ML20085M569
ML20085M569 | |
Person / Time | |
---|---|
Site: | North Anna |
Issue date: | 12/31/1983 |
From: | VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | |
References | |
RTR-NUREG-1437 AR, NUDOCS 9111110187 | |
Download: ML20085M569 (152) | |
Text
{{#Wiki_filter:_ h . P a v C<,.
- I
.I
- g IMPINGEMENT i
AND ENTRAlhMENT STUDIES 1
!I FOR
'I NORTH ANNA POWER STATION l 1978-1983 'l I ll I Prepared by: l Water Quality Department Virginia Power ; II P.O. Box 26666 l ll Richmond, Virginia 23261 May,1985 g I I N I I . I saA"A8A23 S '"een g - 1427 c ,
.l I . I E ' IMPINGEMENT AND ENTRAINMENT STUDIES FOR NORT11 ANNA POWER STATION 1978 - 1983 I I I l I Prepared by: l Water Quality Department Virginia Power P. O. Box 26666 i Richmond, Virginia 23261 1 May, 1985 I I I lI 'I l I
I TABLE OF CONTENTS . I Page List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Figures ..... . ... .................. iv Executive Summary . . . . . . .................... 1 1.0 Introduction ..... .... ................. 6 2.0 Site and Environmental Description ............... 9 I 2.1 Physical and Hydrological Characteristics . . . . . . . . . . 2.2 Limnetic Charactetistics .................. 9 14 3.0 Station Description . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Location and General Site Features . . . . . . . . . . . . . 31 3.2 Heat Exchanger Components ................. 31 l 3.3 I n t a k e S t ru c t u re . . . . . . . . . . . . . . . . . . . . . . 4.0 Station Operation History . . . . . . . . . . . . . . . . . . . . 33 38 5.0 Me thod s a nd Ma te ri a l s . . . . . . . . . . . . . . . . . . . . . . 46 5.1 Impingement . . . .. ................... 46 I 5.2 Entrainment 6.0 Results and Discussion 47 49 6.1 Impingement . .. ... ......... ........ 49 6.2 Entrainment ... . .................... 84 7.0 Impact Assessment . . . . . . . . . . . . . . . . . . . . . . . . 106 7.1 Impingement . . . ..... ................ 106 7.2 Entrainment ... ..... ................ 116 8.0 S u ma ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Appandix A - Sumary of North Anna Environmental Reports . . . . . . .- 133 I Appendix B - Technical Specifications for Station Components . . . . . 138 I I ' I
I / List of Tables Table Number Title page Table 3.3.1 Intake water velocities measured at each bay 34 E during two-unit operation, 9/30/81. 5 Table 4.0.1 Summary of combined power levels, combined 39 pumping capacity, air temperature recorded at Byrd Airport, Richmond, Virginia, and surface intake water temperatures at Endeco NALINT by month for the study years, 1978-1983. Table 6.1.1 The total catch, percent and estimated catch of 61 fishes impinged at North Anna Power Station, g 1978-1983. 5 Table 6.1.2 The number and weight (gms.) of individuals for 64 selected fish species and totals for other species impinged at North Anna Power Station by sample date, 1978-1983. Table 6.1.3 Estimated numbers and weights, average length and 75 everage weight for selected fish species and totals for other species impinged during 1978-1983 mm at North Anna Power Station, g Table 6.1.4 Mean seasonal impingement estimates by species, 76 1978-1983. Table 6.1.5 Length-frequencies and percent of Dorosoma 77 cepedianum impinged at North Anna Power ==
- Station, 1978-1983. l_
Table 6.1.6 Length-frequencies and percent of Poxomis 77 nigromaculatus impinged at North Anna TEer 5tation, 1978-1983. Table 6.1.7 Length-frequencies and percent of Perca 77 flavescens impinged at North Anna Power Station, 1978-1983. Table 6.1.8 Length-frequencies and percent of Lepomis 78 macrochirus impinged at North Anna Power 5tation, 1978-1983. t I u E a
I j Table Number Title Page Table 6.1.9 Length-frequencies and percent of Morone 78 americana impinged at North Anna Power I 5tation, 1978-1983. Table 6.2.1 The total catch and percent of fish larvae 89 . entrained at North Anna Power Station during 1978-1983. Larvae entrained during sample dates at I Table 6.2.2 North Anna Power Station during 1978-1983. 90 Table 6.2.3 Total larvae collected by year and sample 99 l time at North Anna Power Station, 1978-1983. Table 6.2.4 Total larvae collected by species and sample 100 time at North Anna Power Station. 1978-1983. Table 6.2.5 Total larvae collected by species and sample 101 depth at North Anna Power Station, 1978-1983. Table 6.2.6 Total larvae collected by year and sample 102
- depth at North Anna Power Station, 1978-1983.
Table 6.2.7 Estimates and associated 95% confidence limits 103 for larvae entrained 1978-1983 at North Anna Power Station. Table 7.1.1 Impact assessment sumtry for selected species. 114 comparing average annual impingement rates with I average annual standing crop, average fecundity and creel estimates when available, at North Anna Power Station. 1978-1983. Table 7.1.2 Lake Anna fingerling stocking history 1972-1983, 115 l eg Table 7.2.1 Results of the equivalent adult analysis of 120 g entrainment data at North Anna Power Station, 1978-1983. l I l E m I I 1
- I.
I i List of Figures ! Figure Number Title Page I Figure 2.1.1 Map of the Lake Anna Reservoir and Waste Heat 11 E ! Treatment Facility. E , j Figure 2.1.2 York River Basin. 12 Figure 2.1.3 Geologic map of the Piedmont Province in the 13 vicinity of the North Anna Power Station. Figure 2.2.1 Daily mean water temperatures ('C) for 1978 from 16 intake Endeco NALINT, l Figure 2.2.2 Daily mean water temperatures ('C) for 1979 from 17 intake Endeco NALINT. I Figure 2.2.3 Daily mean water temperatures ('C) for 1980 from intake Endeco NALINT. 18 l i Figure 2.2.4 Daily mean water temperatures ('C) for 1981 from 19 3 intake Endeco NAllNT. 5 Figure 2.2.5 Daily mean water temperatures ('C) for 1982 from 20 intake Endeco NALINT. Figure 2.2.6 Daily mean water temperatures ('C) for 1983 f rom 21 intake Endeco NALINT. Figure 2.2.7 Annual temperature and dissolved oxygen cycles by 22 , month at the intake station, and corresponding en North Anna Power Station operation,1978. l Figure 2.2.8 Annual temperature arid dissolved oxygen cycles by 23 month at the intake station, and corresponding North Anna Power Station operation, 1979. Figure 2.2.9 Annual temperature and dissolved oxygen cycles by 24 g month at the intake station, and corresponding 3 North Anna Power Station operation,1980. Figure 2.2.10 Annual temperature and dissolved oxygen cycles by month at the intake station, and corresponding North Anna Power Station operation, 1981. 25 l Figure 2.2.11 Annual temperature and dissolved oxygen cycles by 26 month at the intake station, and corresponding North Anna Power Station operation, 1982. E iV E' s
I Figure Number Title Page Figure 2.2.12 Annual temperature and dissolved oxygen cycles by 27 month at the intake station, and corresponding I North Anna Power Station operation, 1983. Figure 2.2.13 Annual 140 3
-N means for Lake Anna since 1972. 28 Figure 2.2.14 Annual HH3 -N means for Lake Anna since 1972. 29 Figure 2.2.15 Annual T-PO4 -P means for Lake Anna since 1972. 30 f
Figure 3.1.1 Intake cove to the North Anna Power Station. 35 4 Figure 3.2.1 Diagrammatic representation of the steam-electric 36 and waste-heat-dissipation system for the North Anna Power Station. Figure 3.3.1 Intake bay with trash rake, traveling screen and 37 circulating water pump. l Figure 4.0.1 North Anna Unit 1 daily power level (t) and circulating water pump operation for 1978. 41 I Figure 4.0.2 North Anna Unit I daily power level (%) and circulatir.g water pump operation for 1979, 41 p m g Figure 4.0.3 tlorth Anna Unit I daily power level (t) and 42 m 55 circulating water cump operation for 1980. Figure 4.0.4 North Anna Unit 2 daily power level (t) and 42 L circulating water pump operation for 1980, 9 Figure 4.0.5 t4 orth Anna Unit I daily power level (t) and 43 circulating water pump operation for 1981. g Fiaure 4.0.6 North Anna Unit 2 daily power level (%) and 43 circulating water camp operation for 1981. rigure 4.0.7 florth Anna Unit I daily power level (t) and 44 circulating water pump operation for 1982. Figure 4.0.8 North Anna Unit 2 daily power level (t) and 44 circulating water pump operation for 1982. Figure 4.0.9 tiorth Anna Unit I daily power level ( ) and 45 circulating water pump operation for 1983. I Figure 4.0.10 t40rth Anna Unit 2 deily power level (%) and circulating water pump operation for 1983. 45 I I V I - _ _
I Figure Number Title Page figure 5.2.1 Typical intake structure showing entrainment 48 sample locations. Figure 6.1.1 Length-frequency distribution of Pomoxis 79 I nigromaculatus impinged at North Anna Power Station, 197TF1983. Figure 6.1.2 Length-frequency distribution of Dorosoma 80 cepedianum impinged at North Anna Power Station,
~1978-1983.
Figure 6.1.3 Length-frequency distribution of Perca flavescens 81 Figure 6.1.4 impinged at North Anna Power Station,137B-1983. Length-frequency distribution of Lepomis 82 l macrochirus impinged at North Anna Power Station. T978-1983. Figure 6.1.5 Length-frequency distribution of other fish 83 impinged at North Anna Power Station, 1978-1983. Total entrainment catch per pump of selected l Figure 6.2.1 104 abundant species at North Anna Power Station, 1978-198J. Figure 6.2.2 Estimated total number of fish larvae entrained 105 per year at North Anna Power Station, 1978-1983. I I I I I I I V1
. I E
E
1 EXECUTIVE
SUMMARY
- I The following report sumarizes and analyzes impingement and entrainment data collected from the cooling water intale structure (CW15) of Virginia Power's North Anna Power Station located on Lake Anna, in Louisa County, Virginia. included are data collected weekly from early 1978 through 1983. In addition to impingement and entrainment data, the report includes a description of the site, station and operating history. Analyses of the data appear to demonstrate from a holistic approach that the biological impact of impingement and entrainment is having a minimal impact on the ecosystem of Lake Anna.
I in 1972, Virginia Power impounded the North Anna River creating Lake Anna, resulting in a 3885 hectare (9600 acres) reservoir that provides condensor cooling water for its North Anna Power Station and a 1376 hectare l (3400 acre) Weste Heat Treatment facility that receives the cooling water and transfers the heat from the water to the atmosphere before discharge into the Lake Anna is 27 km (17 miles) long with over 478 km (272 miles) of rese rvoi r. shoreline and is located in Louisa Spotsylvania and Orange Counties within the Piedmont province of Virginia. Normal lake elevation is 76.2 m (250 feet) l above sea level and the mean depth is approximately Em. Lake Anna was designed as a multipurpose facility to accommodate both the power From its inception, station and recreational users. When flooded, the rolling terrain of the North Anna River valley created a dendritic lake with countless coves and fingers. I Shoreline development of permanent and vacation homes soon followed, along with development of several narinas and campgrounds, A state park is under development using Lake Anna as its keystone. Abandoned roadbeds were left I I _
2 l intact to serve, where accessible, as paved boat ramps. Clearcutting the lake bottom prior to filling has resulted in acres of water safe for skiers, power boaters and sailboaters. The Virginia Commission of Game and inland Fisheries recognized Lake Anna's multiple use potential and began a management plan by stocking several species of fish, lhe result to date has been the creation of a lake with ever-increasi l popularity for sport-fishermen. The North Anna Power Station consists of two nuclear units with a total design rating of 2.910 tkt.. Comercial operation for Unit 1 began in one 1978; Unit 2 became commercial in December 1980. Eight circulating water 3 pumps (4 pumps / Unit), each rated at 13.9 m /s, are located at the intake structure. The onc^-through cooling water system is filtered by a single rotating traveling screen (9.5 mm mesh) in front of each pump. The nominal temperature change across the condensors is 7.8'C. 4 I impingement estimates, representing 34 species, ranged from 4.6 x 10 in 1979 to 5.8 x 10 5 in 1983, intrainment estimates within five dominant I species ranged from a total of 8.4 x 107 fish larvae in 1982 to 2.5 x 100 in 1981. As reoorted in text discussions, these numbers are considered too low to have a significant biological impact on Lake Anna. No fish eggs were l entrained during the study as all reproducing fish species in Lake Anna are nest builders and/or have adhesive eggs. Gizzard shad, yellow perch, black crappie, bluegill and white perch were the most comonly impinged and entrained fishes. Gizzard shad, a forage species in the lake, numerically dominated the collections by representing over 60% of the total in both CWIS sampling programs. Total impingement and entrainment rates generally have declined over the study period due primarily to the reduction in gizzard shad collection numbers. In contrast, white perch collection numbers have increased over the
3 period and matc.: the increase in the size of adult white perch samples from the lake. Generally, fluctuations in the impingement and entrainment rate have closely followed population densities as reported by cove rotenone studies. I Black crappie, a popular panfish, was the second most commonly impinged species with an average annual impingement number of 28,437 compared to an average of 116,646 for gizzard shad from 1979-1983. Estimated annual creel numbers of black crappie were always higher than impingement numbers. The percentage of small crappie ( < 100 nrn) impinged has decreased since 1978, supporting the premise of a declining population which is consistent with other biological data. This population decline could possibly reflect a natural cyclic trend of the species or it postibly could be attributed to the lack of preferred habitat in the lake. Results of cove rotenone studies in 1984 have indicated a slight increase in the black crappie standing crop. A comparison of impingement numbers to standing crop estimates of the lake indicated that the percentage of the population affected by impingement is very low. The average percentage of the gizzard shad standing crop that was removed annually by impingement was 0.38% by number and 0.32% by weight. For crappie, percentages averaged 3.1% (number) and 3.8% (weight). Values for other species were less than 1.0%. As generally found in new re servoirs. Lake Anna exhibited an initial high fish abundance during 1973 and 1974 followed by a decline in succeeding years. Since 1978, the mean standing crop of fishes in Lake Anna has remained relatively stable. The first station unit did not become operational until mid-1978; therefore, it seems apparent from standing crop comparisons that impingement from the power station has not caused significant reductions or fluctuations in the fish community. I I
i 4 El l A significantly greater number of fish (75; of the total) we re impinged ouring the winter season. Lower water temperatures during the winter : months tend to make fishes sluggish and therefore more susceptible to impingement. Water velocities recorded in f ront of the CWIS were less than 0.2 ; l m/sec, and therefore, nearly all fish appear to be able to avoid the intake screens during other seasons. There is some evidence that fish in poorer > l condition during warmer seasons may be more susceptible to entrapment at the CWIS. ] I Goodyear's Equivalent Adult Analysis Model was used to determine the impact of entrainment on the Lake Anna fishery. It provided a conservative estimate of entrainment impact because of the moderate biological assumptions used in the analysis. The result of the model analysis indicated the percent , cropping from the lake fish populations by the power station varied among years and species. Values ranged from a low of 0.01% (black crappie in 1978 and 1979 and sunfishes in 1982) to a high of 4.13% (gizzard shad in 1980). These values when compared with other studies are considered less than any that could cause a significant impact on the Lake Anna fishery. l Natural compensation, which forms an integral, if not the underlying j foundation of modern fish management, should offset any individual losses from l l impingement and entrainment. The principle of compensation or the capacity of a population to ameliorate, in whole or in part, reductions in numbers is an l operant reality for fish populations subjected to exploitation whether by the sport fishery, natural predators or impingement and entrainment. In general, I when individuals, particularly larvae and juveniles, are removed from a population, the reproductive, survival and growth rates among the remaining individuals tend to increase. In this manner the sheer numbers of individuals i 5 l . - - . _ - _ - _ . - - - - . . _ _ _ - . -
I 5 impinged or entrained by the North Anna CWIS are not necessarily indicative of adverse environmental impact. This report demonstrates by comparing data from other biological programs and by the use of a nodel that the effects of impingement and entrainment at the CWis of North Anna Power Station are minimal and do not seem to adversely affect the fish populations of Lake Anna, i lI l I I I I l I ! I \ E I I I
!i I
6
1.0 INTRODUCTION
The e.coling water intake structure (CWIS) at an electric generating station is one area where contact between the environment and .he power station is most evident. The environmental influences of opetation are readily observable here because they are primarily physical in nature, in a once-through cooling system, a relatively large volume of water is utilized to condense the steam that is produced to turn the electric turbines. This water is pumped from a source, such as a lake or river, by a circulating water pump (CWP). Intake screens in front of the CWP's at power stations (usually 9.5 mm mesh) filter the water and provide protection to the cooling system from damage and clogging. Two fundamental biological effects at CWIS's are impingement, the entrapment of organisms in front of the screens, and entrainment, the passage of organisms through the intake water system. I Some of the fish that are too large to pass through the intake screen mesh may stay in front of the screens and eventually will tire and become impinged. Screens are periodically cleaned using a spray wash sy: tem and the impinged fish washed from the screens are either discarded or returned to the waterway. Observed and/or latent mortality of these fish may approach 100': , although some CWIS modificationt at power stations have been designed to mitigate the environmental influence (White and Brehmer 1976; Scotton and Anson 1977; Schneeberger and Jude 1981; Zeitoun et al. 1981; and Hadderingh 1982). The number of fishes impinged is a function of many variables (water temperature, intake design, etc.) and the significance of the numbers should be evaluated only with reference to the particular site in question. Entrainment refers to those organisms that are smaller than the screen mesh and pass through the cooling system. The degree of mechanical, thermal and chemical 5 m
I 7 i activity within the cooling system is the key factor in determining survival rates (Ecological Analysts, Inc. 1977). Entrainment can result in a reduction
- in the ichthyoplankton (fish eggs and larvae) population, which in effect, is similar to an increase in natural predation. Predation and other mortality l causes affecting larval populations are important factors in determining the stability of the adult fishery stock and its recruitment success.
Considerable information on impingement and entrainment has been published. Four national workshops have been held and proceedings have been printed listing various methodologies, program results, impact assessments, design modifications and survival estimates for many site lecations in the country [ held 1972, 1973, 3 76, 1977; Loren P. Jensen. Editor; available through either Electric Power Research Institute (EPRI), Palo Alto, California;
}
or EA Engineering, Science and Technology, Inc., Melville, N. Y. (f ormerly j I Ecological Analysts,. Inc.)). Also EPRI has published several annotated l i bibliographies on impingement and entrainment (EPRI. EA-1049 1979; EPRI, i EA-1050 1979; EPRI, EA-1855 1981). . I The main objective of biological studies at intakes is to obtain sufficient information to determine if the technology selected by the indus try is the best available to minimize adverse environmental impact (EPA 1976), A 'I guidance manual has been develooed by EPA to assist industry in evaluating the potential adverse impact of cooling water intake structures (EPA 1977). Generally, regulatory agencies have recognized that a certain degree of influence at intakes can be acceptable and that each case must be evaluated on a site specific basis. l
8 Impact assessment from a biological standpoint should be related to the total effect on the ecosystem and not solely on numbers impinged or l entrained. This holistic approach allows scientists to consider the resiliency l of biological systems from imposed perturbations. The present stability of an ecosystem and the extent of introduced stress to the system are important l considerations in the final analysis of total effect on the environment (7sitoun et al. 1980). I This impingement and entrainment report covers work conducted from j 1978-1983 in accordance with Section 316(b) of Public Law 92-500 of the Federal I Water Pollution Control Act Amendments of 1972, and in compliance with the Nuclear Regulatory Commission's Environmental Technical Specifications (Section 5.6.1.1) for North Anna Power Station (Docket Nos. 50-338 and 50-339), and the Virginia State Water Control Board's NPDES Permit No. VA0052451 under Special Conditions: Environmental Studies. The sampling program conducted and the amount of data available for analysis, as submitted in this report, should allow for a holistic evaluation of the environmental influence of the North Anna Power Station intake structure on Lake Anna, Virginia. A 100% mortality of impinged fish and entrained ichthyoplunkton is assumed in this study, representing a worst case estimate of cropping by the power station. 1 I I I I I B
=
9 l i 2.0 SITE AND ENVIRONMENTAL DESCRIPTION 2.1 Physical and Hy:7 *: -ical Characteristics I-The Lake Anna dem (latitude 38'42'10", longitude 77'42'39") was closed 2 by Virginia Power in 1972 impounding 53 km of the North Anna River basin (Figure 2.1.1). This created a reservoir source of cooling water for the North Anna Power Station and a smaller Waste Heat Treatment Facility (WHTF). Both of these bodies of water share the burden of dissipating waste heat from the power station to the atmosphere though the major portion is dissipated within the WHTF. Lake Anna has since been utilized to a large extent by the public for recreation and is being considered for hydroelectric power production. I Lake Anna has a surf ace area of 38.85 km2 (9600 acres), a volume of 3.0 x 10 m 83and an average depth of 7.6 m. The maximum depth at the dam is 24
- m. The WHTF has a surface area of 13.76 km2 (3400 acres), a volume of 7.5 x 1073m , an sverage depth of 5.5 m and a maximum depth of 15 m in the vicinity of 3
the dikes. The average annual inflow to the lake is about 7.6 m /s and lake level is maintained by three radial gates in the dam and two near-surfase skimmers. The minimum allowable discharge to the river is 1.1 3m /s but the annual discharge averages 6.2 m 3/s. The annual average evaporation from the 3 lake surface is estimated to be 1.7 m /s. The design elevation of the lake is 76.2 m (250 feet) above mean sea level; the highest recorded lake level during the study period was 76.5 m (251.0 ft.) (January 28, 1976) and the lowest recorded level was 75.4 m (247.4 ft.) (October 24-25, 1977). Lake Anna is 27 km (17 miles) long with over 438 km (272 miles) of shoreline and is located in Louisa, Spotsylvania and Orange Counties. It is in I I --
10 the headwaters of the York River and drains 888 km2 (York River drainage = 6889 km ) (Figure 2.1.2). A tributary reservoir, Lake Anna is typified by a relatively small drainage area / surface area ratio (22.9) and a long hydraulic retention time (465 days). The efficiency of a water system to process and trap organic input is critically dependent on the length of the retention time. Reservoirs with long retention times are generally dominated by autochthonous production. 4 This lake basin is characterized by igneous and metamorphic rock underlayments (Figure 2,1.3) that typically produce soft to mocerately hard sodium bicarbonate water. Iron is often present in troublesome amounts in groundwater, along with sulfides and acidic conditions. Three inactive pyrite mines and mining spoils piles (0.12 denuded km2 ) are contributing high concentrations of dissolved metals and acid leachate to Contrary Creek, which drains 60 km2 of Louisa County and discharges into Lake Anna 3 km upstream from i the power station, The average annual flow of Contrary Creek is 0.2 m3/s where it empties into Lake Anna. m E The effects of acid mine drainage from Contrary Creek were evident for several miles downstream prior to the impoundment of Lake Anna. However, the l reservoir has ameliorated the negative effects of peak pollutants downstream from the dam by diluting the influent. I I I a
m m m M M M M M M M M M M M M M M M M Orange Co. N LAKE ANNA- . Rt.719 PAMUNKEY Rt.612 CREEK h , Rt.719 . t NORTil ' R t. 522 R VER Rt. 208 ' 5
. Washington,DC Louiso Co. -
R t.652 Lake Anna Richmond, Va. NORTH ANNA POWER c CONTRARY STATION
}
CREEK -lg 2 KM
~' !!" - ' i ii::. 4 DAM Heat
{!{[{[{!{['! Wa s te Treatment Fa cilit y
,. ~ , - :::i.g.
ii l t. tJOR T H
- i' i
~..
A rJN A
- RIVER FIG 1tRE 2.1.1. ftAP GF TliE LAKE AtitlA RESERunlR AtlD j. '
11ASTE IlE AT TRE ATf1E!!T FACILITY. p y -
\ . . . .
YORK RIVER BASIN SELECTED UFIEAMS
* %.,,e 8' ,s.'w ;*, y : , ,
f' 1 '
's. *. I * * ** r, i
- 4,' / *
*
- W. V A.
i
*
- KY.
i s< . .
- N. C.
.. . . g), ~
p
-I[
j
- 9. YOR K RIVER /
- 2. M ATTAPONI RIVE R ,,,
+ ,
- 3. P AMUNME Y RIVE R .-
- 4. NORTH ANN A RIVE R . ., l S. SOUTH ANN A RIVER 4 E. CONTR AR Y CREEK
)
is 6 66 == tes , erna m u _.. ., , FIGURE 2.1.2. YORK RIVER BASI ll (VSWCB, MATER QUALITY IrlVEflTORY, 305(b) REPORT, 1976, p. 328).
,=
M MB M M M M M M M M M M M 33 M M M M M
I I I .N
,
- s,," * .
,,s.
I 'I!, ,,, II .j ','. t :,.!.!.%,,ni i
,,,,s, ,,,, ~**.n, ,,
s, s.>.
,,,:;,/,::s ,.., , u ,. ;,, , ? , i, ,. g:si. v.,s,..: ; ,s,, ss I " $tl*: , s,?5* j*,$l*$ 'l%s,,,,*v , . fh *l '$,%l pa .
A ,, ,s'ls,.lI,F 4 % 5
': ; t,,.,;, 's ,;:,,:,,t,0 \
is,,, ?. . 1 + i,
- s , :i. '.:::
,~.s,'s. .s 4s t '::,:,%: 5,ll '+ & ,'
N i'ni:: :: . :,
, 9 s ,.
l , , + *s:,,,
,,~.v,.,. ,, 5.,y, s' s,; --;,5 s ,% . ~',4,o:u,,7: ,,.- / :, ,:
l ,, n ,,s s * ,. ,; s m' y;; x af ,
~ 's;!:::ll: '
- ,, 'i ',' 'S~,nU,ls',s* , ,, , , j, , u, , s ' ._ , d::
,,',,,,v, ,,, ,
g;x . 34% .' , ,..
,,,,u, + 5, s +,,,, 5 , s< 35,,&'y . ' v,,N. s v , r,,. , , ,
w ... #v s I s g .,4w -
,. 5. ,,,. ,,5 ,3 ': s, , ,5,,,, . ,N g \'\.s- sxy y,+,,s,5,,5,,
x s' x s-
,4 q{.M,. @,N 'Nq,',y s .' s 5#4 '//f!/' , ,., " ? ~ 5.j,,. ,, j.< ,, , i,,5l,',:::::$,t,*E.;,',5 , ,e . . , ,: 5 4s,4,ls,, V,['S c t' ' ? ; ,. ' c a
I t e
-- 3 ,?Ns ssxNN s, , s !- Nh ,N - s ?.Ns ,,,, * * , , , *, ,". ,5 % o s,,
a.:: .,.;' :,": ?ll ;'Olb,.,f' +5
.. . s 3 '
g ? .* R:gh,N '6' ' 'sA:
- 5': ,,::':,,,,:s ?:::;i"
$ ;,l%: : .xN N-lR}~\:,;,l' ../ : ,- ,\ s' ' ' ' <
4 ;
. :,.,:, ;; , n' y sw1 I 7.- ~~,s e
(\y.sNs ~n,.
'. . 2 .- N- . / 'f . : 0./ -- N N'.v . + \' 'S;; ,s g.. .. - ss- ';[ \ b l,. l N v" ks\. ' ' s ,,
i f 7 7 ,0 , T ,,- '* utLES 'A\\N'f' I Tf,.:
- 0, .
9.
~~' "f' O 6? ,
j . RN.'E;r
, .l-y. ' . . ;l:{Q w?
s . e, . r.;.n.r.;, ;.. ;,..ml . . .. .. \v' s'Ns NN' ' 6
s
- 4
- b. I covettu roRuAtioNs of iGNE0uS ANO .' ,.
J j,. $ Y.# " *,~ \ 'J Qx\ xNNgNNIJ .' 's s - T' I
.. * ] i' 'l- '
[ MITAMCAPHiC ROCAs (PRECAMBRIAN . h. ... ..[ -hANQ f .2.. PALEQZCiC) METAuoapMic #3w - 4 l l on ANsrr'
,gp < - . 'M "C' -: ,:
cssxs s s[N ss Y '. 'x s
,s
[ in ' . *. ::' . ..f' *: .i lh' ' :,;O: ~$ N'? cN
] GR ANiit ANo GNtiss - .;; .p _ s' , ] ucrau RpuiC votCAsiC ANo stoluCNTARY ROCKS \ Nk'b y caseno y itariaay stoiucNis (COASTAL PLAINS PROVINCC)
I ' I I . . . - - > ' '
"C' CGt C MAP OF Tug c[FS"DNT DPNINCE. 11 M VICINIU cp.7H Aus A P O'aER STAit t u, (o l n 11! A 'E:Ai~ TENT rr c NSE% AT CN A46 EC, NOM I C DEV E LOD 9E',T/Dl y kS t0H OF lATER :ES N RCE5,iS'b.
I - -
14 I 2.2 Limnetic Characteristics I Lake Anna is an oligo-mesotrophic, second order dimictic reservoir by definition (Reid and Wood 1976), Anoxia occurs throughout the hypolimnion in Lake Anna during sumer stratification to va rying degrees depending on the oxygen demand of organic decomposition and aquatic life present, Because of thermal density resistance to mixing, stratification um ersists through the summer in Lake Anna until cooler inflows and weat' . tons produce the fall overturn. Surface intake cove water temperatures recorded hourly by continuous I recorders (Endeco) were tabulated; daily means for 1978-1983 are shown in Figures 2.2.1-2.2,6, Temperature and dissolved oxygen isopleths for the intake station are -shown in Figures 2,2,7-2,2,12, and the third plot in each figure shows the level of station operation (% of total power load and pumping capacity). Station nneration is discussed in more detail in Section IV. In general, the lake was vertically homothermous from mid-September until April, Thermal stratification was usually evident to some degree from May-August but appeared to be the most pronounced in 1982 from July-August (Figure 2.2.11), This period of pronounced stratification coincided with anoxia below 8m contrasting with the results for 1983 (Figure 2.2.12) at which time there was a higher degree of station pumping and lake circulation, In general, the headwaters of the York River Basin have been known for excellent water cuality attributed to low level development and the general paucity of municipal and industrial dischargers. Annual means for nitrate nitrogen, ammonia nitrogen and total phosphorus are shown in Figures 5
I 15 2.2.13-2.2.15, respectively. The location of this reservoir in the headwaters of the drainage basin may be related to generally low levels of total phosphorous (less than 0.05 ppm) in the lake water; the geologic nature of this region may account for the typically low alkalinity levels (0-40 ppm as CACO3 ). Both of these parameters indicate low to fair organic productivity in Lake Anna, but within the reservoir, the shallow upper reaches are more fertile than the lower reservoir and are typified ay higher alkalinities and levels of autochthonous and allochthonous input. Appendix A gives a complete listing of _ environmental reports available describing the current and historical physical, I chemical and bielogical parareterr. of Lake Anna and the fiorth Anna River. I I I I I I I I I - _
m L._tJ, I y 4. j
~
4.s i J o a c_' .
/ 4. -
I i})
't > ('.?') ,/ -- O ',,8; ,
[ E c.-
' r, t**
g >~
/ &-- 1 ,, / v c ;; - }
e - - -
~ ** T>
q/~
*f) ., #:s
(\ Q.
/ #,P - LJ f/3 p ., ' ===.
A_. (N J
) t- "7 '. : 4
( 43 -
.5
( L _J I ;}
- 2 Lf.)
'.. L.
a
;1 . ** f s >
I.lO g* . -, t.a.;
'X, e r %
N
%)
P-
=
N
.=.
t 4
~
5 9
< i' :- :'
r. ia t._,. -
. ia r *a s _
LA.,. lL
%..~... u, .
(** L, LA :
',, w o e = w 2 g.e
- Ld g_. asin ,
0 . t. [ '
'7 8J Q; J . . , L _I rr. & . '~ .. g -2 y .y la J g. .u . ,
j 4 g s [2_1 F--
) >- #: , n- < C '.a . , :e * ^ ]
m.~ # *
*l l ti1
- q. -f., i I "~ ;.:
, gc i - tu 3.. L'
;-.- t tL1 .q- \ - <1 1 L.-- r .~. $ M 4
e~ '
- yyg- g + g
- y *p - .= *vy- 9-* 11 -1*fP P *'P- 1**=** "t 9 T'" ,, ,
,a o ,o .
- c. a r. i . u
>, rg e * I 6 .a .- ,
p- p J y (t I ,e ir .t 4 -- " ' ' ' ii ; Ia
- a- -
I' /* f I ..L .
- i. s
. L'. 't. 1 E
a
l I 17 t..a.J.. j u e"-.-
<
- hl .. I t'3 O ,
(.., e (.D I }
,f / - O Z
CD m.: c-
' (1!
I ..- 4g
- U e-he so I
('i I O ~; e 41 (1.' v-
;J' <n c
I (t. CL u. Or _)
.' ,. <t ) o -
L ~ s ) w g (Ql) I hl.-)
'I L- ..,.) \ \ ~ p I
L4 J l 4.J I
\,
7 '%*,' 2; 't, e3 P- W D l 7- *i; O I tr. Z "J1 ** s i.
* ' d $d , - 7 t. ,, N. . -
g g LL I (... . ' ,
'\
t .
?- .e -
O (/T Li gg-I iJ I ~..., . h J., l o Id d p'.r_* Q, # LA.! J k 0- . I
.M* -- ,- - w LA. I '3 V-~
s.y 9 ( 1 p_ e4.J F, CL -cC C
', - + :gr~ ~
N y r' s . . . . I
'N, .
0.
\
q g _.. -..
, . u, .
I k- _ _J L
,-. y ,
w d
, L-
- i h
I
' I , - . m- . . , T T 'y *f"'*T T P **P t f P 't
- t T }P' 99 9* "1 F , ,
u, a .a o e :. .c ... - i.
- i W t-) P"3 -4 ** ) -
I t - t J -5 tl. e ti. *+-! t- sf ; t a J e- e- N *. ii_. -. e. f,
4A- 4a+ a . em*<,++.- W du +6 --am-#h4.4-*4-AA4ma- sAr4 *=- *m*m.- -.w^ An J-w. 4----5'- .*A-e--=A_A-.ia-r -.Aa4MO'*-.N FE4-2 "' #JmA-e.eaa--=G. A 4 _a 4_.mA hham-_A+u_m,._am ..,a, LLJ l - LLf }
~ <r, f -
r,
- u> > (f/
1 - o j x (t"
*7' }
m m r* >- X j - u - C' (:/ *T i O!. n-
,,/r k (D
(, . u; . tie .-w
\ # N ::
e' 9 J
>-. *- 1:
l 4 LJ == l ) 2.5 J 's"'
< Q I
(f'-, <
= LJ c_ .,
e-' p g U 4
)
i l - r UJ
/ ,1 ' M o y = -et. 'U P-f ( , b~.
e.~ a ~,. s Wes- [I g' I * -
- - 7 -f.
A hJ ' LJ
,,, k, , 7 g LX.,
g~
<*) s, % \. (f.
C ', - a W
- a (t
- y y -
k.3'-, 43 H E I <.1 W~ O2 l [
) > L_;
i
$~.% .
m -,
- gL l
7 7, . LJ w t-- l Q. \
3 . l u) -a f-- .i
- s. .
% CT. p[. -r (',
- .~
i s .- k _.~..b 4_e_y 4hwh ( LLi*: - ;'3 Lt
^
j
/ t.tj ?} *~ ,e la r ,.
- f
=.J. - .
t fJ, - - g-
- Z. ~.
t kI Ve *
- ,'-~ -T '" ' ' T ' ' ' ' T ~ ~~- ' T ' ~ ~' P '" ~ ' ~ l ' '- ~ ~ -' ' ' ~ 1 -' -
c ul O =O C 0 C i. . Yt r**1 .N 's e- e <~f,, q{.~,-; . b.
' % ') ,,3 II ) L,7 (( , M* N*- [' I _ t,3 t ,i.i,J tJ, - j . {g Lf, ..
y e-y 7 N L. te E
- i. J._J,
- LAl e en.I f
j C3
.I W - .-S .?p w,
I ' T
- g b
22 ct:
~
("j >- .7. 2
/'- V I cs -
st
. / LS t- <f>
L,7 n. I w - vi F. e.-m~e ge M. , I m == m
'(,_,'. ) - D J ~4 (Aj I .s g
g me.-
- == Lt. J I / . , s , - 1 ~ ~ f. , <0 ** b=
l c %. '\ 2_, cc . I w s. ~ "C
' - O LJ 84 .[] %
7 p .. h*-*". (r-l'
,3 ir I - e ,, . 4 1 Lt.1 5 --.,. 8_ C_L. **h M L +J ,,
I , O w.1 '
) 'd O'
4 la 1
'I? tz. 'd -
a e. I
< LAl g p-b L t. . \ L;_J L t p._ <c I , ) )
CL 7
-'1[ .,r-C' r'
e1. I i L.i J. l'. [ '.
".11 ta f w.
0* I ; .. . - . b,,'
- 1. . ...
.I LJ (.? "y - . C I q ,a n ,3,-,-, , ; - e , 3 r 2
m
.n e,-
q , e --- ' ' T ~ ' ' ' 1 ' ' ' ' i
.a e,
c.
.e c.
1
-t ' 'l i~ 'I IJ J '~ _ '
I r- i ; .. . ia er . . .- .,i y , 3 i.. s. t.. 1, k I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -
,_ ,,sJ.1e24.waw.., -.e.m*ma .m-h--E.*-Na--8.-E2.'w.sa6.mit or.J. .a -_mAm .ds-m#_4s4u.A6__.g-asw as @s6_m.*m' -- --am.as.- 4 a h__h.a.W,-4.Da .,m._aa.m.osa.~-m,maA4m-.14-4a.a,pe-J-,sd.Am o. d- . mee.efsh-mein rm..m.s.moAAAL.,,
8 20 L2J m-
~
U . g o.a O e i gs,
\ J,.
E a---- f- L'f) l 2, CO ea
- N
<3 . o, e, /*'~ y i -.
s_/ QI
,/ y.
W 3~
- u c:
C% -q. ss
/ .l CE t- <n .
[L
,' '~ W. v &
ac-
.-_J
- i. <1.
t' .. * .r.. 4 1
) ..
O ~
.4 " ,.,. l .J ..e-.
Y M *T ,,,
') n i .tJ. ) .Y-t .- , la J m ;N.'
LU l (s L. 1-W n
'. 3 ."
tr [ E o
< C :P M.
tu C,.. , w ?..,. 4 , 7 _, tL , b_. vi kb e.. 4l') (l 3 ,i *w - t3 - h m.. -e .. , . b. .d.-
-w- ,
W i ', sa .a W
%. LJ ...'
i e
', L.i j a
Ll., L 4 tE g ..v'* e j i
) , LtJ
' :h it. - ( ( , l .t J p. L-- 4s rr. J C 4
.v c- ) - ***$ 6 ..9.
g O - h"sa w
- Q. L. g '* -
5
?, .
- f. .
., D4 . y, L4 I ,
I <1
, i. 1 ( ,
3-4 6
..h ' at L L '. * . - n "'
7 e r, y ] n,~, q e- , , - r p t -- e-i } , -e e T ' ' ' ' '7 ' ' ' ' ~ " I ' - , c- t e a .., o a .t : a e a t* 2 t' *; ea 's e x; gis ; / I1 I t- t.J p (1. e p f r . y * .i- us i j. If_ - .'- 7 - E
age 4, a. a 42_. 4 -4wh---44J8.-+-+-+p4--* "u-- W-an *l ~-4A ---EJ---M4.mmas--*+ ='he-E a+- ' 18-^4-L-4*+m5 deled--W4-A -'A- 8.=.-=..4 dus.dk---hd -a4# m s- 2A--.m.a n am m. m .s 4ma.mh%a..ha.m4 J4.A_m m me 21 uJ u 6: i
/ - Ltf J O
I ( 'T
'e f W I
(f)
, \. p CO L
i
- a. m
~ ,f ~
Ct' l
/
m w
/ -m ,i - u ~ x e,
I C "
-<T".
W. t-W l Eg I a-
- w vc y
m. M
/ J t e- <T., .t .- -
l Q ==
- =, J 8.[ '
l
< -< Q s}
r l h1 J J
= uJ C
W I n eC
';7.1 L
I
" D r >~ 'x; <t f.
T w l n( ~-. y I l % s-LJ
~
f.,*. g z Ci p Lol [",
~:
I
) . in L4--
! $ i r7 lW .i - r3 Lhl
'- 9. -
2 l .:
- -- w -
t i O l.(-4 l ,
-d' W 1 J 1.d i i I L. ,
cc k , % r:. i Q. -
, L"A J i L l-I /
l O '. <
--3 La 6
- p. -
Q tr. .rr. c
+ :,~.:. , I f, . i l I~
1
, (Nl C a: -
uf
. u. .> uw / "j ~
E = g r l l I l 7
.' b .
YNNN %*l~ ' T I* E I f#'T*4* *i *7 "I* 77 'l' T I **
- e c.. .a .-, a, ,. .. . .-.. t sy '* F e3 e3 .s .- ,
l o P- 0J 7 ls fga (( g' g-*
*{ gl , }. , 'L 4
- t. -
n e
.- 1 '6. L I
22 I 1978
, , , , e , , , , i 1 i j
V n i 2s as 2 if si
. 3 5 e (n ':
CC e. .C W '3-f . SEP' OCT NOV ' DEC W JAN FEB
- MAR ' APR ' N AY JUN JUL AUG E
z TEMPERATURE F0 . f v e CL 2 W - 9 C 12 10 7 7 6- 3 io ' AUG ' SEP' OCT I JAN FEB MAR APR MAY JUN JUL NOV DEC DISSOLVED OXYGEN
, , , , , , , , , , , l go _ '
5"i 7 I le-
- i! - JAN FES MAR u 5 5 h B My 4 APR MAY JUN JUL AUG SEP OCT ~ NOV f
DEC 6 l POWERI1 PUMPS E l (UNITS 1 & 2 COMBINED) FIGURE 2.2.7. ANNUAL TEMPERATURE AND nlSSOLVED OXYGEN CYCLES BY MONTH AT THE INTAKE STATION, AND CORRESPONDING NORTH ANNA P0uER STATION OPERATION (% OF TOTAL POWER LOAD AND PilMPING CAPACITY BY MONTH). l s a
I 23 I I 1979 I 0-2 27 24 a i4 'o 7
. s s s a 23 {
I m e: Z e- oC Ih
'O \ / .-
I SEP* OCT JUN JUL AUG LOV CEC L13 JAN ' FEB ' MAR
- AOR ' MAY 2
TEMPERATURE I I , , , . . . . . . . . n E!! O .
\d to 7 7 9 AUG ' SEP' OCT MAR APR MAY JUN JUL NOV OEC JAN FEB DISSOLV ED OXYGEN I p oe_
I Oa 90 77 7 I ^{!Ej
=
JAN FEB NMAR APR MAY dhkih JUti JUL AUG SEP Fj OCT 33 NOV DEC I POWER n PUMPS E (UNITS 1 t, 2 COMBINED) FIGURE 2.2.8. ANNUAL TEMPERATURE AND OlSSOLVED OXYGEN CYCLES BY MONTH AT THE IfiTAKE STATION, AND COPRESPONDING NOFTH ANNA P01/ER STATION OPERATION I . (t OF TOTAL POWER LOAD AND PUMPING CAPACITY BY MONTH). I
24 I I 3 1980 1 9-y p ;
. s 4 7 y 22 -
a 4,27 3: is si e i O _ g
*C g
@8: , w- > 1\ ' i SEP' OCT ' NOV 3 W * ' MAY ' JUN JUL AUG 02C JAN ' FEB MAR
- APR g
2 z TEMPERATURE l a 2-w - 7 is C '. it in to 7 s-( s MG/L AUG ' SEP' OCT I MAR APR MAY Jull JUL fiOV DEC JAf4 FEB DISSOLVED OXYGEN
. . . . . . . . . . E !i!bb!whl4ddl. RI i JAtt FEB MAR APR POWER LJ MAY JUN JUL PUMPS EE AUG SEP OCT NOV DEC i
l (UNITS 1 & 2 COMBINED) FIGURE 2.2 9 ANNUAL TEt1PERATURE AND DISSOLVED OXYGEN CYCLES BY MONTH AT THE INTAKE STATION, AND CORRESPONDING NOPTH ANNA PO'lEP STATION OPERATION (t 0F TOTAL POWER LOAD AND PUMPlNG CAPACITY). I E
=
I 25 I ' 19 81 I o, l 2: 4: , . , , ,, ,, r ., ,, ,. .. m 5: cr: e. h.. W - .C H 'o- I i
- W SEP ' OCT ' NOV I JUL ' AUG JAN ' FEB ' MAR ' APR ' MAY JUN OEC s
E TEMPERATURE I I c , , , , , . - C. I W O *: 2-is io 7 a 7 .. c: 2 JAN FEB MAR APR MAY _ h^s. JUN JUL AUG ' SEP' OCT T40V OEC g DISSOLVED OXYGEN I g n_ . . . . , , . . . . r -
,I -
o' ' ' ' ' ' JAN FEB ?.t AR APR t.! A Y JUN JUL A t.' G SEP OCT NOV ' CEC l POWER O PUMPS 123 (UNITS 1 r. 2 COMBINED) FIGURE 2.2.10. ANNUAL TEMPERATURE AND DISSOLVED OXYGEN CYCLES SY MONTH AT THE INTAKE STATION. AND CORRESPONDING NORTH ANNA POWER STATION OPERATION (% OF TOTAL POWER LOAD AND PUMPlNG CAPACITY BY MONTH) . I
26 I 8 1982 o 7 7 tj .,
' ' I 4
g 6-ID l _ i U JAN FEB MAR ' APR ' M AY JUN ' JUL AUG SEP' OCT ' fl3V DEC 2 z TEMPERATURE I . . . . . . . . . . . 1-- . 0- 2-W - O# i, io a 7 9 6-to j JUL ' AUG ' SEP' OCT JAfi MAR MAY JUN flOV OEC I FEB APR DISSOLV ED OXYGEN peg . . . . . . . . eo .i '- o g':9 l :a 7 __ __ E 7 I
)$j/.m Sh@fd h @[SEP@' M l f'fh JAN FEB MAR APR MAY JUN JUL AUG OCT NOV DEC .k POWERl' 1 PUMPS w l (UNITS 1 & 2 COMBINED)
FIGURE 2.2.I1. ANNUAL TEMPERATURE AND DISSOLVED OXYGEN CYCLES BY MONTH AT THE INTAKE STATION, AND CORPESPONDING NORTH ANNA POWER STATION OPERATION (% OF TOTAL POWER LOAD AND PUMPING CAPACITY BY MONTH). I E
=
I 2, I 3 1983 I g e i t f I t # I e I i 29 25 :K 5 9
. 7 5 n it io n 26 V)
I Z W C--
}-
6- oC lll /A s. - . t I SEP' OCT W JUL fiO V DEC I JAN FEB MAR APR MAY JUN AUG TEMPERATURE E I- I C I- .
- 0. 2 I W O
iz si s 7 8 30 3 2 MAY g h 'N JUN JUL AUG SEP OCT liOV OEC I JAN FEB MAR APR DISSOLV ED OXYGEN I p ng_ . . , , . . i . i e s m a, g$w ay' ed
~
Q, n , i MAR APR MAY JUN JUL AUG SEP OCT NOV d a OEC JAN FEB I POWER l- 1 PUMPS a3 (UNITS I t, 2 COMBINED) FIGtlRE 2.2.12. ANNUAL TEMPERATilRE AND DISSOLVED OXYGEN CYCLES BY MONTH AT THE INTAKE STATION, AND CORRESPONDING NORTH ANNA POUER STATION OPERATION (% OF TOTAL POWER LOAD AND PUMPlNG CAPACITY BY MONTH) . I
x 3-
's,,'s 0 2- $(N 3 N g 1 N ,.
N REFEREllCE LEVEL i-
\ N s # \. \_ . 'N . , - . .,. .,. .,. .,. .,. ,. ... ., ., .,
1978 1979 1980 1981 1982 1983 197; 1973 1974 1975 1976 1977 YEAR FIGURE 2.2.13. ANUUAL H03-H MENS FOR LAKE AllNA SillCE 1972. CONTRARY CREEK EXPLHATl0ll 0F REFERENCE LEVEL, SEE THE 1976 VSWCB PUBUCATION TATfR QUALITT INV SECT 10U OU THE YOPF Rft/ER EASN. aus sus au nas sus mas num aus sui imus ens ssu aus as man sus sus aus sum
a a a WM& 5--- *4=-+ "
**8P*I*A-- **-A--
dme. '-' -
"'#*"' 4#-*"45"fsMM"A-'*M"^M4 M 4 4Ah#8 *"-'hMMM*'# "'-^* -'-h4" * * " ' ' "A-E-' "* AO --'**-^**"A*Ad"-J* **#J l f o ~
C1 I -D O oi L Q LU (1. Cr QA Cw .*
- LS'k OO en LLJ rn
- co l/') v @ D%
W 0,* E. OO 2%
- e - wM S Cd [t*l -
3 op e-g? 4 p._C % i Y Av - to e o *~. Q C?
- w$
M W C2" Q i I - N on Cc U T. y tr-1 0v "8 k
~
(. 3 [ $ =~
=
oC '~ c C.) l - n., O
- x CY na C7) CD " ~">
F'C 9 LJ I d b I
- ?
e M Y CD e s.-2 1 w 2
- L,~) > . tf; I. sa b
y j . e
- = o
- r nc.,.
+ - t. @ LLJ &
e==
-E M.x' L J dI W
CL
- N C C L L.J LJ i / / *- O K.-,'
CD
- a. . .;.
W,s g ca, Y E -r
- f *- ,
o
- "I LJ c_s LJ Z I N ""'
g b
\k n r- k9 Lw tr) ,=,
Ls C W 9-l
\ m =. ct -
x _ b Lt. LA l
\ <C C IW \ %., . - 'N y g_ - - 6 t__-
E . 1 ' r i r g ,,, , , ,
,, ,,,= . y ,
q
- . o w n w .a -r n a -- o -
c} c -- p 'j
--d ~
o o c o o c, o c. o W WQ IH I Cr_ D X LJ G_ LJ
= z ro 1 = eO Ld L7 C I
m..-- - - uma ct: 30 W O c.L e7 LJ
. e cz:
ca.Qv
~--
LJ tr> L/) C) c.t D V) v
-W p C
Q N Z8 LU N E g Of LJJ y-i
- (o M b*-1
- I
" <t @
W4 E
<C .%
Q - J - y o MH GLJ S y - to w o LJ .M y e-- D: "' OD w >- tr N m - ~ o ke h~ cr:: e ch y l w-- u t S=C N
<o - ts (~ ~. E<-
e CD 9_J
- cc - -< Q /'/- w >- F.j ,. c'b / rs =
7 - rs
- v1 R
\* \ " < :E Z ff)
Z >
\'NN T' < (C LJ r, - r~. x cy.
3 D La MB a CC ~I~ W C F-- L L 60 LJ A - tw 09 LA.J
/ c, Z C.O 4 * * / LAJ j Z 2 LQ C's ,,. ctI CLJ ==a $
m - rw
", / +, ""I bj
- ,, O W
/.. " cL C>
z2
. / sx l LLJ Q" ./ - "- "?
4. a U sk
'N % o Dgt u o. )
L LJ g
-% QQ ~C ea u~i o- C %~., , r. , 3 o
g
, i gr r g -e-iiigi e =l c: ' ' r j' '"T c
c Q C
.,_5,,---
g in
. . - -
- C"' J 4 g- ,
._, c. o o o o o LT ] g Ca. O m :-; LJ >-- cL C *r- l 1 {n La Lq C
E
31 3.0 STATION DESCRIPTION 3.1 Location A General Site Features I The North Anna Power Station was constructed in Louisa County in central Virginia 48 km (30 miles) northwest of Richmond and 64 km (40 miles) east of Charlottesville. The two units of the station are located on the south bank of a lake formed by a dam on the t' orth Anna River 0.8 km west of the common junction of Louisa, Hanover and Spotsylvania Counties (Figure 3.1.1). A total of 76 km2(18,643 acres) of land was purchased in these three counties for construction of a dam and reservoir, the power station, service roads, a spur railroad, and 1.5m (vertical) of surcharge capability. I Unit I was under construction beginning in 1969 and was ready for commercial ooeration in April 1978. Unit 2 construction began in March 1970 and was completed in August of 1980. Both units were expected to operate at annual average capacity of 65%, and thus far, Unit 1 is slightly underachieved, while Unit 2 is averaging slightly more than the expected 65%, The thermal conversion efficiency is approximately 33% for each unit. I 3.2 Heat Exchanger Components The station has a once-through cooling system (circulating-water system) to dissipate waste heat from the turbine condensers and from the l auxiliary cooling systems to the environment (Figure 3.2.1). When both units are operating, water is taken from Lake Anna at a rate of about 117 m 3/s (1,858,000 gpm), circulated through the turbine condensers and service water system, and rete ned to the reservoir via the WHTF. Appendix B contains I
32 technical specifications for some of the station components associated with the intake structure. During operation, the heat generated in each reactor is transferred through the primary-coolant system to the steam generators. Units 1 and 2 each have three separate closed-cycle loops with one turbine-generator per loop. The steam generators transfer the heat from the primary-roolant system (around 302*C under 2235 PSI) to produce steam at a constant pressure in the secondary system. This steam is transferred through the closed-cycle secondary loops to the steam turbines, which drive the generators to produce electricity. After passing through the turbines, the spent steam is condensed and returned to the secondary sides of the steam generators to repeat the 9 cycle. The station's NPDES permit limit is 13.5 x 10 Btu of waste heat per hour into the cooling water effluent (equivalent to about 66% of the total thermal power generated ir, the core). Units 1 & 2 have a design NSSS rating of l 2910 MWt but is currently licensed to operate at the NSSS rating of 2785 MWt. The maximum AT across the condensers during the summer is 8.0 C (14.5 F),and during the winter predicted is 10.2 C (18.3*F). 3.3 Intake Structure The cooling water for both the condenser circulating water system and the service water system is withdrawn from Lake Anna through two screenwells (one screenwell per unit) located in a cove north of the station. Ea ch ( screenwell contains four individual bays, each bay (Figure 3.3.1) equipped with a trash rack, a traveling screen, and a vertical motor driven circulating water pump. The trash racks consist of 1.3 cm wide by 8.9 cm thick vertical bars spaced 10.2 cm on center ('.he velocity of the flow through the trash racks is j about 0.2 m/s (1 fps) (Table 3.3.1). The traveling screens, constructed of 14-gage wire with 9.5 mm square openings, are designed to rotate once every 24 l l =
33 hours or whenever a predetermined pressure dif ferential exists across the screens. Debris collected by the trash racks are renoved by horizontally traversing mechanical rakes and then collected in hoppers which discharge the debris into wire baskets for disposal as solid waste. Debris and fish collected by the traveling screens are washed into wire baskets for disposal as solid waste, g I 1 I I I I I I l I l1 I I I I - I
34 Table 3.3.1. Intake water velocities Sm out from trash racks)(m/s) measured during two-unit at each operation, bay (approxinutely 9/30/81.
- Circulating Water Pump (4 Pumps / Unit) j Depth Unit 1 Unit 2 l (meters) 1 2 3 4 5 6 7 8 Sfc .12 .14 .15 .16 .17 .16 .18 .16 1 .13 .24 .15 .21 .19 .21 .21 .18 2 .18 .21 .19 .22 .20 .19 .19 .17 3 .18 .21 .19 .22 .21 .24 .20 .17 4 .18 .18 .18 .23 .20 .21 .18 .21 5 .18 .18 .18 .22 .19 .22 .19 .19 6 .12 .21 .19 .19 .15 .23 .22 .16 7 .18 .15 .22
.17 .21 .18 .18 .19 .21 .19 .16 .13 .12 l
8 .15 .18 .21 4
*Each pump rated at 13.9 m3 /s I
I I I I I I I E
=
. ,> r .- ~,* . ,. . s,. . ' N-l .o .!i .! . { Jr",, . ag \
- i , < ,14, y , \ . ,' ,\ s
,o. - / . - +. , \,h *., ' =
t i e 1
- s l ,
if , . a
, . ' :, ~. J~. \ ';
D
.% r '-c. ;3 b .V ,=I,- =. 35 . -
m ..(! o. p; t o; f j y
,,j t j .6- g-- , i W .' ',Y : :
Y. , f '1 , {l .
- 3 }) .
.t pg ., y- V;. 7 .
i
~ ; v 0 ,g y%*, '
s,s ~ - -
. N '?~~ ,--s, r,, j' ) $ c '-- _ .~~.-.-, c E, -,j, -(/ . i w, ,. - i n / j ... . s ,
s.
.ife- ) ('L/ p# i \ } },,I!~-
f .. , , . j* \ g % d,%.,{ lu a, s ! ;\ c - l t y*
/. <f%., ~1 ..(+. ' - ' ' e.- 'y - . , . .. : _ ,\ , , < 7 ..,:
s 6 . ,t- jft.s p,, ) .r fs. j ' I),,'s J' - N-.mf . P , . s .,, rx ..- .....,4.e s .. , l i . 4
, . ~ , = ,i % + ~. ~' 'Q/. . , ,..
3 ,
" x4 '- ~ ~ = - - - - :-S- - y, ~~;;$ Q yw;, j< [ x~ p . . -. g. f f '*N., ,
l j
. v, ,,..~M(
I.* L 1 :
' lx' i s ,, 's N _,,,.-. ;/ ;-( ) :j 3
N(% .] e(f( - -J.
.l'<r N' ~
f2,., y . \ !v / , ,)
'\s ,.. -. -
9c' %<
. .in 1) \ &n, o,n > i/ ,i W . (( q l '.t rs ,. I , 3;v' .;.a;./n .- 8 2.L _],/ /\. f ~ a ~ ,. . . p % ; % , % ..', / l ' $ ;. i) -,1 , '~'- ,
{\ -A/m
. s. .. .. ,.-
r . p ,. ' ' - % 3 .-. ,- I
.' ~ ' , s / q
h;JL .. -J'f .../j:~
, . ~ . , , , )'! ,,,,. l:%A .- . v %=:l. 9.m. ,- - Ji ,' / .
(~
~. ) , .$ n. 1 .fw - / wp s- v. \)
i ~.._. ~. ,.,_ * 'y . :
^._, ,,., v C -' ,, 2 ( *,,- , , ,f./ r" . - ;f'.
t ', - : ' y -
. n .- ,- s.
E 1
. 9 Q..p~~ M ',,;k ,)v:,:. - .
p r .... -
- 8
... ,/ , 1 V. - , W ,, ~,-n., .a.. , ': :. ..-
s o l,.,
. ) - . . .
_- f , .. ... .~. .
- , \ \, .
. r y ,, ,,, , - .i '.~:.../., , .. /.
- 8. ,, .- . '. w . .i', .u, , ,,
,qs s . s Isf..... - , S.isq.>.,n~n -~r. ,u- >.. ,8. . ., . n.-
i y 4 e 's ,. -. . < , n..,.
- - ~ .,- ., .~- .- ' . .co . ' - , '.#
T l ) 1% -
~ - i '
- ) <> ; ,.. v . ~ , .
g '
/ ~_.i ., 1 , r> J.
nc,
,a. ,t@N . w ' .INTAKE .s I, -_ - g,_s . .O,) ( . .
( .
, .ssq . < ,3 - \
s ,1 . s i s , ,N, , .
-' [. ( ,.- \, 'f s'N Es / .q;p,. \w - / ../~\. - ; 4,Powerpl30t m, .' ' vgQ' N' , (} ,
N v>
- 'y s. - , r . '. fhicl5p* ?'l' .cq \
I '" , . 'T ' ~. . t(\ 4 f"
'8 .y.~ y .
pw ,:m +j. u .7m,,-
.~. -. '
n.:. Q .
.. s l w .: ' ",,,os. . . _ -. . ' !. !,; , ' > '%. ... g g . j ~.
n .N c.:x. . .
*- ...' -e -
x y c ,\ j j/ 4 -- y i
\, . " /a , g- , -, s - m .
I - ._ , s - , - r\,c./.. -, .
~. . . ~ . . .. . . . . , e . m,. ,,..s.~ .s n ~ , .n -
s
~ti p il E _
a
/ 'z,'y,; :- , , ,/ (., ) ' .}
s
,v f / - ~%. k (, ,1 '"- \, . ' J J,.i,s , -. . se - s \% .3 . . , , i. . < /, - , s. , ,,. w , \
( Im
' FIGURE 3. l .1. Intake cove to the N or t h Anna . . ~
l .~ Power Stat. ion. T. . ;
'] ,YO ./ J~ ,
WHTF l g ,
36 I o 9 k's 2 , *; o
~
a s a 0 I Y ** m
.. M. * ** >? O ,. I, . - e i a I i
- R.
. i. ,e w
i; .
.. . o 3, -. ~.- g ,
ss x, n .-.l.., *e w g Io r
-I s r{
M i .*. e
.x '. T 0 3 r.
6 c 7
)( <
s.., .-
,,, ,.* .. , y - .; _u
- t. .
(,- ,- d .. g m 27 lT-rq U, , ;- 7 a, r
, + -- - 4 far, 11 *g i t.
- f, ,.r,3, w
t'" , tr-"!'.,g 1I v w e - -- + q
,bfl .b - - w 1, ,y(, ) .,
- re
/ i*+- -H ', 4 p w -
g, 9 ei o
. s . -,M_, s Ly ' w-s . . tt .e , , - . . . _. ._ .. , . 8 s.
- 7. w
.m.( .l'_.-_ ,',, .(' , P 6f ; : ,(i e<g fi * -- E p '., <-..r,.* ,., i w wr x
v i '; ly ; \
.l ,f' 3 e ., n a.
l ,.;-. y:;... - . y . .
> c t, . u. w..
i 1
- C C
. , 11 . -* l t I a.
1 4 y. o... _,,.. . I.. p t-
=
cg f . -= t 6 i i ol H 2 i !. *C < \
,\. ' . , % > -e ==
i 'f
's a ..v..].o'6 h$
d ,,-
; i
(_v ' * *:
,...f*'t'***'""'-', .. . . wa wc I
- 1. i e * " *% !
ww E I a g
.. e. ~ 7 e*=~m \ l M . < , , i ,1* 7 '. r . ,7, .,.yg 7), *- u 3 ,t '>>y - .... ,,- . . - + . . . ,r ,_.. ._. /p -
I fl =E
. ,' c.;t_ p ,. ,e -0 . i i g $ 3d . . . A. l s-- m; - -- 3 < ts. \e a.-- * * *-a.e g,-,
r f'
- s ,, I _
3 1_ p,' f.< f'i p g/ , g?te e * '
< I* .,1 # ;t *. , . ~. . i e? :--r,,..N ,c.
p, ;- . e ,w
, . t. --
e se ';. "'" ';, *b=. "
< .t cv g aa a .&. w. g .?"'i 3 g,3 ,",,' b i -.. .--- /j -- ' ') I . % ,, . , ' h k' es f. ,.' *..
C
. , , e ,i ~ e. ,, . .. 't $ p *~1 f, ** .* r 1 3 =-
o'
-- - I h.* '*' ' ,pl s
v yy - I j i' i
] - N.
Fi [-~,~' j *--
,i e,t g p4.._*".._.....
rc u .:.. .:.. - = == :.7. ., . ,,, f :re , } .- o .' w
.j w . =. .=. . .. . . - _1. .a / :.-
i\...
, . *~. ', C....,*; *4..: . l ~*",. .' .:~.
t
~ ; ~. T. ..,' 3,/
rs' p g { x, I I l m l
=
>I u I I . .
a, l l','
ID a Ib 4~ m i I ns N a
, ! 3p 'f E i ,, w ,7 .ii m + g j e i <
I f W I l, ;; ._L v , c1 ' u*f [u g 1
. v. # rift ( 1 h
l ^] . J, M
%T wollliitilllilii.4.1 d.rFN .
1 unannnunonunn i - r 2 s' m
.p a 4 +p= - - - . . . . . . .
f
' (,
g i f
*e - ~ ~ -
c 2
.- 5 6N 4 *{ ~.. 't.$ Lt 4 g . ,i .
I }_4
~ , _- , . U. l . *I ==== e- . . 64.
llls a ot [ (',
*( t 1,1,1 1 1 1. l l l l 1,1 l"s1 t. e
{
%, =C7 I s'3*! w D11lll1llllllllllllllllll I ' ? Y I $id. .3, ,, ..* *,i.. )
- i. .I-
- O. t... e
. . .... eu . .,u _., I, . b ui!I <L ..g /?. g.
i* *bt- - F .. 3
.c I. . 'e e u
r I {*ig- I' ' - - ,; * ., s f-
*
- J, r. '* *w**.. p.J i ...
* * *f.r]r l -g; &,
(,, * -
.-- a . - 1 ,.. 4 ' ; ', . - . 1 y -] -- ~
JI7k .- . ib?b -
-. '.*h,kxM .i .. wer4;; ) . .f , g y
I .
,a f* ,) )'I -(* ,? .:
nl l N '* vb kY
- .+
{; v .J e q' ., -
- p. . .s .._ _ r i ,
I , i f
**'*f"**""
i
.M iii 4
i
. .w . e s , .,,, ,k l 13 I
1({
%a{ ,.1er:tp **
8
,r 'i i, ss 3-- T r-w-y*L,j. +
s
' l g ' w 11 t_.-,o- ,., F" 4.E I
t7 , .
. !i "' -
- t * -
- (, y
./ N' / .
f.{ $' 4 r' (? 6 h d l'
.\/ t It Il {
I > . i.I .: N. .J U -! rA. 1y .. . . ' }....... m
......". y I .( }\ .. . . . . . . ...
su f g :
- C 1 ~
, r$ . '~". /.C q[ (
I t e g, g9, lf
*1, I.
38 4.0 OPERATING HISTORY Lake Anna began receiving thermal additions in April, 1978 when the . first nuclear unit became operational. It had been operating commercially for two years, as of June 1978, when Unit 2 was completed in August, 1980. Unit 2 went into conrnercial operation in December 1980. The daily operations of each unit and the eight circulating water pumps for the study period (1978-1983) are shown graphically in Figures 4.0.1-4.0.10 and summarized by month in Table 4.0.1. These data are combined with air and intake water temperatures to give an overall perspective on station operation (Table 4.0.1, Figures 4.0.1-4.0.10). Throughout most of 1978, Unit 1 operated near full From November through January (1978-1979) all eight pumps were power (50% l capacity). operating. In April of 1979, Unit I went off line but then operated near full power until mid-September when it went into an outage. By October of 1980, the station began to approach full operating capacity (both Unit I and Unit 2 near I full power); the pumps had been running at greater than 80t capacity since June. Power levels and pumps decreased activity during the winter of 1980-1981 (approximating 50% capacity) but geared up again in the spring and early summer of 1981. The level of pumping activity remained high, decreasing in the spring of 1982, but the power level dropped to 50-60% in July, August and October of 1981, and fell off almost completely during the sumer of 1982. Power production came up to around 50% capacity in Septenber and by the summer of 1983 both units were operating at near full capacity (from July-September, November and December). Refer back to figures 2.2.7-2.2.12 for monthly bar graphs of power level and pumping capacities. I
tjL!' ; ! m >C t T R O P R I A D P
- Y B
T A D M E D R O . C3 f8 R9 1 S-E8 R1
;9 t
l1 A R , M ES PR MA (E 1Y T 308543785634 RV N 333285786950 52639 76631.M 248678 366234012552 M I U I AU T E A 1122221 11 1 1 814838 2221 1 536404891038 1 2?22221
.S M ) %E (H
T M Y TR I O AE RP I M 899067377648 49675694.T664 006483562415 21 0491 451 417
. . 8 2 6. ?.2 7 7 1. 7. 8 9 7.
328602673373 CF 3 - 1122221 1 - 1 1122221 1 1222221 A P) AC m C( GS NE
.RS CEP 545040424450 368466009152 4988o231 2961 12545754780 953354556323 6353T8989767 IR t fT M -
1 PU lAU MT CWP UA m PR DP E RL TM 000255540446 405007451000 048725436425 NE EE . . . IT WV 0006O1276276 134048795000 588252702573 O OE ?4443444 444 44443 34433456846 MR PL , OE CT
.A W ) H 123456789012 1?345678901 2 12345678901 2 %l T 111 1 1 1 111 (h N m ST LN EI A O M
V EE LC a 8 9 0 m RF ER WU A A E Y 7 7 8 OS P D DN m EA N I B) MC O( C FA OV Y , RD AM M04 Mf M UH SC I
.R 1
M 0 4 E L B A M T _M
- l !;) iil t ; !
i)[ to m_ _
. m_ _
m_ D _ ET _ DN _ Rl Ol A _. C. M t R SC EE O m RD tJ N iE _ A RT EA P m _. M) EC T( RS _ I E AR U
,T
_ ;A T 567488455678 1399249721 86 21 81 9 4 9 1 3 7 5.M
%R . 4 F . . . . . . . .
(E3 l 3s74968T5839 45821 48T rs930 6582959 7140 YM9 A TE1 P5 l N t 1 122221 1 1222221 1 1 11 22 2211 M _ T -
- IC 8 AR7 PE9 _
_ AT1 RP 470985498653 2453309901 08 292492344543 _ CA I M . . G S W , AL I 057575630393
- 1122221 059313531 517 - 1222221 1 330384650492.
1 1 122221 _ NER _ KA IPAE MTY UN PIY .R s 894054820225 552180088844 0 CEr 334988890987 775433: 33366 8 8751T2080255 3674S90'10971 M DEU RT M _ 1 1 1 ECT I Au NAS CWP _. I F BRE MUH OST . M C Rt 870006484606 666200302663 566603248861 DR EE .
.NO WV 28T298T93546 53431591 7978 7731 29295066
__ )AF OE 83 4b877459599 595412 4444 347547999699 (
)
PL - . _ SC L( E H 123456769012 1234$6789012 123456789o12 V . T 1 11 11 1 t 11 EA N LV O R , ED M M WN
. OO PM R 1 2 3
_. H A 6 8 8 DC E EI INR Y M _ B , MT _ OR . CO rR oI P M A Y RD AR MY _. MD U M ST _ A
)
T N O C ( 1 0 4 M E L B A . T M
I 6v3b* N* vyae 09 wuw*W mrpa ia 4} i I y . . _ , . . , - , . a , e . <fl i
.
- i 1 <
l f I l t t ( } 1 1 ' a r
- l j 4
8 l, -
, 8 ! :-
I 4
, i j ._ l M . ~ - +
l -l
-1 4
l
..l._d. __.; L. . . i. .~ . . - '".7"'" +- ~ ' . i' S. .q e j i.
i
. }. _
i , .
! l.
O a
~ d I' I
1 l ' to l il I I. ! . N I 4 . s : . , O s - F -l ,
~
e m
~ '] ! ! +
r I .k .I .1 i l l l l w e I
.. @ a g ! -- -
4 ;
'l '
j O I i I { l l l O
! - i- .-6 .;
6 ,' . ' f 4 I i i t i I ' 4 i . 2 ' a 4 i 8 g k l l ,
.l li l .k O :
i j l! b-l -l - - -l j- ! [ { , I J l [ [ 4 l l % I t
- M *- A w H - r ., _ . . . . ....,i i I i b e
- CL ! l[ l . .--- i --~~"*' O O , j E
[. .1 l. l I n. Ij I!
- '. 2-
{ .1 (g ({i I i 2- l D r
-l 1- -l . -p $
a
' l o-i ; .. a. i .o , ! ;
g
.{ _L- L. . ;. - g - -- '_. --i- '
W
.j w i i i i l >- ' ,! j g i i
i 1 i i < ! ! < I s j 3
; L' : 3 l
- , a 4 i
- l. .)
*j ;i i i 1
i s )
.I j- #3 !
3 l' ,
= , ; I p ,i> i.t .j . 1.. j l- Q- p l g - (' . *f'a y j i az q
l : .. I __ v .. 4 _ - . . . . . .. 4 ll i .. i -
.C a i. i , i ! -! .i. .1 l- p . : !
U l
.{
j ',
- y l t ! g i * . . E ? r l' j * '4 't' t = , C l
I b C p l -w , y l - -. 1 y , p . , 1 , j ^ [- ! a m ' i l l i de I j -}'.. , i g i t , V I 1 j <. i J g w ' d
.I., ....
_{
.l. .k ..
w [ ,i lj -- i ; l { i w j I. < :p. , -.. L- #
. . - +
w , j
-8 ! ! i g b . .l .. l ,! l , l . l... I l I
i I l i i +
, g 1
- g ,
1 - t w C l
- ) hao i , c. ; p ;il , ~
I
.J i i i I s r, i. n. -- a t
i i t a
.. 'd , .; : % g 5 :
a s I
~ , o 1 ] .
l l . . .
.j . j. l. . >- i- } i l
l ! ; i {
-y 3
__,.- p.y a .~.+ = I ' I
! R ! 9 I q l l! 3 C
l
' ! ,, ! l > ' .lr i 4, 't 5 'J ,t ! ! [ ? i 1 ,
I g( i i ,. .i i < t i
. -E jl e i .j 4 I x .i .j, . . . j. .
l 1.} i
*
- i i
j j H i -( i I
~
i -j .,,
>" - - i ; L- 3- ' ' . . . . . , , g =
4 l .) ..l o 6 t . i - i
', . L. , = . i t ;
j' I { l ,! ' [ t I i . i ' i . l l i
'i' s . i l' .l 1 4
i N c'
~
(T l
; [ ! , i '
H c'
! }
O. i e'
. i l
4 l ] W l l , 1
. W ! i 6 I
k j . I k
! ! l ,t __. ,i !
L l
- rt M-l , ,
. +
O c o o o O_, O O C O C CT ** ** C @ 4 N C CD @ 4 N I CO e '" sv*a. (%) 13A31 B3 Mod (t) '13 A31 b3n0d
l 1 I1 I 42 4W36# %w3h * , I
. , _v, a#***=.'
_ a*.wo.e-m. I.. .T I I .. e,si . " l **~ ame i p .. . . - . - . . . . . . -. . . ( -. . _. 9 ..h . .. f
.., s. ....a .. . .. . 9 .. p t . s.. .. * .._ . . . q a .6.. . . i e
_q[ , .. j . , . , . ....y ,. . . t j . ..p . . . .,}. .4.. .... . f.. f gi . T g
- 47. ; l. . .
- g. q _.. .q_ .-
. p. . __
q-........,.,. , - l . j. l. 4 4 ;
- d. - . . . . ..
h . ._.. . t q ._, . ._. ., ,_ : ( r, .. . .1 .. . o s._ 4. . .p.,,._ _' . . g
. 9. 7 d-q . .. . ._ - d . . .-4. . . .-
CO ,y.y-.-- -
*Mj v t m . . j.
4, .
...., . . ...p...r.
p
-y. .+._ . . . .a d..d _.g. _1 I
r- l. e cn W ' ,, e! e' M l, ! -
. . j .. . _ ..i - ,. r . . . . .d . . t , c , > _ . .L , ,
m n . . c ..) i I, - -
.. . O r .,..l ..L.i...;..{. ' . . ' . . - ,l e-.
e o, g t ! g
,9g y- I ..i. .. .
g p g
. ! a g 5 4.....g-,.._.._..._.. .. - . . . . .. .. ..
__ e ~ jp. . t _ , 1 -% ,
- o. ' =-- o.
s .; . , M.1 i ;_ _ .p.. L.. , C o
. .j i , , + +.,p_
4 A a .,.,_ . _
.w m
m h*
+ _,_ ), _ , , m h.
_ ! = . L ' rp i ! W i
..j l w 9.I .
- q. ,
. g! . ... t r p .
_p
. g g
- q. y....,. l r q_ g
]jg p1. #. . } _.. _ p g..w 9 . ..
lg.._ g._ q . _, _.7, _ _p __ q y i__,_ _ _ ,. _ ._ ; . s m,. 4.- A _ , ...; _ __ . i
~
s i - ' . p I _q', l
.. .. 8 ) q._. ]_ t 7 q _.. . . ';
l e _+_. , u . :. . o, j d_. t ,4,,,,, ,,,,,. . { , ,,_,,,g,, ,,,,,,,,,, ! ! . 4.t.i _. , ,t J _ r u ,
;'_ y ,. ._l._4_p
_.J ! , u
% _p. , _1.- e ._ q._ 21 4, , e
_ m e -- r 4 r .d. M -_. !.-. .. , a 4
. .. . .u.a. _ .
{t,-
- - 4 .-- .4 d_ t{ {t . - - .
f{
, , , , ;--.g 7- -
w p, _._-.
._,7-y; H_3 3 , q_ --
p m a ; : > W j.} I J l i W r -._. -l . l ]. : ,
+.4.1.> ]. _ -l.L- c ,
J rj _ . _ e A e q_._ _q._._.y .. _ g._;_ .p__g_ , ;y m- ,.
,3' 4, g -
q y p,_ _; _ y j q w
~ a 3_-. _
t! - - , g l _ .4 - ' . . . n. j_}.q, y n. u >. , ,.
.i .p . j. - . -r r J .}i p .. _1 . ! 3 . ._4_ . J -..,i _1 i- ..a == ,
l 4 ,4 i-4 _ y . r. 4 m _ ._. ,. : - e 4
+
g}a l ' q p. C _ _'qc
- .. . rg gr l. -
y
,_.7 - ._.9.
( a ..e. .ne-. [, in.- f . -- . . . . . . -.e. e= -1..+- .
% .i.- . . . -- ...ie n .. .-. _ ,; ,_ . .~_.d__._ d - sy g,f . . . . ;
l.
.y.
o._ . _ a _ ,
.. .. , m J. l. ,_, _[ d_ .a 4._L.. .. . a__+ _d' 4 '
_!.. ,' _.l ,. 4 p b __m g p_ _A ._
! i y, ,Al.. , ; , , -y < ,r _pr. , y. ,
o _.__ . 4_- . . . ., .. o
,4 qz r .q . 4..p.,~~ ~ +y.Q{.- ... ! .. A . .j .... z %. . . . '-~"- ~~ ~.'p.'- ' . ' ..._~_~' _.j' ' .~--'I [. ' 'd ' , ' +. ..T. . d' f ".'d-~'~~.U . ' _~ , ' !. ' ' . - ' ~ i' 7 _ .-- .d -T .M.A ._.1.p. i_. ,. e o ,, _.L _.! _ ..
43u. !-! ! J. , d q_ n.L. .;_ __ g .; ...; i.2. g_ ,_ , H. - _--i r
./
s..,{ . - ._. . . . . . . _ . _ 'tu r W s __ . . _ _ . _ ._ I w
.} m_ % r g j --.4 -5 g . =L -%.. ,__. .
- 4. 4 i . . . a 4, a .. , m . a- a. - _ m C
1-3
=
_: 1py.. g 4 v.,
. y-gg g i g l_ ,o,,,
c cc :r N o 6 o to v. .ir m o 6
~
(%) 13A31 'dM0d ~ (%) 13 A31 B3M0d '" ' l e
!lllIl l2{ 1'I;i' M ,< * * . ,cw*. >La.
.4 -
ll _ - - - - -
=, .-
F -
.F E u.,i M .
j
; i..it l ' +
1.+ i e ' 2 .
._- .msi%,- - .
ii i _ e'
- - * . : . 't ' a 1F
_. eT
,4' i"+ -
f ' [-
' . t i i I.. . ,T s ]
L_ _ 4 ' i.
, . ,!i . ! ' '
1 * .!; 1- ' i -
. ~- 1 .f- .T _ . . ,. 8 9 - i 1; l : 8 9
M ,I
- .+ . 1 - - .i 1 .
i 1
.% . e:
f
- I. ,' *l., i R R l' ;
O F
.tf l
tQ' t1 O F
. i i - _ t
_. N
. ON , t ;.
M :'
. s,4 ,:+ ,
L_ .-- .
., O I t e
i - r' H1 - _ I T A
- i i
4 i.!
- . i i_
,%li >
- pii i -
= I T
A
. I -
R _ i; R [ E ._ _
-1I Ii -
E P P M _ k-lI O
- d':
,i ,b - L_ '~ O 7 .
_. P .
- P - ,-T L. i j t ! ~ M u 3_h ' r U p* s;;. i:! : ._ '
eP t
,;H'.g
i i ! i P
. i M
jiQ ;"' ' r,
.l j
E R
;- - i ! ;! ,.i lr R
iM
,t E
i T n" - ' - T A - ~ . A
. W : . . u h=i;*i f * .: ._ 4._i _ ;t 1 G ._= _ rt n
M - .
-- ; : - . N . .G N i giI I
T A ii;.:__'.-
>- :i.
i_ ' 9_' _ i I T A it , h
,il L L .;.l .- i U i i e 3 .. ,p' ' t- -
l
.'; -' H l
M -
- -'t i.i i f j
C R I i i ;i 9, ;-!ij -
; t iy i
C R I
- l*q, _ C 6" .
C _m.
.i; g! 4 - 6 .; - . ;~ _ - - - _: .
- 1_ -
f r r 4i i _ D N M
;I .,:e 7 - D N
M , .
- a A l .
- A 4: .
,f . _- ,i ,;
i*
.a - . ) - )
N
- .j ,:
ii_ f. _. ( . p n . (% i5 1! i -1 - i 3 . . dL
.f .. -
i#1
. ; ;- i : l y,i :
L . L
." ,, ;. E , ' - _
E
- . V ._ .
V E E _. L _ -
.-_ L .f t 1l ! }.' ,, i , &t .
it
- . ; 7 l i- i
[ ,,
, R E
- i > i ' .'
a
- R E
M -
. ij ,. ,- t.i I l V
O
- j. i i mi t
;t .i I .j'L_ :T- '~- .'
i
.m I
_. W O _ _ P , P e e p . . tt
,t i _ _ ; _ -
Y Ii.t!. ,- Y h _' 1 L L M - lT y] .I A
! i i !;
ii . I A
. .' j' ,' ; i .
D D i .. . 4 t3 _ ;; , i J_ i! t!
, r$ - }r_ -
j h . 1 T iI ;
,,il f ;ip' ir ;r 2
T M - . [
- f-
- I N
U t_ t1 I N U _: Lii ri ! l' I :; p
- g
_ . aj , i
.A .t ! :I .m-i - . A - + ! ,gi- i ! , t .. . N N _ , ! N N
M f_ l 1_ _- .t
- i A
H
)ii
- ' i H
A
,Iy I^
t T t le i T
+ , 1 R O ,r O
R N
.I ; .'
- l i ,
i-
.- . N et m
- ,; . t ! , i
- 4? '
4 '
- xi 'e > i: : . ,.l.l l ,i i , . i m -
i
.L_
it i 4 _ ~ 5 6 1l , _ , i .ti h M .
-:i , .g l_! ,; , _. 4 0 - .i @L ' - '
- . 4 0
--b_ '
4 ,
- I ,
_. E R
. e ,' i; -
E R e s , l
' - r t .l i : -; t G ..e n[ ih-I - _. . G 0 . i'0 0 0 c s F .' 10 0 0 I
F 0 6 4 2 0 8 6 4 2 0 1 ,c~- , 1 cy9 , _" " ::.Ja awr E t a
~e - ,_w3' a,ro M
44
=wam. , =wza. .rege_ ar-w g g i f 'I h h I 3
- f. - .p ._-f. ~
1;, r . f. . L. - q
.. : 9.-.. .. ..y.r m%pr_ .p f_7 7
t-._ ._ u . L...__. _ e -+_. 4 [ -
... { . e !
p_.
._n _ m ;.._.-q r a , -. , ._p. ..% _a %p- + .. g .q. . .c.; py. - -
t
.r.Hy ,- . , . . . ,a 5 . . I- E t a. *y -
t
.m g} , . . L,. _ . _ . . . . < . = ..g_ Jm % g m . a .....-.m4. , . . ci g u._ _ ._
_w m_pw_sp. _ _l _ . g _ . 4. .
..j_ .q.. _ .1_
j .l-I m *~ it ..._ , , _ , m
. ..J . > ' . - +. .
y p ,,
,_.j_,
e
- . +. _ - .J t ' ih. t o . . 4 >i .g.. o . 4 .
- u. ,
_ . l .. .._
._....4 ,.
g,
.i y e 2 e# ~
z
- y. ao _'-,1 r'"'^- ~--- ~-
n 't" 4" o e __ _ ._ _7..
. . ).._, ., ,g s ;- ~ L J__-;
s ;- 4.. . _ . .._4 -
-. I .. _- .t_ < . -i _ .
i # , I a .i -i 1 6
- g p ;---+-~ w i. y q' . . . .., . -_. .j j 1 . r Q. .t~. I -.4 Q
- g. - .4.. , _. j,. <
l o t
._- $ _. r - - - . . . .,- i_
o
.,. . .. .. ._ r, ,r - . , . , r O.
sg - .._
. .} . - . . . . . O Ie i- .-
1_.
,rf - - - -t - --q- ...i_ i.
t' -< H ,i - r it 7
-Ij- ; ! - i i_ .- t i r
a f.
. l,. ..f . , A. . __ -
F _- . Q a ..
, a f
W w v3 . . _i. .
.4..-
i _. _ t_ ... a g r I 1 1 ! - -
- i g
f,
. .. -,...' b. ._ p 2
ej - . I
., .__ r. .
s < q_, .. ._4._ 4
. k. _i.~ ,
- g. I
- i. i. .
y L t 4 : .. .. .
... _ . , . J L 1 , e ,l _
_4, ..~. -.4._ >. , e
, . .!p .
t ip., i_. z
. . i 1 . ' __!,i _ .
i
. z,.
l !
! he 'k . ! )
- j. 4
.h j .i 4 ,p.4 , ..-_i_._J u, -{~.
r g ej . ;! j. ] l L' - e 4
~ '
u 4- m p ..
,o
_,' _._._r-.
! l p y ,; a. ;i i i
I l l
,; cr M
m , _ - # . , m a
- a. .
. .. .L. . l _.L d .q_ f .j .
g z
, _1 m- . . ._ . , g 2
- f. . _ . . .
_ f . L .. .._; _. . . - .I_, r 4 _--
-. -f.y . . d-. _- c <
4_._ . _ . - , ,_ _m ._ .- , , p! .p. J._.y ._ . p, . .L {.. _! . q g p .- - p._ _ p-q g
.q q. ._. 7_ ..q. J. .. 2 ,_{- _.p._ .. ._ . .
_7 _p _ . _. 7 y_. , ._.L.. _ .. g , _.r-
, r ~d---t-- M-J. '
d ' 3 r w cx .L' . ,i_ .4 .+I ___.L 1 I
+i -
4
-p i
- r. :
I' rq_.I_ l' [ t I c w
,,3 W
4._4 J_._JL q_ g q,
.L_.. L L e . j- _l_' y ,; ..o p
q p__ l ._ e m
, l
_j.[_. _._ .
-_L LJ_k.L ! ' L _l_ s f ,_ ;' 4 l-g - g __ ._,...q--_..- u a. _4_
g .q. a -l e1
- g. a.
. . 1. g_p.g_.;q m _ . t , # + pa__L j_. , t
_ ._ , q r ._. } _ ___._t 2_- g l p,~. ., L i _.q.. ,1._7,_._. _ _ J ._
=
q e (, .g _.__._ _ 7,_t._pl ; r_
}__q ,
c
+, q_
a 1 - _ __. _ r,,, 1. J _ 4 s_ ( ,; _ q. _ . .. d .s_ t.. a .j._ ._.s c g :) _ , [p -.p.. l ! b c g
. .y .o9 .L ~. u +
s ,u -
.i <z _~A . .
4 _L. J . a <2 Is L L i ll , ) 1.. . ..; . .i-. , ,: 4
. .. ,I z q. .- _ { ~_ LJ v. _.-_ -~1 mo 1 2
J i. l . ; _. i .. _J. - ! J_ < <
).. _._ ._ . !' . _;_q _Lt L. _.
x- i ._a - 4.i. ! _. , e ct-
- c. ,>; ._ m.L. t i _L2 . __ _ . E i
i i. i ., wi y & i e I
.i.;.
{ , . 1 o l.i .p_. 2 2 _ . . ' . .. . _ -J. e
.} . e - _. . .
1
,a _ . . . . , A _._., _-
J .. . .-' . ,
- h. .l. ., _ . . . .
!':-..--+-.' ! I --- * * **I I , . . . ! 4 r f.
d_d_,_f _ e
. , _ . . . m a_- - - _
h, ._. .. g ..]' f _ . . .
. [. .?_ _ . . ]-
4 l9. 47_.h._{ ' l l i 4
]_ m.m. ._ m m
h u.ao
- f....h . f _. .f . f . L'o.L __ u--- .- .a o .a o
O
- o e o- o o ~
CO %D 4 N O g. o <x) %D 4 N O u,
~ - " - -
l (%) 13 A31 d 3h0d ' " * (%) 13A31 e3M0d E a
m a( ** s # cS* . ru n I . l :. i1 7 1
't_ . r . . ~~
i
~ -
y L . T._ _ t I
"yI4tu} ;t. '! j ' ,
f, tJ_
~ ~ ~
t
. 1 . ~_ - .
8 3
._ 3 . ~ ~ .; ._ 8 9 M ,-
W_._
. . - 9 _- 1
_ 1 r R
- -- R ,,7 O
_ _' O F
, F n .-- [
N M ._ c i_
- ~ . N O - f . O I . 7_ .
T _' _ I
- A i . T . i A j R " ' 1 :_ . 7 ._ R ul _. - E m .
I ; a E P O
- j.
F_ P O P i P f, i. . - M
- s. l1_
[
. U M ~ -
i_ u - U P m - .- .
~
p P
~, - - . - R R r E ~
y .!i >. .
. E ~ - T T_ T A - i . . . - - V A
W
., '. .. ~e - - . ~ .
G
. . G . N - ^
t v . I
- ~
T i T .,- f
- - ~ ~
A
.' A l . ig - L .
m . i U C R
~ ~ - lt C
R I
- 7. -~~'_ -
- I C - ~
C m
, ly , D4 ~
i . j!j, 34 t.f D N A
, ." ~
_ -~
~ ~ ~
D N A
* ) ~ - )
( i . . (
. ~ t f1 . L L - E E , - V V E 9~ - . -i. E . . gl L L - .__ ~ R 7- F l 1 R
E
~ ~
_ l. E V W O
~ _. . 0 F . i r P _ - - Y J' 7.'
2 2_ Y
^
L l. L . . 4 ' h_ I A _ _ I
~
i- ;f : A D l_. !-! lu;t- . .
. i D - - - 2 ... 1 g'
T T m , f~. ' , ' jf li T1j ! I T N ,, _ I M f i U - T. ' _ A
~ - _
A i N
, $ - ~ ,t N
N t A
.~ ~- :. . . A
_ H
~
H T m j, T R O t1 R i1 I[4:;1 " T O
^
N m - H M
- ~ ~ . ~ " _ 0
_ . _. 9
~ 1 ~ ~~- 0 m . ~
4 0
~
4 F E
~ ' R R 7 U l
i
, ~
n G m G
~ - - - I I F - F - '0 i
0 8 0 6 0 0 4 0 2 9 "0 0 6 0 4 0 2 0ht 1
, c9, , l 4 , ,
1_,~ g C ._ , wg " " G J_ em o
46 5.0 METHODS AND MATERIALS 5.1 Impingement . Impingement, as described in this report, is the collision and subsequent retention of fishes upon the traveling screens of the water intake structure. Impingement samples were collected from April 1978 through i December 1983 on a four-week cycle. The sampling schedule for the first 3 weeks of a 4-week cycle consisted of two 24-hour samples per week collected on non-consecutive days. During the fourth week, a composite sample was taken consisting of twelve continuous 2-hour samples. Screens were washed for 1/2 hour prior to beginning a 24-hour sampling period and the resulting debris and fish remains were disposed of, for each sample collection, environmental laboratory personnel washed each screen for a minimum of 10 minutes to insure all fish were removed. All operable screens were washed when the corresponding circulating water pump I was in operation. The fish wer:! washed into o catch basket at the end of a sluiceway and were removed and transported to the laboratcry. Decayed fish that obviously had been dead for longer than 24-hours were excluded from the impingement sample. In the laboratory, up to 50 individuals of each species were measured (total length T.L., in mm) and weighed (nearest 0.1 g). Those species numbering over 50 were enumerated and weighed in bulk. Water temperature, dissolved oxygen, weather conditions and numbers of operating screens and pumps were noted during each sample. All data were recorded on standardized computer data sheets. l E
. _ . . - _ _ _ _ . _ _ __ .__ _ ____ _ _ - _ _ _ . _ _ _ __ _ _ _ _ .-- ~_
47 Velocity profiles (measured with a Ma rs h-Mc Bi rney Model 201 electromagnetic current meter) were obtained from surface to bottom at one meter intervals in front of the trash racks. 5.2 Entrainment I The 1978-1983 entrainment sampling program extended from March to July of each year. During this period, samples were collected at 0600, 1200, 1800 , I and 2400 hours each week. l Samples were taken at the surface, mid-depth and bottom by placing paired conical nets in front of a predetermined intake forebay (Figure 5.2.1) > for 10 minutes per depth. The mesh size of the netting was .505, and the conical measurements were 0.5 m x 1.5 m. After 10 minutes the nets were retrieved and the samples were rinsed into jars. Samples were returned to the laboratory , sorted and preserved in 3% buffered formalin. The collected individuals were identified to the lowest possible taxon, The volume of water filtered during the sample was determined using large-vaned, low-velocity-sensitive digital flowmeters (General Oceanics Model 2030 MK 11). Water temperature and dissolved oxygen levels were taken at each sample depth. I I I I
40 ' 4 I I
/ I i /g... , /N /. f.
i s" l enemmer w l t' YW n. 4 ' . Y w 4r,4.w 4 i ; } e j e
;~~y TZt. r ui !
W %'M 'Nj .i I
;d 7 xerte.l . . < __r-jc. ,/ .) -
j 5 l
. a )
l lms ,s ,{ I ld,bh))ij il jiC)f]Il))iflT )}} D lj b a t_ I i { \\ ti r7 I
\ )
lii
()
A > 23 5 l
.dl 59l ( '- l \l 4 !! L . /. /. ~ )]ili) 1;i;~.l) { li l l;))J )]J ij [5ii' w w ', I"\ ? * -7 l l- ' '.' / .il.!11~. %(
u l g
. . -r.
i i
,i .
I
) h l.' .
w E u . 1
'D 4 E
b C~g l 1hl l 5' g l C 1 . N/ . , (( G. xp s a
=
l i 8 l
!'c j t l . .}
I E l
=
1
I 49 6.0 RESULTS AND DISCUSSION 6.1 Impingement I Impingement studies have been conducted at North Anna Power Station for a period of five years and nine months, April 1978 through December 1983. 5 During this time, a total of 2.4 x 10 fishes weighing 5.7 x 10 kg3 have been impinged, representing 34 species and 13 families (Tables 6.1.1 and 6.1.2). These collection totals extrapolate to on estimated total number of fishes I impinged of 9.6 x 10 5 with an estimated total weight of 2.3 x 10 4 kg (Table 6.1.3). The full year having the greatest number of fish impinged was 1979 (61% ef total) followed by 1981 (13%); 1980 (12%); 1982 (7%) and 1983 (5%) (Table 6.1.3). During 1978 impingement sampling was not conducted for the entire year. Gizzard shad. Dorosoma cepedianum, comprised 77.6% of the 1979 5 impingement total, of which 64% (an estimated 2.9 x 10 were impinged between February 20 and March 20 of that year (Tables 6.1.1 and 6.1.2). It is significant, because of the large numbers of fish impinged in 1979, that the lowest water temperature ever recorded (1975-1983) by Endeco temperature monitors in the intake a rea of Lake Anna was recorded on February 20, 1979 (1.18'C) (Vepco-unpublished data). Low water temperatures will notably reduce gizzard shad mobility (Griffith 1978; McLean et al.1982). Winter kills (and high winter impingement rates) are common for this species when water temperature falls below 3.3*C (Jester & Jensen 1972), and the higher 1979 impingement rates were most likely influenced by the extreme cold experienced during February of that year. I
50 Seasonally, most fish were impinged during the winter (75% of the total), followed by spring (13%), fall (9%) and summer (3%) (Table 6.1.4). Higher impingement rates during winter and early spring are a common occurrence in other areas (Reutter and Herdendorf 1979; Porak t Tranquilli 1981). Lower water temperatures encountered in winter tend to make fish sluggish so they may I not be able to avoid the intake currents as easily (McConnell 1975; Latvaitus 1976). I The estimated total numbers of fish impinged by species by season (winter: Janua ry-Ma rch; spring: April-June; summer: July-September; fall: October-December) were calculated from the seasonal mean values, which were calculated from daily impingement values. Seasonal estimates were computed by multiplying the number of days in the season by the seasonal daily mean; yearly estimates are the sum of the seasons. To simplify computing, the 24-hour samples and the 12 2-hour samples were combined and both considered 24-hour samples for this report. This is a different formula than used in determining previous impingement estimates so there are slight differences between present estimates and those of previous interim reports. E Water velocities were measured approximately Sm in f ront of six intake screens under varying modes of operation (Table 3.3.1). The average intate velocity, across all eight bays, with all eight pumps renning, was less than 0.21 m/second (0.69 ft/sec). The maximum, at one meter depth in front of bay two was 0.24 m/sec. This is somewhat lower than intake velocities encountered at the Kincaid Generating Station (maximum 0.34 m/sec) in Illinois (Porak and Tranquilli 1981). I a
l 1 51 Adult fish swimming speeds are related to body morphology and length. Burst speeds of 10 body lengths per second and cruising speeds of 3 body lengths per second are generally accepted for fish (Bainbridge 1958; Blaxter 1969). Burst speeds cannot be sustained for very long and are usually ! associated with escape responses. I l From these data, fish larger than 24 m total length (.24m/10) should have no trouble escaping the intake screens if they are in good condition and j not cold stressed, impingement length-frequency figures (6.1.1 - 6.1.5) indicate that most impinged fish were larger than 25 mm. This would indicate that fish most vulnerable to entrainment by the power plant are individuals in poor body condition. These are the weaker individuals that would ordinarily be selected by natural predators in the lake. I l The most cormonly impinged fish during this study was gizzard shad, (61%); followed by black crappie, Pomoxis nioromaculatus, (16%); yellow perch lI I i Perca flavescens, (16%); bluegill Lepomis macrochirus, (4%) and white perch j horone americana, (1%). No other species comprised more than 1.0% of the total number impinged (Table 6.1.1 and 6.1.3). i Gizzard shad comprised the majority of the fish impinged during 1979 1 I (77.6% of the total); 1981 (51.9%) and 1983 (36.6%). During 1980 and 1982 black crappie were impinged most of ten (33.1% and 36.9% respectively) (Tables ! 6.1.1 4nd 6.1.3). i iI o 1
5 j Gizzard shad is the major forage fish in Lake Anna; however, threadfin ) shad introduced in 1983 may eventually supplement gizzard shad as the prima ry forage species. Gizza rd shad is an excellent forage fish when small but . i quickly grows too large for sport fish predation. Adult gizzard shad compete g !' l with sport fish for food and habitat (Porak and Tranquilli 1981). Gizzard shad is the most abundant species in Lake Anna in terms of I biomass (kg/ha) (Vepco 1983 and 1984). This species generally frequents open surface waters but is found deeper in fall and early winter (Jones 1978). Adult gizzard shad are large enough to avoid the intake current if healthy, j therefore, they were probably already physically impaired in some way when impinged; sluggish f rom the cold water, possibly dying or already dead and floating or rolling along the bottom. The emaciated condition observed in many of these fish collected in the summer would tend to support this theory. If gizzard shad impinged during the summer are already in poor condition when impinged, as hypothesized above, this should show up in condition value g comparisons. Condition values, K = W 10 5 3 i (Carlander 1969) were calculated for L3 gizzard shad collected from the intake screens during 24-hour samples during October 1983 and compared with a sample of approximately equal length gizzard shad collected from lake gill nets during October 1983. These values (Gill Net-0.83; Impingement-0.60) were found to be significantly different at the 991 level (S. A.S. proc. T-test). October was the only month tested because of the difficulty in obtaining large numbers of equal length gizzard shad. The length-frequency data for gizzard shad impinged at North Anna between 1978 and 1983 are bimodel with peaks for the 75-125 mmT.L. (48%) and I I E
53 175-225 mmT.L. (381) groups (Figure 6.1.2). Cove rotenone data for the years l 1981,1982 and 1983 (the only years length-frequency data is readily available) also indicate low numbers of gizzard shad collected for the 127.0-152.4 mmT.L. size class (4.1, 3.6 and 0.2% respectively) (Vepco 1983 and 1984). Therefore, this gap is probably a cohort growth anomaly rather than an impingement artifact. There was a large gizzard shad year class in 1979 when 92% of the total was less than 150 mT.L. and the overall gizzard shad total was the highest impinged of all years (Table 6.1.5). The impingement data indicate there was a smaller gizzard shad year class in 1980, very small in 1981 (only 7% less than 150 nmT.L.), building in 1982 and relatively large in 1983 (86% below 150 nnT.L. but smallest total of five year period). Threadfin shad were introduced into Lake Anna in the spring of 1983. Their impingement combined with gizzard shad (6% of total) in 1983 impingement (fall and winter) equals 4 the 1982 impingement total for gizzard shad (~ 2.0 x 10 ) (Table 6.1.1). Threadfin shad do not grow as large as gizzard shad and are available as forage throughout their life cycle and are therefore considered a better forage species. They are, however, more susceptable to mortalities due to low water temperatures than are gizzard shad (Griffith 1978). Black crappie was the second most commonly impinged fish over the entire study period and the most commonly impinged during 1980 and 1982 (Table 6.1.1 and 6.1.3). Black crappie is a sought after game fish in Lake Anna but has been declining in nunter since 1979 when the creel harvest estimate 4
" bottomed out" at 5.7 x 10 compared to the 1978 creel harvest estinate of 1.1 x 105 (Sledd and Shuber 1981).
I I - I
54 Cove rotenone studies at Lake Anna have also shown a steady decline of black crappie since 1978 (Vepco 1983 and 1984). Although cove rotenone studies have sometimes proven inadequate as a basis for estimating black crappie . standing crops in reservoirs (Carter 1958), the Lake Barkley rotenone study (Aggus et al. 1979) found that black crappie recovery from small coves did approximate their total standing crop. Black crappie feed primarily on minnows but also on aquatic intects and other organisms (Hildebrand and Schroeder 1928; Eddy and Underhill 1943) and would be attracted to the intakes by the volume of planktonic food organisms, and the smaller fishes which feed on them, flowing through the system. Black crappie are also attracted to structure in deeper water (Pflieger 1975) and so might also be attracted to the intake structure for this reason. The decline in the population over the study period may be partly due to the lack of structure in the lake, as the lake was completely clear-cut prior to impoundment. Black crappie prefer to spawn in or near underwater structure, and the lack of structure in the lake may limit its spawning success. More than 60% of the black crappie impinged during the five plut year study were larger than 150 mT.L. (Figure 6.1.1). This is similar to cove rotenone data for the years 1981, 1982 and 1983 when 52*;, 75% and 60 respectively of the black crappie collected were larger than 150 mmT.L. (Vepco 1983 and 1984). The percentage of small crappie ( < 100 mmT.L.) impinged has decreased dramatically since 1978; from 32% of total crappie impinged in 1978 to 1% in 1982 and 1983 (Table 6.1.6). This is symptomatic of a relative decline in population. I I E.
B 55 Yellow perch was the third most frequently impinged species, during the study, at 16% of the total (Table 6.1.1). Estimated impingement declined 4 during this period from a high of 8.7 x 10 in 1979 to a low of 3.5 x 10 3 in 1983 and averaged 2.9 x 104 Yellow perch is a sought after game species by anglers in the Northern states (Ney 1978); however, it is insignificant as a sport fish in the South (Clugston et al. 1978). It's primary importance in Lake Anna is as a forage fish. During the 1976-1979 North Anna creel surveys, yellow perch was listed as a non-game species, however, an estimated yearly average of 1,828 were creeled during that period (Sledd and Shuber 1981). I During the 1983 creel survey, the estimated total number of creeled yellow perch was only 107, or 0.3% of the total fish caught. North Anna cove rotenone data also indicate that the standing crop of yellow perch has been declining in the lake since 1976, from 17.98 kg/ha to 4.22 kg/ha in 1983 (Vepco 1983 and 1984). Rotenone samples in Keowee Reservoir and Jocasse Reservoir in South Carolina indicated much lower yellow perch standing crops than North Anna, ranging from 0.1 to 2.2 kg/ha (Clugston et al. 1981). As Lake Anna cove rotenone samples were collected in August in generally shallow areas, it is quite possible that the standing crop of yellow perch is underestimated as they may have been concentrated in the deeper, cooler water et this time. Yellow perch generally prefer cooler water (18-21*C for adults and 20-24*C for juveniles) (Ferguson 1958; McCauly and Read 1973). Relative changes in yellow perch standing crop determined from cove rotenone data probably reflect actual population changes. This agrees with the declines noted in impingement and creel survey data. I I I
f I $6 WI ' Yellow perch feed primarily cn small crustaceans, insects and fish spending the day in deep water while moving inshore to feed in the evening l , (Pflieger 1975). Therefore, their presence in front of the screens is not unexpected for the same reasons as those given for black crappie. I1: Most of the yellow perch (92%) impinged during this study were sneller than 150 mm in length (Figure 6.1.3). This compares favorably with lake i population studies (rotenone) which indicates that most of the yellow perch population is from year class 0 to year class 11 (0-150 mmT.L. ); during 1981, , a 97.3% of the yellow perch collected were less than 150 mm; 1982, 99.3% and ! 1983, 92.6% (Yepco 1983 and 1984). The number of small yellow perch a g, ( < 100 mmT.L. ) impinged has decreased yearly from 1978 through 1981 and then increased slightly in 1982 and 1983 (Table 6.1.7). This might indicate a leveling off of the yellow perch population decline.
. I Bluegill was the fourth most of ten impinged fish during the five plus year study period at 4% of the total and an annual average impingement rate of 7.5 x 103 (Table 6.1.1 and 6.1.2). Bluegill impingement increased in 1980 and '
again in 1981 then decreased considerably during 1982, with a slight increase during 1983 (Table 6.1.3). Bluegill is the numerically dominant species in Lake Anna (Vepco 1983 and 1984) and is considered a game fish in the lake (Sledd and Shuber 1981). It is also one of the primary forage fishes in the lake, at small sizes (determined from laboratory game fish stomach analysis) (Vepco 1983). I , I. I E'
i iB 57 Annual cove rotenone data indicate a fairly steady standing crop of l i bluegill in the late since 1979, that ranges f rom 58.8 kg/ha to 74,;. kg/ha with E l 5 an average of 65.3 kg/ha. Although bluegill feed on the san.. ;eneral f ood items as black crappie and yellow perch, they prefer to forage in weed beds in lE ! shallow areas (Eddy and Uriderhill 1943). Their presence in impingement samples is therefore probably more reiated to their numerical dominance in the lake than to their preferred habitat.
- I L
The majority of the bluegill (73%) impinged during this study were small ( < 100 mmT.L. ) (Figure 6.1.4). This concurs with rntenone data for 1981, 1982 and 1983 when fish in the bluegill population less than 101.6 mT.L. was ! estimated at 88%, 78% and 89% respectively (Vepco 1983 and 1984). It appears from these data that a slightly greater percentage of larger bluegill was l impinged than exist in the population as a whole. This may be because larger bluegill are attracted to the intake area to feed, especially in the spring, 1 l when schools of them can be seen feeding on the surface in front of the intakes, presumably on fish larvae and insects. I Small bluegill (( 100 mmT.L.) as a percentage of total bluegill impinged annually has increased steadily, from 30% in 1978 to 70% in 1983 (Table 6.1.8). The estimated total number impinged has also increased annually I (Table 6.1.3) indicating a thriving bluegill population in the lake. This is l supported by the previously mentioned rotenone data. 1 White perch was the fifth most often impinged fish during the five plus year study period, and the last species comprising more than 1% of the l l I
I
$8 total (Table 6.1.1). This species comprised 1.4% of the total number impinged 4
with an estinated annual average of 2.7 x 103 (Table 6.1.1 and 6.1.3). White perch impingement generally increased over the study period, matching the , increase of white perch in the lake. White perch were first documented in the Lake in 1973 and were not collected again until 1976. Since 1976, the white I perch population has increased dramatically in Lake Anna according to results g, of ongoing adult fish and ichthyoplanktrn survey programs (Cooke 1984). Since 1977, the increase in white perch population has been accompanied by a decrease in the black crappie polulation. Black crappie comprised 15.0% of the reservoir standing crop in 1976 and white perch 0.02% (from rotenone data). By 1983, black crappie comprised 1.5% and white perch 8.2% of the total standing crop (Vepco 1983 and 1984). This exchange of relative dominance is probably not directly related to white perch, as the major decreases in the size of the
;rappie population occurred during 1976 and 1977 when white perch still comprised an insignificant portion of the standing crop.
White perch was considered a non-game species during the 1976-1979 creel survey when a annual estimated average of 86 fish were creeled (Sledd and Shuber 1981). During the 1984 survey an estimated 2.6 x 10 3 (6.8% of the total) white perch were creeled. Currently, its main contribution to the Lake Anna fishery, however, is as a forage fish at small sizes (Vepco 1983). White perch is a sought after game fish in estuarine and tidal fresh waters, but usually becomes stunted and a " rough" fish in impoundments. (Hildebrand and Schroeder 1928; Mansueti 1964; Hergenrader and Bliss 1971; Wallace 1971; St. Pierre and Davis 1972). I I E E
59 White perch feeds primarily on small fish (Hildebrand and Schroeder 1928) as do black crappie and yellow perch. Being primarily an open water
- species its presence in impingement samples is nct unexpected. As the total number of white perch increased annually in impingement samples, the percent of small fish (< 200 mmT.L.) also increased. This is indicative of an expanding population; however, combined with a relative lack of larger individuals, this change may also indicate a stunting of the population (Table 6.1.9). These
- data are similar to rotenone data (Vepco 1983 and 1984).
l I The majori ty of the rcmaining species (68% of the total) collected were small, less than 150 mT.L. (Figure 6.1.5). This is probably a reflection I of the total lake standing crop, comprised of mostly smaller, younger i individuals. Generally, new reservoirs show a trend of high initial productivi ty followed by decline. This is primarily due to high nutrient levels from freshly inundated vegetation and soil. Environmental conditions tend to stabilize 5 to 10 years after impoundment and fish biomass stabilization follows (Jenkins 1977). Lake Anna exhibited high initial fish abundance during ' 1973 and 1974 followed by a decline in 1975 (Reed and Simmons 1976, Appendix A). During 1976, the Lake Anna mean standing crop was 295.9 kg/ha (from cove rotenone data). The most productive area (at least in future samples), Pamunkey Creek Arm, was not sampled that year. During 1977, with all four coves sampled, the mean standing crop was 332.0 kg/ha, which decreased during 1978 to 262.4 kg/ha. Since 1978, the mean standing crop has fluctuated but averaged 267.8 kg/ha for the following 5-year period. I I
1 l 60 e Lake Mean j Year Standing Crop (kg/ha) l I 1976 295.9 3 1977 332.0 5 1978 202.4 4 1979 233.1 2 1980 321.1
- 1981 263.3 J 1982 265.8 1933 257.3 g
. These data would appear to indicate a stabilization of standing crop, as predicted by Jenkins (1977), which has been unaffected by fmpingement rates. I I!
- 1 I'
I , I' 1 g I I I I I' I a
=
Il(lllf' ] 4' M e,a-E 3 T 3 . . 88: 353e1 9 0 .3 ,as . . . 90O3 9 . 3 .
?7?wp . 3R
.M 5 9 1 A 4 M 7 4 2 g36 4 2 34 8 3 R 5 9
?
i f 6 ?t I t 6 2
- i 3 5 P 8 S 4 7 E 9
1 M i f 9N T O I TE 9C P 0
. . 0 0 0,O.4 0 0 5 6 .
7
.00 . .
0 0
. . . . O000 1 . 072 34 . 0, 0
T 1 0 000C0406 A E 7 1 M T S F R T W H 2 . . C 6
.71 11 96?60 2 5 9 .1 . .1 7 . .1 .....m513 f 1 5 .OT .7 .
O T 6 7 6 I 37 H P A 9 Si ? M A N C t
?
N A E H T 0 3 1333 55 5 33 031?0 1 M T R A 0 M . . . 3
..a.7g 33 00 9 33 . . . . . 0 3 T. 6 0, .
3 O 81TS 6 s1 0 N T I S 4 4 1I OT 52 37 11 7 2 84 3 338'35 17 6 1 9 8 T E 9 3 1 A M D E C SN T
)
4 TE 0 T 7 t i 9C P
. . 0. 0111....O.
9
. ?. f. . . . . . . . 0. f.?. 7 1 9
1P 0 0 0003 O? 4 0O O3004 ta M E t i 1 3 I P M S E H H 1 . .1 . 2443 .6s .7 . 9i . . . . . 3528T .1 . S C 6 3 '9 7 S 3 2 I T 1 I 7 I 8 f A ? 1 C M f O H e C t T a A d M C D r s h g ly w r e t w o E e i s n r t o d h r n hs dw e cn af e s a T A M i f s re dfn i u isaer e ti i rdhneiedi aornrt n e l ete cni r%bef s : d n. e t etethsd f poasnnhnem eiI b t h s f, tc yd M i S E erkbs e ec ui t e npthfsshisurk e n h ph h i isir ut a snmh h i snsnsoiat u e ap kfl I acaer eo egctmf crbt e rm p a scnantt occdf s ~ e i ohpc t i pdl emO D N ce ueimirm ardpnf nanc w m e8 wya. N OE i teksrk w gaekbaaieno*ti nenr u epeoel e t A t 7 e r i eed bpueegcezaI rat d m r p d r a u zlr *.di tmue m n meit n m e oao t iwr t e rst sl l l as f1M A r M T N C ON mihs oeoal eal t tti hgtucgscpbmf A pw c m r pwbrl s i o a o woybi uc wt.herhht s t ywse eeaea 1 C H S L S AA M ' I SN s UO I i SSDA SU ET 4 f UC GOS 4 t l U S T U SS i M U H NS T UUt E UEi l N SI UU D ES C AARSO Rl oU# NSLOAS UE SSI f RU T T YfUM S I rMC5ANtST U T C I OAAsiSTN A C AAtYlGO5USHOtA8 RSP t P0SuCtA4 lDt1 XRO0ST P I E I YSI AO SLtT NtSNI I UAiGAiMfVR M L A T OU Oo SSCtSt BOPR 1 0URBtC.CSG4EE OsOOSOAEi ACt t1 AOI t f FVPl M Ai S *t OHI t I s E I I ft! t4 Cl t C AA AAf UI l Cf MPHA 8 OSN4 f i I O a 1 RPS0UUI u*t UI 1 CP1UACO5HH 1 tt AVI NM 0 ! U CAGGMMRNS FUN 1 ( SSSS4Af ADOc t t 1 ADMNR t I AASOSSst SGUl UUAS0!TIv t
$ 1 oOOAsSSSSisA HMSGII uAUI RpRP 1 i I ( P E DT/Hl t I Pt O0Ut PPil t NH1; uUi[ S S4 M l l
I [ IC t IUHOt fSrIt i ltAPf'U mitl t f t MOXAS 5 1l i OOt PU tP OOOHOSOOGiRR4EDXAAAA0OF t f l t t t NNOAOoA C/Pa f E Gf T i l' i
!I OHt dOI I I I9l HPl I n t
MAHCiE1iiI AACTAit1tIMPADiTtCMORmOt ( P t Ot O X7OOi tl USCCCCOoI E i t n
. S NUPPf ( I I I 3 MHiPSPU 4 1
M 1 6 E [ A F F A A f D A D E DC A I D l t tf A D T f I D AHD l E N A ( d A f) ( I li E A O D l n M t I f DM C A D DFt i f It Y EOO t DT E A D I N t OA4 NDU H C A D ava t r t !ES R E I I I I I l 0e i UH0 T P H RCA C C 4n i t Gli 1 N u P POI R P 1 u A NrA T Y VSC T n W l f ! i AAC C C C C(I P P PU G
. l! .llll'!fjllflljjlll\l llll l , 1
a I b9 m . M i r m a a e c 1 7 i " 4 E w O w 0704000404 4 ". . . . . n. O. O. . N. . ~ . e
- 7. &. O. g.
l
" E N N7ckentg+= 24Na c 3 C tu f t. c r 3
n
**##N m @ .5 0 @ om se C L e e m :n m M M f 4 ti d k w
- m" 4 E '
h W g
< Cu m ; &. M. O. N.
s
# 70 O. . O. O. O. O. *. C. O. m O. e . c. e O. O.. O. O.
i i 1 A 4 "L w O COCONOOd@" ~ 4 e C20 C O
- . .:"m: b ...
i b ' 2 l i - = m . . .m e e. N > - a m a a
.-,m- .h .- . ~ m - = - ca ...
a U arm eme% r e -- -
*
- C N J C* O 4 ( m N c -
- V M O
4 w
- w I L W @
1 E q . . . . ". f. N. @. N. . J. @. N. C. .
. e. . . . P. . ". O. N. ?. ?. 7. %. . ?. . - E m e s p r. t kes~ m e tekweme m - fd (,gamm whwM Q O rg N .? N M w w @ ek O e 4c <
w W @ c N N m
- w m rv m M
w w > O $5 r- w I = 10 O. . . . O. O. *. O. N. *.*. 0. . .... . O. .O.rv.0. c. 4 0.m O cc: Ose . m. O.O u
-e O Cocco O*=a e > w m N
- O 1 =
+ r 4 . . .c reen .O-+c .s . .- $ U wm 4 mc : e . .~au-*n a. mrem n .~. . e a m e e% e w
I N O & G
'Q 1
w t 7 M
< M << =
MD ~O M
- Mr M we UDM U E E
w 30 - MMC 4w g gwp - MM - ^ E EM
- OD w-a2 M- 00 O wM V <<gMg
-> M CZQO 2M-04M Oa -u MM- w m3 % << -a,MDM De -c.ue<awd-d Qu<--w->Mm <O MJ -O<<e-M-z ~2-MC--
w EM TbDMD < O(pu s A MMQwM
- O
- gMy wC MD"<warrgc3Mwg ww40 2<Ow **CZg-Cs>c L-wu <<
.04% a>hwZ <cwcw <<w?--OMcEw i
O OD MEMO CPCEwUOMO we MCOC w OEubE< WC < V D-34-D-=QbES(QOMLK wh
<>~FK
- W<COZKare 07 w wdMMVV<p4 COL 02Mw--Nr
* <C 24 w w<<MOMMMwMCOO < M wQ O$MMMMM-M<*EO-aux Q - = worn ~ --L- S *MO--?gs-cagx -casa: w-M *>A ME -we>>" J'OY<MM-COO-bg * -ww-EEO<Om d WD w
DKOREb e --qu tra%QMOOQW%GXwwY<<<<OOwUNmT 4 -a L ZE 4ELwwwww-bcgz ---er=O----==: wEk<yQxOOOt*JMQUUUOS=--wE 2--e l. OM e
<<vw<- a - .wwcraba. ----ClwLML a W < w < ' < W O < C OW < - C -
I a w-< a = w - -
* <tc - w r < > 7 2 Cw- = w < Q C = c C -Q{ W < C ww- = w Nw J Www % C -
04% = < ><
~ > < -
7 MCD J C
, = w W wC "e m w - -. - - &' -C l .
- m L E U U L%
- U"C= 10 Z D 6 '$ *( G -c I . Z < zt< . w > >Mu w .G -
} 4 * <=4-d.e.4m._4,mm4_AA k.
2 63 1
e O N .- - e, - N e m s o s e : O O m 4
J e U
E tmAc-b 0 0 0 0 a*
"O Cs
- I. e r - r. m e - -b: eNm-er.erse- r. N 2h
? < > m r. - C C c a Q c'. 4 m i O P I **
i e.
; c M ~ * ~ 3"* ' K <=-Q 00000000 B. O. O, N O. E. m O. O. O.. O. O. O. O. O. O. O. f, O. . . O. O. C. O. O. O. -O D 3.
. w n w O O O O O O O O m O O eP O O ~ O O O O O 0 0 O C O O O O *= ~ O P.e O O O I < k j m e o J E W 1
* ** # # C J* C O f M e N
- C O e #
- O 8C # C f. O # N C
- O m E
- C
- 4
< N C f. Et
- O CA C f, e tv = C m M f. 3 m i K M ~ tu t, G ?M3*.O&% 40t 2 **C~ %
d - N
- c f. Tw mb
. ~ m o c ~e h' I c e - o - 3' W 1 2 i .s - ,
; - ~
i O < c c. . sc. n .:r. m..N e. m O. .n.e c. . a
. . . . . w e. . N o- m. . . O. . . . s.
1 O t %# 6230mrtE%22 m ** 67
- N4 m i O -
*# 4co-ew*c$ N *=e. N m "e - c e
N e Ome%
- N r,
= Od e
cm j { < w *
- 4 l
l . O.a w E aE l j - E- 00 e 4 og . 0. =. 0. * . N. O. **. C'. fu. C. C. . .. . O. O. . f. ~. =. J . N. O. . O. l -E
* " ' "OCCNOO#OCO O OO OO7" CO O . " .LE - c. m b l 3 e . ^
W
)
1 2 - N- . .a- recae,coOO .- . . ..m . .wO-m 0- .- ; i - 0 - -0 -nc a .. - O o - w - c ~ Oc O- e l
- h J -
I
- 5 O
W
.V = a= M *@
q < . .O. O.O.7.M O.O.O.C.C.N. N. .
. . . M O. O. . O. C. N. .m 4 .
OmoC . Em 4 - F X X m O f ** N O m .". ? Ccc
.E. m 0 - == No*& % =N4m %
w O O O e -7 % b .O.e V 4 % V. 4% *'* l
- w N e e I
E.. lI 4 l Y w cw 0
.2 (w$ &U O. . O. O. O. O. . O. c. O. O. cv 0 OCOO0000OCOCN m . 0. +.
ts
. ..00 O00 , . O. .m. O. % s. . c. c.
O O O *= = NO e b I I E , .s ; e .- - - - ,. N e. ~ e a e . .m-- , . . .- . con ~ m
.e-l Q U e-
- Q O e : O I - O r. O "M N m:'
? E < ~ c O e j w U j A t a l O @ j U M < , = AD D' e . 4 U ME - O OO - @@O4 w= *" CM E ") D e BD - 03 4
; Z0
- 30~ bw w2 6 OD O wd
}
<<xmg ~>wa 0 x on -EEUM<Ew@r3 cesO<x =a -y mom - O < < W = L*** 2 w uO y <, <<"C 4* er-- ->d= Ow F2--
E/(W$=,3m=0 4 .- O AO O<OV< E >= i 1 - - o M*go'5' e- a("5 JOar;cO.=DA+-a.
< w. <v <O- --r.eu U <<
l! 6MU O c c. cr. > b - 1 < ::: - E - < et
- O *3 CO%C. VUZC w M=Og - UE2? O. % <- - O - MO 2< I .-
4 %%MOOO a'-O--UbOO<U Oz 1/Oc: .x<>~E(
<O O
x1 u < Q J r = .z z e ., w<<aOme r e e O O O n < s;. ; OO.
- wererO- <
s :-
- e g50<romem-o<;;me..rO<.e- === - - '-e-
. w sO-----u- v.O c e n _ = O O 0 7:r ~O <;eO ,.. rg <
1 - ee EOO-f.O j = r U -wO O c-. c cw-E"*-*-5,.Cyy# O.- c p$ C . c s cag eOe-zcv Ox<<<<OO-usez
< w EE<sL;v-w e :a O - - - O O = O - - - - x = O = - - O O
U 4 f
<<U.<---- -w 2py <wdwAMM Q^X0OOp-00CUUUO L- ----Of'~6eAO . .= - I*
S'. .s. b'
! . < L < @ < 6 O < O O- < - O - . w-4 O - - ~ . <XO - e Y < % E g r. O- O - # g w-O O O , 4 -OO U et O - N- - OO C O - O af % 0 <
d
> w O a- < - Z L O OO
+, "- ~m = . 2
- O O. - - O-i - OyO m t. f:: =g< U U Z%
E C* 2 3 4 bs* % % *C
< ZC > >AU - -0 44 3 - <<% L U U U Qw- L -b bO 4
!I 4 i
64 - P. o. m. c. J. N. C. M C. C. O. @.
. . m .C.. N N .C. . ,m N N .C. N C. C. C. e. m. C. .N C. N C. #. e. C. @. m N. N M. N.C. . . . . . ". C. @.m. 4 C.
CN*Cocc63mNcCN#mmNeceeN*NNNCNeccmmm3NomANN3 3CNCA
.. CN3 NmC=CCNONC@cm@NCNmeNnmkmmemNNNmemm2hm@+ CC:20 CW > NCCOccNm3CONCMComcamC@@@AcmN##CNmCCecAmmMQm w we mCCCN ew wE 3 AaNeeNeNN40CacmNaNe -
04 W e E
-M AZ EC == r
- M @N@mcNmmceer-mN0C*mNa*NmmmmecomC3CCNNNCCC3mCCoomNe M4 - MCc34CANQmm3 Nom 4NmNeeJae**New eemmN *NNe NN ccNBA wo w NN e w e
-> N e Ow wr AC MC 4 m 5.
xe w ZCM
, : C. r. e .e. w. N. A. N. O. C. a. m. N 3 warCmCNC3m3&NC63kNk&Cm*ktomNCmmeCDmC<memmmm > N2C NNMNmNCCNN3NNdCCmNmmC&Ne . m . N. e c. *. m m NCC DC e M.c. N. C. C. O. N. =. N. C. c. 3. C. m. C. @. 6. @..N #. .
B4CCC"@
. .= #. C. A. C.
23C3C N WCC C & e eN c4NmmeNNmmcgree N we qm wN@e 2m e C-m - - N- - E-Ew: CAO w U x1 > MOU e p oNom:3-NcNN#NmNcCSENwhNe*#CONeecmcomC4mN@cCoaNCec 404 C e " - e e
<CE >e Cnd *N-3 C(E E A C g A
C.C.C.C.C.C.C.C.C.C.C.C.C.O.m.C.C.C.C.C.C.C.C.C.o. m.C.m C.C.N C.C.C.C.o.m.C.C.C.C.C.C.C.C.C.C.C.C.C. CCCCCCCCCCCCCCCCCCCCCCCCCNONCNNCCC#CeCCCCCCCCCCCCC
<Ew e AN @ a ww e M>4 wo - (
OME wWW e > A4 * < CCCCCCCCCCCCCCr CCCCCOCCGC-Cec-eCCCaC-CCCCCCCCCCC-C M* .I E CMC Zwz-M QW
->M) wed w>t 3 c. e. n. C. +. c. N. C. C. &. C. . @. C. m. C. N. c. C. o. c. c. C. a. s. e C..N. + n. o. c. c. e..N C. +. c. e m. m C. C. C. C. a. C. a. c. e.
CM4 M 3eceJCNmm3mNeX*NNNONCSC#wmC**@mcac4C@NBCNmmCCCCmCe wwW3 A OCmCNCAC"JJCAN#cNC
- 33000 CC&CNCe DNmNo CA @ " X m
&Mu W "NemNe en meeNerNN Nw e N N e eNNw N UA C 4 ww(r WCO4 w 1 MMwE W wAw < mmeemm&CNmNN##No#XC-CANwNNCeawmeem@e#AA#"C#ComC"CA EC C X e OwlE W w< C >wK M
W .A i
<M e M CCMN . . C.N.N. m o.c.c.c. m.c.c.m m. c. . . e. c.m.C. C.c. N. C.C. C.C.*.C.C.C. C.C.3. C. C.C.C.C.C.C.C.C C. C. C. C.C.C.C.C.
Cmo 3 C&CccCCNNewcN33cCCCCCNCCCCCCCCCoacCCCCCCCCCCCCCCCC ww w C em N
>-"4m A eCa -e44 c m C m .N. C<'C OC A.- e Ne C # c c c Ne e-CTC ZNOM g - mm w 6"%
C .c 6
+ - emm O m N ---me m e c C C - ec N N. m sNecemowNCCCCCCCCCCeCCCCCCCCCCCCCCCCC wO # 3 e =>-C A e *<ZM MC E Mw JW-%
wWX> AC C. O. N. c. N. @. N. C. N. 4. *.. m C. m N. m. m. N. N a @ o A. C. C. m m. m C. m. .a.. m m N. e. c. m N. C. N. m. c. 3. C. C. C. C. e. m. e-CCmmNCC*emMemeCCM@ MAX. BEE
!<C%
- gm MNMmACMNN CND@*N@mdNmNAOmmN#e BCNNM#e@mC0acm-com-COCOComeoCmmCmNow3NaCe4N CNNm3 OMAw A CCCANe@@CNONNCCCNNAANNemmaemmeaCNNA ecAeMem
- I Ne *NmcmN e N e Q Q A. m Lakew 3C C Z
CZA t ZC
- CmCNCaNNmeCNeeCA*@CN3CNNemmme#NN64N@mCSA07CCC@mCCC
<- .e Z maew-NNNmcceccNWe -e eme en N A3Nea >TC A - %<C wmZ s CM44 I ~Z CMC 4 rwwo N c. 3 e m . . .@ . c. c. e e. N. . N
- e C. . @. C. C. m. C. N 3. N. M C. C. o. m #. m c C. N. N C. C. . C. C. C. C. C. C. C. C. C. C. C. C. C.
4 . . . . . . b* 7"""OONmhNO2@@CCCCCCe@NCNCCMO3MCMOCCONCCCCCCCCCCCC w wa 6 @NONecCNNNCmmmmo e NNo = ace-m - IAUw C GNecmcOACNCNe eN e - w Z me e
.ZE NZCw =4VE e GC
- CNomceemeNA4NNmmCoeCmeemeCCCC-wemNoCaeCCCCCCCCCCCC 21% O cceNmaewe e Ne e C*OC C -
ZCE WC
-2e t C
4WO4 m m C O @ N N o-C o m e- c o m0 C N N r @ ~ m C C # .* m C C O N N m m e @ N N E SC C E C O N S
*4CE w * =
- N N N C C - e e N N C C C e " N N N C C * - - N N = C C e * *= N N N m C C e - - NNCDe-*
- 4:3:2:6bDDPreCDDCDCD4%NNNNHNCCCCCCCCCCom>>m>>CCCCC
< CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~e=~e O CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5
M M M mM M M m M M M M M m a m M M fMPfNGED TABLE 6.1.2. THE NOMDift AND WEICHT (GMS. ) Or INDIVIDUALS FOR SEL ECTED FISH SPECIES 4 AND TOTALS FOR OTHER SPECRES AT NORTH ANNA POWER STATION BY SAMPEE DATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 2f-itOUR PERIOD. ABBREVIATIONS ARE: OC - DOROSOMA CEPLOfANUM, PN - POMOXIS NIGR0 MACULATUS, PT - PIRCA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - MORONE AMERICANA, OT - 01HER. THE SUfflXES ARE T - NUMBER AND W - WElGHT. MAT MAW OTT OTW TffSH TW7 DCW PNT PNW PfT PIW LMAT LMAW DATE OCT 0 0.0 1 f42.0 0 0.0 0 0.0 41 895.6 78102fs 2 16.7 38 836.9 70.5 0 0.0 0 0.0 38 9R8.5 7810?6 3 69. fi 34 848.6 0 0.0 1 0 0.0 0 0.0 Sa 1093.6 46.8 1011.3 0 0.0 1 35.5 781031 2 84 7 0.0 0 0.0 0 0.0 0 0.0 50 if4 66.0 781102 1 78.9 49 1387.1 0 0 0.0 1 12.0 103 2319.9 13.5 101 2298.44 0 0.0 0 0.0 1883.7 781108 1 0 0.0 0 0.0 0 0.0 61 72.3 58 1811.4 0 0.0 109 3$80 2 781110 3 0.0 0 0.0 0 0.0 3 14.5 781114 1 15.7 105 3550.0 0 0 0.0 1 5.8 77 2771.8 75 ?755.1 0 0.0 0 0.0 190.8 781120 1 10.9 0 0.0 0 0.0 1 73.2 4 781122 0 0.0 3 117.6 0 0.0 0 0.0 2 10.8 130 380n.6 126 3721.2 0 0.0 1 2.3 2383.0 7811?8 1 66.3 0.0 0 0.0 0 0.0 5 44.0 67 5 43.9 $7 2295.1 0 81 4022.4 781130 0.0 0 0.0 0 0.0 1 8.3 781205 6 83.4 7s4 3930.7 0 0 0.0 4 22.8 36 1307.0 21 1181.2 0 0.0 0 0.0 J 781207 11 103.0 0 0.0 0 0.0 6 887.5 42 2396.7 i 9 91.0 26 1304.9 1 113.3 2 75 ?205. fi 781212 0.0 0 0.0 0 0.0 13.0 781219 45 176.3 4 28 1716.1 0 0 0.0 3 28.5 63 1966.0 1514.1 0 0.0 1 39.9 181??1 1:1 383.5 18 0.0 0 0.0 0 0.0 2 20.8 153 5229.9 7812?7 95 1005.8 56 f4 203. 3 0 0 0.0 3 313.5 73 2336.8 0 0.0 0 0.0 7812?9 54 798.3 16 1?25.0 37.7 0 0.0 3 15. f4 139 39114.2 85 934.9 49 2749.7 1 176.5 1 198 3195.5 l 790103 39.9 0 0.0 0 0.0 3 81.9 790105 177 1718.1 16 1355.6 2 0 0.0 5 35.9 197 3340.6 l 1156.3 3 259.9 0 0.0 790109 172 1888.0 17 94.1 0 0.0 0 0.0 0 0.0 381 5463.3 790116 362 4019.9 18 1349.3 1 0 0.0 0 0.0 592 10596.9 52 0 0.0 1 54.0 790118 539 6637.1 3905.8 365.0 2 66.4 0 0.0 7 42.0 5f4 02 8239.8 790124 5345 84009.0 44 3757.4 4 158.2 6 3 f46 12418.5 10066.7 22 1818.0 14 201.1 2 182.5 0 0.0 3 790126 6315 0.8 0 0.0 2 9's . 6 1609 9798.9 1572 7752.5 32 1931.6 2 19.4 1 4081 56552.3 790130 77.7 2 115.9 1 12.0 5 34.0 790201 4028 52867.7 44 34f 5.0 1 2 8f4 . 3 6224 770fs3.6 l 45 3463.3 1 100.6 1 105.4 0 0.0 1902.6 790206 6175 73290.0 0 0.0 0 0.0 0 0.0 186 186 1902.6 0 0.0 0 0.0 31.9 439 66f4.0 4 7902114 0.0 0 0.0 0 0.0 5 790216 418 5703.4 16 908.7 0 2.7 0 0.0 3 19.1 6f4 56 87386.7 6369 85317.3 18 1999.7 5 47.9 1 5790 79423.2 790221 67.3 2.2 3 29.5 3 39.8 790223 5719 77795.3 59 1489.1 5 1 158.0 20 1202.1 7948 35268.2 11597.9 198 10758.3 322 11512.3 3 39.6 5 13586 222855.f4 790227 7900 4 214.9 6 137.6 3 14 3403.6 12384 174682.1 4 75 209?O.0 683 23497.2 16954 304129.0 790301 1366 53326.1 1904 48549.4 34 2089.2 100 4157.2 34 3758.0 790306 13516 1922t:9.1 623.0 6 373.3 19 1511.2 11522 193481.2 9?87 132363.7 3f43 25021.7 1847 33588.3 15 23 2729.1 13709 2f6165.5 790313 2160 44061.2 to 510.4 6 24 fs . 2 4 190315 10?00 121253.1 1310 77367.5 2 10.6 2 117.3 1?373 187567.6 119755.6 1406 26 r 8 7. 9 2460 40487.2 23 1009.0 163859.6 790320 9480 51909.6 23 1057.1 1 5.0 6 509.5 11418 7903?3 6f90 91212.4 282 19166.0 4616 38 3447.3 6434 122907.5 4 30645.4 4f 3 25279.2 3900 62944.3 14 507.8 5 83.0 790327 f034 3477 13729.9 9 35?.9 5 If40.6 17 1214.3 6398 111888.9 4 790329 18i5 20946.4 1065 45104.8 4 2 28.4 18 1731.1 1640 2667f4.1 777 10203.7 375 10004.4 f61 4 4394.6 7 311.9 2 300 f460 fa . 9 790103 4 Ita31.6 6 129.3 3 148.5 2 52.0 16.5 190410 251 2827.0 36 0 0.0 0 0.0 434 9711.7 125 5870.6 20 603.9 0 0.0 790412 289 3637.2 4 280.9 1 62.5 2 50.1 3 108.5 278 S fs 26. 0 790417 180 ?371.5 77 2552.5 15 18.0 1 121.1 2f4 7 f4 889. 6 14f4 1943.0 80 2335.0 17 369.3 4 103.2 1 127 2932.7 790419 1885.6 10 300.1 2 4.7 0 0.0 1 6.4 790424 55 735.9 59 133.0 1 4.1 1 18.6 3 27.9 161 3300.ft 790426 89 1076.6 64 2040.2 3 2 92.2 6 575.9 107 3205.5 20 452.8 52 ?603.9 17 351.1 10 129.6 6 1931.9 !s8 3199.4 190501 1926.1 2 25.8 4 9.0 0 0.0 790508 's 206.6 32 cn Us
- - - ~
IMPINGED INDIVIDUALS FOR SELECTED FISH SPECIES AND TOTALS FOR OTHER SPECIES TA8tf 6.1.2. THE NUM8F R AND WElCHT (CMS. ) Of AT NORTH ANNA POWER STATION BY SAMPLE DATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 214-HOUR PERl00. ABBREVIATIONS AHE: DC - 008050MA CEPEDIANUM, PN - POMOXIS NICROMACULATUS, PF - PERCA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - MORONE AMERICANA, OT - OTHER. THE SufflXES ARE T - NUMBE5 ANO W - WEIGHT. MAW OTT OTW TflSH TW7 PNW PrT PFW LMAT LMAW MAT DATE DCT DCW PNT 0 0.0 3 333.5 88 2413.1 44.8 64 1658.8 8 170.5 9 205.5 101 4988.5 790510 4 12 228.8 0 0.0 13 1168.0 790515 6 232.4 73 3247.9 3 111.4 85.6 10 814.2 3767 90125.9 4 84740.9 69 3441.2 61 587.9 14 755.1 1 85 3650.0 790517 3612 0 8 521.4 2 159.7 3 156.5 790522 44 977.2 28 1835.2 0.0 10.7 2 156.8 48 ?6f40.7 11 257.4 25 1763.3 0 0.0 9 392.5 1 372.1 82 5103.8 790524 32 2400.3 0 0.0 4 790529 9 304.6 36 2016.5 1 10.3 0 0.0 3 433.9 108 3421.1 50 2016.9 30 266.0 8 189.4 790605 17 51 ts . 9 12 273.0 0 0.0 1 125.0 52 1955.0 23.4 36 1510.0 2 23.6 16 1997.7 94 t:009.1 790607 1 0 0.0 31 383.0 0 0.0 790612 1 20.6 86 4 1607.8 206.3 0 0.0 6 710.4 37 1397.7 0.0 12 481.0 0 0.0 19 26 1860.4 790614 0 $ 94.0 0 0.0 8 1020.7 13 745.7 0 0.0 14 147.8 790619 0 0.0 0 0.0 8 12.0 0 0.0 4 57 4 790621 0 0.0 2 78.4 0 0.0 is 273.1 20 9t7.7 4 69.9 10 595.2 O O.0 5 9.5 2 249.3 19 1075.2 790626 1 1.2 6 200.5 0 0.0 790703 0 0.0 10 624.2 1 0 0.0 1 111.6 18s 8?6.6 8 628.0 0 0.0 5 87.0 12 899.2 790706 0 0.0 7 502.9 1 1.0 2 220.5 0 0.0 2 1 784. 8 0 0.0 0 0.0 3 167.0 790710 167.0 0 0.0 0 0.0 0 0.0 1100.7 790712 0 0.0 3 615.6 1 614. 3 2 85.1 15 0.0 6 235.7 0 0.0 6 1 I ts 828.6 790717 0 2.0 0 0.0 3 319.5 2 55.0 7 441.4 1 10.7 1 0 0.0 11 280.2 790718 18.2 0 0.0 790724 2 3.9 3 234.5 3 23.6 3 112.3 2 4.3 1 90.4 14 540.2 0.0 6 333.2 0 0.0 5 83.1 790731 0 4.1 0 0.0 0 0.0 84 0 0.0 '1 64.1 2 14.9 1 186.7 17 614.3 190802 261.7 0 0.0 7 1'36.1 4 9.8 ;~ 190807 0 0.0 4 7 23.4 2 168.9 13 448.2 231.6 0 0.0 1 4.3 515.3 790809 0 0.0 3 1.7 0 0.0 2 $ 7. 0 10 5 405.6 0 0.0 2 892.2 190814 1 51.0 0 0.0 4 47.8 0 0.0 3 165.1 15 790816 3 356.2 5 323.1 208.0 0 C.0 0 0.0 13 514.2 296.1 0 0.0 7 14 1049.5 790821 1 10.1 5 4 232.1 O O.0 1 147.3 2 23.6 7 646.5 0 0.0 237.8 14 913.4 790828 0.0 3 28.8 1 109.0 3 790830 0 0.0 7 537.8 0 2.2 2 145.1 1 95.8 8 518.5 3 215.84 0 0.0 2 17 777.5 790905 0 0.0 7 151.7 0 0.0 1 3.7 0 0.0 9 622.1 0 0.0 0.0 19 1263.7 190907 8 553.0 0 0.0 4 99.0 6 548.9 0 863.2 790911 1 62.8 5 563.2 0 0.0 to 2 173.5 1 120.0 2 6.5 29 198:4.5 790913 0 0.0 288.2 8 841.0 0 0.0 0.0 15 647.4 1 207.9 5 188.0 790918 0 0.0 0 0.0 1 13f.0 4 0 0.0 3 l 790919 0 0.0 2 54.0 0 12 872.2 13 1062.8 1 2.8 47 3029.6 1027.3 0 0.0 116 4753.4 l 790925 1 64.5 20 2 720.0 20 801.5 15 1511.4 2 56.3 2 100.0 75 2064.2 4 142.4 131 4501.2 1 790927 1835.1 0 0.0 17 691.2 20 1747.1 791002 1 8 5. ts 89 16 421.8 13 1001.2 7 1145. 9 193 5957.0 39.9 156 14348.2 0 0.0 55.'s 50 2127.3 191004 1 0 0.0 5 95.3 10 819.8 1 791009 0 0.0 314 1156.8 387.5 9 79ts . 3 2 53.0 69 290 ts .2 42 1610.7 0 0.0 15 3832.4 791011 1 58.7 82.0 16 654.5 6 382.8 3 76.1 138 791016 3 58.2 109 2578.8 1 2 66.3 5 370.0 3 128.3 54 1890.0 0 0.0 44 1325.4 0 0.0 0 0.0 32 879.8 791023 0 0.0 11 204.8 5 277.7 791025 0 0.0 16 397.3 1 140.6 0 0.0 180 45r41,9 0 0.0 12 371.1 1538.1 791030 3 121.7 16f4 3908.5 0.0 5 127.6 3 255.7 2 116.6 45 4 130.5 31 907.7 0 4 37.4 74 2086.2 791101 0 0.0 8 438.8 2 134.2 791106 3 87.3 57 1388.5 103.5 235.1 5 74.7 38 1028.6 19 545.6 1 25.1 4 f4 1342.3 791108 5 44.6 405.6 129.7 5 101.9 31s 12 8484.3 24.8 10 1 791113 5 196.0 1 57.4 3 285.8 8 69.3 132 4822.0 791119 2 8.1 115 4177.1 1 224.3 3 m 7 l as as a sus aus as a sus aus em aus am se sus as e as a sus
M M M M M m- M M M M M M M M M M M M TABLE 6.1.2. THE NUMufR AND WEICHT (CMS.) OF INDIVIDUALS FOR SELECTED FISH SPEclES 4 AND TOTALS FOR OTHER SPECIES IMPfNCEO AT NORTH ANNA POWLR STATION BY SAMPLC OATE. 1978- 1983. VALUES REPRESENT TOTALS OVfR A 2f-HOUR PER100. ABBREVI DC - DOROSOMA CFPEDIANUM, PN - POMOXIS NICROMACULATUS, PT - PERCA FLAVESCNS, LMA -tEPOMIS MACROCHIRUS, MA - MORONE AMLHICANA, OT - OIHER. THE SUfffXES ARF T - NUMBER AND W - WEIGHT. MAT MAW OTT OTW TFISH TWT PNI PNW Pfl PFW LMAT t_ MAW DA1E DCT OCW 13 523.7 0 0.0 14 146.4 227 6583.5 7911?) 35.7 199 5877.7 0 0.0 13 154.3 67 2552.0 1 0 0.0 3 127.1 2 116.1 791127 2 55.1 47 ?O99.4 3 371.7 12 131.0 92 3790.0 69 3120.9 0 0.0 4 138.8 f4656.4 791129 4 27.6 3 9f4 .8 0 0.0 13 113.5 123 845.3 106 4402.8 0 0.0 186 6602.9 791204 1 0 0.0 4 8 8 . 84 1 77.3 13 129.1 791206 14 205.7 16f4 6102.4 124.5 66.8 23 222.3 73 2989.1 37 2357.9 0 0.0 6 1 500.5 791211 6 217.6 0 0.0 0 0.0 1 7.4 5 0 0.0 4 1493.1 0 0.0 332.4 85 4034.0 l 791218 0 0.0 1 30.8 1 39.8 22 7912?O 8 227.8 53 3403.2 0 0.0 8 79.4 159 8248.8 0 0.0 3 28.7 791227 1 84 328.3 134 7812.4 35.5 0 0.0 1 51.6 4 37.0 105 6389.6 l l 791229 15 405.6 8t4 $859.9 1 2 f4 3 . 0 0.0 5 36.7 71 4223.0 9 1408.7 55 373f.54 0 0.0 10 83.2 64 3615.0 800103 0 0.0 8 326.3 2 148.6 800105 5 It46.5 39 2910.f4 0 0.0 3 407.5 57 2808.4 1577.1 0 0.0 2 67.0 800108 27 756.8 25 0 0.0 7 70.1 91 4268.5 27 2059.3 0 0.0 8 373.9 800115 49 1765.2 0.0 9 351.1 0 0.0 8 674.0 109 3746.8 800117 78 18465.2 18 1?56.5 0 0 0.0 is 28.8 338 10502.3 80 0 0.0 6 265.2 8001?2 246 3280.7 6927.6 36.6 3 9.0 1 201.7 7 11/.9 229 6t17,8 4 8001?ta 170 2751.9 47 3305.7 1 231.1 0 0.0 84 29.3 169 6576.4 3325.2 2 65.7 8 695f4.9 800129 109 2925.1 84 6 0.0 6 129.1 1 165.3 3 1287.0 163 130 3703.84 23 1670.1 0 45.2 135 4297.7 800131 50.0 17 310.f4 0 0.0 6 800?05 93 250ti.0 18 1388.1 1 122.8 0 0.0 1 11.0 92 1859.0 7 430.4 3 68.0 4 2661.9 800212 17 1226.8 171.4 0 0.0 2 12.84 1 1 *> 93 1799.6 to 599.4 3 79.1 7 139 3712.9 80021t4 397.1 20 709.6 5 190.6 1 129.6 3 93.9 800220 99 2192.1 11 0 0.0 4 28.5 138 3855.8 1943.8 14 477,9 32 1061.7 9 3 f4 8. 9 577 171f9.6 800222 79 239 6528.3 10 667.7 0 0.0 15 1841. 3 4 800226 ?60 6t33.8 4 53 3378.5 0 0.0 12 88.6 639 18636.2 65 319 8329.5 8 377.1 800728 235 5299.2 4541.8 14670.7 3 70.9 1 69.2 8 76.2 955 24565.8 800305 213 6278.9 60 3399.9 670 1319.6 2 1 114. 5 7 57.9 1725 is5346.0 182 5138.5 81 4583.0 1841i4 34132.5 34 1728 80663.0 800311 116 1472.7 1231 268410.2 18 753.4 2 169.5 10 1 1 ts . 2 4 800313 351 8743.0 4 P 106.2 10 177.3 2287 70172.1 563 11978.8 1491 34305.8 1214 23223.1 7 380.9 2402 57881.6 800318 1667 30686.84 10 363.9 2 113.1 16 250.6 800320 410 9872.2 297 16595.4 1181.7 60.0 7 196.1 1732 58420.1 388 10433.7 631 36502.3 673 10046.3 32 1 187.7 960 29177.0 800375 193 7084.1 9 353.0 3 223.1 8 4 800327 219 10991.3 228 10637.8 4 436.3 3 If47.2 5 2'43.3 1?01 38162.7 16870.7 324 15800.1 4 78 5065.1 22 881 28585.9 800401 369 4 611.3 8 348.1 0 0.0 8 168.1 800408 511 15499.5 313 11958.9 14 1 fa 09. 8 10 196.6 0 0.0 84 193.9 676 25429.6 724 16387.8 217 8281.5 4 21 3 14.9 516 20402.3 800410 4 tr 123.5 10 1 t: 1. 9 0 0.0 800415 378 15150.6 121 4971.4 19 284.6 0 0.0 1 9.3 337 12848.1 6821.7 143 5518.3 18- 214.2 168 61f2.9 800417 160 8 134.8 21 255.4 0 0.0 2 165.1 4 800422 84 3468.7 53 2118.9 13.2 2 170.7 15? 8982.0 4 2242.2 2 32.' 31 246.2 1 80042 t4 5t4 2277.0 62 303.6 ? 103.2 0 0.0 TP 2095.1 33 13I3.3 2 284.0 33 86 4969.8 800429 2 91.0 9 130.1 0 0.0 3 106.2 293.4 69 4412.9 1 27.2 171 8265.5 800506 4 St4 2. 4 1 9.9 2 200.5 135.2 128 7377.5 0 0.0 37 212 12985.9 800508 3 23 316.6 5 249.9 1 31.9 146.1 178 1?I69.5 2 71.9 259 15978.3 800513 1 21.0 47 596.4 84 278.84 5 490.1 800515 2 108.7 200 if4483.7 1 1350.7 2 102.7 4 ??9.3 197 11996.? 4 8 1 . 84 155 10212.1 0 0.0 32 196 11256.4 8005P0 22.0 5t4 2010.8 6 349.2 5 592.4 8005?? 3 138.1 127 8143.9 1 53.9 1 10.9 112 S ta ta2. 9 73 4323.0 0 0.0 16 1030.9 1 84141.7 8or5P7 1 24.2 8841.84 62.2 2 3143,4 42 85.1 7 382.1 1 27.5 30 4 1 96 2317.2 800603 1 0 0.0 63 650.0 5 227.6 3 161.7 800606 0 0.0 25 1277.9 3 i
l TAat.E 6.1.2. THE NUMBER AND WElCHT (CMS.) Of INDIVIOUALS FOR SELECTED FISH SPECits AND TOTALS FOR OTHER SPEC 1ES IMPINGED AT NORTH ANNA POWE R ST Ai t oll BY SAMPLE OATE, 1978- 1983. VALUES HEFRESENT 10TALS 0VER A 24-HOUR PERl00. ABBREVIATIONS ARE: DC - D0h0 SOMA CEPEDIANUM, PN - POMOXIS NICROMACULATUS, PF - PEftCA f LAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - MORONE AMERICANA, 01 - OT!!ER. THE SUFFIXES ARE 1 - NUMBER AND W - WElCHT. DATE DCT DCW PNT PNW PFT PfW LHAT 134AW MAT MAW OTT 01W TriSH TWT 800610 1 143.8 19 1187.2 0 0.0 69 877.7 2 108.4 2 120.5 93 2437.6 800612 0 0.0 17 1203.7 0 0.0 27 159.3 2 183.0 r4 351.0 50 1897,0 800617 2 155.6 10 851.6 0 0.0 21 3 914. 7 1 33.0 3 291.7 37 1726.6 800619 1 78.9 11 818.7 1 121.2 12 320.0 2 62.7 1 11.0 28 1 r412. 5 80062f4 0 0.0 10 723.9 0 0.0 14 276.1 0 0.0 6 5.2 30 1005.2 800701 0 0.0 8 583.4 1 1.3 11 240.7 0 0.0 2 59.2 22 884.6 800703 2 126.8 84 3f9.7 4 0 0.0 is 102.9 0 0.0 1 125,0 11 704,#4 800708 3 168.8 12 868.3 0 0.0 16 216.3 3 70.2 3 196.9 37 1520.5 800710 2 38.6 21 188ts . 3 0 0.0 28 333.2 0 0.0 6 17.2 57 2273.3 800715 4 8.2 8 713.8 0 0.0 22 337.5 5 131.6 3 19.9 42 1211.0 800717 5 79.1 7 488.8 0 0.0 18 145.1 2 6.0 1 1871.8 33 2590.8 800722 5 19. f4 13 522.9 1 2.0 88 4 282.5 22 57.7 3 41.0 92 925.5 800729 0 0.0 16 1114.0 0 0.0 12 202.3 0 0.0 1 170.4 29 ff86.7 4 800731 1 fa9.9 12 887.8 0 0.0 23 45f.6 4 0 0.0 1 4.5 37 1396.8 800805 1 91.1 5 233.2 0 0.0 16 18.1 4 0 0.0 1 4.9 23 377.3 800807 2 132.6 8 700.0 0 0.0 11 125.6 1 3.1 O O.0 22 961.3 800812 1 83.8 84 333.7 0 0.0 96 331.7 3 28.7 2 7 . 14 106 785.3 8008184 1 5.0 1 403.5 2 6.2 >4 60.3 6 72.7 1 5.6 71 553.3 800819 1 49.5 Sf4 3821.7 0 0.0 30 68.0 1 2.9 1 152.3 87 409f .4 84 800820 0 0.0 14 868.84 0 0.0 16 20.3 1 5.2 0 0.0 31 893.9 800826 0 0.0 28 1634.8 1 3.2 26 58.7 9 29.7 0 0.0 6rs 1726.84 800828 2 59.1 23 1290.8 0 0.0 33 5t0.9 4 0 0.0 0 0.0 58 1890.8 800903 1 9.0 38 1969.7 0 0.0 37 387.84 3 63.4 84 1327.5 83 3757.0 800905 1 77.0 35 1782.1 0 0.0 27 101.5 4 183.4 3 118.9 70 ?262.9 800909 2 72.8 25 1513.1 O O.0 27 102.24 0 0.0 2 6.1 56 169f.44 800911 5 172.3 45 280f4. 9 0 0.0 22 2f44 1. 7 1 30.84 1 340.5 7 84 3592.8 800916 2 If1.? 4 24 122t.34 0 0.0 16 207.3 1 3.4 3 73.1 46 16f49. 3 800923 0 0.0 32 971.6 'O 0.0 13 80.6 0 0.0 2 11.2 f7 4 1063.84 800925 1 22.6 314 1755.7 0 0.0 13 85.8 1 125.7 0 0.0 49 1989.8 800930 to 266.0 111 3776.5 1 35.2 60 638.3 0 0.0 2 8.0 178 tit 24.0 801002 7 309.7 181 4641.8 1 39.7 35 4 314. 9 2 69.2 2 96.9 228 i592.2 801007 3 184 7. 1 166 5403.4 0 0.0 23 298.1 0 0.0 5 22.4 197 $871.0 801014 3 140.3 157 6120.2 0 0.0 24 412.6 5 301.6 3 8.2 192 t,782.9 801016 3 157.0 216 8253.1 0 0.0 21 151.2 3 90.6 84 17.5 2f4 7 f:669.4 801021 4 190.5 109 44148.1 0 0.0 29 129.0 5 310.f4 2 19.0 149 4797.0 801023 2 54.6 96 2671.2 0 0.0 71 789.6 1 49.5 2 4.5 172 3569.4 801028 4 145.2 6 3f4 27918.8 0 0.0 24 280.0 6 188.6 2 120.2 670 P t:652. 8 801030 9 474 0 566 238f46.8 0 0.0 28 432.8 3 59.5 84 36.1 610 248fs9.2 801104 9 50*.6 610 24196.0 0 0.0 37 622.7 3 119.8 5 21.1 664 25f61.2 4 801112 8 389.8 91 37f0.7 4 0 0.0 124 670.5 3 9:4. 3 12 822.7 238 5818.0 801114 11 567.2 93 3952.2 0 0.0 70 327.9 1 8.0 16 105.2 191 8960.5 6 801118 20 801.5 170 8435.8 0 0.0 198 913.8 1 119.84 30 172.3 8:19 10 442.8 801120 1 14 549.7 2214 10142.9 0 0.0 85 650.2 14 182.7 22 267.2 3849 11792.7 8011?ls 13 578.0 78 ?007.0 4 0 0.0 20 257.0 1 39.8 19 158.7 131 5040.5 801126 16 167.9 93 5026.5 0 0.0 28 153.1 2 22.4 32 265.1 171 6235.0 801202 27 1409.4 10re 6102.0 0 0.0 18 81.9 1 123.1 77 758.4 227 8r474.8 801209 38 1969.8 66 2102.6 4 0 0.0 20 376.7 1 58.3 63 586.5 188 7093.9 801211 38 1765.7 54 3206.1 0 0.0 12 164.6 2 82.5 30 282.8 136 5501.7 801216 73 3304.14 155 12329.6 0 0.0 8 135.9 1 61.8 86 889.2 4 323 1&80.9 801218 55 2816.9 91 7812.84 4 1 15.8 16 290.3 1 9.4 101 968.4 265 11513.2 O2 h
M M M M M M M M M M M M M M M TADLE 6.1.2. THE NUMDER AND WEIGHT (CMS.) of INDIVIDJALS FOR SELECTE0 FISH SPECIES AND TOTALS FOR 01HIR SPECIES IMPINCEO AT NORTH ANNA POWIR STATION BY SAMPLE DATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 24-HOUR PERl00. A88REVIATl0NS ARE: DC - DOROSOMA CEN DIANUM, PH - POM0XIS HlCROMACULATUS, PF - PEROA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - HORONE AMERICANA, Oi - OTHER. THE SUfflXES ARE T - NUMBER AND W - WEICHT. DATE DCT DCV PNI PNW PfT PfW LMAT LMAW MAT MAW OTT OTW TFISH TWT 801223 77 3506.7 39 2233.0 0 0.0 12 233.9 2 62.7 39 421.6 169 68:57.9 801227 166 6284.5 37 2358.3 1 29.9 17 315.5 1 95.6 51 512.8 273 9596.6 801230 72 i:010.3 6 414.4 0 0.0 8 195.8 6 169.4 34 365.5 126 5155.4 810106 96 5683.8 13 814.1 0 0.0 6 150.5 0 0.0 16 195.3 131 6813.7 4 310108 713 43263.1 12 796.7 0 0.0 6 285.9 1 9.0 24 1876.9 756 46231.6 8101184 1358 80696.2 25 1463.6 0 0.0 3 158.8 1 6.6 12 150.8 1399 82476.0 810116 92 6067.9 4 202.5 0 0.0 2 52.1 0 0.0 4 37.1 102 6359.6 810120 *M 3247.8 8 427.2 2 203.1 r4 70.5 0 0.0 #4 57.1 73 #4005,7 810122 119 8370.2 11 656.2 0 0.0 6 160.4 0 0.0 8 376.3 14 t* 9563.1 810127 140 9251.2 61 3807.1 0 0.0 8 183.9 0 0.0 38 323.6 247 13565.8 810203 199 13519.6 28 1561.4 2 65.0 6 131.54 0 0.0 37 383.2 272 15683.7 810205 160 4 30813.0 30 1681.3 3 201.3 5 52.7 0 0.0 19 183.2 517 32931.5 810210 515 32895.4 4 65 3501.7 0 0.0 4 47.6 1 32.0 15 176.14 600 36253.1 810212 541 35253.9 36 2282.8 0 0.0 12 240.5 1 39.2 33 401.0 623 38217.4 810218 456 29231.6 88 4558.3 36 1041.1 19 385.1 0 0.0 16 147.2 615 35363.3 810220 124 7920.2 209 12226.0 150 4702.2 11 269.9 0 0.0 44 490.2 538 25608.5 810224 76 Sfs92.6 2 31s 13341.9 448 11839.0 35 868.2 3 256.1 40 84 79.5 836 32277.3 810303 119 7560.9 348 19302.4 214 2 5678.2 17 367.6 0 0.0 36 385.2 762 33298.3 4 810305 122 7515.7 1!4 3 8025.0 271 $842.4 14 259.0 6 6.0 37 350.0 588 21998.1 810310 173 11635.5 128 6908.0 96 2266.8 10 198.1 0 0.0 13 1 r4 3. 9 420 21152.3 810312 483 29976.6 1684 8664.2 184 4 3185.6 8 190.84 0 0.0 15 165.7 814 82182.5 4 510317 586 3920 ft . 9 513 27665.2 62 1514.0 20 358.1 0 0.0 19 288.4 4 1200 68990.6 810319 1662 105209.5 359 19054.0 214' 553.8 2 70.14 2 127.5 24 311.6 4 2073 125356.8 810324 693 85320.2 4 161 7628.6 40 992.7 10 208.6 1 47.7 21 2f0.3 4 926 5f438.1 4 810331 500 28999.2 425 23766.2 82 1348.3 6 189.0 8 1 6.2 3 t* 339.0 1048 54607.9 810402 623 33953.2 338 17893.1 89 1198.0 15 213.0 1 11.7 27 576.1 1093 538'45.1 810407 1642 85724.f4 232 8760.8 49 557.6 23 151.8 7 170.1 184 394.0 1967 95758.7 810409 1198 56745.f4 103 1:4452.9 21 148.9 8 54.4 14 223.6 7 85.5 1351 61710.7 810f144 1893 4 70105.f4 69 2733.8 11 103.7 73 309.7 32 838.2 to 149.3 1688 7t:214 0.1 8101:16 #96 4 26592.7 59 2111.1 4 5 55.2 77 300.7 17 304.2 5 102.0 4 659 29795.9 810r:21 128 6527.1 27 635.1 8 109.4 103 430.9 18 1408.2 2 1026.6 286 9137.3 810428 54 2641.1 11 4 1794.1 3 55.8 45 160.7 16 425.9 4 3957.9 163 9035.5 810t30 4 27 1532.8 32 1717.4 0 0.0 84 353.5 6 189.1 6 279.4 155 4072.2 810505 114 696.9 20 67t4,7 0 0.0 21 78.8 3 128.0 8 8ta3.2 66 2421.6 810507 11 468.0 24 1148.1 1 69.5 82 4 256.4 6 207.1 10 586.3 91 2735.4 810512 2 158.0 24 1797.4 0 0.0 16 4 309.4 84 93.14 ts 2024.9 80 4383.1 8105184 0 0.0 22 1511.4 0 0.0 38 212.5 1 62.0 3 175.5 614 1961.84 810519 5 338.9 49 2953.2 1 41.9 Tis $54.5 5 234.4 84 344.7 138 4467.6 810526 2 93.0 54 3585.2 1 23.6 40 885.I 3 107.7 2 119.8 102 tsS14.4 810529 2 75.6 70 1816.3 4 1 1 0 . 84 25 846.5 4 0 0.0 6 50t4 .5 10i4 $853.3 810602 3 103.2 25 1659.3 0 0.0 51 1130.7 2 90.1 3 298.1 84 3281.84 810604 ? 1 184. 7 14 1046.5 0 0.0 58 584.7 1 10.0 84 189.5 79 194:5.4 810609 0 0.0 7 537.7 0 0.0 156 1122.9 2 141.7 0 0.0 165 1802.3 810611 1 29.4 13 1087.5 0 0.0 160 991.4 1 36.6 2 129.3 177 22 7fs . 2 810616 1 43.3 41 3746.0 0 0.0 80 1090.2 7 333.9 3 2171.4 132 7 38 ts . 8 810623 3 156.2 6 540.0 0 0.0 16 423.7 8 425.5 0 0.0 33 1545.4 810625 1 50.84 10 720.7 0 0.0 10 215.0 5 312.3 2 2.1 28 1300.5 810630 1 59. fa 12 923.1 4 0 0.0 7 253.2 7 447.3 1 74.3 28 1777.3 810102 1 37.1 20 1:440.4 t 0 0.0 13 316.6 10 567.5 6 518.9 50 2880.5 810707 4 39.9 37 2677.0 0 0.0 25 371.8 16 923.0 3 161.8 85 84173.5
IABLE 6.1.2. THE NUMBtR AND WELCH ( (CMS.) OF INDIVIDUALS FOR SZLEC1ED FISH SPECIES AND TOTALS FOR OTHER SPECIES ICQPINCED AT NORTH ANNA POWER STATION SY SAMPLE DATE, 1978- 1983. VALUES REPRESENT 10TALS OVER A 28-HOUR 4 PERIOD. ABBREVIATIONS ARE: OC - DOROSOMA CEPEDIANUM, FN - POMOXIS NICROMACULAluS, PF - PERCA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - MORONE AMERICANA. OT - OTHER. THE SUFFIXES ARE T - NUMBER AND W - WEIGHT. N hp y 5 f + DATE DCT DCW PNT PNW PFT PFW LMAT LMAW g Xe' MAW OTT OTW TFISH TWT 810/09 3 39.3 33 2085.1 0 0.0 to 163.7 6 406.1 1 125.6 53 2819.8 810714 2 171.5 59 3688.9 4 0 0.0 30 24 fs . f4 7 371.4 4 3fao.2 102 84776.84 810/21 1 61.7 27 1673.7 0 0.0 10 58.3 5 249.9 84 125.9 f7 4 2169.5 810/23 0 0.0 19 1130.9 0 0.0 7 100.9 5 386.8 2 137.8 33 1756.4 810/28 1 56.8 31 2022.0 0 0.0 19 109.4 6 336.4 3 233.0 60 2757.6 810i30 3 137.0 28 1865.7 1 0.9 20 199.6 9 f14.6 1 96.9 62 2714.7 81080f4 5 156.1 32 1905.1 0 0.0 7 117.3 14 109.8 2 111.3 50 2399.6 810806 5 267.6 23 14f4 3. f4 0 0.0 21 130.1 10 458.3 5 453.0 64 2 752. f4 810011 8 440.7 15 1048.3 0 0.0 194 331.1 6 329.8 14 231.2 227 2381.1 810f18 7 284.2 27 1800.2 0 0.0 85 161.6 8 291.1 2 223.0 129 2760.1 810820 20 702.2 58 3623.3 0 0.0 914 399.5 11 f77.9 4 6 261.5 189 5464.4 810H25 7 174.1 70 3779.7 1 26.5 20 90.8 5 284's . O 3 203.9 106 1519.0 4 810827 4 159.5 f45 2534.2 0 0.0 3 84 . 7 7 328.2 1 119.1 60 3145.7 810901 7 416.4 49 2783.2 0 0.0 1 17.8 4 175.1 2 137.3 63 3529.8 810903 4 1842. 3 43 2335.8 0 0.0 5 2f4. 3 5 2t:0.1 2 64.9 59 2807.84 810910 9 813.6 4 63 3151.5 0 0.0 16 268.74 6 3f3.3 4 2 96.6 96 4269.7 810916 12 504.1 19 1228.7 0 0.0 15 82.9 3 153.84 1 7 ts . 2 50 2 08:3.3 810918 9 386.2 11 516.1 0 0.0 28 195.3 2 194.7 2 82.2 52 137f.54 810922 I ts $30.5 132 6449.14 0 0.0 i f4 43.7 6 186.6 3 25.83 169 7235.6 810924 16 623.7 44 2171.0 0 0.0 6 109.fi 8 353.4 1 71.9 75 3329.84 810929 14 519.5 65 3154.8 1 11.3 9 22.7 3 141.2 0 0.0 92 3849.5 811001 9 334.5 96 fa448. 6 0 0.0 5 16.3 4 180.8 5 94.1 119 5074.3 811006 13 585. f4 127 5577.6 0 0.0 13 105.0 3 158.2 6 328.5 162 675's.7 8110184 8 2 79. 7 137 5896.8 0 0.0 5 24.6 4 261.6 0 0.0 15f4 6f462.7 811016 i fe 738.7 178 7002.4 0 0.0 12 82.2 2 78.6 1 5.4 207 7907.3 811o20 22 890.3 339 16950.f4 0 0.0 13 51.0 0 0.0 3 10.8 377 17902.5 811022 11 4 f4 5. 9 113 7692.5 0 0.0 16 88.3 7 335.3 1 87.3 148 8649.3 811027 22 84 3. f4 367 17472.9 0 0.0 59 171.4 7 373.8 f4 $5.8 885 9 18917.3 811029 26 883.3 4 288 15540.7 0 0.0 77 301.5 9 440.2 7 291.8 107 4 17417.5 811103 34 1360.9 79 3600.2 0 0.0 180 535.8 10 1403.7 12 211.9 4 315 61's2.5 811109 31 1102.6 205 9395.9 1 22.5 518 1508.8 8 8:27.7 31 232.0 794 12689.5 811111 59 2361.8 i fo 1588.6 0 0.0 339 1573.0 17 816.4 f9 4 531.3 504 6871.1 811117 54 2313.3 49 22284.5 2 48.5 106 391.7 18 906.7 60 577.4 289 6482.1 811119 39 1510.2 74 3445.6 3 64.6 80 276.1 7 301.7 14 6 575.8 249 617'4.0 811123 48 1945.8 59 2386.5 3 75.2 65 212.3 16 740.6 72 810. f4 263 6170.8 811125 59 2f27.8 4 51 2120.8 1 17.0 88 246.5 23 1117.14 61 634.9 283 6564.4 811?o1 70 2701.4 13 666.14 0 0.0 23 68.3 12 553.3 40 3 fs 3. 7 158 4333.1 811?o8 113 4463.7 13 547.5 0 0.0 10 62.8 11 541.4 30 321.0 177 5936.84 811?10 95 3309.1 30 1322.5 0 0.0 50 281.3 20 984.4 37 397.7 232 6295.0 811?16 103 4398.9 32 1433.1 4 67.7 29 164.7 28 If66.1 4 45 825.8 4 241 7956.3 811?18 158 5767.4 43 1967.8 1 14.8 13 99.1 18 900.5 38 841 9. 4 271 9169.0 811?21 78 2963.2 22 101 's . O O 0.0 6 50.5 12 653.9 13 115.5 131 84797.1 811?23 If4 6 6661.7 28 1303.9 1 16.5 3 40.3 28 1385.9 19 222.3 225 9630.6 811P29 115 509's.8 86 4 22184.7 1 94.4 11 211.2 19 925.3 21 309.2 213 8849.6 820105 136 5797.7 31 1346.2 0 0.0 11 19f4. 3 6 285.4 21 205.7 ?05 7829.3 820107 103 4253.7 33 1383.f4 0 0.0 7 182.6 10 589.0 4 6 70.3 159 6439.0 820112 75 3605.3 23 996.9 0 0.0 2 78.0 11 701.7 7 95.8 118 Sis 7 7. 7 8201124 230 10933.8 3f4 1486.9 2 59.7 5 225.1 20 1152.1 10 5 3 fs . 9 301 18:392.5 820119 113 6616.5 69 3086.2 0 0.0 5 168.4 18 989.5 4 54.4 209 10915.0 820121 261- 13748.7 160 70fo.0 2 36.7 8 236.5 19 1045.7 9 177.9 459 22305.5 5 m M M M M M M E M M M M M M M M M M M
M M M M M M M M M W W W M M M M M M TADIE 6.1.2. THE NUMBER AND WEIGHT (CMS.) Of INDIVIDUALS FOR SELECTED flSti SPECIES AND TOTALS FOR OTHER SPECTES IMPf NCf D AT NORIH ANNA POWfR STATION BY SAMPLE DATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 2te-HOUR PERIOD. ABUREVIATIONS ARE: DC - DOROSOMA CEPlotANUM. PN - POMOXIS NIGROMACULATUS, PF - PERCA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS. MA - MOHONE AMERICANA, OT - OTHER. THE SufflXES ARE T - NUMBER AND W - WEIGHT. DATE DCT DCW Pt41 PNW PfT PfW LMAT LMAW MAT MAW OTT 01W TriSH TWT 820126 151 11119.3 94 5087.54 3 86.4 14 181.6 12 466.6 2 26.4 276 16927.8 820127 19 1386.ta 11 476.2 0 0.0 1 3.5 1 72.1 0 0.0 32 1938.2 820202 Pts? 184 338.7 210 8489.0 0 0.0 12 290.3 20 988.6 13 362.3 497 ? re8 68.9 820204 261 14599.3 883 35694.7 0 0.0 15 844f 2. 9 23 1111.0 13 284.2 4 119% 5?O92.1 820209 196 1105:4. 0 110 3597.8 11 310.9 13 236.9 12 652.4 5 197.1 384 7 16049.1 820211 215 17591.2 158 6918.1 10 29's.5 f ts 303.4 20 1108.1 4 10 124.5 427 26335.8 820217 76 3923.8 lis 7 6321.1 32 803.0 5 80.1 9 368.2 3 52. r4 272 18548.6 820219 251 15372.9 222 11137.1 63 1519.2 4 22 571.7 25 1254.2 6 124.5 589 30009.6 820223 200 9056.5 351 15f27.3 4 186 4551.9 26 708.6 19 4 1837.8 16 2f5.6 4 828 31827.7 820302 330 11001.5 237 10781.5 4 527 11095.2 15 299.3 62 3073.9 16 321.5 8 1187 3f.578.9 820304 333 19073.8 386 169'st4 . 6 294 5912.5 12 196.2 38 1818.1 9 208.8 1072 4 'i l 54. 0 r320309 399 15884.1 243 9507.8 360 6607.0 14 281.9 !2 4 2107.8 7 291.7 1035 3's680.3 820311 86 3560.5 169 7 71sl4. 84 375 8281.3 12 177.7 27 880.9 9 171.2 678 20816.0 820316 131 5501.9 189 9296.5 374 7102.0 12 193.6 384 1686.9 13 262.3 753 2's043.2 820318 155 5265.6 183 8897.0 4 274 5223.7 12 196.0 35 1684.0 8 326.1 667 21192.4
!$2032 3 348 9279.5 311 14f35.7 4 2f43 3865.6 5ta 314.4 80 393:s.1 18 1919.84 1054 31748.7 820330 169 6047.0 287 12843.2 58 1171.5 17 151.5 76 3383.7 8 170.8 615 25767.7 820401 135 4090.3 301 12585.8 39 566.1 11 8 1 . 84 67 2780.84 8 80.3 561 20188.3 4 820f 06 4 65 1905.7 320 14561.8 26 458.2 26 72.9 74 3125.4 3 28.6 5 114 20152.6 820f08 4 89 3033.5 206 9031.3 23 480.1 si$ 122.4 59 2911.1 4 3 133.7 825 4 15 7842.1 8.?O41 ta 71 2021.0 186 8198.7 22 333.6 32 196.2 23 1079.0 5 253.3 339 1?087.8 820416 57 1389.0 1 314 5791.9 4 48 757.2 27 127.3 24 945.3 ? 6.9 292 9020.6 820420 28 668.5 67 2689.5 5 102.2 17 70.9 22 785.7 17 647.84 156 4964.2 820427 is 146.5 ?? 998.0 4 3 41.14 7 23.2 22 831.0 6 136.2 71 *172.3 820429 4 It2.1 4 is 7 1890.84 11 145.7 23 74.9 16 877.6 5 139.8 106 1270.5 820504 0 0.0 ta l 1557.9 3 59.1 15 50. f4 32 1391.6 0 0.0 91 1059.0 ti?O506 0 0.0 28 1038.5 1 26.2 18 58.5 2 84 1193.9 2 81.7 73 /398.8 8?0511 0 0.0 21 858.5 2 80.3 15 41.8 30 1507.7 4 1 101.7 69 P587.0 829513 0 0.0 17 816.4 1 25.0 14 184 . 7 45 2349.8 1 7.6 68 3213.5 t120518 0 0.0 42 2256.14 1 26.0 32 197.8 23 1224.7 2 235.7 100 3940.6 820525 ? 111.8 12 '7 318 . 1 0 0.0 16 218.7 8s t4 2178.1 4 2 192.0 76 :430.7 820521 2 56.7 10 652.9 0 0.0 3 32.5 23 1117.2 0 0.0 38 1859.3 820602 2 106.6 15 772.7 0 0.0 46 369.6 19 819.1 2 97.8 884 *165.8 112060f: 1 26.1 6 485.0 0 0.0 #43 316.8 16 827.8 4 8429.0 70 '0 8 r4. 7 8?O608 1 73.8 12 853.4 0 0.0 55 343.3 12 509.9 4 2713.8 84 '055.2 820610 0 0.0 is 236.9 0 0.0 11 54.1 4 182.6 2 157.6 21 631.2 820615 0 0.0 9 639.6 0 0.0 5 22.5 5 273.8 1 61.9 20 997.8 8?O62? O O.0 10 623.4 0 0.0 3 92.6 1 10.1 2 8.9 16 735.0 820624 0 0.0 10 799.9 0 0.0 1 2.3 5 200.2 1 7.5 17 1009.9 820629 0 0.0 8 517.5 0 0.0 4 98.5 2 21.9 0 0.0 184 637.9 8?O701 0 0.0 29 1654.9 0 0.0 2 30.6 1 97.0 2 165.4 34 s 9's 1. 9 820707 0 0.0 ts 351.7 1 19.2 2 13.6 4 208.6 0 0.0 11 593.1 820109 0 0.0 2 261.6 1 . 3 13.5 1 13.4 0 0.0 7 ?88.5 820713 2 68.9 1 73.8 1 1.2 2 1.2 8 63.84 1 1.2 15 ?O9.7 8/0720 1 69.8 6 843.8 4 2 85.8 4 to 37.6 5 105.5 0 0.0 284 102.5 820722 0 0,0 3 280.7 0 0.0 10 35.3 2 30.9 0 0.0 15 386.9 4
8207?? O O.0 2 187.8 0 0.0 6 35.? 84 85.2 4 3 1652.6 15 1920.8 ti20 729 0 0.0 1 9ta.3 0 0.0 5 21.0 2 5.0 2 173.3 10 293.6
!$20803 0 0.0 2 11:1.7 0 0.0 4 18.5 2 52.7 2 223.7 10 is36.6 820805 0 0.0 0 0.0 0 0.0 4 4.9 2 5. ta 2 167.0 8 177.3 5
"S /* N .. N. m. N. N. .e.@ k. C. N. m. N. N. n. . m.. m N. N.. e n. A. @. w. C. . m m. C. C. C. m. n. e n. m. e. n. c. e. . . .m..e.@ . e w w N. o. c. C. N. A.
CW > N#2@kenerm"@@ no~C3meCm3CCCONdemamNcch@C2NAONmmekC WE 3 N#NmocamNM00N C3M664CAJe@rCOCNOMCAN4mm@ON@mm3ONACA C4 > NN*-N Nw " #
- meNN00XN#@hANAe@J#mNNN NJ NmweCNOC 2 N m e N
-M LZ EC N Z .
M4 M W- - reeC@N@@cNmmmCmeN#@CNN-NCammNCNAC#CCem3Ne@CNecmewA UW 6 N awe e Ne e NNewmNN-een NNN we N r e- NeNA WK Am Mc E w . . S. C.C. C. C. C.C.C.C. A.C.C.C. . N. C.C.C.C.O.N. C.h C.2. b.c.e. m N. O. N.e .@
. . . m.e m. . .w.C. e. m. N. .D e. m. o n.o.n.
300 3 *CCOmCCOCwCCC NCCCCCmomNcN@@mCCoacNememocm-Nmc-ecN WCC > m @ G C N &ccee - mN2"ncer CAgeN+mmN@ C-E O - e e O N C N K- N Ew-CAO w C . Ex MOU M eCCC-CC-CeCCCC-CCCCCeC*MNNNN-mCmm2Ne@NeC@AXNNmNCN@ JC< > e (IE C
>e CM WN-w C40 3 Z A < c.@.c.a. C.N.@.C.C. C. o. c. C. C.C. C.C.C.C. . O.m. e. C.C.N. C. A. N. o. m. m.N.N.C.N.C. e.m. O.#.N.N. C.C.o. m. C.N. C.
GKW Z CeCMcN#CCCCCCCCCCCCCC-mNANCe#CAC=CCmme6AOpeCCCmC@A WJ m@ 2N A N mmbDm m@ smDo fN#2m@ n m ew M>a e eNN e w - WC
- 4 OME wWJ .
L4 > > MW =I < NNCeC*eCCCOmCCCCCCC-Ce-NNNC-NC3mcmCNeeNemeNCCCeCNN CMO E T>Z-M 06
-WM3 6%W W>I CM4 3 m m. .m. m.4.#.N.#.N.2.N.N. A. C.C.C.o. C.C.J. c.4.N. C. .C.N.@.#. m.o. c.c. C.C.o.m. C. C. C.N.O. N. @.C.3. M.c C.N.
wwu3 E &c@nCDNenveccCComCo@@m2@@kC@meccNCCONOCCCCwCCComCC m MCw 4 @@N N - Nm@m> b @C@m4*eOON- N w@ N4N e UA O - e e m WW4Z JXU4 W E MMwE wAw > EC c < memCa@mmcemCCCCC@cCNemm@oNm3NwCmeCCCMCoceCe@ Cme-CN OdeE E n - N e = w< C w
>%Z M A J e 8 dm OcMW 3 C.C. C.C.N. C.C.C. C.C.C. C. C. C.C. C.C.C. C. C.C.C. C.C. o.@.C.C.C. C.C. C. C.C.C.C.C.C. C.C.C. C. C. C. m.C.C.N.m. c.
CoC m
-e>W L CCCCNCCCCCCCCCCCCCCCCCC@C-CCCCCCCCCCCCCCCCCCCCComN > 4A N N N m *CC -eJ4 ee COC -
ZNOM
-m<W E 6 e E c .x C *c 6 > CCCC-CCCCCCCCCCCCCCCC*C-CeCCCCCCCCCCCCCCCCCC-Commm WCw 6 N mw-C A .<ZM MC E MW 06-=
wwX> 3 N. #. m. e. C. C. S. O. C. C. C. C. m. C. C. .m. m N. ". C. M. N N. C. A. C. N. A..N E. C. o. .e c. @. N. C. m. o. .m. m o. C. *. #. C. O. M. m. e AC Z . . wII . A acNSCCCCCCCCCONmN@rNcNJm#@emN#CNomeNe4CNacCONAOcca
;<CC C@@N N3 & ~2%commam2DeNCNC DC" MAN @C @@N"Com
- e e m N-Ne@JNNNMNJCA NwNew e e e Nr*4
-QMAw = -
w>l> 3C C Z CZA I ZC > NeN-CONNCCCCNCee@34c@-ONAC3-4@CANm*NemCN#CCENemNOC
<- - C --- N -- - - >ZC 4 E4C wwZ s CM<<
E -Z CKC4 zwwy a 7 C.C.C. C.C.C.C C. C.C.C.C. C. C.m. C.C.C.C.C. C.N. N.C. A.C.C.N N. C.0.m .3. -. C. m.C. o.m.C. @. C. @.C.O.N.c.M.M
. . . C.
3A- C CCCCCCCCCCCCCC=CCCCCCmCCecomaNmem-meC#NCNCCCCCocce me WCwm N N mecCCN N N N Na ca IAUw e - N N
> Z .ZI NZCW =<VZ CCCCCCCCCCCCCCeCCCCeCeemeCC--@m-C2meCm"CNCmCC"N"AN e CC "U " e - .Zr C @-CC CCE WC WZ t I C NNm:@eNm3@eMOONNcme@OOmmCCNrNNm3@~moccemOCAemCCANm <>O< W e--NNmCC*-NNNMCe--NNNCCe-eNNCCCe-NNNCCeeeNNCCC--"N ><CZ > OCCCCCm&@@@mmmCCCCCCC-we**erNNNNNNNN-ee-~~~NNNNNNN < CCCCCCCCCCCCCO-meree--------"---wee-CCCCCCCCCCCCCC C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNf%NNNNNmmmmmemmmmmeem CCCO0000000C0000000000C00000@C0CCCCCCCCCCCCCCCOOCO E
M M M M- M M M M M M M M M M M M M i TABLE (i.1.2. THE NUMBER AND WEIGHT (GHS.) Of INulVIDUALS FOR SELECTED FISH SPECIES AND TOTALS FOR OTHER SPECIES IMPlNGID AT NOR1H ANNA POWER SIAil0N BY SAMPLE DATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 24-HOUR PERIGO. ABBREVIATIONS ARE: DC - DOHOSOMA CEP[0IANUM. PN - POMOXIS NIGROMACULATUS, PF - PERCA FLAVESCNS, LMA -LEPOMIS MACROCHIRUS, MA - MORONE AMERICANA, OT - Oll!ER. THE SUFFIXES ARE T - NUMBER AND W - WEIGHT. l l DATE DCT DCW PNI PNW PFT PfW LMAT LMAW MAT MAW OTT ,OTW TFISH TWT l 830301 2 71.0 14 573.8 31 832.0 3 120.3 7 378.6 6 $3.8 63 2029.5 830303 6 263.84 12 519.9 70 1893.2 1 10.3 9 401.3 7 60.84 105 3148.5 830308 3 88.9 39 1863.2 76 1416.3 13 208.6 3 116.9 11 101.6 145 3795.5 830310 3 14 4 . f4 23 1272.9 58 1312.6 2 26.0 3 157.6 7 126.2 96 2939.7 830315 4 103.0 82 2112.2 40 797.0 84 53.4 7 256.5 14 357.7 111 3679.8 830317 2 31.0 33 1667.6 26 575.3 2 18.7 6 331.9 9 67.7 78 2694.2 830321 18 403.8 69 3f07.9 4 102 1373.6 8 212.8 13 437.5 16 362.3 226 6197.9 830329 103 1405.6 108 5500.5 10 202.84 4 106.9 17 673.2 7 53.8 249 7942.4 830331 82 1642.1 106 4756.5 15 254.1 0 0.0 16 666.6 8 294.0 227 7613.3 830405 35 539.1 42 185r4.1 8 180.3 2 17.3 5 171.7 11 198.0 103 2960.5 830407 33 555.1 29 1335.6 7 116.2 6 85.5 9 273.5 f4 228.1 88 259's . O 830412 46 1099.0 f3 4 2083.3 4 128.9 2 56.2 11 504.9 2 20.2 108 3892.5 830114 4 31 709.5 86 4 1898.5 4 83.f4 is 40.4 11 456.4 3 141.0 99 3329.2 830419 50 104t.2 4 143 6998.2 34 707.5 8 25.84 21 829.7 to 252.7 266 9857.7 830426 72 1399.5 556 26666.4 161 2265.1 7 27.0 55 2306.6 6 45.8 857 32710.4 830428 125 2168.5 414 8 21079.6 215 2422.5 10 129.7 69 2315.f4 l t4 120.84 881 28?36.1 830503 1 4.3 111 4056.0 5 82.1 13 142.6 64 171f.5 4 16 241.2 210 6240.7 830505 10 299.5 89 3391.3 7 168.9 8 67.6 46 1326.9 5 71.8 165 5326.0 830510 4 131.5 20 747.5 0 0.0 9 3 ts . 5 30 1226.1 0 0.0 63 ?139.6 830512 1 81.7 9 397.9 1 14.1 2 4.0 7 374.6 3 161.2 23 1933.5 830517 1 18.9 28 1418.8 0 0.0 15 70.6 to 437.0 2 10.7 56 1956.0 830524 0 0.0 55 3364.1 0 0.0 7 151.7 13 670.2 2 173.7 77 4359.7 830526 0 0.0 38 2302.8 0 0.0 5 121.2 8 387.7 2 126.2 53 2937.9 830601 0 0.0 35 2379.8 0 0.0 6 401.04 7 279.7 4 395.1 52 3fa58.6 830603 1 14 f t . O 17 1221.6 0 0.0 3 88.5 7 373.5 6 631.7 34 2459.3 830607 0 0.0 18 1308.0 0 0.0 4 177.f4 3 9f4 .5 1 6.0 26 1585.9 830609 1 75.2 12 81f.9 4 0 0.0 5 316.8 7 327.7 3 377.2 28 1911.8 830614 0 0.0 10 695.0 0 0.0 5 125.2 6 230.6 5 736.8 26 1787.6 830621 0 0.0 2 194.8 0 0.0 9 130.5 8 332.2 6 685.1 25 1382.6 4 830623 0 0.0 3 245.7 0 0.0 16 342.7 10 687.6 la 744.4 33 2020.f4 830628 1 115.9 1 64.3 0 0.0 12 172.2 3 262.0 0 0.0 17 614.4 330630 1 Ya . 9 1 77.0 0 0.0 7 1 784.14 6 293.1 0 0.0 15 599.4 830706 1 2.0 2 178.6 0 0.0 4 28.5 5 401.1 3 4.5 15 614.7 830708 3 4.1 3 175.3 0 0.0 11 180.7 9 553.5 5 9.1 31 922.7 830712 0 9.0 ' 181.6 0 0.0 7 107.2 12 667.8 22 1 1.4 958.0 830719 0 e.0 9 39.9 0 0.0 6 252.'7 5 226.0 3 78.7 15 597.3 8307?1 1 52.6 . 86.5 1 1.3 15 68.1 6 345.0 1 133.9 25 687.84 830726 1 86.6 3 192.7 0 0.0 32 227.7 11 620.0 1 1.6 48 1128.8 830728 3 5.6 5 409.5 3 4.1 20 32. f4 12 681.1 4 1 7.3 4 r4 lion,o 830802 1 16.0 3 327.8 0 0.0 5 8.4 f4 169.9 1 79.6 114 601.7 830804 2 25.0 2 63.3 1 1.3 28 257.1 18 797.0 0 0.0 51 11 r4 3. 7 830811 5 124.1 13 848.7 0 0.0 99 235.0 17 746.7 1 6.7 135 1961.2 830816 is 101.4 9 606.5 0 0.0 50 117.1 13 474.6 0 0.0 76 1299.6 830813 0 0.0 10 872.7 0 0.0 21 140.5 12 5f3.6 4 0 0.0 's 3 1556.8 810823 4 246.5 5 263.6 0 0.0 17 182.2 to f56.3 4 1 1.3 37 11:49.9 830825 1 14.6 9 146 4 4 0 0.0 36 172.3 3 96.7 0 0.0 89 4 730.0 830830 7 112.8 7 468.3 0 0.0 3 18.9 12 435.5 1 I ts . 3 30 1949.8 830901 1 1.5 7 605.3 0 0.0 29 79.2 9 488.1 17 183.1 63 1357.2 830908 80 968.0 7 389.6 0 0.0 2t4 50.6 11 535.0 0 0.0 122 1943.2 830913 1 0.6 8 660.4 0 0.0 45 195.1 11 402.1 52 788.9 117 2047.1 w G3
l TABLE 6.1.2. THE NUM0ER AND WEIGHT (CMS.) Of INDIVIDUALS FOR SELECTED FISH SPEC 1ES AND TOTALS FOR OTHER SPECIES IMPINGED At NORTH ANNA POWER stall 0N OY SAMPLE OATE, 1978- 1983. VALUES REPRESENT TOTALS OVER A 24-tiOUR PERIOD. A8BREVIATIONS ARE: DC - DOHOSOMA CEP[DIANUM, PN - POMOXIS HlGR0 MACULATUS, PF - PERCA FLAVESCNS, LMA -LEPOMI S MACROClilRUS, MA - MORONE AMERICANA, 01 - OTHER. THE SufftXES ARE T - NUMBER AND W - WEIGHT. DATE DCT DCW PNT PNW PFT PfW LMAT LMAW MAT MAW OTT OTW TFISH TWT 830915 1 2.0 18 1176.8 0 0.0 81 245.7 15 572 537 5628.7 652 7624.8 8309?O 1 9.6 19 932.0 0 0.0 82 124.8 11 357 1 2.4 114 1426.3 830922 2 5.9 18 716.9 0 0.0 64 114.9 9 418 7 262.7 100 1518.9 i 830927 6 15.5 25 1209.5 0 0.0 52 207.0 7 384 11 366.7 101 2182.8 830929 6 14.8 34 1949.8 0 0.0 48 109.1 12 419 7 83.9 109 2577.0 831006 6 6.2 8 441.8 1 184 . 4 17 35.5 4 225 12 98.8 48 822.1 831001 1 5.6 3 184.6 0 0.0 4 37.0 0 0 2 1.6 10 228.8 831011 1 1.5 10 804.8 0 0.0 31 85.8 5 196 7 126.2 54 1214.7 831013 114 75.1 17 1740.4 0 0.0 23 848.6 8 518 1 1.4 63 2383.3 831019 2 4.1 20 1898.7 0 0.0 17 82.9 11 417 9 2(8.5 59 1971.0 831021 2 3.3 33 1943.2 0 0.0 46 105.5 14 457 51 375./ 146 288t.4 4 831025 2 4.7 27 1531.6 0 0.0 42 26r4.2 15 601 2 P, 550.6 114 2952.2 831027 6 12.5 32 2367.4 0 0.0 15 110.8 3 102 55 752.4 111 334f.8 4 831103 9 24.2 25 1297.2 0 0.0 25 79.6 $1 391 69 1106.8 139 2899.2 831108 16 39.1 19 1285.1 0 0.0 384 58.9 9 334 130 1963.9 208 3681.2 831110 6 11.4 15 904.2 0 0.0 24 341.1 8 337 61 178.9 114 2372.7 831115 94 104f.9 4 11 563.1 0 0.0 6 17.7 10 391 3 42.0 124 2058.6 831117 12 22.8 16 787.2 0 0.0 11 31.0 15 434 41 581.3 95 1856.1 831121 27 46.9 3 124.9 0 0.0 42 100.5 27 849 24 304.4 123 1425.8 831123 14 18.9 4 161.2 0 0.0 17 31.7 19 658 33 420.9 87 1291.2 831201 80 128.8 4 155.4 1 16.7 8 22.4 8 386 181 1460.5 282 2169.9 831206 108 191,6 5 172.0 0 0.0 3 8.6 27 1038 501 3727.3 644 5138.3 831208 84 161.4 9 429.0 0 0.0 8 14.7 13 570 357 3199.o 471 437t. 6 831213 119 229.1 15 623.6 0 0.0 4 8.2 17 797 379 2896.7 534 4554.5 831215 70 152.1 11 755.1 1' 20.5 9 30.2 18 649 391 3487.4 506 509's.7 831220 32 62.2 1 44.7 0 0.0 7 25.7 2 62 57 969.6 99 1168.0 4 831222 20 40.2 3 111.2 0 0.0 2 15.3 8 34r4 177 2095.3 205 2606.1 TOTAL 640 1211.7 38054 1844657 38194 672065.7 9504 108377.5 3t21 4 153883 152464 2920373 242277 5700567.6 m M M M M M M M M M M M M M M M - M M
M M M M M M M M M M M M M M M M M M M TABLE 6.1.3. ESTIMATED NUMBERS AND WEIGHTS, AVERAGE LENGTH AND AVERAGE WElGHT EOR SELECTED FISH SPECIES AND TOTALS FOR OTHER SPECIES IMPlNGED DURING 1978-1983 AT NORTH ANNA POWER STATION. SPECIES 1978 ll 1979 ESTlHATED ESTIMATED AVERAGE AVERACE ESTlHATED ESTIMATED AVERAGE AVERAGE CATCH (X1000) WEIGHT (KG) LENGTH (HM) WEIGHT (G) CATCH (X1000) WEIGHT ( KG) LENGTH (HM) WElGHT (G) 00ROSOMA CEPEDIANUM 3.28 69.9 127 21 452.95 5257.7 124 12 LEPOMIS MACROCHIRUS 0.71 32.7 127 46 2.46 90.5 114 37 MORONE AHERICANA 0.03 1.6 127 45 1.22 72.0 156 $9 PERCA FLAVESCINS 7.89 54.1 97 7 86.39 1450.0 121 17 POM0KIS NIGROMACULATUS 9.12 333.9 133 37 38.35 1806.8 151 47 OTHER 1.09 89.1 174 81 2.16 134.9 178 63 TOTAL 22.12 581.3 132 26 583.53 8811.9 136 15 SPECIES 1 1980 1981 1 ESTIMATED ESTlHATED AVERAGE AVERAGE I ESTIMATED [STIMATED AVERAGE AVERAGE l CATCH (X1000) WEIGHT ( KG) LENGTH (MM) WE I G'4 T (G) ICATCH (X1000) WEIGHT (KG) LENGTH (MM) WEIGHT (G) DOROSOMA CEPIDIANUM 27.03 846.4 166 31 66.49 3771.2 203 57 LEPOMIS MACROCHIRUS 9.64 132.3 81 14 15.32 102.0 70 7 MORONE AMERICANA 0.68 26.5 131 39 2.45 109.3 155 45 PERCA FLAVESCENS 33.67 668.7 123 20 7.39 172.6 131 23 POM0Xis NIGROMACULATUS 36.77 1891.8 166 51 31.15 1634.5 176 52 OTHER 3.53 88.1 110 25 5.23 131.1 119 25 TOTAL 111.32 3653.8 140 33 128.03 5920.6 151 46 SPECIES 1982 l 1983 ESTIMATED ESTIMATED AVERAGE AVERACE l ESTIMATED ESTIMATED AVERAGE AVERAGE LCATCH (X1000) WElGHT (EG) LENGTH (MM) WElGHT (G) l CATCH (X1000) WEIGHT (KG) LENGTH (MM) WEIGHT (G) 00ROSOMA CEPEDIANuM 19.59 914.6 172 47 17.16 200.7 119 12 LEPOMIS MACROCHIRUS 4.01 38.6 75 10 5.75 36.5 62 7 MORONE AMERICANA 5.17 233.4 162 46 4.08 164.9 150 40 PTRCA ILAVEsciNS 11.78 235.7 128 20 3.58 63.5 124 18 POMOXIS NIGROMACULATUS 24.59 1097.1 170 45 11.02 556.8 170 50 OTHER 1.40 65.5 142 46 3.99 39.5 87 10 TOTAL 66.55 2589.9 151 39 45.59 1061.9 121 24 i
mL l. TAHL1 6.1.4. MiAf4 SEASOfiAL iMPlNGtHfNI [SilHATfS fly SPECIES, 1978-1983. SPfCifS WIN 1f ft SPRitiG SUMMER F At t. TOTAL i ACANiilARClaus Pot 10T !S 3.29 6.68 4.00 13.97 i AtOSA AESIIVALIS 1.99 3.30 3.33 26.05 3 fs. 6 7 Af!CulttA ROSIRATA 52.23 0.66 0.67 53.56 APflHiDODIRUS SAVANUS O.66 0.66 [ CAf 0STOf10S COMflf kSONI O.67 0.67 : DOHOSOf1A Cf Pl DI ANUM 83959.51 9582.85 68f4. 58 352's.81 4 97751.34 OOltOSO!1A PI Tf t4ENSE O.66 15.33 4fa9.78 465.77 [RIHy/ON 08tONGUS 0.72 0.67 1.39 i [ SOX NIGIR ? . 61: 0.66 3.30 f 1:sf OSIOHA Ot HSilOf 0.65 0.66 1.31 , [XOG1OSSUM t1AXIiiINGUA O.66 0.66 I IUNoutilS Hf11ROCliTUS 1.30 0.66 1.96 ICIAtURtis CAIUS 0.67 0.67 , iCIAtURUS NAIAtIS 2.66 2.86 f ICIAlHHOS NIDutOSUS 31.83 217.00 81.83 1 1 . 38 3'48.00 s l lCIALUHUS PUNCTATUS 5.90 7.35 7.29 1.31 2 1. 886 l tEPOf11S AUR110S 0.65 5.40 9.92 5.32 21.30 l t I POH I S Gl BliOSUS 3.91 I rs . OO '7.32 22.6/ 81.97 4 l l I POf f t S GUL OSUS 4.57 ?O.78 5.86 8.13 4 3 5 . 314 i [ Pottis MACRO 0tilHUS 638.95 1850.60 1599.66 2226.15 6315.56 l IfrOHIS HICR7tOPHUS 1.96 2.684 0.64 U.67 5.90 i MICHOPTERUS $AIMOlDfS 3. 3? 22.63 31.81 15.90 13.66 l ItORONE AMf IIICANA 641.05 4 766.79 3/O.80 fa90.05 2211.69 floitON f SAXAlltIS 683.03 80.71 5.92 900.87 1670.53 i 18.96 fl0TEHtCO!4US CRYSOLEUCAS 27.57 31.58 2.00 80.11 f10!ROPIS ANAt OST ANUS 2. ora 1.33 3.37 flO!ROPIS COHNUIUS 1.32 1.32 PERCA ii AVESCttJS 22414.45 2658.30 21.75 22.1J 25116.61 . Pl. IRoll(ION MARI NUS 3.26 1.98 5.24
.PHOXINUS ORfAS 0.65 0.65
, PiHL PitAt i S NOT Altis 1.36 1.36 l pct 10XIS NIGROf1ACUL A10S 11305. 6ta 5854.01 1431.92 65 /6.82: 25168.88 4 ! Sil/OSIfplON VITRf0H 0 f>5 0.66 1.31 * ( Uf40RA PYCHAEA O . 6 *i O.65 l IOIAL 119800 21138.88 1:283.50 14301.28 15952f4 I
=
N
.. ~ - ~ -. - ~ .-.. ..~~ ~ .-~ .-. =- - . - - --.~. ~ - +----.. - - -.>-_. . ~ _- - ..... - _ . ~ .. -... -
I 77 a Neecm c d J ee-e-On J C7e~ece m
. < Ne**C = C < NcAC%-N < -%> cNN = NO*ONA 7 = 74NM m - em% C e 0 -cN m - O -NON N O -m e > - e a m - * . r - C m s N e C > >
I o e H
- H - O. N O. O. c. . . H
- m. .7. N C. . . e 0. . N. w. O. N.
Oe: .270 2 CO k C7:4CO Z
. :: O Oek"c o e -ce 0 -
I n - Z
< m NC~@me: D m N7 :NN O m 070N0-N C
BCNo-O QN " N X C 3 "NNm ene m
=
w C ON7 em N D x
=
- w - e - < -
> ~
w O O I 3 a O x 4 H < H W H O. N. S. O. C. N. Z 0. . 7. N. :. 0 3 O. C. O. @. m o.
< C:NEN& Z Owe %so O 0:NN30 Z
Z mmN < C A -Nw
< ~
Z
- 2
> N 0: P O N "* m"ON < N C7: MOO x
O c CCCc"f7
@~=~C O~ Z c m:~m ee-N 2 :
c O cm e%e O Z . - N = e N N - . e - O 40, ZO wu w I Ow 4 <=O CC ZC wO O CB H On H "m H w< C. N ". . N. e.
. Z< C. N . .r. 7 4 0 <<w e. m . .*. > r. e .
C6 O=AmNN ~6 ComQmO Om:-OC NC LE Nw OZ *N-
-ZZ I w I
A> ->J C> zJ ZJ
~J BJ =- < - wNCw NM O< w wmOncer L4 e -AAmO*N IO C Oc%*co NO O -c40 N TO C NOe o Ow 7 wNN N <w 7 Nech N ~~ > - ehe 7 20 e N m 00 e N m O U< M<
I
-<< < Z C C w:
wO Cd UM A- H Z- A- H ww O. N. 4. e . C. M. cw H ". c. e. N N. O. . ww w. >
. A. m. m . a.
U Om: Oe - 07CNTO > OOcNOO
<D J mec Zw A ~ce <wA N4e I EO C
0* 0
=> c CJ 0
7 CONOANO mec~me NomO :
'40 X&
O I> CJ > O c me:N*NC cc-N m%e%
~
0
*O <=
U wa C e 7 e4Mem-N EC: NNe w OZ e e N LZ e N : LZ ~ ~ C O O .I l 1 6 OM
=O Zw wm H
O.N w C.O.M w CM
*O Zw ~
H O. O. c. o. m. e. 6 CA
*O Zw ~
H - N .e.
. m. m N.
ONTNbO wJ OOPCho ww Orffme Uw C Uw NNme Uw m:- I mw w% A C-ZC W
<<e > e 3
n amAO"*C 7N7k"> 0 - M
%W WC A
OJ 7 ZO
<<n W
OmNN=NO
- Bm>
NO A N N
%W WE A
Ow ZD
<<e me 6
N "NOOM70 Dm:&wO ONN 4 m m e e m - O M M I. wd 0: Zw H 7. e. *. C. O. O. WO
--U ZM w
H -N
. . N A. N.
WA C: Z* w H a.:. C - % : O . N O.: $ C O O . ~~~mNO O . NCwAO" I CT -c- OI mmNa CI CN wX ~C -E
=
w2 wZ =Z e- e- e-C CMMNTOO C O CCOMT O NC" ONCO wa % ~7mN: * ~w ~ NCDNN O ~w ~ =4N D OK > ma C OC 7 00 N ~ C OC D a N I Z< Z< Z<
- ~ -
w w - m A m* m*
*J sJ em = N P. m - OJ &. ~ ~ Ou .- ~ OJ C 00OO<
I
-~ C 000s< 000#< ~~ 0 . Z OOcON- ~.~ Z OOOON- . 2 OOcON=
CM w O O ~ ~ re - O GM e OO*-NWO 4M w Cee-NwO
= . 3
- t t 60 - = - a ! ! t 10 - = i i ! i .O -
we en w~ w C mU "U CZ CZ LZ
<w <W <-
I w- wa ~ ~ s
- I
1ABtf 6.1.8. (ENGT!!-fREQUfNCIES AND PfRCff47 OF ffPO14fS MACROCHIRUS IMPINGTO AT NORTit ANNA POWER STATION, 1978-1983. I f NGiftS ( f t.. ) AHL IN MM. THIS I Allt f RLf LICIS ONLY 11I05L IISH ACTUALLY MEASURLD. 1983 % TOTAL 1980 % 1981 % 1982 % g f r4 Gill 19/8 % 1979 % 162 16.1 513 38.6 1709 11.5 1:03 19.5 535 21.2 2fs 1ti .7 72 641 63.8 685 51.6 84224 1
~o 116 28.1 109f4 53.0 1622 6 14 . 84 6.9 1157 ~50 23 I la .1
- 18. f4 285 11.3 172 17.1 92 48 29. da 180 28.8 380 29 2.9 38 2.9 $88
~ 100 31.2 186 9.0 73 2.9 11 150 67 41.1 195 0.1 3 0.1 1 0.1 0 0.0 3 "200 1 0.6 3 0.5 0 0.0 1 0.0 0 0.0 0 0.0 1 o 0.0 0 0.0 1328 7701 di250 626 2066 2$19 1005 IOTAL 163 iMPlNCED Al NORTH ANNA POWER STAllON, 1978-1983.
I ABi l 6.1.9. L I NGill-IHf 4Uf NCl[S AND Pf RCf NT Of HoHONE AMI R f CANA LL NGillS { 1.t.. ) ARE IN ful. 1His TAtlLE REfLfCl3 ONLY 11tOSE flStf ACTUALLY HEASURED. 1983 % TOTAL 1980 % 1981 % 1982 % t ( NGill 1978 % 1919 % 4 0.3 3 0.3 to 0.3 2 I.1 O O.0 312 o 0.0 1 11. 4 f4 #9 is . O 61 6.9
~o 3/.5 37 11.9 68 39.1 88 22.2 361 31.4 116*> ~50 3 118 19.2 212 2 25.0 8's 27.3 ?! 15 . *>
826 67.5 f499 $1. T 1817 100 45.o 53 30.5 357 58.2 221 150 2 25.0 If6 0 8.0 73 6.0 34 3.5 12.5 42 13.5 22 12.6 14 9 0 0.0 1 0.1 10
~2On 1 2 1.1 1 0.2 3?95 i;L250 0 0.0 6 1.9 12284 965 311 174 613 gogAt 8 i
l l l l w
9 4 I :
+.3 79 I .
id l M i L3 . o l . i p'e. D : . D 3: E o 3 2 ., p . _ . o d
" v:sw s ~:.- .- ;
O :iES$ifi; I-Sze.y - %- I o N C2 y r-r-rw mg~
? 'i N
t--v7 ~ - e E I e
-i a
3 7] s@.
.sRg R A:-6<>.
Ihhh ha 2 >. #
~
k
,vs-~
J h k $ r u[s hb*,kbyfx; s%wt M:asu>ssit U:$a0sG:55".
, e v -
b N I
, h ,I
- o E511H11111111!!!1E1111115 I m.
mZ _ A _-_" - O n--e -r----
>E 9< kh b a:h5I Y#R: r- 'i g E-D g*
ase,,y w:df%:'?C
- fdt y, .,h <
I Cf 9Z rg $ ($ " I E-= 4 o< aZ O OZ I s4 dZ N 2 n
^4 I
e> E-* E t d T""-r r'r'F""'"T" r"r""T rrr' r " r~T"n r c'*'T" n r rT rrr, rcv er b> Z h5n
' M o """~'
e e n e n e I M E~ C,s As
4 9 80 I
=
yes O Q k ea . O E " y= CL x - M
- .u ~~
I k.; I- a e g
- . y
;$qb c. ~.s _z 8 - . - , .
g B _ _ HilEEEP BHilH 1O EllilliHRililil!!EEEiEliEllD5 u
~
g EU3F7.F tG;s, s 0 r- a E a
-3s?S:.50:$- P-m g' o . ,,
p w CO QA C
~ co . .-( e b Q- hI "
W E- ~ isl Milllll!EElllElHEiEiBilEilB
=~ I Ei HERiflBIEERIIB!iEllE i =-
s.is w. I am es e gg 58En tte
- 5 x
- 8 H EL, O
.L h 3
Z <l DZ JZ ,je E m <3 3 H :t: y;,.......,n,,,rn7m,,,nn7n,,-,vn7n,r-,rnrnrv v m-DH N = c in o C L'. C g) Q W rq C4 CJ to DZ S ss N 4: e E un
4 4 i ;: 81
/
i '-: l
=
m i O E=1 ll e O : c. I 2'. e M
- 0; I EO
^ ~< }$ ?
C y 26 CD 7 M: .- r. b[1 '.
- r-I z
I
>. lt
[ . .
$ 2i t. 6 a = ,. 111l_ll_ll11111_15218_1111l -
o: O s
- e~
!a_
m 15E_llil_llllllillHM_B_Rili_lil_li I 3I i H ll1111111114EHll11ll11!! !
' ~l E m M._illlili_ll! _ =
W
,y c r
- l Ec c, a E
d @< ,l L nQ g 0 mm a
'O Em I
t-I:q $ @ 7nn-r- , , , , , rrn, r 'T n " r n "T " "T" r' T rr' r "'T"""""T " r'~r ""-
$Z o
Ei n
- c. r.
c m e c: e e o e o g
- Ic. <C
m- _ . _ _ h h
..-~,
1I i u.n.+ s m.x .
~ . .I ~
I. b'b a CA a & h,5 c l z 5,pfS '^-
~
5 85 { = Cs0 D um 6 . Z . fpys:$3 r n o ~# O ,t b 5h_f m m ,- o b d
" - g
[] C g
= Um E ? 8b O
5 . m[$ Eds $fd N caA F I Cza O - E E Z CO 3 o CD sS iR1!Ms!!H% e-a e4e. lddhamn.H-fj 72 C 4 E o . 3 pZ _- _ _ _ X_ _ _ Cd (4 Z IN Eo e at U m l
.'ra Z< N Z ~~
Z 14 8 9m c CD E-* C gh h T ' ' ' ' ' ' Tr' T" ~r '"r ' T " " " 'T " ' '- ' 7 "T " '-' * " T '' ' " r'~ oZ o g, se a e n c c v c m c m c c l
F3 I 7N o l I O .vi DC C)
.r- n :
l
'-f o ,_ m O *.c c I
I N l cr-n i C
~
A {fto j m
-ri" . n I b l I
N m m 1 -cC o l M , m nno I P,
% l ne at. , -
noC I I g g Q I Ybb _ er an n A w I a Z 1 sc o -.- 5 MT-n ._ C mv o G O - I W NCEn N DO p ca t moo
-e #
g.-4
% C a?"D l
X (Ano d, $ Ew.+haui cae m A') c s m e >c.u c a.:vsg; caco
- b. 3 m E E E C E E k "CX' M M d ^d eI* n zx NO mmmmm-_._ u _ro
(: mcEEEmmEs:<-cm-:- zg _ .c y, pp I- o-M 8<~. .e c-xy.c c%x.- >xwwue: &xogmpm,xs mg. oat.:m m;+2 ggM1;;sgns -:< w :7n
,,_e o r-n g y, 4 g n:w +wns ro u can ygrp=l g i..., , ,,,,,,,,. r r' - -
r T r ' ' i OO + I g4 N d MZ
=n u ca U
C o ea n o n o w I LC ~A
,--e Ch N L.
E-* I N Cd C.4 O P '4-O C-I D -f,
84 6.2 Entrainment A total of 7908 fish larvae were collected in entrainment samples at North Anna Power Station from 1978-1983 (Table 6.2.1). The most abundant entrained larvae over all years were gizzard shad (65.7%) followed by white perch (15.0%), sunfishes, Lepomis spp. (13.3%), yellow perch (4.9%) and black crappie (1.0%). The channel catfish, Ictalurus punctatus, and largemouth bass, Micropterus salmoides, were each represented by only a singly collected individual. Sunfishes are considered in this report to represent several possible species. More sunfish and yellow perch larvae were collected in the first year (1978) than in subsequent years. Gizzard shad, however, were collected in relatively greater numbers in 1979 and 1981. White perch numbers have generally increased over the study period. Black crappie numbers a re considered too low for any meaningful comparisons. With the exception of 1978, the changes in total numbers entrained from year to year are generally I reflected in the number of gizzard shad, sunfishes and white perch collected. The percentage of the total larvae collected represented by gizzard shad has a remained high and stable for each year, whereas the percentage of white perch g has increased each year. I During each entrainment survey, the number of circulating water pumps (CWP), the sample volume, the water temperature and oxygen content were recorded (Table 6.2.2). Yellow perch was first to appear in all collecting years, generally in early April, when water temperatures approached 12 C. White perch appeared in April when temperatures approached 14 C and peaked in numbers by mid-May. Gizzard shad generally were first collected in late April I a
85 to early May at water temperatures between 14*C and 18"C and peaked in numbers in mid-May to early June. Sunfishes were the last group to occur in samples (May-June) and were first collected when water temperatures rose to 19'C. Both gizzard shad and sunfish were collected in relatively fewer numbers in July. Samples collected during the 6-hour intervals within a day generally showed that total numbers and percent vary considerably from 0600 hours to 1800 hours and were highest during the 2400-hour sample (Tables 6.2.3 and 6.2.4). Over all years and samples the percentage of fish larvae collected during the midnight sample was 43%. Gizzard shad and white perch collections were responsible for the higher numbers during the 2400-hour sample. The large number of larvae collected at night is probably a function of diurnal migration pa tterns or in part by nei. svoidance (Gasser 1976; Ecological Analysts 1977). Sunfishes were, on the contrary, ! nerally collected more frequently during I daylight hours and yellow perch numbers fluctuated during sample intervals. Factors such as turbidity, temperature, larval size and gear type have been shown to influence distributional patterns (Edwards et al.1977; Netch et al. 1971; Tuberville 1977; Leithiser et al. 1979; Cada and Loar 1982). Any combination of factors could cause a site specificity in larval distribution. The percent of total larvae collected at each sample depth varied from year to j year and fe each species (Table 6.2.5). Sunfishes, yellow perch and black crappie were collected primarily from surface samples; gizzard shad were collected primarily from middle and bottom depths; and white perch numbers were similar at all depths (Table 6.2.6). Over all species and all collection years the percentage of larvae collected from the surface was 33%, from the mid-depth I (4 m) was 35% and from the bottom (8 m) was 32%. I l
86 No fish eggs were collected during the sample years 1978-1983. Most species of reproducing fish in Lake Anna produce demersal, adhesive eggs which significantly reduces potential entrainment (Lippson and Moran 1974). The gizzard shad entrainment rate (numbers per CWP) has been declining since 1979 (Figure 6.2.1). There was a substantial increase in entrainment of this species from 1978 to 1979. The higher number of gizzard shad larvae collected in 1979 apparently resulted from a successful spawn that year. This is supported by rotenone data with the increase in standing crop estimates for adults and juveniles from 109.1 kg/ha in 1979 to 153.7 kg/ha in 1980 (Vepco 1983). Meteorologically,1979 wa . similar to other sample years. Entrainment rates for sunfishes have been constant since 1979 while white perch numbers have increased each year. The higher collection numbers of sunfishes in 1978 probably was a result of the initial withdrawal of the resident sunfish population within the intake cove. Sunfish adults do not migrate large distances over short time periods within a lake as gizzard shad or white perch may. The declining entrainment rate for sunfish may be a result of limited adult recruitment for spawning within the intake cove. The increase in white perch larvae collected from 1978-1983 is supported by increasing fish standing estimates based upon cove rotenone samples (Vepto 1983,1984). To determine the total estimated larvae entrained over time, daily entrainment estimates tvere prepared treating depths as strata. Stratum weights were equal and the finite correction factor was ignored (Cochran 1963). Daily density values (larvae /1000 m3 ) were multiplied by the average volume of intake I I a.
I 87 water pumped that sample day. Period estimates were computed using daily estimates and the number of days in each period. Variances for period estimates were taken as a weighted average of daily variances. Totaling period estimates by species result in estimates of total larvae entrained by sample year (Table 6.2.7). Total estimated fish larvae entrained ranged from 8.4 x 10 7 in 1982 to 2.5 x 108 in 1981 (Figure 6.2.2). Also during entrainment sampling periods in 1982 only an average of 3.2 circulating water pumps were operating, whereas an average of 6.4 pumps were operating in 1981. l Out of an es ' mated total of 8.9 x 108 larvae entrained f rom 1978-1983, gizzard shad represented 65% (5.8 x 108 ) of the total. By comparison, in Lake Sangchris, Illinois, 85% of the total fish entrained at the Kincaid Generating Station were gizzard shad (Porak and Tranquilli 1981). An 8 0 estimated total of 2.1 x 10 shad and 1.7 x 10 sunfishes were entrained there I in 1976. The average estimated number entrained at North Anna per year for gizzard shad was 9.6 x 10 ,7 for white perch was 2.3 x 10 6, for sunfishes was 5 2.1 x 106 , for yellow perch was 6.8 x 105 and for black crappie was 1.7 x 10 (Table 6.2.7). While the total estimated larvae entrained per year has varied from 1978-1983 (Figure 6.2.2), primarily as a result of fluctuations in adult fish standing crops and circulating water pump operation, the total number entrained per pump, or entrainment rate, generally has been declining since 1979 (Figure 6.2.1). Standing crop estimates (kg/ha) in Lake Anna for gizzard shad have been declining from 1980-1982, with an increase in 1983, while wM te perch estimates have steadily increased from year to year (Vepco 1983,1984). f I I I
l 88 Il Standing crop estimates for yellow perch and crappie have been declining for i the past several years, but standing crop estimates for bluegill, the most l abundant sunfish in Lake Anna, have been constant over the sample years. . I I I I l I I I I I l I I a
M M M M M M M M M M M M M .M M , TABLE 6.2.1. THE TOTAL CATCH AfD PERCENT OF FISH LARVAE ENTRAINED AT NORTH Ata4A POWER STATION DURING 1978-1983. 1 j CATCH (23 1978 1979 1980 1951 1982 1983 TOTAL OSTEICHTHYES e CLUPEIDAE - HERRINGS DOR 050MA CEPEDIANUM - GIZZARD SHAD 514(43.23 1397t87.9) 941173.6) 1126164.2) 471151.11 733t 62. 31 5182865.51 ICTALURIDAE - BULLHEAD CA1 FISHES ICTALURUS PUNCTATUS - CHAte4EL CATFISH .I . 3 .I . 3 .I . 3 .I . 3 .I . I 14 0.13 'I t 0.01 PECCICHTHY10AE - TEMPERATE BASSES MOROHE ?.MERICAHA - SallTE PERCH 31 0.3) 568, 3.5) 91t 7.18 391t22.3) 293t31.8) 361130.75 1195t15.19 CEHIRARCHIDAE - SUNFISHES LEP0ftIS SFP. - SuffrISH 531(44.63 1121 7.05 161t12.61 1174 6.75 114t12.45 281 2.4) 1063t13.49 MICRCPTERUS SAtMOIDES - bpGEMOUTH BASS It 0.11 .I . 1 .I . l .I . l .i .1 .t . 3 It 0.09 POMOXIS HICROMACULATUS - BLACK CRAPPIE 121 1.01 6t G.48 13t 1.01 161 0.9) 61 0.78 291 2.51 82t 1.0)
... PERCIDAE - PERCHES PERCA F LAVESCENS - YELLCtl PERCit 130110.9) ISt 1.13 72t 5.61 103t 5.91 3 78 4.05 24t 2.09 364t 4.93 TOfAL 1191 1589 1278 1753 92% 1176 7908 r
Muu. W
TABLE 6.2.2 LARVAE ENTRAINED DURING SAMPLE DATES AT NORTH ANNA POWER STATION DURING 1978-1903. DISSOLVED OXYCEN #;MD TEMPERATURE VALUES ARE AVERAGES OF SURFACE' SAMPLES. DATE SPECIES CATCH VOLUME AVERACE AVERAGE flSH TEMPERATURE DISSOLVED (X1000) PUMPS PER CUBIC METER OXYCEN 780411 PERCA FLAVESCENS 7 5193 4.0 20.2 12.4 10.4 l l 780418 PERCA FLAVESCENS 99 $193 4.0 251.9 13.1 10.4 1 780425 PEPCA FLAVESCENS 4 9088 7.0 8.4 13.5 9.9 760502 PERCA FLAVESCENS 1 5193 4.0 2.6 13.7 10.2 780509 PERCA FLAVESCENS 8 5193 4.0 22.2 15.7 10.2 MORONE AMERICANA 1 5139 4.0 2.8 15.7 10.2 780516 POMOXIS NICROMACULATUS 2 7790 6.0 8.5 17.4 9.9 DOROSOMA CEPEDIANUM 1 7844 6.0 3.0 17.4 9.9 780520 NO LARVAE . . . . . . 780523 DOROSOMA CEPEDIANUM 54 5193 4.0 189.7 22.2 10.0 PERCA FLAVESCENS to 5193 4.0 35.8 22.2 10.0 POMOXIS NICROMACULATUS 5 5193 4.0 19.6 22.2- 10.0 780601 DOROSOMA CEPEDIANUM 169 7790 6.0 379.5 25.4 8.9 POMOXIS NICROMACULATUS 4 7790 6.0 8.7 25.4 8.9 MORONE AMERICANA 2 7790 6.0 4.5 25.4 8.9 LEPOMIS SP, 1 7790 6.0 2.0 25.4 8.9 PERCA FLAVESCENS 1 7790 6.0 2.0 25.4 8.9 780606 DOROSOMA CEPEDIANUM 208 7750 6.0 433.5 24.8 8.0 LEP0 Mis SP. 33 7790 6.0 '* 3 . 3 24.8 8.0 MICROPT ERUS SAL Mo t DES 1 7790 6.0 2.5 24.8 8.0 POMOXIS NICROMACULATUS 1 7790 6.0 1.9 24.8 8.0 780613 LEPOMIS SP. 70 7790 6.0 149.9 24.9 7.5 DOROSOMA CEPEDIANUM 57 7790 6.0 119.9 24.9 7.5 780620 LEPOHIS SP. 105 5193 4.0 268.2 26.2 8.3 00ROSOMA CEPEDIANUM 9 5193 4.0 19.3 26.2 8.3 780627 LEPOMis SP. 91 779n 6.0 200.3 27.3 7.9 DOROSOMA CEPEDIANUM 10 7790 6.0 19.4 27.3 7.9 780706 tEPOMis SP. 63 7790 6.0 156.9 26.0 7.1 DOROSOMA CEPEDIANUM 4 7790 6.0 8.2 26.0 7.1 780711 LEPOMIS SP. 108 7790 6.0 256.7 26.7 7.7 780718 LEPOMIS SP. 21 7790 6.0 60.1 27.1 8.0 DOROSOMA CEPEDIANUM 2 7790 6.0 5.0 27.1 8.0 e O N m m M M M MB M M M. M M M M M
POWER STATION DURING 1978-1983. DISSOLVED OXYCEN AND TEMPERATURE TABLE 6.2.2 L ARVAE EN TRAINED DURING SAMPLE DATES Af NORTil ANftA VALUES ARE AVERAGES Of SURFACE SAi:PLES. DISSOLVED VOL'JME AVERACE AVfRAGE FISH TEMPERATURE CATCH OXYCEN DATE SPEClES ( X1Ld30 ) PUMPS PER CUBIC METER 88.0 29.3 7.8 39 8763 6.8 780725 LEPOMIS SP. 3.3 11.7
. 3895 3.0 .
790301 NO LARVAE 3.0 4.9 11.5
. 3895 .
790308 NO LARVAE 3.0 6.0 11.9
. 3895 .
790315 NO LARVAE 9.7 12.7
. 3895 3.0 .
790322 NO LARVAE 3.0 10.1 11.6
. 3895 .
790329 NO LARVAE 5193 4.0 46.5 12.6 11.0 16 790411 PERCA FLWESCENS 2.0 3.5 14.0 10.1 1 2597 14.0 10.1 790419 MORONE AMERICANA 1 259T 2.0 3.5 PERCA FLAVESCENS 2.9 16.8 10.2 1 5193 4.0 790426 MORONE AMERICANA 8.5 17.4 10.2 3 4674 3.6 17.4 10.2 790503 MORONE AMERICAtJA 1 4652 3.6 2. 8? DOROSOMA CE PE DI ANUM 3.2 17.4 10.2 1 4674 3.6 PCM0XIS NICROMACULATUS 6.0 97.6 21.6 9.6 38 7790 21.6 9.6 790510 DOROSCHA CEPEDIANUM 7790 6.0 47.1 19 21.6 9.6 MORONE AMERICANA 2 7790 6.0 5.9 POMOXIS NIGROMACULATUS 3.3 21.6 9.6 1 7790 6.0 PERCA FLAVESCENS 4.0 870.7 21.4 8.8 330 5193 21.4 8.8 790517 DOROSOMA CEPEDIANUM 10 5193 4.0 25.8 MORONE AMERICANA 4.0 407.2 21.4 8.5 167 5193 21.4 8.5 790524 DOROSOMA CEPEDIANUM 5193 4.0 12.2 5 i ' HORONE AMERICANA 22.5 8.8 265 6491 5.0 ' 622.2 22.5 8.8 790531 DOROSOMA CEPEDIANUM 17 6491 5.0 42.9 MORONE AMERICANA 5.0 22.5 8.8 2 6491 5.0 8.8 L E POMI S SP. 4.6 22.5 2 6491 5.0 l POMOXIS NIGROMACULATUS 3895 3.0 573.3 24.4 8.8 223 17.1 24.4 8.8 790607 DOROSOMA CEPEDIANUM 6 3895 3.0 (EPOMIS SP. 4.0 460.1 24.3 8.5 199 5193 24.3 a.5 790614 DOROSOMA CEPEDIANUM 57 5193 4.0 157.1 LEPOMIS SP. 2.9 24.3 8.5 1 5193 81 . 0 POMOXIS NICROMACULATUS 4.0 204.0 23.3 8.3 81 5193 23.3 8.3 790621 DOROSOMA CEPEDIANUM 2 5193 4.0 4.9 LEPOHIS SP. D e-
ft f rI!'lf ' l,f ,' .( gfLl1 { I ,1I! nJ
'9 D 22 77 22 00 99 8 4 4 5 4 7 00 00 88 333 333 00 E . . . . .
VN 88 77 88 88 77 2 2 2 1 1 0 00 00 ?9 999 999 99 . E tE 1 1 1 1 1 1 11 1 1 _ R oG _ U SV T SX _ A I O R D E P M E T E R 99 99 00 00 66 1 5 7 4 0 22 00 99 0. O. 0 222 22 . U 33 33 77 82 77 4 5 T 9 1 3 33 77 55 999 000 22 O T 22 22 22 22 22 1 1 11 1 1 1 1 11 1 222 22 M A A R E N P E M C E Y T M O D R 28 68 38 66 94 7 73 00 24 673 730 88 E E . . . . . . . . . . . V T 1 8 45 59 52 72 7 82 78 00 304 91 9 81 L HE 21 22 21 43 7 2 5 1 41 44 63 84 O SM 1 1 1 2 S I S I FC I D TB CU
. AC 3 R 8 ER 9 VE 1 AP 8
7 9 E 00 00 00 00 00 0 0 0 0 0 0 00 00 00 000 000 00 1 GS AP 44 44 55 44 44 5 5 5 3 3 3 33 33 55 666 666 66 G PM N EU I VP R A U D M ) 33 33 11 33 33 1 1 1 5 5 5 55 55 11 000 000 00 0 E0 99 99 99 99 99 9 9 9 9 9 9 99 99 99 999 999 99 1 M0 1 1 11 44 1 1 11 4 4 4 8 8 8 P8 83 44 717 777 7T T U0 $5 S5 66 $5 $5 6 6 6 3 3 3 33 33 66 777 777 77 A L1 T OX S V( R E W O P A N H 37 00 18 83 71 . . . . . 7 21 53 64 092 944 29 N C $ 1 1 1 1 1 4 2 1 21 71 31 A T 1 A H C T R O N T A S E T A O E L P M . AS S S SE U U L T T GP M M M M M M M A M A i n hM U U U U U U U L U L t
!A N N N N N N N U N U N RS A A A A A S SA AS AA AAC AAC
- U I I I I I N NN NN NI I NA I NA IAAN DE D D D D D E EA AE AD DAM DAM DA C E E E E E C CC CC CE ECO ECO EC DA P P P F P S SI I S EP F1 R PI P P!
Ef E . E . E . E . .E E ER RE RE ERG ERG ER NR CP CP CP CP PC V VE L V IC CEI CE I CE U S S S S S E E E E E A M MA M ' 8 N MN M IAS A A A A A A A A A A E tA AL AA AA AA AA R S MS MS MS MS sM V V V V V T F F M M s M S M 1F E OI OI OI Ot iO R R R R R E E EO OEe OEI OE NO t SM SM SM SM MS A A A A A A AN NA NS S N <. SNX SN E C OO O E L L L C CO OC OO OOO OOO 0O S E RP P.V O RP OO OO RP OO OE PR L R PR RR RP RRM RRM OO OOO OOO O0 9f - EE P O E. OE OE EO O O O O O E I O OE AG S Dt DL DL DL I D N N N N N P PM MP MD DMP DMP DM VA RR AE LV E 8 5 2 9 7 6 3 0 7 2 0 7 4 1 S 5 2 A T 2 0 1 1 2 0 1 2 2 0 1 1 2 9 ^ 1 2 A 6 7 7 7 7 3 3 3 3 4 4 4 4 5 , 5 5
- 2. E D 0 0 0 0 U 0 0 0 0 0 0 0 0 0 0 0 0
- 2. R 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 A 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 6 8 6
S EE LU BL AA TV * (l ]ji{iI}ill , ;(i
m m 1 , s 1-- z- w 1978-1983. DISSOLVED OXYCEN ANO TEMPERATURE TABLE 2.2 LARVAE ENTRAINED DURING SAMPLE DATES AT NORTH ANNA POWER STATION DURING VALUfi ^5Et AVLRAGES OF SURFACE SAMPLES. TEMPERATURE DISSOLVED CATCH VOt tME AVERACE AVERACE FISH OMYGEM CATE SPECIES (X1000) PUMPS PER CUBIC FETER 580.6 23.9 9.1 217 3895 3.0 9.1 800529 DOROSOMA CEPEDIANUM 7 3895 3.0 19.6 23.9 18.6 ?3.9 9.1 LEPOMIS SP. 7 3895 3.0 9.1 MORONE AMERICANA 11.6 23.9 4 3895 3.0 POMOXIS NIGR0 MACULATUS 409.3 24.4 8.9 207 7790 6.0 S.9 DOROSOMA CEPEDIANUM 85.1 14.4 800605 41 7790 6.0 24.4 8.9 LE POMis SP. 7 7790 6.0 13.5 3,9 MORONE AMERICANA 6.0 as , 7 24.4 2 7790 PCM0Xis NICROMACULATUS 8.5 7.0 320.4 23.5 162 9088 23.5 8.5 800612 DOROSOMA CEPEDI ant.M 9088 7.0 67.7 34 3.7 23.5 8.5 LEPOMIS SP. 2 9088 7.0 MORONE AMERICANA 7.8 7.0 138.1 24.1 65 9088 7.8 800619 DOROSOMA CEPEDIANtM 7 9038 7.0 16.5 24.1 1.8 24.1 7.8 LEPOMis SP. 1 9038 7.0 MORONE AMERICANA 7.8 7.0 43.1 25.0 21 96?S 25.0 7.8 800626 LEPOMIS SP. 9069 7.0 33.3 l 18 DOROSOMA CEPEDIANUM 7.3 61.7 26.4 30 9737 7.5 26.4 7.3 800702 DOROSOMA CEPEDIANUM 9737 7.5 42.7 19 2.6 26.4 7.3 LEPOMiS SP. 1 973F 7.5 POMOXIS NICROMACULATUS 7.0 10386 8.0 39.3 ?6.9 17 26.9 7.0 800710 t[POMis SP. 5 10386 8.0 9.3 DOROSO.4A CEPEDIANUM 7.4 4.5 28.9 2 9088 7.0 28.9 7.4 ; 800717 DOROSOMA ;- E EDI ANUM 9038 7.0 5.4 l 2 L E POM I S ST. 7.5 7.0 1 T.5 28.9 8 9088 800 72es t E POMI S SP. 7.6 7.0 11.9 29.5 5 9088 800731 LEPOMIS SP. 11.9 3.0 6.7
. 3895 .
810305 NO LARVAE 11.6 3.0 7.2
. 3895 .
810312 NO LARVAE 11.3 7.0 3895 3.0 . 810319 NO LARVAE 11.4 7.5
. 6816 5.3 .
810326 NO LARVAE 10.9 7.0 43.4 12.1 19 9088 810402 PERCA F LAVE SCE NS so.3 8.0 69.5 13.0 33 10386 810409 PERCA FLAVESCENS e Gs
t i TABL E 6.2.21)RVAC ENTRAINED DURING SAMPLE DATES AT NORTH ANNA POWER STATION DURING 1978-1983 DISSOLVED OMYGEN AND TEMPERATURE I VALUES ARE AVERACES OF SURFACE SAMPLES. [ 1 ; 4 DATE SPECIES CATCH VOLUME AVERACE AVERAGE FISH TEMPERATURE DISSOLVED 1 (X1000) PtMPS PER CUBIC METER OXYGEN [ 1 810415 PfPCA FLAVESCfNS 50 9088 7.0 101.3 13.9 10.1 MORONE AMERICANA 1 9088 7.0 1.9 13.9 10.1 810423 MORONE AMERICANA 31 9083 7.0 6ft . 4 16.0 9.7 PERCA FLAVESCENS 1 9088 7.0 2.3 16.0 9.7 i ! i
- 810'430 NOFONE AMERICANA 63 9088 7.0 141.1 18.0 9.4 i
DOROSOMA CEFEDIANUM 11 9088 7.0 2 es , 3 18.0 9.4 i i 810507 MORONE AMERICANA 118 10386 8.0 262.3 18.4 8.8 DOROSOMA CEFEDIANUM 72 16386 8.C 161.0 18.4 8.8 POMC.ilS NIGROMACULATUS 1 10386 8.0 2.1 18.4 8.8 I 810514 DOROSOMA CEPEDIANUM 165 5193 4.0 419.3 19.7 8.9 MORONE AMERICANA 65 5193 4.0 169.1 19.7 8.9 l POMOX,15 NICROMACULA1US 1 5193 4.0 2.8 19.7 8.9 l ! 810521 DOPOSOMA CEPEDIANUM 331 9088 7.0 714.0 18.9 8.8 ! MORONE AMERICANA 77 9088 7.0 164.1 18.9 8.8 POMOXf5 NIGROMACULATUS 3 9088 7.0 7.1 18.9 8.8 810528 DOROSOMA CEPEDIANUM 288 10366 8.0 588.3 22.7 8.4 MORONE AMERICANA 25 10386 8.0 $1.9 22.7 8.4 i FOMOxts NIGROMACULATUS 1 10386 8.0 2.3 22.7 8.4 l l 81060'4 DOROSOMA CEPEDIANUM 85 9088 7.0 218.3 23.6 8.4 ! MORONE AMERICANA 6 9088 7.0 16.3 23.6 8 . ta ! LEPOMIS SP. 1 9088 7.0 2.7 23.6 8.4 l 810611 DDROSOMA CEPEDIANUM 119 8763 6.8 296.7 26.2 7.9 POMONIS NIGROMACULATUS 6 8828 6.8 15.8 26.2 7.9 [ ! MORONE AMERICANA 5 8828 6.8 14.2 26.2 7.9 l LEPOMIS SP. 3 8828 6.8 7.8 26.2 7.9 810618 LEPOMis SP. 55 10386 8.0 148.3 28.7 7.5 ! DOPOSOMA CEPEDIAf4UM 11 6 10386 8.0 89.0 28.* 7.5
- POMOXIS NIGROMACULATUS 4 10386 8.0 10.4 28.7 7.5 l
l 810625 tEPOMIS SP. 5 9088 7.0 28.0 28.6 7.7 DOROSOMA CEPEDIANUM 3 9088 7 . 0- 9.2 28.6 7.7 f I 810702 LEPnMIS Sr. 11 9088 7.0 20.4 ?6.8 7.1 DOROSOMA CEPEDIANttM 4 9088 7.0 6.7 26.8 1.1 810709 EEPOMis SP. 8 9088 7.0 17.9 28.3 7.6 DOPOSOMA CEPEDIANUM 3 9088 T.0 6.0 28.3 7. 6 [ i I r f I l e t r~ t
.~ ~_._,_s.._ - - - - . _ - .-. ---_._ _ - - -- - - _ _ - - - . .-- -__ --- -
W m M M M W W W m W W m M W _._ _.l r TABLE 6.2.2 LARVAE ENTRAINED DURING SAMPLE DATES AT ff0RTH ANNA POWE84 STATION DURING 1978-1983. DISSOLVED OXYGEN AND TEMPERATURE VALUES ARE AVERAGES OF SURFACE SAMPLES. DATE Sf"ECIES CATCH VOLUME AVERAGE AVERACE FISH T EP'PE R AT UR E DISSOLVED l tX1000} PUMPS PER CUBIC MEttR OXYGEN 810716 LEPOMIS SP. 24 9088 7.0 50.7 28.1 7.4 DGROSOMA CEPEDIANUM 4 9085 7.0 7.6 28.1 7.4 810723 LEPOMIS SP. 8 9088 7.0 21.2 28.8 T.9 810730 LEPOMIS SP. 2 9088 7.0 4.6 28.4 7.3 820304 . 7790 6.0 . 8.0 11.3 i 820310 . 3895 3.0 . 8.0 11.7 i l 820311 . 3895 3.0 . 8.0 11.7 } 820317 . 5193 4.0 . 10.5 10.4 l, i j 820318 . 5193 4.0 . 10.9 T1.7 8203?4 . 5193 4.0 . 11.0 11.0 820325 PERCA ELAVESCENS 5 5193 4.0 14.8 12.0 11.1 820401 PERCA TLAVESCENS 1 5193 4.0 2.8 10.3 10.5 320407 PERCA FLAVESCENS 21 5193 4.0 60.6 10.1 10.6 $' 820415 PERCA F LAVE SCE NS 5 3895 3.0 15.9 12.8 10.4 820422 MORONE AMERICANA 22 3895 3.0 72.8 14.0 10.3 I PERCA FLAVESCENS 3 3895 3.0 10.0 14.0 10.3 i DOROSOMA CEPEDIANUM 1 3895 3.0 3.3 14.0 10.3 1 8?ota29 MORONE AMERICANA 22 3M95 3.0 75.4 16.2 9.4 PERCA FLAVESCENS 2 3895 3.0 6.2 16.2 9.4 4 DOROSOMA CEPEDI ant'M 1 3895 3.0 3.2 16.2 9.4 820506 MORONE AMEPfCANA 77 3895 3.0 302.3 19.3 9.6 DOROSOMA CEPEDIANUM 12 3895 3.0 47.9 19.3 9.6 I' LE POMIS SP. 4 3895 3.0 15.1 19.3 9.6 820513 MORONE AMERICANA 126 3895 3.0 393.5 22.0 9.3 31 3895 9 T.4 DOROSOMA CEPEDIANUM 3.0 22.0 9.3 LEPOMis SP. 8 3895 3.0 26. 3 22.0 9.3 POMOXIS NIGR0 MACULATUS 1 3895 3.0 3.4 22.0 9.3 1 820520 DonoscMA CEPEDeANUM 46 7790 6.0 120.6 22.9 8.6 MOHONE AMERICANA 34 7790 6.0 93.1 22.9 8.6 L E POM i s SP. 3 7790 6.0 7.7 22.9 8.6 ! (': POMOXIS NIGROMACULATUS 1 7790 6.0 3.7 22.9 8.6 4 i O 1 l
!. i 1
i {flj> l ([ kl f. f o& m D 7777 333 555 6 77 a s 99 11 3 0 8 7 0 8 8 6 44 E . . . . 4. t.a. . . VN E R LE OG 8888 888 888 8 88 888 77 88 8 8 1 1 1 1 1 1 0 0 0 00 1 1 1 1 1 M U SY T SK A I O R D E . P M E E 0000 222 444 8 77 000 44 77 0 3 8 3 2 8 7 44 M T R . . 8 . U 2222 555 333 3 55 777 77 88 9 9 7 9 0 0 0 2 22 D T 2222 222 222 2 22 222 ?2 22 2 2 1 1 1 1 1 1 N A A R . N E P M E M C E Y T X O . D E a R 2 4. t. 7 E 993 516 1 02 516 28 62 5 8 3
. 4 68 M 074.
V T 7534 632 1 06 512 02 96 4 6 9 1 62 L t i E 471 812 11 $ 67 41 3 1 2 22 O SM 1 2 4 1 S I S I D FC EB CU B m AC 3 R - 8 ER 9 VE 1 8 7 AP m 9 E F 00,O 000 000 0 00 000 00 00 0 0 0 0 0 0 0 0 00 1 CS 3 3 3 ?,. . AP 333 333 3 44 444 44 33 3 3 6 6 6 6 6 3 33 G RM N I R EU VP A 4 U D N ) 5555 555 555 5 33 333 33 55 5 5 0 0 0 0 0 5 55 - O I T A E0 9999 999 999 9 M0 U0 L1 8888 3333 888 333 888 333 8 3 99 999 99 97 9 1 1 1 1 1
$5 $55 5$
1 1 88 33 8 3 9 9 9 9 9 9 8 3 7 7 7 7 7 7 7 7 7 7 9 8 3 99 88 33 4 T OX S V( R. J I? t W A N H 7341 897 641 9 22 431 91 92 1 2 . . . . 4 8 09 N T A H C T A C 42 2 1 4 1 1 22 1 2 1 W R N O W T A S S E T A D E L M P M . AS S SE U GP L M A U T L M U M U MM U U M U M U MM U U M INM A N U N N N N N N N N RS A CA AA A A A A A A A A S S SA U I AN I N AI N I I I N I I I N N NN DE D MA DA D A D D D A D D D E E EA DA EF NR IU C E F E .GR CPI E OC RI SNM EC PI ER . CEP MS E P E . CPE SM C E I R P E C E P E CP. CPE S E P E SM C I
.R E
P
.E PC PC C S S .E E
P E E P P S E E C C CC S S E V V E SI ER VE m L E A A AM AS A A AA A A A A A A A A A A A A A L L LA R S mss M S M5 M MS MS sM 5M M 5 V V V V F F F Tf E OiIE OEI ole O OI OIE iO 1 O O f R R R R .E NO SMXN SNM SM SMN MS E EE S I C E P OOOO OOO OoO O OO OOO OO RPMR OEOO RRP OOE OEO St N t RrR R S O RP OE RPR OEO PR O 4S J
.f tu S M A A A O
R O P L O O L O O L A L A A AN C C CO R R PR M tO O E E E IO AG S DLPM DML DLM D DL DLM E. D iD f O t N N N N P P PM VA RR AE LV E A T A 7 2 5 3 0 6 0 1 6 7 1 6 6 ts 2 1 0 7 8 0 7 5 7 1 2 2 2 0 1 9 7 3 3 0 1 3 7 1 3 3 2 3 0 3 3 7 0
+
4 1 4 M
- 2. E D 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 80 U R 2 2 2 2 2 ? 2 2 2 2 3 3 3 3 3 3 3
- 2. A 8 8 B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6
S EE t 0L U M AA 1V m I
M E E 1978-1983. DISSOLVED OXYCEN AMD TEMPERATURE TABLE 6.2.2 LARVAE ENTRAINED DURIMC ?>J4PLE DATES AT NORTH ANNA POWER STATION DURING I VALUES ARE AVERAGES Of SURFACE SAMPLES. DISSOLVED AVERACE AVERAGE FISH TEMPERATURE CATCH VOLUME OXYCEN DATE SPECIES ( X1000) PUMPS PER CUBBC METER 40.4 12.0 10.2 16 3895 3.0 10.2 830421 MORONE AMERICANA 3.0 5.3 12.0 2 3895 PE RCA FLAVESCENS 105.1 14.3 10.8 39 3895 3.0 830428 MORONE AMERICANA 3.0 53.0 18.0 9.9 20 3895 9.9 l 830505 MOR6NE AMERICANA 6 3895 3.0 15.5 18.0 j DOROSOMA CLPEDIANUM 5193 4.0 4?3.8 19.8 9.7 146 9.7 830512 MONONE AMERICANA 131 5193 4.0 397.5 19.8 i DOROSOMA CEPEDIANUM 4.0 81.4 19.8 9.7 l 28 $193 19.8 9.7 I POMOXIS NICROMACULATUS 5193 4.0 9.2 3 L E P0H I S SP. 3.0 144.4 18.7 9.1 55 3895 18.7 9.1 830519 DOROSOMA CEPEDIANUM 3895 3.0 102.5 39 MORONE AMERICANA 428.1 21.T 8.9 201 9088 T.0 21.7 8.9 830526 DOROSOMA CEPEDIANUM 9088 7.0 70.8 37 MORONE AMERICANA l T. 0 181.3 21.9 8.9 89 9088 21.9 8.9 830602 DOROSOMA CEPEDIANUM 8 9088 T.O 15.3 MORONE AMER 6CANA 7.0 2.2 21.9 8.9 1 9088 LE POMis SP. 7.0 180.9 24.0 8.4 94 9088 24.0 8.4 830609 DOROSONA CEFEDIANUM 16 9088 7.0 30.8 MC"OftE AMERICANA 2.2 24.0 8.4 1 9088 7.0 LEPOMIS SP. 169.5 27.7 7.7 87 9088 7.0 2 T. 7 7. 7 830616 DOROSOMA CEPEDIANUM 11 9t188 T.0 25.4 MORONE AMLRICANA 7.0 1.4 27.T 7.7 1 9088 LEPOMIS SP. 8.0 78.1 2 T.3 6.9 42 10386 27.3 6.9 830623 DOR 050MA CE PE D I ANUM 11 10386 8.0 29.4 MORONE AMERICANA 8.0 7.5 27.3 6.9 3 10386 27.3 6.9 LEPOMis SP. 1 10386 8.0 1.8 ICIALURUS PUNCTATUS
- 3.0 27.3 6.9 1 10386 8.0 POMOXIS HlCROMACULATOS 39.1 26.8 7.2 20 10386 8.0 7.2 830630 DOf<0 SOMA CE PE DI ANUM 10386 8.0 10.5 26.8 MORONE AMLRICANA 8.0 21.5 27.4 T6 10 10386 27.4 7.6 830707 tEFOMis SP. 4 10386 8.0 6.8 DOROSOMA CEPEDIANUM 8.0 2.0 27.4 T.6 1 10386 MOPONE AMERICANA 14.9 .-") . 4 T.9 8 10386 Is . O 7.9 830714 LE POMis SP. 10386 8.0 5.2 29.4 4 29.4 7.9 DOROSOMA CEPEDIANUM 10386 8.0 3.8 2
MOFONE AMERICANA e 4
l ! TABLE 6.2.2 LARVAE E*iTRAINED DURING SAMPLE DATES AT NORTH ANNA POWER STATION DURING 1978-1983. DISSOLVED OXYGEN AMD TEMPERATURE VALUES ARE AVERACES OF SURFACE SAMPLES. j DATE SPECIES CATCH VOLUME AVERAGE AVERACE FISH TEMPERATURE DISSOLVED (X1000) PUMPS PER CUSIC METER OXYGEf 1 L 830721 LEPOMIS SP. 1 9088 7.0 2.1 31.0 7.$ MOROME AMERICANA 1 9088 7.0 3.7 31.0 7.5 830725 NO LARVAE . 10062 7.8 . 28.7 6.6 r 1 i I I 4 i I l n i 1. 1 ! 4 > o G l l l 1 i t
POWER STATION , 1978-1983. TABLE 6.2.3. TOT AL LARVAE COtt ECTE D BY YEAR AND SAMPLE TIME AT NORTH ANNA 1200 % 1800 % 2400 % TOTAL YEAR SPECIES HOURS: 0600 % 63 12.3 95 18.5 266 51.8 514 78 DOROSOMA CEPEDIANUM 90 17.5 108 20.3 531 80 15.1 199 37.5 144 27.1 LEPOMIS SPP. 1 100.0 1 MICROPTERUS SAtMOIDES 3 100.0 3 MOROf!E AMERICANA 35 26.9 46 35.4 35 26.9 130 PERCA FLAVESCENS 14 10.8 8.3 12 4 33.3 6 50.0 1 8.3 1 POMOXIS NICROMACULATUS 286 24.0 413 34.7 1191 TOTAL 188 15.8 304 25.5 167 12.0 33T 24.1 740 53.0 1397 DOROSOMA CEPEDIANUM 153 11.0 112 79 16 14.3 26 23.2 37 31.0 33 29.5 LEPOMIS SPP. 13 23.2 11 19.6 29 51.8 56 3 5.4 MORONE AMERICANA 3 16.7 13 72.7 2 11.1 18 PERCA FLAVESCENS 3 50.0 2 33.3 6 POMOXIS HIGROMACULATUS 1 16.7 806 50.7 1589 176 11.1 219 13.8 388 24.4 TOTAL 106 11.3 158 16.8 462 49.1 941 eo DOROSOMA CEPEDIANUM 215 22.8 24 14.9 161 18 11.2 55 34.2 64 39.8 IEPOMIS SPP. 14.3 8 8.8 16 17.6 54 59.3 91 MORONE AMERICANA 13 72 17 23.6 19 26.4 3 4.2 33 45.8 PERCA FLAVESCENS 2 15.4 6 46.2 1 7.7 13 POMOXIS HlGROMACULATUS 4 30.8 1278 190 14.9 247 19.3 574 44.9 total 267 20.9 277 24.6 533 47.3 11?6 81 DOROSOMA CEPEDIANUM 173 15.4 143 12.7 8.5 117 43 36.8 38 32.5 26 22.2 to IEPOMis SPP. 13.6 57 14.6 114 29.2 167 42.7 391 MORONE AMERICANA 53 35 34.0 103 15 14.6 12 11.7 41 39.8 PERCA FEAVESCENS 5 31.3 5 31.3 4 25.0 16 POMOXIS NIGROMACULA1US 2 12.5 1753 286 16.3 255 14.5 463 26.4 749 42.7 TOTAL 66 14.0 28 5.9 289 61.4 471 82 DOROSDMA CEPEDIANUM 88 18.7 21 18. fs 114 31 27.2 52 45.6 10 8.8 t E POM I S SPP. 58 19.8 43 14.7 163 $5.6 293 MORONE AME RICANI. 29 9.9 17 45.9 37 3 8.1 10 27.0 7 18.9 PE RCA F LAVE SCE NS 2 16.7 1 16.7 6 POMOXIS NICROMACULATUS 2 33.3 33.3 1 491 53.3 921 153 16.6 188 20.4 89 9.7 TOTAL 215 137 18.7 241 32.9 733 83 DOROSOMA CEPEDIANUM 140 19.1 29.3 1 100.0 1 ICIALURUS PUNCIATUS 13 46.4 8 28.6 4 14.3 28 t E POMIS SPP. 3 10.7 361 62 17.2 133 36.8 57 15.8 109 30.2 MORONE AMfRICANA 12.5 5 20.8 6 25.0 24 PE RCA FLAVESCENS 10 41.7 3
?9 1 3.4 18 62.1 3 10.3 7 24.1 POMOXIS HIGROMACULATUS 382 32.5 210 1 T.9 368 31.3 1176 TOTAL 216 18.4 1538 19.4 1683 21.3 3401 43.0 7908 GRAND TOTAL 1286 16.3 ,o 4i useammmmmmu m
TABLE G.2.4. TOTAL LARVAE COLLECTED BY SPECIES AND SAMPLE TIME AT NORTH ANNA POWER STATION , 1978-1983. SPECIES YEAR 0600 % 1200 % 1890 % 2400 % TOTAL COR?SONA C[P[DIANUM 78 90 17.5 63 12.3 95 18.5 266 51.8 514 79 153 11.0 167 12.0 337 ?4.1 740 53.0 1397 ! 80 215 22.8 106 11.3 158 16.8 462 49.1 941 51 173 15.4 143 12.7 277 24.6 533 47.3 1126 82 88 18.7 66 14.0 28 5.9 289 61.4 471 83 140 19.1 215 29.3 137 18.7 241 32.9 733 , TOTAL 859 16.6 760 14.7 1032 19.9 2531 48.8 5182 i
- T,yrR4S PONCTATUS 83 1 100.0 1 TOTAL 1 1G0.0 1 t
tt'PUM15 SPP. 78 80 15.1 199 37.5 144 27.1 108 20.3 531 79 16 14.t 26 23.2 37 33.0 33 29.5 112 80 18 11.2 55 34.2 64 39.8 24 14.9 161 81 43 16.8 38 32.5 26 22.2 to 8.5 117 82 31 27.2 52 45.6 10 8.8 21 18.4 114 83 3 10.7 13 46.4 8 28.6 4 14.3 28 IOTAL 191 18.0 383 36.0 289 27.2 200 18.8 1063 i MICROPTLP"S SALM01 DES 78 1 100.0 1 t TOTAL 1 100.0 1 i i
)
MOROME AMERICANA 78 3 100.0 3 79 3 5.4 13 23.2 11 19.6 29 51.8 56 80 13 14.3 8 8.8 16 17.6 54 59.3 91 81 53 13.6 57 14.6 114 29.2 167 42.7 391 82 29 9.9 58 19.8 43 14.7 163 55.6 293 83 62 17.2 133 36.8 57 15.8 109 30.2 361 TOTAL 160 13.4 269 22.5 241 20.2 525 43.9 1795 PERCA FLAVESCENS 78 14 10.8 35 26.9 46 35.4 35 26.9 130 79 3 16.7 13 72.2 2 11.1 18 80 17 23.6 19 26.4 3 4.2 33 45.8 72 81 15 14.6 12 11.7 41 39.8 35 34.0 103 82 3 8.1 10 27.0 7 18.9 17 45.9 37 , 83 10 41.7 3 12.5 5 20.8 6 25.0 24 ! TOTAL 62 1( .1 92 24.0 102 26.6 128 33.3 384 . POM0xlS NIGEDMACULATUS 78 4 33.3 6 $0.0 1 8.3 1 8.3 12 t 79 1 16.7 3 50.0 2 33.3 6 i 80 4 30.8 2 15.4 6 46.2 1 7. 7 13 : 81 2 12.5 5 31.3 5 31.3 4 25.0 16 . 82 2 33.3 2 33.3 1 16.7 1 16.7 6 ! l e3 i 3.4 18 62.1 3 10.3 7 24.1 29 l TOTAL 14 17.1 33 40.2 19 23.2 16 19.5 82 CRAND TOTAL 1286 16.3 1538 19.4 1683 21.3 3401 43.0 7908 I t O I i
T ABL E 6.2.5. TOT AL LARVAE COLLECTED Bf SPECIES AND SAMPLE DEPTM AT NORTH ANNA POWER STATION, 1978-1983. PERCEN. MIDDLE BOTTOM FERCE NT TOTAL YEAR SPECIES SURFACE PfRCENT 100 19 296 58 118 23 514 78 DORDSOMA C5PfDIANUM 14 56 11 531 LEroMis SPP. 403 76 72 1 100 0 0 0 0 1 MICROPTERUS SALMOIDES 100 0 0 3 O O 3 MORONE AMfRICANA 24 TB 130 86 66 20 15 PERCA FLAVESCENS 8 4 33 12 POMOXIS NICROKACULATUS 7 58 1 17 1191 597 50 392 33 202 TOTAL 408 29 478 34 Sid 37 1397 79 DOROSOMA CEFEDIANUM 16 10 9 112 84 75 18 LEPOMIS SPP. 46 14 25 56 MORONE AMERICANA 16 29 26 18 15 83 2 11 1 6 PERCA FLAVESCINS 17 0 0 6 POMOXIS NIGROMACULATUS 5 83 1 33 525 33 536 34 1589 TOTAL 528 111 12 463 49 367 39 941 80 DOROSOMA CEPEDIANUM 8 15 9 161 133 83 13 L E POMis SPP. 36 41 iS 91 MORONE AM[RICANA 17 19 33 9 13 ?3 32 72 PEltCA FLAVESCfHS 40 56 13 10 77 2 15 1 3 POMOXIS NIGROMACULATUS h47 35 1278 10TAL 311 24 520 41 19 473 42 434 39 1126 81 DOftOSOMA CEPf DI ANUM 219 8 117 102 87 6 5 9 LEPGMIS SPP. ??9 33 ?3? 35 391 MORONE AMIRlCANA 125 32 72 18 17 il 11 103 PERCA FLAVESCfNS 74 16 14 88 1 6 1 6 POMOXIS NIGROMACULATUS 36 592 34 1753 TOTAL 534 30 627 13 186 39 ??2 47 471 82 DOROSOMA CIPE DI ANUM 63 114 I 92 81 12 11 10 9 (IPOMIS SPP. 42 87 30 83 28 293 MORONE AMERICANA 123 3T 17 46 8 22 ' 32 PtitCA F L AVESCE NS 17 J O 6 POMOXIS NIGROMACULATUS S 83 1 300 33 294 32 327 36 921 TOTAL 276 38 311 42 733 83 DOROSOMA CEPIDIANUM 146 20 O O O O 1 100 1 ICIAtHHUS PUNCTATUS 8 29 4 14 28 IEPOMIS SPP. 16 57 361 154 43 105 29 102 28 MOHONE AMERICANA 13 7 29 24 PERCA FLAVESCENS 14 58 3 29 19 66 10 34 0 0 POMOXIS NIGPOMACULATUS 34 425 36 1176 TOTAL 349 30 402 2619 33 2760 35 2529 $2 7908 GRANO TOTAL 8
I l' TABLE 6.2.6. TOTAL LARVAE COLLECTED BY YEAR AND SAMPLE DEPTH AT PsGRTH ANNA POWER STAT 10M, 1978-1983. SPECIES YEAR SURFACE PERCENT MIDDLE PERCENT BOTTOM PERCENT TOTAL 00ROSOMA CEPEDIANUM 75 100 19 296 58 118 23 514 79 408 29 478 34 511 37 1397 80 111 12 463 49 367 39 941 81 219 19 473 42 434 39 1126 82 63 13 186 39 222 47 471 83 146 20 276 38 311 42 733 YOTAL TCIAL 1047 20 2172 42 1963 38 5182 4CTALUMUS PUNCTATUS 83 0 0 0 0 1 100 1 TOIAL TOTAL 0 0 0 0 1 100 1 LEPOMIS SPP. 78 403 76 72 14 56 11 531 79 84 75 18 16 to 9 112 80 133 83 13 8 15 9 161 81 102 87 6 5 9 8 117 82 92 81 12 il 10 9 114 83 16 57 8 29 4 14 28 10TAL TOTAL 830 78 129 12 104 10 1063 MICROP1ERUS SAtMOIDES 78 1 100 0 0 0 0 1 TOTAt 10TAL 1 100 0 0 0 0 1 MORONE AMERICANA 78 0 0 3 100 0 0 3 79 16 29 26 46 14 25 56 80 17 19 33 36 41 45 91 81 125 32 129 33 137 35 391 l 82 123 42 87 30 83 28 293 83 154 43 105 29 102 28 361 10TAL TOTAL 435 36 383 32 377 32 1195 , PERCA FLAVESCENS 78 86 66 20 15 24 18 130
- ' 79 15 83 2 11 1 6 18
' 80 40 56 9 13 23 32 72 81 74 72 18 17 11 11 103 i 82 17 46 8 22 12 32 37 ,' 83 14 58 3 13 7 29 24 j TOTAL TOTAL 246 64 60 16 78 20 384 , POMOXIS MiCROMACULATUS 78 7 58 1 8 4 33 12 l 79 5 83 1 17 0 0 6 i 80 10 77 2 15 1 8 13 1 81 14 88 1 6 1 6 16 l 82 5 83 1 17 0 0 6 83 19 66 to 34 0 0 29 ! T0TAL TOTAL 60 73 16 20 6 7 82 GRAND TOTAL 2619 33 2760 35 2529 32 7908 1 l 1 1 1 i l PJ l
- llll v -0L:.
e P4 60 98 k'T F; 3 6 O l '.52D"I 8 9
- 769' - I 'f>I f. , 3?*9'0 '6 - - -
- D U 's.)
I i - M . U0 ,'- 9 )' T,<" 7" 5 I ,' " " . , = .33' N,,;' T i1
- A I f>7 ' i 1 I '
~ ^, M' 8: '
w T S R L E C) 1' 1 I ' 1 E r0 4
= W i 0 m
m O D 0, P I u n F 0 u A N0 N O 0, N C A I RX y T H R 0 U f[ P P 4 f T A .
)
f.4 2, I- 3I06 1 3 b0 I #*
- r. D .U - - I- I- I II m
3 8 9 1 f C. l O O 0s 66"02I I 9 3 1 23 I
*9-3. O. I-0 0 6 pd O I
3 3#I 1' I 6
-S. O #'-
Ik-U 'D 'I I
' ' 9 t
r 9793UD 31 2 O 8
- -O. 8 0. ?. F'*
9U*s623& 3 3 I
- A0 6 1 t 0 7
9 i 0, T 1 SI D D f l t t TX ( A R 3 2 .5 i,.s b- U 3 '4 8"21 #' D4 9I 31 I t i 69.I- 2 - D '8
. . - 6. ?* - - I. 3 - . - * - . 88 5. I- - - - - - - ,66.I-N H 36UUI I 9 I951 UI ts U5 38D3?3 ') 0 BIO 9 7U331 FI L I 55 I 2 I I 9 2" I '41 * > I 3 31 2 # F 3 I L 7 I I I 2 I E
A E V C) R N0 A I 0 ( D 0, l R f0 O N0 F O C 0, S 1 i RX Mw E ( i I o L t L C ti E D l f 4 0 C
. S S S S S S "5 S U U U U U U T
9 I T I i I I M D A M A M A M A M A MS A D U l L U B U L U t u L UU L f fe O U i f U N U N U N U NT U T A MA5C A ASC A A5C A ASC A ASC AA ASC A t lt4 4 f A I NNA I NF4 A4 I t4 NA 1 f4 F4 A 1 I NNA t D D AEM D D D AEt * ) C i CCAfM u I AAfM AI t t 4 AI t CCO ,C IC SRo C O I P .SCCO ISi t P .CCO I I SR f P .CI CSNO P ,I Si t P ,I SR I f PU S fPSRf G IPHfG fPHfG lPRfG tpRI G I - PRfG S CPUl Vl CP I Vi CPI Vl CPiVf CPI Vi C l pI VI A SHt iAi f SMAN SMAt i Stt AN sMA4 r SsMAN A f At A AI A Al A Al A A1 AU At D4 S I t f S1 ol Pt d i 5 3 4 M S [ IS i MS i S OI E tO 5, ('lS t 1 MS 1 5 f 1 Mt< s oui [ I S I f A I St 0r Axg t oC0g 4 MIHNAXL SMNA t S4 t A4t t 4 Vnf AXt Stmt 4 OA r A% L C OC0A OOOC nIOIoA Ool O O o O C 0 ,3 O O O ;u iuA S C t 4y t : 4 1 Rl f 1 Y PPPf Og Ot t 9n Rpl f t ! i ! T ( PMI M NCI PPCml fO9 I ot toO ioCiOt I g MPPIOC P OioE 0 Og oto0 f l S O1t Dl i tuPPy t [ f) ( ttt PPT Dt nP5 4 DtMPP1 Dg t t PP1 t A, t s i S P. 9 0 1 , 3 T A 1 8 6 g 8 r
. Y 7
2 6 C t B A I I !!!llj.! ll 11(
c 104 5' C L w. e Nr-- - , ^ & +
..-*m .7IN -$- Qm m)% Nk I",M_'.j,h j. %["' [QR .'> ' e _ ,C' m' , . .s.h'.5h'h Y;D ?,:.f _3 m__. .Y , , ih 5
h m-m
, , e_'k- . E ..m_. .._. _
4 , LJ
. l t 1 Q .a 1 LJ ,
cl. 3]. , g - , - . - ., . _-
,7 ... e e -, - ,- , , u 1
( p
'o s s a d 4: . '.it:RS ' ,m.s m .. m'T d :R : S 9:.
h
?{ .s.
S' .m.8
- S Mi *1 ,l W :s..
=( m _. . mm ..
O M CD ,
*C , - , , m ,. -- m n , L 0 '
h, . I % -*- a '5.'I.kk$$h$'$$ki!!N$hhm.
$ $_ g Ls ?
w k.l M ... m 4 k (s' s')sk s h E.
. e E[
_. D,a-kkb[#___ .
$ ,20$ _@s'lih'.'
N!!'I'.'s'D. !$$
... s ;
EN'~ a g CL
~ ,.
La i- E fl. - r . ,... ,.,. . ,__ _ .. ..e.,, 'E
- k R b..- N bb '
'~
E S J> $ 4 @Dssi%3$fk2sid4dMMB!!E!!! sis.t$'M!s!$;MBE!.$ c 8 b C U C) G-L.
>-. U -e .** 4 U*
4* p a'T -O
-* 17N M lN-4%s,b' . - s[ 7 'fr'!I .'.e <,. dss ~'
r-
- Z t--
~ %l %$
Eh aw .., N'a !$. $$h :':scF:.. .b.. . , H WW
,,,,,)
D s at g q .7 y ,_ ,.T ~ m 'vr i., ......, , , , , gt 3 . . . . , , , T rrf't7 'r '"*" 'T ' ' ' ' ' ' ' ~ O " h O 4., e O O O O O O C C C U 3
. *:" O in O in O O C in LJ
- 4. U 'T M M CJ C4 e- e- G g ~: t &
Ur
.-( U C
OJ. 3
>= k ta 0: 0 3 g
cx O ~* L-
-)
O p. E *C l
) .
. ..m s =.
e t-3 S.
\ - \
(
\ ,, # ~~., . /,,, - ,s" p/ / / -
U '.<", .
/ ,- ' /
U C. ,#s - 7, O N t ' U s's
- s, f.:
<f 's U U N t ~ ) 'N,' f Z 's t h_
u 's s L U N,
- 4 's
> i C N ?f.
b b
= f e r L- vi F j'
L. U3 o en 4 u o3 d L & QN '. r -
""E cn De '.
Z ., I 4o t-
>- p -
O <t '- t- H t!) ! O U [r . l 6-- LJ
*C 3
_ rr nqvs m'"'Ter-r n--trp tmr r- g v, , , ; r, ern g , ,-w q ,
-rq n , nn 3, -r, , y-i ? f,'
dOQ, o o o o e e c e e O c g 'T C4 O CO O *t c. C- ? c4 - - - g ca c4 - e Ub Cd 4 CJ dw LJ l% CE a-u kH-:t <> w - x .c c c -e t c ,- _g
<.D L *T
106 7.0 IMPACT ASSESSMENT 7.1 Impingement The impact of impingement during this 5-year 9-month study period on the Lake Anna fishery will be discussed from three perspectives: (1) comparison of inpingement losses by major species with total lake standing crop derived from rotenone estimates; (2) comparison of losses due to impingement by major species with the average fecundity of these species and; (3) comparison of impingement losses with creel losses, when available. Impingement rates are related to fecundity, the general tenn used to describe the number of eggs produced by fish (Lagler, et al.1962). The number of eggs produced by an individual female varies according to a great many factors including age, size, environmental condition, and species. Some eggs are buoyant (pelagic) and have specific gravity about the same as f resh water; however, most lake fish produce eggs that are heavier than fresh water, which causes them to sink (demersal) and have an adhesive coating that holds them to a substrate and prevents them from being swept away by current (Reutterand Herdendorf 1979). In 5 The percentage of eggs produced by a single female fish that actually grcw to adult size is very small, especially for broadcast spawners. This percent survival is affected by many factors including physical parameters, predation and the principle of compensation. The fecundity of selected species, as discussed below, is described in terns of potential replacement and is presented only to show the disparity of the number of fishes impinged versus the fecundity of each species. I I a
107 s Gizzard Shad l The average annual standing crop of gizzard shad (1979-1983) was 121 kg/ha u'epco 1983 and 1984). This value may well be an underestimate as gizzard shad is a schooling species and the probability of capturing a school in a given cove is low. Porak and Tranquilli (1981) found the average standing crop of gizzard shad in Lake Sangchris, Illinois to be 275.3 kg/ha, but that is a much smaller lake than Lake Anna (less than 1/4 of the surface area). The average annual weight of gizzard shad impinged in Lake Anna during the 5-pl u s-yea r study period was 2,200 kg (Table 6.1.3). Thus 0.32% of the ' ake area (18 of 5,600 ha) would be required annually to produce the weight of impinged gizzard shad. Stated another way, an average 0.32" of the total gizzard shad standing crop (by weight) was impinged annually. The number of gizzard shad per hectare, from rotenone data, is only readily available for the years 1981-1983. Using these 3 years of data, averaged, the annual standing crop number was 1.7 x 103 /ha and the average annual number impinged during this 3-year period was 3.4 x 104 (Table 6.1.3). Thus 0.38% of the Lake area (21 of 5,600 ha) would be required annually to produce the number of impinged gizzard shad. This value is much smaller than found in the Lake Sangchris study, 1.82% (Porak and Tranquilli 1981). Gizzard shad have a high reproductive potential and a rapid growth rate. They can reproduce at 2 years of age and the number of eggs contained in a female can range from 2.2 x 10 to 5.4 x 105 (Carlander 1969) dependent on 5 their age and size with an average of 3.8 x 10 for age class II (Jones 1978). The average yearly estimate of impinged gizzard shad at the North Anna Power 5 6.1.3), Station was 1.2 x 10 for the 5-plus-year study (Table considerably less than the maximum fecundity potential of one average size 2-year-old female gizzard shad.
108 8 lack Crappie g Preoperational cove rotenone studies show a 52% drop in black crappie standing crop between 1976 and 1977 at three coves sampled on Lake Anna (Vepco 1984). The Pamunkey Arm cove was not sampled during 1976. After impingement startup in April 1978, August cove rotenone studies showed an additional 86%(1977 versus 1978) drop in black crappie standing crop at the three coves sampled during 1976. The Pamunkey Creek cove in the upper lake, approximately seven miles above the intake area, showed a 70% drop in black l crappie standing crop between 1977 and 1978 (Vepco 1978), it is unlikely this station could have been affected by only four months of station operation. It would appear, therefore, that the decline of the black crappie standing crop is unrelated to station operation. Results of cove rotenone studies at Lake Anna have indicated a steady decline of black crappie since 1978 (Vepco 1983 and 1984). The average annual standing crop of black crappie for the five years is 6.64 kg/ha (Vepco 1983 and 1984). The average annual weight of black crappie impinged during the 5-plus-year study was 1,397.3 kg. Thus 3.8% of the lake area (210 of 5,600 ha) h would be required annually to produce the weight of impinged black crappie, or h an average 3.8% of the total black crappie standing crop (by weight) was impinged annually. The number of black crappie per hectare, from rotenone data, is readily available only for tne years 1981-1983. The 3-year average annual standing crop (number) was 130/ha (Vepco 1983 and 1984) and the average 4 annual number impinged was 2.2 x 10 . Thus 3.1% of the lake area (171 of 5,600 ha) would be required annually to produce the number of black crappie impinged in the lake. E I a
109 4 The average fecundity of black crappie has been estimated at 3.8 x 10 5 with a maximum of 1.6 x 10 eggs (Hardy, 1978). Since the estimated average annual number of black crappie impinged was 2.8 x4 10 for the five-year study period, one average size adult female could theoretically produce more progeny I in one year than were impinged in a year. Black crappie fecundity was not affected by temperature increases caused by heated discharge from a nuclear power station in Keowee Reservoir in South Carolina (Barwick 1981). I The Virginia Commission of Game and Inland Fisheries conducted a creel B survey on Lake Anna from 1976 through 1979 (Sledd and Shuber 1981). The number of black crappie estimated creeled in 1979 was considerably less than each of the preceeding 3 years (5.7 x 104 vs. an avg. of 1.0 x 105 ). During 1979 an estimated 3.9 x 10# black crappie were impinged (Table 6.1.3); this value is 32% (56,634) less than were estimated to have been creeled that year. The 4 combined creel and impingement estimate for 1979 (9.5 x 10 ) was only 87% (1.1 x 105 ) of the total creeled in 1978. Since such a small number of black I crappie were impinged in 1979, the start-up of impingement could not have been responsible for the abrupt decline of black crappie which began that year. Rather, the cause is probably due to natural fluctuations in numbers which according to Swingle and Swingle (1968) occur frequently in black crappie populations, i ihe next time a creel survey was conducted at Lake Anna was in 1984. As there is no impingement data available for that year, the 1984 creel data were compared to 1983 impingement data. During 9 months of creel surveys at 4 Lake Anna in 1984 (March through November) an estimated 1.6 x 10 black crappie weighing 1,225.5 kg were creeled (Vepto unpublished data). Du ring 1983 (Jar.ua ry through December) ah estimated 1.1 x 10 black crappie weighing 556.8 _ - - . . - _ - . . ____________-m_ _ _ _ _ _ _ _ . _ _ _ _ _ _
110 i kg were impinged (Table 6.1.3). Forty-five percent more fish were creeled than impinged if 1953 is considered to be a comparable year to 1984 for black crappie. The weight difference between the creeled fish (average 75.39) and impinged fish (average 50.59) would tend to indicate that anglers were keeping 1 only the larger, more mature fish whereas the traveling screens collect a more E indescriminate sample with many more smaller fish. However, impingement data I indicate that the majority of the black crappie impinged were larger than 150 ninT.L. (figure 6.1.1). Therefore, this weight difference may indicate that the impinged black crappic were, in many cases, weak and emaciated and probably a would have been susceptible to predation in the lake under normal conditions. W As the creel survey did not include lengths, this hypothesis cannot be confirmed. Yellow perch As discussed earlier in the "Results" secti?n, cove rotenone data probably underestimate the yellow perch standing crop in Lake Anna. They are. however, the best indicators available for the standing crop of that species. E The average annual yellow perch standing crop for the 5-plus-year study period was 6.5 kg/ha (Vepco 1983 and 1984) and the estimated average annual impingement weight was 518.1 kg (Table 6.1,3). Since 1.4% of the lake area (80 of 5,600 ha) would be required annually to produce the weight of impinged yellow perch, then an average 1.4% of the total yellow perch standing crop was impinged annually. The number of yellow perch per hectare, from rotenone data, is readily available only for the years 1981-1983. The 3-year average annual standing crop (numerical) was 230/ha and the average annual number impinged was 3 7.6 x 10 over this 3-year period. Only 0.6% of the lake area (33 of 5,600 ha) would be required annually to produce the number of impinged yellow perch. I E'
~ . _ _ _ - . _ _ - _ . . _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ __ __ __________.__. _ _ __
til The average fecundity of yellow perch has been estimated at 2.3 x 10 ranging up to 1.4 x 105 (Hardy 1978). Since the estimated annual average number of yellow perch impinged was 2.9 x 10 over the 5-plus-year period, 2 average size or one large adult female could theoretically produce more progeny in one year than were irpinged annually, a Bluegill Cove rotenone studies indicate a fairly steady standing crop of bluegill in Lake Anna during the 5-plus-year impingement study period that ranges from 58.8 kg/ha to 74.2 kg/ha with an annual average of 65.3 kg/ha (Vepco 1973 and 1974). The estimated average annual impingement weight for bluegill during the 5-plus-year study period was 80.0 kg (Table 6.1.3). This means 0.02% of the lake area (1.2 of 5,600 ha) would be reauired annually to produce the weight of impinged bluegill or an average 0.02% of the total bluegill standing crop was impinged annually. The 3-year (1981-1983) average 3 annual standing crop (numerical) was 7.8 x 10 /ha and the average annual number impinged during that same period was 8.4103 (Table 6.1.3). Thus 0.02% of the lake area (1.1 of 5,600 ha) would be required annually to produce the number of bluegill impinged annually. I The average fecundity of bluegill has been estimated at 1.8 x 10 4 (Hardy 1978) but can be as high as 6.4 x 10 . As the estimated average annual 3 number of bluegill impinged was 7.4 x 10 during the 5-plus-year study (Table 6.1.3),1 average size adult female theoretically could produce more progeny in 1-year than were impinged in a year. During the creel survey years (1976-1979) the estimated average annual 4 bluegill harvest was 1.5 x 10 fish (Sledd and Shuber 1981). This average is I
I ! 112 almo' t twice as high as the average annual impingement rate (7.5 x 10 3 fish) g, j from 1979-1983. The estimated total nuniber of bluegill creeled during 1984 was 9.0 x 103 (Vepco unpublished data). This value is almost twice as h;jh as the estimated total number of bluegill impinged during 1983 (5.8 x 103 ) (Table 6.1.3). The comparison of data from these 2 years probably is valid as the
- i
'l standing crop of bluegill in Lake Anna remained relatively stable during that 3 pericd (Vepco unpublished data). ! White Perch Cove rotenone data indicate an increasing population of white perch in Lake Anna ranging from 2.73 kg/ha in 1979 to 24.2 kg/ha in 1982 and 21.0 kg/ha in 1983 with an annual average during the 5-plus-year study period of 12.7 l kg/ha (Vepco 1983 and 1984). The estimated average annual impingement rate for white perch during that period was 122.2 kg. At this rate. 0.1% of the lake , area (5.8 of 5,600 ha) would be required annually to produce the weight of impinged white perch, or an average of 0.1% of the total white perch standing I crop was impinged annually. The number of white perch per hectare, readily E , available caly for the years 1981-1983 averaged 520/ha from rotenone data
- R (Vepco 1983 and 1984). The estimated average annual impingement number for these 3 years was 3.9 x 103 (Table 6.1.3). Thus 0.13% of the lake area (7.5 of
- 5,600 ha) would be required to produce the number of white perch impinged annually.
The average fecundity of white perch has been estimated at 4.0 x 10 4 with a maximum reported at 3.2 x 105 (Hardy 1978). As the estimated average 3 i annual number of white perch impinged was 2.7 x 10 during the 5-plus-year study (max. 5,168) (Table 6.1.3), one average size adult female theoretically 4_ could produce more progeny in 1-year than were impinged in a year. E E
113 The striped bass was the only other species of any significance l impinged during this study. Almost exclusively the impinged striped bass were young-of-the-year nith yearly impingement estimates ranging from 151 (1978) to 5.2 x 103 (1982) with a total of 1.0 x 104 (Table 6.1.1). During the duration of this study (1978-1983) the Virgiria Commission of Game and Inland Fisheries 6 stocked 1.5 x 10 striped bass fry in Lake Anna (personal communication C. Sledd) of which an estimated 0.7% were imoinged. Relative fish species composition in a lake con be greatly affected by introductions of new fish species. Since 1972 Lake Anna has bEen subject to numerous stockings of nine different species of fish (Table 7.1.2). All of these species, except Florida largemouth bass, are now four d in the lake, although blueback herring is rare. Neither striped bass nor walleye have established breeding populations, hence the yearly stockings. As these stockings were comprized of both predator and prey species, d in large numbers, it is not surprising that fluctuations in species composition have occurred and are still continuing as these fishes compete for space in their respective niches. Whether one compares impingement during the 5-plus-year study period with estimated standing crop, average fecundity or creel harvest, there apparently has been no noticeable adverse impact on the fish stocks of Lake Anna.
d il!!I;li ll!!j' .,ItPll[![ti! [ l1L! ,1 Mb _ d e
- t - 7 - 6 -
s - - 5 ol iaw' eA -
- 9, - - C. - 5 - 9 - - t s r E(t e.1 ; 1
_ d e d 3 4
- t e arg - 1 - 5 -
_ imea3 -
- c, -
7 - tMiE rC - 1 5 -
- s rI - 1 - -
Ef I . e rh . i s y Si . t F 0 s 0 0 0 i e 2 o 0 C 0 ge 9 7, 0 3 0 M eal 2 7 3 8 0 . uf nre coeec 7 3 I 1 4 _ e v e 3 F AF _ t n
! r 3 nn e 8 S 7 4 8 9 e e e 9 E 3 3 3 1 wh gl gr1 aae e-7 a, 6
- c. 7
_ e rs w e ruit9 erp: 7 v cr e9 6 1 1 g 8 2 7 2 t 7 0 trt AAI b1 r a i r. . i 8 l t ) 9 as r 0 ue e n b 8 nl gs38 o 0 0 0 0 - a e X'i o 0 0 0 5 er e e gl i(1 nA9 0 c, 0 0 0 1 cc g E 2 a rc aad runp1 - 2 4 7 8 2 4 1 9 e+ e. r: o er9 oF d v e At5C1 C 1 3 2 e e : 4 . 6 y *. % ? 3 g 4 1 6 0 1 m . nd i o c 3 0 0 0 t s r e a u t r t n e e mf e w43 3 tr c a?
. ?
cl gr1 7 1 g 2 8 2 6 8 9 u r
.tE aae e - 4 ; 5 3 - a '; r uit l t , E. l e r l enpeE 4 7 7 B 3 a 7
AAInrs9 i e - v 3 t c v ! 1 o t r< a.154 t 4 D ) 2 d D r. 9 0 r re 6 0
- ct -
c ega t t 1 h l nt - iS ig 3 vdn r e ge8 0 0 g a % 0 8 0 2 d e r ae gl irW9- 1 6 l. 4 6 1 g n ot w aad r u n p0 7 7 6 5 1 f so ip F et at7 7 3 3 6 7 y1 v rt r9 6 3 m rata.n a AfSC1 i
% r rrk r r ua 3 t
4 2 0 2 e te s h P. et o 3 1 0 5 ui t gr t) f ng n ert a o. ek 3 l ne e m(5 e 9 0 7 9 0 2 a t svt aa gl gt1 0 9 1 8 2 o
- s. aanh - 2 3 5 1 T r . r eicE n
ail
't e envi7 v r r r9 2 1 wb AAI E1
_ t a c sl aei _ pt a r a v I' r a _ - e d i h s 1 a p c h s r r c a
'. S e r F e
l a r b 7 s d C l r d ie r ow ic e + l e : r a de l r t i r e e r t o p ir i e i iP t I s O lP t B S
N M W E E Table 7.1.2 Lake Anna Fingerling Stocking History 1972-1983 Striped Florida Blueback Threadfin La rgemouth Channel largemouth Herring Shad Cat Bluegill Redear Bass Walleye Bass 357,820 394,458 3,493,477 795,401 1972 95,000 1973 201,136 1974 96,997 58,220 1975 293,620 18,650 1976 194,550 164,395 43,639 1977 208,568 1978 389,724 367,828 1979 104,826 213,131 9,000 1980 3 2,600 238,171 183,663 1981 224,787 59,667 1982 255,613 197,250 5,000 1983
- 1. Redear shipments contained onestimated percentage of Bluegill
- 2. Excludes an estimated 9,556 lost on June 29, 1977 shipment
- 3. 10,000 fry in poor shape also stocked in 1981
~
Y
116 7.2 Entrainment l Regardless of the source of a disturbance on fish populations, there exists some natural compensatory capacity within that population. Compensation is the capacity of a population to offset, to some extent, reductions in numbers caused by some disturbance, e.g. comercial fishes and sport fisheries. Compensation has been demonstrated in many fish populations and is the primary basis for sustained commercial fishery operations (McFadden 1977). Ricker (1954) stated that the removal of young fish (eggs, larvae and juveniles) is at least partly balanced by the increased survival of the remaining fish. It is possible that fish populations could withstand exploitation by power plants at levels described in comercial and sport fisheries. The natural compensation capacity of fish populations in Lake Anna should reduce the impact of l entrainment by North Anna Power Station. 1 . E It nas been shown that the mortality rate of larval populations is a major factor in determining fisheries stock stability (Polgar 1977). The effects of entrainment on stock stability can be assessed by determining the number of adults represented by the entrained larvae (Long Island Lighting Co. 1977). Several models were considered for the Lake Anna entrainment program (Horst 1975; Hackney and Webb 1977; and Goodyear 1978). Goodyear's (1978) equivalent adult model was chosen because it eliminates sources of error found in the others that could underestimate impact. The model is based on work that shows larval mortality as being a function of length class (Swedberg and Walburg 1970). Goodyear shows that data on abundance of larvae, grouped by body length can be used to estimate a probability of survival from one length class to the next during the period that larvae are vulnerable to entrainmert. The number of adults that would have resulted from the entrained larvae can be estimated by the equation: E
- - - . . . . . ~ _ . . - - - . - - - _ . - _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ - _ - _ - _ _ _ _ - - _ _ - _ _ _ _
!!7 L
k Na = I N e= 1 , 5, Where: t k = number of larval length classes that are subject to entrainment f mortality N, = number of length class c killed by entrainment S, = Survival probability from length class e to adulthood, which can be derived from the equation: S, = 2 Se , e Fa Where: Fa = Average lifetime fecundity Gizzard shad - 59,480 White perch - 40,000 Sunfishes - 10,751 Black crappie - 37,796 Yellow perch - 23,000 Se,e = survival probability from egg to length classt , which can be derived from the equation:
-d(L, - h)
Se,e = He Where: H = fraction of eggs that hatch L e = Length of length class c h = Length at hatching d = instantaneous mortality rate of length class t , which is derived from the equation:
__ _ ___ __m__ _ _ _ _._ _ _ - . . . _ _ . _ - - - - - -
\
11 8 1 k I d = -LN r N,2= 1 I N, The equivalent adult analysis is based on the following assumptions: l
- 1) There is 100% mortslity of entrained larvae I:
- 2) The stock populations are at equilibrium and the total lifetime fecundity produces two adults
- 3) No compensatory mechanisms are operating
- 4) 75% of the eggs produced by the entrained species survive to the larval stage Lifetime fecundity values and hatching success rates were averaged from the Ir literature (Schubel 1974; Edsall 1977; New York State Gas and Electric Co. Ib 5
1977; Hardy 1978; Jones 1978; and Heberling et al.1981). The hatching success values appear to be high for at least some species. Values for survival of eggs to the larval stage, survival of larvae reaching adult stage and instantaneous rates of mortality were calculated using the above equations. The results of the analysis (Table 7.2.1) indicate percent cropping. or reduction in adult recruitment caused by entrainment, of each species varied between years and ranged from 0.01% (black crappie in 1978 and 1979; sunfishes in 1982) to 4.13% (gizzard shad in 1980). These percentages reflect l differences among years in total estimated standing crop in Lake Anna and the I, , B.
119 length frequency distribution and total larvae entrained. Generally, yellow perch was relatively most effected by the station's intake during the first 2 years, while during 1981 and 1982 white perch percent cropping was highest. Gizzard shad had the highest percent cropping (4.131) in 1980. The instantaneous rate of mortality probably was heavily affected in 1980 by the collection of large numbers of length Class 1 larvae, possibly due to a late spawn or a large secondary spawn. The equivalent adult analysis provided a conservative estimate of entrainment inpact because of the assmptions used in the analysis. Larval mor tali ty experienced in entrainment at North Anno is in reality probably less than 100%. The reduction in adult recruitment reported are below values that are thought to cause significant impact on the fishery or the individual populations (Long Island Lighting Co. 1977; flew York State and Gas Co. 1977; Heberling et al. 1981; Porak and Tranquilli 1981). No adverse effect due to entrainment on the sport fishery of Lake Sangchris, Illinois was reported by Porak and Tranquilli (1981). Numerical loss of the standing crop at Lake Sangchris was 5.43% for gizzard shad,15.3% for Morone spp. (White bass and yellow bass) and 0.59% for Lepomis spp. (sunfishes). Regardless of the source of disturbance on fish populations, there is a capacity within populations to offset a reduction in numbers (McFadden 1977). The impact of entrainment at Lake Anna is minimal when values of percent cropping are considered with other population mechanisms, e.g. compensation. i
120 ; I Table 7.1.1 - Results of the Equivalent Adult Analysis of Entrainment Data a+ North Anna Power Station, 1978-1983. Total Number Nunter of Standing Percent Specieji Year Entrained Adults (Na) Crop Cropping White perch 1978 3.5 x 10 5 163 7.1 x 10 5 0.02 7 Gizt.ard shad 1978 6.0 x 10 7,797 1.4 x 10 7 0.06 Black crappie 1978 1.8 x 10 6 150 1.2 x 10 6 0.01 Yellow perch 1978 1.3 x 10 7 24,600 4.4 x 10 6 0.55 7 7 Sunfishes 1978 5.6 x 10 17,677 2.7 x 10 0.07 E White perch 1979 6.3 x 10 6 1,361 8.7 x 10 5 0.16 8 Gizzard shad 1979 1.3 x 10 44,336 6.4 x 10 6 0.69 Black crappie 1979 7.4 x 10 5 25 2.4 x 10 6 0.01 Yellev perch 1979 2.0 x 10 6 8,598 4.7 x 10 5 1.81 7 l 7 l Sunfishes 1979 1.1 x 10 5,061 2.4 x 10 0.02 s E White perch 1980 1.2 x 10 7 2,505 1.0 x 10 6 0.25 8 Gizzard shad 1980 1. 0 x 10 367,787 8.9 x 10 6 4,33 Black crappie 1980 1.5 x 10 6 227 2.7 x 10 5 0.08 6 Yellow perch 1980 6 G x 10 741 2.0 x 10 6 0.04 7 7
-Sunfishes 1980 2.2 x 10 9,193 4.1 x 10 0.02 I
I I a.,
121 l Table 7.2.1 (cont'd) 7 6 White perch 1981 5.4 x 10 20,736 1.3 x 10 1.70 8 7 0 m.rc shad 1981 1.6 x 10 17,557 1.2 x 10 0.15 5 L 5 crappie 1981 2.6 x 10 6 323 1.0 x 10 0.31 Yellow perch 1981 1.4 x 10 7 1,818 1.2 x 10 6 0.15 7 Sunfishes 1981 2.1 x 10 7 14,555 4.2 x 10 0.05 i White perch 198?. 2.8 x 10 7 41,380 3.1 x 10 6 1,3 6 Gizzard shad 7982 4.0 x 10 7 3,207 5.3 x 10 0.06 5 Black crappie 1982 6.6 x 10 5 329 2.4 x 10 0.14 6 Yellow perch 1982 3.7 x 10 6 1,004 1.6 x 10 0.06 7 Sunfishes 1982 1.2 x 10 7 3,276 2.7 x 10 0.01 l 7 6 White perch 1983 3.7 x 10 11,636 2.3 x 10 0.52 Gizzard shad 1983 8.9 x 10 7 56,362 7.8 x 10 6 0.72 5 Black crappie 1983 3.2 x 10 6 3,616 3.1 x 10 1.16 5 Yellow perch 1983 2.0 x 10 6 732 6.2 x 10 0.12 7 Sunfishes 1983 4.0 x 10 6 17,969 3.5 x 10 0.05 l I
122 I 8.0 SUMM/'d I l Impingement l 1 (1) Impingemer t studies were conducted at North Anna Power Station from April 1978 through December 1983. A total of 2.4 x 10 5 fishes 3 weighing 5.7 x 10 kg were collected from the intake screens representing 34 speciec and 13 families. (2) The estimated total number of fishes impinged during the over 5-plus-year study period was 9.6 x 10 weighing 2.3 x 104 kg. (3) Most fish were entrained in 1979 (61%) followed by 1981 (13%), 1980 (12%), 1982 (7%), and 1983 (5%). (4) Seasonally, the most iish were entrained during the winter (75%) I followed by spring (13%), fall (9%), and summer (3%), a 5 (5) A comparison of intake water velocities and fish swimming speeds indicate that a healthy fish larger than 24 mm in total length should be able to avoid the intake current in front of the traveling screens. (6) The most commonly impinged fish was gir:ard shad (65%), followed by black crappie (16%), yellow perch (16%), bluegill (4%) and white perch (1%). (7) The similarity of impingement length-frequency data and rotenone length frequency data indicate that impingement is a good sampling 5
123 device, comparable to rotenone, in determining changes in the a population of certain species. (8) During the 5-plus-year study period, an average 0.32% of the total gizzard shad standing crop (from rotenone data) by weight, or 0.38% , by number, was impinged annually. (9) One average size 2-yea r-ol d female gizzard shad has a fecundi ty potential greater than the estimated average number of gizzard shad impinged annually. (10) An average 3.8% of the total black crappie standing crop by weight, or 3.1% by number, was impinged annually. (11) One average size adult female black crappie theoretically could produce more progeny in 1 year than were impinged. (12) Forty-five percent more black crappie were estimated to have been creeled in 1984 than were impinged in 1983. (13) The decline in the black crappie population in Lake Anna does not appear to have been caused by the start-up of the North Anna Power Station. (14) An average 1.4% of the total yellow perch standing crop by weight, or 0.6% by number, was impinged annually.
124 (15) Two average size or one large adult female yellow perch could theoretically produce more progeny in 1 year than were impinged. I (16) An average 0.02% of the total bluegill standing crop by weight, or 0.02% by number, was impinged annually. (17) One average size adult female bluegill theoretically could produce I more progeny in 1 year than were impinged. (18) Almost twice as many bluegill were estimated to have been creeled during 1984 than were estimated to have been impinged during 1983. (19) An average 0.1% of the total white perch population by weight, or 0.13% by number, were impinged annually. I (20) One average size adult female white perch theoretically could produce more progeny in 1 year than were impinged, I a E (21) During the 5-plus-year study, an estimated 0.7% of the stocked striped bass were impinged by the power station. (22) There has been no noticeable adverse impact on the fish stocks of Lake Anna by impingement by the North Anna Nuclear Power Station. Entrainment (1) A total of 7,908 fish larvae within five dominant species (gizzard shad, white perch, sunfishes, yellow perch and black crappie) were collected in entrainment samples using s ta tiona ry conical nets at I E
i 125 North Anna Power Station from 1978-1983. The most abundant entrained i larvae over all years were gizzard shad, representing 65.7% of the total. No fish eggs were collected during the sample years. I (2) Over all years and samples the percentage of all fish larvae collected during the midnight sample was 43% of the total caught throughout the day. This was probably due to either the existence of diurnal migration patterns or in part due to net avoidance. Sunfish, on the contrary, were collected more frequently during daylight hours. (3) The percent of total larvae collected at each sample depth varied from year to year and for each species. Sunfishes, yellow perch and black crappie were collected primarily from surface samples; gizzard shad were collected primarily from middle (4m) and bottom (8m) depths; ano white perch numbers were similar at all depths. I (4) The gizzard shad entrainment rate (number per intake pump) declined during the study period while white perch numbers increased. 7 (5) Total estimated fish larvae entrained ranged from 8.4 x 10 in 1982 to 2.5 x 108in 1981, represented primarily by gizzard shad. (6) The results of an equivalent adult model indicated that percent cropping of the Lake Anna fish populations varied between years and each species ranged from 0.01% (black crappie and sunfishes) to 4.13% (gizzard shed). These values are considered below any that may cause significant inc_ ^ on the Lake Anna fishery. I I
1 1 127 LITERATURE CITED I Aggus, L. R. , D. C. Carver, L. L. Olmsted, L. L. Rider and G.L. Summers. 1979. Barkley Lake Symposium: Evaluation of standing crops of fishes in Crooked Creek Bay, Barkley Lake, Kentucky. Proc. Ann. Conf. Assoc. Fish and I Wildlife Agencies 33:710-722. Bainbridge, R. 1958. The speed of swimming fish as related to size and to the
-I frequency of the tail beat. J. Exp. Biol., 35(1):109-33.
Barwick, O. M. 1981. Fecundity of the black crappie in a reservoir receiving B heated effluent. Prog. Fish. Cult. 43(3):153-154. Blaxter, J. H. S. 1969. Swimming speeds of fishes. F.A.D. Fish Rep. 62(2):69-100. Cada, G. F. and J. M. Loar. 1982, Relative effectiveness of two ichthyoplankton sampling techr.iques. Canada J. Fish. Aquat. Sci. I 39:811-814. Carlander, K. D. 1969. Handbcok of freshwater fishery biology, Vol. I. Iowa State University Press. Amer. I Carter, B. T. 1958. What significant information can be gained from rotenone population studies in impoundments, pp. 82-84, in: Proc. 11th Ann.
~
I Conf. S. E. Assoc. Game and Fish Comm. (1957). . Clugston, J. P., J. L. Oliver and R. Ruelle. 1978. Reproduction, growth, and I standing crops of yellow perch in Southern Reservoirs. pp. 89-99. in: R. L. Kendall, editor. Selected Coolwater Fishes of North America. Tpec. Pub. #11, Amer. Fish. Soc., Washington, D. C. Cochran, W. G. 1963. Sampling techniques. Wiley and Sons, Inc., New York, New York. Cooke, A. C. 1984. The expansion of the white perch, Morone americana, population in Lake Anna Reservoir, Virginia, pp. 314-320, in: Lake and Reservoir Management. Proc. of 3rd Annual Conference, North American Lake Management Society. V. S. Environmental Protection Agency, I Washington, D. C. I Ecological Analysts, Inc. 1977. A review of entrainment study methodologies: abundance and survival. Prepared for Empire State Electrical Energy Research Corporation, New York, New York. Eddy, S. and J. C. Underhill, 1943. Northern fishes. University of Minnesota Press., Minneapolis, Minnesota. I Edsall, A. E. 1977. The effect of temperature on the rate of development and survival of alewife eggs and larvae. U. S. Bureau of Commercial Fisheries. Contribution No. 409. Ann Arbor, Michigan. , I I
128 I Edwards, T. J., W. H. Hunt and L. L. Olmsted. 1977. Density and E distribution of larval shad (Dorosoma spp.) in Lake Norman, North W Carolina - Entrainment at McGuire Nuclear Station. p? 144-148, in: Proceedings of the first symposium on freshwater larval fish. Edited by L. L. Olnsted, Duke Power Company. Huntersville, North Carolina , USA, Electric Power Research Institute. 1981, Impingement and entrainment: An updated annotated bibliography. EA-1855. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee, Electric Power Research Insitute. 1979. Entrainment: An annotated bibliography. EA-1049. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee. Electric Power Research Institute. 1979. Impingement: An annotated - bibliography. EA-1050. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee. Environmental Protection Agency 1977. Guidance for evaluating the adverse l impact of cooling water intake structures on the aquatic environment:
,)
Section 316(b) P.L. 92-500. United States Environmental Protection Agency, Washington, D. C. Environmental Protection Agency 1976. Development document for best technology E available for the locatica, design, construction and capacity of cooling W water intake structures for minimizing adverse environmental impact. EPA 440/1-76/015-a. United States Environmental Protection Agency, a Washington, D. C. g ' Ferguson, R, G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams, J. Fish, Res. Bd. Canada 15(4):607-624. , Gasser, L. F. 1976. Spatio-temporal distributions of clupeid larvae in m Barkley Reservoir. pp. 120-138, inj Proceedings of the Third Symposium on l Larval Fish. Edited by R. D. Hoyt, Division of Water Resources, Tennessee Valley Authority. Norris, Tennessee. Goodyear, P. L. 1978. Entrainment impact estimates using the equivalent adult I approach. U. S. Department of Interior, Fish and Wildlife Service, Publication FWS/0BS-78/65. Washington, D. C. Griffith, J. S. 1978. Effects of low temperature on the survival and bchavior of threadfin shad, Dorosoma petenense. Trans. Amer. Fish. Soc. E 107(1):63-70. g Hackney, P. A and J. C. Webb. 1977. A method for determining growth and mortality rates of ichthyoplankton. Division of Forestry, Fisheries and Wildlife Development, Tennessee Valley Authority, Norris, Tennessee. I al
=l 1
125 North Anna Power Station from 1978-1983. The most abundant entrained larvae over all y, e were gizzard shad, representing 65.7% of the total. No fish eggs were collected during the sample years. I (2) Over all years and samples the percentage of all fish larvae collected during the midnight sample was 43% of the total caught throughout the cry. This' was probably due to either the existence of diurnal h migraMen pai. terns or in part due to net avoidance. Sunfish, on the contre.ry, were collected more frequently during daylight hours. (3) The percent of total larvae collected at each sample depth varied from year to year and for each species. Sunfishes, yellow perch and black 1
- crappie were collected primarily from surface samples; gizzard shad were collected primarily from middle (4m) and bottom (8m) depths; and I white perch numbers were similar at all depths.
l (4) The gizzard shad entrainment rate (number per intake pump) declined during the study period while white perch numbers increased. l (5) Total estimated fish larvae entrained ranged from 8.4 x 107 in 1982 to-2.5 x 100in 1981, represented primarily by gizzard shad. indicated that percent (6) The results of an equivalent adult model l cropping of the Lake Anna fish populations varied between years and each species ranged from 0.01% (black crappie and sunfishes) to 4.13% (gizzard shad). These values are considered below any that may cause significant impact on the Lake Anna fishery. l !l l
126 (7) The impact of entrainment at Lake Anna by the North Anna Power Station on the fish populations is minimal when the reported values of percent cropping are considered with other populations mechanisms such as compensation. I I I I I I I I I I I I I I a'
=
J 127 L LITERATURE CITED b Aggus, L. R. , D. C. Carver, L. L. Olmsted, L. L. Rider and G.L. Summers. 1979. Barkley Lake Symposium: Evaluation of standing crops of fishes in Crooked Creek Bay, Barkley Lake, Kentucky. Proc. Ann. Conf. Assoc. Fish and Wildlife Agencies 33:710-722. Bainbridge, R. 1958. The speed of swimming fish as related to size and to the frequency of the tail beat. J. Exp. Biol., 35(1):109-33. Barwick, O. M. 1981. Fecundity of the black crappie in a reservoir receiving heated effluent. Prog. Fish. Cult. 43(3):153-154. J Blaxter, J. H. S. 1969. Swimming speeds of fishes. F.A.D. Fish Rep. M 62(2):69-100. Cada, G. F. and J. M. Loar. 1982. Relative effectiveness of two ichthyoplankton sampling techniques. Canada J. Fish. Aquat. Sci. I 39:811-814 Carlander, K. D. 1969. Handbook of freshwater fishery biology, Vol. I. Iowa State University Press. Amer. Carter, B. T. 1958. What significant information can be gained from rotenone population studies in impoundments, pp. 82-84, in: Proc. lith Ann. Conf. S. E. Assoc. Game and Fish Comm. (1957). ~ . g Clugston, J. P. , J. L. Oliver and R. Ruelle. 1978. Reproduction, growth, and g standing crops of yellow perch in Southern Reservoirs. pp. 89-99. in: R. L. Kendall, editor. Selected Coolwater Fishes of North America. T pec. Pub. #11, Amer. Fish Soc., Washington, D, C. Cochran, W. G. 1963. Sampling techniques. Wiley and Sons, Inc., New York, f New York. Cooke, A. C. 1984. The expansion of the white perch, Morone americana, poptlation in Lake Anna Reservoir, Virginia, pp. 314-320, in: Lake and Reservoir Management. Proc. of 3rd Annual Conference, North American Lake Management Society. V. S. Environmental Protection Agency, Washington, D. C. A review of entrainment study Ecological Analysts, Inc. 1977. methodologies: abundance and survival. Prepared for Empire State Flectrical Energy Research Corporation, New York, New York. Eddy, S. and J. C. Underhill. 1943. Northern fishes. University of Minnesota Press., Minneapolis, Minnesota. Edsall,-A. E. 1977. The effect of temperature on the rate of development and survival of alewife eggs and larvae. U. S. Bureau of Commercial Fisheries. Contribution No. 409. Ann Arbor, Michigan. l 1
128 Edwards , T. J. , W. H. Hunt and L. L. Olmsted. 1977. Density and g distribution of larval shad (Dorosoma spp.) in Lake Norman, North w Carolina - Entrainment at McGuire Nuclear Station, pp. 144-148, in: Proceedings of the first symposium on freshwater larval fish. Edited by a 3 L. L. Olmsted, Duke Power Company. Huntersville, North Carolina, g USA. Electric Power Research Institute. 1981. Impingement and entrainment: An updated annotated bibliography. EA-1855. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee. Electric Power Research Insitute. 1979. Entrainment: An annotated E bibliography. EA-1049. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee. Electric Power Research Institute. 1979. Impingement: An annotated bibliography. EA-1050. Research Project 877. Ecological Sciences Information Center, Oak Ridge, Tennessee. Environmental Protection Agency 1977. Guidance for evaluating the adverse impact of cooling water intake structures on the aquatic environment: m Section 316(b) P.L. 92-500. United States Environmental Protection Agency, g Washington, D. C. Envircnmental Protection Agency 1976. Development document for best technology E available for the location, design, construction and capacity of cooling W water intake structures for minimizing adverse environmental impact. EPA 440/1-76/015-a. United States Environmental Protection Agency. Washington, D. C. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada 15(4):607-624 Gasser, L. F. 1976. Spatio-temporal distributions of clupeid larvae in na Ba rkley Reservoir, pp. 120-138, _i n : Proceedings of the Third Symposium on l Larval Fish. Edited by R. D. Hoyt. Division of Water Resources, Tennessee Valley Authority. Norris, Tennessee. I Goodyea r, P. L. 1978. Entrainment impact estimates using the equivalent adult approach. U. S. Department of Interior, Fish and Wildlife Service. Publication FWS/0BS-78/65. Washington, D. C. Griffith, J. S. 1978. Effects of low temperature on the survival and behavior of threadfin shad, Dorosoma petenense. Trans. Amer. Fish Soc. 107(1):63-70. Hackney, P. A. and J. C. Webb. 1977. A method for determining growth and mortality rates of ichthyoplankton. Division of Forestry, Fisheries and Wildlife Development, Tennessee Valley Authority. Norris, Tennessee. I I B
IN Hadderingh, R. H. 1982. Experimental reduction of fish impingement by ] artificial illumination at Bergum Power Station. hydrobiol. 67(6):869-886. Int. Rev. Gesanten Hardy, J. D. 1978. Development of fishes of the mid-Atlantic Pdght, Volume Ill. U. S. Department of Interior Fish and Wildlife Service. Puolication FWS/0BS-78/12. Washington, D. C. Hildebrand, S. F. and W. C. Schroeder. 1928. Fishes of Chesapeake Bay. T.F.H. Publications. Neptune, New Jersey. ~ Hergenrader, G. L. and Q. P. Bliss. 1971. The white perch in Nebraska. Trans. Amer. Fish Soc. 100:734-738. Heberling, G. D. , K. N. Mueller and J. W. Weinbold. 1981. Section 316(b) I Demonstration for the Riverside Generating Plant. Northern States Power Company. Minneapolis, Minnesota. Horst, T. J. 1975. The assessment of impact due to entrainment of ichthyoplankton. pp. 107-118, -in: Symposium on Fisheries and Energy Production, by S. B. Saila. D. C. Heath. Lexington, Massachusetts. Jenkins, R. M. 1977. Prediction of fish biomass, harvest and prey-predator relations in reservoirs. pp. 282-293, in: W. Van Winkle editor. i Proceedings of the conference on assessing the effects of power plant induced mortality on fish populations. Pergamon Press. New York. Jester, D. B. and B. L. Jenser. 1972. Life history and ecology of gizzard I shad, Dorosoma cepedianum (LeSueur) with reference to Elephant Butte Lake, New Mexico State University Agricultural Experiment Station Research Report 218, 56 pp. Jones, P. W. 1978. Development of fishes of the mid-Atlantic Bight, Volume I. U. S. Department of Interior, Fish and Wildlife Service. Publication FWS/0BS-78/12. Washington, D. C. Lagler, K. F., J. E. Bardach and B. B. Miller. 1962. Ichthyology. Wiley and Sons. New york, N. Y. pp. 545. I Latvaitus, B. P. 1976. Impingement investigation. pp. 125-168, in: Operation environmental monitoring in the Mississippi River near Quad-Cities Station, February 1975 through January 1976. Nalco 1 Environmental Science, Northbrook, Illinois. I Leithiser, R. M. , K. F. Ehrlich, and A. B. Thum. 1979. Compa ri son of a high volume pump and conventional plankton nets for collecting fish larvae entrained in power plant cooling systems. J. Fish. Res. Board Canada. 36:81-84 Lippson, A. J. and R. L. Moran. 1974 Manual for identification of early developmental stages of fishes of the Potomac River estuary. Martin Marietta Corporation. Bal timore, Maryland. PPSP-MP-13, 282 pp. Lagler, K, F., J. E. Bardack and R. R. Miller. 1962. Ichthyology. Wiley & Sons. New York, New York. 545 pp.
130 Long Island Lighting Company. 1977. Environmental statement related to E operation of Shoreham Nuclear Power Station Unit 1. U. S. Nuclear 5 Regulatory Commission. Washington, D. C. Mansueti, R. J. 1964 Eggs, larvae, and young-of-the-year white perch, Reccus americanus, with comments on its ecology in the estuary. Ches. Sci. 5:3-45. McCauley, R. W. and L. A. A. Read. 1973. Temperature selections by juvenile and adult yellow perch (Perca flavescens) acclimated to 24 C. J. Fish Res. Bd. Can. 30:1253-1 E McConnell, G. B. 1975. Fishes section, pp. 80-102, in: Studies on the effects of the Havana Power Station on the ecologTcal balance of the Illinois River 1974 to 1975. Wapora, Inc. , Charleston, Ill . McFadden, J. T. 1977. An argument supporting the reality of compensation in fish populations and a plea to let them exercise it. pp. 153-178, ~~in: g Proceedings of the conference on assessing the effects of g power-plant-induced mortality on fish populations. Edited by Webster Van Winkle Pergamon Press. New York. McLean, R. B. , J. J. Beauchamp, V. E, Kane and P. T. Singley. 1982. I Impingement of threadfin shad: effects of temperature and hydrog raphy. Environ. Manag. 6(5):431-439. Netch, N. F. , G. M. Kensh, Jr. , A. Houser and R. V. Kilambi . 1971. Distribution of young gizzard and threadfin shad in Beaver Reservoir, a Reservoir Fisheries and Limnology, Amer. Fish. Soc, Special g Publication No. 8, Bethesda, Maryland, USA. New York State Electric and Gas Corporation. 1977. Report on entrainment at l New Haven Nuclear Power Plant. New York State Electric and Gas a Corporation. Binghamton, New York. an Ney, J. J. 1978. A synoptic review of yellow perch and walleye biology, g pp 1-13. in: R. L. Kendall, editor. Selected Coolwater Fishes of North AmerTca. Spec. Pub, pil, Amer. Fish Soc., Washington, D. C. Pflieger, W. L. 1975. The fishes of Missouri. Missouri Dept. of Conservation. 343 pp. Polgar, T. T. 1977. Striped bass ichthyoplankton abundance, mortality and
- . production estimation for the Potomac River population. pp. 110-126, in
- Proceedings of the conference on assessing the effects of power-plant-induced mortality on fish populations held in Gatlinburg, Tennessee. Pergammon Press, New York, New York.
Porak, W. and J. A. Tranquilli . 1981. Impingement and entrairaent of g fishes at Kincaid Generating Station. Illinois Nat. Hist. Survey B Bull. 32(4):631-655. Reid, G. K. and R. D. Wood. 1976. Ecology of inland waters and estuaries. D. Van Nostrand Co. New York, New York. I. E
131 s Reutter, J. M. and C. E. Herdendorf. 1979. Impingement and entrainment < at the Davis-Besse Nuclear Power Station Unit I, 316(b) demonstration. ( Ohio State University. Center for Lake Erie area research. Columbus, Ohio. Ricker, W. E. 1954. Stock and recruitment. Journal Fish. Res. Board Can. 11:559-623. Schneeberger, P. J. and D. J. Jude. 1981. Use of fish larva
, morphometry to predict exclusion capabilities of small-mesh screens at cooling-water intakes. Trans. Amer. Fish. Society. 110:246-252.
Schubel, J. R. 1974. Effects of exposure to time - excess temperature
] histories typically experienced at power plants on the hatching success j of fish eggs. Prepared for the Power Plant Siting Program. Ma ryland Department of Natural Resources. Baltimore, Maryland, Scotton, L. N. and D. T. Anson, II. 1977 Protecting aquatic life at plant f intakes. Power 121(1): 74-76.
l Sledd, C. A. and D. J. Shuber, 1981. Project completion report for Virginia, i Dingell-Johnson project F-33-R. Virginia Commission of Game and Inland Fisheries. Rich.nond, Virginia. St. Pierre, R. A. and J. Davis. 1972. Age, growth, and mortality of the white perch Morone americana, in the James and York Rivers, Virginia. Ches. Sci. 13(4):272-281. Swedberg, D. V. and C. H. Wallburg. 1970. Spawning and early life history of the freshwater drum in Lewis and Clark Lake, Missouri River, -in: Trans. Amer. Fish. Soc. Publication No. 90:560-570. Bethesda, Maryland. Swingle, H. S. and W. E. Swingle. 1968. Problems in dynamics of fish populations in reservoirs. pp. 229-243, in: Amer. Fish Soc. Res. Fish Resource Symp. Athens, Georgia. l Tuberville, J. D. 1977. Vertical distribution of ichthyoplankton in upper l Nickajack Reservoir. Fisheries Resources Branch, Division of Water Resources, Tennessee Valley Authority. Norris, Tennessee, USA. Virginia Department of Conservation and Economic Development / Division of Water Resources. 1970. York River Basin - Comprehensive Water Resources Plan. Volume III. Richmond, Virginia. Virginia Electric and Power Company. 1984 Environmental study of Lake Anna and the lower North Anna River: Summary report 1983. Richmond, Virginia. Virginia Electric and Power Company. 1983. Environmental study of Lake
~
Anna and the lower North Anna River: North Anna Power Station annual report, January 1-December 31, 1982. Richmond, Virginia. f Wallace, D. C. 1971. Age, growth, year-class strength, and survival rates l of the white perch, Herone americana (Gmelin) in the Delaware River in l the vicinity of ArtiTiciaT Island. Ches. Sci. 12:2D5-218. I B
1 132 5~ White, J. W. and M. L. Brehmer. 1976. Third national workshop on entrainment and impingement, Section 316(b)-Research and compliance, held in New York, New York. Ecological Analysts, Inc. , Melville, New York. pp. 367-380. Zeitoun, I. H. and J. A. Gulvas. 1981. Effectiveness of fine mesh cylindrical wedge - wire screens in reducing entrainment of Lake Michigan ichthyoplankton Canada J. Fish. Aquat. Sci. 38:120-125. Zeitoun, I. H. and J. A. Gulvas. 1980. Power plant water intake essessment. Amer. Chem. Soc. 14(4):398-402. I I I I I I E I I I I I I 1 E'
I ll l 133 APPENDIX A. I
SUMMARY
OF NURTH ANNA ENVIPONMENTAL REPORTS LISTED BY DATE SUBMITTED NORTH ANNA RIVER, VIRGINIA. BY ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA I FOR NEW JERSEY ZINC COMPANY
*****DATE SUBMITTED - 1955*****
COMMUNITY STRUCTURE OF THE MACROBENTHOS IN FOUR TRIBUTARIES IN THE I PRE-lMPOUNDMENT BASIS OF THE NORTH ANNA RIVER, VIRGINIA. BY M.H. THOMAS AND G.M. SIMMONS ASSOC. SOUTHEAST BIOL., BULL., 17(2) (ABSTRACT)
*****DATE SUBMITTED - 1967 " **
A PRE-lMPOUNDMENT ECOLOGICAL STUDY OF THE BENTHIC FAUNA AND WATER QUALITY IN THE NORTH ANNA RIVER, 1969-1970. BY G.M. SIMMONS, JR. PROJECT A-031-VA.(DEPT BIOLOGY, VCU) OFFICE OF WATER RESOURCES RESEARCH, U.S.D.I.
*****DATE SUBMITTED - 1970*****
I YORK RIVER BASIN VOLUME li t-HYDROLOGIC ANALYSIS. BY VIRGINIA DEPT. CONSERVATION AND ECONOMIC DEVELOPMENT. PLANNING BULLETIN 227
*****DATE SUBMITTED - 1970*****
I AN ECOLOGICAL INVESTIGATION OF THE LOWER NORTH ANNA AND UPPER PAMUNKEY RIVER SYSTEM - 1971 BY JAMES R. REED, JR. , PH.D. VCU DEPT. BIO. AND GEORGE M. SIMMONS, JR., PH.D. VPl & SU DEPT. B10. FOR MR. J.D. RISTROPH, EXEC. DIR., VEPCO ONE VOLUME (110P) - PHY9ICAL/ CHEMICAL (TEMPERATURE TOTAL SOLIDS, TURBIDITY,0XYCEN,PH,CONOUCTIVITY. SALINITY, NUTRIENTS - I PO4.P.NO3_N,SO4) BENTHICS, FISHES _
*****DATE SUBMITTED - JANUARY 18, 1972*****
FINAL ENVIRONMENTAL STATEMENT RELATED TO THE CONTINUATION OF CONSTRUCTION AND THE OPERATION OF UNITS 1 & 2 AND THE CONSTRUCTION 0F UNITb 3 & 4, NORTH ANNA POWER STATION. I BY VEPCO FOR THE US. ATOMIC ENERGY COMMISSION ONE VOLUME - IMPACT STUDY OF THE PROPOSED STATION ON THE ENVIRONS OF THE LAKE AND THE STATION.
*****DATE SUBMITTED - 1973"****
DISTRIBUTION OF HEAVY METALS IN LAKE ANNA. A SYSTEM AFFECTED BY ACID MINE DRAINAGE. BY ELIZABETH R. BLOOD M.S. THESES FOR VCU
*****DATE SUBMITTED - 1975***** ,I WATER QUALITY INVENTORY (305(B) REPORT) . VIRGINIA. REPORT TO EPA ADMINISTRATION AND CONCRESS.
BY VIRGINIA STATE WATER CONTROL BOARD F $26 ,,, I I I _
134 l I APPE!! DIX A.(Cont'd) _ PRE-OPERATIONAL ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINI A (FINAL REPORT) - MARCH 1972 - DECEMBER 1975
'I BY J AMES R. REED, JR. , PH.D. VCU DEPT. BIO. AND .
GEORGE M. SIMMONS, JR. , PH.D. VPl & SU DEPT, Blo. FOR VEPCO VOLUME 1 - NARRATIVE - INTRO, METHODS,RESULTS (666P) HEAVY METALS (WATER, FISH SEDIMENT MACROPHYTES,BENTHICS, SESTON, RIVER), PHYTOPLANKTON, CHLOROPHYLL, PRODUCTIVITY, ZOOPLANKTON, BENTHICS (LAKE & RIVER), ICHTHYOLOGY ' (WATER QUALITY, FOOD HABITS, POPULATIONS, AGE & GRUWTH-LMB FECUNDITY, GONAD CYCLES,0VUM MATURITY, RIVER),
. STATISTICAL ANALYSES VOLUME 2 - DATA BASE - PHYSICAL & CHEMICAL. NUTRIENTS, METALS (456P)
VOLUME 3(i) - DATA BASE - PHYTOPLANKTON DENSITY, VOLUME (517P) VOLUME 3(2) - DATA BASE - PHYTOPLANKTON *. COMPOSITION, CHLOROPHYLL, ORGANIC ASSIMILATION RATES ( 372P) VOLUME 4 - DATA BASE - ZOOPLANKTON ( 317P) VOLUME 5 & 6 - DATA BASE - MACR 0lNVERTEBRATES (140P), FISHES (80P)
*****DATE SUBMITTED - SEPTEMBER 1976*****
PRE-OPERATIONAL ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINIA (ANNUAL REPORT) - 1976 BY CEORCE M. S I MMONS, J R. , PH.D. VPl & SU DEPT. Blo. FOR VEPCO ONE VOLUME ( 546P) - PHYS 10 CHEMICAL (TEMPERATURE, SPECIFIC CONDUCTANCE,SECCHl 0XYCEN, ALKALINITY,PH, NUTRIENTS - PO4 P,NH3_N,NO3_N,SO4, SILICATES), RIVER STUDY, PHYTOPLANKTON,PRODUCTIVlTY, CHLOROPHYLL,MACROPHYTES, ZOOPLANKTON, BENTHICS ( LAKE, RIVER, SAMPLER COMPARI SON)
*****DATE SUBMITTED - MARCH 30, 1977*****
( PRE-O P ) ENVIRONMENTAL STUDY OF LAKE ANNA. VIRGINIA (ANNUAL REPORT) - JANUARY 1,1976 - DECEMBER 31,1976 BY JAMES R, REED AND ASSOC., NEWPORT NEWS,VA. FOR VEPCO ONE VOLUME (109P) - FI SH, WATER QUALITY, POPULATIONS, LMB ACE & GROWTH FECUNDITY, GONAD DEVELOPMENT,0VUM MATURITY, RIVER STUDIES, STATISTICAL ANAYLSES), HEAVY METALS (WATER, E SEDIMENT, FISH TISSUE, RIVER STUDIES)
*****DATE SUBMITTED - MARCH 1977*****
PRE-OPERATIONAL ENVlaONMENTAL STUDY OF LAKE ANNA, VIRGINIA (ANNUAL REPORT) - 1977 BY GEORGE M. SIMMONS, JR., PH.D. VPl & SU DEPT. BIO. FOR VEPCO ONE VOLUME (588P) - PHYSl0 CHEMICAL (TEMPERATURE, SPECI FIC CONDUCTANCE,SECCHI,0XYCEN, ALKALINITY,PH, NUTRIENTS - PO4,P NH3_N,NO3_N SO4, SILICATES),RIVLM STUDY, PHYTOPLANKTON, PRODUCTIVITY, CHLOROPHYLL, ZOOPLANKTON, BENTHICS (LAKE RIVER)
*****DATE SUBMITTED - MARCH 15, 1978*****
( PRE-OP ) ENVlHONMENTAL STUDY OF LAKE ANNA, VIRGINIA (ANNUAL REPORT) - JANUARY 1,1977 - DECEMBER 31,1977 i BY JAMES R. REED AND ASSOC., NEWPORT NEWS,VA, FOR VEPCO VOLUME 1 = ICHTHYOLOGY, METALS - METHODS, MATER I ALS, RESULTS (142 P) VOLUME 2 - DATA BASE (85P)
*****DATE SUBMITTED - FEBRUARY 28, 1978***** -
I I E
I APPENDIXA.(cont'd) 13;
~ .I I ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINIA (ANNUAL REPORT)
JANUARY 1,1978 - DECEMBER 31,1978 BY J AMES R. REED AND ASSOC., NEWPORT NEWS,VA. FOR VEPCO VOLUME 1 - DATA BASE - METALS, NUTRIENTS, PRODUCTIVITY, CHLOROPHYLL, WATER QUALITY, PHYTOPLANKTON ( 221P) VOLUME 2 - DATA BASE - PHYTOPLANKTON, ZOOPLANKTON (219P) VOLUME 3 - DATA BASE - ZOOPLANKTON,BENTHICS FISH (220P) I VOLUME 4 - NARRATIVE -
SUMMARY
,1NTRO, METHODS,RESULTS (186P) HEAVY METALS, NUTR I ENTS ( NO3 N, NH3_,N, Pol 4.P. SO4 ) PRODUCTIVITY, CHLOROPHYLL,PhY5tCAL & CHEMICAL, PHYTOPLANKTON, ZOOPLANKTON,MACROBENTHOS,FlSHERIES, (WATER QUALITY, POPULATIONS, ACE & GROWTH - LMB, I FECUNDITY,CONAD DEVELOPMENT) VOLUME 5 - DOWNSTREAM -
SUMMARY
, METHODS,MATERI ALS, RESULTS (81P) DATA BASE. PHYSICAL & CHEMICAL,flSH,MACROBENTHOS
*****DATE SUBMITTED - MARCH 31, 1979*****
NORTH ANNA POWER STATION (NAPS) NON-RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 1978 BY VEPCO I ONE VOLUME - THERMAL MEASUREMENTS ( SYNOPT IC SURVEYS), lMP f NGEMENT, ENTRAINMENT, WATER QUALITY & ECOLOGICAL SURVEY (REED, 1978 - NARRATIVE.186P),TRANSMISS10N LINE ROW,0NSITE METEORLOGICAL MONITORING, CHEMICAL INVENTORY,NON-RAD , LIMITING CONDITIONS, VEGETATION STUDIES
*****DAT E SUBMI TTED - APRI L, 1979 " "
- I ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINl A ( ANNUAL REPORT) -
JANUARY 1,1979 - DECEMBER 31,1979 BY JAMES R. REED AND ASSOC., NEWPORT NEWS,VA, FOR VEPCO VOLUME 1 - DATA BASE - NUTRIENTS, METALS. CHLOROPHYLL, PRODUCTIVITY, I- PHYTOPLANKTON, ZOOPLANKTON (174P) VOLUME 2 - DATA BASE - ZOOPLANKTON,MACROBENTHOS (270P) VOLUME 3 - DATA BASE - FISH STUDIES ( PHYSICAL & CHEMICAL, SPECIES LIST) (398P) I VOLUME 4 - NARRATIVE - INTRO,
SUMMARY
, METHODS,RESULTS (175P) HEAVY METALS, NUTR I ENTS ( NO3_N, NH3_N, PO4_P,504 ) CH LOROPHYLL, PRODUCT I V I TY, TEM PERATURE, PHYTO PJNKTON, ZOOPLANKTON,MACROBENTHOS, FISH (WATER QUALITY, POPULATIONS, AGE & GROWTH - LMB) I VOLUME 5 - DOWNSTREAM - INTRO, METHODS,RESULTS (69P) DATA BASE, PHYSICAL & CHEMICAL, F ISH ( ENDEMIC / ENDANGERED SPP,SMALLMOUTH BASS), MACROBENTHOS
*****DATE SUBMITTED - HARCH 31, 1980*****
I NORTH ANNA POWER STATION (NAPS) NON-RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT, UNITS 1 & 2 - 1980 BY VEPCO VOLUME 1 - THERMAL, IMPlNGEMENT, ENTRAINMENT VOLUME 2 - WATER QUALITY & ECOLOGICAL SURVEY (REED, 1981)
-I *****DATE SUBMITTED - APRIL 8, 1981*****
I I I I
136 APPENDIX A. (Cont'd) I - ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINIA (ANNUAL REPORT) - JANUARY 1,1980 - DECEMBEM 31,1980 DY JAMLB 8, REED AND ash 0C., NEWPORT NEWS,VA, FOR VEPCO VOLUM: 1 - DATA BASE - NUTRIENTO, METALS,CHLO4OPHYLL, PRODUCTIVITY, PHYS 1 CAL,CHEMlCAL,CL1 MATE, HtYTOPLANKTON ( 235P) VOLUME 2 - DATA BASE - PHYTOPLANKTON, ZOOPLANKTON (189P) VOLUME 3 - DAT A BASE - 200 PLANKTON,MACROBENTHOS, f I SH( PHYS 1 CAL & CHEMICAL, SPECIES LIST,CILL NET,ROTENONE, AGE k CROWTH - LMB) (133P) VOLUME 4 - NARRATIVE - I NTRO,
SUMMARY
, METHODS. RESULTS ( 154 P ) HEAW MET ALS, NUTRI ENTS( NO3 N NH3 N, PO4,P,504 ) CHLOROPHYLL, PRODUCTIVITY,TlMPERATURE,PHYTOPLANKTON, ZOOPLANKTON,MACROBENTHOS, F i SH(WATER QUALI TY, POPULAT IONS ACE & CROWTH - LMB) VOLUME $ - DOWNSTREAM -
SUMMARY
,1NTRO,METH005,RESULTS ( 83P) DATA BASE - PHYSICAL & CHEMICAL, FISH,MACROBENTHOS
*****DATE SUBMITTED - MAY 1, 1981*****
LAKE ANNA RESEARCH STUDY (PROJECT COMPLETl0N REPORT) - JANUARY 1, 1976 - DECEMBER 31,1980 I BY CHARLES A. SLEDO AND DANIEL J. SHUBER, VIRGINIA COMMISSION OF CAME AND 1NLAND FISHER 1ES, RtCPMOND, VlRGlNfA ONE VOLUME (67P) - SPORT FISHERY CREEL SURVEY, LIMN 0 LOGICAL INVESTICATION (WATER TEMPERATURE DISSOLVED OXYCEN, HEAVY METALS, PLANKTON), FISH POPULATION STUDIES ( STANDING CROP,CILL NETTING, ACE & CROWTH, LENGTH WEICHT RELATIONSHIP & INDEX OF CONDITION, NORTH ANNA RIVER)
*****0 ATE SUBMITTED - OCTOBER, 1981*****
RECLAMATION OF T0XIC MINE WASTE UTILIZING SEWAGE SLUDGE -CONTRARY CREEK DEMONSTRATION, PROJECT
SUMMARY
BY KENNETH HINKLE EPA-600/S2-82-061 g
*****DATE SUBMITTED - 1982*****
UPDATED FINAL SAFETY ANALYSIS REPORT, NORTH ANNA NUCLEAR POWER STATION BY VEPCO, DIRECTOR OF SAFETY, EVALUATION AND CONTROL, m _ 16 VOLUMES
*****DATE SUBMITTED - 1982*****
NORTH ANNA POWER STATION (NAPS) NON-RADIOLOGICAL ENVIRONMENTAL OPERATING - REPORT, UNITS 1 & 2 - 1981 BY VEPCO ONE VOLUME, INCLUDES VECETATION STUDY (SCANLAN 1982)
*****DATE SUBMITTED - MARCH 30, 1982*****
ENVIRONMENTAL STUDY OF LAKE ANNA, VIRGINI A ( ANNUAL REPORT) - J ANUARY 1 - DECEMBER 31, 1981 BY VEPCO VOLUME 1 - STATION OPERATION, PHYSICAL & CHEMICAL, ZOOPLANKTON, BENTHICS,ENTRAINMENT (275P) VOLUME 2 - ICHTHYOPLANKTON, lMPI NCEMENT, F I SH,WATERF0WL (297P) VOLUME 3 - GOWNSTREAM (113P)
*****DATE SUBMITTED - APRIL, 1982*****
I I I a M
l 137 APPENDIX A. (Cont'd) l I ENVIRONMENTAL STUDY OF LAKE ANNA & THE LOWER NORTH ANNA RIVER (ANNUAL REPORT) - JANUARY 1,1982 - DECEMBER 31,1982 I BY VEPCO VOLUME 1 - STATION OPERATION, PHYSICAL & CHEMICAL, ZOOPLANKTON, BENTHICS,ENTRAINMENT,ICHTHYOPLANKTON,IMPlNGEMENT (331P) VOLUME 2 - FISHES,HACROPHvTES,WATERF0WL, NORTH ANNA RIVER I (349P)
*****DATE SUBMITTED - AUGUST, 1983***** I I
EXPANSION OF THE WHITE PERCH (MORONE AMERICANA) IN LAKE ANNA, VIRGINIA. I BY ARTHUR C. COOKE PRESENTED AT THE 1983 SYMPOSIUM OF THE NORTH AMERICAN LAKE MANAGEMENT SOCIETY, PUBLISHED IN THE 1984 PROCEEDINGS
*****DATE SUBMITTED - AUGUST 1983*****
i I I ENVIRONMENTAL STUDY OF LAKE ANNA AND THE LOWER NORTH ANNA RIVER-
SUMMARY
REPORT = JANUARY 1, 1983 - DECEMDER 31, 1983 BY VEPC0 ONE VOLUME -
SUMMARY
, STATION OPERATION, WATER QUALITY, I ZOOPLANKTON, BENTHOS, ICHTHYOPLANKTON, FISHES
*****DATE SUBMITTED - JULY 1984*****
I 316(A) DEMONSTRATION: PROGRESS REPORT, JANUARY - JUNE 1984, LAKE ANNA AND THE LOWER NORTH ANNA RIVER I BY VEPCO CNE VOLUME - STATION OPERATION, THERMAL PLUME SURVEYS, FlXED TEMPERATURE RECORDERS, WATER QUALITY, PHYTOPLANKTON, PERIPHYTON, ZOOPLANKTON, BENTHIC MACRolNVERTEBRATES, ICHTHYOPLANKTON, Ft SHES( STRI PED BASS SONIC TAGGING, I SMALLMOUTH BAS $ SURVEYS) MACROPHYTES, WATERF0WL
*****DATE SUBMITTED - AUGUST 1984*****
WATER QUALITY CHARACTERISTICS OF A THERMALLY-INFLUENCED RESERv0lR, I LAKE ANNA, VIRGINIA RELATED TO EURYTHERMIC AND MESOTHERMIC SPECIES PREFERENDA. BY JOYCE L. BARTON PRESENTED AT THE 1984 SYMPOSIUM OF THE NORTH AMERICAN' LAKE MANAGEMENT SOCIETY, SUBMITTED FOR THE PROCEEDINGS TO BE PUBLISHED IN 1985 I *****DATE SUBMITTED - AUGUST 1984***** I I I I I I
138 APPENDIX B. Technical Specifications for Station Components. Main Condensers Mfr. Ingersoll-Rand Company Active tube surface, % 100 Circulating water, gpm 940,300 Steam condensed, Mlb/hr 7,096 Heat transfer steam condensed, Btu /lb 915.5 Tube water velocity, f t/sec 8.0 Circulating water temperature (in), F 93 3 Circulating water temperature (out), F 107.1 g Temperature condenser from hot well, F 119.5 Absolute pressure main steam inlet, in. Hg 3.41 Surface area, sq ft 618,000 No. of shells 2 Passes per shell 1 Total number of tubes 53,856 g Tube outer diameter, in. 1.0 g Tube length, ft-in. 44-0 Test pressure, psig 25 Material Shell A285, Gr. C Tubes 304 SS Tube sheets Solid 304 SS Hot well A285, Gr. C Baffles A285, Gr. C Reference drawing FM-17A, FC-4 Location Turbine bldg. I I I I I I a
1 i 1 139 l I APPENDIX B. - (cont'd) I Circulating Water Traveling Screens Mfr, Rex Chainbelt, Inc. I With water surface at average level Elevation of surface, f t-in. Screen capacity, gpm 250 230,000 Submergence, ft-in. 29-0 Well width, ft-in. 14-3 1/2 Depth below operating floor, ft-in. 44-0 I Overall screen height, ft-in. Centers, headshaft to foot shaft, ft-in. Screen travel speed, fpm (high speed) 54-0 45-0 10 I Tirae for one complete revolution, min. Flow of spray water per screen, gpm Pressure of spray water per screen, psig 10.2 380 80 I Element Size Material I Head shaft Foot shaft Screen guides 5 15/16" diam. 2 7/16" diam. 4/5 ft long AISI C 1018 AISI C 1018 ASTM A48-48C1-20 Spray nozzles Orifice size 22 Cast Alum. , bronze I Spray headers Screen panels 5" pipe size 24" x 14'-0" Steel Carbon steel Splash plates 3/16" Molded fiberglass I Orive Mechanism Housing Head sprocket 1/4" plate 48" pitch diam. Carbon steel ASTM A 148-58-80-40 Foot wheel 48" pitch diam. ASTM A 48-48 C1.30 Weight of heaviest section to liit during I erection, Ib Reference drawing location 16,200 FM-21A Screenwell I
- I I
I I
140 I APPENDIX B. - (cont'd) Circulating Water Pump Mfr. Ingersoll-Rand Company Pump design Flow, gpm 238,200 Head, ft 25 Temperature, F 40-93 Efficiency, % 85 NPSH (available/ required), ft 50.5/37 Bhp (normal / maximum) 1,769/2,650 Speed, rpm 250 Type Vertical centrifugal Casing design 45 Design pressure, psig Design temperature, F Material A48 cast iron Motor E Horsepower 2,000 . m Voltage 4,000 Speed, rpm 257 Insulation Class B Type Squirrel cage Weight (pump & base), Ib. 100,000 E Reference drawing FM-34A, FM-21A EE Location Screenwell I I I I I I a
141 I ' APPENDIX B. - (cont'd) l l I Screenwash Pumps ' l Mfr. Johnston Pump Company I Pump design Flow, gpm Heat, ft 410 205 I Temperature, F Efficiency, % NPSH(available/ required),ft 0-93 83
/14 i
l J Bhp (normal / maximum) 61,7/64 1 I Speed, rpm Type 1,760 Vertical turbine I Casing design Design pressure, psig 175 Material Cast Iron j Motor Horsepower 75 Voltage 460 1,760
.I Speed, rpm 1 Insulation class B Type quirrel cage
. Weight (pump & base), Ib 2,400 Reference drawing FM-34A, FM-21A i Location Screenwell l I I I I E l I . I !}}