ML20126B658
Text
{{#Wiki_filter:p 74_;ge MM 0077F 'o" "o- '8' arv's'oa ao- [r 4J1 Nuclear sUDGET TECHNICAL DATA REPORT ACTIVITY NO. 120012 PAGE I OF 7 PROJECT: DEPARTMENT /SECTION Eng's & Des./Eng's Nech. TMI-1 OTsc RELEASE DATE /f/7/If. REVISION DATE DOCUMENT TITLE: Hechanical Integrity Analysis of TMI-1 OTSG Tubes APPROVALIS) SIGgRg ( DATE ORIGINATOR SIGNATURE DATE A. P. Rochino W M /k/(/f2-S. D, Leshnoff A fl ) D 6 L dt-nl+1n V it, APPROVAL. FOR EXTER$ DISTflBUTION DATE D. K. Croneberger kb b 124 81, I o DISTRIBUTION ABSTRACT: Purpose R. O. Earley
- Small 1.D. circumferential defects have been identified F. R. Clark D. K. Croneberger in many steam generator tubes. A fracture inechanics F. S. Ciscobbe evaluation has been conducted to ascertain the stability of tube cracks under steady-state and anticipated M. J. Graham H. Hukill transient conditions.
R. W. Keaten
- Results J. Moore J. Sipp Crack sizes can be identified which will not propagate D. C. Slear under anticipated loads during the design life of the J. Tangen i
C. VonNeida plant. De initial size of a crack which will propagate through-wall depends on the stress intensity threshold, E. Wallace the material property indicating that crack size below j P. S. Walsh which a crack in a structure will not propagate. R. F. Wilson
- i he initial crack depth, and associated circumferential.
extent, for stable cracks are 61% through wall and.544" circumferential1y to 96% through wall and 0.068"
- ircumferentially.
c ^ Leakage from through wall cracks is calculated making use of the crack opening displacements under anticipated loads. Single phase leakage flow is assumed. Leakage 'e 500 lb. axial load in 8.409 gal /hr. esO6140172 83012s conclusions NJE 897 PDR We present analysis makes possible the identification of those initial crack sizes which will not propagate through l the wall of steam generator tubes during anticipated use. l Dis information can be used in conjunction with the Eddy-current inspection results to determine if cracks l large enough to jeopardize the tubes can be detected. / j l Leakage f rom through wall cracks during anticipated operating conditions will be detectable. Nf/ k j
y -
- '. ' ' '.* '?
O TDR No. 388 Rev. O Page 2 of 7 ) TABLE OF CONTENTS o }., Page a' .... :/ 1. NAPOSE 3 3 2. W.TNODS f.. 3 2.1 Loads Analysis 4 2.2 Fracture Mechanics Analysis 5 2.3 Leakage Analyste 3 b ..-?.._'._.__ ~ 3.0 Results 6 4.0 conclusions 6 50 Re ferences Figures App. A Ref. 5 B Ra f. 6 i C Ref. 3 D Sample Leakage Calculation G e G e 0 a a I e 6 h 6 P 1 D 5 i I L J
9.', '.4, 4 D R h. 388 + Rev. O page 3 of 7 1.0 PUnpost A fracture mechanics evaluation has been conducted to ascert 4 the stability of curcumferentially oriented ID cracks in steam generater tubes in the tube span between the fif teenth lateralAn u support and the upper tubesheet. arise if an undetectable crack had the potential of propagating through us11, escaping detection by reason of a very low leakage rate, and then to quickly propagate circumferentially to jeopardine ~ or possibly to fail a tube.
- 1) to determine if a circumferen-De aims of this evaluation are:
tially oriented flaw that escaped 3ddy current detection would pre-pagate through well under anticipated conditions, and 2) if's flaw becans through well in extent, but before circumferential propaga- ~ tion was complete, could such a crack be detected by its leakage.' ,,1, 20 41M003 It is necessary to establish the tube str ases and to interact these stresses with the crack geometry in order to determine In addition, bat separately, the streses are propagation rate. interacted with the crack geoestry to determine the crac displacement. 2.1 14eds Analysis he tube loads are derived in part from the design basis document (Ref.1) and in part from measurements of the 1M1-2 070G tubes Recourse is made to field measurements because the steam generator performed better than design assumptions predicte (Ref. 2). 1wenty degrees more superheat is measured than predicted. De anial load on the tube during anticipated transients, such as heat-ups, power changes, and reactor trips, and steady-state operation is due te Dif ferences in tube average temperature and the average temperature of the steam generator vessel well. gy virtue of the end fixity of the tube, a longitudinal pressure stress evolves through poisson's ratio. A residual tube axial load component exista free .) fabrication. Tubesheet flexure altigates axial load, especially near the unit center-line. De first of these effects is magnified during the anticipated 100'F/hr shutdown. 1 V a
< p _. m y .p ',i, DA h. Mg o sev. O Page 4 of 7 superimposed on the steady axial load is a high sysle, flew induced vibration (FIV) bending lead. We frequency and l displacement 'assnitude of FIV was asasured at 981-2 (ref. 2). 22 Fracture Mechanica Analysis. hhe steady axial and high syste bending leeds define the tube leading (Fig.1). Flaw propagation is determined free a material 4 specific erack propagation law that is itself a function of the stress intensity faster, a parameter quantifying the interaction of crack sise, shape, boundary geoestry and strass field. De stress intensity factors for circussierentially oriented I.P. sreaks are calculated in gef. 3. In addition to the leading components identified above, the stress intensity facter sateula-tien admits of the lead caused by the tube sontente pressurising the parting faces of the flaw during F1V bending. 1hese stress intensity factors are integrated using the glestric power gesearch Institute Linear Elastic Fracture Mechanics (LEFM) sede "s!CIF" (gaf. 4) to identify when a crask of a given initial sise ses be espected to prepasste through well given the leading of Fig.'1 ' (get. S. 63 see Appendices A and 3. respectively). De concept of threshold stress intensity, (SE)h, is used in this analysis. De threshold stress intensity is that value below which a crack will not propagate at all. Se usefulness of this concept can be seen from an emanination of Fig. 2, the semi-quantitative dependence of stack growth, da/dN en stress intensity AE the independent variable. At higher values of stress intensity, crack growth lasresses. rapidly (the log-los plot shows linear proportionality, where, in fas.t, the relationship is exponential). At low values of stress intensity, a point is reached where the crack growth reaches gelow this value of stress intensity there is no measurable Above this sere. crack outension even though toed cycling sentinues. threshold stress intensity, creek growth builds with continuing load cycling. De threshold stress intensity can be intuitively understood by recalling the endurance limit stress in connection At the endurance limit, load aan be systed tiith the 3-N surve. At stresses higher indefinitely without damaging a structure. than the endurance limit structural failure een be anticipated after a certain number of cycles, presumably because of the initlation af ses11, flaws and their subsequent propagetden. Se ' knee region in Fig. 2 'is representative of actual material This behavior, as opposed te extrapolation of upper bound data. generic representation can be used to interpret Fig. 3. which is actual experimental data being generated to identify the threshold stress intensity for the 07sc tube material, Inconcel 600 (Aef. 7). 4
~ 1,', ,e '- 9 A. DR h. Mg gav. O Page 5 of 7 For R*0.1, the thresheld stress intensittof the tube material at 603'F in TM1-1 PWR cheatstry is 6.0 les u.. De R value captures j the effect of mean stress when evaluating fatigue strength. De j threshold should increase for higher values of R. A modified
- 7 j
Paris equation (gg.1 Ref. 3) was incorporated in '31GIF' with the. h = 7.4 a 10"I' iR.5 3 gg, g i" ,a feature that if the stress intensity range did not exceed threshold, no growth would occur. 2.3 Leakage De procedure for calculating crack opening displacements. C00, as i '7~ a result of the interaction of the stress field with the through-crack, is provided in Ref. 3. With the C00's as the throat dimension and assuming single phase leakage, because little frictional resistance is met for a crack through a thin wall. leakage can be calculated using Ref. 4. 3.0 ggsAn l Figures 4 and 5 present the results of the stability analysis and 1eakage evaluation, respectively. In Fig. 4, the curve labelled FIV describes the locus of points linking crack depth (as percent through wall entent) with the circumferential extent of the I An unstable crack will propagate through wall. A stable crack. crack will not propagate through wall during the design life of D e curve labelled 3CT, for gddy current test, shows the plant. that the detection sensitivity is sufficient to identify those cracks which will propagate (gef. 9). Curve FIV uses a flow induced vibration deflection of 3 0 sits and i a threshold stress intensity value of 1.1 wa @. D ese values l are representative of steady-state operation. e he initial coach depth, and associated circumferential extent, for stable cracks are 612,through well and.544" circumferential1y to 962 through well and 0 068" circumferentially. Fig. $ shows the primary-to-secondary leak rate for a given through De detection capability (gef.10) is shown j crack dimension. De axial leads of 100 lb.-300 lb. bracket the steady-shaded. 1,aakage f 500 lb. axial lead in ' state axial pull en the tubes. De 100'F/hr cooldown load is 1107 lb. D e C00 8.409 gal /hr. provides the throat dimension for leakage and additionally l accounts for the F1V bending moment (get. 3. App. C; sample calculation. App. D). e
.. co ', i, TDR No. 348 Rev. O Page 6 of 7 De following factors add conservatism to the above results: 1. De stress intensiyt threshold is about 6 MPsg#m (Re f. 7 ). (i.K)g = 1.1 MPa V6 was used above. An sulal load of 500 lb. is derived from a calculation 2. (Ref.1) usins natural frequency change as a function of s power level. Only deflection, strain, and frequency were measured. 500 lb. axial tension accounts for a frequency change of about 50 Ma as power increases. An average frequency changs e with power increase was 10 Ma which can be accounted for by a 100 lb. axial tension load at power. A 3 mil FIV deflection is based on an RMS value of 1 all. 3. Fig. 6. It can be stated, with 98% confidence, that the usuimum deflection is (3)a(1 mit, RMs) = 3 mLis and that all other tubes see less deflection. De defects are analytically forced to be present at the 4. his is the
- region where the tube is fiaed at the tubesheet.
region of highest FIV bending moment. 4.0 CONCLus10N De present analysis makes possible the identification of 1. those initial crack sinas which will not propagate through the vs11 of steam generator tubes during_ anticipated use. his information can be used in conjunction with the Eddy-current inspection results. to determine if cracks large enough to jeopardise the tubes can be detected. Leskage from through wall cracks during antdcipated operating 2. conditions will be detectable. 5.0 RITERENess_ Determination of Miniman Required hbe Walt Dickness for 1. ' 177-FA OTSC's, BAW-10146, October,1980. Flow-Induced Vibration Analysis of 1M1-2 OTSC bbe, EPRI 2. NP-1876. Vol.1. Proj. 8140-1. Final Report, June 1981. i Fracture Analysis of Steam Generatur h bes, Part II, stress 3. Intensity Factor and Crack Opening Displacement (COD) Prepared Displacements, by Prof. F. Erdogan, Lehigh Univ. for CPU Nuclear, 9/1$/82. 31CIF Fraction Mechanics Code for Structures EPRI-NP-838. 4.
e,. i* '
- e 2DR No. 388 Rev. O Page 7 of 7
. ~;e. Parameter Evaluat' ion for IMI-1 OTSG Linear Elastic Fracture 5. Mechanics (1.EFM) Ibbe Analysis, Babcock & Wilcox Document No. 32-1137064-00, by R. A.' Davis, 8/23/82. J 6.- 'Ib id, B&W Doc. No. 32-1137716-00, by R. A. Davis, 10/13/82. T MIT Tests Telecom records. Predicted Leakage Flowrates for IVo Types of Cracks in the 8. TM1-1 OTSG, Babcock & Wilcox Document No. 32-1135810-00, by .,j, . j p.. R. W. Winks, 8/9/82. f ; IOM ChE 82-222, J. A. Tangen to T. Dran, Sampling for ~ ~ 'l : 1 9. Detection of Primary to Secondary Leakage, 10/28/82. g;,,
- 10. Personal communication from Mr. N. Kazanas.
- r s,.
s d \\ I e 'Ce-S S +-d.
- .s j,.
[. ? - \\.;,. I' l.. L l .=; l V g
l J'
- e TDR No. 388
' ~ Fig.I 'R eT O FLOW INDUCED VlBRATibN F) LOAD CYCLE APPLIED 1 e FOR FAX =500 lb, ALTERNATING LOAD IS FIV ONLY
- 40 YEARS OF LOAD CYCLING'.
L' tis 7 j 1 \\ Y a son Fiv. 2.365 x Ig5 CYCLES /YR / '100*F/HR' C00LOOWN HEATU'P " ~ ~ ' / TO STEADY STATE, -5 CYCLES /YR TIME F /C,. l 4 L I 1 r
. ~. -- = .n---- -n,.- ,,n -5.-l TDR Ns. 388 Fig.L Ae.V. # GENERIC THR8SHOLD STRESS INTENSITY ) ~f i DATA UPPER BOUND g L s.. 3 -~ 2m k g . m a AK BASED ON LINEAR EXTR APOLATION OF UPPER BOUND / / / / f ' KNEE' REGION I I AK BASED ON DATA' g i 1 LOG AK e NUREG/CR 1319 DTD JAN.1980* SCHEMATIC REPRES BO.UND LINETO APPROXIMATE THE THRESHOLD AK su FIG.2 e:; p,e
D R Ns. 388 y Incenol 600 Throshold Stress Intensity $3 $ (MIT Corrosion Laboratory Data) ~ J ) ~ 10-3 a
- FREQUENCY = 5 Hz i
- R (PMIN/PM AX) = 0.05 o 554*F PURE WATER
- 7.7 F AIR 10-4
/ r .:~; .S E .m. 'f,. 10-5 4 4 LINEAR E EXTRAPOLATION I (KNEE REGION) j I s 5 E 10-5 e i 4 -l1 as =* (c ~ 10-7 ~ ~ <>+
- 608'F,TMI-1 PWR CHEMISTRY Hz AND R SIMILAR TO OTSG f
TUBE LDADING f I 10-8 100 r 2 3 5 10 THRESHOLD STRESSINTENSITY AKth (M PaM n G. 3 v-w -a-- -,,-----._,_______,,_,--a_- wr,,-.-w-wg-e n,u.m ,--,,,,-,g-m,.g.m,yy,,,.,,ew,_mg,.m4g4.s,-+gy-mw,my,weg.,pogym,n.,p,,p-
- t. '
s' TDR No. 388 Fi3 4 %ev. O ECT DETECTABILlT5 ~ VS. MECHAPflCAL STABILITY 2-360' ~~~~~~ ~~~~~~~g-~~~~~~~~] i i i i i i i I ~ i 1 1.5 - I m me g =. .y N i t; j i = E i I 1-i I 5 i i E i 1 5 I I E I .i I ,* 4-FIV UNSTABLEI .5 - AREA I h ECT +- I DETECTED I .2 - STABLE AREA
- l
- l -
NOT DETEC,TED m 0 20 40 50 80 100 (I/bl % THROUGHWALL y ~. ~:: l 2a A r g ECT: DEFECT - 4 MIL WIDE NOTCH PROBE - DIFFERENTIAL - Fly : AKg = 1.1 MPaVm .540 IN DIA. GAIN - 45 + RA (~60) DEFLECTION = 3 MILS (IN 16TH SPAN) MSLB: CR ACK EQUIVALEN.T SENSITIVITY - 300 MV IN T0.0415 SQ. IN.0F hA , TUBE CROSS SECT 10NAL AREA O FIELD F(G 4-e we
==-a, vo- +--,-_n
e ~ 'l v: TDR NJ. 38~2 { 1.. c, PRI-SEC LEAK RATE VS. DETECTABILITY 30 ' ASSUMED CRACK GEOMETRY 2s - [1 Ap = 2200-900 psi 24 - 22 - 20 - F = +1109 # 1 ] CRACK I' ' l OPENING x 3 -- 1 5TRETCH 18 ' J I 14 - T i' f 12 10 - Pg XX i l sg, i 8-i V+h + [. 1 8 Ps = +500 #-*- E = +100 # l j 2 +.48 GPM BPERATING @.03% FF +.1 GPM 150 psi N 8UBBLE TEST 1 2 i LIMIT OF [ Mm M t .02 .05 0.10.9.14 0.18 8.22 0.28 8.39 9.34 9.38 ns.42 9.48 g.59 DETECTABILITY ?Y j 1 I.D. ARC LENGTN -2s GNCHES) O tyg 0 33* gge gg. / M. S j j. O '12h CRACK 5'
TDR No. 388 j p;g.4, .ges.o TMI-2 FIV INSTRUMENTATION RESULTS - STEADY ' STATE TANGENTIAL DISPLACEMENT -7 i 1.1 l 1.0 8.8 ~ g 87% POWER !O.8 =.., ~ E 4 8.8 - 5 75'% POWER !! s.s o 5 a.s = 3 E. s.3 40% POWER 0.2 S'.1 30 45 60 0 15 a a h h h n h n OTSG h 50 40 35 30 23 2119 4 1 1NCHES (ARROWS SHOW ACTUA5 TUBE LOCAT10NS) ~ LANETUBE LOCATION g e STEADY STATE DEFLECTION FOR FRACTURE MECHANICS ANALYSIS = MILS.- e ONE CAN SAY WITH A' CONFIDENCE LEVEL 0F SB% THAT FOR A GAUS MAXIMUM AMPLITUDE WILL NOT EXCEED THREE TIMES THE RMS. F/ c.. f. m 5 t e ,W
pu. ,n-3- 4-g* e. /.
- x,
t y-Yt l' I. (. t Y y;' l' t 1: e. APPENDIX A )s.
- .~-
s c. v ?6 .. 2-
- I bn-.
s -s e - Ie,.;. _..w ..s.$ . - 4 .m... O e t = y e P*' O WdN e f 1-ag', g [ gt,,,., 9 4 h \\; -
- a..
R
- 9 s
a O U 4 4 w
- 9, w
O.'" 9 I-- O ) 1 o D rg; -- N
w p-tagoses ,fe v. O i ) BWNP-20210-1 (1-78) CALCULATION DATA / TRANSMITTAL SHEET CALC. 32 - 1137064 00 Doct?.EST IDENTIFIER TRANS. 86 TYPE: __assrs.cu a scir.cmn,_,,,,sent aw.tsts enour,,,,,,,wue. sm. zwe,,,,_,ntstcu nett. _,,_eut a :xtr. ,x__are TITLE OTSG' Tube LEFM Analysis PRIPARD BY M*,b/ A, deld REVIEWED BY TITLE Encineer I DATE 9; 3\\S'UITLE T 4M e h 0 h. DATE 8 f21($"2 v PURPOSE: H To show that a maximum flaw size in the TMI-1 OTSG tubes is' acceptable using a fatigue analysis. fr l l
SUMMARY
OF RESULTS (INCLUDE DOC. ID'S OF PREVIOUS TRANSMITTALS & SOUR l j PACKAGES FOR THIS TRANSMITTAL) l l l S f. C-8 !b. C. ~ SuTnmo.f y ok f*d,60\\T b Of m P A 1 l-DISTRIBUTION ~* See DRN. ~ Page / of 38
g.2 t .roa set }e4 0 a Babcock &Wilcox 32-1137064-00 >nm GENERAL CALCULATIONS Nuclear Power Generation Division t ~ "~ - Table of Contents . a... Section-Title Page 1; ):b 3 E.J W " I Introduction
- W '
l ^ .sc. II Method of Analysis. . ~ ,y.... A. Het Section Collapse N ~ ~ B. Fatigue Analysis 5 ) v* t o III Calculations A. Net Section Coll. apse 0~ B. Fatigue Analysis jj i IV Results. 16 k... ? ). V References 17 I.s [g. I8 1 ~ Appendix A - Paris Equation Constants 1 i Appendix B - Memo from D. G. Slear 21 2.3 ppendix ~C - Stress Intensity Calculations 36 Appendix D - Microfiche J ~ 1~- e :. o. J I r - 1 j; k $ b ein _9 h d h - occ. o. N- /M7 t'of t e e-7 on -ter --
~~ ji.3 rpe *a eg h u,0 \\ Babcock &Wilcox 'S2-1137064-00 = = > -n GENERAL CALCULATIONS Nuclear Power. Generation Division . u I. Introducticn This analysis assumes a maximum existing flaw size of 40tt wallintheTHI-1Once-Through-Steam-Generator (0.T.S.G.) tubes. j. The LEFM technique' accepts that some flaws will be present but-that conditions can be established to assure that flaws do not .1 e :.: _... c' .' '..,. ' ~ ~;. grow to an unacceptable size. - The net sektion collapse criterion (Ref.1) was applied to determine the margin-to-failure for the 0.T.S.G. tubes containing part through circumferential cracks subjected to combinations of membrane and bending stresses expected during operation. The "BIGIF" (Ref. 2) computer code was used to determine the crack growth in the flawed structure. The fatigue analysis was 3 performed with a resultant life prediction in years. P 6-w r \\ 18 - ' - Wa. * =. .i* 1.:: pph ,,,,3h3h2-Dec. ~o. 3 PatPAttD ST PACE NO. ,,ej. pggg RfVII ED ST
b. p.q roe,are , ^... Babcock &Wilcox 32-1137064-00 - = = > " " GENERAL CALCULATIONS Nucisar' Power Generation Division .J II. Method of Analysis A. Net Section Collapse Criterion Net section collapse is used to determine the critical circumferential crack size at which failure can be expected. A comparison of a maximum deptn flaw to the corresponding I critical flaw size is made to assess the safety margin. i Calculations have been performed using the procedures of Ref. 1. A pipe with a circumferential crack is at the point of incipient failure when the net section at the crack fonns a plastic hinge. Plastic flow is assumed to occur at a critical stress level 6*f, called the flow stress of the material ((T =[7 +Ff2). f u For a given external bending moment and axial stress 0 / I.. and an assumed crack length of 360 a critical crack depth can be determined. A constant depth crack is assumed and ^ is conservative since field cracks have variable depths and
- i 0 circumferential reduced circumferential angles. The 360 y
flaw has larger stress intensity factors along the crack f.l 8- ,=1-front when compared to partial circumferential flaws for ^ f the same loading conditions. ~ 4.,. q '^ 1) . N b oan 9 7.- E occ.wo. \\_' neenso er kW I!N k
- ce ao.
Ni -cevowce er on
_. g-p, ..f .? wo = = ' " ' " 32-1137064-00 9 Babcock &Wilcox GENERAL CALCULATIONS e eration Division Nuclear Pow B. Fatigue Analysis _ ~I The computer code "BIGIF" is used to calculate the stable "BIGIF" requires as input crack growth in the flawed tube. I the crack model, initial flaw size, wall. thickness, constants for Paris crack growth equation (Appendix A), stress intensity 3[ The transient cycles were 4 ' level / cycle and fr'acture toughness. input on a per year basis so that the output variable "N" is r the number of years necessary to reach the output variable The resulting flaw size and number of cycles to react size." .) this flaw size is determined based on an incremental change flaw growth. The crack model used was IFI = 102 which is an edge l. [ cracked semi-infinite plate in tension with one degree of f. An initial crack size of 0.005 in, or 15% t wall freedom. _W was assumed. h; The wall thickness and outside diameter w EE.. The constants for the Paris crack growth equation from Ref. 3. in Appendix A using crack growth data from e.,,. .are calculated . ?. Ref. 2 of Appendix B4 - -;p y..: h.' '. 55
- 9 W I\\
. n_ YT 3 I22
- c. o. _
5 hM L ..n 4 W n 6 o ,,, m..,, "d. i,,,,...,,
A-6 ree%e p Taq. o Babcock &Wilcox 32-1137064-00 > = = = > " " Nuclear Power Generation Division GENERAL CALCULATIONS III. Calculations A. Net'Section Collapse Consider a circumferential crack of length 1, and constant depth,d,locatedontheinsidesurfaceofapipe(Fig.1)..In order to detennine, the point at which collapse occurs, it is necesshry to apply the equations of equilibrium assuming that the cracked section behaves like a hinge. For,this condition, the stress state and the cracked section is as shown in Figure I wheretheuximumstressistheflowstressofthematerial%. v-. Theangle,p,atwhichstressinversionoccurscanbedetermined* by considering equilibrium in the longitudinal direction. Let P, be the primary membrane stress in the longitudinal be the direction in the uncracked section of the pipe and Pb primary bending stress. Equilibrium of longitudinal forces gives the following equation: =N Eq. 1. g z og where t = pipe thickness ~ c( = half of crack angle as shown in Fig. 1. F: ~ 4-PttPAtfD BY Daft 00C. MC. fx & FlW[F ..cf *C. J . Art .fm wf..,
4y rce#398 hv. c s Babcock &Wilcox 32-1137064-00 noci.., pow 7r"d".'n'.7. tion oivision GENERAL CALCULATIONS NOMIN AL STRESS P IN TME UNCRACKED ~ SECTION OF PIPt Pm*Pb t. = c e p \\ el '%y [ k /\\ i / \\.I / r , ---es -e - e
- ~-.
n,/ .o f s e N-
==
A g I + j j e 7 l \\ j NE uTR Ai. AXIS P m og
- FLOW STRESS STRESS DISTRIBUTION eM THE CR ACKED SECTION AT THE PQiNT OF COLLAPSE s
i.: i g . i l i s j Figure.'i. Schematic Showing Stress Distr!!nited in a Cracked Pipe aC tlie Point of Co11spse j I' d ,) QAD otti _%\\'l E'l_ ooc.=0. t. PetPAtt0 ST (w,L. $M lP 7 1 ,,ot O afvitwtD ST
n-r rd st.*3 F f g v. o Babcock &Wilcox 32-1137064.00 t GENERAL CALCULATIONS Nuclear Power Generation Division 'I Consider the equilibrium of moments about the axis of t the pipe. Equating the collapse moment to the external moment over the uncracked section gives the following relationship. P = 2% (e. op_.d. ;ncd Eq. 2. 3 1!, g 4 i p.... Equations 1 and 2 together define the combinations of car ^ and d/t for which failure by collapse is predicted for the C,. - applied stresses P,.and P. The equations can be solved by b and F assuming an angle q and known values of P,, Pb f the critical flaw depth, d, can.be determined. s Solving for the critical constant flaw depth of a 360 circumferential flaw (pages 9 and 10 ) net section 0 collapse wi11 occur at 0.028 in. a j.m .} 37 L'. ~ 13' p 4 ~y t i..
- ?
i t-X. s 9%h ..,,Bb23IBz-ooe... flw Itv S 1 ~ 1*44 r
s..._ _ _ R-9 mos ur s
- p.e, 4
Babcockswilcox 32-1137064-00 GENERAL CALCULATIONS Nuclear Power Generation Division 0,v,, ed We be.p r5 Ce.\\ eu\\ :r,ow q, % + W so + 1' A..snNst (Ra?.4 e 6dr) ~ 2 2 3 s.iq g,g'(.v-xM-Pmt r I. i.- 29 2-. -- .wbeve: -q s flom snress = 64 #51 l x = c.co c.K ug e = 7 &. _u.r t = t u be we 11 tM e.k n e+ 3 =d,os4 " ( = rnevn b ec ne ssve ss ,f 0 = 51 (m '7t h - P,m _ 4 2.ce4 ? o.s uur (Ret s) Prn' % q' T fi.' d(,3i?-7r(.2.78 ' 8 N". =,@(s4-s4h-s)~ -8* $= 5*T -54 l Q =- [y, (As - s A f Ef s. 6. ~ !j P =
- @ ( z * - @ - h s:e4 s
qp (z,,9 -4, x) ( f.~ +:4 R v ,e3 n. z 1,o j bb sate 3 ooc. we. reeraneo er 1
- ...so,
.%h L 4 M / P 4 o.,,
+ %;,y,, .o Babcock &Wilcox 32-1137064-00 GENERAL CALCULATIONS Nuclear Power Generation Division Sub s r' roTNg Egvi,i swro 6 w. 2. .I 0 L 1.::. I.w (45-S'93 2.ua L Me 0.o237#;p-in(.31iD ~ yE~ T ' 4 (Re%5 ' E'7 k* ;' O.m2 6 75 iw M -1 3;o f
- 2. 9 5 R y
L a n, _
- ir (_% - s4 e ) '
(o.e43 6 os), 4 u s 4 1 e or J.3,s-4t,-s4h, a 45-1.s75 g. y, o.s,a L, Tbeewer e t.e c \\\\ t.k, c. k n e as 6 = o.o34 ;w. e i .. cl. = o.oss (o.s25) = o,o2 e ;4 j ~Tk = v e 4= c e ; rk e. c.r,,; c.d S \\ cow d.e p tk c r. i s o,oza ". f t.ok.ek wet see.,;ew. cohps e co',ll occow 3 i 1 g P 4 h ..n sh 3lat
- c....
'vdk..ro f/WW 10 I
had C Babcock &Wilcox 32-1137064-00 > ~ " GENERAL CALCULATIONS. Nuclear Power Generation Division B. Fatigue Analysis ~~ In addition to the input data required in "BIGIF" discussed in Section IIof this report, two' transients were input to account for Flow-Induced-Vibration (FIV) and heatup - cooldown cycling.- 8 For transient one, a conservative value of 2.37 x 10 cycles per year (75 Hz) of FIV was assumed (Ref. 5 page 4-7). 'However. this is the fundamental in-air frequency and is conservative {? because at 977. power for steady-state operation the maximum frequency is 61 Hz. Transient two has 6 cycles per year of-heatup and cooldown (Ref. 6, page 5-4). E In addition to the number of cycles per year for each transient a table of crack depth, a, versus the corresponding c. stress intensity factor is input. Fortransientone(FIV), the stress intensity factor in the first K vs. a table is the ( maximum stress intensity factor at the corresponding crack depth, s In the second K vs. a table for transient one, the stress [. intensity is the mean value. "BIGIF" calculates the minimum-stress intensity factor for each crack size and the transient G ~ i
- f..
.is defined'. "BIGIF".also interpolates between the input K vs. a table values for-the incremental values that are cal-b culated. 4 o ]* ? !.* s' - 3 DOC. 80 DAff PetP AttD SY T IN ffIk II bl Dan - ] race o. k neviewe0 sv p- -
A.lLd ,rde ars 3av. o Babcock &Wilcox 3 2-113"r 0 64- 0 0 Nuclear Pow Generation Division GENERAL CALCULATIONS For transient two enly the maximum stress intensity j factor is input in the K vs. a table since the transient cycles between zero and ( x. From Appendix B, the equation for the stress intensity factor is: Kz Ce b = (Fv R.,. + M Rg+ y Rd f% .3 where: F,x = axial tube force (1bs) M =tubebendingmoment(in-lb) .c P = pressure difference.(psi) i The stress intensity factor is therefore a function of axial load, bending moment, and pressure. The appropriate K factors for aspect ratios of 0.1 and 0.5 are contained in Ref. 2, Appendix B. From Equation 3 the stress intensity factor for crack depths of 20%, 50% and 80% wall are input in tabular form to "BIGIF" for transients one and two. k Three separate loading combinations (axial, bending and pressure)wereinvest,igated. For each case, two runs were made p to include the aspect ratiosof 0.1 and 0.5. 3 Y 2-a l Rnb ... Shsh:t-l- oo c. 3 (*Al 5Mlfk 17
+- e.9* r r a g...- rog.
- q. 6 Babcock &Wilcox 32-1137064-00 Nuclear Power Generation Division GENERAL CALCULATIONS
.a Case I-A bending moment'of 23.73 in-1b (Appendix B) and a pressure J difference of 1245 psi (assumed) were used in the stress intensity factor equation for transients one and two. An a'xial load of 500 lb. (Ref. 5, page 5-9) was assumed for transient one and (,x and bean were calculated,in Appendix.C for crack depths of 20%, 50%, and 80% wall. An axial load of 1107 lb. (Ref. 6, page 5-13)'was assumed.to I calculate (,x for transient two. The stress intensity factor calculations for all cases are contained in Appendix C. '"BIGIF" was then executed for aspect ratios of 0.1 and 0.5. For a flaw aspect ratio of 0.1 and assuming a maximum existing flaw depth of 40tt (0.0136 in.), it would require greater than ~ 40 years of stable crack growth to reach the next incremental flawsizeof0.0141tn.(ficheACMYBRV). Since this flaw depth (0.0141 in) is less than the critical flaw depth due to net ~ section collapse (0.028 in.), the circumferential flaw is acceptable for the service life of the tube. For a flaw aspect. ratio of 0.5 and assuming a maximum existing flaw size of 40% t, it would require greater than 40 years to reach the next incremental flaw size of 0.0141 in. (ficheACMYBSF). Since this flaw depth is less than the critical flaw depth, the circumferentical flaw is acceptable for the the service life of the tube. PREPAttD BY __ Daft DOC. Pec. P 64 yhe /r> i3 D.,, p-
-+ -r4 ron ss a 30.O Babcock &Wilcox 32-1137064-00 ' a ' ' = ' i' " GENERAL CALCULATIONS Nuclear Power Generation Division .y case II A bending moment of 23.73 in-lb (A,ppendix B, Ref. 3) and an assumed pressure difference of 1245 psi were used in the stress intensity factor equation (Appendix B, Ref. 2) for transients one and two. An assumed axial load of 200 lb. was used to calculate (,x An axial load of ~ and bean (Appendix C) for tra sient one. for 1107 lb. (Ref. 6, page 5-13) was assumed to calculate (,x transient two. Crack depths of 20t, 50t, and 80% wall were used to calculate corresponding stress intensity factors. "BIGIF" was then executed for aspect ratios of 0.1 and I 0.5, computer runs ACMYAMA and ACMYAMP respectively. Assuming h. a maximum existing flaw depth of 40tt (0.0136 in), it would require greater than 40 years of stable crack growth to reach I k the next in'cremental flaw size of 0.0141 in. for both aspect ratios. Since 'this flaw depth is less than the critical flaw ~ depth, the circumferential flaw is acceptable for the service life of the tube. 4 ~ G s 1 k po t. No, D A,1 POIPAtID BT 'WO..,, 5/Wl& /4 i
~ ll-I5 ?..'. ng*3ep 7u. o Babcock &Wilcox 32-1137064-00 Nuclear Power Generation Division GENERAL CALCULATIONS Case III Assume a bending stress of 540 psi, a bending moment is then calculated for use.in transients one and two stress intensity factor equations. b 7s 3 x 8 (0 31 54 opt o.co z.475id ^ ~... ir.~'.: ': M = 4 66 in-lb o A pressure difference of 1245 psi is also assumed for both equations. An assumed axial load of 500 lb was used to calculate (,x and bean f r transient one. An axial load of 1107 lb. was assumed to calculate (,x for transient two (Appendix C). ..j "BIGIF" was then executed for aspect ratios of 0.1 and 0.5, computer runs ACMYMRT and ACMYMSD respectively. Assuming a maximum exisitng flaw depth of 40%t, it would require greater than 40 years of stable crack growth to reach the next incremental flaw size of 0.0141 in for both aspect ratios. Since this flaw depth (0.0141 in) is less than the critical flaw depth, I it is acceptable for the service life of the tube. 5 ~ ~ k N can T 3 \\ 31 oce. wo. r essensen av enviewsoav [tAfk can 5, II eact wo.
-~ r n s*ses ,' -J.. :.. 32v.o 3 Babcock &Wilcox 32-1137064-00 ...-.i..n Nuclear Power Generation Division GENERAL CALCULATIONS IV. Results. J. Three separate loading cases were analyzed for fatigue of the THI-1 0.T.S.G. tubes. For each case, aspect ratios of 0.1 and 0.5 were considered. A maximum existing flaw depth of 40tt (0.0136 in.) was assumed. For all case.s, after more than 40 years of stable crack growth the next incremental flaw size of 0.0141 in." 21-...:. ' p j 'is reached. This flaw size (0.0141 in.) is approximately i-l half of the critical flaw size due t, net section collapse (0.028in.). Therefore, assuming a maximum existing flaw depth of 40%t and the loadings presented in Section III of this ~ report, the 40%t flaw is acceptable for the service life t-I of the OTSG tubes. i s r O e .r ~ s ~ ..,, - in ....A... I eo tM Daft PAGt sec. .tvtEWS. SY
p - 17 neO388 6cv.o Babcock &Wilcox 82-1137064-00 Nuclear Power Generation Division
- a" > = > n. > >
GENERAL CALCULATIONS V. References 1. Steel Piping with Circumferential Crac Sept, 1976. a n ess 2, 2. NP-192, Sept.1976."BIGIF" - Fracture Mechanics Code es," EPRI 3. 620-0005-55, Metropolitan rdison Co. Stress Report , Contract No. roll no. 80-8..keport #1, page 2. Sept. 1973 microfil m 4. ASME B.&.P.V. Code, Section III Appendix I , 1980 Edition. 5. " Flow-Induced Vibration Analysis of Three Mile Isla d Unit-2 Once-Through-Steam-Generator Tubes " EP Vol.1 Project 5140-1, June 1981, Page 5-9 n -~ 6. BAW-10146 Thickness,for 177FA One-Through-Steam-Gene Page 5-6. , Nov. 11, 1980 O 4
- .~2 M
?5.
- g e
$'k Mi nu...., _ P A.b _..n M? S } 8L c. n 6wi..n 8/24/& [ 3 ... - 17 g y & y;&a-. ,F' ""
-/r_._. m....__ e n ie ,s e r gc.q, O - Babcock &Wilcox 32-1137064-00 nuci..r pow.r o.n. ration oivision GENERAL CALCULATIONS ~ t, . ~.. y~ a.x ; 'T =g Appendix A Paris Equation Constants s.. w.,,. + l I ~ bc ,+l ' u k N b oan M13 3 L ooc. we. es,ean,o sv lu n/ ..,, r/W /t-is i b r-..- .-----v- --,.w-- _e-----
.. Y,.' ' 3av.o i Babcock &Wilcox .32-1137064-00 noci..r po U.T. tion oivision GENERAL CALCULATIONS I i Co.ieoia.riew.5 P vis E uetten. Cowsra.w rs 3 L;s Egua riew,.: fy= CAM" i wE e < e. '. h = f 6,igu e.<c-c.h gro e,k ecerc. [(, 6_r,(k.I.C) ~ Ax. - wress m r.w.;-ry ro k dere C4m-cons,c.wts m.sek 4r.~ Aum B reg.1 ti.1\\ be Ne termiwed. -f rew ~The cen sva.w r s two p'in,* en rba Siwee nor itew e4 -The. f--hvs.4K ~ Curve.. k h A (c.A K b - A - -m (g), e-A. N I A ?[fo. ~ -m 3 1 Mk = 3.5 =m ,i h 1.(elo~f d.(
- O A N
.6 3 4 9' Ag P A b..n p I n 8 2-c. o. I br-41. ..n _ T /14 /f> Ii ..o. ~o.
4-ao roa =.ut ..,t .. 'l'. ft V. 0 Babcock &Wilcox 32-1137064-00 ..ui.=..... Nuclear Power Generation Division GENERAL CALCULATIONS Sub s ra ro riw tbe J.c_rc po; n r vc Iu e 5 b-,. h.,amAax;wr. rk. Ars egue r.< w. a.wA so\\v-b. rk e cows, wr
- c. :
tw% A d 4 K.s-3 d.N : h k lO S' h l
- 7... -.
C = 7. 4 X /O Using rbe secewa d. crc po;ny a.s c. ekee.k : .r g = c a k,,... 3 gy Exis ' = C (L N * ~ -le C = 7.4 X IO t de c. .ja4 k. tie ~ S \\ [h~ ' 7 4 X/o i e
- e 4
9 L' g o L t J s P8tP AGED BY DATE DOC. NO. lt ML s'4 Y /rv 2.0 r > 1 i
w T roe ser {Q,y. O ~ Babcock &Wilcox 1137064-00 GENERAL CALCULATIONS i Nuclear Power Generation Division s 7 ~... -...... ~
- g.;
i' Appendix ~B l Meme from D. G. 51 ear w ? lt '~ b! r0 p r 4 q- _ oatt _9 L E-- ooc. ro. I;,' Parraeto sy Q~ e,,,,.;; e, lwi L,,,, S 'W !V 2A ,,a, no. r
-.-%,_m 6.a / a,m t 3 8 gu .s- ..h-e. GPU Nuclear 100 Interpace Parkway /~ (- 'y ggf Parsepoany. New Jersey 07054 201 263 6500 TELEX 136-482 Writers Direct Deal Nurnber: TMI-1/E4543 August 19, 1982 Mr. L. J. Stanek ~ ~ *
- 12M1-1 Product Manager Babcock & Wilcox Co.
Nuclear Tower Generation i;r Division , 3 <,j _,. F. O. Box 1260 Lynchburg, VA 24505 Attention: Mr. G. Vanes, Manager ~ '
- 7. r --
?" R. Structural Analysis Basis for Crack Growth Race, Stress Intensity, and Flow
SUBJECT:
Induced Vibration Bending Moment Used for TM1-1 OTSG Tube f Structural Integrity Evaluation Dear Mr. Stansk For the purpose of bibliography in your report on the TMI-1 OTSG Tube. Structural Integrity Evaluation,~the sources for the following infornation are identified: 1. Crack Growth Rate:_ Ballinger, R. C., and Moshier, M. C., Hydrogen Induced Cracking Under Cyclic Loading of Nickel Base Alloys Used for PWR Steam Generator Tubing, Fif th Semi-Annual Progress Report, July,1981. EPRI NP4613 Research Project 1166-3. for Partial Through-Wall Cracks _: 2. Stress Intensity Cotter, K. H., Zahoor, A., Stress-Intensity Factor Estimates for Part-Through Surface Cracks.in the OTSG Tubes at TMI-1 Nuclear Generating 5 Prepared for CPU Nuclear Corp. by Fracture Proof Design L 63108, July 20, 1982. I Station. Corp., 27 Maryland Plaza, St. Louis, MO 3. Flev Induced vibration Bending Moment: E Flow Induced Vibration Analysis of TMI-2 OTSC Tubes, Vol. 1, EPRI NP-1876, Vol. 1, Project 5140-1, Final Report, June, 1981. f If.you require any additional information, please do not hesitate to call me. V ry t uly yours G. Slear,. nager g TML Engineering Projects SDL: sis 3 GPU Nuclear is a part of sne General Puche Utihties Systern p. W ---
- muus,
- p. ;..
pv.o .w. Babcock &Wilcox 32-1137064-00 > ~n - Nuclear Power Generation Division GENERAL CALCULATIONS Appendix C Stress Intensity Calculations e V 3. su e 0 e G e O F Pmb ..,, eh2h r_
- c....
b / o o t .,, c/v'/fL O 7e._.:...._,.,.._ g e. ;.
wrur-;w k,..(..,.. m BabcocktWilcox-32-1137064-00 >>=='4 n Nuclear Power Generation Division GENERAL CALCULATIONS Svcess L rew3;T7 do.leula riows da3eT ~ 4 i A *J'e c r R ' T io " 6'2 Tankienr One k for-a. = o.coss
- A1 m. = (t% Rr +-M Ks + y My ) F,.n pi fi,7
= [500 (z.04 + 2 s.7s(17.oD +124s(e.ts,$ 1,os = I. 9 % xa {l,7 5 Nz meau, = (Fn Er + F p.) F>, i = f500 (2 45) HZ45~(as/47)) /.05 = I 68 /<3i, {Tr?, e w.. for. A = 0.0/'70 " X rna - (sools.ob + 2s.7s(39.2h+sz+s{c.s,9$ I.12. 1 C A.M issi ri;;' = l<1 m aa, = (Soo (4.oD + 1745[,379))l.12. 1.
- S 89 Msi fir?
R #7b..,, yka\\st ,o o.. 1 la,,,,._ Ir/w IN 7A i.
e,, 7.,.. j yev. o Babcock &Wilcox 32-1137064-00 ...-.i...n ~~ GENERAL CALCULATIONS Nuclear Power Generation Division .fo e A = 0. 0 2 7 2 " Ez ma.x = ($~oo (9,71) f 2S.13(4S.03) +-)24S(0. hts $ l.29' < 8,87 Xsi W l. l.
- Kz w, i (soo ls.19) + 124rfo.sie))).24
' ;V ~ = 7.02.xsLc %4n 5,'enT Two fo e Q.= 0,00 98 " e K mu = {/to?(z.&b + zs.1s(17,os)+12+sle,isr}l.ch T 3 = s.&s xsi a fo < a, o. oivo ~ $ m = f//07 f6.0)) f 2ba?3(39,24)f 1245f0.379hb l*IE-3 f = 9 03 K6L EE [ov-4=d.4272 s l(z mm = [//07 f9 79) + 23*13{63 0SD+12 C; .= i&. zs xs; >W I'
- 8 4,
r hdTk __ % h %h, b h M can __ N' N 76 e4ce wo. .neviewio av ' ^ ^ -'------,__ __ _ _
a.,- _ _ _- .__ _ _ __4 - 2 /, ~ l
- g..*:, J. '
n e.ste hey.6 BabcockiWilcox 32-1137064-00 = =.... i Nuclear Power Generation Division GENERAL CALCULATIONS \\ bcse.T. \\ A sgee. r 1%r; o = o.s i TA n s' e 6 r 6ne .h_b ~ Y her G=D.0048 ?;~ E ma = {S00 (la 82). + ES.13 (li,62)+124Sfo./ *S)) 1.0 1 =},35 M*i G )c'3 m ga n : Woo (I 3z.) + 1'z.45(p,I/S)) 1.0_., ~=
- f. 6S'N$ s' $
fo, a = 6 0i?o Kz = {s o(s. z3) +n.,s (zo.,,)+124 slo;zo+%I.o1 o ( b8M N6 ~.... g,. T.., ~ h w! 1 N;maan = (S~oo(s.25) +129sfo.zo+b t.oI ~ 189 Kd R2 f V. Fo< a = o.o 2n N fx,4,, rh2)o[4.s d +23 73(s1.os)Ijz,r[o,3o4)l.o.. -j ' 3 6 Ks' N Azm ern = (suo(1.st) + 12+s(e so+)) 1.0z ( [' = 1.84 Ksi 72 ~ rah ..,, du hs. ,, c. k; 'lu-uL ,,, } / w / r ...,.. n o --
~ yngo .._s Babcock &Wilcox 32-1137064-00 GENERAL CALCULATIONS Nuclear Pow neration Division ^ Ta n die r -r /wo .y fo < a -. o. coa e Nz mu = [Ilo 7 N,8 z.) + z3.73 (IE & z) + >245/s, tis)) 1 z.43 xsita (: her Q.= 0,0/70 Es max 8167(3.zs)+ zs.?s(zo,77)+124s(0.209N ol = 4 5G K.SE O2 ~ fo < a=0.0z?2 ~ N ,,,,a.,. = f//67 (4,8 D + 23.?3 (31.04) t1295 (o,3041.02 3
- (o. S*7 N E 2 e
] i I. k Pnb ..,, 4 3 st ooc. o. Av7L ..,, e/xt/tv 2n { L
p)ev. e 5; ~.2..- - Babcock &Wilcox 32-1137064-00 GENERAL CALCULATIONS Nuclear Power Generation Division ~~ Case Z Y~ A_syeer Es.,;o,.O.t True a n, se a
- k...wy f,, a
- o. coag-lg..
Erma. = [Gx 5; + M Rf,5j) Fm f .. ~. =... = {20olz.45)+zs.7s(I'7,os$+ 1249-(e,147)) 1.'os n ~... i = l I8 Kss' fi2
- y...
Y Xz,,,e - ( Fu Kr) F*m ; -. = { zoo (z a s-))1.oa = o.ss n; w f. F o < a = b. o n o Ky,,,y = (2oo (6.od +23 93/3A.29)+iz45(o,3MI) 1. l k.: = z.9 z x,1 M a. f' X. m ea,, - '(zoo (&.oi))11L hL 1 1 SS Ks: W = ,) a=o.os,2 ? Nz,,,u - (2006ad t es.13(6s.os)m+slosisilk 3 l :. PMb .., s\\u\\%7-e. i~ L%t fnW 2.s
r'~ae389 ~ /JeY0 m - Babcocks. i cox 32-1137064-00 ' "' i ~ Wl ~ GENERAL CALCULATIONS nuci.ar Power Generation Division ~ for a., o,ozo z. (con rinoed ) Kzau = s.24 xse ll2 ) Nz mea n - (zoo (1,75)) /.24 i - 2.,4 3 Ksi.,C7 L-Wan s;en r ~/w~ o 1 fo N ' a. = 0 a%B Kz my =(11o7(z,&5) + zs,,3(iy.os)+>24s(s,,,,}i.o1 s.x xsi,w fa v-c.= e,osvo " ~ gs my * [#47/4,0/) + 23,73[39,24)* /215[4,379))).17 9, 0 3 K s L af7 5 ' s T for a.= ca oz?z ' I m a r ' O '# 1 [9'?ib f 23'1 5 I43<0'S\\ + W i = lo. z S Nsi s(7 - O ?.. Q, P. v4.b..,duisi c. h M s 21 N 7A
c.... _.. u - roe sn pv. e. w...- Babcock &Wilcox 3 2-11370 64 ~ 0 0 ' ' * ' " = ' Nuclear Power Generation Division GENERAL CALCULATIONS ~ h feev Savio = 0:5 &nsien r 0ne for a = o.oos s - Nz n,= (2oo(i,s4 + za.,s(ii.ae) + izes-to.iis)) i.o = 0,78 Ms; SY ? e ~ Esinno,= { 200 (/ 82b I.0 = 0 3 6 K ss' G fo e a.= 0 0/70 Xz ax =(zoola.za) tesa3(2o.ri),vzwfo.20+))1.m = lo41 Ksl E2' Kz.,,,n,, = {200 (3. 2 sD 1.01 = s, s y xsi s;7 ho e 6. = 0 o 2.,2' ) K.7,,,, = 600 (4.sh1-za,,s (3 i.o&)+i24c6,sog)1.o2 2.12. Ksi W Ks,,,n,, E (zoo (1,sd)1.oz ~ o,92 xs; C2 ~ /rAnsien r &o 5 [o < b=0.co&2' gj irpax = (//07h.S2.) + 23.'73(ll.62)?1245'(o,115)) /*O 6 % b..,, i n h t
- m....
Mt eb4 % so f
von = = - y gav.s +. I.,
- Babcochgylc3 32-1137064-00 GENERAL CALCULATIONS
~~ - Nuclear Power Generation Division f .o< a.no. coa,e Kz na, = e.4s xsi g Fo e a - o.o no " Mrm -fno,(3.2s) + za.,.s(zo,,,) +i2gs-fo.,o,} },oy ? -' 4 3/., M>I E e
- ~
de v-g,0 27 2. " ~ ' A s. W mNx = N/07[4o8I +2'st73(3104b+119S*[6 .1 ~ = 6 57 KH E2 L s i e y I( '., ~ j b .C C. NO. D AT, P4, PAG.D BY u t..,,elwIm s; P...... j
"h
- g n 7De 5##
fe v. d Babeock&Wilcox .32-1137064-00 GENERAL CALCULATIONS nuci.ar Power Generation Division da 5e. E_ A s te.en R c.T;o
- o. L Tra.ws l e nv dwe
' Ee < a.= o. oo c.,a" x ms.x = {Yax 5 t M Q t yK,) % 7 1 = { soo(z.lo ) + 4 4l.o ()7ed + rzqSf0Ro7h}.03 s
- I. l.o la l o i I T;i7 k z m.., = ( F x 5 + g fi 7 4.
7 7
- { coo (z.os) + s19 s-(o,te7))I.05 l
/,.58 Ks
- G h:
E., a. o. ono - Kr = = I5oo l6.od+ 4.t,td3%7D+ rzes(o,sve) x 1.)z 4.10 Ksi /T2 = Yr,,,,. = (roo 6.oe) + iz4 r (o.s-74)i,32. ?p k Y 3 DOC. NO, PttP Att,,Y Daft i l> M S h4 k' 3 ? t.....,, ..,E
w a.x....:,. .... A-33 72>R " 9 61 fev.o ~ Babcock &Wilcox 32-1137064-00 GENERAL CALCULATIONS Nuclear Power Generation Division for c~ = o o i., z. ' Kx max = (s o(9.79)+1.acaQas.cs)+1195(o.6i8)) c \\ W: , 7. s 9 >< >i /T2 Kz,,,e.., = &ook. n) + mrlo.sie9 to 29 = 7.0z x.stm Icam,en-iuso Fse a = o. oo o, e Wz = (/lo7(z.6,s) + 9.%(/7.ss) Hz45*(bat &7)),0'b m = s. s 1 xs t c2 f, < a
- o. oiro "
'~ Y Kz 4 ~ Gior (s.oi)H.46, (39.29) + ne.rlo..rdbl.m = 618tstri. G Fo< u o.oav2 jf. _, - foor &.vs) + +.&& (cs.os) + s2+s-6.si>Di.> I . /4,74 Mss.VII Y = 9 W t. ~ l.E lb -) of D A,, DCC. NO. PR,P.3,0 SV /u+rt r/w lr v ...,... s.3 0 D.,,
rwR E388 o p,o ~' ~ v Babcock &Wilcox 32-1137064-00 wuci.ar Power Generation Division GENERAL CALCULATIONS Cee. M gp e.r h - e. s- ~ + s l, %ws,e.wr owe . g.., a o. s,.. . ~.. .c Nz mu - (sco (i.n) n.o,a (sub mgclo,ush 1.o -.
- qs
....T'J/i = I. Il x>
- v 7 M,na., - (rooO,sn + i2+sfs, urb.o
. i.ogy,; g r G a = o. orio ~ Kr,,,,, = &Ms,2h + 4,w (zo.v) + iz+s-(s.mm.o g b = l.99 xd 0;7 i Kr >>,en = (cools.1h + ms(0.zo+i)i.oi =/.s9s:5. { fa < a.- e.oz rz " I Xz,,,n = (ss' o (+.5D + 1.n(ss.ob e n9s(c.sou I 01 = z.49 Ksz Egr ~ Ms,,,a,, - (roo (4.s n + 121s-(s.so +)) 1. o z. ) = 2.s4 x,,g,;' k4h .., R 21 6 L. e.ie....., c. RA h4.. flit ' f& 34-g p
fav. o Babcock &Wilcox 32-1137064-00 ""'*"'i 5 GENERAL CALCULATIONS Nuclear Power Generation Division 7 74 n stent 7u'so fa r-45 O. OCG S Yz mv = [//d9(/,82). + +,6&(it.& t)+/24r(o.)Ish I.o = z.2 ) rst 6;~' hv A= D,0/?O ~ ~ _ - ~ Kzmo * (//o ?(.3.es) + +.4&(e.o,vv)+/29s(e.zes))).01 - 3,9? Ni /Is' [a < 4 = 0 02 77 " $1 mx = {//01 f+>8 I + +i44 (3/.06) Hz+5 b. sot)) /. 0 = 5 94 xsi C2 O e DAT, E 3 1 0.C. >80. Pt,PAa,D,Y l'u/ /t> 3er 5 In+it.
~ ~ 4-.-. A 36. 'y.f r. - 2, v*; v roe st! 9 fe y. b i Babcocks.Wilcox 32-1137064-00 Nuclear Power Generation Division GENERAL CALCULATIONS ege '/.
- e. *I n
4 A ~
- ., * * ~
- t**
k y u 1, '. t I ...c.. ? . s... ,w. 4j e Appendix D e g Microfiche 9 s s 4 e t I l t i g-O,, I e t-9 A \\ l e 9A.., s/23/n. A w L.... t h + / & m
- g. _
- ~
-ls[356 fjev.o s Babcock &Wilcox 3 2-113T0 64- 0 0 Nuclear Power Generation Division GENERAL CALCULATIONS .~ \\ b _ Title Comouter Run ACMYBRY Case I a/2c = 0.1 r; ACMYBSF Case I a/2c = 0.5 ACMYAMA Case II a/2c = 0.1.,. ACMYAMP Case !! a/2c = 0.5 '- ~, ACMYMRT Case III a/2c = 0.1 ACMYMSD Case III a/2c = 0.5 ' s-l t i i 1 'i 1 MMb oar R f23 skE naranno et oce. no, Nb TbY 'k enor wo. 37 enviewso av 04tr
A -3P ... t. rz>e ses 3 gev. o Babcock &Wilcox 32-1137064-00 > > a = ' i' " Nuclear Power Generation Division GENERAL CALCULATIONS i .y ig RCafBR7 ~ DAVIS' RR..:e - * - 3 13.~28.24~.',.CTBER,758 ' ' 46-t - '*2. i ~ ~ TURC EgpLUATIOlt a TRI BT g.. y. -w
- ,e s.vaSri DAV Sna.cz c. 3i inizz.
ste.75s: -::' - '"/ 1 ~' ..A DTSG)TUREW E,VALBAJION-i ,.g-yJ 7 y ~ '#k%,. g s ..,k. ' $[?.m I-RCRfAHAM DAVIS R4 n 1W5:'. 30 Ills USEJEVALUATIDah A E.. - CafANPU DSVIS. RA 6M M s'3 gALUATInn-GIS TUR 4 f. .s,. ~ 34, s, 4.LN.In ed ww> n t 3 f.L:;twM.wl M AJ;160f M 4 G J M 8 3 E poc. No. Dat: PstPAsto sv ls L Av'i Ybs/ f?W
-ei_. .g. t eh a h f O O = e 0 f APPENDIK B e 5@ O 4 9 *
- ~
a.y, 9 3 er a >O 06 9 N. Y a m B 4 e k-O e 9 6 m 0 s D 4 4 D 0 e L
B-/ e yz:ng pg y A (* Rev. 0 .,, I. BWNP-20032A-8(6-82) PAGE 1 0F \\ .g CONTRACT NO. PLANT 582-7239 1NI-1 DOCUMENT RELEASE CHARGE NO. RELEASE DATE NOTICE (DRIO AN050F39 PART-MARK / TASK-B&W DOCUMENT NO. DOCUMENT TITLE sg T GROUP-SEQ. m Ek STAT. anL no. 55-001-001 32-1137716-00 Parameter Evaluation for TMI-1 S NA NA OTSG LEFM Tube Analvsis .+ ~ REQUIRED N0. COPIES INFORMATION NO. COPIES INFORMATION NO. COPIES i DISTRIBUTION CDS DRN DOC COPIES CDS DRN DOC COPIES CDS DRN DOC i ORGANIZATION OR TE INDIVIDUAL'S NAME INDIVIDUAL'S NAME D. C. Arthur 1 2 1 W. L. Redd 1 1 1 L. J. Stanek I 1 1 ~ R. A. Davis Or < gina ls i i I RELEASE ST: REVIDiED Bf: &hk. baju //? /S $2. 5Y)/* *f NA b l mAME DATE na>E DATE
M 72M!! 3FP -gay,c a s *,' i* e BWNP-20210-1 (1-78) t CALCULATION DATA / TRANSMITTAL SHEET i 00 CALC. 32 _ - 1137716 DOCUMENT IDESTIFIER TRANS. 86 TYPE: _asstancu a s e n sarm asa'.tsis ancar _ woc. sm. surer _ptsten mm. oostew ruttr;,* .x awn Parameter Evaluation for TMI-I OTSG LEFM Tube Analysis TITLE ehd k hmda REVIEWED BY ik)
- 8[6!I" PREPARED BY TITLE Enaineer 1 DATE/0Islyoiin' r M,4
{tV DATE .) PURPOSE:, To quantify the affects 'of lowering the fatigue crack initiation threshold ~ value, an alternate method for calculation of stress intensity factors, and an investigation of the net section collapse criterion using an increased membrane stress and an alternate crack geometry. }
SUMMARY
OF RESULTS (INCLUDE DOC. ID'S OF PREVIOUS TRANSMITTALS & SOURCE PACKAGES FOR THIS TRANSMITIAL) See.page 14 for a Sumary of Results. b e s a E k 4 I DISTRIBLTION See DRN. ' e O
a.g ee roe s ger.o . Babcock &Wilcox 32-1137716-00 Nuclear Pow G neration Division GENERAL CALCULATIONS Table of Contents Section Title Page I Introduction 3 ~ II Fatigue Analysis Calculations, 4 I III Net Section Collapse 9 IV Summary of Results 14 V References 20 Appendix A Memo from D. G. Slear 21 Appendix B Stress Intensity Factor
- 23 Calculations g
Appendix C Microfiche 30 N b care /D 13 f 8*2
- occ. wo.
Peerases av nevdwee se t % f b cate tc f t. lM 2. , ace no.
p,g, at. ', _,. ~ Babcock &Wilcox 32-1137716-00 GENERAL CALCULATIONS Nuclear P we ee tion Division I. Introduct on .[ This analysis assumes a fatigue crack initiation threshold value of-1 ksi in. This threshold value is investigated for each of the three separate loading combinations used in the fatigue analysis of B&W Doc. #32-1137064-00 (Ref. 1). The fatigue analysis in Ref. I assumed a threshold value of 2 ksi in.
- s An alternate method for calculating the stress intensity for a specific crack size is evaluated for two different loading cases. A comparison is made to the results of similar loading.te..'7~
't cases'. ~ The "BIGIF" computer code (Ref. 2) was used to determiiIe the crack growth in the flawed structure. The fatigue analysis was performed with a resultant life prediction in years. The net section collapse criterion of Ref. I was evaluated for an increased axial load due to cooldown. An alternate crack geometry was evaluated assuming a constant depth thru wall flaw and solving for c4 (one half the crack angle) at which failure occurs. 9 l 1 e 6 e t PA h ... ;o bn ei
- c....
k-nL Idu Iw S l
e a-s-rae.ser n... $2v. o .g - Babcock &Wilcox 32-1137716-00 GENERAL CALCULATIONS Nuclear Power Generation Division II. - Fatigue Analysis Calculations ' The computer code "BIGIF" is used to calculafe the stable crack growth in the flawed tube. "BIGIF" requires as inout the crack model, initial flaw size, wall thickness, constants forParis-crackgrowthequation'(Ref.1.AppendixA), stress intensity level / cycle and fracture toughness. The transient cycles were input on a per year basis so that the output variable "N" is the number of years necessary J.- to reach the output variable "DOF track size".' The resulting flaw size and number of cycles to reach this flaw size 1s determined based.on an incremental change in flaw growth. The crack model used was IFI-102 which is an edge cracked semi-infinite plate in tension with one degree of freedom. An initial crack size of 0.005 in. or 15%t wall as assumed. The wall thickness and outside diameter were obtained from Ref. 3. L' In addition to the input data required in "BIGIF", tivo transients were input to account for Flow-Induced-Vibration f (FIV)*andheatup-cooldowncycling. For transient one, a conservative value of 2.37 x 10' [' cyclesneryear(75Hz)ofFIVwasassumed(Ref.4.Page4-7). Transient two has 6 cycles per year of heatup and cooldown (Ref.5.Page5-4). I In addition to the number of cycles per year for each l-transient a table of crack depth (a) versus the correspond.ing stress intensity factor is input. Fo'rtransientone(FIV), l the stress intensity factor in the first K vs. a table is the maximum stress intensity factor for each crack size and the transient is defined. "BIGIF" also internolates between the input K vs. a table values for the incremental flaw sizes-calculated. 1 kN b nate 10 [/3IS't ooc. wo. eneeaseo er b-h L o.tr 10{tfliI' 4
- oe ao.
eeve... e,
~ . mm JfE6 d. Babcocks.Wilcox 32-1137716-00 ' " ~ " ' ' " " GENERAL CALCULATIONS Nuclear Power Generation Division For transient two, only the maximum stress intensity
- I factor is input in the K vs. a table since the transient cycles between zero and K,g A.-
Fatigue' Crack Initiation 7tneshold (Kth) The three separate loading tambinations investigated in Section III (B) of Ref.1 assumed a fatigue crack initiation threshold of 2 ksi in. The same loading combinations are evaluated herein assuming a' threshold value of 1 ksi in. The stress intensity factor equation for all three ? loading cases is; Eqn. 1 Kgmg = ( F,,KT + MKb + P Kp) Fm where: F =axialtubeforce(1bs) ax M=tubebendingmoment(in-In) P = pressure difference (osi) The stress intensity factors for all three cases were calculated in Appendix C'of Ref. 1. Crack depths of 20%, 50%, and 80%t wall were used to calculate corresponding st*ess intensity factors. The loadings for each cc.se of Ref.1 Section III (8) I are su:nmarized below. Case I Abendingmomentof23.73in-1b(Ref.1,AopendixB)' and a pressure difference of 1245 psi (assumed) were used in the stress intensity factor equation for transients one and two. An axial load of 500 lb. (Ref. 4, page 5-9) was assumed for transient one and Kg,and (,,, w e calculate from Equation 1. For transient two an axial load of 1107 lb h-(Ref. 5, page 5-13) was assumed to calcula'te kax. "BIGIF" -. was then executed for asnect ratios of 0.1 and 0.5. [ 7 $ b pave 1 0 b [ F 2. oog, o, Petraneo or b IC f N N b 6 pact oeo. 3 - east eeviewso et s
rv"Meser ( 1
- m...
4,,,, Babcock 1Wilcox 3.2-1137716-00 GENERAL CALCULATIONS Nuclear Power Generation Division Case II 'I A bending moment of 23.73 in-1b and an assumed pressure difference of 1245 psi were used in the stress intensity. factor equation for transients one and two. An assumed axial,' load of 200 lb. was used to. calculate Kmax and Kmean for transient one. An axial load of 1107 lb. was assumed to ~ calculate bax for transient two. i-Case III A bending moment of 4.66 in-1b and a pressure difference of 1245 psi are assumed in the stress intensity factor equation for transients one and two. An assumed axial load of 500 lb. was,used to calculate Xmax and Xmean for transient one. An axial load of 1107 lbwas assumed to calculate Max for transient two. In Ref.1, each loading case was evaluated for aspect ~ ratios of 0.1 and 0.5 with a KTh of 2 ksi in. For the purposes of this analysis each loading case was evaluated of 1 ksi in. for aspect ratios of 0.1 and 0.5 with a KTh The maximum flaw size before unstable or uncontrolled ~ crack growth occurs is plotted for each case in Figure 1 for a,n aspect ratio of 0.1 and Fig. 2 for aspect ratio of 0.5. TwocurvesareplottedinFigure1&2forbh values of 1 ksi in and 2 ksi in. See Appendix C for microfiche. 8 4 h 4 R A h,an soltsI8L .a e...
- o. era...,,
it2:L,,,, teI1rI n s
m 7DM.30f feg e o .., 1.,., Babcock &Wilcox 32-1137716-00 ' " = " ' " " GENERAL CALCULATIONS Nuclear Power Generation Division .B. Stress Intensity Calculation T An alternate method for calculating the stress intensity factor is contained in Ref. 5 of Appendix A (this document). An explanation of the nomenclature used and the stress intensity calculations for the two loading cases investigated are contained in Appendix 5. The loading combinations investigated are sunnarized below:.. w Case IV A bending moment of 23.73 in-1b (Ref. 1 Appendix 3), an assumed pressure difference of 1245 osi, and an axial load of 500 lb. (Ref. 4, page 5-g) were used to calculate reax and Kmean using the methods outlined in Appendix B for Transient one. An axial load of 1107 1b. was assumed to calculate Xmax for ~ Transient two. A value of 2 ksi in was assumed for KTh' Case 1 A bending moment of 4.66 in-1b (Ref.1, page 15), an = assumed pressure difference of 1245 psi, and an axial load i of 500 lb were used to calculate K,.x and K ean for Transient m One. An axial load of 1107 lb was assumed to' calculate Kmax l for Transient Two. KTh equal to 1 ksi in was assumed. "BIGIF" was then executed for "a/h" ratios of 1, 2, 4 L and 5 for both loading cases. The maximum flaw size before unstable crack growth occurs is plotted for each case in Figure 3. Case I of Ref.1 is clotted in Fig. 4 for comparison with Case IV. Both assume the same loadings and KThjbut utalize .J ~# different methods for calculating the 5!F's. Case !!! of L this calculation is plotted in Fig. 5 for comparison with Case V, since both assute the same loadings and KTh' i /h$b eate lob 3f 3Z, sec.,,o. peerasse av _ '7 ) (LNb eats b i P
- of we, seviewee av L'
w m. _.= 3-9 7be 3EF pv. o n. ~
- i Babcock &Wilcox 32,-1137716-00
$ = = ' i' " GENERAL CALCULATIONS Nuclear Power Generation Division In order to equate the nomenclature used in Ref.1 and Appendix 8 the following equations are used: Thru wall crack depth, a/t = 1/h Inner Surface crack length. 2e = 2a Aspect Ratio, a/2c = 1/2a Me O e O O S 4 e i e e a O g e e .e. /? n /L..,, jo h418 t. . c.... 6,, A-hL toIb'IN 8 t o.,,
roe 3N ^- ge g o Babcock &Wilcox 32-1137716-00 GENERAL CALCULATIONS Nuclear Pow Generation Division III. Net Section Collapse ,a The net section collapse criterion developed in Section III.A) Ref.1;was evaluated for an increased axial Toadin~g and a constant depth thru wall flaw extending an angle 2c<. The methodology of Ref. 1 is applicable to both cases. The loadings-and assumptions for each case are described below: Case I The calculation performed in Ref. I assumed a constant s-0 ~ ~ depth, 360 circumferential flaw. The critical flaw depth of 0.028 in, was then determined assuming a 500 lb. axial loading due to FIV. For the purposes of this study, an 1107 lb. axial loading is assumed. The increased loading is due to heatup-cooldown cycling (Ref. 5, page S-13) accounting for thermal and pressure loading on the OTSG tubes. Using the increased axial loading to calculate a new membrane stress (P,) and solving for the critical flaw depth assuming a constant depth, 3600 circumferential flaw (pages t o and 11 ), net section collapse will occur at a depth of 0.022 in. L Case II The same geometry and methodology presented in Section III of Ref.1 is use'd. in this case but an alternate flaw shape is evaluated. A constant depth flaw with a flaw depth to wall thickness ratio (d/t) of one is assumed. An axial loading of 1107 lb. is assumed to calculate the membrane stress (P,). The equations are then solved in terms of M, which is half, ~ of the crack angle. The calculations are then performed 0 (Pages 12. and IS) with a resultant value of 63 forH. Knowing the angle c4, the inner surface crack length at which net, section collapse will occur.is then determined and'is 0.607 in. [ kNf\\ oat IO!/ 9 !A7 - Doc Mo-Parranno or lC!II 9 7' ,,6,w,,,, [Ld_, oat __ P^of "o-y-
% -l/ ge.sa Babcock &Wilcox 3.2-1137716-00 i Nuclear Power Generation Division GENERAL CALCULATIONS O,a.t e. 1. ~ -fl =, m ca w ( N e(, d Q '. " [* 80 T'i . 54 x *I s = 0- ci v-w D - A,r cas.6 t 209 mweres o< s. 'r (, a.n o me sec.flo.Q a ~ g g4(m_m - fm 11 ~ ~" los o l.10 7 me tukeve i pm- - l'7. 6 9 g 6 ,s &s CA l'TT - m - 1*7, 69 'Ti JOB ,h %.3)-59 k' 26 @ - ich (pet,D a)
- l (Zip -
Or ,b -,. d @ =. N (%.31 - s4
- 2. w
. t tos F<o - R t. t 3 7 io, Pg z. 7sxs: r less (33,3 i. 54 d) TL
- 2.. ~7 5 '1T ~
~ c L 2.n u \\ r, w y %. 5 1 - s 4 )g-84A ..re/o//3/27-ooe wo. reir*eio sv /c/li /W 10 d^/77 r.or wo. ' ~ naviewie, ..r o p-:
m. a -ia. roe an ge y, o - Babcock &Wilcox 3.2-1137716-00 . ~... GENERAL CALCULATIONS Nuclear Power Generation Division 35.ss-i.s w L T 54 t b k= o.uss - o,us (c.oiA,-o caa u A.,u m, ng e s ue e, <wJerew-c.d 46 e t '~ deY-rk. dow s-ra.w t O t. e e s p 0 h O g 9 D L e 4 .Il. L. : i, n: ~ ~ - _ z.- b DAT, /O /b l DCC. Ps0 PA,P AG,D,Y As L D.,,
- Itr Irv n
..C,.O. ......,D
'B -/3 rwe ser- .'. r n ev. o e Babcock &Wilcox 3.2-1137716-00 ' ia" Nuclear Power Generation Division GENERAL CALCULATIONS O a.'se I i s T ' C7*u + 0~y
- S o + 2 '1A
= M K$s. (E s%.b 4 g g l. l P. - oi (5 - *.if.) - 8,, w (w,5.Q a9 t 1 (,cawwed\\, .f. j "~ [-k /4) see. s /./O'T Fm*([C.S0*-(6.27d)7 19.69 Xse' s i @, 54 ( or -* b1) - r7 ro9 rr 2.Lr1> ?. s &.s> 11 - s4 n = /03 . h
- O? % Sir 7f - C.Sc<
Pg. of (z a p-h a d (na.O s L-e ' ' (0 * ') w%e rs - P "l w e.,S.x,; y D.00 2fr75" Caw) l' h 6 Uh 5-r; fuTb I.
- 2.,s
!Re 4 (o.sse,r - s.s.< > - 06 <) c m a a (o.sgi.ri -o.s n -- a e " ". ~ I /08 6olving for,e ) ce oc g3 /?ph.,, so/n /n e. e......., 4 4 L ..,, /c/v/t u 12.
- 7...,
1
7,e ger 4,,, Babcock &Wilcox. 32-1137716-00 - = ~ ' " " GENERAL CALCULATIONS Nuclear Powe Generation Division ' 0**h 6 *~ e' ry_. ci f g to s*. =. g,y s R\\ - o.27/i*-~ M. A. ,o. 2.L bde.olat'sw The $wwer suvhe at c.re c.k } e w k ', c.rcek \\ewyk = tr r (z-d - sto = 7 r ( zM6,9 J'so- = 0. 607 in l~ 4 I 1' ~ l. 1 /O /3 DOC.Dec. PitPAttD.7 DATE '*/)L1 'c/"l
- 15 9.O.
0 r, .......D
w-m yng agt Re V. O Babcock &Wilcox 32-1137716-00 GENERAL CALCULATIONS Nuclear Power Generation Division f ~ IV. Sumary of Results ~ A sumary of the parameter evaluation for thq TMI-I LEFM tube analysis using the "BIGIF" computer. code is provided herein. The affect of varying the crack initiation threshold value (KTH) is demonstrat'ed in Figures 1 and 2. The maximum flaw size ~ before uncontrolled crack growth occurs is plotted for each case in Figure 1 for an aspect ratio of 0.1 and Figure 2 for an aspect ratio of 0.5. E~... An alternate method of calculating the stress intensity ^';;;~ factors input to "BIGIF" is evaluated for two loading cases (CaseIVandV). See Section II. B, of this report for a sumary of the loading combinations. Case IV and Case V are plotted in Fig. 3 for comparison. Case I of Ref. 1 is plotted in Figure 4 for comparison with Case IV. Both cases assume the same loadings and KTH. but utilize different methods for calculating the SIF's. Case III of Section II. A is plotted in Fig. 5 for comparison with Case V, since both assume the same l'oading combinations and KTH, but different SIF's. The net section collapse criterion of Ref. I was evaluated using the same methodology but with an increased axial loading
- h. ~
due to cooldown. The calculation performed in Ref. I assumed an axial leading of 500 lb. due to F.I.V. and a critical flaw depth of 0.028 in (82.4%t) was calculated. This evaluation d assumed an axial loaidng of 1107 lb. due to cooldown and a critical flaw depth of,0.022 in. (64.7% t) was calculated. The net section collapse criterion was also used to 3. evaluate a constant depth thru wall flaw extending an ang1' of e llo7
- 24. The method introduced in Ref.1 is used ardsolved in
- terms of one half the crack angle,H. The resultant value of c< is 630 (2g = 126 ) at which net section collapse'will cccur 0
. assuming an axial load of 1107 lb. The inner surface crack length is 0.607 in. A?nh..,,iohn/st
- e....
j 4 - M....,, e M n - s 7
a /c-roe aeg gy, o. Babcock &Wilcox 3.2-1137716-00 Nuclear Power Generation Division GENERAL CALCULATIONS her 5oeb.e.e Arc WybtrbWr -ze. Gw.3 O D p ^ o p J O L ? v ~ c ,5 v a m .= n. n 92,w.< o- - n. 6t= gga r i r .s $ F.. 7 r, \\ 3 7 \\ 4 * *- +N e 4 \\ S h$$ s I 3 y. qn - c.,., o. gip-s- r usI 1 s 4 A.a. s-o e c. \\ a .go g- =- \\ 6-i e \\ o p m ggy ,g $s O' -3 ty \\ 0 m .\\ WMH S y' \\ a s r. 1 g. g oma eme ~p ,a \\ 16 8m
- aw s
[p' ~ \\ o00 ~
- h3 ;
h bn- -* ? o g a APnb ... olshz. c. h e C ... * / * /f " Ir ...,~o.
M agg fev o ~ Babcock &Wilcox 32-1137716-00 GENERAL CALCULATIONS Nuclear Power Generation Division hev Leb.e. Ace. Lewgk of bereex - ac 6w.3 f 9 -9 o 9 0 ..J o 6 ? 3 ?- W n-gng ~y-e I. --
- 7.,
e r -Tj e o D -D.D.O p &,,P .g m _m y- "- f* 4 k-e r ~Q oo, p= { "t- = o 6b s c s-p p f Sto m er n ? A. \\ I \\ p MD P P -l T \\ b o-fp,, L vi s o o tp m l \\ Ju g o. \\ dMW 5 \\ K \\ I i BEj. ;;El s e= s = -~. \\ b*0 e $ >E n, y w, ,8 ~ L M )9 $ oate /S // 3 / 8 2. reeeasso sv ooc,... Ih [bN catt Pact No. aswegwso av -e-,..--
avr ,. ;..7. rve 3 er q<.v. o Babcock &Wilcox 3.2-1137716-00 Nuclear Power Generation Division GENERAL CALCULATIONS % < brb.e Ave.L
- ,k ok befee r - 2 e 6Q p
9 o o o O ?. ?. Y ? ?, re
- e. p_: %
\\t ....... _ e. s ...: ::n. ~ p 5 7 n ta p A 3 0' -4 32 g q. .c p e. I p 9 O PV o 4 2 z e -utn a D W 3 tt y ~ $f M==Hiit=vW g e 2 4 ce A P -co.A ro-7 e ts -a n tu tWA on - w e e v a~ w *,.e Y$e Ybt$5%Y t = .g...... ret . 71 g' 8 prabuga R gsu c sp aL DAff /O N D DCC. NO. PttPARED SY I C b 'b b natt Pact we. arviewto av
y --.,-- 2 -< 9 m ggg ..., -.. =.. [:.'*- 4eV 0 Babcock &Wilcox 32-1137716-00 Nuclear Pow ne ation Division-GENERAL CALCULATIONS Le,. 6r4u. Acc.Lewpk 4 be.4.. t - 7_e. Co.) o p o o o o w m A e 9 g. 2. 4 In A n} a A .,I g-5
- r j
4s I L I s e .o-I I mmvomm 7 P .y ln l sfd H H p-I h co a ro :.! l [ ~ I c I weAatg P ~ nl wema I ge #
- a -
n s h' h ooP999 m 6 aBIS a 8.- A t' g..a s u, A)9b aan fol/3l82 oce. o: e,,,,,,a,, [ M L .a., /e/ 3'/6 IF
7 s.e,a;j.. a. wgg.wq3.,13 c..wg..;7.;g.m.m,,7.n,. ;1 ;;.e.-3... i .....a...- g.<, ,...f. 7.,...,., c ~~ 1 3a 7E H2 3 88 f(ev.o Babcock &Wilcox 3.2-1137716-00 ='an > a => enafration Division GENERAL CALCULATIONS Nuclear Pow r he, bria.e.e A r e.L.w'6A ei belee.T.2 e Un.) o o P P 9 O 9 -r >aa. st en o n D > rr-U- M = = Midld 3 24 y p
- 29-1} F 2
xant s wa s gres. c. d A
- $ *
- N g k
??es 9P $ 99 m es x;
- ~csa n 3
D C O-E. t e d 0-g g/ a. t< 7a eYl / so f O~ 4 ('> / p j m. d / / %/ o e Oo.. M I l
q q7 m gas
- ;~'-
ge.v. e. ,7. : ', '. *.. Babcock &Wilcox 3.2-1137716-00
==' "" GENERAL CALCULATIONS Nuclear Pow Generation Division ~ 1, References 1. B&W Doc. f32-1137064-00, "0TSG Tube LEFM Analysis," . August 25', 1982. 2. "BIGIF" - Fracture Mechanics Code for Structures, EPRI-NP-192, September 1976. a 3. Metropolitan Edison Co. Stress Report, Contract No. 620-0005-55, Report #1, page 2. September 1973, Microfilm Roll No. 80-8. 4. " Flow-Induced Vibration Analysis of Three Mile Island Unit-2 OTSG Tubes," EPRI-NP-1876, Vol. 1, page 5-9, June 1981. a 5. BAH-10146, Determination of Minimum Required Wall Thickness for 177FA OTSG, Page 5-6, Nov.11,1980. h e = ? Rnh .,, us hd_u.
- e....
Awt ..,,/c/w/N 2.o .. e. m. ___y_
as..__.. ;_c ._, m _ m.._. m,,,, _._. 3== %1 vveseg a
- gev. o -
Babcock &Wilcox y.2-1137716-00 mi u.i i..n GENERAL CALCULATIONS i Nuclear Power Generation Division r a 4 M-Appendix A Memo from D. G. Slear b e 4 ",,g e 1 1 I O A NO. tWrL .,, /ck/W Ei
3 -as s..- u..-as 77ic,-oc, e_, a se go GPU Nuclear Corporation 100 lnterpactri'aikway 4 %j l N %p 1; % rid Parsippany. New Jersey 07051 201 263 6500 m TELEX 136 482 Writer's Direct Dist Numbei: THI-1/E4779 October 19. 1982 .j fc.sM Mr..lohn F. Pearson Babcock & Wilcox F. O. Box 1260 Lynchburg, VA 24505
REFERENCES:
- 1) THI-1/E4429. "OTSG Analysis," July 23, 1962,
[ D. C. Slear to J. F. Pearson .s 2h THI-1/E4577, "0TSG Analysis," August 30, 1982,--- D. C. Slear to J. F. Pearson
SUBJECT:
OTSG ANALYSIS
Dear John,
This letter is intended to continue the analytical work required to support the safety evaluation of the TMI-1 OTSG repair previously suthorized by the above referenced letters. No new structural model development nor new loading analysis is required. No further leakage esiculations are required. The additional work is to re-run the structural model using a newly developed stress intensity solution for small cracks initiated on the I.D. of the OTSG tubes. It is anticipated that no more than 30 additional asn-hours is required to complete this csiculation. This work is to be added as a part of ~.. ~ Task No. 5 - Plant /0TSG Performance Analysis. In addition, for your use in preparation of a report sumrsrizing the results of this esiculation,'please use the reference below, for the origin of the revised stress intensities. kM F. Erdogan, Fracture Analysis of Steam Generator Tubes, T-Part II, Stress Intensity Factor and Crack Opening Displacement Calculations, prepared for GPUN, October 12, 1982 If you have any questions on the above assignment, please do not hesitate to call me. Y y yours, fML D. C. Slear', Manager TMI Engineering Projects cc: S. D. Leshooff I' td. Dis List i. G U Nuclear orporsuorns a suDsiciary of the GeneralPublic Utilities Corporation e2 V-
.{.. p-py voe3M s'. ' qeg 6 Babcock &Wilcox 3 2 -113 7 716 - 0 0 Nuclear Power Generation Division GENERAL CALCULATIONS . a F Appendix B Stress Intensity Factor Calculations O e E 9 6 e 9 R AB,0 SY D AT, /A M C. NQ. GM L /c /2,- /N za ,0,,
8-otc . yve gg geg o Babcock &Wilcox 32-1137716-00 GENERAL. CALCULATIONS Nuclear Pow r G neration Division 5sve.ss L,e.ws rv hrev Ode.ubews I No'meweTa:roce useA. .t 4 //
- 3"*
h too.i\\ t% sche 50.ca9 2b Eb Ion'" *M"b
- t-cyc.eX \\en k(twD
.R = cra.ek A.eyd(in.) i J I$ Ca.C.O\\ M C h& $"T veh5 W )T f. U S*gT Q. CIT O Y" 3 K = U x ro.kie.velues 1 tekeve. : O'. stress due. ya \\ odin)r%vnb.we, t (, au/,, \\.3 beak.n,gye. e3 (Ks0 To.bie. va\\ues,. Con ra?iwea i n T?es. 3 o rA pe.whix A in reevns. f os.Rikvs.%. 3 h corvespe,nds ro "I t t w Ref. 4-. % ym o r r a.sie i. co m w. w s r w e. vc3 ues u s e a. i m TW. Never cd so\\ca tow s. s.we ss w re.w s i c y nat,/o #I EL poc wo. Pa,eAs,o sv M i 04,, p /&#" 24 ... ~. . 7-.
a. _. ..-~ .=. _ magros a er een r.; Babcock &Wilcox 3 2 - 113 7 716 - 0 0 ~ ~ ' ' ' ' " GENERAL CALCULATIONS ..o Nuclear Power Generation Division To.h\\c i z g? aIs ih .i-2 4 8
- u O. P.
O.t(o1 0.17 3
- 0. )'19 c.)SS O.4 0.2.15 075%
0.292 0.3)E 1
- 0. (s o,g43 c.M9.
o.sens o.45(, j,7 O.B O.25to 0 354 0 4'Y1 0, (o o'(, b a.54. N Th B kY.i a. STres5 bbek "To C.A,k Q.uka.*T E "The ifTT*8Sb iwtewsw) ktor h '. i. . T = Q M T + Tp g g 1.nke.< e. ' ' r a.x;a.). sve53 = P/g (gd c T ' bwA'mg vwe$5 ' k (K$l) h r - pec33ere s tresd = Q 090 p A care /d / I2 occ. wo. PeePAnto sv' b "/? b _ natt / Pact No. I ,seviewso or - -... - - - - - -., -... -.. ~..... - -. -... -
y,3,.., 7... . y.. w ree a er v. ge.v. o ' " = * ' '" Babcock &Wilcox 3 2 - 113 7 716 - 0 0 GENERAL CALCULATIONS Nuclear Power Generation Division The. S. Tress usel.-ro c.cde.u\\c Te_ Nm hoc 'TrAwsie wT cme. h W s Ts 4 G~y + G"*g t m 2B.'7 3 (o.3%) + I?A TI _ (5o T(.SiY-N 276 + o,c oz,g is o.o 6 9 ~ = b k 2.'15 + \\\\.3 S l~ 22.1 ust 1. xm - ce, x Tabie i.veaues The 5,ress use A ro encube kmee 6 h ot.wr om. w. Te , = r, + r = 3 + n,3s 7 19,3 s g3 t y Lem, - %,_ x n.w i va o es bY Y Y %eD O 0} - G L.4 G s + 0 p !T (.3\\7 - (,.2747'7T & 2.'76 + 11. 35', i f - 3i.19 x s L. N%- c'e, x Tsbie i vdoc s Twe. cde.uic.cre A s'tr % c ve rebub,A NTub\\es 2 &s. /?nb,,,, jobs h e e. ze 1*A 2. ,,,, 4 /u /r2-i,,,,
m.--- a _-,_3-M ___ e arr eg o Babcock &Wilcox 3~'2 - 113 7 716 - 0 0 GENERAL CALCULATIONS Nuclear Pow Generation Division Tea.we ew r Owe ~ T a.k i e 2. C a.Teu\\ cet el 5 reessTw,ew.wy Fa.eroes Flaw Ifh *}?'* 6 ' "I* ' 4-I ** * -I b ' E b 'I b ' 4 N' 4 ' 8 63 b=>( K .,.w Kou k m e K m a,x her wl kmu be=w ^ c.1
- o. oor.B S.5G 3.1E S.T 2.
3.45 3.96 3A4 4.oq 3.s4 ?? o.4 00G4 4.75 4 10 5,1o 5.co 4.45 5.65 4.4o 4.c4 c.6 o.czo4 5.51 4.10 7 05 6 t'7 8 30 '7 10 10 08 8.E2 0.8 o.cenz 5.66 49s 7 12. G.S5 ~ Jo.54 9,2S IS.S9 1173 - Tra.ws t e.wt Lo "Ta.b\\e 3 Cc e.u\\ a. te A. 5 tress'~Lwsewsw y Fa.c. re, s Fleuas \\ h f %i Ch s 2. Q-l w = 4 ' %. E D b hoh K m=x K m a.x km, x K muy i l. o.2, o.ooms 5.1 '2. 55o 5 69 5.82. i o.4 o.om 6.13 8 20 9.2 % 9 9 2. 0.6 e.otc4
- 1. '72.
10.\\4 12.6 5 14.5o [ 0.8 04t71 S.19 11. 2 6
- 15. Ma 19,2 6
~ t DAT, _/O DO C. NO. PR,P Aa,D,Y M L D.,, a A>'/(- z7 .A.,
.,a:-z..a.x -, ~ y 2.9 rae ser Gev. 0 Babcock &Wilcox.......,31.2-1137716-00 = = 'a ' i' " Nuclear Power Generation Division GENERAL CALCULATIONS Ce.s c. 3T-Tec.wstewt Owe., % mm is-We, - %. + % + ry \\ 4.6 G (0.%1 11 M IC' -
- (600 /l'7T6 sly 7tl.274$) + l\\ o, caters
+ o.os+ ' ~ s + o,s4 + n a ~~ = 19.B9 Ksi. s Cr d~ 7 = 8 %. n. 55 s 1 % S E K b's. 7 g tw e<.w P F. e s< ms,e - v i m o 3 q m,.,. %* % 4 Ty T,4 s t h'O'/1T(. sip Trl.us? + [o',Nz o,,$$ F = y 17.I.s s 4 0.59 + 11. 65' c 5 = 7.A.68 K sw 4 sw 9. 6. e 9 APAA eo43 h > ..n ooc. ~o. IMn_ A/w/V 2F
J L - -.a -~ - - - + g.,o yoe ses ge v. o Babcock &Wilcox 32-1137716-00 =>nn GENERAL CALCULATIONS Nuclear Power Generation Division Te c.ws s ew t Owe -/ I a.%\\ s A F' law C. a.icui art e <!L 5 r cessL,en.,,y Fe.c.v. c3 D=PTh %e "lw = 1 he Clk= 2 F. Cik-4 Fe Clw=2 e,3 Kmax K -es-w l K mu kme. Kmu Kmee w Kmu Eweuw 0.2. o.cobB S.2o 3.\\ 2. 3.44 3.~6 5 B.5 6 3.46 3.64 3.54 o.4 0 08 % 4.'2.2 4.ib 6.\\3 49"1 5.si 5.65 6.21 6.09 L 0.6 0.0204 4 83 4.q o G.34 6.11 '7.91 770 4.O'7 8.81 l I 0.8 c.o2nz 5 09 4.95 '701 6 35 9.49 9 23 \\1.0 5' 1173 i 1 l I T1~4.w5i e.wT Tsa.so T c.bie 5 Fla.w &d e.u\\ a. te A. S rcess L7ewsw y I c.c. roe 3 e D{ib Q-)w s i R\\ ws 2. a.l gg4 s)g, g h (A Km x K m a.x K mux K mmy 0.E o.oores 4.'76 5 12 5.s o 5.4) o.4 o.otw 6.SG '763 8 G4 9,.23 ( 0.6 c.czog 7,iq q,44
- 1) qs 13Aq 0.8 octu
'7 5 8 10.4 7 14,it 17.93 boa o... u 44 4 > oo c.... r awl
- o. AN / "
ci - 29
e
- g_g,
.v.. l 7me 388 ger'. b Babcock &Wilcox 32-1137716-00 = ' ' ~ ' " " Nuclear Power Generation Division GENERAL CALCULATIONS y u.t' i A ao ,en 4 4 ' ' ~ ~' c,- Appendix'C Microfiche 4 ~ PetPAtt0 SY Daft & /4 b DOC.NO DAfg PAGE NC. AtVitwtD gy
~ 2n me see e' Rev. s Babcock &Wilcox 32-1137716-00 ~ Nuclear Pow eneration Division GENERAL CALCULATIONS 7 Computer Run Title ACMYGCN Case I a/2c = 0.1 ACMYGEW Insa 1. a/2c = 0.5 ACMYGFZ tase II a/2c = 0.1 ACMYGHL Case II a/2c = 0.5 ACMYGIJ Case III a/2c = 0.1 ACMYGJH Case III a/2c = 0.5 ACMYCJC Case IV a/h = 1 ACMYCJS Case IV a/h = 2 ACMYCYB Case IV a/h = 4 ACMYCZA Case IV a/h = 8 ~~ ACMYDAN Case V a/h = 1~ ACMYDBI Case V a/h ='2 -ACMYDCZ Case V a/h = 4 ACMYDDL Case V a/h = 8 i l r I APAA .. e4shz ooc. o. g..... let ..,,u#rNy si y
s. yaeaW v.n:.. = _.. n .u_.._....... - w.=y fVf.0 g..,, . 3... J. . t.. ..=. -- - ~ .w. g. .e- .y,.......,.3,.,._. _, _,, q.. 4, .g "h .e. r. s. . w s.~.
- 1...;.t.e_.,,._ w,..d...;_.. _
_ _.aa g .,e .h .3:t. 4.e_ e :c. ...e 3 ._.L,_*. 3 I 7 - e ffd. -. e. A. 4. w..,t im .s,. - -.. - .e. v. i... m.... .,;.. : %, __.: *... s..x m..g.. t ;s.2 .f. m : :.r-.s. >... i.;s..A). a...... z es I ..... sj..:
- 9.._
t.*._. .1' .,.y---._. E j ] .t' M.. yf---. -p.. p.i..
- r...
..,w, 7,, .,.r. q
- n. m_ 4 m g.......A. i s.., %, q,,,r..... v,g..
... 7 8." .....f,,..,. .y. . r. s .s
- 1..
. r. .i .. y?... . e..
- s t.. -. et n im..n ?.o.t a.,n;s. 4
._ s -.~.m. .L.,w- ; .%.. :.~. *. ' ~. _. a. . 'a 4 r.- -
- d....,.-J...,
~ ; ..c... -., -. e.m... - .. ;v #., g.... m... ,,,,,.g.. e. m.. ..gf.._.,,j,..-....... .g. ..r g .n... r..s.y. : f. r.:4 :.,..,,..... .a ....i. .._t...,..;.r_.,, _: .s .:.... g. .__.u*, ,i m .m u .""J. 4' N"""."". .. 5,. ' w-ar..
- l
.t.. U., v...,,. . r<w 'y. m.. git,.1 ,.d .y- ... d, ...).s.r.. .n.v.r.,.,...t.:. \\ ..r .<,.y .z.~... _ _......... .,3.,,a yms..; q,7._,., ..,.,..,3.'4.,L. a.....,;,,% . )... m.,.;;.,,.,a,,=;,. ,,.,s,m,...., u, ,m,..ir_. y, 6 i ?.. 4. -?.' q '. i H C '" "......'. "...,~. w W T ~ c... T.. F.,T..~~ T i C 'T?.'- Z. k... ".. '. ~ . i, n m J\\ C..__.. c. .a. ..s.. w....., ....-m u. t:. '. q.. .u m. t. ... s.. .q.... *.e*. s.s.~_a% ......*.s.,. ...F d 9.. e.n.wy.w" *g.uy,p m.v. s u g a. =. %r)W G. :. *.I. '.?.DP.. r. W:. S.- O l W .4T:L.... +:...a..,.. ~@,,. w..W~ ~.n re.c '* "N.,M:c9 - -u v.- e ) ~.,....... V~: N.. *.'.;. N.u.u., a_o T,7.s.'~.;M..s."* ~C.'. n. a..,.~. ..c: f.- g..f..f. -?.h..;..t.;!.n : '. - * - s n....s .o,.... ~ mc,;. w m... r.-. 1,wu,...y
- p a
_ a 6,w_. ~ -- _w. u . h.,....i P.:..,. -.. . r. q J f..,..,.,... _ _ e
- w.. :. 4 <,.. r.
. n. :.,, .. ced.m.,.,c.,=,._ T _..(., 0...i...p. y... t t r.. g.....i '.r...
- . c...r.,.
u.. .e. : 4..Q.,:,,w T.s.t,..a 4 e e ..u c. *j ;.* fg,'. t,.,.,,.y. gg,. .a .~- I p...s.....a.._. _mgg = p
- s. S w, A.* :. J.
2 ,cy*t. 48Y. *#.,"*.a&. *P.* "* *** * -': c. .t
- s w. r.5
.r.,, - 4.., ~,.s )s= uw 8.W'**""""=..wwa :"*** >*V'.C"*O"*e gC'r -'L.*/:""". s w - g .W
- q
- L
. % f ig t &F.i ,i. .$. e. s=. f '. I.... .V. A..:",... -
- E *.a., a.$.
g e .f..nr 6! .*b ....l 4i...%.,3..t : Lw... l.w..,. .*.*
- d,1-
- *.e 7*.eT..,m... n'.'.. 8 8 f.eN 8..%x '..J -
.f.,
- .. -. a
. _, t . w .y. - y ..s.t.a_v n 1 .t.,- ..l -r mymy.. s. J ,J.e'i - ;r**r lf e.e. a*...43 y*..4. ssrswy* am.. r -.. z. -r.... n.... 7.... ,.m D,,8.*.*.v.. s..,uv.,,.-.3...g. .i f1. l*
- .*?8,.w.,g,.,". "
'.t..6 *., .4 .,.n. .A.;,_ m._s. h.r.mg.. m,1 s. <-. *. s o. -. .W
- Ty.. nJ.,.,,.. p.. g,,,jg.f at.h.jg*;,,,, p.. m. g..
g f .4- . ~;;yx.. / m. e ...L...g..., u,. ,,. A e e ., p:e-. p.,;., ' 6.... .._t },y. .- m.<.. :..:.my,rs. g;,,e. $..:g,u,,. ..g,...- + g,, =....Jy.L y. ....+ :
- g, r....
f.. g .u.,,,,,,,,,,, ;g...s..,;, zu,... c.,.,.,:.3. m.;: ...A h . - -l,- .. 9.L..,J.p.a.e. 9. f.:n...... r... u 9 gZ,,
- .p,.c
, _ 4 w.u' 4 a- .. v P. - i u.. w - Ef r . ).. :.b. t r .=- i .. m.. e.....c.; s... w r.:.3..u.. ,w..e..y.. %u....,,.,4 ......s. v .. a. 4 i,a..c.. . ~.y ~. .J.. [ .. J% *........ ..i"'b.L...... .6 -... d.i L q 44 4 I ,.,A, .,9 .. :.9 a .y 8 i .r...l* o - l e = ~
- .y
= 4 l 1 3, t v .u %..'.3 g .i ( 1
- L
.1 4 f . J. p t .i
- ei
.N i ,1 .n. ..s..s,. d ( O. h b. 40l13 E 2. y j.? ] --+ m
y _ _ =. g e t APPENDIX C =* e pp.6 = s - W -e O A ee-* e. S t 4 s I 4 4 6 l - e l l l O I L 4 y G i l i I 6 O ,***e
- wo---
f ype 3E8 .-re; ge v. o Energy Reseach Center Lehigh Unw.erssty ( ,,,,,,,,, y,,,,,.ao 440 Brodkend Avenue Bethlehem, Pennsylvanin 18015 a f e FRACTURE ANALYSIS OF STEAM GENERATING TUBES PART II i y. Stress Intensity Factcr and C0D Calculations by F. Erdogan [ Professor of Mechanics Prepared for GPU Nuclear Corporation Parsippany,NJ l-I l -~,,,--n.,,m ,,,,-,,,,--,,w,,-.,,,,.-,.,,,,,,,,n,, ,.a, e ,,ne,a,,an, ,,,,,.n,w-,,, n,.
C-2. yog3gy ge v. o Sumary In this report the stress intensity factor for a semi-elliptic interrial ciretsnferential surface crack in 0.625 OD steam generating tubes I are calculated. These results may be used with the baseline data to estimate-fatigue and corrosion fatigua crack propagation rates in the tubes subjected i to cyclic bending caused by flow-induced vibrations. Also calculated are ~ the crack opening displacement for a through crack in the presence of large scale plastic defomations.. The purpose of this is to provide infomation for'the estimation of leakage rates. j i 1. STRESS INTENSITY FACTORS FOR AN INTERNAL SURFACE CRACK For the probkem under consideration namely, for the tube containing i an initial circumferential flaw at the inner wall surface and subjected to cyclic ' loading, because of the low amplitude of the stress, the stress intensity factor would be the appropriate " load factor" to represent the primary " driving force" in the fatigue crack propagation process. The stress intensity factor, in turn, can be calculated from a linear elastic analysis of the crack problem. Thus, if the tube is subjected to a combination of external loads, as is the case in the present problem, the total stress intensity factor,may be obtained by the superposition of separate simpler solutions. Three main components of the external loads which would cause possible propagation of a circumferential crack in the tube are the axial' load, the fluid pressure acting on the crack surfaces, and the gross bending of the tube. If the total axial force is P, the cross-sectional area of the tube is A, the internal pressure is p, and g the bending moment is M,, then' the crack will be subjected to the following totalaxialstress(seeFigure1fornotation) P N *o o 2 811 " I=Rh(4R2+h) (3) - A I where I is the area moment of inertia of the tube, R is the mean radius and h is the thickness. Referring to Figure 1, it is seen that r, = (R +.X ) cose, oie<w, lX l<h/2, (2) 3 3 I 9' S -.v~
,ww..,w------
,,--.-,-,v, ~.-v.m... - m e c ww,,,-- m,-_ _,-e.
TO O N ...2 p,o s i X beir.g the local thickness coordinate. If the crack length is relatively, 3 small, a would be small, and we can write 2 X (3) ~. ' - z, (R + X )(1,k). 3 2R From (1) &nd (3) it then follows that e ~:,,, f.. k_. pi) = ~'+pg+ (1- )+ '3(1- ). (4) A I 2R .I 2R ltis- -3.. h.g,.. The surface crack problem in the tube is solved by using Reissner's {T shell theory with the elastic line spring model. The technique is fully Uj described in References [50]. [51] and [543. For the solution the membrane must be specified as functions -f resultant N ) and the bending resultant Mjj p. j
- f of the ciretaferential coordinate X2 (Figure 1). 'From (4) it may be
]* observed that the first three terms on the right hand side are independent of X and may be interpreted as a membrane. stress, and the last term is a } 3 f-bending stress. The membrane and bending stresses are related to the corresponding resultants by 3 b = 12M X /h.- (5) ? o"=Njj/h. ejj jj 3 11 Thus, by letting &L ~ (6) 11"'1$+'11 k., 8 e L y ; from(4)and(5)wefind g g , 7, M,Rh X + ph+ (1- ). (7) y(X ), Ph N 2 jj(X ) " ' II )"N11(0)(1- ), (8) M 2 12I 2R 2R . r l F L
rne 3er ge.W O where Mjj(0) is the local bending moment resultant acting on the shell wall as shown in Figure la. Note that M)) tends to "close" the internal surface crack. Therefore the stress intensity factor due to local bending will lie (generally) negative. In calculating the results given in this report it is assmed that the crack is relatively short and the tems in (7)and (8) which depend on X2 "*7 be neglected *. Thus the stress intensity factors are calculated for the external load combinations N)j~= ha, = constant, Mjj = 0, (9) ~ i, r ( and ~ ~ 2 h Njj = 0, Mjj = 6 ob = constant. (10) n Tables 1 and 2 give the results nomalized with respect to o, and a
- b Thus the stress intensity factor at the maximun penetration point of the internal surface crack for the three types of external loads mentioned previously may be obtained as follows:
~ (a)-AxialloadP: 2 2 (A=w(R - R )), (11) Kj= (b) Internal pressure p : j fKj) j = p, (, )I ; (12) K .m .(c) Gross bending M,: MRfK) M h.f K ) 0 j 0 i j 2 !, (I=Rh(4R2+h)). (13) Kj= 1+ I ( 'a l 2I ( 'b d It should again be emphasized that the second tem in (13) is the. contribution of the local bending moment Mjj(o) which is negative and the nomalizing stress
- This effect is calculated in Ref. [59] and is shown to be two orders of magnitude lower than that corresponding to the X2 - independent tems.
3
(w:(.A w.,e ~ ri. ' :.s. - m '.9; ....a w a 6 -5 i 7:2:?e 384 po for which is given by 3 6M Mh M,h 11 6 o o b 2 " 'l (14) h h 12I 2I Tables 1 and 2 give the calculated ratios (K;/e,) and (K /ab)* 3 The stress intensity factor is given only at the maximum penetration point of the part-through crack and it is assmed that the crack is roughly semi-elliptic. The latter asseption may be justified on the basis of experimental results. The fatigue experiments on surface flawed plates and I shells have shown that regardless of the inital shape of t'he surface defect. Y ~ after the fatigue crack initiates it grows into an approximately semi- . elliptic shape, and at each stage the crack profile may be approximated I by a semi-ellipse. Theaspectratiooftheellipse2a/L,(Figure 1) depends, on the overall geometry of the component. However, it appears that in flat plates roughly speaking for 2a/L,< 3 the stress intensity factor is maxima near the free surface (i.e., near the corners), hence the crack would tend to propagate lengthwise, and for 2a/L,> 3 the stress intensity factor Kj is i maximum at the deepest penetration point of.the crack front, hence the crack would tend to propagate in the depth direction. In shells this critical aspect ratio seems to be somewhat greater than that in the flat plates. The stress intensity factor K) for a tube under uniform axial membrane stress e, is also shown in Figure 2 for better visualization of the variation of K with the crack size. j 2. PLASTICITY PRDBLEM AND COD FOR A THROUGH CRACK l If the surface crack continues to propagate, after certain neber. of load cycles the net ligament (h-L,, Figures 1 and 2) may be sufficiently weak for stable crack growth and rupture under the axial stress acting on the tube. For the part-through crack the axial stresses are (Fig.1): (a) Stress due to. axial lead P 2 2 c' = [,(A'=w(R - R ), (15) (b) pressure on the crack surface ..-.1
GA Tag 387 ge_ y, g o"=p = 2155 psi. (16) g (c) stress due to bending 2 ~ ,I=Rh(4RI+h)(average), (17) o "3 = Of these'three stress components only c$ is cyclic. After the ID surface crack becomes a through crack there are two problems to be considered. One relates to the detennination of the area of slit fomed by the crack for the purpose of calculating the leakage rate. The second problem is that of structural integrity, namely the determination of the " load level" for a ~~ given flaw size or of the size of the crack for a given load level at which the unstable fracture (or total circumferential rupture) of the tube may ensue. ~In calculating the crack opening displacement the effect of plastic defonnations must be taken into consideration. In the analysis it is, therefore, assumed that the yielding in the tube wall spreads around the crack region to some distance which is al'so one of the unknowns in the problem (Figure 3). The technique for solving the problem is described in Reference [52]. It has to be emphasized that the plasticity problem solved for calculating COD is a nonlinear problem. Consequently, unlike the stress intensity calculations described in the previous section, the method of superposition is not valid. That is, one may not solve the problem for each load I component separately and add the solutions. In the problem under consideration the totel axial stress acting on the tube is given by equation (4) for the j ID crack. For the through crack the only change will be in the pressure The " water" pressure inside the tube is pq and the steam pressure term pg. If there is a crack in the tube wall the pressure acting outside is p,. on the crack surfaces will be a function of the thickness coordinate and its average value p will be such that p,<p<p. For the pressures, temperatures ~ g and the probable crack' dimensions under consideration an exact determination l of the pressure distribution appears to be' intractable. However, for our purpose a good estimate of the average pressure may be assumed to be* ( p * (pg,+p,)/2 (18)
- private connunications with Professors A. Macpherson and D. A. Walker of the Department of Mechanical Engineering and Mechanics, Lehigh University.
5-p
y,, ^ _ e. =..2 :x .=. =< C-7 TOA Y e% 0 thus, in' the through crack problem the pressure p would replace p in(4). g The plasticity problem in the tube would, therefore, have to be solved under the following loading conditions. h ~T Ph (Pi + P )h N Rh o o j j (X ) " K~
- 2 1 II ~ 7 )'
III) ~ N + 2 2R 2 jj(X ) " M11(0)(1- ). ~ '(20) M 2 2R 'where M, is the gross bending moment.(Figure 1) and 2+h)._ (21) 2 I=Rh(4R Mjj(0) =
- ~.
For convenience we may combine the unifonn part of the axial stress acting on the tube by defining an effective axial force P, as follows: .P,=P+A(pg + p,)/2. (22) Equations (20) and (21) would then become 2 X II ~ )M (23) jj(X ) ". N o. 2 e 2R 2 3 X' jj(X )
- I-
)M (24) M 2 o. 2R Thus, to calculate the COD the load P, and M, as well as the crack length and the material constants must be specified. As seen from Figure 3, because of bulging and crack surface rotation, the' crack opening displacement (COD), must be calculated at the inner surftce of the tube. For leakage calculations it is sufficient to approximate the crack opening area by an ellipse having 2a and (COD), as the maior and minor axes. From the solution'given in [52] and (23) and (24) it may be seen that ' f (a) M, = 0. P,p 0, (b) M, p 0. P, = 0, or (c) P, p C M,/P, = b = constant, i then the external loads depend only on one loading factor. ' Consequently-the nunerical results may be presented in a nondimensional form relating a normalized COD to a stress ratio, namely (COD)g/(aop/E) vs. P,/(Aap) or
m ' - - ~ ~ ~. - - - -..... _ _. c-y '7De 387 p-(M,R/I)/o, where E is the Young's modulus and op is the " flow stress" p of the material. Generally c <c <c and in practice one assumes either y p u o = (cy+ u)/2orop y + ao, where ey =o is the yield and o the ultimate p g strength of the material and ao is an appropriate fixed value. The flow 7 stress is selected in such a way that the stress-strain relation of the material inay be approximated by an elastic-perfectly-plastic behavior with op being the idealized yield point. Some suggestions for selecting the flow stress o are indicated in Figure 4. If the stress-strain curve of the p material is relatively " flat" as shown in Figure 4a then op = (cy + o,)/2 may be an appropriate selection. On the other hand, if the material exhibits significant strain hardening, then (cy + o )/2 would be too h~igh to u properly represent the yield behavior of the material at moderate strains. In this case increasing oy by a fixed amount Ao to obtain op would be more appropriate. For the tube dimensions OD = 0.625 in and h = 0.034 in., the calculated (COD)g values are shown in Figures 5 and 6. In the results given in Figure 5 it is asstaned that the tube is subjected to a uniform axial stmss o, only. That is', in equations (23) and (24) giving the external loads, it is assumed that M, = 0, (25) P, p pg + p, T*A 2
- 'm-(26)
+ Thus, once the stress ratio o,/oF and the crack length 2a are specified the 'crackopeningdisplacement(ontheID),(COD)g may be obtained from Figure 5. Figure 6 gives the crack opening displacement (COD), for a constant M,/P, ratio by using the loading con'ditions (23) and (24) in the, analysis. Under nonnal operating conditions we have P = 500 lbs., pg = 2155 psi, p, = 900 psi, and M, = 25 lbin. Thus, in this case, referring to (22)-(24) we have M .b = p a h. (27) f e thus, if we substitute M, = P,/24, P, = Aa, becomes the only (variable) load factor and the results can again be obtained in dimensionless fonn as given, b )
g7 ~ TDL 38V n qu w by Figure 6. For example, at the nomal operating conditions e, a 9448 psi. = 0.225 and the nomalized If we assume that o = 42,000 psi, then o,/ F p (COD)g may be obtained from Figure 6. The second problem relating to a tube with a through crack is that T of fracture instability. Development of a fracture instability criterion based on COD has _been described in detail ~in References [7], [52], and [59]. The experimental verification of the model for axial and circumferential cracks maybefoundin[7]and[59),respectively. In sumary, the model is based -on the following argument: The calculated a'nd experimentally detemined C0D vs. o curves show that for a given crack dimension, in the neighborhood of a certain stress ratio e/op a very small increase in the stresslevel would cause a very large increase in COD [52, 59]. Physically this indicates that ~ at this particular load level a certain (material-structural) instability is setting in the pipe. Theoretically, at thi_s load level COD becomes unrealistically large or unbounded. Practically, the fracture process becomes unstable. In a limited way, the infomation given in Figures 5 and 6 may, therefore, f be used to estimate the fracture instability load in the tube for a given crack length 2a. For this all one needs to do is to detemine the asymptotic value of c/o for the particular ' COD vs. o curve corresponding to the given p crack length. For example, Figure 6 shows that (if op = 42,000 psi) under = 2155 psi, p, = 900 psi, and M, = 25 lbin~. normal operating loads P = 500 lb., pg o,/op = 0.225 and none of the cracks shown (i.e., 2a 11th) could become unstable. On the other hand, if P = 1107 lb., pg = 2155 psi,~p,= 900 psi, = 42,000 psi and assuming M, = 0 during cooldown, we have o /o r 0.454, g p op and Figure 5 ~shows that the cracks of length 2a > 12h would be unstable and 2a floh would be stable. If one assumes that during cooldown M; remains 25 lbin. then~we have e/op = 0.518 and the cracks of length 2a 18h would be stable -8
7 ~ H.( i i
- c. n
,e Tabla 1. The. stress intensity factor ratio K /3h in the-j tube containing an inner circumferential. semi. Lelliptic crack and subjected to a unifom axial. membrane stress o,, 00 =.0.625 in...h = 0.034-in. .. t - L,/h a/h 0.1 0.2 0.3 0.4
- 0.5 0.6 0.7 0.8 -
0.9 a 1.0 0.115 0.161. 0.193 0.215 0.231 0.243 0.249 0.255 0.293' 2.0 0.118 0.173 0.219 0.258 0.290 0.319 0.336 ~ 0.354' 0.428 i 8 7 3.0 0.119 0.177 0.230 0.279 0.323 0.363 0.392 0.421 0.526 4.0 0.119 0.180 0.236 .0.291 0.343 0.393 0.433 0.473 0.608 5.0 0.119 0.181 0.240 0.299-0.357 0.414 0.463 0.514 0.678 6.0 0.119 0.182 0.243 0.304 0.367 0.430 0.487 0.548 0.740 i 7.0 0.120 0.182 0.244 0.308 0.374 0.443 0.507 0.577 0.794 l 8.0 0.120 0.183 0.246 0.311 0.380 0.453 0.523 0.602 0.842 i den o R ghk j g s, oo ~
4- ~ y 4'. w
- -. *; }
Table 2. The stress intensity factor ratio:-(K /o) in the- ~ ~ ~ j tubecontaining.aninnercircumferentinisemi-e111ptic . crack and subjected to crack surface bending ~ j 2 ~ j moment Mjj,~ob = 6Mjj/h, h'= 0.834 in., 00 = O.625 in. l i ( N i i( L lk / l 0.9 L s o a/h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ( l / 1.0 0.102 0.123 0.122 0.110 0.089 0.059 0.026- -0.017- -0.097. i 2.0 0.104 .0.132 0.142-0.139 0.126 0.100 0.066 0.017 -0.080 l - ? i i 3.0 0.104 0.136 0.150 0.154 0.145 0.124 0.092 0.043 -0.060 4 1 ,e 4.0 0.105 0.138
- 0.155 0.162 0.158 0.139 0.110 0.063
-0.039 5.0 0.105 0.139 0.157
.0.167 0.166 0.151 0.125 0.079.
-0.020 6.0 0.105 0.140 5.159 0.170' O.172 0.159 0.1 36 0.093-
-0.002 7.0 0.*105 ~
0.140 0.160 0.173 0.176 0.166 0.145 0.104 ~
0.013
}
l i
j
/
8.0 0.105 0.141 0.161 0.175 0.179 0.171 0.152 0.114 0.027.
j i
g%bn f
7
#.i
(
A a L c
i N
~
1 b
'e R-t i
Y l
f Eh ena 1.
i C-/ 3 rD2382 a.
$Gll.O
...~-
m.
.....I-..
s
.e..
,.g...
_..7......
-.9
..--..p
--.s.
. *2_. _. _..
- .__4 E-1
_L N -M-M-- . ~- 1-h_, m N M 1:AM__A - ~ A 1. f9.e R n p- .,11 1_, g .- x 2 m t. a m .___a 2 -~ \\ l.~*...., _' gr' - sj, i MT f r ^= ,- M ._ -_. _.4 m._._. n-__ _._a _ B _M .F,J. m p ,w.. ..... _ _m
- y..
.. 4 7m -%,.., -+ F -. f M-I__A-1 .E f _m -;4 y- -f
- - /-
o r-y ..and"-- ,~,'- '; y. my . - ~, _ _ _.gf_ y w .-g.- tg = -x-. e ,"I a- .7 ( g u ..i + g ,0.2 J-e .J .s 4 at w v' .x +- g -A.- w. 4 l EW Y i E A.,e -.- s & M'-- -,: - ni. =Y Y 3 .+ ____ _ y -- - j
- ,. =
n -...-t--+-.- t"~ W. - M. .. ~ M M_*%- "M 1-- ...._. -...-1_
- p M 3dGC.CL.f.-Mf2EF9 ML__.
2 .. W 4 a ee.. e. W em ""' 9 -4 6 9-e.$ e a a h m .e.e _.-e. mg. 4.. e ..e4... - *I-e
+ -~a C-ty' Tot 36F fev o S ^ W a o O o. U g l I V t t n I .y f A 1. t W e d 4 ~ N 2,0 k A ,/ dg i u q .g 1 l a' 3 m l g N i4. 12a- ,,,,-,,,rn-,n----,..,_.,---,,--,--,----.~,r,---,,,.-e,_e,.. _,,,ny,, -..., - - -. -, -,------,-,-,.---a
j - -.. C._ff-O ' f * y,, TOA 38$ fev. o O' 7 y .... y.___ (Y T ~ ,_..I O (T + Q )/.2 p y I I f 0 E (d-) l k A I _e a e ,m cr _ _ l. Y F Y e FVs 4. 6 p.ai% fu.sef.u+Lj h.e_ 9 "Fw s/w 0; i , F
p/d .a," % ~ ~7&e 38' RN. 6 _......._....o.r... s. f.- .g. ...r t...* .s o.. .g t .........s t. ...i '- .. ~... 5.... .k ,^ '., _.. / ...\\.
- g.
.~ i .\\ l t W Q Q,.pu, = = " ~ - r Jo ~ t.... O ._c __. y, .g \\. . l \\ _g. 2-
- 4
.DD = 0. 625%_ _..+_. =0,03 %..,_ ._. 2, g> i.... _.... 1 6 i ~f _.; h. E ._1... f
- _. Ay,._ __.f.(C0b,),.os. & A nJ< e...'
=. _.. { "_.'.... %.h.f,e 4 ag Q 1 t,... f' ' h alb Neue.ee. th. Is > ..-...m....
S .........w c-/ 7 ~7M 328 f]eV &
- *. e 6.
3 e.. ....3. 6 .-4 .; ?. s .e ......s .. e................., 4 l, .4 4 ._.1 . l,. ......s .a s. 2a i m ./ ;.ill e .. i ?' /. .'.t i g. .i.. e...., ..i t ( .......l b .e... ....e, 1. l .p e. .g L I. a. ..e a .g..-. e. g a 1. 6 =m 8 s. .. ann e eu. em g \\ .. =. s.. = s C..-... -.= -.
- i..
= ,6... 7 ..s. i........ mu m s .p t 0 e .e e e e 1.. ... -u - e.. .. _..... =... cod.es. N. d w M M W ~W,_..._ .... _....i.,.....i.... i. .i. i 5..... Y. ~1 .6 [ -.r wy :.! r... . h. A '.. t M..4 e. t y@t..?.. a..k...n.._ [.[ _..L h 0 w . i, .L o ~ ~ - - -. ."**M *..... ,s. i. a. 1. s,.... A ~ 15 -.
.,..u., = Q-f E
- [,..,.,.,' '
W 3N ,(. .v ggy:e REFERENCES 1. M. Reich and E.P. Esztergar, " Compilation of Refe ences, Data Sources, and Analysis Methods for LMFBR Piping System Components " Brookhaven National Laboratory. BNL-NUREG-50650, March 1977. ~ 2. The Surface Crack, J.L. Swedicw, ed. ASME, New York,1972. 3. . I.S. Raju and 'J.C. Newman, Jr., " Improved Stress Intensity Factors for Semi-Elliptic Surface Cracks in Finite Thickness Plates", NASA TMX-72825, 1977. -4. F. Erdogan, " Crack Problems in Cylindrical and Spherical Shells", in Plates and Shells with Cracks, G.C. Sih, ed., Noordhoff Int. Publ., ~ Leyden, 1977. 5. F. Erdogan and M. Ratwani, " Plasticity and Crack Opening Displacement in Shells", Int.' J. Fracture Mechanics, Vol. 8,1972, pp. 413-426. 6. F..Erdogan and M. Ratwani, " Fracture Initiation and Propagation in a Cylindrical Shell Containing an Initial Flaw", Nuclear Enong. and Design, Vol.-27, 1974, pp. 265-286. 7. F. Erdogan, G.R. Irwin, and M. Ratwani, " Ductile Fracture of Cylindrical i Vessels containing a Large Flaw", ASTM-STP 601, 1976, pp. 191-208. 8. S.N. Atluri and K. Kathirtsan, " Outer and Inner Surface Flaws in Thick-Walled Pressure Vessels" Proceed. 4th SMIRT, G5/4, San Francisco,1977. s 9. A.S. Kobayashi, N. Polvanich, d.F. Emergy, and W.J. Love " Inner and Outer Cracks in Internally Pressurized Cylinders", J. Pressure Vessel Technolony. Trans. ASME, Vol. 99, 1977, pp. 83-89. ~ 10. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures, Prentice-Hall, 1977. 11. Review and Develo3ments in Plane Strain Fracture Toughness Testing, ASTM-5TP 463, 1970,.
- 12. Fatigue Cra'ck Propagation, ASTM-STP 415, 1967.
- 13. Progress in Flaw Growth and Fracture Toughness Testing, ASTM-STP 563 -
1973.
- 14. Fracture Toughness Evaluation by R-Curve Methods. ASTM-STP 527,.1973.
15. J.C. Newman, Jr., " Fracture Analysis of Surface and Through-Cracked Sheets and Plates", J. Engng. Fracture Mechanics, Vol. 5,1973, pp. 667-689. i 16. J.C. Newman, Jr., " Fracture Analysis of Surface and Through Cracks in Cylindrical Vessels", NASA-TN D-8325,1976.. -,,,.e., .-....m.,
y. C-/ 7 .c, '7Dd 388 de v. s 17. F. Erdogan, " Ductile Fractum Theories for Pmssurized Pipes and Con-tainers", Int. J. Pressure Vessels and Piping, Vol.- 4,1976, pp. 253-283. 18. R. Roberts, J.M. Barsom, J.W. Fisher, and S.T. Rolfe, " Fracture Mechanics for Bridge Design" Final Report, Contract No. P.O. No. 5-3-0209 Pre-pared fer DOT Federal HighwRy Administration, Lehigh University, July 1977. 19. " Consideration of Fracture Mechanics Analysis and Defect Dimension Measure-ment Assessment for the Trans-Alaska 011 Pipeline Girth Weids " Volumes I and II Final Report NBS IR 76-1154 Prepared for DOT Materials Trans-portation Bureau, October 1976. 20. J.F. Kiefner, W. A. Maxey, R.J. Eiber, and A.R. Duffy, " Failure Stress Levels of Flaws in Pressurized Cylinders", in ASTM-STP 536, 1973, pp. 461-481. 21. G.M. Wilkowski, A. Zahoor, and M.F. Kanninen, "A Plastic Fracture Mechanics Prediction of Fracture Instability in a Circumferentially Cracked Pipe in Sending-Part II: Experimental Verification on a Type 304 Stainless Steel Pipe", Journal of Pressure Vessel Technology ASME, Dec.1981. ' 22. G.M. Wilkowski and R.J. Eiber, " Review of Fracture Mechanics Approaches to Defining Critical Size Girth Weld Discontinuities", Welding Research Council Bulletin 239, July 1978. 23. G.M. Wilkowski and R.J. Eiber, " Evaluation of Tensil'e Failure of Girth Wald Repair Grooves in Pipe Subjected to Offshore Laying Stresses", Journal of Energy Resources Technology Trans. ASME, Vol. 103, pp. 48-55, 1981. 24. J.D. Harrison, "The Welding Institute Studies the Significance of Alyeska Pipeline Defects", TWI Res. Bull., Vol.18, No. 4, pp. 93-95,1977. i 25. H.I. McHenry, D.J. Read, and J.A. Begley, " Fracture Mechanics Analysis of l Pipeline Girth Welds", in Elastic-Plastic Fracture. ASTM-STP-668, pp. 632-642,1979. 26. E.L. von Rosenberg, " Alternative Girth Weld Defect Assessment Criteria for i Pipelines" Proc. of Int. Conf. on Pipeline and Energy Plant Piping-Design and Technology", Calgary, Alberta, Canada, Pergamon Press, Toronto 1980. 4 .1 27. R.P. Reed, H.I. McHenry, and M.B. Kasen, "A Fracture Mechanics Evaluation of Flaws in Pipeline Girth Welds". Welding Research Council Bulletin, 245 Jan. 1979. 28. G.D. Fearnehough and D.G. Jones", An Approach to Defect Tolerance in Pipe-lines", Institution of Mechanical Engineers, C97/78, pp. 205-227,1978. 29. G.D. Fearnehough and J.M. Greig, " Experience in the Gas Industry, Phil. Trans. R. Soc. Lond., Vol. A299, pp. 203-215,1981. 30. C.I. Chang, M. Nagagaki, C.A. Griffis, and R. A. Masumura, " Piping Inelastic Fracture Mechanics Analysis", NUREG/CR 1119, NRL Memorandum Report 4259 j June 1980. 17 - ,-,..-.,--.-.w,,,-._,-+-,--,,-----.,,,_--,.,,,_-,m,_ .-,.mm._,me,mwww,,,,,, -,.- m., .,#,-w,.,,-
iMs c g, ^/ Ok 30$ a*4 '... jfe y, g ^
- 31. Crack Propagation in Pipelines, Inst, Gas Eng., London,19747 32.._ C. Popelar. A.R. Rosenfield, and M.F. Kanninen, " Steady-State Crack Propa-gation in Pressurized Pipelines", J. Pressure Vessel Technology, Trans.
ASME, Vol. 99, 1977, pp. 112-121.
- 33.. F. Erdogan, F. Delale, and J.A. Owczarek, " Crack Propagation and Arrest in Pressurized Containers", J. Pressum Vessel Technology, Trans. ASME, Vol. 99,1977, pp. 90-99.
34. F'. Erdogan and M. Ratwani, " Fatigue and Fractum of Cylind'rical Shells Containing a Circumferential Crack", Int. J. Fracture Mechanics, Vol. 6, 4 1970, pp. 379-387.' i 35. G.D. Fearnhough, et al. " Practical Application of Fracture Mechanics to Pmssure Vessel Technology" Institution of Mechanical Engineering Confer-ence, London (1971), pp. 119-127. 36. C.G. Chipperfield, J.F. Knott, and R.F. Smith Third International Con-ference on Fractum. Munich (1973), Vol.1, p. 233. l 37. J.D. Landes and J.A. Begley, in Fracture Toughness. ASTM STP 514, 1972, pp. 24-39.
- 38. Newman, J.C. and Raju, I.S., " Stress Intensity Factors for Internal Surface Cracks in Cylindrical Pressure Vessels" NASA Technical Memorandisn 80073, July 1979.
- 39. McGowan, J.J. and Raymund, M., " Stress Intensity Factor Solutions for
- Internal Longitudinal Semi-Elliptical Surface Flaws in a cylinder under Arbitrary Loadings" Fracture Mechanics ASTM, STP 677, 1979.
- 40. Heliot, J. and Labbens, R.C. and Pellisier-Tanon. A., " Semi-Elliptic Cracks in a Cylinder Subjected to Stress Gradients". Fracture Mechanics, ASTM, STP 677. pp. 341-364,1979.
4
- 41. Raju, I.S. and Newman, J.C., Jr., "Stmss-Intensity Factors for a Wide J
Range of Semi-Elliptical Surface Cracks in Finite-Thickness Plates", Journal of Engr. Fracture Mechanics, Vol.11, pp. 817-829,1979.
- 42. Newman, J.C., Jr., A Review and Assessment of the Stress-Intensity Factors for Surface Cracks, NASA. Technical Memorandum 78805, Nov.1978.
- 43. ' Atluri, S.N. Kathiresan, K., Kobayashi, A.S., and Nakagaki, M., " Inner-Surface Cracks in an Internally Pressurized Cylinder Analyzed by a Three-Dimensional Displacenent-Hybrid Finite Element Method", Proc. of the Third Int. Conf. on Pmssure Vessel Technology, Part III, pp. 526-533, ASME.
New York,1977.
- 44. Smith, F.W. and Sorensen. D.R., "The Semi-Elliptical Surface Crack - A Solution by the Alternating Method", Int. J. of Fracture, Vol. 12, pp. 47-57, 1976.
4 18 - - o 9 ,~__,---,,,--,-,.,,,-c,,,,-,,,--,,-,-,--, ,,m,,-m__,w,,n,_.. _,mn.-,,,,-n,.,_-a.,,,.
v C-2/ /D2 3ES gg g'
- i
- 45. Shah, R.C. and Kobayashi, A.S., On the Surface Flaw Problem, The Surface Crack: ' Physical Problems and Computational Solutions, ed. J.L. Swedlow, 1972, pp. 79-124.
- 46. Rice, J.R. and Levy, N., "The Part-Through Surface Crack in an Elastic Plate" Journal of Applied Mechanics, Vol. 39,1972, pp.185-194.
7 47. F. Erdogan and M. Bakioglu, " Crack Opening Stretch in a Plate of Finite Width". Int. J. Fracture Vol. 11,1975, pp.1031-1039. 48. V. Kumar, M.D. German, and C.F. Shih, "An Engineering ~ Approach for' Elastic-Plastic Fracture Analysis" (EPRI Handbook) EPRI NP-1931 Projec,t 1237-1 Topical Report, July 1981.- 43. F. Delale and F. Erdogan, "Effect of Transverse Shear and Orthotropy in a Cracked Spherical Cap". Int. J. Solids Structures, Vol.15, pp. 907-926, 1929. 50. F. Delale and F. Erdogan, " Transverse Shear Effect in Circumferential1y - Cracked Cylindrical Shells" Quarterly of Applied Mathematics, Vol. 37, pp. 239-258,1979. 51. F. Delale and F. Erdogan, "Line-Spring Model fcr Surface Cracks in a Reissner Plate". Int. J. Engng. Science, Vol.19, pp.1331-40,1981. 52. F. Erdogan and F. Delale, " Ductile Fracture of Pipes and Cylindrical Containers With a Circumferential Flaw", J. Pressure Vessel Technology. Trans. ASME, Vol.103, pp.160-168,1981. 53. M.B. Civelek and F. Erdogan, " Elastic-Plastic Problem for a Plate With a Part-Through Crack Under Extension and Bending". Int. J. Engng. Science, Vol. 20, 1982. 54. F. Delale and F. Erdogan, " Application of the Line-Spring Model to a Cylindrical Shell Containing a Circumferential or an Axial Part-Through Crack", J. Applied Mechanics, Vol. 49, pp. 97-102, Trans. ASME,1982. 55. F. Delale and F. Erdogan, " Stress Intensity Factors in a Hollow Cylinder Containing a Radial Crack". Int. J. of Fracture Mechanics, Vol.19, 1983. ~ 56. H.F. Nied and F. Erdogan, "The Elasticity Problem for a Thick-Walled Cylinder Containing a Circumferential Crack" Int. J. Fracture Mechanics, Vol. 19,1983. 57. H.F. Nied and F. Erdogan, "The Transient Thermal Stress Problem for a Circumferentially Cracked Hollow Cylinder", Journal of Thermal Stresses,1983. F. Erdogan and'H.A. ' zzat, " Elastic-Plastic Fracture of Cylindrical E 58. Shells Containing a Part-Through Circumferential Crack". ASME paper to be presented at 1982 Winter Annual Meeting.. e
r;; - ?d% ypg 388 ~ t ' 'I.. g y, f F. Erdogan, " Theoretical and Experimental Study of Fracture in Pipe-
- 59..
lines.Containing Circumferential Flaws". Final Report prepared for the U.S. Department of Transportation under the Contract DOT-RC-82007, ~ August 1982.
- i O
O e P 6 4 e S e O 9 5 e 9 20 -
r j- ,u. 84 s , t e. 9 e f APPENDIX D O W e 4 e 9 e e O I 1 O e 9 h L i
r b b4.s-p-/ '^, vvg 3g2 fe d 6
SUBJECT:
- COD 0 500# Axial Load & MFIV (3 mils.) To uniform axial stress, fr,500# 7462.7 psi. = 0.067 C., flow stress f'or INCO 600, by B&W test: C = 34,224 y C = 92,923 $ = + 1/3 ( 6u - Cy) = 34,224 + 1/3 (92,923 - 34,224) ~ = 34,224 + 1/3 (58,699) = 53,790.3 C o_ 7462.7 = 0.139- 'C 53790.3 f 2.a._= 12 COD = 1.10 h (ag/E) a,12h,, 6h = 0.204 2 Of = 53790.3 E = 29.2 x 106 (9 6000F) 3 s C 0.204 53.79 x'10 ~4 f 3.758 x 10 6 E 29.2 x 10 ~4 -3'
- COD = 1.10 x 3.758 x 10-'
= 4.134 x 10 =.4 x 10 h The actual crack shape is elliptical with the COD 9 the middle, with 12 7600 of arch in circumferential length. For purposes of comparison, arc lengths will be taken as equal with COD accounting br all changes in cross-sectional area. The 600 slot solution is varied only by scaling COD's. This will be conservative. 600 SLOT SOLUTION p = 1345 psid LEAKAGE = 0.339 gal. min. 0.339 g x 60 min x.4134 = 8.409 gal min Ti nr J
r- -TMI-1 SG INDEPEf1DEflT THIRD PARTY REVIEW GROUP (ITPRG) MEETIllG-DECEMER 9,1982 e Summary - The ITPRG provided its oral conclusions on December 9,1982 at GPU Nuclear Headquarters to representatives from GPU Nuclear. Repre-sentatives from NRC, State of Pennsylvania, and B&W were present. - The ITPRG formal ~ findings are expected to be issued on January 15, 1983. The Group may be subsequently-reconvened to review GPU Nuclear's resolution of ITPRG connents and recommendations. e ITPRG Conclusion - Subject to the resolution of the following principal reconnendations and comments, the ITPRG concluded (orally) that *"- " = "f probab+14ty4 hat the Till-l plant S/G and RCS with respect to structural integrity, can be safely placed into operation following the implementation of the GPU Huclear repair plan. / Principal ITPRG Recommendations / Comments e Removal of residual sulfur from the RCS by use of H 0 ' ,22 . ru:... t :,,.. 4 p.,, a. 2 *' %. e a '. e - hot clear that H 0 will be effective in sulfur removal 22 - potential hamful effects from proposed H 02 2 concentration (approximately 25 ppm for 400 hrs. exceeds industry experience) Review of other potential sources of corrosion..e.g. carbon; e connecting systems to RCS that could be a source of potential contaminants ._) e Eddy Current Testing - post expansion baseline to include sample, of tubes to be inspected full length m
4; %. = s 9 h. ~ OTSG REPAIRS DATE 12/14/82 DATE . ITEM. DESCRIPTION RESPONSIBILITY REQUIRED ~
- 6. Immunol
. OTSG Flush System for Immunol Application Revision to Spec TF 12/8 Review Spec ~ 12/8 . Samples heav meh Colitz .TBD . Barrel Pugs-order 12/10 . 1600 Gal'Immunol on Order 12/15 . ' Spec for Disposal of Flush Water 1
- 7. Tube Plug Stabilization U
.. Stabilizer Material Deliver -l B.0TSG .12/23 A: OTSG 1/15 1 Practice Nailheads 1/10 Explosive Plugs Ordered - 600 on shelf 490 Ordered B&W 10/15 Spec for Tube Plugging-Final spec C. K. Lee .12/13 Engineering Requirement Document on 11/30 Stabilization E Equipment and procedures to pull stabilizers 1/15 FCA Stabilization -B&W TBD DF Stabilization B&W TBD' Westinghouse Roll Plugs Ordered - 1000 On Shelf Needed - 4 week lead time order to site
- 8. Miscellaneous Items to Resolve
. Resolve 3'W Leakers.at A J. Colitz TED . Plug Tube Lane at A Lower . 2 Tubes Possible Mill and PT at B (MNCR 137-82) . Extract Westinghouse plugs to be stabilized . 9. Waiting Documentation W Responsibility 215-82 Plug exploded at wrong area of tube B&W .280-82 Tube pull length discrepenclea Eng 345-82 2 Tubes plugged-incorrectly 354-82. Documentation for Immur.al-1st Batch Eng 426-82 -Wire Brush Tube B 6-1 '420-82 Damaged Tube Ends ~
- 10. Tube Endmilling Review Process and establish procedure B&W Proposal ll. Anticipated Jugs Date Description Responsibility Vf
r ~ UIW REPAIRS IRTE 12/10/82 mTE ITEra DEbCRIPTIQ4 KEhPuteilbILITY hhyUIRED
- 6. T== ml
. UISG Fluan Systen zor Inamol application hevision to Spec TF 12/8 haview Spec 12/8 . Sanples Colitz TBD . Barrel Ptanps-Un order 7,t + L 12/10 .1600 Gal T --ani on order 12/15
- 7. 'Iboe Plg Stabilization -
.. Stabilizer ruterial Deliver Coupons on Site 12/6 Practice Hailneads 1/10 Explosive Plgs Urdered - 600 on snelt 490 Ordered EW 10/15 Spec tar 'Iboe Pluggig-Final spec C. K. Ime 12/13 Dgineerig hequirement Em==t on 11/30 ' Stabilization E1ph==t and procedures to pull stabilizers TBD FCA Stabilization M-TBD. DRF Stabilizatim hW TBD Westingnouse holl Plgs ordered - 1000 Un Snelt Heeded - 4 wenn lead time order to site
- 8. Miscellaneous Items to hesolve
. Resolve 3 W IAakers at A J. Colitz TMD . Pig Tube D ne at A lower . 2 'nees Possible raill and Pr at B (tack 137-82) . Extract Westin, house pigs to be stabilized e
- 9. Waiting Doctmentation tiCR hesponsioility 215-82 P'lg exploded at wrong area ot tube WW 280-82 Tube pull leg tn discre p ies Eng 345-82 2 Tubes plg aed.tncorrectly 354-82 Dmtation tar Timamol-1st Daten Eng 426-82 wire urusn Tube B 6-1 420-82 Damaged 'Ibbe Ends i
- 10. Tube Endmillig Review Process and establian procedure
- 11. Anticipated Jtaps Date Description Responsioility 4
~, - - - - - ~, -_ _. _. -.,
Q ] 3, ~ ' ~ .- OTSG REPAIRS DATE 12/28/82 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED - 7. Tube Plug Stabilization 12/27 . Stabilizer Material Deliver B OTSG A OTSG 1/15 Practice Nailheads 1/10 Explosive Plugs Ordered - 600 on Shelf ~ 490 Ordered B&W 10/15 Spec for Tube Plugging-Final Spec Issued C. K. Lee 12/13 Engineering Requirement Document on 11/30 Stabilization Equipment and Procedures to Pull Stabilizers 1/15 FCA Stabilization B&W 1/7 DRF. Stabilization B&W 1/12 . Installation Procedure 1/15 . Blast Plan Levin /Pruitt 1/3 . Practice Weld Caps B-OTSG B&W 12/24 A OTSG B&W 1/7
- 8. Miscellaneous Items to Resolve
. Resolve 3 W Leakers at A J. Colitz TBD . Plug Tube rane at'A Lower . 2 Tubes Possible Mill and PT at B (MCR 137-82) . Extract Westinghouse Plugs to be Stabilized
- 9. Waiting Documentation MCR Responsibility 2Tli'52 Plug Exploded at Wrong Area of Tube B&W 280-82 Tube Pull Length Discrepancies Eng 345-8'2 2 Tubes Plugged. Incorrectly 354-82 Docuir.c.a.tation for Immunol-1st Batch Eng 426-82 Wire Brush Tuba B 6-1 f
420 Damaged Tube Ends 458-82 Felt Plugs
- 10. Tube Endmilling Review Process and Establish Procedure B&W Proposal TBD TBD l
- 11. Anticipated Jumps Date Description Responsibility 6
L m _ _ _ _ _ _ - -, - + -
^. CTSG REDAIRS DATE V3/83 ITEM ESCRIPTION OATE ESPONSIBILITY REQUIRED
- 6. Tute Plug Stabilization
. Stabilizer Material Deliver 12/27 B OTSG A OTSG Practice Nailheads V15 Explosive Plugs Ordered - 600 on Shelf 1/10 490 Ordered. B&W 10/15 Spec for Tube Plugging-Final Spec Issued C. K. Lee 12/13 Engineering Requirement Document on Stabilization IV30 Equipment and Procedures to Full Stabilizers FCA Stabilization 1/15 B&W DfF Stabilization 1/7 B&W . Installation Procedure V12 . Blast Plan 1/15 Levin /Pruitt 1/3 . Practice Weld Caps B OTSG B&W 12/24 A OTSG B&W 1/7
- 7. Miscellaneous Items to Resolve
. Resolve 3 W Leakers at A J. Colitz TfD . Plug Tube Lane at A Lower . 2 Tubes Possible Mill and PT at B (MG 137-82) . Extract Westinghouse Plugs to be Stabilized
- 8. Waiting Documentation M4CR Responsibility 215-82 Plug Exploded at Wrong Area of Tube B&W 280-82 Tube Pull Length Discrepancies QC 345-82 2 Tubes Plugged Incorrectly 354-82 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush 86-1 l
458-82 Felt Plugs QC
- 9. Tube Endmilling Review Process and Establish Procedure TfD B&W Proposal Issued
- 10. Anticipated Junps Date Description
_ Responsibility A - Lower g A - Upper YOe^b Le_L;a)%mnewlf 8 - Upper - M 8
p 4 t t Page l'of 3 , LISTED BELOW ARE OTSG REPAIR REQUIREi4ENTS C0lt4ITTED UP ' TO JAllVARY 16, 1983. THIS LIST WILL BE UPDATED AND DIS'RIBUTED EVERY I40.JDAY ' SOFTWARE AND HARDWARE REQUIREt4ENTS FOR OTSG REPAIR Activity Respon-Connitment Revised sibility Date Date _ 1) Establish Felt Plug Blowing Method. B&W 1/15/83 Phase II 14 gr.-ft. A -W 2) Plugging and Stabilization Spec. 030 Rev. 6 A) Pull Westinghouse Plugs 1) Westinghouse Procedure W/TF 12/31/82 2) Mini Spec W Plug Pulling ~ TF 1/7/83 a) DRF ' ~ Safety Evaluation Fire Hazard Analysis 3) Installation Procedure tGC 1/12/d3 4) Job Order H&C 1/13/83 5) Tooling Engineering W/TF 1/17/83 Approval on W Tooling TF 1/7/83 B) Individual Tube Flushing 1) Chemical / Water Requirement Mini Spec B&W 12/15/82 TF 12/23/82 1/3/83 2) Installation and Operation B&W Procedure (Individual Flush) B&W 1/10/83 3) Installation Procedure (Re-MAC 12/22/82 Part Issue circulation System) 4) Job Order MAC 12/23/82 Part Issue 5) Hardware / Equipment (Overall MAC/TF 1/15/83 ' Recirculation System) 6). Revision to Installation ' HAC 1/16/83 Procedure (In Generator Work) 7) Hardware (B&W Nozzle B&W 1/15/83 8) P.R./P.O. Hardware TF 1/15/83 A) C of C on Material e e S
j' I Page 2 of 3 Activity Respon-Commitment Revised sibility Date Date 9) S.T.P. - Operation . Procedure Site Eng a) Component & System Operating Limits and Precautions TF 1/7/83 , b) Startup & Test Instrument Calibration, Hydro, Pump Check-out SUAT 1/16/83 C) 'Endmill ubes. to be Plugged 1) Tooling' Operation Procedure B&W 1/5/83 2) FCA B&W 1/7/83 3) DRF - P.R./P.O. to do B&W work TF 1/12/83 Safety Evaluation Fire Hazard Analysis 4) Tooling B&W/MAC t/15/ss D) B&W Stabilizer Removal 1)' Weld Joint Efficiency TF 12/23/82 2) Proposal B&W 12/20/82 3) Mini Tech Spec TF .12/23/82 a) DRF Safety Evaluation Fire Hazard Analysis '4) B&W Operation Procedure B&W 1/5/83 5) FCA B&W 1/7/83 6) Installation Procedure MAC 1/15/83 7). Job Order MAC 1/16/83 8) P.0./P.R. TF 1/3/83 E) Tube Plugging and Stabilization (Inclusive of Welded Caps and Explosive Plugging) 1) Plugging and Stabilization Spec TF 12/23/82 Issued 2) DRF TF 1/12/83 a) Safety Evaluation b) Fire Hazard Analysis 3) B&W Operation Procedure B&W 1/5/83 4) FCA . B&W 1/7/83 5) Installation Procedure SiteEng/M&C 1/15/83 6) Job' Order MAC 1/16/83
e ~ Page 3 of 3 Activity Respon-Comitment Revised sibility Date Date 7) Hardware - Materials B&W 1/15/83 ~ a) Stabilizer Jump Packs and Crimpers 1/15/83 b) Explosive Plugs (MK-3) 1/15/83 c )' Practice Segments 1/15/83 d) Explosive Plug Delivery 1/15/83 e) Practice Weld Caps B OTSG 12/24/82 A OTSG 1/7/83 8) DRF - Materials - P.R. TF 1/12/83 9) Blast Plan B&W/M&C 1/3/83 10) Welder Qualification MAC Issued Procedure a) Lab Support TF 1/7 to 1/25/83 l l 3) Endmill Remaining Tubes A) Revise Spec TS-120012 TF 12/30/82 002 Rev. 3 Total Remote l Endmilling Procedure l to Reflect Semi-Automatic Process B) B&W Endmilling Operation Procedure B&W 1/13/83 C) FCA B&W 1/13/83 D) B&W Proposal B&W 12/17/82 Issued 4) System Flush A) P.R./P.O. TF 12/30/82 B&W Proposal B&W 12/22/82 5) Westinghouse Plugging A) Westinghouse Installation W/TF 12/31/82 ~ Procedure B) Installation Spec. TF 1/7/83 1) DRF 1/7/83 Safety Evaluation Fire Hazard Analysis l 6) Pre-Service Testing A) Eddy Current Testing Nuclear Inspection Procedure Assurance TBD Scope and Objectives TF 1/7/83 7) OTSG Freepath [ A) B&W Proposal B&W 1/10/83 J. P. Hawkins l M&C Scheduling X4001
GENERAL PUBLIC' UTILITIES o OTSG REPAIRS DATE 1/6/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED 1. Cut and cap thio line B. Elam 1/1 . Installation Spec-On site Comments Sent . Engineering - Issued DRF Mechanical J. Mann IV30 Electrical for Comment V3 Need Safety Evaluation TBD . Preliminary Planning Meeting 1 PM 1/6 2. Round Robin Sag les-NWT Lab J. Colitz . Spent Fuel . BWST . Decay Heat - Monthly Sagles End of Month . Ship Next Monthly Samples V30
- 3. Crevice Dry
. Level and sam le requirements J. Colitz TBD (Post Crevice Dry) A OTSG - 235" 7* B OTSG - 231" 18' . Additional Thermocotples - 3 ordered B&W Week of V3 . Status on Cooper Heat System B&W
- 4. Kinetic Expansion Total
. Expanded Tubes at A Shhh . Expanded Tubes at B g h as u,3g _ g)og, ogg,ng,g,n, . Post Expansion Clean-up Draft - Eng Spec and Equipment B&W V15 Final Installation Spec Received . Camera System Status-Hanger Mod ad,&, Harper TBD . Cold Leg Plugs Replacement at A 1/15 Spare Plugs. wad ea p . Repair Het Leg Screen i V5 B&W TBD . Mod J Leg Covers
- 5. Immune
. STSG Flush System for Immunol Application Revision to Spec Issued Part Kull 1/1D le Dtplex Strainers - Ordered 1/23 Flush Individual Tubes? B&W . Spec for Disposal of Flush Water and Tech Functions 1/3 Type of. Flush Water Results of Soak Tube Test f. [ . Flush Test at Lower Tubesheet at A 1/3 Swipes and Water Sa'mples & M & on .kk 4.A ~g eq W
e OTSG REPAIRS DATE V6/83 DATE 1 ITEM DESCRIPTION REPONSIBILITY REQUIRED
- 6. Tube Plug Stabilization
. Stabilizer Material Deliver B OTSG V7 A OTSG 1/15 Practice Nailheads V10 Explosive Plugs Ordered - 600 on Shelf 490 Ordered B&W 10/15 Spec for Tube Plugging-Final Spec Issued C. K. Lee 12/13 Engineering Requirement Document on IV30 Stabilization Equipment. and Procedures to Pull Stabilizers V15 FCA Stabilization B&W V7 DRF Stabilization B&W V12 . Installation Procedure V15 . Blast Plan Comments Levirv'PIuitt V5 . Practice Weld Caps B OTSG B&W V7 A OTSG B&W V7 A
- 7. Miscellaneous Items to Resolve
. Plug Tube Lane at A Lower . 2 Tubes Possible Mi PT at B (WCR 137-82) % Uot ky
- 8. Waiting Documentation
- WCR Responsibility 215-82 Plug Exploded at WIong Area of Tube B&W 345-82 2 Tubes Plugged Incorrectly 354 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1
- 9. Tube Endmilling Review Process and Establish Procedure TBD B&W Proposal Issued Tooling V20
- 10. Anticipated Jumps Date Description Responsibility 1/5 A - None V5
~A - Upper - Kinetic Expansion V5 B - Lower - None. V5 B - Upper - Kinetic Expansion B&W
m .~ f/ V ). ,~ 3 [ Q, :- _. Y CH&cK Lir T fog IN's? &c To A P E 0 ?/4 y' id6 F&GbER S To f4t^1 cit's t ist S/ Sc ro A : Fo A-lMc4u3ieAl /p/ /4 J/ llc T/ o A) A ff 0 A. TZ l. bST-iA Jf E c TIo Al co VGA. sM f+ T
- 7.. (R 6 - /A!!f G c rio A/
c g/gg. ftf g g. T o ANbl* 7 4 4 A FOAM (s)
- 3. 744
+. 1.s r - ia rn c ri.s sai.e sus s.r (s) r. F es b eg. fngaen.ApH (S) 4. vt 6 4 reb o vrsrpab is/G trens sM&&T (f) 7. H 00A.S, M ohv4 5 r CH&t G eb To, /64ctAlTAGF.T SHE57 )). W,LGla ro-teslge-d2 77
-,-=w .>M 4-* 'D .~ ^ C .) 9"' " ' ' ' I" A ns.r.L,- A, ca_ar,
- pne,.
ee _... ] h / f kA. - 70 nmcs chees to 6 e<s. ,/Xn Gay.:.< ace y.uma cast. 9/skr wn u Liewse.c ps ssur sT. /3rW wairik u, caci?<c iJu?nv uersz /?),ainit,aA A % *u J*s m stw y e ds'c k s, Gn.s/ctit_ s1s Iso < Mid c4st, grj n ro~w y. ksbyAc, f.m(H7" shts co wives c.,. = 9 9 y -.,.-r.,,--.-
W ;y E- ~ UNITED STATES, ,~ .., LEAR REGULATORY COMMISSION WASHING TON, D. C. 20555 liOV 23 M %ocke t tio. 50-289 FACILITY:- Three Mile Island, Unit No.1 (TMI-1) LICENSEE: GP'U Nuclear Corporation (GPUN) ~
SUBJECT:
SUMMARY
OF MEETING WITH GPUN ON OCTOBER 18 AND 19 CONCERNING .GPUN'S TMI-l STEAM GENERATOR RECOVERY PROGRAM Ba'ckground The - purpose of-the October 18 ~and 19,.1982 meeting was to update the - staff and their consultants on the. status of programs undersay to ' repair. and' requalify the TMI-l' OTSGs for service. In Mid-October, GPUN commenced an explosive expansion. repair procedure to recover tubes -
- with defects within the upper tubesheet (UTS). Other programs underway-involve a steam generator eddy. current test (ECT) program, plant per-fotTaance analysis, RCS cleanup, corrosion test program, and steam
- generator. post repair-testing.
Dissassion- ' Repair Qualification Update ~ ~ 'GPUTi described additional repair procedure qualification t" program. results which recently became available. In general, leakage.
- tests. cn qualification blocks ha've shown. low leakage as expected.
Some data avsflable from Penn State-on hardness data of the expanded joint reveals.. ~ ' thatiresidual stress -created.by the expansion process should ~ not be of major concern. Although,' the production repair procedure on the steam . generator:had not.yet commenced at the -time _of this treeting, it is now 7: ell funderway. Eddy' Ciirrent Testino (ECT) GPUN described final ECT results based on their program of 100% full length ' testing using the.. standard differential.540" probe. The results: sindicate that of-the "31,000 tubes, 868 have defects in locations not - irecoverable by.the: repair procedure in the ' A' OTSG and 278 in the 'B'
- 0TSG.
These tubes will require plugging. Of these about 250 had pre- ..viously been p_ lugged. From the-ECT-results described-above, 76 tubes in the freespan area have been. identified which have defects 440% through ~ wall.. These ' defects are 'also1 of small circumferential length..GPUN
- is ' proposing to' leave Lthese tubes in service.
The advantage is that these tubes would serve as a data base to verify that the corrosion dobs not continue to propagate during operation or shutdown. RCS ' Cleanup 1 Testing lof meth~ods to remove. sulfur from the tube and possibly other RCS V surfaces'is in the early stages but GPUN described the preliminary results A LasJencouraging. Tests have. been conducted at various pH levels using N Q h.
ng,g, *o.,J,, r. .) TMI-l ' %,"' g. l_ i. A hydrogen peroxide as an additive. Hydrogen peroxide reacts with NiS (the 7 sulfur form on the tube surface) to form sulfate (50 ) which can be 4 removed by ion exchange. A great deal of testing and analysis rencins to be perfor.ned before a decision is made whether or not to cortduct the ~ sul fur cleanup..- The cleanup, if conducted, would require RCP operation-and hence, could not be conducted until the steam generators are repaired. Corrosion Test Program' ~ ~ GPUit described an extensive corrosion test program which has been ongoing ~ since the beginning of the steam generator recovery program. Corrosion - testing has been conducted to 1) assess if the primary coolant was still 4ggressive, 2) to attempt to simulate the tube cracking to verify the - failure' mechanism and corrosion. scenario and 3) to support the repair . qualification program. GPUN is also conducting a long term testing pro-gram des,igned to duplicate plant hot functional testing and operation. This cormston program will lead actu'al plant operation by'several months and should provide important insight into actdal plant performance. Post Repair Test Pmgram GPUN outlined a post steam generator repair program which would include eddy current testing of a baseline. number of tubes, cold leak testing including a No B"doble test and primary plant hydrostatic te'st and precritical op2 rational te"s ts. The precritical tests will involve several cooldown transients to place tubes under high tension, followed by leak rate. monitoring. Following steam generator testing, the plant would proceed with hot fun-ctional testing for. restart modification testing and then enter the restart sequence, assuming restart is-authorized. GPUN also proposed r operating for 90 days at full! power before conducting a shutdown.to conduct additional.0TSG ECT., The staff expressed some reservations about not. conducting an ECT following hot steam generator testir.g but before cri ti cali ty. Staff consultants in general felt that more risk of cor-rosion propagation, if it propagates, would occur if the system were exposed to ' air during an ECT test than if the system were not reexposed to air. It was also pointed out that the cracks tend to. propagate during. Iow temperature, oxidizing environments while the plant operates at high temperature, reducing environments. This issue will be pursued . further as. staff r'eview continues. Plant Performance Analysis GPUN has reexamined design basis accident analyses to determine what 'j .irrpact the repaired steam kenerators would have on plant perfomance. They have concluded that t e repaired steam generators will have no effect / on FSAR conclusions even assuming up to 1500 tubes are plugged. The staff asked that GPUN also address the impact, if any, on steam generator overfill transients.and to verify that-the effectiver.ess of EFW will not be significantly degraded due to tube plugging in the periphery of the tube bundle. O 'W- + = - --*
- 4
.+ -t- - -, ,Aw. m -,yy ,-p
,s ..) e .,) NFsC OTSG Update 10/18/02
- 1. Qualification Program Updato D. Slear
- 11. Final Eddy Current Test Results N.Kazanas 111. Rettirn to Service Safety Evaluation. Overview P. Walsh IV. Interpretation of ECT Results D. Slear 10_/.19/._8_2 IV. Plant Performance Analysis with Plugging N. Trikorous VL Sulfur Removal Test Program
. Status W. Greenaway . Vil. Corrosion Tect Proyam S. Giacobba e Vill. Steam Generator Post Repair Test Program P. Walsh % Tee 4-v. +4 m.iluee e ab+ +w +-- e *
- ema'-*-
=
PRE-INSPECTION COVER SHEE_Ts (7 (Region I Work Form) ) 30-2.89 [u/ From: _(Reporting Ins;ector) Report No. 83-OL To: [ b an./L (Reporting Inspector's Supervisor) Subj: INSPECTION OF [MT #/ ///2. - ///3/83 ON (Facili ty) (Dates) /- / List of outstanding items up to date, reviewed and proper items selected. /:</ Inspection plan completed (attached or sumarized below). Inspection Items: C a c./ y p e.a Cr/ A m 4 /w/dAro/t. e dsfx vATad v0*ps.n/cnon' ef h'ovt rse, 57smoaM e/ 7.sdE Soc.s N uAssit Nd/SNrtrJ sf 0 7'S4 H /Y / A ~(ExAst J wmx) 2. NAMES OF ACCOMPANYING PERSONNEL: RESIDENT INSPECTOR NOTIFIED: .Yrf Project Section Chief /t'S pf, lok 7' ,j ACKNOWLEDGED: r y' sw4 - o /yowt Project Inspector ACKNOWLEDGED: Acccmpanying Inspector's Supervisor (ifapplicable) SUBMITTED: APPROVED: Reporting Inspector Reporting Inspector's Supervisor File: Branch Files (Inspector's Branch and Project Branch) Hotel: M44/e/ar L - Adesav44 Phone: (7n)su-fr// FTS: Site Contact (Name) f. N a4 Phone: ( ) FTS: I90- //ff Region I Fonn 1 ,i. (Nov1979)
....a C --s-L) ..) y GENERAL PUBLIC UTILITIES DI5G REPAIRS DATE 1/13/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED .1. Cut and cap thio line [ E 4 A c di d 3 B. Elam 1/1 . Installation Spec-On site Comments Sent . Engineering - Issued DRF Mechanical-J. Mann 11/30 - Issue DRF Electrical 1/14 Need Safety Evaluation 1/14 ~2. Round Robin Samples-NWT Lab J. Colitz .-Spent Fuel ..BWST End of Month . Decay Heat - Monthly Samples . Ship Next Monthly Samples 1/30 3; Crevice Dry . Level and sagle requirements J. Colitz TBD (Post Crevice Dry) A OTSG - 228" 7" B OTSG - 227" 15" . Status on Cooper Heat System-B&W h
- 4. Kinetic Expansion Total
. Expanded Tubes at A 4T78 {2,.e ~ --7. Expanded Tubes at B e974 . Post' Expansion Clean-up Draft - Eng Spec and Equipment B&W 1/15 r,s Final Installation Spec Received /4/fi[4' f'>~".Receive Cold Leg Spare Plugs - Outer B&W 1/22 i Inner B&W 1/15 g g"' ' - . Receive Additional Candles B&W 1/12 . a . Felt Plug Blowing Device IG ~* [. 4 Ea,n e,a
- d.,1,s a p Q" %
1 m 4-a ay. ' 5. Innunol . OTSG Flush System for Immunol Application Revision to Spec Issued Part TF 1/10 Duplex Strainers - Ordered - Need FCR 1/23 Flush Individual Tubes? Mtg at TF B&W/TF 1/12 l .- Spec for Disposal of Flush Water and Tech Functions 1/10 -Type of Flush Water . Results of Soak Tube Test S . Flush Test at Lower Tubesheet at A L at Lynchburg Swipes and Water Sagles ,.=-.-y , ~,,,.,,- e
,.-e.
-,----.-y i. -.*e. .-Va.--, ..-,-,%--,--,.-4 r-.-,. 3 .,me -g w-m- y-ww yn ,_r -,.4 m.
s,'3 {} } OTSG REPAIRS DATE 1/13/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 6. Tube Plug Stabilization
. Stabilizer Material Deliver B OTSG 1/7 A OTSG 1/15 - Explosive Plugs Ordered - 600 on Shelf .490 Ordered B&W 10/15 C. K. Lee Spec for Tube Plugging-Final Spec Issued Engineering Requirement Document on 11/30 Stabilization Equipment and Procedures to Pull' Stabilizers 1/15 FCA Stabilization B&W 1/7 DRF Stabilization B&W 1/12 . Installation Procedure 1/15 . Blast Plan Comments Levin /Pruitt 1/5 ~ 7. Miscellaneous Items to Resolve .--Plug Tube Lane at A Lower . 2 Tubes Possible Hill and PT at B (MNCR 137-82)
- 8. Waiting Documentation MNCR Responsibility 2M2 Plug Exploded.at Wrong Area of Tube Saw i
345-82 ' 2 Tubes Plugged Incorrectly 354-e2. Documentation for Immunol-1st Batch Eng 420-82. Damaged Tube Ends 426-82 Wire Brush B6-1 1 ' 9. Tube Endmilling Review Process and Establish Procedure TBD B&W Proposal Issued Tooling 1/20 .10. Anticipated Jumps Date Description Responsibility L 1/13 A - Upper - Kinetic Expansion 1/13 B - Upper - Kinetic Expansion B&W , -, -, - - -... -. _ ~. -.., -. .- - iTT~ ~.,.,.. -. - ~.
l TT JlaiP WAlVER FURH~ ~ m s.+. TO: G. Ai KUDIN,' MANAGEll. DATE: J h e'L L ~ M l. RADIOLOGICAL CONTROLS IJ 'l TMI - UNIT I 1 I request that Rad Worker Training /Requalification (circle one) he waived for the Lfollowing persons: ~ Waiver requested by: F yoo wn Departmen t: usmer t. Waiver for: Name E GR04 Company U SNil.C Retraining Schedule (date) Naue Company. Retraining Schedule-Hane . Company Retraining Schedule Conpany Retraining Schedu'le 'Nanc _ __ Date of entry dne 12.,7913 Reason."or entry 073h_ yg gdo,J j The above personnel will he briefed regarding the radiological risks that may exist in areas they will visit. i Requirenents for protective clothing will be discussed if applicable. lhe personnel will be escorted by RWP trained personnel who will perform the briefing. Training / Escort provided by F h an Department ose)e.c ~ h. This section for completion by Manager, Radiological Controls, THI Unit I. Waiver expires 14 JAM 83 Moo Connents: f //O Date: ,/ L> Approved: -- /-- - Distribution. 2 Control Points,1MI Unit I ~; i Security, TMI Unit I, Processing Center ,, Requestor File: Original to RWP Waiver File-Rev. 2 9/22/82 e .. ~...
n.., GENERAL PUBLIC UTILITIES OTSG REPAIR 5 DATE 1/14/83 DATE -ITEM DESCRIPTION RESPONSIBILITY REQUIRED 1. Cut and cap thio line B. Elam I 1/1 . Installation Spec-On site Coments Sent . Engineering - Issued DRF Mechanical J. Mann 11/30 - Issue DRF Electrical v. 1/14 Need Safety Evaluation 1/14 p. r 2. Round Robin Samples-NWT Lab J. Colitz . Spent Fuel . BWST . Decay Heat - Monthly Samplet End of Month . Ship Next Monthly Samples 1/30 4
- 3. Crevice Dry
. Level and sample re'quirements J. Colitz TBD (Post Crevice Dry) A OTSG - 228". 6 B OTSG - 226 19 . Status on Cooper Heat System B&W Total Total f4. Kinetic Expansion Last 24 Hours Expanded { -. Expanded Tubes at A. Ass s 87i3 . Expanded Tubes at.B s saa toyt '.. Post Expansion Clean-up Draft - Eng M Spec and Equipment B&W 1/15 Final Installation Spec Received .3 . Receive Cold Leg Spare Plugs - Outer-B&W 1/22 - Inner B&W 1/15 ) r' \\ .. Felt Plug Blowing Devic ~e 1/14
- 5. Imunel
..tTSG Flush Syicem for Immunel Application 4 Revision to Spec Issued Part TF Duplex Strainers - trdered - Need FCR 1/23 . ' Spec for Disposal of Flush Water and Tech Functions 1/10 Type of Flush Water . Results of Soak Tube Test ] . Flush Test at Lower Tubesheet at Ai at Lynchburf 1 Swipes and Water Samples %+ 4 W 19
.i - _ g_. OTSG REPAIRS' DATE 1/14/83 DATE ITEM DESCRIPTION' RESPONSIBILITY REQUIRED
- 6. Tube Plug Stabilization
. Stabilizer Material Deliver B: 0TSG r-A OTSG 1/15 Spec for Tube Plugging-Final Spec Issued C. K. Lee Equipment and Procedures to Pull Stabilizers : 1/15 ' FCA Stabilization B&W 1/14 DRF Stabilization B&W 1/17 .. Installation Procedure TBD . Blast Plan to State Levin /Pruitt 1/17 .7. Miscellaneous Items to Resolve . Plug Tube Lane at A Lower i . 2 Tubes Possible Hill and PT at B (MNCR 137-82) 8, Waiting Documentation != MNCR Responsibility M2 Plug Exploded lat Wrong Area of Tube B&W L345-82 2 Tubes Plugged Incorrectly-354-82 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1 ~ i eet-83' Imunol at: Cold Legs
- 19. Tube Endmilling Issued B&W Proposal TBD Review Process and Establish Procedure Tooling 1/20 r.
i
- 10. Anticipated Jumps
( Date - Description Responsibility 1/14 A - Upper - Kinetic Expansion 1/14'- . B - Upper . Kinetic Expansion B&W .. _ -,. _ - -.. -. -.. _.. = _... - _ _ - - - -. - - - - - - _...,
n. n 3: Pag 3 1 of 3 LISTED BELOW ARE OTSG REPAIR REQUIREENTS COMMITTED ~ LUP TO JANUARY 23, 1983. THIS LIST WILL BE UPDATED AND DISTRIBUTED EVERY MCNDAY-S(FTWARE AND HARDWARE REQUIREENTS FOR OTSG REPAIR Activity Respon-Commitment Revised _sibility Date Date - 1)- Establish Felt Plug Blowing Method B&W 1/15/83 Phase II .~2) Plugging and Stabilization Spec. 030 -Rev. 6 A).. Pull Westinghouse Plugs 1) Westinghouse Procedure W/TF 12/31/82 Issued
- 2).-Mini Spec. W Plug Pulling 7 TF 1/7/83 1/10/83 a) DRF Safety Evaluation T Not Rqr.
Fire Hazard Analysis.) 3) Installation Procedure M&C 1/12/83 4) Job Order M&C 1/13/83 5) Tooling Engineering W/TF 1/17/83 Approval on W Tooling TF 1/7/83 Approved B) Individual Tube Flushing (Same equip as final flush) 1) Chemical / Water Requirement Mini Spec DF - 1/11/83 TF 12/23/82 1/14/83 2).. Chem Addition Sys Spec TF 1/14/83 Installation and Operation B&W Procedure (Individual Flush) B&W 1/10/83 1/10/83 3) Installation Procedure (Re-M&C 12/22/82 Part~ Issue i-circulation System) L 4) Job Order M&C 12/23/82 Part Issue-
- 5) ! Hardware / Equipment (Overall M&C/TF 1/15/83 1/22/83 Recirculation System) 6). -Revision to Installation M&C 1/16/83 Procedure (In Generator Work) 7)
Hardware (B&W Nozzle) B&W 1/15/83 1/22/83 '8) P.R./P.O. Hardware TF 1/15/83 1/22/83 a) C of C on Material
- 9) - DLplex Strainer TF 1/21/83 1/14/83 10)
Chemical Addition Pursp TF TBD 1/14/83 + ie r .-,--.,4, r .,,.r-..- ..----w..-.. ,.---.w.,.-,w,.,..,,_..,-,,..y..
_l Page 2 of 3 Activity .Respon-Comitment Revised sibility Date Date 11) S.T.P. - Operation Procedure Site Eng 1/17/83 ~ a) Component &. System Operating Limits and Precautions TF In/83 Issued b) Starttp & Test Instrument Calibration, Hydro, Punp Check-out SU&T 1/16/83 C) Endmill Tubes to be Plugged 1) Tooling Operation Procedure B&W 1/5/83 Draft in/83 2) FCA B&W 1/7/83 1/14/83 3) DAF - P.R./P.O. to do B&W work TF 1/12/83 Safety Evaluation Fire Hazard Analysis 4) Tooling B&W/M&C 1/15/83 1/20/83 5) Recommendation on Endmill Depth B&W In/83 6) Installation Procedure M&C 1/17/83 7) Job Order M&C 1/18/83 D) -B&W Stabilizer Removal 1) Weld Joint Efficiency TF 12/23/82 2) Proposal B&W 12/20/82 Issued 3) Mini Tech Spec TF 12/23/82 1/14/83 a) DRF Safety Evaluation Fire Hazard Analysis 4) B&W Operation Procedure B&W 1/5/83 In/83 5) FCA B&W In/83 6) Installation Procedure M&C 1/15/83 7) -Job Order M&C 1/16/83 8)~ P.O./P.R. TF _1/3/83 1/14/83 9) Tooling B&W 1/17/83 E) Tube Plugging and Stabilization (Inclusive of Welded Caps and Explosive Plugging) 1) Plugging and Stabilization Prelim. Spec TF 12/23/82 Issued Final 1/14/83 2) DRF TF 1/12/83 1/12/83 a) Safety Evaluation b) Fire Hazard Analysis 3) B&W Operation Procedure B&W 1/5/83 Issued 4) FCA B&W In/83 Draft Issued 5) ~ Installation Procedure SiteEng/M&C 1/15/83 6) Job Order M&C 1/16/83 7) Hardware - Materials B&W 1/15/83 a) Stabilizer Jump Packs and Crinpers 1/15/83 8 OTSG I n/83 1/15/83 Remaining 1/15/83
~.
- ^
y 'T Pag 3 3 of 3 Activity. Respon-- Commitment-Revised i sibility Date Date b) Explosive Plugs (M(-3). J/15/83 c) Practice Segments 1/15/83 d) Explosive Plug Delivery 1/15/83 e) Practice Weld Caps B ~OTSG 12/24/82 In/83 .A OTSG In/83 1/7/83 -8) DF - Materials - P.R. .TF 1/12/83 9) Blast Plan B&W/M&C 1/3/83 10) Welder Qualification M&C Issued Procedure a) Lab St.pport TF 1/7.to 1/25/83 Endmill Remaining Tubes
- 3).'
A) Revise Spec TS-120012 TF 12/30/82 1/14/83 - 002 Rev. 3 Total Remote Endmilling Procedure to Reflect Semi-Automatic Process .B) B&W Proposal B&W. 12/17/82 Issued C) B&W Endmilling Operation Procedure B&W 1/13/83 D) FCA .B&W 1/13/83 E) Installation Procedure Site Eng. 1/19/83 F) Job Order M&C 1/20/83 G) Tooling-(Automatic & Manual) B&W 1/20/83 H) DRF -' Tooling
- 1. Safety Evaluation
'TF
- 2. Fire Hazard Analysis 1/17/83 4).
A) stem Flush Sy P.R./P.O. TF 12/30/82 B&W Proposal B&ti 12/22/82 B)_ Acceptance Criteria-Chem ' Analysis Cleanliness TF 1/11/83 DRF 5) Westinghouse Plugging A) Westinghouse Installation WfTF 12/31/82 1/21/83 Procedure B) Installation Spec. TF In/83 1/21/83 1) DRF In/83 . Safety Evaluation-Fire Hazard Analysis C). Installation Procedure SiteEng. 1/21/83 D) Job Order M&C 1/22/83 6) Pre-Service Testing A) Eddy Current Testing Nuclear Inspection Procedure. Assurance TBD' Scope and Objectives TF 1R/83 7)- OTSG Freepath A) B&W Proposal B&W 1/10/83 B). Passible Low Pressure Felt Plug. Blowing
- C)
P.R./P.O. TF 1/20/83 J. P. Hawkins M&C Scheduling X4001 ... - ~. -
.3 GENERAL PUBLIC UTILITIES OT5G REPAIRS 'DATE 1/17/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED 1. Cut and' cap thio line B. Elam 1/1 .. Installation Spec-On site: Comments Sent' . Engineering - Issued DRF Mechanical J. Mann 11/30 - Issue DRF Electrical. 1/14 Need Safety. Evaluation 1/14 2. Round Robin Samples-NWT Lab J. Colitz Spent. Fuel - 1 . BWST- .l Decay Heat.- Monthly Sanples End of Month . Ship Next Monthly Samples 1/30
- 3. Crevice Dry
. Level and sample requirements J. Colitz TBD (Post Crevice Dry) -A OTSG - 229" 9 B OTSG - 226"- 17
- 4. Kinetic Expansion Total '
Total Last 24 Hours Expanded AMMf IM# . Expanded Tubes at A s2 a95 . Expanded Tubes at B <f. 'z, n . Post Expansion Clean-up sraft - Eng Spec and Equipment B&W 1/15 = Final Installation Spec Received . Receive Cold Leg Spare Plugs - Outer B&W 1/22 - Inner' B&W 1/15 g . Felt Plug Blowing Device 1/14 Electronics 1/19 i I
- 5. Immunol
( . OTSG Flush System for Immunol Application Revision to Spec Issued Part TF Duplex Strainers - Ordered - Need FCR 1/23 l Reroute Recirc. Line . Results of-Soak Tube Test .. Flush Test at Lower Tubesheet at A3 at Lynchburg 1/3~ Swipes and Water Samples ) I L F0
s OTSG REPAIRS DATE 1/17/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 6. Tube Plug ~ Stabilization Stabilizer Material Deliver B 0TSG 44 A OTSG 4617 1/15 490 Ordered B&W Spec for Prelim. Plugging-PRtun Spec Issued C. K. Lee Equipment and Procedures to Pull Stabilizers 1/15 FCA Stabilization - Issued?
B&W 1/14 B&W 1/17 DRF Stabilization Installation Procedure. TBD Blast Plan to State Levin /Pruitt 1/17
- 7. Miscellaneous Items to Resolve Plug Tube Lane at. A Lower 2 Tubes Possible Mill and PT at B (MNCR 137-82)
- 8. Waiting Documentation
-MNCR Responsibility 2T!i E2 Plug Exploded at Wrong Area of Tube BAW 345-82 2 Tubes Plugged Incorrectly 354-82 Documentation.for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82~ Wire Brush B6-1 009-83 .Immunol at Cold Legs
- 9. Tube Endmilling B&W Proposal Issued Review Process and Establish Procedure TBD Tooling 1/20
' 10. Anticipated Jumps Date De scription Responsibility 1/17 A - Upper - Kinetic Expansion 1/1-7' B e Upper -Kinetit-Expansion B&W m 9 e 4 h
.,j, ; Paga 1 of 3 LISTED BELOW ARE'OTSG REPAIR REQUIREENTS COMMITTED UP TO JANUARY 23, 1983. THIS LIST WILL BE LPDATED AND DISTRIBUTED EVERY MONDAY SCFTWARE AND HARDWARE REQUIREENTS FOR OTSG REPAIR Activity Respon-Commitment Revised sibility Date Date 1) Establish Felt Plug Blowing Method B&W-1/15/83 Phase II 14 gr. ft. 2) Plugging and Stabilization Spec. 030 Rev. 6 A) Pull Westinghouse Plugs 1) Westinghouse Procedure W/TF 12/31/82 Issued 2) Mini Spec. W Plug Pulling TF 1/7/83 1/10/83 a) DRF Safety Evaluation T Not Rgr. Fire Hazard Analysis.) 3) Installation Procedure M&C 1/12/83 4) Job Order M&C 1/13/83 5) Tooling Engineering W/TF 1/17/83 Approval on W Tooling TF 1/7/83 Approved B) Individual Tube Flushirg (Same e. quip as final flush) 1) Chemical / Water Requirement Mini Spec DRF - 1/11/83 TF 12/23/82 1/14/83 Chem Addition Sys Spec TF 1/14/83 2) Installation and Operation B&W Procedure (Individual Flush) B&W -1/10/83 1/10/83 3) Installation Procedure (Re-M&C 12/22/82 Part Issue circulation System) 4) Job Order MAC 12/23/82 Part Issue 5) Hardware / Equipment (Overall M&C/TF 1/15/83 1/22/83 Recirculation System) 6) Revision to Installation M&C 1/16/83 Procedure (In Generator Work) 7) Hardware (B&W Nozzle) B&W 1/15/83 1/22183 8) P.R./P.O. Hardware TF 1/15/83 1/22/83 a) C of C on Material 9) Duplex Strainer TF 1/21/83 1/14/83 10) Chemical Addition Pump TF TBD 1/14/83 4 W -- .----,-,,-n-
.. Activity. Paga 2 of 3 Respon-Comitment Revised sibility Date Date 11) S.T.P.' - Operation Procedure -Site Eng 1/17/83 a) Component & System Operating Limits and 4-Precautions TF In/83 Issued b) Starti.p & Test Instrument Calibration, Hydro, Punp Check-out SU&T 1/16/83 C) Endmill Tubes to be Plugged 1) Tooling Operation Procedure B&W 1/5/83 Draft lH/83 - 2) FCA B&W In/83 1/14/83 3) DF - P.R./P.O. to do B&W . work TF 1/12/83 Safety Evaluation Fire Hazard Analysis 4)- Tooling. B&W/M&C 1/15/83 1/20/83 5)- Recommendation on Endmill Depth B&W In/83 6) -Installation Procedure M&C 1/17/83-7) Job Order M&C ^1/18/83 D) B&W Stabilizer Removal 1) Weld Joint Efficiency TF 12/23/82 2) Proposal - B&W 12/20/82 Issued 3) Mini Tech Spec TF 12/23/82 1/14/83 .a) ORF Safety Evaluation Fire Hazard Analysis 4) B&W Operation Procedure B&W 1/5/83 In/83 5) FCA B&W In/83 6) Installation Procedure M&C 1/15/83 7)- Job Order
- M&C 1/16/83 8)
P.O./P.R. TF 1/3/83 1/14/83 9) Tooling B&W 1/17/83 E) Tube Plugging and Stabilization r (Inclusive of Welded Caps and Explosive Plugging)' 1) Plugging and Stabili'zation Prelim. Spec TF 12/23/82 Issued Final 1/14/83 2) DRF TF 1/12/83 1/12/83 a) Safety Evaluation b) Fire Hazard Analysis 3) B&W Operation Procedure B&W 1/5/83 Issued 4) FCA B&W In/83 Draft Issued 5) Installation Procedure SiteEng/M&C 1/15/83 l 6) Job Order M&C 1/16/83 7) Hardware - Materials B&W 1/15/83 a) ' Stabilizer Jump Packs and Crispers 1/15/83 B OTSG In/83 1/15/83 Remainin;; 1/15/83
s . a,:,' ' Page 3 of 3 Activity Respon-Commitment Revised sibility Date Date 'b) Explosive Plugs (M(-3) 1/15/83 c) Practice Segments 1/15/83 d) Explosive Plug Delivery 1/15/83-e) Practice Weld Caps B OTSG 12/24/82 In/83 A OTSG In/83 1R/83. s 8) DF - Materials - P.R. TF 1/12/83 9) Blast Plan B&W/M&C 1/3/83 10) Welder Qualification M&C Issued Procedure a) Lab SLpport TF 1/7 to 1/25/83 3) Endmill Remaining Tubes A) Revise Spec TS 120012 TF 12/30/82 1/14/83 002 Rev. 3 Total Remote Endmilling Procedse to Reflect Semi-Automatic Process B) B&W Proposal B&W 12/17/82 Issued C) B&W Endmilling Operation Procedwe B&W 1/13/83 D) FCA B&W 1/13/83 E) ' Installation Procedme Site Eng. 1/19/83 F) Job Order M&C 1/20/83 G) Tooling-(Automatic & Manual) B&W 1/20/83 H) DRF - Tooling
- 1. Safety Evaluation TF
- 2. Fire Hazard Analysis 1/17/83 4)
System Flush A) P.R./P.O. TF 12/30/82 B&W Proposal B&W 12/22/82 B) Acceptance Criteria-Cherr. Analysis Cleanliness TF 1/11/83 DRF 5) Westinghouse Plugging A) Westinghouse Installation WfTF 12/31/82 1/21/83 Procedure B) Installation Spec. TF In/83 1/21/83 1) DRF In/83 Safety Evaluation Fire Hazard Analysis
- C)
Installation Procedse SiteEng. 1/21/83 D) Job Order M&C 1/22/83 6) Pre-Service Testing A) Eddy Current Testing Nuclear Inspection Procedure Assurance TED Scope and Objectives TF In/83 7) OTSG Freepath A) B&W Proposal B&W 1/10/83 l B) Possible Low Pressure l Felt Plug Blowing C) P.R./P.O. TF 1/20/83 i J. P. Hawkins M&C Scheduling X4001
p 1 4- g GENERAL PUBLI'C UTILITIES 9 OTSG REPAIRS DATE 1/19/83 DATE ' ITEM DESCRIPTION RESPONSIBILITY REQUIRED ^ 1.. Cut and cap thio line B. Elam 1/1 --. Installation Spec-On site Comments Sent ~ . Engineering - Issued DRF Hechanical' J. Mann 11/30 - Issue DRF Electrical 1/14 2. Round Robin Sagles-NWT Lab J. Colitz . Spent Fuel . BWST . Decay Heat - Monthly Sagles End of Month . Ship Next Monthly Samples 1/30
- 3. Crevice Dry
. Level and sample requirements J. Colitz TBD (Post Crevice Dry) A OTSG - 229" 9' B OTSG - 226" 17'
- 4. Kinetic Expansion Total Total Last 24 Hours Expanded
. Expanded Tubes at A . Expanded Tubes at B . Post Expansion Clean-up Draft - Eng Spec and Equipment B&W 1/15 Final Insta11aticn Spec Received . Receive Cold Leg Spare Plugs - Outer B&W 1/22 - Inner E&W 1/15 . Felt Plug Blowing Device .1/14 Electronics 1/20 Proeddure Revision 1/20 ~5. Icaunol . 0TSG Flush System for Immunol Application Revision to Spec Issued Part TF Duplex Strainers - Ordered - Need FCR 1/23 Reroute Recire. Line .. Results.of Soak Tube Test . Flush Test at Lower Tubesheet at A at Lynchburg. Swipes and Water Samples ___,f'/-
[ 4- 'y OTSG REPAIRS DATE 1/19/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 6. Tube Plug Stabilization Stabilizer liaterial Deliver
-B OTSG A OTSG 1/15 -490 Ordered' B&W Spec for' Prelim. Plugging-Prelim Spec Issued C. K. Lee Equipment and Procedures to Pull Stabilizers 1/15 FCA Stabilization - Issued? B&W 1/14 DRF Stabilization B&W 1/17 Installation Procedure TBD
- 7. !!iscellaneous Items to Resolve Plug Tube Lane at. A Lower 2 Tubes Possible tiill and PT at B (INCR 137-82)
- 8. Waiting Documentation MNCR Responsibility 21T'U2 Plug Exploded at Wrong Area of Tube B&W 345-82 2 Tubes Plugged Incorrectly 354-82 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1 009-83. Innunol at Cold Legs
- 9. Tube.Endm'illing JN g
(, p B&W Proposal g Issued Review Process and Establish Procedure TBD Tooling 1/20 MR% 0-eo ,k
- 10. Anticipated Jumps D.a te Description Responsibility 1/19 A - Upper - Kinetic Expansion B&W/ Catalytic Remove Sparger Drain Immunol Wipe & Clean Debris 1/19 B - Upper - Kinetic Expansion B&W Y
lML GW d 9
.-e.. 1 ' ' * ^ '.p.g.: j.g.*r. .I.-"'"= I __.._..,u.. .: =f: 1-j mr-: - a _e. _-
- _ f 1
- ;g.i: ' :.
hi..- f :.4 .. ;:a r 1 :... i.+ n ".k Efp *--.de,,- .. ~. 4: s.m ; V..i.
- ..; _ _7==
-...g.g.-- j : ;
- 'af-
,q : g j M kb. :.f. jy..: - i.._ f ___ --Q{.[ _ T- __;..c,.'.f;t,_ ; '"-
- f. _
iE= ri -L' Ms - i-a 5_::==ul-"':.E._: ; 3'E ?. I; :r. " 'j.'. \\. i.u:N. i. j 3: i.* g.; ;__h c.i:= r-- =2.:e.i -. =n-s.= 2. .e.. p a.... -.: a a =' - y. =ew m...jf-=;.- r ~ ^ i = --_l-~ -- : - 8 M' ,, ~. ~:p - @.\\" .::ter [. "~* ' +.* ::. l ii:~23"e:4 i-.. ' J.=- :
- fir' I;* :
ff=l.%;Oh *.2-N'f4_^i- . n. 1. .; t.q .p f. .1__-n r:3. a, y =22..g a,. :. 3 a,f - ]. r= 7" ..f.. n i _s t _r._. M a _.m... ;.._.. -r ;...:u.1'=. ;. p. :; =_w. . ::=2 =r_.. - IL_.,,.. -.h.. } ; _.. s. w. .:: m....:=. :.. 4 - - _ - - -t : =_.u.r_ 2 21.=..- -j:!- i *, p -p-:0: +L..-
- -JM M ~. ="$1.ir.--p.M E.i: MJ -@24_ _.. ;. W _J=-:_._
.l.;--.: : 3 a... =. _. _ _ _ _ ~ -. - . _ =, _ _ _ _. - _r. p_ e g g=g:...;-. u.m _ _ 2 = m__. __ _. n,. ;=__2_._- : 4.. E' = = = = = =.,?. gd e .b e g .-.e. e. e _ _ =.._ _... ~ e= E". h I,. ... =. . = . = =. =
- V 120 W=M ?
I=i W-Fi+-* !.T W'.==.4 ~ P:# =# VriM
- i
-ai=> g = :-K=
=p.= :=u.....;_.g.:.4=~==a: ~=== rp. 4 3== y .=l::g=m= = - .=:n.5=p ~ * * ' * ~ ,i 61 raa.. .T; E - _e= _=- - =-....- . _..,-..5.. w. ..=l 3;.33_ _= -:-.4. =.e. gg _ :..:s=- __._;.. ..:su 4,,;.;.; :.2__::r.3,- : _.. ~
==:
- ..w.
- .;f _-- --En
=_. _- _ ::t,- - - -m. ::.::.;::::- _ _+--.=a.--.;.:.:==.::. : f:2.u. - - - -u -. : --_ t- :--- . :- =,. 2.r..=.r==m-4 _a :.,
- u. r _.-.
1.
.r
._g : --- =. .2 L ;. r L_.
- r. :.. =.....,
._: m
- . ;=
=- v_=.. _ u_ . L. n _ -ar-
- ,,mu
_. = -. _ =.;Md 4.._ - - - - ~ .T": = T.*: u -
- .=.. 1*:; 70 :6.-4.:.:;;- -.E.
.. ' *. = ..-.'.T.=-"' U. ;. 4=._. - -.. _";1="- . --.::= ~ -=:=*- -.. = = ~%. ""38] u --. _3-"-
.;; =1.i. %=
- n :.;=_:... _
-== =. - -.= :.a....z_- ..v=- w=. 2 :-
- -=-
- _= =__.;.. =.;_. :_-.=z.- - -__ 2.. _, =2: _...._s.=_..r.==:=. - - - =.. =.. =. _.
- _=
.r---- 1-=-; s.= .:..=-.. - .._.- =...._.. _. J_ -,,. jc_ tr- '^ ~ - -~ ';,;,_~ =:r -= =. -
- . a-'
rs.--
- _m..
~ ~ [ E .;=J.' _.c= .%L_ __.___s...__ _;_. __ =_ _ _ _=..m_..._.. q. .;g; -7J. Ja - = " - ", ___ .i.. ~' - ' ' ' ' ~ 7.= O...a_..-. ' ' " _. W ~'".; "- J.;T_ -_'-" ;. - ' * - ~7__
- 2.,.;
' :L':L.'71.:\\ ,,.':1- ~- =..^ i:: ._g._ _~_. ._.4 . " ~"'="*=:"
- ~-
9.-- ,-6 0
=
y_ ;c - --- =__ gp qp 3-r=g N1
- .,,3 1,.
D :s
==:23 :== - .;1:. _._.a__. w-a, A Em ,..a,_ _- -._g: g 'O [6
==a, a _w._, a= .l ss --- w.g . JJ _ = - - -,- 1 Gy " _' 1"- =----: .. _. =,m, .--g- _= n, -=.m c -_ __ _ _,. w .... _ ;.my y p g)5 /t -y 4 ~- _.. m p g, 7, *y: -.3 M.O 3 .=_t 2 ;.nt --"--- - - ~--a g ;=. - _n.g. ' "-,'=:"" i.-... _-""'"'y' .__r g _ ~. " -- * - * ""A"*( _. ::i '"'~~ i_.-- 2-h-" -~ k 3 ~ _ 3 L_ n g .~ w _.e 4_... '.g _d,_--'- -.e h g_ _N a + .---y r- ~7^ = _-g--- ~.- . _. - - g_ --. .--. - - - = =.- -- _a_ _,A,- - p-. c ~- g-r _7 _.u _'2 -p.-w-- .3CE' ~_ ~ " " I ,w__=- r T-w~.. ^ ._.,.h..,. ". ~ -._=-q% _.. ~... _ _ - = K T
- =.-1-<
,;.... __..__'=__ _ -7__h.5-..:=.
- ._=_ m _
=F"'
~;E
- :_=:_:.:
^ .2 "
- 7.,. 4
- 4
-l* ="":- h_ - Ja * "* w_ 3,,;,_
- .I""R
, ; "= .**2,_ _ E".~ -~W_ ..:..*J -d_ ._J-'- J- ? ~ : _-k'* ? _L_.: 5- _,: - y . i -1_- n h m.P-- -u- =~ . ':=._ _f_ __e..'.Y..e m g
- M__,
e.p.-e. .m.mmie.g g _-_msam._- ,ew- .--e-~. ~. _-. . _._._ =. -+- ~~ -s ,.m_mm _g _4. w.... ". =.: T C-'*. em .,a,_ .,i
- _r-
_c O ~ " " ~ -=2:=._ .i __. ' _. _._._.---f-~=:- r; - 4 s _;4 _, - _.] .A ~~- W TL*=- Y* - g .J~*",.- _,'7"* ^:. -_-t---'--' .=. ~~' ~_=._5._"._*;,,. ~ [d
- ~
^ u.; ;.,. _._ d ;,.W._. ____h--_- p
- --{
-..a- . 24 w_: -4
~~T_'~;..
_ _.a. ^.Y- =th e-m ww _.e"- m-m e =~1._. a.,__:- - ;;.. n, _.. z --- - - - g------*---_ ,,J m q .r 9 -e. ~-4 %% 1 m._ _..ee.-._g mm. ,=p e-.m4a. g u *'am.: I e .=-'-?*-.'--: _, m - - ... _. ~ ~. ~ - -. L --~% ;" ~'-'"l,n n
- _-..b;._...~._,
L.=.:.:;--- . _-- ::. _-2 z-. ; '$ ~ ?_ A.y.~~. m ^ ~ '~~~.l~ ~ ~ ~ _1 =;_,~-!__ ___=---+_=x,__A.m W _ _r . _. > = _. = - - - - _.. = ~ - - - 7 _ = -. = = ' '. _ f _=. =_ h -v-
,.... ',.p __ < :_=.==.,3 :.= _. __w ;S_. ...;_w. ._s.; ;,- r=: q ~~ 3 %= 'r=" MW.:- a :- 9 :..e o =-::=c --.W,Q -Q . 9 q. g u : g-9u 9g g P' - p-c- r.. -m _ p.= y.p w #a mw ---.m r- . u.
r . cr. ' /. ., p GENERAL PUBLIC UTILITIES-OTSG REPAIRS DATE 1/25/83 DATE-ITEM DESCRIPTION RESPONSIBILITY REQUIRED 1. Cut and cap thio line B. Elam 1/1 . Installation Spec-On site Cossnents Sent . Engineering - Issued DRF Mechanical J. Mann 11/30 - Issue DRF Electrical 1/14 2. Round Robin Samples-NWT Lab J. Colitz . Spent Fuel . BWST' . Decay Heat - Monthly Samples End of Month . Ship Next Monthly Samples 1/30 IWai yIOL 433be pp & b*J m & A
- 3. Restoration Secondary Side A.
Dehumidification System 4Mw B. Vacuum Pumps bed % C.. Chemical Pumps d e b h. m u D. - Humidification Probes * @A/ Q E. Thennocouple Components -9 F. Temp Power Crevice Dry Equipment G. Nitrogen Pressure Secondary Side H. Teg. & Humididy Probes Calibration Check -I. Teg. Chem. System br M Mg J-- M
- 4. Kinetic Expansion Total Total Last 24 Hours Expanded
. Expanded Tubes at A Complete 15770 l- . Expanded Tubes at B Complete 15442 . Post Expansion Clean-up Draft - Eng 1/26 Spec and Equipment B&W TBD i Final Installation Spec Received l . Receive Cold Leg Spare Plugs - Outer B&W 1/22 l - Inner B&W d,J osu 1/15 . Felt Plug Blowing Device B&W 1/14 l ..e ww
- 5. Innunol
. OTSG Flush System for Immunol Application Revision to Spec Issued Part S M 1/28 Duplex Strainert - Ordered - Need FCR 1/23 . Results of Soak Tube Test. .. Flush Test at Lower Tubesheet at A1 at Lynchburg l l. Swipes ar.d Water Samples J f Gde j 9 e Fo2
o 3 OTSG EPAIRS DATE 1/25/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED I
- 6. Tube Plug Stabilization gg +g
,__ g . Stabilizer Material Deliver 'B OTSG A~ OTSG TBD Spec for Prelim Plugging-Prelim Spec Issued C.'K. Lee 1/1'S. Equipment and Procedures to Pull Stabilizers, 1/14 FCA Stabilization ~ B&W 1/17 DRF Stabilization TBD . Installation Procedure
- . Tooling to Remove Stab.
B&W ' hl. A
- 7. Miscellaneous Items to Resolve
. Plug Tube Lane at A Lower . 2 Tubes Possible Mill.and PT at B.(lelCR 137-82) . PT Upper Tube Lane Plugs ~ B0aJ A A A A
- 8. Waiting Documentation
'MNCR Responsibility 2T!PJ2 Plug Exploded at Wrong Area of Tube B&W 345-82 2 Tubes Plugged Incorrectly. 354-82. Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1 009-83 Immunol at Cold Legs h) 10% PAk% PT~ AP OM
- 9. Tube Endmilling
. B&W Proposal Issued . Review Process and Establish Procedure TBD . Tooling 1 / 21 4 J
- 10. Anticipated Jumps i
Date Description Responsibility 1/25 A - Upper A - Lower l 1/25 B - Upper B - Lower ph s e J m -..-..,,_.-,,__,._-._,-~,6-. .v,.,. m _m._,--,--._.,..,_,,-.,..-,.---.r, _w_.w,c,,my
- yrg.
g e GPU Hu lear. 72, J.7 /Ji k: 44. Soutr. Weetown.Fennspvenia 17057 717 G46 6000 TE:.EX EG365 January 26, 1983 9 - Mr. Charles Nork~ Chief, Er.plosivas Safety Section -Bureau cf Mihing and Reclamation PA Dept. of' Environmental Resources F.O.l Box 2063 - Earrisburg, PA 17120
Dear Mr. Nerk:
RE: 3LAST PLAN FOR REPAIRS ON UNIT 1 ONCE THROUGH STEAM GENERATORS AT THREE HILE. ISLAND NUCLEAR STATICX f The site Blast Plan for explosive plugging of the stes.= generators is enclosed for your review and approval. Although it is' unnecessary to revise the Blac: Plan there are several matters which need to 'ce clarified and discusse.d. Tney cre as fellows: 4 l. The first page of the Blast Plan, which has been stamped prc.prie: ry, ec= s. ins inforr.ation developed by Esbecck 6 k'ile:x in an encensive testing and qualification program for repair cf.:ubes in L&W nu.le r plant. steam Eenerators. ELW has determined that the devele;ne n, applicati:n, and use of this infor:stien results in a cepetitive advan: age to them. Itams 1 and 3 en Page 1 cf the Elas: P1:n cus:. therefore,. be kept confidential by PaDER. I 2. Ite: 9, Page 1, of the Elas: Plar. sta es tha: :he blast trce eill S. inside the Unit 1 s:can generaters in tubes ;ect:ed in a tve-fe.t
- hick tubetheet.
3.is is true with the excap i:n cf citfiras.nich vill *:c de ona:cd in the blas bcx. 2. All m gazines have been apprcpriately licensed f:lictin; inspectica ~ by r. Icpresen:stive of the Exp2csives Safety sec:icn cf FADER. 'lpe ecepicticn'of ycur review please indict:e y:ur appr: val by signing :he 11 art Flan.:n ? age 3 and return the cripinal te: Mr. J. 1 Coli:: G7U Nuclear C:rt::::ic: P.O. Ier. 450 p, ;... L CV:., : r..tJ/ Li y
=
- /
Mr. Charles Nork January 26, 1983 A copy of the approved Blast Plan should.be sent-to: Mr. D. G. Slear THI-l Project Engineering Manager l GPU Nuclear Corporation 1 - 100 Interpace Parkway Parsippany,-NJ 07054 i By concurring with the Blast Plan for the explosive plugging it is understood that we meet with the intent of Pennsylvania's regulation regarding the s,torage, . handling, and use of explosives as applicable.to this program. 1 Your prompt response to this letter will be appreciated. Should you have any questions concerning the Blast Plan or related issues, please contact me at l (717) 948-8533. Sincerely, I-L d' f U. J. Col tz Plant Enginesring Director, TMI-1 b 'JJC:cm ~ Enclosure oce: R. O. Earley, Lead Mechanical Engineer, THI-l .F. R. Faist, B&W Resident Engineer, TMI-l D. Hallman, B&W S. Levin, Manager, MLC Production, TMI-l a ' D. G. Slear, Manager,130E Engineering Projects e e 9 4 4 -v.
'~. 1/13/83 - } ~* FI , [*. .( y, BLAST PLAN. This. Blast Plan.is written for the Once Through Steam Generator Explosive Tube Plugging Program at Three Mile Island, Unit 1. i ~ PURPOSE: The purpose of this~ Blast Plan is to document'the handling and' transportation of explosive tube plugs and initiators. i GENERAL: '~ ~ ~~ 1.- The explosive assemblies for this job consist of an inconel cylinder. approximately 3h inches long.- This cylinder is loaded with 1.9 grams of ~ ~ nitroguanadine as a main charge.and.2 grams of P.E.T.N. as a booster ~ charge. This assembly makes up one (1). explosive plug. 2. The explosive plugs will be assembled by Babcock & Wilcox Construction Company (B&W C.C.) in' Apollo, Pennsylvania, and transported to TMI in accordance with federal and state regulations. f 3. ..lbe total quantity of plugs to be used at TMI is expected to be approxima.telyj-600 plugs. ?The, total weight of explosives in the 600 plugs is less than.'.~...- 3 pounds. 4 . Detonations will be accomplished through the use of Exploding Bridge Wire Initiators (EBW). One (1) initiator will be used to detonate each , explosive plug. ^ 5 ~. General.Public Utilities. Nuclear (GPUN) is the recipient of this service. Babcox & Wilcox (B&W) is the prime contractor and supplier of this process. 6. The total inventory of ' explosive plugs and initiators will. be maintained in f security controlled storage. areas and in no case will this exceed 50 pounds-of explosives and 1000 initiators. 7. - The work area will be under Site Security Force control 24 hours per day, seven days per week, with detonations occurring around the clock with the exception of production problems. -8. Pennsylvania licensed blasters will accomplish all blasting operations. 9' -The blast area will be inside the Unit 1 Steam Generators -in tubes located in a two-foot thick tubesheet. The open end of the tubes will be contained by the dome of the steam generator ~which.s about 7h inch thick carbon steel. J This-dome has a 5" handhole which will be connected to a ventilation exhaust system and a 16" manway which will have a temporary metal cover attached prio,r to each detonation. '10. Access, to the security controlled storage areas will be controlled by designated Security Department personnel and/or the B&W explosive plug controller. 1.0
~ b,, dl. Daily use. boxes shall be set up inside the Reactor-Building. Not more than one (1) day's supply of explosive plug assemblies will be placed in this location. At.no time will this exceed 50 explosive plug assemblies. PROCEDURE: 1. Explosive plugs and initiators will be received by the explosive controller and inspected for obvious deficiencies then placed in the security controlled storage areas. -The explosive plug controller will be responsible for inventory records for receipts at Three Mile Island and at the security controller storage areas. Site Security will accompany all transfers of explosives outside the -Reactor Building. 2. Li_ censed blasters will complete the pre-assembly of explosive plugs and initiators, to form an explosive plug assembly, in an authorized area outside of. the Reactor. Build.ing. Explosive plug assemblies will be bagged in groups of five~(5) and then stored in a licensed magazine. 3.- ' Explosive handlers will be responsible for replenishing the day boxes at.the -start of each shift. They will hand-carry explosive plug assemblies from the security controller storage areas to the day boxes. The shift licensed blaster will be responsible for inventory records for the day boxes. During their work shift, the explosive handlers will-remove explosive plug 4. assemblies from the day box and deliver them to the explosive weld engineer. ; 5. The licensed blaster will ensure that the blast initiation area -is checked for stray electrical currents using a blaster's multimeter. If currents are detected which exceed 50 milliamperes, the source will be sought and eliminated before explosive plugs are loaded into the steam generator tubes. 6. As the tentman and jumper become ready for explosive plug assemblies to be inserted into the steam generator tubes, the explosive weld engineer will hand them into the tent to the tentman. -7. The tentman and jumper will place the explosive plug assemblies into the tubes as directed by the procedure controller, then hand the bitter ends of the firing circuit leads through a slit in the far side of the tent to the licensed blaster. ~ The temporary manway. cover will then be installed and the tentman and jumper will exit the main. tent to the designated safe area in the tent annex. 8. prior to initiation, the licensed blaster will repeat the checks for stray electrical currents' using a blaster's multimeter. Again if currents greater than 50 milliamperes are detected, the source will be identified and eliminated. During testing, the blaster will verify that the firing cwcuit line is discon-nected from the capacitor bank and properly shunted. 9. After DER regulatory safety checks are completed and the licensed blaster ensures that all personnel remaining in the area of the steam generator are located in designated safe areas, he will make final firing line continuity checks using a blaster's multimeter, connect -the capacitor bank and fire the circuit. 10. Step 9 will be repeated until each individual explosive plug assembly in the group of five (5') has been successfully fired. 2.0
m;,,. ,,a
- 11. ' After detonations, the' firing line shall be disconnected from the capacitor bank, the explosive weld engineer or his designated representative will view the blast area visually to verify that all explosive plug assemblies detonated.
After the ventilation exhaust system has removed the blast fumes, the sequence in accordance with step 5_ through step H will be repeated. If.a misfire is detected during the inspection, a waiting period of not less than 15 minutes must be observed before the misfired explosive plug assemblies may be removed under the direction of the licensed blaster, for storage in a secure' area until disposed of. Written by 8[ Reviewed by Reviewed by (B&WCC) cad k TV/FC Mca t-n-s3 v Reviewed by (B&W UPGD) M/:/ M. N O f // M Reviewed by (GPUN) O. 0 ## Approved by (PENN) 8 A 4 Chief Explosives Safety Dept. of Environmental Resources 8 9 9 3.0
e, e Day Phhg Bgx OTSG Circuit '4 Juzqper 1 Procedurc $ Controller D-Ring ~C) Blaster 'Ientman i Firing Circuit Exits Tent Here / Misfire I-Box I Reactor Building ) i \\ ' Explosive Detonator Plug Cap Storage Storage Magazine Magazine ' Enclosure 1 Explosive Floa Diagrar.
f: + s. r . OTSG REPAIRS DATE 1/27/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 6. Tube Plug Stabilization
. Stabilizer Material Deliver B OTSG A.OTSG TBD . Spec for Prelim. Plugging-Final Spec Issue C. K. Lee 1/31 ' Equipment and Proceoures to Pull Stabilizers 1/14 -FCA' Stabilization. B&W 1/17 DRF Stabilization TBD . Installation Procedure .. Tooling to Remove Stab. . Aoministrative Procecure Review rP, .7. Miscellaneous Items to Resolve . Plug Tube Lane at A Lower . 2 Tubes Possible Hill'ano PT at B (MNCR 137-82) . PT-Upper Tube Lane Plugs . Fiberscope 9-10 Tubes at A
- 8. Waiting Documentation MNCR Responsibility 215-82 Plug Explooeo at krong Area of Tube B&W 345-82 2 Tubes Pluggeo Incorrectly 354-82 Documentation for Immunol-1st Batch Eng 420-82 Damageo Tube Enos 426-82 Wire Brush B6-1 009-83
.Immunol at Cold Legs A 4 90 PJ 44pred plug .c
- 9. Tube Enomilling B&W Proposal Issueo Review Process ano Establish Procedure TBD Tooling 1/21
~10. Anticipated Jumps Date Description Responsibility 1/25 A - Upper - Clean up Levin /Cata' lytic A - Lower - Maint Manipulator 1/25 B - Upper - Clean up B - Lower - blow Felt Plugs
- [ -
,/ 1, GENERAL PUBLIC UTILITIES OTSG REPAIRS DATE 1/27/83 -DATE ITEM' 'DESCRIPTIDN RESPONSIBILITY REQUIRED 1. Cut ano cao thio line B. Elam TBD Revised Installation Spec-Mech & Elec . Engineering - Issueo DRF Mechanical J. Mann 11/30 - Issue DRF Electzical-1/14 2.. Rouno Robin Samples-NWT Lab J. Colitz . Spent Fuel . BWST .' Decay Heat - honthly Samples Ena of Month . Shi Next Monthly Samples 1/30 ev% od
- 3. Restoration Seconoary Sioe A.
Dehumioification System -Out-Reinstall Flances B. Vacuum Pumps - Sign off C. Temp. Chem. System - Chemical Pumps, etc. D. Temp. & Humioity Probes Calibration Check y g pfiaptrkhN E. -Temp. Power Crevice Dry Equipment E. Nitrogen Pressure Seconoary Sioe so" d e(> y 4 05M det a eieve Att
- 4. Kinetic Expansion
. Post Expansion Clean-up Draft .Eng 1/26 Spec ano Equipment B&W TBD Final Spec.-Received % Draft: Procedure Mt. Vernon Test ~ 2/9 . Receive Cola Leg Spare Plugs - Outer B&W 1/22 . Felt Plug Blowing Device 1/14 . Final Freepath - Blow Plugs from Top 33 800*
- 1.
H - tsoo. r1,
- 5. Immunol
. OTSG Flush System for Imunal Application 1/28 Revision to Spec Issueo Part TF . Duplex Strainers - Droereo - Deliver ~ 1/28 Draft Proceoure Ooerations TBD NO 4 'Eu . Results of Soak Tube Test . Flush Test at Lower Tubesheet at A at Lynchburg Swipes ano hater Samples %\\K 4ncagh W.
'4 bh m. o w a 8o = z u ? .l k h# m e I 5 i j .g l s. E' 11 ll i i
- 1 I
8 3=gIl=s- .E.Igaa 5._s. = ,e g w_ saEg-s ,sCk fn' I a a 9 Q g "$ "t E52 g l 95 2g35n= g8 an-3. g,- 2!w agg am B we ige gElli ags i s ' l a g" lo Isil gg gus 1 I r 1 M 2 g =R 3 g a C h E- = e I h "a ~ ii n! s I l1 l g li. ~ ne i, s .s <5 E a 5 E g' g E s u E S-h o k = I. ~ .:H 5 is t 4e ,z ux I a I e t I' " ~ = ~..., . _. - ~ _ _ _ _., _ _ _. _. -,,, _ _. ._y_,, y,- ,m...._._,.-x_.,_.._,r.
- $'+:lL~N_'='.lF El*+ 5 W - K...
--.- =- _ -E 2 ~ ' ~ ~~' ~ ~--^- '~ l'2.~ %. E ~ ^ .. _-.. ~_r __ :._1.. '. _. _~~__. J. _ _d.-.._:6.-. r-- - U _ - _ _igi. f., _- -- _ ___ ---r._.___:_=_= .g. 3._- -. =. - _ w - - - - g._25_:5. 51:_- __ - = _-- - _- 7 -- -- :.. _-- g .._._-..-....______-________g._;-. _... _ _ _ _. _ _ _ _ _ _ _ _.. _ _ _ _.... _ _ 7_ _, l M--..- ~~- -siss ) m =- u ~ m y w M -. t =.c._. _ =.;;; -rv 18 = j5 e 2 [4 = w== n M. es. 1 -= _~_~ m Q E-- l.' 2
- - ^ - _
@Q e$ ~ =_ ga% = -,. = f-s W k 3.. w g s 5 5 1 y 5 "& l _ -- ?- 4 =_ __= rrr=: _ r-- i E i .m ew-g = ~ _ '. _-._ ____ _ __.. Q( g_g g x _ __ _. _ _ =. _ _ _ = _ ~~.-___3-_ - =-' r_=- -...~a_._-_---=_.._--.__ - -__. ~.._.. _ :u-.= __._.T'*H .___.._.._r___- .y _.__s_ .e _m. _._._-.-__.-yy . _ _ - _ e ,= / - - ~ _ - - - - ~ ~ _---=:-.._.-=-=:==-.=_-_=_--.~:::.-----* ** w-
- .:=_a : = _. -. =-- :-
gg,*. _. _ .7:*-'----'- ! L-'" ! _F----"'---__ ---A.,_ )) ...M**. p---- - -__ _. :_ n= =:- _.._ - m== = ; . QME===D-- :Er-M@ - ft: r$"]*ft-b=-7gF VL; -c-~-~
==w- .==n: = -- -==-- =-n : =-.3 3 1 -.=.=.:.=w.--=__-g=_..
1 FEBRUARY $. lI._ l2 I3 14 l5 16 17 18 19 I10 Al n2 n3 Il4 BI l P,n ten.is & ret selwesaas i 9 1 """n'.E, Pra mP uset M Lass
- I tinut T-scaans.
u-estest tat T. rus n=6 r IM' h=* *mani, emsans c,m,a,.,.,m. rharam s astm us.na. Nacin (f a t 0 Set) e. A canntit as u 8,, I FeePE me Anmest l C * * **** di L--C " " 3 I I raneani arc M. si1ao g 8 runne sisun e a sumers ins can= =,3 i ni a. t _Ingr Att Ritett. flisyg if5fts4 a6 Sharereled taas ? j i ?"'" avi.= sus aus 1 i u wan ens e us n s-insia ; *, m ourm edn.te ranass bei i ud a s co-u rt na as si asti taauss r j .s es
- \\
se u n e. Le ~' o 4 sn Tan. rea ren.u.Ja 3 PLANNING SEQUENCE i JEFF HAWKINS - M C SCHEDULING l-2C-83
~ F ,4 s k n E .e d M l a: I-n w = s 3 I i %t R l I e e 158 II q,L s ~ k e '# ' ~ $ 9: % ~.'; a },5N it r!)8 'et6...!.'L ^ = i R Il N
n ~ .9 7,,.. GENERAL PUBLIC UTILITIES DT5G REPAIRS DATE 1 /31/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED ~ ~ .1. Cut and cap thio line B. Elam ...-Revised Installation Spec Mech & Elec J. Mann TBD t
- 2. 'Round Robin Samples-NWT Lab J. Colitz
.- Spent Fuel . BWST' End of. Month . Decay Heat - Monthly Samples . Ship-Next Monthly Samples 1/30
- 3. 'estoration Secondary Side R
A. Dehumidification System - Out - Reinstall Flanges Waiting Decon ~ B. _ Vacuum Pumps-Signoff-Waiting Decon,1 Released C. Temp. Chem. System - Chemical Pumps, etc. D. Temp. & Humidity Probes Calibration Check E. Temp Power Crevice Dry Equipment F. Nitrogen Pressure Secondary Side
- 4. Ops OTSG Status an A OTSG Level 221" Overpressure 10" oet, AW k
B OTSG Level 2R1" Overpressure 10" m Q Pin and ITock Main Steam Hgr e Full Wet Layup 2/8 .5. Kinetic Expansion . Post Expansion Clean-up Draft - Eng 1/26 Spec and Equipment B&W TBD F.inal Spec Received Mtg Chem & Sampling 2/1 Draft Procedure Mt. Vernon Test 2/9 Draft Procedure 2/1 .-Spare Regulators for Cold Leg Plugs 1/22 . Felt Plug Blowing Device B&W . Final Freepath - Blow Plugs from Top . Chemical and Operation Flush Sys Mtg 10:00 2/1 6.~Innunol 4 . OTSG Flush System for Immunol Application 1/28 Revision to Spec Issued Part TF Draft Procedure Operations 1/28 . D plerstraf r.;r: =-Ordered -Deliver TBD Chem Addition Pumps - On Hold . Results of Soak Tube Test . Flush Test at Lower Tubesheet at A at Lynchburg Swipes and Water Samples . Install Check Valves for Cold Leg Plugs 0.blackM 4 sw.wndh. M [fc A S.t(44) w 13 m wa 4 4 4 Qew c rw
3 .,e ' 0TSG REPAIRS DATE 1 /31/83 DATE ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 7. Tube Plug Stabilization -
. Stabilizer Material Deliver - B OTSG' A ~ MM - TM ' Spec for Prelim Plugging-Final Spec Rev 6 Issue C. K. Lee Rev 7 TBD Equipment and Procedures to Pull Stabilizers 1/14 FCA Stabilization B&W 1/17 DRF Stabilization TBD' . Installation Procedure . Teeling to' Remove Stab. B&W . Administrative Procedure Review - IP TBD
- 8. Testin
. He ium Leak Test Mtg stoc cu 2/2
- 9. Miscellaneous Items to Resolve
. Plug Tube Lane at A Lower . 2 Tubes Possible Mill and PT at B (MNCR 137-82) . PT Upper Tube Lane Plugs . Fiberscope 9-10 Tubes at A . Puii Tapered Plug 23-93 for Stabilization - Tooling End Mill 3 g.f New Plug
- 10. Waiting Documentation MICR Responsibility 215-82 Plug Exploded at Wrong Area of' Tube B&W 4
345-82 2 Tubes Plugged Incorrectly 354-82 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1 009-83 Imunol at Cold Legs 11.TubeEndmilling-M b b MO f . B&W Proposal N I3 ' Issued 17M . Review Process and Establish Procedure TBD $Mo 1 or Trn. /
- 12. Anticipated Jumps Date' Description Responsibility
-1/.11 - A - Upper - Clean up Levin / Catalytic A - Lower - Blow Felt Plugs 1/31 B - Upper - Clean up' B - Lower - Blow Felt Plugs
_7 f,; + 3-GENERAL PUBLIC UTILITIES .OTSG REPAIRS DATE -2/4/83 DATE ITEM DESCRIPTION . RESPONSIBILITY REQUIRED L1. Cut and cap thio line B. Elam -TBD . Revised Installation Spec - Mech & Elec J. Mann. gl g g H YNON ~ 2. Round Robin Samples-NWT Lab J. Colitz . Spent Fuel . BWST . Decy Heat - Monthly Samples End of Month . Ship Next Monthly Samples 2/28
- 3. Restoration Secondary Side A.
Dehumidification S stem - Out - Reinstall Flanges Waiting Decon .4 h B. Vacuum Pumps - Signoff - Both Released C. Temp. Chem. System - Chemical Pumps, etc. %M D. Temp. & Humidity Probes Calibration Check E. Nitrogen Pressure Secondary Side 4 I
- 4. Ops OTSG Status iUS:t:':1IF,:0
M "r /~ " 5 Pin and Block Main Steam Hgr TBD Full Wet Lyup 2/6 . Backing Plate for "A" Upper Manwy 2/3 well fece bok 6 I"
- df M1
- 5. Kinetic Expansion
. Post Expansion Clean-up Draft - Eng 1/26 Spec and Equipment. B&W TBD Final Spec Received Mtg Chem & Sampling 2/1 Draft Procedure - On-site Mt. Vernon Test 2/9 l. Draft Procedure 2/1 l . Spare Regulators for Cold Leg Plugs-Ship Mon. ( . Felt Plug Blowing Device B&W . Final Freepath - Blow Plugs from Top A A r 44
- 6. Immunol
. OTSG Flush System for Immunol Application 1/28 Revision to Spec Issued TF STP Issued, pA4 4 A ~24J.g S~ M' m
r ~ '.'. ; 2-7. OTSG REPAIRS DATE 2/4/83 DATE -ITEM DESCRIPTION RESPONSIBILITY REQUIRED
- 7. Tube Plug Stabilization
. Stabilizer Material Deliver B OTSG A OTSG TBD Spec for Prelim Plugging Final Rev 6 Issued C. K. Lee Rev 7 Issued 2/2 Equipment and Procedures to Pull Stabilizers Week of 2/4 DRF Stabilization TBD . Installation Procedure . Tooling to Remove Stab. 2/4 . Administrative Procedure Review - IP TBD 8. Miscellaneous Items to Resolve . Plug Tube Lane at A Lower ._ 2 Tubes Possible Mill and PT at B (IWCR 137-82) . PT Upper Tube Lane Plugs . Pull Tapered Plug 23-93 for Stabilization - Tooling' End Mi'l New Plug
- 9. Waiting Documentation MNCR Responsibility 215-82 Plug Exploded at Wrong Area of Tube B&W 345-82 2 Tubes Plugged Incorrectly 354-82 Documentation for Immunol-1st Batch Eng 420-82 Damaged Tube Ends 426-82 Wire Brush B6-1 009-83 Immunol at Cold Legs i
- 10. Tube Endmilling i
. B&W Proposal Issued F . Review Process and Establish Procedure TBD [ 9 2/3 i . Tooling TrwN*$ g$ 2/3 . Model for Trn. . Review Draft Procedure Results l
- 11. Anticipated Jumps Date Description Responsibility t
i 2/4 A - Upper - Levin / Catalytic A - Lower - 7 1 c 2/4 B - Upper - B - Lower - _..,.,,_-%,e .,m, ,,,,y,.y_ 7,,, ,,e <e-rr w-. es2.r..__,,.,.,...,_%- ____,,.y-, ,,,,,,-,--9y, w
= s e i 3 gII, = 3l 5 = = a i.- 11l I j i .g I,!,sii 18 4l# = gI t g = l;!Ilg' s n jli*I' n l .~ ~ ,jlIgi ,2 t yl llllll.
- s-n-ll=
s Illl gl h n Il 1l-1 1 l g l Il gl l 1 ^ a 3 E '$2 .E "E e l ~ I, f l e. M
- g g,3 g'"
a r s ~ I I 'I m =h h = ? .E.j 3 c l a a m
- * - - ~ ~ - - -,.....,,,,,
,,,.=., ~'I~
- 7.-,;,---..
FEBRUARY 12 Li lo is E 17 m to ao As d2 a3
- i.j, W i
lll -i ~ j u___,_____ i
- i 1
pre d,
==nans a annes s e cas { {. hun.sa.sah 3.,.,.,.,. 1 -an n.s m e.. ameania. sammma-es, sessana, fee e see) e. a e.nir 3 ,eennsu -p i si el i sewes i an.ainsa c""' " ' ~ ~ ^ d 8 L-ednesassano I 3 1 1 ammina asear - g a Rasass SesE M
- a ensesaarammnes]
4 3 1 I sene t r -.. -- sann a a p mir i l. immL 't 2,: * '::=. " w, ness mes ;. ca ua a. e -e aimani. em maissa 6.. e un a. i .; i .\\ ,i
- t
's m. ami a
- W ~a
,,,w=._____._ PLANNING SEQUENCE r JEFF HAWKINS M C SCHEDULING I-26-83 i i 1 i i 1 1 1 4 I a l 4
f -h N E E ? d p ) i a. l Is l ~ I e (g. hs I~il" 4 r I 1}l8 ,, i 3 4 1 lN gg!!s.j * '....:L. [ P. a (l 1 1,:\\ l f I ' :: 51===.=== -- - _ -- _-t__==-==--=-...-
.~ ~ .:,=.***'.6.".*,"l',.*:.3%~~"*~~~-..Cae .d.*"~~~~~^' ~ %-^--
- ~ - -
, = ~.2[,....'?.'~~ ~^ _(~~5h5'* ;j'.4.ZK~f"f" ,;=':..'~y'~~. ~~ - - - -. ~T-} , ;~~
- ~
LKT .'"~B.~. ~.d":L }; _..V.**.~~=.~ .a. - =. - - --- - ::= - " ---.=.: ---=
- = -.: z
~~~~- ~ - - -. -, - -. ~ - 7 A w "E=---,.:,.:.._-.-=..=__...-=.%===.=..=.---~.:=--__-------_-=-e- -e
- ~+ -+* %
=~; --..-==~:L'i= -._ __.,=-._.__.. _ _ _ _ _.- _g mm* M .g I8 is 3 11
- f e.
- es _
.*s 0.L. M..,. I3 ln a q.g d.E .P, % 3 i.i
- W I
Q!.m n 5g* f.:,.. 3b *. u*..; ?, G r :, :a .. y.;, $1 1;. : . v.. b .. 9, l ?;, j;
- p.e 6'
l e e. GB, me N e. i ( 9 l k 7 e) \\ ,mv -n-.v...i sw eee. N. e . - b e
- A
- mO WW g~ --ky;,,.h--. ~ ~ _ wl. -,_ ' ~ ' E~~? b.fE* A^ Y ~ SEj; __ ~ wag-oww -.}}