ML20070Q515

From kanterella
Jump to navigation Jump to search
Nuclear Power Plant Sys Sourcebook,Byron 1 & 2
ML20070Q515
Person / Time
Site: Byron  Constellation icon.png
Issue date: 01/31/1989
From: Finn S, Lobner P
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
NRC
References
CON-FIN-D-1763, CON-NRC-03-87-029, CON-NRC-3-87-29 SAIC-89-1015, NUDOCS 9103290103
Download: ML20070Q515 (112)


Text

. _. .- __ .- _ . , _ . . . - __ .__-__

O fynREGugAb?p 8, n NUCLEAR POWER PLANT

e ui SYSTEM SOURCEBOOK oj

{gy,< ,

s., % ,+ y i

i I

BYRON 1 AND 2 so.asa ana so. ass i

l l

n

- 4 #4 A, .

,10mo103 PDR mom $

ADOCK 0000 p

SAIC 89/1015 f

s gaREGO l  %,

f'

< ,g"gi n NUCLEAR POWER PLANT 5 \

s.,

.. SYSTEM SOURCEBOOK

. .c

$ " & ~ o$

44**M L

BYRON 1 AND 2 50 454 and 50 455 Editor: Peter Lohner Author: Stephen Finn l

l i

I Prepared for:

U.S. Nuclear Regulatory Commission

. Washington, D.C. 20555 i

' Contract NRC-03 87 029 FIN D 1763 i

O .

e

- _=

E *

.n Byron 1 & 2 O TAllLE OF CONTENTS O Sectim Eagt 1

S Uh lhlARY DATA ON PLA NT . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 . . . . . . . . . . . . . . . .

2 IDENTIFICATION OF SIMILAR NUCLEAR POWER PLANTS ... 1 3

3.1 S YSTE M INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. . . . . . . . . . . . . . . . . .

Reactor Coolant System (RCS) , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 "

3.2 Auxiliary Feedwater (AFW) System and Secondary Ste am Relie f (S S R) System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 .....

3.3 Emergency Core Cooling System (ECCS) .,,............

3.4 20 Ch argin g S yste m (CVCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5 ............. -30 Containment Heat Removal Systems (PAHRS) ...................... 35 3.6 Instrumentation and Control System (I & C).........................,

3.7 41 Elec tric Power S yste m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 .......

3.S Component Co oli n g S y s t e m . . . .. . . . . . . . .. . . . . . . . . . . . . .. . . . . . .. . . . 60 ......

3.9 Esstatial Service Water (ES W) S ystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ,

4 PL 4.1 A NT I NFO R M ATI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 ......................

S i te and B uildin g S ummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 ..........

4.2 Facility Layout Drawin 4.3 S ec tion 4 Re fere nces . . g s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 ..................

................................ .................. 72

/

C'

' "'" "^""'" ""'" "'^"" - - - -

APPENDIX A, Definition of Symbols Used in the System and La y o u t D rawin g s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ........

APPENDIX B, Definition of Terms Used in the Data Tables............... 101 V

i I 1/89

Byron 1 & 2 C LIST OF FIGURES i i

Fbute hgg  !

31 Cooling Water Systems Functional Diagram for Byron Units 1 and 2.. 6 3.1-1 Isometric Vie w of a 4-Loop Westinghouse RCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1-2 Byron U nit 1 Reactor Coolan t Sys tem . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 10 3.1 3 Byron Unit 1 Reactor Coolant S Locations . . . . . . . . . . . . . . . . . . . . . . . . . .ystem Showin g Componen t

.............................................. I1 3.2-1 Byron Unit 1 Auxiliary Feed water System.................................. 16 3.2 2 Byron Unit 1 Auxiliar Feedwater System Ehowing Component Locations ...............y........................................................, 17 3,2 3 Byron Unit 1 S tartup Feed water System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8 3.3-1 Byron Unit 1 Safety injection System . . . . . . .. . . . . . . . .. . . . .. . . .. . . ,,,,,,, . . .. 24 3.3 2 Byron Unit 1 Safety in Locations ...............jection System Showing Component

.. ...................................................... 25

, p s

3.3-3 Byron Unit 1 Residual Heat Removal System. . .. .. ... .... . .. .... . . ... . . ... 26 i N 3.3-4 Byron Unit 1 Residual Heat Removal S Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ystem Showi n g Component

..................................... 27 3.4- 1 Byton Unit 1 Ch a rgin g S ys te m. . . .. . . . . . . . . . .. . .. . . . . .. . . . . . . ... ... .. . . . . . . . . 32 1

3.4 2 Byron Unit 1 Charging System Showmg Component Locations ........ 33 4

3.5-1 B yron Unit 1 Containment Spray System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 2 Byron Unit 1 Containment S j Locations ...................... pray System Showing Component

................................................., 39 4

3.7- 1 Byron Unit 14160 and 480 VAC Electric Power Distribution System . 48 3.7-2 Byron Unit 14160 and 480 VAC Electric Power Distr Showing Component Locations ..........................ibution ....................

System 49 2.7-3 Byron Unit 1 125 VDC'and 120 VAC Electric Power S ys te m . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................

. . . . . . . . . . . . .50 . . . . . . . . . . . . .Disu 2.7-4 Byron Unit 1 125 VDC and 120 VAC Electric Power Distribution System S howing Component Locations................................ .... 51 3.7-5 B yron Unit 1 Diesel Fu el Oil System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-t

\

il 1/89

Byron I & 2 b

i LIST OF FIGURES (continued)

Fi m e P.aEI 3.S.I Byron Unit 1 & 2 Component Cooling Water System ............,...... 62 3,8 2 Byron Unit 1 & 2 Component Cooling Water System Showing Component Loeations........................................................ 63 3.9 1 Byron Unit 1 & 2 Essential Service Water System......................... 67 3.9 2 Bvron Unit 1 & 2 Essential Service Water System Showing-C'omponent Locations.......................................................... 69 41 General View of Byron Nuclear Station and Vicinity......,............... 73 42 Byton 1 & 2 Plot P1an ....................................................... 74 43 Byron Unit 1 Reactor, Auxiliar Drawing . . . . . . .. . . .. . ................................................

. .. . . . . . . .y, and Turbine B uilding 75 Elevation 44 Byron I & 2 Reactor, Auxiliary, and Fuel Handling Building Elevation Drawing........................................................................ 76 45 Byron 1 & 2 Station Arrangement, Elevation 330'of the Auxiliary Buitding........................................................................

s 77 4-6 Byron 1 & 2 Station Arrangement, Elevation 346' ..................... 78 47- Byron 1 & 2 Station Arrangement, Elevation 364' ...................... 79 4-8 Byron 1 & 2 Station Arrangement, Elevation 383' ....................... 80-49 Byron 1 & 2 Station Arrangement, Elevation 401'........................ 81 4 10 Byron 1 & 2 Station Arrangement, Elevation 426'......................., - 82 4 11 Byron l'& 2 Station Arrangement, Elevation 451' ....................... 83 A1 Key to Symbols in Fluid System Drawings................................ 97-A2 Key to Symbols in Electrical System Drawings........................... 99 A-3 Key to Symbols in Facility Layout Drawings.............................. 100 I'

iii 1/89

_ , , y.,-.w m--,. -

+-'-=- F ""

.-. . _ ~ -

Byron 1 & 2 g

t LIST GF TABLES i

taw P. age 3-1 Summary of Byron 1 & 2 Systems Covered in this Repon ............. 3-3.1 1 Byron Reactor Coolant System Data Summary for Selected C o m p o n e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . . . . . . . . . . . . . . . . . . ,. .

3.2-1 Byron Auxiliary Feedwater System Data Summary for Selected C o m p o n e n t s . . . . . . . . . . . . . . . . . . . ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

, 3.3-1 Byron Emergency Core Cooling System Data Summary for Selected Components................................................................... 28 3.4 1 Byron Charging System Data Summary for Selected Components .... 34 3.5 1 Byron Containment Heat Removal System Data Summar C o m p o n e n t s . . . . . . . . . . . . . . . . . . . . . . ................. . . . . . . . . . . .40. . . . . . . . . . . . . . . .

3.6-1 Byron Equipment Controls Available Outside the Control Room....... 44 3.7-1 Byron Electric Power System Data Summary for Selected Components.......................,,........................................... 53 3.7-2 Partial Listi n g of Electrical Source s and Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . .- 55 3.8-1 Byron Component Cooling Water System Data Summar C o m p o n e n t s . . . . . . . . . . . . . . . . . . . . . . . .................. . . . . . . . . . . . 64 . . . . . . . . . . . . .y for S 3.9 1 Byron Essential Service Water System Data Summar C o m p o n e n t s . . . . . . . . . . . . . . . . . . . . ...................... . . . . . . . . . . . . .71. . . . . . . . . . . . .y for 4-1 Definition of Byron 1 Building and Location Codes...................... 84 4-2 Partial Listing of Components by Location at Byron ..................... 87 B-1 Compone n t Type Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 r

iv 1/89

. - . . - . = . - - -

Byron I & 2 b

d CAUTION The infonnation in this report has been developed over an extended period of time based on a site visit, the Final Safety Analysis Report, system and layout drawings, and other published information. To the best of our knowledge, it accurately reflects the plant configuration at the time the infonnation was obtained, however, the information in this document has not been independently verified by the licensee or the NRC.

NOTICE This sourcebook will be periodically updated with new and/or replacement pages as appropriate to incorporate additional infonnation on this reactor

?

plant. Technical errors in this repon should be brought to the attention of the following:

Mr. Mark Rubin U.S. Nuclear Regulatory Commission

.( Office of Nuclear Reactor Regulation Division of Engineering and Systems Technology Mail stop 7E4 Washington, D.C. 20555 With copy to:

Mr. Peter Lobner Manager, Systems Engineering Di,ision Science ApplicationsInternationalCorporation 10210 Campus Point Drive San Diego, CA 92131 (619)458-2673 Correction and other recommended changes should be submitted in the fomi of marked up co)ies of the affected text, tables or figures. Supporting-documentation s1ould be included if possible.

s

%g v 1/G 4

, . . - , . . , . - - . - - . , -, .n., , .. -- ,, .n. - -

p. ,

. . . . . ~- - ..-. ..

BYRON 1 AND 2 RECORD OF REVISIONS i

,i d

REVISION ISSUE COMMENTS 3,

i j 0 1/89 Original report i

j h

a f

4 i

l' f

e i

i i

1 1

i x

4 i

4 5

i 1

i 1

i i

i-

iv -[fgg -

a-a 2

- p 3 c.-r--*-J -w + w ,,ec-r-- n ,we.,m, # - .w....,=...-, e- v eva e-r w , , - , . - - . . ,-* .,,we,-%,, ---w,...v,ce-+.~,,+#., e.,* e m ,*

Byron 1 & 2 IlYRON 1 AND 2 SYSTET1 SOURCEBOOK V This sourcebook contains summary information on Byron 1 and 2. Summary data on this plant are presented in Section 1, and similar nuclear power plants are identified in Section

2. Infom1ation on selected reactor plant systems is presented in Section 3, and the site and building layout is illustrated in Section 4. A bibliography of reports that describe features of this plant or site is presented in Section 5. Symbols used in the system and layout drawings are defined in Appendix A. Terms used in data tables are defined in Appendix B.
1. SUMSIARY DATA ON PLANT Basic infomiation on the Byron 1 & 2 nuclear power plant is listed below:

Docket number 50 454 (Unit 1),50-455 (Unit 2)

Operator Commonwealth Edison Company Location Byron, Illinois Commercial operation date 9/85 (Unit 1), S/87 (Unit 2)

Reactor type PWR NSSS vendor Westinghouse Number of loops 4 Power (MWt/$1We) 3411/1120 Architect engineer Sargent & Lundy Containment type Reinforced concrete cylinder with steel liner

2. IDENTiflCATION OF SIMILAR NUCLEAR POWER PLANTS s Each Byron unit has a Westinghouse PWR four-loop nuclear steam supply

\

system (NSSS). Other four-loop Westinghouse plants in the United States include:

Braidwood 1 and 2 Caljaway Catawba 1 and 2 Comanche Peak 1 and 2 Donald C. Cook I and 2 (ice condenser containment)

Diablo Canyon 1 and 2 Haddam Neck Indian Point 2 and 3 McGuire 1 and 2 (ice condenser containtnent)

Millstone 3 Salem 1 and 2 Seabrook 1 Sequoyah 1 and 2 (ice condenser containment)

Shearon' Harris 1 and 2 South Texas 1 and 2 Trojan Vogtle 1 and 2 Watts Bar 1 and 2 Wolf Creek Yankee Rowe Zion 1 and 2 m

(

U) 1 1/89 e %'-

y ~ v -- y 9

Byron I & 2 p\

i Byron differs from the majority of Westinghouse plants in that the auxiliary feedwater system consists of one motor driven and one diesel driven pump, whereas other d plants contain some number of motor driven and turbine driven pumps. Byron is similar to other p! ants in the number and type of charging and hi;h pressure injection pumps.

Byron is a twin of the Braidwood plant. ICowever, there are minor differences between the two plants. These differences are noted in the appropriate sections of this report,

3. SYSTEh! INFORhlATION This section contains descriptions a. . selected systems at Byron 1 and 2 in temis of general function, operation, system success criteria, major components, and support system requirements A summary of major systems at Byron 1 and 2 is presented in Table 3 1, in the " Report Section" column of this table, a section reference (i.e. 3.1,3.2, etc.)is provided for all systems that are described in this report. An entry of "X"in this column means that the system is not described in this report. In the "FS AR Section Reference" '

column, a cross reference is provided to the section of the Final Safety Analysis Report where additional infom1ation on each system can be found. Other sources of information -

on this plant are identified in the bibliography in Section 5.

Several cooling water systems are ider.Gfied in Table 3-1. The functional relationships that exist among cooling water systems required for safe shutdown are shown in Figure 31. Details on the individual cooling water systems are provided in the report sections identified in Table 3 1.

m

'U l

. j'

- t )

%/

2 1/89

,. m Table 3-1. ' Summary of Ilyron I & 2 Systems Covere

Ilydrogen Monitoring System, j 4-Ilydrogen Mixing System, '

! Post-LOCA Purge System Reactor and Reactivity Control Systems 1

-- - Reactor Core Same X 4.0 '

i

+

1' Control Rod System Control Rod Drive System X . 4.6 Boration Systems- See CVCS, above - -

Instrumentation '& Control (I&C) Systems .- i Reactor Pmtection System (RPS) - ReactorTrip System . 3.6 7.2-

~

i .- Engineered Safety Feature Actuation - Same 3.6 7.3

System (ESFAS)- .

i

' 5 o

Remote Shutdown System Various Remote Shutdown Pancis - X 7.4 I

i

s -!

l

Table 3-1. Summary of Byron I & 2 Systems Cmered in this Report (Continued)

Generic Plant-Specific Report FSAR Section Svstem Name System Name Section Re ference Instrumentation & Control (I&C) Systems (continued)

Other I&C Systems ' Various systems X 7.5. 7.6, 7.7 i Support Systems j

Class 1E Electric Power System Same- 3.7. 8.1,8.3 Non-Class IE Electric Power System Same 3.7 '8.2,8.3 Diesel Generator Auxiliary Systems ' Same 3.7 9.5.4 ibru 9.5.8 i

Component Cooling Water'(CCW) Component Cooling System 3.8 9.2.2

System s ..

u -- Service Water System (SWS) Essential Service Water System, 3.9 9.2..I 4

.  : Non-essential Service Water System  ;

  • \

.- Other Cooling WaterSystems Plant Chilled WaterSystem X 9.2.7 4 i Fire Protection Systems Same X- 9.5.1

- . Room IIeating, Ventilating, andA' ir- Same- X. 9.4-Conditioning (IIVAC) Systems Instrument and Service Air Systems . . Coatpressed Air Systems X 9.3.1 Refueling and Spent Fuel Systems Spent Fuel Pit Cooling and Cleanup 'X 9.1.3,9.1.4 F

System, Fuel IIandling System

- ' Radioactive Waste Systems i Radioactive Waste Management X 1I Systems '

i

[ $ -2 Radiation Protection Systems' Same X 12 f

, 1 4

i g .. .. .. . . . .. - ._ - - _ . . . . . _ . _ ---,.m.._ - _ . .~ ~ _ . - , - . . . - - ~ . . . _ - . . _ . _ _ . . _ ..

< , ~

,a~

{ t >l

\

v

/

\v (v c.f !MV WJG Pt??P 1 h

( 211 MID ClNT!Cl E -

\ O F 4 Eil

(, _ _ _

)

r ,

-> f1!E'T L 1 A HX k-- J r m AF W.i Pt9/P 1 A 1 _, ESSEf4TIAL SW F 3 04 CootER Ei>WS A ( j

( COOttJG TOWER - . * .

3 BASff4A j s ( (

MAKEUP WATER

,6 f 3

. _ _ , CCS1HX H9CK ( LOOP A fatR k J f ESSE rJ TI AL 3 r 3 WELL MAKEUP 'g SER'.1CE WATER _

WATER SYSTEM -> r 3 COO! rJG TOWER A ,

j '

w -s CCS 2 HX f

~

3 MAKEUP q j y- WATER -

LOOPB - 'r L J r 1 ( ,

._ , ESSENT!AL SW COOL?JG TOWER --+ ESWSB

-* BAstf4 B q j

_> CCS O HX _,

' N r m

-> AFWS PUMP 18 Olt COOLER -*

L J I ESSENTIAL '

V SERV!CE WATER _

r COOLRJG TO'.*JER B

}

) -> D ESEL 1B HX p, e }

CHARGl*G PUS.tP 10

- -

  • OfL /.fJD CUBICLE -*

C n ws . A:3.hry Fwcwsw System COOtER

$ ccs . cmprmt rm systm 7 sws E wear s ma wrer system

' J Figure 3-1. Cooling Water Systems Functional Diagram for Byron Units 1 and 2

Byron I & 2 3.1 REACTOR COOLANT SYSTEM (RCS) 3.1.1 System Function The RCS transfers heat from the reactor core to the secondary coolaiit systi:m via the steam generators. The RCS pressure boundary also establishes a boundary against the uncontrolled release of radioactive material from the reactor core and primary coolant.

3.1.2 Svstem - Definition The RCS includes: (a) the reactor vessel, (b) reactor coolant loops, (c) reactor coolant pumps. (d) the primary side of the steam generators, (e) pressunzer, and (f) connected piping out to a suitable isolation valve boundary. An isometric drawing of a 4- j loop Westinghouse RCS is shown in Figure 3.1 1. A simplified diagram of the RCS and -

, important system interfaces is shown in Figure 3.1-2. A summary of data on selected RCS l components is presented in Table 3.1-1, 1 ,

3.1.3 System Oneration Dunng power operation, circulation in the RCS is mamtamed by one reactor
coolant pump in each of the four reactor coolant loops. RCS pressure is maintained within s a prescribed band by the combined action of pressurizer heaters and pressurizer spray.

RCS coolant inventory is measured by pressurizer water level which 'is maintained w'ithin a prescribed band by the chemical and volume control system (charging system). - . - .

1 At power, core heat is transferred to secondary coolant-(feedwater) in the steam j

generators. The heat transfer path to the ultimate heat sink is completed by the u.ain steam j

! and power conversion system and the circulating water system.

t Following a transient or small LOCA (if RCS inventory is m'ain'tained). reactor-core heat is still transferred to secondary coolant in the steam generators. Flow in the RCS -

is maintained by the reactor coolant pumps or by natural circulation. The heat transfer path to the ultimate beat sink can be established by using the secondary steam relief system (sec Section 3.2) to vent main steam to atmosphere when the power conversion and circulating water systems are not available. If reactor core heat removal by this alternate path is not l- adequate, the RCS pressure will increase and a heat balance will be established in the RCS; ~

i by venting steam or reactor coolant to the containment through the pressudzer relief valves.

There are two power-operated relief valves and three safety valves on the pressurizer. A i

continued inability to establish adequate heat transfer to the steam generators will result in a j

LOCA like condition'(i.e., continumg loss of reactor coolant through the pressttrizer relief-valves), Repeated cycling of these relief valves has resulted in valve failure (i.e.frelief j valve stuck open).

Following a large LOCA, reactor core heat is dumped to'the containment as.

! reactor coolant and ECCS makeup water spills from the break. For a shott term period, the containment can act as a heat sink; however, the containment cooling systems must operate

in order to complete a heat transfer path to the ultimate heat sink (see Section 3.5)..

I i

[

i 1

\

3

, 7 1/89 L

b

.._,..__._._u,,.,...,. . . _ _ , _ _ . . - , _

f Byron ! & 2

{

b}e 3.1.4 S.ystem Success C,$trlil The RCS success enteria can be descibed in tenus of LOCA and transient mitigation as follows:

An unmitigatible LOCA is not initiated.

If a mitigauble LOCA is initiated, then LOCA mitigating systems are successful.

If a transient is initiated, then either:

RCS integrity is maintained and transientmiti uting t systems are sucscessful, or RCS integrity is not maintained, leading to a LOCA-like condition (i,c.

stuck-open safety or relief valve,. reactor coolant pump seal failure), and LOCA mitigating systems are sucet.ssful. -

3,1.5 Comoonent Information A. RCS 1, Volume: 12.257 ft 3,iricluding pressurizer

2. Normal operating pressure: 2250 psia B. Pressurizer
1. Volume: ISOC) ft3 C. Safety Valves (3)
1. Set pressure: 2485 psig
2. Relicf capacity: 420,000 lb/hr each D. Power-Operated Relief Valves (2)
1. Set pressute: 2335 psig
2. Relief capacity: 210.000lb/hr each E. Steam Generators 1-. Type: Vertical shell and U Tube
2. Model: Westinghouse 51 Series

! F, Pressurizer Heaters

1. Capacity: 1800 kW 3.1.6 Suncort Systems and Interfaces A. Motive Power
1. The pressurizer heaters are Class IE AC loads that can be supplied from the standby diesel generators as described in Section 3.7.
2. The reactor coolant pumps are supplied from Non Class IE switchgear.

1 B . Reactor Coolant Pump Seal Injection Water System The chemical and volume control system supplies seal water to cool the rcactor coolant pump shaft seals and to maintain a controlled inleakage of seal water into the RCS. Loss of seal water flow may result in RCS leakage through the pump shaft seals which will resemble a small LOCA.

f~)

g 1/89

i S$$ W O

~

. ATOR Y

[/,$;) $

\

f l . _. M -

L-. --/ k ,

NAjM .

7-3v COO LA NT I

/ /

( PUMP

/

( r ,k l

, , , 4r - '

p, d-/

(

O 1

jl }: wJ st w .) l 8

J

!a%~R ")

e i

  • % s c a %y' ::-1 r--

L/; k . .~~

Q 4. ,

): L4 hf .

'J7;f F

\ b' .,

N 7-

/

\-- e PRES $URl;[R y_

5 REACTOR L

Figure 3.1 1. Isometric View of a 4 Loop Westlughouse RCS.

0:e t

3 3 .w m . N A st A, -

- - ,m l

O V i  !

{OI $

1oI  !

i

!,i D cI' 3

" { t '

of' oji (

' OS .

, D 4g m e )

4 e 3 W

g u ti ,a+ , 4,'rn t1  !! 5' ,

li li il et * , I, oki.4I41of,[.

P 4,1,}

} 11 55

\ ".

oh $. kp i i ggg V,

v;i-k t e lit +x

} 1 V, }

lu t 8

o 3C i

$ 1 e

ogh k

t<-

t i ..

~ 5 6

k,_._ >- j!!J!'k lp t I,i.A .

/ 10 t e g 8.

ox; 5 3 t (

thi oXk n o o.1 oII  !! t ~

e ot}thiffiN +-

A,t + 6 G 3 tk,i fi,t li !!' I!E ' ,.

' gh (41 p

i , ,

ei,t *!

5 II oj'pl d11 h la , e

(

-, U (fe 11 L/

)

!oi s L. -- i4i I ,-

\D 1/S9

4 s- ,4,56MM-.Mm,4s e M 44%4*-us -,-4444_.%.iham-

># a u,me. 4 d__-- .h4 A,_aum,.p.A.m.2 .,,4. -, 4. e xs.4_. 5-. .4x .m. ..m... e m.m.-e.4+ e. -. ha ai-.--.e ..

I,al;1 4

i wi g

). ,

L! i,

!! !b is ll! E

~)!

o-il C

} o$[ C

-]4 , 13 6 I;5 55

g, k yl e

A 1,5 l,i gity 3

i;s; n ,a t is si orj I 4$i 4$,1 oz) 1$1 is la Il 91 I!! 1 1,- 8!!  ! $

hi_,x ,

ru hi*!

sh

& g g

c, O ,

/ i a

n p (x-c,, .

, i 3

}I E I

N  !

i

) l 5

s t$1 oil e c o ai i I sl ,

0p.! oI!;t&!tp 4yj o$

j; '

11 l 4

, 6u. u ,

3 er!o1! Ga 9 ; 9; g, ,ggy e

, u u n: u op8 j! -M -r  !!' t!

t "

01]

o :4 .

y -.

1 1 11 1/89 es--m.-,m--- , . < g . , , - - , - - - , - - , , ,,

y - . . - . , , , , . . . , , ,

. . n,,---,7- , , - , ,-,-e n - ,- ,, u,, 6~ ym. -r ,--~ ,.

l s O O Table 3.1-1. Byron Reactor Coolant System Data Summary for Selected Components COP.fPOtJEffT ID Cc etr . LOCAT'OF3 POWER SOURCE VO LT A G E POWER SOURCE elf E RC.

TYPE LOCATfots Loan Gnp HC-455A FJV FC HC-456 f4V 10 HC-8000A MOV HC MCC-131X2 480 414 pef 4HM AC/A HC-80008 MOV FC MCC-12X2 480 426 pef 4HM AC/B HC-8001 A MOV FC HC-8001B MOV fC HC-8001C MOV FC HC-8001 D MOV 1 FC HC-8002A MOV HC HC-8002B MOV FC HC-8002C MOV FC U HC-8002D MOV HC HC-8701 A MOV FC MCC-131X2 433 414 pef 4HM AC/A HC-87018 MOV FC MCC-132X2 480 426PErJHM AC/B HC-8702A MOV HC MCC-131X2 480 414PEfJHM AC/A HC-87028 MOV HC MCC-132X2 480 426 pef 1HM  :

AC/B RGS-VESSEL HV FC E

C l

J i

Byron 1 & 2 3.2 AUNILIARY FEEDWATER (AFW) SYSTEh! AND SECONDARY STEAM RELIEF (SSR) SYSTEh!

3,2.1 Sutem Function Th: AFW system provides a source of feedwater to the steam generators to remove heat from the reactor coolar system (RCS) when: (a) the main feedwater system is 1

not available, and (b) RCS pressure is too high to pennit heat removal by the residual heat

! removal (RllR) system. The SSR system provses a steam vent path from the steam generators to the attriosphere, thereby completing the heat transfer path to an ultimate heat sink w hen the main steam and power conversion systems are not available. Together, the AFW and SSR systems constitute an open loop fluld system that provides fo

3.2.2 System Definition The AFW system consists of one motor driven pump and one dient driven 1

pump. The normal water sources for the pumps is the condensate storage ta ik An alternate source of water is the Essential Service Water system. Either pumraan st pply all

- four steam generntors, Interfacing with the ARV system is the startup fe6h/ ate: system.

which consists u one startup feedwater pump supplied from the main conde ns.*r hotwell via the main condensate and feed booster pumpa.

The SSR system includes five safety valves and one power-operatri pressure control valve on each of the four main steam lines.

Simplified diawings of the AFW and SSR systems are shown in Figurs s 3..' l and 3.2 2. The startup feedwater system is shown in Fi;ure 3.2 3. A summary of data on selected ARY system components is presented in Ta ale 3.21.

i/9 4

g 3.2.3 Svstem noeration Dunng normal operation the ARV system is in standby, and is automatica.ly actuated on either a low low levelin any steam generator, a safety injection signal, or a loss of power to the reactor coolant pumps. The system can also be manually started fran the control room. Ordincrily, the AFW system is required to operate for about 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> to i col the unit down to 350;F, below which temperature the low pressure residual heat removal system operates.

Both AFW pumps are 1165 brake horsepower units. The diesel driven ?.FW pump is capable of providing 840 ppm at 3350 feet head, which is nearly twice the :qacity required for system success. This pump is capable of supplying its own cAn and lubrication indepen k ntly of AC power, but when AC power is available backup puno;s are provided for oil pressure, water jacket cooling, and room air cooling. The motor c riven AFW pump is capable of providing 890 gpm at 3350 feet of head, it requires essential service water for cooling (Ref.1).

The primary suction source is the concensate storage tank. Redundant now paths begin at the CST and meet at a header which supplies both pumps. No single valve can block the flow path. In the event of low suction pressure, there is automatic switchover to sen' ice water as the ARY pump water source.

Flow from each AFW purra poes to all four steam generators through independent paths. Flow is re which fail open on loss of air. gulated by eight manually controlled air operated valves 3.2.l Svtfem Success Criferia For the decay heat removal function to be successful both the ARV system and the SSR system must operate successfully. The AFW success criteria are the following

[-

i (Ref. I and 2n 13 1/S9

Byron 1 & 2 0 Either AFW pump can provide adequate flow.

Water must be provided from the Condensate Storage Tank or Essential Senice Water System

- Delivery requirements are 160 gpm to each of three steam generators or 240 ppm to each of two steam generators. This delivery must commence prior to the steam generators boiling dry (within 20 to 30 minutes)

The SSR system must operate to complete the heat transfer path 'o the environment. The number of safety valves which must open for the decay heat remeval function is not known.

The startup feedwater system may be available as an alternate source of steani generator makeup if offsite power is available and the suction path from the main condensei hotwell via the condensate and feed booster pumps is functional, 3.2.5 Comoonent Information A. Motor driven AFW pump 1 A

1. Rated flow: 890 ppm @) 3350 ft. head (1452 psid)
2. Rated capacity: 1759 (Ref.1)
3. Type: Centrifugal B. Diesel driven AFW pump
1. Rated flow: 840 ppm @ 3350 ft. head (1452 psid)
2. Rated capacity: 185G (Ref.1)
3. Tvpe: Centrilugal f

1 C. Startup Feedwater Pump

1. Rated flow: unknown
2. Type: Centrifugal D. Condensate storace tank
1. Capacity: Unknown
2. Design Pressure: Atmospheric E. Secondary steam relief valves
1. Five safety valves per main steam line
2. One power operated pressure control valve per main steam line 3.2.6 Suonort Svetems and Interfnces A. Control Signals
1. Automatic
a. The AFW pumps are automatically actuated based on the j following signals:

low low water level in any one steam generator safety injection signal loss of offsite power and station normal auxiliary power (blackout).

r] b. The water source for the AFW pumps is automatically switched to the Essential Senice Water system on low pump suction pressure.

14 1/89

Byron 1 & 2

c. The AFW pumps are automatically tripped on low suction pressure.
2. Remote manual The AFW system can be actuated by remote manual means from the main control room and from the remote shutdown control panel.

B. .\10tive power

1. The AFW motor driven pump and motor operated valves are Class l lE AC loads that can be supplied from the standby diesel I generators as described in Section 3.7. Redundant loads are supplied from separate load groups.

2 The AFW diesel driven pump is supplied with fuel from a day tank. l 1

C. Other i

1. Cooling for the motor driven pump is provided by the essendal service water system (see Section 3.9). Cooling for the diesel driven pump is

,tovided locally.

2. ' ump cubicle coolers are cooled by essential service water (see Section 3.9).
3. Each AFW pump has an auxiliary lube oil pump that provides lubrication prior to starting the pump. For a normal pump startup, the pump will start when an oil pressure interlock is satisfied. Under emergency stan condition prelubrication is not required for AFW pump start (Ref. 2).

3.2.7 Section 3.2 References

1. Youngblood, R. and Papazaglou, I.A., " Review of the B,vron/Braidwood Units 1 and 2 Auxiliary Feedwater System Reliability Analysis, NUREG/CR 3096, BNL NUREG 51633, Brookhaven National Laboratory, November 1983.
2. Byron /Braidwood Final Safety Analysis Report, Section 10.4.9.

d I

t 15' ' 1/89 7 W '7-- --i

.c7,.i *n- +> -'w.p y .- e , , - - , , . . . c,vi9 . - - --wgn -, e.

/, .

r, es ,a  :. .-

si a 1.

r  :: n p Ru 5 b u c, 35

's ' 9 S ha

? E 4 w Q 4 m t? v I: WA [. n7  ;-

r, ,d w *I em c e, e I

a '4-- , -

.E _t M - _E M -

7 ! < I e $l y  ! a

~Q-% %l _% Q4 -

)* 4 -

e e U O

-); )s )s -)i tN.i f .i tZ.i tI . tI fi t .i f .l e ts i

.!!. di e ,!!

IX tZs ,!!

e I

tZI .!! l 5: i- E:e 1-m zur -

m E:- 1- E:s msg age - m e

if a

EV a

ita Eg'  %

a a t

o

d. 1 d, k I I iM idi iM t2B t4! te E 129 t2! >

u m

O s

sg

/

OXIa C-X!a O2!a 025a OX!OX!a a OE!OX! a a 4

90@eF'* 's I

EO-X5 e&{> e0-X2 e e 0Xe e0-$5 .

D c

~

o E

to e ne 5 I ~

fe m

W D e er:

i hmw 6 a s ta e o

E O I

s ! $$ I' E E

d' oli l.

!! l.w eX: eX OI!

11 oI: I I

? ,! .*

r e-:

tZ th oI! =

i a

o ras

( (f\ w)/

-f a 'rX -- N 225

?C a  : -

hs. $._

16 l 1/S9 l

l

Er m 44 2.4Me_, .,_Ja,et4. Eme.Ji.xa 44a .si m ,sinemm..A. e, W AAA m e,. ak h 54 - am m_Ae- se u---.4-,JEsu-.hes,-a w# E.4m-eme- .a.mL--mi.emwm.A-er-si ri.L he emm Ama4 ..au.mma3e--h -ww-m.m4.-m-s-- -.

25 E 9% 5 50 h $5 g

3 19 ,

.1, l

c 4- !

,1, jk- j%_

I >

m*

Ob-d< b k , h-do-- --$< j-m , ,

di "

_)5 "

)E- Ji. t c

r ;+p,! !! t !- Il t&!-  !! t&,L  !! i

q '
; = .

a i _

a i a i .g

- . v>

I fI fI f$ f$ f fI e

N $! ,

$! %! @!_ @!  % l "! m E b0 Ob -

E M@ $ 2 S@ l~

~ ~

't g

.e

=

H 3

. EMk 20- $ m s$ E' . -m f,

,,. W- .il M w -

M g g g g E - ; 0-I:- .tZa 3 $

~ 4- I a c E

g' L" Q Q

~

W$- Ea$ m h ~ {A OI*! W

!! ll @ s>fe ok:! * $

et oU e

! 7 I a> t28 tZe O-I!.. b

_ y g;

  • m 0 1

- f

~

3t3 (f.,J j <

=

5h.-

ne _.

55 m I h 7 -

3 1

17 1/89

Q Q-) G,) T) T) t?! '

tf! til tii al tz! til txl exi tx! tx : txl l'diqil'siqil'sigll'(qi i

r .I 7Ii oxi ti d ti i w

E3 i i t tf!

Ei 1,9

,11l1

,iil j  !'

g Q f ' a il 4~i L t il i

s gi! F AlAlilAl i fi fi f fl 11

[

lI!. I

  • iil*1.*i .

f f f l f ,'f !'

lil1  !!

I g i I ,!~  !

j /\ r 1 gg. 1/89

J Table 3.2-1. Byron Auxiliary Feedwater System Data Summary for Selected Components COMPOf3ENT ID COMP. LOCATIOf3 POWER SOURCE VOLT AGE POVIER SOURCE EMERG.

TYPE LOCATIOf3 LOAD GRP AFV/-13A MOV AFWPPINL MCC-131 X1 480 364PE f1HM AC/A AFW-138 MOV AFWPPINL f.1GC-131X1 480 364PENRM AC/A AF W-13C MOV AFWPPINL MCC-131X1 480 3C4PENHM ACIA AFW 130 MOV AF WPPINL MCC-!31 X1 480 364PE NHM ACrA AFW-13E MOV AFWPPINL MCC-132X4 480 426PENHM ACB AFW-13F MOV AFWPPINL MCC-132X4 480 426PENHM AC.B Al W-13G MOV AFWPPTNL MCC-132X4 480 426PENHM ACB AFW-13H MOV AFWPPINL MCG-132X4 480 42EPETJHM AGB AFW-17A MOV 383AB MCC-131X3 480 383AB ACIA AFW-178 MOV DDAFW MCC-132X3 480 383AB AC43 AFWEA MOV 383AB MCC-131X3 480 383AB AC/A 5 AFW-6B MOV DDLFW MCC-132X3 480 383AB AC/U AFWCST TANK CST AFW-P1 A MDP 383AB BUS-141 4160 ESF11 AC/A AFW-P1B DDP DDAFW SG-1A SG HC SG-1B SG HC SG-1C SG HC j SG-10 j SG FC b

c

b Dyron 1 & 2 O

3,3 EMERGENCY CORE COOLING SYSTE.%1 (ECCS) 1 3.3.1 Svstem l' unction The ECCS is an integrated set of subsystems that perform emergency coolant injection and recirculation functions to maintain reactor core coolant inventory and adequate decay heat removal following a LOCA. The coolant injection function is 3 rfomied during a relatively short term per od af ter LOCA initiation, followed by realignment to a recirculation mode of operation to maintain long tenn, post LOCA core cooling. Ileat from the reactor core is transferred to the containment. The heat transfer path to the ultimate heat sink is completed by the containment cooling systems (see Section 3.5).

3.3.2 Sntem Definition i

The emergency coolant injection (ECI) function is perfonned by the following 4

ECCS subsystems:

Passive cold leg accumulators Charging system (CVCS)

Safety iniection (SD system Residual heat removal (kilR) system The chargine function of the CVCS is described in Section 3.4.

The Si system provides high pressure coolant injection capability. The RHR pumps perform the low pressure injection function. The Refueling Water Storage Tank (RWST)is the water source for both the high and low pressure 'njection systems. Both systems inject coolant into all four RCS cold legs. The Si system can also inject into all O four hot legs, while the RHR system can inject ino two hot legs.

Q RilR pum After the injection phase is complete , recirculation (ECR)is performed by the cold legs.Heet ps drawing suction from the containment sump and discharging is transferred to the component cooling water system by the RHR heat into the RCS exchangers. The RHR pumps can also deliver water to the suction of the Si and charging pumps during recirculanon.

Simplified drawings of the safety injection system are r' *n in Figures 3.31 and 3.3 2. The residual heat removal system is shown in F ures 3.3 3 and 3.3 4.

Interfaces between the accumulators, the ECCS injection and recircufation subsystems, and 7

the RCS are shown in Section 31. A summary of data on selected ECCS components is presented in Table 3.31.

3,3,3 System Ooeration Dunng normal operation, the ECCS is in standby, Following a LOCA, the four cold leg injection accumulators (one for each loop) supply borated water to the RCS as soon as RCS pressure drops below accumulator aressure (approximately 585 psig). A safety injection signal (SIS) automatically starts t ie two charging pumps. the two safety injection pumps, and the two RHR pumps, and aligns the charging pumps for injection.

The charging pumps inject through the boron injection tank (BIT) into the four RCS cold legs. The Si and RHR pumps can inject into either the cold legs or the hot legs. All pumps are aligned to take suction on the RWST, For small breaks, operator action can be taken to augment the RCS depressurization by utilizing the secondary steam dump capability and the auxiliary feedwater ( AFW) system (i.e., depressurization due to rapid heat transfer from the RCS).

When the RWST water level drops to a prescribed low level setpoint, the RHR pumps are realigned to draw a suction from the containment sump and deliver water to the (mv) RCS cold legs, if depressurization of the RCS proceeds slowly, high pressure recircelation can be anomplished by manually aligning the discharge of the RHR pumps to 20 1/S9

---_.e--3.-sa- - _A- . + -saa m - -a>---++--------.A -r * -- - - -+-m-- m,,-i - ----

Byron 1 & 2 p

the (uctwn of the ch: ping and SI pumps. Approximately 18 hours2.083333e-4 days <br />0.005 hours <br />2.97619e-5 weeks <br />6.849e-6 months <br /> after the accident, hot leg recirculation is initiated to ensure termination of boiling and preclude excessive boron concentration in the reactor vessel.

3.3.4 Sutem Success Criteria LOCA mitigation requires that both the emergency coolant injection and emercency coolant recirculation functions be accomplished. The success criteria for a large LOCA are the following (Ref.1):

3 of 4 accumulators provide makeup as RCS pressure drops below tank pressure, One safety injection pump injects its flow to the RCS, One RilR pump delivers its flow to the RCS, One centrif ugal charging pump injects from the RWST into the RCS, and Coolant recirculation occurs on a low level signal from the RWST or by remote manual means.

The recirculation success criteria are not clearly defined in the FSAR.

Success Criteria for a small LOCA is not clearly defined in the FS AR, however it is noted that t Ref. 2):

The Safety injection pump shutoff head is less than RCS normal operating pressure, therefore, a small LOCA must be of sufficient size to cause some RCS depressurization, or the RCS must be depressurized by other means if the safety injection pumps are to provide makeup. Options for depressurizing the RCS may include:

Opening power operated relief valves on the pressurizer (two PORVs are available, see Section 3.1)

RCS cooldown (i.e. using the auxiliary feedwater system, see Section 3.2)

The combined capacity of the two centrifugal charging pumps is 300 gpm (i.e.

150 rpm each) @ 5,800 ft. head. One charging pump can maintain normal operating aressure (2,250 psia) following a 0.375" equivalent diameter rupture (127 ppm eak/ charging rate).

3.3.5 Comoonent Information A. Safety injection (high pressure) pumps l A and IB

1. Rated Dow: 400 ppm @ 2540 ft head (1101 psid)
2. Rated capacity: 100?c'
3. Shutoff head: 3922 ft head (1700 psig)
4. Type: horizontalcentrifugal B. Residual heat removal (low pressure) pumps l A and IB
1. Rated flow: 3000 gpm @ 375 ft. head (163 psid)
2. Rated capacit 1007c
3. Shutoff head:y:450 ft (195 psid)
4. Type: vertical centrifugal O

V 21 1/89

Byron I & 2 i

i x C. Cold leg injection accumulators (4) '

l . Accumulator volume: 1350 ft3

' 2. hiinimum water volume: 935 ft3

3. Nonnal operating pressure: 585 psig
4. Nominal boric acid concentration: 2000 ppm D. Refueling water storace tank
1. Capacity: 458 000 gallons
2. Design Eressur,e: Atmospheric ,
3. 51tnimum Boron Concentration: 1900 ppm - *
4. hiinimum water volume: 420,000 gallons E. Rilk heat exchangers l A and IB
1. Design duty: 28.95 x 106 Bru/hr ,
2. Type: Venical, shell and U tube 3.3.6 Suonort Systems and interfaces A. Control signals
1. Automatic The ECCS injection subsystems are automatically actuated by a safety injection signal (SIS). Conditions initiating an SIS trip are:
a. Low pressurizer pressure
b. liigh containment pressure c c. Low steam line pressure I d. hianualactuation

\

The SIS automatically initiates the following actions:

starts the diesel generators starts the chargmp, SI, and RIIR pumps aligns the charging pumps for injection a Switchover to the recirculation mode occurs automatically on low level in the RWST.

2. Remote manual An SIS signal can be initiated by remote manual means from the main control roam. The transition from the injection to the recirculation phase of ECCS operation can be initiated by remote manual means. Manual action is required to realign the charging and safety injection pumps for recirculation.

R. hiotive Power

1. The ECCS motor driven aumps and motor operated valves are Class 1E AC loads that can be suppliec from the standby diesel generators as described in Section 3.7.

b')

\

O v

-- 1/89

l 1 l Byron I & 2 l l

l C. Other

1. Each Si and charging pump is cooled by the Essential Service Water system i (see Section 3.9).
2. The RllR pumps and heat exchangers are cooled by the Component  !

Cooling Water system (see Section 3.8).

3. Lubrication and ventilation are provided locally for the SI, RIIR. and charging pumps and motors.

,3.3.7 Section 3.3 References l 1. Dyron/Braidwood Final Safety Analysis Report, Section 6.3.2.

i 2. Byron /Braidwood Final Safety Analysis Report, Section 6.3.3. $

i i

i l

i l

I-1 I

l t

l l

1 .

i r

l l

l I

l i.

i 23- 1/89

,i A -,- ,,.,-- _ . ci,--- . .

'v Ei  ??

c.>

i; eq it

.=.. sq

, y g j, 12 12 tZ tX is

. ie

- t$s.

tf

. tf

. tf,,g;,

[g

.  ;>  !! 81 at $ ,2 1

4 tZi I

t2[ [ j l l tai txl t$1 til tZi t%! ffi tXl ffi tZi tf! tZi tf[ tZi tZi thi XI .!! XI Xi .!!

XE .!!

XV ll Xi ll

.. X!XI!.I .

e

_o c

m C

.9

~

u oI[  ;

ORj  ;

OIS i s.

(1 s s  ?

V t2 V tZi $

.t C

D Di Di  !

1 ie .

l .

OI!OI!oEi l  ! l OXi Ta OI!

ta E

n Okl Ok!a  !!

3 o

E R

i  !!

si

' [g "l 5

5 El l  !

1 l [

01[1 I, O3 JO.!Ok!Ok!Ok.!

$ 1

!?

L.)-_

,o 3  !

) is 4

(% i' Si

s
l.1 ;'

rn -

,,4 1/89

-4a.su. .,w.,u-rM4..w 4% w.s +.m m.w_.p. in aaww m.Jw- me a.e.mee J'4.ma4 mm.m h--hA -.J ~+4 m_-a --- - - - - - - - - -

l in e6 65 es II b kb hh i i t i t*!, tf is n

4 is n t$.

.n.

a. t*h
a. [ b. ,3,: si is -

e i2l tl . a ,$ t8, y E .h sO

$ i .

a  !! x a !! n !! n I! sr j; xi x t j! l 8

i

's 8

  • O oIf  ; . ogj
oji a

! I a T ..- la e

, n .

b .

tZ.r o o .I . e

.o ia~

o U

f olOl&l Ogli OX,I' -

of! dr }

f e

x

- =

w flf 0 Og; gg .o

l. g*'

m e

oli er er }. p)' -

~g)g- B

! OjOkjokf;okf,ok*iok!(

Q_ a t

b' I E h  ! .I n

RE

=

n E I

= . E

25 1/89

I

^

ii  !!

Ti

!! if t- it ti ti it ti it ti ti, ti, ti. tI n . .

u

!!'  !!'  !?  !!' ij i,i i  ! l } ffi fff txtt$1tzit$1txit$1tXIt$1Elt$1ffit$1

:: a:  : >:

!!  !!  !!  !! It  !"!

oi ol of

- -- I le P

!! '. ') ,: $

t 08! ' s I l. l oI.l 2, oil 15 A

O 4-O E

s Gb oX: I

,A eXi 4

w=

V OI! f1;j e X {' ;j _ j-i}!.!

8

+ 1.l -

g m

f.i f.s  !

, m

",g

!  ! s 6

n

:n il s)s tre e ois oi.l oXI4 o$i oil a oXsa e

oIt <

l' se it OX!

oII lli lii s

+

j!> jia 01-d

.le!

'~

- e t

li a

  • I t l' n S.I' il il ';{ <{

x_/ -

!!:p! okiok'o!ok! '"

I i

- L_J

i 26 1/89

J

.. ~.

l li 11 11 li it it is it t'/ tk ik ik 9

d d. a. ,..

Ij' ll' !P I.' II i.

II l i i !t%1 t%I tiltfftjlifltilifft?lifldiifldiiff

  • i y a; - *;  ;;

II lt: 11 .;l i  !!  !! s p

3 Okl- Okl' oil b

i 11

+. 1 i;t _ _

(

e o

I 1 l l Okl i CIg ~e^ -. J * -7 -

5 p y"a --

di E

_ odi .. oe . ._ l r

eIt r,  : ogg r, i r 8

' ~

~ ~

l f! -,t! "

, I l

s-I at [I s

1 I

i cc

===4. 7

  • E

- D

. s'~ f  ! '

Oi

_a - OE*I OEi* ail- t_

v

~ ~

ol*i E

. 01jiL j-3 5 -  :

v>

I O  !

OII i;gli i! ve

  • i g.*
i* Oh -

,o el;t

_.L , ' t ! .: '

i t.  !]i-~

I.;I

~  !.! !!. Sf!

s N 11 , !

035 OE! Oi-I ok!-  ;-

!!!Lr~1,-  !

'I l.

27 1/89

. _ . _ - - _ - _ . - - . ~ . . . _ . . . _ _ ~ _ - _ . _ - , . -

- - . . - . ._ . _ _ - . _ - ~ . - . . , . _ _ , _

~

O Table 3.3-1. Byron Emergency Core Cooling System Data Summary

.for Selected Components COMPONENT ID COMP. LOCATION POWER SOURCE VO LT A G E POWER SOURCE EuERG.

TYPE LOCATION LOAD GRP CV-8804A MOV 364PENRM l MCC-131X1 483 364PENRM AC/A HH-8716A MOV: 346PENRM MCC-131X1 480 364PENRM AC/A HH-8716A MOV 346PENRM MCC-131X1 480 364PEFRM AC/A HH-87168 MOV 346PENHM MCC-132X4 480 426PENRM ACIB HH-8716B MOV 346PENRM MCC-132X4 480 426PENRM a AC/B l

' HH-HX1 A HX FuifuiXA -

HH-HX1B HX HilluiXB I HH-P1A MdP fuIRA BUS-141 4160 ESF11 AC/A  !

HH-P1B MDP RHRB BUS-142 4160

. ESF12 AC/B SI-8802A MOV- 364PENRM MCC-1?'X1A 480 364PENHM AC/A SI-88028 MOV 364PENRM MCC-132X4A 480 426PENHM

  • AC/B SI-88048 MOV SIB MCC-132X4 480 426PENRM AC/B SI-8806 MOV SIB " MCC-131X1 480 364PENRM ACIA
SI-8807A MOV SIA MCC-131X1 480 364PENRM AC/A i SI-88078 MOV- SIA . MCC-132X1 480 364AB AC/B SI-8811 A MOV 364PENRM MUC-131X1 483 364PENRM AC/A SI-8811 B MOV. 364PEFIRM MCC-132X4A 480 426PENRM AC/B SI-8821 A MOV 364PENRM MCC-131X1 480 364PENRM AC/A SI-8821A MOV 364PENRM MCC-131X1 480 364PENRM AC/A i

, SI-88218 MOV 364PENRM MCC-132X4 480 426PENRM AC/B 9-88218 MOV 364PENRM MCC-132X4 480 426PENRM .AC/B SI-8835 4

MOV 364PENHM MCC-131X1 A 480 364PENHM AC/A SI-8923A MOV SIA MCC-131X1 480 364PENHM AC/A SI-89238 MOV SIB MCC-132X4 480 426PENHM AC/B -!

SI-8924 MOV SIA MCC-? 32X1 480- 364AB AC/B SI-P1 A MDP SIA BUS-141 4160 ESF11 AC/A St-P1B MDP SIB BUS-142 4160 ESF12 ACfB SI-HWS T TANK RWSI W

r s. ~ -

- ~

Table 3.3-1. Byron Emergency Core Cooling System Data Summary for Selected Components (Continued)

COMPor2ErfT ID COMP. LOCATION PObER SOURCE VOLTA G E POWER SOURCE EPf E RG.

TYPE LOCATIOff SUMP-A SUMP

_._ LOAD GRP 10 SUMPB SUMP 10 W

5 e

4 i

Byron 1 & 2 p 3 . .I Cil ARGING SYSTLM (CYCS) 3.4.1 Sutem 17 unction The charging system is part of the Chemical and Volume Control System (CYCS). The CVCS is responsible for maintaining the proper water inventory in the Reactor Coolant System and maintaining water purity and the proper concentration of neutron absorbing and corrosion inhibiting chemicals in the reactor coolant. The makeup function of the CYCS is assumed to be required to maintain the plant in a long term (8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />) hot shutdown condition. The charging pumps also operate as part of the ECCS in the event of a LOCA.

3.4.2 System nerinition The CVCS provides a means for injection of control poison in the form of boric acid solution, chemical additions for corrosion control, and reactor coolant cleanup and degasification. This system also adds makeu ) water to the RCS, reprocesses water that is letdown from the RCS, provides seal water in performs an emergency core cooling function.,ection to the reactor coolant pump s The CVCS consists of several subsystems: the charging, letdown, and seal water system, the reactor coolant purification and chemistry control system, the reactor makeup control syr. tem, and the boron themial regeneration system. The functions of the CYCS are performed by the following components the charging pumps,(two centrifugal, one positive displacement), boric acid transfer pumps, volume centrol tank, beric acid tanks, and various heat exchangers and demilerabzers.

Simplified drawings ef the CVCS, focusing on the charging portion of the system, are shown in Figures 3.41 and 3.4 2. A summary of data on selected charging system somponents in presented in Table 3.41.

3.4.3 System Ooeration Dunng normal plant operation, one charging pump is running with l'.s wetion aligned to the Volume Con:rol T.mk (VCT). The letdown flow from a RCS cold leg is cooled in the shell side of the regenerative heat exchanger, then directed to the VCT. The reactor makeup control system maintains the desired inventory in the VCT. The bulk of the charging flow is pumped back to the RCS through the tube side of the regenerative heat exchanger via two charging lines. Portions of the charging flow are directed to the reactor coolant pumps through a seal water injection filter, and to pressurizer spray.

The centrifugal charging pumps also provide ibh head injection as part of the ECCS (see Section 3.3). During a LOCA the CVCS is isofated except for the centrifugal charging pumps and the piping in the safety injection path. The pumps take suction on the Refueling Water Storage Tank (RWST) and inject via the Boron Injection Tank into all four cold legs.

The uciprocating (positive displacement) charging pump is also used to p:rfonn hydrostatic tests which verify the integrity of the RCS. The pump can pressurize the RCS to the maximum design test pressure, 3.4.4 Success Criteria For post transient makeup to the RCS the following charging system success critena , ,s i assumed:

A long tenn water source must be available to the charging pumps.

One of three charging pumps is available.

A makeup path to the RCS is available.

O, t

For LOCA success criteria, see Section 3.3.4.

V

, 30 1/89

I Byron 1 & 2 )

7 3.4.5 Comnonent Informatinn

(

A. Centrifugal charging pumps l A and 1B
1. Rated flow: 150 @ 5800 ft head (2514 psid) l
2. Rated capacity: 10(Fo
3. Type: centrifugal B. Reciprocating charging pump 1
1. Rated flow: 98 gpm
2. Rated capacity: 1007c 3, Type: positive displacement I 3.4.6 Suonort Systems and Interfaces A. Control Signals i 1. Automatic
a. The centrifugal charging pumps are automatically actuated by a safety injection signal (SIS).

l

b. The reciprocating charging pump is tripped and the normal charging line is isniated by an SIS.
2. Remote Manual The charging pumps can be actuated by remote manual means from the control room.

1 B. iotive Power O 1. The centrifugal charging pumps and motor operated valves of the CVCS Q are Class lE AC loads that can be supplied from the standby diesel generators as descriS d in Section 3.7.

C. Other

1. The centrifugal charging pumps are cooled by the Essential Service Water system (see Section 3.9).
2. Pump lubrication and ventilation are provided locally.

1 i

O 31 1/89

.['

j AEFUELPC VIATER m STO8MGE TANK VMUME 8443 S KWST TMM i ss NJM TD-58 , TCyrAOM i SYSTEM + r , S8 PetApS TO NGFNEAATNE -

CV 4904A $18924 NEAT LECMM.CTR I

,ez romt i CWING PATHg  !

TOSI SYSTEM Si esos TO CS +

PUMP 1A

'^

q 00?64 CS1A e394 '

TO CS

_4 k TOAFJICTOR PUMP 18 COOUWT LOOP TS CS-19 y,

X

' gzy,g

+N 8481A %A 121 N

8349 184

N . CV P1 A 7y k e . TOREACTOR CV-t t2D .

Q COOUWTLOOPic 4

8546 ' 4

'h'- N TO3EACTOR &

j CV tt E X

seria Mts . e4 m

= . TOREACTOR

- COOL Af4T LOOP 10 CV#18 m 9 4 NJECTION l Sles12A taw (, X TotOOPt '

COLD LEG GSTCA SEA 4

TO M PUMP 18 C

sT2 TOLOOP2 d

Stee120 r, S:S?O1 A M

881C8

+% COLD LEG e9008 4 ,

NM _ k 2 --

Q em TOLOOP3 5""

- ;g Sida ,ec . - cad tEc 1'

j1 -

TOLOOP4 M

..o D cad tto e

Figure 3.4-1. Byron Unit 1 Charging System

i f

1 RC J l HWST l l 426As l l U NW N' ' R N l j W FUf LING WATE R FRr eA 5708tAGE TAfM votour 4'

' 1 CONT TFA ,,o si r?wST T#ew l L w s t t Nt. l ,

l FTv sA se A TOWsA

  • -* 9 :'.;ws TO NGFM RA TNE i SYSTE u + '

j Cv 8804A SI 8W4 4' " ' ** AI I "}"'dG A

,, *o ans CbAAG*iC"AN) l sta C TO SI SysTEu 9 8806 ,

'~ - ~* TOF4 ACTOR l TO CS 4 corm ANT tv1 A 9038A PUMPfA BM4 'I Y 1

I CS1A TO CS - ._ + TORrr204 CD M*T IN 19 PUMP?B Q g g' '

MD e491A N e 4*t A T2' M S 349 v

194 W -

CV P1A TO RF ACTOR CV 1120 +J Cvs [ sc36C 8546 --> TO EACTOR

'L2 4 COM A.NT LW TO RF ACTOR easir,  : ease,a SEALS

~' '

+ W ANT p to Q CV PTB mf9 l

N ^

l X

metCA b x'&fc' e 300 A C  ;

j TO RM 1

PUMP 18 - -

TOtOOP2 S48et28 CCtDtFG St e901 A 88 ?M 8W

+N--

FRC*J me - TOTO'#7 UX O t 8 G SYSTtu

  • N - 9p ,g yg m,c ens A

e l 3 46 PL NH M l x p ce,s. TOtc a

% ,co mxt l seen Num l Figure 3.4-2. Byron Unit 1 Charging System Showing Component Locations i

v. 't

% ,l i-1 i i Table 3.4-1. Byron Charging System Data Summary i for Selected Components i

, COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE POWER SOURCE EMERG.

1 TYPE LOCATION LOAD GRP i

) CV-112D MOV' 364PENRM MCC-131X t 480 364PENRu AC/A 1 CV-112E MOV 364PENRM MCC-132X4 480 426PENHM AC/B 1

! CV-P1 A MDP . CVA BUS-141 4160 ESF11 AC/A GV-P1B MDP GVB BUS-14? 4160 ESF12- AC/B SI-8801 A MOV 364PENRM MCC-131X1 480 364PENRM AC/A SI-88018 MOV 364PENRM MCC-132XS 480 426AB AC/B  !

j SI fW/ST TANK RWST -

i

) i w

JA I

)'

i i

1 1 iI 4

~

. i i ,

.I i'

m ..

3-i t

Dyron 1 & 2 7 3.5 CONTAINh1ENT llEAT REh10 VAL SYSTEh! (PAllRS)

\'

3.5,1 Svstem Function Containment heat removal systems perform the functions of containment heat removal and pressure control following a loss of coolant accident. In conjunction with the ECCS, the containment heat removal systems completes the post LOCA heat transfer path from the reactor core to the ultimate heat sink. The Containment Spray System, which is

, one of the containment heat removal systems, also serves to remove elementaliodine from the containment atmosphere.

3.5.2 System Definition Containment hcat removal systems include the following two systems:

Reactor Containment Fan Cooler (RCFC) System Containment Spray (CS) System The RCFC system provides the design heat removal capacity for the containment following a LOCA assuming that core residual heat is released to the containment as steam. This is accomp!!shed by the continuous recirculation of the air-i steam mixture through cooling coils to transfer heat to essential service water. The RrFC sys;em consists of two redundant trains, each powered from a separate bus. Each t*ain consists of two 50% capacity fan cooler units.

The Containment Spray system is designed to remove fission products, primarily elemental iodine, from the containment atmosphere following a LOCA. The system also serves to reduce containtnent pressure and temperature during the injection phase of LOCA mitigation. The C3 system consists of two independent trains, each O containing a 100% capacity pump and three ring type spray headers, During the injection V phase of LOCA mitigation the CS aumps draw suction from the RWST. Durink recirculation the CS pumps draw from tie containment sumps.

Simplified drawings of the Containment Spray system are sbomn in Figures 3.51 and 3.5 2. The interface between the containment fan cooler units and essential service water is shown on the ESW system drawings in Section 3.9. The interfaces are through motor operated valves CC 16A and CC 16D. A summary of data ca selected containment spray system components is presented in Table 3.5 1, 3.5.3 System Ooeration The Reactor Containment Fan Cooler system consists of two trains, each containing two 50% capacity fan cooler units. The RCFC is designed to commenc9 operation approximately 45 seconds following the inifation of a safety injection signal.

Heat is transferred through cooling coils to essential service water. During normal operation the RCFC fan motor operates in the high speed mode. On initiation of post-LOCA mode of operation the motor will shift to low speed, resulting in lower air flow.

The lower air flow compensates for the increasa in containment airciensity resulting from the higher pressure following a LOCA (Ref.1).

The Containment Spray system consista of two pumps, each supplying three sprav . headers located in the contamment dome area. The spray system will be actuated by high'high high containment pressure (approximately 23 psig). During the injection phase, water from the RWST is sprayed into the containment atmosphere by the CS pumps.

Following the injection phase the spray pumps are realigned to draw suction from the containment sump during recirculation,

, )

35 1/89

1 1

Byron I & 2

3.5.4 System Success Criterl; i The CS success criteria are . tot clearly defited u the FSAR in temn of j containment heat removal. However, the following is noted (Ref.1)

l i

Operation of one of the two independent CS trains will provide 100% of system capacity, j

i . Operation of one CS train will lower containment pressure enough so that containtnent design leakage is not exceeded, and enough lodine will be i n moved to restrict the site boundary hnd offsite doses to below the limits of i 10 CFR 100, i

The RCFC success criteria are as follows (Ref. 2):

- One of two redundant trains is in operation approx 8mately 45 seconds after a safety injection signal is initiated.

Partial CS and RCFS success criteria may exist, but are not defined in the FSAR.

j 3.5,5 Comoonent information 1

$ A. Reactor Containment Fan Cooler Units l A, IB,1C, and ID i 1. Fan Type: vanc axhd 1 2. Rated capacity: 50%

3. Accident mode heat removal: 132 x 106Btu /hr.

B. Containment Spray Pump 1 A .. 1 l 1. Rated flow: 3415 gpm @ 450 ft head (195 psid) '

j , 2. Rated capacity: 100 %

j 3. Type: verticalcentrifugal C. Containment Spray Pump 1B I 1, Rated now: 3925 gpm @ 450 ft, head (195 psid) -

2. Rated capacity: 100 %

j 3. Type: verticalcentdfugal

{ 3.5,6 Suonort Systems and Interraces

! A. Control Signals i 1, Automatic .

The fan cooler units are automatically actuated by a safety injection signal.

The c,ontainment spray system is automatically actuated on high high high -

. contamment pressure.

2. Remote manual
. The RCFC and CS syrtems can be actuated by remote manual means from _
the control room. -

B. Motive Power

1. The RCFC units, CS pumps, and motor o erated valves are Class lE AC :

loads that can be supplied from the standb diesel generators, as described '

in Section 3.7. Redundant loads are suppli d from separate load groups.

( -

c 36 1/89 -

A

_ m._ . _ . _ _ - . _ . . _ _ _ - _ _ . . ___ _ . , . _ -.. .. _ . _ . _ . _ _ .,_ _ _

wo <

Byron 1 & 2 Water C Coolinh

1. Th RCFC units are cooled by the Essential Service Water Section 3.91 D. Other
1. Lubrication, ventilation, and pump cooling are provided locally for the CS pumps.

3.5.7 r Section 3.5 Ite erences

1. Byron /Braidwood Final Safety Analysis Report,6.5.2.
2. Byron /Braidwood Final Safety Analysis Report, Section 6.2.2, l

l I

37 1/89

e,, r - ~

P WEUELWs WA 1E 84 STOf MCE taw S 84W57 J

l

, cob E2rr zt TANet 39 5F'Ra v 40f?t.f $

70 9 P'ine A g 8: saos CAAAAAAA j 17A ,73 60 SPRAv esoct E$  ;

_CONTArME,NT A L

,4 ,

X ,,

US 7"

""4_

IA N 6_,

Suu*A 6 3:4811 A . GA ' 2A CS P14 X--

y

-Az

..A

, ... +. g e,

..Ax

~Q

.. M ..

m N

o naananan

^

S,5PRAVNO2T.ES CMS ' l stb I 100 ]

C. . .

COpfTA'febE NT -

s .

Enaanaan 7N 912 $PfimV esT2Lf 3 m

REORCU.L.A.TM y

re, s ,,

a .. cs ,.

CS Pv5 Cv ,,,o

__ g, Rc

--+oa.es ru a

- Cw-s t7E

.- a-2

c

, FRN O FDM -

l ;an ..,3 etacie sysitu ,H,3 Figure 3.5-1. Byron Unit-1 Containment Spray System ~

1 1^

ocm w su a. -.-m_..ar. u.

?x l se r

R tr$ f I

a nnwa W4 71 F4 5TfvWE i T*Nm O I 5183wsf t

'j HW$3fML i ,..

7044 364PE NA M i =,_'~, m a 6.,

N{ Esb i

2 r, o o' o o .

3 - s~. om.s w _ Q__ n @2a Q-  ; y

  • YYYN

.c.ousamw

- . . . us suw a si meta , s4

_ _ A- s" 05 '*

,,. s- . -e s CS P1A

.04 8 MA i

, ll '

+2 :1 y

, m ,. ,

'm & -X X--

. csa p X

2'^ 20^ *** M.sa y css g

, X... _

M ,

l II naannans

-n C$ te l . $15 N vmOZ2tEs ,

4 ,,. 4 si sstra " 's systru .733 3

4 l HC l j Figure 3.5-2. Byron Uriit 1 Containment Spray System Showing Component Locations i -

Table 3.5-1. Byron Containment Heat Removal System Data Summary -

for Selected Components  !

- ^

~

s j

COMPONENT ID COMP. LOCATION POWER SOURCE ' VOLTAGE POWER SOURCE I EMERG.

TYPE LOCATION t_OAD GRP 3

CC-16A MOV- 364PENHM MCC-131XS 480 426AB AC/A '

CC-168 MOV 364PENRM MCC-132X4 480 426PENHM AO/B CC-27A MOV 364PENRM MCC-131XS 480 426AB AC/A

]

CC-278 MOV- 364PENRM - MCC-132X4 480 426PENRM AC/B CC-FANA ACU HC CC-FANB ACU 10 -

^

CC-FANC ACU HC CC-FAND ACU FC CS-1 A MOV 364PENRM MCC-131X1 480 364PENRM AC/A CS-1B MOV 364PENRM MCC-132X4A 480 426PENRM AC/B

  • I CS-7A MOV 364PENHM MCC-131XS 480 426AB AC/A ,

b CS-78 MOV 364PENRM MCC-132X4 480- 426PENRM AC/B CS-P1A MDP CSA BUS-141 4160 ESF11 AC/A 2 CS-P1 B MDP CSB BUS-142 4163 ESF12 AC/B l

4 a l I

0 l

c m__ ,

_. __.m_._ m- o . m . _. a,.,.. -. ~..

Byron 1 & 2 3.6 INSTRUMENTATION AND CONTROL SYSTEMS (I-& C) 3.6.I System Function The instrumentation and control systems consist of the Reactor Protection System (RPS), the Engineered Safety Features Actuation _ System (ESFAS), and systems .

for the display of plant information to the operators. The RPS and ESFAS monitor the '

reactor plant, and alert the operator to take corrective action before specified limits are exceeded. The RPS willinitiate an automatic reactor trip (scram) to rapidly shutdown the .

. reactor when plant conditions exceed one or more specified limits. The ESFAS will automatically actuate selected safety systems based on the specific limits or combinations of limits that are exceeded.

3.6.2 System Definition The RPS includes sensor and transmitter units, logic units, and output trip relays that operate reactor trip circuit breakers to cause a reactor scram. The ESFAS includes independent sensor and transmitter units, logic units and relays that interface with the control circuits for the many different sets of components that can be actuated by the -

ESFAS. Operator instrumentauon display systems consist of display panels in the control room that are powered by_ the 120 VAC electric power system (see Section 3.7). The remote shutdown capability is prc.vided by the remote shutdown panelin conjunction with nonnal automatic systems and local controls outside the control room.

3.6.3 Svstem Oneration A. RPS - .

g The Westinghouse RPS (or Reactor Trip System RTS) has two to:four redundant input instrument channels for each sensed parameter and two output -

actuation trams (A and B). The A and B logic trains independently generate a reactor trip command when prescribed parameters are outside the safe operating range, Either RPS train is capable of opening a separate and independent reactor trip circuit breaker to cause a scram. The manual scram A and B circuits -

bypass the RPS logic trains and send a reactor trip command directly to shunt-trip circuitry in the reactor trip circuit breakers.

1 B, ESFAS The ESFAS has three er four input-instrument channels for each sensed parameter, and two output actuation trains (A and B). 'In general, each train controls equipment powered from different Class lE AC electrical buses. An individual component usually receives an-actuation signal from only one- ,

ESFAS train. The ESFAS generates the followiag signals: (a) reactor trip, 1 provided one has not already been generated by the RPS, (b) safety injection 4

signal (SIS), (3) containment isolation, (4) main steam line isolation, (5) main - ,

feedwater line isolation, (6) emergency diesel start,-(7) control room isolation-and (8) containment spray actuation. The control room o xrators can manually -

trip the various ESFAS logic subsystems. - Details regarc ing ESFAS actuation-- ,

logic are included in the system desenption for the actuated system.'

~

-I e

41- 1/89 i

->e'pp t tF-- P,ppy- Nw h t **7-- c +g+g g 7 ---tq T"g p v ew y r+ %-,--*g- g v p tJw yh w-nir y we gr-F'wy -qgg-T gv"-

l Byron I & 2 p)s (v

C. Remote Shutdown For equipment having controls outside the control room (whleh duplicate the functions inside the control room), the controls are provided with a selector switch which transfers control of the switchgear from the control room to a local station. Placing the local selector switch in the local operating position gives an annunciating alarm in the control room and turns off the indicating lights on the control room panel.

The vmote shutdown panels are located at plant elevation 383 feet in the radwaste control area.

The main control room panels and the remote shutdown panels are located in separate physical locations, on separate elevations, with separate ventilation systems and multiple communication systems, and with lighted access routes between the two locations. Therefore,it is expected that no single credible event which will cause evacuation of the main control room will also cause remote shutdown aanels to be inoaerable. Equipment having controls available outside the contro room are listed in Table 3.6-1 (Ref.1).

3.6.4 System Success Criteria A. RPS In the analog portion, two to four redundant sensors and channels are used.

The coincidence required to cause a trip varies from parameter to parameter.

The channel's analog input is converted into a digital signal for the logic pi portion. The RPS uses hindrance logic (normal = 1, trip = 0)in both the input

d and output logic. Therefore, a channel will be in a trip state when input signals are lost, when control power is lost, or when the channel is temporarily removed from service for testing or maintenance (i.e, the channel has a fail safe failure mode). A reactor scram will occur upon loss of control power to the RPS. A reactor scram usually is implemented by the scram circuit breakers which must open in response to a scram signal. There are two series scram circuit breakers in the power path to the scram rods, in this case, one of two circuit breakers must open. Details of the scram system for Byron have not been determined.

B. ESFAS A single component usually receives a signal from only one ESFAS output train although both AFW pumps receive signals from both trains. ESFAS Trains A and B must be available in order to automatically actuate their respective components. ESFAS typically uses hindrance input logic (normal = 1, trip = 0) and transmission output logic (normal = 0, trip = 1). In this case, an input channel will be in a trip state when input signals are lost, when control power is lost, or when the channel is temporarily removed from service for testing or maintenance (i.e. the channel has a fail safe failure mode). Control power is needed for the ESFAS output channels to send an actuation signal. Note that there may be some ESFAS actuation subsystems that utilize hindrance output logic. For these subsystems, loss of control power will cause system or component actuation, as is the case with the RPS. Details of the ESFAS system for Byron have not been determined.

(^\

\v >

42 1/89 l

. _ . . . . . . _.__ .. . _ _ . . . . . . _ . _ _ . - ~ . _ . . , _. .- _ _ _ _ - . _ . . _ . . . . _ . _ - _ _ . _ _ _ _ . .

. Byron 1 & 2 3.6.5 Suonort Svstems and Interfaces A. Control Power

1. RPS The RPS input instrument channels are powered from the 120 VAC -

instrument buses (see Section 3.7). It is assumed that the RPS A and B-output logic trainc are powered from separate 125 VDC distribution panels.

2 ESFAS The ESFAS input instrument channels are powered from 120 VAC -

instrument buses. It is assumed . hat the ESCAS A and B output logic trains are powered from separate 125 VDC distrl ution panels.

3. OperatorInstrumentation Operator instrumentation displays are powered from;the 120 VAC instrument buses, 3.6.6 Section 3.6 References ,
1. Byron /Braidwood Final Safety Analysis Report, Section 7,4,1.-

t k

4 y

43 jfgg -

l L

l I - _ . . -, . . .. x. -. - , . - _ s- . - - . . , ., ., , . , ~ , . - , , , - , , - , . -_

,O 'I able 3.6 1. Ilyron Equipment Controls Available

'd Outside the Control Room The following equipment can be controlled from local stations outside the main control room:

Auxiliary Feedwater Pumps Centrifugal Charging Pumps Boric Acid Transfer Pumps Essential Serv. Water Pump Component Cooling Water Pump Reactor Containment Fan Coolers Control Room Ventilation Unit including Control Room Air Inlet Dampers Primary Water Makeup Pumps Charging Flow Control Valve Letdown Orifice Isolation Valves Aux. Feedwater Control Valves Power-Operated Atmospheric Steam Relief i -

Pressurizer Heater Control Emergency Boration Isolation Valve O

V 1

/~~.

44 1/89

i Byron I & 2 3,7 ELECTRIC POWER SYSTEM (d 3,7,1 Svetem Function l

The electric power system supplies power to various equipment and systems needed for normal operation and accident response. The onsite Class IE electric power system supports the operation of safety class systems and instrumentation needed to establish and maintain a safe shutdown plant condition following an accident, when the nomul electric power sources are not available.

3,7,2 Svstem Definition The onsite Class lE electric power system consists of two 4160 switchgear buses, designated 141 and 142. There are two standby diesel generators connected to the buses. Diesel generator l A is connected to bus 141, and diesel to bus 142. There are also four 480 VAC switchgear buses, generator designa:ed 1B is connected 131X,131Z, 132X, and 1322. Buses 131X and 131Z are connected to 4160 bus 141 through transformers, and buses 132X and 132Z are connected to 4160 bus 142 through transformers. Buses 1312 and 132Z serve loads associated with the essential cooling towers. Various motor control centers (MCCs) receive their power from the 480 VAC buses.

Emergency power for vital instruments, control, and emergency lighting is supplied by two 125 VDC station batteries. The batteries energize two DC buses, designated 111 and 112. Four 120 VAC instrument buses are connected to the DC buses through inverters, and to 480 VAC MCCs through transformers.

Simplified one-line diagrams of the electric power system are shown in Figures 3.7-1 through 3.7 4. A diagram of the diesel generator fuel oil system is shown in Figure 3.7 5. A summary of data on selected electric power system components is O presented in Table 3.7-1. A partial listing of electrical sources and loads is presented in V Table 3.7 2.

3.7,3 Sntnn Oneration During normal operation, the Class IE electric power system is supplied from the 345 kV switchyard, directly to the two 4160 buses through two system auxiliary transformers. An alternate source of power is also from the 345 kV switchyard but through Unit 2's 4160 switchgear. The emergency sources of AC power are the diesel generators. The transfer from the preferred power source to the diesel generators is accomplished automatically by opening the normal source circuit breakers and then reenergizing the Class 1E portion of the electric power system from the diesel generators.

The DC power system normally is supplied through the battery chargers, with the batteries " floating" on the system, maintaining a full charge. Upon loss of AC power, the entire DC load draws from the batteries. The batteries are sized to supply the instrument inverters for u power for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. p to 30 minutes, and other loads such as diesel generator control The 120 VAC vital buses normally receive power from the DC buses through an inverter. An alternate source is from the 480 VAC system through transformers.

Redundant safeguards equipment such as motor driven pumps and motor operated valves are supplied by different VAC buses. For the purpose of discussion, this equipment has been grouped into " load groups". Load group "AC/A" contains components receiving electric power either directly or indirectly from 4160 bus 141. Load group "AC/B" contains components powered either directly or indirectly from 4160 bus 142.

Components receiving DC power are assigned to load groups "DC/A" and "DC/B", based on the battery power source.

(

G 45 1/89

Byron 1 & 2 3.7.4 System Success Criteria Basic system success criteria for mitigating transients and loss of coolant accidents are defined by front line systems, which the,1 create demands on support systems. Electric power system success criteria are defined as follows, without taking.

credit for cross ties that may exist between independent load groups:

Each Class IE DC load group is supplied initially from its respective battery Each Class lE AC load group is isolated from the non Class IE system and is supplied from its respective emergency power source (i.e. diesel g,enerator)

Power distribution paths to essential loads are intact Power to the battery chargers is restored before the batteries are exhausted 3,7,5 Comoonent Information A. Standby diesel generators (2)

1. Maximum contmuous rau,ng: 5500 kW
2. 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> rating: 6050 kW
3. Rated voltage: 4160 VAC
4. Manufacturer: unknown B. Batteries (2)
1. Rated voltage: 125 VDC 3.7,6 Suonort Systems and Interf,qres A. Control Signals
1. Automatic The standby diesel generators are automatically started based on:

Undervoltage on the normal bus Safety injection signal (SIS, see Section 3.3)'

2. Remote manual The diesel generators, can be started, and many distribution circuit breakers can be operated, from the main control room.

B. Diesel Generator Auxiliary Systems

1. Diesel Cooling Water System i

Heat is transferred from ajacket water system to the Essential Service Water system. Each diesel receives redundant cooling water supplies from the i

! ESW "A" and "B" headers (see Section 3.9).

2. DieselStarting System Each diesel has an air starting system.
3. Diesel Fuel Oil Transfer and Storage System A 500 gallon " day tank" su aplies the relatively short term (approximately 72 minutes) fuel needs of eac 1 diesel. Each day tank is replenished from two 25,000 gallon storage tanks during engine operation.
4. Diesel Lubrication System Each diesel generator has its own lubrication system,
5. Combustion AirIntake and Exhaust System This system supplies fresh air to the diesel intake, and directs the diesel exhaust outside of the diesel building.

46' 1/89

_ _ _ _ . . _ _ . . _ - . _ ~ . _ - , _ - _, . . _

)

Byron 1 & 2

6. Diesel Room Ventilation System This system maintains the environmental conditions in the diesel room withir limits for which the diesel generator and switchpear have been qualified. This system may be needed for long-term operation of the diesel generator.

I l

4 O

O 47 t /5')

,_ . - ,. . - - - . ... _~_ . - , . . . _ . ___...._-.______.._m_ . . _ . . . .. ~ m . . _ . . . . . . . . -

V b

4 i

TO }45 m V V ARD FFgnu 3eg yy ,gro il MA:N '

m,

~=r I

_ _ ,.m I

1 av m er  %

c+oo 4,60 ^^^

Z^Q l^ Tem o - . ,6a 3

-[

TO NON SarE TY BUSE S 1* 7.1st 4160 44l^^^ ~^^^^l24 t

M W WEW -[

6900 ,

6900 4160 * *N l 1' Y TO NON $ArETY TO NON SAFE TY BUSE'a 156.157 fo nog 3Argyy y ir

,i gus $43 158.159 M s tsa. 257 1 158. 159 TO Nt?t SAF ETV L m ,,,

.{

FROM et60V m BUS 241. LJetT 2 ;y l gg F$tou etemt )

, 953 742. (ps? 2 *

~

ycain l 4,6e vac sus $4 . y ca is ..

l n l i ...e vac eus 3 2 1 t on 11 ll li -ik . i 11 11 Il 'S .t v == 416nsado =I 41601480 . Tnt 31x

== .

4160ree0

== .

TR 1312 4teGi480 -

-- 1

-- == ==

416 & 460 4t60 rate . T4132x 4ts0#4SO TR1372 e'40/480 l 1B emMan R I PZH M ATER da0 VPC BUS ink e,  !

eacrupenP. 4 E$5ENTW.COOtr4 TOWER PIR H ATER - PSM ATER

- lsacxupone.o 4eo vac sus v3iz nacxurcap e 00 WAC SUS 132x ESSENYW.COOtrG TOWER [

coNmot cRP.C 480 VAC GUS 1322 3 ,,: o n- o o n - n i, . o

! o

[ uccenzi [

=

l wccini I- i j :i

. g occ,3,si I l wecinx21 l uccisixi 1 - l ucc'und I i ucc'n's I I =ccenni I I

!^

4 i =ccin=2 I I uccin=4 I " t *c'n's i I wec'n=2 1 '!

- 4,o $

c . i .cc,3,,,, i I cc'""*^ l C

[

1 j' Figure 3.7-1. Byron Unit .14160 and 480 VAC Electric Power Distribution System -

i I, ] ,

I 4

f 4

9

. ~ _ . . . _ . .. -. - _ _ - - --.--- - - - _ - _ . - -

s TO 345 d v v AFC FT4C*8 385 KV V4'40 4 -L l

)

MAW CEMRA M 345/?5, *,,

nt m ,.v, m 34575

[

I '

I

%^6 ^4^4 l.....

6900 4160

" 4,60 em 2

I '

^^-^l^^4 4 TO NON SAFET,y Z Z ^^^^ 4 TOW BArETV m s isr. ts eteo e,oo l

.,co 4, m s ne.15.

) 9' k TO NOu $ATETV TO NON SATETY t <r 5a 1 1 a, g TO NON SAF ETY

, FRCu 41e0V y gg 80$ 241. UN87 2  ;, FnCu atecV g ,g SUS 242. t.PWY 2 f t5 rat l

'l I .

C&l A f '

EsF12 CB 18

.l 4160 VAC SUS 841 l 4A l 4tGO WAC BUS te? l NO ~ ll .Il 11. 'il I-  !

11 11'$ $ i i-I

== 4160/480 =kW&, 4160/480 H TR13tX l'4150/480 -

=E

. = = =I= - . . = =

n'= I '

- -- i TR,1312 416cv480 > 4 604a0 l: 74132X 4teorsas J g <

-u.n n ,y ~

- 4160'_*93

, y :;

+

+. T4132Z 4 tsosteo

- f. - jl-' f 7 s

, g '

i PZH t( A TF R PZR NEATER g 480 VAC BUS 131X ESSENTML COOLNG TOWER PZR 64 A11R BACWUPCRP. A BACMVPCIF.D PZR DEATEP 480 VAC 8'JS 132X

' de0 VAC BUS 1312 ESSENTIAL COOLuNG TOWE.R BACKUPCRP.9 CONN GFP.C 4a0 VAO BUS 137Z

. ~

.e>.

5i

- tJ!11 :[ ;'i II E (.11. "U s . . T15-~~' .11 i'It' 'El II, It I'E

.gj , . ~

l MCC13121) n l WCC13721 ]

'7'

~l l

l. g

( l MCC13t XI l _l MCC13t N7 l;Y { l WCC13tR3 l; l MCC13tN4 l l MCC13tRS l, .;j - l MCCt37xt l-

~

l l WCC13?r2 l 'Ill t*CC132x4 l l WCC137N5 l l MCCT3?x3 l N

c

. [ MCCt 31 X t A l. ^

j WCCf 32244 l

_] 3.u.. .n. l l .14,ema l- g 3 3 A. g i u===ow 42. A.

[_ 1 1 -l 3 4 A. l -l 42. e au l 1 4 2.. .

l l 3 3. .

[

NOTE: tines pay Not Flepresent Actual Cable Routog Between fboms Figure 3.7-2. Byron Unit 14160 and 480 VAC Electric Power Distribution System

Showing Component Locations 4'

_. . . . ._ - - - ~ ~ ' ~ ~

N G

Ffv3u rstr4A Snots FTOA f TWA ffDA TFOJ MC C131 x1 MCC131x2 . $510%1 490 VAC ERfS 131x UCC131X4 MCCi31 x3 uCC132x1 ITIOkt F TOA

<r uCC132N2 480 VAC DUS 132X it

,p 1r 'r MCC132*a MCC132r3

<r ir i) ,,

it it il ll S Il 11 Il 11 gl oc - --

111 2 Z 87-111 eC -

-- 112 2 Z B T-112 15 ll MM n ,

u C 1R-111 atcrt20 I 7" DN II II Og 125 VDC BUS III 1A-113 90r120 Tf'-113 - ePC.iM 125 YDC BUS 112 . TR 114 48cr120 I -

11 11 11 i~

W ll 1' i Il

~

INV 125 VOC DtSTR MV -

-f 111 - PAfEL 113 - 113 g- $--IPN pN 112 125 VDC Dest. 1NV

~

-a PAPEL 114 114 Il ll I,I Il ll ,11 II. ll 120 VAC ff61RLA1ENT fRJS 120 VAC itSisu11EtBI DUS 111 120 VACINSTHUME NT BUS 113 120 VAC INSTRUP.(N! ERfS 112 114 cc Figure 3.7-3. ' Byron' Unit 1125 VDC and 120 VAC Elactric' Power Distribution System

a. m.~.---.....m _m . . - _ . ~ . -- . _ . - _- - _ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ __

4 i,

t l ESF11 l- l CSF12 l F

t b

f 36 4 PE NH M 414 PE NR M 414 PE NR M

] 383AS [ 364A8 4 26PE MR M 4 24 PE NR M

(,I 333A3 f 3

r F FDJ . THUM 'FROM , FR0e4 . " FFDA FROM . , ifVJM g ra3M' ~

McC131x1 . MCC131X2 p 1 MCC131X4s fAOM fp' f 480 VAC OUS 131x ) ' MCC131X3 : 'MCC132X1 . MCC132X2 I '

480 VAC OUS 132x :. 'MCC132x4 .. uCC132x3 ir. P '

.' 't 't r

. .: ,, -1, .. l.: 1.  :,, ..,,

i ,, t f

f ec 2R' ......-..

ec - -.

2 Z BI;111 i j112 ~2~

Sr 111 Z ' BT-112. . '

.m' w

g _m - ' II.' ill

~~

_.gg .gm; r

~

ll^ ' ll . m TR111 4e0/120 [. 125 VDC BUS 111

^

TR-113 4 W 2O 4m20 l. TR.113 125 E SUS 112 _IR " * ** M i

.A s i ,U .' , x

'"v

^l l --_ ,i 113 : llJ

.l l

c. ,

4

, og-.. .IIl

^ll: i

,. g -

~ ,, - -

l ,

+

g.Q ~ & '

INV { 125 VDC DISTR INV -

INV 125 VDC DIST. . INV -

p 111 p PANEL 113 j113 <

p ' PANEL 114 - - f.4 114

~

112 h g P

~

. .:.f.'?.. .

~ C.7 .

15f  ;

> i'[.1I'

,1I '. .II' - .IE . !-

., 1E

t. I

'g

7
,

.1I- -[

l

,3...

'8 120 VAC INSIIMJMENT BUS .-,.~  ? 44' 120 VAC INSifR> MENT BUS l g99 ;N:q ' ' '

,~~W 113 120 VAC ENSTRUMENT BUS 112 120 VAC INSTRleALNT BUS 114 i < , Qr t

+

l'

'l.

BAI RM111 "

t l S A IR M112 [ -[

?

, q. NOTE- Lines May Not Represent Actual Cable Routang Between Rooms

, cc Figure 3.7-4. Byron Unit 1125 VDC and 120 VAC Electric Power Distribution System '

! Showing Component Locations i

i I '!

I i

. _. i

f%

U O O C

3A N-44 DAY TANK I#

DIE !L ^ 100A 2A C

STORAGE TANK 1A 1A M 5A v y TO DIESEL C GEfJERATOR 1 A 4C 1

DIE OlL STORAGE TAN'K 1C

' 1C C

18 STOR Jg 18 18 5B y TO DIESEL w GENERATORTB

" N ><j N / '

3D 4D DIESEL ( AL 63D 1000 -2D-STORAGE TANK 1D ~

1D .

E e

Figure 3.7-5. Byron Unit 1 Diesel Fuel Oil System l

w

%J Table 3.7-1. Byron Electric Power System Data Summary.

for Selected Components COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAG E POWER SOURCE TYPE EMERG.

ACBUS-111 LOCATION LOAD GRP BUS BATRM111 IR-111 120 BATRM111 ' AC/A ACBUS-111 BUS BAIRM111 INV-111 120 BATRM111 AC/A ACBUS-112 BUS BATRM112 TR-112 120 BATRM112 AC/D 1

ACBUS-112 BUS BATRM112 INV-112 120 BATHM112 AC/B ACBUS-113 BUS BATRM111 TR-113 - 120 BATHM111 AC/A ACBUS-113 BUS BATRM111 INV-113 120 BATRM111 AC/A ACBUS-114 BUS BATRM112 IR-114 120 BA THM112 ace 8 ACBUS-114 BUS BATRM112 INV-114 120 BATHM112 AC/B

{ BC-111 BC- BATRM111 BUS-131X 125 ESF11 DC/A I BC-112 BC BAT RM112 BUS-132X 125 ESF12 I DC/B

' BT-111 BATT BATRM111 tn 125 DC/A BT-112 BATT BATRM112 - 125 DC/B BUS-131X BUS ESF11 TR-131X 480 ESF11 AC/A 1

BUS-131Z BUS SXCTASG T H-131Z 480 SXCTASG AC/A BUS-132X BUS ESF12. TR-132X 480 I ESF12 AC/B BUS-132Z BUS SXCTBSG- 1H-132Z. 480 SXCIBSG AC/B BUS-141 BUS ESF11 DG-1A 4160 DGA AC/A BUS-142 B U S '- ESF12 DG-1B . 4160 DGB AC/B CB-1 A CB ESF11 DG-1A 4160 DGA AC/A CB-1 B CB, ESF12 DG-18 3

4160 DGB. AC/B

DCBUS-111 BUS BATRM111 B T-111. 125 BATRM111 -- DC/A

, DCBUS-111 BUS BATRM111 BC-111 125 BATRM111 DC/A DCBUS-112 BUS BATRM112 BT-112 125 BATRM112 DC/B g DCBUS-112 BUS BATRM112 BC-112 125 BATRM112 DC/B DG-1 A DG DGA 4160 AC/A DG-1B DG. DGB 4160 AC/B INV-111 INV BATRM111 MCC-131X2 120. 414PENRM DC/A INV-111 INV BATRM111 DCBUS-111 120 BATRM111 DC/A

b O k.)

Table 3.7-1. Byron Electric Power System Data Summary for Selected Comoonents (Continued)

COMPONEFJT ID COMP. LOCATION POWER SOURCE VOLTA G E POWER SOURCE TYPE EMERG.

INV-112 LOCATIOtt LOAD GRP INV BA TRM112 MCC-132X2 120 426PENHM DC/B INV-112 INV BAIRM112 DCBUS-112 120 BATRM112 DC/B INV-113 INV BATRM111 MCC-131X4 120 UNKNOWN DC/A INV-113 INV UAIRM111 DCBUS-111 120 BATRM111 DC/A INV-114 INV BAIRM112 MCC-132X4 120 42GPENRM DCiB INV-114 INV BATRM112 DCBUS-112 120 BA fRM112 DC/B MCC-131X1 MCC 364PENRM BUS-131X 480 ESF11 AC/A MCC-131 X1 A MCC 364PENRM MCC-131X1 480 364PENRM PC/A MCC-131X2 MCC 414PENRM BUS-131X 480 ESF11 / C/A MCC-131X3 MCC 383AB BUS-131X 480 ESF11 AC/A MCC-131X4 MCC UNKNOWN BUS-131X 480 ESF11

$ MCC-131XS MCC 426AB BUS-131X

AC/A 480 ESF11 AC/A MCC-132X1 MCC 364AB BUS-132X 480 ESF12 AC/B MCC-132X2 MCC 426PENRM BUS-132X 480 ESF12 AC/B MCC-132X3 MCC 383AB BUS-132X 480 ESF12 AC/B MCC-132X4 MCC 426PENRM BUS-132X 480 ESF12 AC/B MCC-132X4A MCC 426PENRM MCC-132X4 480 426PENRM AC/B MCC-132XS MCC 426AB BUS-132X 480 ESF12 AC/B TR-111  : XFMR BAIRM111 MCC-131X1 120 364PENRM AC/A TR-112 XFMR BAIRM112 MCC 32X1 120 364AB AC/B TR-113 XFMR BATRM111 MCC-131X3 120 383AB AC/A 1 R-114 XFMR BATRM112 MCC-132X3 120 383AB AC/B T R-131X XFMR ESF11 BUS-141 480 ESF11 AC/A g TR-131Z XFMR SXCTASG BUS-141 480 ESF11 AC/A T R-132X XFMR ESF12 BUS-142 480 ESF12 AC/B IR-132Z XFMR SXCIBSG BUS-142 480 ESF12 AC/B

TABLE 3.7 2.

PARTIAL LISTit4G OF ELECTRICAL SOURCES AND LOADS AT BYRON is A'

Ponik VOLTAGE EVER3 POWER SOURCE 1.OA D LOAD COMP SOURCE LOAD GRP LOCATION COMPONENT SYSTEM COMPONENT ID TYPE LOCATION 60-111 125 DC,A .

BATRM111 EP DCJUS111 BUS BATRM t 11 BC 112 125 DC b BATRM112 EP DCBUS 112 BUS BATRM112 Bi 111 125 DC, A BATRM111 EP DCBUS 111 BUS BAT AM111 BT 112 125 DC B BA TRM 112 EP DCBUS-112 BUS BATRM112 BJ S-131X 125 DCiA ESF11 EP BC-111 BC BATRM111 BUS 131X 460 AC/A ESF11 EP MCC-131XI MCC 364PENRM BU S-131X 400 AC/A ESF11 EP MCC 131X2 MCC 414P E NRM BJS-13 ) A 460 AC< A ESF11 EP MCC-131X3 MCC 383A2 BJS13 M 4BO AC/A ESF11 EP MCC-131X4 MCC UNANOWN B u b-131X 460 AC< A ESF11 EP MCC-131XS MCC 426AB EJm1312 480 AC, A SWCTASG ESW ESW CTFAN A ACU SXCIA BJS 132A 125 DC/B ESF12 EP BC-112 BC BATRM112 BJ S-132 A 480 AC/B ESF 12 EP MC C-132 A1 MCC 364AB BJS131A 450 ACB ESF12 EP MCC-132x2 MCC 426PENRM BJS132X 460 AC d ESF12 EP MCC-132X3 v MCC 383AB BUS-132A 460 ACiB ESF12 EP MCC 132X4 MCC 426PENRM BUS 132X 460 AC/B ESF12 EP MCC-132X5 MCC 426AB BUS 1322 460 A C. B SWCTBSG ESW ESW CTfAN.B ACU SXCTB BUS 14) 4160 ACiA ESF11 AFW AFW PI A MOP 383AB BUS-141 4160 ESF11 CCW CCW P0 MDP 364AB BUS 141 415C ACiA ESF11 CVCS CV P1 A MOP CVA BUS-14 ) 4160 AC/A ESF11 ECCS RH P1A MOP RHRA BUS 14) 4160 AC/A ESF11 ECCS SIPIA MOP StA BUS 141 480 A C, A ESF11 EP TR 131X XFMR ESF11 BUS le' 480 AC/A ESF11 EP TR 1312

~

XFMR SXC TASG B US-14 ) 4i50 ACiA ESF11 ESW ESW PIA MOP ESWPMPA BUS 14) 4160 ACiA ESF11 PAMRS CS-P 1 A 'MDP CSA BUS-142 4160 ESF12 CCW CCW PO MDP 364AB BUS 142 4160 ACiB ESF12 CCW CCW-P IB MDP 364AB BUS 142 4160 AC/B ESF12

0) CVCS CV P1B MDP CVB lC 8 V 5- 142 4160 A C. 6 ESF12 ECCS RM PIB MOP RHRB 55 1/89

T A B L E 3.7 2. PARTIAL LISTING OF ELECTRICAL SOURCES AND LOADS AT BYRON (CONTINUED)

O P C.% R SOUR 2E VOLl AGE EMERG POWER SOURCE LOAD CRP LOCATION LOAD SYSTEM LOAD COMPONENT (O COMP TYPE v0MPONENT LOCATION 4160 A C. B ESF12 ECCS SI-P 1B MDP S2B EVS 142 EP TR 132X XF MR < 4 12 S v > 14 2 460 AC B ESF12 AC 6 ESR2 EP TR 1322 XF MR SACIBSG bub 142 4bJ 4160 A C. B ESF12 ESW ESW PtB MDP ESWPMPB BUS 142 ESF12 PAHRS CS P1J MDP CSB EU>142 4160 AC= B AC/A ESF11 CCW CCW PIA MDP 364AB BUS 14) 4160 BAT RM111 EP INV 111 INV BATRM111 DOBvS-111 120 DC/A EP INV 113 INV BATRM111 00cJ 5111 120' DGA BATRM111 EP INV 112 INV BATRM112 DC 6V S-112 120 DGB BAT RM112 DC 0 B A T k.1112 EP INV 114 INV BATRM112 D C 6 J S- 112 120 4160 AC/A DGA EP BUS 141 BUS ESF11 DG-1 A AC A DGA EP CB1A CB ESF11 DG1A 4160 4160 ACs 3 DGb EP BUS 142 BUS ESF12 OG t o 4160 AC B DGB EP CB 1B CB ESF12 DG 15

\ INV 111 120 AC/A BATRM111 EP ACBUS 111 BUS BATRM111 3

120 ACs3 BATRM112 EP ACBUS 112 BUS B AT RM112 IW 112 INV 113 120 AC/A BAT AM111 EP ACBUS 113 BUS BATRM111 INw 114 lic ACsB BA T RM112 EP ACBUS 114 BUS BA T AM112 MCC-131x1 480 AC/A 364 PEN RM AFW AFW 13A MOV AFWPPTNL MC C-131x 1 480 AC, A 364 PEN RM AFW AFW 138 MOV AFWPPINL MCC-131x1 480 A C/ A 364PENRM AFW AFW 13C MOV AFWPPTNL MCC 131x1 480 AC/A 364PENRM AFW AFW 13D MOV AFWPPTNL

~

MCC 131x1 480 AC/A 364PENRM CVCS CV 1120 MOV 364PENRM MCC-131x1 480 AC/A 364PENRM CVCS SI-8801 A MOV 364PENRM MCC 131x1 480 ACiA 364PENRM ECCS CV 8804A MOV 364PENRM MC C-131x1 450 AC. A 364P EN RM ECCS RH-8716A MOV 346PENRM i

M00 131x1 480 AC/A 364PENRM ECCS RH 8716A MOV 346PENRM MCC 131x1 480 AC/A 364P ENRM ECCS SI8806 MOV SIB MCC-131x1 480 AC A 354PENRM ECCS SI8807A MOV SIA MC C-131x 1 480 A C.'A 364PENRM ECCS SI8811A MOV 364PENRM

[

I M;C 1px1 .160 A C, A 364PENRY ECCd SI8821A MOV 364PENRM V __

56 IM

l 1

l TABLE 3.7 2- PARTIAL LISTING OF ELECTRICAL SOURCES AND LOADS

^

Al DYRON (CONTINUED)

/

F

\ POM R VOL7 A CE EMER3 POWER 60VRCE LOAD LOAD COMP COMPONENT SOUACE LOAD CRP LOCATION SYSTEM COMPONENT ID TYPE LOCATION M,;C 131 A1 460 AC A~ 3645- E NRM ECC6 614B21 A MOV 364PE NRM MJC 131x1 460 A C-- A 364FENRM ECCS SL8923A MOV SiA MCC 131x1 46? AC. A 364PENRM EP MCC 131X1A MCC 364PENRM MCC-131x t 120 A 0, A 364 PE N RM EP TR 111 AFMA BATRM111 MCC 131x1 460 AC4 A 364PENRM ESW ESW 133 MOV ESWPMPA MCC 131x1 460 AC< A 36dPENRM ESW ESW 133 MOV ESWPMPA MCC-131x1 400 AC/A 364PENRM E6W ESW 14 Mov ESWPMPA MOC 131x1 450 AC, A 364 PE N AM E'S W ESW 14 MOV ESWPMPA MCC-131x 1 460 ACs A 364FENRM PAHRS CL 1A MOV 364PENRM MCC 131 A1 A 480 A C1A 364PENRM ECCS bi6002A MOV 364PENRM MCC 131x1 A 460 AC/A 364PENRM ECCS Sl4835 MOV 364PENRM MCC 131x2 120 DC A 414 PE NRM EP INV 111 INV DATRM111 MC C-131x2 460 AC/A 414PE NRM RCS RC 0000A MOV RC

v. t:n A2 400 AC/A 414PENDM RCS RC 6701 A MOV RC i

E- dx2 480 A C< A v14PENRM RCS AC 6702A MOV RC MC C- 131x3 460 AC/A 383AB AFW AFW 17A MOV 363AD MCC 131x3 480 AC A 383AB AFW AFW 6A MOV 383AB MCC-131x3 486 AC. A 303AD CCW CCW 194 73A MOV 364AD MCC-131 A3 460 A C, A 383Ab CCW CCW 19473A MOV 364AB UCC-131x3 120 AC A 3B3AB EP TR 113 XFMR BATRM111 MCC 131x3 460 AC/A 303AB ESW ESW 11 A MOV Sx1A MCC 131x4 120 OQA UNnNOWN EP INV 113 INV OATAM111 MCC-131x5 460 A C.' A 426AB PAHRS CC 16A MOV 364PENRM MCC-131x5 400 ACIA 426AB PAHRS CC 27A MOV 364PENRM MCC 131x5 480 AC/A 426AB PAHRS CS 7A MOV 364PENRM MCC 132x1 480 ACiB 364AB CCW CCW 19473B MOV 364AB MC C-132x1 480 AC/B 364AD CCW CCW 19473B MOV 364AB MCC 132x1 480 AC/D 364AB ECCS St-08370 MOV S1A MCC 132x1 460 AC/B 364AD ECCS SI0924 MOV SIA MCC 132x1 120 AC.O 364Ab EP TR 112 XFMR DATRM112 M;C 13;x t 460 A0 6 364Ab V EbW EbW 110 MOV SX16 g 1/89

TABLE 3.7 2. PARTIAL LISilNG OF ELECTRICAL SOURCES At1D LOADS AT BYRON (CONTINUED)

O POWER VOLTAGE EMER3 POWER SOURCE LOAD LOAD COMP COMPONENT SOURCE LOAD GRP LOCATION SYSTEM COMPONENTID TYPE LOCATION MOC 13iAl 480 ARD 364A8 ESW ESW 1-34 MOV ESWPMPB MCC-132A1 460 AC/8 364A8 ESW ESW 1-34 MOV ESWPMPB MCC-13EX1 480 AC/B 364A8 ESW ESW 15 MOV ESWPMPB MCC-132A1 480 AC'8 364AB ESW ESW 1-5 MOV 'ESWPMPB MCC-132A2 120 QC/8 426PENRM EP INV 112 INV BATRM112 MCC<132A2 480 ACs 0 426PENRM RCS RC-80008 MOV RC MCC-132A2 480 AC/8 426PENRM RCS RC 87018 MOV RC MCC 132A2 480 AciB 426PENRM RCS RC-87028 MOV RC MCC 132A3 480 AGB 383A8 AFW AFW 178 MOV ODAF W MCC 13 A3 460 AC/8 383AB AFW AF W 68 MOV DOAF W MCC 132A3 120 AC/8 383AB EP 18 114 XFMR BATRM112 MeC 132A4 480 Acid 426PENRM AFW AFW 13E MOV AF WPP TNL MCC 132A4 480 AC< 8 de6PENRM AFW AF W-13F MOV AFWPP INL MCCd32A4 480 A C. 8 426PE N AM AFW AFW 13G MOV AFWPPTNL

\

  • g MCC 132X4 480 AG8 426PENRM AFW AFW 13H MOV AFWPPTNL MCC 132A4 480 AC/D 426PENRM CVCS CV 112E MOV 364PENRM MC C-132 A4 480 AC/8 426PENRM ECCS RH 87168 MOV 346PENRM MC C-132A4 480 A C,8 426PENRM ECCS RH 87168 MOV 346PENRM MCC 132A4 480 AGB 426PENRM ECCS SI88048 MOV SIB l MCC 132A4 480 AC/8 426PENRM ECCS SI88218 MOV 364PENRM MCC-132A4 480 AC/8 426PENRM ECCS SI-88218 1 MOV 364PE NRM MCC-132X4 480 AC/8 426PENRM ECCS SI-8923B MOV SIB l MCC 132A4 120 DC/8 426PENRM EP INV 114 INV BATRM112 MCC 132A4 480 AG8 426PENRM EP MCC 132X4A MCC 426PENRM MCC 132A4 480 ACiB 426PENRM PAHRS CC 168 MOV 364PENRM MCC 132X4 480 AGB 426PENRM PAHRS CC-278 MOV 364PENRM MCC 132A4 480 AC/B 426PENRM PAHRS CS-78 MOV 364PENRM MCC 132A4A 480 ACs0 426PENRM ECCS SI88028 MOV 364PENRM MCC 132A4A 480 AC. 8 426PENRM ECCS SI88119 MOV 364PENRM MCC 132A4A 460 AGB 426PENRM PAHRS CS-18 MOV 364PENRM i MCC 132A5 480 AC4 v 426 Asi CVCS Sh88018 MOV 364PENRM 58 1/89

TADLE 3.7 2. PARTIAL LISTit4G OF ELECTRICAL SOURCEl At1D LOADS AT BYROtt (CONTit1UED)

POWER VOLTAGE EMERG POWER SOURCE LOAD LOAD COMP COMPONENI l SOURCE LOAD GRP LOCATION SYSTEM COMPONENT ID TYPE LOCATION '

UOO I31x3 480 AC A 383AB CCW CCW 2 9473A MOV 364AB MJC 232A1 400 A C:D 364AB CCW CCW 2 9473B MOV 364AB

~

IR 111 120 AC/A DATRM111 EP ACBUStt) BUS BAlRM111 TR 112 120 AC/B OATRM112 EP ACBUS 112 BUS DATRM112 TR 113 120 AC/A BATRM111 EP ACBUS 113 BUS BATRM111 TR 114 120 A C. B BATRM112 EP ACDUS 114 BUS BATRM112 TR-131X 460 AC/A ESF11 EP BUS 131X OUS ESF11 TR 1312 480 AC/A SACTASG EP BUS 1312 BUS SXCTASG T R 132X 480 AC/B ESF12 EP BUS 132X BUS ESF 12 TR 1322 460 A0 8 SxCIBSG EP BUS-1322 BUS SxCIBSG O

lV r

I l

l w )

59 1/89

, , . , ~ , - - - - - , , , . . . , _ . - - e. .- , .-- --

Byron 1 & 2 3,8 COMPONENT COOLING SYSTEM 3,8.1 System Function The Component Cooling system provides cooling water to various plant  !

components in both units during normal operation, and plant shutdown. After an accident,-

the Component Cooling system acts as an intermediate system between the components being cooled and the Essential Service Water system. -Separation is required to minimize the possible release of radioactive material. The Component Cooling System serves to remove residual and sensible heat from the RCS during plant shutdown by cooling the RHR heat exchangers.

2 3,8.2 System Definition The Com '

motor driven pumps,ponent Coolingtwo three heat exchangers, system is a closed surge tanks, and associatedloop system consisting:of fiv piping and valves. The system is designed to serve both units. The major heat loads in the plant can' be divided into a Unit I loop and a Unit 2 loop, with each loop containing two one heat exchanger. An exception is the RHR heat exchangers and which are pumps, pu cooled by a common header which may be aligned with the Component Coohng pumps for.

Unit 1 or Unit 2, or isolated and supplied by the fifth pump and third heat exchanger, which are common to both units. These components are designated pump 0 and heat exchanger 0.

The heat exchangers transfer heat to the Essential Service Water system. The surge tanks accommodate expansion, contraction, and in leakage of water, Simplified drawings of the Component Cooling system are shown in Figures 3.8-1 and 3.8 2. These drawings show some components from Unit 2. Unit I component ids begin with "1",' Unit 2icomponent ids begin with "2". A summary of the data on selected Component Cooling system components is presented in Table 3.8-1. >

3.8.3 System Oneration Three component cooling pumps, two component cooling heat exchangers, and the two surge tanks are sufficient for normal operation of the two units. The remaining two pumps and one heat exchanger serve as backups. Cooling wateris circulated by the pumps through the shell side of the heat exchangers to the components being cooled, then back to the pump suction. Demineralized makeup water is added into the surge tanks as needed toi .

maintam coolant inventory. A backup source of makeup water is the primary water storage '

tank.

Heat loads supported by the Component Cooling syste;n include the following: i RHR heat exchangers and pumps-Spent fuel pit heat exchangers Letdown heat exchanger Excess letdown heat exchanger Positive displacement charging pump Component cooling is also ,rovided for additional components, such as the reactor coolant:

pumps and components of t ie Chemical and Volume Control System.

3.8.4 System Success Criteria Following a-LOCA, the following success criteria apply to the Component Cooling System (Ref.1):

- Following a LOCA, Unit 'l equipment' is normally isolated from Unit 21 equipment. Component Cooling System equipment in tM unit experiencing the LOCA is then divided into two redundant trains each consisting of one.

1/89'-

D

Byron I & 2 O Component Cooling pump, one heat exchanger and half of the bafned surge (V) tank. One Component Cooling train is adequate forestablishing a safe shutdown condition.

Essential Service water must be supplied to the Component Cooling heat exchanger used for post LOCA recovery.

3,8.5 Comoonent Information A. Component Cooling Pumps I A,1B,2A,2B, and 0

1. Rated now: 4800 gpm @ 250 ft head (108 psid)
2. Rated capacity: 33% (to supply both units)
3. Type: horizontalcentrifugal B. Component Cooling Heat Exchangers 1 A, IB, and 0
1. Design duty: 40.87 x 106 Blu/hr
2. Type: shell and straight tube 3.8.6 S.nonort Systems and Interfaces A. Control Signals
1. Automatic The Component Cooling pumps are not automatically a':tuated -
2. Remote Manual The Component Cooling pumps can be actuated by remote manual means from the control room and from the remote shutdown control panel.

\d B. Motive Power

1. The Component Cooling motor driven pumps and motor operated valves are Class 15 AC loads that can be supplied from the standby diesel generators as described in Section 3.7.

l l

C. Other l 1. The Component Cooling heat exchangers are cooled by the Essential l Service Water system.

2. Lubrication, ventilation, and cooling are provided locally for the Component j Cooling pumos, i

l 3.8.7 Section 3.8 References

1. Byron /Braidwood Final Safety Analysis Report, Section 9.2.2.

d

,V 61 1/89

O . .

oIj Xi oI! Xi X!

r,

, ,, 7, mi

-l  ; _

l  !

(['_

-o  : .- Ll1 21  ! XI V! . .

3 V.i g!i li t i i Di 11 1 m eK e.g sa 2 -

-R ih! dii Ri ohli 4 k

=

XI Xi XI "j i r 1 v. r ._v ]!

q Q

i um.i!.i - if"_.i!ii.i!.

us - -

i" r i [

g I- o X-I a 3

XI.e  !. Xi! . u ya L A h { A- j i j

! Xi! '

! i i x-W W j XI XI Xi XI XI $

fI fi - fi fi f[

r r e h $ $

Il-w wl Ii 11 l 11 a wl J i. i t <.

  • ? il ct sh i a! ,

1: a- [5 62= 1/89

,. . . ._ '~

b l'  %

t i

3 n.a. l-C s

- m: ~ ,

m u. ,  !

043WitVWaTER t3 M.%g- '

DE lft(RALC m m..

O ,H,,9a_

's un wn *[

" " " p

.t

& , .[>d .

? fe m 13 't l N8"; l O4 [

J waa 4.

L z.

CC. m. .

q . -= - .

~ .

- .J..:. j +x->c. ,,,,,,.. ,,,,,, _,

j 9= u- ~,2 t

oq - SERVICE .

[ tWLTitt

4-L m,

'** g,^tS A

' r

{,'

$FfMT FUIL 6s*  : 94 43a ' SN .

g-rosepse 9 N n l _ g '

. s.e ptre es g

q7 48*5 . 9 -W748' s e.vea

-,CCW Pf A;; "hg.ggyg ' ' ccw gg,gy3A gg -

jg-x ..

.g -<cewo .-

. ] amassom a

^ .I 7 . . . .

. .X.'- {^

win ' W1 &i- l s **' 7 cc,, . - -; e . . .g - 1.

a sc g -.

J' .

  • n. p l- <,

cc ,,,

,~

' gg )' I, 1

cc,7,,,n,; gce,,,,n,. _.

L . ,, l.iocommanrwr l

_[.

yg '. 7.. [- ' ' ' ' * * . ' , . 1 '

  1. ., CCX]LpsG IJ8WT 2

.l COrCNGl##f 2 asess a 8'

, ' tea rt.R

,=, 2 I O*M h .

2-z27 4] b 3

2 8800 h + 2- Cs --'

,,,,, w 23 '"

4 ~~~ y w

. q : ,'

'l 2 SeE?A . .

, , .. q:

w , . p j  : . ..

, gg'pygg ' -

~

e 't ' . .. ' 3 t TOCOMponedF , .)

4" 2 seg33 . 2 94668 k 'p CfWJ.G Us.lf z I . ,, ?-2 94408 .

'.;- ' p. .

1 2 34708 ' ' 2 M70A : -. W 2; g,gpgjgg ggg,Tw yr

' yggw gpg, , , 'm.

' P29 ' PLNP

" , ..; ES$ENTat s ] t+es2B

stu ra . ,,,,'3

_ , m- g,oi., y - t sgge ^ ~

- ,m, .

s T k i-L ._. --

ecm o r.,=2*.% -

Figure 3.8-2. Byron Unit ; & 2 Component Cooting Water System Showing Component Locations

- w e .

.t i

i 1

4 1

_ . _ _ . _ _ _ . _ _ _ _ . _ _ . _ - _.___________.__.______n______._______ _ _ _ _ _ __ _ __ w e

s m m  ;

N .;

i Table 3.8-1. Byron Component Cooling Water System Data Summary for Selected' Components ,

COMPONENT !O COMP. LOCATION POWER SOURCE VO LTAGE I POWER SOURCE i EMGRG.  ;

TYPE LOCATION LOAD GRP '

CCW-0-HX HX 364AB i CCW-1-9473A MOV 364AB MCC-131X3 480 383AB ACIA CCW-1-9473A MOV 364AB MCC-131X3 480 383AB AC/A ,

CCW-1-94738 MOV 364AB MCC-1' '!X1 - 480 364AB- AC/B CCW-1-94738 MOV 364AB MCC- J2X1 430 364AB AC/B .

CCW-1-HX 364AB HX CCW-2-9473A MOV 364AB MCC-231X3 480 383AB AC/A CCW-2-94738 MOV 364AB MCC-232X1 480 364AB AC/B  ;

) CCW-9412A MOV 364AB CCW-94128 MOV 364AB-CCW-P0 MDP 364AB BUS-141 4160 ESFt1 *

, o

" MDP' CCW-PO ' 364AB BUS-142 4160 ESF12 CCW-P1 A - MDP 364AB BUSl41 4160 ESF11 AC/A ,

CCW-P1 B MDP 364AB BUS-142 4160 ESF12 FN ' ~

t _

8

.4 4

I i  !

e ,

y $  ;

l 4

k

]

_ 1 -- f 'J _ < _ . _ . _ _ _ _ -

Byron 1 & 2 3.9 i

ESSENTIAL SERYlCE WATER (ESW) SYSTEM

\

3,9.1 System Ftmetinn 't<

The Essential Service Water System supplies cooling water from the ultimaie heat sink to various heat loads in both the primary and secordary portions of the plant. The system is designed to provide a continuous flow of cooling water to those loads which are safety.related or essential to the safe shutdown of the reactor.

3,9,2 System Definition The Essential Service Water System contains two beaders, each supplied by a singic motor driven pump. The sources of water for the system are the two essential senice water cooling towers. Strainers are provided to remove impurities from the raw water before it enters the ESW purnps. Heat is rejected to the cooling towers, which are designed to accommodate the laat loads from both units simultaneously, Simplilled drawings of the ESW system are shown in Figures 3,91 and 3.9-2.

These drawings show some components frotn Unit 2 Unit I component ids begin with "1", Unit 2 component ids beg 6 with "2". A summary of data on selected ESW components is presented in Table 3.-) 1, 3,9.3 System Oneration During normal operation, one of the ESW pumps i;in continuous operation pic'.iding ;ooling water to essential loads. Essential loads are those required for safe shutdown, and are therefore redundant and served by the corresponding channels of the ESW system. Heat loads 'upported by the ESW system include the following:

Diesel generator coolers tyQ -

Containment fan coolers N Component Cooling System heat exchangers AFW, ESW, SI, and centrifugal charging pump lube oil coolers AFW ESW, SI, RHR, CS, and centrifugal and positive displacement charging pump cubicle coolers.

The ESW also provides an assured supply of water to the Auxiliary Feedwater System. ESW header l A supplies the motor driven AFW pump 1 A and ESW header IB supplies the diesel driven AFW pump 1B.

The essential service water cooling towers are cooled by fans.

3,9,4 Svetem cuccess Criteria (Ref th Following a LOCA the following success crieria apply to the ESW system

- One out of two ESW pumps operates supplying cooling water to essential loads.

3,9,5 Comonnent Informntion A. Service Water Pumps l A and IB 1, Rated flow: 24,000 gpm @ 180 ft head (78 psid)

2. Rated capacity: 100 % i
3. Type: horizontalcentrifugal n B. Ultimate Heat Sink - Essential service water cooling towers (2)

C. Cooling Tower Fans (2) 65 1/89

Byron 1 & 2 3,9.6 Sunnort Svit;pis_and Interfaces A. Control Signals

1. Automatic The ESW pumps are not automatically actuated.
2. Remote Manual The ESW pumps can be actuated by remote manual mer.1s from the control room and from the remote shutdown control panel.

B. Motive Power The ESW motor driven pumps, motor operated valves, and fans are Class lE AC loads that can 'a supplied from he standby diesel generators as described in Section 3.7.

C. Other

1. Lubrication, ventilation, and cooling are provided locally for the ESW pumps.

3.9,7 Section 3.4 iteferences

1. Byron /Braidwood Final Safety Analysis Report, Section 9.2.1..

O 1 s

m M

v i

66 1/89

) _

73

(- )

(3 N

\ J

--.~,Cs<.

1Erw escr* = +m, 3MFA..N.

- .. .a@ 1 ,

M@ #6eur y( Cru a b"

x.

e

(

) L. .

o ,.

, =---

Y,

m. M.(".=.....*.'

"$.~,.'* -7

.s. cn .

( f_C'," s

m. _. .wr -

o o ,,,,,,,.

,V.

--- s_._ w _. r, . , --.~~

n m., 3

$ TW, CORT .e'.

Rune e ene-se a f 'W CT .

l (TWO t See 1

A .c_a - E x - m .

A- rtppa A

-R.9 r-=: o&- " oR~

p-  ; _

B-c7-&<->t S N.. S g- 23s 4p

.. ._3 C

oo C

Figure 3.9

7\ i t r3 -

t t 3 /

v \-N.. n su m , mm.

a a a e T T* c TT As .

/ J dj o'{ s- =

s. m ,

,.,m.. . n- ev . ,

I l ggs,-g s- . ..

, , . - . ox.,- , , m.. _

_2 D, ,.<.

cc--,,, Ov n -

r f

9e us. . r 0 01.. *

+

01, ..

, z.

r.~ .) ,0..<, t

= . . , . . ~ ..

z=

_ ne.>-

NFat) o m

M'8 en. , - e.

Forms U.eT ,

0..,. 0. .m.a..

suc .c.

O mmm m c.amn ,

-c< -r ( e., w.. 3 cc .. - u n ios ( <1 w .e, ,)

).D D,,<

, ( *** .

I th (a.m-,n.

u ~c.t 3

_ .m m.

.ccs es

(.,n ct a.cm ) -

- ctwt swrw y

y cm- .mspes, e

Figure 3.9-1. Byron Units 1 & 2 Essential Service Vlater System (Page 2 of 2)

__ _ _ - __ _ _. _ = _ _

s N '

i i

k L

t I~--l 1 u. g 3 --. g g _ . . g m... s . . ,

rr.c~rs e

(~.m o A-maar se teuer rut _,

A

~.. g .

. _. i pp -[ --- J h-d I

i I ""a i

'y.,.,_.,

m, r .=.

=

.s.cn .

te ,, . c.u ,

( m e-xw a===

_ g=p .

i Q - . .r w __ . _.m .

. , , , = = ~ ~

. -~:

[ [ , ,.,,, . == < . < .,

%. . es.cv .

.. .... . .,. . , , ~ - - 1

~"

~

.. e d, ,3, s

i

?' - ---

h Oh'5-*= -

q. .' -

""""D i I f

n. ..

, f,, '

'E 4 1 I sat ace e seu nor, t

i o ,

i  !

I i

{ Figure 3.9-2. Byron Units 1 & 2 Esses.tlal Service Water System Showing Component Locations (Page 1 of 2) 1

T'

. . ~ . , , . . . ,

n,.

b f

- 1 -a .

es.c ,. a o=~g s w cr== =

vow.ms.. ew c, e I l r &,_,,, W +.s_ , m... 2 ok-.

-~ i ._

J n_,g__] _

c _ ...

ov,-

m 2, o r - *

+ f ol*

  • Of,..

f 4, ,, P. ,,.- m... i,,,..,_.

mc ..

nn

< a g ..<r. .. ,.. .. .... . g wh ..

= =u.,,,_.

c=~~ =$

I === = . -

1 I' I 9' S,, ,

, .m. .:. . . ~ = = .

HWJet.W MAsP 70 TRAsm ) 'A CUAM

, 2.co u -= _ - e..*w..

w muu, es e}

cc. . corxe cw-u comm J u m ..., mm . .c g i 4 sa om ,.

m

[,.

-fu. ~ - 3..

n . m, ( n.cw <=e.a e cmmJ .

,c.m.e,.,w ,. ,.

, .. .e n, ,

em,=== mw. -

lq cm = c.. g .s .-.

4 oo c

Figure 3.9-2. Byron Units 1 & 2 Essential Service Water System Showing Cor iponent Locations (Page 2 of 2) 1 4.

fm O--- U Os Table 3.9-1. Byron Essential Service Water System Data Summary for Selected Components COMPOtJEr#T ID COMP. LOCATIOr# POWER SOURCE VO LT A G E POWER SOURCE EMERG.

TYPE LOCATIOt3 LOAD GRP ESW-0-7 MOV 346AB E SW-1-1 A MOV SX1A MCC-131X3 480 383AB AC/A E SW-1-1 B MOV SX1B MCC-132X1 480 364AB AQB ESW-1-33 MOV ESWPMPA UCC-131X1 480 364PENRM AC/A ESW-1-33 MOV ESWPMPA MCC-131Xt 480 364PEfJHM AQA ESW-1-34 MOV ESWPMPB MCC-132X1 480 364AB AC/B ESW-1-34 MOV ESWPMPB MCC-132X1 469 364AB AC/B ESW-1-4 MOV ESWPMPA MCC-131X1 480 364PEtJRM AQA ESW-1-4 MOV ESWPMPA MCC-131X1 480 364PEtJHM AC/A ESW-1-5 MOV ESWPMPB MCC-132X1 480 364AB ACB ESW-1 -5 MOV ESWPMPB MCC-132X1 480 364AB AC/B

'~

ESW-1-7 MOV 346AB ESW-CT-A TArJK SXCTA ESW-CT-B TANK SXC1B ESW-CTFAN-A ACU SXCTA BUS-131Z 480 SWCTASG AC/A ESW-CTFAN-B ACU SXCIB BUS-132Z 480 SWCIBSG AC/B ESW-P1A MDP ESWPMPA BUS-141 4160 ESF11 AQA ESW-P1B MDP ESWPMPB BUS-142 4160 ESF12 AC/B W

C

i Byron 1 & 2

4. PLANT INFORMATION 4,1 SITE AND BUILDING

SUMMARY

The Byron Station, Units 1 and 2, is located in northern Illinois,3.7 miles south southwest of the town of Byron and 2.2 miles cast of the Rock River. The site is in the approximate center of Ogle Cou: ty in a predominately agricultural area. The site occupies approximately 1782 acres ofland. Figure 41 is a general view of the plant and viciruty.

The major structures at this unit inlude the two containment buildings, a shared turbine building, a shared auxiliary building, a shared fuel building, and two cooling towers. A site plot plan is shown in Figure 4 2. Plant section drawings are shown in Figures 4 3 and 4 4.

I Each containment structure is a reinforced concrete cylinder with a steelliner.

The containment contains the reactor vessel, reactor coolant pumps, steam generators, and pressurizer. Pum?s, piping, and valving for the reactor coolant system is com31etely contained within the containment structure. Access to the building is via an equLpment hatch or a wrsonnel hatch. Piping and electrical penetration areas are on various levels of the auxilla ' building.

he turbine building, located east of the containments, houses the turbine generator and the associated power generating auxillaries.

The auxiliary building is located to the east of and between the containments and contains much of the plant's safety related eq uipment, specifically the auxiliary feedwater pumps, high pressure injection pumps, RH R pumps and heat exchangers, containment spray pumps, charging pumps, component cooling water pumps and heat exchangers, and motor control centers su 3 slying power to safety system components.

The fuel bui c ing is between the two containments and houses the spent fuel pool.

The cooling towers are located east of the turbine building.

4.2 FACILITY LAYOUT DRAWINGS Figures 4 5 through 411 are simplified building layout drawings for Byron 1

& 2. Details of the turbine building and many of the outlying buildings are not shown on these drawings. Major rooms, stairways, elevators, and doorways are shown in the simplified layout drawings, however, many interior walls have been omitted for clarity.

Labels printed in uppercase correspond to th location codes listed in Table 4 1 and used in the component data listings and system drawings in Section 3. Some additionallabels are included for information and are printed in lowercase type.

A listing of components by location is presented in Table 4 2. Components included in Table 4 2 are those found in the system data tables in Section 3, therefore this

- table is only a partial listing of the components and equipment that are located in a particular room or area of the plant.

4.3 SECTION 4 REFERENCES

1. Heddleson, F.A., " Design Data and Safety Features of Commercial Nuclear Power Plants.", ORNL NSIC 55, Volume IV, Oak Ridge National Laboratory, Nuclear Safety Infonnation Center, March 1975.

I I 72- 1/89

, , ..------..y rw., 227-e , . . , ..-.~g. gy --w y- mv.,_,.rweev.- 9.-..- -. - -m-,y,-,--- .y.weg.,-,w.+..~ -.--m-, -warw,-- . . - - . p-,--,,g--w---, ,----,S-e-r.c- ,-,wv

ua. .an . -_a,- &a . - 4 A . - - - a._-.:-.A, 4 .+4 h A .s._ - ea4 -+.---.4-.A--

i W

j pb

\

}

' *b l

1  ;

l ,$ 5 s f/g'  ; ~k

  1. s ,

c / Ys

.- .N'  ;

,f

,c

~,

l),5 3

0 '6 o

i d3,

,s, n

\ -

//  %

. \:,) '

f l

l;yijf '

)' / [s e

.e J 1./ q !u '\g e ' s

[L 9 ,u t(1 t

./ f; \\ s fh 5 h \ ,i

- \-

\ l' af \JQ E O c 1 t ..

\ \ 4 e (vs iV '

)

s.

1

l

, \ 5 l

i(\

,, s 4 , f i  ;*. f e

si i 3

'f G. \r 8 di'['.

\ U

/ n .\ j 8

e -o

. ,I ,I*

} j ,f hN "

I y

,Y fl - ., J o -

! v l' a vi -
t. . .i e

/t a 1., s en i  ?. 4 4

3 ,

s' s

gy '

pr

' q

) d' j

jg'd. .i '

A j ,

p )i h 1 ,

i

$ 't

. q,k ' \S., '

'),

j' a \ \g (' , /, .

es '

b 73 1/89

v ..

^

^

EC

'> v x

3vw 345 KV Swtch Yard v

': xl p f CALLED

^ ^ norting g.,te >: m u n usu uyuu(

r. ^ ^ -

u,uu,uuuu uu,uuuuuuuuuuuuuuuuuuua .usu u u.ausur usunnu un nuu; .,.. ,

7

c Refuenng Water Storage Tanks Fuel .

t

c RWST Handfing Building i i Reactor ,
c Containment  :  :

m n

v X '

Reactor J v v

^

^

v Containment Bus % E_E_

Buikiing und 2  :: i-:: E-E v EE

^ EE Unit 1 EE EE Auxilary Buikfing 3c 5E EE  !

SXCTBSG- SX1B SXCTASG E:

[

EE m/ l un41 l l unit 2 l -i EE EE

[-.I SXCTA I -

lurW Hoorn ,'.

jj {j SXCTB .p- I Heater Ikiv l  ::

,.2 u SX1A 7 3:  ::

{_o  ::

W Condensate Storage -

3c ';

h g: . i; Tanks 3  : 3c  :: '

==

A y- 3: - EE

^

t Cooling Cooling  ::

Cimulating y' 3:  :: i Tower #1 Tower *2 Water  ::

Pump House . >: EE 3 c

-- t v v v v v  :

v v n

u n

t l

2 ,: .,

i g Figure 4-2. Byron 1 & 2 Plot Plan

)

....___m. m.. -._,..._..m. . _ _ . _ . ..m.. .._,._.____m. _ . _ _ _ . _ . . _ _ . _ . _ . . _ .- __

1

! 4 .

1 F! F} F5 FI {; r} r[ [E 3.-- -- q .

. d  :

' i  : .o .

>]

(2"lbf- '3'M k 5

1 lI b .k.sh.l!$1 3

>  ; / ' -

/ 3 q) 3

_ad.,..":.

lsp.g g-ji.m. ,. .%a u=._r.mpwt, g ,,JP .e i

/ d di t i.. m i M, l

l

, ! B

-c=d-M! F _" 4l ;i .9 e

A j! h ._jl_ . . _3. g.__ ._

i 3

) 1 g ,,.g w -},s._t! )

41 li' M Q 4] g

} l' i br(r.cr=1r.- g i

3---

s E i.

\ s . ,

=* - d , q=-.n. -

- - u.,a.

- +L- '

.a' '5

} (~~

1ljp!!!!.,!}[A,9 ,

y y

=

k

^~~j E .6 a

o e

ca  ! 0.! p$,,e t e -- r

)5 ::;..h-[iili 9 D

.p,i,,s % j3 Ir .

O!h M h M W o

O ~' * * '

. - P b'te -- 4 hU I,b! =l!

~~D'dPF d:kF' k

l l ')

I l ]'

a a m

__..e I!!.I] h *M d,i c C 4? g= [."

r g =

m .=_ W w =l y l

'  ; Ig,d,f W - ~f g }..g g(N , m1 nj s $

Q.. t i

qAh IU

< l

& wy;lW)!l ---

diIj $ -

8' 1 **

W 's -f/ lf 110, r e- i i, m.r" . t
i nr/';, T l *f,*in,.,' . 'h M

\

llh 3 2 t.4-  %-;.! I:] i._ h,,, .

l,  ! ,$, .a$_. . . I h, 95 4

jh m . 4.d. .. q :.

' " 3

=.-

1. D

!; . !E .Ih })l bi @

.}. , . . \(:M)' - . l04(=42 , , kg lb @ 3fIl

-F N -

X

  • j{lL k;i~.:i.! go g
3. ; i, p c,.

_[iaf-'l,#

1: - p --- - > I m.

' U , , g F s- ! .

p .

4

/,

i h*., i ,l

E

(- f_ . _.'j).._.h .I pI, 1

I

'l'

'}

s '

1 l.L

[

,O l [N 11 .

u o% q,, jf LI 'l Li Li L1 75 ~ V89

_ - .--a Ai. m . _ _ _ _ m m , _ _

Q (v ,. .

i L $, ,

n.bl i i

, U. _Lt 3ll. N l ..


i . l -_

=_~,

"q NMIM

~

, ,-_ __ ___n,

> Y 0 fl EdmG;t fu C %3it ,

h i

is 4 8

s]1jl _ _ _

g__.p o <, d sg 7)g q- == 3 =

g

.c j _1 g

J n

'I }3 .1f6 5t.W Stoi r49h a d

11

$pi @

[

<tal.+r i r_

~ 3-(P.f mi a

m. u gs e !dr,il; ; .

r=

g m I!b.__l8 i_l fl

_ ll

. a' M m JL al i l 1 i tl f0 3

Li  :

p%~'

i -N ",M p,4_L ~4  %^'% p S z r y-

~}Fw h i_kp._d e s,. . os+@-.=t p n, ), , 2 z

W a h , N-

  • l'b -)

e+ - (-} g d .

g ..g&;i3 ! .

- n,..

.lj,SM%d@s!Ef sim_.a.... . .ru=,gm ..

f

  • m i 4WsAWFi"~,1 4 J l11 3 4
TW@??f~

--. M li '

If. 1 ' e

]

n u.....j';)g hili o y 'h.I , mc :r-- ar4a g.J t. E}- =j . j 1!

p '

4' Q J W _ille:b e &

B' @i4 r& . .J J "N 8 i, m!

n N e . _ . 1 6_9=P-l hqt

a to- AnC.A.'b.~l?YSTTFkil{h.

. -Nns = ' k s'

. y1 i,

1., . .

iLR!GCIett .

m il

. - m e n-s s I v,n, d.r;.ad _

n T

2-Al v

g l

4 l',k _ i - "

6 3

p L I: I i

] 9 sj l dt im[d h lU L! y . L_ W .. t.i - Q t.1:-

76 1/89 3

l'  ;

n .

4 i

I i

CALLED -

NORTH 4

Y i 1 i

a I

i t

i  !

i i I i

!" ESWPMPA ESWPMPB I

w j .

l-4 HT) Uu =

i  :: E FT1 1II E 2:

1 i

i 1-4 i i 1

i i

. m  ;

! g Figure 4-5. Byron 1 & 2 Station Arrangement, Elevat~en 330' 1.

of the Auxiliary Building- ,

t I

r t

, 6

<  ?

) r a

.i i CALLED I tionni i

' r i

I 4 RHR8 i i  ;

> CSB i

RC CSA 4

4 '

j i

. A ,

i 346PENRM n 346AB v

- c

($)

=

4 4 [0D) E' o- Pd

ni wi i
4.  ;

I I

i

) t k hc I

i 1,

Figure 46. Byron 1 & 2 Station Arrangement, Bevation 346' I I

a

. - . _ - _ - - - - . .- l

., . . .- . ~ . . . . ~ . _ . . - . . . . _. - . . - . - . . - - . . . - . - . _ . . . . . - - . _ . _ . . . . . ~ . - . -

O O O '

I. .

CALLED  !

tJORTH i  !

M i

I V

stb .

.,i O- @ O4 I t

[  !

AFWPPTFIL tmder RHRHXB I

STr.tritt RC  !

g  !

u CVAg' g -

e -

364PENRM

=

1l0= ,

?

.. .y- StA l RHRHXA f C

h. g OdF oo I
L I

+ r k

i^

4 _  ;

.g .i 1 * .j j <

Figure 4-7. Byron 1 & 2 Station Arrangement, Elevation 36f r.

I I

..__m. - __ ' _ - - - . _ _ T'-__-__ w

- ._ . - -. .= . . . .

o i

O O f CALLED Rwstrut " ""1

[

i RHRHLB  !

Pepe Tunnel t RC I

\s'( f

{

\

l

.TAPENRM RHRHXA '

l- oo '

383AB "d i E5 I I oN u RSCP

[ y ,./ .p-C

{3 dL L

__-ak o_c l d  %- 9 [

'DGBFUEL poAh AFW cobr 4

I driven pump DGAFUEL

(.

i i i

l.  ;

l~ C i

g. -

i Figure 44. Byron 1 & 2 Station Arrangement, Bevation 383' '

l l

l

!. [

1 O O O I CALLED NORTH I 1 'v i'

N 4

Fuel Handiing

l Building  !

f' 1 f

RC - -

i i  !

l l

d 401AB b %d M

I l

5-

, b

, DGB DGA s B,

-o C O P l-y E CO, M rm _

m o-1, ,

i-t t'. ,

e 3 i, -

t i

1 . . -

e .y 9

, - Figure 4-9. Byron 1 & 2 Station Arrangement, Elevation 401' i a

I 1

l  !

1-i . _ _ . _ - .

_ _ _ _ __ _ _ _ . . . .- __ _ _ . . . _ . . . . . _ _ . _ m.. _ _ _ m i

_1-

~

i j

i I

i CALLED ,

.anu .  :.x FJORT11 -

RWST f- m w

a c

3

, TLSF a

4 i-  !

4 I

ac f ->

f ..

i ) o-c (

4 6 P3 i o-j o-- --o-1 426PENRM h  % Volume Control l- 4 O .

426AB - O i-ESF12 ESF11 G hu C

()

7 O Alii 5

- - FENP v v 4

i .

v ,

v o-i-

?

l

.mC i: ,o I-

[

Figure 4-10. Byron 1 & 2 Station Arrangement, Elevation 426' t.

i

}

p ~

.t i

I L

q-1  :

, CALLED "

' F10RTil& '

- t i r i

l t

i r

t I

i r 8

ll -

I

! nc- f  :

i.

.t .. .

.u j f-4

^

N ,

i- I _oj " }

i

-c l o- i AEER- ud  :

g

BATan2 g g 'g~g i

o O- oo-o o- o- t O

o-O- o b'

l

1. ..

sarnunP y ca i O O O 09 O o-i  ;

, Ao 1  :

i ,

j-  !

Figure 4-11. Byron 1 & 2 Station Arrangement, Bevation 451'

l I i

I t Table 41. Definition of Byron 1 Building and A Location Codes t

Codes Descrintions 1

1. 346AB Elevation 346'_ of the Auxiliary Building
2. 346PENRM Penetration Area, located on the 346' elevation of the Auxiliary i

Building

! 3. 364AB Elevation 3M'of the Auxiliary Building 1

- 4. 364PENRM Penetration Area, located on the 3M' ele -Jon of the Auxiliary Building

5. 383AB Elevation 383'of the Auxiliary Building

, 6. 401AB Elevation 401'of the Auxiliary Building

7. 414PENRM Penetration Area, located on the 414'of the Auxiliary lluilding i 8. 426AB Elevation 426'of the Auxilian Building
9. 426PENRM Penetration Area, located on the 426'of the Auxillary Building ii j 10. AEER Auxiliary Electric Equipment Room, located on the 451' elevation of the Auxilian Building ,
11. AFWPPTNL Auxiliary Feedwater Pipe Tunnel under Main Steam Tunnel
12. BATRM111 111 Battery Room, located on the 451' elevation of the Auxiliary Building
13. BATRM112 112 Battery Room, located on the 451' elevation of the Auxiliary Building  !
14. CR Control Room, located on the 451' elevation of the Auxiliary Building
15. CSA Core Spray Pump A Room, located on the 346' elevation of the - l Auxiliary Building

.I

16. CSB Core Spray Pump B_ Room, located on the 346' elevation of the 1 Auxiliary Building
17. CST ' Condensate Storage Tank
18. CVA Centrifugal Charging Pump A Room, located on the 364' elevation of the Auxiliary Building
19. CVB Centrifugal Charging Pum -B Room, located on the 364' c!cvation of the Auxiliary Buifding 84' 1/89 i

i j Table 41. Definition of B ron 1 Building and

Location Codes y(Continued)

Codes Deterintion

} 20. DDAFN Diesel Driven Auxiliary Feedwater Pump Room, located on the l 38' elevation of the Auxiliary Building 4 21. DGA Diesel Generator l A Room, located on the 401' elevation of the Auxiliary Building .

1 1 22 DGAFUEL Diesel Generatar l A Fuel Storage Room, located on the 383' j elevation of the Auxiliary Building

23. DGB -Diesel Generator 1B Room, located on the 401' elevation of the

! Auxiliary Building

{

2 24 DGBFUEL Diesel Generator IB Fuel Storage Room, located on the 383' '

l elevation of the Auxiliary Building i

i 25, ESFil Division 11 ESF Switchgear Room, located on the 426' elevation of the Auxiliary Building 1

i 26. ESF12 Division 12 ESP Switchgent Room, located on the 426'-

j elevation of the Auxiliary Building

27. ESWPMPA Emer

! elevatfon of the Auxiliary Buildingn ' Service Water A Pum 4

4

'8. ESWPMPB Emergency Service Water B Pump Room, located on the 330' elevanon of the Auxiliary Building .

' 29. LOCSR Residual Heat Removal System "A" Pump Room, located on the 93' elevation of the Auxihary Building east side of the Reactor

' Containment Building I

30. RC Reactor Containment Building
31. RHRA RHR Pump' A Room, located on the 346' elevation of the '

. Auxillary Building -

t t . 32. RHRB RHR- Pump B Room, located on' the 346' elevation of the

j. Auxiliary Building

! 33. RHRHXA . RHR Heat Exchanger A Room, located on the 364' elevation of  ;

the Auxillary Building i
34. RHRilXB RHR Heat Exchanger B Room,l' ocated on the 364' elevation of -

c the Auxiliary Building:

! 35. RWST - Refueling Water StorageTank

\

85^ 1/89-

)-

J _

  • :-,.-. . - . ~ . . - . - - , - _ - _ , . . . , . , . - , _ , , . . . - - - . , , , . . , , , , .-. _ ,, ,,-.. - . .. _ , _ .

d 1

l Table 41. Definition of Byron 1 Building and g

4 Location Codes (Continued)

Codes Deserlotion

36. RWSTTNL Tunnel from RWST, located on tiie 364' elevation of the Auxiliary Building i 37, RSCP Remote Shutdown Contml Panel, located on the 383' elevation of the Auxiliary Building <
38. SIA Safety Injection Pump A Room, located on the 364' elevation of the Auxiliary Building
39. SIB Safety Injection Pump B Room, located on the 364' elevation of the Auxiliary Building
40. STMTNL Main Steam Tunnel, located on the 364' elevation outboard side of Containment
41. SX1A Pit containing ESW Valve IS001 A on the 330' elevation of the -

Auxiliary Building

42. SX1B Pit contain8ng ESW Valve lS001B, located on the 330' elevation of the Auxiliary Building

\

43. SXCTA Emergency Service Water A Cooling Tower 44 SXCTASG Switchgear Room for the ESW A Cooling Tower
45. TB Turbine Building -
46. TLSF Spent fuel pool operuting floor, located on the 426' elevation of the Fuel Building
47. UPCSR Upper Cable Spreading Room, located on the;467'Lof the Auxiliary Building f

l l

l .

\

j 86 1/89

, - - - , . . . . - -. . -.-. . - ,. - - - - - , a., . -.-,-..a-..,.-....- - -.

TABLE 4 2. PARTIAL LISTitJG OF COMPOt1Ef1TS DY LOCATIOff n

v AT BYRoli LOC Al 40N SYSTEM COMkONENTib COMP TYPE 346AD E5W EbW 17 MOV 340AD ESW ESW 0 7 MOV 346PEhkM ECCS hM-67 t C A MOV 346PEhhM ECCS HH-6716A MOV 346PENhM ECCS RH-67160 MOV 340PENAM ECCS RH 67160 MOV 364AD CCW CCW 19473A MOV 364AD CCW CCW 19473A MOV 364 A D CCW CCW 194730 MOV 364AB CCW CCW 19473B MOV 364AB CCW CCW 24473A MOV 364AB CCW CCW 244730 MOV 3&4AB CCW CCW PQ MDP 364AD CCW CCW PIA MDP g 364AB CCW CCW PIB MDP 364 A b CCW CCW 9412A MOV 364AB CCW CCW 9412B MOV-364Ab CCW CCW4HX M 364AB CCW CCW la tA m 364Ab CCW CCW PO MDP 364AB EP MCC 132X1 ACC 364PENkM CVCS CV 112D MOV 364PENRM CVCS CV 112E MOV 364PEhhM CVLS SI-6801 A MOV 364PEhnM CVCS Sl4831B MOV 364PENRM ECCS CV 8804A MOV 364PENAM ECCS SI8811A MOV 364DENRM ECCS SI-6811B MOV 364P Eh4M ECCS SI 6621 A MOV

,q - 364PENRM ECCS SI-662 t A I MOV.

h 364 PEN 6M ECCS SI6821B MOV 364PE hkM ECCS SI8621b MOV 364PENRM ECCS Si4835 MOV 87 1/89-

_ . ~ _ _ . - _ . - - -- - ~

_ _ . - - - - _ - - -.~ . - . . , .-. . . -_- . - .

TABLE 4 2, PARTIAL LISTl!JG OF COMPOf1EtiTS DY LOCATIO!J p AT BYROf1 (cot 4Tli4UED)

LOCATION SYSTEM COMPONENT 10 COMP TYPE

, 364PENRM ECCL Si-6632A MOV 1

ab4PEhRM ECCb SI6802D MOV

~

364PENRM EP MCC 131 A1 ACC i

364 F E NHM EP MGC 131A1A MCC 364PENRM PAHks CC 16A MOV 364PENhM PAHR$ CC 27A MOV 364 PEN 4M PAHR$ CCIb8 MOV

, 364PENRM *AH43 C0 270 MOV 364 PE NRM PAHRS C S- 1 A MOV f

TEIEENRM PAHRS CS 7A MOV 364PENRM PAHRS CS10 MOV 1

364FENRM PAHRS CS ?D MQv 363AB AF W AFW PIA MOP 363Ab AF W AFW 17A MOV -

(

I i

363AB AF W AF W 6A MOV 4

363AB EP MCC 131 A3 MCC 363AB EP MCC 132x3 WC 414 F E NRM EF MCC 131 A2 MCC I

426AB EP MCC 131A5 MCC 426AB EP MCC-132x6 ACC i

di6PENRM EP MCC 132x2 MCC 426PENRM EP MCC 132x4 WC 426PENRM EP- MCC 1334A ACC

< AFWPP1NL AF W AFW 13E MOV AFWPPINL AFW AF W 13F MOV AFWPPINL AFW AFW 13G MOV AFWPPINL AF W AFW 13H MOV AF WPPINL AFW AFW 13A MOV AF W FP INL AF W AFW 13B MOV AF WPP If n AFW AFW 13G MOV 5

AFWP91NL AF W AFW1JD MOV 6AlhM111 EP OCbuS 111 BUS bAihM111 EP 3 BG 111 BC 1

88 1/89

TABLE 4 2. PARTIAL LISTitJG OF COMPotJEtJTS DY LOCATIOt1 AT BYRoti (COtJTINUED) t LOCATIQN SYSTEM COMPONENT 60 COMP TYPE bAI AM111 EP bT 111 BATT bAThM111 EP DGBUS 111 BUS DAT AM111 EP TR 111 AF MR DAThM111 EP T R-113 AFMel DATRMill EP JNV 111 INV WRM111 EP INV 111 (NV BAT RM111 EP INV 113 (NV DAihM111 EP INV 113 (NV BATHM111 EP ACt3US 111 BUS BAThM111 EP ACDUS 111 BUS BAlRM111 EP ACBUS 113 tsUS B AT AMi t i EP ACBUS 113 BUS B AT RM t 12 EP DCBU5112 BUS BAT AM112 EP UC 112 BC s

bATRM1'2 EP BT il2 BATT BATRM t 12 EP DGBUS 112 BUS BATRMil2 EP TR 112 AFMR BAT RMi t 2 EP 18 114 AFMA BATRM t 12 EP 4NV 112 INV BAT AM112 EP INV 112 tNV BATRM112 EP INV 114 INV BATRM112 EP INV 114 INV DATRM112 EP ACBUS 112 BUS BAT AM112 EP ACBUS 112 BUS BATRM112 EP ACBUS 114 BUS BATRM112 EP ACBUS 114 BUS CSA PAHhs CSP 1 A MDP CSB PAHRS C S-P IB MDP CSI AF W AFW CST TANK CVA CVCS CV PI A MDP

\j CVB CVCS CV PIB MDP Miky AF W AFW P1B OOP DOAFW AFW AFW 1/8 MOV l

l 89 1/89

. . . ~ ,. . -

TABLE 4 2. PARTIAL LISTING OF COMPONENTS DY LOCATIOl4

\ AT BYROf4 (CONTif4UED)

Y LOCATION SYSTEM COMPONENT ID COMP TYPE DDAhv AF W AFW40 MOV DM EP DG-1 A DG DGB EP DG- 1 B DG ESFt1 EP BU$.141 BUS EbF11 EP BUS 13tx bus E5F11 EP TH 131x AFMR EbE11 EP C41 A CB ESF12 EP BUS 142 BUS ESF12 EP BUS 132X BUS -

ESF12 EP TR 132X AFMR ESF12 EP G b- 10 CD E5APMPA E5W ESW 133 MOV ESWPMPA E5W E5W 133 MOV ESWPMPA E5W ESW 14 MOV E5WPMPA E5W E5W 14 MOV E5WPMPA ESW ESW P1A MDP ESWPMPB E5W ESW t 34 MOV E5WPMPB E5W ESW 144 MOV ESWPMPB ESW E5W 14 MOV E5WPMPB ESW ESW 14 MOV ESWPMPB E5W ESWP1B MOP N AFW SG1A SG N AFW SG 1B SG N AF W SG-10 SG N AF W SG-1D SG N ECCS SUMP A SUMP N ECCS SUMPB SUMP N PAMRS CC-FANA ACU N PAMR5 CC-FANC ACU N PAMRS CCFANO ACU

( N PAMRS CC-f At.D ACU N

N RCS RCS VE5SEL RV N NS RC-455A NV 90 1/S9

I I

i TADLE 4 2. PARTIAL LISTING OF COMPOi1EtJTS BY LOCATIOil i AT BYRoti (CONTINUED)

LOCATION bYSTEM COMPONENT ID'T COMP TYPE N RCS RC 456 NV N RCS RE4000A MOV N RCS . RC40000 MOV N RCS RC4701A MCv N RCS RC B7018 MOV M RCS RC 6702A ~ MOV M RCS 80 67020 MOV M RCS RC4001A MOV RC RCS RC4002A MOV N HCS RC e0013 -

MOV N ES RC40028 MOV M RCS RC 6001C MOV RC RCS RC4002C MOV RC MS RC 6001D MOV h3 RCS RC40020 MOV R%A ECCS RH P1A MOP RNRB ECCS RH PIB MCP RmRMAA ECCS RH HA1A M RnRHAD ECCS RH hAID M I RAST CVCS 56-RWST 1ANK RWST ECCS Si-RWST TANK'~

SiA ECCS 546923A MOV btA ECCS 58 P1A . MDP SiA ECCS SI6607A MOV SLA ECCS $68807D MOV SiA ECCS SI6924 MOV SB E6CS Sl4604B MOV stb ECCS bl4806 MOV SS ECCS SbB923b MOV l

bib -.

ECCS SI-PIB MOP

~

bA1A EbW E 5W 1. t A MOV t

S410 ESW E S W.1 18 ygy j SACIA ESW EbW CI.A TANK f

91 1/89

TABLE 4 2. PARTIAL LISTifJG OF COMPOf4EtJTS DY LOCATIOf4 AT BYROt1 (COtJTil4UEO)

(

LOCATC4 SYSTEM COMPONEN T 10 COMP..

TYf 1 TiI.,fA E5W ESW.CTFAN A ACV

~

SACTASG EP DVS.13)Z Bus

'^

SACIASG EP TR.1312 AF Md 6ACIb ESW EbW CT B TANA SAcib ESW ESW4TFAN b AGU LAClbSG EP bvS-132Z Bus bAC1bbG EP 181322 AF Miq UtmNOWN EP Mcc.13 j x4 y;c G

l 1

l t

C 92 173 9

Byron 1 & 2 5.

IllllLIOGRAPilY FOR BYRON 1 AND 2

1. NUREG 75/023. " Safety Evaluation Report on Byron Station, Units 1 and 2, and The Braidwood Station, Units 1 and 2," U$NRC, April 1975.
2. NUREG 0848," Final Environmental Statement Related to the Operation of Byron Station, Units 1 and 2," USNRC, April 1982.

3 NUREG.0876, " Safety Evaluation Report Relat-d to the Operation of Byron Station Units 1 and 2," USNRC, March 1982

4. NUREG 1113, " Technical Specifications for Byron Station, Units 1 and 2 " USNRC.

$. Youngblood, R. and Papazoglou, I.A., " Review of the Byron /Braidwood Units 1 and 2 Auxiliary Feedwater System Reliability Analysis,"

NUREG/CR 3096, Brookhaven National Laboratory, November 1980.

6. Cho, N1 et al.," Analysis of Allowed Outage Times at Byrc Generating '

Station," NUREG/CR 4404, Brookhaven Nr,tional Laboratory, June 1986.

\

d 93 ,,e:

LJ

3 Byron 1 & 2 C APPENDIX A DEFINITION OF SYMBOLS USED IN TIIE SYSTEM AND LAYOUT DRAWINGS A 1. SYSTEM DRAWINGS A1.1 Fluid System Drawings The simplified system draw'ngs are accurate representations of the major flow paths in a system and the important interfaces with other fluid systems. As a general rule, small fluid lines that are not essential to the bt4 operation of the s drawings. Lines of this type include iristrumentation lines,ystem vent lines,are notlines, drain shownandin these other lines that are less than 1/3 the diameter of the connecting raajor flow path. There usually are two versions of each fluid system drawing; a simplified system drawing, and a cortprable drawing showing component locations. The drawing conventions used in the Duid system drawings are the following:

C Flow generally is left to right.

Water sources are located on the left and water " users" (i.e., heat loads) or discharge paths are located on the right.

One exception is the return now path in closed loop systems which is right to left.

Another exception is the Reactor Coolant System (RCS) drawing which is

" vessel centered", with the prima:y loops on both sides of the vessel.

O Horizontal lines always dominate and break vertical lines.

V -

Couponent symbols used in the fluid system drawings are defined in Figure A1 Most valve and pump symbols are designed to allow the reader to distinguish among similar components based on their support system requirements (i.e., electric power for a motor or solenoid, steam to drive a turbine, pneu natic or hydraulic source for valve operation, etc.)

Valve symbo:s allow the reader to distinguish among valves that allow flow in either dire.; tion, check (non retum) valves, and valves that perfom) an overpressure crotection function. No attempt has been made to define the specific ty of valve). pe of valve (i.e., as a globe, gate, butterfly, or other specific type Pump symbols distinguish between centrifugal and positive displacement pumps and between types of pump drives (i.e., motor, turbine, or engine).

Locations are identified in terms of plant location codes defined in Section 4 of this Sourcebook.

Location is indicated by shaded " zones" that are not intended to represent the actual room gecmetry.

Locations of discrete components represent the actual physical location of the component.

Piping locations between discrete components represent the plant a:eas through which the piping pasas (i.e. including pipe tunnels and underground pipe runs).

Component locations that are not known are indicated by placing the components in an unshaded (white) zone.

. (Vo) -

The primary flow p:.th in the system is highlighted (i.e., bold white line) in

  • e loation version of the fluid system drawmgs.

94 1/89

a Byron 1-& 2 A 1,2 Electrical System Drawings The electric power system drawings focus on the Class lE portions of the plant's ,

electric sower system. Separate drawings are provided for the AC and DC portions of the Class 13 system. There often are two versions of each electrical system drawingt a simplified system drawing, and a comparable drawing showing compownt locations. The drawing conventions used in the electrical system drawings are the follo#ng:

Flow generally is top'to bottom In the AC power drawings, the interface with the switchyard and/or offsite grid is shown at the top of the drawing, i In the DC power drawings, the batteries and the interface with the AC: ,

power system are shown at the top of the drawing.

Vertical lines dominate and break horizontal lines.

Component symbols used in the electrical system drawings are defined in Figure A 2.  ;

Locations are identified in terms of plant location cades defined in Section 4 of this Sourcebook.

Loce are indicated by shaded " zones" that are not intended to represent the actual room geometry.

Locations of discrete components represent the actual physical location of the component.

The electrical connections (i.e., cable runs) between discrete components.

as shown on the electrical system drawings, DO NOT- represent the actual cable routing in the plant.

. \

l Component locations that are not known are indicated by; placing the.

discrete components in an unshaded (white) zone, .

s A 2. SITE AND LAYOUT DRAWINGS l- A2.1 Site Drawings A general view of each reactor site and vicinity is presented along with a simplified ~

site plan showing the arrangement of the major buildings, tanks, and otaer features of the i

site. The general view of the reactor site is obtained from ORNL NSIC-55 (Ref.1). The i

site drawings are ap?roximately to scale, but should not be used to estimate distances on the site. As built sea e drawings should be consulted for this purpose. ; .

Labels printed in bold uppercase correspond to the location codes defined in Section

[ - 4 and used in the'. component data listings-and system drawings in Section 3. Some additional labels are included for information and are printed in' lowercase type.

-A2.2- Layout Drawings -

Simplified building layout drawings are developed fcr the portions of the plant that -

4 contain components and systems that are described in decthn 3 of this Sourcebook. 3 Generally, the following buildings are included: reactor aullding, auxiliary building, fuel- 1 j

Luilding, diesel building, and thel intake structure or pumphouse. Layout drawir.,C

) generally are not developed for other buildings. .. .

Symbols used in the simplified layout drawings.are defined in Figure A-3. Major

-rooms, stairways, elevators, and doorw'ays are shown in the simplified layout drawings '

['t ( however, many interior walls have~been omitted for clarity. The building layout drawings, i

95 -- l/89 i

1-J

]

v , .A-nv- +em .,r*- a ~

v

  • ee w --
  • We-t & *ar
  • w etw= s w + e w
  • are tt- *we wt --srsm-+ -y yv-y - - en-e - c r* g g -in *erw ~r re79 p ag.o r y-= y*Aw

- Byron 1 & 2 O

6, /

are approximately to scale, should not be used to estircate room tize or distances. As built U scale drewings for should be consulted his purpose.

Labels printed in uppercase bolded also correspond to the location codes defined in Section 4 and used in the component data listings and system drawings in Section 3. Some additional labels are included for information and are pnnted in lowercase type.

A3. APPENDIX A REFERENCES

1. Heddleson, F.A., " Design Data and Safety Features of Commercial Nuclear Power Plants.", ORNL-NSIC 55, Volumes 1 to 4, Oak Ridge National Laboratory, Nuclear Safety Information Center, December 1973 (Vol.1),

January 1972 (Vol. 2), April 1974 (Vol. 3), and Maren 1975 (Vol. 4)

/O V

i l

l 96 1/89

, _. . . _ _ _ __. _ . . . . _ . _ _ _ . ~ . ._ _ . _ < . . m -, . . _ . .. . _ _. _ - _ . .-.

_ MANUAL VALVE XV A MANUAL HON RETURN

_ (O P E NIC L O S E D) VALVE . ICV (OPEN' CLOSED) l O

MOTOR OPERATED VALVE . MOV

_ (OPENiCLOSED) h k

MOTOR OPERATED 3.W AY V ALVE = MOV (CLOSED PORT MAY VARY)

V SOLEN 0ID-OPERATED VALVE 80V SOLENCID 0PER ATED (OPENICLOSED) - '

3 WAY VALVE SOY -

(CLOSED PORT MAY VARY) i

_ NYDR AULic VALVE . HV HYDRAULIC NON RETURN (OPENICLOSED).

4 4 - VALVE -. HCV (OPEN/ CLOSED)

' _ ~ _ PNEUMATIC V ALVE . NV PNEUMATIC NONAETURN -

(OPENiCLOSED) _

VALVE = HCV (OPEN/ CLOSED)

I

_ CHECK VALVE = CV g , SAFETY VALVE . SV

! (CLOSED)

I O-l' dk p POWER OPER ATED RELIEF VALVE, h .

POWER OPER ATED RELIEF VALVE, j

SQLENDID PILOT TYPE . PORY - dr PNEUMATICALLY OPER ATED . PORV-1 (CL O S E D) OR DU AL. FUNCTION . SAFETYlRELIEF VALVE a SRV t

(

_ CLOSED)

/

4

~

CENTRIFUG AL

~ MOTOR DRIVEN-PUMP . MDP CENTRIFUG AL TUR8tNE DRIVEN PUMP TDP :

\ /

. l '.

.. POSITIVE DISPLACEMENT .

,, MOTOR DRIVEN PUMP MDP poggyiyg DISPL ACEMENT -

TURDINE DRIVEN PUMP

  • TDP l

1 /  ;

l' F

('

Figure A-1. Key To Symbols-in Fluid System Drawings-97 'l/89

,- - .. . --,.- - . - . . . - . . ~ . . . . - .

~'

\

PWRDWR M AIN CONDEN5ER , COND RE ACTOR VESSEL . RV +

w i Q HEAT EXCHANCER . HX MECH ANICAL DR AFT

-i

+ t_ COOLING TOWER STEAM TO WATER -

  • AIR COOLING UNIT . ACU OR WATJR.TO. STEAM HEAT EXCH ANGCR (1 E. FEEDWATER HE ATER, ORAIN COOLER, ETC.) .

C O OR TANV TK SPR AY NO22LES . SN gaa3 gag Y V v

MVPTJRE DISK . RD

_ FILTER . FLT ORIFICE . OR 4

e C

Figure A-1. Key To Symbols in Fluid System Drawings

(}s (Contlnued) 98

. . . _ _ . _ _ _ _ . _ _ . _ . . _ . . _.....___._m. . . _ . . _ . _ ~ . _ . _ . _ . . _ _ . . . - . _ _ m._ _ _ _ _ _ _ _ _ . _ . _ _

A C. DIESEL CENER ATOR . Do -

B ATTERY . B ATT a CR A.C. TURDINE GENERATOR . TG I

t g OR g CIRCUlf BRE AKER . CB

[],. jl g l ...[] - INTERLOCK ED (O P E N'C LO S E D)

CIRCulf BREAKERS . CB l

SWITCH . SW :

p AUTOMATIC CR O OR OTHER TYPE OF

- TR ANSFER SWITCH -. ATS DISCONNECT DEVICE OR

' . (OPENICLO8tD)-

MANUAL TRANSFER 7 SWITCH . MTS SWITCH 0E AR BUS . BUS .

l (BUS N AME) }

[

MOTOR CONTROL CENTER MCC OR NN OR "7 "7 TR ANSFORMER a TRAN I

DISTRIBUTION PANEL . PNL 4

1 l B ATTERY CH ARGER (RECTIFIER) . DC E

4 .lNVERTER .INV l

i i

' l d 1

C og -

RELAY CONTACTS l

T i (OPE NICL OS E D) .

FUSE.FS' *

.I y ELECTRIC uCTOR . uTR go, ,,,, ,

4

( Figure - A-2. Key. To-Symbols in Electrical System Drawings

99 - 1/89

. - . _ - _ . - . . . - . - . ~ . . - . .

_ . . . . . ~ _ _ _ _ _ _ . _ . . _ _ _ _ __._ __. __. _ ....__...._ ._ .. . . _ _ _ _ _ _ _ . _ _ _ . _ . . _ _ _ . _ _ . _ . _ ___ _ _

1 l

O i

$ ST AIR S g' SPIRAL., i T $ ", $P own STAIRCASE

( '

LADDER U = Up D = Down Ml=>l ELEVATOR p HATCH OR OPEN AREA GRATING DECK (NO FLOOR)

-O-- PERSONNEL DOOR H LEQUlPMENT DOOR O g

=

$. RAILRO AD -TR ACKS  :<- FENCE LINE E

Y  :<

l

TANK / WATER AREA L

l l

i 7

4 i

- Figure A-3. Key To Symbols in Facility Layout Drawings o

i 100 1/89 j

l 1

-~4, . _ , - - . . , _ _

Byron 1 & 2 O,

APPENDIX B DEFINITION OF TERN 1S USED IN TIIF, DATA TABLES Terms a denned as follows: ppearing in the datn Gles in Sections 3 and 4 of this Sourcebook are SYSTENI (also LOAD SYSTEM)- All components associated with a particular system description in the Sourcebook have the same system code in the data base. System codes used in this Sourcebook are the following:

1 i

Cnde Dennition -

RCS Reactor Coolant System

, AIAV Auxiliary Feedwater System ECCS Emergency Core Cooling System CVCS Charging System -

s

, PAHRS - Containment Heat Removal Systems (including containment spray system and fan coolers) 1&C Instrumentation and Control Systems -

EP Electric Power System CCW Component Cooling Water System ESW Essential Sersice Water System -

CONIPONENT ID (also LOAD COMPONENT ID) - The component identification'(ID) code in a data table matches the component ID that appears in the corresponding system .

s drawing. The component ID generally begins with a system preface followed by a component number. The system preface is not necessarily the san e as the system code described above. For component ids, the system preface corresponds to what the plant calls the component (e.g. HPI, RHR). An enmple is HPI 730, denoting valve number 730 in the high pressure injection system, which is part of the ECCS. The component number is a contraction or the component number appearing in the plant piping and -

instrumentation drawings (P& ids) and electrical one line system drawings.

LOCATION (also COMPONENT LOCATION and POWER SOURCE LOCATION)

Refer to the location codes defined in Section 4 >

COMPONENT TYPE (COMP TYPE)- Refer to Table B-1.for a list of component type :

codes.

l .

l .

POWER SOURCE - The component ID of the power source is listed in this field <

COMPONENT ID, above). In this data base, a " power source" for ent a particular com t

(i.e. a load or a distribution component) is the next higher electrical distribution or. ,

generating component in a distribution system. A single com aonent may have more than one power source (i.e. a DC bus powered from a battery and a battery charger).

POWER SOURCE VOLTAGE (also. VOLTAGE) The voltage !'seen" byh load of a -

power source is entered in this field. The downstream (output) voltage of a transformer, inverter, or battery charger is used

~

L ..

101. #

i e,.----g- -

.-u,- , & * -- war en,m.- g -,.-,w.,

-,,.e.v 9--e--y--,-,-, y,w-ww-p.,,-,-a,p- w-s- ynmm.<- y. , ,*g .*4wy,. y e

. - - _ - _ . - -._.- . - . e - . . - . - _ - . . - . ... ~ . -. . . -.

Byron 1 & 2 l

O EMERGENCY LOAD GROUP (EMERG LOAD GROUP) . AC and DC load groups (or electrical divisions) are defined as appropriate to the plant. Generally, AC load croups are identified as AC/A, AC/B, etc. The emergency load group for a third of a-kind load (i.e. a " swing" load) that can be powered from either of two AC load groups would be identified as AC/AB DCl oad group follows similar naming conventions.

I

\

l l

l l

t 102 1/89 4


.-e,- e ., .-,-r,, -a, - ,, g,.---.ee, p w -

e, . * , - + = - - y, y , . - .an---

(] TAllLE 111. COMPONENT TYPE CODES U

COMPONENT COMP _ TYPE VALVES:

Motor operated valve MOV Pneumatic (air-operated) valve NV or AOV Hydraulic valve HV Solenoid-operated valve SOV Manual valve XV Check valve CV Pneumatic non return valve NCV Hydraulle non return valve HCV Safety valve SV Dual function safety / relief valve SRV Power-operated relief valve PORV (pneumatic or solenoid operated)

PUMPS:

Motor-driven pump (centrifugal or PD) MDP Turbine-driven pump (centrifugal of PD) TDP Diesel driven pump (centrifugal of PD) DDP OTHER FLUID SYSTEM COMPONENTS:

O

'V Reactor vessel Steam generator (U tube or once through)

RV SG Heat exchanger (water-to-water HX, HX or water to-air HX)

Coohng tower CT Tank TANK cr TK Sump SUMP Rupture disk RD Orifice ORfF Filter or strainer FLT Spray nozzle SN Heaters (i.e. pressurizer heaters) HTR VEN'ITLATION SYSTEM COMPONENTS:

Fan (motor driven, any type) FAN Air cooling unit (air to-water HX, usually ACU or FCU including a fan)

Condensing (air-conditioning) unit COND EMERGENCY POWER SOURCES:

Diesel generator DG Gas turbine gensator GT Batcry BA'IT

,s x

103 1/89 w e -

+-

1 1

4 I

IL  ;

TABLEB1. COMPONENT TYPE CODES (Continued)

}

i

! COMPONENT. COMP TYPE 4 l

l ELECTRIC POWER DISTRIBUTION EQUIPMENT:1 -4 j Bus or switchgear: - BUS-

!- Motor control center MCC -

Distribution panel or cabinet PNL or CAB i l

2 Transformer TRAN or XFMR- 1 Battery charger (rectifier) BC or RECT '!

Inverter INV i Uninterruptible power supply (a unit that may UPS 3 i

l include battery, battery charger, and inverter)

Motor generator MG i

! - Circuit breaker CB l Switch : SW'-

l Automatic transfer switch ATS-Manual transfer switch  : MTS J l

1 l

t 3r j

i c

i

}

.j

)

-104 1/892 2: --....-~b,-.-m-,,m,...v....,,, . , _ _ , _ _ , , . , , , ,