ML20236L889
| ML20236L889 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 10/31/1986 |
| From: | Pravin Patel STONE & WEBSTER, INC. |
| To: | |
| Shared Package | |
| ML20236L742 | List: |
| References | |
| FOIA-87-684 NUDOCS 8711110102 | |
| Download: ML20236L889 (94) | |
Text
-,-
,. ; *p.h
..*g STONE 6 WEBSTER ENGINEERING CORPORATION f) j..,: - W[ V CALCULATION TITLE PAGE if /
.j, y.
(D ^
f/f06 26 86 )
s w wa.o.m PAGE I M
CLIENT & PROJECT Texas Utilities Generating Co./ Comanche j '
Peak SES - Unit No. 1 TOTAL NO. OF PAGES 30 JCALCULAT10N TITLE (INotCATIVE OF THE 08dECTIVE):
O NUCLEAR PIPE SUPPORT CALCULATION sAr Ty aetATco
)pl-702 -919TL FUNCTION: R ektw C.T -) 1032 SUPPORT MK. NO.:
E NgryENo 1-NODE PT.:
609 STRESS PROB. NO.:
SYSTEM NAME
C ALCUL ATION IOENTIFIC ATION NUM8ER CURRENT OPTION AL OPTION AL J. O. O R W.O. NO.
OlVISION f. GROUP CALC.NO.
TASK COOE WORK PACK AG E NO.
i 15454
}
NZ(H)
CT NF) ~702-979p, ZS APPROVALS - SIGN ATUR E L O ATE SUPERSEOES CON FIR M ATION INDEPENDENT REY. NO.
C ALC. NCL R EQUIREO M P R EP A R E R (S)/O AT E (3)
REVIEWER (3)/O ATE (S)
R EVIEW E R(S)/ O AT E(S)
O R R EV. N O.
YES I NO A
0.C.W
/N /-O
@d i
a j
. }o.3o. gc, R.bku.e sTEBo9 P. c.. PA rS L.
MM 7-6 85/
l
- Copy for Filmirg(3 Silver Micrc fiche) 1 Fiche to FRC Boston i
2 Fiche to E.J. Excell SWNYs 36 l
DISTRIBUTION l
I COPY
)
I I
l COPY SENT GROUP I
N AME & LOCATION l SENT GROUP' l
N AME C. LO C ATION I (A 1
I I M i
RECOROS MGT *.I l REV.
l R.J.Belanger-HOC /05 REV. 6 j FILES (OR FIRE l
l0iLl2 SUPERVISOR I File R4.2 i O'1 I 2l
~
FILE IF NONEl 6.Nicholson 24s/11 i4 I
/J l
PROJECT DOC.
- p. EXCELL - SWY/36 l I
g g
g.
-l f3 CONTROL l
j if JOB BOOK NO.)
g
[
R4.2 l
s 1
I j
/
l l
SWEC SITE S. FELDMAN - SITE
{
3 1
[
pH111,9102 871109 j
l 0
-- l_ _.J1
^
- 7 Si l
-'f'.
j
. r,,. -
. r 9
, S TONE f. WECS TER ENGINEE RING CORPOR ATIO N l
c'
+
.c CALCULATION SHEET.
h I
s we a
/3,
C ALCUL ATION 10ENTIFICATl0N NUW8ER l
A j:G J.0. O M W.O. N O.
OlVISION O GROUPi CALCUL A TION NO.
OPTIONAL TASK CODE PAGE: 2' L
15454-NZ(H)
CT-1-ItM ')D2-626 R-ZB" i
3 s
i TABLE OF CONTENTS l
q:
i
?-
s PAGE(S)-
b
' TITLE PACE) 1-l l1 7
TABLE OF CONTENTS.
'2 n!
4.
s I
REVISION. STATUS TABLE'..
3 OBJECTIVE OF CALCUIJTION 4
Il is CALCULATION METHOD 4
-i3 SOURCES OF DATA.
4 j
1 is 4
l CONCLUSION is 5
l' ASSUMPTIONS..
es
- DESIGN '. INPUT:
f
- FORMATION OF LOAD CONDITIONS AND DESIGN DISPLACEMENTS. 6, 6A, 6B i
-88
- DESIGN DATA 7
. 21
' - AS-BUILT DRAWING.
6,3
)
3 a
REFERENCES
..............,... W
,.q 2.
f ll 27
SUMMARY
OF RESULTS
[
ze ANALYSIS, BODY OF CALCULATIONS............ [2 to lG g,
'l 30
)*)
l COMPUTER LOG
.~................
J 31 58 STRUCTURAL ATTACBMENT LOADING SCHEDULE l6 35 10 MICROFICHE.......... ~............
3 l
ss 34
~37 ATTACHMENTS 38 1.
DETAIL PIPE SUPPORT CHECKLIST.
1.1 co 1.7 3,
' 44 2.1 t.o 2..b 2.
SUPPORT (S) LOADING
SUMMARY
.i B. l to M.
3.
COMPT. TIER RUNS INPUT..
4.?A6.pult.T'tW~-o.TCR 9NING AWalJr.
4.) to 4 9 U
i TOTAL NO. OF PAGES:
3G
.s c
.s l
_ _ f
.--.m._--_m.__m________L.
y
),- \\E,
F STONE & WEBSTER ENGINEERING CORP 0i1ATl0N CALCULATION SHEET
?
,u,.
g
. A soitto-
-. y C ALCUL Atl0N IDENTIFICATION NUMBER dj
'J. O. O R W.O. N O.
OlVISION D GROUP CALCUL ATION NO.
OPTIONAL TASK CODE PAGE 3-q 15454 ~-
NZ(H)-
.CT-l lM-ME Gt9R.
ZB REVISION STATUS TABLE
'3 PA s
DESCRIPTION / REASON O.
7 s
ALL-REV.
O OF THIS CALCULATION HAS BEEN VOIDED IN ITS ENTIRITY s
AND SUPERSEDED BY THIS REVISION. CALCULATION IS REVISED TO INCORPORATE PROJECT PROCEDURE CPPP-6 AND CPPP-7 REV. 2 AND NEW so DESIGN LOADS.
in
.j is i4 15 i
16 l
61 is q
19 LO 1
22 23 24 R$
to 27 i
20 t
30 31 32 33 34
' 35 35 37 E'
I :.
39 i
40 O:
43 44 45
~
7,(. h STONE P WEBSTER ENGINEERING CORPOMATIO.PJ,-
'I i :.
1 CALCULATION SHEETL j
.c 1
j'-
2 3m -
- l
.' ' e
~
CALCUL ATION 10ENTIFICATION F.UM8ER J. O. O R W. O. N O.
DIVISION & GROUP.
- C A L C UL A TI O N f.0.'
OPTIONAL TASK CODE PAGE 15454 NE G,W CT4tt'l ~ lot M OR, ZB 1
DESIGN CRITERIA,
-3
. OBJECTIVE OF CALCULATION:
d s
THEOBJECTIVEOF>iHISCALCULATIONISTOINSURETHATTHEPIPESUPPORT
. SATISFIES THE DESIGNED FUNCTION AND T0' DETERMINE THAT THE STRUCTURAL ' INT l
THE SUPPORT IS. MAINTAINED PER ASME III, SUB 'SECTION NF OR AISC CODE REQUIRDENTS, AS PER'AS BUILT INFORMATION.
CODES: SEE SECTION
' 2.2 of CPPP-7 TOR APPLICABLE CODES. THEIR.
EDITIONS, AND ADDE'DA.
I
- @ THit,a MlFPor.T 16 c LA4+ e Gyf fo2T, CON 6 s.FW ATIVEL4 AGME 'E.
'2
~
. i3 ALLOWAliM EG ARE %50
. I is METHOD OF ANALYSIS:
i is
~
- 1. THIS CALCULATION IS BASED ON LINEAR ELASnC THEORY IN ACCORDANCE WIT it
' SUB SECTION NF..(PIF. -1) AND THE DESIGN ' CRITERIA OUTLINED IN CPPP
.n
- 2. THE DESIGN LOADS FROM PIPE STRESS ANALYSIS -(ATTACH 2) ARE USED T I
- 6.
APPROPRIATE LOAD COMBINATIONS.
- 3. ALL' ITEMS ON THE AS BUILT DRAWING (S) ARE EVALUATED IN THE CALCULATION, BY ts
' COMPARING THE STRESSES. WELD SIZES. ANCHOR-BOLTS'AND BASEPLATE 22 LOADS TO THE APPROPRIATE ALLOWABLES.
'25 as 3a 3
27
- as SOURCES OF DATA REFER TO DESIGN INPUT PAGE NO. 6 TO.S,.,30A M l
Si 32 33 3d CONCLUSIONS ss O EKISTING SUPPORT IS ACCEPTABLE 3,
3e O EXISTING SUPPORT.52 QUIRES NODIPICAn CN 39
.o O SUPPORT RIsovED
-e' O OTHER, SPECITY:
- 2 3
es 43
'4$
. _. L __ _
._)
p...,
~..
t B
.,1
, j,.
i
?
S TONL L wiegT L A LNGINt,t,M4NG CORP 0 A ail 0M j
. CALCULATION SHEET
-1 b
/S:
s me en C ALCULAfl0N 10ENTIFICAfl0N NUW0tR 1
I(
i
)'~
! J.o. o n w.o. No.
OtvialCN & Group.
<CALCULAfl0N No.
QPfl0NAL fASE C00t pact
'5-1
- 13454-NZ(H)
CT.t td7.%f.sf.92.
ZS 8
CONFIRMATION ASSUMPTIONS REQUIRc M.
a YES No 3
W}l0 Yb ~,-
4 m
q
?
8 I
4 o
l 1
se 88 18 a4
,1 J
)
se f
as q
et i
et if I
s :
gq
/
3e i
83 se
-]
se
- gp 29
.to so 1
si la as I
34
.j is 34 1F lf U
se l
l es
.,,a 43 l'
48 44 4$
\\
~,
44 Go q
4 i
qM ? T W e
7-
. c.
~
-t'
- jg n
4
' {
i a: C, '
a(
f, g
. y,,3
..o
- STONE & VIE 8sTEll ENGINEEftlNG CORP 0;t ATION,
.f. '~.
CALCUL ATION 'SH EE T npl V
CALCUL Afl0N 10ENTIFICAflord NUWsEA.
j g.0. 0 A W.O. NO.'
- 0lVIS'ON & GROUP -
.. C ALC Afl0N NO, OPfl0NAL TASK CODE PAGE tsas4 NZ (H).-
cy.Hy;.gog. St 9 R.
rs.
- e' n i
'.,8 a t P.-
,Ots!GN CATA
- }
=..====.===-
)
i f,;
5:
s 4
.D_.
t0a0 No Typt usto IN THE Analysts u4 l
@+
sue,Ca7 dCT '.i.1*>7 7o'2. e26R.. sTatss Pe0s. NO.- t ob2
,u,,uo, 8o9-4,;,c sast0 ON n:Prsfatss auN NO. asr4oI!lD.
vos > =0 cAo7
. 04TE :
Afg,y,
. j s
':_ s, -
3 y
tt.
LOA 0 TYPE I8
([,
4 I)
( 8s I'88I I3}
M OI ION'C"W '
a
, 13 ;
Di. '.
gg' "y
to h)6 Tham iN0fts,0 Pet.)
.I 1
"[ -
' $ $ $'6 '
J THit 1(tsost'= VE1 e
og
)
51 THER 2(140sY. VE)
-37[
]
tggg-l
- 4 Osta.
88 SRSs'(06t!.0CCU) t % F)2 I,7,$[pl sRSS (Ott7.0CCU) it CCC.
IJQfy
'se
- sass (sst!.0CCF)'
f (f jQ l
' to Sass (ssif.0CCF)
I' MY0l#0TEsf 33
(*)
ENTER QNLY IP P!PE LOCAL STRESS ANALYSIS 280U1250 as
\\;
8*
PORet4 TION OF LotDING CONO!TIONS ts
===================
l I
as A) steuCTuaAL ANALYT!: AND cot 0PONENT Ots!&N
^
h' j
senVICE
- Fx Py rz TasLE LOAO CONS! NATION LEVE LANT (LSS)
(LSs)
(tSs) 1 4.7.2 1 ITION
[
3, 31
!OL A/
.=.
OL + TNea A/(N0ttaAL) 4 53 DL" + TNam +
s/(upstT) 7pg$
f sRSs (Dett.0CCU) 40(
DL + THee + OCCE C/(tmanotNCV) 4 M44 gg DL + THan +
gogg 4
sess (ssuf DCCF)
D/(PauLTED)
_g se 39
- 5) PT#t LOCAL Stets: ANALYSTS Poe LOCAL stats: aNatvsts stt Past. M/A l
3 4:
L c.
4$
l
't}
44 u
Li-.]1,
((
f t
+
3;
- .} ', ' f f.'
4 3
s STONE'& WEBSTER ENGINEERING CdRFOR ATION.
" I' '
.M,
- CALCULATION. SHEET
.l oji
. a seio es CALCUL ATION l0ENTIFICATION NUMBER :
. J.O. O R W.O. NO.
Olvl510N & GROUP -
. C ALCUL ATIONz NO.
OPfl0NAL TASK CODE
-PAGE 6 A' -
t ZB.
15454'-
.NZ(H)?
C T-t-M - M G M R a
e
' CALCULATION OF RELATIVE PIPE DISPLACEMENTS-8 3
1 m
- 1
. x (IN.)
Dyj (IN.)
'Dg'(IN.)
D 13 h
&. h h
h
'I 1
a THERMAL NORM.0PER i-s
. O. o ).
c.o t cAgg po,9 THERMAL
'8 CASE NO.
is
. 7 (MAY)
OI O.O].
~
THERMAL I q.
) _g,g j
,g,gg CA 0..
g-L THERMAL
.,is CASE NO.
o THERMAL 8'
CASE NO.
.22 83 THERMAL y
CASE NO.
as 8'
THERMAL' 27 CASE NO.
-a, 29 OBEA IO.02 10'084 t o,004 so
~
~
'~
31
[
g.se A. 33 SSEA 10.04 to.c4 0
"""~
~
~
L.
ik 3
'st t.
,.j88
- h TOTAL PIPE DISPLACEMENT (FROM PIPE SUPPORT"
SUMMARY
)
37
, $ se' hRELATIVEANCROR-AND/ORSUPPORTDISPLACEMENT(PROVIDEDBY PIPE STRESS ANALYSIS).
3. 3, 2 ',*
@ hI.CUI.ATED 'REMEVE PIPE ' DISPLACEMENT = h - h a
f
(
'4:
3 44
?
'el I.
<a
.(s_.
%ln=IfU'
(-c)l f
STONE & WE8 STER ENGINEERING CORPORATION H'1 CALCUL ATION L SHEET.
s
- m.,e-
_u...-
. CALCULATION IDENTIFICATION NUM8ER 6B J.O. 0 R W.O. NOi OlVISION G GROUP CALCUL ATION NO.
OPTIONAL TASK CODE
.PAGE j
~
15454 NZ(H)
CT-Mt7-lot MF R..
ZB 1'
l:
i
\\
~
.REF.
CALCULATION OF RELATIVE PIPE DISPLACEMENTS (CONT) 4 1
LOAD TYPE Dx (IN.)
Dy (IN.)
Dz (IN.)
7 13 e
DL
.o.o
- THER (NOPM OPER) 0.0 )
io
- THER MAX.
0 0l Ii
- THER MIN.
-O.09 in OBEI-T.O. O d.
to.co4 is
- OBEA i4 OBET=0BEI+*0BEA tc.044
.j is OCCU is
.SRSS(OBET,0CCU)
!.o.044 I
87 OCCE is
-SSEI t 0.07 is
- SSEA O. O bg to SSET=SSEI+*55EA t C.O /
1-
&P i
OCCF aa SRSS(SSET,0CCF)
!O.07
=>
24 2S a
- CALCULATED RELATIVE' DISPLACEMENTS FROM PREVIOUS PAGE.
21 DX DY Dz l
LOAD CONDITION 2'
(IN.)
(IN.)
( IN '.')
o.O\\
1.
LL + THER
. g. 3,
_ g,g g 6
0.0%
2.
DL + THER 2 SRSS(OBET,0CCU)
,o, 33 34 3.
DL + THER i SRSS(OBEr,0CCU)+SI c.0F4 55
-o.otA o
O'OI 4.
DL + THER 2 OCCE
- O.C@
- ~
.3 itc sa: '6 3
0.0$
g 3,
5.
DL + THER t SRSS(SSET,0CCF)
- 0.12.
g$
- MAXINUM-DISPLACEMENTS--
6 44 45 de
+.
s--w..-__ oram-m._____.___,,_________
["-
s a uttL ti. wtBS I L N ENGINEE RING CORP 0 A ATIO N CALCULATION SHEET-A seto es
~
'k-CALCUL ATION 10ENTIFICAfl0N NUMBER J.O. 0 F hh[0.
Olvt510N C. GROUP CALCUL Afl0N NO.
OPTIONAL TASK CODE PAGE I 15454 NZ{H) 01".) ly).702.c,2H2.
2B
[
REF DESIGN DATA
- 1. RtDi P!PE:
Stress Problem No.
l 032 NP. No, h09
.s I.ine Designation IO"cT. )- lTi 301 E,- 9
@ Indicate Material lised In This Calculation 13 Pipe CD Wall Thickness Pipe-losulation r
Material (in)
(In)
(in)
SAiO6 cR a O
eo SA312 TP 304 e,
S 10.*]C)
Q. b(p y Nlk et O
as e4 is complete below only for supports which require w.h tion of integral attach =*nt or pipe bearing stress.
I Pressure Temp __ Table 4.8.1-2 (Ref.6)
Table 4.3.1-4 (Re f. 6 )
(Psi)
('F)
Sc (psi)
Sh (psi)
Sy (psi) is 6
is 2.
Operating Cond l-Design Cond w
x2 g
..l'
- 2. MATERIAL PROPERTIES USED IN THIS CALCULATION:
as 28.
sup rt O
LocabdAt O (utside Contain. ment O ram 313ne remo,Inside Containment.73 TABLE Ambiant Teme. 125'F) 300 3,
t,, 7, 2. g g
fLatersal Spec: Sy (pet)
Su (pss)
Ey (10*pss)
Sy (psi)
Su (psi)
E tt0* pss) f SA34 35,200 58,000 27.4 m O 3i,9[0 58,000 27.4 so A500 GA $
35,200 58,000 27.4 3i,900 58,000 273 3:
1 g C (See nee.1i j
8 O l
51
$ 0 as
~
35,200 54,000 27.3 31,90o 58,000 21.4
@ SA36 5^525 '" '5
,2 65, o 27.s 3i. coo
- 65. coo 27.5 i-3r O
N SA240 TP 3o6 2s,8a0 74,oco 28.0 22,50o 66, coo zi.i O
g ss C
do O.'^i6Caa 34,2 0 6,
21.8 31,0o0 60,00o,.
i' 2i.5 O
o >^>
"5 S
O O
4s O
44Unt G WCO 3 4 CM tet w 6H t t nseg u wunt unn e sw n e
CALCUL ATION SHEET
~
$010 65 C ALCUL ATION 10ENTIFICAT10N NUMBER J.O. O R W.O. NO.
DIVISION & GROUP CALCUL ATION NO.
OPTIONAL TASK CODE PAGE b 16464-U21H) ct-\\-\\b'1-102 'oMR.
2&
i A6-BulLT DWG 3
S i
/
Il
__ flPEM E L,7 61.8) V6_.
s r
i
~
-- lO"CT-F lb7-Sol R. F l
</,
r
{A e
/
e io l
I 1i It MM'L. GuPPLIED W/
4'.4 %"
g I
W MKb. CT.l LS/).1Cl.G7.9(2 s
Y NV 3
is Ak J A l
i ir TOP OF Co4C.6 Et. 766 '-G" (PEF )
's is is g
gii 6
- h h
18
(Hg )
,. I d.
i 4+
8
-(643 i
ELEV. LKG. RoFLTH to A MTMHHEHT 90. Fo4 9Tv.uc.TL.
ATI.LcADINC1 GCHEDu) E (96 l6)
I er 1
SI[A_57th ATTACH. TYR
)
3o 2
~
31 32
~
.L L
33 s
h,,
3 3.
33 en b.
'f Mr 4
m m
3+
. FIELD DEILL i 4 >
- o x
4 5 $6, S M'
/% d #0LES r
- 2 i
GECTIOW A-A 4.
4$
de
^
---_m._,_
o i v es c. c.
- c. o o e c. n t... w... a. L e$ i. w w.s. w. -.. w.
l l'
CALCUL ATION SHEET
' A ooto e4 C ALCUL ATION 10EN TIFICATION NUMBER J.O. O R W.O. N O.
OlVISION 0 GROUP CALCUL ATION NO.
OPTIONAL TASK CODE PAGE 9 g(")S.,.
1R94 NZCM) cT-t-m-7c>2. cA9 R.
z.B i
t
{
3 4
S T #1 MATERIAL DESCRIPTION s
i ses - zo PC SW.W S T/?UT i "C C '= 4
- 7 3,4 ~
WITH SFC - ZD -100 PIPE CL4MP ( 5A %)
2 1
l THr. CAE60At STGL R ATC
[ A St.)
Io (SET SfcTinN 'A. A *1 b
4 t~ 4 s i2 ~ l.0AICs 3IlPE L' HILTI VNtY 6(xT r'7 % " M p M. E. M a 3 I5
. l 14 IS 16 l
is le 49 ao 4.3 k
22 esuEbRut. N N 2*
HGR LocAT104 j
25
,I 4 5
1 28 29 CS 4
31 32 LOCATION PLAN 33 34 35 35 TMdTE : TH16 W-ETCH le BAGED ou'Ae -SulLT' j
s s(1P T. HK 4 CT-1-1$7-70te 619 p.,REV. I 39
.o 4
l 3
40 46 u_________.__
[
S TONE t. WE85 TER Et4GINEE RING CCRPOR ATION CALCULATION SHEET
- i
& Sot 6 49 '
C ALCULATION 10EN TIFIC ATION NUMBER
)
J. 0. O R W.O. NO.
OlVISION 0 GROUP C ALCUL A TION NO.
OPTIONAL TASK CODE PAGEIS s'
15454 NZIH)
CT'HD'I@t-f" E 6 R ZB n
a REFERENCES
@ ASME-Boiler and Pressure Vessel Code,Section III, Subsection NF Code, Division 1, 1974 Edition with Winter 1974 Addendum.
s a
2.
ITT Grinnell Corporation - Catalog PH79.
F 3.
ITT Grinnell Corporation " Design Report Summaries (DRS) and Lead
.Crpacity Data Sheets (LCDS)," Rev. 12, dated May 5, 1984.
9 h.CP-NPS Catalog-NPSI Component Catalog for Comanche Peak Project.
'O h NPS Industries. Inc. " Component Support Certified Design Report Su= mary" LCDS/CDRS.
,3 h Design Criteria for Pipe Stress and Pipe Supports CPPP-7, Rev. 2,
'8 dated 4/25/86.
is
@ Pipe Stress / Support Requalification Procedure CPPP-6, Rev. 2 it dated 4/18/86.
8.
" Manual of Steel Construction," 7th Ed., AISC 1970.
20 2'
9.
" Manual of Steel Construction," 8th Ed., AISC 1980.
O (For Tube Steel Properties Only) as 23 10.
Blodgett, 0.W.:
" Design of Welded Structures,"
The James F. Lincoln Arc Welding Foundation. 1976.
15 as 11.
Roark, R.J. and Young, W.C.:
" Formulas for Stress and Strain,"
27 Sch Ed., McGraw-Hill Book Company,1975.
as 12.
.(a) Gibbs & Hill Specification 2323-MS-46A, dated June 26, 1984.
(b) Gibbs & Hill Specification 2323-HS-46B, dated April 1,5, 1983.
si j
13' Pipe Stress calculation No. 15454-NP(H)-cT C'b1
. Rev. t 38 33 Dated 6160 14.
For computer programs used see ' Computer Log.'
3, 38 CALC. # ty4 94-N2. (C ) - C EU y - OTb, F.EV.O DATED 0-d-60 3
i ST I
34 l
- o 4R n
l 1
i i
%)
l 1
NOTE:
Reference numbers circled are used in this calculation.
l 4e 1
. - _ - _ _. - - ~ _ _ _
_ - ~.... _ _ ~
mag [.
y/4f'lt grygs I-.
. wm g-'p
\\
q
,.,Q 8'L *, 31 i JI'
- gS
> :g -
STONE & V/kBSTER ENGINEERING CORPORATION'-
J
!/
- CALCULATION SHEET
, j'{
'" $ Jg s'
u'
- C ALCUL ATION IDENTIFICATION NUM8ER CALCUL A T10N No.
OPTIONAL TASK CODE PAGE lI J.C. O R W.O ' NO.
. OlVISION G GROUP 15454{
NZ(H)'
U.
C4'-l.I'b'T." lot.92912.
ZB
/
- i
,.y.
lj Ea ' SU.T!ARY OF 'RESULTS 'b i .s Y ' THE' TABLE BELOW PROVIDES THE '
SUMMARY
OF: DESIGN RESULTS AND DESIGN MARGIN FOR ALL ITEMS-. ANALYZED IN THIS 3y' .s } CALCULATION. CHECK APPROPRIATE ITEMS '8 ITEM jlo U-Le USED EVALUATED. ITEM CALCULATED : ~ ALLOWABLE' (COL','. 2) REF,- 9 E (d VALUE VALUE (COL.. 3) PACE ,o <l ii 0E 1. '2 3-4- ,5 $,3 MANUFACTURERS CATALOG-ITEMSc(STD. COMPONENTS)' EXCEPT:U-BOLT and' SPRING) lO70l M .N NOIb O2D IA is 14 .it U_goLT ie xi. - s r.u.w ?ALC . SPRING PC. 80 NORMAL .s .h. - ai STRUCTURAL STRESS
- 1. 0 --
m
- a:
INTERACTION- - 'a s MEMBERS SHEAR ~ ~ ~"" l STRESS' ' a s' LOCAL 4' STRESS WELD SIZE (STRUCTURAL MEMBER'&-STD. COMPONENTS) 0.0 6 14 O.Wh M ' O.2 R l4 se RUN PIPE' INTEGRAL ~ ~~ ~ ~ ' LOCAL STRESS ATTACHMENT 3, 3: BEARING / ~ ~~ ~ CHINCHED U-BOLT 3, . 'l ss WELD SIZE (INTEGRAL ATTACHMENT) ~ 3 BASE PLATE BENDING 38 / 5716 PSI %400 PSI O.1)"l
- g i
STRESS .e [ , ANCHOR BOLTS INTERACTION o,gg} 1.0 p,ggg l l(, 3, 8' RICHMOND 'EC' TYPE 1.0 '88 INSERTS ~4o INTERACTION TEREADED 1.0 ROD 7"? LOAD-CARRYING END PLATE PSI PSI
- O STRESS y
~ ~ [\\M
- s o
- 4$
.e /.
t (*,*, s. STONE L WEBST E R E N GlhlL RING 00RPOht.1 to h CALCULATION SHEET C,,,,,, F3f[4708 66) 1 ] CALCUL Afl0N IDENTIFl0& TION NUMBER
- [
J. O. O R W.O. N O. DIVISION O GROUP CALOUL ATION NO. OPTIONAL TASIL CODE PACE k 'v,. 15454 NZ (H) icT.H47of. M9 R. 23 a I >RIT. l COM*0ND 7 PARTS ITALUAUON ] SWAT STRUT DD '20 PC VITH CU.MP SPC 2.0 10 0 - s STRUT C-C & (52429 + 49.576 - cLAMPT.O. = rd.8%. g v sp,g,g o + B6 Yl0 IN. > MINunm C-C - 34'/2 IN-i ( MA7.DEM C-C = '2.81. IX. in t A As.Sult.T C.c 5 4 7 Yd 4X., N0 IWA4T. It t 83 LO D CAPACITT i. g C. C. s (p O '8 1S DESIGN SDUTAR.E STRUT C". AMP CUy1 - SEVICI LDAD L:.vs CONDIU CN LOAD = ALLO *JA3LI. RATIO ALLOv'A3LI RAno 'T (t?. ) 1.0A.D ets. 3 ' tor 3tts,3 le ME ^ l 40G"i Basco 0136 $3600 01M i. G -3 2,3 7929 nyoo o.225 333co o,etg' gy C 4 44GT 449oo o.los 49990 o.iol 23 b .5 {0,J@ 44.900 02.& $y0 0.16 ~ D
- FOR SnUTS IN P M ATT " IN APPLICAUCN W13 IISI?. C: AMPS. ~d~ DISION -
-ar LCAD SEALL II 75 P'"*r"NT 07 EI TOTAL DISIGN LCAD INDICAI-'D 3T a~.i. ~ y ' ss PIPI SUISS LOAD SE2 FAIT AT'n3 7I?I CENTELUI. DESICW LCAD 2'
- PJ.II0
- SWIN ANTI (USING MAIDfUM COMBINIP,DISPLACIMDCS)
ALL0k'A3LI LGA.D d l 3, J YA(.16 2 IDLDANCI IS NOT RIQUIRED WHD AS-3UILT ANGLIS ARI GIVD.. 0 (p B DJ._ - o.12. IN. D._ - IN. I. -
- 69. Sf))
g, 3,. 33 -l SvzNo ANCLI,. e,- :an _D1 + 2 * .2.123
- g e 5
- o<
3 L O > 5* OSPer#MoomneN Ostens t.w -2* 3 0 " tan + 2*'
- O 45*ok l
- D I
~ 2 3. . g > 5* C5PRT uoom, e.ATMD STF# O 27 S " (d + st )g 2 5, 0K ,m g 3 3. O > 5' &Pk STthSS RtVIENll69b sc.:. ABOVI COMPONDTI PARTS ARI Accectable ao Not Acceptable e e ---,., - . ~. l
STONE & WEBSTER ENGINEERING CORPOR ATION CALCULATION SHEET ' um se CALCUL ATION IDENTIFICATION NUMBER I J.O. O R W.O. N O. OlVISION D GROUP. C ALCUL ATION NO. OPTIONAL TASK CODE PAGEI6 19464 NZ(4) CT-i-rb7-74-629E. ZEb j gsp. i CHECV.' WE.LD BETvJEER REAft. 92VT. 4 EbA% % Fw Fogces A HOME.MT6 d. CEWTSotD OF l R71.Ce WELD (GLoeAL Ar.19 ( FLTD couD. ) 5 FZ. = 10701 c.oG 41 = S)44 \\be j i i 7 l I F4 = 1o701 sin 41* = lole ibe ' [I l ag j io t
- Fx=3o2%wie Amts. ou x. pieec. Tion
.I 1 te 2.129,c0MPopEuT Foace. i f4 s. o IM-Lo i 7. Mt. : 302. )t 4 = 17.06 19 19 l 's W b=G" l Mx = $144
- 4. : 3297G lu-lb
,4 is WELD PMPER.Tib d A = 1( A.+ b) = 2(.1 + Ch 20 lu' O. ~ s g, 22 23 = )C e o. +b) Z n => 24 3 v { as v = 0 (s x G + 9 =. So lu' 27 s l l i l as Fi = Fr = S144 lbs Ht=Mz=o o ik.ib 2' 1i 7RFxl '.o.O 199 H e M x = s a s % ILt-l b' i 34 i )g l E F) .-{- 51, Md 4 _A Z3 A 0 38 b 70]$ .g gh}$ gg44 =, gg g 39 =
- o 2G 00 ZG
/ ~ ~ A4 ALpts, Wo SitulPlcAMT IWALT.. S, 48 E' Mec.Lecrep tu (~9 a 3]' w.su,tooA @' Ae eun.T' us. m.a. 3 w. u swe se#nus, e enaoout w en erw,, n.' ~ 91MCE. Tl+s SiFFE9-EMCG. is GM ALL. THe24. W)t.L. De uo GlGRI FicAMT EF'FECT on TWE. 649@M ASEQ UAAV AN.D cA9 ncespoe.s es put.sc-ro.
j l STONE & UEBSTER ENGINEERING CORPOR ATION CALCULATION SHEET t. A 5010.65 CALCUL ATION IDENTIFICATION NUMBER ~=- k W 10f494 MZ.(O CT-Motlo t-629R Z.6 J.O. O R W.O. N O. OlVISION G GROUP CALCUL ATION NC. OPTIONAL TASK CODE PAGE i 2 3 WE).D CHECK :(COUT'D) 4 1= U) = L / 0107 (.69) 5
- l s
J-l $ D 'l9/0 701 % 21000 = 0.OGG lu [ 7 J i 8 9 0 l 'O MAX. CALC. WELO O.066
- 4. E y 16T. WELO ( 0. 319-0 ")
o Mm.wEto zeq'o.es coot o.3is" = eveT. weto G o.dizh 13 WELD is ADE UATE. 1 IS 18 17 18 19 E' tt
- ta 24 23 to 27 j
1
== l l 29 l so 3.i ~ ~ se .l ~ 39 40 4i 44 4S 44
3 [ONC $ W tt$ b l L M LN ulN t t NIN u CORPOH A flO N CALCULATION SHEET l A scio :2'
- 6 C ALCULATION IDENTIFICATION NUMBER J.O. O R W.O. NO.
OlVISION & GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE lh-W 194g4 NZ.G H) cf-).un.102. et9 E. 2 2) REF. EAP HATH MODEL
- g 1
e -arenT me en-. - eo, weo mymo 8'AF o l 2 3 4 s G j 3.o$ f.4M[ 2.04t[ l . f.O _. 2,7 9 . 3.0 7 i l +- 9
- .P (YG) o VP I
r '2 2NM =+ (ZG) ) 1 --sig (10s ,3 y l o.119 f y y l' la l 16 .O N2 Ni g ) is l! 19 H I I ~22 23 36 24 4 _ a 'if D '[ 2 n75 e 4 G --o-g,Q g b7 Odd b4 o 30 R. PEFL. SECT lOL\\.' A-A' 33 1r l 36 b) l Nh I 37 38 5' M THE9E. DIVislOH9 WERE AR.2HTPAR.lLV 9ET AS To compt.y WITM THE Hiugnu H ScLT HOLE EDGE (y~ DisTAMCE. A6 ' SPEC 1FIED 04 " As-etittT" EWG.C Pc,,6) d' v>. 3 l "~ @ it mmo HAve esen MoscLeo usiss PPcon ( _ ccHMAuo. Wo smuiricAnT.tufAc4 . ~. 04, 44
l. ~,. m.., 'W }
- L,
3 TONE ",4EBSTE A CNGlNEEntNG CORP 01t AflON - y CALCULATION SHEET !4 ~ 3-C ALCUL ATloft 10ENTIFICAT10N NUW8EA ij 4 iN J.0. 0 A W.O. N O. DIVISION Cr group C ALCUL Afl0N.NO. OPTIONAL TASK CODE PAGEk[# l-q3454' Hz(to ' CT-Mw1o?. etW- ~2 B BAeE R. PER SE< ioM A-A T t ~ GECE ANCHOR BOLTS: a i '3AP' l Coarputer output (Run R54409fA, Join # 50dG Date: 1/_f/,/g) ' RAP' -From 'BAP1' Output CotfPUTER . Smax = tt'2% ' Lb s. (2dSut YS FK0M dNVdLOPd L 0ADis/c5) A ,l FROM '.BAP 2'OU7'Pd7 : 7" max = %24% lbs. (afACT/0N Fd.2CS, M4x @ J7 1 A 1 ) n ^N Tm a x \\ #.3 K j.O .,l I I .Smax 5 y \\ ALL T ~~ . qS.4 u. -h {itt'b h + f.1966 ' h = 0.Bo(p + 4.149 =. O. Hil<.I O 's \\ 49'b2 / ( $141 j n ! carer ruzz arxorxc sTxEssts: (p e.o u.e A # c ) sv=secoc esi e 1se r Foe ss so us r 2.. 1 23 .. s Principal Stresses -37f 6 psi 10.7557 - ZG400 ps/ H = h-elem.Q) 7 gog g (Sig. 1 or Sig. 3 at Mav4== Equivalent Stresses agT) _ psi 10.7557~'2/pdCO_F.5[ r, (Sige - at elen. 44 ) ] i g: so Base
- Place )"i l6'/4"X 1"l MI.,"
0.I. Anchor Belta ("& M2 99Y Eb 0.I. .j ss -l .v.Me. ePscmtso ou euePT. DW6. - out hut pHM 1 3 Qc, AcT.EHei. =(Mip/4..t0 5 =1 G %" l 3, n ERCH TABLE. 7.1. ATTACH. 4-4 ( AucW. FOR.1" $ MlKB W/6 _TA = 8741 lbs. .sA= 4 931. \\bs,. l 3. R. MIN. EDC=E DisT. F.EQ'D. = l'/4" j 3. - ACTuAt Mgu.EME.DisT. = '2" /. o.g. l l " lotu.RE#D. DOLT SPViNG = to" ) l ,-. AcT. Mut. BOLT eFMIRCa.v.. l) S/l(/ 1 7 I ) L 1 - - _ = _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _
1,{aijA i4 .w; ..: k, -:..
- mo.
aeon wO 2>1_ O z k. u~ P 4$m*$ mea}" y 9: g ~
- a..
g>tOCrpd""Oz m* v T H EiI ri
- n '
- ..
~ eEaa \\),. a roc > ** o Z - IUw3>dO2 !E8$.. , o' o =.E o. 2o. 9 j ! e a3O ' o>rnCF>coz 2o' oDM3Z>r e>"g aOOm "pam O M T.v oTr3a* PtgP 1 ,.g." N O 0 I 0 T . 1 Ae E . 1 G R 0 e A O 0 o R F 1 N O N
- M T
I R O - S E T d T / N G 2 ^ A E M)p R S N o E T I
- ~.
P N T t o O . E t. oG ee E M E 0 P J. C R R '/. E .H u T X O c R C E A TD / UE E N PS MU-W e O C 6 E E T 3 R A 1 m Y M E D a a a B p D E E 3 E G R T* ,y .. R A E u. A P N s H E A .o C R N u P a G s. O t I L ~ C E a T P R O G ~ E L A ~. U E P H T o e o 4 C C s I E c 4 F S s A H E. HO F Tu C N 1 ~. A I F il D ~. P es L o o A* TR 6 c mee w TE tS 4 C es a Su uN S s S .o UOg n de RNg E NL o, OE I V o SE 0 RL / 1/ E V/ 0 ,.o 9 Y 8' f-R.a AFr y. REe 3 BRe s I u T L N S M P A .RE-GN A OA ) e Rs 2 P
- l,;
i ,;:ll iip ,lIll;;- l [}
-e STONE._& TiEBSTER ENGINE ERING CORPOP. ATIO N q H fCALCUL ATION LSHEET S. . 4. z _ s. c,
- x. :
" CALCULATION IDENTIFICATION NUMOEA : 'J.O. 0 R W.O. No - OlVISION G GROUP C$(C. NQ. OPTIONAL TASK CODE [PAGE k 1isAs4 1NZ(H)4 CTl 137 lot.92FR. - 28 STRUCTURAL ATT ACHMENT t.0& DING $CHEQULE . i R Err. 2 ' !
- O DA N.P.
' bO h 7'3 STRESS PROS. NO. r 0Y*\\* \\t)S 50 A"D t'5R' SUPPORT NO. '8 4 f NNON FLOOR ELEVATION 79 0 e SUILO!NG : 9 80 M ll ? t Max! Mute A550 LUTE VALUES SUPPORT REACTIONS O LOCAL CR!ENTATION 1 ' 43 -VO!NT LOAO Q OLOBAL'ORIENTAT10N' $,)3 NO. CONDITIONS (*)- FX FY FZ Mx MY MZ l t3 ( LSS ). (LSS) (LES) (PT-LES) (PT-LSS)- (PT-L85)' I 6 302 707B 8144 0 10 O. o ' i .fo t le 57 l l is i i- ~ 20 l l 22 l 33 j j to l 23 l i 21 2. '89 30 31 l '32 33 34 33 se LOAO' LOAD COMS! NATION-PLANT i 3r . CON 0! TION CON 0! TION (*) 3e 1A OL I' 1 DL + THER NORMAL 40 2 DL + THER + SASS (CSET.0CCU) UPSET 3 OL + THER + SRSS (CEE1.0CCU)
- SL UPSET l
88 4,, .,0L,* THER
- CCCE EMERGENCY..
d S DL + THER + SRSS (SSET.CCCF) FAULTED 43 NOTES : 1. C00R0!NATE SYSTEM AND VOINT NUMBER ARE IN0!CATED ON THE ATTACHED SUPPor.T. SKETCH (ES).P D. b es
- 2. LOADS PRov!DEO ARE THE INTERFACE REACTIONS AT THE SUPPORT /
4e STRUCTURAL ATTACHE 4ENT POINTS.
t i.h.' ?m'y$.p' '.*kh '
- r CALCUL^ATION SHEET
- .c.
lE.O " . a,b.. ' tg Q Q 'Y'"- +.... . ~.. 2; o W. 4 y. F, t ' STONE e. CEBOTER ENGINEERING CORPORATION ,... c s &piM -d (e.. A,.T:d,W-W G: 6 d n X. : # N n S h ii M n.b u M M M 3 ) a.s Y [,, ., y s. / 14, C ALCUL ATION IDENTIFICATION NUMBER 'udMM ' W,;.. 3 ; ('X., g," ,. ~. ' - ,n j;.PAGE g [t,7' @ . J.O. O R W.O. N O.
- DIVISION D GROUP.
CALCUL ATION NO. OPTIONAL TASK CODE y,.,. 15454 _ NZ(H) - CT.[ffVjo2.M.FK. wv'P ZB w % W . 4.6 0.. - +' )r',.. % ui;~6.?...(..('. I.,.@M'N. v'J,$1'M.c G,.Qd N $,.P.....,* * - 4,.a.. c.., - .4 2 .. 4 : 3 .., Q -*9. 2 - ., %,' *Qs.. . f.y.. % ' **'%. A **sy;*j,Rt r$7 pp.';*[G/,Q, *,. 7t6 I .s d d. 7 s*,t; ,. y s- , k. :.'... p. " ;3. ;. ! h ,tn g/, s ,.,.. n....., MICROFICHE ?e ~.,s# L.,p#'N,p,;h. ,.,%.,.c. /.r W.. c hr;< a.GX o.:: t." , y ',,, e t; : ' n.<. +M 58 J ...N. fc.,>3.F s M" 3 h e, y;c. m, p.;. n. p v.; } ps i,v y n '.4.~;&'.G.g; ;,W@.n,.v ?. L ; m,g.. : f* ..~,e - %';.,g.. a.. W;.. '...n.% si g - 3&%* ' '. '.L". .,. 3' d:h ;J:s,4'..,,, w.,9.rs
- ,p oq
- w, n
- ;
r i q.9.% M. .', t.~:'YQ s
- s..
r'M'.y.4% ' *:M jbj... Q:, s ~g '- ~. ~ g y The microfiche of the' computer run(s) for this calculatica 'is attached.to ' W ~ .k.h W.the original calculation...i.JA ' - fr..eg..w,p. s 5. ;,7,n.v, <S.,.b,W.pu:D.; A : Y..-p., y.. - n.. w a L. We gu <.' ..Wfd i M i W r .. q.. ... ~,.!; .2 ~.: m : ~.v .s 1 . ' A central fiche file is created in Job Book No. R4.2.1 ...' 4.. e. 4 9 p,,. 8 ,,.{- . wp-..<, M- '. f, ' , @, nl to 4 .. :\\. l.,,,y. ? r.r A.h. ; '.,.'.?. g,., f %. g **W. i e, ., ye, v 3.. .M
- i. %
M..x. 7 t.,,.. iw.. . W./v's,, t,: 12 ".'..'Qs'. M...'/W.. h '.C,7. a'b; '.... L A.. " l9,. [..,.'. 2 '..'.~1, a'W ,1-"* i '.. " 5. _' e i '. *v'. s*i.,. D ,-'.'f' ' g *, t - . l '*: yg s ye.., ' * * '; 5 ; p;'j v -g .*t,.) .
- 4. g. f..' y[,,... * '
/ s v.
- o. s "4,, hn p.
q '.,;~." 1.,'.l .- eg _ e _f l*
- f ^.? :),. l,,
,. D. f. f p,-.?e = .. hl'f ' ' le5
- h
- l y, ' E t, *; *
& ; ?; ) l4 r f l: $.. jQN.:n.,,,h:h,.;* 'kf.e,.l f',N.+':f.. N.,?ln.,n.',h.w,.Q.,Q;y j i
- s. m,.
.. ?:, $ m't 6'l*)'{ *{' [ m,,. 3,...... a.f,. ;tu>< &.. ~. ';.
- N %.~.:. ~...,. r c.m}'.'... w' %.&,.w.h2
. J. .f.;.: Y}y.;.l: Q n fQ'{;*,h
- y f f,..a
.:.4..w p ,a. s:. .-y.., ?s'>$. &...w;. W L <, c\\* M. -.
- f
- J:: % )j.: c %.'.;'rn*>;... n 'l. ? ' A'Kly; n:.-
..~,:/. $Ntjf, f * ' < % ' i::.G':.::;".'r*P 'e cx. ! ' * ?;, m.T.f,,(y J v' v e 5Yb Y ** $ f.,.? l' h i:t ).ht!*h;. W KW' .,g f.,,;.;?.1;.q.s '..t v.7.*' r.-. W. 7m:#; ::. m a.,.._,h,,..'. M 7. 9 W W G W ;'s w w m. ,,g Cf W 4:V>;ap ' ~.&...
- f.,.m, a
- v. s...
- J,,.
, ~ ~.
- {,.,.,%. i. i o s 3s y,.. <
4 ,.J..', e s v. v a ..a 11 -, f,. 3- ~n-- M. .. g4 ,aae i .a i.- s.a .a ..e***+, . :r *. g a_ y f P 'JE N O } g 1 I e 3 + 1 e A wI 4, N
- 9. v A. %.
M.s: ^
- s.
'n q +- I at i D W*- .y +1 A' g e ? .m.A .4,* a ,e ' FILM ENCLOSED-DO NOT BEND i< F.e.a. e.
- j
,f ( p w
- 4
.*) p, ,k. 4 N sr
- j i,
, h' - [ I ' y 6 4 umaa.em a,wearanw animammenarm r.mmmmmm unemen mau uew.. mms, mu amm-ammmm mam... m c s
a: .l ' STONE f. V!ESSTER ENGINEERING CORPOR Attoti; 1
- .,=
i 1 CALCUL ATION JS H EE 7 1 o A sois es. r .p- ' i* - CALCULATION IDENTIFICATION NUMBER .i I .J.O.OR W.O.NO. - OlvlSION O GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE h' - 15454 NZ(ii)? c;r blM 702-61.9R- .ZB1 or 7 l ..l' <"t 2 + N ^3 .n 1 4 .. - -a' s e + 7 j e 1 .j io ATTACIDiENT NO. 1. 13 ' TITLE: DETAILED PIPE SUPPORT ANALYSIS CHECKLIST d 43 .' 3 4 ] ] l$ q 17 9 is ] .a to 23 24 e 2$ 13 1 at l 2. y i so i Si j 32 31 34 3S: 34 37 14 i 40 '40' et .()'. 43 44 g 4$ 46 t '1.
STONE f WEBSTE;] ENGlNEE RING CCRPOR ATIC N - 1 -CALCULATION SHEET i . A 3a, r/h - . C ALCUL ATION IDENTIFICAT10N NUMBER l 't - afia::wtNT Ne.c ^ ' 'u[ J.o. o R w.o. NO. OlvlS10N D GROUP _. CALCUL ATION NO.' OPTIONAL TASK CODE page. A '1.5454 NZ(H) cT-1-07-101-91ER. ZB 1.2_ e l ' DETA! LED PIPE SUPPORT ' ANAL.YSIS CEECKI.!ST
- s
'l 'a j s LA : Acceptable AR :. Acceptable as_ Revised RR = Rework Kequired N/A = Not Applicable a Item Status Remarks-Tunetton Check. A-AR RR-N/A-17 1. Support performs its i. intended function ss 2. Correct relationship between plant north and global direction l !s as, indicated on stress I isometr::s / ~ to frames: A AR RR N/A i w 1. Member sizes and materials 23 agree with drawing ^' 34 (material substitutions 33 noted). 2. Weld sizes, types, and
- ?
lengths agree with '/ 'as drawing. t, so 3. ks-builtframegeometry is equal to or within the envelope of the / designed frame geometry V ss 3. 4. Additional attachment-as 'loadu such as conduits, etc. have been con- / as sidered. v/ is 5. Support stiffness is (W 565 CALC. Nf < 3, oddressed in PSRO. cetic.(*) g /5464-NZ (H) ~ PSED. o32. )l \\ 6. Friction Forces /with W d' proper direction f
- 43 considered 44 4S 4s
y njy&ge. ., n. ) l.
- y3
' _ lT t '~ MpVi gr y"'$"'A,L)C UL'ATIO N ' S H E E Tf
- ' a. ' " * "' ' ' a "" ' *
- a '- " v a
+..v c &. 4. .C ec. ,n g Q U
- isekesua 7
n- .y. i yp , N" ? :
- C ALCULATION 10ENTIFICATION NUM8ER ~
y A f f Ab wtNr %c - d..! }'- J.0.- O R W.O. N0; ' OM5104 0 GROUP - - I ' CALCUL A TION NO. OPTIONAL TASK CODE p3I' ig4$ 4; /
- 473);
e,f.Q$7. Jog,cggp.,'
- Z3 t
- 1. 3_
p '~ It. u status Rema rr.s 't ea 'A >..;AR . RR - N/A s ~ ,a JP.-
- 4%
Ioedl. stresses &.. (M, A y ' 4 ' X, .T an W re pipe ace to - sk , % bea ring, ; cinched' .. y ; 8
- J.(t.,
- y%U-bolt, and pipe l
.4. 4 'haansion'have been- ' ) p r evaluated v. 'e g< j., ' 8. 'Suppert weight self-1exettatton has been. /l evaluated VE 1 is 9. -idput orientation.~of 4 computer model'(if: applicable)'has been, g 4 ' s properly evaluated. f# J (i.e., member and i b; 'S_ angle, etc.). ~ se j, 7
- 10.
Support loadtphave
- J been properly-
,d combined. ~ ?
- go n
3& }}. Trame Clearance eVala- ,t- "' ;[ uaLion-(in unrestrU.nt 33 r direction) considers <1 F' A .ripeaaovements.dde>to ,y, (e adwe ight, - trae rmal,' i 88 and dynamte loads (such a, as 'as seismic / fluid ~< m-3, transtants) w 12. Local' stresses ki e, n %s 6tructured 'd rnernb ses' kan t t keen e,va W T* C 1 4,- g bs, n 33 i gt. . %,5 .;f'<s3 p ~ Sprina Hansers%n f 4 3 m \\ 'yk. 4 > f.l, 33 1. Spring ysze a,nd < O
- s..
8* /= t a s s e riated' component L3-se, ~ sizes agt'ee vitti' i + 3 3. drasies. ' ,s s 2 s 3 3 E i l 7 y'se % 2. Hot.p id qqd c id load i ' sj: and working { built ' loads reflect a3 J d' , )g range of .g gf i spring is cons.$ stent / de n 4s with streprpeport. f: o 44 Spring t.N)pbr meets all { I 'T '3. i 1.CDs req tment limi-1 y -:. tation , g( t p. -~ w&&h,r ~-
[;,_..
- p v
' STONE 6 WERSTE R ENGINEE RING CORPORaflC N + CALCUL ATION SHEET p., ; (' ! j. 4 5014 95 _h C ALCULATION IDEN TIFICATION NUMBER Affacs.it9f.%c,, ,(Dj
- J.C. O R W.O. NO.-
OlVIS ON S GROUP' ' CALCUL ATION No. OPfl0NAL TASK C006 page f 15454 NZ(H) cT-l@7. pt 91gg. ZB l'. 4. 7 4 Item-sc.atui ?esaras. a I 4. Weld size,' type, and- ~' , length agree with s 'l drawing. [ ] 5'. Piping displacements-1: I 's
- (due to deadweight,.
t thermal, seismic, and ~ in fluid transieces, etc) so ' considered. ^ g to 6. 'Variab'ility'of spring y hanger.is within the Is '11815 3, l
- 7.
Support loads have. 1 's been properly com- / se binded. / 8. Swing' angle and . allowable.,are within movesient s ~ '0 1 9. Pipe properly guided ~ g as against lateral move-ments with respeet to trapeze spring hanger. 88
- 10. -
Local' stresses due to ^ as bearing, cinched U-er bolt, and pipe expan-sion.have been evaluated '88 Snubbers / Struts: 31 1: 1. Snubber / strut size / ' agrees with drawing. 33 2. Snubber / strut direction '88 of restraint agrees' [ ,so with drawing. igy. 3. ' Snubber / strut end 3, bracket weld size, type, 3' and length agree with drawing. 49 4 Snubber / strut.seets 411 LCDs requirements and f L .3 limitations. V 5. , Support loads have been as-properly combined. b.m- _m.-m_.
3 3' ' V ' a, stone e neosrtn enaunetnsno'conoccarucn. $.~ CALCUL ATION SHEET
- 1. r-
- f' JA tote m ' -{ p& +
- C ALCUL ATION IDENTWICATION NUMBER '
e \\: at?Acew(Ni so :o b ),, it J.C. O R W.O. NO. OlVISION G GROUP ; .CALCUL Afl0N NO. OPTIONAL TASM CODE p3de L,', 15454?' NZ(H)- CT-H5>17ct41.FR. 2B 13.. Item Status. R ema r r.s Jt s !3 A. ' AR ' RR ' N/A } 4 s V' [p m. 6. Snubber settings refleet 's J ,'as-built' movements from stress' calculation.-in-cluding' travel margins. _ _ ) '7.- Swing angle it within ' /' to N . allowable. V-- is 3, 8. Pipe' movements-(due to de a dwei gh t, t he rma l', seismic, and fluid transients;'etc) 'j S constdered. v le ~ ir 9. Local stresses due' bearing, cieched. -1 l U-bolt,: and. pipe 4xpansion have-fl ! to been evaluated r p. ' Integral Attachments: g w i es 1. . Trunnion / pad /lus size l agrees with drawing. I '8* { ss s-se 2. Trunnion / pad / lug meet, [. [ J -~ ize criteria s ' 3. Veld sizes, types, and j 8' l ' lengths agree with I 4 ' drawing I 30 q 4. Support loads,have f i 3g 3, been properly combined. _/ ] - 2. ' 1 it L . 38 3. Local stress has been / I r 3e properly addressed. - _v j 37 G. . %, a\\lowable stre ss 3. f.c inteyal attae.hment(s) v have - been reduc.e d according fo %c run-P'PE +<mpsre.ture. ~ Base Plates / Richmond Inserts 1. Base plate size and 4s bolt type and size agree ( '4e with drawing. t ~ _..1 u __1__
5 ..t' STONE 2. WEBSTER ENdlNEE 4 SNG COR A04 A riON .3 - CALCUL ATION SHEET - uvio u 4 i CALCULATION IDENTIFICATION NUMBER p[^ artic-=cs: ec. < f 3 ,1,0. o R w.0. NO. OlVISION O GROUP CALCUL ATION NO. OPTIONAL TASK CODE ld 15454 NZ(H) CT-HM 702 C./2.FR. ZB 1.6-
- p3g, t
Item Status Rema n.s 8 3 -A AR RR N/A 2. For base plate designs, s bolt and attacha.er.t locations are within tolerance and minimum edge distance was / . ic - e inaintained. V_ io 3. Richmond inserts and ' threaded rod have is. been evaluated. .is '4 Bolt spacings and embedment lengths are considered in determining bolt allowables. it y-is 5. Bolts separation violation-(EESV) with adjacent supports have been considered as Bolted Joint Connections 24 1. Bolted joint con-nections have been evaluated. se 2. Bolt torque require-3, ments have been evalu-ated 3. Locking devices / 3 58 provided V is s. Calculation Documentation: I 1 ss 1. Support category (nuclear or non-8' nuclear safety-u
- related) is s,
clearly defined _.o. l 2.- Input data / Output data y clearly identified / 4 distributed ~ '~~ O)
- b da 3.
Consistency *between the stress calculation / / support calculation _V I
1 p,p ~ pp.y ,,one e,,ge,r en guaing g n,na can,ana r;cn
- s. e
.,W ' C A LC UL ATION.: S H E E T. 1 r-e . A ggeg gg C ALCUL ATION IDENTIFICAT10N NUM5ER 73 a:!ac-=t97 sc.. A J.0.OR w.0 NO. OlVISION & GROUP _ C ALCUL'A T10 N NO. OPTIONAL TASK C00E i
- pag, 15454 NZ(H)-
CT-l-l%706 MFR. 28
- 1. 7 _
.l '-i Item Status Remarks 3 -A AR -.. N/A RR ~ 4 4.._ ' Consistency between g.. support drawing / support - " m calculation 1 1 5. .. Latest outsta'ading change on upport ,M, incorpo rated _i, si 6. All' items in analysis sectioc'; include proper '8 references and refer-
- i=
-ernees are up to date 7. All acceptable computer 1 is runs are properly Ldocumented on computer if is 108 it 8. Summary of results / l rgh satisfies objectives .V i _y av i 48 23 Reviwer's Evaluation: 4 t] PPoR.T 16 ads &dATE.. 1 1. If 38 f 30 31 38 33 3 i 34 38 '34 37 'Se -39 ao as c 4, 4 ~ 43 44 .gg
- 1. I i
46 ---____m_.___ _.____.___m_
Pf,),, ',) ^ a [M"k'i' ' STONE t. t*!EBSTER ENGINEERING CORF0fi AT10N 'i CALCUL ATION.S HEET 7' .,'
- L. ' ' i.
4 soto es CALCUL ATION 10EN TIFICATION NUW8ER. 'J,0. OM W,0 NO. OtVISION & GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAQ 15454 .NZ(H)- cT-l.lb1 '702 91FE.. ZB' or 3 ' -t -:( s 3 'A' 's .e Y l[ i': e s e,.. so ATTACHMENT No. 2 4 -TITLE:= SUPPORT (S) LOADING
SUMMARY
83 l4 '4 ' a' la l 84 ., r.:, ;- I./ ' IS 19 "T' . to 1 I . 22
- I '
to 2S l 26 [ 27 '30 i i ] 32 33 34 SS l 34 3F '30 c-. 39 } ..4e 4s -46 -:___=2=_--_-----.-_----.
y g y s. u~ &i +' t f 'a i 0 i I I I e s-e. i g i ~. ./ a33m ') 1 l a m OM i '.m/ OE 8"S l O c3 O O O O O O O O O O 0, O o O O O O O O O O o O O O O O q O E N O 'ggpy 2 u.O.e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 3 M aM oOaa% a wN0 g C O O O O O O O O O O O O O O O AN1 EMS 8 H DFd *O E E E E M, Q.. ". 0l E 4 O O O O O ce O O u i ,,g g a. o N o o M. no = O O O O O O O O O O O O O O O O gMm & r. b O O O O O O O O O O O O O r ww e e a H O M
- .O.
O. O. l o.n85a.a%Nc.u w O> O O O O O O O O O O O O O O O uve i-i O.
- n. u ' " " ! 7 "
- />."
5 . ~. o O O O.- O O O O O O ,.e a >= M s p gg O O O O O O O O O O O O O O O O a b. m. O x O. # O. O. O. O. O. O. O. O. O. O. O. O. O. O. u. a m4-m 6 O P* O O O O O O O O O O O O fC O O O s et 4
- 4 A
4 a5Ha e e I mMua O j NO ce M & la i 33$ O M N O M N O e M N e e M Yh M N O O O. O. O. O. O. O. O. O. O. O. O. O. O. O. wwswwww -f =O e a Z O O O O O O O O O O O O O O O c q <g M ag 4 ag <g MMwMMMM U u *E U u u u w i M h u ) ee 9 .4 O O N O O M Bw O. N M M N O. O. O. O. O. O O. O. O. O. O O. sNM e .Q k e e O O O O O O O O O O O o o o O www g g g a S a, e s 88._8 w O N M e O O M O ox O. O. O. O. O. O. O. O. O. O. O. O. O. O. ce a H O O O O O O O O O O O O a.u O. O. O. O. e w =
- b ll; N
O O O O O O O O O O O O O O O O a. e -z 5 j. M C 5 N tt M .5 C Ga e i w u w - r 5 og a u* w M i z o w wz F i O O O O O O O O O c O O O O O O
- o. 53 M
w e ; M w .M a Q > m z= J M o k, ~ e Mew w 0 a zd=4 w e l w.: 3' 1" Z h. Z r mM4M600 w e w >= W q M >- a 2000 M 4 N Q J xw wwa w M w 4 w Z "'" Z o H N s =9 u -8W >= N M w d. c e. m e - 9s e. Y' h.U>uOo% s O O O O O O O O O O O O O O O O w w
- % u M e. > M z g m
wIuJa GMa g p H H H.M.e
- w u u
d M Y % es n Ln wwOwJJM '-* tl. z w H 1M M Sw.w$$ z r N O 1 w o O ur
- u g
2 W wCFM g'J &M z N O O O O O O O O O O O O O O O O -N-D AM M w ms M,, 9i C A Vo ODO m L u 4 .,J. l =g Q ZZL w 'u & M m S o M w(wwww N 4 w e o amwMzz-poOMu>G g u> o O O O O O O O O O O O O O O O 8808s8 8 8' n, ; w M MM NO w HM Z ~ MO g 86 w M .J M e N s. N O a M C .o e e. ce M .e e M t w M M O m we m M N O M F 9 F. .N Q M Mo. e w N W e M e a w M M e e g. e g w O N 4 6 N N 4 N M 9 N 8 8 e a a M 8 4 4 8 4, I a s M o Q si s a o 4x u e* I' a .a y b O' >= >* 2 2" I N M a a MO ME Ns. e - M. N. > e e M e M .o O .e ce e m et 42 4 .e. . O . =..
- Euo, M
O O - a. W M, .m. 5 Wzw-wxk ,s M O < - o. _m M M N .M.e M O M sMx >. o N M N M M O. M O, . a 5-mww wCM o -o e. ='>O. w w a ~wBw ZMzH$,d J o s ..s n .M N O e - M \\JF M 4 W et N M M M N wM zJ3 WN
- oZs M
4( et et ') N N N N N N u o H =22 T.J O 3%oa QxO u M, s H s MO M
- 1 N K W G w w w.,...e,-_-
.u p a- - x x x x x.. x 0 0-WMz-- 00 W W\\54Mo%% f' u u .u. W w w w .w W e-a M o $ =. J ./ J J J v. O ow
- e z a a a a a w
w. w w w NO reMaM mw }4 W W W J,m O 8 g ~W z z z - is 8 8 ~ O 8 88 W W W W M oc ...m o z e M --n a - u< 9) o M e { l'a d b O O O G D C 9 6 9 0 0-O ' T @. O f:
^~% l - nwen u u 1 u - u 0 u u 0 u u 4. 0 u u 5414u u 804 u uu F/95u . u 044Ru 2 u R u 4/.. u. 5 u 44OOuO2 u NHuN3u EE u - u GTBNuH2 u AAOUuR0 u uA7 u ,PDJR u H '- u + u .7 u ~ uT3 u uR1 u sO - u nUTu uP1 u = P - u 479 aSCu 0 0 0 1' 23457 m u u5 am - - - 222222 EEE - - - - - - SSSEEEEEE AAASSSSSS CCCAAAAAA ' CCCCCC 7 1 45 - - - E V EE0 E OD0 COH R I H. I 2 I 3 0 S 1 P T 5 N t 7 O 5 I 1 z T H R ( P A P O N F. P A R 4 C G O 5 Y O E C 4 R L D 5 A G 1 R 0 . pN ER1 H G TE : E c jI .R E S HTTS 3 E T IN S / E S T HIT - Z N Y R HS - R EH E I S O F.F T A H G P VV/T N Y P C. E I Tt E A U EGY R S DET' ZEZE4 P DINYSYSR E' S E 0 R O X S. X S. E 44GIA A H T P S T I /0ETECEDT B N P 3lTCBTST uNE0FLSLF E E 4 R + F0 H i 2TI.II/I/ I W l I TLTDETET t A AC BFSFU E T DMUZO S H ' O N N TRR o S SI O O E LOTYSSSSX dN T C L FNS+BRBRA S T XASASH T S I 234 O VS E T 000 I S D E P ZI t
- t T
) TL H R C FNNY e RRRX r'FF ( O EEEATITTR C HHi EEEEEE Z t G TTTS8SSSH T M uuS0SSST N .T 46 52-4. SSS TTT 5 HHI R VVM 1 HHi F cM 4 CCC NNN nmun AAA u u Lt u u + + + ,u u ,u u NNN Ao u u AAA CT 0 u Hu N PPP 1 ,8 u E u O XXX u5M u I EEE 1 - 1 - L u0 S u T P LLLXXXXXX EO5 .u8R u . I AAAEEEEEE H 0 .u u t t t V u. u R t iiLLLLLL E8 uONu C RRRFF F F FF ,HL0 uNO u S EEE0DDpOD i. S u I u E HHi 00OoO0 t t t t .u T T u D TTTHiHt t I p ,,PR E54 ,u N C u P03 uI 1 u 1 uOuu E 479123;57 I uPF u S 222222 UE4 u n A HV8 m*uu ,C ^, i' ^ g' .F 1 ) 1 ) s ) ) ) p y Y
o.. ............... w..... e ; ~ v n. i v., i e-liu W.p :,. CALCULATION SHEET y.. .#t 1 QU.. ' a toto rt - e i Q i-C ALCUL AT10N IDEN TIFICATl0N NUM8ER ,i $m-J.0. 0 R W.O. N o, .. OlVISION C. GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE 15454-NZ(H)- CT4-ID7 lOE-h89R 2B-or 2-1 ,s ) L -2 j. e .. ) 1, 4 l 4 .s i !~ .i s ? -. I a -f
- s so ATTACHMENT NO.
3 se i TITLE: COMPUTER RUNS INPUT is ' 14 l$ l '16 ir i, a to 21 i 42 23 2 i 25 te SF 1 , : se I 29 30 31 I 32 .33 34 '35 l 3, 3e 39 h 40 '46 .4 43 --~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Y %J 1
( b 8 K GU A T 2 NO UJ R 2 0 1 4 2 1 7 0 1 5 8 E 3 M I g T M E E E 1 MI S b 3y) - N 'f O 1 f T s I. 4 4 AEV 4 + 1 t 1 8 ) 5 8 H R O 2 Y E ( C 0 6 Y F L 0 F t Z 0 N 0 2 0 46 V A a O 3 0 3 5 1 X 5Z 8 1 1 X F 4-3 1 S F 5R 4 E 5 0 T 5 5 7 '1 0 0 9 ~5 3 1 4 0 42 s B Z Z 6H t 2 2 Z M P a M cA A R 3 0 L 2 3 3 I 5 0 A'0 2 2 1 0 5 3 5 0 c7 'I 4 0 Y 4. Y M Z 3 'R 3 a U o 3 52 M O T. m T d 3 t S T m A a 55 6 S ?. a ( 2 z 4 6 7 E Os 3 A 2 1 7 5 C s 1S x 2 u. R 5 2 0 T a O U 5 3A 2 3 2 Um 1RNB 2 + 7 5E 5 3 P P m - EO N H 2 1 4 N a s TIT d 2 1 S ) 0. 06 X X -S E s cSTr 4 2 DM uM I n EC 1 4 5 60. A.A S E e LET 2 1 O 0 O U. I Y Hm HLSN ) 1 57T25 24 5 L9L9 't T a t A E 1 2 7 7 z B. T R 0. 0 U 0 2 A n 66N 1 8 1 D0u0 M F a N AH
- u. 0 0 C7 t7 TY 1
~4 Om - R C1ET1 4 2 N T uF ua ) R'l
- i. Z e
+ EA 0E 1Ou- - 't Z T m ) T
- 5. U. O rF P
e J T A I Na M A S 1S a55 A SE I m L AS sR a 1 5N F1 r1 NH R m ATP ERzP E >15 AS 11 42 P a .S NO a 1 1T E m t nKH 1 eEE 5
- 3. e M s. YLMnCC M yMV9COvVV nAA aAM M
I Vm MiA M uE N KMt ME MNL u O l.;MOUuOM NmM u B Ci Oa NOLHA xOOuODUAL nMMOLL LLOut ON '..,a E C s AC TKeBC ACYTLA7PPCT .c A7AC MRCM .,,,=,..=,nnn ,m3 m,, m n. =.. 3 . [.. . a. 9 O g g 9 s i
$ TONE f. WE857ER ENGINEERING CORPOR ATION 4 e d.*,,., . CALCULATION SHEET I... f in. C ALCUL ATION IDEN TIFICATION NUMBER L*1 /~'i J.o. O n w.0. NO. OtVISION & GROUP , C ALCUL ATION NO. OPTIONAL TASK CODE PAGE ' V. h -15454-NZ(H) (THbN02 61.912. .ZB
- Or S.-
1 e5 p. l 2 l 3 r S 8 e 4 ATTACHMENT NO., io TITLE: A6-BUILT IMFcRHATiou FOR *WIWd AMLti. i It la 14 t$ la IF 18 89 to 24 j as as If as 2e l 30 38 33 33 34 38 36 37 34 i. 39 40 di e et O en . k 44 45 44 s
,i..( . :. s '
- b..,,,
y At f." i TEXAS UTILITIES GENERATING COMPANY. l : ' r, o. sox tma. Ct.KN Ro3E. TEXA3 tm3 l,m
- CPPA - 49,,270 o
7ebruary 26, 1986 liG{Li, MA31 i S*L E.731. 4 - Stone & Webster Engineering Corp. 250 West 34th Street 1 Penn'. Plaza' I, ./ New York, N.Y.10119 ~ ATTN: 1.P. Klause -(- i COMANCHE PEAK STEAM ELECTRIC STATION 1 ADDITIONAL INFORMATION FOR AS-BUILT j STRESS PROBLEM 1-032
Dear Mr. Klause:
Please find attache'd the following Pipe Support drawings whose Strue, Snubber or Spring orietation differed from the' design by mor than I 2 degrees but was not greater than 5 degrees. This information is 3 furnished for your review to assure that the support will not bind during operation and remain'within the cone of accion. BRH CT-1-013-007-322K 'Rev. S b "; BRH CT-1-013-012-S32K Rev. 5 ' BRE CT-1-013-017-532K Rev. 1 ' BRE CT-1-013-023-S42K Rev. 2 " 8
- ~3 BRH CT-1-017-704-S251 Rev. 1 v BRE Cr-1-137-701-S25R Rev. 1 #
BEH CT-1-137-702-S251 Rev.'l # - l If you have any questions concerning this transmittal, please advise. l Very truly yours, e l D John C. Finneran, Jr. Project Pipe Support Engineer g, JCF:JJR:JHB 'JJG:djk [nzSsEE CAL.c.# 15454.N E(H) CT* O lA) As-Built File (IL,lA) 7CE *M@~2 6 REV.NO. I R. Wrucke ('1L) ATTACHMENT # 4 SH41 p) %j-1 i i A DIVISIOS OF TEX 45 L'TILITIES ELECTRIC Cout 4NI' l l 1 t_______.______. I
O {. ~ ~ x g5. P ~ $ :d [ 3,d 3 L - Dv i - ~* c l~ N. e f ,7 -r D 4 ,Nd- = r ,..e N n t. r I c. nUm.*~C.42 Cf' n
- s., i,
} m(A o r ,gN. T e t .t c O s ,g ~ a el - s 3 r 7 I P e. e M T f f r o -( m.,, w s i ms R nC vm q m V s. s t rM b fUe>s= e C R S "c A c t i a r r A E 'rJ u_. ' MC wt e f t t. t f " ~ i D "w [L e n n se, e a- .B - [( \\* , M v, s d K r s D s a .rV , o )e t r
- or1 p
A ,a t
- e I
o$* ir P A s, E t. x o e / I A 5' mi u c w f M s AA2 c* .a n e-twt , r /,_ L Cg
- s. t.. A.
,rb r, G n, '-- z,vS.a r ,x f w I i s-e a rP R c Anio - c C Me E "m r[Ewn ^ w; } ~ ( s e mI e u1tr r , Evc,. v T c, e r-r Ts e 4 A r s A w ~ S' a M 4rf x o 5 C% a .o [t n.'t L o I et O 3i Ms' W t .n c .A n ,.J e Ny r e "I s t^* e _v ' A ,pf a s sCn, Ja - ^ k g e t -e 5n ~ u. 7 4 8 r u', I t s C s S i \\ r o n f Gt e i em ,Ie,i .e c . ' __I o s n sf J U= 4 U s a wer t o s L n J I 0 t p
- c. r *Lc G
r u ' 4s ' 3 s - - A; Ce V" p uos l c o f s a r i i' o '- ,v.a A m e 1 c N c > % 4, ,i e-tQ E - , nam r t 8 y I l ,c v 9 n R n ** aE a Dl l'- Lt JTy tA n TMQe grarl E l $} L s b r r ss ~ E t D i a ]. 1 1,Q' - f , I'wy w h-1 T e t 1 l yI ~ $r*.* h 1 mM N R t.l t E vA Ct D s S c 0 G& [ w'~x - )7 M 1 s. 'yl e
- ~~ & ~ s & - (M,,,aDv.
t o s 5^ l A 0 tn vat. n.& k-o, o t N = e< f E .", M$'O c. s V n y Q, i R
- 6 g"
5" & ~, T, %- e os r 8 i, n ) ~ n , e,,,s R r .e s g
- f%,
re w O ~ .'L *;L ge. s s o r n 3 s r e fem o sB r,, gv. x G" em 4 F e t . a. 3 i,,e-g-w ', p~*4 c m&. nr o d,i. n 3 >cjd1 o nq m*.fe r,,j a r* e ~ w Js r c. r i na t e o ~ ot L S pe g .i, - d. E C. d T-7 n? E r E*n 3 a ev i c r' a CS t. sst==Em I t t E f V s o7n f. w*== = f E C c R o ~ ve Q.U P n I O [li y - i, g n_O .r-WE E [ Zl o L
- .'s
I l s a
- 3.,
c / i S l j R o r - Jya.~ D s kr I l l ? e S r S e .1 I 1 2 o )6 Y 8u.n t n L s m .t 7 1 2 f 0 t i A ) 1' Ga. u c, 7 T,a. p1M a a i ^ u - Q N } 3 (s ll t 1 m r~ A 1( av 2".1}3 M 3U- }, T - _E .B "l _.. a - - &}C Ey' E [S ~ / a~ x(/, a ta L . c A \\ " a ~ "
- t t
f o ' *- - B T% -g A'
- }'
EO SR UP L l l ,ll il ,l'
l c/ .s> um c ..., m I go. O.I Pmet b Cr M vM$4/t gp[ t.3pM J h Cr-MVMf>6R. = m i.e. s em l CI-I -l*J7=10l=i ttE L 81 - 3 3 3p
- IC l-fl(e-c38 - #43 R flu /W -!!4 Jsl.1At /
..= _t -l-!14-4fB C712 ilW;isrtc' . C P-i-131 -701-firA 1' 6)- 23 r t. 4 IC oo1 - etf-A4M 3DJE g7 s g g] m -t-oos - soo - e r tM l tA nu rat.,41 3 _.S1 1-048-ool-h3R alim 87-s% n rtA lnu r9s y, 4s.-1-o3 - em - e7t ic rc - i -ina - oon -c h14 dFAism 14r 19i t-or Y-od : rd-ntif 'culi d /er-,9 r c... MC -I-os - o f t -c's.d 4&sM s st 3f,r _ gg,, ), g g t, 0, g g. (Tt f 6 3 q ct -I-0I4-oc 4-Ave
- e. l.ru Y al W;
. M S - l = 604 =005 =$1tst ) 4 (fa tT) e' 4s'-I-80%, est cosit _ t t11t 7 _CC -I ~_00 -On-333 R 4f.M M M <!/,-94_J't i lc 1.19 oto 4 4 3 8 1'[$ r _cc -, - oss-m-8 5 3 R d4'w ' n! m - i-m co, 'em is s mm St - I 0 to -00l-AAsk 4C M 6Kh id - r3I uy !Z-I-No -06&~Cs1)< t% b Ac.,qa n . M 0 0 I -00E-3710 @'on if( los - I 04 W JN -t 4.44 < l3, 33 R I ItB A9.h I l k -l a04A ~0ct-AM A tW;)W 'M ies /U . $l M-041 -CM-A33A s3 A tst md alo. 6 8C 11f -764 -Ek3R 'I A lo t- _ e 31 -11o - A hit (8 m t.-io, aa M - I - 0 0 3 - o os.. J t tst,,a,d6 ' a _ c 1 3 4 '- n of, - 1.,i s a 55 's e (., el{ MM-)-C68-cosofsz,;c ngh,,) [ .r et 1H -701-AI.11C 58 to L R l ?2 - I a 2,39 - oo, -A4td see fi341. /; t? ~ E ~ 40.1 - one $ 1 sll ntit).Is w f/ lok.13 A/ 111 - f li r! lil.J - 0 1 8 -i A - S k 3 V l *e - 2.- oot oo3 -A 3stt grN -fr
- e. - f - e43 o/T - A44K ; Hlit (
'N /> ti.t A ,$W = J-l 't 't -701-14111 '7 c_ lig - 12.0.r 'C otS -7 0 /. An R.l) 3_,ypt I'ID
- I -I3 E
~1tf4 d 'D R '70 1 if - l'L.0 i'A M
- I - O% -na(2 trfiMthy-tiod f
u .1 A - # -e?9 en-c.fsdM.t,s# dr , g (, //ftj i s a M ft " I - 2.3f.c67-M4/# 3 /sk'mju 4: i 4 - f - OM:=0%.Iht(JawA Ined_G ? " l "Ll C 'aol4. =cN( _8.g G d/ I ?.i - IM s l Oc. * / m M4 ~o/7 -C33P .o p 3 C
- I a c oG -o t h-A.anM3 :3 dis.4 e
a ? IL{~31 -o sa 0 - o J. 97@ht iTI A I M - f '3 44 do4-c D./S) sec.c' 2c l29'-ntst.-w u-r - um - a,-m?mpa,
- . u a.-vs - n e n -e y n
In - it Iss - oa r v._ N cNE M - I-o t*1 - o n I -%Wn ua. l'.9 - t ~ oc9-109-A4%in : sr nyt it,n - t v q Oc -l-o s1 ott hd/4o e s i c,.u u. _v-l-oog -oe, Ad riu [.lu m s: 19 -I- 004 ~ oos-tssal idt v&u G u 1;T-l =cas -eni -hti nss-ukd te - I - ee n - oz.s M &LG,. n;.:. 7- ) ~cos = cA -krLa r L.-nk ~ _4 l
- 40. a r l oc,A - A d,; y,- sjg AtA W-I- 0 it-oc9-M3,1 II. A -> c,. no
.n. .06 - I - 10~i -00%-G L% 0 TT' l m y j-M-l- 08 5 - O f s-c41.R. /t, zo .:.7 -^
_._-_.._A
m,m A' f .l? lW-m J. u 3, O', i' ./ '5 ..i$NfN Y f/0/$ llo , i NJ - = .l CC- /- }//d oJ8 -f #fg /~ 0 dfd f A. /
- e. o r
^ ^ - - - C C'-/ /.zp.<//G C7EM j,~ 6 3 f 6 s:ff -/ ec3 - 00?. C72K / - 00.5 ' A, ' o c -i /- 007 MlEb ' 41 - /'"I col - 0/3 ~ C72 K } - f J~ ~ /,/oe: co8 c S2K
- / - o/d
/, [o j 1 Sr - / , o3/ ~ 704 ~ 432sf /-057 8 4.-/ $ - / - 003 '- cop ' - C 72 K / - 0 0 'S g, o - 4 'c - / - /S*y -o/o - S 43 (. / - a C3 C A.o A ~ d c - / - 2]p - c a 7 - C 5'3.< /- e.5~5 8 A. o. f7 - / - /20 ^ 005 dS2d /- O/d d,0 4 <t l C// - / -24f - O/3 - SJ34 /-Ala77 X, / .y C. C ~ /- of/8 - 00f
- 335
/ D d/ 6 A. / j g5 - / - c y] ~ - 02 4 /93]g /- 0 C4 8 /.a Pfocr$3 pres 7<D /// - / oo8 - m - S2zJ i g// - / - 008 ob8 -322< W4erf.D c s / - 2 37 - oo7 - 44tt < /~oy.7 4 4o lj i 1 C 7 - /- - ee 8 - o/o -sty / 03/ A, o j i C 00 7 - w3 - 433 K / 0 4/,6 A,o 1 i CC -/ - 0/f 3 -o/S* if41A /. oC2 8 pu ,P4Dc d*/J j 1 \\=;' .CC-.J. -oz$ ~ 70/ - d)) g / 04/ 4 ,<. / \\ l I t-1 i F/S -/ - oo z - col - c 72g / c o z. /g, z, d$ - / - o 79 -o 3d-c4z/( t - o t,43,7
- 4. o
\\ /TS - /. o2 7 os' ~- 5ff (' /- oso a /d Fxoc M S 'd c - / - 23d -o/7 -cSJ A przerso o \\ l. ^ ^ ^ ^ ^ -M._________
s- '~ ._--___.k_.___.______..__,_.__________ ] i 7 l .a a,, !?;, .p \\ v. e . (. i -) -i .s. /13- /. 3Yu-O #f,b. c 5 2 /( ' /-- 077 d,' o ' b ~ sys-f, ->SD oil 7 L-crz K : /- o 77' . /, e ' \\ l SCo ) 7 ms '. / ~ o/7-so./ . S tof:. /.- /ro pr M. Elect. H G 6. !y%. -l 4 en r* " 1' ~.. .f ~Cc ~/ - o s 7-o.2/ - y 334 / - o.4/ c
- f. /
i ' A,c - / -.~oo se cos. f1.5 A t
- /- on e in,Pxoce.s r
) a ^ c - / '408 - off Jff I /- o 62 A - /a. /4 cccff. f c).' / - of2;-- oo y / 23g ~ peseres /// - / !
- oos - o/t' -c4z g.
pegg rez>. e7*-/ - /3.7.- 70/ -? S 2 SW - /- 0 32 A. / b- ) l C7';- / - /3 7 - 70 2. J2 S*K. /- o 3 t- .<. / ) o CC 2 oo7-o.2r. 44/J,g. 2 -oc2 b. J'. o ) q';;; 4*c '. / - 04r, oo /. Sygg 7 -- og/ c_ g,/ 1 a NS - / - oo 3 - of 3 - e 72 x - O d'z er G* hS -/.. oos - ooz - S724 Mzstro c c - / - orp. cea - A 33 /C /-sco g, / .4 MS-/ - oca oor - s'7z A p ete72rb .j ~ i ' dcl. / - sze -c yg -SJ3 g Pe M-D ) Cc -/'-02.8 - 039 - SJyg pererr.o j i cc -/ - 0 2 o ' -co/ .413 < .o r s er6*A i .d) / -M/ - oos~ - 372,{' / 6of A. / J cc - / - /34. yoes -E4'3x /- Ns'2.4 /C. / ' cc - / og/ -7/o -AC3,f' /-od.e G A. o ) <*c '- / - /37 - 764 - dd34 /- /r7 c
- g. o m.
c'c./ -/ttgt 7o7 -A/JK /- /SBC X. 3 -_m_ma ,_,g e s p,
n f- ..m, 1;l:;.. ,. n ! W 34tg~ a,J.. ., ' ' # ', ' ' q i f4' m e,',,,, 2 cy - e f t. (., , l 1 d' ',~ ..u :- ... g s - .,... m jj b ' ' i., i y' sw ? /;-/32. - rot. 7 ssf 1-6 4 8,>'
- y, o
1 l, 0 itu /: /32-7s3;- yz u / -oG 8 y g,o i. j'L -c $ ;-i.. - e ss- :oW c4/ K J-o v/ X. I
- Y]
l.tr. y l f( ll. Ef8
== 0/f, ' - C_ $~3f l'. O $*j~ C l (- Q .l l:: \\1 [, z.12.s - s/ - os~8f of j. 7 v _h l; Zjg . '$ f OS $8- - O l' ,I [, i ~ cc-2J.c68 7ey' .,445&' .pd26~7& /) o h, c 7', / ~ ~ ' o08 - 60 7, - $ 2 7 /< / - 0 3/. /, 0 li V 4 ' j' i _ e. r.-/ ; cos. : ~c o s $ e tx /-o3/ ' K, 'o 1 b' fz [ e f / - oof - oo c szzk . /. 'o rt r.1 L 433< /- cG/ C-f, z C C - / - os 7 - cc (, / k l'. ,f e l'd ' c(; / - /o ~7 -' oo g - gzyg /- o62 D ' g '. l a. ) .. i ;, 5 s; L h' I i ] ,t-I h 'te e 8 h
{:T- > ;., o ;, 7 7 ,y-3 f! js.( -'*Sk ) o n-a>:,,, .f I' ,. fy i'U' y' f k l % s eu ind6kg
- A/21/t7 t
g, l Tavi A.I Tera.o N k C-i[.. I d 2 ~/r.flast Zwge Twsc [ J s o mioM.Renten 72< Elec&k. Lld&%siwi swee l $oW //coK4.) "YEmpyiuc ^ G EckG E iY C'f 7^EL.ep y M ) 1 9 1 i -i 7 t '.s ~ - w
3 .i,\\ ' A' - ** sess~a u+an_ ns,gsac r y $sp% ben 2/ Ff a 7..C chw3 Hitt,if3-)- Nam e- _ ._ A+Eiherba n sa n uc 4 hW&b $ [/f h 3 eA A Ali 3 Swec b[ Ev dhase swee Q; b@hD 0RcHz;A T &l E u c-rAj o Mso OsssW swee h s
- ra v %
ra sw, e i.5 L4 3id&L soec 'i b lb Geeras A4c;t Te s B,c /Jx2<Af TEZEpya6' frez ~rcace .. n a/%wa bAu,ro (AALZd470U {$5 ssocMTr5 l' kN//eq /t/arveay To stec f,A:. ' 2 Q b-T rose-97-M4 4 i A1 i . N,,* [ l l I:.
c Ap Mh \\9 4 a 1 'ASME CODE. STRESS INTENSIFICATION FACTORS FOR COMANCHE PEAK STEAM ELECTRIC STATION, UNITS 1 AND 2 S. E. Moore .I 1 1. ' INTRODUCTION The official Code-of-Record.for the piping stress analysis effort.being performed by the Stone and Webster Engineering Corporation (SWEC) for Comanche .) Peak, Units 1 and 2, is the ASME Code,1 1974 edition including the Summer'1974 J Addenda.* That edition of the ASME Code contains a complete set-of rules for l the design stress analysis of ASME Class 2 and-3 nuclear power plant piping in Articles NC 600andND-36dO,respectively. Further, those rules include a set of design' criteria statement.s'(equations) written in terms of nominal stresses. stress intensificationtfactors (SIFs) and stress limits. The intent'of the ' criteria statements is that the conservative combination of internal pressure stresses, cr'oss-section moment stresses, and thermal stresses represented by the left-hand side of the equations will not be greater than the allowable stress limits on the right-hand side. Since 1974, the design criteria equations, including the ASME Code re-qtrired SIFs, of Articles NC-3600 and ND-3600 have been the same for Class 2 and Class 3 piping. However, over the years a number of changes in the design rules and SIFs have been adopted by the ASME Code Committee and published in later editions and addenda to the Code. Some of the revisions have been more restrictive and some have been less restrictive than the Comanche Peak 1974 Code-of-Record. Application of a specific change must, thereTore, be justi-i fled and acceptable to the enforcement authorities having jurisdiction at the i
- The terms ASME Code, ASME-III, or Code as used herein refer to Section III of the ASME Boiler and Peassure Vessel Code, Ref. 1.
Specific editions of the Code and the relevant Addenda are identified by date, enclosed in brackets, e.g., [1974-S74). Sections, Articles, Subarticles, Paragraphs, and Subpara-graphs are identified according to the Code numbering system, e.g., Article 1 L. _ _ _ _ _ _. _. _ _ _.. _ ~ _ _ _. _ _
ve-. pis S. r; p W< I E. .l A' .The: purpose of this' study is to investigate the accepta - L ' nuclear plant' site. l-L. bility of using SIFs from' Subparagraphs NC/ND-3673.2(b) of the 1983 ASME Code ~ it ' edition'[1983-W84].in the Stone.and Webster, Comanche. Peak,l piping stress 2' l analysis effort or to provide' suitable alternatives for-the following 1'tems 'in-conformance wit'h the Code-of-Record' provision'of Subarticle NA-1140, 1.~ Branch Connections,
- 2.. Girth Buttweld (mismatch formulation),
.3. Circumferential Fillet Welded or. Socket Welded-Joints, -i Subarticle NA-1140 [1974-S74] reads as follows: , ]< '"NA-1140 Effective Dates of Code Editions,-Addenda, and Cases. i .(a) Code' Editions become mandatory on July-1 of the publication .l year printed on the cover. Addenda may.be used on or after the .date of-issue and'become mandatory six months after the date of . issue. (f). Code Editions, Addenda, and Cases which have not become manda-tory on the contract date for a component.may be used-by mutual consent of the Owner or his agent and Manufacturer or Installer on o'r after the dates permitted by (a) through (d) above.. It is per-mitted to use specific provisions within an Edition or Addenda pro-i vided that all related requirements are met. (g) Caution is advised when using Addenda or Cases that are less restrictive than former requirements without having assurance that they are acceptable to the enforcement authorities having jurisdic-tion at the nuclear plant site. (h)..." Figures 1 to 3 show the speciff c SIFs under consideration with the appro-priate notes and sketches as they were given in 1974. Figure's 4 to 6 show corresponding SIFs, notes, and sketches from (1983-W84]..The current SIFs, l notes, and sketches [1986-S86] are identical to those in Figs. 4-6, where 1 we have identified the publicaton dates of the latesc rule change in the margin. i i j
= t t i j, ;f. d s 'M, y;; ' ~ 4 m ,Each j Note (11), for' example.was added in the Summer 1983 Addenda, i.e..'S83. 'i g. 'of these changes plus anycrelated material,-such'as fabrication requirements, 1 1 ithat may have;an' impact on the. acceptability of the, current SIFs for use with y the 1974.' design basis 1s discussed in~the following sections. Our recommenda- ^ f tions'are summarized in Sect 6. .g. i l1 'l 2. DESIGN BASIS FOR CLASS-2 AND 3 PIPING p 1 2.1 Design Stress Analysis Criteria 'l 1 Prior to 1974 nuclear Class 2 and Class 3 piping'was designed according to -l ] the rulesof Section B31.1 of the USA Standard Code for Pressure Piping.3 The-
- 4
-only--loads other.than. internal pressure that-were evaluated were the bending. .] i moments obtained from a piping system flexibility analysis for dead weight ~ r, 'and thermal expansion. The acceptance criteria were based on maximum stress j theory and the fatigue. correlations and i factors (SIFs) developed 1by Msrkl,4-6 j 0 Marki and George,7 and Rodabaugh and George in the late'1940s and 1950s. Nuclear power piping was first treated' differently'from industria1Jpower piping when Section B31.7 of the USA Standard Code for Pressure Piping was-published in 1969. That code gave. design rules for three different nuclear piping safety classes,-with the rules for Class 1 being the most stringent. The design rules for Class 1 piping were patterned after the design rules for Class 1. nuclear vessels with one important and fundamental difference. A simpli-fied method of design stress analysis consisting of very simple design criteria 3 I equations, written in terms of nominal stresses and leading coefficient-multi-l pliers called stress-indices, was introduced. These stress indices are.different 1 from, but similar in nature to, the SIFs developed by Mark 1~for industrial piping. ' The design rules in B31.7 for Class 2 and Class 3 piping were pattorned af ter c ~4 YA=..- _ .-..LL.._
- k l
l ) " s ,,a the B31.1 industrial. piping code. In fact, for the design stress analysis requirements, the B31.7 code simply refers to B31.1. j In [1971,-S71] the ASME Code extended its covera'ge to include nuclear piping j by simply incorporating the B31.7 rules for Class 1 piping and the B31.1-1967 rules for Class 2 and 3 piping. In [1974-S74), however, a complete new set of l 1 design criteria equations was introduced for the required design stress analy-sis of Class 2 and Class 3 piping. This new stress analysis procedure was a )i j hybred between the B31.7 Class 1 analysis and the B31.1 Class 2 analys2s of the \\ 1971 Code. Subsequent changes in the design analysis rules for Class 2 and 3 piping have retained this dual nature. Although the Code makes some distinctions between Class 2 and Class 3 piping, the design basis stress analysis require-ments for the two Classes have been identical since (1971-S71]. We shall, therefore, refer only to the Class 2 rules hereinafter. One particularly important relation between the Class 1 and Class 2 design stress analysis criteria is the following: 1 - 1/2 C K 2 1.0, 22 (1) where i is the Class 2 SIFs, and C and K are the Class 1 " primary plus secon-2 2 dary" and " peak" stress indices for piping system moments, respectively. Although this relationship was used by the writers of B31.7 (see Foreword to B31.7, Ref. 9) and has been used extensively in later ASME Code rule stress analysis developments, it was not formally incorporated into the Code until [1977-S77],NC-3673.2(b). The lower limit of i a 1.0 was added in (1983-S84]. It is important to realize, however, that Eq. (1) has been a valid relationship i since before 1969 when the Class 1 simplified analysis method was introduced, if I h i .1 l 't !ll!
j y h' 't a ,j H v w . Rules for the design'and construction' of Class 2 nuclear piping are given a i .in srticle'NC-3600,'in Subarticles NC-3640'and NC-3650. SIFs are used specif- , i.S... 1 ically in the design criteria equations that must be satisfied at every point ,. l in the piping 1 system by a suitable stress analysis. In 1974 those equations m ,were given in' Paragraph NC-3652 as follows '(usingLthe Code nomenclature and i ~ >f numb'ering): .NC-3652.1 Sustained' Loads' ~ PD '0.751 M. 'SSL " 4 e z + $ 1.0 S (8) h n - I 4 NC-3652.2 Occasional' Loads q +0.751[M4M .P 'D B (g !:1.1.2 S (9) y -S gt 4 z.j g. n. ,6 NC-3652.3 ThermaliExpansion ) i' M Ib (10) d A, x Z and; J +:0.751 +i s (Sh*8)' - ( 1) 'S = TE A .l n where (i)~is a unique stress intensification factor, SIF, for each of the dif-ferent' types of piping products and welds that make.up a piping system. SIFs for commonly used products and welds are specified in Subparagraph NC-3673.2. -The SIFs under consideration in this report are given herein in Figs. 1 and 4 ) l (See the Code for nomenclature definitions.) The' intent.of Code.Eqs -(8)-(11) is that the conservative combination of j ~ pressure stresses (P terms) and cross-section moment stresses (M, M, and M A B C j i-i I,. N -a.- .x . -. - - - - + - - - - - - - - - - - - - - - -
e I 4, terms) represented by the left-hand side of the equations will not be greater g, than the stress limits given on the right-hand. side in terms of the allowable ~' stress S f r steady state and occasional loads and'the allowable stress range h SA f r cyclic loads. Equations (8) and.(9) are for protection against plastic limit-load collapse or rupture from primary loads. Equations (10) and (11) are for. protection against large deformations and fatigue failure from cyclic loads. In [1974-W76], the Code added the concept of Service Level limits to the i occasional load cateogry, Eq. (9), in' recognition of the fact that more liberal I allowable stresses could be tolerated without unacceptable damage - depending ~ q on the load source and post incident inspection and repair. In essence, the right-hand limit of Eq. (9) was multipled by a factor that depended on the severity classification of the postulated incident loading, The four Service 4 Levels and corresponding stress limits are shown below, i 4 Service Level Stress Limit Design /A (nromal) 1.0 Sh B (upset) 1.2 Sh C (emergency) 1.8 Sh D (faulted) 2.0 Sh It is our understanding that the [1974-W76] Service Level stress limits have been specifically approved for use in the Comanche Peak piping stress analysis. The Class 2 piping design bases remained unchanged unti1* [1980-W81] when l the Code Committee made a major change in the stress evaluation criterion for primary loads based on studies by Rodabaugh and Moore.II'I Equations (8) and (9), written in terms of the fatigue data based SIFs, were replaced by new equations written in terms of the Class 1 "B" stress indices developed from L ___ _ i
- _ly, y
l'X Y ,
- )) ' Y n
~ 'L g, ,s o i '$f ' '. ){ f o J -.y.. s M'., a s- / t j;:!h g y f : J >. 6'< y; ;S '. 1 ,yN t ! 4 ,.jip> tt lle. 9 ru i plar. tic-collapse limit-loadiconsiderations'. iThe now equations are:*' f s,, t a 1 ff JNC-3652 Consideration of Design Conditions as A <n. g, ' p ~p g o4t ' )B d < 1.5 S ' (85 ),. ~L . SSL:y B1; 2 t ' 2 ZE-h + + ' '. 3..o7 'a n t ' V g 7 M g y NC-3653)1LOccasionalLoads~ .. t. J ' Y;.' e if L P-D IM '+ M ' 'l d U i:t. . p. ; '.J S =B. +Bl < 1.8-S.> '(9a)t- </ f 0L 1
- 2. c 2 \\.
Z h-
- s,
,s> ,n,;g/,-).s!: - y. n. O [w' > 1.[ - - ji.i >-l 1 Qr, '? i A t 'u g,. 'b'ut not greater thanil.'5 S;, j
- g
- c TheB,and.Bf
] w Lwhare S is the. Code specified. minimum-material yield strength. 7, 7 1 streru'ind'c'es are takenLfrom Subarticle NB-3680'forl Class 1 pipin,g design; ,d .,.. s 'h( d P' The,Se'rdiceLedilimitstobelf b i ns5d on:the right-hand side ~of Eqs. da)'and (9a)~
- q ig e
~ g;h, werealsocha?IyedatC}hecametimetothefollowing; ~ 4 1 i i N. 3 i Seryice le U1' '/ Stress Limit = a ' '1 ' ! i ' Design 1.5 S h y" m .B-6.w '1.8,S ?<~1,.S.S q,, - h:- y .i j,'2' p.25 8h:<.1.8 S C-i D ~j33'S'l<2.'OS. y_ h-y t k i ,.Except for the addition of an equation similar to Eq. (10) for. checking single < 2 'nonrepeated anchor movements, the remaining design basis critiria havc not been^ t 4 changed since (1974-S74]. l 1 1 1 ]
- We have numbered the [1980-U81] equations as-(8a) and (9a) to distinguish 4
Jthem from Eqs. (8) and (9) introduced earlier. b i i s i. m. b, i .__.mamm-a.mm.-.a - - - - - ^ - - - - - - -
e I'b m.I Y,;;. i x .t \\ + c 7 s.
- n..
.ys; ,,f, 'J d g ; w" l= g -( l 3 s ;~ ~ ' 7,., ~ '.d
- m.. o.
J').4 . h,.. .[I 'l ,, t '.k r' .i j. r a: c, +' y l %h %Q %~ ' 4 Mf
- 7 1
^ a w; WR. 9 ~ /md
- c J'
- f ", %l %..%.
DecMaber,x 2 1981,' corresponding.to the publication of-(1980-W81] and. j 31 1 w y _, .r s 'y lits' mandatory,ap' plication date of July 1, 1982,,as required by Subparagraph 1' J a % ^ 7 NA-l'4U(d) are?mportant!to'tiiisinvestigationlbecausechanges"inthe.SIFA jk 1 i l. t 4"r' m; .a ~l ~ made after those: dates;may not-be' appropriate for;use with Eqs.l(8) and (9), .s. }{1974-S74 }f or th'ei primary [ load caregory stress eva'luations. Othertparts f i . NN y: ,j e 'i 4
- og. the design'. basis critieria, howeverw are not" effected provided. that. all.'
4 Q ? other'related. requirements are:also met. ~ L d vm v ..t, ..p':' { i - e ~n J . Functional-Capability Cri ecria ; a: / 1 2.2 7 a' 1 @\\l.[j. l-' ,.i In:a somewhat related move...the" Nuclear' Regulatory Commission,(NRC) j t i 1.. n o ,1 vn g
- ' imposed supplemental requirement's for assurinE the "functionalbapability" '
5h 9 i-H' ~ Thecriter[ato'besatis 1 . of. essential; safety relatedi uclear ' piping.13,14- ? n g / i 4 yY^ fie'd'are'g den in'Ref.'131(1978),- subject to' constra ata imposed b'y t!he'NEC hij ~ ,4 staff that'were based'in part on Ref.111 (July' 1973). NE Class 2 and 3? ]1 10 v essential piping, those criteria made use'of,Eq f(9) and SIFs from NC-3672_ j 'l [1977-S78}. ,i q According'to,Re'f. 14 functional capability for Class 2 or 3 essential- ] s piping with D,/t C SO,.except branch connections 6is ap.sured without further N -) o r proof..1f.the following equation is satisfied:* l 1 f1 P' D M. 1 (9f) 0;5 + 2t 0.751 Z < 1.5 Sy, I n ,1 / 1 1 f I .~ N
- We have numNred this equation as (9f) <for' functional capability to s
Distinguish it'from the other Eqs. (9) and (9a).' It is the same as Eq.-(9) W; @ 3 y p.f ..f. with a different right-hand. limit. .?i, ..f f / ~ f I I kfi ' 'b '. f f 'l r -~- -n f I __i._wd~______.hi_._._.. a .2..l. .a__
+ ~ .] y ) o. e: p .w; i -9 L I l-4 l: where.M equals the resultant moment due to weight, earthquake (considering g only:one-half the range and excluding anchor displacements), and other sus-l L tained mechan'ical l'oads. 'Specified values for 0.751 are given in Ref. 14 I Equation (9f) is the same as Eq. (9) (1974-W76] with Service Level B limit of ~ 1.'2 S replaced by. the more liberal limit 1.5 S. h y For Class 2 or 3 branch connections, Ref. 14 requires the Class 1 cri-i i teria to be satisfied. Because those criteria.do not make use of SIFs, func-1 tional capability for branch connections is-not addressed in the present study. j 3. BRANCH CONNECTION SIFs 'SIFs for branch connections with the approp'riate notes and sketches from (1974-S74] for both primary load and therraal expansion fatigue evaluations are shown in Figs. 1 and 2. Since that time the folloving changes have been esde as noted in the margin of Figs. 4 and 5. (1) (1977-S79) when a new equation was added for calculating the SIF for checking run-end moment' loads. At the same time defining equations for calcu-lating the branch end section modulus Z and the run-end section modulus Z b r were moved from Paragraph NC-3652.4 to Fig. NC-3673.2(b)-1 (Fig. 4 herein]. l ) (2) (1980-S80) when note 6(d) was revised by the Code Committee to { { exempt branch pipe sizes less than 4-in. NPS from the inside corner radius { requirement,to remove a difficult and expensive fabrication step that was i judged to be almost unenforceable. The revision had no impace on the calcu-j t lated SIF values because the variable r is not included in the SIF equations. 1 (3) (1980-S80] 'when note 6(h) was added to exempt branch connections 'from the outside corner radius requirements of note 6(e) provided that the SIFs l l are multiplied by an additional factor of 2.0, with a minimum SIF = 2.1. i i l i
RW JWMf e r m
- T 4 s
1 - o '.9h F 'lL} 3 $..z.,T 'f Jf.M( m.,. s '1 Y w pp.. 1;,, We .,.y'
- c ty
~
- g
- '2 .u.,, 3 ;.c, af A
- t.,,
e i y ~^- p n.
- n hjgb/ Mk
' hh l 9 J g Q, w y q ..lj: g Y. 'I .. 7 jff ty.1G's p %, Q G
- L c
un ,.v ;, ~_ _ h
- (4) - (1980-S82 ) !when Gerstal N#.e :2 was. added.to Fig. : NC-3673.2(b)-2 s 1
e: ,p s,m,, (..' y @/ ,3(Fig.05.herein) ;to 'reiefine Ethe g'idwall! radius. r[ ofi the branch.; _a., l y'L ,y. ( + b ,, (5) [1980-S83].when a' mia 3rf editorali correction of no, technical con-- -
- @f-o.- ' x f. ?
ya p 3/ jgg <R, t r;,, sequence ha ciadd to notd 6 c). 1 F ^ y 3 [ iT d.. ! Revision g^-(1)s and(4')Iarefless: restrictive and according tolNA-I140(g)L l g ~ ' tt - "ro , (cy., 7; ye' ' "@ ' ,must:bejuhifEdfor'use'withthel1974-S74] design) basis; equations. S yo. I s ,y}7 Reyf tion'(3)iisL more Yestpctive.: cit is our' understanding, however,l thatS -: y,. [ note' 6(h)' is being usedf:h 'the SWEC piping stresFa~nalysis for Comanche y q. 9
- s +
eg q f p, .3: -s E> ,,.. o ' Peak. - Revision.(1).is' discussed'belowlin Sect. 3.1'.. Revisions'(4)iand. o >*c (3)'are discussed in.;Secti-'3.3.,, d'. Y, t IY: L3.1 ~Run-EndYIFs Y ~> j ', . w. 'N E ,g4 g From 19742 to 1979; the' following equatiori [1974-S74]; was specified for* 3 +, 'W u a p. i. ...i. i,. i - @l'cvldnting SIFs for both the bt$nch-end 'and the run-end, W q y g .] 4
- 2l3 ~ r '
1/2 d L /r ' + E W 1.0, (2) a \\. e i V 1.5 3 e* j i T R c-i l4 s r j p/ '.' ,j r m 0 3 ;. - t ,s 'i "subjectito.the restrictions idet,bifdd in Fig.1 under note 6. According to i
- l:
a ' [n. p
- Subparagraph NC-3652.4 L the branch-end and. the - run-end were-to be. evaluated i
n u separately using Eqs. (8)-(11) with~the appropriate moments and section modulus" .) 23 or'Z
- b4 r
. Equation (2)wasdevelopedbyRodabaugh15 in 1970 for. branch connections L 4 "q with moment loadings bn'the-branch. His data base consisted of measured maxi - !a i mum stress data for 2$models, fatigue test data from 8 models, and Bijlaard's i n: 3 theory for.correlatic tk guidance. However, in the absence of sufficient data s ~ m% for) branch connections with moment' loadings through the run, Eq'. (2) was also 4 j i specified for calculating-run-end SIFs on the considered judgment of the Code ,4 f' 9-j . Con,du. cee :that it Wu adequatny conservative. (It is conservative with respect p 4 to tN.-Msind e' dlata ' point the existed in 1970. )- d' .f ,t 4 'q j a i k I ~ j i f . k,. v LL" ' ' ' ' O: - _ :_Llm -
um,M,ARV' .f, : , I:d , s;F ~ w w. x: 5, %' y m. 4 (./ Y,, g;,
- l) - y o
mg =bg R: 4 s T, jD% & - D h,
- l 4
H f M j-In. [1977-S79.]'a distinct SIF for checking; the run ends was introduce'd ! based on Class 1 stress index studies by. Rodataugh and'Hoore17 hichin-9 1 4 w jcluded~ additional stress. analysis data not'avallable for the earlier stu'dy.. 's' ....The~new run-end SIF. equation was s ~ o ~ /3 6 R, 2 1 =:0.4 7 [ '> 1.5.- .(3)- r m 1 This..is..the same eq'uation that appears in [1983-W84]' and in;the present Code l ? l' p s
- [1986-S86].
j ..g~ <
- Although Eq.-(3) does not correspond' exactly to the Class 1 stress indices
.g -C and Kp[see Eq. (1)] proposed in-Ref.17 and adopted in-[1980-S81], it is. - j - 2 (i[9 Conservative with respect'to the same data base. Equation (3)'actually cor-risponds'with:an' earlier unpublished draft proposal for C and K. Table 1. 2 2 .shows. comparisons'between the SIFs from Eqs.j(2) and (3),;the~' corresponding ' Class l' stress'index' product C E and the'Ref. 17, data base for' moment load - fj 22 t y i ings on:the run. 'These data consist. of finite element'results obtained by i ?Bryson, Johnson,:and 3 ass 18'for a series of unreinforced nozzles (U Models), q g '; h 1 2
- 1
/* uniform thickness reinforced nozzles (S1 Models), and compect tapered thick-l ness reinforced nozzles (P30 Mo'dels); and experimental data reported by ] ~ 3 'Rodabaugh15 (Weldolet),'Corum et al.19 (ORNL-1), and Gwaltney et al. 0'21 i - (ORNL-3, ORNL-4). Table.l shows'that Eq. (2) sives a poor fit to the run moment data, being excessively conservative for many of the models and ungonservative j 1 at the icwer limit of-i = 1.0 (21 = 2.0). -Equation (3) provides a much better fit to the da'ta, being conservative with respect to all the data L except:for the unreinforced U models and ORNL-4. None of these particular Sj:' fg models met the reinforcement requirements of note o(a), and the ORNL models
- m..'
also failed.to meet the outside corner radius requirement of note 6(e). If J. E' .iz' + i ( 7 + .an
s/! F f f 4 ' 'M [i .{ o e N2 = RM [ j y. M"'__ Mb y f N. L " h f.1 ,, p .:w ,,(. g~ the data-from models that failed to meet Code requirements are neglected.- L ~ -1 p then Eq[ (3) fis conservative with respect 4.o all~ the relevant data. ' Thef ~ ~ j P-e .u! h /C. lass l' tress' indices, however, give the best ' fit tb the. data:and are [L, lactually[lessconservativethanEq.(3),thecurrentrun-end'SIF.- Because Eq.,(3) was introduced ;into the Code prior' tio (3980-W81]:and-l 2 ~ ibecausefit'is conservatiea'with respect to the available stress analysis. data. 1 -l u base.,it is clear thatlits use 'for checking run-end stresses with the :(1974-S74] v l piping stress analysis criteria isl Justified even though'it-is lessirestrictive' q .n. s l than the previous'SIF, Eq. (2). 'l 3.2 granch-End'SIFs i In addition'to developing;the run-end Class i stress indices Rodabaugh ~ and Moore also checked the' Class 1 equivalent of' Eq. (2) for branch-end mo-ment loadings -against-the additional finite eleinent stress anlaysis data -ob-tained by Bryson.- Johnson, and Bass. Table 2 shows the comparison between 21 > 2.0 from Eq. (2) with the finite element data from Table 10 of Ref. 17. Equation.(2) is c' nservative with respect to all' the finite element data o
- i
-except for.the:unreinforced U models. As noted earlier, those models did not. meet the reinforcement requirements of note.6(a)..The small amount of'uncon-servatism for those models, however, is not of direct consequence in validat- .ing the SIFs for use in checking the branch-end moment stresses. i. 3.3 General Note 2. Fig. NC-3673.2(b)-2 In [1980-582] deneralNotes(1)and(2)wereaddedtoFig.NC-3673.2(b)-2 as shown in Fig. 5. General Note (1) simply states that certain variables used .in the branch connection SIFs are defined in the figure. General Note (2) re-defines the midwall radius of the branch r' as the midwall radius of the .,u 6
6 ~] ~ ?O * 'y 7 ] , o. g '-13-- + y( r 2 (;. L reinforced; portion.of the. nozzle if the reinforcement. length L is greater than-1 0.5(rTf)1/2 ~ , where r -is the.inside-radius of the' branch-and T is:the wall ^ g 1 g b ' thickness of.the"rdnforced nozzle. General Note (2') is. technically.in error l' n 9 1 and cannot be justified.for use'in' the SWEC Comanche Peak piping stress analy-sis effort, either'for primary load evaluations or for thermal expansion-g fatigue evaluations - independent'of when the revision waslintroduced into q the Code', - Note.(2) was. originally perceived as solving a' definition problem to-andT{forbranchconnectionsthat"looklikesketch(d), .j - distinguish-between Tb Fig. 5, but are considerably thicker walled than needed'to satisfy the internal pressure reinforcement requirements of NC-3643 as required by note 6(a). As 1 originally proposed, note (2) was only to be used in calculating the SIFs for l - the branch-end, Eq. (2), :and the. run-end, -Eq. (3); but n_ot for calculating the )
- branch-end section modulus. As published, however, it is clearly evident that-General Note (2) may be'.used'in calculating the branch-end section modulus as o
- well, i.e., Z y (#b) 'tb'* (4) b The result is that-the calculated. moment stresses (0.751 M/2) and (1 M/Z) as used in the stress criteria Eqs.-(8)-(11) can be reduced as a' function of .l (ry)1/2 simply by increasing the wall thickness of the branch. As pointed out in Ref.17, however, the maximma stress in nozzle connec-l .t ons from moment. loadings on the branch pipe is nor a function of branch i pipe' wall thickness.. The maximum stress generally occurs in the shell side and is inversely related to the outside diameter of the nozzle reinforcement. The variable r is included in SIF Eq. (2) to account for that influence. In p { 1 i 7 -_..___l. ---..._._~r-
- 77"c-- t Y
- r o
( j P o M l Is B 1 a recent study of branch connection SIFs: conducted for the Pressure Vessel' i ~ 22 -Research Committee, Rodabaugh compared various correlating equations from i the ' technicar literature and the different codes. All the correlations equa-tions are independent of the branch wall thickness. g. 3.4 An Alternate'to Using General Note (2) l In the event that not us'ng General Note (2) would cause an undue hard-I ship in the SWEC effort, we can offer the following for consideration. Ref-erence 22 contains a substantial amount of fatigue test data on specialty product branch connection fittings (WFI products) that were not previously available. Those data show that the current branch connection SIFs, i.e., 1 s Eq. (2) and (3), are overly conservative for fatigue evaluations when the multiplying factor of 2.0 from note 6(h) (1980-S80] is included. As a con-22 sequence, Rodabaugh recommends that note 6(h) be deleted from the Code. If the Ref. 22 recommendation is adopted by the ASME Code Committee, it would apply for thermal expansion fatigue evaluations using Eqs. (10), (11) l i (1974-574] but not for primary load evaluations using Eqs. (8), (9). This is I proper because note 6(h) [1980-S80] was originally introduced as a fatigue i i reduction factor to account for the local stress concentration caused by an undressed weld at the branch-run intersection. Thus removing note 6(h) on the basis of new fatigue test data should only effect the Code fatigue evaluatin procedures. Moreover the present Code (1986-S86] requires the use of Eqs. (8a), (9a), which do not involve SIFs, for primary load evaluations. A suitable alternative to using General Note (2), Fig. NC-3673.2(b)-2, is to perform the Comanche Peak piping stress analysis as in the past using note I ) o )
g 3 i 4 ' I l -,1 7 l a 1 'n 6(h) but not using General Note (2) for the primary load evaluations, Eqs. (8) j '8 and (9). 'Then reanalyze only those cases that fail to meet the required stress _ l 1 I limits using Eqs. (8a) and (9a)~[1980-W81] and the moment combination procedure I ~ ^ ] for Class 1 branch connections as required by Subparagraph NC-3653.3(b) l' [1980-W81], but n'ot using either General Nc.te (2) or note 6(h). The thermal 4 c v expansion fatigue evaluations may be performed as in the past but without using 1 [ either Ceneral Note (2) or note 6(h). l'l' [ 3.5 Related Requirements A thorough review of Articles NC-2000 Materials, NC-4000 Fabrication 4 and Installat1on Requirements, NC-5000 Examination, NC-6000 Testing, NC-7000 Protection Against Overpressure, and NC-8000 Nameplates, Stamping, and Reports; l and comparisons of the contents of (1983-W84] with those of (1974-S74] was con-I ducted to determine whether any changes would impact the SIF calculations in the piping stress analysis. None were found. It is thus concluded that all I related requirements for branch connections, other than those from Article NC-3000 specifically discussed above, are met as required by Subparagraph i L NA-1140(f) [1974-S74]. l I i 4 GIRTH BUTT WELD SIFs 1 I 4.1 Mismatch-l \\ Prior to (1974-S74] the SIF for a Class 2 butt welding joint between f f ? sections of straight pipe, between straight pipe and reducers, and between pipe and welding neck flanges was simply i = 1.0. In [1974-S74] an stre t .irely new design analysis procedure for Class 2 piping was introduced. This j l new procedure included the use of SIFs from the earlier Codes, but they took 1 J 9
r- .y = y
- [
3 s a: '.... ~' p s j h Ii '1 l. Jon new' meaning in parallel with the Class l' stress indices through'the relation p 11' = L 1/2 CjK : of Eq. (1). For girth butt welds, three different values for.the 2-m 'SIF were give.n' depending'on whether the nominal vall'th'ickness t, was greater l,.
- than or less than 3 16 in., and'whether the mismatch 6 was greater than'or.less
'than 0.1'.t;, as'shown in Fig. l. Mismatch 6 was defined in note (1) and the q ) i Classcle l .. sketch as shown. -These SIFs corresponded exactly-with the [1971-573] stress indices as noted.below. 1 Type of weld C K, i 2 1.0 2 l 'a ) flush ' 1. 0 1.1-1.0-l 1 -b); as-welded,. 1.0 1.8 1.0 -tf23/16in,and /t < 0. 1 1 n c) as-velded.. 1.8 2.5 -1.8 t,< 3/16 in. or '/t > 0.1 n n At.the'same time, [1971-S73], ' footnote (12) was added to the Class 1 piping ~ stress index' table, Table NB-3683.2-1, defining 6 as follows, Figure.NB-4233.1 i from the 1971 Code is included herein as Fig. 7. is defined as the' maximum permissible mismatch as shown in Fig. NB-4233.1. A.value of 6 less than 3/32 in. may be used provided the smaller mismatch is specified for fabrication." .The following sentence was added in the 1977 Code. "For flush welds, defined in footnote (2), 6 may be taken as zero." In (1980-581]- the definition of 6 was moved from footnote (12), Table NB-3683.2-1, to Subparagraph NB-3683.1(a) and the last sentence was revised to read: "For-flush welds, defined in NB-3683.1(c) and for t > 0.237 in. 6 may be taken as zero." ) ) s
f ... This last sentence and the final form of the definition was taken from recom-3 mendations by Rodabaugh and Moore published in September 1978. 'Although,the above definition for a was not added to the Class 2 SIF formulation until [1983-V84], as shown under note (1), Fig. 4, it is clear that its intended Application -for flush welds and for welds with 6/tn 5 0.1 was developed as early as 1971 when the Class 1 stress indices were introduced into the ASME Code. The exact correlation between the [1971-S73] Class 1 stress j indices and thd [1974-S74] Class 2 SIFs for girth butt welds confirms the con-clusion. Thus, this particular Code revision is neither mere nor less restric-tive than the Comanche Peak Code-of-Record. No other changes in the Class 2 girth-butt weld SIF were made until [1983-V84] when the mismatch restriction was dropped entirely for pipe with nominal wall t > 0.237 in. based on the recommendation of Ref. 23. The SIF for n pipe.with t < 0.237 was expressed in equation form, as shown in Fig. 4, i.e., 4 s.: : 7
- p 1.0 $ i = 0.9 (1 + 3 6/t ) $ 1.9.
(5) n &,l = /. T & t:.I i':,l i ( + This SIF corresponds exactly with'the (1980-S81] Class 1 stris's indices for as-welded girth butt welds joining items with nominal wall thickness t, < 0.237, NB-3683.4(b ), i.e., go 7/u , g,j ; ~
- , t K
v.c = C2 = 1.7 + 3( 6/t) < 2.1., j m
- / D (6)
) .)/ c: r l K = 1.8, .*i / = # ;j - !yo 2 as recommended by Rodabaugh and Moore in 1978. Reference 23 includes an extensive study of girth butt weld stress indices l l including the effects of weld reinforcement, mismatch, and abrupt thickness j l _______-m.m.__ m._h-i_.m_
e a i i, i 4 .q i I, '. change resultirig fro'n joining ;tvo pipes withldifferent wall thickries's. : The I 1 recommended C andKjstressindicesare"...deemedtobeadequate.totake. 1 ~ 2 icareiof both' Code-permitted ~ weld reinforcements andim1smatch." It is thus' ~ i.. y
- clearsthatlthe'[1983-W84) SIF formulation'for. girth butt welds, including-0-
mismatch 6, dis also ' appropriate 'for.use in the SVEC piping stress l analysis. = effort for ComancheiPeak.- B-l\\ j.o .i I ') l, l-I,, t .j k '$i e i' s f >, (
q s ^h) n ^Y' '*i 19 3 i 4.2 -Radial Veld Shrink'ag'e- ) a !Radialiweld shrinka'ge'at girth butt: welds is not generally. included.in .l ~ o ~ ~the design. stress analysis;of' nuclear pipin s even though ir_ appears obvious
- i p
that' excessive drawdown would effect the stresses in. the framediate region of S the weld. That concern.could be relieved to a certain degree by imposing' fabrication tolerances on.the amount'of radial ^ weld shrinkage permitted dur - v. That approach was apparently taken for the Comanche Peak" l ing construction. .f Class 2'and 3' piping fabrication.'4 where.the radial" weld shrinkage a was 9 limited to a 1' e /2, for t, < 0.375 -in., or-n 1 'a $ 0.1875 for t,> 0.375 in. ? The question, "Should that amount of radial weld ~ shrinkage be' considered' g .c explicitly dn" the piping stress analysis?", naturally arises. - The answer to 4
- this question is developed below.
q ~ Refere,nce'23~ includes an extensive study on the effects of' radial wold shrinkage'on.the stresses at girth butt welds. Based on an analytical param-eter ' study, using 'a conservative model for the weld joint and thin-shell - theory, the, report 'shows rather high stresses at the joint, particularly for i. i for moment loading..Figuru 16-from Ref. 23, included herein as Fig. 8, shows-the maximum normalized axial stresses from a bending moment, corresponding to. 1 the effect on th',e C stress index, as a function of the weld shrinkage ratio 2 'a/t. The' bounding equation from that figure, i.e.,
- --=
.s n., u c/S = 1.0 + 2.9 a/t (7) could'be used to characterize the influence on C. Equation (7), along with 2 K and Eq. (1) could then be used to characterize the SIF. Using A/t = 0.5 1 2 n and K = 1.8 would then give i = 2.2 (for piping with t > 0.237 in, so that 2 n J "9 ..__.h__._m_ _m_.-
s 1 1 mismatch'could be ignored). If D/t for specific pipe sizes were included in l the calculation, Fig. 8' indicates that the"SIF would,be somewhat less than,2.0. ] h, Reference 23'goes on, however, to point out the conservative and uncertain o hould be aspects of the study, and finally concludes that weld shrinkage s ignored in the stress' analysis of Class 1 piping, provided that 4/t < 0;25., n That recommendation was incorporated into the Class 1 rules in (1980-581].by addition of the following in NB-3683.4(b): "... Girth welds may also exhibit'a reduction in diameter due to shrinkage of the weld material during cooling. The indices are not applicable if /t is greater than 0.25 where a is the radial shrinkage measured from the outside surface. " a 1 The question for Comanche Feak Class 2 and 3 piping thus becomes "Snould radial weld shrinkage.be considered in the stress analysis if 0.25 < a/t < 0.50?" n 1 Consider the following, however. A restriction on radial weld shrinkage for the stress analysis of Class 2 and 3 piping has never been inc~1uded in the Code; and was not added in {l980-S81] when consideration of mismatch was added for Class 2 piping an'd restrictions on weld shrinkage were added for Class.1 piping, in spite of the fact that both revisions were based on the same [ reference study (i.e., Ref. 23). This indicates that he Code Committee in~ tended that radial veld shrinkage not be considered in the design stress j d qK M W, + l )',~,n %j% f J< 4 M % 'M*^ L analysis of Class 2 or 3 piping. ;f,,'j.,,,, jf; e+.: e f%< d % N c A h 4 Yr u A ' A CL241 oleu d;, d. mu.Jja de 1 33 In a more recent study, Rod ~abaugh evaluated the fatigue design margin <GA,) 5w //;j h for both Class 1 and Class 2 nuclear piping against moment loading fatigue J B test data on girth butt welded pipe (see Ref. 5). Figure 3 from Ref. 25, included here as Fig. 9, shows Mark 1's fatigue-to-failure correlation line and the Class 2 design stress-range limit lines as a function of fatigue cycles for SA 106 Grade B carbon steel piping. The figure also shows a " design l allowable stress-range" line based on a safety factor of 2.0 on stress-range. "*W +
W. + r 9 9 e >I' 3: I ' x, - Below 7,000 cycles the real design margin for Class 2 piping is considerably greater than 2.0, even for a sustained load S, = 0; the S, = 0 line might represent the thermal-expansion stresses in an empty pipe. Above 7,000 cycles the design margin is about equal to 2.'O. The Ref. 25 study also considered the fatigue behavior of austenitic stainless steel And showed that the Class 2 design rules are more conserva-t tive than for carbon steel. We, therefore, conclude that the design margin in'the Class 2 piping stress analysis rules is more than adequate to accom-modate weld shrinkage up to a/t = 0.5 for. fewer than 7,000 cycles of fully n t reversed loading. For more than'7,000 cycles, however, it would be prudent to increase the SIF hy the factor represented by Eq. (7). 4.3 Functional Capability As noted in Suct. 2.2 complete instructions for assuring the functional capability of essential safety related nuclear piping were provided by the NRC in 1978. The requirements on mismatch in Ref. 13 are the same as in [1974-S74] and to our' knowledge have not been altered. However, the argu-ments presented in Sect. 4 1 are as valid for functional capability evaluation as for structural evaluations. Therefore, these same arguments could be pre-sented to NRC in a request for permission to use the {1983-W84] mismatch for-mulation in the functional capability evaluations. Consideration of radial weld shrinkage is not included in Ref. 13. As we have shown in Sect. 4.2 radial weld shrinkage a 1 e /2 need not be con-n sidered in the structural evaluations for piping with less 'than 7,000 loading cycles. However, plastic-collapse, and thus functional capability, is not influenced by cyclic loading within the limits permitted by the Code rules. Thus, we conclude that weld shrinkage a 5 t /2 need not be considered in n functional capability evaluations even for girth butt welds with more than I 7,000 loading cycles, f
r i.- f,< 1, 1 4.4 !Related Requirements p { We have examined all relevant Articles of,the Code and have compared the~ V contents of [1933-V84] with those of (1974-S74] to determine whether any l chances,'other than those discussed above, would impact the.SIF calculations' or:the piping acress analysis procedures for girth butt welds.. None vere 2 found. In particular the permissible mismatch given in Fig. 7 from {1974-S74] has not changed, i.e., the requirements are.the same in_{1983-W84]. It is ) thus concluded that.all related requirements are satisfied as required by ~ NA-1140(f) [1974-S74}. a i 5. CIRCUMFERENTIAL FILLET WELD SIFs 5.1 Structural Criteria Prior to [1974-574] the SIF for fillet velded joints, socket welded flanges, i and single welded slip-on flanges were 1 = 1.3; based on the earlier' work of Mark 1,5 and Mark 1 and' George.6 In [1974-S74] when the new piping stress 4 analysis criteria were introduced into the Code, the SIF was. increased to i = 2.1 for fillet welded socket joints and the appropriate notes and sketches 'l shown in Figs. 1 and 3 were added, the SIF for a " full fillet weld" was left at I i = 1.3. Since that time the following changes have been made as noted in the margin of Figs. 4 and 6. (1) [1930-S83] when the two fillet veld categories were combined under a 1 i single category identified as "circumferential fillet welded or socket welded joints" and Brazed joints" were identified under a separate category with an SIF of i = 2.1 from the previous Code. The SIF for circumferential fillet welded... joints was expressed by the following equation l 1 . t E s
. !l _n: _ ) ku f ' i i' 1 h) i - 2.1/(C,/t ) 2 1.3, (12) n as noted in Fig. 4, where C, is the length of the fillet weld leg and e ds the i n nominal pipe wall thickness. l-(2) [1980-583]>when Note (11), which had been added in [1980-S82).to permit a lower SIF of 1.3 provided that both weld legs were greater th'an 1.6 t n' [ was' revised to define-C, for fillet welds with. unequal leg lengths as the length. u ~ of the ' shorter-leg. (3) [1980-583) whea Fig. NC-3673.2(b)-3.was deleted and the reference t ' SIF sketch was changed to Fig. NC-4427-1. Reference to Fig. ND-3673.2(b)-3 J was changed to Fig. NC-3673.2(b)-3 in (1977} to identify the intended Subarticle. 1 i -(4) [1980-S80],when Fig. NC-4427-1 was revised to its present form as j 1 - shown in Fig -6. Changes relevant to the fillet weld SIF are the following: (a), the definition for the size of an unequal leg fillet weld was changed 'from i '"... the size of the veld is the leg lengths of the largest right triangle which can be inscribed within the fillet weld cross J section." l to j i "The size of an unequal leg fillet veld is the shorter leg length l of the largest right triangle which can be inscribed within the l fillet weld cross section." (b) The minimum value for C, was changed from..."1.09 t 2 1/8 in." to "1.09 t,, wkre e = n minal pipe wan tMness." i n l Except for applicaton to " Full fillet welds" revisions (1), (2), and (4) l l may be less restrictive than [1970-S74] and therefore must be justified for use with the [1974-S74] design basis. Revision (3) may be considered as 1 editorial and of no technical consequence. Revisions (2), (4a), and (4b), are technically the same because the restrictions on C, identified in note (11) l I _---_.-.~.-m _ _. ~. - - - _. _. _ _
3 'j f w 4 v l and in Fig. NC-4427-1 are necessary definitions for evaluation of the SIF Eq. j fy (12)'in revision (1)..The restrictions on C,, however, are actually more j restrictive than [1974-S74] because the earlier definition for fillet velds with unequal less was incomplete. Thus only Eq. (12) is less restrictive than [1974-S74]. ' s Equation (12) was presented to the:ASME Code Committee, Working' Group on 1 f' Piping Desing (WGFD) in September 1982, in response.to a request from the. l-Main Committee to relieve the unrealistic abrupt change in the SIF from 1.3 l for a full fillet weld'to 2.1 for a. fillet welded joint. Equation (12) was Justified on the basis of studies of Class 1 stress indices for fillet welded joints described in NUEEG/CR-0371, 1978, and Mark 1's earlier fatigue test 3 data. In Ref. 23 (p. 28) it was concluded that the Code values of C = 2.1 4-6 2 and K = 2.0 [1977 ed.] were " amply conservative." Using Eq. (1) then gives 2 the upper SIF value of i = 2.1. The lower SIF value of i = 1.3 is consistent l with the earlier value for fillet welds with sufficiently large leg lengths, i.e., d i Equation ] C,= 1.6 tn, fr m the earlier note (11) (1980-S82], and Mark 1's data. (12) simply provides a linear relation between the upper and lower bounds. j Reference 23 (p. 56, 57) also examined Class 1 B stress indices for I a fillet welds. It concluded that "If the fitting material and the weld material are as strong as the pipe material, the { fillet welded, ed.] joint... is deemed to be as 3 l strong as the pipe." I Thus we conclude that the [1983-W84] fillet weld SIFs including the related footnotes and reference sketch restrictions on the variable C,, are adequate ) and appropriate for.use with the [1974-574] structural design basis. l l l 1 l l l l
m 1 " Tf ' h. i.. l N,
- ll
- ];.
y W' v. A [h J'f!!
- [;
' ;-;j(' ;f ' ,fi fjf 0] W }l, d.' 9: s .y. e 9 dyd,?*i, y': 3 o- ' u. GW 4 QQf q: 3 Q: y J n. k': +.. t .5'.2. Functional Capability. h < ,(.. f' o . ~ -As noted previously complete instructions'for assuring'.the' functional L L .1 capability of essentia1Lsafety related nuclearfpiping1wer6?provided by.the'NRC-s' 1 cin 1978.- The more recent Code revisions for fillet' velds discussed in'this Sectiondonota[terthoseinstructions..Neverttieless',eif the subject -vere, j ,q f .of' sufficient intersst? a case could.b'e made to ths:NRC tofpermit'use'of!the O [1983-W84])SIFs.for fillet :velded ; joints' in functional capability evaluations. r n It is cf Linterest 't'o note 'that currentlylefforts' are under way in the ASME Code' a 2
- 6
- i A
Committee.(WGFD' item No. 192) to modify the Class 1 B and C stress indices;to' c g
- conform with:the' equation format.of.the Class'2 fillet veld.SIF,-and to'incorpo-1 rate Code Case N-316, into the' Code.
-l e L '5.3J Related Requirements '.WeThave examine'd all relevant Articles of the Code.and have comparedithe. q contents.of (1984-W84] with tho'se of [1974-S74]'to determine.whether.any
- 4 changes,7other than'those. discussed above, would impact the'SIF calculations-s 1
im [', or.theipiping stress anlaysis procedures for circumferential' fillet welds. '] e M-
- None were found. In particular,'although revisions have been made to Paragraph.
.l: 1 NC-4427 " Shape and Size of Fillet Welds", the material relevant'to the piping- ) J stress analysis is fully incorporated into Fig. NC-4427-1 and not.e (11) of
- Fig. NC-3673.2-(b)-1. That material was discussed. We therefore conclude that all related requirements are satisfied as required by NA-1140(f) {1974-S74).
.] l 1 l j w-A_.-._ -. _. - _--._______.-k_ - - ~ ~. - _. - - - _ - -
.o i p i l+f ~26-i 4 6. RECOMMENDATIONS
- error, I
o 'This Section.is a' summary of the recommendations developed in this re-port r:alatiYe to the'use of the [1983-W84] SIFs in the Stone and Webster t } !. piping stress analysis e" ort for Comanche Peak Steam Electric Station, l cn i Uniti 1 and 2, as requested in Refs. 2.and 24. Recommendations for each of n (3) 'tho three types of components that we examined are summarized below, a not 6 L 1-Branch Connections l l 1 1 The [1983-W84] Code involves 5 revisions potentially significant to the calculation of branch connection SIFs for use with the [1974-S74] piping o the cstress analysis basis. These are (see Figs. 4 and 5): .(1) [1977-S79] when Eq, (2) was added for checking run-end moment loads. i 1 (2) [1980-S80] when note 6(d), Fig. NC-3673.2(b)-1, Fig.'4 herein, was j rsvised to exempt branch pipe sizes less than 4-in. NPS from the inside cor- . piping ? 'E nor radius requirements. (3)' [1980-S80] when note 6(d), Fig NC-3673.2(b)-1, was added to exempt 8 branch connections from the outside corner radius requirement provided that l the SIFs are multiplied by an additional factor of 2.0, with a minimum value of
- "1D i - = 2. '1..
' #8~ ' '(4) [1980-S82] when General Note 2 was added to Fig. NC-3673.2(b)-2, Fig. 5 herein, to redefine the midwall radius r' of the branch, subject to dded e' restrictions on the nozzle-wall reinforcement length, and
- ^
.(5) (1980-582] when a minor editorial correlation of no technical con-ssquence was made to note 6(c), Fig. NC-3673.2(b)-1. l All these revisions, except No. 4, have been shown to be either not less restrive or technically j ustified for use with the (1974-574] design
l p .un, d' h basis..As an alternate to using revision (4), which is technically in error, 1 we-recommend that the piping branch connections be analyzed according to [1974-S74] with. revisions (1), (2), (3), and (5). Reanalyze only those branch connections that do not meet the [1974-S74] acceptance criteria using the 'later [1,980-W81] criteria, i.e., the B stress index formulation for primary loads, but without using either revision '(4) or the revision (3) I . penalty factor of 2.0. This procedure is justified by. fatigue' test data rot previously available. i l ) 6.2 Girth Butt Welds The-[1983-W84] Code involves 4. revisions potentially significant to the calculation of girth butt weld SIFs for' use with the [1974-S74] piping I] stress arialysis. basis. These are: (1) [1983-W84] when the restriction on mismatch 5 was, dropped for piping with nominal wall thickness e 2 0.237 in, so that the SIF for girth butt 1 n 1 welded joints for such pipe is i = 1.0. I .(2)I {1983-W84] when Eq. (5) was added for. calculating the SIF for,. girth I l 1 but:: welded jointa..in piping with_t;,LO.237. 1 (3) [1983-W84) when note (1), Fig. NC-3673.2(b)-1 was revised to permit the use of mismatch 6 < 1/32 in. for the SIF calculation if the smaller pis -' ] i match is specified.for construction. (4) [1980-581] when a restriction on radial weld shrinkage a was added I to NB-3683.4(b) that prohibited use of the Class 1 stress indices as given l 1 in the Code when aw;Of25 'tn i 4 l u____.
Q]3QB fy?V7!. m 7- ? i F 5 ~ Bik:fm Mp,' g-c - + g ..m q: y" gg.W, ' l, Mg ' - jy - s % ; 6 G -28 ', T u ( h 2' " L. '_), -l. G, (!! ,[ r
- g
,m y,-c ] i. RevisionsL( N.(2),fand.(3) have'been shown to be.either not'less e e l @y*[' ' restrictiveortechnically[justifiedfor'usewith'the'[1974-S74] design' yvy j. j (1 > Revision.(4)', concerning' radial ~ weld shrinkage'a,-was examined, ] 4 basis.) 'because of concern that.the less' restrictive weld shrinkage criterion'~of' j 1 e, 1 4. 4/t{$ 0.5 specified for, construction of the Comanche Peak Class 2 and;3 m j a q d k ' piping might. adversely'effeet the' stress analysis acceptance criteria. 'It- ~ .i It g< ' was-determined that.the Cod"e revision' applies only to Class'l' piping... a ik y lwas also determined that for? Cle'ss'2 and 3 piping,~ radial' weld shrinkage j ~ ' / 'a/tpf0.5'neednotbe' considered'eitherinthefunctionalcapability. 9 tq evaluations or~in the strudeural evaluations provided:that,the number of loading; .) it For more than 7,000 cycles, it is; recommended;that. P 4 cycles isiless than:7,000.' i N t 1 the structural evaluations. but'r'.not'the functional capability evaluations 4 s I l. include consideration of radia1L ueld.' shrinkage 0.25 5 A/e 1 0.5 by applica. I-n j a-D; .n i k. A tion'of Eq., (7).- _j a' j J r a. 6.3: Ciredmferential'Fillat' Welds .) Thei[1983-W84]CodeLinvolves4'revisionspotentiallysignificanttothe' calculation'of circumferential fille't. weld SIFs for use with the [1974-S74], j f piping stress analysis basis. Those are: 4 (1) [1980-S83] when Eq. (12) written in terms of the fillet weld leg length i was added for calcular.ing *:he SIF for circumferential fillet welded joints and j y .r for socket welded joints. q "(2) [1980-S83] when note (11), Fig. NC-3673.2(b)-1, was revised to define j y t C as the shorter 1(g length for fillet welds with unequal legs. j 3 .u x J r M (3) [1980-SE3] when the reference SIF sketch was changed to Fig. NC-4427-1. { q (4) [1980-583] when Fig. NC-4427-1 was revised to include a corrected 1 I i' ' definition for C'. k 1 3 I l p o
I: -3.,
- 'a ' c
' _,o. All four of these revisions have been shown-to be'either not.less ~ restrictive or: technically justified for use with the (1974-S74]. design-bas'is. It is also noted that the revisions could1$e justified for use -in functional capability evaluations. ' Approval by'the NRC,'however, would be.needed.. 6.4 Related Requirements 'We have also examined all relevant Articles of the Code and have determined by comparison of (1983-W84[ with (1974-S74] that no revisions, other than those discussed.herein, would adversely impact the use of the subject SIFs in the Stone and Webster, Comanche Peak, piping stress analysis efforts. We therefore conclude that all related requirements are satisfied as required by NA-1140(f) (1974-574]. 4 9 e 1 " ~ ~ ' ' '
7% - wc ~ -~ v. _ j $ v: p .g Q:N g o,, j('gW" 1 3 ). o pE p o y ~
- ! REFERENCES -
a J > x.x.., ,m ,y ,y 1 (* 1. ASMElBoiler and. Pressure Vessel Code,?Section:III,iDiv.' 1,sNuclear' Power. .J j N "s Plant Components.LASME, New York. d 8 -%a, 1 [2.3 IAtter,) A.' W.;.Chan, Stone and Webster Engineering Corp. to S. E. Moore,. .Enginee:ing Consultant, 1983 SIFs for:CSPES, Comanche Peak Steam Electric,: R (Station : Units 1'and.2, Texas Utilities' Generating Co., J.0. Nos. m L15454.05 and 15616.05, CH1-CPO-389, dated-August 28,'1986. t. t /.^'USAS,B31.110-1967,[" USA Standard Code'for' Pressure Piping, Power Piping," ii, 3 3 -ASME, New York, 1967. -4;--A. R.' C. Markl, " Fatigue Testin'g'of_ Welding' Elbows and Comparable Double-- -Mitre' Bends,'" Trans.'ASME,4Vol. 68,.No. 8. 1947..
- ]
y t ' 5.1 A'. R.L C. Markl,6 "Fati$ue Tests of; Piping Components,". Trans. ASME,; Vol. }4~,-. r LNo.' 3, 1951. q
- 6.
'A'. R.uC.-Markil " Piping-Flexib111ty Analysis," Trans. ASME, February 1955. g . 7. A. L R.. C. Mark 1 a'nd H. H. George, '.' Fatigue Tests on-Flanged Assemblies," .Trans. ASME,; January 1950., q '8.'E.C.Rodabaughland'H.'H. George, "Effect of'Intercal' Pressure on Flex'i-: a:
- l
,1, bilityland' Stress Intensification Factors of Curved Pipe or Welding Elbows,"' 3' Trans.'ASME, MayL1957.-
- 9. -USAS B31.7-1969, " USA Standard Code for Pressure Piping,' Nuclear Power.
j' , Piping." ASME, New York', 1969. + l
- 10. -Private communication with W. Evans, Stone'and Webster l Engineering Corp.,
i Sept..17, 1986. ' q C
- c
~. E. C. Rodabaugh and S. E. Moore, " Evaluation of the Plastic Characteris-- d ~ ^ 11. tics lof Piping Products'in Relation'to ASME Code Criteria," NUREG/CR-0261, .f ~
- (
ORNL/Sub-2913/8, Oak Ridge National Laboratory, July 1978. 1 12. _ S. E. Moore and E. C. Rodabaugh, " Background for Changes in the 1981 j . Edition of the ASME Nuclear Power Plant' Components Code for Controlling' ] Primary Loads in Piping Systems," J. Press. Vessel Tech., ASME Trans. .q l 104:. 351-61 (November 1982), " Functional Capability Criteria for Essential Mark II Fiping," NEDO-21985,
- 13. -
78NED174, General Electric Co., September 1978. A ~ l l h. }t ' k. M,a i +... m ____m
mv y .[ ..[ k t,; U ' 14. lUSNRC Memorandum, J.~P. Knight, Assistant Director for Components and 3 Assistant Director for Licensing, Division of Licensing, " Evaluation of '~
- l
' Structures Engineering, Division of Engineering to R. L. Tedesco, r Topical Report - Piping Functional' Capability Criteria," dated July 17, 1980. k 15. E. C.'Rodabaugh, " Stress Indices for Small Branch Connections with External q Loadings,".ORNL/TM-3014, Oak Ridge National Laboratory, August 1970. 1 j j i 16., P. P. Bijlaard, " Stresses from Local Loadings in Cylindrical Pressure g Vessels," Trans. ASME, August 1955. k E. C. Rodabaugh and S. E. Moore, " Stress Indices and Flexibility Factors-b 17. for Nozzles in Pressure Vessels and Piping," NUREG/CR-0778, ORNL/Sub-2913/10, Oak Ridge National Laboratory, June 1979. 18.~ J. W. Bryson, W. G.. Johnson, and B. R. Bass, " Stresses in keinforced j Nozzle / Cylinder Attachments Under External Loadings Analyzed by the- ? Finite-Element Method - A Parameter Study." NUREG/CR-0506, ORNL/NUREG-52, j Oak Ridge National Laboratory, August 1979. 19. J. M. Corum et al., " Theoretical and Experimental Stress Analysis of ORNL Thin Shell Cylinder-to-Cylinder Model No. 1," ORNL-4553, Oak Ridge National Laboratory, October 1972. ] O 20. 'R. C. Gwaltney et al., " Theoretical and' Experimental Stress Analysis of ORNL Thin-Shell Cylinder-to-Cylinder Model 3," ORNL-5020, Oak Ridge National Laboratory, June 1975. 21.. R. C..Gwaltney et al., " Theoretical and Experimental Stress Analysis of ORNL Thin Shell Cylinder-to-Cylinder Model 4," ORNL-5019, Oak Ridge ' National Laboratory, June 1975. 22. E. C. Rodabaugh, " Accuracy of Stress Intensification Factors for Branch Connections," Draft WRC Bulletin, May 1986.. 23. E. C.lRodabaugh and S. E. Moore, " Stress Indices for Girth Welded Joints, ) Including Radial Weld Shrinkage, Mismatch, and Tapered-Wall Transitions," ~ NUREG/CR-0371, ORNL/Sub-3913/9, Oak Ridge Natonal Laboratory, September 1978. 24. Private communication with A. J. Cokonis, Stone and Webster Engineering Corp. concerning Brown and Root Pipe Fabrication and Equ,ipment Instal-I lation Instruction No. QI-QAP-11.1-26, Rev. 19, on'Nov. 18, 1986, d 25. E. C. Rodabaugh, "Comparistn of ASME Code Fatigue Evaluation Methods for Nuclear Class 1 Piping <ith Class 2 or 3 Piping," NUREG/CR-3243, ) ORNL/Sub/82-22252/1, Oak Ridge National Laboratory, June 1983. 4 l I i l
.!t, t> 4 i >s. 3 ,i \\'- q' .m
- n.,'in
,.s
- a..
d 'q ,t., 3 3 x V3f! 'j .,,.. N. I -> i) e -j
- m., '
3, _l", ' $1U.,g t 1 Qsi s pm;, w ' 32-A< - s~
- .o
+
- o 7.g g
y. g 1 .6 .. ') i,. ~ i,, J .26. iMinutes of Sept.'. 13, 1982, Working Groupfon Piping ~ Design - (SGD)' (SCIII), r j 4i V! ASME Boile' i and Pressure Vessel Connittee.. . a b W .u m,A , V... ~ l i27.e Case: R-316, l Alternate Rules.~for Fillet Veld ~ Diinensions for.- Socket d H . Welded Tittings, L SectEIII., Div. ;1L Class :1, 27 and 3,; Cases; of f the. ,.J B ' 'ASME Boiler and Pressure: Vessel Code, Dec.'11,.1981.'- l m e /4 + 'j'- .i f I ', k .i s l ',. f ;., t I i
- f D[.
..j: .'l ! l ( / ?' ?.. p c r i 1 i 5l p. m, i l i e 'f 'Q I r ~l 4 aq ep., s e. 4e, " 4 + e t- ,a,,, _ _ _. _._i______.
f LTable ll. Comp:rison of.run-end SIFs with stress' analysis' .4 data from Ref. 17 b 21 21 3 Model ~ <r;/R, T max" Eq. ( 2) ' Eq. (3). '22 R,/T, b r p \\. UA 5Q.5 0.50 'O.50 0.990 ' 4.62 l'4.35 5.46 5.33 ) UB 40.5 0.50 0.50 0.988 4.54 12.36 4.72 5.05 UC 20.5 0.50 0.50 0.976 4.09 '7.75 3.00* .4.26 UD 10.5 0.50 0.50 0.955 3.60 4.86 3.00*- 3.60 - UE 5.5, 0.50 0.50 0.917 3.17 3.03 3.00* 3.06* l UF 5.5 0.08 0.08 0.917 3.11-2.00* 3.00* 3.06*
- S1A 50.5 0.50 0.50 0.861 2.98 12.48 5.46 3.11 S1B 40.5 0.50-0.50 0.843 2.87 10.54 4.72 3.00
-S1C 20.5 0.50 0.50. 0.780 2.43 6.20 3.00 2.69 S1D 10.5 0.50 0.50 0.705 2.11 3.59 3.00 - 2.65. S1E 5.5 .0.50 0.50-0.623 2.07 2.06 3.00 2.65 S1F 20.5 0.32 0.32 0.732-2.36 2.98 3.00 2.65 SIG 10.5 0.32 0.32 0.649 '2.23 2.00* 3.00 2.65 S1H 5.5 0.32 0.32 0.563 2.08 2.00* 3.00 2.65 S1I 20.5 0.16 0.16 0.646 2.49 2.00* 3.00 2.65 - S1J 10.5 0.16 0.16 0.555 2.38 2.00* 3.00 2.65 S1K' 5.5 0.16 0.16 0.468 2.33 2.00* 3.00 2.65 i S1L. 20.5 0.08 0.08 0.551 2.52. 2.00* 3.00 2.65 1 SIM 10.5 0.08 0.08 0.459 2.61 2.00* 3.00 2.65 i SIN 5.5 0.08 0.08 0.391 2.63 2.00* 3.00 2.65 P30A-50.5 0.32 0.32 0.808 2.30 5.99 ' 3.50 3.00 P30B 20.5 0.32 0.32 0.743 2.39 3.02 3.00 2.65 P30C 10.5 0.32 0.32 0.695 2.27 2.00* 3.00 2.65 l P30D 5.5 0.32 0.32 0.659 2.05 2.00* 3.00 2.65 l - P30E 5.5 0.08 0.08 0.556 2.68 2.00* 3.00 2.65 ) i 3.00 2.65 2.15 Weldolet 12.25 0.35 ORNL-1 49.5 0.50 0.50 0.990 5.00 14.16 5.39 5.30 l ORNL-3' 24.5 0.115 0.84 0.870 3.20 6.25 9.06' 2.70 I ORNL-4 24.5 0.125 0.32 0.950 4.00 2.72* 3.45* 3.57* 0, is the maximum stress intensity normalized to M/Z. 8 Values marked with an asterisk (*) in this column are less than the corresponding value of Tmax' + l .~ l I l 4'" up,4 w~-a ..um n-.---numm
mm m' f p; p. ni 4: i 4.g -o '.;:lN s
- .g.go.iYh'y;
, ~. ,a-7g' ^' .: Table' 2. Comparison of ' branch-end SIFs withi ' : stress analysis data from Ref. 17" i, t ry/r -(, 3 ,Model R;/T ?.rj/R,,lT{/Ty p 21. .t r Q; JUAT J50.5 ,'0.50 J0.50: 1 0.990',16.60 14.35*: ~ 4 ^ .0.50: 0.50~ 0.988) 15.05 112.36*'- ~UB f40.5L ~ 0.50 0.50l 0.976-: '10.85 '. 7. 75* ~ UC. l20;5. H (UD: 10.5. 0.50 0.50 0.955 ' 5.77: '4.86* .i ~ i
- UE.:
5.5 "*'O.50
- 0. 50.-,
l0.917 3.50. 3.03*- j ' UF.
- 5.'5 0.08-f0.08 -
'O.917 1.36i (2.00)- y
- n S1A' E50.5
- 0. 50. 0.50 0.861-11.07 M 12.48. S1B 40.5 0.50' . 0. 50.- 0.843-9.84 110.54' s-SIC. >20.5. 0.50 0.50-0.780 5.64 6.20 y S1D-10.5 0.50 0.50-0.705'- 2.81 3.59 ij -,f ~ ~S1E: 5.5 -0.50 -0.50 0.623' 1.56: 2.06 1 S1F. 20.5 -0.32 0.32. 0.732 2.56' 2.98 '. SIG '
- 10.5-
!0.32 0.32 0.649 1.43~ (2.00). '] 4
- S1H,
' 5. 5' O.32 0.32-0.563' 1.39 (2.00)f lS1I- '20.5 '0.16 0.16 0.646 1.22L -(2.00). ~ S1J 10.5 0.16 0.16 0.555 J1.26 (2.00)c cSJK, (5.5. 0.16-0.16 0.468 1.33 (2.00)' [a 1
- S1L 20.5
'O.08-0.08-0.551 1.22 ~(2.00) 'i SIM. ,10;5 '0.08' O.08' O.459 .1.21 (2.00) ~ . SIN: '5.5 0.08 0.08 0.391 1.21 (2.00) ,o D P30A .50.5 0.32-0.32 0.808 '3.73-
- 5'.99 P30B 20.5-0.32' O.32 0.743
-1.84 3.02-P30C .10.5 0.32 '0.32 0.695 1.39 '(2.00) .o P30D' 5.5 '0.32 0.32 0.659 1.35 (2.00) 1 P30E 5.5 0.08 0.08 '0.556 1.20. (2.00)- aSee Table'10 of Ref. 17. b > 2.0 from Eq. - (2). An asterisk (*) indi-21 cates that the calculated SIF is less than the'F datum. Parentheses-() around the number indicate ** that the' calculated SIF is less than the permitted minimtun. I h J h I 3 p .# w d, p.. = i- -_--..-__.a_--_.__.~.--
mym,_ ] ( C t p: f f: ( ,( , Fig. NCd673.2(b).1 i : ' L.. L 4 ' ARTICLE NC.3000 - t)tiStGN ' 9 ( m: c.s 1 k' Sleess lesensei casion, Flexibility i ' I N Desce so seon ' Factor. k ' F ac t o'. i ' Sketch 1 f l. ht'm' '/,-) T*,, s'm II,' '/ fl .1.5 Fig.NO 3673.2(bb2 L. Drancn connection t6 i 7 [. ita w Sutt weed I11 ' to > 3/t 6 and [n < 0.1 L__ 1-1.0 \\ / g r y n\\ t o \\ l o eun weid (si ,,a,,,,,,,,,,,, 8 1.8 for asweided it. < 3/16 orto > 0.1 ] au. FilleI welded joint, socket F ig. N O.3673.2(bb3, welded flanoe or singte 1 2.1 ske tches (al, (bl, (cf. j (e) and (fl i wW s slip on flenge 1 Fig. NO.3673.2(bl.3, 'l Full fillet weed 1 1.3 sketch (d) y NOTES: f 4 (Il The following nomenclature appi.es. I r a mean radius of pipe, inches imatching pipe for tees and elbows). . t,, e nominal wait thickness of p pe. inches (matching pipe for sees and elbows. see note (9H. f R = bend rad us of elbow or pepe bend. inches.' I 6 m one half angle between adiacent miter ases. f ' s e miter spacing at center line, inches. ,j t, a reinf orced thickness. inches. i A = mismatch, inches. O, e outsade diameter, inches. l L (6) The eqI4ation applies on8y if the following conditions are met: l I tel The reinf orcement sees requirements of NO.3643 are met. t (b) The exis of the branch pipe is normal to the surf ace of run pipe west. (c) For branch connections in a pipe, the arc distance measured between the centers of ediacent branches along the surf ace of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the j sum of their radii along the circumference of the run pipe. (d) The inside cornet racius r, (FIG. NO.3673.2(bb2) is between 10% and 50% of T,, o (e) The outer radius.r,,is not fess thart the larger of Tg/2,(Te + yl/2 (FIG. NO.3073.2(bl.2 sketch (cIl or Tr/2, .] (f) The outer radius, r,. is not less than the targe of r l (tl C.002# de ~ (2) 2 (sin el* times the offset for the configurations shown in Figs. NO.3673.2(bl.2 sketches (a) and (bl. i (g) Mm/Tg4 $0 end t'm/Rm 40.5. l s FIG, NC.3673.2(b).1 Ft.EXIBILITY AND STRESS INTENSIFICATION FACTORS f Figure 1. l m/ g . i, 1 ) ( i I f i i
T-- sm,, 4 - d. #, ...... Mf7 [- 4- ,l ,( $ h+ Y;i?.i I-@ Ta.. ~ . soy; hI ny~. xd.- 1 N' 4 ! A RTict.E; NC 3000 '. DESIGN ' ,' Fig.f NC.3673.2(bl.2 4> x.., [ ..,;t Mf b l g j T -. 6, -4 T'k<-' b *. 1 + .. MT: g-M. 4.~ T.. ' 8 RANCH PIPE '!t+ b, .4_ g i , d ; hhhW ^' f_ ) 'l r h, - e3
- s-
-- r ' T + o 3-S d'. u, c 4. :,. - o hy y y", ( /.enf.45* (' 3 s ,,= x y 2% 3, X ' " ^ "'" ~ 4*L j 1 7> U u 4- ,I' b ? -OFFSET ' o' - OFFSETj,' .T ( g" 1 .:i-<,> .j I[ rh g: n c-A-Rm Tet p "PKb : 7- '. 2-j < (a), (b)L W ,1 i' BRANCH PIPE
- --+ 6. fb f
--+ 4-- T'b : b; ' BRANCH PIPE d' . gd '~ f.Jb: O Y +0.667 y '- d 8 b o '= R ei 4 45-R - ss NN . Yh f } x T 4 BRANCH [ n 3 s M l Q'2 l '~' i$'@j,*"s 0 'i-4 ggy3 ; $!$R ^ EM i Rm,; i Rm a s s 3,, (c) (d) FIG. NC.3673.2(b).2 BRANCH DIMENSIOfiS NOTES: t',,, = mean radius of branch pepe inches T, a nornmal thickness of run pipe, inches T*6 = nomenal thickness of branch pipes, enches . do scensw$e diameter of branch pepe. enches Rm a mean radius of fun pipe,incnes I j,8, f(' a's, /g, /p, and p' are defined in this isgure. t 4 135 - Ff'gure 2. [ 2. py 1 4 ..,a '" '~ ~ __'i_______
p I Fig. NC.3673 2(b).3 SECTION lit, DIVISION I - SUESEF.!ON NC I .o [ bric L f E ERS' SURFACE OF A / HORIZONTAL MEMBERS \\ x. \\ 1 THEORETICAL THROAT #> - (A) CONVEX EdVAL LEO 9tLLET WELD (D) CONCAVE EQUAL LEG FILLET WELD NOTE: The ** size'* of en equal leg fillet weld is the length of the largest inscribed right isosceles triange. Theoretical throat = 0.7 x sue. SURFACE OF VERTICAL MEMBER'S SURFACE OF VAf / HORIZONTAL MEMBERS h E L. THEORETICAL THROAT (C) CONVEX UNEQUAL LEG FILLET WELO (D) CONCAVE UNEQUAL LEG Fh LET WELD Note: For unequal leg liitet we'ds, the " size of the weld is the leg lengths of the largest trJ t triangle h which can be inscribed withM the fillet wetd cross section. g -+ <--X $m__f
- p n t
i ? -+ &l/l6" APPROX. BEFORE WELOING (El SOCKET WELDING FLANGE f, e nominal pipe wall thickness f a min. = 1.4 tnos thw:kness of the hub, whichever is smaller but not less than 1/8* t NOMINAL PIPE l<-+ WALL THICKNESS n i X-<--+ 1 x /'" l/16" APPROXIM ATELY..- T J8EFORE WELDING j i 7T \\s (F) SOCKET WELDING FtTTING ~ s min = 1.09 r but not n less than 1/8" FIG. NC.3673 2(bl-3' FILLET AND SOCKET WELD DIMENSIONS (not permitted for { connections over 2 inch nominal pipe size) 3 136 f Figure 3. &5 .It J
- g mu-..
_--_m_ __m._
f:M.? G L a =:r 1: 37c w U i h1[ < [.,f .k fIQ,,. . i f$ .1, ' NC4&.X) - DES tG N.
- Fig. NC.3673.2(b).li
- j 0 7 N Mition1 W84
'^ M, a;a m ;* a - s( f y< m. .- FLtsgatity - $ttest in4tps r+Catoon '. < .j Y I L, i GK 3 'Sl$:,9
- Dessnphun,
' Factor 4 / ' f actor # - $hetcn i ' ~,,W .;n-i, i ; r N.W ' < L Foe checting oranch end - 14.{ . ', a (, 2 Z m w(r'.)* l'. \\ ;- 'i i s t.S I, .c [,.. .. M: l: ,.2 ', 'gr ,1 For checkjng run ends ' Fig. NC.3e7J.2%2 ' ' tranca conneeuen (Note 141 i pw /q N 'e .'2 = w ( A. ): 7, : j i n .c , i
- s.
,4 s i, l l f' g. os 1 ' gf [ Q j. - E, i'- i d' d ' but not less than 1.5 - l 4 s
- 7 m
3, ~: f ,y . ~ '1 1.0 ? ,.e- ~/ [ Girth tsutt we6d (Note (1)] ; 4 . W 7'l ' y' x ) r.: i .. -l$ . O,9(j + 33/g,) 1.9 rnas, or. j! \\# " eun we6d (Note (1)]- lsf Wy6 ~ d ?c 0.237 in. tiut not less than 1.0 t' ac i n ,r~; - .j y{,U is Flo. hC44271 - 58O. Mwadonnaiiviet weideo - . 2.1 f(C,ItJ stetenes (c H. (c 2), - ,jf * % r ud we6ded jointe'- ,'1 '88 "8" and (c.3) ; N r, i ).{.jN IJNote(10) : y;. - ) p$$ $ ; .e 2.1 - Fie. NC-4511o, .. *e aresee W.w, 1 )'4 ~ G g-0 NOTES TO FIG. NC 3673.2(b).1: W84 (1) The following nomenclature applies. . # = mean radius of pipe,in. (muching pipe for toes and elbows) ^
- t. = nominal well thickness of pipe,in. (matching pipe for toes and elbows, see Note (9)l-R = bend radius of eltv.v or pipe bend,in.
r' S83- . # m one-half angle between adjacent rmter axes, dog. ~ s = miter spacing at center line,in.
- t. = reinforced thickness,'in.
- [
W44 8 = everage permissable mismatch at girth butt welds as shown in Fig [ NC 42331. A value of 8 less' than % in. may : 'i ' be used prodded the smaller enismatch Is specified for fabrication For' " flush" welds, as defined in Fig.' NS-3683.1(chi,8 may be taken as aero,4 = 1.0, and flush we6ds need not be ground. D. = outside diameter,in. .{ ' (6) The equation applies only if the feitowing conditions are met: (e! The reinforcement area requirements of NC-3643 are met.' . Cs) The axis of the branch pipe is normal to the surface of run pipe well.- ' (c) For branch connections in a pipe, the arc distance measured between the centers of ed} scent branches along the surface l $sf '.of the run pipe is not less thart three Gmes the sum of their loside radii in the limgitJdinal direction or not less than l e '\\ . twe times the sum of th9ir inside rodil along the circumference of the run pipe. /d) Theimide corner radius r, (FU NC 3,473.2(bb21 for nominet branch pipe site greater than 4 in. shall be between ga; .10% and 50% T, The radius dis no.t tsquired for nominal branch pipe size stuctirar ttftn 4 in. (e) The outer radius r is not less t? tan the torger of T.12, (T.* + Y)/2 (Fig. NC.3673 2(b)-2 sketch (c)] or T,12. e (f) The outer redius r, is not less then the larger of -{ - (1) 0.002f 6 p r . (2) 2 (sin d)8 times the offset ice the configurations shown in Figs. NC 3673.2(b) 2 sketches (a) and (b). '[~ (g) / LIT, :s 50 and c'.lR. s 0.5. J
- N p ( (# The outer radius r is not required provided on additional multiplier of 2.0 is inc e
Mnd run end stress intensification factors. in this case, the calculated value of / for the branch or run shall not be less thast 2.1. l ~ C (11) C is the fillet weld length. For unequalleg lengths, use the smaller leg length for C s. 'n S (- higure4. I ll 1 N 3 4 4 ~.- y
.] u -l ll
- y. g i
' (p; L' b ? 1983 Edition .r 4 NC4000 - DESIGN Fig. NC.3673.2(h).2 - i i i .+ T +' t= I' 6 o e .g + + r, f Stanth _ pipe l g s e r, g J \\ .y . e,. r3 l b - e 's d a 0, < 4 s o g.- t,, g l i Q s g
- 4 L e,enen d-s q
-( . l-h; K r;,, 4 N -0,, = 9o oeg. r,o ': ps r ', j -- Of fies 2 '- of f set - Lg _y L, 'p - .r-p j, T I D r g t gp s f -5 .mK sw ].. g p, . r, ^ g, , r, tal 2 (bl 2 Brancts pipe p 4 r; -e- - rf = rs Branch pipe N (' 's 7 s U rf,, ry
- Yg e OM sr 0
8,, 4 45 0 \\ r*e ~\\; e, b =j T l Brenen f ~ W,, 2-w' 0 t r/2 T l* ,!2 ggA t '2 i a f:q / .h r, ( f
- ttr, QG 4'
2 kyM hf d ' d
- m h.,,
Am 2 (c) 2 (d) e e H W. = outsede deemeter of beench pepe. in. GENERAL NOTES:
- r. = meen tedeus of beencfs pipe en.
(N I
- 8. r.. re ts. f., and r ere denned in this figure.
T', = nom.nel INckness of beench pipes en. (2) If (, equais or escoeds 0 $ % r, I. then r'. can De taken $82 A. = meen tedeus of run pepe, en. es the tedeus to the centee of T.. F, = nominal in ckness of tua pepe. in, ti FIG. NC 3673.2(b) 2 BRANCH DIMENSIONS Fi re 5. 169 ,. l,,, i v-4e7 ,w.~ a* l l
W 1 J, s (-liE i 1 y s: i.' ~,,, ' ( (i ]
- m., < W j
Ih 1983 Edition NC-4000 - FAllRICATION AND INSTALLATION Hg, NC.44271 ' - " '1 s Theoretical throat Theoreted throat 1 . Surface of vertical member Surf ace of verta:al member o> / 3 Conves fillet weld Site of weed. \\ Concave fillet weed g g Surface of g hortsontal memtser _}, +- Size of weld a NOTE: The site of an equalleg fillet wrkiis the leg fength of the largest inwribed right isosceles tri. angle. Tewo<etical throat = 0.7 a site of weld, tal Equan L g Fillet Weed -[ -( h e w W throat Theoretical throat Surface of vertical member W- \\ Conven fillet weld k_ N x s g, 4 y g Surface of horisontal member NOTEt The size of an uneaualleg finet wWd is the shorter seg length of the largest right triangd which can be imcribed S[d within the fillet weid cross section. (b) Unequal Log Fillet Weld .( <t m m m: ~ ~ ~ ~ ~ a min. n a min,
- ~ * ' " ~ '
.-~ a min, a min. s min. / n min. /M 7 h* 7 E } wwwmt mmxw 4 A tmww h t, or % in., wnichever f j+ r, or M in., whichever i f f ] is smWier is emWie, - 1/16 h. approx. Front and Back Weed-Fece and Back we64 (c.1) $3;a.on Fluge (c.2) Socket Weeding Flange (- C, q' : {. t, nominal pips weil thickness NOTES: s min. = 1 Ar,, or thickness of the hub, whichewt is sir. aller, but not less than 1/8 in. tc, 1/16 in. oooroa. C, men. = 1.09t where t, a nomina 4 pipe wWI thickness ST n V W beforewedding I (c) Minimum Wedding Dimensions for Sliowen and j Socket Welding Flengen and Socket Weedmg Fittengs (c 31 Socket Welding Fittmss ( FIG NC-44271 FILLET AND SOCKET WELD DETAILS AND DIMENSIONS i ,,[ *[" *
- vi E_____
~: ,o - + Fig. N B.423 31 SECTION ill DIVISION I - SUBSECTION NB ' - n / I ' I t/2 t 450 M AXIMU M g p MAXIMUM SLOPE / f / / / ' f !?." n i uAxtuuu stoPE ~ 7 1/32 in, MAXIMUM UNIFORM MISMATCH BORE DIAMETER 11/32 in. AROUND JOINT PIPE ( -t OR 1/4 in. (LESSER) + ///////\\ I ALTERNATE IF COUNTER 90RE O ' 4 15 NOT USED
- giegggS3,
{ .b i (a) CONCENTRIC CENTERLINE 5 i l .i 6 / 3/32 in. MAXIMUM AT ANY ONE PtPE ( COMPONENT d POINT AROUND THE I JOINT l 1 f (b) 0FFSET CENTERLINES NOTE THE COM81NED INTERNAL AND EXTERN AL TRANSITION OF THICKNESS SHALL NOT EXCEED AN INCLUDLD ANGLE OF 30* AT ANY POINT WITHIN in t OF THE LAND. FIG. NB423311 BUTTWELO ALIGNMENT TOLERANCES AND ACCEPTABLE SLOPES FOR UNEQUAL l.D. AND O. D.WHEN INSl0E SURFACE IS INACCESSIBLE FOR WELO!NG OR FAIRING k i Figure 7. l i 166 1 l F77 -~ e o-_ _ _ i
'o r pu '79 ce
- ..p -
i j l f,- s_' k e i i x .'s. l l / j .6 o /t = 20 40 5 l 80 1 h '4 ao O N S y 6 3 l j l 2 I / I 1 i I I I~ I I I o O O.5. 1.0 1.5 2.0 6/t . FIGURE 8. OUTSIDE SURFACE AXIAL STRESSES, GIRTH BUTT WELD WITH RADIAL WELD SilRINKAGE, HOMENT LOADING. ?') / R L______.____._._____.._._______.____m.
6{'i.[M i ^ <L g~., i t tt.'l* .. t e. s t, ' ORNL-OWG 83-4597 ETO 500 3-I I' .l-4 l 3 ,4 EQ. (9), CYCLE 3-TO-F AILUR E = E O. (9), WITH F ACTOR-OF- -- 100 j. SAFETY OF 2.0 ON STRESS ' g ~. 50 '$s = 0.- ?E -:/ Ss = S ' e h E ,3 50 EQ. (6). CODE 2 STRESS RANGE LIMITS N e FOR A106 GRADE 8 UP TO 6500F Se = Sn = 15 kaiPER 831.1 \\ 1 l t l t l' 10 102 3o3 104 105 jos CYCLES li. Fig. 9. Comparison of Eq. (9) 'with Code 2 allowable stresses for SA106 Grade B material. e j-l- g 1 i l c i ~~M .2
.m a. s w-u...- i ~ -i 4!.U(4y y 3 t{JE C J0:dQ Hggd""+y 7(g., g a,.n 1
- {
i
- /
. COMANCHE PEAE C$~lN G ib b s S H 111.In c. uu .vidvw-v J '(.p.y. [3g RECENED 5E'P 4 1985 l i zg 11 PrmPfa.ts ' * ' " come ue: mea 4mesen g*2-g g Int ><nm o w r m s m m s g[,QJOB600X- .j A orno caney l khdhh-4 L //0,/ Auefust 30, 1985 d GTM-70490 1, Teu:as Utilities Generating Tp j Pest;Offica Box 1002 G.*. e n R o s e, Texas 76043 Att,entions Mr. J. B. George Vice President /Peoject Gen. Mgr. Gentlemen TEXJdi GTILITMS GE.NERATING COMPANY j COMANCHE PEAK STEAM EL'0CTRIC STATION G&E PROJECT NO. 2323 PIPING & SUPPORT RSCUALITICATION PROGRAM " E) BUILDING SETTLEMENT CRITERIA PENETPAT!ON REACTION POINTS PJ.'? 1: SWEC LTR C20-24 DTD 8 /16/ 85 P27 2: G&E LTR GTN-70446 DTD:8/21/85* REF 3: G&E TMr4 GTT-10505 DTD 9 / 20 / 84 In responas to itam 3 of ref rence 1 (building settlements) a copy of refaranca 3 is attached which providas the reasoning behind GER n'ot pesrk, r: ling e. building settlement analysis for ~ 2 Comanche Peak. 4 jg? n n Refue.bce provided a list of Penetration types ar.d problem piorities. Attached ex4.3kot.ches indicating'the locaticn of reg. tired tor.c-:Gn Niit4 '_and '. odd format / breakdown.. . 1 __ - - - 4s @ r ut L. W- 'c-_' T C h'u ll.uf. G.YU b.C hGL T.Mks
- s. sHerH (H. sHa v V
c.,m ..,~~.~ - . ~ ~.. .. ~.. - ~.. ~..
4 5 . - ' '..-4. y l,I. 'g. ,~
- 7
.3, 4 s .. ~,... 'g ,o.- e o>
- $1bbe 2; Hill,Inc.i
.1
- . x ' Q GTN4049c. Nuquat 30, 19'85
@[Y, j.T Should you have any.quantions contact H. W. Mental-(x6302)., L Very truly yours,. L .GIBBS.& HILL, Inc.- "~ -)
- h. _
Robert E..Ballard,'Jr. Director '.of. Proj ects ~ ' t.L ~' REBa-NMR-BWMe :1c 'i 1~ Letter CC. AEM5 ~ (B&R Site) OL W. P.. Klanna ' (SWEC NY) 11~ lA J. Finneran ("'USI Site) 1L +. y':.,_ a I l Fi i . n - b4 ma __j .-x_
1 .,N' 'N 2. ') '&A\\ .N v% Ct d@; TUSI - SITE, 0;MbeO-f' (TELECOPY) !o Q 'I C.Cm I n. am,eg _mg 'i SEPNEMDER % (( ATT:SNTIONt J.FINNERAN~ ~
SUBJECT:
LFFECTS ON PIPING SYSTDiS DUE TO BUILDING SETTLEMENTS 'l THE SEMLEMDIT. 0F A.LUILDDIG DUE TO THE DEFLECTION OF ITS SUPPORTING MEDIUM IS VERY SMALL W M THE EUILDING IS SUPPORTED ON A ROCK SUCE AS THE CASE WITH THE CPSES PLANT,-AS CAN BE SEEN YRCM THE VALUES GIVEN IN'CPSES FSAR TABLE 2.S.-4-7 (IN THE ORDER OF. EUNDREDTE OF AN INCE - <~ . (Q :f f r EVEN THOUCE THEY WERE CALCULATED BASED ON A CONSERVATIVE, 1 w APPROACE). DUE TO THE ELASTIC NATURE OF THE ROCK CHARACTERISTICS FOR ( _j
- THE CPSES SITE, TEISI PREDICTED BUILDING SETTLEMENTS WILL ESSENTIALLY TAKE PLACE DUEING THE BUILDING CONSTRUCTION PRASE, i I LONG BEFORE THE INSTAI.1ATION OF PIPING. SYSTEMS INCLUDING
\\ SUPPORTS, THUS, RESULTING-IN EXTREMELY MINOR DIFFERE2TIAL i MOVEMENT 5'BITUEIN,BUTLDINGS, WHICH COULD HAVE EFFECTS ON TTE PIPING SYSTEMS RUNNING ~ DETNEEN,THE BUILDINGS. FURTHERMORE, ASME CODE PACVIDES VERY HIGH ALLOWABLE STRESSES FOR THIS - ""'PE CF ' PIPING ANCHOR MOVEMENTS. 2 ...f..=E.C_.~.W4--. I T,GM AIT N v i f e l* s s l v' _. 20+ ,m mm m. _ _ _ _ _ 1
- w.r a c e az. s o.
z w s "-
- a
"~ l
- e_ : ?a, -. i e**..
,, _,s - t 2 i .g 3.. s, <i GTT- /O - SEPTEMBER M M/[. g ' kg;l - ~, '~ I. t h IT SHOULD ALSO BE NOTED THAT THE CODE REQUIREMENT FOR I .c EVALUATING THE BUILDING SETTELEMENT EFFECTS ON THE . PIPING SYSTEMS $ IS OBv!OUSLY'I'! TENDED FOR BUILDINGS SUPPORTED ON SOILS RATHER TEAN ON ROCKS SINCE THE 'i i,-- -. BUILDING SETF q iTS FOR'A ROCK SITE ARE.5EVERAL ORDERS OF ~ MAGKITUDELSMAILER THAN THOSE FOR A SOFT SITE. ~ .i L [id, f., # Cp( j 79 .s ? - R.E. BALLARD/C.M. aN/C.I..CORBAN C9 0 f SCO. 9 0 e L g - q I, l d -o 1 s R O l \\ L'~ ~~* _ _. Mi ~ ~ **' ~2 " ? * ~"~ ~ ~. **
- T..
L*~P*~~~**
- * ~ = * **
- m
~
1^ Uga_,. e, ..a -y--+---- 4 ~~'~~~ ~- r - ~~~ .. L j;'
- '. ~~' ?
u.w L: PENETRATION LOADINGS N: m.:w \\ b aus : qy ,l'. Attached areLpenetration sketches (obtained frem Drawing b 12323-M1-0503 " Reactor. Containment Penetration and Details")- -identifying those locations at which Gibbs.s Hill. vill-require-piping loads: 3 J.. l '. Loads ton l the piping to penetration. flued head weld 12. . Loads on ths. penetration sleeve at the containment 3 i ll wall centarline [.- J 6 ~4 Loads shoul'd be : supplied in terms of: 1 P tiial Load k, L -V< Shear. Load (resultant): i. 3 l. Tbraional Mocent / y'e;, L p M en ng-ment Wesuhand B. ./ In addition to' load combinations (normal,, ifpoet, amergency and faultad) an individual, load breakdown is required (i.e., thermal', deadweight, seismic, etc.) 1 1 e.. ~' - O \\ ,k l l 1 (Iu l ~ \\,.. ;, e l q ~ l l ---...- w _ _ - _ - - 1
1 t ..v.' a 1 l . g f.c,OdN$b M 2'., 6 8 6: 40 L.4: rd, s.w.h.il 3 . a.. ;. + e s. r .w. + p;.,.....,.,. y u,. 1 y :.; :. s :. . _..s .,g, ,j ' 'l... ; - ,,g mj .b..(.'.O{ g* d r4 '.* . j': x, a ? M..,.m. L..) $vW @...[ ; A _t?- ,.g.p.' .o;< .g.~ Q.c.x. E..: s,.. f o,s,....w,.
- t.n.
x t .s.,.r,...a, 7 , L. mp+.e..s...s.g e m. W.f,
- h..<,s..
p..,.y',. p g. m, w,., y- .i , o[u ,i s j. o m.. r, <. i . m.s.q.- J. a 4 ?- e,, W. '4 ,~ -
- f.,-
- rj-'
1 d.sj-f 6
..-s
~.
- 3,
.d 2
.. _ +
4 s
.e r
o, s,
o
~
s A,
N i.
.W ui p
. r a
s
..NJ.,J '. k i p.~
'.2 O,
b'j 7,'- th j@.
f n
.&c.
%... h
'.l
./,Ght.
. l..-
[,.
- 4' l -
h,(.f.
- '"?
? ( ,I t //// /pr.f; ./ -p1:.u. :4. f. ;, n, s ,y.s,, y-t , j,', .x.o .,7*.. + =.. ,s ..,,.'pF,x; ,f .y? q p-m .,..W c, V u i. i n 'p. :. <2.s. ,,.....a... e i .. %a .y -V;, . g .j. p g -4 v /. 0 y> ,*,i p. o r. J - w 1 + l.. / i. /'-. q / ' s.
- g.
j ,9-a- o 3 f k .s ,.i ,a f 5.^N,. l, ,t,. t., / . s. 93_ i f g s y,s /, / .. ~ ', ~ N j" s ,W \\g'e - v / 3 l ,l f. i s.,}K. s- ,j Ll1. : l. / u,4 8 1 / t 's, ..;@> a; J!~- (', h..< .f
- l^
.-l 'a f + i m.4 f, t sN.'l Q 4-. / e x h.'T e', %^ - r (; 4 / 's ] ,g V-W - - ^ O y [ Q' M i
- u..
01 4 -- / N.,, e, e1,/ !) p o' / ,sf.\\ j .a. >. /. N* in l 8; 's \\, / l O. o e a .m, / j &sx:.- .-,.+, 4, ,X 4, .I i 1 / A,,g; A.<gr f,, -l s ,fgN r' l g x s .i ^ ,.I ( /. '..4 / ps i ( N
- s I.. -
.t ..s .a. 6 ( /. 't .p , f I. *
- N
/, k.[(.[, -4 g . g Ws I i ,t.a -j a-** g ',< J q, O I t h / -#pi. p.' t l9 <N e' %4 i$ M <1 e- , p L.;. i p s.: . g S k . g; t. e ,2 ".- l. Ly.M.g 's .s.< f,j .r. I c t . ' q-D j . ")3g.lOs 'lp. 6s f ..3 k.,3'. M s A! o D'f '/ 'l (b.1; ,' l 6.1 d. q)' - iq 5^ / / (A.n ix .y i . M g.qV ..L. u
- t,u u.
.f. [.. s, hc. lib 11 t [. i. y s i gr N. y
- ,,. 7 4", {"-
( 4
- s. -
a 'Y R. s 4 7. I g g e ( 9.- g. e g e O k ,g. -1 1 . f 2.,.... r. gQ 3,
. + 2 g,;.. a fgf g r , 3 ) g g,,6,i 6,n3 .gjlgi
- g.
m.. -Q,y i +
- 1 '
r .i / f.. - k s _s... b,,,g s l q ,11 o) wr 1-g. ,y.3,j-71 + 4 .q' "8 a c ~ O J. uJ k. l { gg 4 () v) K g ), g C g 3 ~ ..(. - .l (k _j __ /**' -. ". J r c . T --. * \\,.., . A o.) - 7 &" W. n /.. :. _ y; gr,: ., - ), '; I-
- .y.
t/ f. a. %q
- tk;>
-g g W. ;,... a. .,.$3 s,.3)- -[ '.. ( ~c q. ' :t, - J w ,a g. '; I - ...y.. %<.. f- ,2 .i. . W,N,s.. ;.s. g... v}. \\ "q o
- s e
~ N .N ;,... t i,.. .s...,...w.- Q. 5 - g,6 7 3 .s t ).,. ..I. / - : s 2.*.i- ,,,.i t.. i- ' r. . [* s Y.g%'o f... $s.ys .k, , d ,.I . '.f l.t,f1l: .f u,,'%. .-g c .v, ' 'b, .,y .. s.g, l**, ..s e
- ' g,,i s 5.
e s
- %..'d., '.4 W,Xy s
- f. ;.. J-. g y----{
' ~ [f g : 3,., r;
- .n 4.!!
, i. l q r", ), e.s y ..e ,3 -. y. i .e i .6-I I X. / i,'.*,..'.' l.f.,. t.1 g l ~- y[ ,k .v g-i, i.
- 1. * ; t j
~
- g. h.
I,,,, y
- l, t
i. x .,y \\.., .i ' t. 1 x c N (7 b' 8 / j,-. ..,)'. ~, .f. i-. r.c,. h.,.- l i ,-~. ; 7y:s, e a g. d.- w.t...u 4(y x. i g
- y..
- /, Nyt ,({}
- (.
,q / y p y .s .a f N.,*. I './) [g%' k;'X / lj .- l h. g N f
- .,'2'.
5 ,/ / l-g q,:. v ,.. i f q / ,k', } 'i., j' ', f, l. ,.: * '. )[ ; .. i. p. ].- { Y .(. t / og. q M.' '., ./ a an c f ,.. f. 'q,. 0 3 .Q ~m' g[. .[g. '. f M.W-l ( i 6,er,,v: {.. W. l 4L k. '. ' ': l
- O
} }, ' r ~l r S .'. ]
- q. 9
'. :" *./ q g., .. '. l 0 k }' 4j. ""'*"'"h x\\ p}.. / l. 1 l ,6 .i. ~ j-
- Q;'t N
,,V. >,,. g [.; . h.., p4 /s / n "4 =... v e a i-l (h/ ifi ".. 'gn c P j ', ; l.g d.- I? l. i. 'l
- 1. ;
s. 4, :. f, 41
- wpa, c
a.- (p.,n. s u .s 1
- 4..%,-
r ?- u x .~ m:..,. .s, c i z N .~. .Q y y e. q,.- l l', Nf X .d , ' (y~ . 6.,.. l,,. l., -{~,
- k.,,'3i..-
[..j's = a e. g y$$v.. ;.. j,p. f :.,7kg" 1-( / g ., e ";.- y y ,.. }...,g..u
- . N
+ :... p'.
- 3...
1 +., ,, c. n m.4, n. + %c l v. m ... +l Q .s i ,/ g(,,%+V's. yl
- (.s'/)
- I j.
- ~.--(.<Y
/ h'., E ,s O .o
- r. -
- .. s.
r 3 i i n q 1.,
- v. s.44 p h.
J- ,. h. 7 L-i 7 :: ki hh ' f d T- [.
- ,l m
.a. .1 . %...4 l- ..yi! p . hr. -1 a W. O! D .i,. tN i,l p'. ...;.m.. Ut, .. ;5 a r, p
- s. <
....) .g. s. c. l ..~. .,9 l ,l 1 n L_.-''~~*.****.*.**lA52W: = 'c#69c;>. s c'M d^o ? m 90 0 .*(. 0R M @
- O.* C=o o an.c s oe
.mn* 1- .m.
- 7
'{ 1 t.0. till.L t.;n l .08/2547 io:19 = Ster E.insi TU itti ij!' g L:l b., .J i g' ~.' i. p - p :), -Q n ~~' =. ~2 E }. 7,1 7 a
- j-i
.f e j 3-g )p - g g. Q G gy .j g* v N;.,i .'",.4- ) ' '.,,@v.W ."} l i f-. - f-i /> , 3.9 _-y A. .l 3 9.. .,Qk.k- - - - -'g. .-[i[ ' l ; ' i, n'5- ? ,.3 , e; F / I! 'h f )' [' ',. %$ 4$ u, .P /. .N - ",',-Ia.. " s N W id .N py s) .r3 v% wh. - )f y f .M }'N'Q: (.d's -J., L v
- g..
2}.j N, ;., .l: ..,j il 7/.! sG i-r g L' an. dl 75 s. 4l- ~ ~. b:. d 4' 4 Q,.y y ,il d, '71 - -]
- g*~: -
. > - v Q... .6 _ 40 [ ~ c 'Y ..!j d, sY '..i.. 'N iti o es 6,. .s' a f d. t,,. ,-e.. h' .h ' f g -}. * .s e 3 f V I3 a, <l - l,3 7 d 'd k k lg I,,, . ' L, m;, -- i r. E. ,, %s 8' g l . i ,,s,. ',r h 2 a s. y ....a - y,. t g.g 5 t .U k [, [ d to 3< L. ' v ^ m y ---p .N K bmMy,re d. ,LI ~ -:[c,.:. u d,;- ~ M \\ o .L 1 m 2 c-. -- \\.. .,,.\\. n. {. s .9
- e
, i.. a... .~ \\ f %j,M>:. A i 7 ~. yu
- v.,.
gl lh ',? .Q -Q Q - ( L N.., ) e I '. ) l,Y p g r / >y ps p, j .p. ; .f.- . k.- n
- z. }
7 .[ V p /, fr i g. f, 1, a
- y N.-
) 1q 4-o.s.k I s a.... o. m . [ '. h .{ y%, h N 4 f,. ' o v. n.R 6 u .a. t. S '. 7,,.. uw. 3., g-. d . y < < *' M k'. / m. .~y 3 M. i 9 s y 4le,,y.p:. -c.. w c n q V v, v. 3 L4 %.t y ,a A Q '<R /. .e y 0 c,.,. m .j/ s l.,.A-4 /, k ( s ') f ,f - 4 f.) 4[ f-k, - h - / m* s g ~,# ,%Y^
- c. g o
il,e. / i ' l( s . ',3g[,, x, y s: e / f A i-i . \\ l[, I
- ,j k). a
.. g .f J' 9,, + t e. r 7 () g- .+ s / 0 'Yk f Y h' {. f, '- l
- 3. l 0-Q.c
'.*b .jy. . a )]p, .. _ p$ g .a h,R 1 ", j f-I b m.. cW S;T F 7 1 di Rt G B )
- 1! &
f .qLzx nw s m e ! w. .\\ o tag g-p- A.. !.u w a s s i .I j p-N t 21 D. i. t ..l n N, O! 1: <m d
- 3 4
. s..h - ..i-6 t J. J. TE L.,.. %. 8 b..,,,...'_. ( SJ 1 .: _. a' ( \\q. .l \\ a 4MAnadMBEELfMa7 t h ___ _ _ m.. m_-__ W _m
~.. -. _ l A ::,: 1?
- i l i..i n..e wc.c a t ::... ii t t
< ( O. v.i1 A ' s,wJ .. c.. de s' o C ~ f Yl'.. /,V ;' c... l.. r. ,* p t;. y. ,i . c e: . s o,
- S s' =3J..!
l gfit 'e .t. d. 4,. e. 1 g r
- 9......
4 i l ,L. k i p -. I.). ' ' I, ~, -W %.
- ,y Y,,7 y
y y d gg...ds .u,. ..-. e.,.,.. .. K.q.,J ' , sc .[
- a.. *.
/ i. .a a. (.. t. r s
- N
(. -l'.....' i F.3 4. 1 j. i e*, ,.j. / ,s. t. i ,3., .i, .. a ...a.,. r ~ s .r...... , w. i ,w.,. _. m .r ... i,.. .t
- ....... - i. >
.... v... .. ~. .. w. o. .}
- . ~. m,., s.
.,t, .. c. e., ,a. ... v., s . t: s,..). .i m .. ". ",i,, ). ..r., }. ... ~ 4
- J.
,. N *t i J / i ...n .;r,s. a. w,i.~ ..g: 4 3.,
- 6.,0
' v a .cu .I s rs. i ";g .a.a e r Q) Q,, .'.I= t- + / {
- .,;g..
4 ,4 ts.. ... v x. .t.- .m .p, 1.. L_. ..m%...;g ..i.2.c, : p. J,.:. p= m:i. s. .... sa. (,). I .g ..,.i.~.,_.=.,.g . n. t. 1 ..._,g,, .. ~.. 2.. ....w, . 4<. ..s
- n....
- n.....
t. tB
- 4.. -
q y e,,p--....u.;. x...y. . w; .t . g.,,.v. ..rp._.. , v i
- s.,
~ i,.f.....
- c...i n..
p,,, m a . c..... n. j .:..g ... p,. g. 3 ,n... q. u s _. g a c.. i u< t,. .A y,..s .... t. n .t .,.. s .)..,. a.. c. r w
- n....
...s a., n.. .. e,, ~p..3...,..,... - n ..i.. x. .s....... s. Jo,. ,j... .. 4
- w...' t. y....
4a,. s. l../. . ~. s .qt. .. 4 : r. L. '.h... y
- v.,
j .. v..., .c,I
- 3 e:.
+ ~ :.<. / =.- .;1.,. : ~. c.
- 3
... ;.. y . s. .c. ~ p e j.. 4..... .u s. .. ~ " 1 g ." l.- L .i-3. ' 4S t.. t t ' f, ..,. ; l~. p u:. t, ,i i .~ L. u y . v. r. i, p,,. .s .i. .i q \\ . p n..tttGN).. v. l ..r - i
- r.. -
.., Ec..s.,.- t. I,. [ , a, l i ' "' j )3 4 } A . */ t .i.. .l g- ,. s . ~ - .1 y s. j x pg -l o.
- 3),
t 7'.. p, r 1 3 . I:. c t.. v. i.. m. c. s,. i s E-m n_J_ 1.h
- m..a d w.
.1-}}