ML20105A798

From kanterella
Jump to navigation Jump to search
Rev 0 to Calculation of Thermal Response for Sprinkler & Raceway Supports
ML20105A798
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 08/14/1992
From:
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20104B933 List:
References
2-FP-0042, 2-FP-0042-R00, 2-FP-42, 2-FP-42-R, NUDOCS 9209170263
Download: ML20105A798 (49)


Text

_ _ .. _ . _ . . . _ . . . . . _ . - _ - . - _ __ _ _ . _ . _ .

NtMtNtnEJ.if &

$EtMO Oppp(g [gApt)gf El[f?H Yd$ T 0 s

t 9209170263 920014 I" PDR ADDCK 05000445.

f .PDR Joeno n2r/.eZ3 l**GL O f4 7912, / Jeu 7 so.91 ABB cm ~o ,F My ev ' -DATE CHEcxto cart . u !"4.Ec%%L es /? 2/d -j $ -/>Ov4 fj

= ' v p ggv. y r-y --+---y+- -s

-U-p -

+-pw r-e- p g- g w N

Project No. C543C Schemo 2 W17/92 Time E119 Std Furnace Avg Ckt Int #1 Ckt Int #2 Ckt Int #3 Ckt Int #4 (min) (' F) ('F) (volts) (volta) (vnits) (volts) 0 LJ 87 4.8397 5.6864 5.7277 4.8833 1 254 173 4.8391 5.6870 5.7282 4.8833 2 440 439 4.8399 5.6871 5.7283 4.8839 3 627 791 4.8403 5.6871 5.7283 4.8839 4 815 874 4.8403 5.6871 5.7283 4.8839 5 1000 838 4.8403 5.6871 5.7283 4.8839 6 1060 842 4.8403 5.6876 5.7283 4.8839 7 1120 1018 4.8403 5.6876 5.7283 4.8839 8 1180 1195 4.8403 5.6876 5.7283 4.8845 9 1240 1249 4.8410 5.6876 5.7289 4.8845 10 1300 1247 4.8410 ,5.6876 5.7289 4.8845 11 1327 1230 4.8410 5.6876 5.7289 4.8851 12 1346 1296 4.8408 5.6881 5.7288 4.8849 13 1364 '376 4.8414 5.6881 5.7288 4.8849 14 1380 1373 4.8408 5.6881 5.7288 4.8849 s 15 1395 1324 4.8414 5.6881 5.7288 4.8849 16 1410 1366 4.8414 5.6881 5.7288 4.8849 17 1423 1448 4.8414 5.6881 5.7293 4.8855 18 1436 1419 4.8419 5.6886 5.7293 4.8855 19 1448 1385 4.8419 5.6886 5.7293 4.8855 20 1459 1469 4.8419 5.6886 5.7293 4.8855 21 1470 1484 4.8419 5.6886 5.7299 4.8861 22 1480 1466 4.8419 5.6886 5.7299 4.8860 23 1490 1495 4.8425 5.6886 5.7299 4.8860 24 1499 1496 4.8425 5.6886 5.7299 4.8860 25 1508 1499 4.8419 5.6886 5 7299 4.8860 26 1517 1500 4.8425 5.6892 5.7299 4.8860 27 1525 1514 4.8425 5.6892 5.7299 4.8866 28 1533 1537 4.8425 5.6892 5.7304 4.8866 29 1541 1556 4.8425 5.6802 5.7299 4.8866 30 1548 1551 4.8430 5.6892 5.7299 4.8866 31 1555 1515 4.8430 5.6892 5.7299 4.8866 32 1562 1563 4.8431 5.6892 5.7305 4.8867 33 1569 1579 4.8431 5.6892 5.7305 4.8872 34 1576 1642 4.8431 5.6892 5.7305 4.8872 35 1582 1578 4.8438 5.6892 5.7305 4.8872 36 1588 1603 4.8438 5.6898 5.7305 4.8872 37 1594 1591 4,8438 5.6898 5.7305 4.8878 38 1600 1590 4.8438 5.6898 S.7305 4.8878 39 1606 1603 4.8438 5.6898 5.7311 4.8878 40 161.9 1611 4.8442 5.6898 5.7311 4.8878 41 1617 1617 4.8442 5.6898 5.7311 4.8878 ATTACHl4ENT _ F, Sgt Ed p/c CALC H0 a 2'% ~ 5 0 ~ " Y

l Project No. 03543C Sch:mo 2 6/17/92 Time E119 Std Furnaco Avg Ckt Int #1 Ckt Int #2 Ckt Int #3 Ckt Int #4 (min) ('F) ('F) (volts) (volts) (volts) (volts) 42 1622 1623 4.8438 5.6898 5.7311 4.8884 43 1627 1627 4.8438 5.6898 5.7311 4.8884 44 1633 1631 4.8444 5.6898 5.7311 4.8884 45 1638 1635 4.8444 5.6898 5.7311 4.8884 46 1642 1637 4.8444 5.6898 5.7311 4.8890 47 1647 1640 4.8444 5.6904 5.7311 4.8890 48 1652 1645 4.8444 5.4904 5.'111 4.8890 49 1656 1645 4.8444 5 04 5.7311 4.8890 50 1661 1649 4.8444 5.G904 5.7317 4.8890 51 1665 1654 4.8450 5.6904 5.7317 4.8890 52 1669 1662 4.8450 5.6904 5.7317 4.8897 53 1674 1671 4.8450 5.6904 5.7317 4.8897 54 1678 1677 4.8450 5.6904 5.7317 4.8897 55 1682 1681 4.8450 5.6904 5.7317 4.8903 56 1686 1684 4.8450 5.6904 5.7317 4.8903 57 1690 1686 4.8450 5.6904 5.7317 4.8897 -

58 1693 1689 4.8450 5.6904 5.7317 4.8903 59 1697 1693 4 3438 5.6899 5.7317 4.8897 60 41701 1695 4.8414 5.6867 5.7305 4.8879 61 4.8403 5.6887 5.7300 4.8884 62 4.8391 5.6887 5.7300 4.8886 63 4.8403 5.6917 5.7312 4.8914 64 4.8410 5.6957 5.7335 4.8949 65 -

4.8264 5.6929 5.7335 4.8920 66 4.7997 5.6893 5.7317 4.8890 67 4.7741 5.6870 5.7306 4.8879 68 4.7805 5.6864 5.7294 4.0873 69 4.8258 5.6864 5.7289 4.8867 70 4.8362 5.6858 5.7289 4.8862 Max Temp:

ATTACHENT Va SHTMM' CkLC N0. 01'E *M M #'p.

Project No. 93543C Schem6 2 6/17/92 Time J. Box J Box TC # 1 TC # 2 TC # 3 TC # 4 TC # 5 TC # 6 TC # 7 (min) Steel Avg Steel Max (*F) ('F) ('F) ('F) (*F) ('F) (' F) 0 93 95 87 87 87 88 88 88 88 1 94 96 87 P7 88 88 88 88 88 2 103 107 88 87 88 88 88 88 88 3 113 117 87 87 88 88 88 88 o8 4 116 120 87 87 07 88 88 88 88 5 118 121 87 87 88 88 88 88 88 6 120 123 88 87 88 88 88 86 88 7 124 126 88 87 88 88 88 88 88 8 130 132 88 87 88 88 88 88 88 9 138 143 88 87 88 88 88 88 88 10 144 149 88 87 88 88 88 88 88 11 153 156 88 S7 88 08 88 88 88 12 160 162 88 87 88 88 88 88 88 13 173 ;86 88 87 88 88 88 98 88 14 184 204 88 87 88 88 88 88 88 ,

15 197 221 88 87 88 88 88 88 88 16 210 252 88 88 88 88 88 88 88 17 221 259 88 88 88 88 88 88 88 18 237 280 88 88 88 88 88 88 88 19 252 298 88 88 88 88 88 88 88 20 269 314 88 88 88 88 88 89 88 21 293 352 88 88 88 88 89 89 89 22 312 362 E9 88 88 88 89 89 89 23 319 364 89 88 88 88 89 89 89 24 323 382 89 88 89 89 89 89 89 25 340 409 89 89 89 89 f. 9 90 89 26 350 427 90 89 89 89 90 90 89 27 354 439 90 09 89 89 90 90 90 28 368 463 91 89 89 90 90 91 90 29 392 505 91 90 90 90 91 91 90 30 407 527 92 90 90 90 91 91 90 31 419 539 93 90 91 91 '92 92 91 32 428 532 93 91 91 91 92 92 91 33 440 534 94 91 92 92 93 93 92 34 432 513 95 92 93 92 93 93 12 35 440 501 96 92 94 93 94 94 GJ 36 437 477 97 93 95 93 95 95 93 37 441 471 98 94 96 F 96 95 94 38 450 472 100 95 97 95 97 96 9e 39 458 484 101 96 98 96 97 97 95 40 471 510 102 98 99 97 98 98 96 41 478 5?6 104 98 101 97 99 99 96 ATTACHENT 0 SHI 6 CALC 4 .0. 0 ?ff' N A '1%p,.

Project No. 93543C Scheme 2 6/17/92 Time J.Bex J. Box TC # 1 TC # 2 TC # 3 TC # 4 TC # 5 TC # 6 TC # 7 (min) Steel Avg Steel Max (*F) ('F) (*F) ('F) ('F) (*F) ('F) 42 h 483 538 106 99 102 98 100 100 97 43 480 538 107 101 103 100 101 101 98 44 477 531 109 102 106 101 102 102 99 45 473 522 111 104 107 102 103 103 100 46 465 507 113 105 108 103 105 104 101 47 457 502 115 107 110 104 106 105 101 48 450 497 117 109 112 105 107 106 102 49 440 484 120 112 114 107 108 107 103 50 431 468 122 114 116 108 110 109 ;04 51 419 447 125 116 119 110 111 110 105 52 408 428 128 118 121 111 113 111 106 53 407 424 131 121 124 113 115 113 107 54 398 410 134 123 127 115 116 114 109 55 393 408 130 126 130 116 118 115 110 56 386 400 14? 129 132 118 119 117 til 57 387 393 146 131 135 120 121 118 112 58 3P8 398 149 134 138 122 123 119 113 59 399 409 153 137 141 123 125 120 115 GO 392 405 156 140 145 125 126 122 116 61 62 63 64 .

65 66 67 68 69 >

70 Max Temp: 483 539 156 140 145 125 128 122 116 ATIACHMENT _SHI b U ~

ChtCno 916 M Wgic

, . . -- . - . . . . . - . - . - ~ . . _ _ - _ . . . . _ . . . - . . - . - _ , _ _ _ . . _ . - . ,

M i Encl 05ure 3 ,

FIGURE T.1 2EP4De

.)

REYJSiON 3 -i CALCULATION TITLE PAGE PAGE 1 QF 1

'j

~

PAGE1 TEXAS UTILITIES ELECTRIC CO, / CPSES UNIT 2 TOTAL NO. OF PAGES hk

~ CALCULATION TTTLE Ondic4the d the Objecthe)! CALCULATON CLASSIFICATIONS:

. Calculation of Thermal Response for Sprickler and Raceway Supports O NON. SAFETY CALCULATION IDENTIFICATION

  • ORGANIZATch .

CALCULATION NUMBER STYPE NUMBER

~

8#

FPT 2 2~FP-0042 '

WPST NUMSER COMPL/ TEM OUTPLIT SYSTEM / SUS SYC1EM YES O NO @ -

_ (OR) ATTACHED (Generic)

WPN 5

-1 1 v3S r1 NO G1 N/A APPRCNALS . PRIMT Nf ME, SIGN, AND DATE

' SUPPLEMENTS / COhFIRM'. TION CHECNER(S)/ APPRCNAL(S)! SUPERSEDES REOVetED PRl'RA RFH(f.) REYlEWER(S) INDEPENDEMT REY. NO. (TYPE'NUM./ REY.)

REWDvERrsi YES NO A. ' ' .a. n E S ds.As e5 4 aces WV M9^- '

9 g,g y h /U .

y ,io - q t 7 ,] ,9 g fee p*ra.,

4 ff

. _. + .2 3 N

DISTRIBUTION:

.HLE BOOK NO 11-1 / C-28 SWEC-E. SANDERS 805- 245/9 SWEC F. COLLINS B05: 245/9 . -SWEC R. DIBLE ' MECH C-28 SWEC

_)

2EP40s-1 REYlSION 3 F2P50e 1

- RECORD TYPE CODE: 5A 100 i

+

,e*4- 'a

  • ~ ,69 6

l 2EP 5.08 Revision 3 Page 1 of 1 TICURE 7.4 COMPUTER OUTPVT/ CROSS RETERENCE OFCANI2.ATI ON : SWFC J00 80. 01g31,02 CALC ::0,: 2- FP-0042 _ . _ REV, O_ PACE 2 C01P,g ER RUN 1 IIQUE IDENTIFIER 1J03 DATE PROG. NAME2 VERSION / LEVEL LIBRARY NAME2 C0hPUTER ADD /

1 JOB DELETE

_ _ _ NUMBER *

, . . . - N/A 1

_. es

  • or unique identification nu:nber ~
1) Mandatory
2) Optional, as appropriate CROSS REFERENCE w-cA1.C. TYPE CALC. NUMBER 2EVISION l ADD / DELETE FPT2 2-FP-0081 0 ADD FPT2 2- FP-00^ 5 2 ADD FPT2 2- FP-0019 1 ADD FPT2 2-FP-0030 0 ADD FPT2 2- FP-0032 0 ADD FPT2 2- FP-0035 0 ADD MEC2 2-ME-0282 0 ADD SPTa 3*ff-009C L Add If4 O J i o - O i 3 - O u'i i [ \ Add
' r l ais - uns-Oivi a qg;)

SUPPLE. MENT S

) DO Ei!STINC SUPPLEMENTS APPLY TO NEW REVISION? O j ..

il/A O YES NO H M IVI 3, Revision 4-- ~

Rec. Type Code: SA.100

} ,, - ,. . _ _.. .

1 -

STONE & WEBSTER ENGINEERING CORPORAT10N REVIEW STATEMENT FOR CALCULATIONS CALCULATCN CEcrCATCN NUWBER 3

\PAGE CALCULATCN N3 REVISCN NQ CALC. CHANDE NOTcE Na CF 3A

\

2-FP-0042 l 0 N/A l RECEW CF TmG CALCULATCN WAS BASED ON TME WEThDOS RELCM

1) RECEW OF:

!NEAL VPON A) INPUTS 10 AtSURE TXAT THEf KAYE BEEN PROPERLY SELECTED CCM PLETCH AND CCRRECTLY USED IN THE CALCJLATC4 (CHECK ONE) f)

UMOED RECEW (RRCVIDE JUST1FCATCW) 7 b i') UNE BT UNE REVIEW 5

B) 13SUMPTCNS TC AS:3URE THE!R YAUDGY AND NEED FOR LATER CCNFlRWATCN.

C)

Q -; n WETHO3XCCT TO ASSURE THE APPROPRATENESS OF THE CVESALL APPRCACF MS IMPLEMENTATCH. AND THE COARECTNESS C$ THE SPECIFC ECCATCNT LfTIL2E::L (CHECK ONE)

.) UWNED RECEW (PRCYCE JUSTlFCATCN) _ N/A 10 UNE Ef UNE REYlEW ^ ## "' -

C) RC.EVLTS TC ASS'/RE REASC%ABLENEES AND ACCUPACT, C 4f4 E) IF ALTEAKATE CALCULATCH f5 PCAFORWED TO YEAtry C) C AND 0) CNEM HERE AND A1 TACH CALCULAT*cN AS AN APPEND 7 C) CHE ( C# CALCULATCH (CHECK ONE)

A) CCWP'.ETE NUM E.RCAL CHECK C 'U -

F) NUWERC AL CMECK OF CRITCAL ITEWS C N -

(S* ATE NEWS AND JUST1FCATCH BELCW)

T, IN!N;SiPATNE CHECK OFfORMAT AND CONTENT C *

4) FCWWENTf.' JUS 1FCATCH RECEW WETh00S Sin'E D S INDCATEC ABCNE  ! A is.5n m as Q .
1. . n . n {1,(A btALL  %

INDEPENCENT REYtEYf EA CATE SUPERn90A CONCURRENCE CATE SAT 1SFACiCRT CCWPV - '

REYlE# (CALCULAT% LS APPRCNED FCA E.J 5A nges b' i.,o-v u

    • '"'^

e.s. S u b u s - 7 * 'i2 (J "'"

"f.'* L sGM1 Jh n,e

?SW4 042, A"Y2SCN 0

,NnePe- Am C mpt P.ECCRD TYPE CODE: LA.1 cx3

  1. i v.it c. n e o a . t n tei vin t t nih u w w n r v n a u v 4 CALCUL ATION SHEET mon C ALCUL ATION IDENTIFIC ATION NUMBER

,0 OR W0.NO DIVISION O group t LCUL ATION NO OPflONAL TASK CODE PAGE k Of f i /, U .t. M Jc e 2-FP-0042. Rsv. O f'O t

3 TABLE 0F COflTEllTS s

. HECTIOff DESCRIPTIO!1 EAQE Title Page 1 Computer Output / Cross Reference 2

  • O
i. -

Review Statement of Calculation 3 ~

2

., 3 Table of Contents 4 1.0 Objectives 5

, 2.0 Assumptions 6 3.0 References / Inputs 8 4.0 Methodology 11 t-ti 5.0 Body of Calculation 15 ct 6.0 Conclusions 29 i*

Attachment 1 Time - Temperature Curves 1-1 25 ts Attachment 2 Raceway Support Data

  • 2-1 -

,, through

,, J-C t,

SC 39 22 33

  • CO!!TIRMATIO!1 REQUIRED 3S

)6 17 38 4

40 4t 42 43 44

, 4I 46 ne r .._m .msumm.-.

. . w .. u .. c o . 6 n s. .. w nn t a . .. . . w n e v n a . m ..

CALCULATION SHEET mo n C ALCUL ATION IDENTIFIC ATION NUWBER J. 0. 0 R w.0. N O. OlviSION (, GROUP CALCUL ATION NO OPTIONAL TA$K CODE PAGE b 1 O/r in o a #1Ect 2-TP-0042. Rev. O ffQ  !

l e

8 l 3

1.0 Obiectives 6

  • The objectives of this calculation are:

?

, 1) To determine the response time for sprinkler actuation for a transient combustible (hydrocarbon) fire, a "C" curve fire and a "E-119" fire.

10 8'

2) To determine the time for a raceway support under in dead weight load conditions to fail (reach 1200'F) for a transient combustible fire, a "C" curve fire and a "E-119" fire.
3) Determine the heat release rate for each type of
  • fire.

., 4) Determine the cooling effect from a single sprinkler on a square foot basis.

5) Compare the above results to demonstrate that a 2' design basis fire will not cause failure of a
raceway support.

as

6) Evaluate as-built configurations, administrative controls, etc. for roc,ms without sprinkler protection which contain protected raceways (i.e.
    • Thermo-Lag and/or Firezone "R" cable) to determine
z. the acceptability of raceway supports under fire

,, conditions.

This calculation provides input to calculation 2-FP-0085, 3

" Raceway and Firezone R Cable Supports Analysis" (Ref.

si 3.32) which will be revised to incorporate the results of 3r this calculation.*

33 34 36 36 37 se 3, CONFIRMATION REQUIRED 40 de et 43 e4 45 46

,--,--,e- , ,

e e t.,i.c c, e r.o a e o n c .w ei c r. n.e. , w w n.r v n u w .. j CALCULATION SHEET l win )

C ALCUL ATION (DENTIFICATION NUMBER  !

4.0. O R W.O. N01 DIVISION C, GROUP C ALCUL ATION NO. OPfl0NAL TASK CODE PAGE_d_. -

O/C3.',09 /h gN 2-FP-0042. Rev. 0 ggp t

S

  • 2.0 Assumotions

. 2.1 Sprinklers at CPSES are Grinnell Model F950 rated

, at 212*F. This is the worst case sprinkler based on Ref.'3.1, 3.2, 3.3 and 3.4. These references are - representative sprinkler system hydraulic calculations for the' Unit 2 Safeguards Building

  • o where Thermo-Lag and/or "Firezone "R"' cable is ,

is installed. The 212*F rating is the highest ,

,, temperature rating for sprinklers in any of these "

areas.

'*- 2.2 Based on Ref. 3.5, the sprinkler's Response Time i$

Index (RTI) is 285 f t%S'* which is the worst case.

e a 2.3- per Ref. 3.8, 1 lb. of combustible _ material equates '

to 8,000 BTUs.

2.4 All sprinklers will be assumed to be installed at >

80 the ceiling le' vel-(worst case for response time). '

ai Based on the presence of sprinklers installed below major obstructions (such as grouped cable trays) in

~

the plant per NFPA 13 (Ref. 3.20), this is a

  • conservative assumption. -

. ta 85 - 2.5 Sprinklers are assumed to be spaced 10 ft. on

( centers. This gives a radial distance from the  ?

p center of a_10' by 10' arrangement of 7.07 ft. The

,, fire will-be assumed'in_the center of the spacing.- -

Based on-the congestion around cable trays and the ao presence of cable tray sprinklers in the p h.nt ,

io this is a very conservative-assumption..

36 3j 2.6 - Failure of the structural steel will be assumed at ,

3, a steel temperature of 1200*F. . The 1200*F (1660'R) ,

is. based on the low yp,r.psses imposed on the support

. steel (Worst case 9f ksi per Attachment 2). . The

~ 55 yield stress) . .

3. supports steel are'c,qnstructed and4fksi'is less thanof4%% 36 kgioTj' yield... Based- -

on Ref. 3.8, 1200*F.11p"uf ficiently low such that p .

?

supports loaded to -? xsi wfll still function.

se 40 41 s

bh 43 44.

tel 44 q- n_.--+-,.. -.m,,, ,,-...nn,. -,.y,-,. _

y ,,,,,g.,_ , ,,_. .-y-. - , . , _ , , - , , , , - - , , . ,e, u p.,7_,,y._a w , -,-

,, . ,, . . c .. u . . n . . . . . . a n . . . w ,, . r v . . u . .

j ._ ,

CALCUL ATION SHEET n we n C ALCUL ATION IDENTIFICATION NUMBER

.f. 0 O R W.O. N O. OtVISION & GROUP C ALCUL ATION NO. OPTl0NAL3SK CODE PAGE 7 C l 5 5_), o ). N Fi'11 2 rP-0042. Rev. 0 $$Q i

s .

3 2.7 For transient combustibio (hydrocarbpp) .firgo,7,,the

$ will

. adiabatic be used, flame Thistemperature is worst of 1500*rK(2240*p(fire) case flame

, temperature because a fire cannot produce temperatures any higher, and the higher the temperature che sooner the steel reaches 1200*F.

'o 2.8 The raceway support will be assumed to be located o 10 ft. off the floor in areas where there is

,, suppression. This assumption is based on the variations of raceway' elevations in the plant and is' suitably representative for purposes _of this analysis considering other conservativo

$ assumptiens.

c.

., 2.9 The "C" curve will be used to represent a fire in the plant. This is based on a review of Ref. 3.14 which shows that- the majority of the combustible material in the Safeguards Building is cable in to tray and per Ref. 3.8, IEEE 383 cable has a flame is spread of only approximately 0.1 f t 2/nin.

as 2.10 Ambient-air temperature at time zero will be 75'r in accordance with guidance provided by Ref. 3.15.

sa 25 2.11 Water . discharging from the sprinkler will be 80%

is offective. This is based on Ref. 3.13 and 3.22

,, with 36% effectiveness in the plume and the cooling

,, effect on vertical plates plus cooling of the burning object -(horizontal surface). Also, the 2'

burning rate of the object will be reduced by 30 prevention of reradiation.

$t 32 33 34 35 36 St

~ 36 39 40 as

'et 43

  • 4 45 44 c - , 4m.

- a . v..t. o o t o a i s n c. .. v oi t t. n m u o w n e v n u w.

CALCUL ATION SHEET l me u C ALCUL ATION IDENTtFIC ATION NUMBER J.O O R W.O. N O. DIVISION & GROUP C ALCUL Af f 0N NO. OPTIONAL TASK CODE PAGE S l O/f)/.C.

A#u 2-FP-0042. Rev. 0 5'6(? l

?

3.0 References /Inouts s

. 3.1 Sprinkler System Hydraulic Calculation 2-FP-0019,

, Rev. 1.

3.2 Sprinkler System Hydraulic Calculation 2-FP-003n, Rev. O.

io i, 3.3 Sprinkler System Hydraulic Calculation 2-FP-0032,

,, Rev. O.

3.4 Sprinkler System Hydraulic Calculation 2-FP-0035, Rev. O, CCN-0001 s

e 3.5 Sprinkler Response Calculation 2-FP-0015, Rev. 2.

3.6 DBD-ME-225, Rev. 2 " Fire Suppression System".

3.7 Heat Transfer by Frank M. White, 1st ed.

si 3.8 SFPE Handbook of Fire Protection Engineering by the

,,- Society of Fire Protection Engineers, 1st ed.

3.9 Heating Ventilation and Air Conditioning by 8'

McQuiston, 2nd ed.

re

2. 3.10 " Methods to Calculate the Respense Time of Heat and

,, Smoke Detectors Installed Below Large Unobstructed u Ceilings" by Evans, Fire Technology, Volume 22, Number 1.

19 SC 3.11 " Calculation of Response Time of Ceiling Mounted si Fire Detectors" by Alpert, Fire Technology Volume at 8

,[ 3.12 Manual of Steel Construction (AISC), 7th ed.

35 3.13 " Evaluation of Unsprinklered Fire Hazards" by as Alpert and Ward, Fire Journal, Volume 7 (1984).

37 3 3.14 Unit 2 Safeguards Building Combustible Loading Calculation 2-FP-081, Rev. O.

n do 3.15 NRC Generic Letter 86-10.

4.

dr. 3.16 NFPA - 231C, " Standard for Rack Storage of 3

Materials", 1991 edition.

44 85 46 w .m.- o . w. - , . , , ,.--o e w -i

~

.. c. e 4 . c n i. .. . . . . c t a . .. . . n r v nw w ..

CALCUL ATlqN SHEET m2 C ALCUL ATION IDENTIFICATION NUMBER J 0. O R W,0. N O. DIVISION D GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE O/g3j.0 A /l1Ec* h 2-FP-0042. Rev. 0 [fG t

3 3.17 " Correlations of Steel Column Fire Test Data" by S

Gandhi, Fire Technology, February 3988.

5 3.18 "on the Evaporation of - Sprinkler Water Spray" by

, Chow, Fire Technology, November 1987.

3.19 "The Fire Resistance of Steel Structures" by Gehri,

'O Fire Technolocy, Volume 21, Number 1.

s,

,, 3.20 NFPA 13, "Stanc.2rd for the Installation of Sprinkler Systems" 1991 edition.

3.21 Unit 2 Fire Safe Shutdown Analysis, Calculation 2-8 ME-0282, Rev. O.

4

, 3.22 " Cooling Water Requirements for the Protection of

.* Metal Surfaces Against Thermal Radiation" by Y.

Lov, Fire Technology, August 1989.

19 20 3.23 Engineering Assessment Procedure 2-EAP-016, Rev. O, 2i "Walkdown of Fire Protection Features".

et 3.24 CPSES Unit 2 Procedure 2EF-5.08, " Project Calculations", Rev. 3 (PCN 04).

to 8$

3.25 SWEC Procedure 2SW-5.08, "SWEC Calculations", Rev.

is 1 (PCN 04).

r'

,, 3.26 Crane Technical P0per 410, 24th printing (1988).

3.27 CPSES-9221733, Letter From G.R. Ashley to J.E.

30 Woods dated July 11, 1992. (Transmittal for si Attachment 2).

32 33 3.28 Calculation 0210-063-0043, Rev. 6, " Maximum Permissible Fire Loading /Non-rated eatures Analysis".

is 36 3.29 Calculation 0210-063-0003, Rev. 4, " Auxiliary 3, Building As-Built Combustible Loading".

3.30 NUEEG-0797 Supplement 21, dated April 1989, " Safety Evaluation Report related to the operation of

  • 0' Comanche Peak Steam Electric Station Units 1 and ai 2".

42 45 44 46 da

........,,nm.......s...,.......,u..

CALCUL ATION SHEET A 6014 r1 CALCUL ATION lDENTIFICATION NUMBER

10. O R W.O. N O. Olvi$lON 0 GROUP C ALCUL ATION NO. OPTIONAL TASK CODE PAGE /0 O/f1/. O 3 M EC M 2-FP-0042. Rev. O, $pQ 2

3 3.31 CPSES Procedure STA-729, Rev. 4, " Control of

  • Transient Combustibles Ignition Sources and Fire
  • Watches",

t

, 3.32 Calculation 2-FP-0085, Rev. 1, " Raceway and Firezone R Cable Supports Analysis".

ic is 12 63 4

3

!6 17

't 19 20 28 22 23

'24 2b 2s 27 29 29 3C 31 32 33 54 35 36 37 34 1

39 40 di 4I 45 44 4S AS

STONE & r!EBSTER ENCINEEQlNG COOPORATjON CALCUL ATION SHEET A seio n C ALCUL ATION tDENTIFICATION NUMBER J. 0, O R w. O. N O. OlVISION 0 GROUP' CALCUL ATION NO. OPTIONAL TASK CODE PAGE //

O / G 3 / , 0 .) /d & / 2-FP-0042. Rev. O f( )

i 2

3 a 4.0 Methodoloav S

. 4.1 Determine sprinkler response (actuation) time.

, a) For a transient combustible (hydrocarbon) fire; calculate the fire size based on the adiabatic flame temperature of 2240*F (1500*k)

  • at the raceway support using the following io equation for a fire plume temperature:

5 AT = ' 300 (6) 2a/H r3 (Ref. 3.13)

AT = - (2240 - 75) = 2165'F

'5 6 = Heat Release Rate (fire size) BTU /sec.

H = distance from fuel to support (ft)

  • Then, calculate the temperature at the ceiling s using the following equation for ceiling jet

, temperatyre:

,, AT = 92 073 /H (Ref. 3.11) r*"

Where: r= radial distance from the fire to the is sprinkler (7.07 ft) 20- H = distance from fuel to ceiling.

2. AT = Tg - Ta Determine the ceiling jet velocity using the 25 following equation:

2a as _ u = b34H'?.

Ref (3.10) (Note 1)

2. r" ze u = ceiling jet velocity (ft/sec) all other terms the same.

2s so Determine sprinkler response time using the

3, following equation:

3' R T I = t r.U r2/In ((Tg - Ta)/(Tg - Tr)] (Ref. 3.8)

RTI = Response Time Index (f tv23v2) 3*

tr = Response Time (sec) 35 U = Ceiling jet velocity (ft/sec)

3. Tg = Ceiling jet temperature (*F) 3, Ta = Ambient Temperature (*F) (75'F)

,, Tr = Actuation Temperature (*F)

"- Note 1: Converted to I-P units 40 di d'

43 ea' 45 45

~

. STONE E oEBSTER ENGINEEitlNG CORPORAIJON

~

CALCUL ATION SHEET A smo n - ,

C ALCUL ATION IDENTIFICATION NUMBER

, ,t. O. .O R W,Oi N O. DIVISION & GROUP - CALCUL ATION NO, OPTIONAL TASK CODE .PAGEN

-O/5 2/, O J- Nf E F 2-FP-0042. Rev. 0- -f(Q a

2 3

b) Sprinkler response _ for "C" curve fire. The

-i aprinkler response time will'be calculated at

. various times along the "C" curve'using the i

', corre'sponding temperature at -_ that time as a 8

-constant and :then determining the response timeas- before using RTI=tr.Uu2/In ((Tg.-

  • Ta)/(Tg - Tr)) by-adding the "C" curve time io and responne time .together, the sprinkler-

-_,, actuation time will be determined.-

c) Sprinkler response for "E" _ . curve fire. The-

'"5 response time - will be determined using the

'a above method for a "C" curve fire.

s

z. 4 . 2 -- Cable raceway support thermal response.

~,, a) Determine the smallest (worst case) W/D ratio.

The.W/D ratio is the ratio of the weight per 3

-linear foot of a support divided by the heated-

-** ' perimeter of the. support. The smaller the W/D

.. r o ratio,-the_ faster it will respond (increase in-2, temperature) _to the -fire plume temperature.

,, By determining the smallest W/D ratio,_ only

'one support has to be analyzed for each fire 23 condition.

ta as b) Determine support steel thermal response for a

3. transient combustible'(hydrocarbon) fire.

For_ a hydrocarbon- fire, the fire plume

    • temperature will be 2240*F (2700'R) per 2* Assumption 2.7.

30 3, For ~ determination of the . support thermal.

, response the fo11'owing equation will be used:

4 TS = oc _ _ _ X (Tr - T,) a t (Ref. 3.8) 2*

- C,(W/ D)

'35

3. This equation will be explained in the body of

_3, the calculation.

. s e-39 40

-46 et 43 44-

-45 4

n _. . _ ._.

STONE E. 0EBSTER ENGINEEQlNG CORP 00ATJON CALCUL ATION SHEET A Dio 69 C ALCUL ATION 10ENTIFIC ATION NUMBER L O. O R W.C. NO. OtVISION L GROUP C AL CUL AT10N NO. OPTIONAL TASK CODE PAGE /3 0/ C i ,01 /V;EC ' 2-FP-0042 Rev. 0 E6Q i

2 3

4 c) Dete/mine support steel thermal response for a s "C" curve fire.

6 The above equation will be used with the fire temperature being the "C" curve temperature at

  • each time step or if the fire growth rate is e slow enough and there is no thermal delay

,o between the support at the fire temperature,

,, then the time for the fire to reach 1200'F will~be used.

ir

'8 d). Determine support steel thermal response for a a "E" curve fire. The equation used for a hydrocarbon fire will be used except the fire

, temperature will use the following equation:

Tf = 620 logio (0.133t + 1) + To (Ref 3.8) is This equation will be explained in the body of 2 the calculation.

4.3 Determine heat release rates.

rs a) For a hydrocarbon fire the determined in 24 5.1.a will be used to determine a fire size 23 (pool size) for a gasoline fire and the

,, quantity of gasoline required to cause the support to reach 1200'F Vill be determined.

2' b) Heat release rate for a "C" curve fire.

29 3o The will.be determined by calculating the 3, total BTU /sq. ft. from the "C" curve and then 3,

dividing-by the time to sprinkler actuation or support yield to determine release rates.

33 34 c) Heat release rate for a "E" curve fire.

33

3. The same approach as for a "C" curve fire will

_ 3, be used.

38 39 40 44 42 43 de as 46

. , , . . ~ . .. . .

, STONE h WEBSTER ENGINEERING CORPOR ATJON -

'CALCOL ATIOlt SHEET;

-. A wa rs -

1 r C ALCUL ATION IDENTIFICATION NUMBER A 0. O R w.0, N O. - ~ DIVISION & GROUP : C ALCUL ATION -NO._ OPTIONAL TASK CODE .PAGE /Y

- / C[d/. 31 Mt Et # . 2-FP-0042. Rev. 0 56O-2

- -3

.4.4 Determire icooling f ef fect of _ a- sprinkler . on ' a per square foot - basis - and . cooling . ef f ect _ on reducing -

~

m -s -

-plume-temperature for a-_ hydrocarbon fire, T h e ~ c o o l i n g 1 e f f e c t w i l l -~ b e . b a s e d on the- design y --

density lof the-suppression system and the offactive:
  • _ BTU value-per lbm_of water.
D

,,- In ;_ addition, the? cooling 7effect.on a support will~

be7 addressed by: determining the cooling _effact of the : Water on the support by placing thu design

') -density of -- the - suppression system (mult.iplied - by -

4 the ef fectiveness of the sprinkler) on the_ smallest

-s side:of'the_ support.

.s

.- Compare 1 the ;results of_ the above to demonstrate'-

_'4.5 that.the supports will not_-fail.

is .

is. In addition, review the rooms without suppression-

.2- "to ' determine - the' effects on the support from a

,r fire.

-23

-~ t 3 24 35 26 21 29 29

- 3 0_

32-

-- 3 3

.35 36

4 ; '37 30 u- 39 40 l . ..

4i 42-43 ed 4g

-; .; 4 6 L

b

STONE L tT!EBSTE A ENGINEERING CORPoll AIJON CALCUL ATION SHEET e me as C ALCUL ATION IDENTIFICATION NUMBER J.O. O R W.O. NO. DIVISION D GROUP C AL CUL ATION NO. OPTIONAL TASK CODE PAGE/5 c ,,5 3 g , c ; '.'5- 2-FP-0042, Rev. 0 ,' s Q i

2 3

  • 5.0 Body of Calculation s

. 5.1 Sprinkler Response Time a) Transient combustible (hydrocarbon) fire e

  • 1) AT = 300 (6) 2is/H '3 ,

5 Fire Size) to 2165 = 300 (Q) 2:37(yo){3 i3 Q = 6131 BTU /sec

'3

2) AT = 92 (Q/r)2'3/H (ceiling jet temperature) sT = 92 (6131/7.07)23/20

=' s T = 418

  • F t Tg = 418 + 75'F = 493*F 15 ,

,, 3) U = O' 3 H 32 (ceiling jet velocity) r* 5 U= (6131} (201 82 = 16 ft/sec d

(7.07)**

to ai RTI = tr U'2/ln ((Tg - Ta)/(Tg-Tr)) (Response 22 2

Time) 23 285 = tr (16) /In [(493 - 75)/(493 - 212)]

2' tr = 28 sec (Response time in hydrocarbon 25 fire) 26 .

,, b) "C" curve fire The response time of the sprinkler is based on 2'

a constant surrounding temperature and the 30 time to sprinkler actuation is the time to si reach that temperature plus the time for the 32 sprinkler to actuate at that temperature.

RTI = tr U l*/In [ (Tg - Ta) / (Tg - Tr) )

3' U=4 ft/sec i from Ref. 3.8) 35 RTI = 285 f t '(s2 (Assumption 2.2) ss Ta = 75*F 3, Tr = 212*F 3, Tg = from Attachment 1 "C" curve as 40 di 42 43 de 4D 4s

S TONE F >;f EBS'iEit E NGINE E RING CORPOR ATIO N CALCUL ATION SHEET a mo ss C ALCUL ATION IDENTIFIC ATION NUMBER J,0 O R W.O. NO DIVISION 0 GROUP .C ALCUL ATION NO. OPTIONAL TASK CODE PAGE /b

. O f C ]f . O J 4 M f // 2-FP-0042. Rev. O g6Q i

a 3

4 5 "C" Curve ACTUATION TOTAL

. TIME TIME

, (MIN.)

  • Temp Time (sec.) (min.)

, ('F) (min.)

'O 260 2 193 3.2 5.2 Ii 340 3 104 1.73 4.73

? 420 4 72 1.2 5.2 500 5 l 55 .92 5.92 Based on the above table the sprinkler actuation time is approximately 5 min, for a "C" curve fire

,, c) "E" curve fire 2:

,, The response time will be based on the same method as the "C" curve fire only using the "E" curve. (Attachment 1) 22 23 "E" Curve Actuation Total

,. Time Time ,

2$ Time Temp (sec.) (min.) (min.)

26 (min.) (*F)

.25 370 89 1.48 1.73 te 2, .5 500 55 .92 1.42 30

1. 660 38 .63 1.63 31 32 Based on the above table, the sprinkler actuation time is 33 approximately 1.5 min. for a "E" curve fire.

34

(

5.2 Cable Raceway Support Thermal Response l 36 l 37 a) Determine the smallest (worst case) "W/D" ratio for se the four different supports used for raceways (per 3, Attachment 2).

4C All weights and dimensions are from Ref. 3.12 41 42 43 44 43 as

a i v..t c. e t o s e e n L M u s N t t n e N 4 t,V M FV rt A i t V N CALCUL ATION SHEET r soie as C ALCUL ATION IDENTIFIC ATION NUMBER J.O. O R w.0. NOc DIVISION 0. GROUP . C AL CUL A TION NO. OPTIONAL TASK CODE PAGE /7 O f g 3 /, 0 :L Agc f 2-FP-0042. Rev. O C6C i

2

-s

1) .C 4 X 7.25

-S e

W = 7.25 lbs/ft (Linear) 7 8

u j ~ 4.321"

,o -

i, 1.721"

  1. 2 i3 4

D= (2 X 4") + (4 X 1.721") -

(2 X .321") = 14.2"

. D_= 14.2"/12 = 1.18 ft W/D = 7.25/1.18 = 6.14 lbs/ft2 19

2) C6 X M 20 W = 8.2 lbs/ft

'ri D= (2 X 6") + (4 X 1.92") -

(2 X .2") = 19.28"

D= 19.28"/12 = 1.6 ft

,3 W/D = 8.2/1.6 = 5.13 lbs/ft2 as i~

25 !6" to j-

- - .2"

, fl.92"I se 30 si 3) Tube steel 2 X2Xb 32 W = 5.4 lbs P2 " -si_

33 D= (4 X 2") = 8" . 2 5 'j '2 "

    • D = 8"/12 = .67 ft l 35 W/D = 5.4/.67 = 8.1 lbs/ft2 ,g.

as 4) Tube steel 3 X3 X <*3 " -+ i p 3" W = 8.8 lbs/ft . 2 5 " I, 3, D= (4 X 3") = 12" l

3' D = 12"/12 = 1 ft '

4e W/D = 8.8/1 = 8.8 lbs/ft2 ai Based on the W/D ratios, the C6 X 8.2 is the worst 4, case member.

43 44 4$

44

STONE E. CEBSTEQ ENGINECQiNG CORPORATJON I l

CALCUL ATION SHEET l 4 s:,e is C ALCUL ATION IDENTIFIC ATION NUMBER

. 0. O R W 0, N O. - DIVISION E, GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE Ib O /5 2. . O a //EC / 2-FP-0042, Rev. 0 [f Q 2

3

, b) Determine support steel thermal response for a transient combustible (hydrocarbon) fire (Tf =

5 6

2700*R or 2240*F).

t ATs = a _X (Tf - Ts) at (Ref. 3.8) e C,(W / D) no a= ar+ac (Ref. 3.8) where:

2 3 a r = 4. 7 6 X 10'" X Er x (Tf - Ts )4 i

, (Tf - Ts)

, (Ref 3.8 & 3.7) 4 a 4.76 X 10'" is the Steffan-Boltzmann Constant

, (1.7121 X 107)i'O BTU corrected from hrs.

,, hr-f t2 _.R to secs.

is Er = .7 based on Ref. 3.8 columns (worst case) at a c = 1. 4 6 BTU (Ref. 3.7) 23 hr-f t2 - F is

" converted to sec. 4 X 10" BTU 26 sec-it

  • F("R) 2

.' W = weight of steel = 8.2 lt s/f t(tor C6 X 8.2) 2, D = heated perimeter = 1.6 ft 3, W/D = 5.13 lbs/ft 2 30 -

3'

-Cs = the specific heat cf the steel which ranges from .107 BTU /lbm *F at 0*F to 32

.172 BTU /lbm *F at 1100*F and remains 33 constant above 1200*F. Cs will be 34 modeled by the following equation 3, Cs = .107 t(5.9 X 10'S X (Ts - 460*)

36 37 38 39 40 46 42 43 44 45 45

f p p 3 1 ,

_ ~

S a STONE'E CE85TEQ ENGINEEQiNG C0QPOR ATlON-

, s p~

M4 _CALCUL ATION ' SHEET

" . a sco es i k:- :C ALCUL ATION IDENTIFICATION NUMBER

- - s. 0, O R W.O. N O.

OlVISION 0 GROUP ~ C ALCUL ATION
NO, OPTIONAL TASK CODE 'PAGE gjy3, g y cf, $ g .:: 2.FP-0042. Rev.L0 El Qi
2 ,

e s s

--, Where:

~

- 5 4 ;Ts ,= 'the-steel-temperature in *R
  • a aTs4 =' the change;'in- steel temperature at- ,

.7 Lany, time step ~

H :s

, At =-time increment i. n sec.

Tf. = the flame-temperature = 2700*R -

it -'
2 Note: - Ts at time'O.'= 535'R or 75'F for ambient-air conditions-(Assumption 2.10).

.t

+ 1.

~

t5

-49 20 L26

,. 2 t

-t 2 3

'24 tt 26 -

,2' 2S "29 s

- 3c=

'31

. 1 =32

33

.., .34 i3Si

'  ; t?

36 137 m 34

.39'

-- 0 0 4

en

. gg L45

.de

.CS l64

-- ,,..,,-; , , - , .- + s .- , , .. , , ~ . - , , ~ . . . . , - - - , . ~ + - - , - - - .-.,.~,-:,,,-,

, . . . _ _ . -- m . _ __

r SVONE.E. CEBSTEQ ENOINEE RING CORPORATION C ALCUL ATION? S H E ET

. g, w C ALCUL ATION IDENTIFICATION NbulBER

- 4. 0. O R W. O. N O.-. DIVISION 0 GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGEdO

- . y . a.

ny. 2-F?-0042. Rev. O f f -Q

+

.2

S

, --. Table of results of iteration _ of _ above equations at 2

.sec.--intervals:

I 5 Note: 2 sec -interval- was u' sed because of the high 4 . -(2700*R) Flame-Temperature

1

, LTime. Tf Ts - d Cs ATs- Ts: -

e (sec.)--

('R) ('R) (*R) (*R) 30 0 -2700- :535 0 -

0 535-

= 2700 535-2 8.6X10'3 .111 65 600

- ,e

-3 4 2700 600 ,

8.8X10'3 .115 62 662 4 6 2700 66'2- 9.1X10'3 .119 61 723

'B! 2700- 723 9.3X10'3 - .122 59 782 v =10 2700 782 3.6X10'3 .126 57 839 12 2700 839 9.8X10 .'129 -55 894

,e 14 2700' .894 1.0X102 .133 53 947 8' 16 2700 -947 '1.0X102 .'136 52 999

-~

'22 18- -2700 999 1.1X107, .139 51'- 1050 23 a'4 - 20~ 2700 1050 1.1X10'2 .141 49 1099 25 22L '2700- -1099' 1.1X10'2 .144 48 1147 as j 24- 2700- 1147 1.1X10'2 .148 47 1194

~

2e 26 2700- 1194= 1.2X10*2 .150 46'- 1240 10 28 -2700 1240- 1.2X102 .-153 45 1285

-3 30 :2700 -1285 1.2X102 -.156 44 1329 32 2700 1329 '1.3X102 .158 42 1371 v33 3g 34-- 2700 1371 1.3X102 .161 41 1412 13 5 36- ~2700 1413- 1.3X10 2 .163 41 1453 sa 3,

38 2700 1453- '1.3X102 .166- 39 1492

.se 40 -2700- 1492 1.4X102 .168 .38 1531 39 40:

49 42 43 44

'4 D 44

STONE E oEBSTER ENGINEERING CORPORATJON CALCUL ATION SHEET a ct es -

C Ai.CUL ATION IDENTIFIC ATION NUMBER

.; O. O R W.O. N C. OtVl$10N D GROUP C ALCUL Atl0N NO. OPTIONAL TASK CODE PAGE 2 /

/Ei*.OJL // f C .- 2-FP-0042. Rev. 0 EfO

's 1

a _. --

5 Timn Tf Ts3 d Cs ATs Ts2 6 (suo.) (*R) (*R) ('R) (*R)-

42 2700 1531 1.4X104 .170 37 1568 I e

, 44 2700 1568 1.4X10 4 .172 36 1604

'O 46- 2700 1604 1.5X104 .172 36 1641 i,

48 2700 1641 1.5X10 4 .172 36 1677 i (Approx.  !

d 1200*F)

  • The support reaches.1200*F in approximately 47.5 seconds

?

Preparer's Note: The calculator used, maintains numbers to 10 places. No effort was made to round-off these numbers during the calculation because to the accuracy of the analysis was maintained.

-21

c) Determine support steel thermal response for a

,, "C" curve fire.

From Attachment 1, a "C" curve fire takes 22 approximately 42 minutes to reach 1200*F. Due to

6 the slow growth rate of fire temperature, the

~,, support temperature will closely follow the fire temperature. Therefore; 42 minutes will be used 29 as the time to reach 1200* F for a "C" curve fire.

30

' d) Determine support steel thermal response for an 3: "E" curve fire.

32

" The method will be the same as that for a S'

transient combustible (hydrocarbon) fire except-that Tf will'be culculated using the following 85 equation:

36 3, Tf = 620 logio (.133 t + 1) + To (Ref. 3.8) 30 39

-Where: Tf = Fire Temperature

'U t = Duration time in seconds 4,

.. To = ambient temperature at Time = 0 3 To = 535'R or 75'F (Assumption 2.10) 45 46

STONE E. WEBST E R ENGINE E RING COA ~rO24TIO N CALCUL ATION SHEET

& $013 45 C ALCUL ATION IDENTIFICATION NUMBER

. O. C R W.O. N O. DIVISION & GROUP CALCUL ATION NO. OPTIONAL TASK CODE PA.GE N tm .r e

f 0.1 /l f' c 2-FP-0042, Rev. 0 9Q 3

' Due to the duration time aT = 30 sec. will be used. As before, W/D = 5.13, Cs same as used above.

-6 7

Time Tf 1 Ts d Cs ATs Ts2 9

(sec.) (*R) (*R) (*R) (*R)

.o 0 535 535 0 -

0 535 30 067 535 1.0X10'3 .111 23 558

.t

_3 60 1126 558 1.3X10 .113 38 596 a 90 1225 596 1.5X10'3 .115 49 645 120 1297 645 1.8X10'3 .118 57 702

>> 150 1354 702 2.0X10'3 .121 63 765 180 1401 765 2.2X10') .125 66 831 e 210 1441 831 2.5X10'3 .129 69 900 2'

240 1475 900 2.8X10'3 .133 70 970 22 270 1507_ 970 3.1X10'3 .137 70 1040 23 2 300 1534 1040 3.3X10'3 .141 69 1109 330 1559 1109 3 . 7 X10'3 .145 66 1175

, 360 1582 1175 4.0X10'3 .149 63 1238 2' 390- 1603 1238 4.3X10'3 .153 60 1298 2s so 420 1623 1298 4.6X10 3 .156 56' 1354 3i 450 1641 1354 4.9X10'3 .100 52 1406 480 1658 1406 5.2X10'3 .163 47 1453 33 34 '510 1674 1453 5.5X10'3 .166 53 1496 3'

540 1690 1496 5.8X10'3 .168 39 1535 36

_3, 570 1704 1535 6.1X10 3

.170 35 1570 is 600 1718 1570 6.3X10'3 .172 32 1602 39

,, 630 1731 1602 6.6X10'3 .172 29 '1631 mi 660 1742 1631 6.8X10 3

.172 26 1657 690 1755 1657 7.0X10'3 .172 23. 1680 l 45 46 [

, . . . . c . .. u c a . n . . . . . r. c n . . . . . . n , v n m a CALCUL ATION SHEET A M10 AS C ALCUL AT10N IDENTIFICATION NUMBER

.,bORw.O.NO. DIVISION 0 GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGED 3

/r3/ OA //jf(r 2-FP-0042, Rev. 0 56Q
2 3

The support reaches 1200*F in approximately 66C sec. or 11 min.

S 5 Preparer's Note: The calculator used, maintains number to 10

, places. No effort was made during the calculation to round-off these numbers because the accuracy of the analysis was maintained.

,e

,i 5.3 Determine heat release rates.

  • 2

'3 a) For transient combustible (hydrocarbon) fire 4

Q = 6131 BTU /sec (from 5.1.a)

. Calculate total heat release before sprinkler

, actuates and support yields Sprinkler time-28 sec. (5.1.a)

Support time 47.5 sec. (5.2.b) 20 e, Q sprinkler = 6131 BTU /sec X 28 sec. = 17 X 10' BTU

,, Q support = 6131 BTU /sec X 47.5 sec. = 29 X 104 BTU From Ref. 3.8, gasoline _ has a heat value of 43.7 MJ/kg or 18789 LTU/lbn 2s 4

2. Gas mass sprinkler = 17 X 10 /187 8 9 =9 lbm or 1.5 gals.

4

,, Gas mass support = 2E X 10 /18 7 8 9 = 15.4 lbm or 2.6 gals.

Determine diameter of fire.

29 3

Where:

si , .

22 M" = M" (1 -

e*) (Ref. 3.8)

Where:

_ $",is

$" isthe the massmass burn idealrate burn rate 35

-kB = extinction - absorption coefficient 34 D = the diameter _of the fire 37 3, and Q = Ahc X M" X A

  • C Where: A = Area of pool or nD 2 si 4 42 3 Ahc = heat of combustion 4D 46

., , .. c o .. c o a , u n c , . . . ., c e n . .. . - a r m a m , ,,

CALCULATION SHEET n sms C ALCUL ATION !DENTIFIC ATION NUMBER

. O. O R K O. N O, DivlS10N O GROUP C ALCUL ATION NO, OPTIONAL TASK CODE PAGE M Dir3/.og juscu 2-FP-0042. Rev. O f6 Q '

i N

3 Q =' heat release rate = 6131 BTU /sec 5 -or 6.47 kw 6

, Ahc = 43.7 Mj /kg (Ref. 3.8)

M, = 0. 0 5 5 (Ref. 3.8) s kB = 2.1 (Ref. 3.8)

'o Therefore, i.

a Q = A hc $", (1 - e'"8 ) X nD 2 4

or 1

e 6.47 X 10~3 = 43.7 X 0.055 (1 - e 3D) -2 X Ep2

=r 4 Solving for D:

49 20 D= .123m or-.4 ft 2i Area = .12 ft 2

-22 which equates to a 1 gal. paint can size opening, so the fire size is reasonable.

2<

- 25 b) Determine heat release rate f or a "C" curve fire.

26 2 From Attachment 1, for a fire to last 42 minutes,

,, 5 lbs/f t2 of combustible or 40,000 BTU /f t2 must be consumed. This e as of 40,000 BTU /f t:quates + 42' min.-

into= a952heat BTU release rata

/ft 2 min.

20 si c) Determine the heat release rate for a "E" curve 32 fire.

' 33 From Attachment 1, for a fire to last 12 minutes,-

35 2 lbs/ft must be consumed.

2 36 This equates into a heat release rate of 16,000 3r .3TU/ft + 12 min. = 1333 BTU /ft min.

2 2

'38 39 30 es 42 43 44

  • S 46

, , . ..c. c. c o o c n c..u ne c e n u. o w n e v n a w ..

,  ; CALCULATION SHEET ce uno'u C ALCUL ATION. IDENTIFICATION NUMBER J. O. O R W.O. N O. DIVISION & GROUP. C A L CUL A TiO N NO.- OPTIONAL TASK CODE PAGED 5 c);g 3 f,3 J. 4, gc e 2iFP-0042, Rev. 0 56 Q

.. t

.2 s

15.4- Determine-the effective'coolina of a serinkler

s

'6 From . -Ref erence - -_3. 6, the_ minimum- design density _for

- 1, sprinkler systems'is .19 gpm/ft 2, -

e From Reference 3.26 - (steam tables) , to raise water from 104 *F (max. design temp. ) to 212'F 'and evaporate into- steam

'D takes approximately 1100 BTU /lbm or 9130 BTU / gal, it

,2 Based:on-assumption 2.11 the gooling effect would be .8 X g '9130 or 7304 - BTU / gal. Therefore, the ef fective cooling

-d would be:-

't ' 7304 BTU / gal.X .19 gpm/ft or 1388 BTU / f t / min. 2 2 3

n- lFor a. transient "(hydrocarbon fire) based on assumption 2.5, -

,, the-area of coverage for one sprinkler would be 100 ft2

"' (10' X 10' area) and would have a minimum flow of 100 X .19

= 19.gpm or-an effective cooling of 19.X.7304

~

= 13.9 X=10'

-21

' BTU / min-.or 2313 BTU /sec.

22. - This .ef fectively-: reduces _ the fire-heat release rate from

_,3 6131 BTU /sec to 3818 BTU /sec. This would reduce the fire

,, plume temperature at'the support to:

85 26 AT ='300(Q)2'3/W3 (5.1.a)

AT = 300(3818)2 3/(10)S3

-z? A T = - 157 9 - ~

j , -. Tf.=.1579 + 75-= 1654'F

.which . .is a - 586

  • F - (2240 -

1654). drop in fire . plume

_, , ,f - temperature almost immediately, without crediting the reduction of1the1(source)_ fire _ size that'will' follow s'

due to--lack of reradiation.

st 33 Cooling -effect on support steel: The smallest possible 3, area of the support exposed for cooling would be 1.92 in.
    • (.16 ft.)- cr .10ft 2 per linccr fcct Of cuppcrtffs or a cooling effect.on the support of:

,as ca., n E st- . .16ft f X 1388 BTU /f t2 / min = 222 BTU / min. per ti.. or

3. 3.7 BTU /sec, per ft.

~

.39 With a.. weight of steel of 8.2 lbm/ft., using 1100*F as the steel -temperature (Cs = .172 BTU /lbm 'F) , the support would cool off at a rate of 2.6 *F/sec.

at d3'

2 i

d$

44

+-

a,.,--,-4, qyamwm. .q-p or- y e- ,+y- - w e rdp rww----q y 93r-- - wpg-D-m v .m og--4--.y +i,r-q-.y4 -y -.-#%9.- 9- --w---

a. w..,w-7 4--y 9

@ a vset C. n L D 4 e L n L ot u s si L L n sig u w w n r u n g ta v eg CALCUL ATION SHEET-A we ss C ALCUL ATION IDENTIFIC ATION NUMBER L O. 0 h W.O. N O- DIVISION b GROUP C ALCUL ATION NO. OPTIONAL TASK CODE PAGE dd gf p] f, p 3 /s ec p 2-FP-0042. Rev. O gf g

, t t.

3

s 3

5.5 Comparison of Results

, f e a) For a transient combustible (hydrocarbon) fire

, The sprinkler actuates in 28 sec. while the support takes 47.5 sec. to yield. Therefore the sprinkler will cool the support and prevent

'o fai)ure of the support.

ti;

,, b) For a "C" curve fire The sprinkler actuates in 5 min, while the support takes 42 min. to yield. The sprinklers provide 1388 BTU /f t2 / min, cooling while the fire e only produces 952 BTU / f t / min. 2 Therefore, the o fire will be suppressed long before the support

, would yield.

to c) For a "E" curve fire 2' The sprinkler actuation time is 1.5 min, while 22 the support takes 11 min to yield. The sprinkler

,3 provides 1388 BTU /f t / min, cooling while the fire 2

only produces 1333 BTU /f t / min of heat. Therefore 2 25 the fire will be suppressed before the support would yield.

26 r; d) Evaluation Of Rooms Kithout Sprinkler Protection

1) Room 2-066 (Fire Zone 2SAIC)

This room contains Firezone 'R' cable only si (no Thermo-lagged raceways). Review of the se Unit 2 Fire Safe Shutdown Analysis (Ref.

33 3.21) has determined that this cable is not 3, required for safe shutdown. The safe shutdown-(cable) separation concern relative 35 to this cable is outside Room 2-066 in the corridor (Room 2-070). This corridor is si located in a separate fire area (2SB4) which

3. has sprinkler protection. Therefore, a 3, support failure in this room would not

' af fect safe shutdown. Amordingly, based on the hazards in the area (Ref. 3.14) and administrative controls (Ref. 3.31), this 4:. configuration does not require further 3 analysis, de 45 44

_ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ - -- -J

- - . ,. . . . - - . ._- . ~,. . ..~ . .

..n ...w... a n.ew 4 -

...... .. ..o. ,,..w...

(CALCUL ATION SHEET Msse as __

C ALCUL ATION IDENTIFICATION NUMBER s.O.OR'W.O.No._ . DIASION O GROUP - CALCUL ATION NO, OPT 10NAL TASK CODE PAGE ol 7

  • : @)$_)); Q ). jvlElji 2-FP-0042, Rev.'O 56Q i.,

ce t

.3 4 =; 2)- Room 2-074A-(Fire Zone 2SO3) 6 .This room contains Firezone 'R' cable only

.7 -(no Thermo-lagged raceways). -Review of the

, Unit - 2 Fire Safe Shutdown ' Analysis (Ref.

3.21)'has_ determined =that this cable is not required for safe shutdown. --The safe

(^" 4 shutdown-concern-relative to this cable is-

->p outside Room 2-074A in the_ corridor (Room 2--

, a 070). This corridor is located- in a

,3 separate fire' area (2SB4) which- has sprinkler protection. -Therefore, a support failure in this room would not affect safe 2

shutdown. Accordingly, based on the hazards c+

in the area (Ref. 3.14) and administrative o controls (Ref. 3.31), these configurations

,, '.do not' require-further analysis.

80

3) Rooms X-172 and-X-173 (Fire Zone'AA21a) and -*

Room:X-208 (Fire Zone AA21c) za

- : Due..to -the- requirement to protect the

.,, supports for a distance of 9 in, from the protected- raceway for heat path, field walkdown per Ref. 3.23 has confirmed that

'25 the= supports are completely protected with

-- a .Thermo-Lag. Therefore, based-on the hazards

.,, in the area (Ref. 3.29) and administrative

_3 controls':(Ref. :3.31) , these configurations

':29 do not require further analysis.

10

, 4) Room X-165 (Fire Zone AA21a) 31 3: There are only two (2) Thermo-Lagged 33 conduits in this room (Ref. 3.23) and the first support is approximately 6 ft. off .the floor with the majority of- the support protected for heat path (9 in.) Room X-165

-.. n is; designated.as a."No STORAGE" room (Raf.

3,- 3.31) and has a maximum permissible loading a' of 37',300_ BTU /ft 2 per F.ef. 3.28. The actual

~

" combustible loading for this fire zone is 10,'500 BTU /ft 2 (Rcf. 3.29) which is well 2

below - the 40,000 BTU /ft required -for the di support to yield based on the "C" curve, p 4: Based on the low-combustible loading, the 43 fact that the majority of the support is 44' 4$

'46 T

,, . .. c .. c u , c n c .. . . . . u. n . .. . . n e v n o w .,

CALCUL ATION' SHE E T I o 5010 M C ALCUL ATION IDENTIFICATION NUMBER J 0. O R w.O. N O. OlVISION O GROUP CALCUL ATION NO. OPTIONAL 1ASK C00E PAGE N O /f ? Au /.'EC4 2-FP-0042. Rev. 0 $(Q __

2 3

protected which acts as a heat sink and tho 5

administrative controls already in place, e the configuration is acceptable and does not

, require further analysis.

5) Room X-219A (Fire Zone AA21d) 80 Room X-219A is the same as Room X-165 bceed i, on Ref. 3.23 except that the actual

,, combustible loading for this fire zone is 17,000 BTU /ft 2 with a maximum permissible loading of 37,300 BTU /ft 2, Based on this low combustible loading and the reasons listed for Room X-165, the configuration is

,. acceptable.

6) Roon X-174 (Fire Zone AA21a)

Room X-174 is the laundry hold-up room.

20 This room contains both Firezone 'R' cable si and Thermo-Lagged raceways. The actual

,, ccmbustible loading in the fire zone is 10,500 BTU /ft 2, Although the room is currently designated as a "NO STORAGE AREA",

2' (Ref. 3.31) and the maximum permissible 25 loading for the entirity of Fire Zone AA21a 25 established at 37,300 BTU /ft 2 (Ref. 3.28),

,, the maximum permissible loading for this

  • 2

,, room will be set at 11,000 BTU /ft ,,

2' Based on the existing limitations on storage 30 and transient combustible ccatrols in place, 3i which will be further reinforced as 32 described above, and previous regulatory 33 acceptance (Ref. ~! . 3 0 ) , the configuration

,, does not require further analysis.

3s 36 3?

se 3, CONFIRMATION REQUIRED

.c 41 47 43 de 4} l 46

I .-.__-_-__________________._______._._______.m_ _ . _ _ _ . . _

FM v.e c i._ .. c o a . c n s... w in r. c nin o e v n e v n a u v n

-CALCUL ATION SHEET

. A we et I -

h, C ALCUL ATION IDENTIFICATION NUMBER

-10;OR W.O.NOE DIVISION & GROUP C ALCUL ATION NO, OPTIONAL TALK CODE ' PAGESi "oj g 3 i;6k lM EC ll 2-FP-0042. Rev. 01 5fQ

+ ,

, ,e

-3 L6. 0L: :. Conclu sions S

s /For all areas provided with sprinkler system protection and

, Leontaining l unprotected raceway supports (except. for 9" heat ,

path protection),- a__ design basis fire will result in

-suppression system actuation-which'will in turn suppress-the' fire-prior to_ support--yield.

A to

o- In Rooms 2-066 and~2-074A, the Firezone ' R' cable is not

.;, required for fire safe shutdown. -In Rooms X-172, X-173 and-

_'3

'X-208 the' raceway supports:are adequately protected' based on-the hazards-in the area.

-4

'5 In' Rooms ~ X-165 and LX-219A, the existing- level of protection

<$  : for raceway- supports in conjunction with the administrative-

- controls - ~ : in . place provide an acceptable lew1 4,- -

of y ,, l protection.

In Room'X-174,:' based on-the= hazards ~in the area and the

-2c dsgree of administrative ' controls -(which will be further a i. reinforced:as described in Section 5.0) acceptable means ys --,3' are provided to' ensure-exposed raceway-supports will not

,, fail under! fire' conditions.

24 25 1

2'

  • T

-28

-29 r30 31 32

-33

. ,e -

-- 3 6

3,:

38

-39 Jac et dI J43 d4 4$

T' +w ,- y- -pm*-y - - - - - y- y-y<w--- y- y w i,--m_g4- - ,- gP

v. ois ii e s PAGE 1 OF 1 CALC 2-FP-0042 REV O ATTACHMENT 1 4 i

i 2000 I i l l ~'

l TIME-TEMPERATURE CURVES __ _- "1 /

j

/

30 g

1500 - / / /

/

/ O 25 d

' O -

/ / V w z ' / *'. -

E,ooo l/ C / / / < zoS

- ' /  ;

i'4 -

/ sS ?

, , , -W f 1

N /

$ [

B / l # - ao $ "

500 /

-/

/ / ~~

." J, A

y/-d' / / - ' -

-- 3 $

- = - A.-

/y / gd / = '= ->_ ._ _ _

- " ~ __

FIRE ENDURANCE CURVES I I I _

IlO ~ 120 60 70 80 90 10 0 10 20 30 40 50 TIME IN MIN TAKEN FROM NFPA FIRE PROTECTION HAND BOOK 17 ED I --.--_ '- _

{;_ ,

p. ssw aa p, ,,,,,, A p iif5

'_ < y S c o uY2 (N O ABB ASE A BROWN BOVERI Inter-Office Correspondence o

CPSES-9221733 WBS-CF5BP CS-TEC-6033 r July 11, 1992 t

No Response Required To: Jack Woods C23 Attention: Rick Dible C2B Subjects timetrical Raceways Representative Dead Weight Stresses In accordance with your request, our Electrical Raceway Group has reviewed s.

representative cable tray and conduit support configurations.

Attached is a summary that provides the dead weight stresses and member sizes for the above mentioned configurations ( Four pages. ).

If you need any further information regarding this 1 natter, please contact Simon Abuyounes at extension 8101.

. , /DWW ,

g G. R. Ashley IMI

. Project Manager Civil / Structural -

GRA:CAJ:lef Attachment cc: CCS E06 IRRC File IM1 CS-TEC Tile IH1 C. Abou-Jaoude IMI S. Abuyounes IM1 C. Banning' IM1 D. Pandya IM1 R. Scavotto C28

-h

, ,~

. 4 -g :. sd/.W u-9 ,;

w -J * . 2 / C,: . . -

+ > cc "..' c * :

. J ~ ?,a .v.. . tes c .

m 3 Attachment- CPSES-9221733 CS-TEC-6033 Page-1 of-4 REPRESENTATIVE / ENVELOPE CTH CONFIGURATION

_ Cable tray hangers used in Unit 2 consist of three main configurations:

' Simple cantilever support

- Braced cantilever support -

- Trapeze support

~

For the three configurations indicated above, the simole cantilever configuration will

_ yield'the most critical. stresses, J This is due to the .t that the representative tier span for trapeze's'u pport is less than.5 ft. - and the c.,a load is carried by two posts.

The table shown on the following _ sheet provide a conservative estimate for the

--Dending stresses due-to dead weight,-

u

% --- --- -. _____.___-..m_____.____2m ______-.-__m_ _ _ _ . _ . - _ _ - . . _ _ _ _ _ . _ _ - _

,- g

~*

. Q--

l Q .. .y 3.y

, wv

$Y 4-i 9

l1 t' TABLE ;$

. 'cs,.

MElu15ER - TRAY'- TRAY L . W. - D. W.

TRAY SIZE SUPPORT, ' SUPPORT ::

SHAPE TNSUTARY WElGHT ABOMENT STRESS

5 TYPE' SPAN '

AND StIE : SPAN- (1)

?

C4X7.25 - 6 FT 183 LB 9 IN-K ' 4 KSI ~

6X4 '- CANTILEVER 48IN1 w 7 KS8 48IN C4X7.25 - 6 FT 321LB 15 IN K 12X4 CANiltEVER "C6X8.2 8 FT 459 LB 22 IN K - 5 KSI  ;

18X4 CANTEEVER 48 IN 6 FT 597 LB . 14 IN K 3 KSI 24X4 CANTREVER. 24IN' C6X8.2 30X4 CANTREVER 24IN __

C6X8.2 6 FT 735 LB 18 INK 4 KS4 f,

C6X8.2 ' 6 FT 870 LB 21 IN K 5 KS8 . .

l 36X4 CANTitEVER 24IN ,

3 Based on the above envelope cases,' 7 KSI can be considered an upper teind foi the bendir.2 stresses under dead load. '

The self weight of the hanger was neglected in the above calctdatioes I

(1) The tray weight was calcidated based on 100% fdl weight (35 PSF) and thermolag 1 i' O s 2[g s $

Pn o E,

1t l' .2 e E O '

2DQm

~ o -

$ W 1

  • M O-i m 0 "??
2. 8; "

,. ::: ~,

~% $' - .

e t

  • O 3

h

  • vs J,:i Jib ss; n
.~ n - wi .v n a gf - ($

Attachment CPSES-9221733 CS-TEC-6033 i Page 3 of 4-l l

REPRESENTATIVE / ENVELOPE, CONDUIT SUIPORT CONFIGURATION. ,

1

-Various configurations of conduit supports are used for Unit'2.

The- attached sheet provides the bending stresses due to dead weight '

-and thermolag- weight,- for the- worst cases.

e e

4 9

+

E

.C-p- .~.

e t-Pr 45' t -

V tJu 4

50 Q s

3 DEAD WT.- DERD WT.

MEMBER TRIBUTARY TRIBUTARY (-

I CONDUIT' SUPPORT . CANTILEVER MONENT STRESS.

h TYPE LEMOTE SIIB CONDUIT CMD WT.W/

SISE sPAM TEEmmoLie E  ?

3 5 8'-0" '43 # 1.5 IN-K 2.0 KS' 3/4" gb CANTILEVER 23-6" TS 2x2x1/4 8 60 # 2.0 IN-K 2.7 KSI g I" @ = 2'-6" " 9'-6"

-- - 2.5 g 3 .

3 a

" 10'-6" 82 # 2.7 IN-K 3.6 KSI [l f' {!/2 " p6 2'-6"

-m w>-= = . eno-

" 2'-6" " 12'-7" 119 # 3.3 IN-K 5.0 KSI ( '

i 2" f

. f>

  • 2'-6" TS 3x3x1/4 15'-0" 285 # 8.9 IN-K 4.3 KSI S 3" f i 55 .--

462 # 14.2 IM-K 6.8 KSI 4" " 2'-6" = 17'-7" 618 # 18.9 IN-K 9.0 KSI

" " 19'-6" 03 $ 5" [ 2'-6" e

U$ 5 2

m .

E, i

  • D EQQ N

' ' %ANmm

  • % en ~- <

fu)

O'- N 'n

~ ,c; " n uve aJ te gg

~  % <

(.D D3M i r.

! ' tr.

Enclosure 3 FIGUAE 7.1 2EP40s .

REVISION 3 CALCULATION TITLE PAGE PAGE 1 OF 1 PAGE1 TEXAS UTILITIES ELECTRIC CO. / CPSES UNIT 2 l g3g gg g, , gg CALCULATION CLASSIFICATIONS CALCULATION TTTLE (Indioetwo of tne Objoouve):

' ThERHA( AhANSX of .IubcDo/J 8rx ouE (IY CLASS latst 4 AS7M E-/19 'fitzE TESI C NON-SAFETY 3

t CALCULATION IDENTIFICAT10N

~

ORGANIZATICN: 1 CALCULATION NUMBER TYPE- NUMSER LS 5 IWrU. EQ&2 a 2/2 S67- 029 5 WPST NUMBER l CCMPUTCR

. YES n NOOUTPUT 3 lSYSTEM.W.eSYSTEM (O@ . ATTACHED I WPN O B. P_ vES - n NO rx !

AppuCVALS. PRINT NAME SIGN. AND QATE - . SUPPLEMENTS / CONFlRMATION i

APPRCNAL(S)/ l SUPERSEDES REQUIRED CHECKER (S)/

l PREPARER (S) . REVIEWEM(S) '. IN ENT ! AEY. NO. ! (TYPE'NUM./ REY.)l YES i NO

., L ,y V a j

! 7.j p g "'-i'

  • t.

d,%av {

i

! T10 1 I

l l I l l l l 1

. t i

i l

t I i i  !

DISTRIBUTICN:

1 2EP4on-1. AEVtSION 3 2EN1 AECCRC TYPE CODE: 5A.100

45.

s V/$/CA.) l/$fMlf

/SfGAs BC/L/M/QA.I ._ ;

o oxi wat Tsu c s-

'=

1;..

j, i=

i L-l:

I-i JCSNO ()gff f)[3 *^9L CALC NO o- Epd "A 1-11 MIH ' 7 c. 'l { -

O l: REV j :SY DATE CHECKEC DATE

~ ~ ~ ~

ase w % con e a'o*

ip z g-jd -pa 9'? 1 i

[ , .

~

T48t'E OF 0/s r ijM

&CCllJPT/0/) k406 lJO cot <&t 5//EET T

/2EtitCt04 H/STORP tu C4 8CG Of CohfEfJTS tiL J.^ 17wcurico I.I

~

2O HerHocc!.n:> Y 2l TC 6/cc/4TicW %I d.O /7 Esc.Es /6ncfustois 4.I 60 EEPEllE4 CEC 5.I utwimeus to sc -Awcc A S&B440/J l?EPGCf !a/L 16(, EC t'$

8 fest kenocoupw Zecas 6 Jos uo o t t f - P 2 4 "'

O e 9 9-97, /?W 7- ro it ABB ru ~o o!"

uv av pri coacco are .. ;"4 7 & os az/tJ6-fdo7G '

/b ELn.'.noutTinAt 01? .%ricorc47tou sacu As in Elbutte /. /

st.45 ThECHC4AMEO AkD SC/MJEt7 70 A ASTH E-!/9 fir 2E fEST rJs P4n7 of t'/1E dPCE6 Siilf St.nrFrfraA/ S//o 6/?AM.

0;Lt'Fil45 tMtE bfEAJ lidiSEO 45 (D !h[

EFFE&T Cli5 'ahc71no f6ex .cA a enAiouif s

fabr 57diL :ut'PattTS +!/6H7' NME ACTED As A NECT Siht ALD (km/h6 CnkDott TFsf4SSGM6LY

'7EMPe?A72/r/E. 5nr50 ,JLOTHE/2 tva'r, &h47'

/C, f/1E 5164ifit4Ltd , (Y/BZH/1/N, f)/ .N1f

QtSE CfEE.' S*VP't?i275 ou fitG .*Jo cnor) McK SiA c? this is A .2 4 Th F it 80Hfuc.41ft.) fidAM/6)$

f//EttHAL ,JLAl'ft/C, 4 t'04SFE&47/pE "* TEAO 9' CriaTE afftloach' tvill' /JG t/SEf? &) .Cl04L TIF'.'

. Tilts b/446f /LI TFnt M// n'ItIlld , k S/tMN/ftED PODEL. OF Tl!E JUAic7/0/J Sox ALD .Suffodf

/G NCtb ' AhD COM/ dei /ED ZY/c Mn.ST CASE fcit t'lte Tnaksitti of- /re/T /NTo The SUPPD2r S1tEL.. #ntPEruruttE ficacir6c rit.nu flit TEST

. see wo az a -oss **or calc wo //

4 /Zrc. 7 12 /?,F 9 - m.,e.9t k

arv sv art casenso are ... :"i=L 0ze/-50-op1G u

L U

!$ Ib 7/l0Dut 7tOh (COMTO)

Yh EGHQCDOA'.EG AOicM ditE ht& WEST fEMPfiGURE M Tlt f SLG/04 $ "X &S toMPAMCO %1ll1 ll10SE

// F A D IA.,6 6 O n Y l1 C 6 b coa / Dub b. f/?nu ll4C IESf ovfM (DratWMELT 8). Thf MtllAl YEntPEt/AMEIs ,

5 8* F .

9 JOS HO t's y ff * () 2 h PAGL

/7 O Md 7Ndb 4fH ).60 9 L CALC NO W BY DATE CHECKED DATE aos N67c~onE o. ()2//..T MO Y 4 J ,

L' fsc, l. /

- =  ;

c E

- ,~4-,

~

- N

-%- .of,

  • +

l P

~~ ~~

$UfMT*0id l l }$Uf7DRT DZ , i i -

i a

L, i: i -

r

~

l' i i

-J '_ : 'l '

F rrt . ",

if - 5"(ryr) .S if .!

N lj i

,1 ll H-

,w .

f v lN may -

_U S 7 3 ,

- rest I t*UU.osdPf I

JaucTiou Rot JB Test 5erup A.ior SNOtv%h WJELMO-lab 0K-

/A C&lAT/QU, $C4 MME /4/f0&fAf/DA/ MN Adl/A(-

Senir, see 7est /2 ewer IL). '

l 1

l L

! l JOS NO Of ff *O2 3 o eu , , . n. aw 3.e.st ABB

. :==.,

oz a.u-oo 79 4,3 l

L - ., om . . .. .

-. . . - _ _ . - _ _ . _ . _ . . _ ~ _ . . . - . _ _ _ . _ _ _ . . _ . . _ _ . . _ _ _ _ . _ . _

l 2O MErucDoln61' l

  • ~hi 60//owiub METHoCob6'f I5 u560 70 coLSEO4TiVElY ESTiMATC t/IE 2h4ME /Al TCit1 W Q4Tua l CG Yl?f JubCTinu S M (J$) '

C u S '70 ih5 2EMOU/2d. 0F illE TS SUPfait T CTEEL

.I 4/fl*nu62 {lti A:7H-E-//9 TEST HET40D '

iC  ;

OMEl(FinPERManE tr>4cir,c, (i c Tiza/4/E//],

.<4in A STEAO'1 STATE .4/sA(YStG tblY/t "fkE 75 .ar ihr praiMun occur 4GO TcTTE.D (ErnPEil.JTut?C is ca. ',5fttVM/VE 2 USE did TL/ APfithG (4GCscus //P[ {} }

G:mm A) rc CGriaMilsE fl/E G'mPEeATugF weaEASE os rhE Tube $rEEC (TS) auf

.M thE AS TM-E- //9 ! At .Fra E D flA:. 9 9- 92. ($f9 9 s0 * . som no c ai/-fs23 '*0L '

.- CALC NO S e-. .- ... = = ..

o2a se-vo9e -

ep a g

I

. i 1

1

)

7o NeruconMsY Tire to/fowiub ueracoobsv ts asto To i casscoariuSlY Es7tM47C thF ch4kOE tat rentH'Q.4 runt oc rhe subtrinu SM Ci$)

Dun To jhE PEHnWJL OF f/fE TS -SUPPoit7

rr.:L

.I /affbnucw firi .457H-E-//9 7EST FfE740D ' -

is TiMEf fEtHPEQaruqE t.asciL6 (iG 7/MhS/EAif],

AtLO A STE40't STATE rdhAlYStG (41YN ~fkE IB 47 W/1r 414%l mum 00C:12/2E0 fd57ED (ErHPEtLJTullE is c'okSercVHT/VE '

2 ?fs? the 12/,4PMOMO (CECsc.u /fP[ {} }

(tlrtstH A] i~O Cerst2HiLE fllf 0'InPft2ATu2F i4CREnsE OA rht 7abe .TreEC. (TS) ,aoE to the ASTM-E- //9 //141t/2E 1:

9 nenoo2<f oe3 4-EN

.c

? 92, _ /JF P 7 io.c . Mh

...==..,

cate wo a 2a. se. vow a I

y'AGL

.e

4c 2O Heruccof.nM (errrto)

$. Xsa tire is as a sur siik raereeuuc i

t%E // EAT RvX (Z4ff 74'2006N ThE 75.

Ouc 10 thE femMrt47uRE D/HEREhT//){

ben 4Ef4 7/1C 15 4LCH0/C 90/47 dhD Tit? 18

^

b b4SCO AhJ Yhtl$ l[$ 7 ft'UN 0 l ? 0$' ?lIC  %

76, nereawnE :'he remP&a7aizc twisc 04 di1E l$

JOS No 02/? -d g 3 PAGE O

W

[274.

BY 9.f.4%

-DATE

/3 F4 CMICMED

?.uo %

DATE h

aneIw"d.7c~on E e.

CALC No

/72/[ *,[6- C O h-/

hE A

1 l

? .'  !'x /c c l a Ti c u

! X?! ilESSCO l?Partl' .'4 N4ca A ) PaoviOEs fl1C focuc/A fox CMea4: ribe the 7tmPERA hllE il/S E cn 1'hE fabe $ reel lT5] Cacit/EO crifl4 inn /Aho/J line AL AS7M E-//9 CicE.

I

~

/ 4 %(a

= c -

at v"* , 25 002..

xhrtis ,

R Y = diItCt/ ESS Of /hSU'47/Cid

  • lC) M I] y A -/ f = IkET Slux ouc & /."Jhl E o 9 c 24 5 /sm 61u n.t f:L Il/Z i f & rl ! l1A.'

1}p 4 l  ?> = .!%=:n ci /n:Ar cur;ciN nn < S 90 lb:

15 /L1//r' cc Santsc.E N/IE 2- 1 = OC/24h A/ OF f//ZE = N/) ist v.

.:.iesmw,L6,

'o

i. n = 246 GO

& # '820" '25 ct') 2 _

JotNo p2//.0L3 '*GE o

nev rzpc.

er 9449 ne-on cuncao om r .o. u hU$

.. "LT% e.

cuc"o 02tfSG op?4 o}3

s

?&122Als6/l.b,

/.I C = '5 7 # h f/1Fi!Ff0!!E, atti)ttn u p TF/11prit,sfulff op f6 e - krir,i; ' $$'f _

llW ol1i:I f,gg Ty = - 88'1 69*  :

/45*f If kAf 0d45 t'?Afl Ol/ O fO rdnOl/t f/V) 4&/sh

~2rF fu'BE $rdN iG, 164

/, / / / ,

. T # k I r t nitrile #

h 7

b*$1ECMAl.d'nL.Ou6si 2  ?>O FifJ b um F .

,6,i l A

  • ME4 OF %MA Y4 5

'/.69 t u '2, g = q g:3 9 {g, _

&.: claue tu scree.ruge . $$8 *f +-(qsg 14ri)

L l2 u = Leum of TueeSTEcc = 39_ps JOB No t*) 2 /$ e O f,3 PAGL 0

W

/2P& -1 4. % (!fa SY n ,:.% hll

.as 'Id,3".o[c os cato no g")2/[ .[M SMYb jr j

DATE CHECKED DATE

l l

l

$ = 'hDlie810rt 'f '25%2 FU 308 4 I44 ab 5 C Ft

{G0.8P.m) kra.

C = o I = ec 7 F35J M= 6>l *SU .t I

h2 s

'U fo O ETEG.M / G l'ltE l1EA 7 % C/- (!4E f[/L c N c A/ N K b Y ,

6 - m Cr & )]

(ch&tE, 3 Gn&O' *, /Mn 7 c 6/ 6TO

~

m = L s s- J t$ -

898 /Os p

$.P = SP&ACr h6G '

0.// &f$ Y saennmus e inweenssa, At = 6 = 6/ - t6'f

/M dP B7.3 6 //)

PAGE J08 NO C J // -42 3 f fS3

~

% CAL cuc Ho Q )?PC 7 9-92. (3 F "

nev sv DAtt cwecr.to oais .. 70 .'"; ; Z ., O 2 /J TC -0076 I

.. . - _ _ . __~ - - . - .. .

I 1

dO NSv$6 /$cht(.usicW Tllf /MSb/fG C)r- f/r/C S////f/2ED S1 fad 9 5TA7F ALA hStG Snow th/ir z%F Ch446E tu TEr/1?EFA70(2 Of Y/IE daLu01l ADSEMl.?/Y,

- A 'Otf S pef tf/LJ ll4 thE $8, /.)af TD NIE ExiS7fLtE t.?C N7i cu//D27 Skuf72/ttf , Att E

.<PPOx/M17F/sr /5 #. 77/F st/A t/ H ut1 Will/ftf41uttf  %

fn/t fife EitT/eE //ou.e /.:; ff3*f, T/1Ettefoes 1%E 16' Z.1/250CfMELT (d] piJr' donRESROLbS fp Af12 t{ 0 */s &/7tcl1 if 407 6/6L/PIf.4L f At this Etevarer.) ten 1P&tAfuar

.a ,e o u r-o .5 nu

'/'

CALC NO C Md 7T42. /3 f W *) 30- 9 1

- ., .- e-- . :.==. o <e.z-a n 1

I i

5: Zu?w.dEG

.1 C&eww Er / nit M/, /&c * //60/, //3/G7 i Ace Tes7, Rzoiecr 1% 9%45C schemc 2, 6Ini42.

($. %fni hatres , J? M lants, Srlw>.

{ ASME, 'Secrim TL , Appenosr 1, ' 4 .

i 4/5d, /%st at Swet &k.wwcrew, *? %o

. ;-- Dana, *>2 C 9to sa Peso 4 j a/ce-i t

Jos no 0 / f .gz s  !"GE .

2 (2ft *). f.9 % /3 F H 1 *0 9L h. cAuc no [f I Ot/f -16.0Ofh aav .ev ' para cwecuso . onta ... ".;."To.%, o, (

i t

1 Artmanenf 4 ,

SC E M o u Ea r hr>e TS / //x ,

//60 /

onreo /Ju6ust 3, M8I 4

e j

'ee 9

JOS NO 0;//.02'J PAGI o ,. ,. , . 4, ABB ~ ~o 0 2 a -s w v o s s 4:'

a

- ,, .- e ,e-, e- ... = . = .. _

+ 4 . . ., -- - . . * , . ,em- ,3 . . - ._

4 i.. ,

WE550N AND AssocrATES, Isc.

CONSULUNG ENGthT.ERS

$10 Sovm Wtarrta Po m s. Bor 1082 .

NORMAN, Orturou4 73070 k

Tatzinos 405 364-8077 3 August 1981 p$ @

Mr. Rubin Teldman President TSI, Inc.

3260 Drannen Avenue St. Louis, Mo 63139

Subject:

Engineering Report ments for on Fireproofing Texas Utilities Services,Coating Thickness Require-Inc.

Deer Mr. Teldman In accordance with your written request, we have conducted the necessary analyses to calculate the fireproofing coating thicknesses '

required for the various structural ste . members being used by Texas Utilities Services, Inc. Calculations have been performed for a One Hour Fire ASTM -E Rating and a Three Hour Fire Rating in accordance with the 119 Test Method integrated average incident heat fluxes.

Tour c: pies of od f:r our Engineering Report on these analyses are attach-your information and/or use. We do net have any ob]e:tions in ycur forwarding copies of the enclosed reports to your client, if y:u -

desire to do so. It should be noted that the fireproofing c:ating eni:4-ness calculation

'd for the Thermo-Lag 330-1 Subliming 00mpound nater.a1 es not' include the commonly used 13 percent 1cng term aging and weatnering allowance as has bee.n established from the Environmental Test pr: grams conducted on these materials by various independent and U.S. Governmental Agencies.

If you nave any questions on the enclosed report, or if you desire additional in!:rmation in these regards, please contact us at your convenience.

Sincerely yours.

WESSON AND ASSCCIATES, INC.

W Dz/. Tct,{R.54$ dst <r'f ect Pr )ect pile No. 116 (TUSI) .

Wesson President A.*2- h6 Wk

, g?

9 e j i iWY'gc

-