ML20112H795
ML20112H795 | |
Person / Time | |
---|---|
Site: | Robinson |
Issue date: | 12/26/1984 |
From: | Ball D, Cheverton R OAK RIDGE NATIONAL LABORATORY |
To: | NRC |
Shared Package | |
ML20112H771 | List: |
References | |
REF-GTECI-A-49, REF-GTECI-RV, TASK-A-49, TASK-OR NUDOCS 8501180044 | |
Download: ML20112H795 (210) | |
Text
{{#Wiki_filter:%_ y g-- -- . . . - - - -
- DRAFT
~
PRESSURIZED THERMAL SHOCK EVALUATION OF THE H. B. ROBINSON UNIT 2 NUCLEAR POWER PLANT List of Chapters Chapter i Introduction Chapter 2 Description of the H. B. Robinson Unit 2 Plant Chapter 3 Development of Overcooling Sequences for H. B. Robinson Unit 2 Nuclear
, Power Plant -
Chapter 4 Thermal-Hydraulic Analysis of Potential Overcooling Transients Occurring at H. B. Robinson Unit 2 Nuclear Power Plant - Chapter 5 Probabilistic Fracture-Mechanics Analysis of Potential Overcooling Sequences for H. B. Robinson Unit 2 Chapter 6 PTS Integrated Risk for H. B. Robinson Unit 2 and Potential Mitigation Measures Chaoter 7 Sensitivity and Uncertainty Analyses of Through-the-Wall Crack Frequencies for H. B.' Robinson Unit 2 Chapter 8 Conclusions and Recommendations 8501100044 850121 yDRADOCK 05000261 PDR
.. . , (
r e S mA S
- 5. PROBABILISTIC FRACTURE-MECHANICS ANALYSIS OF POTENTIAL OVERCOOLING SEQUENCES FOR H. B. ROBINSON UNIT 2 5.1. Introduction l 5.2. Description of Basic Problem 5.3. Calculational Models 5.3.1. Fracture-Mechanics Model 5.3.1.1. Basic approach 5.3.1.2. Specific flaws included . . . _ _
5.3.1.3. Claddmg ~ 5.3.1.4. Material properties 5.3.1.5. Warm prestressing 5.3.1.6. Flaw behavior depicted with critical-cra.ck-depth plots 5.3.1.7. RTNDT as the independent variable 5.3.2. Stress-Analysis Model 5.3.3. Thermal-Analysis Model 5.3.4. Probabilistic Analysis Model , 5.4. Flaw-Related Data for the HBR-2 and HBR-HYPO Pressure Vessels 5.5. Results of Analysis - 5.5.1. Calculation of Conditional Probability of Vessel Failure, P(FlE) 5.5.2. Sensitivity Analysis of P(FlE) 5.5.3. Calculation of Effect on P(F.lE) of Including Warm Prestressing in Analysis 5.5.4. Calculation of Effect on P(FlE) of Proposed Remedial Measures 5.5.4.1. Reduction in fluence rate 5.5.4.2. Annealing of the pressure vessel References ,
'm c* e r
9 F' W e 9 L.
3 , gg,g l HBR-5.1 l
- 5. PROBABILISTIC FRACTURE-MECHANIG ANALYSIS OF POTENTIAL OVERCOOLING SEQUENCES FOR H. B. ROBINSON UNIT 2 5.1. Introduction i This chapter provides detailed information regarding the probabilistic fracture mechanics analysis of the H. B. Robinson Unit 2 (HBR-2) reactor vessel and another (hypothetical) vessel (identified as HBR-HYPO) that was included for illustrative purposes. The chapter discusses (1) the conditions necessary for failure (through-the wall cracking) of a PWR pressure vessel as a result of a PTS transient, (2) the fracture-mechanics models used for evaluating vessel integrity, and (3) the results of probabilistic fracture-mechanics ana-lyses of the two reactor vessels mentioned above. Supplementary information is included in Appendices G, H, and I.
The hypothetical vessel HBR-HYPO was created for these studies after it became apparent that the probability of failure of the HBR-2 reactor pressure vessel would be too small to permit an appropriate illustration of the methods of analysis. Values of the initial fracture toughness and of the concentrations of copper and nickel for the HBR HYPO vessel were ' adjusted upward to increase the probability of failure; otherwise the two vessels are identical. 5.2. Description of Basic Problems
. During a PTS transient in a pressurized-water reactor (PWR), the reactor pressure vessel is subjected to thermal shock in the sense that thermal stresses are created in the vessel wall as a result of rapid removal of heat from its inner surface. The thermal stresses are superinsposed on the pressure stresses with the result that the net stresses are positive (ten-sile) at and near the inner surface of the wall and are substantially lower and perhaps negative elsewhere, depending on the magnitude of the pressure stress. The concern over the high tensile stresses near the inner surface is that they result in high stress intensity factors (Kr) for inner-surface flaws that may be present. To compound the matter, radia-tion damage and the reduced temperature associated with the thermal shock result in rela-tively low fracture toughness values for the vessel material, particularly near the inner sur-face. Thus, there is a possibility of propagation of initially very shallow as well as deeper flaws, and the probability increases wdth time because of the time dependence of radiation damage. -
The positive gradient in temperature and the negative gradients in stress and fluence through the wall tend to provide a mechanism for crack arrest. Even so, if the surface crack is very long and propagates deeply enough, the remaining vessel ligament will become plastic, and the vessel internal pressure will ultimately result in rupture of the vessel Thus, for each thermal transient there will be a maximum permissible pressure that is a function of the time that the vessel has been in operation.
- . = _
s,
- i; y HBR-5.2 - l Crack propagation may also be limited by a phenomenon referred to as warm prestressing ;
(WPS), which has been demonstrated to some extent in the laboratory with small i specimens and also in a rather large, thick-walled cylinder during a thermal shock experiment.2 In such cases, WPS simply refers to the inability of a crack to initiate while K iis decreasing with time, that is, while the crack is closing. While this special situation
- is encountered during some specific overcooling accidents, caution must be exercised in
- . taking credit for WPS because changes in the pressure that affect little else can delay or eliminate the requisite conditions for WPS. For instance, a delay in WPS will generally {
increase the chances of crack initiation, while a reversal of Ki from negative to positive t can result in crack initiation following WPS. An evaluation of the potential for initiation under this latter condition requires knowledge of a fracture toughness value that may be substantially more than the standard measured value.' Unfortunately, sufficient data of this type are not available for inclusion in this study. The area of the vessel of particular concern lin the event of a PTS transient is the so-called i beltline region, that is, the area directly across from the core where (1) the radiation damage is the greatest, (2) the thermal shock could be severe, and (3) a rupture of the { vessel could preclude flooding of the core. Whether or not a particular degree of rupture associated with a particular transient could in fact preclude flooding of the core has not been determined but is under investigation.3 For the purpose of this report, it is sufficient to predict whether a flaw will propagate completely through the wall of the vessel. i The radiation-induced reduction in fracture toughness of the vessel material is s' function
! of the fast neutron fluence and the concentrations of copper (a contaminant) and nickel (an alloying element). Furthermore, for the same values of fluence, copper and nickel, ,
i radiation damage tends to be greater in the welds that join the segments of the vessel than i in the segments (base material). In most PWR vessels the highest concentrations of copper are found in the welds, and many of these welds have high concentrations of nickel as well. Thus, for some PWR vessels the welds are of primary concern. However, since i the segments have a much larger surface area, they could have many more flaws, and this ;
- might offset the difference in radiation damage between segments and welds. l 2 i I
! The beltline region of reactor pressure vessels is fabricated using either forged ring ses-ments or rolled plate segments. Vessels made with forgings have only circumferential welds, while plate type vessels have both circumferential and axial welds, as shown in Fig-i ure 5.1. Thus, within the beltline region of a plate type vessel there are three basic subregions to consider: axial welds, circumferential welds and plate segments. i I For flaw depths greater than --20% of the wall thicliness, axial flaws have significantly greater values of Ki than circumferential flaws. Thus, other things being equal, axial j flaws in the plate segments and in the axial welds of plate. type vessels are of greater con- ! cern than c' 'umferential flaws. Of course, differences in chemistry, fluence and initial i fracture toughness could reverse that situation. ' i e T _,. ._._._ _ ______ _ _ _ _. _ _ , T _ ._ .- .____._._,__n
, . _ y._ . .
HBR-5.3 REACTOR FLUENCE V ESSEL- I /~ DISTRIBUTION r' , AXI A'L WELD !~ N I I p-CUTLIN E , ,!
- CF CORE -
CROSS SECTION OF RPV TH, ROUGH CORE i AXIAL WELD 7
$ I CIR. WE LD 8
h DEVELOPED VIEW OF BELTLINE REGION OF RPV Figure 5.1. Cross section and developed view of plate type PWR pressure vessel (RPV = reactor pressure vessel.) i l l L
HBR-5.4 4
, For plate type vessels with staggered axial welds and for which radiation damage is much more severe in the welds than in the base material, the final surface length of a propagat-
- ing inner-surface axial flaw in an axial weld tends to be limited to the length of the axial I
- weld in which it resides, that is, the height of the shell course. Furthermore, only that por. :
tion of a weld that is within the axial bounds of the core need be considered because of the steep attenuation of the fast-neutron flux, and thus the radiation damage, beyond the fuel region. , i If the chemistry in adjacent plate segments is about the same, the extended surface length
- of an axially oriented flaw in a plate segment is also limited by the height of the core but not by the height of a shell course. Thus, the surface length of axial welds in plate seg-
- ments can be much greater than those in axial welds.
1 i Because of an azimuthal variation in the fast-neutron flux (see Figure 5.1) and ps:ibly 1 in the material chemistry, the extended length of an initially short, circumferentially oriented flaw located in a circumferential weld or in a plate segment also tends to be lim-i ited. ; The behavior of an assumed flaw can be predicted for a given transient by using fracture- ! ~ mechanics methods of analysis. In such an analysis the parameters and considerations
; involved are the size, shape, and orientation of the flaw; the thermal and pressure stresses resulting from a specific transient; the temperature and fast neutron fluence distributions throughout the vessel wall; the effect of fluence and material chemistry on radiation i damage; a variety of material properties; and a comparison of the stress intensity factor
- (Kg) associated with the tip of the flaw with the material's static crack initiation and
! crack arrest fracture toughness values (K, i and Kr.). Each of these factors must be con-sidered in the development of an appropriate analytical model for evaluating the integrity
- of a PWR vessel when subjected to PTS loading conditions. The necessary models for per-forming a probabilistic fracture-mechanics analysis for a PWR reactor pressure vessel and i the results of the analyses for the HBR 2 and HBR HYPO vessels are discussed in the remainder of this chapter, b ,
! 5.3. Calculational Models I The conditional probability of vessel failure (through the wall cracking) was calculated for i the HBR 2 and HBR HYPO reactor pressure vessels with the OCA P code, a fracture- ! mechanics code developed at ORNL for application to pressure vessels.' OCA P accepts i as input the primary' system pressure, the temperature of the coolant in the reactor vessel i downcomer, and the fluid film heat transfer coefficient adjacent to the vessel wall, all as a
- function of time in a specified PTS transient. The code then performs one dimensional
, thermal and stress analyses for the vessel wall and finally a probabilistic fracture-
; mechanics analysis. Details of OCA P necessary for an understanding of the vessel ana-
- lyses included herein are discussed below.
l i
, 7. -. . -. .-- , HBR-5.5 1
5.3.1. Fracture-Mechanics Model I l 5.3.1.1. Basic approach The fracture-mechanics (FM) model in OCA P is based on linear clastic fracture mechan-ics (LEFM) and uses a specified maximum value of Kr, to account for upper-shelf behavior. The stress intensity factor (Kr) is calculated by using superposition techniques "in conjunction with influence coefficients calculated by finite element techniques. , The application of this procedure makes it possible to perform a large number of deterministic FM calculations at reasonable cost, a necessary condition for performing the probabilistic
- analysis.
5.3.1.2. Speelfic finws laeluded The HBR-2 vessel was fabricated from sections of plate and has both axial and circum-ferential welds in the beltline region, as shown in Figures 5.2 and 5.3. The HBR. HYPO vessel was assumed to have the same configuration. For both configurations the length of flaws in the axial welds with depths greater than ~2 in, was assumed to be approximately the height of the intermediate shell course, and the shape was assumed to be semielliptical (this flaw is referred to as the 2.m flaw). Since the ends of this flaw are fixed, propaga-tion was judged on the basis of the K ratios (Kg/Krc, K /Kr.) at the deepest ends of this type of flaw Deep axial Haws in the plate region were assumed to be two-dimensional (to have infinite length) since their surface length could extend the full length of the core, and de~ep circumferential Daws were also assumed to be two-dimensional. Shallower flaws also were assumed to be two-dimensional, because long shallow flaws are essentially two-dimensional, and short flaws tend to grow on the surface to become long Haws,8 at least in the absence of cladding. Because the effect of cladding on the surface extension of short flaws is not known at this time, any possible beneficial effect it may have has been discounted. 5.3.1.3. Claddlag As just noted, the effect of cladding on the surface extension of finite. length flaws was not considered. However, cladding on the inner surface of PWR pressure vessels was included in the OCA.P analysis as a discrete region to the extent that the thermal and stress effects were accounted for. Because of the difference in the coefficient of thermal expansion between the cladding and base material, the calculated stresses in the cladding exceed the yield strength of the clad. ding by an appreciable amount, and this results in an overestimation of the Kg values for the Daws, which were assumed to terminate in the cladding or extend through the cladding into the base material. An alternative approach would be to limit the stress in the clad. ding to the yield stress, but this underestimates Kg because Kg is sensitive to the strain, which is not limited by the yielding phenomenon. The difference in Kg between these two extremes is not large; thus the conservative extreme was selected.
d 8 HBR-5.6 -
= %, .
Coat 6AAA A
.asseree&aam w h 3 f*
9 s.sasaA 8e***
- O ',g
_ , , LOCP n .as o.o.. //#/ - .
' / , ..... o.c.
- n
; l, Loop I ' l 'I " g ** l l \ l ll i I il '
411/*4 I lV' " l l l s'
/ l l l I f I /l '
f I l l l/ l l' l11 se
'(5 j - .
- 1. l.
l Ii il ( : : i l ii I I _t j/ g , , gy i ,,
. V /
I i
\ X \*'
11 1 1 111 M1 'l l\ iN , i 11 \ l , l l lh
/
1 . m'* e s. "
-- Loop B mi . e.3.s o At
- 4 4.76 as. 62.so A g e60.44 Figure 5.2. Cross sectica of HBR 2 reactor pressure vessel and core.
5 k ,..
.f*
r . ) Q,, Nen HBR-5.7 ' * /,N 180 J 10 % WW G ' l "i W N o ff I h 5 3/8 :O 20* .., ' 40'. , 0
'( 210-273 h - \
0* 180* ' d E .?-2 73 m
. i y .
s .. 20* CORE = E to. N **
! ' '[ ' ' , . . ..
ACTIVE 1..
. FUEL $ : ,I %Wlo,1cl PLWFE 10W 0*
180*
* \ / ll- 2 7 3 Ir , ~
M4Y2
- 21 3/4 ,-
J '*% d 9go 30' \ , ,,300 G 270*
/k j
5 a 8 o n Figure 5.3. Sciumstic crdes sections of HBR.2 reactor pressure vessel showleg locs. tions of welds la imittine reglos. i
^'. -- - : 2.- . L T _ .: L . :. ^ -- ~ ' - -
d . DT HBR-5.8 ,? 5.3.1.4. Material properties l Material properties required for the fracture-mechanics analysis include the static crack initiation and arrest toughness values (Kci and Kr.) and the nil-ductility re,ference tem-i perature RTNDT. For the probabilistic fracture mechanics analysis, mean values of these parameters are required. l Mean values of Kr.and K ,i were obtained for the vessel material as follows:
- Kr. = 1.43 {33.2 + 2.806 exp[0.0200 (T - RTNDT + 100)]}, ksi 6 ,(5.1)
Kr. = 1.25 {26.8 + 1.223 exp(0.0145 (T - RTNDT + 160)]}, ksi 8 ,(5.2) where the quantity in braces represents the ASME Section X1' lower bound toughness value, and T is the temperature at the tip of the flaw (in *F). These expressions were obtained by letting the ASME lower bound curves rep _ resent the mean values _minus two
, standard deviations (2a) and by letting a(Kr.) = 0.15 Kr.and a(K.) i = 0.10 Kg..
I In many cases, if crack arrest takes place, it must do so at upper shelf temperatures, that
- is, at temperatures that, under static loading conditions, result in ductile rather than brittle behavior of the material. Crack arrest under these conditions is act well understood but has been included in an approximate manner by specifying a maximum value of Kr. that corresponds to the upper portion of an upper shelf tearing resistance curye. As illustrated .
j in Figure 5.4, which is a plot of K vs crack depth (a) and temperature (T) at a specific ! time in a transient, if the load line (Kg vs a, T) latersects the Kr. curve at K. i < (Kr.),,,,, upper shelf temperatures are not encountered. If, on the other hand, the load } line misses the rising portion of the Kr. curve and then decreases, as it does for some tran-sients, there is, according to the model, a possibility of crack arrest at upper shelf tempera- ) tures. i The tearing resistanes curve selected for this study represents a specific high copper, low. upper. shelf weld material that had been irradiated to a fluence of ~1.2 X 10 " 2 l neutrons /cm at a temperature of ~550*F and tested at 390*F.7 The upper, nearly flat 1 portion of this curve corresponds to a fK value of ~200 ksi E, and this value was used I for (Kr.),u; K was f obtained using the relation I Kf=M, (5.3) ) where 4
=
l / strain energy release rate,
- E -
Young's modulus. i s.
r . . - - . - , _ - . . . - - HBR-5.9 . CANL-Owo 84.dtF5 CTO p """ IK 4Imse p . ( A A _R EST
, y ,37 g _____
I K ( <, n i
> /
e
/_ ,, .j uMIT or exisTinc x,, DATA ! MeV), neutrons /cm , 2 1
i 4 6 X 10 ' neutrons /cm2, 8 I Cu, Ni = concentrations of copper and nickel, wt%. (As indicated later, it is sometimes convenient to make reference to the value of RTNDT at the inner surface of the vessel. This value is referred to herein as RTNDT,.) i Equations (5.5) and (5.6) were derived without distinguishing between weld and base ' j material. A more recent attempt to correlate the data does differentiate between the two
- materials, and the results indicate (1) substantially less damage for the base material i than for welds and (2) greater damage for the welds than Indicated by Eq. (5.5).s yo, i
this study, Eqs. (5.5) and (5.6) were 'ised for the weld material, and a differential between i
- weld and plate material was obtained from the most recent correlations8and was applied la the evaluation of flaw behavior in the base material.
] 1
,---,--,-------.memw---, ,--eve-m-*+ - -,--------,--,vs -w ------..-%--------:, , y- se v ,e. ,~, ,------*ec<-m-- ,--v*,,-,,- .-----t-
-.__. _ - - . - =.
- r. ; :
HBR-5.11 The attenuation of the fluence through the well of the vessel is approximated with F = Fo e ** , - (5.7) where Fo is the fluence at the inner surface of the vessel and a is the crack depth in inches. The specific value of the coefficient in the exponent accounts to some extent for the effect of space wise spectral changes on radiation damage.: If the assumption is made that a short and shallow surface flaw can extend on the surface through the cladding to become a long flaw (and this assumption is made for these stu-dies), then it must be assumed that under the proper circumstances a very shallow flaw that initially resides entirely within the cladding can propagate radially. Unfortunately, the fracture toughness properties of the cladding material are very uncertain and are known to be dependent on the cladding application process; however, the few experimental data that are availab!c indicate that the radiation induced reduction in fracture toughness can be similar to that for the base material. As an expediency, which may or may not be conservative, it was assumed that the cladding has the same fracture-toughness properties as the base material (Eqs. (5.1), (5.2), (5.5) and (5.6)]. In the OCA P analysis, assump-
. tions regarding the fracture behavior of the cladding influence only the laitiation of very shallow flaws that initially terminate in the cladding. Under some circumstances, including the above assumption regarding the fracture toughness of the cladding, these shallow flaws will initiate and result in vessel failure. Therefore, it was necessary to include the fracture properties of the cladding.
5.3.1.5. Warm , 4 '; As mentioned in Section 5.2, crack initiation cannot take place while Kg < 0. However, if, following a period of K < 0, K once i again increases with time, crack initiation can take place, but the critical value of K may be substantially more than the standard meas-ured value (K.). i This latter situatica leads to one of two problems associated with the , inclusion of WPS in the fracture mechanics model; appropriate fracture toughness data are i not yet available. The other problem is more specific to this particular study. The rela-tively few transients for which detailed fracture mechanics calculations are made represent categories of transients for which the pressure histories are not necessarily well deflaed, and, as indicated in Section 5.2, variations in the pressure history can prevent or delpy WPS. For these reasons it was not considered prudent to include the effects of WPS in the basic study. However, the possible effect of WPS was evaluated for the dominant transients to the extent of not allowing crack initiation while Ki < 0, provided, following this period, K idid not exce'ed the previous value of (K ) . l. i l
M 7lx=sy . HBR-5.12 _ 5.3.1.6. Flaw behavior depicted with critical-erack-depth plots The deterministic fracture-mechanics model described above is used in OCA P to predict the behavior of a Daw during a specified PTS transient at a specified time in the life of the vessel, and the calculated behavior can be illustrated with a set of critical-crack depth curves similar to those shown in Figure 5.5. This figure consists of a plot of crack depths corresponding to various events and conditions as a function of the time in the transient at which the events or conditions take place or exist. Figurer 5.5 includes (for 2.D, axially oriented Daws only) the locus of points for Ki = Kr. (crack-initiation curve), Ki = Kr. (crack arrest curve), Ki = (Kg). (warm prestress curve withi K = 0), and Kr " constant (iso Ki curves). For times less than those indicated by the WPS curve, crack ini-tiation will take place, but for greater times initiation will not take place unless perhaps there is a perturbation in Kg that negates the requisite conditions for WPS. The dashed lines in Figure 5.5 indicate the behavior of two initially shallow flaws, ignor-
. ing the effects of WPS. The deeper flaw would initiate at a time of 42 min into the tran-sient and would extend through the wall without arresting. The other flaw would initiate at an earlier time, would arrest at a point 36% of the way through the wall, and then would reinitiate at a time of --88 min and penetrate the wall Earlier in the life of the vessel the tendency for complete penetration of the wall is less. . 5.3.1.7. ATNDT as the '":;:t variable -
For the probabilistic fracture mechanics analysis (see Section 5.3.4), it is convenient to let RTNDT, be the independent variable rather than Cu, Ni, Fo and RTNDTo. This can be accomplished by ignoring Eq. (5.6) and combining Eqs. (5.5) and (5.7) to obtain ARTNDT(a) = ARTNDT, e*S* , ($.8) where - ARTNDT, = ARTNDT at inner surface, ARTNDT(a) . = ARTNDT at tip of naw, a = depth of Daw, in. This relation, in combination with Eq. (5.4), can be used directly in Eqs. (5.1) and (5.2) without having to specify Cu, Ni and Fo. However, when RTNDT, is being calcu-lated for a specific reactor vessel for comparison with results of a probabilistic analysis that uses RTNDT, as the independent variable, only Eq. (5.5) should be used so as to maintain consistency. Furthermore, the results of the fracture. mechanics analysis are somewhat sensitive to the value of RTNDTo and for additional reasons can be significantly different than those obtained using Cu, Ni, and To and RTNDTo as independent variables (see Appendix G). l
.. s _ . _.
p;en HBR-5.13 CRIT!CRt. CRPCX CEPTH CL'RVES :3 TE"P - 150 + 400 EXP(-0.15CT) &
~
RTNOTO - 40.0 CE3r %CU - 0.25 FC - 0.25E13 PR- 1.C0 KSI - LCM 3IT o x a g . o x"%KI=Kla B .
, a . o- x a g . 1 o % WPS J , a ,,...* . . o ,g 3 :
5 ..- a . l . .
,:x ). * . a , 1 . FLAW , . . xI , PATH gg . : -
x .- o l
. N so I x I . . .
x
.l a .
g ..
. o x .a * . * * 'l . . too . s. -- . . . .==!
x l .
.e . . .
x x
. 1 o x 2 .
- p ..
="... , g I.xIc x =
7* 7 ,.t , {s x 2 .
., J mf,.... a m =
a x x,
' l ed
- y x X 8" x9 O O 8 '
t , =x ==* o to :o .a e so so ,o a e sco iso is t!r.ttntnu;c31 Figure 5.5. Critical. crack. depth curus for a typical postulated P'IS transient. 4
e HBR-5.14 l'~ !. n . l 5.3.2. Stress,.Aanlysis Model
- j When the superposition technique is used in combination with influence coefficients to cal-i culate Kg, the stresses required are those at the crack plane in the absence of the crack l
and with no variation in the direction of the length of the crack. For the analyses dis-cussed herein, it was assumed that there was no azimuthal variation as well, and thus the one-dimensional stress analysis model incorporated in OCA-P was adequate. Material properties required for the stress analysis included the coefficient of thermal expansion (a), Young's modulus (E), and Poisson's ratio (r). Although these properties have some temperature dependence, it was determined' that the use of appropriate average values results in an error in the calculated value of Kg of less than 10% Thus, average values were used based on the data in Ref.10. The values used are as follows: Property Base Msterial Cladding lii, 'F~ l 8.0 X 10-' 9.9 X 10-8 f, kai 2.8 X 10 8 2.7 X 10 4 ! T 0.30 0.30 j 5.3.3. Dermal-Analysis Model . l' Temperatures in the wall of the vessel are required for two purposes: to calculate the frac. ture toughness and to calculate the thermal stresses. The temperatures required for deter-mining the fracture toughness are those in the plane of the flaw, while those used in the 1 one dimensional analysis of the thermal stresses must represent some type of average dis-tribution through the wall. The thermal stresses in the vicinity of the crack plane are more sensitive to the radial temperature distribution at the crack plane than elsewhere.
- Since these temperatures are the same a those needed for the fracture toughness determi-4 nations, and since only one set of temperatures was to be used for both the stress and toughness calculations, the local temperatures would be the choice. These particular tem.
peratures were not available, but fortunately the results of the thermal hydraulic analysis indicated that for the transients of laterest there was not much azimuthal variation in the ! downcomer coolant temperature. Thus, the time dependent temperature distributions in i the wall of the vessel were calculated with the one-dimensional thermal analysis model in ' OCA P, using average downcomer coolant temperatures and heat transfer coefficients. l Material properties required for the thermal analysis include the thermal conductivity (k), j specific heat (c,), and density (p) of the vessel material. The values used are as follows: ! Property Base Material Cladding k 24.0 10.0 Btu /hr ft2 ..p c, 0.12 0.12 Btu /lb *F 3 p 489 489 lb/ft l
- i. _ ._ .
, . _ - .~ . = _ . , - . . - ~.---- -. - _ . - - . . - - _ .
1
. HBR-5.15 5
5.3.4. Prah=hikele-Amelysis Model 5 The OCA-P probabilistic model, which is similar to that developed by Gamble and Strosnider," is based on Monte Carlo techniques; that is, a large number of vessels is gen-ersted, and each vessel is then subjected to a fracture-mechanics analysis to determine whether the vessel will fail. Each vessel is defined by randomly selected values of several parameters that are judged to have significant uncertainties associated with them. The ] calculated probability of vessel failure is simply the number of vessels that fait divided by the total number of vessels generated. It constitutes a conditional probability of failure, ! P(FlE'), because the assumption is made that the PTS transient (event) taxes place. A logic diagram summarizing the various steps in the OCA-P probabilistic analysis is shown in Figure 5.6. 1 i l The parameters simulated for the analyses discussed herein are crack depth (a), RTNDT, K.,i and K i Normal distributions were assumed for each of these parameters except the i crack depth; the standard deviations and truncation values used in the analysis are i included in Table 5.1. When RTNDT, is used as the independent variable (see Section 5.3.1.7), it is necessary to . account for the distribution in ARTNDT due to the distributions in Cu, Ni and Fo. As , , discussed in Appendix G, the distribution in ARTNDT is dependent on the mean values l of Cu, Ni and Fo, and an ' average
- normal distribution was used with the standard devia-l tion given in Table 5.1.
i The advantage in using RTNDT, as the independent variable in the probabilistic fracture-i mechanics analysis is'that a normalized value of P(FlE), referred to as 8, vs RTNDT, ! can be determined for the different flaw types (infinite and finite-length axial and circum. i . forential flaws) for all of the transients of interest, independent of specific values of Cu, Ni l and Fo. Once these curves are available, they can be used for any reasonable set of Cu, j Ni,and Fo values, thus allowing a determination of P(FlE) for more than one vessel without a detailed analysis, provided that the same transients are appropriate for both
- vossals. It is only necessary to (1) calculate RTNDT, for each region of interest (defined
- ecific values of Cu, Ni, Fo, and RTNDTo) using Eqs. (5.4) and (5.5); (2) deter-by sp% from the 8 vs RTNDT, curves; and (3) determine P(FlE) from mine
) P(FlE) = Z %(FlE)Njj V, (5.9) l I l where J refers to each of the regions considered, P is the probability based on one flaw per i region, N is the flaw density, and Vis the volume of the region. I i In Figure 5.6 the second and third boxes are somewhat different when RTNDT, is used ! as the independent variable. For both boxes, Cu, Ni and To are replaced with ARTNDT,. I i
- - - .. - . _ _ ~ _ . _ . . _ . . - . . . .
6 e
% a %, ? ] t&yst HBR-5.16
( coast.Qwc 84-4t ?4 870 d l OEPING TRANsithf ANO l SWubAf t 4,, tamcm l CALCuLAft , f o sai.. el "a"'**" l ADV ANCE fiME l l l SELECT MEAN V ALut$ CALCULATEK,, of .etafNofist.6 tutNCE f..,..... NICx th COPatn " se immCal m fNOT-
~. =l ,, ,ME Cat Af 2 A VE5SEL SY 8,'" ,, 8 8 8 fm ANSit NT $1MULA tlNG OVta' Cm ACK CapfM amfN0f tamOn r ,ves YtI wIw . .un p V,tNCE g ADV ANCE CR ACK OtPTM Cor'im
- m fNO T, PLA5ftC vtt l eNSTAsiLifv 8 l CALCuLATEmfNQf l NQ l CALCULATE mfNOT l l
l SaMubAf t K,, l Stf CR ACE 088?* g,fg s ip 70 Amat tf 0tP'= yts NO e NUMetmap CmACECiofwg "O (*Maustt0' ras Aco CNG fo NuMeta . A00QNETQNuveta 08 8 Astunts 08 NON8 AILVatt I A00 QNE TO NUMeta 08 fasALs
= .
e at m #cagit o
'eQ N,4(g5 YGS CALCVLA .mo m .t.fvne fI CONJ,e ..Lumt rlONAL !
Figure 5.6. OCA P program logic.
. ~ .,
u_
~ .
HBR-5.17 Table 5.1. Parameters simulated in OCA-P
~
Standard Deviation
- Parameter (a) Truncation Fluence (F) 0.3 g(F) F=0 Copper 0.025 % 0.4%
Nickel 0.0 - 17*F*
- RTNDTo J
ARTNDP 24'F*'
- ARTND7* 0.14 p(ARTNDT)d 13a K,i 0.15 g(K.)i 13a Kr. 0.10 g(Kr.) 13e
' Normal distribution used for each parameter. *a(arnor)= 'alarnor) + alaarsor,' 'n, truncated at 13a. ' Accounts for uncertainty in correlation.
Accounts for uncertainty in Cu, Ni and Fo when RTNDT, is used as independent variable. I l l l l l i
HBR-5.18 . The probability of having a flaw in n specific region with a depth in a specific range of crack depths Aa,is given by 1 P(Aaf) - NV f f(a)B(a)da , (5.10) 4 1 where N = number of flaws of all depths per unit volume of a specific region, V = volume of the specific region, fa) = flaw-depth density function, B(a) = probability of nondetection. The parameters N and fa) pertain to vessel conditions prior to preservice inspection and , repair, and B(a) is derived on the basis of repairing or otherwise disposing of all detected flaws. The value of N and the functions fa) and B(a) are not well known because most of the available inspection data do not pertain to surface flaws that extend into and through the cladding of a PWR pressure vessel. For the analyses dLe_M herein, the functions fa) and B(a) were those suggested in the Marshall report:2 and are as follows: f(a) = 4.1 e-4 l* , (5.11) , B(a) = 0.005 + 0.995 ,-2. 7' , (5.12) l where a = crack depth, in., ao
= 1.
fAa)da o For the HBR 2 vessel the probability of ncodetection, B(a), should probably be set equal to unity, independent of a, because the relistility of inspections for flaws in and extending a short distance beyond the cladding has not been quantified. Furthermore, it is not likely that any detected flaws of this type were repaired. Even so, Eq. (5.1) was used in the analysis of the HBR 2 and HBR HYPO. If B(a) = 1 were used instead, P(11E) would be about twice as much. Thus, the results of this study can be interpreted accordingly. 3 The value of N used in these studies was 0.03 flaw /ft 3 (I flaw /m ) of weld and base , material, and it was assumed that all flaws were inner surface flaws normal to the surface. Flaws in welds were oriented in the length direction of the weld, while those in the plate segments were oriented axially. The assumed value of the flaw density agrees with that suggested in the Marshall report,12 but the uncertainty is considered to be ver g (values of N corresponding to la variations are estimated to be 3 and X 310~* y lar' e 3 flaws /ft ). V &
. _ . . . ._.7,-3.7 _.y_. . _ - ._,. ., ~ _ ,- _.-., , . _ _ _ _ _ _ , , ,y y -., --g ,.- 7.----
, ). _ ._ .
- 7 - ;, . m HBR-5.19 h4 b d4 4! 3d f The volume (V) of a weld or plate segment used for calculating the number of surface flaws was the total volume of that portion of the weld or segment that was nearly within the axial confines corresponding to the active length of the core.
As mentioned above, the calculated probability of vessel failure for this study is the number of simulated vessels calculated to fail divided by the total number of vessels simu-lated or otherwise accounted for. Thus, N g3,g3) P(PlE) = " h VN j f f(a)B(a)da , j o - - - where 9, "',.' N j , Nfj. = number of vessels with a flaw in the jth region that fail, N,j = number of vessels simulated with a flaw in the jth region, Vj = volume of jth region. The integral in Eq. (5.13) accounts for the vessels that have no flaws whatsoever, and each term in Eq. (5.13) represents the contribution to P(F(E) of each specified region of the vessel. For very small values of P(FlE) , the values of N,j required to achieve reasonable accu-racy becomes quite large. Under some circumstances the value of N,j can be reduced by using importance sampling techniques. This was done in some cases by eliminating flaw depths that did not contribute significantly to initiation and by sampling only the tails of , the RTNDT and ARTNDT distribution functions. In each of these cases the portion of the distribution function not sampled is accounted for by multiplying the number of simu-lated vessels, N,j, by a correction factor. Equation (5.13) then becomes
@j (5.14)
P(FlE) = , , VN j f(a)R(a)da , where
- Fy -
correction factor for flaw depth density function, Fj2
= correction factor for ARTNDT distribution, Fj3 =
correction factor for RTNDT distribution.
^ ~ ^ . T. ..: .- - . .- .- -- -.--- - -
o . HBR-5.20 1 or these studies, when importance sampling was used for the flaw depth density function,
; only the first flaw-depth increment was omitted. Thus, F = - 3.24 . (3 IS) ff(a)R(a)da % i When importance sampling is applied to the ARTNDT and RTNDT distribution fu'nctions, only those portions of the distributions above la were used, and as indicated in Table 5.1, these distributions were truncated at 3a. Table 5.2 gives the corresponding values of F2 -
and F3 as a function of the point on the distribution curve at which sampling is com-a menced. As indicated, if the distribution is sampled above Ia, F = 6, and if it is sam-pied above 2a, F = 46. If both ARTNDT and RTNDT are sampled only above 1.25a, and if the first crack-depth increment can be omitted, Fi XF X F 3= 300, which l represents a significant savings in computer costs for the same accuracy in P(FlE). Of course this type of importance sampling can only be used when the first crack depth incre-l ment does not contribute much to P(FIE), and when P(PlE) is small enough that only the tails of the ARTNDT and RTNDT distribution functions contribute significantly to l P(FlE). i' After the specified ~ number of vessels has been simulated, a deterministic analysis is made for each vessel to determine if failure will occur during a particular transient at a specified time in the life of the plant. The criterion by which failure is judged is as follows: if, fol-l lowing an initiation event, Ki remains greater than Kr. up to or beyond the point at which i plastic instability occurs in the remaining ligament, failu're is assumed. The onset of plas-
- tic instability is evaluated oa the basis of achieving an average pressure stress in the j remaining ligament equal to the flow stress. The flow stress is assumed to be independent i of temperature and fluence and is specirmd as 80 ksi, i
l The number of vessels that must be simulated depends upon the accuracy required for the l calculated value of P(FIE), and as small a number as practical is used to minimize com. puter costs. The minimum number of simulated vessels required to satisfy a specified l accuracy is estimated by applying the central limit theorem.'3 Using this approach and j specifying a 95% confidence level yields (5.16) P(FlE)j = P) NV j f f(a)R(a)da i 1.96 aj , , o I 1. 4 1 t j l l_ ._. n.
1 p__ _ . . _ .__ . HBR-5.21 BRAFT Table 5.2. Values of F:and F associated 3 with importance sampiing of ARTNDT, and RTNDT distributions Identifying Number Start-of-Sampling (NDLRS or Number of Standard Fraction of Distribution NRTRS) Deviations Above Mean Not Simulated
- F,F3 2
1 l.0 0.8422 6.3 . 2 1.25 0.8954 9.6 3 1.50 0.9343 15.2 4 1.75 0.9611 25.7 5 2.00 0.9784 46.4 6 2.25 0.9891 91.7 7 .2.50 0.9951 204.1 8 2.75 0.9983 588.2
' Assuming truncation at i3a. -w.-,ee -,
m _. - . . _ _ _ _ . -
? S ,, _. .--p -
HBR-5.22 8-
} ,
wnere l P(FlE)j = true value of the conditional probability of vessel failure for those vessels having flaws in the jth region only, aj = one standard deviation, 9; = MnlN)- For the direct approach (not using linportance sampling),
@j(1 -k) ' 1/2 j (5.17) aj = NYj f0f(a)B(a)da .
When importance sampling is used, 1/2 aj = hl(1 -h) j NY, f f(a)B(a)da . (3,gg) N;jFgj F2j F3j, o The values of a corresponding to all of the vessels simulated is
. a fygg) = , (5.19) and the error, ej, associated with the fth region is
- 1.96 af (5.20) t) , .
$j NY, f f(a)B(a)da O
For kj << 1, i i (5.21) e = 1.96 '-' l.96 i ?) Wr), , WD, . i The total error, e, considering all regions of interest is l 1.96 artrIr) (5.22) l e= , . E j$NY) f f(a)B(a)da
/ 0
J s- l
, s ,
y.s, . g, , HBR-5.23 It is of interest to note (Eq. 5.21) that the error for a single region, ej, is only a function of Nfj. According to Refs.14 and 15, for the estimate of ej to be reasonably accurate, Nfjshould be greater than 5 (Ref.14) or 9 (Ref.15). However, when the total error
, is calculated (Eq. 5.22), this rule needs to be adhered to strictly only for those regions that contribute significantly to P(ElE) .
In order to keep computer costs within reasonable bounds for the PTS studies, the permis-sible error in 'Pj was allowed to increase with decreasing f), and in general, as shown in { Figure 5.7, larger errors were permitted for the nondominant transients than for the dom- 1 inant transients. The value of N,'j and the extent of importance sampling were selected so as to satisfy these criteria. An exception was in the sensitivity analysis since, in some cases, better accuracy was required. 5.4. Flaw-Related Data for the HBR-2 and HBR-HYPO Pressure Vessels As has already been mentioned (Sections 5.2 and 5.3.1), the areas of the vessel of particu-lar concern with' regard to flaw propagation are those in the beltline region and include the plate segments and the axial and circumferential welds. Fracture-mechanics data fer these regions are included in Table 5.3 for HBR-2 and in Table 5.4 for HBR-HYPO. A companson of these two tables shows that the only difference between HBR-2 and HBR-HYPO are the values of Cu, Ni and RTNDTo. Values of these parameters for HBR- . HYPO were adjusted in a convenient and reasonable way so that at 32 EFPY, RTNDT, = 221*F for the region that contributed the most to P(FlE) (this corresponds , to RTNDT(2a) = 270*F]. The plate regions in Tables 5.3 and 5.4, for which only axially oriented flaws were con-sidered, could have been divided further to take advantage of the azimuthal variation in fluence. However, it appeared, at least for HBR-HYPO, that the plate region contribu-
~
tion to P(ElE) would be small; thus, further refinement was not warranted.
" Much of the data in Tables 5.3 and 5.4 was taken. from Refs.16,17 and 18; values listed for Cu, Ni, Foand RTNDTo were considered to be mean values.
5.5. Results of Analysis Probabilistic fracture-mechanics analyses were performed for HBR-2 and HBR-HYPO to i determine (1) P(FlE) = f(RTNDT,) and P(FlE) at 32 EFPY for a number of HBR-2 transients, (2) the sensitivity of P(EiE) to small changes in the mean values of certain parameters, (3) the effect of including warm prestressing, and (4) the effect on l P(FlE) of certain proposed remedial measures. The results of these efforts are presented below. [ 1 i l t y--
v
> .~
- HBR.S.24 b, g'* ,
l
. . . , I i , i .. _ _ . .
t , i. ._ _ . . . _
,,, 1 . ,. . . . - . . . . . . . . .~ - , l .l _, .. .[.._. . _ _ . _ . . _ . , i . ._._. =, d .. ., -s , , ._ - . . ... j. .,. .t. . . . - . _. . . _ . . s e I .. ,
9 9 4
, ,. .r . . .. . _ _ '.'~^..', . (DNoamulrNT TRCA.cIGA.2G , ,. .j_..
- l. 9
. . l. . . . .
s-
- p. , , . l _. .
}
i l
&i ComitJRNT~ TMN$lEN7:5 I. .
3 n (s . .
. . 6 .g. .s . ' :/ O. .l 20 !. 'J Ds l c: do : * - : _.63 , .I . . , ., .u.
3 h w.r.) 4 CG. E E a:2b4L L.. 7_,_T _ - - - i . , .. Figure 5.7. Allowable error la F. j l t I I 1 [ l I
..*Re .*.W.nwi.g.
. 1, ~ ' 7)
HBR-5.25 1 l i l Table 5.3. Material properties, fluences and region volumes used in fractur: x +== cs analysis of HBR-2 reactor vessel Material Chemistry' Neutron Fluence Identification at Inner Surface,*'* Region Cu Ni 32 EFPY RTNDTo Volume RTNDT, RTNDT, (2a) Form Number (wt%) (wt%) 2 (10" n/cm ) (.p) (rgs ) (.7) (.p) Axial weld 1-273A 0.22 0.04 1.24 - 56 0.14 46 105 l 273B 0.22 0.04 0.82 - 56 0.14 36 95 1-273C 0.22 0.04 0.41 - 56 0.14 19 78 2-273A 0.22 0.04 3.15 - 56 1.06 75 134 2-273B 0.22 0.04 1.03 - 56 1.06 41 100 2-273C 0.22 0.04 2.07 - 56 1.06 61 120 3-273A 0.22 0.04 1.95 - 56 0.28 59 118 3-273B 0.22 0.04 1.27 - 56 0.28 46 105 3-273C 0.22 0.04 1.27 - 56 0.as 46 105 Circumferential 10-273 0.17 1.0 1.64 - 56 3.5 92 151 weld 11 273 0.19 0.8 1.95 - 56 3.5 102 161 Plate 273-02 0.12 0.1 1.95 46 71 107 166 273-03 0.12 0.1 4.16 46 330 121 180 273-04 0.12 0.1 1.64 46 35 104 163
^
khemistry for welds specified in letter from A. B. Cutter (CP&L) to H. R. Denton (NRC), Juns . '.1984. Copper in plate specified in letter from J. H. Phillips (CP&L) to J. D. White (ORNL), November 9,1983. Nickel in plate specified by Neil Randall(NRC), July 20,1984.
- Maximum value in regma.
' Source: letter from J H. Phillips (CP&L) to J. D. White (ORNL), November 9,1983.
d Volume within high-fluence region.
._. . . . - .- _ - _._ _ __ _ . . . _ _ _ _ .__i__._. . _ _ _
o . HBR-5.26 . Table 5.4. Material properties, fluences and region volumes used in fracture-mechanics analysis of the HBR-HYPO reactor vessel Material Chemistry' Neutron Fluence Identification at inner Surface,' Region Cu' Ni 32 EFPY RTNDTo Volume' D RTND.T, (2a) 2 (.7) 3 (fg ) RTN.p)T, ( p) Form Number (wt%) (wt%) (10 n/cm ) ( Axial weld I-273A 0.22 0.80 1.24 0 0.14 164 223 1 273B 0.22 0.80 0.82 0 0.14 147 206 1-273C 0.22 0.80 0.41 0 0.14 122 181 2-273A 0.22 0.80 3.15 0 1.06 211 270 2-273B 0.22 0.80 1.03 0 1.06 156 215 2-273C 0.22 0.80 2.07 0 1.06 189 248 3-273A 0.22 0.80 1.95 0 0.28 186 245 3-273B 0.22 0 80 1.27 0 0.28 165 224 3-273C 0.22 0.80 1.27 0 0.28 165 224 Circumferential 10-273 0.22 0.80 1.64 0 3.5 177 236 weld 11-273 0.22 0.80 1.95 0 3.5 186 245 Plate 273-02 0.12 0.80 1.95 0 71 96 155 273-03 0.12 0.80 4.16 0' 328 118 177 273-04 0.12 0.80 1.64 0 35 91 150
'Same as for HBR 2. *Same as for HBR-2 with exception of circumferential weld.
i l
~
HBR-5.27 i 5.5.1. Calculation of Conditional Probability of Vessel Failure, P(FlE) The specific transients considered for a detailed OCA-P analysis are described in Chapter 3. These transients were divided into two categcries: (1) those with final coolant temperatures >300'F and (2) those with final coolant temperatures 4300*F. Bounding-type calculations were made for the first category because the approach was much,less expensive and because it was expected that the contribution of this category to the through-the-wall crack frequencies would be negligible. Transients for the bounding calculations were characterized by a constant pressure of 2.5 ksi, a step change in coolant temperature and a fluid film heat-transfer coefficient of 400 Btu /hr ft2.*F. The results of these bounding calculations are shown in Figure 5.8. -- All of the transients in the first category and the corresponding estimates of P(FlE) at 32 EFPY are listed in Table 6.1 of Chapter 6 for HBR HYPO. Values of P(FlE) are not given for HBR-2 because they are much lower than those for HBR-HYPO and thus even more difficult to estimate. None of the transients in the first category contri-buted significantly to the"through-the wall crack frequencies for either HBR-2 or HBR-HYPO. All of the transients in the second category and the corresponding estimated values of P(FlE) at 32 EFPY are also listed in Table 6.1, for both HBR-2 and HBR-HYPO, and those with significantly high values of P(ElE) and/or through-the wall crack fre-quencies are listed in Table 5.5. Values of P(FlE) in Table 5.5 include the contributions from all of the vessel beltline regions listed in Table 5.4. For HBR-HYPO the contribution of the circumferential welds and of the plate segments was relatively small. However, because of the rather low values of Cu, Ni and RTNDTo for the HBR-2 welds, the plate regions were the dominant contributor to P(FlE) for HBR-2, and the corresponding estimates values of h were quite low (<10-6). Furthermore, and as a consequence of these low values, the estimates of the through-the-wall crack frequencies for HBR-2 are quite low (<10-H). Therefore, values of P(FlE) for HBR-2 were estimated for only a few of the transients in Table 5.5. The particular transients selected were the six that contributed the most to the through-the-wall crack frequencies for HBR-HYPO. Summaries of more detailed results for the six dominant transients at 32 EFPY are presented in digital form in Tables 5.6-5.11, and similar summary sheets are included in Appendix I for all of the transients calculated.* Each summary sheet includes the data for a variety of histographs, and a set of four histograms for transient No. 22B is shown in Figures 5.9-5.12. [ lt should be noted that only she summary sheets for the *B* cases are included in Appendix I for those j sequences involving *A* and 'B' cases. l l l
o o r HBR-5.28 h.3'4 A-f tur e-31
~.
HB ROBINSON BOUNDING CASES 93 -4 ________s__.___._____.____________________s_.___________________________ ______--_w_.__.__z________.,w-____-___I___________ -- ___--- _______.,r__..
-___--___,_....___a"___-__-__,r___..._-a"_____.__..
e c -._--..
,________.r I g .__..._......---__r_________ I 3
C3 ________ _ _r'__._________ __ ___________r' __ _ _ _________ _ _ _ _ _ _ __ _ _s__________ ___ ____,__ ____ ______n.________ _ _
.___________z_._.__.._.Z...__..__z________s_________
__....__ ._______ w.......__I .. ._ __ _ _ _ ...r. ___... L_--___...n_______..r--______L._.______ t 8
--.....__J.-- ---.g __.---..J____.____g____-_____
N I a s t l C3 ______' _____ _. _ z_ _ .____ _ _ _ _ ' _ __s'___________________' ____._._.__z___.__._1._._._____.__z__.._...___.1____________________ _ __ _ __ _________u___...__________I_____._.u_________,t______.___________ _ __ _-
-__---___a._--_..-
I
, ____.___a__-....,e._
I __________c.,.________p_ ______.c_-______.p_ __ -_-_
.C) i
___________c___________________'____ _.________4_.________,s______--__.______s__________ ____r_.__ _ _ _ _ _ _ _ _ ___ _______ _ ____a_.____.___-, _____....,c_______..a________,c.________4___-__.._
....-__-(_ ..__-- u---._ .
(.._____-_u_ LJT sa --_____-4.________]'..____a______.._]'_____-.___
--_______s________._____-_________________ _._.________
i. L .- ___ ______ _ __ _______ __________._1_________________z________ r_ _____ __..a ___.______r________- r______ Q. _. ____.__-4._-______1___.__ __--r ---_____ . .____ _______1__________._
--_----..g_......__J.__-__--,r_ L 8 --___----_L_________r_._______L. ' _______r___..____ ~)Y 8 I I ao r s c --
1 __________'_________r.___________________ _________.s_________________ ___...___1._________.r_.____________1___...__.__.,r..___.... -._ - _ - _ __ _ _ _ _ - _.._._ ..- .__a___-_....,
;] __.-____a__ _
u___..... r.._._____u.___ ____c_______._
-_---__..,i..---- ..a__----.__,i ..__
8 I I ___4._____..._ C3 _________s___________.'_________s'________________ ___ w _ _ ___
-_________________z__._______.-._____.__I___________
__-._._._.___,.____-__.I____---_____,w____.____
--__..._,r_-___-a"_____-._,r___...-a"-_-._____.
t
+
_.._-_....n.._______(..____...n__...__ 8 i
.I
(. i C3 _____ __' .___________ _ ___________ __ ______r_______________r'_____.___s_
.. ______ .___z__.__.-__ _______ _ _ . _ ____ . _ _ ____ __ ________
__- ____ . -_,w_ - w__ _ __ ....,-____ _f,_._ _...__ _________ _ _ _-..___.r-..._____w__-___--_r___-_..__ 1 1
-__.--.. J._____-._g._-__--. J._...___-g . _ _ . . . . .
I 8 i i I S.O I f ______ __ _________f_ ____ -___________ _______-
.._-_._._.__z_______._._.s_._____r__..__.1
_____.....I.___________n_.___._I________.____. ___..u-______.-
---__...a-.._____-,r___--__..a'_________,r__---____ ..
e _________.t.._______u__._____ r i Ic_____..__u__ ....__ e 1 i CD ' I I I 150 200 250 300 350 400 i TF, DEG.F. l I t t i . Figure 5.8. P fa)B(s)da vs Tffor HBR-HYPO bounding calculadoes. \ l m - W
=_-e . . - ,
HBR-5.29 ~ Table 5.5. Summary of calculated values of P(FlE) for HBR-2 and HBR-HYPO at 32 EFPY l P(FlE) Transient HBR-HYP0 Transient HBR-2 HBR-HYPO
. 1.8 ~1E-8 9.ll A <1E-7 1.9 <! E- 10 9.llB 2.8E-5 2.1 <1E-9 9.12A 2E-7 3.1 <1 E- 10 9.12B 3.6E-5 4.1 <1E-9 9.14B 1.lE-5 5.15 SE-7 9.15B 1.2E-5 f.17 6E-7 9.17B 1.8E-4 5.19 2E-7 9.18B 8.6E-6 5.20 4.8E-6 9.19A lE-7 6.6 3.7E-4 9.19 B(* SE-7 9.5 E-5 6.9 1.0E-4 9.20A 1E-7 7.5 4.2E-6 9.20Bu) SE-7 1.0E-4 7.6 1E-t 9.22A <1E-6 , 7.8 6E-8 9.22BM) 4E-5 5.5 E-4 . 7.9 3.0E-6 9.23A !E-6 7.10 9.3 E-6 9.23B 1.3E-4 5.6E-5 7.11 9.26 2E-7
[ 8.2 1.4E--6 9.28 3.9E-6 . 8.3 2E-7 9.32 1.8E-6 8.5 4E-7 9.33<2) <lE-Il 2E-7 8.6 6.6E-4 9.34 3E-7 9.4 8E-8 9.37 2E-7 9.5 1.5E-6 9.39 4E-7 9.6 <2E-9 9.40 IE-6 9.9A <4E-9 9.41") <1E-9 9E-7 9.9B 8E-7 9.42 1.2E-6 9.10A <2E-8 9.43") <1E-9 1.2E-5 9.10B 1.l E-6 9.45 SE-7
' Numbers indicate order of dominance in terms of the through-the-wall crack frequency for HBR-HYPO.
l
. _ _ , . . . ...__...._._e_ __ _ _ . . _ _ _ _ _ _ _ _ _ - - o .-
HBR-5.30 Table 5.6. Summary sheet for HBR. HYPO Transient No. 9.19B IPTS H B ROB CLAD 9.19 7/6/34 1 FLAWS /IN"3 DRTN(IS) 211.2 UNADJUSTED --ADJUSTED WELD P(F/ E) 951CI % ERR P(INITIA) 4 8V P(F/ E) SERR NFAIL' NTRIALS 1 2.51D-03 2.400-04 9.55 2.900-03 0.030 7.53D-05 415 30000 2 5.57D-04 5.45D-05 9.80 7.23D-04 0.030 1.573-05 399 130000
.. VESSEL 9.200-05 8.02 DEPTHS FOR INITIAL INITIATION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NINBER 0 575 258 111 40 10 4 0 0 PERCENT 0.0 57.6 25.9 11.1 4.0 1.0 0.4 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.4 1.4 5.8 15.1 20.3 21.8 14.0 12.0 9.1 INITIATION T-RTMDT(DEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 NUMBER- 0 3 32 355 506 443 352 68 0 0 0 0 P'RCENT 0.0 0.2 1.8 20.1 28.7 25.4 20.0 3.9 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 225.0 250.0 .
NUMBER 0 6 36 16 3 1 46 448 394 0 0 0 PERCENT 0.0 0.6 3.8 1.7 03 0.1 4.8 47.2 41.5 0.0 0.0 0.0 ICRKTP = 2 IACCEL 1 NDLRS : 0 NRTRS : 0 DATE: 11/17/84 TIME: 23.01.23 CPU TIME: 4 MIN 25 SEC
s e _. e HBR-5.31 Table 5.7. Summary sheet for HBR-HYPO Transient No. 9.20B IPTS H B ROB CLAD 9.208 10/31/34 1. FLAWS /INee3 DRTN(IS) : 211.2
--UN A DJUSTED - ADJUSTED 'IELD P(F/ E) 955CI 1 ERR P(INITIA) N 'V P(F/ E) NFAIL SERR NTRIALS 1
2.510-03 2.40D-04 9.54 2.990-03 0.030 7.54D-05 416 30000 2 6.050-04 5.910-05 9.78 7.83D-04 0.030 1.31D-05 400 120000 VESSEL 9.36D-05 7.92 DEPTMS FOR INITIAL INITIATION (IN) 0.09 0.26 0.46 0'67 0. 90 1.16 1.44 1. 74 2.08 NUMBER 0 582 267 113 37' 9 4 0 0 PERCENT 0.0 57.5 26.4 11.2 3.7 0.9 0.4 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0
-PER0ENT 0.0 0.0 0.0 0.2 1.3 4.8 16.5 21.6 19.9 13.2 12.2 10.4 INITIATION T-RTNDT(DEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 1 49 397 470 409 337 71 0 0 0 0 PERCENT 0.0 0.1 2.8 22.9 27.1 23.6 19.4 4.1 0.0 0.0 0.0 0.0 ARREST T-RT4DT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NU'1BER 0 3 32 21 41 420 3 1 397 0 0 0 PER0ENT 0.0 0.3 3.5 ?.3 0.3 0.1 4.5 45.9 43.2 0.0 0.0 0.0 ICHKTP s 2 It00EL 1 4DLRS : 0 1RTRS s 0 04TE: 11/17/94 TPtE: 23.20.39 CPU TriE: 3 MIN 9 SEO
.= ....z._--._.z.-.. . . . _ . . . ..--.. -. .- - -
C>
- HBR-5.32 :
Table 5.8. Summary sheet for HBR-HYPO Transient No. 9.22B IPTS H a R09 CLAD 9.22 7/23/84 1 FLA93/IN"3 DRTNCIS) = 211.2
'JNADJUSTED - ADJUSTED WELD P(F/ E) 95%CI % ERR P(INITI4) N 'V P(F/E) SERR NFLIL NTR IALS 1 1.20D-02 8.84D-04 7.36 1.220-02 0.030 3.610-04 663 10000 2 4.200-03 3. 78D-04 9.00 4.300-03 0.030 1.260-04 463 20000 . VESSEL 4.87D-04 5.93 DEPTHS FOR INITIAL INITIATION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 0 666 313 114 41 10 3 0 0 PERCENT 0.0 58.1 27.3 9.9 3.6 0.9 0.3 0.0 0.0 TIMES OF FAILURE (MINGTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 1.6 21.3 27.4 20.5 11.5 10.1 4.2 2.3 1.1 INITILTION T-RTNDT(DEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NYMBER 0 2 49 409 509 IS6 163 96 3 0 0 0 PERCENT 0.0 0.1 3.5 28.9 35.9 13.1 11.5 6.8 0.2 0.0 0.0 0.0-ARREST T-RT1DT(CEG.F) -50.0 -25.0 ~
0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 253.0 N t.MBER 0 1 8 5 0 0 1 36 233 7 0 0 PERCENT 0.0 0.3 2.7 1.7 0.0 0.0 0.3 12.4 80.1 2.4 0.0 0.0 ICRKTP e 2 IACCEL 1 NDLRS : 0 NRTRS : 0 DATE: 11/17/94 TIME: 23.12.05 CPU TIME: 0 MIN 58 SEC
-# _~ . , . - -.um-- e- .. ,
,.._p - ._ ._ __ . . _ . . _ _ . _
m ..
? ' .7; ;4 ' m *b' HBR-5.33 -
jkj .
-4 Table 5.9. Summary sheet for HBR-HYPO Transient No. 9.33 IPTS H B ROB CLAD 9 33 7/6/34 1. FLAWS /IM3 DRTN(IS) : 211.2 -UMADJUSTED --ADJUSTED WELD P(F/E) 9510I 1 ERR P(INITIA) 1 *V P(F/ E) % ERR NFAIL NTRIALS 1 6.590-06 6.500-07 9.87 1.39D-05 0.030 1.980-07 3 94 270000 2 1. 73D-07 7.070-09 40.87 6.020-07 0.030 5.190-09 23 600000 VESSEL 2.030-07 9.67 DEPTHS FOR IMITIAL I4ITIATION (I1) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1,74 2.08 NWBER 0 407 322 136 32 13 3 0 0 PERCENT 0.0 44.6 35 3 14.9 3.5 1.4 0.3 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 '50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 3.0 0.0 0.0 0.0 1.0 2.0 1.5 6.4 14.1 21.5 25.4 29.2 INITI ATI3N T-RTNDT(DEG.F) -100.0 -75.0 -53.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200'.0 NUMBER 0 0 32 272 507 200 256 54 1 0 0 0 PERCENT 0.0 0.0 2. 4 20.6 38.4 15.1 19.4 4.1 0.1 0.0 0.0- 3.0 ARREST T-RTNDT(SEO.F) -53.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 225.0 253.0 1 UMBER 0 2 49 32 3 0 27 634 158 0 0 0 PERCENT 0.0 0.2 5.4 3.5 0.3 0.0 3.0 70.1 17.5 0.0 0.0 0.0 8 0F STD DEVS ABOVE MEAN DELTA RTMDT(FAILURES ONLT) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 - 3.00 NWBER 5 12 31 53 57 91 101 80 PER ENT 1.2 2.9 7.4 12.0 13.7 19.4 24.2 19.2 8 0F STD DEVS A30VE MEA 1 RT1DT(FAILURES ONLY) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 rtWBER 2 4 21 41 67 80 104 98 3
PERCENT 3.5 1.3 5.0 9.8 16.1 19.2 24.9 23.5 ICRKTP 2 IACOEL 1 1DLRS : 1 1RTRS : 1 DATE: 11/17/94 TIME: 23.25.24 CPU TP1Et 22 *1IM 42 SEO
.z-- :- .. =
6 e HBR-5.34 40t?R dS
- cd jff Table 5.10. Summary sheet for HBR-HYPO Transient No. 9.41 IPTS H B R09 CLAD 9.417/6/84 1. FLAWS /IN"3 DRTN(IS) 211.2 UNADJUSTED ---4DJUSTED WELD P(F/E) 955CI SERR P(INITIA) N 'V P(F/E) % ERR NFAIL NTRIALS 1 2.76D-05 2. 72D-06 9.86 6.070-05 0.030 8. 27D-07 3 95 410000 2 2.100-06 6. 20D-07 29.55 5.960-06 0.030 6.300-08 44 600000 VESSEL 8.900-07 9.40 DEPTHS FOR INITIAL INITIATION (IM) 0.09 0.26 0.46 0.67 0. 90 1.16 1.44 1.74 2.08 N UMBER 0 492 296 130 53 19 4 0 0 PERCENT 0.0 49.5 29.8 13.1 5.3 1.9 0.4 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.0 2.4 14.1 17.7 5.5 14.5 19.1 26.8 INITI4 TION T-4TNDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 9' 112 443 401 111 163 77 0 0 0 0
, PERCENT 0. 0 0.7 8.5' 33.7 30.5 8.4 12.4 5.9 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEG.F)
-50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 35 104 31 0 1 98 436 172 0 0 0 PERCENT 0.0 4.0 11.9 3.5 0.0 0.1 11.2 49.7 19.6 0.0 0.0 0.0 f 0F STD DEVS ABOVE MEAN RTMDT(FAILURES ONLY)
- 1. 00 1.25 1. 50 1.75 2.00 2.25 2.50 2.75 3.00 NUNBER 9 22 25 52 62 104 75 90 PERCENT 2.1 5.0 5.7 11.8 14.'1 23.7 17.1 20.5 ICRKTP s 2 IACCEL s 1 NDLRS 0 NRThS : 1 D4TE: 11/17/84 TIME: 23.23.51 CPU TIME: 26 MIN 41 SEC
] ~ )
HBR-5.35 Table 5.11. Summary sheet for HBR-HYPO Transient No. 9.43
. IPTS H B ROB CLAD 9.43 7/6/54 1 FLAWS /I1**3 DRTNCIS) = 211.2 'J1 ADJUSTED - ADJUSTED WELD P(F/ E) 9510I % ERR P(INITIA) N 'V P(F/E) SERR NFAIL NTRIALS 1 3.390-04 3.35D-05 9.88 3.570-04 0.030 1.02D-05 393 210000 2 4.17D-05 6.960-06 16,68 4.38D-05 0.030 1.250-06 138 600000 VESSEL 1.140-05 8.98 DEPTHS FCR IMITI4L INITILTIO4 (I1) 0.09 0.26 0. 46 0.67 0.90 1.16 1.44 1.74 2.08 ffUMBER 0 262 170 82 31 11 2 0 0 . PERCENT 0.0 47.0 30.5 14.7 5.6 2.0 0.4 0.0 0.0 TIMES or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70,0 80.0 90.0 100.0 110.0 120.0 PEPOEMT 0.0 0.0 0.0 0.0 5.1 29.1 37.5 19.9 2.9 2.8 1.2 1.4 INITI4 TION T-RTNDT(3E0.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1UMB ER 0 0 30 171 277 81 30. 12 1 0 0 0 PERCENT 0.0 0.0 5.0 28.4 46.0 13.5 5.0 2. 0 - 0.2 0.0 0.0 0.0 ARREST T-RTNDT(3E0.8) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 0 5 4 0 0 0 31 31 0 0 0 PTROENT 0.0 0.0 7.0 5.6 0.0 0.0 0.0 u3.7 43.7 0.0 0.0 0.0 IORKTP s 2 ILCOEL 1 1DL95 3 0 197RS : 0 34TE: 11/17/94 TIME: 23.14.52 PU TI'4E: 21 MIN 44 SE*
t _____ci- ._____-_._:-no_____ - - -
_-- . : 2. . :. - - - - . _ _ _ . - . . . _ _ :: _ _ ;. _ _: -- i .
! [,5% -
HBR-5.36 ,, t OCR-P IPTS H B RGB CLR0 9.22 7/23/84 INITIRTION CRRCK OEPTHS FO- 0.000E19 8 g- - g- - m - S R-p c-p s-E a s- - 5 s - E
?-
E5 g- - x g- - e- - I e 0.1 0.3 0.5 0.7 0.9 1.2 1.4 1.7 2.1 CRRCK OEPTH, IN i Figure 5.9. Histogram of percent of laitial initistless vs crack depth (Transient 9.22B). l l l l i
HBR-5.37 OCR-P IPTS H B ROB CLR0 9.22 7/23/84 TIME OF FRILURE FO- 0.000E19 8
.g_ ,
g_ _ e_ _ u, " M
$ 8-E
_a 8 - l5
' l2 e_ _
L* a N e_ _ n g_ _ e .
. . l .
i 0 10 20 30 40 50 60 70 80 90 100 110 120 TIME, MIN. Figure 5.10. Histogram of percent of total failures vs time (Transient 9.22B). I
- i? r . .
HBR-5.38 [ OCR-P IPTS H B ROB CLRD 9.22 7/23/84
. INITIRTION T-RTNOT FO- 0.000E19 8
g_ _ g_ _ g g_ - e t-58- - , C z g_ _ d. C. e_ ? - t O
.N 8- -
g_ _ g_ _ cm , , , , , , , ,
-100 -75 -50 -25 0 25 50 75 100 125 150 175 200 T - RINDT, DEG.F Figure 5.11. Histogram of percent of total laitiation vs T.RTNDT(Transiest 9.22B). '%=e- w a ,
HBR-5.39 OCR-P IPTS H B ROS CLR0 9.22 7/23/84 RRREST T-RTNOT FO- 0.000E19 g_ __ g_ g_ - g_ -
- en H
in W e 8-e cc d 8-ct
~
H o H " L ?- ' _ o . N g_ ~ g_ - g_ - I i , 3
-50 -$5 $ 2S 50 75 1$0 125 150 175 2$0 2$5 250 T - RTNOT, DEG.F Figure 5.12. Estogram of percent of total arrests vs T-RTNDT(Transient 9.22B).
. - . x: : T . .a- -'~
- '- -- =- : :- - - --- - "- = ==~-
HBR-5.40 B. ! I Appendix I'also includes for each transient calculated (1) a definition of the transient ; 4 input to OCA.P (downcomer coolant temperature vs time, primary system pressure vs
- time, and fluid-film heat transfer coefficient at the vessel inner surface vs time);
(2) curves of k f(a)Bla)da vs RTNDT,; (3) temperature distributions in the wall; o s 1 (4) curves of Kg vs t for different crack depths; arid (5) a set of critical-crack-depth curves for weld 2-273A based on 32 EFPY and mean values of all parameters except Kic, Kr., and ARTNDT which are -2a values. Examples of thede graphical outputs are shown in Figures 4.13-5.18 for transient No. 22B. 5.5.2. Sensitivity Analysis of P(FlE) i The sensitivity analysis was conducted by determining the change in P(FlE) correspond-ing to a change in the mean value of each of several parameters. The mean value of only one parameter was changed at a time, while all other parameters retained their original mean values. The parameters changed were Ki c, Kr., RTNDT, Cu, Fo, the fluid. film heat transfer coefficient (h), the downcomer coolant temperature (T,), the primary system pres- , sure (p), and the flaw density (N). The amount of the change for Kr., Kra, RTNDT, Cu, Fo, and N was one standard deviation, and the change for the other parameters was some-i what arbitrary. The sign of the change for all parameters was such that an increase in
- P(FlE) murred.
- l The values of a used in the sensitivity analysis for Krc, Kr., RTNDT, Cu, and Fo are listed in Table '5.1, and the value of the flaw density, N, corresponding to the application of 2
,la was 10 times the original mean value. The change included in the sensitivity analysis for the downcomer coolant temperature consisted of a linear change in tempera-ture from zero at time zero to 50*F at a time corresponding to the minimum point in the temperature vs time curve. From then on, the change in temperature was a constant value of 50*F. The change in the heat transfer coefficient, h, was 0.25 h, and for the pressure it was 50 psi.
J The results of the sensitivity study are presented in Table 5.12 for 32 EFPY. Table 5.12 includes (1) the values of P(FlE)o, the original mean values of P(FlE), and (2) the ratio R(FlE)i/P(FlE)o, where P(FlE)g is the increased value of P(FlE)odue to a change in a simulated parameter. It is of interest to note that the sensitivities are dependent on the transients, and that P(FlE) is most sensitive to the uncertainty in N and is least sensitive to the uncertainty in the arrest toughness and the heat transfer coefficient. h
- - . - - o.- - -- --y , ,- , -,,- u -,+ - - w-me- -,,-,m--- -- , - , - - , , -
l 4_ . . D
. g...,,, ,B ,% w-HBR-5.41 jEf ' /
a q IPTS H 8 RCS CLAD 9.22 7/23/84 g g- g, . . . . . . . . . . a - j
- l .n a pag 33,ggStj ,g l $1 ' o TEMP.(CEG.F.1 Id . s H.T.CCETT.
l- o lg E' Id
- e. e o- g' n a 9< 'S
_0', I' c< ' o' do l8-0
- g. g g.' ), .mu e-. g .
Y Q N
. .- e < s o $' \ "4 o, ,. ~
g: -2 - 9- _ 2 s o' $* [o = g- ,
- o. :q S, g o<
h ' .010.0 0 3.0 30.0 40.0 50.0 80.0 70.0 a0.0 30.0 100.0 110.0 120.0 TIME!!11N. ) Figure 5.13. Downcomer coolant temperature, primary-system pressure, and fluid-film heat-transfer coefficient vs time (Transiest 9.228). .
' ~ ^ ~
i_._1__.___.___.~ 'i_----- 'C-
~ - IL - - - - -
4 '{ g! ', . 4 l .m HBR-5.42 h ly'ntic. :1.
<o,-
s4 HB RGB 9.22 g . . . . 3 E - ( o PLATE L o LCNGIT.
,, a CIRCUtt. - .o ~
O _ Ed . N - - t_ _ L 'a _
,. - E.
i c - - c - z - D _
. r
- a. :_: _
/. -
t a Q f f f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figm 5.14 P {fs)Ms)da j u RTNDT,(Transiest 9.22B). l 1 1 l 1 l i I i
'F3..
HBR-5.43 Gh g :I'4 IPTS H S ROS CLR0 9.22 7/23/84 0
~
jig j Btn
= ! lii"i! ~
4 ili 3 s7:2 l9:E g . m es.re - ( - g . f5 8 b
-l g . ~ ~
A g . g , , . . . .
~
o At &2 &3 te as as &r as as n/u J Figure 5.15.' Wall temperature vs e/w for several times (Transient 9.22B).
/ - / 6 - - ,. ,
s s -N x b'$ e A$* + eC g. N
/ % s \
N N N (. h
. l / +.
Y ..
. .. f s .
g s4 + + 4 . d 4 # & <*
$h Figure 5.16. Wall temperature vs time for several values of s/w (Transient 9.22B).
. . ,. ~ ~ - - . _ ~ ~
HBR-5.45
!PtsHeRcfctso 9.22 7/23/84 RTNOTc - 0.0 CE7 7.cu - c.22 ro - 3.tsE19 LcNatt g
if$ ii s,. 8G g- = R R G , i - 3
*E_
U 'W R i 2 a
;g to a a e
so na a l ao a too tio
=
t TINC i i Figure 5.17. Kg vs time for several values of a/w (Transient 9.22B). l l I. - . _ .
' ~
Wg - HBR-5.46 - e CRITICAL CRMCX DE!'TH CURVES FCR IPTS H 8 RC8 CLAD 9.22 7/23/81 RTNOTO - 0.0 CCGT %CU - 0.22 %NI - 0.83 F0 - 3.15C19 LCNGIT x <> c e O d - N *
- O f a
- e x
, O ,
x
# D g e ,e,e*,,,.
d . e
+ ,.', +
- e e e
H + 8 d . 8
",+ ,e e
- a
* ,' e e . 4 e 4 . . x g+ o ,4, p .
I e' e . e e ,
+ e o 8
e 4 - e x x g e . e
, *
- e 8 e e**
, + ' *
- MD'**,,..
g g x # S e ge**,.
**...,g**ee.... o * *. ,.s*. e 3
x
- c
- d - xe iB ,0* .
s a e E+ g,4 Y '
; . u. e.' < > .
x 0 x <' x o g . x & <' x o x h 1'
- x x x x y x u! N 9 9 9 d h Q Q Q Q g g q q 9 9 9 9 G 0 g 0 0 0 0 9 0 0 0 0 9 9 9 9 0 g G G 9 91 0 to a 30 40 GB se 70 se to Ice 110 12 TINCIMINUTES1 Figure 5.18. Critical-crack-depth curves for Transient 9.228.
. s e. HBR-5.47 Table 5.12. Sensitivity of P(FlE) for HBR-HYPO at 32 EFPY to changes in the mean values of several of the simulated parameters P(FlE)i/P(FlE)o Simulated Parameter' Transient
, ' (Order ef bRTNDT, RTNDT, Kg. Kg, p Te h N Dominance) P(FlE)o* (+ a) (+ a) (-a) (-a) (-50 psi) (-50'F)d (+25%) ( + a) 9.41 9E-7 13 12 6 1.1 1.2 27 1.2 100 9.33 2E-7 24 19 6 1.0 1.2 154 1.4 100 9.19B 9.5E-5 4 4 3 1.1 1.1 9 1.2 100 9.43 1.2E-5 7 6 4 1.0 1.0 15 1.1 100 9.20B 1.0 E-4 4 4 3 1.1 1.1 9 1.2 100 9.22B 5.5 E-4 3 3 3 1.0 1.1 5 1.1 100 'Value of P(FlE) corresponding to original mean values of all parameters. ' Increased value of P(FlE) due to change in each simulated parameter, one at a time. ' Parameter adjusted as indicated (+ or -) so as to achieve an increase in P(FlE).
d Sce text for explanation.
~
. .= =:-. = - - - -
, HBR-5.48 *4 4 . 1 5.5.3. Calculation of Effect on P(FlE) of' Including Warm Prestressing la Analysis During many of the postulated PT'S transients, the stress intensity factor Kg for all crack depths first increases with time, reaches a maximum, and then decreases. For the shallow flaws that are generally responsible for the initial crack initiation event, once K tbegins to decrease it does so throughout the remainder of the transient. This time-dependent behavior of Ki may prevent failure of a vessel because a flaw cannot initiate while Kr is i decreasing, even though Kr/Ki c > 1. As mentioned earlier, this phenomenon is referred
, to as warm prestressing (WPS), and the time of incipient WPS is the time at which X i
becomes equal to zero. For most of the HBR-2 postulated transients, WPS could be a factor because the calcula-tions indicate that for these transients,K does not become equal to Kre until after the time of incipient WPS. A typical case is illustrated in Figure 5.5. The reason for not includ-ing WPS in most of the calculations is that the K ivs t curves for the shallow flaws are i very flat, making it difficult to determine where the maximum is. Furthermore, unfore-seen variations in pressure and coolant temperature might exist and defeat WPS. Even so, it is of interest to see what the effect is for the idealized transients, and the results of such a study are presented in Table 5.13. For some transients, there can be more than one time during the transient at which j Ki = 0. For these transients, the time selected for incipient WPS was that correspond . ing to the maximum value of Kr. l . Table 5.13 shows, for each of the transients considered, the time of incipient WPS, the j calculated values of P(FlE) without WPS included in the analysis, and the ratio of i P(FjE) with and without WPS included. It is apparent that for these idealized transients the benefit of WPS can be large but is dependent on the transient.
- 5.5.4. Calculation of Effect on P(FlE) of Proposed Remedial Measures l' The proposed remedial measures considered in the fracture mechanics studies were (1) reduction in the fluence rate and (2) annealing of the pressure vessel.
1 5.5.4.1. Reduction is fluence rate The reduction in fluence rate was assumed to take place on January 1,1985, and it was assumed to be the same at all critical locations in the vessel wall. The effect was simply to change the proportionality constant between Fo and EFPY beyond January 1,1985. At this time the vessel will have been in service for 8.1 EFPY, and the fluence for the con-trolling region, weld 2-273A, will be 1.2 X 10 neutrons /cm .2 The fluence rate beyond 8 EFPY for weld 2 273A was assumed to be constant and equal to 0.0817 X 10/f,
, where f is a factor by which the fluence rate can be changed. Thus, I
a i
~
g HBR-5.49 l l l Table 5.13. Effect of including warm prestressing (WPS) i in calculation of P(FlE) for HBR-HYPO at 32 EFPY P(F lE)./wes Time of WPS Transient P(FlE)i*o (min) P(FlE), 9.41 9E-7 26 <2 X 10-3 9.33 2E-7 48 0.01 9.19B 9.5E-5 26 <3 X 10-3 9.43 1.2E-5 54 0.2 9.20B 1.0E-4 26 <3 X 10-3 . 9.22B 5.5E-4 50 0.2
*P(FlE)o is the original riiean value at 32 EFPY; P(FlE)./wes is the value of P(FlE) with warm prestressing included in the analysis.
t gmQ --e . _ , _ _ _ - ---- -
^
_: ~~
--l ~>.,-
8 HBR-5.50 Fo X 10-l' = 1.2 + .08 mt - 8. 0 , (5.23) f where l t = time of service, EFPY. The effectiveness of reducing the fluence rate at 8.1 EFPY was evaluated at 32 EFPY for
.the six most dominant transients, using f = 2, 4, and 8. The results are presented in Tabic 5.14. i i . 1 5.5.4.2. Annealing of the pressure vessel Annealing of the pressure vessel will increase the fracture toughness of the vessel material, and the amount of the increase will depend on the annealing temperature and time, the chemistry of the material, and the number of times the vessel is annealed. Test results from small specimens indicate that essentially full recovery of the initial fracture toughness might be achieved by annealing in the temperature range 750-850*F for ~200 h.38 Although preliminary studies indicate that such a process would probably be feasible in some PWR plants, the feasibility of annealing the HBR-2 reactor vessel under these condi-tions has not been established. Nevertheless, for the purpose of this study it was. assumed that the HBR-HYPO vessel would be annealed when the plant achieved ~9 EFPY
(~ January 1986), and that there would be complete recovery of fra.:ture toughness. In effect, after annealing at 9 y, the fluence at 9 y would be zero. Thus, after 9 y, Fo X 10-l'(weld 2-273A) = 0.081'7(t - 9) , (5.24) where i i t = total time of service, EFPY. This fluence (or the corresponding value of RTNDT,) can be used to obtain values of P(FlE) after annealing. The benefit at 32 EFPY of this assumed annealing situation is j indicated in Table 5.14. l l I -
HBR-5.51
.h .
B!]y%.. Table 5.14. Effect of remedial measures on P(FlE) for HBR-HYPO at 32 EFPY P(FIE)./au/P(FlE)o* Reduction in Fluence Rate on Jan.1,1985 Annealing Transient P(FlE)o' f=2 f=4 f=8 at 9 EFPY 9.19B 9.5E-5 3E-1 lE-1 SE-2 2E _1 9.20B 1.0E-4 3E-1 IE-1 SE-2 2E-1 9.22B 5.5E-4 4E-1 2E- 1 IE-1 3E-1 < 9.33 2E-7 4E-2 2E-3 2E-4 9E-3
, 9.41 9E-7 8E-2 IE-2 3E-3 4E-2 9.43 1.2E-5 2E-1 SE-2 IE-2 9E-2 'P(FlE)o is the original mean value at 32 EFPY; P(FlE), fag is the ,walue of P(FlE) with the remedial measure (reduction in fluence or annealing) included in the analysis.
l 4
~ ~ ' '
e a e r
/ ~
4 l
+ . - - - - - - _ _ - - .. - - ._-
HBR-5.53 REFERENCES
- 1. F. J. Less, R. A. Gray, Jr., and J. R. Hawthorne, Significance of Warm Prestress to Crack initiation During Thermal Shock, Report NRL/NUREG-8165, Naval Research Laboratory, NTIS, Sept. 29,1977.
- 2. R. D. Cheverton and S. K. Iskander, " Thermal-Shock Investigations," in Heavy-Section Steel Tqchnology Program Quarterly Progress Report October-December 1980, NUREG/CR-1941 (ORNL/NUREG/TM-437), pp. 37-54, Union Carbide Corporation-Nuclear Division, Oak Ridge National Laboratory.
i
- 3. F. A. Simonen et aL, Status of Vessel Failure Mode Analysis: Feasibility Study and Preliminary Evaluation, PNL report in preparation.
- 4. R. D. Cheverton and D. G. Ball, OCA-P, A Deterministic and Probabilistic Fracture-Mechanics Code for Application to Pressure Yessels, NUREG/CR-3618
! (ORNL-5991), Union Carbide Corporation-Nuclear Division, Oak Ridge National Laboratory (May 1984). 1 5. R. D. Cheverton, D. G. Ball and S. El Bolt, " Thermal-Shock Investigations," in }. Heavy-Section Steel Technology Program Quarterly Progress Report April-June 1983, NUREG/CR-3334, Vol 2 (ORNL/TM 8787/V2), pp. 57-74, Union Carbide Corporation-Nuclear Division, Oak Ridge National Laboratory.
- 6. T. U. Marston (Ed.), Flaw Evaluation Procedures, ASME Section XI, Background and Application of ASME Section XI, Appendix A. Special Report, EPRI NP-719-SR, American Society of Mechanical Engineers, Electric Power Research Insti-
- tute, August 1978.
- 7. Letter from F. J. Loss (NRL) to R. H. Bryan (ORNL), March 31,1981. -
- 8. P. N. Randall, U.S. Nuclear Regulatory Commission, personal communication to j R. D. Cheverton, Oak Ridge National Laboratory.
- 9. R. D. Cheverton and D. G. Ball, " Thermal-Shock Investigations," in Heavy-Section Steel Technology Program Quarterly Progress Report October-December 1982, NUREG/CR-2751 Vol. 4 (ORNL/TM-8369/V4), p. 68, Union Carbide Corporation Nuclear Division, Oak Ridge National Laboratory.
- 10. ASME Boiler and Pressure Vessel Cod's, Section III, Division I, Subsection NA, Appendix I, American Society of Mechanical Engineers, New York,1974.
- 11. R. M. Gamble and J. Strosnider, Jr., An Assessment of the Failure Rate for the Beltline Region of PWR Pressure Vessels During Normal Operation an'd_ Certain Transient Conditions, NUREG-0718, June 1981.
- 12. W. Marshall, An Assessment of the integrity of PWR Pressure Vessels, United Kingdom Atomic Energy Authority, Second Report, March 1982. *
- 13. R. Y. Rubinstein, Simulation and the Monte Carlo Method, Israel Institute of Tech-nology, John Wiley & Sons, New York,1981, pp.115-117.
- 14. P. G. Hoel, Introduction to Mathematical Statistics, 3rd Edition,1962, John Wiley
. & Sons. l 4
. - . , -~, _ , _ _ _ . ___._;,-..m_... . . . . - _ , _ . . - - ,,-_,_...___..____..._.,,,,_m., _ _ _
-- - ^^ ^-
a . HBR-5.54 , , ">
- 15. A Hald, Statistical Theory with Engineering Applications, John Wiley & Sons.
- 16. J. H. Phillips (CP&L), letter to J. D. White (ORNL), Re: H. B. Robinson Unit 2 Reactor Vessel Neutron Fluence, Chemistry and Weld Locations, Nov. 9,1983. I
- 17. J. H. Phillips (CP&L), letter to R. D. Cheverton (ORNL), Re: HBR-2 Reactor Vessel Data, April 26,1984.
- 18. A. B. Cutter (CP&L), letter to R. H. Denton (USNRC), Re: HBR-2 Reactor Vessel Data, June 29,1984.
- 19. J. R. Hawthorne, Naval Research Laboratory, personal communication to R. D.
Cheverton, Oak Ridge National Laboratory.
- 20. T. J. Burns et al., Pressurized Thermal-Shock Evaluation of the Ononee-1 Nuclear Power Plant, NUREG/CR-3770 (ORNL/TM-9176), April 13,1984 (Draft).
- 21. D. L Selby et al., Pressurized Thermal-Shock Evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant, NUREG/CR-4022 (ORNL/TM-9408), Oct. 9, 1984 (Draft).
t
~ - - . - . .-. . .- _ _ . _ _ , . - -- !_T.
HBR-G.1 E Appendix G. De Use of RTNDT and aRTNDT as Independent Variables of PRESSURIZED THERMAL SHOCK EVALUATION OF THE H. B. ROBINSON UNIT 2 NUCLEAR POWER PLAST R. D. Chever on D. G. Ball Oak Ridge National Laboratory a, ..ot.ne. oein...rt.ei..In. . o oi..n., o, ..cio..n .o no i.o,.. th. U.S. Gov.rn,nent's eigne to
..t. n . non..cio.. ..... ev.e,..
IsC.nS. en .nd to .nY CooVFight cow. ring th. .etici.. Date of Draft: December 26,1984 NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.
'Research sponsored by U.S. Nuclear Regulatory Commission under Contract No. DE AC05-840R21400 with the Martin Marietta Energy Systems, Inc.
with U.S. Department of Energy.
a4 r - e =w-man:J'. 8F' a9 4G W = -- - 9 h e D e C-P S 0
(.-. .- . . . . . .
. l J HBR-G.3 Appendix G THE USE OF RTNDT AND ARTNDT AS INDEPENDENT VARIABLES For a study such as the one discussed in this report, it is convenient to use RTNDT, as an independent variable in the probabilistic fracture-mechanics analysis. This is because it allows one to apply the results to other reactor vessels, provided the tra'nsients analyzed are appropriate for the other vessels. However, since RTNDT = RTBDTo + ARTNDT and ARTNDT = f(Fo, Cu, Ni), RTNDT is not actually an independent variable; that is, the actual independent variables are RTNDTo, Fo, Cu a-d Ni and were used as such in two related studies.242: As discussed in Sect. 5.3.1.7, for this particular study, values of Pj were obtained as a function of RTNDT,, and in doing so both RTNDTo and ARTNDT, were simulated, but only a single value of RTNDTo was considered (0*F).
This appendix discusses the derivation of the distribution function for ARTNDT and the error in using R TNDT, as the independent variable. The distribution function for RTNDT, was obtained by performing a Monte Carlo
, analysis with Eq. (5.5), in which case Fo and Cu were simulated and different values of Fo, Cu and Ni were included. As in the two previ_ous studies,2a2 it was assumed that Fo and Cu had normal distributions with la = 0.3 Fo and 0.025 wt%, respectively. Based on this analysis, a normal distribution with la = 0.14 ARTNDT was selected for A R T N D T,.
The specific Monte Carlo cases calculated to obtain the typical distribution for ARTNDT are shown in Table G.1, and a typical histogram is presented in Figure G.I. It is , apparent that (1) the distributions are essentially normal, although the tails are not well defined, (2) the sensitivity of a to Fo and Ni is very small, and (3) the sensitivity to Cu is perhaps significant, although the extent to which it is significant depends on the sensi-tivity of P(FlE) to the distribution function for ARTNDT. Rather than investigate this latter sensitivity directly, two sets of calculations were made to ) obtain P(FlE) vs Cu for several HBR-2 postulated transients (8.6, 9.19B, 9.33, 9.41). For one set, ARTNDT, was used as an independent variable, and for the other set, Fo, Cu and Ni were used as independent variables. The results, shown in Figure G.2, indi-cate that the error in using ARTNDT, as an independent variable is (1) dependent on the transient, (2) positive for Cu > 0.25 and negative for Cu < 0.25 (the value of a used for ARTNDT was based on Cu == 0.25), (3) larger for the less severe transients, and (4) substantial (factors of --25 and 7) for the least severe dominant transient and the two extreme values of Cu considered (0.15 and 0.35, respectively). It is of interest to note that the error associated with using ARTNDT, as an independent i variable is not only the result of having to approximate the distribution function. This can I be illustrated by calculating P(FlE) for different combinations of Fo, Cu and Ni that result in the same value of ARTNDT,. Table G.2 shows the results of a comparison analysis in which Fo and Cu were simulated. two values of Cu were considered (0.2 and 0.35), and Fo and Ni were adjusted so that ARTNDT, was the same for both values of I Cu. As indicated, the lower value of Cu resulted in a higher value of P(FlE), and the i
. less severe the transient the greater the ratio. l
~~_ ' ~-~
i;- '.
.!; \
HBR-G.4 Table G.I. Monte Carlo-derived distributions for ARTNDT ARTNDT (* F) Input Parameters 2.5 Percentile 97.5 Percentile Cu Ni Fo (% of Monte Normal Monte Normal 2 (wt%) (wt%) (10 n/cm ) Mean) Carlo Approx. Carlo Approx. 0.2 1.0 2.0 16.1 127 125 243 243 0.3 1.0 2.0 12.5 212 212 349 353 0.2 0.2 2.0 16.4 0.3 0.2 2.0 12.6 , 0.15 1.0 2.0 20.2 0.25 1.0 2.0 13.8 0.35 1.0 2.0 11.6 J 0.20 1.0 1.0 16.0
; 0.20 1.0 4.0 16.1 i
4
----w-
o., r .
. . l.
i STATISTICS FOR OUTPUT.vaEI4811 DRTWDT 4 MINIMt>t .. 44.47 M AIIMLM . 231.8 Q ~3310 MEAM 156.59 VARIANCE 45a._es STD.DEVI ATION 19.57 PERCENTILESa' 2.51 118. 5.05 124. 50.05 157. 95.01 188. 97.51 194 50000 POINT.,u!STocaaN * = 77 roINTS - . Ft08 CtMr DETMDT(*C) 44.44 7 o 0.0001 0.0 0.0001 0.0004 50.00 4 *
- 55.56
- 0.0002 0.0002 11 0.0002 0.0004 61.11 8 e 8 e 0.0002 0.0006 6 6. 67
* (
0.0002 0.0008 ' 72.22 11 , 0.0004 0.0010 77.78 19 *
. 23 e 0.0005 0.0014 83.33 ,
88.89 54 8 0.0011 0.00t8 77 * - 0.0015 0.0029 94.44 100.0 ** i 0.0027 0.0044 133 - 0.0052 0.0078 105.6 261 en , 111.1 480 ****** 0.0096 0.0123 . 0.0182 0.0219 116.7 90s unsunun 0.0283 0.0401 122.2 1440 *******"*"***"" 0.0448 0.0689 127.8 2241 an n e m e n s u s s u ne u u e u u y 0.0631 0.1137 133.3 3153 "**"*"sueuessousseuunnunnene ts 0.1768 138.9 gt3g suennuununnennunannuunnusunnen y 0.0827 0.100$ 0.2594 144.4 5039 " " " " * " * " " * " " * " " " " " * " " * " " " * * " " * " " " " " " "
- h 0.1110 0.3602 150.0 5651
""*?"""""*""****************"***"*************n**n**u**s*u**u**n**e"n*u 6 0.1147 0.4732 155.6 5736 ausueuesunessenunenunnenusunenanunne .
0.1079 0.5880 161.1 5397 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 0.0939 0.6959 166.7 4697 unenunununennunununennuusuusuuuun 0.0143 0.7898 172.2 3713 unneennunennenusunnunununun 0.8641 177.8 2689 a n u n u n u n en n u n u n smo u n 0.0538 0.0364 0.9179 1 83. 3 1821 annunnonuunun 0.0224 0.9543 188.9 1922 """""* , 194.4 611 8"*H" 0.0122 0.9767 200.0 8"' 0.0058 0.9890 292 0.9948 205.6 as O 0030 0.0015 0.9978 213.1 151 75 '* e 0.0003 0.9993 216.7 17 ,, 0.000] 0.9997 222.2 14
- 227.8 e
- 0.0001 0.9999 3 1.0000 233.3 _
Figure G.I. MTNDT, distributies frees a Monte Carlo run for s(Cu) = 0.3, p(Fe) - 2 X le and Ni - 1.e. w.xy kW. Qs g&;- 9
0 *
%p% > ..r .
(
- f. ;;0
- ,4+L ?
r .m , D,-,. HBR-G.6 4h . c 101 , , , ,
. . , i i .u . . . . . r2 4 , .. u, . . . g i . .
n . . .-j . 2. _ == p _.- r a .st : - v: r.__ se .e ~ _ l t i.
--k,-..- . .:.:.:~r.- ~--H,..-l.. f- . a--).r = :: ~ p .
181 ! i _ ,.m r .- . . _ - . o .,me m.6__. i 4 i
.s 2.p m s ., _..a q.: % qu .2 - ._q-s.-, e i.... <. . i , . .-~ N 3. . i; .--A + i .-: :- .H 96-. i=r 2- g.N' - :m t. r- .i i. .
- f. ':l~=-T- -- "-. il: E --4' ~;M -f '=2 = I T = ==: :l~~= r -
A--~~~:1- -
- u= -
.r = - m :-4 2 . :._
- U. -t---.=
=4 : ._ ;.c.
- _ E. .r.;2 2 ." .'
.--- ' ~ - . - -
t : _ a .. . :
- ~~
a_.
- . . _ ,g _.__ ,, ; ,.-; l = :1-- l ~- - =~-; ^, f. c .._..-,..._;b..,_--:~,,- -'_-5..-- .~.%I :.
_, H- _ v. _ .-- , . g __.'W.S, . . _ . . . . J._ ._. .. . . _ . . . . A; !. 4'-i*-***-" -"-
= '*" * * ' ' -* -i -- * - ' - -
- 100 i
.n .. 4 - _ . . i , . -. . e ra, . ._ . . _p s , , ,, , _....m .-sv, .--._ .t.- .g. 27 6- . p ... ;
y y p --" 1 .= - y . . . - 1. - . ": . q --- : :1.- w y . :. . . i._j-_i~-
- p. . i 1 , 1 a . 1
, . . . i = s . -a . , .n e v . '.- eb .r . - j .4..C t v. . t . _ ,_v.d.. 3 ..** . i4. w- rf.. .i.- .g.
2 = -
- b. . .=;p== + = .1 :; .-O -w _. ::k - 6 ; 6 u z = -# =.; = _z _mm m - - - -
w o . e y ,u., ,,.,
- -p_:a r ;-p_:_i. .!i. .rislt.a_l-E:L.=_ f .g .-j g- . . ;- . .if &. .J.--J ii . . . r._th.=. t ._
1
,...j -, =:. t...._ '... =. u :. :: f..__. M .t.KM , :No ,___w s.1:- ..L--
- u. -w l- ._ t _= /.-- &q a- .
g g - . , . . . . - - - . . . _
. _ e. : g 31 c .. ... - . .- l .. . _ ,.. . _ . . ... - "--- - o.... .., '4 _- - i.. _. _ _ _ _ .. .
___M
""--~ ~ -
10-2 1 E 8 t l 1 6 . i . . . . . ... .t. . . __p. , , 6 i .-s . .v.s - t-_.i- . .r. t_ i - g. . . i. I L j .. ~ :t- f s.c - i .
. . .t. 3-- - 4 s . .- s-j l .::.- . { q :- @ y ; .z l . , . ._. .. ..p r--
m - t i e .w, . . . g. 3. r_ ; . - r 4. .._ . ,p. , .. . : i - 's - t
- . I e-i 3 - . is! -l .I e
. l- *e . 6: . l.we. ; ..p,.ic;. [, e - , a . . n . .) , . ..p :- : i- :lF.giM ;
_.i.pn . .e = . ~ irU ' i :I - .t
- . i--,_
. .u ..:... :. .. :y- = . ....a, .. -. .- =.:=,--.- - ._ . = - . . . :.;:-d. . .-- .: .: ... _. k- :: .. =__.. ...___._.t...._ ...L.__. _ _ . .. . _
r t._-.
.__ q _ . .. _.g~....
q- ~ . . . . _- . _ . _ _ __. _ . .
~ ' " - - - -~ ~~~ -~ ~ ' ' - -
10-2 O.15 0.20 0.25 0.30 0.35 COPPER CONCENTRATION, wt % . Figwe G.1 Comparison of calculated values of P(TlE) uslas MTNDT, as the ledependent variable and To, Cu and Ni as ladependent variables.
. . _ _ ~ . HBR-G.7 d Table G.2. Comparison of P(FlE) values calculated using fo, Cu and Ni as independent variables, considering two values of Cu but only one value of ARTNDT,- Minimum Pre'ssure Coolant at Time f(FlE):' HBR Temperature of Failure Transient (*F) (ksi) P(FlE): 8.6 201 1850 1.5 9.19B 203 1500 1.9 9.41 268 1500 6.7 9.33 294 1750 17
'P(FlE)i: Cu = 0.20, Ni = 1.00, To = 3.49E19, RTNDTo =
0*F, ARTNDT, - 216*F. P(FlE)2: Cu - 0.35, Ni = 0.50, To - 1.00E19, RTNDTo = 0'F, ARTNDT, = 216'F.
HBR-G.8 /, ' f' . The additional error introduced by variations in RTNDTo when using RTNDT as an independent variable was examined in a similar manner, that is, by comparing values of P(FlE) corresponding to different values of RTNDTo. Three values of RTNDTo were considerd (-56, 0, +56*F), and values of P(F[E) corres6onding to the two extremes were compared with that corresponding to 0*F, since RTNDTo = 0'F was used to obtain the Fj vs RTNDT, curves in this report (Appendix I). The results of the,compar-ison, shown in Figure G.3, indicate that (1) the error is positive for RTNDTo < O'F and is negative for RTNDTo > O'F, (2) it increases with decreasing RTNDT, and is small for RTNDT, > 200*F, and (3) the error is greater for the less severe transients. Although it is convenient to use RTNDT, as an independent variable, it is aprjarent from the preceding discussion that the error in doing so can be substantial. Thus, one must use the f jvs RTNDT, curves in Appendix I with this understanding. For the most accu-rate results, RTNDTo, Fo, Cu, and Ni should be used as independent variables in a
~
detailed probabilistic fracture mechanics analysis. s. 1 e t e6
.g -- . . . .
Y f r HBR-G.9
._..}__._..._....._.._.._..p..._._
_ . . _ _ . _ _ _ . . . . , p.. __._ _..,,. _. . _.. ._. a . .. . . . _ t _ . ;_.. p . . . . . . . .. _
. . . . j . ".. -. .
r -; o.* .56 _. .@. -P(Fl.E),(yTNDT 'F) FILLgD l,.._- -- --
, +.r.- -t---- , _. +-r--- R - =- - 6 , m..e )
L-
+ _
i 4.;-P RIE)(RTUDT >=;0"F _:. K _'. . .W . t. l
._2.; .w_i . _ .......a}..._. .J L.,_,.
i i n .n ...I../ t - tt y .4i. .r o f . . o .e,- .- - - QPEN... i + t
' e,.i.u.
b t e i.r... .
- t 1 , ; . R ._.=_ . . . _ .. __ . . . _ . - ~ ~ - * ;+56 . POI NTS .' g - - - - -
r *-P :F.t,E:)(RTNDT
, , . . , u . ., o-.. '.F. ). . - . . - +
_, ... , ,:. ' . _. 2 u;_ ; . , . - . . .. :. . . . . , .. _ . 4- ' ,_ , j .
. w _-- ._..._ ,- G , . . ; -- - -i - ._7 --~ . . . . -._.+.- . a...... .a.. n_. ._7. ..._.,.r_.. .. .... -. . _ . . , .. . . _ . - . ... -. .s.. .l . .s . . . _ . - . - - . ._.p'....-.
_.g...._:.__ ...u; 0 . 0 a.6 _ %._. . _ _ p p .. . . . . . . I t N . .A .. .._. _ _ . .. _. 3
. i 6.a .r _ . g' . g . 9.,4.1
- r. .TR AN . No
= . _ , .
- q. 4.u _:.i _ u2_. ,A.. ... O. h. ' _.e , ., - n. .
_ _ .9.193-
..;- :-r. rP E -.. .- . .. : . r._...r.......
l -
.._.4 .
_- . . , . . . . . --. .. ,- a ....+ ..,.t .. ~ ,.. . . . ,
.. J. , \, .. L./r4. L.!_ .i _s al.h . . . . . . . .
I .- _ _ , . . .
.p. ; 4.,. j .. ..$ , . W - . . . ,.. ...t~-. - -
l
-_ . . . - . . . . . - .....L .... Q.w . .. . . ., . -. 4 . _ , .. , , . . _. 9 . .. . - .. . . . . . .. .
l
. a .4 . . .e, 7., ...,.;. ,,6 ...ye ,
- e. ..
p - , . . , ; .._.p. ..y. ..r . . .. .p 4...-._ . , . - . . . . . , 6..r. .. .... .r...... ..
. . . + ..... ,. ., . .J.4.L...
t _ . . . . . . r l .. . .. . . . ....y... 4. . . ;
- 4. . L.. . 4 :.i .4 . , . . - .
, , . . .. , ....-.g...., ,. .}. .. . . . . , ..
t
,....Q....' _ t , A./... ... ,, ., .r .. . . . . ~3 . p "'7O. . .... . .i.. .p A ., ib ;. rL.. . . L t. .}.. , . . .. i .. .. , . . , . . -- ' - *
- I"
- .t - -
.' . ' ' . + . . .j. . . - '-* Q [./y
[ .j,Y- #f. , . , . . '. . *6 f ' **'*
. t,.*'- . ' ' . .' .. * . ' .r
- _u . _ ,.4
- *- .-.L - - - . - ,. . :. .y. r. . N+ .I. ...t I' L4. '-;.+t- w . _ - . ..' '..i . L-.1. t . ..
e-t Figure G.3. Effect of ATNDTo os values of P(ElE) calculated uslag RTNDT, as sa
'd,W varialde.
l
~
HBR H.1 DRAFT Appendix hL Importance Sampling afethods in the OCA-P Probabilistic Fracture-Niechanics Analysis of PRESSURIZED THERMAL SHOCK EVALUATION OF THE H. B. ROBINSON UNIT 2 NUCLEAR POWER PLANT R. D. Cheverton D. G. Ball Oak Ridge National Laboratory e... ..ac. ., en. . .. . . . ta.
....a.,.,....e......
ca. v s o...,a m.ar ,,e ii.
.......a.a.............,,, .. n a r. .n , ...,,, e. . . , ea. ... .
Date of Draft: December 26,1984 NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.
*Research sponsored by U.S. Nuclear Regulatory Commission under Contract No. DE-AC05 840R21400 with the htartin htarietta Energy Systems, Inc.
with U.S. Department of Energy.
1
's f
K aussu e e e-
,- .. ~- - - ~
7,
~
~ HBR H.3 W Appendix H - IMPORTANCE SAMPLING METHODS IN THE OCA-P PROBABILISTIC FRACTURE-MECHANICi ANALYSIS To be abic to calculate low probabilities of failure with acceptable accuracy and reasonable computer time, importance sampling was applied to three simulated parameters: crack - depth, MTNDT, and RTNDT. For each of these parameters it was first demonstrated for a specific transient that a portion of the distribution function contributed little to the probability of failure. This portion was then omitted from a subsequent simulation, but was accounted for in the number of trials by multiplying N'j, by a correction factor, as indicated by Eq. (5.14). For the crack depth distribution, only the first flaw denth w s not simulated, and the corresponding correction factor is given by I
= -' , (H.1) . Fj= i ff(a)A(a)da = 3.24 .
Ami The use of this acceleration method is indicated on the summary sheet in Appendix I by IACCEL = 1. ) In the case of MTNDT and RTNDT, a continuous sampling of the distribution can be i replaced by a stratified sampling of the " positive" tail. For these studies, MTNDT and
- RTNDT were assumed to have normal distributions, and sampling was allowed to begin at 1.0 to 2.5 standard deviations above the mean, in increments of 0.25. Use of this method .
i for MTNDT is indicated on the summary sheet in Appendix ! by NDLRS = n, where n indicates the start of sampling as given in Table H.l. The variable NRTRS operates in a similar way for the RTNDT distribution. The correction factors, F j and F3j, corresponding to MTNDT and RTNDT, are given in Table H.1 and are based on a not. mal (0,1) distribution truncated at 13a. The normal (0,1) distribution, truncated at 13a, was used to establish a distribution for the strata between la and 3a for MTNDT and RTNDT,. A justification follows: Let ze normal (g,,2), p - 3a 4 x 4 g + 3a. Then the probability density function j ! of x is given by ! c (x g)2 (H.2) f(x) = 4 xp e 3 ! where ci is the constant that adjusts for the truncation at i3a. In the stratification pro. I ceu for this variable, a quantity of interest would be the fraction of the probability : between x = 8 + cyrand x = g+ cyr,where c2 and c3 are constants. This frac. l tion is given by
.-- -, , , - _ _ , . - _ . _ . _ . - . , - ,,_,s,,,-m _ , , , - . . . _ . , - . - - - - , _ - -..,_,_.,__..-e. .._ _ . - . - _ . _ _ - - . - _ .
.b 5;);f ,.&,Q'.A e %8 HBR H.4 ig 6 /j*9 x-Table H.1. Details of ' ; .7ame sampling on ARTNDT, and RTNDT distributions identifying Multiplicative Number Start.of. Sampling Fraction of A(0,1) Fraction of Adjustment to the (NDLRSor Number of Standard Distribution la Distribution Number of Trials, NRTRS) Deviations Above Mean Range: x
- x + 0.25 Not Simulated
- Faj and 73 j i 1.0 0.0531 0.8422 6.3 2 1.25 0.0388 0.8954 9.6 3 1.50 0.0267 0.9343 15.2 4 1.75 0.0173 0.9611 25.7 5 2.00 0.0106 0.9784 46.4 6 2.25 0.0060 0.9891 91.7 7 2.50 0.0032 0.9951 204.1 8 2.75 0.0017 0.9983 $88.2
' Assuming truncation at 13a.
/i. .: :? \
HBR.H.5
.j'[ 'h l
l' - et i s e,, U "N f P(g + c234x4g + c3a) = f exp 2 dx . r <,, 2a I By changing variables (y = * ", dy = dx/a), Eq. (H.3) becomes P(c2 4 7 4 c3) = c exp - dy . f The integrand is the probability density function for a normal (0,1) variable. Therefore, the above probability (Eq. (H.3)] is the same as that of a normal (0,1) variable between caand c3. This yields the stratification process detailed in Table H.l. I d4 b r l l l __ , - - _ _ _ . _ - - _ , - - ~ _ _ _ _ - , . . . - _ - - _ _ . _ - . _ _ -
' ~ . DRAFT Appendix I. Compilation of Results for HBR liYPO Probabilistic Fracture-Mechanics Analysis of PRESSURIZED THERMAL SHOCK EVALUATION OF THE ~
H. R. ROBINSON UNIT 2 NUCLEAR POWER PLANT R. D. Cheverton D. G. Ball Oak Ridge National Laboratory s . . . . . . . . . . in . . ., .. . . a .
.......,..,.......n...... . . u s c ..... . . . . v. ......no....io.....,....,...
i ...... ... .. .. ... ,,..a.
..,.in..,,...-
Date of Draft: December 26,1984 NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.
'Research sponsored by U..S Nuclear Regulatory Commission under Contract No. DE AC05 840R21400 with the Martin Marietta Energy Systems, Inc.
with U.S. Department of Energy.
*s ~0%. "W-, ..
h,4 m 'OGm,, "% *% '*h,, O e e e x>/ C.) . A Ct _ . L m-6 N i eu. ugh e l I l
I
~
HBR-I.I Appendix ! COMPILATION OF RESULTS FOR HBR HYPO PROBABILISTIC FRACI'URE-MECHANICS ANALYSIS Detailed results for the HBR HYPO probabilistic fracture mechanics analysis are included in this appendix so that a more thorough understanding of. the effect of the various assumptions used in the fracture mechanics model and of the different inputs to the fracture mechanics analysis can be obtained. For instance, the duration of all postulated transients for this study was specified as two hours. As indicated by the, summary sh,ee,ts, in many cases the failures did not occur until late in the transient; thus, if the duration of
, the transient had been taken to be one hour instead of two hours, the P(FlE) values would have been reduced substantially.
Sets of data are included in this appendix for most of the transients listed in Table 5.5. Each set includes, in this order, (1) plots of primary system pressure, downcomer coolant temperature and Guid film heat transfer coefficient vs time in the transient; (2) a sum-mary sheet.of digital output that includes F j f f(a/Blalda (referred tp in the data sets as 0
" unadjusted P(FlE)") and histogram data for HBR HYPO weld 2 273A on crack
! depths, times of failure, and values of T RTNDT at the crack tip corresponding to initia. l tion and arrest events; (3) a plot of Fj f f(a)Ala)da vs RTNDT, for the (2 D, 2 D) o llaw combination (axial Daws in the plate, and circumferential Daws) and the (2 D, 2 m) Haw combination (axial Daws in axial welds); (4) a plot of vessel wall temperature vs radial position in the wall (a/w) with time (t) as a parameter; (5) a plot of vessel wall temperature vs t with a/w as a parameter; (6) a plot of Kg vs r for 2 D Daws with a/w as a parameter; and (7) a set of critical crack depth curves for HBR HYPO weld 2 273A corresponding to -2a values for K.,i Kg. and RTNDT, mean values of all other parame-ters, and an operating time of 32 EFPY. The summary sheets include the error in the values of P(FlE), based on a 95% confl. dence interval, and also the number of trials (number of vessels simulated), but the number of trials has not been corrected in those cases for which importance sampling was used. If importance sampling was used for one or more of the three affected parameters (crack depth, ARTNDT, RTNDT), one or more of the corresponding quantitles IACCEL, NDLRS, or NRTRS, respectively, will be greater than 0, as indicated near the bottom of the summary sheet. In the case of NDLRS and NRTRS, the number given in the sum-mary sheet (some multiple of a) can be used to obtain the appropriate correction factor from Table 11.1 for the number of trials. For purposes of comparins the various transients. the value of a'v in the summary sheets was always taken to be 1.o. Thus the adjusted value of f(flf) is the same as the unadjusted value. The actual adjusted values can be obtained by multiplying the unadjusted value by the appropriate weld volume (v), imca the best estimate for a is 1.0.
--- ... . ... ..~ . _ . _
e e
, imeeh 8 4 0
0 5
e, e a HBR I.3
*
- IPTS H 8 PCB C:.a0 5.15 7/5/84 S
' , , . . . . a . "O o PPESS (KS!)
l O TEMP.(CEO.F.1 .N
& H.T.CCCTF.
g- .. , -
- p. - -
l o. l .. g. e N l- ,
- g. ,g
/ ~_
4 - l 0
- l. . ,
.n -
n > E o, 1 g 'S o'
.d t- ..
g: '
,d l . e, . g- .s
- g. .
~ .g o,
g, n 1 n 1 n n n
- 0.0 10.0 30.0 30.0 40.0 50.0 80.0 10.0 00.0 30.0 100. 0 110.0 130.0 T!?T.(Mlfi. ) '
Figure I.l. Trammient 5.15: Prissary system preware, downcomer coolant temperature, and fluid film heat transfer coefficient es time la ilm trnasient. 1 =
H BR-I.4 Table !.I. Transient 5.15: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, timits of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 4 9 409 OLt0 5.15 7/5/94 1 FL4W'./t1 ") 1971(11) : 111.?
'J14 DJtJ4TED . . . - . 41JuiTED-- '1 ELD P( F/ E) 9550! tt RR P(IqtT!4) 1'1 P (F/ E) itRR 4' 4 !I. NT914LS 1 1.650-15 1. 510-M 9.77 1.973 15 1.000 1.650-15 til 110110 'It SSE!. 1.651 15 9.77 OtPTMS '041117ttL t1tT!4Tt1H (!1) 1.31 0.26 1.46 0.67 1.11 1,16 1 . 4 88 1.74 2,09 4tt4SE1 0 171 171 71 )) 11 1 1 1 PTRCENT 1.0 11.5 35.4 14.6 4.1 2.3 1.7 1,0 1.1 TI4Et 9e '4!!i)*!(*1!Tl?til 1.1 11.1 11. 1 11.1 41.1 91.1 $1.1 71.0 $1.1 11.1 111.1 111.1 121,1 PtRCENT 1.1 1.1 1.1 1.1 1.1 41.4 53.1 0.1 1.1 1.0 1.1 1.1 11 tit 4ft1N T.aT13T(1' ,r) .111.1 79.1 11.1 11.1 1.1 11.1 51.1 75,1 111.1 125.1 151,1 175.1 111.1 1'118 E t 1 1 1 124 tii all 1 1 1 1 1 1 8 trit 4? 1.1 1.1 1.4 15.9 51.1 11.1 i.9 1.2 1.1 1.1 1.1 1.1 499'if T.9T1Df(1'1,')
51.1 11.1 1.i ?$,1 So.1 71.1 111,1 139.1 161.1 171.6 711,1 719.1 891.1 1'ft9E9 1 1 '1 11 1 1 1 1? 31 1 1 1 PtR1ENT 1.1 1.1 ft.1 11. } 1.1 1.1 1.1 14.4 14.1 1,1 1,1 1.1 8 l' iT3 0' /1 4 9179 'tt44 Stt.7 4 4f13f f r4 !!.1er.1 14t.1) 1.11 1. 71 1.11 1.75 f.11 1.31 2.41 f.71 1.11 1'N 9 E 4 11 11 91 11 11 ?? 51 il Pttit1T 4,5 f.7 11.7 14.7 11.2 11,7 14,7 13.1 8 1' iT3 1'.V1 491V' '4r t1 #f1nf( r4!!ile tt 1NLf) 1.11 8. 21 1.51 1, 'S 3.11 5.15 1,91 4.75 1.11 1'r49 E 4 f 11 u se 11 $4 14 91 $4
*ttir17 1. 7 $.1 11.1 11.7 17.1 11.1 11.7 14.1 tit (TP e 1 ! 4118!, e i 101,41 e 1 147t1 e t i n T' 11/91/i4 ? t'e r 22.11,11 iP'l ? ! 491 1 't '1 1 iti
HBR.I.5 DRAFT 1 1 HB R08 5.15 [ l I I I
~
l
. 4 o PLATC ~
o LONGIT. s cincun. .
'o ~
i : :
- - 4 I
' N / - i
'o M
l W . N .
- L. .
2.'c _
,. " 3 3
h
'5 b / 5 'o l -
1 - f e f l o i i , , l 100 150 200 250 300 350 MEAN RTNDT, DEG.F. l Figure I.2. Treasian 5.15: Aj {.fa) As) de es NTN57, for (2-D, 2.D) sed (2 D. 2m) l flew cesMeetless. 1 I l s-. . .. [ 4
)
s . J HBR-l.6 DRA1 IPTS H 8 RC8 C'.A0 5.15 7/5/84 I ' ' . , ,
' flT tN jT N$
I I
= .?A -
r ?Ul
$h ~ ....n - ! %Jo # 'I3II 6 .g . -
N . g . _ . T g . . g . . B
* ** s u .., ,'., ,.,
c* u ni., Figure I.3. .Trmleat 5*15.* Y**#I **ll tesaperature es depth la wall (s/w) at verla timese (t) la traaeleet.
-- . . . . . .. . . - . 1 HBR-I.7 '
IPTS H 8 RC8 Ct.A0 5.15 7/5/84 l . , , , , , , , , ,
' "l::!n o d!
F *:in R
' Al:g -
5 8:n. f a1# n o.an S l3
!8:b f-B - Yla:n! 'x !?:sfo '
g if
~~
J . R - g . g . . g . . . . . . . o to a m to so so to so at too iso is T!!"E Figure I.4. Transient 5.15: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w).
HBR-ts IPTS H 8 RC8 CLAD 5.15 7/5/84 RTNOTO - 0.0 CE3r %CU - 0.22 TO - 3.15E19 LCNGIT H , , , , , , , , , , R - 9 hl M M U g . . R [ - o (+ to $ $ e a m a so im no Figure I.5. Transient 5.15: K ies time (t) for various depths la wall (a/w). u
e a HBR-I.9 ME"T . CNITICfL CRflCK CEPTH CURVES FCR IPTS H 8 RCS CLPD 5.15 7/5/84
- RJNDTD - 0.0 CCGT %CU - 0.22 %NI - C.80 FC - 3.15E19 LCNGIT d - =x" ..... -
y o .
.x ' .
x .
~ , *x i d -
s' i l x 3 .,s , f. x
, ,3.**. . *x -[d - *
- r
, . md * / -
1 l
- x x
a -
*.r : . * * $ s, y -
x + x
+
g - x '
+ 4 x -
x ,
+ x x 4' + x +
a - ic + a +f - x x g x d - x " / x - 5' %
**xxxx * , , . . . 11 . . . . . ,
c to a a e so ao m so so too tio : TIMEtMItAJTES) X,2-D flaw, K i - K,i e,2-m flaw, X = 220 MPa 8
+, 2-m flaw, iK - K,i 7, WPS (warm prestressing) 0,2-D flaw, K i - 220 MPa 8 Figure I.6. Transiest 5.15; Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and MTNDT, mesa values of all other parameters, and 32-EFPY Ha-ences.
HBR-I.10 1
)
- a IPTS H B RC8 C'10 5.17 7/5/84 l- g, . . . . . ,
3 -
*o a PRESS.(KSil .g $9 o TEMP.(CEG.F.1 d a' a H.T.CCEFF.
k'
- o. B N: . -3 o' @~ '
-3
- g. .
a<
- g r : 7:
C * = a' do, h 0 l- Sg,
, 9 ~. .m = ^
0
= $=<
s .g' *
$1 O'
N"
- o. , .. $1 d a, -
o' N1 'b g- . o, ~ d,
~
Na O<
'!. 8< .8 . - . . . . . . . . . . , g ,
0.0 to.o m.o m.o e.o so.o so.o . o.o so.o so.o too.o sto.o sm.o TIMEIMIN.) Figure I.7. Transient 5.17: Primary system pressure, downcomer coolant temperature, and fluid-film heat-transfer coemclent vs time la the transient. [ l
HBR-I.ll Table I.2. Transient 5.17: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B RGB CLAD 5.17 7/5/34 1 FL4WS/IN 3 ORTN(Is) ?11.2
- UN4DJUSTED - ADJUSTED 'JELD P(F/E) 9510I TERR P(INITIA) N8V P(F/ E) % ERR NFAIL NTRIALS 1 4.050-05 4.030-07 9.94 9.290-06 1.000 4.05D-06 338 190000 VESSEL 4.050-06 9.94 SEPTHS FOR I1ITI4L INITI4TIO4 (I1) 0.09 0.26 0.45 0.67 0.90 1.16 1.44 1,74 ?.08 1 UMBER 0 409 ?S? 125 52 19 3 0 1 PERCE17 0.0 46.0 31.7 14.0 5.9 ?.0 0.3 0.0 0.1 TIMES O' FAIL'JRE(MINUTES) 0.0 10.0 ?0.0 30.0 40.0 50.0 50.0 70.0 80.0 90.0 101.0 110.0 120.0 PERCENT 0.0 1.1 0.0 1.0 0.0 0.6 4.1 11.1 15.0 ??.? 2?.7 ?1.1 I1ITItTION T-RT1DT(SEC.F) -100.0 -75.0 -50.0 -25.0 0.1 25.0 50.0 75.0 100.0 125.0 150.1 1's.0 200.0 1 UMBER 1 1 37 359 437 137 153 12 1 0 0 0 PERCENT 1.0 1.0 2.9 29.6, 14.5 18.9 12.2 ?.5 0.1 0.0 0.1 0.0 A3 REST T-9T1DT(SEC.F) -50.0 -?5.0 0.0 25.0 50.0 75.0 100.0 1?5.0 150.0 175.0 ?00.0 ??5.0 250.0 1 UMBER 1 43 111 29 3 2 96 479 115 1 1 0 PER0ENT 0.1 5.0 I?.7 3.3 0.3 1.2 9.9 55.2 13.2 0.0 1.0 0.0 8 le STD DEV5 ABOYE 1EA1 GEL 7% RT1DT(FLILURE9 01LY) 1.10 1. ?S 1.50 1.75 2.00 1.25 2.50 ?.75 3.00 1719 ER 1 13 19 53 54 52 31 37 ?!RCE1T 1.0 4.5 7.? 14.9 15.5 13.4 ?0.9 ??.4 8 Y STD DEV3 490VE 1Et19T1DT(FAILU953 ONLY) 1.11 1.?5 1.51 1.75 2.00 2.15 2.51 ?.75 3.00 1UMBE9 0 5 ?? 16 57 75 94 93 *ER0ENT 1.0 1.5 7.1 9.3 17.3 19.3 ?1.5 24.0 I;9KTP : ? It00EL 1 10L95 2 19T99 : ? 1%TE: 10/?9/94 TIME: 2?.25.13 OPU TI1E: 5 MIN 5 3E0
HBR-I.12 HB ROB 5.17
~ ~
c PLATE ~
~
o LCNGIT.
~ ~ - cincun.
o
= - =
5 3 M
'o L1 N
- u. _ _
a_ a _
. ~ ,E -,
o t / 3 e - z - a .
'o / _
4
- 3 i
'o _ =
l _ 1 _ C I I t ! 100 150 200 250 300 350 MERN RTNDT, DEG.F. l' Figure I.8. Transient 5.17: Pj [fa) B(a) da vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. I i l
e b HBR-I.13 f IPTS H 5 RCS C;.P.D 5.17 7/5/84 0 , - , , , , , , l 8ts 3 - . F am . [ .
! 5:= =
(2, g . 5 *2 ~ tb= A 318.00 h - _' , a
~ .
b c h R . g . , R I h l , 0 0.1 0.2 0.3 0. 4 0.5 0. 5 0.7 0. 8 0.3 I P/W l i l Figure I.9. Transient 5.17: Vessel wall temperature vs depth in wall (a/w) at various l times (t) in transient. l 1 I
HBR-I.14 IPTS H S ROB C:PD 5 17 7/5/84 g . . .
, p, itali itM a .-
i tf4 - 9 o. 3' i k=i'J s ii t's
\
R - i142 -
;t=
ititt 5 tin 0 - 3 t'5 - x .am
~
f6 8 i R
- ~
I t I g , i , , a a * '
, 3, , a e a a to a m 2m sta u TIrf Figure I.10. Transient 5.17: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w).
e > HBR-I.15 177S H S ROS JC' D 5.17 7/5/84 l RTNOTO - 0.0 CEGT %CU - 0.22 FO - 3.15E19 ) g LCNGIT li 1 li g . l li I - Y
$1 -
5 G R - E ~ g { . o to a a a so ao m so a saa sto ts TI!E Figwe I.11. Transient 5.17: K ivs time (t) for vuious depths in wall (a/w).
y , 5 Ns. HBR-I.16 CRITICAL CRACK CEPTH CURVES FCR IPTS H 8 RCS CL80 5.17 7/5/84
~
RTNOTO - 0.0 DE:T,r %CU - 0.22 %NI - 0.80 F0 - 3.15E19 LONGIT 9 x x . d - x . x ir y d - ' x .
+< + ~ +
d -
" x , ,, + . + . +
d - *
- o x # .
. * , , . . . * * *+
- 2a .
+
yd - o
......**,,,,x**...* x + + * +
a - ' x 4 , x +
+ +
n x + d ' ' f f . p' x-
- q .
a . , x + . x o x x d ~ f x x*%xxxxxxx,,,,,xxp x # xxxxxxxxx) a i , , , , , , O W 3 3 g 50 GO 70 00 m gao 313 g; TIME MINUTES) X,2.D flaw, Ki - K,i
+, 2-m flaw, Ki = K i ,
7, WPS (warm prestressing) Figure I.12. Transient 5.17: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, inean values of all other parameters, and 32-EFPY fluences. -~
l
e on HBR-I.17 a. j
= o IPTS H B RC8 J C' D 5.19 7/5/84 g l- g, , , . , , ,
s - au o PRESS.(KSIl 'N
$P o TEMP.(CE3.F.1 Ia o' -I a H.T.CCETF.
h' oo g 8 a o,
*' b' I' E
q, 1
.g a Q Si ha' cs o , x 8 l-g- dl. . .: [-
g
=! $o<
s 8 g f El I' o' N' o, 4 ~ NI I* a. o' s *
$1 Id
- g. .
o, -
- q S.' "a a,
a ll_ < 8
. L' 0.0 10.0 20.0 30.0 10.0 $0.0 00.0 70.0 00.0 90.0 100.0 110.0 120.0 TIMEIMIN.]
Figure L13. Transiest 5.19: Primary system pressure, downcoener coolant temperature, and fluid-film best-transfer coefficient vs time la the transient.
l r , HBR-I.18 Table I.3. Transient 5.19: Summary of digital output, including unadjusted P(FlE) ~ values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CLAD 5.19 7/5/84 1 FLA'4S/Ig e e 3 oqTy(Ig) : 711,2 UNADJUSTEC --t DJUSTED VELD P(F/ E) 951CI % ERR P(INITIA) 4 8V P(F/ E) 1 ERR VFAIL NT9I4L9 1 3.640-06 3. 72D-07 10.22 3.45D-05 1.000 3.640-06 367 200000 VESSEL 3.640-06 10.22 DEPTHS FOR INITIAL IMITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1,74 2.08 4 UMBER 0 1610 1172 460 173 51 13 1 1 PERCENT 0.0 46.3 33.7 13.2 5.0 1.5 0.4 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70,0 50.0 90.0 100.0 110.0 110.0 PERCENT 0.0 0.0 0.0 0.0 1.1 10.5 56.9 11.4 0.0 1.0 0.0 0.0 11tTI4TIO1 T-RTMDT(0EG.F)
-100.4 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 1?5.0 150.0 175.0 200.0 1 UMBER 0 2 153 1236 1740 376 237 96 to 0 0 0 PERCENT 0.0 0.1 4.0 32.1 45.2 9.9 6.2 2.5 0.3 0.0 0.0 0.0 ARREST T-RTMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 2?5.0 25").0 1 UMBER 0 17 133 80 11 7 232 2234 719 0 0 0 PERCENT 0.0 0.5 3.8 2.3 0.3 0.2 6.7 65.6 20.6 0.0 0.0 0.0 # OF STD DEYS 430VE 1EAN DELT4 RTNOT(FAILU9ES ONLT) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 1.00 NUMBER 0 9 22 44 65 56 35 36 PERCENT 0.0 2.5 6.0 1?.0 17.7 15.3 23.2 23.4 8 0F STD DEVS AB0VE MEAf 9T4DT(FLILU9E9 ONLY) 1.00 1. ?S 1.50 1.75 2.00 2.25 2.50 ?.75 1.00 1 UMBER 0 1 9 27 41 Sa 114 117 PERCENT 0.0 0.3 2.5 7.4 11.2 15.8 11.1 31.9 ICRKTP 2 ILCCEL 1 NDL95 e 1 1RTRS 2 04Tr: 10/29/14 ft1E: 2?.42.20 CPU TIME: 5 MIN 24 SE1
HBR-I.19 HB ROB 5.19 i i i
- i g
~*
o PLATE o LONGIT. ~ _ a CIRCUM. ~
'o =
N
'o _
w s _ t . r, u" 'o _
/ _:,
o - c _ 5 _"
'o _ 'o _
. _= _- b-100 150 200 250 300 350 MEAN RTNDT, DEG.F. Figwe I.14. Transient 5.19: Pj [ fa) B(s) da a RTNDT, for (2-D, 2-D) and (2-D, 2a) flaw combinations. I e
i HBR-I.20 IPT5 H B RC8 J C' D 5.19 7/5/84 3 . . . . . . . . . it: g .
. F"m,h". - ,
m m.x \ R l0 H.E:E CD oin:s a tas.m B -
~ ~
b'I ~ 8 g' /E /[ L r
~ ~R l// -
[ R . . g . .. . g . . g . . . . . . . o a. a.s o.s o. . o.s o.s o.7 a.: a.: i ara Figure I.15. Transient 5.19: Vessel wall temperature vs depth la wall (a/w) at various times (t) la transient. I l
+ ema -m. -w_z m e.e - ,y e y ,, ,
- + - - - - - _ . . _ , _
p j HBR-I.21 IPTS H 8 RC8 CLR0 5.19 7/5/04 3 .,,, T ,
'm E 8:cS 88:El g - ! 8:84 A 8:EU ~
3 8:!n E!:l# 3
- :8:n Bi/ !!:Ws R 8-l2 ~ ~ \ gh -
s R - 2 . 2 6
" " " S im na 2:
77 z Figure 1.16. Transient 5.19 Vessel wall temperature vs time (t) la transient at various depths in wall (a/w).
4 - l HBR-I.22 1 IPTS H B RC8 CLPD S.19 7/5/84 RTNOTO n - 0,.0.CESF FO - 3.15E19 LONGIT
}, e..%CL e 0.22 e--,---.-, m ' gN19 = @UM 3 , p wr 3 i 2 Mr 6 1
l a
' ,% 8 Ng :
8
/(< N. N N / ., 's N N's. , < o a f' ,' '. s s , - ~ ~ ~ , . % .' , ~. ~ s
@ i g ,' *
'N. ,
ej N. -
' N ,1
( l
/ ., a sWe , ' ~ ^ x ~~ ., / - 'x . s .
- =- n\ 1 e L y{r 'l.[ /
\ i N, 1 g L, '.i / , _ - - n .
t.t / ,, N ' , . s- ,
~ \.i'
- s. '~
~.. ,- m ~~. -
g L, l ,
~ ^ '
[ - - , , L
/ ,,
N ,'Ni 1 NV . - O - _ ___ y ----._.' _ - -
,t 8e -~~--
mq , -
~ ~~ " Q ~ - ) ~. . % ~
O 6- ' ' ' ' m' b = w a. ' o to :o so to so so to so so too tio 1
;;.9E Figure I.17. Transient 5.19: K ivs time (t) for various depths in wall (a/w).
. 4 llDAE7 HBR-I.23 UIIOj l CRITICPL CRPCK CEPTF CLR'<ES FCR IPTS H S RCD CLMD 5.;9 7/5,84 LC'aG I T RTiiCTO - O.C CEGr *:CU - C.22 ::f4I - C.SC FC - 3.15.E 9 - . y - - - ,-, . . q I d '
6 x , g L x ., . j x *, , . * ' , , .. l t ' 1 lL 6 x . . x4 I x } x J O .* x i x I j s x +
...*i s
- p. .
f ,. .
,.'x 1 . mc x s ;2 - . .. x X .'
t ..... .- ,
*......***....... x t * + i g . x 2- x ,. 4 . x . x i = =
l 2I [L. x x
+ .+
v' . x y
, .. - x . . +x 4 d -
ys .x 4
/* $
x , i x W d h 5 # t 4 i
=X Xg x # a
( 3*xxxx2 a
,, _ .. . __ . w , ,
o to z z to so so 7c sa se toe ne t; IIME(MItaUTES) X,2.D flaw, Ki - Ku e,2.m flaw, K i - 220 MPa d
+, 2-m flaw, X - Ku 7. WPS (warm prestressing) 0,2.D flaw, K i - 220 MPa 8 Figwe I.18. Transiest 5.19: Critical-cracli-depth curves for weld 2-273A based os -2a values of Kw Kg., and ARTNDT, miesa values of all other parameters, and 32-EFPY fluences.
1 i l
_ _ _ _ . - . . _ -- 1 HBR-I.24 IPTS H 8 RC8 C:.P.0 5.20 7/27/84 g l 'og, . . . . . . . . . . . g - oo a PRESS.(KS!) ' yn
$1 ' o TEMP.(CEG.F.1 Id a' l a H.T.CCErr.
k oa g
~
sq Is c. o' g h- ' "a
. k.o _ - "a '4 E k- k' * '
e-I s o, s a. g
$' I" o'
o, , g ( -
?d o<
g
- o. ..
S, 3
*d o<
a g, , , 8
- 4. . . .
s . 0.0 10.0 3.0 30.0 W.0 50.0 00.0 70.0 30.0 30.0 100.0 110.0 120.0 7IMEIMIN.1 Figure I.19. Transiest 5.20: Primary system pressure, dowacomer coolant temperature, and 11mid-film heat-transfer coefficleat vs time la the transiest.
. .. ... . . ~ . - - - - - - . -
~
HBR-I.25 - Table I.4. Transient 5.20: Sa==ary of digital output,lacluding usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to laitiation and arrest events IPTS 9 8 R09 OL4D 5.20 7/27/84 1. rt,Ays/11 eel DRTN(IS) : 211.2
'J44DJUSTED --4 DJUSTED WELD P(F/ E) ,
9550I SERR P(I1ITIA) 1 'V P(F/ E) SERR NF4IL NTRI4LS 1 1.43D-04 ?.23D-05 15.59 2.140-04 1.000 1.430-04 158 200000 VESSEL 1.430-14 15.59 DEPTHS FOR INITI4L IMITIATION (I1) 0.09 0.25 0.45 0.57 0.90 1.16 1.44 1.74 ?.05 10MBER 0 121 53 15 12 4 1 0 0 PER0ENT 1.0 31.3 26.7 14.5 5.1 1.7 0.4 0.0 0.0 TIMES Or F4ILURE(MINUTES) 0.0 10.0 20.0 33.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PER0ENT 0.0 0.0 0.0 0.0 0.0 2.5 4.4 12.7 25.3 22.2 19.5 13.3 I1ITI4TMN T-RT4DT(DEC.F)
-100.0 -75.0 -50.0 -25.0 1.0 ?5.0 50.0 75.0 100.0 125.0 151.0 175.0 200.0 4 UMBER 0 0 13 120 101 41 65 11 0 0 0 0 PER0ENT 3.0 1.0 3.5 12.3 27.2 16.4 17.5 3.0 0.0 0.0 0.0 0.0 ARREST T-RTNDT(0EG.r) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 151.0 175.0 200.0 2?5.0 251.0 1UM9ER 1 14 24 ? 9 0 15 121 16 0 0 0 PER0ENT 1.0 6,5 11.3 q,9 0,9 q,0 7,5 g$,g 15,9 q,q n,g q,9
[0RKTP s ? I4**EL : 1 1DLR1 0 1RTRS : 1 M TE: 10/24/54 TIM K: 22.42.?3 "PU TIME: 5 MI4 ?9 9Ei a
,=
k e o HBR-I.26 1 1 l i HB ROB 5.20
- i i i -
I
~
a PLATE ' 1 o LONGIT.
~ ~ ,, a CIRCUM. 'o ? ?
M
'o _ ~
~ ~. y - . : L. - _ ~n aa _ o - c - _ z - _ a - _ r a e o.
- ~
E ~ f o 100 150 200 250 300 350 MEf1N RTNOT, DEG.F. Figure I.20. Transiest 5.20: hj j. fa) B(s) de vs NTND7, for (2-D, 2-D) and (2-D, 2m) flaw combinations. e ~. - - - =-
HBR-I.27 IPTS H B RCS C:.PD 5.20 7/27/84 l , , , , , , , , , g . , $ 0' ?? -
. w.m i 13:25 ! 5J "
h fi:5 I - g em -
!!!!E g . -
g8 - - 8 R R - R g . . g , , . . . . . . 0 && A2 L3 At &$ AS A7 &S LS 1 fVA Figure I.21. Transiest 5.20: Vessel wall teasperature vs depth in wall (s/w) at various tienes (t) la transient.
b 8 HBR-I.28 IPTS H S RC8 C:P0 5.20 7/27/84 3 , . . . . . . . . . , R o.CES l8:8!! c 8:5! g . e 8:8E - m 78:ia
!!10 g g,.
R
- No - ' pgi 3 \ ia:!N 2 j:
B K fj -
\
. . N . R - N g N~
~ , ~
g . g . g , , a to a z e so e io so so to: iso :: TIrr Figwe I.22. Transient 5.20: Vessel wall temperature vs time (t) la transient at various depths la wall (a/w).
. . . . ..-s
HBR-I.29 j IPTS H 8 RC8 CLP.0 5.20 7/27/84 RTNOTO - 0.0 CEGr %CU - 0.22 FO - 3.15E19 LCtJGIT H , , , , , , , , , H - l lj E - o b .' \ -
!g R V O N ~
5
~w - ~
s- .
=
a e to = x b so b " " :co a a Tif*I Figure I.23. Transiest 5.20: K ivs thee (t) for various depths le wall (a/w).
t- . HBR-I.30 DW~ I l I CRITIC 81. CRRCK CEPTH CURVCS FCR IPTS H 8 RCS C' 80 5.20 7/27/84
- RTil070 - C.0 CEGr %CU - 0.22 %NI - 0.80 PC - 3.15E:9 LCtlGIT n e d -
n a. -
+ 'I x + . x " x
- d -
++ o - + + +
y .,
" x + + o . + +
g + d ' ' " x
- c <
+ + + , + , , . . . . :8S * * * * , , , . . . e * * '
[d - *. E
**+** +
a -
- a
..; ....**** x , ~
2 - f x ,
+
a . f x . a
= * , a n +
%. d - v i o g & x + - M ** *
~ , a ** , -x + .
d -
- f. . x+ a ...
x
% ,,,,aagoccae=oi g - ' x o x , , k]* x * *x x x xx x x x x x x x x x x x x x x x x x x x x x c to 2c :c oc so so rc so go too g;o t TIME (MIfCTESI X,2 D flaw, Ki = Kr. O,2 m flaw, iK - K,i +. 2-m flaw, Ki = Ki , 0,2.D flaw, K i - 220 MPa 8 c 2 D flaw, Ki = K,i 7. WPS (warm prostressing)
Figure I.24. Transient 5.20: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kr., and MTNDT, noema values of all other paranneters, and 32-EFPY fleesces.
)
1 HBR I.31 ' ' o o ,IPTS H 8 RC8 C'.fD 6.6 7/23/84 g l- l . . . . . . . a -
*O o PPCSS.(KSI) g $P o TEMP. ICE 3.F.1 Id o' s H.T.CCCTr.
k' = k g
~ "d R}{,
o, ,
,g o' Q' *J o, ,g h' Ia a o' Q 55 u
- g. 8? ,
8-M . v, g" . ' . g i '
.h o4 ,
g E N1 \ ~4
- o. .
- g. x .
- 9 e W ?*
a,
,g a k' . *d '
d- - o, b. - L -
- y. .$o o<
d'
- o. - ' ' ' ' ' ' ' '
'ok .
0.0 10.0 E.0 30.0 40.0 50.0 80.0 10.0 a0.0 30.0 100.0 110.0 12.0 TIMCIMItl.1 Figure !.25. Transiest 6.6: 1%sary system pressure, downcomer coolant temperature, and Deid-Rim heat-transfer coemcleet vs tisme la the transient. 1
o . HBR-I.32 Table I.5. Transient 6.6: Sa==ary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CL4D 6.6 7/23/34 1 FL4'dS/I1e s 3 DRT1(IS) : 211.2
. 'JN4 DJUSTED - 4DJUSTED '4 ELD P(F/ E) 951CI TERR P(IMITI4) 1*? P(F/E)
- TERR . NF 4 IL NTRIALS 1 8.830-03 8.09D-04 9.16 9.080-03 1.000 8.830-03 451 30000 VESSEL 9.930-03 9.16 DEPTHS FOR IMITILL INITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1,74 2.08 MUMBER 16 277 120 42 9 0 0 0 0 PERCENT 3. 4 59.7 25.9 9.1 1.9 0.0 0.0 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 4.7 40.4 7.5 11.1 13.5 12.0 4.1 3.5 t,3 1,1 INITILTION T-RTMDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 Mtt4BER 1 0 12 110 215 151 159 80 2 0 0 0 PERCENT 0.1 0.0 1.6 15.1 29.5 20.7 21.9 11.0 0.3 0.0 0.0 0.0 ARREST T-RT1DT(3E0.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 0 0 0 0 0 1 26 123 126 3 0 PERCENT 0.0 0.0 0.0 0.0 0.0 0.0 0.4 9.3 44.1 45.1 1.1 0.0 ICRKTP s 2 I4COEL : 0 1DLRS e 0 1RTRS e 1 34T!: 10/29/94 FIME: 23.26.22 CPU TIME: 0 MI4 571EO
,_ n . . _ . . . _ . _
av ' (s. HBR.I.33 D5lbu HB RDB 6.6
- . . . i
~ ~
o PLATE ~
~ ~
o LONGIT.
~ ,, s CIRCUM. 'o ~
E E N
'o-tu N .
t . ri
- a. .a _
E E g . c . E : :
'o 'o-Y o
100 150 200 250 300 350 MERN RTNDT, DEG.F. Figare I.26. Transient 6.6: hj {.fa) 3(a) de vs )ffRDT, for (2-D, 2-D) and (2-D, 2a) flaw comibinations.
HBR-I.34 IPTS H 8 RC8 Ct.80 6.6 7/23/84 I . . , 3 3 -
- lN .
- a=
S si:2 E. 2,.:E g . 2 2:E ~ G ii!:= a n... 6 - e d' . 8 b
-a -
R
~
R X . 8 - - . , , ,
' ** S2 a.: e. . a.: ... c., d, d, ,
an FI I Transiest 6.6: Vessel wall temperature vs depth la wall (a/w) at various e
, = = , , . - - . % . , - . * - . . ., e- - - -- - -
- o. , .
HBR-I.35 IPTS H 8 RCS Ct.P0 6.6'7/23/84 a . . . . . , , , , , , R 0 006
! 8:81!
E 8:5 3
; 8:8e -
i8:M
. i 8:!'d k 8:s 3
8 8:!# - 88:5ll R 0.+41 18:W 3 -
?8:12 . a. n -
X 1.M b*$
- \ -
8
~R -
R . g . .. -
% %7 ~
Q R . E . , , , a to = = * = so m so = im 21a is T!t'E
, MgI28.g, Transient 6.6: vessel wau temperneure vs time (i) In transient at various
r . l l HBR-I.36 IPTS H 8 RC8 C:P.C 6.6 7/23/84 RTNCTC - C.0 CEGF %C'J - 0.22 FO - 3.15C19 LCNGIT a , , , , , , ,-
- g. , ,. -
- g. -
/
a - m: Y a - 5 . b R i = R - g , a to E = E E E E E E tm do tz TIME Figure I.29. Transient 6.6: K ivs time (t) for various depths la wall (a/w).
9- , - . . . . - l HBR-I.37 R83 CRITICRL CRACK CEPTH C'JRVES PCR IPTS H B RC8 CU'O 6.6 7/23/84 RTNDTC - 0.0 CEGP %C'J - C.22 %NI - 0.80 FC - 3.15E19 LCNGIT x 'P Q x o g - x " , o e.
= . -. + , , , .....e g . .. x a ,...' ...a... , . ,a . + o . .
g . .' x "
# o . . + . , * + . e g ... . x '
m ,
.+ . e , + ,' e ,
a -
- 2 .
gs - . z.
. +
v g e e -
.**...m. + o g - s 5 ,+ '
g.',....e,,,.. { .
. x + ,. * .e +
g .
..x.+.*****
xf ,
.*.c go e,,'
x+ 0 a
- g+
+ .. **,e, 'o g -
p db* . D D E 9
., a g - x e .
x x h
, . N =ce
- 99999999999999999999999999999999999977999999999!
o to no so e so ao io so so too sto : TIMEf MIN'JTES1 X,2-D flaw, K i - K, i O,2 D flaw, K i - 220 MPa d
+, 2-m flaw, K i - K i, s. 2-m flaw, Ki - 220 MPa dm c,2-D flaw, Ki = K,i V, WPS (warm prestressing)
Q, 2-m flaw, K, = K, i Figure I.30. Transient 6.6: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY flu-ences.
o o HBR-I.38
- IPTS H S RC8 C:fE! 6.9 7/5/84
, S -a .
9o a PRESS.(KSI} l Sl ' o TEMP.(CEG.r.) 3
- H.T.ccErr.
l- o:l ~
'8 II 4 . ,s un Y' .: ,
- g. .
o, _I ,"s ' e c 'C
- J b.
e o dif
;'f g = 5 ce so N: 's'.:
- g. -
- 9 ..
- g. .
.g a<
a N: s o, -0 4 ; .
- g. -
.n "d
a, 9 g. , a a - . , wj to ao 2a.o x,a e,a so,,
,,,, 7,, , ,o o ,o .o tgg a f rE tMIrl. )
Figure I.31. Transient 6.9: Primary system pressure, downcomer coolant temperature, and fluid-film best-transfer coefficient vs time in the transient. 1 \
HBR-I.39 I Table I.6. Transient 6.9: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROB CLAD 6.9 7/5/84 1 FLU [S/IN'*3 DRTN(IS) ?11.2 UN 4DJUSTED -4 DJUSTED ifELD P(F/E) 951C; 1 ERR P(INITIA) N'V P(F/E) TERR NF4IL NTRIAL9 1 2.68D-03 2.590-04 9.65 3.270-03 1.000 2.68D-03 411 90000 VESSEL 2.680-03 9.65 DEPTHS FOR INITI4L INITI4 TION (IM) 0.09 0.26 0.46 0.67 0. 90 1.16 1.44 1.74 ?.08 NUMBER 18 299 134 41 3 1 0 0 0 PERCENT 3. 6 59.7 26.7 5.2 1.6 0.2 0.0 0.0 0.0 TIMES Or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 1.2 3.4 6.3 11.9 20.4 19.5 17.5 10.9 5.1 3.6 INITI4 TION T-RTNDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 1 17 106 2 35 300 204 . 34 0 0 0 0 PERCENT 0.0 0.1 1.8 11.2 30.1 31.7 21.5 3.6 0.0 0.0 0.0 0.0 ARREST T-9TMDT(OEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 1 UMBER 0 0 0 0 0 1 3 119 ?39 113 1 0 PERCENT 0.0 0.0 0.0 0.0 0.0 0.2 1.5 2?.2 53.9 22.0 0.2 0.0 ICRKTP 2 I4CCEL = 0 NDLRS : 1 NRTRS 0 DATE: 10/?9/54 TIM E: ?3.33.53 OPU TIME: 2 MIN 32 SEC I
1
a .
. HBR-I.40 HB R08 6.9
- . i ::
a PLATE -
~
o LCNGIT.
~ . a CIRCUM. 'O N
C - M :
~ ; = ~ ~
n CJ - N - k . - n C
- 3 m.~Cm :
/
a,- . D . C
~ :
i : 2
= =
C _ E E
~.
2
= = 'Q . 1 I f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F.
Figure I.32. Transient 6.9:j P [fa) B(s) 44 vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations, i ( 1 l l l l
' ) h)*
HBR-I.41 IPTS H S RC8 CUC 6.9 7/5/84, E . . . , , , , , iSN 8 8:E H -
- EME .
4 ,t =
$ 4:2 E N:E a - ";;.E .
P th%
!iii:2 6 .
SI T H Hk " R . 2 . X . 8 . . . . . . . 0 0.1 0. 2 0. 3 0.4 0.5 0.8 0.7 0.4 0. 3 : R/W Figure I.33. Transient 6.9: Vessel wall temperature vs depth la wall (a/w) at various times (t) In transient. i l [
HBR-I.42 IPTS H B RCS C:P.D 6.9 7/5/84 g 8:M 8:8e 3 - 8:e 8 8:8l2 - 58:!ii
' E 8:!#
3 i :8:3-i 8: m
!8:"
l :ED
?l:!O B - \
d:E' b' I
'\ 1 ~
8 \\ bR g . g . . - g . a o to ao so e so ao to ao so too sto t-TIrc Figure I.34. Transient 6.9: Vessel wall temperature vs time (t) in transient at various depths in wall (a/w).
HBR I.43 IPTS H 8 RCS CLP.0 6.9 7/5/84 RTNOTO - 0.0 CE;F 7.CU - 0.22 F0 - 3.15E!S LCNGIT H , , , . , , , , , .- si R - l g l R - 9 8 - 5 J g . R - Vw% o ss E E E ss E E E $ son tio ::
?!PE Figure I.35. Transient 6.9: K ivs time (t) for various depths in wall (a/w).
o e HBR-I.44 CRITICRL CRROK CEPTH C'JRVES PCR IPTS H 8 RC5 CU".D 6.9 7/5/54
- RTNCTO - 0.0 CE P %CU - 0.22 %NI - 0.80 FC - 3.15E19 LCNGIT x ,, a s -
x . . E y x % g - o x + a . x +
+
y - x + E .
. + l +
- x +
- d =
- o x ++ a , .
x a , l
+ ; + . . . ace . * , * ,* , , . . . . . . .
[,d - *
, f x + + ..g****.
- 1 x
+ + ,.*..*, a x
a -
- v x
x '+>*,.** a o
. a **. g**g. a ,
a
- d ~
e' s *.
+
4 a" x7 a 84 . * , *# ,
~ . a d *
[ 3 90 a"g a . x i a"f x a maceaaaaaaaaaal x a a ma""co
,\==vN999999999999999999999998 xxxxxxxxxxxxxxxxxxxxxi o to to m *2 so en to en so tm sta :
itM~ tMDCJTES) X,2 D flaw, Ki = Ku 0,2 m flaw, Ki = Ku
+, 2-m flaw, K i - Ku O,2-D flaw, Ki = 220 MPa M
- c. 2 D flaw, Ki - Ku V, WPS (warm prestressing)
Figure I.36. Transient 6.9: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kg., and ARTNDT, mean values of all other parameters, and 32-EFPY flu-ences. l l l t
l s- o
. HBR-I.45 a o IPTS H 8 RC8 C'JC 7.5 7/6/84 g g, a l- , , , , , , , , , *i o PPESS.(KS!! 'n 31 o Tere.tCes.r.: id *' A H.T.CCCfr.
9' h '8 R: \ .
"d
- a. 'n o' g- *a 1- \
e _, 3. s .8-C S N ,G ge' u=. N .nM 0, !' UR: 'N Tdvi n e - 9
=
5"' c
. '8 R: 7" I- ~
7 i N :S o, .
,g
. .' 1: :s t-
- g di "d
{ ,! s ' .o o to.o z.o z.o e.o u.o m.o ro.o m.o m.o too.o :o.o :m.o T!PE! MIN.) Figure I.37. Transient 7.5: Primary system pressure, downcomer coolant temperature, and fluid-nim best-transfer coefficient vs time la the transient.
o . HBR-I.46 Table I.7. Transient 7.5: Sammary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 4 3 R09 CL40 7.5 7/5/54 '. FL4WS'i1**3 DRTN(I1) ?11.2
---wj14 DJ'JSTED -tDJUSTED '4 ELD P(F/ E) 9510I SERR P(IMITI4 ) 1'1 P(F/E) TERR e4IL NTRIALS 1 1.210-04 2.050-05 15.99 1.290-04 1.000 1.210-04 131 200000 VESSEL 1.21 % 0'4 15.99 DEPTHS FOR IMI*ItL IMITI4 TION (IM) 0.09 0.?5 0.45 0:57 0.91 1.16 1.44 1,74 2.08 1'f4BER 0 61 no 23 10 2 1 1 0 PERCENT 1. 0 43.0 25.2 19.7 7. 0 1.4 1.7 0.0 0.0 TI'4ES O' F4IL' IRE (1I1 JTES) 1.1 10.0 20.0 31.0 41.0 50.0 50.0 70.0 50.0 90.0 100.0 111.0 120.0 PER0ENT 1.0 0.0 0.0 1.0 0.3 7.5 2?.5 21.5 14,1 5. 3 11,3 5.5 !1IT!\TI11 T-RT11T(150.F) - -110.1 -75.0 -51.0 -?5 0 0.0 25.0 51.0 75.0 100.0 125.0 150.1 175.0 210.0 1719ER 0 1 4 57 54 14 5 1 1 1 0 1 *ER0ENT 1. 0 1.0 2.5 37.7 45.0 9. 3 4.1 1.7 1.7 0.0 0.0 0.0 ARREST T-RT1DT(150.7) -51.0 -?5.0 1.1 ?-4 S.1 50.0 75. 0 101.1 1 ?S . 0 151. 0 175. 0 111. 0 ? $5. 0 251. 0 1749ER 1 1 1 1 1 0 4 7 q 1 1 PER1E1T 5. 5 5.5 ??.? 5.5 0.1 1.1 1.1 2?.2 35.9 1.1 1.1 1.1 IC R KT P ? t400EL 1 1DLR9 1 1RTRS : 1 ')t TE: 10/29/34 T I'4 E : ?3.35.11 OP'1 f t1E 5 1:1 25 1EO i
1
- O HBR-I.47 HB RGB 7.5
- i . i i :
[ o PLATE
~
o LONGIT. ~
. a CIRCUti. 'o. _
M
'o-E :
w _ N L _ - a_ ~a _ y : o c : : 7 a . .
'a .- E- -E *a .-.
f a 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figwe I.38. Transiest 7.5: hj f.fa) 8(a) da vs NTNDT, for (2-D, 2 D) and (2-D, 2m) Haw combinations.
O
- HBR-I.48 p IPTS H 5 RCB C.80 7.5 7/6/84
, Mrs
- 3:5 h
' li:5 li.@ _
r a
- i. 5.ik
.m !!t5 3 .
jg:$ i0,...w "kOi"x to.co 6 - - g3 - . 8 .
-a .
R g . . , R . A E i - E e , ,
,e '
0 0.1 0. 2 0. 3 0. 4 0. 8 O. 8 0.7 0. 8 c.3 : R/'d Figure 1.39. Transient 7.5: Vessel wall temperature vs depth in wall (a/w) at various times (t)in transient. e4
~~ -,
a . HBR-I.49 IPTS H B RCB CLP.0 7.5 7/6/84 3 ' , , ' ' I!!8!! l8:in
. :S -
3 H 082 s g h$ y 71 N ' 8 ' l
$ i@
m 'he 4 Yse' B - N l iis' '
\ .g .
x R -
%.w;1 .
A H g . - , , .
'a to = " ; ; ; k . e im no u TIFE Figure 1.40. Transient 7.5: Vessel wall temperature es clase (t) la transient at various depths in wall (a/*).
L
HBR l.50 g
- RTNOTO - 0C 7 'O.22 0- 3.15E19 LCNGIT R -
llh i I g . . R -
?
h5 - - 5_ I2 g . z fn
/
o W=i W to a a e a en to en a tm Figwe I.41. Transient 7.5: K ivs time (t) for various depths la wall (a/w). tio w _
~
HBR-I.51 DRM1 CRITICRt. CPRCK CEPTH CURVES FCR IPTS H 3 PCS CLPD 7.5 7/6/84
~ RTNOTO - 0.0 CCGT ::CU - 0.23 :N! - 0.80 F0 - 3.15C10 LCNGIT x e =
d - x "
.* a-o +
x "
+ g * * ,q, ;
2 .
.x o a - ,.*. a +
a
. *+
e + y .
/ " + B-a ,. .
e ,.* +
, +
g .
, x o ,+ a-l . . + ..- * =
g2 -
., x o c- + . **..,** + .,**f., ',,#..**,,...*88***,,.....***a- +
d
+ +
Q - E 4 a-o m .' o
, o g . x+ <
g-x 2 - u - x l 5"hxxxxxxxxxxxxxxxxxxxxxxxxxxxx3 o to a m to so ao to so so too i.a is T D'EiMINUTES) X,2 D flaw, K i - K,i O,2 D flaw, K i - 220 MPa d
+, 2 m flaw, iK - K, i 7, WPS (warm prestressing)
- c. 2 D flaw, K i - K,i Figure !.42. Transient 7.5: Critical-crack-depth curves for weld 2 273A based on -2c values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY flu-enCes.
HBR-I.52 DRA ~1 I l a = IPTS H 8 RC8 C:.P.0 7.6 7/6/84 g l- l . . . . . . , . . . g - ao o PRESS.(KSII 'n ' di . Tce. ices.r.: Td o' a H.T.CCEff. k f o,
,g g: d o, ,g
- l. " .;
- g. ,
o.
\ =
a s "a " Q" .hA ' y , o, g h' : "a
- o,
>g R- :s ,
o,
,g '
a k fd
- g. .
o. [ . . . . . . . i . . . k ' .010.0 0 20.0 30.0 W.0 50.0 00.0 10.0 00.0 90.0 100.0 110.0 .23.0 T!!1*(MIN.) Figure I.43. Transiest 7.6: Primary system pressure, downcomer coolant temperature, and fluid film best-transfer coefficient vs time la the transient. 1 I
HBR-I.53 , Table I.8. Transient 7.6: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failuTe, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CLAD 7.5 7/6/84 1 FLWS/113 ORT 1(It) : ?11.2
'J14 DJUSTED ~ 4DJU9TED. ' '.lELD P(F/ E) 9510! TERR P(t1ITI4) 1 *V , P(F/E) tRRR 1'4IL 4 TRILLS 1 1.100-06 2.050-07 19.60 2.97D-06 1.000 1.100-06 111 ?00000 V!SSEL 1.100 -16 15.50 DEPTHS FOR I1ITIAL I4tT!4TI01 (11) 0.09 0.25 0.45 0.67 0.90 1.16 1.44 1.74 ?.09 NUM9ER 0 115 102 45 22 11 2 0 1 PERCENT 0.0 35.5 34.1 16.1 7.4 3. 3 0.7 0.0 1.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 10.0 30.0 40.0 50.0 50.0 71.0 59.0 99.0 101.1 111.1 1?1.1 PERCENT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 11.7 10.7 ?u.3 16.9 IMIT!4 TION T-RT1DT(DEO.F) -100.0 -75.0 -53.0 -15.0 0.0 25.0 50.0 75.0 100.0 115.0 150.1 179.0 211.0 4tNBER 1 0 3 96 199 ?$ 49 3 0 1 0 0 PERCENT 0.0 0.0 0.7 11.7 46.4 15.5 12.1 0.7 0.0 0.0 1.0 1.0 ARREST T-RT1DT(DEO.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 201.0 219.0 250.0 1 UMBER 0 6 47 15 0 2 46 163 15 1 0 1 PERCENT 0.0 2.0 16.0 5.1 0.0 0.7 15.6 55.4 5.1 1.0 0.0 1.0 # OF STD DEV1 ASOVE 1E4N O!LT4 RT1DT(F4ILURES 04LT) 1.10 1. 25 1.50 1.75 2.00 ?.25 2.50 1.75 1.10 MUM 9tR 3 4 2 17 15 17 14 3?
PERCENT 0.0 3.6 1.5 15.3 13.5 15.3 11.5 19.A f SF STD DEVS AB0Vt ME44 9fMDT(F4fLURE91NLY) 1.00 1.25 1.50 1.75 2.00 1.25 1.50 1.75 3.00 NtNBER 0 1 2 5 19 15 25 14 PERCENT 0.0 0.9 1.5 4.5 17.1 27.5 ??.5 30.6 10RKTP e 1 14COEL s 1 1DLRS e 2 1RTRS s t 04Tte 10/11/54 ft1Et 13.49.51 OPU TIME: 5 MIN 20 SEC
. e
- HBR I.54 HB R08 7.6
~
o Pt.RTC
~
o LCNGIT. ~
. a CIRCl21. 'a-5 :
M
'a-5 :
w N e . 1 'a - o - E.- e
/
D . .
'a 5 :
b ~ E E Q t t f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F., Figure I.44. Transleet 7.6: Aj {,fa) 8(e) da vs N7NDT, for (2 D, 2.D) and (2.D, 2a) flaw combinations. 4 4 h
- e + -r -. .-- .- .,,,_,w, ,
r . HBR.I.55 Dag* IPTS H S RC8 CLAD 7.6 7/6/84 I . . . . . . . hh
!.=
R lf3 J:!
. O,, }!lJi .
g . Ibl Ih.l8
- ..m g . . .g .
X . M . R . 8 88 a.: a.: d, g,, ;, . 8F o.s o.s i af.g be 1.45. Transient 7.6*- V"'I **II 8'*Perature n depth la well (afw) .: ,,,g ,, thnes (t) la transient. e 9
HBR I.56 IPTS H 8 RCS CLPD 7.6 7/6/84 3 . . . . . 8:8M w, g . o. ~ -
'e ' s j 8:f!! - x . 8:14 \ -
h 8:!!5 N ma g .
'S -
g g;. u.n N 8 . l:E7-1 1.003 9'i N 2 ; @g . N ' - Wsp g . . g . - g . - g . . . . . . . . . . . o to a z e so e to .o 80 too Ito 13 TINC Figure I.46. Transleet 7.6: Vessel wall tensperature es time (t) la transient at various depths in wall (a/w).
m. HBR I.57 IPTS H B RC8 C' P0 7.6 7/6/84 RTNOTO - 0.0 CEGF ::CU - 0.22 TO - 3.15E19 . LCNGIT E . . . . .
~
g . 3 . h - hg . s b R
. R N-g /
J.--
~~
o in a b b b b b b b son sia is Tint Figure I.47. Transleet 7.6: K ies tian (t) for various depths he wall (n/w). b 4
^
HBR I.58 7 CRITICRL CRRCK CCPTH CURVES TCR IPTS H 8 RC8 C:.80 7.6 7/6/84 RTNOTO - 0.0 Ctr.F %CU - 0.22 %NI - 0.80 TO - 3.15E19 LCNGIT n 3 . <, x .
. 'P .M . .
~
' x 3 . .
x y . o x +.
.....'.... .t..
g5 -
.,...... o ,,...'n s .
a . > u o . x .
+
2 . ' x . I
- x $
, .. .. +
g . o x # .
"x x y . <, *2 E 3 y 3 3 y 3 3 3 M M N N N X M M M N N M Mj o to ao a e to en to so a too its is I!MCIMINUTE31 X,2.D Raw, Ki = Ku O,2.D dew, N - 220 MPs 8 +, 2.m flaw, Ki = Kw 7. WPS (warm prostressing)
Figure I.48. Trameleet 7.6: Critical-crack. depth curves for weld 2 273A based os -2a values of Ki,, Kw and MTNDT, awas values of all other parameters, and 32.EFPY fle-ences.
e o HBR I.59
. . IPTS H 8 RC8 CU O 7.8 7/6/84 g l- l . , , . . . . . . , ,
a -
.n a PRESS.IKS!1 'N N' o TE?'P.(CEG.r.I Id o'
- H.T.ccCrr.
l- .,
'8 t . .
- a
.. \ ,
g.
- v. gx a
-a s
- g. -
a S , M ,
. \. ,,s .!- h..: aa :
n e S.
'g lg '
a g-
~ .. g g- d . g- a g.
8 'd
'8
- 3. g'. i.
m..
.. ... i..
- n. i =. .
TIPEIMIN.I Figure I.49. Transient 7.8: Primary system pressure, downcomer coolant temperature, and fluid-fthe best-transfer coefficient vs time la the treasiest. 8
e . HBR-I.60 Table I.9. Transiest 7.8: Sexuaary of digital output, including mandjusted P(FlE) values and histograse data for crack depths, tismes of failure, and T - RTNDT values at tip of crack corresponding to laitiatica and arrest events IPTS (I 9 R09 Ct.40 7.8 7/6/94 1. FL4'45/11**) 04T1(11) e 111.1
... rj1'OMSTte . . . . 4DESTEC
'itLD P(F/t) 9510! SCRR P(t1tT!4) 1 *V P ( F/ t) . . STRR 1'4tL 1TRt4Li 1 4.760 07 1.3$0 17 18.29 1.780 06 1.000 4.76D.07 ti 200000 VtiSEL 4.760 07 19.19 DEPT'11 F0411tT!4L (4tT!4Tt01 (t1) 0.09 1.25 1.45 1,67 0. 90 1.16 1.44 1.74 ?.08 NIN9tR 1 $8 40 .31 11 9 2 0 0 PERCENT 1.0 39.0 33.5 19.4 5.1 1. 9 1.1 0.0 1.0 T!1Ei 1r F4tL'itt(4t1'JTti) 1.1 11.1 10.0 30.0 41.0 50.1 $0.3 71.0 10.0 91.0 101.1 111.1 110.0 PCR0t1T 1. 0 1. 0
- 1.1 1.0 0.0 1.1 4.2 4.1 4.? ??.9 15.0 39.5 (1!T!4Tt11 T-471DT(SC1.F1 110.1 75.0 51.0 45.0 0.1 25.0 $0.1 75.0 100.0 119.0 191.4 175.1 701.1 4tt15tR 0 1 4 79 16 ti ti 4 0 0 0 1 PTR0t1T 1.0 1.1 1.9 )).1 1,1. 4 11.6 12.5 1.1 0.0 3.0 1.0 1.0 4.14tif T.9T1ST(StG.F) 51.0 11.1 1.1 ?1.0 50.0 79.0 101.1 111.1 151.1 179.0 211.0 415.0 ?$1.1 1'tiit t i 7 15 7 1 1 15 76 14 1 1 1 PERit1T 1.0 4.1 11.9 1.1 0.0 1.6 14.9 13.7 11.4 S.i 1.1 1.1
# 1r STS OrVi 4 A1V' 't*41 St1.?4 47107(F4!!.19'1 111.71 1.11 1. fi 1.5i f.75 1.10 ?.?1 S.$1 1.?1 1.11 1'NSR1 i t t 1 9 i il 16 *TR1ENT 1.0 1.1 1.1 ?.1 16.7 14.7 17.1 11.3 8 1' STD DCV1 49175 it41 9T137(F4IL19ti 14LT) 1.11 1 . 11 1.11 1.74 ,?.10 1.?$ 1.11 7.71 1.11 al'NB t 9 1 1 1 7 11 1 17 Pt90t1T 1.1 1.1 1.1 4.1 14.4 11.9 19.9 39.4 ! ti(TP e i !411tL e i 1DL41 e ? 14741 e 1 147t i 10/11/14 ' !17 : 21.91.19 P9 fI'tt 1 't :1 .?1 iti
o . HBR l.61 HB R08 7.8
", o Pt. ATE , ."
o LCNGIT.
,, a CIRCUn. 'o-E : 'a-E E L.3 . .
N w . . c%-o '
. 8, : :
5 . . b ~ _E E b - Q t t i ! 100 150 200 250 300 350 MERN RTNOT, DEG.F. Figwe I.50. Treasiest 7.8: hj {.fa) A(a) da es FfNNT, for (2 D,2 D) and (2 D,2a) fisw combinations. i I I
HBR-I.62 IPTS H 8 RC8 C:A0 7.8 7/6/84 < E .
' jlyg i.m 1:8 - Lt a E 'e i 2:5 a ii:2 F sa.m R ri:5 g -
- M-5IN:s e ite.=
.g .
b NA R 4 2 - 4 I g
- i. ;, ;, ;,
g , Mgwe I 51. Transiest 7*3 y * **II f*Perstwe es depth in wall (s/w) at various times (t) la transient.
. HBR.I.63 IPTS H B RCS CLR0 7.8 7/6/84 g , , . . . - - ' ' '
- 8:en g !8:85
~-
i 8:8e ' 5 8:!!! t 8 !# g . 08:fa P 8:E ' i8:in
.\ i8:W g N'}\ ?8'N !i:E ' \
5 - 'Ns - 8 _a .
\x x~ ~ -
a -
% h ~x=mnm~
g . - R E, y $ $ $ E ea to so = 15 158 " TIME Figure I.52. Transient 7.8: Vessel wall temperature vs time (t) la transient at various depths la wall (a/w). 9F
HBR-I.64 IPTS H B RCS CUO 7.8 7/6/84 RTHOTO - 0.0 CEGF %CU - 0.22 r0 - 3.15C19 LCNGIT g , , . . . , , . . . g . .
. l l '
i i;li I R
?
h - - n g . . g . N .
~
C o [ io a a e a es TIPE n Figure I.53. Transiest 7.8: K ies time (t) for various depths la wall (s/w). so a too ita t
~
e 4# [
HBR-I.65 CRITICPL CRPCK liPTH CURVES FCR IPTS H 8 RC8 CLP.D 7.8 7/6/84 RTPCTO - 0.0 CESP %CU - O.22 ;241 - O. 80 FC - 3.15E19 LCNGIT
~ . , , , , , , . , , ,
X X j . o X . X g . o X . 5 O X *
. . x g . f g " x -
gy .
+ ,
o
,,,...***** X + + +
g . o x # .
+
X r, o
+
g . X , . X
+ ' X + . +
g . > X + - XXXXXXXXXXXXXXXXXXXXXXXX] O ~ o 1P
, . . .k. - . . . . . . . ,
o to a :n a so so to so so too 1:a is tit'EtMINUTES) X,2-D flaw, K i - K, i o,2.D flaw, Ki = 220 MPa d
+. 2-m flaw, K i = K, i V, WPS (warm prestressing)
Figure I.54.. Transiest 7.8: Critical-crack-depth curves for weld 2-273A based od -2a values of Kw Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY flu. ences.
e o HBR-I.66 o a IPTS H B RC8 C'JO 7.9 7/6/84
. g -
{ g, . . . . . . . . . . 4 on a ppg 33,ggst) .g
$1 o TE".P.(CE3.F.I Id o' A H.T.CCETF. ~
k" o. g R: Td e' 'R o' 6' -
\
I'
- o. . :s;
- g. _
\_ -
c' o. g d a- da' 3/ =a - g" .
]
- r 8 E
s.o 's
$1 I' o'
a', *'
't $1 i I*
- o. .g o
2: Td
- c. ,
;g S. 'o a.
o
- o. 8_ ' . . . . . . . . . . .
'ko .
0.0 10.0 E.0 33.0 40.0 $0.0 80.0 70.0 80.0 90.0 100. 0 110.0 120.0 TIME! MIN.) Figure I.55. Transiest 7.9: Prianary system pressure, downcomer coolant temperature, and Duid-rds beat-transfer coefficient n time in the transient. i l
HBR-I.67 Table I.10. Transient 7.9: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 4 B R09 CLAD 7.9 7/6/S4 1 FLAWS /INee3 D9TN(IS) = ?11.2 UNADJUSTED --4DJUSTE D WELD P(F/E) 951CI 4 ERR P(INITIA) 1 *V P(F/E) % ERR NFAIL= 4 TRIALS 1 9.88D-05 1.86D-05 18.77 1.540-04 1.000 9.88D-05 109 200000 VESSEL 9.880-05 18.77 DEPTHS FOR INITIAL INITIATION (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NtNBER 0 88 45 27 7 3 0 0 0 PERCENT 0.0 51.8 26.5 15.9 4.1 1.8 0.0 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.0 6.4 2. 8 1.8 15.6 ?4.8 25.7 ?2.9 INITI4 TION T-RTNDT(CEG.F) .
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 1 UMBER ~0 0 13 78 74 50 43 8 0 0 0 0 PERCENT 0.0 0.0 4.9 ?9.3 27.8 18.9 16.2 3.0 0.0 0.0 0.0 0.0 ~. - .
ARREST T-RTNDT(DEG.F)
-50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 14 8 2 0 1 9 99 14 0 0 0 PERCENT 0.0 8. 9 5.1 1.3 0.0 0.6 5.7 63.1 15.3 0.0 0.0 0.0 IC RKTP 2 I4CCEL = 1 NDLRS = 0 1RTRS 0 DATE: 10/30/94 TNE: 90.20.43 OPU TNE: 5 MIN 28 SEO l
l l l 1 t
e
- HBR-I.68 -
~
HB RGB 7.9
- 4 e i i :
o PLATE : o LCNGIT.
" ~
A CIRCUM. o _
- = _a . . d N 'o tu . .
N - t _ -
' 'o- / _:
y : : a g z - - a _ _
'o t : 'o i / i Q f I f f 100 150 200 250 300 350 MERN RINDT, DEG.P.
Figure I.56. Transient 7.9: TPj [fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. l l
' s HBR-I.69 It*TS H S RCS CUU 7.9 7/6/84 g , , , , . . , . -
Its its e j$l$
- t ; .=
g e M:i' -
!Da e ne e B
8 k
, >f / . , a a a a t i ~
0 && A2 A3 At &5 &S A7 48 &S 1 tvu Figure I.57. Transient 7.9: Vessel wall temperature vs depth la wall (a/w) at various times (t) la transient. l r i - -
f
- HBR-I.70 AR IPTS H 8 RCS C.80 7.9 7/6/84 i i , , ' ' ' i r , ,_ _ _
R 0 338
!in iis!
g ;&ae . s Y tin iiti; . L 0.177 08:M a -
# iiE -
fim fiW 3 ~ X L.000
\
c6 - . g , a b
- ,a., - .
R g . R B
' ** " = * = so ro . . E & a .are Figure I.58. Transient 7.9: Vessel wd temperstm vs time (t) in transient at various depths in wall (a/w).
l l
- 6 HBR-I.71 IPTSH8RC5C:.AD7.97/6/84 RINDTD - 0.0 DEGF %CU - 0.22 TO - 3.15E19 LCNGIT g , , . . - . - - -
i g . f: l l:, a ' s -
. 4 \-
B h 5 2 I R '
~
g ,
=: =
Ej c te ao m a so " 'o " " 1" "* " tit E Figure L59. Transient 7.9: K ivs time (t) for various depths la wall (a/w).
. . . s,.. ....--.w.-. . , - . - . . , . . . . . - . . _ . . - - ,. . . . - . -
4
- HBR-I.72 CRITICAL CRACK CEPTH CURVES FCR IPTS H S RCS CLAD 7.9 7/Q/84 RINDTil - 0.J CEGF %CU - 0.22 %NI - 0.80 FO - 3.15E19 I
LONGIT I T Y T I I T T X - 3 d = ' x 8+ . e N
+
[ d - > x *
,+ c - + + +
g -
' x # D , , . + +
e
- D e
- d -. . '
x ,+ 0 .
. ....., ,,......a .:
p - + x
....y . . ....., ...... + , x +
d - x 4 Q - x + I
- D x +
d = f 4 0 . X + x # Q l
~. -
x + . O * ' NN Q &
+ D , aO 1' x D i
Day d - " N . o x,
***xxxxxxxxxx-rxxxxxxxxxxxxxxxxxx,xxxxxi 0 la 20 30 to 50 80 70 80 W 100 110 1;
, TIMC(MINUTES) X,2-D flaw, K i - K, i o,2.D flaw, K i - 220 MPa 8
+. 2-m flaw, Ki = Ku V, WPS (warm prestressing)
- c. 2-D flaw, Ki = Ku Figuie I.60. Transient 7.9: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY flu-ences.
l l l l i
'7 HBR-I.73 i
a l o IPTS H S RCS CUC 7.10 7/6/84 , g g, , , , , , . . - 4
*i a PRESS.(KSI) * 'N ! $1 o TEMP.(CEO.P.) Id a' 4 H.T.COETF. ~
k' o, g 3: - Ed a'
- j. 'R g, g. '
.1 C' 'S , 01 -
- I" _
- t. N E 2' ca nd
$~ $e, Idu; ~
g" . $ '<' y i 6
- t
-e- 's o< . ~ 'R %- I
_ 'd
'S o' $1 '*
I l' ' 2 ;. .
- s 6' Id
*< I g
- 3. !' , . . . . . . . . . . 'd .
o.o 10.0 20.0 30.0 m.o 50.0 so.o to.o so.o 90.0 100.0 110.0 121.0 II!*E(MIN. ) Figure I.61. Transient 7.10: Primary system pressure, downcomer coolant temperature, and fluid-film heat-transfer coefficient vs time in the transient.
- . - , V 'l ~
HBR-I.74 Table I.11. Transient 7.10: Sammary of digital output, including uni.djusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest' events . IPTS H 9 RO9 CLLD 7.10 7/6/94 1. FLWS/I1"3 DRTNCIS) = 211.2 U14DJUSTED - 4DJUSTED WELD P(F/E) 9510I % ERR P(IMITIA) 1 *V P (F/ E) - TERR NTAIL NTRIALS 1 2.61D-04 3.010-05 11.54 3.900-04 1.000 2.610-04 293 200000 VrSSEL 2.610-04 11.54 s DEPTHS FOR IIITILL IMITIATION (!1) 0.09 0.25 0.46 0.67 0.90 1.16 1.44 1.74 2,08 1tNBE9 0 230 124 52 16 7 1 0 0
. PERCENT 0.0 53.5 29.8 1 ?.1 3t 1.5 0.2 0.0 0.0 TI1ES OF FAILURE (MITJTES) .
s 0.0 10.0 ?0.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 ' PERCENT 0.0 0.0 0.0 0.0 0.0 0.3 5.9 17.7 17.7 16.0 20.1 22.2 I1tTILTION T-RT1DT(0EG.8)
-100.0 -75.0 -50.0 -?5.0 0.0 25.0 50.0 75. 0 100.0 125.0 150. 0 175. 0 E0. 0 -
1 UMBER 0 0 25 153 223 155 114 17 0 0 0 0 PER ENT 3.0 0.0_ 3.7 23.9 ,31.7 22.0 16.2 2.4 0.0 0.0 0.0 0.0 ARREST T-9T1DT(0EO.F)
-50.0 -?5.0 0.0 ?5.0 50.0 75.0 100.0 125.0 151.0 175.0 200.0 225.0 250.0 NUMBER 0 7 30 10 2 0 21 ?60 95 1 0 0 PERCENT 0.0 1.7 7.2 2.4 0.5 0.0 5.1 62.7 20.5 1.0 0.0 0.0 s IC9(TP = ? ILOOEL =
- 10L95 1 1RT93 3 0 7%TE: 10/10/34 TIME: 10.16.07 CPU TIME: 5 MI1 25 SEO i
l
~
l v _
# u HBR I.75 HB ROB 7.10 - : . . . i : ~
a PLATE ~ o LCNGIT.
~ ~
a
,, CIfCUM. 'o 'o W _ _
N t . . _
','o , ,. ~* E_
_3_ o - - c _ _ z - - a _- .
. -.'o:_
i
" o t I f f
[ l
=
o. 100 150 200 250 300 350 l MERN RTNOT, DEG.F. Figure L65 Transient 7.10: Pj [ fa) B(s) da vs RTNDT, for (2-D, 2-D) and (2-D,
, 2m) flaw combinations. %< g 6
, i HBR-I.76 IPTS H 8 RC8 CLSD 7.10 7/6/84 8 . . . . . . ,
l
, lim l 98:
8 8:= I a e u.=
!EE . . :12 8 h R.:= # faa". !!!!:=
6 . 33 . 8 b e- R R ~ R - 11 - . g . . . , , . . , 0 0.1 A2 13 At 15 as 47 as 43 : R/M Figure I.63. Transient 7.10: Vessel wall temperature es depth in wall (a/w) at various times (t) in transient. ( l l .
- - - - = - - %-.-e-... 4_ ,.,,p
# L .-
HBR-I.77 IPTS H 8 RC8 CU*D 7.10 7/6/84 8 8:85 8 8:Se F 8:85 3 8 8:8lE ~
! 8:!!! ~ t8:i'J - :8:nll o a.m -
8 8:Ei! I" o:w8in S
? o.en w 8:% -
x 1.aco c$ a 8 b
,-. R -
g - g . .. . . N H - s . . . . . . . . . . 0 10 23 30 to 50 80 70 80 90 100 110 l' tit'E Figure I.64. Transient 7.10: Vessel wall temperature vs time (t) in transient at various depths in wall (a/w). 1 1 k i
~ ~ . .
.i
- HBR-I.78 DRMT' IPTS H 8 RC8 C:P.0 7.10 7/6/84 RT?iOTO - 0.0 CE;F %CU - 0.22 FO - 3.15E19 LCNGIT H , , , , , , , , . .
= ,Y?M l l .
a - l l ! [- l .l. 3 - R G - p .g hg .' S G g . R . H ~ E o to ao m e so ao ro so so saa ita is TIriC Figure I.65. Transient 7.10: K ivs time (t) for various depths la wall (a/w). t l
a L. HBR-I.79 CRITICR. CRRCK CEPTH CURVES FOR IPTS H 8 RCS C'80 7.10 7/6/84 RTNOTO - 0.0 DE"F %CU - 0.22 %NI - C.80 F0 - 3.1SE19 LCNGli x o 7 x x G$ - a+ x CP
+
x + l - - -
+o - + + +
y .
" x , o - . + , + +
3 .. . o x ,+ a .
+ o +
{l
. o x g...****....M*...'*,,.....' +
a - a
.*..........*..x***,.**, , +
5 - '
,x ,
- a ,s
+
- x + *
+ * ,+ a
- 2 . o 7 ,
+ g .' - * + o
- n n +
o cP o*
+ ,
- 2 - '
f+ a .* - x a
'x Q x 0 h - E CR23 0 0 0 0 Q Q O O O C D Q c Q O O DJ x , , ** *x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x :
0 to 20 30 to 50 80 70 80 90 100 110 13 tit *E!MINUTESI X,2-D flaw, K i - K, i O,2-D flaw, iK - 220 MPa 8
+, 2-m flaw, Ki - K i, V, WPS (warm prestressing) '
- c. 2 D flaw, Ki = Ku Figure I.66. Transient 7.10: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY fluences.
l a . HBR-I.80
= a IPTS H 8 P.C8 CLPD 7.11 7/6/84 g l- g . . . . , . . . a - *o o PRESS.(KSI: 'N I '
o TEM *.(CEG.F.1 'i
*' A H.T.CCETT.
k' o.
.g g- a
- o. g a'
kn I4 . 8
$' 1 -
1
\ ^ ,a ?S ~
L' S E e' cs o . .g 5 g $" N
~ . k '. IJ t /
6 N E i-. o . g R< 1 o' o,
,p W = a c.
ig o' $' I* 3"
- o. -
;g }
k Id o a . ,
- c. . . . . . . . .
o . 0.0 10.0 20.0 30.0 10.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 TIMEtMIN.) Figure I.67. Transient 7.11: Primary system pressure, downcomer coolant temperature, and fluid-film heat-transfer coefficient es time in the transient.
. _ .,, . - . ~ . - - - - - . ,
e L
~
HBR-I.81 Table I.12. Transient 7.11: Sa==ary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 4 8 ROR CLAD 7.11 7/6/94 1 FL4NS/I1 *
- 3 DRT1(IS) : 211.2 UNADJUSTED - 4DJUSTED WELD P(F/ E) 951CI SERR P(INITIA) 4 'V - P(F/E) TERR 4F4IL 4 TRIALS 1 1.520-03 1.46D-04 9.63 1.810-03 1.000 1.520-03 413 160000 VESSEL 1.520-03 9.63 DEPTHS FOR INITIAL INITI4 TION (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 1 UMBER 1 2 87 124 58 17 6 1 0 0 PERCENT 0.2 58.1 25.1 11.7 3.4 1.2 0.2 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 1.9 6.9 12.6 7.7 21.5 19.1 17.2 13.1 INITC4TICN T-RTMDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 4 UMBER 1 2 36 184 242 220 185 29 2 0 0 -0 PER0ENT 0.1 0.2 0 20.4 ,26.9 24.4 20.5 3.2 0.2 0.0 0.0 0.0 ARREST T-RTMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 2?5.0 251.0 NUMBER 0 6 7 7 2 3 16 ?72 175 0 0 0 PERCENT 0.0 1.2 1.4 1.4 0.4 0.6 3.3 55.7 15.9 0.0 0.0 0.0 ICRKTP s 2 I4COEL 0 1DLRS : 0 1RTRS e o DATE: 10/30/34 TIM E: 10.29.03 CPU TIME: 4 MIN 25 SEO i
i l l l
-+
_ _ _ _ 3 . .-
1 "I HBR-I.82 HB ROB 7.11 , e . . . . : C. : o PLATE - o LONGIT.
~ , a CIRCUti. 'O 3 3 ' ~
M C 3 i C ,.
\ .
L -
~n L 'O _
7' ' O g . Z -
'D . , T ~
I 44 va
'O a
E to C _ 1 i f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figure I.68. Transient 7.11: Pj { fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2a) flaw combinations. 4 u-. m - --~= sw a -- ------ -------
,- g, ~ HBR-L83 Jg W H 5 W Cut 7.117/6/84 !
i E , - , , , - - .
, !! Ens fi2 g
h hh5
^
8 - 4{E f .,n! - e - IIII:$ 6 - y' 8 8 b wR - R - R . R- - A E
* ** a.s a.s a, ** o! a.e a.a ,
Figure L69. Transient 7*11. V'"'I **II l'mperature vs depth la wall (8/w) at various thmes (t) in transient. ,
l II HBR-I.84 2 k[gh, f IPTS H 8 RC8 C;.A0 7.11 7/6/84 3 . , , , . . - - E18!! Eisi 5183 - YiiE J 0.121 E &!# tR: EIE ' R i8:i!! 1&!B
? 8:%:
B i f: E ~
.g . -
bf R g . - R N ~ g . - g~o in ao m e 50 80 to 88 80 100 128 3 TIMC Figure I.70. Transient 7.11: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w). l i
e g .. ~__ j HBR.I,sS IPTS H B RC8 CLfl0 7.117/6/84 RTNOTO - 0.0 CEGF %CU - 0.22 FO - 3.15E19 LCNGIT g , , , . . . . , , . . I R
~
ks \ \ il I - 5_ a \ g X N = g . h- 2: o to a m e sa so n so so sco iso : TItt Figure I.71. Transiest 7.11: K ivs time (t) for various depths in wall (a/w). l I l i 1 a
's .
HBR-I.86 CRITICAL CRACK CEPTH CURVES FCR IPTS H 8 RC8 C:R0 7.11 7/6/84 RTNOTO - 0.0 CEGF %CU - 0.22 %NI - 0.80 F0 - 3.1SE19 LCNGIT
) " n g l o x j d -
a ,+ -
+
n x g x + d - o x po-
+ + +
d -" " " + c -
+ + + .. + o e d -* *
- n p o e .
+ + 3 2..**' + 2***,,
x 9.. . jd - e o x #
. ..****o o +
x . e g -
.v ...*...n*..,, x , +
o o e x + o e
+ e x +
c .
,, .+
o,o ,e d - ' x
- g p x + o e .i I* + ,
o
/ e eee e*
ce
- d - nt a e .
o
,, o x o 8
4 - 't c .
't a 'b , xxxxxxxxx"?9999999f f f f 9999999999999999999999!
o lo to m e so so to ao so gao gga g; TIMC(MINUTES) X, 2 D flaw, iK - K,i o,2.D flaw, K i - 220 MPa d t, 2-m flaw, Ki - K i, V WPS (warm prostressing)
- c. 2 D flaw, K i - K, i t
l Figure I.72. Transiest 7.11: Critical-crack-depth curves for weld 2-273A based on
. -2a values of Kw Kw and ARTNDT, mens values of all other parsawters, and 32-EFPY
- fluences.
e n,
' ~
HBR-I.87 d I l
- a IPTS H B RC8 CLP.0 8.2 7/6/84 g -
l- g , , . . . . . . . . . a 4 oo a PRESS.(KSil 'n l El' o TEMP,(CEG.F.1 'd a' a H.T.CCEff. '
'8 R .
Id o- ; n t 6- -
- g. .
=-
S _-g _:
='
4 wa. 5 nh5 R- dg' -g -
,1 ~
g si 0 a:
- a. ,g' 1
g- ,; .n RT Ta 3 o' X- . - d R-
.g 3
S-- , a o g. j:
.8g 0.0 10.0 30.0 30.0 10.0 50.0 80.0 10.0 80.0 30.0 100.0 110.0 120.0 TIMEIMIN.)
Figure I.73. Transiest 8.2: Prissary systemi pressure, downcomer coolant temperature, and fluid-film heat-transfer coemcient vs time in the transient.
HBR-I.88 Table I.13. Transient 8.2: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to laitiation and arrest events IPTS H B R09 CL4D b.2 7/5/34 1. FL4WS/IN H3 DRTN(IS) : ?61.2
'JN L DJUSTED - - 4DJUSTED
'dELD P(F/ E) 9550I SERR P(IMITI4) 1 *V P(F/ E) TERR 1F4IL NTRIALS 1 4.400-35 4.350-06 9.90 1.43D-04 1.000 4. 400-O'i 391 130000 V!SSEL 4.400-05 9.90 DEF7HS FOR I1ITILL I1ITI4 TION (I1) 0.09 0.?6 0.45 0.57 0.90 1.16 1.44 1.74 2.0R 1 UMBER 12 670 408 13? 23 7 0 0 0 8!RCENT 0.9 52.7 32.1 10.4 3.4 0.6 0.0 0.0 0.0 TI'iES OF F4ILURE(MI1UTES ) 0.0 11.0 20.0 30.0 40.0 50.0 60.0 70.0 90.0 90.0 100.0 110.0 120.0 PTRCENT 0.0 0.0 2?.0 2?.0 19.9 19.9 7.4 5.5 2.0 2.0 0.0 0.0 I1ITI4 TION T-RTNDT(DEG.F) , .
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 0 2 1 35 607 507 253 115 11 0 0 0 PERCENT 0.0 0.0 0.1 3. 3 37.2. 31.1 15.5 7.t 0.7 0.0 0.0 0.0 4RREST T-RT1DT(StG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 201.0 2?S.0 253.0 1 UMBER 0 0 0 0 0 6 27 3?7 587 ?91 1 1 atRCENT 1.0 0.0 1.0 0.0 0.0 0.5 2.2 ?6.4 47.4 23.5 1.1 0.0 # SF STD DEVS ABOVE *1E41 OELt4 RTMDT(r4IL'ltti ONLY) 1.10 1.25 1.51 1.75 2.00 2.?S ?.51 ?.75 3.00 1 UMBER 11 ?3 39 50 9? 90 53 49 PTRCENT ?.8 5.9 9.7 12.9 ?1.0 20.5 14.9 12.5 8 SF STD DEV3 490V' '1E41 RT1DT(FAILURES ONLY) 1.00 1. 25 1.51 1.75 2.00 ?.25 2.50 ?.75 3.00 HP1BER 1 4 29 39 54 39 94 31 PERCENT 1.3 1.0 ?.s 10.0 13.8 12.8 24.0 ?0.7 IORKTP : ? IAC"!L 1 1DLRS : 1 1RTRS : 1 14TE: 10/30/94 TP1E: 10.20.53 OPU TP1E: 3'1I1 31 SE" e --,
. e, o
HBR-I.89 HB R08 8.2 o Pt.fiTE ~ o LONGIT.
- ~
- cractat.
'o ~
N
'o E :
u _ N c e . - ri c_ "a _
,. 3
_5 a - c - z - - o . .
'o 'o b -
100 150 200 250 300 350 MEAN RTNOT, DEG.P. Figure L74. Transiest 8.2: Aj f.fa) 3(a) da n NTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. I 1
\
4 9 HBR-I.90
~ ! PTS H 9 RC8 CLP.0 8.2 7/6/84 I , jig 82:s $ E 3d* 00 !E= . Isi:s E M: ~
n $.$ -
! "03". !-:!!:88 6 -
63 8
-a -
k " R- . R- . e . . . . . . . . 0 0.1 0. 2 0.3 0. 4 0.5 0. 6 0. 7 0. 3 0.3 : RA4 Figure I.75. Transient 8.2: Vessel wall tempture vs depth in wall (a/w) at various times (t) la transient. 1 I I I l 1
HBR-I.91 BRM, ,r IPTS H S'RC8 C"J.0 8.2 7/6/84 l . . . . , , , , , a%
! 8:81 i 8:8!!
R 5 8:8e - 78:!!! i8la i;&is R o8!#-
' 5 8:li! !"ist 8:in 2 --
I. 8:'s# - xi.mo 3e
\ .
8 R-g . g . . g . . si . . . . . , , , , o to ao so e so so ro e m im no n
~1rc Figure L76. Transient 8.2: Vessel wall temperature vs time (t) in transient at various depths in wall (a/w).
l i t i 1 I l
's e HBR-I.92 IPTS H B RC8 CLP.0 8.2 7/6/84 RTNOTC - 0.0'CEGP %CU - 0.22 F0 - 3.15E19 LONGIT R . . . . . . . . . . .--
l l i !i' g- j - l g. wF.is7, R 9
$8, E
I2 R -
) - .y __
R : 0 p . 10 al XI w% C 50 W 70 W W 100 110 15 TIRE Figure I.77. Transient 8.2: K ivs time (t) for various depths in wall (a/w). l l
'd' i. . . HBR-I.93 CRITICP.L CRPCK DEPTH CURVES FCR IPTS H 8 RC8 CLFO 8.2 7/6/84 RTNCIO - 0.0 CEGF %CU - 0.22 7.NI - 0.8C F0 - 3.1SE19 LCNGIT d - . x x ',,,,a,,... . . . . . . . . +
o x .. .
+ = * ,
d - . X . j -
. + , +
f =* X
. # + . . + . + . +
W g
+
d * * . ' X . + . X 8
+ . , + . , +
2m . kd * *
/, , , , . . . * * * * * ' * *" +
x + .',,.**
. +
e + ..'..', d - *
*t** - .. 7...;+
d - $ .
/ +
X +
+ +4' + +*,+
n + d 4 # Xj X Xy3 y yX X yxX* a - X gx$ X . Xv XX xX X P X gX
, h k X X X. X X X X X, X X XX X X X X , , , , , , ,
0 to 20 30 40 50 80 , T 80 90 100 110 g; IIMEtM " 53) X,2-D naw, Ki = Ku o n naw, Ki = 220 MPa 8
+,2-m flaw, Ki = Ku ._ q PS (warm prestressing)
O,2-D flaw, Ki = 220 MPs, vm Figure L78. Transiest 8.2: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY flu-ences. I i I {
's e HBR-I.94 o o IPTS H 8 R08 C"JD 8.3 7/6/84 g g, g , . . . . . . . . . . a oo !o eeEss.cxs:) n hI O TEMP.(CCG.F.I
- o. ' A H.T.CCEFF.
~
l~ o. .g a: Id o, - Ig o' S"
'4 I, *' J / /[+ A j ,E i /
r - O k u)
*' No< *g6 ~ $~ ;-J N R'-
Idu; a d I / $ js o / e '8 57 [ . o' 8, o. >g El Id
- o. .
.g a' $1 Ia i
- c. ;g 4 S, g
o< a g,
- g. , , , , , , , . . . . .8, .
0.0 10.0 20.0 30.0 C.0 50.0 80.0 70.0 80.0 30.0 100. 0 110.0
- 120.0 TI!*E(MIN.)
Figure I.79. Transient 8.3: Primary systein pressure, dowacomer coolant temperature, and Heid-rdna heat-transfer coefficient es time la the transient. l l
e' [ - - - - .
. HBR-I.95 Table I.14. Transient 8.3: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CLAD 8.3 7/6/54 1 FLAYS /IN "3 DRT1(IS) = 211.? 'JN ADJUSTEC - ADJUSTED WELD P(F/E) 95%CI % ERR P(IMITIA) 4 'V P(F/E) % ERR yrAIL NTRIALS 1 3.890-06 3.85D-07 9. 99 4.950-05 1.000 3.890-06 392 200000 VESSEL 3.890-06 9.99 DEPTHS FOR INITIAL INITIATION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 MUMBER 0 2327 1638 410 98 17 3 0 0 PERCENT 0.0 56.6 32.8 8.2 2.0 0.3 0.1 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 3.1 4.3 38.3 33.7 9.7 4.6 3.6 2.0 0.8 INITI ATION T-RTNDT(DEC.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 0 3 525 247B 2047 412 98 4 0 0 0 PERCENT 0.0 0.0 0.1 9.4 4a.5 36.8 7.4 1.3 0.1 0.0 0.0 0.0 ARRFST T-RTNDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 0 0 5 7 49 402 ?369 2125 218 0 0 PERCENT 0.0 0.0 0.0 0.1 0.1 0.9 7.8 45.8 41.1 4.2 0.0 0.0 # OF STD DEV5 ABOVE MEAN DELTA RTMDT(FAILURES ONLY) 1.00 1. ?5 1.50 1.75 2.00 2.25 2.50 ?.75 3.00 NUMBER 0 7 15 29 54 71 108 108
. PERCENT 0.0 1.8 3.8 7.4 13.8 18.1 27.6 27.6 f 0F STD DEVS ABOVE MEAN RTNDT(FAILURES ONLY) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1 UMBER 0 0 1 14 41 62 112 152 PERCENT 0.0 0.0 0.3 3.6 10.5 15.8 ? 8. 6 41.3 ICRKTP 2 IACCEL 1 1DLRS a 2 1RTRS = 2 DATE: 10/30/94 TIMS: 00.33.1? CPU TIME: 5 MIN 23 SEC
's e HBR-I.96 HB ROB 8.3
- i i i i _
~
o PLflTC -
~
o LCNGIT.
" ~ ,, a CIRCUM.
b- _ _
~ 'o _
a _ s _ t _ _ n 0 'o "
,. 3
_E_ a - - x _ _ z - - l ,.
'o-I :
1 _
'o _
C : L. _ b-i , , 100 150 200 250 300 350 MERN RTNOT, DEG.F. , Figure I.80. Transient 8.3: Pj { fa) B(a) da vs RINDT, for (2-D, 2-D) and (2-D, 2m) l flaw combinations. I f 1 l i 1
HBR-I.97 IPTS H e PC8 CLa0 8.3 7/6/84 I g . . . . . . . . . 23:2 82:E g - EE
!a=
5 M:s E,. M.:=. 5 S N:E '
,1 !?,!.:E m
g . -
.g -
a 8 3 - - r g . - g i. - g . - g . . . . . . . . . 0 0.1 0. 2 0.3 0.4 0.5 0. 8 0. 7 0. 8 0.9 I ara Figure I.81. Transient 8.3: Vessel wall temperature vs depth in wall (s/w) at various times (t) la transient.
HBR-I.98 IPTS H 8 ROS CLP.0 8.3 7/6/84 n%
!8:!!
0 0.b F 8:! 3 2 8:8lE! ' 3 &!!! t &!# R n:fa i&E -
!!:in !8:!D E - ? 8:!u ! ?:E - \
dQ a 8
~
b - Q
=
a . 2 - H . J B . , , ,
* " =
- so ro a = i, ,l, ,,
! .,s=.c { Figure I.82. Transient 8.3: Vessel wall temperature vs time (t) la transient at various depths in waH (a/w).
ewe *
~
l
; HBR-I.99 DRIFT l
IPTS H B RCS CLr10 8.3 7/6/84 RTNCTO - 0.0 CEGF %l,"J - 0.22 FO - 3.15E19 LCNGIT l i l l s E- . i.,
- l l '
.l !.
- g. .
E G d i E g. - L 0 G g , - i d .
')
R , g %, .
~
b a to a m e so ao io ao e im its 1: TIME Figure I.83. Transient 8.3: Kg vs time (t) for vasions depths in wall (a/w). i l l l I
i . HBR-I.100 CRITICRL CRRCK CEPTH CURVES FCR IPTS H B RC8 CLPD 8.3 7/6/84 RTMDTD - 0.0 CEGP %CU - 0.22 %N! - 0.8C FC - 3.15E19 LCNGIT
, , , , , , r - , ,
x
" x o .
x , u y d - " x , x y .~ " Yt , x d * . ,, x
=
300......... 2m 9 l kd - .
- x d -
. ,o*. , .
d - y x,,,xxxxxx**j
,x xxx x,x x#
x xxx x xx x x x n x ,
,x x j
d - J' , x x wx . x f
- d -
x r- x r - x x=xxxxx*,, 3
. .g o , , , ,
a 10 m m e so so ro ao go gao 333 3; TD'SIMINUTES! X. 2-D flaw, K, - ru
+, 2-m flaw, K, - Ku
- 7. WPS (warm prestressing) i Figure L84. Transient 8.3: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY~ flu-ences.
l l l
~i d HBR.Lloi 9 o ' O O C.P0 6.5 7pg,g4 8
e4 i a,, o PRES 9.gzgg, j ,' ,
-E IE"P.ICC;'r y 3 a'
- H T.CDCyr, ' ,
h- , . 8 g4
- e. ,
R' Q- 35
- g. .
O, ,
- 2
_ g- t a . e. 7 O
<n Ng- s2- l Mp9 n 2 I .x u-o sf; /,
e.
/. 5 a- x.
O,
, g. 3
- g. .
=
- a. r g- m
,a 9'
a 8 o' . @' ao d., 5a J.,
"bNL. ,
- a 4.. ... ,;., ,; , ,, . .
' "* cDeA't*4Q% c%, ,,
l
. . . ~
5 . HBR-I.102 Table I.15. Transient 8.5: Smarnary of digital output, including unadjusted P(FlE) ' values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CL4D 8.5 7/6/84 1. FLAWS /IN'*3 DRTN(IS) 111.2
----U N A DJUSTE D -4DJUSTED WELD P(F/E) 9510I SERR P(INITIA) 1 'Y P(F/ E) SERR NFAIL 4 TRIALS 1 9. 47D-0 6 7.94D-07 9.37 1. 03D-04 1.000 8. 47D-06 433 40000 VESSEL 8.470-06 9.37 DEPTHS FOR INITIAL INITI4 TION (11) 0.09 0.25 0.46 0.67 0.90 1.16 1.44 1.74 2.08 N UMB E'4 0 3137 1554 400 11? 13 3 0 0 . PERCENT 0.0 50.5 29.5 7.6 1.9 0.1 0.1 1.0 0.1 TI'4ES Or FAILutE(MINflTES) 0.0 10.0 ?1.0 30.0 40.0 50.0 50.0 '0.0 80.0 90.0 100.0 110.0 121.0 PERCENT 0.0 0.0 5.1 21.5 25.2 20.1 7.4 8. 9 5.3 ?.5 0.9 1.?
INITILTION T-RT1DT(7EO.F)
-110.0 -75.0 -53.0 -?5.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 0 13 1115 2673 1475 536 250 6 0 0 0 PERCENT 0.0 0.0 0.2 19.2 44.1 24.3 8.3 4.1 0.1 0.0 0.0 0.0 A3 REST T-RT1DT(DEG.F) -50. 0 -?5.0 0.0 25.0 50.0 75.0 101.1 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 1 0 0 0 3 23 104 2110 2774 411 1 0 PERCENT 0.0 0.0 0.0 0.0 0.1 0.4 5.4 37.5 49.3 7. 3 0.0 0.0 # 7 STD DEV3 ABOVT MEAM DELT4 RT1DT(FAILURE 3 ONLY) 1.10 1. 25 1.50 1.75 2.00 2.25 2.50 ?.75 3.00 NUMBE3 0 0 15 47 57 96 104 104 PERCENT 0.0 0.0 3.5 10.9 15.5 2?.? ?4.0 ?4.0 # OF STD DEV3 A90VE 1EAM 9T4DT(F4ILff9t.3 ONLY) 1.00 1.3 1.50 1.75 2.00 ?.25 2.50 2.75 3.01 1 UMBER 1 1 3 ?2 47 79 141 141 PERCENT 0.0 1.0 0.7 5.1 10.9 19.2 32.6 3?.5 IO MKTP ? I400EL 1 1DLRS 3 1RT93 a 3 74TE: 10/11/94 TI'iE t 30.31.43 "PU TIME: 1 1IN 15 SEO l
l l l
e s HBR-I.103 HB R08 8.5
- i i i i
~
a PLATE ~ o LONGIT.
~ ~ ,, a CIRCUM.
o N
'o a - -
s , t - -
o _ _
a g Z - a . .
'o 'o-i , , #a.
e 100 150 200 250 300 350 MERN RTNOT, DEG.F. w Figure 1.86. Transient 8.5: hj f fa) R(a) da es K7N57, for (2-D, 2-D) and (2-D, 2m) flaw combinations.
. HBR-I.104 IPTS H B RC8 Ct.80 8.5 7/6/84 g-W:a' j!:E g -
c h_"=_
!aa a n:
E N: 3 "1 . p E"..
!lia:n g .
E b g . g . g . i f g . . . . . , , 0 0.1 0. 2 0.3 0. 4 0. 5 0. 8 0.7 0. 8 0.3 1 tw ! Figure I.87. Transiest 8.5: Vessel wall temperature vs depth in wall (s/w) at various ! times (t) in transient. t I l I i I l e m-= 6-
- HBR-I.105 IPTS H 8 RC8 CUK) 8.5 7/6/81 e
E , , , , , , ,
!8:a 8 8:E E s F 8:!!! -
88:2 R -. 0 8:m p gg -
!8:in
[8:!D v 8:!i;! 0 ' li:E ' b' E '
. hf \v x R
g . R -
- g. .
g , . , , , o to m m o so e m so so im tra is tit'E Figure I.88. Transient 8.5: Vessel wall temperature vs time (t) la transient at various depths in waH (a/w).
HBR-I.106 IPTS H B RC8 C:.AC 8.5 7/6/84 RTNCTO - 0.C CEGF %CU - 0.22 F0 - 3.15E19 LCNGIT H , , , , , , , , ll Ili l: 3- l l g. x ,
/
l m Y s it ' - m 25 - 52 l l g , . o to m m e so e n so so ion iso is TIME Figure I.89. Transient 8.5: K ivs time (t) for various depths in wall (a/w). I
s . HBR-I.107 CRITICPL CRPCX CCP m CURVES FCR : PTS H 8 RC8 CLSD 8.5 7/6/84 RTNOTO - 0.0 CEGF %C'J - 0.22 %NI - 0.8C FC - 3.15E19 LCNGIT r I I I y I
- I U -
x .h .i i x o 4 3 - x , . 2 a - j .. x o . h,a " *
.*****........34...........l.., 4 -
d *
* . / " ...* x U - ,x ,,s x x****,j .
x ,4++++++++ ,xX 1' 7 *+ + x x,,x x* p+ x++ xx a - + x",x .
+ x xl x d - x 2 .
x ,s*x x ,s
, Nxxx"***9" , , , , , , ,
o to a :n to so so to so so tm iso :: TIME (!1INUTESI X,2 D flaw, Ki - Ki, e,2 m flaw, K i = 220 MPa d
+, 2-m flaw, K i = K, i V, WPS (warm prestressing) 0,2 D flaw, Ki - 220 MPa M Figure I.90. Transient 8.5: Critical-crack-depth curves for weld 2-273A based on -2, values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY flu-ences.
l
) .bon ***
HBR-I.108 a o IPTS H B PCB C' A0 8.6 7/6/84 g h a
- j. . . , . . ,
a - h o u o PRESS.(KSI: g 3
$" o TE,'"P. (CEG. F. : 74 ='
o, 4 H.T.CCEFF. - k'j sj 4, o, c' 8- l. p ,b
- g. , s -
a-
/ "g
_l' x-
-Y .:
i E g" ':h
? h3-s, m g = 5 /
E H*' / g j 9 : ~ .:
,, 8 o , e N' , "d aj j
- N.
x- ..d l -
, ,d
- o. ,
ei oJ s. ,8 d , o.o so.o m.o m.c e.o so.o m.o m.o m.o so.o sco.o iso.c im.o TIME tMIrl.1 Figure I.91. Transiest 8.6: Primary system pressure, dowacomer coolant temperature, and Duid-film best-transfer coefncient es time la the transient. l l t 1 1
- D m e %*g. my.w g4. ,p- p.-g.W emw % g g.gg..e . . , , ,p ,. p
. s . HBR-I.109 J Table I.16. Transient 8.6: Sa==ary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and 4
T - RTNDT values at tip of crack corresponding to initiation and arrest events IMS H B ROB CLAD 8.6 7/6/84 1 FL443/I1 oe 3 DRTN(IS) a 211.2
'J44 DJUSTED - ADJtJSTED .
WELD P(F/E) 9510I SERR P(INITIA) 1 'V P(F/ E) TERR NF4IL 4 TRIALS 1 1.560-02 1.31n-03 S.40 1.87D-02 1.000 1.56D-02 530 20000 VESSEL 1.560-02 S.40 DEPTHS FOR INITIAL INITI4 TION (I1) 0.00 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 1tNBER 30 414 1.38 45 5 3 0 0 0 PERCENT 4.7 64.9 ?1.6 7.1 1. 3 0.5 0.0 0.0 0.0 TI1ES OF F AILUR E(MI'IUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 1.3 4.7 9.6 11.1 15.7 16.4 12.5 12.6 3.1 7.9 INITILTI'1N T-RTMDT(CEO.r)
-100.0 -75.0 -51.0 -?S.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1'JMBER 0 0 27 179 327 302 294 70 0 0 0 0 PERCENT 0.0 0.0 2.3 1 's . 9 27.3 25.2 ?4.5 5.9 0.0 0.0 0.0 0.0 ARREST T-RTNDT(*JEO.F) -50.0 -?5.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 2?5.0 250.0 1 UMBER 0 0 0 0 0 0 1 100 405 140 13 0 PER;ENT 1.0 0.0 0.0 0.1 0.0 0.0 0.1 14.9 60.5 ?0.9 3.4 0.0 IORKTP s ? !4COEL 0 4DLRS : 1 1RTRS 0 otTE: 10/30/34 TIME: 00.43.21 OP'J TI1Et ') MI1 41 SE':
HBR-I.110 HB R08 8.6
- i i e i _-
_~ _ l e PLflTE
~ ~
o LCNGIT.
,, a CIRCUti. ~ 'o _ 'o w .
s . t .
' 'o _
o g z - a .
'o #c ?
Y o i , , , 100 150 200 250 300 350 MERN RTNOT, OEG.F. Figure 1.91 Transient 8.6: Aj f.fa) B(a) da es RTNDT, for (2-D, 2 D) and (2-D, 2m) flaw combiantions.
e . HBR-I.111 IPTS H 8 RCS CLP0 8.6 7/6/84 IIg
- U-@
h
! N'$
3 f:s g - t R.:x nr. i55 ii!!!! B h*h 8 , R 2 r R . g . . . . . . 0 0.1 0. 3 0.3 0. 4 0.5 0.8 0.7 0. 0 0. 3 : R/M Figure 1.93. Transleet 8.6: Vessel wall temperature vs depth la wall (a/w) at various tinees (t) In transient.
HBR-I.112 AFT
!."TS H 9 RC8 CLAD 8.6 7/6/84 8 - - - -
B 8:!!! t a ' l!:in
. 8e -
78:i!!
"t i8:111 k8:E 5 -
8 ll'IE o a.Ws L
? 8:N!
2[ t1 ti:5
, 5\
- 1,' l -
\ .L_, , l \ .
3; \s .
. ~
s 2; . U 6 iL L g_ . . . . . . o sc ao so e a ao to ao a tm its is fir'E Figure I.94. Transient 8.6: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w). l l
o . HBR-I.ll3 IPT3 H 8 RCD C:.PD 8.6 7/6/84 RTNOTO - 0.0 CEGF %CU - C.22 FC - 3.15E19 LCNGII a , , , , , , , , ,
~
I I* t:
- g. .
g, . s 3 - 5 1 9 5 ;- G L E G E - h J . R . l o to a z e so a m a e iao sia t T!nc Figure I.95. Transiest 8.6: K ivs time (t) for various depths in wall (4/w). 9
a
. o HBR-I.ll4 CRITICAL CRACK CE*TH CURVES FCR IPTS H B RCS JC' D 8.6 7/6/84 RTNOTC - 0.0 CE3F %CU - C.22 %N: - C.8C FC - 3.15E19 LCNGIT I T I N C 0 - x 9 e -
8 +8 , 5 . x
#o ,'
e
. e d
0 * -
.
- e
- a . . m p a , .
7 . x . 2, g4 - . o y #
+
c c g.o..,,m ,............' I x . a
. ... 8 . *..',.**.a*,.. . l 3 . . I J g p* - . x . c , ,
a *
*..e*,.*.
a a e d -
- G e** - -
e e aft
- t a.f.*
y . > o ,A' - a x v 9 Ic d - * - 10 e x SP
, .h=N9esessassesseseeceGG999999999999999999999999999999!
o no a m e so ao to so so too iso is Tir'E(MINUTES) X, 2 D Haw, iK - K,i 0,2-m Daw, K i - Ku
+, 2-m Haw, K i - Ki, O,2 D naw, K i = 220 MPa 8 l
0, 2 D daw, K i = K, i 7. WPS (warm prestressing) l Figure 1.96. Transiest 8.6: Critical-crack-depth curves for weld 2-273A based on -2a i talees of Kw Kw and ARTNDT, mesa values of all other paranneters, and 32-EFPY i fleesces.
1
. IIBR-1.ll5 a a IPTS H 8 RC8 CMD 9.4 7/8/84 g
- j. g, , , , , , , , ,
s -
*o . o PRESS.(KSf1 '4 $1( o TE"P.(CEO.F.I Id o' ' & H.T.CCEff. "
f- e. ,g a: . I-
- e. ,e
. (- a g.
- o. g N1 ,
q ' w ' , M
~
h h. I a-
- d
*< -Ja N' I' O'
- d. .g g a.
N' Id
- o. ,3 o N "d g.
8- "d ( d ' .oso.o o so.o z.o c.o so.o so.o ro.J so.o m.o 100. 0 110.0 6:o.0 T!Pitf11N. ) Figwe I.97. Transient 9.4: Primary system pressure, downcomer coolant temperature, and fluid-film best transfer coefficleat es time la the transient. t
a . f HBR-I.I16 Table I.17. Transient 9.4: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to laitiation and arrest events IPTS M B R085 CLAD 9.4 7/6/34 1. FLAWS /INee3 DRTN(IS) s ?11.?
'JN4 DJUSTED -4DJUSTED WELD. P(F/ E) 9510I SERR P(INITI4) 1 *V P(F/E) (ERR N' AIL NTRIAL3 1 3.050-06 5.140-07 16.86 3.540-06 1.000 3.050-06 135 200000 VESSEL 3. 05D-06 16.96 DEPTHS FOR INITI4L (NITIATION (11) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.7u 2.08 NUMBER 0 42 54 37 14 9 1 0 0 PERCENT 0.0 26.3 34.4 23.6 3.9 5.1 13 0.0 1.0 TIMES OF F4ILURE(MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 40.0 90.0 '100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.7 8.1 9.9 15.2 19.1 6.7 5.9 16.3 INITI4 TION T.RTNDT(DEO.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 t75.0 100.0 NUMBER 0 0 3 36 91 15 6 2 0 0 0 0 PERCENT 0.0 0.0 1.9 12.0 56.1 15.1 1. 7 1.2 0.0 0.0 0.0 0.0 4RREST T-RTNDT(Or,G,F) -50.0 -15.0 0.0 15.0 50.0 75.0 100.0 125.0 150.0 175.0 100.0 215.0 250.0 NUMBER 0 4 15 1 0 0 0 7 ? 0 0 0 PERCENT 0.0 13.9 $1.7 3.4 0.0 0.0 0.0 14.1 6. 9 0.0 0.0 0.0 # OF STD DEVS AB0VE MEAN DELT4 RTNDT(F4ILURES ONLY) 1.00 1. 25 1.50 1.75 2.00 ?.25 1.50 2.75 3.00 N UMBER 5 6 13 14 15 ?3 11 19 PERCENT 3.7 4.4 9.6 17.6 13.3 17.0 13.3 70.7 # OF STD DEV4 4 ROVE '4EAN RTNDT(F4ILURES ONLY) 1.00 1. ?$ 1.50 1.75 2.00 2.25 2.50 2.75 3.00 NUMBER 3 4 9 19 19 79 19 fu PtRCENT 2.2 3. 0 6.7 14.1 14.1 21.5 10.7 17.9 IORETP ? I4CCEL e 1 1DLRS e 1 1RTRS e 1 04TE: 10/31/14 !NE: 23.01.09 0F'J T N E: 5 M!1 19 SE N . -. _
e a HBR-I.117 l 1
~
HB RDB 9.4
- i i i i :
) ~ ~
o PLATE , o LCNGIT. .
. CrRCUM.
D E
~
3 n
'o ta .
N . c .
' 'o-y :
o - g : :
- a .
'a 'o. :
f , , o 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figure I.98. Transiest 9.4: hj f.fa) B(s) da vs RTNDT, for (2-D, 2-D) sad (2-D, 2m) flaw combinations.
=
a
> -, j r . }
HBR-Li18 IPTS H B RC8 C;.FC 9.4 7;g,g4 I . , - , , ' re-
;l'e w e f;5' .m 3 -
- lLEYS -
arm V }$$ 3 - !$$. p Em '
- a$$ = iis.=
8 - .
-Q .
h YM . H R ; - 2 ,- . B
' Et d. i, *. . , *1 de i, ,
a/w Maure I.99. Transient 9*.i.* y'58'l wall temperature es depth in wall (,/*) at earlous times (t) in transient. a
HBR-I.119 DR IPTS H 8 RC8 C'JD 9.4 7/6/84
] , , . , , , . , !8:M 8:8e 3 - l8:8t'.
r
! 8:8ll -
58:ifi t 8:in
- 8:ii 3
P 8:!E -
!8:m I :W 6 - ?l0f4 ; ;; g -
gt - 8 , N ' ' Na - x % ~. s N g . . . g . g . g . . . . . . . . 0 10 23 30 W 50 80 70 80 50 133 110 li
?!rt:
l l Figure I.100. Transient 9.4: Vessel wall temperature vs time (t) la transient at various
- depths la wall (a/w).
l 1 l l
l HBR-I.120
* ~
IPTS H 8 RCS Cim 9.4 7/6/84 RTNOTO - 0.0 CE;F %CU - 0.22 FC - 3.15E19 LCNGIT
. l E
r;.;g Ll:19 b!b E - m
'N I _
25 - E E2 R . R , - l . .
, o to a m e a e 7. . . 3. iw ,,
T!?it
, Figure I.101. Transiest 9.4: K ivs time (t) for various depths in wall (s/w).
l l l l i
* * * - = . - . . . . . . _ , . . . . .
O a s HBR-I.121
~
CRITICAL CRACK CEPTH C:JtvEJ FCR IPTS H 8 RCS CLAC 9.4 7/6/84 RitOTC - C.C CEOF %CU - C.22 a
- l! = 0.80 FO - 3.15E19 LCNGIT o x 3 . . o ? -
o , ,,,m ...***' 3 . . o x ..* . x
+ +
y
+ +
g . .. . o x .
+
x +
. +
gy .
., o x +
a.,,,.
.*+. .,....'**{......=,, , .
x *
+
y . o x + .
+
o x +
+
y . o g + - x xx x x d " x*xxxxxxxxxxxxxxxx] v
,A , , , , ,
a o so a so e so so tu so so tm ato tz tit'EtMIPAJTES) X,2 D flaw, Ki - Ku n. 2-m flaw, K - 220 MPa d
+,2-m flaw, Ki - Ku V, WPS (warm prestressing)
O,2-D flaw, iK - 220 MPa 8 l l Figure 1.102. Transleet 9.4: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw sad ARTNDT, mesa values of au other parameters, and 32-EFPY
! noences. l 1 l l
e e HBR I.122
~
a a IPTS H B ROS CLAD 9.5 7/6/84 g g, g. . . . . . . . . . .
.a an a ppg 33,gg3;) g kl ( o TE.9P. (CE3. F.1 Id o' a H.T.CCETF.
- 8 '
d a: / a' {, 74 N E
- . L F _ x :
h' ~: - g" . y si E
- 8. O .
e- '8 I g' ;
- o. N; i- 2 :=
2: Id a$ "'}1
? 'g "d
l- - a: g
$" "d a,
a g, ,8 d, . . . . . i i i i d . 0.0 10.0 21.0 30.0 40.0 $0.0 E1.0 70.0 80.0 90.0 100.0 110.0 120.0 TINCIMIN.) Figure L103. Transiest 9.5: Primary system pressure, downcomer coolant temperature, and fluid-film heat-transfer coefficient vs time la the transient.
HBR-I.123 99,4 Table L18. Transiest 9.5: Lamary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CLAD 9.5 7/6/94 1 FL4t4S/I4 * *3 ORT 4(Is) ?11.2 UNADJUSTED -tD.PISTED
'4 ELD P(F/E) 95tCI SERR P(IMITIA) N 'V P (F/ E) SERR NFAIL NTRI4LS 1 4.72D-05 1.28D-05 27.18 5.35D-05 1.000 4.72D-05 52 ?00000 VESSEL 4.72D-05 ?7.19 DEPTHS FOR INITIAL INITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 0 27 13 15 3 1 0 0 0 PERCENT 0.0 45.8 22.0 25.4 5.1 1.7 0.0 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 R0.0 90.0 100.0 110.0 I?0.0 PERCENT 0.0 0.0 0.0 0.0 0.0 1.9 0.0 9.5 25.0 13.5 25.3 ?1.2 INITI4 TION T-RTMDT(0EG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 N UMBER' O 1 3 29 ?3 3 ? 0 0 0 0 0 ERCENT 0.0 1.6 4.9 47.5 37.7 4.9 3.3 0.0 0.0 0.0 0.0 0.0 ARREST T RTNDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 1 6 0 0 0 S 0 2 0 0 0 PERCENT 0.0 11.1 66.7 0.0 0.0 0.0 0.0 0.0 22.2 0.0 0.0 0.0 ICRKTP s 2 I4CCEL = 1 NDLRS 0 1RTRS s 0 DATE: 10/30/34 TIM E: 30.48.53 CPU 7IME: 5 MIN 27 SEC nee'-
4 % e
e a HBR-I.124 AR HB ROB 9.5 _ i i e i :-
- ~
a PLATE
~
o LONGIT. ~ a CIRCUM.l
'o - i i
M
'o ta . _
N w _ _ a 'o -
- / _:
o - c _ z _ _ a _ _
'o~
i ~
~$
e o - f a-100 150 200 250 200 350 MERN RTNDT, DEG.F. Figure I.104. Transient 9.5: Pj [ /ts) B(s) da es RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. t i
.p . >- e4&=-=* - ^ = * * * - *- - = = * - - = = =
HBR-I.125
! PTS H B RC8 CUO 9.5 7/6/84 ,
M-a > i
- l 9:E 81:E l 8 - !?? - ' !b!
- t. E E g . a n.= .
- x Pui".I g . .
g$ M c k R l g . . E t 1 a t a a a 0 0.1 0.2 0.3 0. t 0.5 0. 5 0.7 0.8 0.3 3 tva Figure I.105. Transient 9.5: Vessel wall temperature es depth in wall (a/w) at various times g) la traasient. (
, e - -
-~ _ - _ _ _ ,
l HBR-I.126 M RA IPTS H S RCS CLT 9.5 7/6/84 g , . . . . . . I8:8n 88:8s F 8:!U R A S:8lB - 5 8:19: E 8:g 0 8:m a - P 8:!E -
!8:ja fj:s 4 oSe B !i:Te ~
g x -
- h. R -
N ~
~
R g . - I g . - l , . . . . . . . . -
, ,, , . . . . n . . 2. iin a TIMC Figure I.106. Transient 9.5: Vessel wall temperstwe vs time (t) in transient at various
! depths in wall (a/w). l l l r l l
. HBR-I.127 IPTS H 8 ROS CLAD 9.5 7/6/04 RTNOTO - C.0 CEGP 7.CU - 0.22 FO - 3.15E19 , , ,
LCNGIT H , , , , , IP ' llih a- y
, i k R
5 o l .
-1 yg .
5 w 7 g . g . ^ f s o to a z e so en tit'E to so m too Figure I.107. Transient 9.5: K ivs time (t) for various depths la wall (a/w). ato :
~
HBR-I.128 DRAFT ' CRI"* CAL C8RCK CEPTH CURVCS FCR IPTS H S RC8 CLAD 9.5 7/6/84
~
RT?lDTO - C'.0 CE P %CU - 0.22 %NI - C.80 FC - 3.15E19 LONGIT y x 1 3 . . . t.a' g . o x e . .aos+, . f . x
*,.=*,,. .
g . .
" x ,,..' . . + . x . . o x / .
. , .. +
+ * +
gy . u x + .
* + . i ..'..... n..n***,,.....+, +
a...***......*; g . t -
+ +
y . o I , .
+
of o
; . ox : .
ox x o 2 . w . x
****x xx xxxx,,,,,,,,xx, o to m :n e so ao to so so .m sto ::
TIME (MINUTES) X,2.D flaw, Ki - Kw 8,2-m flaw, K i = 220 MPa 8
+,2-m flaw, Ki = Ku V, WPS (warm prestressing)
O,2-D flaw, Ki = 220 MPa M Figure L108. Transiest 9.5: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and MTNDT, mesa values of all other parameters, and 32-EFPY lleences.
' ~ - HBR-I.129 DRAFT
- a IPTS H B RC8 CLf!D 9.6 7/6/84 g -
g g . . . . . . . . . , w au o PRESS.(KS!! 'M o TE"*.(CE3.F.1 Id 3R a' a H.T.CCEFF. - l- q'.{\R .g a g, s
=. 'e .. s- a g. .. <g ,lI -\ : 74 * ' D; w .
ba' cs o . g5 - B N- d%. . 74 ui
;- . a =! E $=. -
s
'd .I N- .. .
R "d
.. .g o' k' id -
g- , 3 :n
'd 8.1 0, - 8
- e. . s_ . , . . . . . , , . .. .
o.o te.o no m.o e.o so.o so.o ro.o te.o so.o too.o iso.o ano TIME (MIN.) Figure I.109. Transiest 9.6: Primary system pressure, downcomer coolant temperature, and fluid-film best-transfer coefficient vs time in the transient.
~ . . . - , .
1
.
- l HBR-I.130 -
Table I.19. Transient 9.6: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B RGB OL4D 9.6 7/6/34 1 FLA'4S/Ig e e 3 D9TN(IS) ?11.2 UN 4 DJUSTED - 4DJUSTED
'4 ELD P(F/ E) 9550I % ERR P(INITI4 ) 1 *V P(F/E) % ERR NFAIL NTRIA LS 1 1.57D-09 5.040-09 32.22 8.080-03 1.000 1.57D-08 37 ?o0000 VESSEL 1.570-03 32.22 DEPTMS FOR INITI4L INITI4 TION (I1)
O.09 0. 25 0.45 0.57 0.90 1.16 1.44 1.74 2,08 NUMBER 0 47 70 34 27 9 4 0 0 PERCENT 0.0 24.6 36.6 17.8 14.1 4.7 2.1 0.0 0.0 TI'4ES Or FAILU9E(MIN'lTES) 0.0 10.0 ?0.0 30.0 u0.0 50.0 50.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 ?1.6 13.5 37.3 24.3 INITI4T'.ON T-RT1DT(SEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0-400.0 125.0 150.0 175.0 200.0 NUMBER 0 0 0 46 117 42 19 2 0 0 0 0 PER0ENT 0.0 0.0 0.0 20.4 51.5 18.6 9.4 0.9 0.0 0.0 0.0 0.0 ARREST T-RT4DT(0EO.r) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 I?5.0 150.0 175.0 200.0 ??5.0 250.0 1'149 ER 0 3 37 1? 1 3 44 77 7 0 0 0 PERCENT 0.0 4.? 19.6 5.3 0.5 1.5 ?3.3 u0.7 3.7 0.0 0.0 0.0 8 or STD DEV3 ABOVE ME%N DELT4 RTMOt(FAILURES 04LT) 1.00 1. ?S 1.50 1.75 ?.00 2.?S ?.50 ?.75 3.00 NUM9ER 0 0 0 0 2 3 12 20 PERCENT 9.0 0.0 0.0 0.0 5.4 9.1 32.4 54.1 - 9 SF STD DEVS A99VE ME44 9TMDT(FAILURE 3 ONLY) 1.00 1. ?S 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1'J49 ER 0 0 0 0 2 5 3 ?2 PER0ENT 0.0 1.3 0.0 0.0 5.4 13.5 21.5 59.5 IC RKTP ? I C EL 1 4DL93 5 19TRS : 5 % *E: 10/10/33 TIME: 00.5?.43 OPU TIME: 5 MIN 13 SEO
- HBR-I.131 9.6 HB ROB
- i i i i :-
o PLATE o LONGIT.
~ ~ . a CIRCUti. 'o-M 'o.
u - N L,,, . -
~n ' 'o _ _. ,.~ 5 3
a - - c . . z - - a . _
'o-i o-Q t I t t 100 150 200 250 300 350 MERN RTNDT, DEG.F.
Figure I.110. Transient 9.6: hj [ fa) B(s) da vs RTNDT, for (2-D, 2-D) and (2-D, l 2m) flaw combinations. l 1 i
l l HBR-I.132 IPTS H 8 RCS C:JO 9.6 7/6/84 l . , , , , , MA l ji:s o l:s
- g. . 545 l
hs:s N 88.00 "
!IN a - -
ca cs d 1 R - l . l . l . l S - . . . . , , , , t 0 A1 12 A3 At 15 A8 47 18 0.3 1 l atu Figure I.111. Transient 9.6: Vessel wall temperature vs depth in wall (a/w) at various i times (t) in transient. i l l l l l l
HBR-I.133 IPTS H B RCS CLP.D 9.6 7/S/84 l , , , , i8:8?!
- 8:E!
l8:83
$- 8 8:8la -
38:191 E 8:i# l8!: R p 8:E -
!8:in g o.sn N 08M 3 -
1 i f.E -
\ \
CR a 8 ~ b wR - g . g . g . g , , . . . . . . . . . o to a so to so ao ro ao so too no u TIFE 1 Figure I.112. Transient 9.6: Vessel wall temperature is time (t) la transient at vanous depths in wall (a/w). l I i I i l l 1
l _ l
- " 8 i HBR-I.134 IPTS H B RCB CLPD 9.6 7/6/84 LCr4 GIT )
RTf4DTD - 0.0 CE3F %CU - C.22 FC - 3.15E13 , , , H li ; i 1, , ! E-il - 3
~
8 a N d 5 3 25 2 - . g . R 8
~
o to a z e so e TIPE m l a m tm it: is Figure I.113. Transient 9.6: K ivs time (t) for various depths in wall (a/w). l t
HBR-I.135 CRITICAL CRPCX CEPTH CURVES TCR IPTS H 8 R08 CLP.0 9.6 7/6/84 RTNOTC - 0.0 CE*.T %CU - 0.22 %?l! - 0.80 FC - 3.15C19 LONG!! o x X
. o x .
d - X o x
- o .x -
X 5 o I . a - X
, . * ., o x _
l e***,,,.......
**'*....*y..M 2 .
bd X X j . o 3 - X
- X x
e e - "w -
" **x x x, 6 -
P g . o , o a
, , s, , , , , , , , ,
0 10 E E W $0 80 70 00 30 133 110 1: tit'E!M!PrJTES) X,2 D flaw, K i - K, i O,2-D flaw, K i - 220 MPa M V, WPS (warm prestressing) j Hsure L114. Transiest 9.6: Critical-crack-depth curves for weld 2-273A based on values of Kw Kw and MTNDT, iness values of all other parameters, and 32-EFPY l g I
HBR-I.136 9 = IPTS H S RC8 C!.PD 9.9 7/6/84 s h" $, ' - . . . . . . . .
,a
( 9o o PRESS.(KSI) '4 39 o TEr.P. tocc.r. : ." a'
<\
- H.T.cccrr.
b' al' .g
- g. '
a
\
O. e
.- g-l-
ts l" .
!s
_ii
=
J S.; ! 3 e' co . nd - R-
,: - dd- > . .: s 8
N .-
^ , ~
G,
~
AO NT O,
's o' I" - a
- g. -
O, n 8- a O, 9
,g a s. . . . , , , , . . . . g ,
0.0 10.0 20.0 30.0 10.0 50.0 80.0 70.0 a0.0 30.0 100.0 110.0 120.0 TIMCtMIN.) Figure 1.115. Transient 9.9B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient vs time is the transient. l I
- i l
t i
HBR-I.137 Table I.20. Transient 9.9B: Su===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IFIS H B ROR CL4D 9.9 7/6/34 1. FLWS/I1"3 09TN(Ii) ?11.2
'JN ADJUSTED - tDJtjsTED WELD P(F/ E) 951CI SERR P(INITI4) 1 F/ P(F/ E) SERR NFAIL NT914L3 1 2.45D-05 9. 23D-06 37.72 4.90D-05 1.000 2.450-05 27 200000 VESSEL 2.450-05 37.72 DEPTHS FOR INITIAL INITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 1 UMBER 0 30 11 12 1 0 0 0 0 PERCENT 0.0 55.6 20.4 22.2 1.9 0.0 0.0 0. 0' O.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.0 7.4 3.7 11.1 11.1 14.3 ?5.9 15.9 INITI4 TION T-9TMDT(DE0.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 ?00.0 NUMBER 0 0 3 31 19 11 9 6 0 0 0 0 PTRCENT 0.0 0.0 3.9 10.3 ? 3. 4 14.3 10.4 7.8 0.0 0.0 0.0 0.0 ARREST T-9TMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 0 9 2 0 3 2 29 9 0 0 0 PERCENT 0.0 0.0 18.0 4.0 0.0 0.0 4.0 58.0 16.0 0.0 1.0 0.0 ICRKTP = 2 I4CCEL = 1 NDL95 3 0 197RS 0 D4TE: 10/31/34 TIM E: 22.13.06 CPU TIME: 5 MIN 29 SEC
HBR-I.138
, HB ROB 9.9
_~ o P!.PTE ~
~
o LONGIT.
~ ,, a CIRCUM. 'o ~
M
'o ~
E : w N - t . c 'o _
,.~ E
_ i o - _ c _ z - a . r o e o f Q f f I t 100 150 200 250 300 350 MEF.N RTNOT, DEG.F. Figure I.116. Transient 9.9B: iPj [fa) B(a) da vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations.
i
~
HBR-I.139 IPTS H B P.08 CLPD 9.9 7/6/84 l . . . . .
. g .,
Wo?
!!:s a -
- :E Ii"i -
z [ iN:s ta #: n.= a - 8 E:s
- 15:2
^6 . , .
6 - y8 S . i Ea g . . g . _ g . . . . . . 0 0.1 0. 2 0.3 0. t 0.5 0.0 0.7 0. 8 0. 3 1 R/M Figure I.117. Transient 9.9B: Vessel wall temperature vs depth in wall (a/w) at various times (t) la transient. l l
HBR-I.140 IPTS H 8 RC8 C.P.D 9.9 7/6/84 l 8:8n 88:ss F 8:8? 3
# 8:#! - ,N 3 8:lii x\ f 8:in \ N 8:!E a -
p 8:!E -
!8:in !8:!D \ ?8:%!
6 -
;;;g - \
cl a 8 a 5R - - R - N g . 2 - g . . . . . . . . o to a m e a e to so m := ::: : TItI Figure I.118. Transient 9.9B: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w). i i
HBR-I.141
! PTS H 8 RC8 C:.P.C 9.9 7/6/84 RTNCTC - 0.C CEGF 7.CU - 0.22 TO - 3.15E19 LCNG!!
i g . I. 3 g .' R - x ' R ~ 8 - - E o io m x e a e m so so im sie is Tire Figure I.119. Transient 9.9B: K ivs tiene (t) for various depths la wall (a/w).
' ~
HBR-I.142 BRAFT CRITICPL CRf!CK CEPTH CURVES PCR IPTS H B RC8 CLAD 3.9 7/6/84 RTNOTC - 0.0 CEOF %CU - 0.22 %NI - 0.80 FC - 3.15E19 LCNGIT x C ge D' s - E e-
+c 7 x +Q x + - 'P x + 0 - +
X Q
+
g o x o.
, c' . + + ,
j .. . , x # -
* + +
x ; , . aos * * , , . . . . . * * : g,, -
. ., x.....,,...** . - * ...,......**...... x * + * +
g - x + .
+
x + j
+
I x . a - f ,x .e - x + x . t x .+ d - h ,x + - f x d - t 5 -
" w *w x x 3xxxx****.
Xxxxxxxxxxxx%xxxxxxX*x o to a ao e so ao 70 so so to tio n TIMElMI?CTES) X, 2-D flaw, Ki - Kr. O,2 D flaw, K i - 220 MPa 6
+. 2 m flaw, Kg = K, i v. WPS (warm prestressing) 0, 2-D flaw, K i = K,i Figure I.120. Transiest 9.9B: Critical-crack-depth curves for weld 2-273A based on -2a values of Ks Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY fluences.
I l I
BRAFT HBR-I.143 a o IPTS H B RC8 C'80 9. C 7/6/84 g , , , . - s. . ao o PRESS.(KSIl 'n lj o TE*P.(CE3.f.) a o' a H.T.CCEFF. I - f ..
'O R I, g o. ' r! .. g: .:
- g. .
- o. s
;a
_Il. :
$ 0 :: =.
N-a. dR:
/
gi nS
' .: j -
a~ - G I b=. t
'8 R: :
k - R' r3 a. s a' N a l' - .
- o. -
- g. A"
. g, .8 d' '~
d,, n,o
= ( ,,, no no no so.o 70.0 no E8 128 118 8 **8 TIPE! MIN.)
Figure I.121. Transient 9.108: Prissary system pressure, dowin;omer caolant tempera-ture, and fluid-film best-transfer coefficient vs time in the transient.
HBR-I.144 Table I.21. Transient 9.10B: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROR CLAD 9.10 7/6/94 1 FLAWS /IN3 DRTN(IS) ?11.2
'JN 4DJUSTED - 4DJUSTED - '4 ELD P(F/ E) 9550I SERR P(IMITIA) 1'V P(F/ E) 1 ERR NeLIL NTRIALS 1 2.810-05 9. 89'.-06 35.20 5.350-05 1.000 2. 81D-05 31 200000 VESSEL 2. 91D-05 35.20 DEPTHS FOR INITIAL IMITI4 TION (I1) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1,74 2.09 1UMBE9 0 34 11 13 1 0 0 0 0 PERCENT 0.0 57.6 19.6 22.0 1.7 0.0 0.0 0.0 0.0 TI1ES OF FAILURE ('4INUTES) 0.0 11.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 3.0 0.0 0.0 0.0 0.0 6.5 3.2 9.7 9.7 16.1 25.8 19.0 . I1ITIATI14 T-RTNDT(SEG.F1 -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 0 3 36 19 13 9 6 0 0 0 0 PERCENT 0.0 0.0 3.5 42.4 21.2 15.3 10.6 7.1 0.0 0.0 0.0 1.0 ARREST T-RT1DT(SEG.F) -50.0 -?5.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 10M9ER 0 3 11 2 0 0 ? 29 9 0 0 0 'TRCENT S.0 5.5 14.5 3.7 0.0 0.0 3.7 53.7 14.3 0.0 1.0 0.0 10RKTP s 2 IAC0EL : 1 1DLRS 0 13TRS 0 04TE: 10/11/94 TI1E: 22.39.43 O P'J T if E 5 MI4 27 SEO l ~
l l l m.m., ~ . , s . . . .
HBR-I.145 HB ROB 9.10 i i i a o PLflTE
~
o LONGIT. ~
. a CIRC 121. *a- ~ 'a-
_ = 5 : u - D_,, _
/ -
a_ '"*a _
= ,. 3_
a : - c z - - o . - f l a _
- E : 'a-f a
100 150 200 250 300 350 MERN RTNOT, DEG.F. Figure I.122. Transiest 9.10B: hj {efa) 3(a) de n RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. I l i l
- =.... . .- __
HBR-I.146 DIil ,, IPTS H B RCB CUO 9.1C 7/6/84 l I - . . , , , , , TI't !'t i kbN i. 0 i:= pug _ 3 - - t 2:s 5 Le..ao o a:s
!?!:s ;;;.Je b ~
B
-R .
R R R 8 0 0.3 0. 2 0.3 0. t 0.5 0. 8 0.7 0. 0 0.8 WW Figure 1.123. Transient 9.10B: Vessel wall temperature vs depth in wall (a/w) at vari-ons times (t)la transient. i
1
. HBR-I.147 l i IPTS H B RCS C.A0 9.10 7/6/84 8 8:8?!
8 8:814 F 8:8n H _ 8 8:881 -
- N 5 8:lii E 8:i#
- 8:li:
3
! 8:!E - !8:::
Ia:n!
?8:%: !i:E '
3 yQ hi
.b R - -
R N*x g . . g . . s~ . . . . . . . . . . . a to m m e so so ro so so tm sta : TIRE Figure I.124. Transient 9.10B: Vessel wall temperature vs time (t) in transient at vari-ous depths in wall (a/w).
I e HBR-I.148 = uJ u IPTS H B RCS CLP.0 9.10 7/6/84 RTNOTO - 0.0 CEGF %CJ' - 0.22 FC - 3.15E19 LCNGIT H . I g . I l .'l
\
n \ T te To; 25 G R R
~ .
o to a a e e ao io so a too tio 1: TIF~ Figure I.125. Transiest 9.10B: K ivs time (t) for various depths in wall (a/w). l t l
1 HBR-I.149 CRITICPL CRPCK CEPTH CURVES TCR IPTS H B RC8 CLAD 9.10 7/6/84 RTNCTO - 0.0 CE"T . %CU - 0.22 %N! - 0.80 FO - 3.15E19 LCNGIT x a 3 . , g. -
' x ,o * +
g . o x + o -
+
x
+ ' x B 2 .
f -
+ . + +
3 .. . " x ++ o -
. + +
x + , ne**,, .....***: gy . . o x ...***** + o -
+ +
x j . " x , a-
+
I x + e
+
x + a .
,x ,o a-x +
x + e r. x + i
, +
2 .
,x + -
e x 2 . g - m,%x* j *x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxi o to a so e so e to so a too tic 3; TIME! MINUTES) X,2-D flaw, Ki - Ku O,2-D flaw, K i = 220 MPa 8
+,2-m flaw, Ki - Ku 7, WPS (warm prestressiag)
- c. 2-D flaw, Ki = Ku Figure I.126. Transiest 9.10B: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw K,,i and MTNDT, mesa values of all other parameters, and 32-EFPY fluences.
HBR-I.150
- a IMS H S RC8 CLAD 9.117/6/84 g g . . , , , , . g -
1
*o o PPcSS.(KSi! ' :0 . Eh . Tc.v. ices.r.: d a H.T.CocTF.
9]
- lI
~ '8 g-e4 a .. / .,
9' di I
~4
- g. -
9 's _ 11 , i' l Q , f,;
.- o.. .x 4-i N- dI: ' \ 74 2 u ~
- o. E
- g. 's .
N
~
t- .. N - RT Td
- o. .
3 o' N1 :*
- g. ,
~ ^
- o. -
n si
- , a O<
1 . . . . . . . . .
'3 I ' .0 0 10.0 20.0 30.0 10.0 50.0 80.0 10.0 80.0 90.0 103.0 110.0 120.0 TINClMIN.]
l Figure I.127. Transiest 9.11B: Primary system pressure, downcomer coolant tempera-l ture, and fluid-film heat-transfer coefficient vs time la the transient. l i i 1 1 l l l
a .. . . - - . i l HBR-I.151 a Table I.22. Transient 9.11B: hmmary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H 8 ROB OLAD 9.11 7/6/94 1. FLA'dS/I4 883 DRT4(I3) = ?11.?
'JNADJfMTED - 4DJUSTED WELD P(F/E) 951CI SERR P(INITI4) M r/ P(F/E) SERR Nr4IL NTRI4L9 1 7.88D-04 7.79D-05 9.89 8.240-04 1.000 7.883-04 391 90000 VESSEL 7.880-04 9.89 DEPTHS FOR INITI4L INITIATION (IN) 0.09 0.26 0.46 0.67 0. 90 1.16 1.44 1.74 2.08 NUMBER 0 201 138 51 18 1 0 0 0 PERCENT 0.0 49.1 33.7 12.5 4.4 0.2 0.0 0.0 0.0 TIMES 08' FAILURE (MMUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70,0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 5.4 16.9 10.7 42.5 2.8 0.3 0.3 0.9 INITI4 TION T-RTMDT(DEO.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 2 37 137 183 48 16 17 0 0 0 0 PERCENT 0.0 0.5 8.4 31.1 41.6 10.9 3.6 3.9 0.0 0.0 0.0 0.0 ARREST T-RTMDT(3EO.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 ??5.0 251.0 N UMBER 0 0 2 2 1 0 0 14 30 0 0 0 PERCENT 0.0 0.0 4.1 4.1 2.0 0.0 0.0 29.6 61.2 0.0 0.0 0.0 ICRKTP s 2 I4COEL 1 1DLR9 3 0 NRTRS : 0 04TE: 10/31/94 TIME: 01.21.48 OPU TIME: 2 MIh 34 SEC i
i
HBR I.152 HB ROB 9.11 o plate o LONGIT.
~ ~ ,, a CIRCUM. 'o l ~ 'o u _ _
N t . _ L,'o _ _ o - z - - a . _
'o-r "o- 'I Q t. f l 100 150 200 250 300 350 MERN RTNOT, DEG.F.
Figure I.128. Transient 9.11B: hj {.fa) B(s) da vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations.
) ~
HBR-I.153 IPTS H 8 RC8 C.AD 9.117/6/84 I . . . . , . . liN1 l
- :E ii:E g -
. 545 - .!:k .. - ii R:=
I si:5
- !?!:E
^ ; .:. ;
h *
*k - - . 8 . .-- R R ,
k - k -
. g . . . . . . .
0 0.1 0. 2 0. 3 0. 4 0.5 0.8 0.7 0. 0 0. 3 1 P/W Figure I.129. Transiest 9.11B: Vessel wall temperature vs depth la wall (s/w) at vari-oss times (t) la transient. i 4 W g -M s-y
HBR-I.154 [ IPTS H 8 ROS CLa0 9.117/6/84 g , , , . . . . . > g l 8:55 88:e F 8:55 3 - 8 8:8lll ~ 5 &lii
!8!;8 - \
8 &?Q R # 8:E -
\ 28:i" !8:54 I ~ \ ? 8:f.2. !?E '
ga - Ny 8 Fg hi - R
\ N ~
N g . . g . . g . . . . . , , , o te a m e a m 7a a m im tw 2: TIFE Figure L130. Transient 9.11B: Vessel wall tc .grature es time (t) la transient at vari-ons depths in wall (a/w). 1 l l i
HBR-I.155 ) I IPTS H B RCS CUO 9.11 7/6/84 ' p c - c.0 # , o.22 r0 - 3.15D9 gi g ' , - ' ' , , ' '
'i i . , ) i f.
q I '
~
3 a 9 1 5% . k u h ' g . e
- ] ~ / ,
a
~,
- 9. P l o to a m to so so m so ao too its is l
TIfC Figure 1.131. Trr.asiest 9.118: Kg vs time (t) for various depths is wall (a/w). i l i l
HBR-I.156 CRITICAL. CRf*CK CEPTH CURVES TCR IPTS H S RCS CLPD 9.11 7/6/84
~
MTNOTC - 0.0 CE3r %CU - 0.22 %NI - C.80 FC - 3.15C19 LCtGIT W D e d - sX1r + g .
+
X 't
+ c ,a****' + . . anf , & - eX '
4 yo - a
+ ,
e + ,
) . ,X' '
t* f j b O
,e'e*+
e + 0 ,* s *X ;', . o ' a .
. +
e d - % X # 6 .
. +
1 e + *,e e**$ d -
'. *.. .*..*e,n o + + . . . . * *
- D.a. .
y ....
#,e 4
e, ,,..*,,.***. 4 X 0 e' O d " X + Y
+{ S e -
O e yN Y ,00
, O e tw e d = X+
g o' , X X 'P 3 d - X 1r g X
%X <r o "cocacoccD80000gac0ccDh g-i ,
XXXXXXXXXXXXXXXkXXXXXXXXXXXXXXXXXXl 0 to 20 30 to 50 00 70 80 so W 110 1 TItI(MItAJTES1 X,2-D flaw,' Ki - Kw O,2-D flaw, Ki - 220 MPa [m
+,2-m flaw, Ki = Ku e. 2-m flaw, Ki = 220 MPa Vm
- c. 2 D flaw, Ki - Ku 7. WPS (warm prestressing) 0,2-m flaw, Ki = Ku Figure I.132. Transient 9.11B: Critical-crack-depth curves for weld 2-273A based on
~2a values of Kw Kw and MTNDT, mesa values of all other parameters, and 32-EFPY Deences.
HBR-I;157 f a = IPTS H S RC8 C:Jiu 9.12 7/6/84 g g- g, . . . . . . . . . . a - aii o PRESS.(KST) 'n b o TC*. ICE:3.T.1 Id a' - 4 H.T.CCErr. l- . g-s i
.a ~
a a.
,g .- (- -
i
- g. .
9- s _ 31, '2 w' N 5 b=' if
=
- 88- Y=< .$- "a l' a- a 2 $=< E
- g R I' O'
l- =.
.e 5 , Ia .g a N 'd '
R-
- g. A:
O-g.
- g. ,8 a .
0.0 10.0 20.0 30.0 10.0 50.0 00.0 10.0 00.0 30.0 100.0 110.0 120.0 TINCtMIN.) Figure I.133. Transiest 9.12B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film best-transfer coefficient vs time la the transient.
HBR-I.158 Table I.23. Transient 9.128: Sunuaary of digital output, laciuding usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B RO81 CL40 9.12 7/5/14 1 FL4WS/IN H 3 ORTM(IS) : ?11.2
'JM A DJUSTED -4DJijsTED '4 ELD P(F/E) 95tcI % ERR P(INITI4) 1 *V P(F/E) SERR NF4IL MTRIALS 1 9.92D-04 9.910-05 9.99 1.040-03 1.000 9.92D-04 383 70000 VESSEL 9.9?O-04 9.99 DEFTHS FOR I1ITIAL [1ITI4 TION (IM) 0.09 0.26 0.45 0.57 0. 90 1.16 1.44 1. 74 2.08 1 UMBER 0 196 124 53 ?3 4 0 0 0 PERCENT 0.0 49.0 31.0 13.3 5.9 1.0 0.0 0.0 0.0 TIMES Or FAIUIRE(MI4tJTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 90' 0 90.0 100.0 110.0 120.0 .
PERCENT 0.0 0.0 0.0 0.0 4.4 14.1 23.0 36.3 6.5 3.7 4.4 7.6 IMITI4 TION T-RTMDT(0EO.F) .
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50. 0 75.0 100.0 125.0 153.0 175.0 200.0 1 UMBER 0 3 32 137 19? 35 17 12 0 0 0 0 PERCENT 0.0 0.7 7.5 32.0 44.9 9.2 4.0 2.9 0.0 0.0 0.0 0.0 ARREST T-RT1DT(OEG.F) -50.0 -25.0 0. 0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 1UM9ER 0 0 7 4 0 0 0 12 22 0 0 0 PERCENT 0.0 0.0 15.6 9.9 0.0 0.0 0.0 26.7 48.9 0.0 0.0 1.0 IO RKT P 2 I4COEL 1 1DLR9 e 1 19TRS : 1 04TE: 10/31/34 TIME: 11.22.53 OP'1 TIME: 2 MIN 2 $E" .s .**,-.*-a . = = , .4. -. ..w. - ...--.r e---- . . = . -
. HBR-I.159 HB R08 9.12
- i i i i :
l o PLATE : o LCNGIT. ~ A CIRCUti. o _ _
.-* = :
M
'o tu . _
N e . _ o
- a. 'a _
,." E
_3_ o - c _ z - - a _ _
'o Y
o Q f f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figwe L134. Transleet 9.128: Pj [fs) B(s) de n ITRDT, for (2-D, 2-D) and (2-D, 2m) flaw counbinations.
~
HBR-I.160 IPTS H 8 RC8 CLP.0 9.12 7/6/84 R - . . . , , ,
!!M 91:=
E 2:$ W R 54%. 3 - lii a r!.ao 6 ii:55 oIE:E
; =. 2 B .g . -
b 8 R R R . R . B . , o 85 0.2 a.s o. , o.s o.s a.7 a.s a.: i P.fA Figure 1.135. Transient 9.128: Vessel wall tmperature es depth la wall (a/w) at vari-oss tienes (t) in transleet. t I
HBR.I.it;; IPTS H B RC8 C'.PD 9.12 7/6/84 g . . , . . . . i!!! l8 p :2 g .
. 8:2 -
h
~
YiE fitu his I '
\ " '
a o. .u i f i'!d s B - VUU
\ ! ?,5 - .g .
nR - N x
~
e g . a
~
o io a m e so ao to so so iao sta : TIMC Figure I.136. Transient 9.128: Vessel wall temperature es time (t) la transient at vari-oes depths in wall (a/w).
HBR-1.162
, gg3 g 8,f-RCB 7.cu M 3*I c.22 FC - 3 #' LCNGII 1 - '
R . l . I G . k% - ' E C R - ' 1 - . _ ' 1 E , q 10 * . sa 8 _ , y no u TIMC Figwe I.137. Transiest 9.128: Kg vs time (t) for various depths la wall (s/w).
HBR-I.163 CRITICM. CRACK CEPTH C'URVES TCR IPTS H 8 RCS CLfC 9.12 7/6/81 RTNOTO - 0.0 CEOF %CU - 0.22 a
- ll - 0. 9C FC - 3.15E!S LCNGIT F F 5 F 3 I y y xi
. . o s . .xo , + o .
xo
+
a a . .x o p a *,,m -
+ ,.. . + .
2 .
.x "
t**,e O -
,.**e' + +
d
.' s (' , . * , . p o -
x e g . % xo # o 4 -
. . o * . + +
s amp * ' ' ' ' . *. t . . e * * : d -
***.,#' " + O ,E -
t . . * * , . . . . + *** * *
- a e e
x a e ,
+ e g . m + o 8
- x + o ,',
y4 9 o cP e g Q . x+ o g o' . x , i x o s' y . x o q x o g 5x " 8asococoagga,
** l x x x x x x x x x x x x x x x x x x x x x x x x x ,x ,x ccooc ,x ,x x x x x m l a
o to ao m e so ao to so so too tio is T!rC(M!tAJTES) X,2 D flaw, K, = K i , O,2.D flaw, K i = 220 MPa d
+, 2 m flaw, K i - K i, s. 2 m flaw, Ki = 220 MPa Vm c 2 D flaw, K i - K, i 7, WPS (warm prestressing)
Q, 2-m flaw, K i = K, i I Figure I.138. Transiest 9.128: Criticskrack depth curves for weld 2 273A based on
-2a values of Kw Kw and ARTNDT, mens values of all other parameters, and 32 EFPY fluences.
l
HBR-I.164
- a IPTS H 8 RC8 CU'O 9.14 7/6/84 g l- g , , , , , . ,
s -
*o o PRESS.(KSil 'n N1 '
o TD'P.(CEG.F.I ,'d a' a H.T.COEFF. h- o.
.g 0 :.
I o.
.g o- g. ;
o .
/ , g. < '3
- t. ' O o ci E '
N- Uk, - lU ' - e ,
- d 8o E
'8 s l- a '
o-h- e.
,g g- ' e
- a. .
,g .o b'
- Id
- g. .
~
o, - t- 4 o. o g, g, ,
, 8 a
0.0 to.o 20.0 m.o to.o so.o ec.o 70.0 so.o so.o too.o s to.o 1m.0 T!?'E tMits. ) Figure I.139. Transiest 9.14B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film best-transfer coefficient vs time la the transient. _7
O O HBR-I.165 . 1,s Table I.24. Tramaient 9.14B: Sannsaary of digital output, including usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROR CL40 9.14 7/6/54 1 FLAWS /I1**3 3RT1(IS) ?11.2
'J14 DJUSTEC - 4DJUSTED VELD P(F/ E) 955CI SERR P(I1tT!t) 1 */ P(F/ E) $!RR gegtt gTRItL9 1 3.040-04 3.25D-05 10.70 4.290-04 1.000 3.040-04 135 200000 VESSEL 3.040 04 10.70 DEPTHS FOR INITILL IMITI4 TION (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1,44 1.74 2.08 MUMBER 0 255 129 59 21 1 1 0 1 PERCENT 0.0 53.9 ?7.3 12.5 4.4 1.7 0.2 1.0 0.0 TIME 3 or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 1.0 2.4 10.4 12.2 19.5 13.5 ?O.5 17.0 IMITI4 TION T-ATNDT(DEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 151.0 175.0 200.0 1 UMBER 0 0 37 194 2?4 148 151 15 1 0 0 0 PERCENT 0.0 0.0 4.7 14.9 29.7 19.0 19.4 1.3 0.0 0.0 1.0 0.1 ARREST T-RTMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 115.0 150.0 175.0 200.0 215.1 253.1 1 UMBER 0 4 33 11 1 0 17 ?$1 119 0 1 1 PSRCENT 0.0 1.9 8.5 2.5 0.2 0.0 3.5 53.7 14.5 1.0 0.0 1.0 ICRKTP e 2 I4CCEL e 1 1DLRS : 0 1RTRS e 0 04TE: 10/31/54 TIME: 11.13.14 CPU TIME: 5 MIN 25 SEO
HBR I.166 HB R08 9.14
- i
~ ~
o Pt. ATE o t.Ct4 GIT.
~ ~
a CIRCutt. o-* _ _
= : ~ 'o u .
N
. L 'e'o-a g
- z - . .
O _ _
'a *o _
Y a 100 150 200 250 300 350 MERN RTNOT, DEG.P. Figwe I.140. Transiest 9.14B: Pj {.fa) B(s) da vs NTNFT, for (2 D, 2 D) and (2_D, 2am) flaw combinetloes. L
HBR-I.167 hj IPTS H 8 RC8 CU'O 9.14 7/6/84 8, . . . . . . . l ..E l.mE Ii"." - 3 ! y 1215
?M=
5 n$$ s ee - 5 ta..$ an. I gt - - M R g . . R - g . . g . . . . . . . 0 41 L3 A3 At ES ES LF As As I atu Figwe I.141. Transiest 9.14B: Vessel wall temperature es depth is wall (s/w) at vari-ous times (t) la transient.
l HBR-I.168 DRAP 8 IPTS H 8 RCS C:.80 9.14 7/6/84 g , , , , , , . , 2 8:E1 88:sa F8:8: 3 l 8:5! ~
!8:!a t 8:
3 l!gE-
!8:m 1 :W B - ? l0: N! ! ?:S ~
yt 8 - YR N - n - -
eg h; ~
g
~
g . . s~ . . . . . . . . . . 0 to 33 33 53 50 53 70 80 90 100 110 13 T!?C Figure I.142. Transient 9.14B: Vessel wall temperature es time (t) la transient at vari-ous depths in wall (a/w).
o HBR-I.169 g RUCTO = 0C .0 - 22 0- 3.15E19 LONGIT g . ;. . lii 3 - q 9 hl . 5
~
1 t U R 2 . 8. I a , , , , , o se a m . , ,, n ,, , ,, ,,, ,, Figure I.143. Transiest 9.14B: K ies tiane (t) for various depths is wall (s/w). I
. e HBR I.170 CRIT!CfL CRACK CCPTH CURVCS FCR IPTS H B RC8 CLR0 9.14 7/6/84 RT?iCTO - C.0 CE;F %CU - 0.22 %NI - 0.80 FC - 3.15E19 LCNGIT ~ , , , . . .
x 0
, O a
d
- X 9 .*
- X 0
+
g - X +0 -
+ + + *1 'P x
- O O
+ . +
l . <> x s O -
. + . + . . . mm 8 * * * , , . . . . . . . '
p . ,
, ,,.:.....**. O . ....l.........x......, . . O g - ,
y + 8 e .
+ e , + e + 0 ,*
x 2 -
]' x x / ,8 ,
e'e' .
., i # +
g" e'
, e 2 - ,x +
s e' O o n O
- 3 0000000000 00 un M
I , Eg , M M M X N, N N N k M a x X X X. N z m x M. z z a x 2, M x M z z. M M X 2 M M A M M I a to no m e so en to so so too its is TIP.EIM!tfdTES) X, 2 D flaw, K i - Ki , 0,2-m flaw, Ki = K,i
+, 2 m flaw, K i - Ki , O. 2.D flaw, iK - 220 MPa 8
- c. 2 D flaw, K i - K, i 7, WPS (warm prestressing)
Figure I.144. Transleet 9.14B: Critical-crack depth curves for weld 2 273A based on
-2a veJues of Kw Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY fluences.
HBR-I.171
* . . IPTS H 8 RCB C: K 9.15 7/6/84 N. - - - - - . .
f
*O o PPESS.(KSTI ,
l' o TD*P. (CCG.F.1 -
*
- H.T.CCCFF.
k' . g-
.- g- -n A -
g. a- _"I. < _ r : : = -
. g . .- d .M A.6 a- Yh.:
Y-i b .. : J g- ' A-t .. W: 4
. g-3"
- g.
- s. .n a
a a a a a a a a a a 'g
- 0. 0 10.0 21.0 10.0 10.0 30.0 80.0 10.0 80.0 E0 133.0 110.0 120.0 T!@tMIN.)
Figure I.145. Transiest 9.158: Primary system pressure, downcomer coolaat tempera-ture, and Guid-nha heat-transfer coemcient vs thne la the transient.
HBR-I.172
~
Table I.25. Transiest 9.15B: Samunary of digital output, including usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 51 B R09 CL4D 7.15 7/5/54 1 FL443/t1**3 09T1(I4) : 111.?
--- w]14DJUSTES ~ 4DJUSTTD 'JELD P(F/E) 9550! STRR P(11ITIL) 1 'Y P(F/E) SERR NF4IL NTRI4LS 1 3.260-04 3. 36D-05 10.34 4.490-04 1.000 3.260-04 359 100000 V!SSEL 3.260-04 10.34 DEPTHS FOR titTt4L INITI4TIo1 (11) 0.09 0.26 0.44 0.67 0. 90 1.16 1.44 1,74 ?.08 1U19ER 0 ?61 1 32 51 13 7 1 0 1 PERCENT 0.0 54.1 16.7 12.3 4.5 1.9 0.4 0.0 1.0 TIME 1 Sr ft! LURE (MIN'l?ti) 0.0 10.0 10.0 10. 0 40.0 51.0 50.0 70.0 90.0 90.1 101.0 111.0 120.1 PTRCENT 1.0 0.0 0.0 1.0 0.0 2.7 9.7 11.7 17.3 11.3 ? # .1. 17. 5
, !11*tttt0N T-9710T(1to.F) 101,0 -75.0 -51.0 -?5.0 1.7 15.0 50.0 75.0 101.0 125.0 151.1 175.0 200.0 1'149 ER 0 0 43 705 73? 156 157 19 1 0 0 0 PER:ENT 0.0 0.0 5.1 14.1 19. ? 19.0 10.1 3.5 0.0 0.1 0.1 1.0 ARREST T-9T1DT(ito.r)
-51.0 -15.0 0.0 25.0 11.0 75.0 100.0 125.0 151.0 175.0 110.0 225.0 250.0 1UMB Et 4 13 40 1? 1 1 17 161 110 0 0 0 PtRENT 1.9 3.1 9.6 1.5 0.2 1.0 3. 7 56.4 13.9 1.0 0.1 1.1 109KTP e 2 t4CitL e 1 1DL91 e 1 'lif ti e 1 StTY: 10/11/54 TI1t: 11.31.03 CP'1 T!1Et 5 111 ?? *.E0
HBR-l.173 R HB R08 9.15 e i i i o PtATE ~ o LONGIT.
~ ,, a clacun. 'o E : ~
M
'o~
E : M .
/
N / t . Q 'o -
-i i :
o -
~ 'o-i o.-.: _
l . Q l i f f 100 150 200 250 300 350 MEAN RTNOT, DEG.P. Figwe I.146. Transleet 9.158: Pj {.fa) 8(s) de es NTNFT, for (2.D, 2 D) and (2 D, 2m) new consientions.
HBR-I.174 IPTS H 8 RCS CUC 9.15 7/6/84 E , , . , , i - . liii E o g . l" 3..:3 - 1%
~ 2 !!:2 I .
g8 - 8 X R .
~
O 2 - X . E R g
* ** ** ** d. di d, i, , ,a. :
2(,'j r7 m.m., ,.iss: v i.a . ,,,,,,,,,, % ,, , ,c,g ,,,,g, e.~ m -ge -m-*e--+e. -<m eea-w-**<en- a >-e
g e l HBR I.175 l,i
-- e x.x: ..A IPts H S RCB CLR0 9.15 7/6/84 g , , , . - ' ' '
e fa
!8:E!!
i12 g - ;12 - s 1im iilu h t!G g - G tiii
' i1:
N.in g ,
- x t=
i.= 8 0 R
'% N 2 . .e T!r'C Figure 1.148. Transleet 9.15B: Vessel wall temperature vs time (t) la transient at vari-ous depths in wall (a/w).
HBR.I.176
;g a
attoto - caCJD9-[22 t, cts.li
. - , fD ~ 3"1 ! ' ' ' \ \\
I lal , O G 5 u ...... R - g .
~. ,
r .
., y a S ; ; sm "8 "
TI# 9, 7plent 9.15B: K vs time (t) I 'd "* 1 '
e .
~
HBR-I.177 '
=--
CRITICAL CRACK CEPTH CURVCS FCR IPTS H B RC8 CLRD 9.15 7/6/84 RTNOTC - C.0 CE3r %CU = 0.22 %NI - 0.80 FC - 3.15E19 LCt4 GIT x 0 x 0 a - x g+ -
* +
x a
. ,D 3 - x +o . + + +
y - x +
+ o . + . +
l . . x , a .
. + + . . ...me8***..........
g2 - g
'r x ,,'..***** + a ,4 + ... + +
e e a - ' y + 0 a e .
+ , + D + e x
- Q . >
x 'p* a o x .O e o I# g" e' x +
- 2 .
,x +
s e' . D
't N D C
g - o x a o x m,,DDococonococcocco y,
- xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x :
o to a so e so ao 7o m so un sta ti TIMEIMINUTES) X, 2-D flaw, K i - K i, 0,2.m flaw, K i - K, i
+, 2-m flaw, iK - K,i o,2.D flaw, K i - 220 MPa d C,2.D flaw, K i - K, i 7 WPS (warm prestressing)
Figure L150. Transient 9.15B: Critical-crack-depth curves for weld 2-273A based on 1
-2a values of Kw Kw nda MTNDT, mean values of all other parameters, and 32-EFPY fluences. ;
i 1 l l l l
^
HBR-I.178 o a IPTS H B RC8 C' 80 9.17 7/6/84 g l- g, , . , , , , , , , g - c an a PRESS.(KS!! g 09 o TEMP.(DES.F.I "d
b s H.T.CCETr.
l' a.
,g 3:I a a .e e' B- a'
- g. .
\ A
_ I. ,i
< g g u M O a' da l C --.a- Wi- N ,5 ;-
x\ e I E
.g' s o. 4 N
R - : a' h e. .. H: d 9 3 a 3: Ed g .' - s- ') a.
= i. ,8 .. _ . . . . . . . . . g ,
o.o to.o no no c.o so.o m.o ro.o so.o so.o too.o sto.o ino IIMc ts.:N. ) Figure I.151. Transient 9.17B: Primary system pressure, downcomer coolant tempera-l ture, and fluid-film best-transfer coefficient vs time in the transient. 1 l m ew -Aa ==...h --e ,p- ew_
HBR-I.179 - A. Table I.26. Transient 9.17B: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H 8 R0B OL4D 9.17 7/6/34 1 FLANS /IN'81 D9TN(IS) : ?11.2
'JMADJUSTED --4DJUSTE D WELD P(F/E) . 95%CI % ERR P(INITIA) 4 'V P(F/E) TERR NFAIL 1T9I4L3 1 4.15D-03 3.76D-04 9.05 4. 26D-0 3 1.000 4.150-03 usa 20000 VESSEL 4.150-03 9.05 DEPTHS FOR IMITIAL INITI4 TION (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 0 263 122 58 23 3 I s o PERCENT 0.0 56.0 26.0 12.3 s. 0.6 0.2 0.0 0.0 TIMES Or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.7 9.6 13.1 16.8 ?1.0 19.7 17.7 1.1 0.4 INITIATION T-RTNDT(OE0.F) , -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 10 44 194 157 58 20 12 1 0 0 0 PERCENT 0.0 2.0 8.7 38.3 33.0 11.5 4.0 2.4 0.2 0.0 0.0 0.0 ARREST T-RTMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 253.0 M UMBER 0 0 9 1 0 0 0 9 31 0 0 0 PERCENT 0.0 0.0 16.7 ?.1 0.0 0.0 0.0 16.7 64.6 0.0 0.0 0.0 ICRKTP 2 IAC0EL 1 1DLRS = 0 19TRS : 0 DATE: 10/31/94 TIM E: 01.34.53 i
CPU TIME: 0 MIN 41 SEC l
HBR-I.180 9.17 HB ROB
- a i i i --
~ - ~
o PLATE ~ o LCNGIT.
~ - ,, a CIRCUM.
a _
= - ? - /.
M
'o _
W s : / : t - _ a..a
~ ).
a g z - - 2 - .
'o- - :
- E i
- o. _
1 - . C I t I i 100 150 200 250 300 350
'1ERN RTNOT, DEG.P.
Figure I.152. Transient 9.17B: hj [fa) B(a) de es RTNDT, for (2-D, 2-D) and (2-D, l 2m) flaw combinations. l l 1 l 1 l
. ..+,n.-. . . , , _ - - . .n-. , .-,.----...,,_...~...-o_ , , - . . - ~ . - . . -
HBR-L181 IPT3 H B RC8 Ct.RD 9,17 7tgig; E , - , , I E , I!M Ils
~ !!:s 0 ! ~ . f:$
3 m0:$. A s:$ 3 E E:s - 5 tas 3 - _ b'I 8 N
~R -
F g . R X . a.: a.: as i, ;, -
#=
u m Figure L153. Transient 9*17B V * **U t'mperature vs depth in waH (a/w) at vari-m times (t) in transient.
- ._ - - - ~ . /
I I HBR-1.jg2 I IPTS H B RCS CLF3 S.17 7/6/84 3 . . . . . . . . . , itM itas 3 - Fi!:
~ Ata: -
5 tiii x ! &!#
\ DiR:
a : P &E ' o a.385 12?!
!"&in 5
- i!E -
CQ ~ ' a a i hB - - N R - R g . . g . . . . . . . . . a to a m e so so io so so un sta t: TIPE Figure I.154. Transient 9.17B: Vessel wall temperature vs time (t) la transient at vari-ons depths in wall (a/w). I i l l l
HBR-I.183 IPTS H S RCS C'P.C 9.17 7/6/84 RTtCTC - 0.0 CEOF %CU - 0.22 TO - 3.15E19 LONGIT H , . , , , , , , , , , li
?
1' l g . l 3 . O 3 ' C R . H .
~ _
N .
~
H-
^ }
8 to m m e so so ro so so too ito 3 TIttE Figure I.155. Transient 9.17B: Kg vs time (t) for various depths la wall (a/w). l 1 l
.. j i
1 HBR-I.184 R.
- CRITICAL CRACK CEPTH C'JRVES FCR IPTS H B RCS C'fD 9.17 7/6/84 RTNOTO - C.0 CE3F %C' J - 0.22 %NI - 0.80 F0 - 3.15E19 LCNGI*
3 D W
- .x.' + a -
xo + o , l - . x o . a -
. axi * + .= + * .= . " D,
- e 2 . . N + .
= +
- e y J . ,xo .J ' y 9 .
+ ,.'+ , *
- e
. , + , e R2 - . x o + r- # -
e
- x , .
o e
*
- s . ;ns . * * * * * . . . . . ' '
d -
**.,,,* y 9 .*,,.. a8 ***) .
x.+
***...,,. o
- e 3 -
x x + o 9 o .
-o e M+ 't hg + o ,
2 - 7.+ o dP .* . O x x 'r a x d - x " a . x <r a E x iP k D ! * ** x x x Sx x x v x x x*x E 999 99 9 9 9 9 99 9 9 99 99a g g g g g 99 9 9 9! o to ao so e so no ro so so too sta :: tit".E(MIf,*JTES) X,2 D flaw, Kr - Ku O,2-D flaw, Ki = 220 MPa [m I +, 2-m flaw, K i = K, i e,2-m flaw, K = 220 MPa Vm l 0,2-D flaw, K, = Ku V, WPS (wam prestressing) l Q,2-m flaw, Kg = Ks i Figure I.156. Transient 9.17B: Critical-crack-depth curves for weld 2-273A based on 4 values of Kw Kw and ARTNDT, mean values of all other parameters, and 32-EFPY fluences. l i I
- 9"***-++--% e_., , , , , , .
HBR-I.185 I.TS H B RCB M s.tg 7; gig 4 g" ,_
. . a . * " o PRESS.(KSI) 'n bD
- TE?tP. (CE;.r. ) .' d j k A H.7.CCErr.
R- ,. 3-! An I:
~
a' p-l- -
.s.; ,, U .r _ . g f- >
e' ci.
.E' g S $- .~n. - . hl.
N
'S
- ! 5 .
3, \- .g
.~ %- s . g- 1 I- -
g S.
- s 9 s. . 'g =- . .
s d, u o.o zo.o m.o m.a e.o m. , ., ' "' "'* * " * *** 8 *" 8 TIrftNIN.)
~
Figure L157. Transient 9.1SB: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient vs time in the transient. 1 i i
HBR-I.186
^
Table I.27. Transient 9.18B: Sununary of digital output, including unadjusted P(FjE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS 5t B ROR CL4D 9.13 7/6/94 1. FL4WS/IN'*3 DRTN(Is) ?11.2
'JN4DJ1JSTED -4DJUSTED '4 ELD P(F/E) 955CI TERR P(INITIA ) N 'V P(F/E) SERR NF 4IL HTRIALS 1 2.483-04 2.93D-05 11.85 3. 82D-04 1.000 2.48D-04 273 200000 VESSEL 2.48D-ou 11.85 DEPTHS FOR INITI4L INITIATION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 0 ??9 127 50 13 2 0 0 0 PERCENT 0.0 54.C 30.2 11.9 3.1 0.5 0.0 0.0 0.0 TIMES OF rAILU9 E(MIN'JTES) 0.0 10.0 ?1.0 30.0 40.0 50.0 60.0 70.0 40.0 90.0 100.0 110.0 I?0.0 PERCENT 0.0 0.0 0.0 0.0 0.7 ?.6 10.3 13.6 21.2 19.4 17.? 15.0 INITI4TI1N T-RTNDT(SCO.F) -100.0 -75.0 -31.0 -25.0 0.0 25.0 50.0 ' 5.0 7 100.0 125.0 150.0 175.1 200.0 N UMBER 0 0 26 153 210 155 137 15 - 0 0 0 PERCENT 0.0 0.0 3. 7 ??.0 30.2 ??.3 19.7 ?.2 0.0 0.0 0.0 0.0 j ARREST T-RTSDT(7EC.F) l -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 2?9.0 250.0 1UM9ER 0 0 6 7 0 0 9 ?7? 130 0 0 0 I ?TRCENT 1.0 0.0 1.4 1.7 0.0 0.0 1.9 64.3 30.7 0.0 0.0 0.0 ICRKTP = 2 !4COEL 1 1DL99 0 NRTRS : 0 04TE: 10/11/34 TIME: 01.41.0?
CP'J TIME: 5 MIN 29 SE: l l l
.... .-~. . . - . ~ . . - . . . . -
6 , -* --- HB R08 9.18 HBR-I.187 U l
- a i a i :
l c PLATE -
~
o LONGIT. a CIRCUM.
'o M 'o ~ :
W _ N _ e .
~n ' 'o-o _- _-
c z - a _ r o
'o ~
b - 100 150 200 250 300 350 MEAN RTNOT, DEG.F. e Figure I.158. Transient 9.18B: Pj { fs) A(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations.
. e HBR I.188 g,' .
IPTS H S RCD CL m 9.:8 7/6/84
. M-i;.. !!:n 88:4 C 19.00 B
v 54= g . k n:8 0 0:$ ' a
'a tra.:s n ..
g . b' 0 8 . E R ~ { R . X . 8 t a.: a.3 d, ,,, ,,, o, C.8 0.3 pg Figure L159. Transient 9.18B: Vessel wall temperature is depth in wall (a/w) at vari-ous times (t) la transient. I
~ _ . _ _ _ , _
HBR-I.189 IPTS H B RC8 CLAD 9.18 7/6/84 l . , , , . . , , , , 9 8:e ia:!M l 8:: R a g:3 -
!t.!!!
E O.t99 j a:W. R - o 8:!# - 58:!E ia:it! 3 a:in 0 '
\
c% - - 8 a i .
?R - -
g . . R g . . g . . . . . . . . . . . a to a so e so ao to so so too tio :: IIt'E Figure I.160. Trascient 9.18B: Vessel wall temperature is time (t) la transient at vari-ous depths in wall (a/w). , 1 1
RTNOTO - 0C" 7 0 22 - 3.15E19 LCNGIT l 2 j-t! R . R Y 25 - y '\ U R - X -
~
N g - hr a b 5 $ $ E so S 5 E te tio t Figure I.161. Transient 9.18B: K ivs time (t) for various depths in wall (a/w).
HBR-I.191 DRAff CRITICat. CRACK OEPTH CURVES FOR IPTS H 8 RCS CL80 9.18 7/6/81 RTNOTO - 0.0 CEGF %CU - C.22 *all - 0.SC FC - 3.15E19 LCNGIT I F I 5 I I 3 x o
, x a d " x *C ' , +a x + D f . x + D a + +
5 . x # o .
, I + * + + . +
g . . , x .
+ a - + + . + *....m ***..........
2* D* . .
, y + +
5 .
,........y......* + + +
d -
# # a - +
x +
+
n -* + c g - x + 0 - a
# ++
x
+ maanoo; M +
4 - " y+ - 9 g - - f . g (x, =x! f x x x. x x x. x x x x x, x x x x x x x x x x x x x x x x x Mei x x x x x x x x x x x x x x 311 o to ao 30 m so ao to so so too ato is , TIMEtMINUTES) X, 2-D flaw, K i - Ki, O,2-D flaw, K i - 220 MPa 6
+, 2-m flaw, Ki = Kr. V, WPS (warm prestressing) 0, 2-D flaw, Ki = K i, !
Figure I.162. Transient 9.18B: Critical-crack-depth curves for weld 2-273A based on ;
-2a values of Kw Kw nda ARTNDT, mean values of all other parameters, and 32-EFPY l fluences. ,
l l 1 l I 1 1 1
. _ . . .. _. .- _= .
j HBR-I.192 9 o IFT3 H S RCS CU'c 9.19 7/6/84 g l l , , , . . . , , , . g - 4
*o a PRESS.(KSil '= $P o TEM *.(CES.F.1 Id a' A H.T.CCEFF.
- s. o,
\
A ,g B- 74
- e. .e o, ' N,, - ,
4
- f
~
l- -
=: 1 g" - !s ; a C \ ; -
S ,E be' aa,
'N .n n 8 Y~- Y $- , a;u - - a.
i - i u
=!
- 5. 9
'E g R- I' e' N -
l- q,
- =
R- a e'
" .a kT id E-N- -
l s. :0 o, g
.o . ' _$ . .. . . . . , , , , . .8 u
o.c to.o m.o z.o e.o so.o so.o m.o so.o w.o too.o no.o tm.o j TIPE! MIN.] t Figure I.163. Transient 9.19B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film beat-transfer coefficient vs time in the transient. l l t l l
HBR-L193 Table L28. Transient 9.198: Sa==ary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events . IPTS H B ROB CLAD 9.19 7/6/84 1. FLAWS /IN'*3 09TN(IS) 211.2 UNADJUSTED - ADJUSTED NELD P(F/E) 955CI TERR P(INITI4) g eV P(F/E) TERR F4IL NTRI ALS 1 2.37D-03 2. 31D-04 9.73 2.79D-03 1.000 ?.370-03 404 100000 VESSEL 2.37D-03 9.73 DEPTHS FOR INITIAL INITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.03 NUMBER 2 270 126 54 16 5 1 0 0 PERCENT 0.4 56.8 26.5 11.4 3.4 1.3 0.2 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 30.0 50.0 60.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.5 1.7 6.7 15.8 ?0.3 23.3 11.9 11.9 7.9 INITI ATION T-RTNDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 2 29 165 248 201 193 '33 0 0 0 0 PERCENT 0.0 0.2 3.3 18.9 28.5 23.1 22.2 3.8 0.0 0.0 0.0 0.0 ARREST T-RTMDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 0 9 3 1 3 17 ?33 200 1 0 0 PERCENT 0.0 0.0 1.9 0.6 0.? 0.6 3.6 49.9 42.3 0.2 0.0 0.0 ICRKTP 2 I4CCEL = 0 NDL9S 0 NRT33 3 0 OLTE: 11/19/94 TIME: 22.48.51 CPU TIME: 2 MIN 50 SEC
. o HBR-I.194 HB R08 9.19
- i i , i :
0 ME l o LCNGIT. -
. a CIRCUM. 'O ce C - - ~ ~ "
tu _ _ N k . - C
.~ 5- E --) - -
g . . g : : 0 _ _ e C.-
~ ~
O M tre C . I - : : 2 ~
=
C I f f 1 100 150 200 250 300 350 MERN RTNOT, DEG.P. l Figure I.164. Transient 9.19B: TPj { fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, j 2m) flaw combinations. l l i
. -e 4 +- -*.e-s-======w.,+- %..--e-e--e--.--a - - , e ... . . m. _ _,
HBR-I.195 IPTS H S P.CS 01.F.D 9.19 7/6/81 l . , , , , , 2 I:=o
.c 8 - .
R$ n.- l G 30E:= 1 - g 66:55 - ni% 9g.00 l - g8 - - d , c h =
- a k -
RLi - l g__- 0 0.1 0. 2 0.3 C. t 0$ 0.s 0.7 0. 8 0. 3 3 S/W Figure L165. Transient 9.19B: Vessel wall temperature vs depth la wall (s/w) at vari-oss times (t) in transient. l 1 l 1
i it - HBR-I.196 IPTS H S RCS C;RD 9.19 7/6/84 3 , , , , , , .
, i 9 8:Wi l8as r 8:in 8 l 8:8ll1 '
s 3g.io2 s8:h i iiis -
\s !8:5 ia:!D ? 8:%:
I i t:E ' fa - - 8 E g. N . g . . . . . . . 0 la 20 30 W 30 ED 10 80 30 100 110 ti tit'E l Figure I.166. Transient 9.19B: Vessel wall temperature is time (t) in transient at vari-ous depths in wall (a/w).
HBR-I.197 IPTS H 8 R08 C:P.D 9.19 7/6/84 RTNOTO - C.0 CEGF %CU - 0.22 FO - 3.15E19 LCNGIT 3 . , , , , , , , , , ,-
- g. l: .
- g. '
U d i
$$h -
C
.3 s tV - )
l i l
~-
o to $ $ E $ E ro E E too :-h : TI!1E Figwe L167. Transiest 9.19B: K ivs time (r) for various depths la wall (a/w). l l i
=
HBR-I.198 CRITICRL CRP.CK DEPTH CURVES FCR IPTS H S RC8 CLRD 9.19 7/6/84 o RTNOTO - 0.0 CEGF %CU - 0.22 %NI - 0.80 FO - 3.15E19 LCNGIT x d - g By - -
+
x g
. +
d - " x #m .
+ i + e' + o +
l-9 x o
., . *,e , +
e
+ e * + .
5 -* " n
+ + g ,.* . =
- e
. .**...,, p ,.e***........' + o x an 2 .
gd - 5 ' x ,+ . x
+ + ..**..**, 8 e
e
. a
- x .
' . . ' ...=*t*......'
d -
,4 a ,o* .
l + a *
, I # + a ,
e a e d - E* + - g e . x a *
+
- c n ,+ e 4 a . 7++'
a e .. - O w e x C d - x' c? . x" g xn .
. . *? x x x x x x ",s ? f 9 gJi g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g gog g !
8 to 20 30 m 50 so ro so so too tra t; TIME (MINUTES 1 X,2.D fla r, K, = K.i O,2-m flaw, Ki = Ku
+. 2-m flaw, K, = Kr. O,2-D flaw, K i - 220 MPa 8 c 2-D flaw, K, = Ku 7,wps(wam g g g)
Figure I.168. Transiest 9.19B: Critical-crack-depth curves for weld 2-273A based on
-2a values of K,,i Kg., and MTNDT, mesa values of all other paranneters, and 32-EFPY fluences.
l t
- . ~ , - - - . _ . . - - . _ . . _ _ _ _ _ _ . _ . _ _ _ . . . _ _ _ , _ . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ ,
)
HBR.I.199 l o IPTS H 8 R08 CL80 9.208 10/31/84 g g- g , , , . . , , , . . . s - 9< c PRESS.(KSI) 'N
$11 o TEMP.(DEG.F.] Id o' a H.T.CCEFF.
l- o. .
.g ~ $1 Id e< e o- $- .:
- o. -n g
_$~ _ k
=
g
'.. C / Vi b*' 8; >
n'd
- 8. $- e-
~ - _: s s-- n.
m a
= 5 i- o <
t E A g R- .: a'
- g. .
9<
.e bI Io
- o. -
.g a X d g .' .
- o. -
b' : a. 9 o_ 8_< , , , , , , , , ,
-8 o .
0.0 10.0 20.0 30.0 40.0 50.0 80.0 70.0 80.0 90.0 100.0 110.0 120.0 TIME (MIN.] Figure I.I69. Transient 9.208: Primary systens pressure, dowacomer coolast tempera-ture, and fluid-film heat-transfer coefficient vs time la the transient. I l i s l
HBR-I.200 0 gf ..4 Table I.29. Transient 9.208: Susunary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B Ro1 CLLD 9.209 10/31/94 1. FL4WS/I48'l DRTM(IS) 211.2
- 'JNADJUSTED ~ 4DJUSTED WELD P(F/E) 95tCI % ERR P(INITI4) 1 *V P(F/E) TERR NFAIL NTRIALS 1 2.53D-03 2.510-04 9.93 2.92D-03 1.000 2.530-03 388 90000 VESSEL 2.530-03 9.93 DEFIHS FOR INITI4L IMITI4 TION (IN) .
0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74. 2.08 NUMBER 0 251 116 53 19 4 1 0 0 PER0ENT 0.0 56.0 25.9 12.9 4.3 0.9 3.? 0.0 0.0 T!1ES OF F4ILURE(MIM1TES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 ?.1 7.2 18.6 19.3 17.5 11.1 11.3 10.9 INITILTION T-RTMDT(0EG.F)
-100.0 -75.0 -50.0 -15.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 1 ?9 159 124 173 177 10 0 0 0 0 PERCENT 0.0 0.1 3.6 21.0 27.9 21.5 ?2.0 3.7 0.0 0.0 0.0 0.0 4RREST T-9TNDT(0EG.F) -50.0 -?5. 0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 ?25.0 250.0 W19 ER 0 1 6 3 1 4 11 tot 139 0 0 0 PERCENT 0.0 0.? 1.4 0.7 0.2 1.0 2.7 48.u 45.3 0.0 0.0 0.0 ICRKTP 2 I4COEL = 1 1DLRS 0 1RTRS 0 OLTE: 11/19/34 TI'1E: 22.50.57 OPU TI'iE: 0 MIN 33 SEC
, - . . . . . a*-. *ee- .~ ,.%...m, . . . . - + -.w.. .. .. . -%.
I f HBR-I.201 HB R08 9.20
. , i i i : ~ ~
o ME o LONGIT. ~
, A CIRCUM. 'o f1 'o tu . .
N w . -
"e, L 'o _ - _ ,.~ 3 3
g . - g .
~
Z - D . . O _
~
E i o
~
Y o~
, , i i 100 150 200 250 300 350 MERN RTNOT, OEG.P.
Figure 1.170. Transiest 9.208: hj {efa) B(s) da vs RTNDT, for (2-D, 2 D) and (2-D, 2m) flaw combinations.
HBR-I.202 _ IPTS H 8 R08 CLR0 9.208 10/31/84
!!:s e
2 f& r 22.00 -
~ .1,t
- 3 a:s E #:s a iE$ ~
if!:s n 44a.uu S . c5 - - a o sh - l . g - S i . . . . . . . . 0 0.1 0.2 0.3 0.1 0.5 0.8 0.7 0.8 0.9 1 8/W Figure I.171. Transiest 9.20B: Vessel wall temperstwe es depth in wall (s/w) at vari-oss times (t) la transient.
-~ 'm, i
HBR.i,203 . IPTS H 8 R08 CLPD 9.208 10/31/84 n8% 8 8:!!!
! 8:Es ~
g - l 8:8 e - 78:in i8:in h 8:E; a - B 8:!# - G 8:s! 8:1!!
! 8:i'd 6 -
3 8:if7 - x 2.000
'5 h C
b wa - g . 2 -
~
g . g . . . . . . . . . . . 0 10 20 30 10 50 60 70 80 90 100 110 li TIME Figure L172. Transient 9.208: Vessel wall temperature vs time (t) in transient at vari-ous depths in wall (a/w).
I l NM
~
HBR-L204 l IPTS H a18010 0.o O G t.CNGIT I, ) g .
\ .
u . k
,\ .
Cn gg M .. . ... . . E h . g _ n k ^ r er ~ I i a o g to 8 h **y to too 110 , Titt Figure 1.173. TM Ks ss WO (or verlos M w wall (alwk
HBR-I.205 CRITICRL CRF.CK DEPTH CURVES FCR IPTS H 8 RCB CL80 9.2C8 10/31/84 RTNOTO - 0.0 CEGF %F.'J - 0.22 %NI - 0.80 FO - 3.15E19 LCNGIT
'r x g , x f -
x g+ - x + x g y - <r x fo -
+ + +4 ' +
- d i *
- t o ,
+ * + 9 $ g o x p a # -
x . o *
+ 9,......* . + o 300 ' 8 *y R - . o x + , .s.. a * * . . . ,* - + a o x
t.*...'..*** a o o u.; .
.....s.. + +
g o
,e + 0 e x a e d - '
f4 g 5O -
+ 0 x o x+ e #
x+ o e' d - ge gj3 0 - O e o m - D
, , xx xxxxx SEE9H99999999999999999999999S999999999!
J 10 20 30 to 50 60 70 80 90 100 110 13 TIMEIMINUTES) X,2-D flaw, Ki - Ku 0,2-m flaw, Ki - Ku
+, 2-m flaw, Ki = Ku O,2-D flaw, iK - 220 MPa 8
- c. 2-D flaw, Ki - Ku V, WPS (warm prestressing)
Figure I.174. Transient 9.20B: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, mean values of all other parameter , and 32-EFPY fluences.
HBR-I.206
= a IPTS H B RC8 CLAD 9.22 7/23/84 g l l- g . . . . . . . . . . . g -
1 1 oo a ppg 33,gggtj ,g
$1' o TEMP.(CEG.F.1 ,' d a, - a H.T.CCEFF.
k' al g
. E' !"
o. a< g- n
<o -
- g. .
a. s _%', T' C O o' ci E
$- @ h ,. I , "a ;-
a- . o
=! 8 e- o E g
a. 5' N
.$.~ a. . ,a ~
R' Ta 9- s o' 2
$~ Ia
- g. .
a, - ' Y. TE a. 9 a s_ < . . . . . . . . . . . .
.8 a ,
0.0 10.0 33.0 30.0 W.0 50.0 80.0 70.0 80.0 30.0 100.0 110.0 120.0 tit'I(MIN. ) Figure L175. Transient 9.22B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient es time in the transient.
HBR-I.207 Table I.30. Transient 9.22B: Sam ==ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROB CLAD 9.22 7/23/84 1 FLAWS /IN "3 DRTN(IS) ?11.2 1
'JNADJUSTED - 4DJUSTED----
VELD P(F/E) 9510I SERR P(INITI4) N 'V P(F/ E) SERR NM IL NTRIALS l 1 1. 20D42 1.150-03 9.58 1.220-02 1.000 1.200-02 410 20000 VESSEL 1. 20D-02 9.59 DEPTHS FOR INITI4L INITIATION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 6 249 98 45 13 3 0 0 0 PERCENT 1.4 60.1 23.7 10.9 3.1 0.7 0.0 0.0 0.0 TI'1ES OF FAILURE (MINUTES) 0.0 10.0 ?o.0 30.0 40.0 50.0 60.0 70,0 80.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.2 2.7 25.1 23.7 21.0 12.0 8.3 3.4 2.0 1.2 INITILTION T-RTNDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0. 50.0 75.0 100.0 125.0 150.0 175.0 200.0
. MINBER 0 3 29 150 172 67 67 42 1 0 0 0 PERCENT 0.0 0.6 5.3 29.3 32.5 12.6 12.6 7.9 0.2 0.0 0.0 0.0 ARREST T-RTMDT(DEO.F)
-50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 0 1 0 0 0 2 16 97 4 0 0 PERCENT 0.0 0.0 0.8 0.0 0.0 0.0 1.7 13.3 80.8 3.3 0.0 0.0 ICRKTP = 2 I4CCEL 0 NDLRS : 1 NRTRS 0 0%TE: 11/19/54 TIM E: 22.50.25 CPU TIME: 0 MIN 41 SEC I
l l
. o HBR-I.208 d Af HB R08 9.22 e . . .
g C a L . [ o PLATE _ o LONGIT. t ~ A CIRCUM. o
~
5
/! _
L _
~ 'o ~
E i ta . s _ k G 'o _
,.~ 3 . / 5 a
g i _ z - a . -
/ 'o- /
- / :
/ _
e / o
~
i_
,/ ,' E ! / -
_ i ' l ?c ./. , , , , i - 100 150 200 250 300 350 MERN RTNDT, DEG.F. Figure I.176. Transiest 9.22B: Pj [fa) B(s) da vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. i o l l l t { l l .. . . _ . . _ . _ . . _ .-,_ . _ _ . _ . _ .
HBR-I.209 6 IPTS H S R08 OLaD 9.22 7/23/81 l 3r- . . c rw ] I f5li' t t i E i:5 i
'is Emm .
2'6 ,
! A s:s 3 s":2 -
E E:5 1 R i n:E ~
- a. !.R.. E_
B - t 63 S b - ldR , R .
.M -
3 - a . [, c 0.1 c.2 c.3 c. 4 o.s o.s o.7 [, , n!u Figure I.177. Transient 9.22B: Vessel wall temperature vs depth in wall (a/w) at vari-ous times (t) in transient.
- w
me 4
,y".s
- g3 cJO ** ,, pies
\
p '
;8 k \
ia . 3 N
"N k% '
s .
~
i . i ,
% i i -
3 $ 9 e 9 M W % t@ g3 o iN
, ,, e** g g usSSI"* - g',b%d* l* 9.19 sd *g tt9Y 1%b'
- . ,/
T* f HBR-I.211
! PTS H B RCS OLAD 9.22 7/23/84 l RTNOTO - 0.0 CEGP 7.03 - 0.22 FC - 3.15E19 LONG..
i,T.. I I i n 9 8 - 3 g. 8 , a / Y / 4 ) C_ U u a( ) - 4 W
\
I r [ O o to a m e so so m so a too iso : TINC Figure I.179. Transient 9.22B: Kg vs time (t) for various depths in wall (a/w).
.mm ._ ----. _ ~
HBR-I.212 BPIAR I l CRITICAL. CRACK DEPTH CURVES FCR IPTS H S RCS CLR0 9.22 7/23/84 ! RTNOTO - 0.0 DC3r %C' J - 0.22 %NI - 0,80 F0 - 3.1SE19 LCNGIT X 'P Q
, O d -
M e t'
+ c p - + 0 + 4 s e el e
x e 'P # D
- e*,e*
f - gt .
+ ,e', + e 4 e
f g
+ 0 e e .
e e
,e e , e #
g . e x g +1 ' ,es p' - e
+
e' . e e ,
+ e O 8
9 kc f - e x & 0 O . x e o + , e + 0 ,,,eee*** x e M*** g x 8 O d I***,,e***
- i' e **** eze,*,,,,
0
,g e ,.m',,
x + 0 9 E e ' B d -
,o . + a e H+ g,0 g . x+ 8.* '
x Q x x a d - x 8 ' x a ', x h 1' , , , **
- x x x y x x E S9 9 9 9 d h q Q Q Q g o g e n g e s s e g o o s e g o s o g g e s e g g e s p e l i
o to a 30 to so en to so so too sto ts l TINCIMINUTES1 X,2 D flaw, K i - K, i O,2-D flaw, Ki = 220 MPt [m
+, 2 m flaw, K i = K, i e,2-m flaw, Ki = 220 MPa Vm c,2-D flaw, Ki = K,i 7, WPS (warm prestressing) i 0,2-m flaw, Ki = K,i Figure I.180. Transient 9.22B: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw sad MTNDT, mesa values of all other parameters, and 32-EFPY
! fluences. 1 { t l i l I l
HBR-I.213 o O O M 9.23 7/6/34 g f- g- , , - , , ' - , , . , a . I E PftCSS. (KST) ,
-)
o TEMP.(CEG.r.1 A H.T.CCETF. y, o, R ,g l o, h"'ll
,a 3
m O, 9' ci , ' d, 'gd
.I-i . - . . > "y 3"
o, W 6 j 3
#: I "a >
l- ,, . n; \ A 9 - g- - O, - g 'N "a 9
,8 d
18 18. 8 no na e, E8 Es gg gg Es tao 310.0 gaa TIE tMIN.) Figure I.181. 'Tenslent 9.23B: Primary system pressure, downcomer coolant tempera-ture, and fluid-film best-transfer coefficient vs time la the transient. i
HBR-I.214 Table I.31. Transient 9.23B: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H 8 RO9 OLLD 9.23 7/5/94 1 FLA'43/IN3 ORT 1(Is) = 211.?
- - - - - U14DJUSTED -tDJUSTED '4 ELD P(F/E) 955CI TERR P(INITI4 ) 1 *V P(F/E) TERR 1 FAIL NTRIALS 1 3.22D-03 3.210-04 9.97 3.850-03 1.000 3.220-03 384 70000 VESSEL 3.223-03 9.97 DEPTHS F0ft INITIAL INITIATION (I1) 0.09 0.25 0.45 0.57 0.90 1.16 1.44 1.74 2.08 1 UMBER 4 272 119 51 11 3 0. 0 0 -
PERCENT 1.9 59.1 25.9 11.1 2.4 0.7 0.0 0.0 0.0 TIMES Ce FAILURE (MINUTES) , 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 30. 0 90.0 100.0 110.0 120.0 PERCENT 1.0 0.0 0.0 0.3 2.5 3.5 17.2 19.0 13.5 14.6 12.2 7.0 IMITILTI11 T-RT1DT(Srg,r) ,
-100.0 -75.0 -51.0 -15.0 0.0 25.0 50.0 , 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 3 35 155 241 174 194 41 1 0 0 0 PER0ENT 0.0 0.4 4. 3 13.4 29.5 20.5 ??.9 4.9 0.1 0.0 0.0 1.0 ARREST T-RT4DT(SEO.F) -50.0 -?5.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 201.0 225.0 251.0 N UMBER 0 0 3 1 0 0 10 197 250 1 1 0 PERCENT 0.0 0.0 0.5 0.2 0.0 0.0 2.2 42.5 54.1 0.2 0.0 0.0 ICRKTP s 2 It00EL 1 *!OL95 a 1 NRTRS : 1 S A TE: 10/11/94 FIME: 01.46.45 OPU TP1Et 2 MI1 1 3EC l
l l l l l l
.-a -
HBR-I.215 99 HB ROB 9.23
~
o PLATE -
~
o LONGIT.
. cracun. - =
i n
'o tu .
N _ t . c_-o:_ _
-i e :
a a- t - z -
'o 'o ~
E 5 a t i e i 100 150 200 250 300 350 MERN RTNOT, DEG.P. Figure I.182. Transient 9.23B: hj {.fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. i I
--- ,, -.,-m -
HBR-I 216 TPTS H 8 RCS 2 9.23 7/6/84 I 2 ,
' j!y l
E !:$ g . jRm'%. i 45:2 ; in:5
$$E I " = w.m -
I!lli%. 9H9to -~ g .
$5 ,
8 b
-R .
R R - c X . Si > 3 ot o.: o.s o. . Es d, ,,7 o.e o.s : qfy Figure I.183. Transient 9.23B: Vessel ** temperature n depth in wall (a/w) at vari-ons times (i) in transient. l t 1
h HBR-I.217 IPTS H B RC8 CLFIO 9.23 7/6/84 l . . . . . . . . . .
.g
- 8:8?!
!8:8s 5as:
3 8 NE -
!8:!n f!!# , EIM 3 -
P iB -
!tm i8:!ll S - ? 8:% -
u o.en x t. coo g - - 8 b
-R - -
g . . H N xx_ g . . s . . . . . . . . . . . a to a a a a ao m so a na sta 11 titt Figure I.184. Transient 9.23B: Vessel wall temperature vs time (t) la transient at vari-oss depths la wall (a/w). l I
+<-- e e e
~' .._ -. ~ ~ . _ ,
HBR-I.2;g erTS H B ROS C!.A0 9.23 7/6/84 972 70 - 0.0 CEGF %CU - 0.22 F0 - 3.15E19 :CNGIT H , , . . . . , , , , l1 E- : ii g. I !: . 3 - Y iai 5 3 R{ / _ R N
! N ~
( N
~
n a a a a a a a a a a 2 to a a e a a m ao a tm no :: T!?C Figure I.185. Transitit 9.23B: K ivs time (t) for various depths in wall (a/w).
o . HBR-I 219 )
~
FRITICAL CRACK CEPTH CURVES FCR IPTS H B RUB CLA0 9.23 7/6/84 1 9TNOTO - 0.0 CEGF %CU - 0.22 %N! - 0.80 F0 - 3.15E;9 LCNGIT T I g I p y g y I I E x 0 d = N 5+ -
+
9 x e
+
"l " x d -
+0 - + + e g " x a * + . = + +
3 .. o x . g , .
, + . = + * + M*,
[2 - 5 > x
,# ,p..+... ,4 -
x +
+ ..',..=* ,
2 -
* .,,",,,r***
l x
+ + +
Q 2 a
, + a ,
n e d "
,3 / O ~
O e -
+ a e no n ,e* ** c e 2 - + ee -
o E' d' 2 - x' a . m' > d'
, v=w 799999999999999999997299999999899999 J to a m e so so ro so so :co ::o ::
I!ME(MINUTES) X,2 D flaw, Ki = Ku 0,2-m flaw, Ki = Ku
+,2 m flaw, Ki = Ku o. 2 D flaw, K i - 220 MPa 4 C. 2 D flaw, K i - Ku 7, WPS (warm prestressing)
Figure 1.186. Transient 9.23B: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, iness values of all other parameters, and 32-EFPY fluences.
o
_ _ _ _ _ _ . _ . . . ~ . .. - _ . . . . _ . _ _ _ i
- l
$f HBR-I.220 a . IPTS H B ROS CLAD 9.26 7/27/84 g l- g , , , , , , , , , ,
4
)
on a PRESS.lKSI) 'n I
$1 o TEMP.(CEG.P.I Id a' A H.T. COD T. ~
l~ a. 8 El in o,
.g a'
Il IJ g-
,(- -
S E
.- u.. . x
- g. 8 g. M7 -
M
-a- . . .a r W 5o. - .g =
21 id O'
~
O, . en
- ~
k' id
.a a I'- Td .
- g. . .
N1 "d O.
. g. .8
- a. . , , , , , , , , , , ,
a . 0.0 10.0 3.0 30.0 40.0 5.0 00.0 N.0 00.0 90.0 100.0 110.0 13.0 TDE tMIN. ) Figure L187. Transiest 9.26: Primary system pressure, dowacomer coolant tempers-ture, and Guid-film best-transfer coemcient es time la the transient. l
o . HBR-I.221 'h1 j Table I.32. Transiest 9.26: S====ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to laitiation and arrest events IPTS H B ROR CLAD 9.26 7/27/54 1. FLAVS/IM'*3 DRTN(IS) : ?11.2 UN4DJUSTED - ADJUSTED NELD P(F/ E) 951CI SERR P(INITIA ) 1 'V P(F/E) SERR NFAIL 1 TRIALS 1 5.490-06 5.27D-07 9.61 1.660-05 1.000 5.490-06 415 150000 VESSEL 5.490-06 9.61 DEPTHS FOR INITIAL INITI4 TION (IN) 0.09 0.26 0.46 0.67 0.90 1.16 1,44 1,74 2.08 NUMBER 0 590 431 167 52 13 1 0 0 PERCENT 0.0 47.0 34 . 4 13.3 4.1 1.0 0.1 0.0 0.0 TIMES Or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70,0 80. 0 90.0 100.0 110.0 I?S.O PERCENT 0. 0 0.0 0.0 0.0 0.0 2. 2 3.6 1.0 7.7 19.5 ?5.0 40.0 INITtATION T-RTNDT(DEG.F) *
- -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0. 75.0 100.0 125.0 150.0 175.0 200.0 NUMBER 0 0 42 407 737 206 238 17 0 0 0 0 PERCENT 0.0 0.0 2.6 24.7 42.9 12.5 14.5 2.9 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEG.F) '
-50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 NUMBER 0 0 42 22 3 1 50 563 251 0 0 0 PERCENT 0.0 0.0 3.4 1.5 0.2 0.1 4.1 70.0 20.u 0.0 0.0 0.0 f 0F STD DEV3 ABOVE MEAN DELTA RTNDT(F4ILU9ES 04LT) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4 UMBER 0 17 21 51 63 64 105 91 PERCENT 0.0 4.1 5.1 12.3 15.2 15.4 25.0 21.9 8 0F STD DEV1 ABOVE MEAN RTMDT(F4ILURES ONLT) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 MUMBER 0 5 19 31 71 77 98 114 PERCENT 0.0 1.2 4.6 7.5 17.1 19.6 23.6 27.5 ICRKTP e 1 I4CCEL e 1 1DLRS 2 1RTRS 2 *) ATE: 10/31/98 T P1E 11.49.38 CPU TP4E 4 MIN 5 SEO
HBR-I.222 HB R08 9.26
- i i e a
~ ~ ~
o PtffE
~
o LONGIT.
~ ~ ,,, a CIRCUM. 'a M 'a tu N .
t
~
cna _
,.~ E_
E_ a - c _ z . a _
'a ~
f a f a 100 150 200 250 300 350 MERN RTNOT, DEG.F. Figure I.188. Transiest 9.26: Pj f.fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combiantions. l
O , HBR-I.223 ' L IPTS H 8 RDS CUl0 9.28 7/27/84 8 . . . . . . . ,
, IlhlE..
Ils ) f 8 t.i. g:. E i Shk ~ i N:E c,mm Rs 3 -
, 3 nx R:5 -
4 lite g , - g*B 8 g -
.R M
X a s.: a.: 3 i, ;, ;, - 0.7 a.s o.s : qfy Figure I.189. Transient 9.26* y ** temmke vs 4th la wall (a/w) at various times (t) in transient.
~
HBR.I.224 DRAUFjT TPTS H B RCS CLf!D 9.26 7/27/84 3 . . . . . . . , , , , n9% 2 8:8!! R
- ! hag _
iE'?!!
<:i'J 82s I
3 :9
;S: -
5::Si! 3 8:'*0 r o.s g 18:% I?:E;-
's x N .g . \ .
N h 8 \
. 's \
b "R - .
'N g .
R R g . . . . . . . . . . . 2 18 m a e w a m a a tm un t:
!!!E Figure I.190. Transient 9.26: Vesses wall temperature vs time (t) la transient at various depths in wall (a/w).
t i
HBR.I.22 iPTS H 8 R08 CU!O 9.28 7/27/84 MTO - 0.0 DESF XCU - 0.22 r0 - 3.15E19 LONGIT H , . . . . . . . . . . 3 - 8 - 9 9 i gg . E U R - 2 e x : g
-6 a a a a a a e a a a a a to a a e a a m a a tas its a Figure I.191. Transiest 9.26: K ivs time (t) fo. various depths la wall (s/w).
e
= w
HBR-I.226 f'RITICAL. CRACK DEPTH CURVES FOR IPTS H 8 ROS CLfl0 9.26 7/27/84 97NOTO - 0,0 CEGr %CU - 0.22 Tl! - 0 80 9 - 3.15C19 LONGIT s s - o x .
' E a - o x .
2 - ( .
+ +
s o x
,.+ .
me++'*,,+ pg -
.,*..,,** o x ,, .',, ++ . + . , x + . +
a - > x + . x + x + 3 - " x ,# * . x +
+ 't
- 4 -
nw . x,, 2 - xo gir ,x x x x x , , , x x x, x x x x x xj t ,,sxx e x"*
;9, , , , , ,
a to a a e w m o es 4 ux: na a TIMEIMINUTESI X,2.D flaw, K, = Kw O,2.D flaw, K - 220 MPa 8
+,2.m flaw, K - Kw 7 WPS (warm prestressing)
Figure I.192. Traadest 9.26: Critical-crack-depth curves for weld 2-273A based os
-2a values of Kw Kw and MTNDT, amaa values of all other persawters, and 32-EFPY fluences.
- l l
l l l l l l
/
HBR-I.227 ins h a RDS 12AD 9.28 7/27/84 y s f- , , - - - . . . . . . , o PRESS.(KSg) yj l
'g * ? TCPP. IDEG.P.1 ,4 a H.T.COSTT. ~
a- .
.g
- g. "a o,
o< l- A - a,
,g ~ N' . "a *
- a s.
*' (5 o . E ' s 26 U N- bg< ~4vi g- ~.
y I'
- 8. .
?
a' ,
- a. .
.g
- g. ~4 a.
a
' 2 ' d g- .
o.
- ~. ~4 o<
- d<
a . . , , a ts.s ma as ,o g,, ,,,, g tae sts.o taa Tite!?flN. ) Figwe I.193. Transient 9.28: Primary system pressure, dowacomer coolant tempera-ture, and fluid-film best-transfer coefficient vs time la the transient.
l HBR-I.228 DRitr hp Table I.33. Transiest 9.28: hmmenary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H 8 R09 CL4D 9.23 7/27/54 1 FLAWS /IN3 DRTN(IS) = 211.2
'J44DJUSTED -4DJUSTED WELD P(F/ E) 9510I TERR P(INITI4) g eV P (F/ E) SERR NWAIL MTRIAL%
1 1.260-0'4 2.09D-05 16.62 1.479-04 1.000 1.250-04 139 200000 VESSEL 1.260-44 15,62 DEFfMS FOR 11!TILL I1IT!4TIO4 (IM) 0.09 0.?6 0.46 0.67 0.90 1.16 1.44 1.74 2.08 NUMBER 0 70 59 17 5 1 0 0 0 PERCENT 0.0 43.2 36.4 15.7 3.1 0.6 0.0 0.0 0.0 TTMES OF F4IL'"1E(MINUTES) 0.0 10.0 20.0 31.0 40.0 50.0 60.0 70,0 80.0 90.0 100.0 110.4 120.0 PER0ENT 0.0 0.0 0.0 0.0 0.7 46.0 31.7 1.4 0.0 3.5 6.5 10.1 INITI4 TION T-RT1DT(7EG.F)
-t 00. 0 -75. 0 -53. 0 -25. 0 1.0 25.0 0,. 0 75.0 100.'0 125.0 150.0 175.0 200.0 NUMBER 0 0 3- 33 98 39 21 7 0 0 0 0 PERCENT 3.0 0.0 1.5 17.3 45.1 20.4 11.0 3.7 0.0 0.0 0.0 0.0 ARREST T-RT1DT(SEO.r) -50.0 -15.0 0.0 25.0 90.0 75. 0 100.0 125.0 151.0 179.0 211.0 2?$.0 250.0 1 UMBER 0 1 0 1 1 1 0 6 44 q q 0 PERCENT 0.0 0.1 0.0 3.5 1.0 0.0 0.0 11.5 94.6 0.0 0.0 0.0 IORKTP a ? I4COEL s 1 NDLRS : 1 1RTRS e 1 04TE: 10/31/94 T P1E 01.51.12 CPU TP4E 5 MIN 25 SE':
l l i
-. . . . . . ~ . - ..
HBR-I.229 k HB R08 9.28
- i . . . :
- = n.m :
~
o LONGIT. " a CIRCUM. o
= .
n
'o ~
E 5 u . . N t.
'e'o " ,. E 5
o - - gi : : a _ _ D E i
'o-f a
i . . , , 100 150 200 250 300 350 MERN RTNDT, DEG.P. Figure I.194. Transiest 9.28: hj f.fs) B(s) da n NTNDT, for (2-D, 2-D) and (2 D, 2am) flaw conMantions.
.[, .m HBR-I.230 dh hI IPTS H B RCS CLP.0 9.28 7/27/84 a . . . . . . . . ,,,g n"E !!E d,
2 -
= j'1 1 I - kRE 3 R,n:5 i!!LE g . .g .
8 kg . 3 1 . . R - R - g . . . . . . . . J && 43 0.3 04 ES as LT As As t n/u Figure I.195. Transient 9.28: Vessel wall temperstwe vs depth la wall (s/w) at various times (t) la transient. i I
HBR.I.231 ) FPTS h 8 RCS C:.P.0 9.28 7/2.7/84 g . . . . . . . . . . i 18!1 8.E 3 h'i:2
!!E -
5 Lin tiiM 18:R: 3 - A P iB ~
!im I8:!D i t.M 6 ;;;g - .g .
N - h N g . g . . g . . a
~ ; to a ao e a en m so so too sto is TIMC Figure I.196 Transiest 9.28: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w).
l I l
HBR-I.232 1 fPTS H B RDS CLP.D 9.28 7/27/a4 l RPOT3 - 0.0 CEGF %CU - O.22 FU - 3.15E19 CNC17 H , . . . . , g . pl.* l l: E . In i 4 33 R . H - b . r d to a =
- w a m a = too no 1:
Titt: Figwe 1.197. Transient 9.28: K ivs time (t) for various depths in wall (s/w).
o me HBR-I.233 i 1
'RITICfL CRfiCK DEP!h CURYSS FOR IPTS H B RCS C!AD 9.28 7/27/84 ) ~
RT'cT3 - 0.0 IGF" 7.CU - O.22 !N! - O.80 % - 3.15E19 L.ONC17 a - . o f + o
+ 0 "x + , ' . . .cf l a . . <x , , ,.m! ,
a-
,. + . + 2- I . + O-f - . ,. + . + . +
a
..,*.., ,' .=e . + + + - ., +
p {U -
<E + + +
a - . 1' + -
....... . . + * * , . . * +
x
+
a - x a -
+
A K & r. a - na ' - x " g - x ' - x " It, <
,g r . . . . . inh.TM/KtTA ( .f tT44 444T T/,/K4 4(T41(1 J :o a a e o tu o ao ao tes ::o .:
TIMEPilNJTES1 X,2-D flaw, Ki = K.i O,2-D flaw, Ki = 220 MPa [p1
+, 2-m flaw, K i = K, i s. 2 m flaw, Ki - 220 MPa vm
- c. 2 D flaw, Ki = Kw V, WPS (was pmtmsing)
Figure L198. T.aasiest 9.28: Critical-crack-depth curves for weld 2-273A based os
-2a values of Kw Kw sad ARTNDT, mesa values of all other parameters, and 32-EFPY fluences.
t l l I a
HBR-I.234 DRAf f i 1
- a W N h S ROS CUU 9.32 7/27/84 2 l- l , . . . . , , , , , ,
g'n a PfESS. (KSI) .g o TEM *.IDEL.F.I "4 a' ,A H.T.COEFT. k~ o. t 4 a $- .9
- .~ , =-
2 _ I" - c = 8' do, N w 3- 8.
. , 9 ~. .w w
Y b, wo .g ( IT -
*a I"
o, - d. E. "d a A 'a N, d g. o, S,
'9 a,
a
.. d. - . . .' . . . . . . , . .8 d
o.o to.o me no e.o so.o es.o ro.o no so.o too.o sto.o taa I!?CfMIN.)
, Figure I.199. Transiest 9.32: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient r; time in the transient.
i i l
~ ' - ~------
a HBR.I.235 dd % Table I.34. Transiest 9.32: h-ry of digital output, including usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROB CLAD 9.32 7/27/d4 1. FL4WS/I4883 DRTN(IS) s 111.2
'JM LDJUSTED -4DJUSTED WELD P(F/ E) 955CI 1 ERR P(INIT!4) 1 'V P(F/E) SERR NFAIL NTRIAL%
1 6.440-05 1. 50D-05 23 25 6.89D-05 1.000 6.44D-05 71 200000 VESSEL 6.440-05 23.26 DEPTHS FOR INITIAL IMITI4TIO1 (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1.34 1.72 c.08 NUMBER 0 33 21 17 4 1 0 0 0 PERCENT 0.0 43.4 27.6 22.4 5.3 1.3 0.0 0.0 0.0 TIMES or F4ILURE(*1INUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0. 0' O.0 1.4 9.9 18.3 38.0 5.6 9.9 9.5 2. 9 5.5 INITIATION T-RTMDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 151.0 175.0 200.0 NUMBER 0 0 2 11 49 16 13 3 0 0 0 0 PERCENT 0.0 0.0 2.1 11.7 52.1 17.0 13.8 3.2 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEO.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 0 2 1 0 0 0 4 16 0 0 0 PERCENT 0.0 0.0 8.7 4.3 0.0 0.0 0.0 17.4 69.6 0.0 0.0 0.0 ICRKTP s 2 I4CCEL = 1 MDLRS s 0 NRTRS 0 DATE: 10/31/54 TIME: 02.02.00 CPU TIME: 5 MIN 28 SEC
HBR-I.236 if M HB ROB 9.32 l
- i i i . g i
~_ q l - ) ~
o PLATE - o LONGIT.
~ ~ ,, a CIRCUM. 'o ~
D -
?
u _ _ N t
'a,'o _ ,." 3
_3 o - - c . . z - - a _ _
'a 'a-Y a-100 150 200 250 300 350 MEflN RTNOT, DEG.P.
Figure I.200. Transiest 9.32: hj [fa) B(s) 44 vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. i l I
W HBR-I.237 0 g ffTS M 5 8tOS CLfio 9.32 7/27/s4 , g . . . . . . . .
. ?%a-- -
i:s
! :a s- . . 5H- - ===
r I " e io Coo
!!!iE i
g . c5 cm
~
b
%R -
g . g . g . g . . . . . . . . .
's o.1 a.a o.s o.4 c.s o.s o.7 c.s o.s a fW Figure I.201. Transient 9.32: Vessel wall temperature vs depth in wall (a/w) at various times (t) la transient.
.=
HBR-I.238 g TPTS H B RCS CLa0 9.32 7/27/84 3 , , , , , , , , , , ,
; 8:Ed ii:El 2 -
ia2 ia:all
- t R \ !
Ql:N p,g-
!a:2 f 8:iB \ \
1 :%i i tE ~
~
b'$ 8 b
-R -
N R - N g - 2 . - a . . . . . . . . . . . _ , _ _ . . . . 2 to a a e w en o a = m ao :: TIFE Figure I.202. Transient 9.32: Vessel wall temperature vs time (t) in transient at various depths in wall (a/w).
- HBR-I.239 - 51 fPTS H B RCS CLR0 9.32 7/27/a4 97'OTO - 0.0 TT %CU - 3.22 FO - 3.15C9 1,.DNGI T E , . . , , , , . , , .--
If,y 1
, \
p . f f3
'i ^
8 rn d *
?
z 53 - g . g . .
~
8 y . e a a a n , e e a e e a to a a e a so m an a tas ::o t: TIE Figure I.203. Transiest 9.32: Kps time (t) for various depths in wall (a/w).
HBR-I.240 7!TICal. CRP.CK OS'f" C'#VSS FDP iPTS h S RCS CLT 9.32 7/27/84 iTNDT3 - 0 0 JSCT T.C'J - 0 22 .Wt - 0.80 % - 3.15S 9 ONGIT
'r e o A
e a g - . ' x + s -
+
n .m**'
'..p ' ...
x .,, , = -
+ a a
a
.. + +
Q - .
/ a . ,a o * + ,= + . * + s-g - ,., . . >
p, ,
+ o. . e * . . , x . +
x (U - *
+ # 1 * +
g . x ,g.=*.... .
.... ...,,..'+
T x
+ + +
d - 'E +
++ - ' +
x *
+
a - . - d - ' - r I T T T T T X .T X t X M T T ? T X X X 4 X M W X t t 4 t t * / / A t/:
. . . .t. . . . . . . .
4 to a :s e *o m o ao m ;c: ::o .: TIMS' MIN'JTS91 X,2-D flaw, K i - K. i O,2-D l' x, Ki = 220 MPa [A
+,2-m flaw, Ki = Ku e,2-m flu. Ki - 220 MPa vm O,2-D flaw, K i = K, i V, WPS (warm prestressing)
Figure I.204. Transient 9.32: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw nda ARTNDT, mesa values of all other parameters, and 32-EFPY fluences.
I f I i o.a
h HBR-I.241
. o o IPTS H B RC8 C:J'O 9.33 7/6/84 l- g, , , , , , , , ,
f - 9o o PRESS.(KSI) y;
$1 '
o TEMP.fCEG.F.1 74 o- A H.T.CCEFF. k' a P
,8 R: "a
- o. #!
=' 8- ' -3
- g. .
2 4
. 8< -
d $ 5 ba. cs . i 83.- 8. a-
, 9 ~x a,.
D 2- 5 = R, . O' h o, 2 -2 9 .g e' R: . s g- .
~
q, - s.
- h.
O.
- i. ,8
.=_ - . . . . . . . . . . ,
g , 3.0 10 .% 3 M.0 W.0 50.0 80.0 O 0 80.0 10.3 ItII.0 110.3 120.0 TIPE' MIN. ) Figure I.205. Transient 9.33: Primsry system pressure, downcomer coolant tempera-ture, and fluid-film best-transfer coefficient vs time la the transient. l i l 4
._ _ _ . _ ~. _ . . .-___. _______ _ _, . L ' t. )
HBR-I.242 j6pg'g5g Table I.35. Transient 9.33: Su==ary of digital output, including vandjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R08 GL40 9.33 7/6/54 1. FLAWS /IN"3 DRTN(IS) = 211.2 UMDJUSTED - 4DJUSTED WELD P(F/ E) 955CI SERR P(INITIA) 1 *V P(F/E) SERR 1 FAIL NTRILLS 1 6.640-06 7.580-07 11.42 1.400-05 1.000 6.640-06 294 200000 VESSEL 6.640-06 11.42 DEPTHS FOR INITIAL INITIATION (I1) 0.09 0.?6 0.46 0.67 0. 90 1.16 1.44 1,74 2.08 N UMBER 0 27? 23? 90 18 8 ? O 0 PERCENT 0.0 43.7 37.3 14.5 2.9 1.3 0.3 0.0 0.0 TIMES Or FAILL'9E(MINUTES) 0.0 10.0 20.0 30.0 u0.0 50.0 60.0 70,0 80.0 90.0 100.0 110.0 120.0 PERCENT 3.0 0.0 0.0 0.0 1.0 1.4 1.7 6.5 13.9 22.4 25.5 27.6 INITItTION T-R?MDT(OEG.F) . .
-100.0 -75.0 -50.0 -?5.0 0.0 25.0 50.0 75.0 100 0 125.0 150.0 175.0 200.0 NUMBER 0 0 24 197 337 136 179 37 1 0 0 0 PER0ENT 0.0 0.0 2.6 21.6 37.0 14.9 19.6 4.1 0.1 0.0 0.0 0.0 ARREST T-RT1DT(ORG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 I?5.0 150.0 175.0 200.0 2?5.0 ?50.0 1 UMBER 0 2 34 22 ? 0 18 4?9 110 0 0 0 'ER0ENT 1.0 0.3 5.5 3.6 0.3 0.0 2.9 69.5 17.5 0.0 0.0 0.0 8 0F STD DEVS ABOVE MEAN DELT4 RTMDT(FAILil9ES ONLT) 1.00 1. ?5 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1 UMBER 3 9 14 31 43 49 73 62 PERCENT 1.0 3.1 3. 2 10.5 14.6 16.7 ?4.8 21.1 # OF STD DEVS ABOVE 1E41 RT1DT(FAILURES ONLT) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 NUMBER 2 4 15 35 49 56 67 66 PERCENT 0.7 1.4 5.1 11.9 16.7 19.0 22.5 22.4 IOCP=? ILCOEL : 1 1DLRS : 1 19TRS : 1 DATE: 11/19/54 Tr4E: 2?.51.11 OPU TI1E: 5 MI1 22 SEO l
1 l l
.s l
I l HBR-I.243 ' HB R08 9.33 l
- 3
~
[ o PLATE o LONGIT. ~
,, A CIRCUM. ' 'o ft 'o ta .N a_ -a _ _
a . _ c _ _ z - - a _ _
'o e
o _ h - 100 150 200 250 300 350 MERN RTNOT, DEG.F. Figure I.206. Transiest 9.33: Pj {wfa) B(s) de vs RTRFT, for (2-D, 2-D) and (2-D, 2m) flaw combinations, i l ( l
~
~ Y HBR-L244 N 8 MS CLac 3.33 7/6/81 S . ' . E ' . > ,_ Sk$ ex g , a $. , e iii l ea
- M.
a 8 R:s ~
!SE K ala.co 6 - ~
g' ' 8 nk - g . X- . l
@~.
da i, ;, . , , , 5: 45 gg 'T Es e, , I % 1 l Figure L207. Transiest 9.33: Vessel wall temperature vs depth la wall (a/w) at various times (t) in tansient. l l v
=
g .-. HBR-I.245 /l Og M l i IPIS h 8 M C P.D 9.33 7/6/84 E , . , . . . . . . . 9 Q. 88:8s 8 - !8:!: s x !8:3!-
% 58iii f 8 !# \ :t!:
a - 0 tE '
!8:5 f 8-ie ! - s N ?8:%!
NA
! ?:E ~ .g . \ N A
R . R _ l a . . . . . . . , , , , 5 m m m e = m so u . . .m u ITE I 08. Transient 9.33: Vessel wall temperature vs time (t) la transient at various i M^
HBR-I.246 e RCS %* 7/6/84 attoTO - IP[g"ccGr 7d . 4
*f22 r0 , 3.15E19 sp1T .I g s
R k I 1 N
...P.,,,
E.
]
3% - - 3 v l -
~
[ t o :o a m e m so m an u :aa t:o t TITE Figure I.209. Transient 9.33: Kg vs time (t) for various depths in wall (a/w).
) )
l 1 I 1 t
)
m HBR-I.247 ggy ' rHIT:CP CRACK OC*TM CURVES FOR IPTS H ! ROS CL5?D 9.33 /6/84
- iTNDTD - 0.0 OCGF *:CU - 0.22 L',l! - 0.80 r0 - 3 155:9 L%IT x
2 - x - x
- l 3 . x y , + + +
x + y .
+ - + . +
3 ..s , x + -
+
jd - x ,, ..***** ,
.,*.... ..,,.......'*x + + +
g . - x + - x +
+
x + d - X. ,# - x + x +
+
n x + d x+ - N
~
x d xxx x x*
- x x x x x X * * * * *
% xM 'kxx# **x , . . .7, . . . . .
2 to .c m e so so o so so :co :ta : TIME! MINUTES) X,2-D flaw, K = K,i i O,2-D flaw, K i - 220 MPa 8
+, 2-m flaw, Ki = Ki , V, WPS (warm prestressing)
Figure L210. Tr=W 9.33: Critical-crack-depth curves for weld 2-273A be.ed os
-2a values of Kw Kw and ARTNDT, mesa values of aH other parameters, and 32-EFPY fluences.
4
l
- I HBR-I.248 = $ j 9 a IPTS h B ROS CLAD 9.34 7/6/84 l- l, . . . , , , , , , , ,
3 - l 9o a PRESS.IKSI) ,g I
$1 o TEMP.fCEG.P.) 'n ) *' a M.T.COEFT.
k' o. - i: -5 o. _ii. w :: O' do $
- 8. g- dg.
A.w .
*~ n'
- 13 x
5=.
- .=
- El -
O, O. . . R- -2 o' N' -! g- . a.
- A.
G.
= .. s. . . , , . , , , , , , ,8 a ,
o.o to.o ao m.a no ao ao m.o ao so.o tao ::o.o taa TIME! MIN.) Figure I.211. Transient 9.34: Primary system pressure, downcomer coolant tempera-ture, and Guid-film beat-transfer coefficient vs time in the transient.
I 5-
. ,. .V . HBR-I.249 g[
Table I.36. Transient 9.34: Summary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CLAD 9.34 7/6/34 1 FLAWS /IM "3 09TN(IS) = ?11.2
'JNADJUSTED - ADJUSTED '4 ELD P(F/E) 955CI 1 ERR P(INITI4 ) 1 'V P(F/ E) 1 ERR Tr4IL 1 TRIALS 1 8.290 46 8.47D-07 10.22 1. 58D-05 1.000 8.290-06 367 200000 VESSEL 8.290-06 10.22 DEPTHS FOR INITIAL INITIATION (IN) 0.09 0.25 0.45 0.57 0.90 1.16 1.44 1.74 2.08 4tf4BER 0 310 246 99 29 13 2 0 0 PERCENT 0.0 44.3 35.2 14.2 4.1 1. 9 0.3 0.0 0.0 TI4ES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.8 1.1 4.9 ?.1 15.0 22.6 24.3 22.3 INITI4 TION T-RTMDT(DEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 0 24 235 378 173 1 37 45 2 0 0 0 PERCENT 0.0 0.0 2. 3 22.5 36.2 16.6 17.9 4.3 0.2 0.0 0.0 0.0 ARREST T-RTMDT(DEG.r) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 6 51 21 2 0 23 449 125 0 0 0 PERCETT 0.0 0.9 7.5 3.1 0.3 0.0 3.4 66.3 18.5 0.0 0.0 0.0 8 0F STD DEVS ABOVE '4EAN DELTA RTNDT(FAILtJRES ONLT) 1.00 1. ?S 1.50 1.75 2.00 2.25 2.50 2.75 3.00 NUMBER 6 16 30 50 53 53 3? 72 PERCENT 1.6 4.4 8.2 13.6 14.4 15.8 22.3 19.6 # OF STD DEVS ABOVE MEAN RTNDr(FAILtJRES ONLT) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1 UMBER 2 9 24 45 54 69 36 73 PERCENT 0.5 2.5 6.5 12.3 14.7 18.8 23.4 21.3 ICRKTP 2 I4CCEL = 1 NDLRS : 1 1RTRS : 1 04TE: 10/31/34 TI'4E: 32.03.12 CPU TIME: 5 MIN 21 SEC
..... _ . . . . _ _ _ _ _ . . . . . . _ - ._ _ . . _1 HBR-I.250 l
HB ROB 9.34
~
o Pt. ATE ~
~ ~
o LONGIT.
~ ,, a CIRCUM. 'o n 'o- - : ~
ta . N _ t . n a_'a-o - c _
-t.
z - a . r o v o i E Y o-100 150 200 250 300 350 t1ERN RTNOT, DEG.P. Figure I.212. Transient 9.34: Pj [fa) B(a) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. l
' ~ HBR-I.251 IPTS H S RC8 CUB 9.34 7/6/84 E , , , . . . . , , E!La
;iE C 4.CD f fifg k "
a
; ?? -
r E E:E i h:s liR:E I 8 i::s -
;iM x LLE.@
6 - . g 8 b, R . 9 E . I a a at u u l au N f YM Wall tesaperature Ys depth in wall (a/w) at various f l
HBR-I.252 IPTS H B RCS CLR0 9.34 7/6/84 R . . . . . . . . .
;8:j?! !8:a F :ia E ! 8:8ll ' !a:!?! !8:g - : a:=
I
\ p l:!E ' \ i 0:5 x i8:4 5 , ~ ? E:E l tE; '
i\
,. 5 - -
o 8 R -
'N R .
g . . 1 g . a . . . . . . . . . . . O to 3 2 to 50 80 70 80 SC 100 110 12 Tite Figure I.214. Transient 9.34: Vessel wall temperature vs time (t) in transient at various depths in wall (a/w). l 1
~ ' ' ~
HBR-I.253
- IPIS H B RCS CL*!D 9.34 7/6/84 RTNOTO - 0.0 DEGF 7.CU - 0.22 PO - 3.15E19 LCtGIT g . . . . . . . , , ,
E . l l: g I G N 30 . R . 8
= -
O ' E . A e e , , , 8 18 28 m e a ao m a a :aa sto : TIME Figure I.215. Transient 9.34: X vs time (t) for various depths la wall (s/w). l l
HBR-I.254 CRITICP.L CRPCK DEPTH CURVES TCR IPTS H B RC8 CLT) 9.34 '/6/84 RTNOTO - 0.0 CEGT %CU - 0.22 7.HI - 0.80 F0 - 3.15C19 LONGIT X f . X
- X *
+
f . 'P X *
+ +
h, "
<P X 4 ,
G
+ + +
3 ..s ', s
+ + - . +
j ,,......****
+
[0 - * ' *
+ ~ *x + .,*.... ..,,,...... + +
3 . x ,++ -
* + +
x + 3 - x l -
+ * + , + ,, X +
g . x + - N g x *W x***x,,,,xxxxwx*
& x %x- 'tX*
I , , . , , , .. . . , , O o to a in e so so 7e so so too tio 12 TIME! MINUTES) [ X,2.D flaw, K - Ku O. 2.D flar, K - 220 MPa d i +,2-m flaw, K - Kw V, WPS (warm prestressing)
- Figure I.216. Transient 9.34: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and MTNDT, mesa values of all other paranneters, and 32-EFPY fluences.
l i l l
I HBR-I.255 a H 8 O 1 % 9.37 7/6/84 8 f- g- , , - , , ' ' - , , - g .
" PRESS 'kSI) ,
27
- o TEMP.f0EG.F.) 5 a,
g.
- n.r.ccerr.
N *.
,g I ,' A a,
a< p. r p A ~ S Q
*. aa, y A1 . ,.; - ~. - . ,g i h. -e ,g M
Q-
$' :M a- $' a, '
e A a,
- M
~ ,o g- .
o, -
- j. M "d
a. g< d,, y, ' - . , j "
*8 E8 20 e.o $.o *
- 1" 8 110.0 tno tit 1E tMIN. )
Figwe I.217. Transient 9.37: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient vs time in the transient.
HBR-I.256 Table I.37. Transiest 9.37: Sa===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 OLAD 9.37 7/5/94 1. FLAWS /IN"3 DRTN(IS ) ?11.2 UN 4DJUSTED - ADJUSTED 'iELD P(F/E) 9550! SERR P(INITI4) 1 *V P(F/ E) % ERR T 4IL 1 TRIALS 1 1.300-06 2.?29-07 17.12 2.050-05 1.000 1.300-05 1 31 200000 VESSEL 1.300-06 17.12 DEPTHS FOR I1ITIAL I1ITI4TIO*f (!4) 0.09 0.25 0.45 0.67 0.91 1.15 1.44 1.74 2.08 1 UMBER 0 75 75 39 10 5 ? q 0 PTRCENT 0.0 35.7 36.? 13.4 4.3 ?.4 1.0 0.0 1.0 TIMES Or r4ILU9E('1I1'1TES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 30.1 90.0 100.0 119.0 120.0 PERCENT 0.0 0.0 0.0 0.0 0.0 0.0 4.5 .10.7 16.0 26.0 17.6 25.2 I4ITI4 TION T-RT1DT(7EO.F)
-100.0 -75.0 -50.0 -?5.0 1.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1UM9ER 0 0 0 23 127 143 18 4 0 0 0 0 PERCENT 0.0 1.0 0.0 5.9 37.9 42.7 11.3 1.2 0.0 9.0 0.0 0.0 4RREST T-RT1DT(7EG.F) -50.0 -25.0 0.0 ?S.0 50.0 75.0 100.0 125.0 15-1.0 175.0 200.0 ??5.0 250.0 N'#13 ER 0 1 1 3 1 ? 12 39 91 1 0 9 ?ERCENT 0.0 0.0 0.0 3.9 0.5 1.0 5.9 41.5 45.1 0.0 0.3 0.0 81r STD DEV3 ABOVE '1E44 SrLT4 RT1DT(F4ILU9E9 01LT) 1.10 1. ?S t.50 1.75 2.00 2.25 ?.50 ?.75 1.00 1' FIBER 1 3 1 11 17 ?O 30 '89 PERCE1T 1. 0 ?.3 ?.3 7.5 13.0 15.3 22.9 15.6 # 0F STD DEV3 480VE '1EAN RT1DT(FAILtJRES 01LT) 1.00 1. ?S 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1 UMBER 0 9 3 6 20 31 11 40 PERCENT 1.0 0.0 2. 3 4.5 15.3 23.7 23.7 10.5 ICRKTP : ? It00EL 1 1DLRS : ? 1RT13 s 2 04TE: 10/31/34 TP1E: 22.48.44 OPU TIME: 5 'tI1 19 SEO
HBR-I.257 HB R08 9.37 1
- i i i . - I
- : i
- 1 o PLATE ~
o LONGIT.
~ )
a CIRCtm.
'o ~ . E i M 'o ~
E _E. u - s _ k - -
' 'o _
o - x - z - a - r a
~ = =
e o~ E : Y a 100 150 200 250 300 350 MERN RTNOT, DEG.P. W Figure I.218. Transiest 9.37: Pj f fa) B(s) de vs RTNDT, for (2-D, 2-D) and (2-D, 2m) flaw combinations. l ( l 1 l l l
HBR-I.258 IPTS H 8 RCS CUID 9.37 7/6/81 3 . , , . , , , . -
!ts 8's R
- ba-
!ha h G 5!
E 5 E:s ' t != a d ire.s g . . . '$ 0 8 a d
.- R ,
Y g . g . . g . .
- E I L i E 1 a n 3 0 0.1 0.2 0.3 0. 4 0.5 0. 8 0.7 0. 8 0. 9 3 M4 Figure I.219. Transiest 9.37: Vessel wall temperature vs depth la wall (s/w) at various times (t) la transient.
. _ ._ ._~__ . _. _ . _ _ _ . _ _ _ _ _ . . . _ _ _ . ._ . ._ _ _ _ _ . _ _ . _ . . . .._. .
we
~
i HBR-I.259 IPTS H B R08 CLA0 9.37 7/6/84 0 . , , , , . . . . g 8:M l"18e F8:8: 9: . 8 8:8:! ~ 5 8:!R l t &in l R
- l8:! -
p8E - Riti l 18:5dJ B - s Vin!
; 0;g - .g .
ss% ' 8 b
-8 NN y ~%
g . g . t g .
=> .
1 0 30 20 33 to 50 80 70 00 90 tal llo 13 IIPE Figure I.220. Transient 9.37: Vessel wall temperature vs time (t) la transient at various depths in wall (s/w). L t J l 4 I
r4 m ** m 6'
, l .41 h 0 HBR-I.260 adY$f IPTS H S RGB J C' D 9.37 7/6/84 RTNOTO - 0.0 CEOF %CU - 0.22 TO - 3.15E19 LCNGIT H . . . . . . . . .
l ,- g . ' ' l i 3 - R a d i 58 - m 5 52 g . R - i E - h ; - : 2 o E E E E E E E E so too iso 7 TIPE Figure I.221. Transiest 9.37: Kr es time (t) for various depths la wall (s/w). l t e > )
HBR-I.261 CRITICAL CRACK CEPTH CURVES TCR IPTS H 8 RCB CLAD 9.37 7/6/84 RTNOTO - 0.0 CEST %CU - 0.22 %NI - 0.80 F0 - 3.15E19 LCNGIT x e x d - x - n x e
- g - o y .
g .
' x ,a + . +
e g . . s o x + . x
......+ t.......
2 gd - F.a**.....****. < -
. + +
g - o x +
+ . + +
n X + g - ' x + .
+
x + n + a - ' m . . x
*****x=xxxxxxxxxxxxxx,xxx; g - '
ir ! e i y , . . 1 . , , , o to ao ao e so ao to so so too iso is TIPE! MINUTES) X, 2-D flaw, r, - ri. O. 2-D flaw, iK - 220 MPs 8
+,2-m flaw, ri - r.r V, =N (warm prestressiag) l Figure L222. Transient 9.37: Critical-crack-depth curves for weld 2-273A based on
( -2a values of K,,i Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY fluences. l l t t I l
! 0 %
HBR-I.262 /d[gi a o IPTS H 8 RCS C:AD 9.39 7/6/84 g l- g . . . . . . . . . g - an a PRESS.tKSIl 'n
$T o TEMP.(DE3.F.! Id
- o. ' a H.T.COEFF.
l- a;i 8 E' . Ta o. g o' b', Ia i O'
'S
_ $', TA C e' U. 5 (8 ,
.g $
o N' d lo . " *
" : u; ~
g" .
' y Y
so< 5 8
- o. , ,.
u 5 I* o, -
.g . o X: Ed
- g. .
o, -
~
o.
- 8' O
- o. - '
' o.
0.0 10.0 - 30.0 30.0 10.0 50.0 80.0 70.0 80.0 30.0 100.0 110.0 130.0 TIMEIMIN.) Figura I.223. Transient 9.39: Primary system pressure, downcomer coolant tempera-ture, and fluid-film heat-transfer coefficient vs time in the transient. t l l 1 i I
i HBR-I.263' l Table I.38. Transient 9.39: San ===ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and : T - RTNDT values at tip of crack corresponding to laitiation and arrest events IPTS H B ROB CLAD 9.39 7/6/94 1 FLAWS /IN "3 DRTN(IS) ?11.? UNADJUSTED-- - 4DJUSTED
'4 ELD P(F/ E) 951CI % ERR P(INITIA) NV P(F/E) TERR Nc4IL NTRIA LS 1 1. 32D-05 1.280-06 9.68 1.510-05 1.000 1.320-05 409 140000 VESSEL 1.320-05 9.68 DEPTHS FOR INITIAL INITI4 TION (IN) 0.09 0.25 0.46 0.67 0.90 1.16 1.44 1.74 2.09 NUMBER 0 162 152 82 43 25. 4 0 1 PERCENT 0. 0 34.5 32.4 17.5 9.2 5.3 0.9 0.0 0.2 TIMES Or FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 90.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 8.8 33.5 7.1 9.6 11.0 8. 3 10.0 12.7 INITI4 TION T-RTNDT(OEG.F) -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150'.0 175.0 200.0 NUMBER 0 0 4 115 261 106 101 35 0 0' O O PERCENT 0.0 0.0 0.6 19.5 42.0 17.0 16.2 5.6 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 N UMBER 0 14 16 to 0 0 1 35 87 0 0 0 PERCENT 0.0 6.6 7.5 4.7 0.0 0.0 0.5 39.9 40.8 0.0 0.0 0.0 # OF STD DEVS ABOVE MEAN DELTA RTNDT(FAILURES ONLT) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 NUMBER 24 25 47 57 56 68 71 61 PERCENT 5.9 6.1 11.5 13.9 13.7 16.6 17.4 14.9 9 0F STD DEVS ABOVE 'fEAN RTNDT(FAILl!RES ONLT) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 NUMBER 8 29 45 54 61 76 75 61 PERCENT 2.0 7.1 11.0 13,2 14.9 13.6 19.3 14.9 ICRKTP 2 IACCEL : 1 NDLRS : 1 NRTRS 1 04TE: 11/03/94 TIME: ?3.02.39 CPU TIME: 3 MIN 46 SEC .
. HBR.I.264 HB R08 9.39
_- o PLATE
~
o LONGIT. a CIRCUM. O _
~ - . I -
r.
'O = =
tu N _ L _ O _
,.~ E_
5_ g _ g _ z - D . C - O _
?
Q f . t t t l 100 '150 200 250 300 350 MERN RTNOT, DEG.P. Figure I.224. Transient 9.39: Pj { fa) B(s) da vs RTNDT, for (2 D, 2-D) and (2-D, 2m) flaw combinations. i f I I I l
. . . _ . . _ _ . . _ . . - . _ . . . . . . . . _ _ . _ _ _ _ _ . _ . .. _~ - . _ - - __- .__. -
HBR-I.265 IPTS H B RC8 CLP.0 9.38 7/6/81' 0 - - . . . . . , ..
!!M 98:2 82:s 5 - s nx .
R E N:s ~ tmx i iii.2 6 - g8 - . 8 y 7__ 7 wR R . 2 - N . i s . . . . . . . . . o a.: a.: a.: a. . a.s a. . o., o. , a,, , l n/w i Figure I.225. Transient 9.39: Vessel wall temperature es depth in wall (a/w) at various
):
times (t) la transient. i 1 l l l 1 i
--_& vm
, o D.08P' NN' HBR-I.266 IPTS H B RGB CLR0 9.39 7/6/84 g ; p, !8:8Il i&8 R ; 8:811 -
Y8:a i 8:i'd k8E R i8:2e - atR it! g d B'2
- ts -
x t.m
\
CR a b
~R - \ ~
R R . R . 6, y y y y E E E E $ := to u TIME F12 nre 1.226. Transient 9.39: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w).
HBR-I.267 IPTS H B R08 CLfl0 9.39 7/6/81 RTNOTO - 0.0 CEGF' %CU - 0.22 FO - 3.15E19 LCNGIT 3 . . . . . . . , , , l i c ,. g
}-!:f;g 1,! .B
. E E - m I - 15 . S G R I
~ ,
8
~
P 0 10 m 3 g 50 40 70 so so 100 810 11 TIME Figure I.227. Transient 9.39: K ivs time (t) for various depths in wall (s/w).
l HBR-I.268 CRITICPL CRf?CK CEPTM CURVES FOR IPTS H S RC8 CUID 9.33 7/6/84 RTNDTD - 0.0 CEGP %CU - 0.22 %NI - 0.80 F0 - 3.15E19 LONGIT xv l
\
d - a~ . . 1 x . x<r a..,,,.. 3me*****
. + ,
d - .x o ,, , . !
* + , + ~ .y o .
d -
,e o . + . .,8 . i + +
e d - * % * * .
+ * +
2 .
- ya -
s yn +
+ .
a -
..,,,......, .x,,..**,, . ,,,,,m...... +
x +
+ +
e a - x ".+* . y +o
+
N a - x+ o . x x o one a - x v . 5
**x*hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxi . . . .t . . . . ,
0 to M M M SD 00 70 80 30 100 110 13 TIMEtMINUTES) X. 2-D flaw, iK - K,i e,2-m flaw, K i = 220 MPa 8
+,2-m flaw, Ki = Kr. 7, WPS (warm prostressing) 0,2 D flaw, K i - 220 MPa 6 Figure L228. Transient 9.39: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw K., iand ARTNDT, iness values of all other parmiaeters, and 32-EFPY fluences. . . - . ,,=m..-.-.....,u- . . . . , ..,...m...-.s . .. _..-m.
e , i. HBR-I.269 S.e! 7. u :. j j
- o o IPTS H 8 RC8 C:.RD 9.40 7/6/84 g g- g , , , , . , , , , , ,
s - oo o PRESS.(KSI) 'n
$1 ' o TE.MP. (CC3. F.1 Id a' a H.T.CCETF.
l- a;' .g
$" Id 1
o, . 'g q< g- a k~ a o 2 _t N a N O o< s
'M s !"-' 08: N- as -
Z sQ s
% 9' o.
wa- e '8
$1 '"
- a. i
- o. ,g a: Id o,
,g a
l Id -
- o. -
- q S. "a o.
o
- o. 8< . . . . . . . . . . .
'ko .
0.0 10.0 33.0 32.0 10.0 50.0 00.0 70.0 80.0 30.0 100.0 110.0 120.0 TIMEIMIN.) Figure L229. Transient 9.40: Primary system pressure, downcomer coolant tempera-ture, sad fluid-film heat-transfer coefficient vs time in the transient.
. - - . - 1 4
HBR-I.270 I - Table I.39. Transient 9.40: Sa===ry of digital output, including unadjusted P(FlE) values and histograni data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROB CLAD 9.40 7/6/54 1. FLA'4S/I4'83 DRTN(IS) : 211.2 UN4 DJUSTED - 4DJUSTED
'.iELD P(F/ E) 9510I % ERR P(INITI4) 1'Y P(F/ E) SERR NF4IL NTRIALS 1 2.990-05 1. 02D-05 34.12 3.45D-05 1.000 2.990-05 33 200000 VESSEL 2.990-05 34.12 DEPTilS FOR IIITILL 11ITI4 TION (IM) 0.09 0.?6 0.46 0.67 0.50 1.16 1.44 1.74 2.08 NUM9ER 0 17 11 9 1 0 0 0 1 PERCENT 1.0 44.7 29.9 23.7 2.6 0.0 0.0 0.0 0.0 TI'4ES OF FAILUR E(MINUTES) 0.0 10.0 ?0.0 30.0 40.0 50.0 50.0 70.0 30.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 12.1 51.5 6.1 6.1 3.0 6.1 1?.1 3.0 INITI4 TION T-RTMDT(DEG.F) , -100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1 UMBER 0 0 1 13 20 5 6 4 1 0 0 0 P!RCINT 0.0 0.0 2.0 25.0 40.0 10.0 12.0 9.0 2.0 0.0 0.0 0.0 ARREST T-RTNDT(SEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 1UM9ER 0 0 2 0 0 0 0 5 to 0 0 0 PER0ENT 0. 0 0.0 11.5 0.0 0.0 0.0 0.0 29.4 58.5 1.0 0.0 0.0 l
l ICRKTP 2 I4COEL 1 1DLRS : 1 1RTRS : 1 MTE: 10/31/54 T P1E 02. 21. 00 l CPU Tr1E: 5 MIN 30 SE" i l i i l l
. HBR-I.271 ad HB R08 9.40
[ o PtffE :
~
o LCNGIT. ~
,, a CIRCUM. 'o. :_
n
'o ~
i 5 U s ! / !
- u. . . .
g c _ [ -j z - - 2 _ _
'o 'o y
C f f f f 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figure I.230. Transiest 9.40: hj f fa) B(s) da vs RTNDT, for (2-D, 2 D) and (2-D, 2m) flaw combinations.
. - . . . . . - . ~_ -,. .
HBR-I.272 IMS H 8 RC8 CLRD 9.10 7/6/81
] . . . . . . . . .
l a n. g ..= NI$ - 2 m m 3 ses 52:3 - C l@ M i iii~dii i g .
.g .
b 8 8
-a - /
R . g . R - I g i i i , , , 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0. 0 0.3 1 n/'d Figure I.231. Transiest 9.40: Vessel wall temperature vs depth la wall (a/w) at various times (t) la transient. l i i r
- - es
O e g HBR-I.273 IPTS H B RC8 l1.F.D 9.40 7/6/84
] , , , , , , , .
g i8:8?! 88:8e F8:8 3 -
!8:8ln -
N 58:181 E 8:!# R
- :8:in ! 8:E -
ia:in f8:!M
- ? 8:PJ B
x !!:!; ~ a x -
-a -
x - R - g . g . s~ . . . . . . . 0 10 :10 30 to 50 80 70 80 90 133 110 11 TIPE Figure I.232. Transient 9.40: Vessel wall temperature vs time (t) la transient at various depths in wall (a/w). i
_-. . l,; . _ . HBR-I.274 ) IPTS H 8 RCB CUO 9.40 7/6/84 RTNDTO - 0.0 CE;F 7CU - 0.22 FO - 3.15E19 l.CNGIT H , , , . . . , , , , I
~
N0i l lE N l E
?
hg . - a 5 C R __ E . H . r b - 8 28 # 5
- so ao to so so saa :a :
tit 1C Figure I.233. Tet 9.40: K ivs time (t) for various depths in wall (a/w).
HBR-I 275 CRITIC 8L CRBCK OEPTH CURVES FCR IPTS H 8 RCS CL80 9.40 7/6/84 RTNOTO - 0.0 CEGP %CU - 0.22 %NI - 0.80 FO - 3.15E19 LCNGIT x v o d - x. " + B-N <, ,,, . me * *
- s,
. .* +
d - ze '
+ g - ,= +
x
* +
d - ** , .e .+
+ o, 1 + i d -
- S x " p -
. +
x +
+
- x . .
x " + - gd -
* + + ,,,m ......'*****
d
- +.....,*P., ;,p=**,,.... , +
x + e et d - x + ' -
*+
x + x d - x# " - x x d - x " - x e i i e x**xhxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx: i Y_ i i i , , , o to ao se e so so ro so so too sto ts TIME (MINUTES)
. X. 2-D flaw, Ki - Ku O,2-D flaw, Ki - 220 MPs [m +, 2-m flaw, Ki = Ki , s. 2 m flaw, Ki - 220 MPa Vm O,2-D flaw, Ki = Ku 7. WPS (was prestressing)
Figure I.234. Transiest 9.40: Critical-crack-depth curves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, mesa values of all other parameters, and 32-EFPY fleesces.
HBR-L276 a 0 0 D 9.41 7/6/84
', S f' ' ' . . , . g . O PRESS lKSl1 o TEMP. (DCO.r.1 f a,
- H.T.cccrr.
- a. .g I IN a,
.q kl "
I' a, 1
~ ~.g N A , ~
7 >
- do, m S g. ,87 k- -~m a- .
O I ha. e s 8 a.
- d. a, 3 ,.
kl
- a. .g
- N !a l- -
- g. R
'd a,
_ ,3
- d. N' , , , ' ' ' . , '
s e 0* 8 10.0 m.o z,o ,, 50 0 e0.0 ro.o ag,g m.o too,a 33,,, ,,,, TIMEtnIn,j Figure I.235. Transiest 9.41: Primary system pressure, downcomer coolant tempera-ture, and fluid-film beat-transfer coefficient vs time in the transient.
**""e.
~
HBR-I.277 i Table I.40. Transient 9.41: Susumary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROB CLAD 9.41 7/6/S4 1. FLAWS /I1**3 DRTN(T3) s ?11.2
'JMADJ1JSTED - tDJUSTED WELD P(F/ E) 951CI % ERR P(IMITI4) 1 *V P(F/E) (ERR 4e4IL MTRIALS 1 2.72D-05 9.730-06 35.73 6.350-05 1.000 2.720-05 30 200000 VESSEL 2.72D-05 35.78 DEFTHS FOR INITI4L IMITI4 TION (IM) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2.08 4tP4BER 0 40 13 15 2 0 0 0 0 PERCENT 0.0 57.1 18.5 21.4 2.9 0.0 0.0 0.0 0.0 TIMES OF FAILURE (MINUTE 3) 0.0 10.0 20.0 30.0 uo.0 50.0 50.0 70.0 80.0 90.0 100.0 110.0 120.0 - PERCENT 0.0 0.0 0.0 0.0 0.0 3.3 13.3 16.7 5.7 5.7 ?6.7 26.7 INITIATION T-RTMDT(DEO.F) -100.0 -75.0 -50.0 -?5.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 4 UMBER 0 1 7 33 28 9 8 7 0 0 0 0 PERCENT 0.0 1.1 7.6 35.9 30.4 8.7 5.7 7.5 0.0 0.0 0.0 0.0 ARREST T-RTNDT(DEO.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 225.0 250.0 NUMBER 0 0 10 1 0 0 7 12 12 0 0 0 PERCENT 0.0 0.0 16.1 1.6 0.0 0.0 11.3 51.5 19.4 0.0 0.0 0.0 ICRKTP s 2 I4CCEL e 1 4DLRS : 0 MRTRS 0 D4TE: 11/19/94 TIME: 23.00.33 CPU TIME: 5 MIN 30 SEC . i l
l 1
Dilg e HBR-I.279 ') HB ROB 9.41
- ' s a i :
[ o plate o LCNGIT.
~ - ,, a CIRCUM. 'o =
M
'o w
s - L -
,, / -
Q 'o " 3
,. E o -
a-z - . a .
~ 'o-e o ~
Y o 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figm L236. Transiest 9.41: hj {.fa) B(s) 44 vs RTNDT, for (2-D, 2-D) and (2-D' 2m) flaw combinations. l I i l i l 1
-e .
l HBR-I.279 IPTS H B RC8 C:JO 9.117/6/84 l , , . , , , , . - l t l
~
lf& p s E.$ ' E's Ed
~ a " 9:9 -
S P0& G J.M...co b ~ i, P j # - g . . g . . s~ . . . . . . . . 0 0.1 0.3 0.3 0. 4 0. 5 0.8 0.7 0.8 0.3 1 R/W Figure I.237. Transleet 9.41: Vessel wall temperature vs depth in wall (a/w) at various times (t) la transient. l
. _ . - . -. .,. .. .~ - L ...t HBR-I.280 * ' IPTS H B RC3 C'E 9.41 7/6/84 l8:?5 8 t8s
- F 8:85 3
- 51g=3, -
f ti# I
' O tin fig ' ! ktii ' i8:54 3 ' t&%
if:53'
\
ge - 8 N
-a -
x g . x g . g . s~ . . . . . . . . . . . 0 10 2 33 to 50 80 10 00 30 100 110 ti TITE Figure 1.238. Transient 9.41: Vessel wall temperature vs time (t) la transient at various depths la wall (a/w).
g'E g HBR-I.281 IPTS H B R08 CLP.0 9.41 7/6/84 RTNOTO - 0.0 DEST XCU - 0.22 F0 - 3.15E19 LCNGIT R l: 11-y _ R ~ , G 4 3 - S E2
. f h-g . . ' ^
B _-
=
a o to a a e se en m so so ion iso is Figure I.239. Transiest 9.41: K ivs time (t) for various depths la wall (a/w). t
~ ~' ~~ ~ -- _ _ _ . - _ _ _.. - - _ . _ . . _ _ _ l ~
HBR-I.282 - DB d I l CRITICAL CRACK CEPTH CURVES PCR IPTS H 8 RCS CUO 9.41 7/6/04 RTNOTO - 0.0 CEGF %CU - 0.22 %N! - 0.80 F0 - 3.1SE19 LCNGIT E i d - " y ,? o x . a
~ . +
g - o x 4 o -
+ + + 0 y - " x + + q +
8
. + + . +
g -g . o x $ .
. + . + + ,m .***,,.....
[d - *
,,j...****** - +
f j - o y + .
+ +
e + d - > x + - x *
- o x ++
x + n +, d - ' x + - j x x d - * -
;' *x N x x ** * '
ax xxxxxx l , . ) x*kxxxxxxxxxxxxxx*m*x i o 10 ao m e so ao to ao so too sto 1: TIME (M!tAJTES) X,2-D naw, Ki = Ku O,2 D naw, K i - 220 MPa 4
+,2-m naw, Ki = Ku 7. WPS (warm prostressing) c,2 D naw, Ki - Ku Figure L240. Transiest 9.41: Critical-crack-depth curves for weld 2-273A based on -2a values of Kw Kw and ARTNDT, usena values of all other parameters, and 32-EFPY fluences.
l t l l as
" * * - .*w a = = =a . . -. =n. .. . , . _ . . , , . . . %%%_._.,., , _ _ _ ,
l E
- i, HBR-I.28i o a IPTS H B R08 CLA0 9.42 7/6/84 g l- g , , , , , , , , , , ,
a - oo o PRESS.(KS!) 'N
$h o TOP.ICEG.T.I Id o' a H.T.CCETT.
l~ a ? 8 R: Id a,
,g o'
N1 ' ~d
- g. -
.S g.o - .- w , g co a , N ha' .gM c h' $ $'. Tavi ~
a- . a i bo, t
.g
- g. ..
~
k'
- a. , ,n R' ld o. .g a kT . Id
- g. -
a, -
;g S.7 ld a<
a g;
- g. ,8 a ,
a,o 10.0 a0.0 33.0 e.o 50.0 so.o 70.0 so.o so.o 100.0 110.0 120.0 TIMC(MIN.! Figure L241. Transient 9.42: Primary system pressure, dowacoawr coolant tempera-ture, and fluid-film best-transfer coemcleat n time la the transient.
HBR-I.284 Table I.41. Transient 9.42: Sa--ry of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 OLAD 9.42 7/6/34 1 FLWS/I1**3 DRTN(IS) s ?11.2
----U N 4 D JUSTED - 4DJUSTED 'dELD =
P(F/ E) 95%0I % ERR P(I4tTI4) N 'V P (F/ E) % ERR NFAIL NTRIALS 1 3.260-05 1.07D-05 32.66 6.620-05 1.000 3.260-05 36 200000 VESSEL 3.260-05 32.66 DEPTHS FOR INIT!4L INITI4 TION (I1) 0.09 0.26 0.46 0.67 0. 90 1.16 1.44 1.74 2.08 1 UMBER 0 42 14 15 2 0 0 0 0 PER0ENT 0.0 57.5 19.2 20.5 2.7 0.0 0.0 0.0 0.0 TIMES or FAILURE (MI1'JTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 90.0 90.0 100.0 110.0 120.0 PER0ENT
- 0. 0 0.0 0.0 0.0 0.0 2.9 11.1 16.7 5.6 9.1 25.0 30.6 INITI4 TION T-RT1DT(SEO.F1
-100.0 -75.0 -50.0 -25.0' O.0 25.0 50.0 75.0 101.0 125.0 150.0 175.0 200.0 *IUMBER 0 1 7 35 29 9 12 7 0 0 0 0
PER0ENT 0.0 1.0 7.0 35.0 29.0 9.0 12.0 7.0 1.0 0.0 0.0 0.0 ARREST T-RT1DT OEO.F)
-50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 1 UMBER 0 0 11 1 0 0 7 33 12 0 0 0 PER0ENT 0.0 0.0 17.2 1.6 0.0 0.0 10.9 51.6 19.9 0.0 0.0 0.0 ICRKTP : 2 I4COEL s 1 1DLRS : 1 1RTRS : 1 04TE: 10/31/54 TIME: 32.26.21 OPU TI1E 5 MI4 29 3E0 . -. .=% e .-e.,-. e*-,d-.m-* * - - - = = = - * * * * ~ - + - * + * * * * * * * = - - ' = = - * * * * + '
HBR-I.283 h HB ROB 9.42
- i . ,
[ o PLATE :
~
o LONGIT. ~
,, a CIRCUM. 'o ~
E E te
'o ~
tu N e . -
','o, .d ,. ~ 5 a -
c _ z - a . _- o :- : D E i
'o' 100 150 200 250 300 350 MERN RTNOT, DEG.P.
Figwe I.242. Traanient 9.42: Aj {.fa) B(s) da vs N7727, for (2-D, 2-D) and (2-D, 2m) flaw coaddantions.
HBR-I.286 $ #{j /gf = N 8 M C.RD 9.12 7/6/84 E . ' . . , I ' lina 08:? 4.Q2
& ' r .
G:2 (na R Ik!
~
b '
. h'l 8 .
g .
'8 A Es d, ;, " di i. , ,
w . t 9A2: vW was temp * 's % h we w , g
""*5 c.
c.- 6=> >m e.- + . -* . .
. c ....a .
HBR-I.287
- 4
< IPTS H 8 stC8 CLP.0 9.42 7/6/81 8 . , , , , , ,g aE.o?2 3 - lj$2
- Sia e ,.g -
N $ilii Ely 8 - l0 fig - iiE s
!W 0 . 1alM >\ IIE ~
N
~ . '5 3 hi b -a -
5 g . . R- - g . . . . . . . . . . 0 14 33 30 e 50 00 70 00 30 100 110 15 TIPE Figure I.244. Transient 9.42: Vessel wall temperature vs time (t) la transient at varicas depths in wall (a/w). l \ _ _ ,
4 HBR-I.288 [ M IPTS H B R08 C1.P.0 9.42 7/6/84 RTNOTO - 0.0 CF. r %CU - 0.22 00 - 3.15g3 W GIT g . . . . -
'(
I R . t l l 3 . 1 1 hg \ - m \ N $ E U R 5 . o, y
, e a a , , , , . n so so = sta u TIPE Figure I.245. Transiest 9.42: K ies thee (t) for earloa2 depths la wall (s/w).
i
. ~~ . .- . . . ..- , .
Oey HBR-I.289' CRITICP.L CRSCK CEPTH CURVES FOR IPTS H B RC8 CLA0 9.42 7/6/84
=
RTNOTO - 0.0 CESF %CU - 0.22 %NI - 0.80 FO - 3.15E19 LCNGIT g - " y s+. o x +8 e + g - ' x + o
+ + + o x +
5 a -
# o - . + + + o U -; . " x o. . + $2 . " ,g....*****..*** , ++ o.
- o.
g - o y + a
+ + . I -
F9 d - " x * -
, +
x ++ x + n + g -
,x + - ' x g - " x -
x ** x , *
. . .J_ , *xxxxxxxxxxxxxxxxxxxxxxxxxxxxx:
o to no so e so ao ro so so tan sto is TIMEtt11NUTESI l X,2-D flaw, K, = Ku O,2-D flaw, K i - 220 MPa 8 ! +,2-m flaw, K i - Ku 7, WPS (warm prostressing) (- c. 2-D flaw, Ki - Ku Figare I.246. Transiest 9.42: Critical-crack-depth crrves for weld 2-273A based on
-2a values of Kw Kw and ARTNDT, mesa values of all other parammters, and-32-EFPY f fleesces.
l a~ .
o 1
~
HBR-I.290 I - o a 'IPTS H 8 RC8 CUU 9.43 7/6/84 f l, . . . . . . . , , , . 3 - au o PRESS.(KSI) g El o TE T.(DEG.F.) "d a' a H.T.CCEFF. h o! ' .g El "a O. ,, c' 6' ' I
~ 2'
- o. ,g
,N1, 74 c C N , A.-
e - c
= h t ~s. A R. .-
o'
~ ~ " ~
- a. ;.
W: I :1 c' k' - 74 H-
~ ~
o, * ; g- 4 o. d ' ' ' ' ' ' 0.4 10.0 3.0 JB.4 10.0 50.0 00.0 70.0 80.4 30.0 100.0 1'.0.0 120.0 TIfE LMIN. ) Figure I.247. Transient 9.43: Primary system pressure, dowacomer coolant tempera-ture, and Guid-film best-transfer coeincient vs tiene la the transleet. 1 1 1
-n - - - _ _- --
HBR-I.291 Thj j Table 1.42. Transiest 9.43: Susumary of digital output, including unadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B R09 CL40 9,43 7/6/34 1. FLAWS /I1"3 DRTM(ti) ?11.2
'JNADJUSTED - 4DJUSTED WELD P(F/ E)
- 9550I TERR P(INITI4) 1 'V P f'/ E) % ERR F AIL MT9IALS 1 3.37D-04 3.42D-05 10.15 3.55D-04 1.000 3.37D-04 372 200000 VESSEL 3.37D-04 10.15 DEITHS FOR IMITIAL IMITI4 TION (I4) 0.09 0.26 0.46 0.67 0.90 1.16 1.44 1.74 2,08 NUMBER 0 199 121 53 19 7 2 0 i PERCENT 0.0 48.3 30.9 13.6 4.9 1.5 0.5 0.0 0.0 TIMES OF FAILURE (MINUTES) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 50.0 90.0 100.0 110.0 120.0 PERCENT 0.0 0.0 0.0 0.0 5.6 30.1 36.0 19.6 3.2 3.2 1.1 1.1 IMITI4 TION T-RTMDT(DEG.F)
-100.0 -75.0 -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 1L'4BER 0 0 26 141 191 43 26 9 1 *1 0 0 PERCENT 0.0 0.0 6.1 33.0 42.4 10.1 6.1 ?.1 0.2 0.0 0.0 0.0 ARREST T-RT4DT(DEG.F) -50.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 215.0 251.0 4 UMBER 0 0 2 4 0 0 0 ?3 26 0 0 0 PERCENT 0.0 0.0 3.6 7.3 0.0 0.0 0.0 41.5 47.3 0.0 0.0 0.0 ICRKTP e 2 I4CCEL s 1 1DLRS : 0 1RTRS 0 04TE: 11/19/54 TIME: 22.50.52 CPU TIME: 5 MIM 31 SEC
^~
HBR-I.292
' DNv e.~
ev MI HB R08 9.43
- i i e i _
- ~
o PLATE o L.ONGIT.
~ ,, A CIRCuri. 'a-M 'o-ta . .
N . t . . a% '
-o ,. " 3__ __5 a
g Z ~~ 2a . .
'o~
E E
'o- = =
f o 100 150 200 250 300 350 MEAN RTNOT, DEG.P. Figure h.248. Transient 9.43: Pj [fs) B(s) da es NTNDT, for (2-D, 2-D) and (2-D, 2m) flaw coadnaations. 4
- ~ e,e s+ + m w - -y ~n. .
w o. ,-<-...e ....es -.
.. -w-- - , sv
t ', ! . HBR-I.293 /dygj IPTS H B R08 CLAD 9.13 7/6/84 3 . . . . , , , , , z.m 2:5 g .
. .M.
[ fk! R EEE
- m. m -
g ro, n li:E 6 - b'I ~ 8 b
~R R -
R- -
- g. .
g . . . . . . . . O At 42 A3 At AS A8 A7 48 AS 1 ntu Figure I.249. Transiest 9.43: Vessel wall temperature vs depth la wall (s/w) at various times (t) in transiest.
.. ~ - . - - ._ _ . . .
HBR-I.294 IPTS H B RC8 C:.P.0 9.43 7/6/84 g . . . . . . I till 3 - l8:83 N! J 0. .29 Ea: # R
- PM E~ #f::M lo i8:'S 3 - V 8:N ! ?:E ~
g3 8 b wR -
~W ~
R R f , . . . . . . . .
, 3, a y e so so n so so too 818 13 TIE Figure I.250. Transient 9.43: Vessel wall temperature es time (t) la transient at various depths la wall (a/w).
l l l 1 l
e . I$. !. HBR-I.295 2Ed'y IPTS H B RC8 CUID 9.43 7/6/84 RTNOTO - 0.0 DEGF 7.CU - 0.22 F0 - 3.15E19 LCNGIT i Q , - (ii il B l(( R G i b8 ) - -
! U u
g . - g . 1 - o is a z e a a n a a too no n T!!10 Figure !.251. Transiest 9.43: K ivs thee (t) for various depths la wall (s/w).
- ~ . . -- . .-- - . . - . . . . . - - . - l-- 4
?
HBR-I.296 B::@hb - CRITICAL CRPCK DEPTH CURVES TCR IPTS H 8 ROS Cla0 9.43 7/6/84 RTHDTO - 0.0 CEGF %CU - 0.22 %N! - 0.80 FO - 3.1SE19 LCNGIT x 'P O e x d = xe "
# D -
x , a ,
,,e****' + ,e ,e,- O .
2 6 Ye
,eh 0 .
f = e + e ,e*,e* , e e O y - e z h + O -
- O
- e
* +
h - % x 't
- O =
x ****' e
+ + .
e*W**,,ee*** j . *******,****%, n,e*,,,*.e+++** *
,e 8 .
x + 4 O 9
+ 9 m
Y$ ' S =
* =
a e x + [ d
+ 9 g . 1+ ,
8 . - o 000000000OO001 - g . x, x
. \ * % xx) xxxxxxxxxxxxxxxxxxxxxxxxxxxzzzzzi a to a w to a se to so so too 110 12 T!!1Etn!NUTES)
X 2 D flaw, K, = Ks. O,2-D flaw, Ki = 220 MPs
+, 2 m flaw, X - K i , e,2 m flaw, Ki = 220 MPa m O 2 D flaw, Ki - Kw 7. WPS (weim pentressias) 0,2 m flaw, Ki - Ku Figure 1.252. Transleet 9.43: Critical-crack depth curves for weld 2-273A based os -2a values of Kw Kw and MTNDT, mens values of all other persawters, and 32-EFPY fluences.
4 4
._ ._ _ . . _ . . . . . . _ _ . . ._ . . . _. ._ J
HBR.I.297 2 =N a a 193 H B RC8 CUM) 9.4S 7/6/84 g l- g , , , , , , , , , , , a -
*n a PRESS.(KSI) 'N N1 o TEt1P. tDEG.T.1 Id o 4 H.T.CCEPP. ~
o ' g: .g a e,
.g a' (- '
i ' .:
- g. .
9-
'S
- 4
=
t " O' do, ,
/ ~ .h. d- g. - . s .; .
i 8 o'
~ i- N ^
4 o, " n; ,g a
. O - .a a kT '
T4
- g. .
e, -
~
I i a a i a a a d , A0 10.0 30.0 38.0 W.0 35.0 80.0 70.0 05.0 30.0 10s.0 110.0 13D.0 TINC(MIN.1 Figure 1.253. Transiset 9.45: Prisaary system preneure, downcoater coolant tempers-ture, and Guld-nin best-transfer coemcleet vs time in the tramelent.
.J. ll HBR-I.298 Illi/,,l[
Table I.43. Transiest 9.45: Samanary of digital output, lacluding usadjusted P(FlE) values and histogram data for crack depths, times of failure, and T - RTNDT values at tip of crack corresponding to initiation and arrest events IPTS H B ROS CL40 9.45 7/5/54 1. FLAWS /IN3 D4TM(IS) a 211.2
'J14DJUSTED -4DJUSTED WELD P(F/ E) 95tCI SERR P(INITIA ) 'I 'V P(F/ E) TERR NFAIL 1T914LS 1 3. 73D-06 5.680-07 15.25 7.110-05 1.000 3.73D-06 155 200000 VESSEL 3.730-06 15.25 DEPTHS FOR I1ITILL (MITIATION (I1) 0.09 0.25 0.45 0.67 ot90 1.16 1.44 1.7e 2.0*
1 UMBER 0 125 107 55 17 9 2 0 0 PERCENT 0.0 uo.0 34.0 17.5 5.4 2.5 0.6 0.0 0.0 TIMES Or F4ILURE(1!14T!S) 0.0 10.0 20.0 30.0 40.0 51.0 50.0 70,0 80 ') 90.0 100.0 110.0 120.0 i PERCENT 1.0 0.0 0.0 0.0 0.0 1.4 7.9 19.2 18.9 10.6 11.9 15.2 INITILTION T-4T1DT(0E3.F) .
-100.0 -75.0 -50.0 -25.0 0.0 . 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0
- 1 UMBER 0 0 1 63 207 142 65 7 0 0 0 0 PERCENT 0.0 0.0 0.2 13.0 m 2. 7 29.3 13.4 1.4 0.0 0.0 0.0 0.0 ARREST T-471DT(0E3.')
-53.0 -25.0 0.0 25.0 50.0 75.0 100.0 125.0 153.0 175.0 200.0 225.0 ?50.0 NUMBER 0 4 30 13 3 1 22 1 90 57 0 0 0 PERCENT 0.0 1.3 9.4 4.1 0.9 0.3 6.9 19.4 17.8 0.0 0.0 0.0 f 0F $to DEVS AB0VE 1EA1 OtLT4 4T1DT(F4tLU9t$ 01LY) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 1.00 1'11BER 2 7 9 23 13 29 35 43 PTRCENT 1. 2 4.2 5.5 13.9 10.9 17.0 21.2 15.1 # OF $T0 DEVS A90Vt 1E44 971DT(F4ILU9ES 01LY) 1.00 1. 25 1.50 1.75 2.00 2.25 2.50 2.75 1.00 1'J19 ER 2 9 7 21 21 30 40 31 PERCENT 1. 2 1. 4 4.2 12.7 12.7 14.2 24.2 23.0 109KTP e 2 I4CatL e 1 1DL41 e 1 19791 e 1 04Tts 10/31/94 T P1E r 12. 42. 24
- P'J T Pit s 5 111 22 1E*.
^ ^ ^
HBR I.299 Dhryw HB RGB 9.45
- a un :
o LON2IT.
,, 4 CIRCUM. " 'o E
N
'o E
w N - L . c 'o _
,. - E E
o : c - z -
~3 . 'o E 'o ~
E E f a , , , 100 150 200 250 300 350 MEAN RTNOT, DEG.F. Figure I.254. Transiest 9.45: hj [fa) 3(a) da vs N7NM, for (2-D, 2 D) and (2-D, 2a) fisw conMeetions.
r HBR-I.300 [~ - IPTS H B RCB Ct m 9.45 7/6/84 l . . . . . . . .
!!:2 3 ["h% .2- , -F in .
IIA 9 - - g8 - - 8 b
-R -
R - R - g . . g _. . . . . . . 0 Al A2 A3 At AS AS AF AI A8 8 M/W Figure I.255. Transiest 9.45: Vessel waM temperature es depth is wall (a/w) at varloos tisses (t) in transleet. am e - e- ase >+a o , e o
l T'(k yy, p HBR-l.30 g
- IPTS H B RC8 CLAD 9.45 7/8/84 9, . . . . .
l"8:st 8:al R F.8:::
$ a"J, et #
nc.a E I lf.I$ 8 ot":
\ I%El 6 - VtM - \ g 9.gn, g' S N -
8 R - N' N's_ 3 .
~ **N N g .
R .
-(
a o in a m to so ao io ao so too tio s: TIMC Figure 1.256. Transiest 9.45: Vessel wall temperature es time (t) la transient at various deptbs in wall (a/w). e
~
DRa4,4p
, HBR I.302 ,
IPTS H 8 RC8 CUU 9.45 7/6/84 RTNOTO - 0.0 CEGF %CU - 0.22 f0 - 3.15E19 LCNGIT s i k R li! Ili - E R 9 9 k 78
\
g l n R X h~ a - ) _ _ - - . . . . A ; ,, Figure I.257. Transient 9.45: K ivs time (t) for vertoos depths is wau (a/w).
- v. - -u . . , 4 ,, ,
r i e A N t
~
HBR.I.303 '8',Jgl% f CRITICfL CRRCK CEPTH CURVES TCR IPTS H 8 R08 C1.tB 9.45 7/6/84. RTPOTO - 0.0 CEGP 7.C1' - 0.22 %NI - 0.80 FO - 3.15C19 LCNGIT y y U i 3 . o x . o 3 y . x .
g . ' x . + ' E E -f * .+ . = ,,..... ,,,
p . . ~ .... . j - x f - x . y . # x . x d - x I I , "8,xxx,,,,xxaxxxxxxxxxxx888"""""*"' T!!'Citi!NUTE31 X,2 D naw, Ki = Ku O,2 D flaw, K i - 220 MPs 8
+, 2 m flaw, K, = Ki. 7. WPS (warm prostressies)
Figure 1.158. Transiset 9.45: Critical. crack-depth caves for weld 2 273A based os
-2, vaises of Kw Kw and AATNDT, amens values of all other parammters, and 32-EFPY fluences.
I 1 ._ . .- 1 . .. _
i 5 .
. h/ S&m&
O<-u I7 /
/f BT JT.>7 weoJs:
o.f l-( rre is (4 c- e < < s ~ da a fr 0 ft Mt. 's C C.f/<~ r m fraarm tw a s k . ;.,
~
hr (L .'a- .( a . / r p ri caf., e r j . ., .t n l 1% /t a l.*- i m J < i .f, . [/ y. o n t. a e n -M M y on 'l t'<'Ar e < N <. a A / A T2< h ;,../ dn ft, //~ f. r ~ A.~ d J e. 2. / 7 -.7 . Ear-( Jof :m ' y-lisz3 9 cc: ti v R ~7 ,L, , , P Jstf C f4r/ m
). Sten >.')<e ( A-I)
It . h t < < A r <- W. Na s < fin L. L. o o i
). uo>hel l
D. /r .'r Af a re. ;4 v . L Or l-{. n .n ..:, ttt.
,k $. (f r a s l G. R *p n a.
G. 1% e m J. R<yrr O. Ils : Jo Aar J. M </ 47 N. 2 t<e
- l' O R *}}