0846 13 125069 108 170 65 .0846 14 125070 108 315 65 .0846 DEWCELL - DRYWELL si s_,/ ME No. 7 748 120 330 28 .1122 2 1016 134 165 24 .1042 3 1001 154 345 24 .0982 4 1036 134 330 20 .1042 5 6 59 195 40 13 .1582 DEWCELL - TORUS 6 108 135 65 423 The overall Instrumentation Selection Guide (ISG) value was calculated (see Appendix G) in accordance with ANSI /ANS 56.8-1981 based on the above instru-mentation and on an eight hour mimimum test duration. The calculated ISG =. 0 09 3 7 <. 2 5 La. There was no ins trument failure, therefore pos t ILRT ISG calculation was not required. Malfunction of dewcell No. 6 is disregarded s ince input data was substituted with RTD No. 13. r \\ 1 'N - 01g_149 7 1
The ILRT data collection system, consisting of drybulb and dewpoint t empe ra- ['~'N ture sensors and precision pressure gauges, was connected to a Volumetrics I Data Aquisition System (DAS). Pressure gauges were ins talled in the DAS panel and connected to the drywell and torus through flexible hoses. The dewcells were connected to the DAS through flexible hoses. The dewcells were connected to the DAS through signal conditioning boards. The DAS panel was provided with an automatic scanner and the measured data were printed by computer. The data were processed and the leakage rate cal-culated by a micro computer, Model IBM /PC via direct data input from the DAS panel through an RS232 circuit board. Built-in electronic mass flow meters provided the imposed leakage for the verification flow. During the stablization and test period, data were recorded every 15 minutes. 6. TEST METl!OD The containment le akage rate testing method applied is the Absolute Method as described in ANSI /ANS 56.8-1981. This is a direct application of the ideal gas law, PV=WRT. Two Data Analysis Techniq ues were used: 1. The K1ss Point Analysis Technique This technique calculated the containment air mass at each time in-l terval. A straight line least squares analysis is used, and the slope I of the regression line represents the rate of change of air mass with res pe ct to time, which is the leakage rate. I ) 2. The Total Time Analysis Technique This technique calcula tes leakage rate based on the mos t recent data point and the data point taken at the start of the test. The overall Icakage rate is determined by applying linear regression analysis to the leakage rates at each time point. A 95% upper confidence level was calculated for leak rate data as required by ANSI /ANS 58.6-1981. This is to assure a 9 5% probability that the calcu-la ted leak rate value is within the acceptance limits. All calculations were done with Bechtel's ILRT computer program described in Appendix A. The temperature and pressure history and the containment air mass varia-tions were plotted by the computer program. 'hese plots are in Appendix E. T } 'ss' pig _149 8
O O TYPICAL ILRT DATA ACQUISITION SYSTEM CONTAINMENT PENEIRATION ________________________________q l I l MANUAL l l SCAN l CONTROLLER g l BUFFER l RT \\ AMP I f.1AN!!AL \\ MANUAL SIGN 14 RTO'S / [AL l CON SCANNER / DISPLAY I I, t I ,________q l I I e 6 DEWPOINT I _/ DEWPOINT /
- l THERf.iAL MASS g
AUTO SENSORS l /CONTROLER/ ANN R F O-15 SCFF1 I I I I I l PRECISION PRESSURE DIGITAL l l I lNPUT DATALOGGER l TRANSMITTER I 1 l i l THERMAL MASS l I FLOW METER l PRECISION l l PRESSURE I 0-15 SCFM TRANSMITTER l 1 2 l 1 l I I 1 l ILRT l LEAK VERIFICATION L _ _ _ _ _ _ _ _ _ _ _ _ _ _C A 8 I N E T l CABINET ___________a_________J
I i APPENDIX A 1 DESCRIPTION OF EECHTEL IIRT COMPlTTER PP.0 GRAM A. Program and Report Description 1. The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure. The program is used to compute leakage rate based on input values of time, free air volume, ccntainment atmosphere total pressure, drybulb temperature, and dewpoint temperature (water vapor pressure). a Leakage rate is computed using the Absolute Method as defined in ANSI /ANS 56.8-1981, "Centainment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants". The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during containment le akage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational nethods, yielding threa dif ferent re po rt printouts. 2. In the first printout, the Total Time Report, leakage rate is com-puted from initial values of free air volume, containment atmosphere 3 drybulb tempensture and partial pressure of dry air, the latest values of the same parameters, and elapsed time. These individually g4rsg computed leakage rates are statistically averaged using linear re-r gression by the method of least squares. The Total Time Method is the computational technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant," are based. 3. The second printout is the Mass Point Report and is based on the Mass Point Analysis Technique described in ANSI /ANS 56.8-1981, " Containment System Leakage Tes ting Requirements." The mass of dry air in the containment is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air. Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least squares. Leakage rate is determined from the statistically derived slepe and intercept of the regressior. line. 2 4 The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a function of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test. 5. The program is written in a high level language and is designed for use on a micro-computer with direct data input from the data '~ acquisition system. Brief descriptions of program use, formulae DH-103 g_1
used for leakage rate canputations, and program logic are provided g in the following paragraphs. ~~ B. Explanation of Program 1. The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1. 2. Information loaded into the program prior to or at the start of the l ) test: l ) Number of containment atmosphere drybulb temperature sersors, a. l dewpoint temperature (water vapor pressure) sensors and pressure t gages to be used in leakage rate computations for the specific test b. Volume fractions assigned to each of the above sensors c. Calibration data for above sensors d. Test title e. Test pressure f. Maximum allowable leakage rate at test pressure ( _ )' 3. Data received from the data acquistion system during the test, and used to compute leakage rates : a. Time and date b. Containment atmosphere drybulb temperatures Containment atmosphere pressure (s) c. d. Containment atmcsphere dewpoint tempe ratures e. Containment free air volume. 4. Af ter all data at a given time are received, a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option command) is printed. 5. If drybulb and dewpoint temperature sensors should fail during the test, the data from the sensor (s) are not used. The volume frac-tions for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations. N DII-103 A-2
C. Leakage Rate Formulae ( \\ \\ ) 1. Computation using the Total Time Method: %d a. Measured leakage rate, from data: PV1 t = W RT1 (1) 1 PVi i = W RTi (2) i 2400 (W1-W) i L i (3) ati W1 Solving for W1 and Wi and substittting equations (1) and (2) into (3) yields: 2400[ TPV1ii I 1-(4) L, = l ^ ( TPVi1i ati
- where, W,Wi = Weight of contained mass of dry air at times ti and 1
ti respectively, Ibm. T,Ti = Containment atmosphere drybulb temperature at times l r 1 l I ti and ti respectively,
- R.
P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia. V,Vi = Containment free air volume at times ti and ti respec-1 tively, (constant or variable during the test), f t3 = Time at 1st and ith ti, ti data points respectively, hours. I Ati = Elapsed time from ti to ti, hours. { l l R = Specific gas constant for air = 53.35 f t.lbf/lbm. *R. Li = Measured leckage rate computed during time interval ti to ti, wt.%/ day. In order to reduce truncation error, the computer program uses the following equivalent formulation: -2400[aW} i Li" l I Ati( W ) I /~~T U Dil-103 A-3
- where, AWi Wi~W1 W 1 W 1 apt AVt AP AVi ATt t
+ + P1 V1 pvt 1 Tt = ATi g4 Tt apt =Pt-Pt AVt=Vi-Vt AT1=Ti-Tt b. Calculated leakage rate from regression analysis, L = a + b AtN vhere: L = Calcula ted leakage rate, wt.%/ day, as determined from the regression line. a = (ELt - bE A ti)/N (6) N(EL Att) - (SL )(EAtt) i t b= (7) 2 N(EA tg ) - (EAti)2 N = Number of data points N E=E i=1 c. Calculated leakage rate at the 95% confidence level. -95 " a + b Atg + s (9) L L where: L95 = Calculated leakage rate at the 95% confidence level, wt.%/ day, at elapsed time AtN-i e Dit-103 A-4 )
i l l I 1 Fo r A tN < 24 2 t)/(N-2)]1/2 x [1 + 1 + ( A t -E) / ( 9a) S_ = tg 025;N-2 [(ELg - aELi - BEL At i N L N (IAt 2 - (rati)2fy);1/2 1 where, t0 025;N 1.95996 + 2.37226 + 2.82250 ; j N-2 (N-2)4 i For AtN 2. 24 2 - aILt - BEL 6tt )/(N-2 )]1/ 2 x [1_ +(AtN-E)/ (9b) S_ = t0 025;N-2 [(ELt 1 f L N i (IAtt - (E ti) /N)]I/2 4 t 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where. to 025;N-2 = (N-2)2 + 1.2209(N-2) - 1.5162 Li = Calculated leakage rate computed using equation (5) at total elapsed [ time att, %/ day. j 1 i Eatt l At = j N j 2 6 2. Computation using the Mass Point Method l a. Contained mass of dry air from data: i Wi = 144 PA RTi (10) f 1 where: I I All symbols as previously defined. b. Calculated leakage rate from regression analysis, W = a + b At I b L = -2400 - (11) a where: L = Calculated leakage rate, wt.%/ day, as determined from the ( regression line. l t O Dil-103 A-5 i
" (EW -bEatt)/N (12) 3 O i N(IW att) - ( W )(Eati) t i b (13) = 4(U t ) - (Iati)- i th At t = Total elapsed time at time of i data point, hours N = Number of data points th Wt = Cont 11ned mass of dry air at i data point, Iba, as computed from equation (10). N I=E i=1 Inorder to reduce truncation error, the computer program uses the following equivalent formulation: AWi b a= W 1 + (E EAti)/N y W1 W1 AWi AW ~ 1 N (E Att) - E E At t Wi Wi b= W 2 N(Zatg ) - (Eat )2 t AWi
- where, is as previously defined.
W1 c. Calculated leakage rate at the 957. confidence level. -2400 I95 = (b - S ) (14) b a I where: 595 - Calculated leakage rate at the 95% confidence level, wt.%/ day. O Dil-103 A-6
I 1/2 SN 2 - (TA tt)2jlU (g5) Sb " 'O.025 ; N-2 [NZa tt where, to.025;N-2, 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602 (N-2)2 + 1.2209 (N-2) - 1.5162 I [Wg - (a + b a ti)]T N I s, N-2 ri "W' EO W /W ) - IEIAW /W )] /N - 1 i 1 i 1 [I(AW /W ) At - E(AW /W )(M ti)/N]2 ' 1/2 i t t t t 2 E(a ci ) - (I a ti)A/N 1 a l l l Dil-103 A-7
D. Program Logic 1. The Bechtel ILRT computer program logic flow is controlled by a set of user options. The user options and a brief description of their associated function are presented below. OPTION COMMAND FUNCTION After starting the program execution, the user either enters the name of the file containing previously entered data or initializes a new data file. DATA Enables user to enter raw data. When the system requests values of time, volume, temperature, pressure and vapor pressure, the user enters the appropriate data. Af ter completing the data entry, a summary is printed out. The user then verifies that the data were entered correctly. If errors are detected, the user will then be given the opportunity to correct the l errors. After the user verifies that the data were l entered correctly, a Corrected Data Summary Report of ) time, data, average temperature, partial pressure of l dry air, and water vapor pressure is printed. TREND A Trend Report is printed. TOTAL A Total Time Report is printed. MASS A Mass Point Report is printed. TERM Enables user to sign-of f temporarily or permanently. All data is saved on a file for restarting. CORR Enables user to correct previously entered data. I LIST A Summary Data Report is printed. READ Enable the canputer to receive the next set of data from the data acquisition system directly. PLOT Enables user to plot summary data, individual sensor data or air mass versus time. DELETE Enables user to delete a data point. INSERT Enables user to reinstate a previously deleted data point. VOLFRA Enable user to change volume fractions. Dil-103 A-8
OPTION [ j COMMAND FUNCTION \\ / N _/ s TIME Enable the user to specify the time laterval for a report or plot. VERF Enable the user to input imposed leakage rate and calcaluted ILRT leakage rates at start of verification test. E. COMPUTER PEPOEI AND DATA PRIh"r0UT MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as deter-mined by the Mass Point Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The " Containment Air Mass" values are the masses of dry air in the containment (lbm). These air masses, determined from the Equation of State, are used in the regression analysis. TOTAL TIME REPORT The Total Time Report presents data leakage rate (wt%/ day) as deter-mined by the Total Time Method. The " Calculated Leakage Rate" is the f' ') value determined f rom the regressi.a analysis. The " Measured Leakage t Rates" are the leakage rate values determined using Total Time calcu- \\s_s/ lations. These values of leakage rate are used in the regression analysis. TREND REPORT The Trend Report presents leakage rates as determined by the Mass Point and Total Time methods in percent of the initial contained mass of dry air per day (wt%/ day), versus elapsed time (hours) and number of data points.
SUMMARY
DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The six column headings are TIME, DATE, TEMP, PRESSURE, VPRS, and VOLUME and contain data defined as follows: 1. TIME: Time in 24-hour notations (hours and minutes). 2. DATE: Calendar date (month and day). 3. TEMP: Containment weighted-average drybulb temperature in [j absolute units, degrees Rankine (*R). DH-103 A-9
4. PRESSURE: Partial pressure of the dry air component of the con-tainment atmosphere in absolute units (psia). 5. VPf;S: Partial pressure of water vapor of the containment atmosphere in absolute units (psia). A. VOLUME: Containment free air volume (cu. ft.). l F.
SUMMARY
OF MEASURED DATA AND
SUMMARY
OF CORRECTED DATA The Sutmary of Measured Data presents the individual containment l atmosphere drybulb temperatures, dewpoint temperatures, absolute total pressure and free air volume measured at the time and date. 1. TEMP 1 through TEMP N are the drybulb temperatures, where N = No. of RTD's. The values in the right-hand column are temperatures (*F) as read from the data acquisition system (DAS). The values in the left-hand column are the corrected temperatures expressed in absolute units (*R). 2. PRES 1 through PRES N are the total pressures, absolute, were N = No. of pressure sensors. The right-hand value, in parentheses, is a number in counts as read from the DAS. This count value is converted to a value in psia by the computer via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia. 3. VPRS 1 through VPRS N are the dewpoint temperatures (water vapor pressures), where N = No. of dewpoint sensors. The values in the right-hand column are temperatures (*F) as read from the DAS. The values in the lefthand column are the water vapor pressures (psia) from the steam tables for saturated steam corre-sponding to the dewpoint (saturation) temperatures in the center column. The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows: 1. TEMPERATURE (*R) is the volume weighted average containment atmosphere drybulb temperature derived from TEMP 1 through TEMP N. 2. CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from the volume weighted average total pressure, yielding the partial pressure of the dry air. 3. VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute derived from VPRS 1 through VPRS N. DH-185 A-10
4. VOLL'ME (cu. ft.) is the containment free air volume. 5. C0!iTA1:;ME!;T AIR MASS (lbm) is the calculated mass of dry air in the containment. The mass of dry air is calculated usins; the containment f ree air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air. D11-103 A-11 s e
7 APPENDIX B STABILIZATION DATA HATCll UNIT 1 ILRT
SUMMARY
DATA 1.200 VOLUME = 233380. ALMAX = VRATET = .000 VRATEM =.000 tit 1E DATE TEMP PRESSURE VPRS VOLUME 1445 201 536.145 73.3023 .3147 253380. 1500 201 536.498 73.3580 .3153 253380. 1515 201 536.702 73.3646 .3177 253380. 1530 201 536.831 73.3619 .3245 253380. 1545 201 536.954 73.3683 .3251 253300. 1600 201 537.037 73.3915 .3200 253380. 1615 201 537.114 73.4062 .3273 253380. 1630 201 537.193 73.4093 .3313 253380. 1645 201 537.276 73.4097 .3370 253380. 1700 201 537.345 73.4154 .3353 253380. 1715 201 537.404 73.4179 .3377 253380. 1700 201 537.468 73.4208 .3399 253380. 1745 201 537.519 73.4354 .3403 253380. 1800 201 537.557 73.4355 .3433 253380. 1310 201 537.568 73.4061 .3456 253380. 1830 201 537.601 73.4384 .3464 253380. 1045 201 537.628 73.4409 .3459 253380. O O
APPENDIX C HATCH UNIT 1 ILRT TREND PEPORT t 6 9 TIME AND DATE AT START OF TEST: 1900 201 1983 t!O. END TOTAL TIME ANALYSIS MASS POINT ANALYSIS PTS TIME MEAS. CALCULATED UCL CALCULATED UCL 4 1945 .384 .355 1.051 .367 .713 5 2000 .048 .180 1.072 .141 .487 6 2015 .099 .101 .706 .100 .311 7 2030 .150 .134 .568 .118 .261 8 2045 .192 .155 .517 .153 .263 9 2100 . 2*J7 .196 .521 .207 .308 10 2115 .255 .221 .512 .235 .320 i 11 2130 .221 .227 .490 .237 .305 12 2145 .310 .259 .505 .274 .343 13 2200 .248 .264 .493 .274 .331 14 2215 .179 .249 .471 .247 .303 13 2230 .179 .237 451 .228 .280 16 2245 .204 .233 .437 .223 .268 f 17 2300 .229 .2!6 .430 .226 .267 18 2315 .240 .240 .426 .232 .268 19 2330 .235 .243 .421 .235 .267 20 2345 .250 .248 .419 .241 .271 I 21 0 .245 .231 .416 .245 .272 l 22 15 .255 .255 .414 .250 .275 23 30 .265 .260 .415 .256 .230 24 45 .253 .263 .413 .259 .281 l G 25 100 .248 .264 .410 .260 .280 L 26 120 .268 .270 .412 .264 .283 27 135 .269 .273 .412 .268 .286 28 145 .278 .276 .411 .273 .290 29 200 .273 .279 .411 .276 .292 30 215 .276 .282 .411 .279 .294 31 200 .273 .284 .411 .291 .295 32 245 .275 .287 .410 .282 .296 33 300 .276 .289 .410 .284 .297 4 f { I w,,-_
APPENDIX D HnTCH (JNIT I ILRT LElil' AGE PATE (UEIGH T PERCCtlT/ DAY) MASS PO!!1T ANALYSIS TIME (dlD DATE AT START OF TEST: 1900 201 1983 TEST DURATION: 3.00 HOUR 5 TIME T E N F-FFSESUPE CTNT. AIR MASS LOGG AVERAGE MASS (l?) (F 31 A) MASS (LEH) ' LDH) LOSS (LDM/HPi .3 s i q *.* i, O. " q (.,Q. 1
- ) *u ',
c- ~ ~7. a/,? c-J "? ' .e n
- a. *s 1 (, a.>.
1..m j1. a i rr -*,r. <9 ! m -*/ _. 4 4(,. 1 .y 1 r-.; t as 1 c,, -- (, a ,7. n, -*,? , * ~ ,} 4 m., 0, s q q a,. .. p e. s a. ;} L s 7.-. <.> .,.,z.,av .7 _..o..o. g s,. 9. v. g.,_, a
- 1.,3 7, a
.s, J'. ev 537.309 73.1329 93403. -9.4 1.9 a s e. O _..
- _. 4 c. 41 c/ _. 4 (>,. s.
~..,, -.3 e a ? t. O 53-'.339 77.1313 93401. 4.O 5.8 c,,_.9 a,. ,e c,, .,,c., m.M. a... d e;,4 ,,<_..wasa r.s - ,.a a t,o, ., - - -. a. i, - _. 4. o o. _ mq a. ,c,. - i n.. o 9 e Jc, 9e 9 ,. 9, e. c ,1..3 s..,. .,. c r. s 4 ',, sa a ra v s 9 s w.,, 7 0. 4. . ~,,
- 7. a 4
. 1,- a, s. a o, s a-. c. t j. w. 1 u. '. s..g e a
- .,1-
.._..,3 n c s . 4., r. a _.c,,.
- o..,7 q. cJ 3. a.
i _. s a ~_ ., '..4675 03:07. -n 7.0 22'" 57.v., . a v J <? o s _- o,a_. q /.,, .,;J., 7,z, 7.0 c' c~ ~sm..>. ,,e 1-s. <he., A s ..,,4_. -~.r,. 7 a. ..am o as_. - c,,,,1. a. t3. p s, ", ) .,,,,<i ,-.. 4 a., c.- r aa as a. < _. q..
- 3..,. 3
,., L., c n..
- a... s,, c..
+.1 9.4 a ' ' " ? 173.141 /~.4673 960. 1.4 9.1 ,, l,a ,,,..la ,. s. de,1,_
- 0. _. o a, _.
- e.. j o.,,
s m O
- 'n.173
" 4673 9'3 32. ].1 9.5 l YJJ.l'N '3.4660 93357. 4.4 9.9 '. ::. '..' l i.i .1644 0 '. ~s 'a' '. 4."
- 10.. ' '
l \\ l .n m,-.. c . 4 ~. r g 9 ~s a~ r- -3 .a 1 g. (: l r-a t- *r. 7-a. >_a). \\ c.. Jc.., _., _,.. 4 0, 0,. q #s u.
- 9. a,
. i.".3 as s 120 530.258 73.4638 93343. 8.2 10.4 1 Mi 533.267 73.4627 93340. 3.O 10.5 143 533.292 73.4614 93336. 4.1 10.8 . s ,s e . _.. g> ., Jc.,.. o. ,.,l a i <d
- o. v-s v,a-.
1.. 1 o.. a i ./ 15 530.300 73.4601 93331. 3.6 10.G '30 538.312 73.4602 93330. 1.0 10.6 '.' 4 5 S30.329 73.4601 93326. 3.1 10.7 " ~ 3. '. 4 0 7".4593 93324. 3.O 10.7 300 FREE AIR VOLUME USED (CU. FT.) = 253380. RCGFESSION LINE 93415. INTERCEPT (LDM) = SLOPE (LDM/HR) -11.1 = MAXIMUM ALLOWADLE LEAL < AGE RATE 1.700 = 75"'. OF MAXIMUM ALLOWABLE LEAFAGE PATE .900 = THE UPPER 95% CONFIDENCE LIMIT .297 (.442)* = THE CALCULATED LEAKAGE PATE .284 (.429)* =
- LEAKAGE ADDED FOR REACTOR WATER MAKEUP (.145)
APPENDIX D HATCli UNIT 1 ;LRT LEAFAGE RATE (HEIGHT F ERCENT/ DAY) TOTAL TIl1E ANALYSIS TIME AND DATE AT , T A R T O c TEST: 1900 201 1983 TE3T DUPATION: 3.00 HOURS TIME TEMP FRE3 SURF MEASURED m. (F5la! LEAFAGE RATE 1900 5 " ~' 67~ /?.1~60 1915 5 3 7 -' : '. ?.4402 .119 1930 5 37. '3.4421 .164 1945 537.7eo '3.4307 .394 2000 5 2 7. fa 0 9 '3. 4 52'? .048 2015 5 ? ?. O ~_":] 73.4541 .099 2030 52,.039 73.4543 .150 2045 5 ~. 7. '.3 9 4 73.4556 .192 ,1, g <,,. o t,. i
- 1. c, a.
..a7 ,,r 3-uw i u ~ r**,,*. r j v rJ ,~.gr. u -1 e-- ._ee e 1 1 r* as 3 sa a ,1.~.A.3 y,,.. o..., s 4.,,, ..1 r,. a, .14es sc .m3 -, 4 r-- -$ r- . _.10 g--,- ,.q, s. s; . gn_ ,y,,,... s o. o. f,a- . L,;,7 ._4g s. 2215 530. * ' _ a e. 4675 .179 2230 53E. 0.5 6 .4e5? .179 2245 '530.063 "3.466J .204 c.,0 c-~ n. n. ? a . hv.., *a .'.00 -s a% s. 2315 530.116 .4650 .240 2330 533.141 /3.4677 .235 2 45 530.162 " T. 4 6 i. .250 0 533.170 '~. 4 67 ~ .245 15 538.194 73.16c 0 .255 30 530,210 i'.46 14 .265 45 538.226 '". # 59 .259 0 - c-G.,s,_ l o o.- . _ s, O. 1, 0 as 120 530.259 73.4630 .268 135 538.26/ 'v.4627 .269 145 538 202 73.4614 .270 200 538,292 ~3.4610 .273 215 538.000 73.4001 .276 030 538.312 73.4602 .273 2 15 530.329 73.4601 .275 C00 538.340 73.45o~' .276 MEAN OF THE MEASURED LEAUAGE RATES .232 = MAX IMUM ALLOWADLE LEAL:: AGE RATE 1.200 = 75% OF MAXIMUM ALLOWABLE LEAKAGE RATE .900 = .410 (.555)* TliE UPPER 95% CONFIDENCE LIMIT = .299 (.434)* THE CALCULATED LEAKAGE RATE =
- LEAKAGE ADDED FOR REACTOR WATER MAKEUP (.145)
I APPENDIX D HATCH UNIT 1 ILRT
SUMMARY
DATA 1.200 VOLUME = 253080. i ALMAX = VRATET, .000 VRATEM =.000 TIME DATE TEMP FRESSURE VFRS VOLUME 1900 201 537.675 73.4360 .3528 253380. j 1915 201 537.712 73.4402 .3517 253380. l 1930 201 537.737 73.4421 .3518 233380. -{ 1945 201 537.766 73.4397 .3572 253380. 1 2000 201 537.809 73.4529 .3540 253380. 2015 201 537.835 73.4541 .3548 233380. 2030 201 537.359 73.4543 .3567 253380. 2045 201 537.394 73.4556 .3573 253330. 2100 201 537.913 73.4529 .3611 253380. i 2115 201 537.933 73.4545 .3625 253380. 2130 201 537.954 73.4572 .3608 253380. 2145 201 537.9e6 73.4525 .3655 253380. 2000 201 538.015 73.4597 .3623 233380. ( 2215 201 538.036 73.4675 .3666 253380. 2230 201 538.056 73.4689 .3662
- 253380, 2245 201 533.068 73.4663
.3687 253380. 2000 201 533.096 73.4655 .3696 253380. 2315 201 538.116 73.4650 .3710 253380. 2320 201 533.141 73.4673 .3708 253380. G 2 45 201 539.162 73.4662 .3718 253380. i 0 202 538.17G 73.4673 .3718 253300. 15 202 538.194 73.4660 .3730 253380. 30 202 538.210 73.4644 .3747 253380. 45 202 538.226 73.4659 .3751 253300. 10^ 202 538.232 73.4667 .3744 253380. 120 202 538.258 73.4638 .3773 253380. 135 202 538.267 73.4627 .3784 253380. l 145 202 538.282 73.4614 .3797 253380. j 200 202 508.292 73.4618 .3793 253380. I 215 202 538.300 73.4601 .3810 253380. I 200 202 538.312 73.4602 .3808 253380. 245 202 538.329 73.4601 .3810 253380. 300 202 538.340 73.4593 .3818 253380. i I i l b l t f
O
SUMMARY
CF MEASURED DATA AT 1900 201 TEMP 1 = 531.4190 ( 71.749 ) TEMP 2 = 531.1010 ( 71.431 ) TEMP 3 = 533.9170 ( 74.247 ) TEMP 4 = 533.3850 ( 73.715 ) TEl1P 5 = 533.6450 ( 73.975 ) TEMP 6 = 542.7710 ( 83.101 ) TEf1P 7 = 542.5860 ( 82.916 ) TEMP 8 = 558.7820 ( 99.112 ) TEMP 9 = 558.5560 ( 98.886 ) TEMP 10 = 532.5810 ( 72.911 ) TEMP 11 = 532.2310 ( 72.561 ) TEMP 12 = 532.3150 ( 72.645 ) TEl1P 13 = 532.3940 ( 72.724 ) TEMP 14 = 532.3290 ( 72.659 ) PRES 1 73.3092 ( 72410.0 ) = PRES 2= 73,7888 ( 73183.0 ) l i i VPRS 1 = .3981 ( 72.724 ) l VPRS 2= .2861 ( 63.126 ) VPRS 3= .2856 ( 63.079 ) VPRS 4= .3300 ( 67.232 ) VPRS 5= .4070 ( 73.383 ) VPRS 6= .3020 ( 64.678 )
SUMMARY
OF CORRECTED DATA TIME = 1900 DATE = 201 TEMPERATURE (DEGREES R.) 537.6750 = CORRECTED PRESSURE (PSIA) = 73.4360 VAPOR PRESSURE (PSIA) .3528 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93409.4 = O
O
SUMMARY
OF MEASURED DATA AT 1915 201 l TEMP 1 = 531.5060 ( 71.836 ) TEMP 2 = 531.1860 ( 71.516 ) TEMP 3 = 533.9880 ( 74.318 ) TEMP 4 = $33.4710 ( 73.801 ) j l i TEMP 5 = 533.7240 ( 74.054 ) { t TEMP 6 = 542.8470 ( 83.177 ) f TEMP 7 = 542.6800 ( 83.010 ) TEMP 8 = 558.8090 ( 99.139 ) TEMP 9 = 558.6970 ( 99.027 ) TEMP 10 = 532.5550 ( 72.885 ) TEMP 11 = 532.2070 ( 72.537 ) i f TEMP 12 = 532.2870 ( 72.617 ) TEMP 13 = 532.3680 ( 72.698 ) l TEMP 14 = 532.3030 ( 72.633 ) 73.8122 ( 72413.0 ) PRES 1 = PRES 2= 73.7918 ( 73186.0 ) .3977 ( 72.698 ) VPRS 1 = 9 VPR3 2= .2893 ( 63.448 ) VPRS 3= .2902 ( 63.536 ) VPRS 4= .3350 ( 67.666 ) VPRS 5= .3831 ( 71.593.i VPR5 6= .3029 ( 64.763 ) f I
SUMMARY
OF CORRECTED DATA l TIME = 1915 DATE = 201 i e 537.7120 TEMPERATURE (DEGREES R.) = 73.4402 CORRECTED PRESSURE (PSIA) = .3517 VAPOR PRESSURE (PSIA) = 253380.0 l VOLUME (CU.FT.) = j 93408.2 AIR MASS (LDM) = i i t I I ? ? l till \\
O
SUMMARY
OF MEASURED DATA AT 1930 201 TEMP 1 = 531.5890 ( 71.919 ) TEMP 2 = 531.2550 ( 71.585 ) TEMP 3 = 534.0420 ( 74.372 ) TEl1P 4 = 533.5650 ( 73.S95 ) TEt1P 5 = 533.7990 ( 74.129 ) TEl1P 6 = 542.9510 ( 83.281 ) TEMP 7 = 542.7530 ( 83.083 ) TEf1P 8 = 558.8220 ( 99.152 ) TEl1P 9 = 558.6500 ( 98.980 ) TE11P 10 = 532.5530 ( 72.883 ) TE!1P 3 532.2140 ( 72.544 ) TEt1P 1 '.; = 532.2610 ( 72.591 ) TEMP 13 = 532.3530 ( 72.683 ) TEMP 14 = 532.2690 ( 72.599 ) l PRES 1 = 73.8143 ( 72415.0 ) PRES 2= 73.7939 ( 73188.0 ) VPRS 1 = .3975 ( 72.683 ) O VPRS 2= .2902 ( 63.536 ) VPRS 3= .2909 ( 63.607 ) VPRS 4= .3314 ( 67.349 ) VPRS 5= .3818 ( 71.4u9 ) VPRS 6= .30$2 ( 65.066 )
SUMMARY
OF CORRECTED DATA TIME = 1930 DATE = 201 TE'.)PERATURE (DEGREES R.) 537.7370 = CORRECTED PRESSURE (PSIA) 73.4421 VAPOR PRESSURE (PSIA) .3518 = VOLUME (CU.FT.) = 253380.0, 93406.2 AIR MASS (LBM) = s O
SUt1Mf d<Y OF MEASURED DATA AT 1945 201 TEMP 1 = 5.31.6440 ( 71.974 ) fEi1P 2 = 531.3v10 ( 71.631 ) TEMP 3 = 534.1220 ( 74.452 ) ICMP 4 = 533.6260 ( 73.956 ) TEMP S 533.G520 ( 74.182 ) 543.0230 ( G3.353 ) f Ef1P 6 2 T El1P 7 = 542.8280 ( 83.158 ) 553.3990 ( 99.229 ) TEMP O = 559.7290 ( 99.059 ) TEMP 9 = 532.5-59 ( 72.865 ) T E11P 10 = 532.2010 ( 72.531 ) rEr1P 11 = 1 Et1P 12 = 532.2340 ( 72.564 ) TEtiP 13 = 532.3140 ( 72.644 ) 532.2610 ( 72.591 ) TEl1P 14 = 73.8173 ( 72419.0 ) PREE 1 = P! ?ES ' ' = 73.7969 ( 73191.0 ) .3970 ( 72.644 ) VPRS 1 = .2917 ( 63.670 ) VPRS 2 = VPRS 3= .2932 t 63.829 ) .3352 ( 67.684 1 VF RS 4 = VPPS 5- .e'24' ( 74.668 ) .3004 ( v5.273 ) VFRS 6 = S Ut1Mi-iR Y OF CORRECTED DC A T I!1E = 1945 DATE = 201 537.7660 IEMPERATURE (DEGREES R.) = 73.4397 CORRECTED FRESSURE (PSIA) = .3572 VAPOR PRESSURE (PSIA) = 253380.O VOLUt1E (CU.FT.) = 93398.1 AIR MASS (LBt1) =
J 4 'l f. f /
- /
i SUt1 MARY OF 1IEASURED DATA AT 2000 201 \\ TEt1P 1 = 531.7460 ( 72.076 ) TE!1P 2 = 531.4150 ( 71.745.). I TEt1P 3 = 534.1780 ( 74.509 -), i i TEMP 4 = 533.7380 ( 74.068 ) 7, ~ TEMP 5 = 533.9580 ( 74.288 ) f e TEt1P 6 = 543.1010 ( 83.431 i' g IEf1P 7 = 542.9150 ( 83.245 ) /' TEMP 8 = $58.9700 ( 99.300 ) TEMP 9 = 558.7740 C' ?9.104 ) TEr1P 10 = 532.5160 + ^ 7 2. 8 4 6 ) TEf1P 11 = 532.1910 2.511 ) TEt1P 12 = 532.2160 f. /2.546 ) ( ' / 7 *. r,14 ) TEt1P 13 = 532.2840 J IEl1P 14 = 532.2500 dY 72;580 ) PRES 1 73.8275 ( 72428.0 ) = PRES 2= 73.8069 ( 73201.0 ) s t' l e, s .3966 sd P;i. 614 ) l VPRS 1 = VPRS 2= .2961 (- 6h.109 ) ? VPRS 3= .2950 (, ' t/5. 99 9 ) t I .3391 ( 6'tl. 0 1 5 ) VPRS 4 = _f VPRS 5= .3816 (
- 71. 47E: )
^ VPRS 6= .3113 ( 65.546 ) 'I r~r .e r, s g 7-
SUMMARY
OF CORRECT D DATA /' 1 s TIME = 2Qno \\ DATE = 201 t s / SN.809Ci f. TEMPERATURE (DEGREES R.) = CORRECTED PRESSURE (PSIA) =
- 73. 4E29
,e g' ~ VAPOR PRESSURE (PSIA) .3540 e c- = 253380.0 / VOLUME (CU.FT.) = AIR MASS (LBMI = 93407.5 t ' / l< J l4 ^ s y }'% r
- 6 p
g s. t jl' fx u. F - y "s g A' ., [L e 'g 6. s j _ - _ - - _.. _ _ _ ~,. 1 O
l O i i i d SoMMARY OF MEASURED DATA AT 2015 201 531.7960 ( 72.126 ) l TEMP 1 = TEMP 2 = 531.5070 ( 71.837 ) TEMP 3 = 534.2750 ( 74.605 ) TEMP 4 = 533.8040 ( 74.134 ) TEMP 5 = 534.0130 ( 74.343 ) l TEMP 6 = 543.1660 ( 83.496 ) TEMP 7 = 542.9880 ( 83.318 ) l TEMP 8 = 558.9900 ( 99.320 ) l TEMP 9 = 558.8420 ( 99.172 ) TEMP 10 = 532.4960 ( 72.826 ) /2.478 ) TE!1P 11 = ",7 2.. -, c, v s TEMP 12 = 532.1960 ( 72.526 ) TEMP 13 = 532.2800 ( 72.610 ) 532.2190 ( 72.549 ) TEMP 14 = 73.8285 ( 72429.0 7 PRES 1 = PRES 2= 73.8089 ( 73203.0 ) i VPRS 1 n .3965 ( 72.610 ) G VPRS 2= .2976 ( 64.257 ) i VPRS 3= .2957 ( 64.070 ) VPRS 4= .3414 ( 68.211 ) l i VPRS 5= .3852 ( 71.751 ) .3112 ( 65.535 ) VPRS 6 = I l
SUMMARY
OF CORRECTED DATA i TIME = 2015 DATE = 201 t 537.8350 TEMPERATURE (DEGREES R.) = CORRECTED PRESSURE (PSIA) 73.4541 = .3548 l VAPOR PRESSURE (PSIA) = 253380.0 i VOLUME (CU.FT.) = AIR MASS (LBM) 93404.6 = i M a ( _ _. _ _ _ _ _ _, _. _ _ _. _ _ _ _ _ _. _. ~ _. _.,.. _ _ _ _.. _ _ _ _ _ _ _ _ _.. _. _, _, _ _ _, _ _ _, _
O
SUMMARY
OF MEASURED DATA AT 2030 201 TEMP 1 = 531.8760 ( 72.206 ) TEMP 2 = 531.5730 ( 71.903 ) TEMP 3 = 534.3460 ( 74.675 ) TEMP 4 = 533.8640 ( 74.194 ) TEMP 5 = 534.0950 ( 74.425 ) TEMP 6 = 543,2430 ( 83.573 ) TEMP 7 = 543.0610 ( 83.391 ) TEMP 8 = 559.0440 ( 99.374 ) e -3 e <a 7;,s 3 :,. TEMP 10 = 532.4720 ( 72.802 ) TEMP 11 = 532.1170 ( 77.447 ) TEMr; 12 = 532.1630 ( 72.493 ) TEMP 13 = 532.2560 ( 72.586 ) TEMP 14 = 532.2150 ( 72.545 ) 73.8305 ( 72431.0 ) PRES 1 = PRES 2= 73.8109 ( 73205.0 ) VPRS 1 = .3962 ( 72.586 ) G VPRS 2= .2987 ( 64.360 ) VPRS 3= .3008 ( 64.556 ) VPRS 4= .3429 ( 68.342 ) VPRS 5= .3891 ( 72.053 ) VPRS 6= .3161 ( 65.981 ) SUt1 MARY OF CORRECTED DATA TIME = 2030 DATE = 201 TEMPERATURE (DEGREES R.) = 537.8590 CORRECTED PRESSURE (PSIA) 73.4543 = VAPOR PRESSURE (PSIA) .3567 = VOLUME (CU.FT.) = 253380.0 AIR MASS (LBM) 93400.6 = O
7- -- s till i I i i .I
SUMMARY
OF MEASURED DATA AT 2045 201 TEMP 1 = 531.9530 ( 72.283 ) TEMP 2 = 531.6300 ( 71.960 ) TEMP 3 = 534.4070 ( 74.737 ) TEMP 4 = 533.9430 ( 74.273 ) TEMP 5 = 534.1750 ( 74.505 ) TEMP 6 = 543.3250 t 83.655 ) TEMP 7 = 543.1350 ( 83.465 ) l l l TEMP 8 = 559.0540 ( 99.384 ) TEMP 9 = 558.9450 ( 99.275 ) l j TEMP 10 = 532.4600 ( 72.790 ) { TEMP 11 = 532.1000 ( 72.430 ) TEMP 12 = 532.1400 ( 72.470 ) i fEMP 13 = 532.2440 ( 72.574 ) 4 TEMP 14 = 532.2050 ( 72.535 ) 73.3325 ( 72433.0 ) PRES 1 = PRES 2= 73.8129 ( 73207.0 ) l .3960 ( 72.574 ) VPRS 1 9 = VPRS 2= .3008 ( 64.559 ) VPRS 3= .3030 ( 64.766 ) VPRS 4= .3239 ( 66.685 ) l VPRS 5= .4051 ( 73.244 ) l VPRS 6= .3190 ( 66.245 ) i i (
SUMMARY
OF CORRECTED DATA TIME = 2045 DATE = 201 537.8940 l TEMPERATURE (DEGREES R.) = CORRECTED PRESSURE (PSIA) 73.4556 = l VAPOR PRESSURE (PSIA) .3573 = VOLUME (CU.FT.) 253380.0 = 93396.3 AIR MASS (LBM) = O
t
SUMMARY
OF MEASURED DATA AT 2100 201 TEMP 1 = 532.0010 ( 72.331 ) TEMP 2 = 531.6740 ( 72.004 ) TEMP 3 = 534.4950 ( 74.825 ) TEMP 4 = 534.0250 ( 74.355 ) TEMP 5 = 534.2360 ( 74.566 ) TEMP 6 = 543.3900 ( 83.720 > TEMP 7 = 543.2070 ( 83.537 ) TEf1P 9 = 559.0710 ( 99.401 ) TEMP 9n 558.9400 ( 99.270 ) TEMP 10 = 532.4570 ( 72.787 ) TEMP 11 = 532.0920 ( 72.422 ) TEMP 12 = 532.1090 ( 72.439 ) TCMP 13 = 532.2080 ( 72.538 ) TEMP 14 = 532.1790 ( 72.509 ) PRES 1 73.8345 ( 72435.0 ) = PRES 2= 73.S139 ( 73203.0 ) G VPRS 1 .3956 ( 72.538 ) = VPRS 2= .3033 ( 64.795 ) VPRS 3= .2941 ( 63.918 ) VPRS 4= .3576 ( 69.571 ) VPRS 5= .4125 ( 73.793 > VPRS 6= .3223 ( 66.543 )
SUMMARY
OF CORRECTED DATA TIME = 2100 l DATE = 201 l l TEMPERATURE (DFGREES R.) 537.9130 = 73.4529 l CORRECTED PRESSURE (PSIA) = VAPOR PRESSURE (PSIA) .3611 = VOLUME (CU.FT.) 253390.0 = AIR MASS (LBM) 93389.3 = 0
SUMMARY
OF MEASURED DATA AT 2115 201 5 l TEMP 1 = 532.0790 ( 72.409 ) TEMP 2 = 531.7090 ( 72.039 ) TEMP 3 = 534.5740 ( 74.904 ) TEMP 4 = 534.1100 ( 74.^40 i TEMP 5 = 534.3010 ( 74.631 ) TEMP 6 = 543.4730 ( 83.803 ) TEMP 7 = 543.2720 ( 83.602 ) TEMP 8 = 559.1300 ( 99.460 ) TEMP 9 = 553.9310 ( 99.261 ) l TEMP 10 = $32.4290 ( 72.759 ) j TEMP 11 = 532.0690 ( 72.399 ) l TEMP 12 = 532.0980 ( 72.428 ) j TEMP 13 = $32.1990 ( 72.519 ) TEMP 14 = 532.1610 ( 72.491 ) l PRES 1 73.8356 ( 72436.0 ) = i l PRES 2= 73.8170 ( 73211.0 ) l .3953 ( 72.519 ) VoRS 1 = VPRS 2= .3056 ( 65.011 ) l' VPRS 3= .3068 ( 65.128 ) VPRS 4= .3588 ( 69.669 ) VPRS 5= .4120 ( 73.745 ) VPRS 6= .3212 ( 66.451 ) i
SUMMARY
OF CORRECTED DATA TIME = 2115 } DATE = 201 i 537.9390 TEMPERATURE (DEGREES R.i = 73.4545 i CORRECTED PRESSURE (PSIA) = = .3625 VAPOR PRESSLRE (PSIA) 253380.0 VOLUME (CU.FT.) = 93387.0 AIR MASS (LBM) = I O i l-
i I ' O
SUMMARY
OF MEASURED DATA AT 2130 201 TEMP 1 = 532.1440 ( 72.474 ) TEMP 2 = 531.7320 ( 72.062 ) TEMP 3 = 534.6140 ( 74.944 ) TEMP 4 = 534.1650 ( 74.495.i TEMP 5 = 534.3710 ( 74.791 ) TEMP 6 = 543.5420 ( G3.872 ) TEMP 7 = 543 3370 ( 83.667 ) TEMP 8 = 559.1260 ( 99.456 ) TEMP 9 = 558.8920 ( 99.222 ) TEMP 10 = 532.408C ( 72.7ad ' TEMP 11 = 532.0750 ( 72.405 ) TEMP 12 = 532.0060 ( 72.416 ) TEMP 13 = 532.1530 ( 72.483 ) TEMP 14 = 532.1590 ( 72.489 ) PRES 1 = 73.8366 ( 72437.0 ) PRES 2= 73.8180 ( 73212.0 ) VPRS 1 .3948 ( 72.483 ) G = VPE9 2= .3070 ( 65.149 ) VPRS 3= .2947 ( 63.976 ) VPRS 4= .3615 ( 69.885 ) VPRS 5= .4023 ( 73.038 ) VPRS 6= .3236 ( 66.662 )
SUMMARY
OF CORRECTED DATA TIME = 2130 DATE = 201 TEMPERATURE (DEGREES R.) 537.9540 = CORRECTED PRESSURE (PSIA) 73.4572 = VAPOR PRESSURE (PSIA) .3608 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93387.8 = O
l i l llO i
SUMMARY
OF MEASURED DATA AT 2200 201 i l TEMP 1 = 532.2600 ( 72.590 ) TEMP 2 = 531.7950 ( 72.125 ) TEMP 3 = 534.7490 ( 75.079 ) TEMP 4 = 534.2860 ( 74.616 ) l TEMP 5 = $34.4960 ( 74.826 ) TEMP 6 = 543.6780 ( 84.008 ) i TEMP 7 = 543.4680 ( 83.798 ) a TEMP 8 = 559.2030 ( 99.533 ) i l TEMP 9 = 559.OS10 ( 99.381 ) l TEMP 10 = 532.3890 ( 72.719 ) l TEMP 11 = 332.0410 ( 72.371 ) [ TEMP 12 = 532.0640 ( 72.394 ) l TEMP 13 = 532.1440 ( 72.474 ) TEMP 14 532.1560 ( 72.486 ) = PRES 1 = 73.8396 ( 72440.0 ) PRES 2= 73.8220 ( 73216.0 ) VPRS 1 = .3947 ( 72.474 ) G VFRS 2= .3100 ( 65.429 ) l VPRS 3= .3103 ( 65.450 ) VPRS 4 = .3306 ( 67.233 ) l VPRS 5= .4208 ( 74.375 ) VPRS 6= .3283 ( 67.081 ) i
SUMMARY
OF CORRECTED DATA l TIME = 2200 DATE = 201 i TEMPERATURE (DEGREES R.) 538.0150 = 73.4597 CORRECTED PRESSURE (PSIA) = VAPOR PRESSURE (PSIA) .3623 = l VOLUME (CU.FT.) 253380.0 = i AIR MASS (LBM) = 93380.4 ( k ( i I i i i till I l l L l
!9 l t 1 i
SUMMARY
OF MEASURED DATA AT 2215 201 i i 532.3210 t 72.651 ) TEMP 1 : TEMP 2 = 531.8430 ( 72.173 ) TEMP 3 = 534.8160 ( 75.146 ) TEMP 4 = 534.3660 ( 74.696 ) TEMP 5r 534.5390 ( 74.869 ) FEMP 6= $43.7500 ( 84.080 ) TEMP 7 = 543.5410 ( 83.871 ) TEMP 8 = 559.2040 ( 09.534 ) TEMP 9 = 559.0570 ( 99.387 ) TEMP 10 = 532.3Y2O ( 72.722 ) TEMP 11 = 532.0210 ( 72.351 ) TEMP 12 = 532.0560 ( 72.#86 ) TEMP 13 = 532.1210 ( 72.451 ) TEMP 14 = 532.1370 ( 72.467 ) PRES 1 73.8538 ( 72454.0 ) = PRES 2= 73.8340 ( 73228.0 ) i .3944 ( 72.451 ) VPRS 1 = G VPRS 2= .3120 ( 65.607 ) VPRS 3= .3069 ( 65.138 ) VPRS 4= .3677 ( 70.336 ) VPRS 5= .4273 ( 74.837 ) l YPRS 6= .3294 ( 67.177 )
SUMMARY
OF CORRECTED DATA TIME = 2215 DATE = 201 538.0360 TEMPERATURE (DEGREES R.) = CORRECTED PRESSURE (PSIA) 73.4675 = VAPOR PRESSURE (PSIA) .3666 = VOLUME (CU.FT.) 253380.0 = 93386.7 AIR MASS (LBM) = l l 0
O
SUMMARY
OF MEASURED DATA AT 2230 201 TEMP 1 = 532.3830 ( 72.713 ) TEMP 2 = 531.8920 ( 72.222 ) TEMP 3 = 534.8700 ( 75.200 ) TEMP 4 = 534.4170 ( 74.747 ) TEl1P 5 = 534.6220 ( 74.952 ) TEMP 6 = 543.8060 ( 84.136 ) TEMP 7 = 543.5960 ( 83.926 ) TEMP 8 = 559.2250 ( 99.555 ) TEMP 9 = 559.0420 ( 99.372 ) TEMP 10 = 532.3670 ( 72.697 ) TEMP 11 = 532.0180 t 72.348 ) TEMP 12 = 532.0320 ( 72.362 ) TEMP 13 = 532.1090 ( 72.439 ) TEMP 14 = 532.1300 ( 72.460 ) PRES 1 73.8538 ( 72454.0 ) = PRES 2= 73.8350 ( 73229.0 ) VPRS 1 .3942 ( 72.439 ) G = VPRS 2= .3140 ( 65.798 ) VPRS 3= .3150 ( 65.884 ) VPRS 4= .3562 ( 69.450 ) VPRS 5= .4151 ( 73.974 ) VPRS 6= .3358 ( e7.734 ) l l
SUMMARY
OF CORRECTED DATA l TIME = 2230 i DATE = 201 TEMPERATURE (DEGREES R.) 538.0560 = CORRECTED PRESSURE (PSIA) = 73.4689 VAPOR PRESSURE (PSIA) .3662 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93385.0 = 0
tilli l
SUMMARY
OF MEASURED DATA AT 2145 201 TEMP 1 = 532.1920 ( 72.522 ) TEMP 2 = 531.7570 ( 72.087 ) TEMP 3 = 334.6800 ( 75.010 ) TEMP 4 = 534.2250 ( 74.555 ) TEMP 5 = 534.4410 ( 74.771 ) TEMP 6 = 543.5960 ( 83.926 ) TEMP 7 = 543.4030 ( 83.733 ) TEMP 8 = 559.1870 ( 99.517 ) TEMP 9 = 559.0450 ( 99.375 ) TEMP 10 = 532.4050 ( 72.735 ) TEMP 11 = 532.0180 ( 72.348 ) TEMP 12 = 532.0620 ( 72.392 ) TEMP 13 = 532.1430 ( 72.473 ) TEMP 14 = 532.1530 ( 72.483 ) PRES 1 73.8386 ( 72439.0 ) = PRES 2= 77.8180 ( 73212.0 ) VPRS 1 G .3947 ( 72.473 ) = VPRS 2= .3079 ( 65.231 ) VPRS 3= .2981 ( 64.298 ) VPRS 4 = .3566 ( 69.488 ) VPRS 5 .4404 ( 75.739 ) = VPRS 6= .3287 ( 67.117 )
SUMMARY
OF CORRECTED DATA TIME = 2145 DATE = 201 TEMPERATURE (DEGREES R.) 537.9860 = CORRECTED PRESSURE (PSIA) 73.4525 = VAPOR PRESSURE (PSIA) .3655 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93376.2 = 0
l O
SUMMARY
OF MEASURED DATA AT 2245 201 TEMP 1 = 532.L480 ( 72.778 ) TEMP 2 = 531.9440 ( 72.274 ) TEMP 3 = 534.9370 ( 75.267 ) TE'dP 4 - 534.4940 ( 74.824 ) TEhP 5 " 534.6830 ( '5.013 ) TEMP 6 = 543.8650 ( 84.195 ) TEMP 7 = 543.6500 ( 83.983 ) TEMP 8 = 559.1950 ( 99.525 ) TEMP 9 = 558.9550 ( 99.285 ) TEMP 10 = 532.3520 ( 72.682 ) TEMP 11 = 532.0150 ( 72.345 ) TEMP 12 = 532.0350 ( 72.365 ) TEMP 13 = 532.0810 ( 72.411 ) TEMP 14 = $32.1140 ( 72.444 ) FRES 1 73.8538 ( 72454.0 ) = i PRES 2= 73.8350 ( 73229.0 ) l VPRS 1 9 .3939 ( 72.411 ) = VPRS 2= .3155 ( 65.934 ) VPRS 3= .3202 ( 66.360 ) VPRS 4 = .3610 ( 69.844 ) VPRS 5= .4317 ( 75.140 ) VFRS 6= .3344 ( 67.612 )
SUMMARY
OF CORRECTED DATA TIME = 2245 DATE = 201 TEMPERATURE (DEGREES R.) 5311.0680 = CORRECTED PRESSURE (PSIA) 7:. 4663 = VAPOR PRESSURE (PSIA) .3687 = VOLUME (CU.FT.) 253360.0 = AIR MASS (LBM) 93379.6 = 0
. _ _ _ _ _ ~.. _.. _ O l 1
SUMMARY
OF MEASURED DATA AT 2300 201 TEMP 1 = 532.4990 ( 72.829 ) l TEMP 2 = 531.9800 ( 72.310 ) TEMP 3 = 535.0030 ( 75.333 ) TEMP 4 = 534.5530 ( 74.883 ) l TEMP 5 = 534.7460 ( 75.076 ) l TEMP 6 = 543.9190 ( 84.249 ) l TEMP 7 = 543.7200 ( 84.050 ) TEMP 8 = 559.1990 ( 99.529 ) l TEMP 9 = 559.0770 ( 99.407 ) TEMP 10 = 532.3440 ( 72.674 ) TEMP 11 = 531.9860 ( 72.316 ) TEMP 12 = 531.9910 ( 72.321 ) { T Ef1P 13 = 532.1010 t 72.431 ) TEMP 14 = 532.1040 ( 72.434 ) t 73.8548 ( 72455.0 ) PRES 1 = PRES 2= 73.8350 ( 73229.0 ) l l .3941 ( 72.431 ) VPRS 1 = , 9 VPRS 2= .3166 ( 66.023 ) VPRS 3= .3199 ( 66.328 ) VPRS 4= .3714 ( 70.680 ) VPRS 5 .4255 ( 74.711 ) VPRS 6= .3362 ( 67.765 ) t
SUMMARY
OF CORRECTED DATA TIME = 2300 DATE = 201 TEMPERATURE (DEGREES R.) 538.0960 = 73.4655 CORRECTED PRESSURE (PSIA) = .3696 VAPOR PRESSURE (PSIA) = 253380.0 VOLUME (CU.FT.) = AIR MASS (LBM) 93373.7 = l l l l il l
O
SUMMARY
OF MEASURED DATA AT 2315 201 TEMP 1 = 532.5470 ( 72.877 ) TEMP 2 = 532.0140 ( 72.344 ) TEMP 3 = 535.0710 ( 75.401 ) TEMP 4 = 534.6050 ( 74.935 ) TEMP 5 = 534.8040 ( 75.134 ) TEMP 6 = 543.9820 ( 84.312 ) TEMP 7 = 543.7760 ( 84.106 ) TEMP S = 559.2190 ( 99.549 ) TEMP 9 = 559.0650 ( 99.395 ) TEMP 10 = 532.3380 ( 72.668 ) TEMP 11 = 531.9940 ( 72.324 ) TEMP 12 = 531.9970 ( 72.327 ) TEMP 13 = 532.0770 ( 72.407 ) TEMP 14 = 532.0880 ( 72.418 ) PRES 1 73.8548 ( 72455.0 ) = PRES 2= 73.8360 ( 732!O.0 ) VPRS 1 .3938 ( 72.407 ) O = VPRS 2= .3175 ( 66.117 ) VPRS 3= .3238 ( 66.684 ) VFRS 1= .3753 ( 70.984 ) l VPRS 5= ,4298 ( 75.010 ) l l VPRS 6 = .3376 ( 67.886 )
SUMMARY
OF CORRECTED DATA TIME = 2315 DATE = 201 TEMPERATURE (DEGREES R.) 539.1160 = CORRECTED PRESSURE (PSIA) 73.4650 = VAPOR PRESSURE (PSIA) .3710 = VOLUME (CU.FT.) 253383.0 = AIR MASS (LBM) 93369.6 = 0
SU!1 MAR Y OF MEASURED DATA AT 2330 201 TEMP 1 532.5870 ( 72.917 ) = TEMP ? = 53T.0400 ( '2.378 ) TEMP 3 = 535.1200 ( 75.458 ) fEMP 4 534.6800 ( 7'5.010 ) = TEMP 5 = 534.8700 ( 75.200 ) TEMP 6 = 544.0260 ( 84.366 ) TEMP 7 = 543.8380 ( 84.168 ) l TEMP 8 = 55Y.2460 ( 99.576 ) l TEMP 9 = 559.1220 ( 99.452 ) i 532.3250 ( 72.655 ) l TEt1P 10 = TEMP 11 531.9710 ( 72.701 ) = TEMP 12 = 531.9770 ( 72.307 ) TEMP 13 = 532.0530 ( 72.383 ) fEMP 14 532.0880 ( 72.418 ) = PPES 1 = 73.8568 ( 72457.0 ) PRES 2= 73.3381 ( 73232.0 ) VPRS .3935 ( 72.383 ) = ' 'PF S 2 .3191 ( 66.254 ) = './ PP S .3234 ( 66.642 ) = ' " b" 3 4 -- .3717 ( 70.702 ) VPRS 5 .4222 ( 74.477 ) = YPRS 6 .3434 ( 68.335 ) = 9UMMARY OF CORRECTED DATA TINE = 2330 DATE = 201 TEMPERATURE (DEGREES R.) 539.1410 = COxRECTED PRESSURE (PSIA) 73.4673 = VAPOR PRESSURE (PSIA) .3708 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93368.2 =
O
SUMMARY
OF MEASURED DATA AT 2345 201 TEMP 1 = 532.6390 ( 72.969 ) TEMP 2 = 532.0770 ( 72.407 ) TEMP 3 = 535.2050 ( 75.535 ) TEMP 4 = 534.7420 ( 75.072 ) TEMP 5 = 534.9290 ( 75.259 ) TEMP 6 = 544.1040 ( 84.434 ) TEMP 7 = 543.9010 ( 84.231 ) TEMP 8 = 559.2630 ( 99.593 ) TEMP 9 = 559.1410 ( 99.471 ) TEMP 10 = 532.3220 ( 72.652 ) TEMP 11 = 531.9380 ( 72.268 ) TEMP 12 = 531.9560 ( 72.236 ) TEMP 13 = 532.0570 ( 72.387 ) TEMP 14 = 532.0780 ( 72.408 ) l l PRES 1 = 73.8568 ( 72457.0 ) PRES 2= 73.8381 ( 73232.0 ) VPRS 1 O .3935 ( 72.387 ) = VPRS 2= .3219 ( 66.513 ) VPRS 3= .3261 ( 66.885 ) VPRS 4= .3776 ( 71.169 ) VPRS 5= .4261 ( 74.755 ) VPRS 6= .3399 ( 68.086 )
SUMMARY
OF CORRECTED DATA TIME = 2345 CATE = 201 t TEMPERATURE (DEGREES R.) 538.1620 = CORRECTED PRESSURE (PSIA) 73.4662 = VAPOR PRESSURE (PSIA) .3718 = VOLUME (CU.FT.) 253380.0 = 93363.1 AIR MASS (LBM) = O l
l
- l l
l l
- 10
\\
SUMMARY
OF MEASURED DATA AT O 202 TEMP 1 = 532.6880 ( 73.018 ) TEMP 2 = 532.OY70 ( 72.427 ) TEMP 3 = 535.2650 ( 75.595 ) TEMP 4 = 534.7820 ( 75.112 ) i TEMP 5 = 534.9810 ( 75.311 ) l TEMP 6 = 544.1570 ( S4.487 ) TEMP 7 = 543.9500 ( 84.280 ) TEt1P 8 = 559.2500 ( 99.580 ) i TEMP 9 = 559.1320 ( 99.462 ) 532.3190 ( 72.649 ) l TEMP 10 = T Et1P 11 531.9500 ( 72.230 ) = TEMP 12 = $31.9520 ( 72.282 ) TEMP 13 = 532.0340 ( 72.364 ) $32.0790 ( 72.409 ) TEMP 14 = 73.8568 ( 72457.0 ) l PHE9 1 = l PRES 2= 73.8391 ( 73233.0 ) l .3932 ( 72.364 ) VPRS 1 = l VPRS 2= .3216 ( 66.487 ) l VPRS 3= .3225 ( 66.564 ) VPRS 4 = .3756 ( 71.010 ) { VPRS 5= .4240 ( 74.602 ) .3455 ( 68.563 ) VPRS 6 = 2 l
SUMMARY
OF LORRECTED DATA TIME = 0 i DATE = 202 TEMPERATURE (DEGREES R.) 538.1780 = CORRECTED PRESSURE (PSIA) 73.4673 = l VAPOR PRESSURE (PSIA) .3718 = l VOLUME (CU.FT.) I 253380.0 = l AIR MASS (LBM) 93761.7 I = l t
O
SUMMARY
OF MEASURED DATA AT 15 202 TEMP 1 = 532.7320 ( 73.062 ) TEMP 2 = 532.1370 ( 72.467 ) TEMP 3 = 535.3330 ( 75.663 ) TEMP 4 = 534.8440 ( 75.174 ) TEMP 5 = 535.0230 ( 75.353 ) TEMP 6 = 544.2160 ( 84.546 ) TEMP 7 = 544.0090 ( 84.339 ) TEMP 8 = 559.2840 ( 99.614 ) FEMP 9 = 559.0680 ( 99.398 ) TEMP 10 = 532.2930 ( 72.623 ) TEMP 11 = 531.9420 ( 72.272 ) TEMP 12 = 531.9470 ( 72.277 ) TEMP 13 = 532.0390 ( 72.369 ) TEl1P 14 = 532.0750 ( 72.405 ) l PRES 1 73.8579 ( 72458.0 ) i = PRES 2= 73.83?1 ( 73233.0 ) VPRS 1 = .3933 ( 72.369 ) O VPRS 2= .3238 ( 66.677 ) VPRS 3= .3299 ( 67.222 ) VPRS 4 = .3867 ( 71.871 ) VPRS 5= .4169 ( 74.103 ) VPRS 6= .3446 ( 68.486 ) l
SUMMARY
OF CORRECTED DATA TIME = 15 DATE = 202 TEMPERATURE (DEGREES R.) 538.1940 = CORRECTED PRESSURE (PSIA) 73.4660 = VAPOR PRESSURE (PSIA) = .3730 VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93357.3 = 0
O
SUMMARY
OF MEASURED DATA AT 30 202 TEMP 1 = 532.7880 ( 73.118 ) TEMP 2 = 532.1440 ( 72.474 ) TEMP 3 = 535.3990 ( 75.729 ) TEMP 4 = 534.9000 ( 75.230 ) TEMP r= 535.0930 ( 75.423 ) TEMP 6 = 544.2590 ( 84.589 ) TEMP 7 = 544.0730 ( 84.403 ) TEMP 8= 359.2330 ( 99.563 ) TEMP 9 = 559.1200 ( 99.450 ) TEMP 10 m 532.2890 ( 72.619 ) TEMP 11 - 531.9230 ( 72.253 ) TEMP 12 = 531.9320 ( 72.262 ) TEMP 13 = $32.0010 ( 72.331 ) TEMP 14 = 532.0690 ( 72.399 ) PRES 1 73.8579 ( 72458.0 ) = PRES 2= 73.8391 ( 73233.0 ) VPRS 1 .3928 ( 72.331 ) O = VPRS 2= .3249 ( 66.778 ) VPRS 3= .3304 ( 67.263 ) VPRS 4 = .3870 ( 71.892 ) VPRS 5= .4277 ( 74.865 ) VPRS 6= .3481 ( 68.779 )
SUMMARY
OF CORRECTED DATA TIME = 30 DATE = 202 TEMPERATURE (DEGREES R.) 538.2100 = CORRECTED PRESSURE (PSIA) 73.4644 = VAPOR PRESSURE (PSIA) = .3747 VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93352.5 = O
O
SUMMARY
OF MEASURED DATA AT 45 202 TEMP 1 = 532.8290 ( 73.159 ) TEMP 2 = 532.1740 ( 72.504 ) TEMP 3 = 535.4460 ( 75.776 ) TEMP 4 = 534.9730 ( 75.303 ) TEMP 5 = 535.1620 ( 75.492 ) TEMP 6 = 544.3180 ( 84.648 ) TEMP 7 = 544.1070 ( 84.437 ) TEMP 8 = 559.1830 ( 99.513 ) TEMP 9 = 559.0680 ( 99.398 ) TEMP 10 = 532.2990 ( 72.629 ) TEMP 11 = 531.9340 ( 72.264 ) TEMP 12 = 531.9140 ( 72.244 ) l TEMP 13 = 531.9950 ( 72.325 ) TEMP 14 = 532.0820 ( 72.412 ) PRES 1 73.9599 ( 72460.0 ) = PRES 2= 73.8411 ( 73235.0 ) VPRS 1 .3927 ( 72.325 ) O = VPRS 2= .3272 ( 66.978 ) VPRS 3= .3267 ( 66.934 ) VPRS 4 = .3917 ( 72.244 ) VPRS 5= .4314 ( 75.125 ) VPRS 6= .3467 { 68.664 )
SUMMARY
OF CORRECTED DATA TIME = 45 DATE = 202 TEMPERATURE.(DEGREES R.) 538.2260 = CORRECTED PRESSURE (PSIA) 73.4659 = VAPOR PRESSURE (PSIA) .3751 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93351.7 = 0
O l l
SUMMARY
OF MEASURED DATA AT 100 202 i l TEMP 1 = 532.8750 ( 73.205 ) TEMP 2 = 532.2050 ( 72.535 ) TEMP 3 = 535.4930 ( 75.823 ) TEMP 4 = $35.0230 ( 75.053 ) TEMP 5 = 535.1960 ( 75.526 ) TEMP 6 = 544.0670 ( 84.697 ) TEMP 7 = 544.1720 ( 84.502 ) TEMP 8 = 559.1730- ( 99.503 ) TEMP 9 = 559.9830 ( 99.313 ) TEMP 10 = 532.2720 ( 72.602 ) TEMP 11 = 531.9260 ( 72.256 ) TEMP 12 = 531.9040 ( 72.234 1 r i TEMP 13 = 531.9980 ( 72.328 ) TEMP 14 = 532.0670 ( 72.397 ) i { PRES 1 = 73.8599 ( 72460.0 ) l j PRES 2= 73.8411 ( 73235.0 ) l l I VPRS 1 = .3928 ( 72.328 ) 9 l VPRS 2= .3273 ( 66.993 ) 1 VPRS 3= .3355 ( 67.711 ) VFRS 4= .3690 ( 70.485 ) VPRS 5= .4294 ( 74.980 ) l VPRS 6= .3514 ( 69.059 ) l l
SUMMARY
OF CORRECTED DATA l l TIME = 100 l l DATE = 202 i 538.2320 TEMPERATURE-(DEGREES R.) = 73.4667 f CORRECTED PRESSURE (PSIA) = i VAPOR PRESSURE (PSIA) = .3744 i VOLUME.(CU.FT.) 253380.0 = 93351.5 AIR MASS (LBM) = I l l I I l i till t I { l
O CUMMARY OF MEASURED DATA AT 120 202 TEMP 1 532.9470 ( 73.277 ) = TEMP 2 = 532.2300 ( 72.560 ) TEMP 3 = 535.5700 ( 75.900 ) TEMP 4 = 535.0930 ( 75.423 ) TEMP 5 = 535.2750 ( 75.605 > TEMP 6 = 544.4320 ( 84.762 ) TEMP 7 = 544.2390 ( 84.569 ) TEMP 8 = 559.1870 ( 99.517 ) TEMP 9 = 559.0240 ( 9 9..:.5 4 ) TEMP 10 = 532.2680 ( 72.598 i TEMP 11 531.9230 ( 72.258 ) = TEMP 12 = 531.8950 ( 72.225 ) l TEMP 13 = 531.9690 ( 72.299 ) l TEMP 14 532.0340 ( 72.364 ) = PRES 1 73.8599 ( 72460.O = PRES 2 73.8411 ( 73235.0 ) = VPRS 1 .3924 ( 72.299 ) G = VPRS 2- .3308 ( 67.298 ) VPRS "= .3358 ( 67.737 ) VPRS 4= .3870 ( 71.891 ) VPR5 5= .4340 ( '7 5. 30 ~- ) c VPRS 6 .3540 ( 69.273 ) =
SUMMARY
OF CORRECTED DATA TIME = 120 DATE = 202 TEMPERATURE (DEGREES R.) 538.2580 = CORRECTED PRESSURE (PSIA) 73.4638 = VAPOR PRESSURE (PSIA) .3773 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93343.3 = 0
l e
SUMMARY
OF MEASURED DATA AT 135 202 TEMP 1 532.9880 ( 73.318 > = TEMP 2 = 532.2600 ( 72.590 ) TEMP 3 = 535.6080 ( 75.938 ) 535.1450 ( 75.475 ) TE!1P 4 = fEMP 5 = 525.3520 ( 75.692 ) TEMP 6 544.4790 ( 84.809 ) = TEMP 7 544.2860 ( 84.616 ) = TEf1P S = 559.1820 ( 99.512 ) TEMP 9 558.9590 ( 99.289 ) = TEMP 10 = 532.2630 ( 72.593 > TEMP 11 531.8780 ( 72.208 ) = TEMP 12 531.8900 ( 72.220 ) = TEMP 17 = 531.9480 ( 72.278 ) TEMP 14 532.0300 ( 72.360 ) = PPES 1 : 73.8599 ( 72460.0 ) PRES 2 73.9411 ( 73235.0 ) = G .3921 ( 72.275 ) VPRS 1 = VPRS .3328 ( 67.474 = VPRS 3= .3346 ( 67.628 ) VPRS 4 .1029 ( 73.084 ) = VPRS 5= .4711 ( 75.100 ) YPRS 6= .3531 ( 69.196 )
SUMMARY
OF CURRECTED DATA TIME = 135 DATE = 202 TEMPERATURE (DEt3REES R. ) 538.2670 = CORRECTED PRESSLtRE (PSIA) 73.4627 = VAPOR PRESSURE (PSIA) .3784 = VOLUME (CU.FT.) 253380.O = AIR MASS (LBM) 93340.4 = O
~ G SUMt1ARY OF MEASURED DATA AT 145 202 l l TEMP 1 = 533.0160 ( 73.346 ) l TEMP 2 = 532.2730 ( 72.603 ) t TEl1P 3 = 535.6390 ( 75.969 ) i TEMP 4 = 535.1860 ( 75.518 ) l TEt1P 5 = 535.3850 ( 75.715 ) TEMP 6 = 544.5080 ( 84.838 ) TEMP 7 = 544.3120 ( 84.642 ) TEMP 8 = 559.1560 ( 99.486 ) TEMP 9 = 558.9820 ( 99.312 ) TEMP 10 = 532.2600 ( 72.590 ) i TEf1P 11 = 531.8880 ( 72.213 ) l l TEMP 12 = 531.8850 ( 72.215 ) l TEMP 13 = 531.9600 ( 72.290 ) TEMP 14 = 532.0340 ( 72.364 ) PRE 3 1 73.8599 ( 72460.0 ) = 1 PRES 2= 73.8411 ( 73235.0 ) l t i VPRS 1 .3923 ( 72.290 ) = VPRS 2= .3324 ( 67.435 ) i VPRS 3= .3400 ( 68.099 ) l .4011 ( 72.954 ) VPRS 4 = VPRS 5= .4396 ( 75.690 ) VPRS 6 = '.3529 ( 69.183 )
SUMMARY
OF CORRECTED DATA TIME = 145 DATE = 202 TEMPERATURE (DEGREES R.) 538.2820 = I CORRECTED PRESSURE (PSIA) = 73.4614 I VAPOR PRESSURE (PSIA) = .3797 } 253380.0 ( VOLUME (CU.FT.) = AIR MASS (LBM) = 93336.2 l i l I I
O GUMMAR's OF MEASURED DATA Al 200 202 TEMP 1 = 533.0810 ( 73.411 ) TEMP 2 = 532.2930 ( 72.623 ) TEMP 3 = 535.6750 ( 76.005 ) TEMP 4 = 535.2380 ( 75.568 ) fEMP 5 = 535.4460 ( 75.776 ) TE!1P A= 544.5510 ( 84.881 ) TEMP 7 = 544.3570 ( 84.687 ) TEMP 8 = 559.1290 ( 99.459 ) TEMP 9 = 558.9380 ( 99.268 ) TEMP 10 = 532.2540 ( 72.584 ) TEMP 11 = 531.8580 ( 72.188 ) TEMP 12 = 531.8740 ( 72.204 ) TEl1P 13 = 531.9530 ( 72.283 TEMP 14 = 532.0280 ( 72.358 ) PRES 1 73.8599 ( 72460.0 ) = PRES 2= 73.8411 ( 73235.0 > G VPRS 1 .5922 ( 72.283 ) = VPRS 2= .3340 ( 67.574 ) VPRS 3= .3396 ( 68.057 ) VPRS 4= .3934 ( 72.074 ) VPRS 5 =- .4376 ( 75.552 ) VPRS 6 = .3561 ( 69.444 )
SUMMARY
OF CORRECTED DATA TIl1E = 200 DATE = 202 TEMPERATURE (DEGREES R.) 538.2920 = CORRECTED PRESSURE (PSIA) = 73.4618 VAPOR PRESSURE (PSIA) .3793 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93335.0 = 0
I Io
SUMMARY
OF MEASURED DATA AT 215 202 TEMP 1 = 533.1110 ( 73.441 ) TEMP 2 = 532.3140 ( 72.644 ) TEMP 3 = 535.7230 ( 76.053 ) TEMP 4 = 535.2890 ( 75.619 ) TEMP 5 = 535.4480 ( 75.778 ) TEMP 6 = 544.6070 ( 84.937 ) TEMP 7 = 544.4050 ( 84.735 ) TEMP S = 559.1460 ( 99.476 ) TEMP 9 = 559.8620 ( 99.192 ) TEMP 10 = 532.2410 ( 72.571 ) TEMP 11 = 531.8800 ( 72.210 ) TEMP 12 = $31.8730 ( 72.203 ) ( TEMP 13 = $31.9380 ( 72.268 ) l TEMP 14 = 532.0260 ( 72.356 ) 73.8599 ( 72460.0 ) PRES 1 = 73.8411 ( 73235.0 ) PRES 7 = .3920 ( 72.268 ) VPRS 1 = 9 VPRS 2= .3345 ( 67.619 ) { VPRS 3= .3396 ( 68.059 ) VPRS 4= .4061 ( 73.317 ) i VPRS 5= .4392 ( 75.662 ) f VPRS 6= .3581 ( 69.611 ) i
SUMMARY
OF CORRECTED DATA TIME = 215 DATE = 202 = 538.3000 TEMPERATURE (DEGREES R.) 73.4601 CORRECTED PRESSURE (PSIA) = VAPOR PRESSURE (PSIA) = .3810 VOLUME (CU.FT.) 253380.0 = 93331.4 AIR MASS (LBri) = l l 0
I l
SUMMARY
OF MEASURED DATA AT 230 202 533.1630 ( 73.493 ) TEt1P 1 = TEhP 2 = 532,3300 ( 72.660 ) TEMP 3 = 335.7320 ( 76.062 ) TE!1P 4 = $35.3280 ( 75.658 ) TEMP 5 = 535.4970 ( 75.827 ) rFMP A = 544.6550 ( 84.985 ) TEMP 7 = 544.4470 ( 84.777 ) TEr1P 8 = 55?.1010 ( 99.431 ) TEMP 9 = 350.8880 ( 99.218 ) TEMP 10 = 532.2330 ( 72.563 ) 531.3730 ( 72.203 ) TEMP 11 = T Et1P 12 = 531.8560 ( 72.186 ) TEMP 13 = 531.9480 ( 72.278 ) 532.0050 ( 72.335 ) TEMP 14 = PRES 1 = 73.8599 ( 72460.0 ) PPES 2= 73.84L1 ( 73235.0 ) VPRS 1 = .3721 t 72.278 ) O VPRS 2= .3357 ( 67.728 ) VPPS 3= .3431 ( 68.362 ) VPRS 4= .4024 ( 73.049 ) VPRS 5= .4361 ( 75.449 ) VPRS 6= .3576 ( 69.567 )
SUMMARY
OF CORRECTED DATA TIME = 230 DATE = 202 TEMPERATURE (DEGREES R.) 538.3120 = CORRECTED PRESSURE (PSIA) 73.4602 = VAPOR PRESSURE (PSIA) .3808 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93329.6 = O
Ap 4 a) g Kl4b t @ ,,@fp
- z.,
/////' / /,$f/ 4lg, f% IMAGE EVALUATION \\[/g// \\' $f/ TEST TARGET (MT-3) Q/ ///// s V (? ~ s+ l.0 lt:m M y ll BM l.1 [ "; E I l.8 I l.25 1.4 1.6 4 150mm 4 6" b % +zzzzz <>++4a %y#. > )//, A. e# <p' y-9 %j 'Qd oh
O
SUMMARY
OF MERSURED DATA AT 245 202 TEMP 1 = 533.1870 ( 73.517 ) TEMP 2 = 532.3560 ( 72.686 ) iCMP 7 535.7740 ( 76.104 ) TEMP 4 = 535.3800 ( 75.710 i~ TEMP 5 = 535.5750 ( 75.905 ) TEMP 6 = 544.6800 ( 85.010 ) TEMP 7 = 544.4820 ( 84.812 ) TEt1P 8 = 559.0480 ( 99.378 ) TEh? 9 = 558.9290 ( 99.259 ) TEMP 10 = 532.2260 ( 72.556 ) TE!1P 11 = 531.8700 ( 72.200 ) TEMP 12 = 531.8570 ( 72.187 ) TE!1P 13 = 531.9220 ( 72.252 ) TEMP 14 = 532.0230 ( 72.353 ) l l 73.8599 ( 72460.0 ) PRES 1 = PRES 2= 73.8411 ( 73235.0 ) i 1 .3918 ( 72.252 ) 9 VPRS 1 = VPRS 2= .3362 ( 67.767 ) VPRS 3= .3426 ( 68.316 ) .3946 ( 72.468 ) VPRS 4 = VPRS 5= .4438 ( 75.970 ) VPRS 6= .3593 ( 69.707 )
SUMMARY
OF CORRECTED DATA tit 1E = 245 DATE = 202 TEMPERATURE (DEGREES R.) = 538.3290 CORRECTED PRESSURE (PSIA) 73.4601 = VAPOR PRESSURE (PSIA) .3810 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93326.5 = O
tilli l
SUMMARY
OF MEASURED DATA AT 300 202 I l TEMP 1 = 533.2470 ( 73.577 ) TEMF 2 = 532.3990 ( 72.729 ) TEMP 3 = 535.8200 ( 76.150 ) IEMP 4 = 535.4220 ( 75.752 ) i I TEMP 5 = 535.6100 ( 75.940 ) I l TEMP 6 = 544.7500 ( 85.080 ) l l TEMP 7 = 544.5260 ( 84.856 ) l l TEMP 8 = 559.0760 ( 99.406 ) I i i TEMP 9 = 558.8250 ( 99.155 ) l TEMP 10 = 532.2290 ( 72.559 ) TEMP 11 = 531.8380 ( 72.168 ) TEMP 12 = 531.3660 ( 72.196 ) t TEMP 13 = 531.9290 ( 72.259 ) TEMP 14 = 532.0120 ( 72.342 ) l l l PRES i = 73.3599 ( 72460.0 ) PRES 2= 73.8411 ( 73235.0 ) ~ .3918 ( 72.259 ) l VPRS 1 = 9 VPRS 2= .3367 ( 67.310 ) VPRS 3= .3417 ( 68.236 ) j VPRS 4= .4045 ( 73.200 ) i VPRS 5= .4428 ( 75.902 ) VPRS 6= .3589 ( 69.675 ) t i l I i l
SUMMARY
OF CORRECTED DATA TIME = 300 DATE = 202 l l l TEMPERATURE (DEGREES R.) 538.3400 = l CORRECTED PRESSURE (PSIA) 73.4593 = VAPCR PRE 95URE (PSIA) .3818 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93323.5 = i t tilli
APPENDIX E HATCH UNIT 1 ILRT AIRMASS LBM X 1000 93.1:1 93.141 ?!.17: 93.195
- 93. :)
93.243 93.:57 93.^?0 73.314 93.337 93.361 ?3. 54 33.4)7 +---------.---------.--.------+ +---------+----- ---. +---------+---------.- 1930 l + 1945 l + l000 i + 2015 : + 20!0 l Ae... + 2100 + 2115 : + 2' A ; 2145 : + 2200 l + ..lc,, s., ,,..a a9'c. + ssn. 23H : + 2315 l + ,v)= + .Ye E 234' + 0. + 15 : + l0 : + G.,.20 l 45 ' + +
- o..
+ 9*r .WJ + 14) t DO l +
- tf.
f se t + .J ,,. e. +
- ?n e 4 A'd E c.
i + U2 $ t 9
APPENDIX E HATCH UNIT 1 ILRT G-,V07 TEMPERATURE DErREES F .4w.1 3 n...,,.- a.,., 73.e,, Ic..c.
- 7. 3. s..,
,3.,. p -e.c.3 e c..n
- 7. :..c ;c.
7.:.1;; -,e-, 40. s d e e d.-
- w
.w a .s st/ s. -+ s.......... _=+-- li'0 + 1745 + 2000 i + 201' l ,c.,,. 3 + 204' l + 2!00 l + n.1,. i. + .4 3. a. 649 e + 214' + ..k l t 99er e sskJ e + .&.9 h + i.iSC F s 9e t M, R'K L g mj] + a - e.- ..s a + o.w w g e .vv i t meie es*w t t 8' + er e e 4 9 99 y f d e..M. er 4 s + t ,
- e.
6. t 0og e 5"J
- "A.
+ .. i e,e .1d 9 m,- e .e i t .eg e*w 4 +
- A 1
g ww
- er e jaw B
+ O
i I
- (
APPENDIX E e i. HATCli UNIT t ILRT i PRESSURE PSIA 4' i l t j -.*..e., 4., ,., e,) ps.,,e. ,,4e.e. <2.4,s3 ie.4w0 ,es 4:., ,, 441 t...., -,.2., 7 .t:. ia.,.s is. c es.s. u
- r..
4e 3, s s ......--.+....--..--.----...........+ _-+ .+ +=__ t 1920 : + 1945 + 1 a 1 2000 : +
- ht, r
sv.s e i l ( e.n.., i an.4e.. i 4 l 2!00 + l ai,e. + 21 D l + I f 2145 ' I + 2200 : + t e.je. s. } I am*a. e e } $e E ..TJ e s t { ...e, l ...D' - i \\ I l 'l t ( i L 9e P f 4. 1 ,9 e [ .' i k l s' ', i i' .* 9 l m. ,e + i i.e, ss. s + 1 k I 6 t i naa .s> a + l i 9 t .9 l 9p g ... a + l .,a e. V ')4 r I s ,, e. O f I r f ? ) I l O { 1 l
l i. APPENDIX E l l HATCH UNIT 1 ILRT j UAPOR PRESSURE PSIA i e.. ..e ..e- .. q.. .-e- . m... . ~a . 71 . 14 n .-,1 .m as -e, ..t. .a,. 0 ,...___....._______._________+__.______, -+ .,___.____.+_____.__..- 1930
- 1945
+ ,w. .<vJ a ,}9r. t 4 .he 4
- 045 '
21% l + 1 ,1.= 6. I 1 9.-g 4 l ska-
- 1 a,1r i
+ j' 474 5 l "9f.0 4 t l 6. i a a, e. + J ..an 6 ,3-, + i s.. ,9eq e 4 l ..*a e s[. ) p I .4 N'TT. j .w ) l
- >'.',T
+ 4 ,,.e l .w J B l t I a' ' + i ed t i j 5l + 1 3 i y su e 1 .-e .i m i 0 1 1
- 00.
+ 1 ..e ,*f. e g t .s e i s h e.. i .-.,.). F + es. s 2.,. e l l l t i O
l APPENDIX E VERIFICATION I i HATCH UNIT 1 ILRT AIRMASS LBM X 1000 i 93.019 93.051 93.084 93.116 93.148 93.180 93.212 92.Z41 +_________+_________+_________+_________+_________+_________+_________. 615 ; 630 ; 645 + 700 ? + 715 + i 730 : + 745 : + j 800 : + i 815 l + l 830 : + i 945 : + I j 900 + 915 + l c' JO + i l 945 l ^ i 1000 l + 1015 + i I I r l l l I I i l I i i e a f I i i l t l l O 6 i i
m APPENDIX E VERIFICATION HATCH UrlIT1 ILRT O78.800 TEb1PERATURE DEGREES F 78.S19 78.839 78.858 78.878 78.897 78.916
- 78. '?%
+ -. -. -. - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - -+--------- ------- -+ --------+ 615 + 630 l + 645 + 700 l + 715 l + 730 + 745 : + 800 l + 815 l 830 l + 845 l + 900 : + 915 l + 930 l e 9 <15 l 1000 l 1015 l O 9
APPENDIX E VERIFICATION HATCH UNIT 1 ILRT O73.255 PRESSURE PSIA 73.278 73.300 73.323 73.346 73.369 73.392 77.41' - - - - - - - - - + - - - - - - - - + - - - - - - - -. + - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + 615 l 630 l + 645 + 700 l + 715 l + 730 l + I 745 l + 1 i 800 l + l 815 + t 830 l + l 845 : + 900 + 915 l r l 930 l + 945 : + l 1000 l I 1015
- i l
O i i O
_ - -. -. =. - -..... T l t l i l APPENDIX E VERIFICATION HATCH UNIT 1 ILRT O +.392 VAPOR PRESSURE PSIA .393 .394 .395 .396 .397 .398 .40~ _________+_________+-________+_________+-________+_________+_________+ 615 : + 630 l + I 645 ;+ t 700 i i 715 ! + + l '730 ; + i 745 e 800 + 315 + 830 i + 845 i + j i i 900 : + 1 l 915 l + i 930 l I + 945 : l + l 1000 l + I i l 1015 l \\ \\ l l i I I !O i l t l. I L \\ t I r i P ? l i l t! i O i ?
i l APPENDIX F l 4 HATCH UNIT 1 ILi,T G LEAKAGE RATE (WEIGHT PERCENT / DAY) MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 615 202 1983 TEST DURATION: 4.00 HOURS TIME TEMP PRESSURE CTMT. AIR M.'iSS LOSS AVEPAGE MASE (R) (PSIA) MASS (LBM) (LBM) LOSS (LEM/HP) .470 615 530 73.4144 90244 l 630 533.492 73.4057 93229. 15.0 60.2 l 645 538.502 73.3973 93217. 11.6 53.4 l 700 538.500 73.3367
- 93204, 13.8 54.0 715 538.484 73.3769 93194.
9.5 50.1 ~30 538.526 73.3677 93175. 19.0 55.3 745 538.543 73.3587 93160. 15.2 56.2 i 800 538.553 73.3460 93143. 17.0 57.9 [ S15 533.560 73.3389 93132. 10.3 55.0 S30 53G.560 73.3270 93117. 15.2 56.4 l 845 538.575 73.3171 93102. 15.0 Sa.7 900 538.577 73.3060 93088. 14.6 56.9 915 538.578 73.2964 93075. 12.3 56.2 { i 930 538.591 73.2854 93059. 16.1 56.8 945 538.593 73.2751 93046. 13.5 56.6 l 1000 538.606 73.2659 93032. 13.9 56.6 1015 533.596 73.2547 93019. 12.5 56.2 FPEE AIR VOLUME USED (CU. FT.) = 253380. I REGRESSION LINE INTERCEPT (LBM) 93245. = SLOPE (LOM/HR) -56.9 = VERIFICATION TEST LEAKAEE RATE UPPER LIMIT = 1.929 i VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = 1.329 [ THE CALCULATED LEAKAGE RATE 1.465 = i h 6 t a l 1 \\ t 1 t l l l b till
APPENDIX F t HATCH UNIT 1 ILRT 9 LEAKAGE RATE (WEIGHT PERCENT / DAY) i i TOTAL TIME ANALYSIS TIME AND DATE AT START Oc TEST: 615 202 1983 i TEST DURATICN: 4.00 HOURS i t TIME .dMP PRES 3URE MEASURED I I (R) (PSIA) LEAKAGE RATE 615 538.470 73.4144 630 538.492 73.4057 1.549 645 533.502 73.3978 1.374 700 538.500 73.3867 1.391 715 538.484 73.3769 1.289 t 730 538.526 73.3677 1.423 745 538.548 73.3507 1.447 l 800 538.553 73.3460
- 1. <90 815 538.560 73.3309 1.43a e,a.
- 3.wo,u. c -...+,, i u L. -, c,e.
- a l
a -.' a> 845 538.575 73.3171 1.460 i j 900 538.577 73.3060 1.464 1 915 538.578 73.2954 1.447 930 538.591 73.2354
- 1. - M.
045 538.593 73.2751
- t. P58 1000 538.606 73.2559 1.aSa
{ G 1015 538.596 73.Z547 1.-146 l I I ) MEAN OF THE MEASURED LEAKAGE RATES 1.440 e i VERIFICATION TEST LEAKAGE RATE UPPEP u1MfT = 1.934 l VERIFICATION TEST LEAKAGE FATE LUAER u!MIT = 1.3 4 ( THE CALCULATED LEAKAGL RATE 1.462 = I i E ) e f E r [ 4 i i -( 1 I f l l I l
- - -. -.. -... -. ~... - 4 APPENDIX F i l HATCH UNIT 1 ILRT
SUMMARY
DATA AL 1AX 1.200 VOLUME = 253380. = VRATET = 1.488 VRATEM =1.483 TIME DATE TEMP PRESSURE VFRS VOLUME 615 202 538.470 73.4144 .3935 253380. 630 202 538.492 73.4057 .3932 253380. 645 202 538.502 "3.C?78 .3920 253380. 700 202 538.500 73.0867 .3931 253380. ,le .o0n e,8.484 ,,,,a9 .._.a. 8 ,n ne,,a casvuo , a es .s. v, ,,0 20. e,dc.e6 .Oa/,, . 2 9,,0 i- ,c,,a . a a.s a u e0 sa a& 745 202 538.548 73.3537 .3919 253380. =rJrJ c~' _n-aO3.ce~ 7 v~. ~s 4 6 0 .~9e-ac -aaaomev~nn. aa 0 315 202 538.560 73.3389 .3936 233350. l l 830 202 528.560 73.3270 .3956 253380. t o4e nti-e--n.e,e ,, s..s 1, 1.. .0,o4 a- - c,,3 o.... aca a..a v a 4 _ eaav 900 202 538.577 73.3060 .3975 253580. 915 202 538.578 73.2964 .3969 253350. 930 202 538.591 73.2854 .3979 253380. A. 4 e e,m3.en, --c, on ..vnn, -e-,0 Us J Ta /.) < a s J L )7Tu 4.,.J a v v 0. J L 1000 202 538.606 73.2659 .3983 253380. I i 1015 202 533.596 73.2547 .3995 253380. I r ( l 1 e 1 i I i i I i l I i ? I f I l L k
- ~. -.. -
SUMMARY
OF MEASURED DATA AT 615 202 TEMP 1 = 533.8030 ( 74.133 ) TEMP 2 = 532.7850 ( 73.115 ) TEMP 3 = 536.4120 ( 76.742 ) TEMP 4 = 535.9810 ( 76.311 ) TEMP 5 = 536.1470 ( 76.477 ) TEMP 6 = 545.2330 ( 85.563 ) TEMP 7 = 545.0240 ( 85.354 ) TEMP 8 = 558.8280 ( 99.158 ) TEMP 9 = 558.4670 ( 98.797 ) TEMP 10 = 532.1420 ( 72.472 ) i TEMP 11 = 531.7330 ( 72.063 ) l l TEMP 12 = 531.7550 ( 72.085 ) l TEMP 13 = 531.8220 ( 72.152 ) TEMP 14 = 531.9530 ( 72.283 ) PRES 1 73.8254 ( 72426.0 ) = PRES 2= 73.E079 ( 73202.0 ) .3904 ( 72.152 ) l VPRS 1 = i VPRS 2= .3464 ( 68.637 ) l l VPRS 3= .3552 ( 69.368 ) l VPRS 4= .4523 ( 76.543 ) ( VPRS 5= .4722 ( 77.846 ) l VPRS 6= .3719 ( 70.721 ) i f
SUMMARY
OF CORRECTED DATA TIME = 615 DATE = 202 TEMPERATURE (DEGREES R.) 538.4700 i = 73.4144 I CORRECTED PRESSURE (PSIA) = VAPOR PRESSURE (PSIA) .3935 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93244.0 [ = f r a t till i t I l i i l w
_. _. ~ _. -
SUMMARY
OF MEASURED DATA AT 630 202 TEMP 1 = 533.8460 ( 74.176 ) i TEMP 2 = 532.8170 ( 73.147 ) l TEMP 3 = 536.4570 ( 76.787 ) TEMP 4 = 536.0350 ( 76.365 ) TEMP 5 = 536.1980 ( 76.528 ) j TEMP 6 = 545.2690 ( 85.599 ) TEMP 7 = 545.0640 ( 85.394 ) l TEMP 8 = 558.7820 ( 99.112 ) l TEMP 9 = 558.5320 ( 98.862 ) { TEMP 10 = 532.1420 ( 72.472 ) TEMP 11 = 531.7340 ( 72.064 ) TEMP 12 = 531.7510 ( 72.081 ) TEMP 13 = 531.8120 ( 72.142 ) l TEMP 14 = 531.9920 ( 72.322 ) PRES 1 73.8163 ( 72417.0 ) = PRES 2= 73.7989 ( 73193.0 ) { VPRS 1 .3903 ( 72.142 ) = VPRS 2= .3476 ( 68.743 ) VPRS 3= .3547 ( 69.331 ) VPRS 4= .4436 ( 75.959 ) VPRS 5= .4740 ( 77.961 ) i VPRS 6= .3741 ( 70.894 )
SUMMARY
OF CORRECTED DATA TIME = 630 DATE = 202 TEMPERATURE (DEGREES R.) 538.4920 = 73.4057 CORRECTED PRESSURE (PSIA) = VAPOR PRESSURE (PSIA) .3932 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93229.0 = \\ O ...l
1 I
SUMMARY
OF MEASURED DATA AT 645 202 f TEMP 1 = 533.8790 ( 74.209 ) TEMP 2 = 532.8490 ( 73.179 ) l TEMP 3 = 536.4900 ( 76.820 ) TEMP 4 = 536.0660 ( 76.396 ) TEMP 5 = 536.2080 ( 76.538 ) TEMP 6 = 545,3080 ( 85.638 ) TEMP 7 = 545.1060 ( 85.436 ) TEMP 8 = 558.7990 ( 99.129 ) l TEMP 9 = 558.5420 ( 98.872 ) TEMP 10 = 532.1210 ( 72.451 ) TEMP 11 = 531.7430 ( 72.073 ) TEMP 12 = 531.7220 ( 72.052 ) TEMP 13 = 531.8130 ( 72.143 ) TEMP 14 = 531.9820 ( 72.312 ) PRES 1 73.8062 ( 72407.0 ) = PRES 2= 73.7898 ( 73184.0 ) VPRS 1 = .3903 ( 72.143 ) VPRS 2= .3482 ( 68.788 ) VPRS 3= .3561 ( 69.448 ) VPRS 4= .4241 ( 74.609 ) i VPRS 5= .4764 ( 78.115 ) VPRS 6= .3756 ( 71.009 ) I i l
SUMMARY
OF CORRECTED DATA } TIME = 645 DATE = 202 538.5020 l TEMPERATURE (DEGREES R.) = CORRECTED PRESSURE (PSIA) 73.3978 i = VAPOR PRESSURE (PSIA) .3920 l = VOLUME (CU.FT.) 253380.0 t = AIR MASS (LBM) 93217.4 l = l h I t r I !till
l~ i
SUMMARY
OF MEASURED DATA AT 700 202 TEMP 1 = 533.9160 ( 74.246 ) l TEMP 2 = 532.8700 ( 73.200 ) TEMP 3 = 536.5340 ( 76.864 ) TEMP 4 = 536.1070 ( 76.437 ) TEMP 5 = 536.2490 ( 76.579 ) i TEMP 6 = 545.3410 ( 85.671 ) 4 -TEMP 7 = 545.1400 ( 85.470 ) l TEMP 8 = 538.7090 ( 99.039 ) l TEMP 9 = 558.4700 ( 98.800 ) l TEMP 10 = 532.1170 ( 72.447 ) l l TEMP 11 = 531.7230 ( 72.053 ) TEMP 12 = 531.7210 ( 72.051 ) TEMP 13 = 531.8020 ( 72.132 ) TEMP 14 = 531.9690 ( 72.299 ) PRES 1 73.7981 ( 72399.0 ) = PRES 2= 73.7798 ( 73174.0 ) VPRS 1 .3902 ( 72.132 ) = l VPRS 2= .3482 ( 68.796 ) .l I VPRS 3= .3539 ( 69.267 ) i VPRS 4= .4328 ( 75.221 ) VPRS 5= .4797 ( 78.325 ) i VPRS 6= .3767 ( 71.096 ) i i
SUMMARY
OF CORRECTED DATA i TIME = 700 l DATE = 202 538.5000 I TEMPERATURE (DEGREES R.) = 73.3867 CORRECTED PRESSURE (PSIA) = .3931 l VAPOR PRESSURE (PSIA) = l VOLUME (CU.FT.) 253380.0 l = l AIR MASS (LBM) 93203.5 j = l 1 .I till k i t
SUMMARY
OF MEASURED DATA AT 715 202 TEMP 1 = 533.9150 ( 74.245 ) TEMP 2 = 532.8630 ( 73.193 ) l TEMP 3 = 536.5170 ( 76.847 ) l TEMP 4 = 536.0790 ( 76.409 ) TEMP 5 = 536.2520 ( 76.582 ) TEMP 6 = 545.3320 ( 85.662 ) TEMP 7 = 545.1330 ( 85.463 ) TEMP 8 = 558.6670 ( 98.997 ) TEMP 9 = 558.3900 ( 98.720 ) TEMP 10 = 532.1150 ( 72.445 ) l TEMP 11 = 531.7290 ( 72.059 ) TEMP 12 = 531.7260 ( 72.056 ) TEMP 13 = 531.7860 ( 72.116 ) TEMP 14 = 531.9380 ( 72.268 ) i PRES 1 73.7879 ( 72389.0 ) = PRES 2= 73.7697 ( 73164.0 ) VPRS 1 .3900 ( 72.116 ) = i VPRS 2= .3469 ( 68.684 ) ( l VPRS 3= .3611 ( 69.856 ) l l VPRS 4= .4230 ( 74.537 ) i VPRS 5= .4822 ( 78.481 ) VPRS 6= .3763 ( 71.066 ) o
SUMMARY
OF CORRECTED DATA i TIME = 715 DATE = 202 TEMPERATURE (DEGREES R.) 538.4840 i = CORRECTED PRESSURE (PSIA) 73.3769 = VAPOR PRESSURE (PSIA) .3928 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93194.0 = j i l 1 i
l i l
SUMMARY
OF MEASURED DATA AT 730 202 TEMP 1 = 533.9860 ( 74.316 ) TEMP 2 = 532.9270 ( 73.257 ) i TEMP 3 = 536.5930 ( 76.923 ) i l TEMP 4 = 536.1430 ( 76.473 ) l l TEMP 5 = 536.3320 ( 76.662 ) TEMP 6 = 545.4100 ( 85.740 ) 4 l TEMP 7 = 545.2080 ( 85.538 ) TEMP 8 = 558.7220 ( 99.052 i i l TEMP 9 = 558.4300 ( 98.760 ) l TEMP 10 = 532.1350 ( 72.465 ) I l TEMP 11 = 531.7380 ( 72.068 ) j TEMP 12 = 531.7370 ( 72.067 ) TEMP 13 = 531.7940 ( 72.124 ) l l TEMP 14 = 531.9470 ( 72.277 ) f i l PRES 1 73.7788 ( 72380.0 ) = l PRES 2= 73.7607 ( 73155.0 ) t VPRS 1 .3901 ( 72.124 ) = VPRS 2= .3474 ( 68.725 ) VPRS 3= .3584 ( 69.636 ) VPRS 4= .4324 ( 75.190 ) VPRS 5= .4774 ( 78.179 ) VPRS 6= .3757 ( 71.020 )
SUMMARY
OF CORRECTED DATA 1 TIME = 730 ] DATE = 202 TEMPERATURE (DEGREES R.) 538.5260 = CORRECTED PRESSURE (PSIA) 73.3677 = VAPOR PRESSURE (PSIA) .3930 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93174.9 = i l f i. i
SUt1 MARY OF MEASURED DATA AT 745 202 TEMP 1 = 534.0330 ( 74.363 ) TEMP 2 = 532.9260 ( 73.256 ) TEMP 3 = 536.6440 ( 76.974 ) TEMP 4 = 536.2110 ( 76.541 ) TEMP 5 = 536.3930 ( 76.723 ) TEf1P 6 = 545.4480 ( 85.778 ) TEMP 7 = 545.2470 ( 85.577 ) TEMP 8 = 558.7030 ( 99.033 ) TEMP 9 = 558.4590 ( 98.789 ) TEMP 10 = 532.1150 ( 72.445 ) TEMP 11 = 531.7090 ( 72.039 ) TEMP 12 = 531.7520 ( 72.082 ) TEMP 13 = 531.7980 ( 72.128 ) TEMP 14 = 531.9890 ( 72.319 ) PRES 1 73.7697 ( 72371.0 ) = PRES 2= 73.7507 73145.0 ) VFRS 1 .3901 ( 72.128 ) = VPRS 2= .3493 ( 68.883 ) VPRS 3= .3594 ( 69.712 ) VPRS 4 .4068 ( 73.372 ) = VPRS 5= .4844 ( 78.620 ) VPRS 6= .3783 ( 71.216 )
SUMMARY
OF CORRECTED DATA TIME = 745 DATE = 202 TEMPERATURE (DEGREES R.) 538.5480 = CORRECTED PRESSURE (PSIA) 73.3587 = VAPOR PRESSURE (PSIA) .3919 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93159.7 = 4
_. ~.. I
SUMMARY
OF MEASURED DATA AT 800 202 l TEMP 1 = 534.0560 ( 74.386 ) TEMP 2 = 532.9620 ( 73.292 ) TEMP 3 = 536.6800 ( 77.010 ) l TEMP 4 = 536.2280 ( 76.558 ) i TEMP 5 = 536.3980 ( 76.728 ) TEMP 6 = 545.4900 ( 85.820 ) TEMP 7 = 545.2770 ( 85.607 ) i TEMP 8 = 558.7220 ( 99.052 ) TEMP 9 = 558.4410 ( 98.771 ) TEMP 10 = 532.1100 ( 72.440 ) TEMP 11 = 531.7100 ( 72.040 ) TEMP 12 = 531.7370 ( 72.067 ) TEMP 13 = 531.8190 ( 72.149 ) TEMP 14 = 531.9320 ( 72.262 ) l I PRES 1 73.7595 ( 72361.0 ) = PRES 2= 73.7416 ( 73136.0 ) VPRS 1 .3904 ( 72.149 ) = VPRS 2= .3512 ( 69.043 ) l VPRS 3= .3613 ( 69.865 ) t VPRS 4= .4396 ( 75.690 ) VPRS 5= .4820 ( 78.469 ) l VPRS 6= .3794 ( 71.302 ) l i
SUMMARY
OF CORRECTED DATA l TIME = 800 i DATE = 202 TEMPERATURE (DEGREES R.) 538.5530 = CORRECTED PRESSURE (PSIA) 73.3460 = VAPOR PRESSURE (PSIA) .3956 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93142.7 = O
SUMMARY
OF MEASURED DATA AT 815 202 TEMP 1 = 534.0830 ( 74.413 ) TEMP 2 =-533.0000 ( 73.330 ) TEMP 3 = 536.7220 ( 77.052 ) TEMP 4 = 536.2760 ( 76.606 ) ' TEMP 5 = 536.4350 ( 76.765 ) ) l TEMP 6 = 545.5160 ( 85.846 ) l TEMP 7 = 545.3030 ( 85.633 ) i TEMP 8 = 558.6880 ( 99.018 ) i TEMP 9 = 558.4090 ( 98.739 ) TEMP 10 = 532.1100 ( 72.440 ) TEMP 11 = 531.7210 ( 72.051 ) TEMP 12 = 531.7270 ( 72.057 ) I TEMP 13 = 531.7780 ( 72.108 ) i TEMP 14 = 531.9430 ( 72.273 ) 73.7504 ( 72352.0 ) PRES 1 = PRES 2= 73.7326 ( 73127.0 ) VPRS 1 .3899 ( 72.108 ) = VPRS 2= .3522 ( 69.125 ) VPRS 3= .3556 ( 69.404 ) VPRS 4= .4207 ( 74.370 ) VPRS 5= .4851 ( 78.662 ) VPRS 6= .3811 ( 71.433 ) 1
SUMMARY
OF CORRECTED DATA TIME = 815 3 DATE = 202 TEMPERATURE (DEGREES R.) 538.5600 = i CORRECTED PRESSURE (PSIA) 73.3389 = VAPOR PRESSURE (PSIA) .3936 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93132.5 = e i l I
I I l
SUMMARY
OF MEASURED DATA AT 830 202 l TEMP 1 = 534.1090 ( 74.439 ) TEMP 2 = 533.0360 ( 73.366 ) TEMP 3 = 536.7490 ( 77.079 ) l TEMP 4 = 536.3060 ( 76.636 ) l TEMP 5 = 536.4640 ( 76.794 ) I I TEMP 6 = 545.5650 ( 85.895 ) TEMP 7 = 545.3360 ( 85.666 ) TEMP 8 = 558.6310 ( 98.961 ) I TEMP 9 = 558.3500 ( 98.680 ) l TEMP 10 = 532.0990 ( 72.429 ) i TEMP 11 = 531.6810 ( 72.011 ) TEMP 12 = 531.7140 ( 72.044 ) l TEMP 13 = 531.8090 ( 72.139 ) i TEMP 14 = 531.9250 ( 72.255 ) l PRES 1 73.7403 ( 72342.0 ) = PRES 2= 73.7225 ( 73117.0 ) i l VPRS 1 .3903 ( 72.139 ) I = i VPRS 2= .3522 ( 69.122 ) l VPRS 3= .3625 ( 69.966 ) VPRS 4= .4345 ( 75.338 ) VPRS 5= .4839 ( 78.591 ) VPRS 6= .3798 ( 71.340 ) (
SUMMARY
OF CORRECTED DATA I TIME = 830 DATE = 202 1 TEMPERATURE (DEGREES R.) 538.5600 = CORRECTED PRESSURE (PSIA) 73.3270 = .3956 I VAPOR PRESSURE (PSIA) = l VOLUME (CU.FT.) 253380.0 l = AIR MASS (LBM) 93117.2 j = l i i I 4 l f till { i P i
__ - -= -..-_... -.. - - _, - - - - - - l l l l l l
SUMMARY
OF MEASURED DATA AT 845 202 l TEMP 1 = 534.1230 ( 74.453 ) l TEMP 2 = 533.0560 ( 73.386 ) l TEMP 3 = 536.7890 ( 77.119 ) TEMP 4 = 536.3450 ( 76.675 ) TEMP 5 = 536.5140 ( 76.844 ) j TEMP 6 = 545.5890 ( 85.919 ) i TEMP 7 = 545.3670 ( 85.697 ) l TEMP 8 = 558.6450 ( 98.975 ) TEMP 9 = 558.3570 ( 98.687 ) TEMP 10 = 532.1060 ( 72.436 ) TEMP 11 = 531.6880 ( 72.018 ) l TEMP 12 = 531.7240 ( 72.054 ) TEMP 13 = 531.7720 ( 72.102 ) TEMP 14 = 531.9220 ( 72.252 ) PRES 1 73.7312 ( 72333.0 ) = PRES 2= 73.7135 ( 73108.0 ) b VPRS 1 = .3898 ( 72.102 ) l l VPRS 2= .3533 ( 69.214 ) VPRS 3= .3674 ( 70.356 ) VPRS 4= .4345 ( 75.339 ) 6 VPRS 5= .4866 ( 78.756 ) VPRS 6= .3805 ( 71.387 ) l 4 y
SUMMARY
OF CORRECTED DATA l TIME = 845 DATE = 202 I TEMPERATURE (DEGREES R.) 538.5750 i = 1 CORRECTED PRESSURE (PSIA) 73.3171 = VAPOR PRESSURE (PSIA) .3964 = i VOLUME (CU.FT.) 253380.0 = l AIR MASS (LBM) 93102.3 i = h i f s l l l I
SUMMARY
OF MEASURED DATA AT 900 202 TEMP 1 534.1730 ( 74.503 ) = TEMP 2 = 533.0930 ( 73.423 ) TEMP 3 = 536.8480 ( 77.178 ) TEMP 4 = 536.3750 ( 76.705 ) TEMP 5 = 536.5170 ( 76.847 ) TEMP 6 = 545.6200 ( S5.950 ) TEMP 7 = 545.3920 ( 85.722 ) TEMP 8 = 558.6060 ( 98.936 ) TEMP 9 = 558.2810 ( 98.611 ) TEMP 10 = 532.1020 ( 72.432 ) TEMP 11 531.6810 ( 72.011 ) = TEMP 12 = 531.7040 ( 72.034 ) TEMP 13 = 531.7650 ( 72.095 ) TEMP 14 = 531.9580 ( 72.288 ) PRES 1 73.7210 ( 72323.0 ) = PRES 2= 73.7034 ( 73098.0 ) VPRS 1 .3897 ( 72.095 ) = VPRS 2= .3538 ( 69.256 ) VPRS 3= .3679 ( 70.402 ) VPRS 4= .4387 ( 75.628 ) VPRS 5= .4872 ( 78.794 ) VPRS 6= .3840 ( 71.661 )
SUMMARY
OF CORRECTED DATA TIME = 900 DATE = 202 TEMPERATURE (DEGREES R.) 538.5770 = CORRECTED PRESSURE (PSIA) 73.3060 = VAPOR PRESSURE (PSIA) .3975 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93087.7 = O
SUMMARY
OF MEASURED DATA AT 915 202 TEMP 1 = 534.1960 ( 74.526 ) TEMP 2 = 533.1230 ( 73.453 i TEMP 3 = 536.8660 ( 77.196 ) TEMP 4 = 536.4080 ( 76.738 ) TEMP 5 = 536.5490 ( 76.879 ) TEMP 6 = 545.6480 ( 85.978 ) TEMP 7 = 545.4280 ( 85.758 ) TEMP 8 = 558.5770 ( 98.907 ) TEMP 9 = 558.2670 ( 98.597 ) TEMP 10 = 532.0730 ( 72.403 ) TEMP 11 = 531.6520 ( 71.982 ) TEMP 12 = 531.6950 ( 72.025 ) TEMP 13 = 531.7500 ( 72.080 ) i TEMP 14 = 531.9440 ( 72.274 ) PRES 1 73.7109 ( 72313.0 ) i = PRES 2= 73.6934 ( 73088.0 ) VPRS 1 .3895 ( 72.080 ) = i VPRS 2= .3541 ( 69.283 ) VPRS 3= .3654 ( 70.201 ) VPRS 4= .4443 ( 76.006 ) VPRS 5= .4852 ( 78.672 ) i i VPRS 6= .3805 ( 71.388 ) i
SUMMARY
OF CORRECTED DATA TIME = 915 DATE = 202 TEMPERATURE -(DEGREES R.) 538.5780 = j CORRECTED PRESSURE (PSIA) 73.2964 = VAPOR PRESSURE (PSIA) .3969 = VOLUME (CU.FT.) 253380.0 = 7 AIR MASS (LBM) 93075.4 = l
~ _. _ _ _ _ - l i
SUMMARY
OF MEASURED DATA AT 930 202 TEMP 1 = 534.2240 ( 74.554 ) TEMP 2 = 533.1500 ( 73.480 ) TEMP 3 = 536.8840 ( 77.214 ) TEMP 4 = 536.4450 ( 76.775 ) TEMP 5 = 536.5740 ( 76.904 ) TEMP 6 = 545.6730 ( 86.003 ) TEMP 7 = 545.4520 ( 85.782 ) TEMP 8 = 558.5720 ( 98.902 ) TEMP 9 = 558.2480 ( 98.578 ) TEMP 10 = 532.0860 ( 72.416 ) i TEMP 11 = 531.6290 ( 71.959 ) TEMP 12 = 531.7120 ( 72.042 ) TEMP 13 = 531.7760 ( 72.106 ) TEMP 14 = 531.9400 ( 72.270 ) 73.7018 ( 72304.0 ) l PRES 1 = PRES 2= 73.6833 ( 73078.0 ) I l VPRS 1 = .3898 ( 72.106 ) VPRS 2= .3556 ( 69.405 ) I, VPRS 3= .3656 ( 70.213 ) i VPRS 4= .4397 ( 75.691 ) VPRS 5= .4910 ( 79.029 ) i VPRS 6= .3836 ( 71.629 )
SUMMARY
OF CORRECTED DATA TIME = 930 DATE = 202 I TEMPERATURE (DEGREES R.) 538.5910 = CORRECTED PRESSURE (PSIA) 73.2854 = VAPOR PRESSURE (PSIA) .3979 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LBM) 93059.3 = e l tilli 1 I
l l 1 \\ i
SUMMARY
OF MEASURED DATA AT 945 202 l TEMP 1 = 534.2650 ( 74.595 ) l TEMP 2 = 533.1840 ( 73.514 ) TEMP 3 = 536.9100 ( 77.240 ) l T2dP 4 = 536.4600 ( 76.790 ) TEMP 5 = 536.6290 ( 76.959 ) ( TEMP 6 = 545.6990 ( 86.029 ) l TEMP 7 = 545.4780 ( 85.808 ) TEC1P 8 = 558.5390 ( 98.869 ) i l TEMP 9 = 558.2220 ( 98.552 ) TEMP 10 = 532.0770 ( 72.407 ) TEMP 11 = 531.6130 ( 71.943 ) TEMP 12 = 531.7000 ( 72.030 ) TEMP 13 = 531.7420 ( 72.072 ) TEMP 14 = 531.9260 ( 72.256 ) j PRES 1 73.6916 ( 72294.0 ) = f PRES 2= 73.6743 ( 73069.0 ) I i VPRS 1 .3894 ( 72.072 ) = l VPRS 2= .3553 ( 69.377 ) r l VPRS 3= .3659 ( 70.239 ) l VPRS 4= .4553 ( 76.746 ) l VPRS 5= .4913 ( 79.050 ) i VPRS 6= .3831 ( 71.590 )
SUMMARY
OF CORRECTED DATA I TIME = 945 DATE = 202 i TEMPERATURE (DEGREES R.) 538.5930 = 1 CORRECTED PRESSURE (PSIA) 73.2751 = VAPOR PRESSURE (PSIA) .3992 = VOLUME (CU.FT.) 253380.0 = 93045.8 l AIR MASS (LBM) = tilli
SUMMARY
OF MEASURED DATA AT 1000 202 TEMP 1 = 534.3030 ( 74.633 ) TEMP 2 = 533.2050 ( 73.535 ) TEMP 3 = 536.9540 ( 77.284 ) TEMP 4 = 536.5170 ( 76.847 ) TEMP 5 = 536.6610 ( 76.991 ) TEMP 6 = 545.7320 ( 86.062 ) TEMP 7 = 545.5010 ( 85.831 ) TEMP 8 = 558.5010 ( 98.831 ) TEMP 9 = 558.2240 ( 98.554 ) TEMP 10 = 532.0710 ( 72.401 ) TEMP 11 = 531.6300 ( 71.960 ) TEMP 12 = 531.7080 ( 72.038 ) TEMP 13 = 531.7280 ( 72.058 ) l TEMP 14 = 531.9270 ( 72.257 ) PRES 1 = 73.6815 ( 72284.0 ) PRES 2= 73.6643 ( 73059.0 ) VPRS 1 = .3892 ( 72.058 ) VPRS 2= .3563 ( o9.457 ) VPRS 3= .3651 ,( 70.177 ) VPRS 4= .4456 ( 76.092 ) VPRS 5= .4895 ( 78.939 ) VPRS 6= .3849 ( 71.732 )
SUMMARY
OF CORRECTED DATA TIME = 1000 DATE = 202 TEMPERATURE (DEGREES R.) 538.6060 = CORRECTED PRESSURE (PSIA) 73.2659 = VAPOR PRESSURE (PSIA) .3983 = VOLUME (CU.FT.) 253380.0 = AIR MASS (LEM) 93031.9 = 0 h A ud
y --..
SUMMARY
OF MEASURED DATA AT 1015 202 l TEMP 1 = 534.3330 ( 74.663 ) TEMP 2 = 533.2380 ( 73.568 ) { TEMP 3 = 536.9820 ( 77.312 ) l TEMP 4 = 536.5150 ( 76.845 ) i TEMP 5 = 536.6700 ( 77.000 ) TEMP 6 = 545.7550 ( 86.085 ) l TEMP 7 = 545.5210 ( 85.851 ) TEMP 8 = 558.4580 ( 98.788 ) l TEMP 9 = 558.1290 ( 98.459 ) TEMP 10 = 532.0690 ( 72.399 ) TEMP 11 = 531.5930 ( 71.923 ) TEMP 12 = 531.6980 ( 72.028 ) TEMP 13 = 531.7250 ( 72.055 ) TEMP 14 = 531.9110 ( 72.241 ) i l PRES 1 73.6714 ( 72274.0 ) = l PRES 2= 73.6542 ( 73049.0 ) VPRS 1 .3892 ( 72.055 ) = VPRS 2= .3562 ( 69.453 ) i VPRS 3= .3699 ( 70.559 ) l VPRS 4= .4523 ( 76.544 ) VPRS 5= .4893 ( 78.923 ) VPRS 6= .3855 ( 71.774 )
SUMMARY
OF CORRECTED DATA TIME = 1015 DATE = 202 l e TEMPERATURE (DEGREES R.) 538.5960 = { CORRECTED PRESSURE (PSIA) 73.2547 = j VAPOR PRESSURE (PSIA) .399F = l i VOLUME (CU.FT.) 253.380.0 = i l AIR MASS (LBM) 93019.4 = i r e 1
Appendix G e ISG CALCULATIONS Reference ANSI /ANS 56.8-1981, Appendix G l A. Test Parameters La = 1.2 %/ day I4akage rate ' P = 73.7 psia Containment pressure T = 538
- R Drybulb, average temperature Tdp = 73 'F Dewpoint temperature l
t = 8 Hr. Test duration B. Instrument Parameters l 1. Total Absolute Pressure No. of sensors: 1 Range: 0-100 psia Sensitivity error (Epy): .001 psia Repeatability ( P ): .001% of full scale y f(EP)2 + (g )2 + p 001 001 + 0014142 = No. of sensors 1 2. Water Vapor Pressure ,v ^ No. of sensors : 6 Sensitivity error (Epy): +.10 'F Repeatability error ( py): }.05 *F Dewpoint temperature 73 'F Vapor pressure change @ 78 *F: .01353 psia /*F Epy = (.10) (.01353) =.001353 py = (.05) (.01353) =.0006765 2 EPv2 + 6py2 .001353 + 0006765 e =1 .0006176 = \\ No of sensors \\ 6 py 3. Temperature No. of sensors
- 14 Sensitivity error (E )
.01 'F T Repeatability error ( T): .01 'F E 2 + ET2 + T 01 .01 T=+ =+ = 003780 e No of sensors \\ 14 N DH-149 g_g 1 en-y ,..-.-r-* --w+g yc+--- -i-w 'ete-qvr w -yv-y -e e-> v' WW9 rvW-v ff--e-w-'-e-* vWe w -m e 1- --e<w-*'"*M'e--9w- - --W-T 7e-
l t Appendix G (Cont'd) ISG CALCULATIONS C. ISG 2 2 2 1/2 2j/ e_ + + _ e 2400 p pv eT i ISG = + t (P P T 2400 I .001414 2 .0006176 2 .003780 3 2 1 =+ 2 +2 +2 = ~ 8 73.7 73.7 538 ) 2400 ISG = I (.000031230) =.00937/ day 8 i .25 La - (.25) (1.2) =.30 >.00937 ( =.0078 La) i \\ 1 t 1 I b l l l l l 9 1 DH-149 G-2
SUMMARY
OF LOCAL LEAKAGE RATE TESTING j 1. General The major prerequisite to the containment Integrated Leakage Rate Test is the satisfactory completion of a series of local leakage rate tests. This involves subjecting potential leakage paths through the containment
- boundary, i.e.,
containment pene trations, to the same test conditions occurring during the integrated leakage rate test. Conducting Type B, Type C, and Special Isolation Valve Tests as defined in 10CFR Part 50, Appendix J, Article III, C., permits discovery and elimination of leak-age paths through the containment without pressurizing the entire con-tainment structure (Type A test). 1 2. Acceptance Criteria A. The combined leakage rate of components subject to Type B and C tests (except for MSIVs) shall not exceed 0.60 La. B. The main steam isolation valve leakage rate shall not exceed 11.5 scfh for any one valve. Total leakage is excluded from 0.60 La. C. The Personnel Air Lock leakage rate shall not exceed 0.05 La (Lock Barrel Test Total Leakage). m 3. Test Pressures l A. Test pressure for all Type B and C tests shall be 59.0 (+1, -0) psig except as noted in the items below. B. Test pressure for Isolation Valves tested with water shall be at a pressure equal to the height of the highest opposing water column plus 64.9 psig (1,10Pa), +1, -0. C. Main steam isolation valves are tested at 29.5 psig. D. Double "0" ring door seals are tested at 10 psig. E. Air lock barrel is tested at 59.0 psig. 4 Results A. Measured Leakage Rate of Type B and C Testc. s 2035 + 15,96 5 = 18,000 acem =.301 La Allowable Limit: (.6 La) The sum of Type B and C leakage rate is limited to.6 La s l > \\, DH-149 H-1 ._ __.~
s .6 La = (.6) (1.2%) (Containment Free Air Volume)/1 day =
(.6) (.012) (253,380)/24 = 76.01 Ft3/hr
= 35,879 accm The required limits per Appendix J are satisfied, since 18,000 acem < 35,879 accm. B. Measured Leakage Rate of Main Steam Isolation Valves Penetration 7A
- 10. 5 scf h Penetration 7B 5.7 scfh Penetration 7C 11.0 scfh Penetration 7D 2.9 scfh Allowable Limit: (11.5 scfh/ valve)
The leakage rate of each valve is limited to 11.5 scf h. The required limits are satisfied. C. Measured Leakage Rate of the Personnel Air Lock 400 accm = 0.0081 %/ day =.0067 La Allowable Limit: ( 0. 05 La) j' .05 La = (.05)(.012)(253,380)/24 = 6.33 f t3/hr = 2990 acem The required limit is satisfied since.0067 La <.0 5 La. Dii-149 H-2
( Local Leakage Rate Testing Test Equipment r1 r--- 3 P1 A A A' lm l I I V4 V V8 7 FR FR L _ _ _E I I I v A/S i i _J l Fij F12 TEST [ _[ VOLUME V V9 V 6 10 1 n' Ident. Description A/S Air or nitrogen supply - used to pressurize test volume PR Pressure Regulator FI Dual Flowmeters - Brooks Rotameters, for air at 59.0 psig,70 F. Scale 1 - Range 20-200 acc/ min Scale 2 - Range 200-2000 acc/ min PI Pressure Gage - Roylyn Precision Pressure Gauge. Range 0-100 psia Accuracy 0.2Sfo
- Optional Hi range flowmeter.
ij 11 - 3
TYPE B TEST Penetration Leakage Number System (acem @ 59.0 psig) 1A Equipment Hatch 20 1B Equipment Hatch 20 1 2 Personnel Lock ("0" rings @ 10 psig) 0 2 Personnel lock (innerspace) 1500 4 Head Access Hatch 20 6 CRD Removal Hatch 0 7A Main Steam Line 0 7B Main Steam Line 0 7C Main Steam Line 110 7D Main Steam Line 0 8 Condensate drain 0 9A Feedwater 55 9B Feedwater 0 10 RCIC Steam 0 11 HPCI Steam 20 12 RHR Suction 20 l 13A RHR Return 20 13B RHR Return 30 14 RWCU Supply 0 16A Core Spray 0 16B Core Spray 0 ,(~ _ 17 RPV Head Spray 20 25 Purge Supply 0 26 Purge Exhaust 160 35A TIP Drives & N2 Purge 0 35B TIP Drives & N2 Purge 0 35C TIP Drives & N2 Purge 0 35D TIP Drives & N2 Purge 0 35E TIP Drives & N2 Purge 0 43 Drywell Test 0 100A Electrical 0 100B Electrical 0 100D Electrical 0 100E Electrical 0 101A Electrical 0 101B Electrical 0 101C Electrical 0 101D Electrical 0 101E Electrical 0 101F Electrical 0 102A Electrical 0 103A Electrical 0 104A Electrical 0 104B Elect rical 0 104C Electrical 0 104F Electrical 0 J(3 DH-149 H-4
TYPE B TEST U Penetration Leakage Number System (acem 0 59.0 psig) 104G Electrical 0 4 104H Electrical 0 105A Electrical 0 105C Elect rical 0 106B Electrical 0 200A Torus Access Hatch 20 200B Torus Access Hatch 0 201A Vent Line 0 201B Vent Line 0 201C Vent Line 0 201D Vent Line 0 201E Vent Line 0 201F Vent Line 0 20lG Vent Line 0 20lH Vent Line 0 202 Electrical 0 205 Vacuum Relief / Torus Purge 0 -218B Construction Drain 0 220 Purge Exhaust 0 Drywell Head Flange 20 RPV Stabilizer Hatches 0 .O SUBTOTAL OF TYPE B LEAKAGE: 2035 accm i I O DH-149 H-5
i i TYPE C TEST Penetration Description Leakage, acem Leakage, accm _ Number System (Part of.6 La) (Not Part of.6 La) 8 Condensate Drain (2B21) 328 9A Feedwater (HPCIB21) 270* 9B Feedwater (RCICB21) 1,250* 10 Steam to RCIC Turbine (E51) 550 11 Steam to HPCl Turbine (E41) 1,400 12 RHR Shutdown Cooling Suction 0 (Ell) 13A RHR Return to Recirculation 650 (Ell) 13B RHR Return to Recirculation 30 (Ell) 14 RWCU Supply (G31) 0 () 16A Core Spray (E21) 0 16B Core Spray (E21) 0 17 RPV Headspray (Ell) 0 18 Equipment Drain Pump Discharge 30 (Gil) 19 Floor Drain Pump Discharge (Gil) 20 21 Service Air (PSI) 0 22 Drywell Pneumatic Supply (P70) 22 25 Drywell/ Purge Supply (T48) 426 26 Drywell purge exh'aust (T48) 180 28A Recire. Loop Sample (B31) 158 28F H2 &02 Analyzer (P33) 0 i 1 l DH-149 H-6 l
TYPE C TEST Penetration Description Leakage, acem Leakage, accm Number System (Part of.6 La) (Not Part of.6 La) 31D H2 &02 Analyzer (P33) 20 31F Recire. seal water (P33) 40 35A-E TIP Ball Valves (2C51) 110 39A Containment Spray (Ell) 0 1 39B Containment Spray'(Ell) 300 40C Drywell Pneumatic Outlet (P79) 20 42 Standby Liquid Control (C41) 20 45F ILRT Verification Flow (T23) 0 46 Demineralized Water (P21) 160 52F Jet Pump Instrument 0 59 Recirculation Loop Instrument 105 (B31) 203 RCIC pump suction (E51) 850 204A RHR pump suction (Ell) 550* 204B RIIR pump suction (Ell) 950* 204C RHR pump suction (Ell) 300* 204D RHR pump suction (Ell) 70* 205 Containment Purge & Inerting 640 206A-D Torus water level (2T48) 225 207 HPCI pump suction (E41) 20 i 208A Core spray pump suction (E21) 0 208B Core spray pump suction (E21) 1,700 210A RllR and test lines (Ell and E41) 2,280 t 't Dil-149 11 - 7 . ~. -
a TYPE C TEST Penetration Description Leakage, accm Leakage, acem i Number System (Part of.6 La) (Not Part of.6 La) t I t j 210B RHR and test lines (E11 and E41) 2,701 ) 212 RCIC turbine exhaust (E51) 700 h 213 RCIC turbine exhaust drains (E51) 0 214 RPCI turbine exhaust (E41) 1,700 215 RPCI turbine exhaust drain (E41) 0 (2E41) ) 217 H /02 analyser (P33) 0 2 l l 218A Torus water cleanup (G51) 255 220 Containment Purge and Inerting 220 l (T48) 1 4 221C RCIC turbine exhaust relief 20 valve (E51) 222A HPCI Turbine exhaust relief valve 85 l valve (E41) { SUBTOTAL OF TYPE C LEAKAGE PART OF.6 La 15,965 acem l (EXCLUDING VALVES TESTED WITH WATER) I j SUBTOTAL OF TYPE C LEAKAGE TESTED WITH WATER 3,39 0*c em i j i 7.
- Tested with water i
i i l DH-149 H-8 , -. ~..,. _, _ - -., _. - _ _ _ - _ -.. _ _.. _ _ _..... _. _ _ _ _. - -. _.. _. _ _ _ _ -
TYPE C TEST O TESTED PER ASME SECTION XI Penetration Test Boundary Test Allowable Number MPL Number Le akage Leakage seem seem 9A G31-F202 70 9B B21-F032A, F011A; 100 E51-F013; G31-F039* i 13A E11-F050A*, F060A, F122A 310 141,954 13B E11-F050B*, F060B, F122B 20 141,954 i 16A E21-F005A*, F007A 0 283,907 f 16A E21-F006A*, F007A, F037A 442 283,907 16B E21-F005B*, F007B 442 283,907 I 16B E21-F006B*, F007B, F037B 442 283,907 20 P41-F049*, F017A, F017B, 0 No criteria F018A, F018B, F019A, F019B 22 P7 0-F020*, F021, F024, 0 No criteria F083 23 P42-F051*, F006A, F007A, 0 No criteria F007B, F036B, F036D, F042 24 P4 2-F0 52*, F036B, F036D, 0 No criteria F070B, F071B, F010, F036A, F036C, F070A, F071A 44 P41-F050*, F053A, F053B, 0 No criteria F054A, F054B, FOSSA, i j F055B, F056A, F056B, l F057A, F057B, F058A, l F058B l l DH-149 H-9
(% TYPE C TEST ( _,) TESTED FER ASME SECTION XI Fenetration Tes t Bounda ry Test Allowable Number MPu Number Leakage Leakage scem seem 205 T48-F104*, Fil8A, Fil8B* 0 No criteria 210A E11-F025*, F015A, F016A, 20 No criteria F028A, F010, F003A, F048A, F081A, F082A, F086A, F086B, F085A, F075A, F076A, F078A 210A Ell-F029*, F006A-D, 150 No criteria F008, F083, F084; G41-F001B, F019B 210A Ell-FOSSA *, F002A, F063A, 8 50 No criteria F091A, F047A, F003A, F053A 210A E11-F011A*, F026*, F053A 1000 No criteria 210A E21-F015A*, F003A, F020A, 0 No criteria F028A, F027A, F040A, F041A, F004A 210B E21-F015B*, F004B, F003B, 1316 No criteria F020B, F027B, F028B, F040B, F041B 210B Ell-F0llB*, F026B*, F053B 800 No criteria 210B E21-F055B*, F068B, F002B, 1700 No criteria F047B, F091B, F003B, F053B 210B E11-F025B*, F082B, F081B, 1100 No criteria F015B, F016B, F028B, F003B, F048B, F010, F086A, F085A, F049 210B E11-F097*, F026B, F053A, 190 No criteria F011A; E51-F010, F016, F029 223A Air Cylinde r, T48-F342A-L 0 No criteria OU DH-149 H-10
TYPE C TEST TESTED PER ASME SECTION XI Pe netration Tes t Bounda ry Test Allowable Number MPL Number leakage Leakage seem scem 223B Air Cylinder, T48-F342A-L 0 No criteria
- Indicates valve being tested Test pressure is 60 psi air or water O
O DH-149 H-11
( em VALVE REPAIR REPORT / \\ s Narrative Report for LER #: 500-321/1982-09 5, Rev. 1 Update Report - Previous Report date 11/9/82 Beginning on 10/12/83, with the unit in cold shutdown for a ref ueling/ torus modification outage and with local leak rate testing being performed per the " Primary Containment Periodic Type B and Type C Leakage Tests" procedure, it was determined that several valves were leaking in excess of their specified acceptance criteria: MSIV's IB21-F022A & C and IB21-F028A were leaking in excess of the acceptance criteria of 11.5 SCFH per valve when tested at 29.5 psig as specified in Tech. Spe cs. 4.7. A.2.h. The leakage of these valves is not included as part of the.60La overall leakage limit of Tech. Specs. section 4.7A.2.g. (Re fe r to deviation report number 1-82-184 for these valves.) The valves listed below comprise a part of the.60La overall leakage limit of Tech. Specs. 4.7.A.2.g. and for the valves that did not exceed this limit it was determined that in the interest of good engineering practice that they be repaired to prevent this limit from being exceeded. The valves that would not pressurize were assumed to exceed the.60La leakage limit. (Refer to deviation report numbers 1-82-184, 193, 206 & 229). (v VALVE MPL DESCRIPTION IB21-F016 & F019 Condensate drain valves IE51-F012, F013 & F022 RCIC valves IB21-F032A Feedwater valve lEll-F015A & F017A RHR return valves 1G11-F019 & F020 Equipment drain pump discharge valves IT48-F307, F308, F309 Purge supply valves IT48-344A & F335A Purge exhaust valves 1B31-F019 & F020 Recire. loop valves IC41-F006 & F007 Standby liquid control valves lE51-F003 & F031 RCIC pump suction valves IEll-F004B & F065B RHR pump suction valves IT48-F328B Vacuum relief valves IE41-F042 & F051 HPCI pump suction valves lEll-F007A & B RHR pump minimum flow valves IEll-F024A, F027A, & F028A RHR Test line valves lE21-F010A & F031A Core spray pump minimum flow valves IE41-F021 & F049 HPCI turbine exhaust valves l Purge supply valves IT48-F324 and IT48-F103 were subjected to a type A test and it was determined that the leakage of the "0" rings on the valve shaf t was leaking in excess of that amount considered to be within reasonable limits of good engineering acceptability. The leakage through these "0" rings is part of the.60La overall leakage limit of Tech. Specs. 4.7. A.2.g. (Refer to (o) deviation number 1-82-184 for these valves). x DH-149 H-12
Reactor water clean up check valve IG31-F039 and RHR valve lEl1-F029 were s ') leaking in excess of their acceptance criteria. This leakage is not included V as pa rt of the.60La overall leakage limit of Tech. Specs. 4.7. A.2.g. ; however, its leakage rate must satisfy requirements of ASME Section XI, Part IWV. Since these test volumes would not pressurize, this requirement was not be ing me t. (Refer to deviation number 1-82-214 & 229 for these valves). These leakages are not generic although valve leakage during LLRT's is common to both units. These leakages were repaired to comply with specified acceptance criteria prior to unit startup. The attached tabula ted da ta lists "as found" and "as lef t" leakages and the repairs that were done for them to successfully pass the LLRT. Th: health and safety of the public were not af fected by this repetitive event as last reported on LER 50-321/1981-040). \\ DH-149 11 - 1 3
m m N /~N \\ VALVE MPL VALVE DESC. AS FOUND AS LEFT REPAIRS REQUIRED FOR SUCCESSFUL LLRT 7 acem IT48-F334A Purge exhaust 6 50 0 Replaced disk & seat IT48-F335A Purge exhaust 6 50 0 Replaced disk & seat IB31-F019 Reci rc. loop 350 158 Cleaned debris from valve seats IB31-F020 Recirc. loop 350 158 Cleaned debris from and lapped seats IC41-F006 SBLC valves 20 Polished seats IC41-F008 SBLC valves 20 Repairs on IC41-F006 corrected their indication IE51-F003 RCIC suct ion 8 50 Replaced valve seat IE51-F031 RCIC suction 8 50 Replaced valve seat i: lEll-F004B RilR suction 950 Replaced valve seat E lEll-F0658 RilR suction 950 Replaced valve seat IT48-F328B Vacuum relief 1250 90 Replaced rubber seal on seat IE41-F042 IIPCI suction 20 ttachined & polished wedge IE41-F051 flPCI suction 20 Replaced internals of valve IEll-F007A RilR minimum 160 Replaced s tellite on seat & re-machined flow IEl l-F007B RHR minimum 18 0 Lapped wedge & seats flow IEll-F029 RHR 150 Installed sof t seat check valve (new viv. \\ l l l l
1 b \\ U VALVE MPL VALVE DESC. AS FOUND AS IEFT REPAIRS REQUIRED FOR SUCCESSFUL LLRT acem lEll-F024A RilR Test line 2100 Changed seating & polished seats IEll-F027A RIIR Test line 2100 Changed seat ring IEll-F028A RilR Tsst line 2100 Changed seat rings & polished seats 1E21-F010A Core Spray 150 Replaced globe i Minimum flow IB21-F022A MSIV 10.5* Lapped plug & poppet IB21-F028A MSIV 10.5* Lapped piston disk & machined & l out I B21-F0220 MSIV 168* 11.0* Lapped disk and seat i IB21-F016 Conde ns ate 328 Built-up worn wedge & re machined 7 drain C IB21-F019 Conde ns ate 328 Lapped seats & readjusted operator 2 drain limit switches 1G31-F039 RWCU check 100 Repaired hinge pin bushing & polished seats 1E51-F022 RCIC Feedwater 1200 0 Repaired cracks on disk & re machined .1 IE51-F012 & 13 RCIC Feedwater 1200 0 Repairs on IE51-F022 corrected their indication IB21-F032A Feedwater 100 Replaced bent hinge pin & polished seats IEll-F015A RilR return 650 Repair IEll-F017A corrected their indication I d 4
I Q ~'N \\ s _, s VALVE MPL VALVE DESC. AS FOUI'9 AS LEFT REPAIRS REQUIRED FOR SUCCESSFUL LLRT l IEl l-F017A RilR return 650 Lapped seats IGi l-F019 Equipment drain 30 Lapped wedge & cleaned seats di scharge .lGil-F020 Equipment drain 30 Lapped wedge discharge IT48-F103 Purge supply 1000 0 Replaced shaf t "0" rings 1T48-F324 Purge supply 1600 0 Replaced shaf t "0" rings IT48-F103 Purge supply 370 Adjusted stops on valve positioner IT48-F3 07 Purge supply 370 Repairs on IT48-F307, F309 & F324 IT48-G308 Purge supply 37 0 Corrected this indication IT48-F3 09 Purge supply 370 Replaced "T" ring seats i E IT48-F324 Purge supply 37 0 Replaced "T" ring seats l lE21-F031A Core Spray 150 Replaced stellite on seats & re-machined minimum flow IE41-F021 ilPCI exhaust 1700 Repairs to IE41-F049 corrected this indication IE41-F049 HPCI exhaust 1700 Ins talled sof t seat check valve (new v1v.) Total as lef t leakage: 18,642 acem =.374 %/ day (excluding MS1V's) =.312 La i Note: Leakages given in actual cubic centimeters / minute i j
- *Woul d not pressurize
- Standard cubic f t./hr.
li 1 I s
PENETRATION INDEX Penetration No. System Penetration No. System 1A Equipment Hatch 32E,F Recire. Loop Inst. IB Equipment Hatch 33A,B Recire. Loop Inst. 2 Personnel Lock 33C,D,E,F Spares 4 Head Access Hatch 34A Recire. Loop Inst. 5A thru H Vent Line 34B Recire. Loop Inst. 6 CRD Removal Hatch 34C Recire. Loop Inst. 7A thru D Main Steam 34D Recire. Loop Inst. 8 Condensate Drain 34 E Spare 9A and B Feedwater 34F Recirc. Loop Inst. 10 RCIC Steam 35A thru D TIP Drives 11 HPCI Steam 35E TIP N2 Purge 12 RHR Suction 36 CRD System 13A RHR Return 37A thru D CRD Insert 13B RHR Return 38A thru D CRD Withdraw 14 Rx. Water Clean-up 39A Containment Spray 15 Spare 39B Containment Spray 16A and B Core Spray 40A-A Jet Pump Inst. 17 RPV Head Spray 40A-B Jet Pump Inst. 18 Radwaste Pump Dischg. 40A-C RPV Inst. 19 Radwaste Pump Dischg. 40A-D Spare ['~'\\10 Service Water Supply 40A-E Recire. Loop Inst. \\ ji Service Air 40A-F Recire. Loop Inst. '- '22 Drywell Pneumatic Supply 40B-A thru 40B-D Spare 23, 24 Closed Cooling Water Supply, 40B-E RCIC Steam Inst. Return 40B-F RCIC Steam. Inst. 25 Vent, Purge 40C-A thru 40C-E Spare 26 Vent, Purge /H2 and 02 Analyzer 40C-F Dryuell Pneu=atic Outle 27A,B Spares 40D-A RPV Inst. 27C,D Drywell Pres. 40D-B Spare 27E Drywell Pres. 40D-C thru 40D-F Recire. Loop Inst. 27F Spare 28A Recire. Sample 41 Spare 42 Stby Liquid Control 28B,C RPV Inst. 43 Dryvell Test 28D RPV Inst. 44 Service Water Return 28E RPV Inst. 45A HPCI Steam Inst. 28F H2 and 02 Analyzer 45B HPCI Steam Inst. 29B thru 29F RPV Inst. 45C,D Drywell Pres. 30A RPV Inst. 45E Drywell Pres. 30B RPV Inst. 45F ILRT Verification Flow 30C Main Steam Flow 46 Demin Water l 30D Main Steam Flow 47 Spare 30E HPCI Steam Flow 49A thru F Jet Pump Inst. 30F HPCI Steam Flow 50A thru F Jet Pump Inst. 31A,B Recire. Loop Inst. 51A thru F Jet Pump Inst. 31C,E Spares 52A thru F Jet Pump Inst. 31D H2 and 02 Analyzer 54A Jet Pump Inst. J}2A,B,C 1F Recire. Pump Seal Water 54B RPV Inst. \\ Recire. Loop Inst. 54C Main Steam Inst. 32D Spare 54D Main Steam Inst. l 29A Spare H-17
PENETRATION INDEX (Continusd) i Penetration No. System 54E RCIC Steam Inst. C i 54F RCIC Steam Inst. 59A Recire. Pump Seal Water 59B Recire. Loop Inst. 59C Recire. Loop Inst. 59D Spare 59E Recire. Loop Inst. 59F Recire. Loop Inst. 60A and B Spare 61A and B Spare 62 Spare 100A,B,D,E Neutron Monitoring System 100C Spare 100F-A thru 100F-F Main Steam Inst. 101A thru F Recire. Pump Power 102A Indication and Control 102B Spare 103A Indication and Control /ILRT ME's 103B-A thru 103B-F Main Steam Inst. 104A,B,C,F C.H CRD Rod Position Indicator 104D,E I,J Spare 105A.C Power, Lights, Fans, etc. 105B,D Spare 106B Thermocouples/ILRT Drywell RTD's 106A, 107A,B Spare 108A and B Grounding Rod ('~N 200A and B Torus Access Hatch 201A thru H Vent Line 202 Indication Power /ILRT RTD's & ME's 203 RCIC Pump Suction 204A thru D RHR Pump Suction 205 Contain. Purge and Inerting 206A thru D Torus Water Level 207 HPCI Pump Suction 208A and B Core Spray Pump Suction 209A thru D Torus Water Temp 210A RHR and Test Linen 210B RHR and Test Lines 211A Torus Spray 211B Torus Spray 212 RCIC Turb. Exhaust 213 RCIC Turb. Exh. Drain 214 HPCI Turb. Exh. Drain 215 HPCI Turb. Exh. Drain 216A thru D Torus Air Temp 217 H2 and 02 Analyzer 218A and B Construction Drain 220 Contain. Purge and Inerting 221A and B Spare 222B Spare 223 A,A thru F Control Air for Va. Relief Valve 223 B, A thru F Control Air for Va. Relief ![\\s_, i Valves 221C RCIC Turb. Exh. Va. Relief 222A HPCI Turb. Exh. Va. Relief Drywell Head Flange RPV Stabilizer Access Hatches i H-18
PENETRATION INDEX Penetration No. System Penetration No. System i 1A Equipment Hatch 32E,F Recire. Loop Inst. 1B Equipment Hatch 33A,B Recire. Loop Inst. 2 Personnel Lock 33C,D,E,F Spares 4 Head Access Hatch 34A Recire. Loop Inst. } SA thru H Vent Line 34B Recire. Loop Inst. l 6 CRD Removal Hatch 34C Recire. Loop Inst. } 7A thru D Main Steam 34D Recire. Loop Inst. 8 Condensate Drain 34E Spare 9A and B Feedwater 34F Recire. Loop Inst. l 10 RCIC Steam 35A thru D TIP Drives 11 HPCI Steam 35E TIP N2 Purge I 12 RHR Suction 36 CRD System i 13A RHR Return 37A thru D CRD Insert 13B RHR Return 38A thru D CRD Withdrav 14 Rx. Water Clean-up 39A Containment Spray 1 15 Spare 39B Containment Spray f 16A and B Core Spray 40A-A Jet Pump Inst. j 17 RPV Head Spray 40A-B Jet Pump Inst. i 18 Radwaste Pump Dischg. 40A-C RPV Inst, i 19 Radwaste Pump Dischg. 40A-D Spare j 20 Service Water Supply 40A-E Recirc. Loop Inst. )1 Service Air 40A-F Recire. Loop Inst. } \\d2 Drywell Pneumatic Supply 40B-A thru 40B-D Spare j 23, 24 Closed Cooling Water Supply, 40B-E RCIC Steam Inst. Return 40B-F RCIC Steam Inst. 25 Vent, Purge 40C-A thru 40C-E Spare j 26 Vent, Purge /H2 and 02 Analyzer 40C-F Drywell Pneumatic Outle l 27A,B Spares 40D-A RPV Inst. i 27C,D Drywell Pres. 40D-B Spare 27E Drywell Pres. 40D-C thru 40D-F Recire. Loop Inst. 27F Spare 28A Recire. Sample 41 Spare 42 Stby Liquid Control 28B,C RPV Inst. 43 Drywell Test 28D RPV Inst. 44 Service Water Return i 28E RPV Inst. 45A HPCI Steam Inst. l 28F H2 and 02 Analyzer 45B HPCI Steam Inst. i 29B thru 29F RPV Inst. 45C,D Drywell Pres. } 30A RPV Inst. 45E Drywell Pres. l 30B RPV Inst. 45F ILRT Verification Flow 30C Main Steam Flow 46 Demin Water 30D Main Steam Flow 47 Spare 30E HPCI Steam Flow 49A thru F Jet Pump Inst. 30F HPCI Steam Flow 50A thru F Jet Pump Inst. 31A,B Recire. Loop Inst. 51A thru F Jet Pump Inst. 31C,E Spares 52A thru F Jet Pump Inst. l '31D H2 and 02 Analyzer 54A Jet Pump Inst. 1F Recire. Pump Seal Water 54B RPV Inst. %A,B,C Recire. Loop Inst. 54C Main Steam Inst. i V 32D Spare 54D Main Steam Inst. l 29A Spare I H-17 [ --- - - - - - - ~ --
PENETRATION INDEX (Continu:d) Penetration No. System g 54E RCIC Steam Inst. 54F RCIC Steam Inst. g'- j 59A Recire. Pump Seal Water 59B Recire. Loop Inst. 59C Recire. Loop Inst. 59D Spare 59E Recire. Loop Inst. 59F Recire. Loop Inst. 60A and B Spare i 61A and B Spare 62 Spare 100A,B,D,E Neutron Monitoring System 100C Spare 100F-A thru 100F-F Main Steam Inst. 101A thru F Recirc. Pump Power 102A Indication and Control 102B Spare 103A Indication and Control /ILRT ME's 103B-A thru 103B-F Main Steam Inst. 104A,B,C,F,G,H CRD Rod Position Indicator 104D,E,I,J Spare 105A,C Power, Lights, Fans, etc. 105B,D Spare 106B Thermocouples/ILRT Drywell RTD's 106A, 107A,B Spare 108A and B Grounding Rod [ 200A and B Torus Access Hatch ( 201A thru H Vent Line 202 Indication Power /ILRT RTD's & ME's 203 RCIC Pu=p Suction 204A thru D RHR Pump Suction 205 Contain. Purge and Inerting 206A thru D Torus Water Level 207 HPCI Pump Suction 208A and B Core Spray Pump Suction 209A thru D Torus Water Temp 210A RHR and Test Lines 210B RHR and Test Lines 211A Torus Spray 211B Torus Spray 212 RCIC Turb. Exhaust i 213 RCIC Turb. Exh. Drain 214 HPCI Turb. Exh. Drain 215 HPCI Turb. Exh. Drain l 216A thru D Torus Air Temp 217 H2 and 02 Analyzer 218A and B Construction Drain 220 Contain. Purge and Inerting 221A and B Spare 222B Spare 223A.A thru F Control Air for Va. Relief Valve ('Ss 223B, A thru F Control Air for Va. Relief ( ) Valves \\_/ 221C RCIC Turb. Exh. Va. Relief 222A HPCI Turb. Exh. Va. Relief Drywell Head Flange RPV Stabilizer Access Hatches H-18}}