ML20058L471

From kanterella
Jump to navigation Jump to search
Suppl 1 to App I Filing
ML20058L471
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 07/21/1976
From:
NORTHERN STATES POWER CO.
To:
Shared Package
ML20058L470 List:
References
NUDOCS 9105220319
Download: ML20058L471 (19)


Text

3 5

TABLE OF CONTENTS Page No.

List of Tables 11 List of Figures iv Introduction v Response to Item 1 of Enclosure 1 1-1 Response to Item 1 of Enclosure 2 2-1 Response to Item 3 of Enclosure 2 2-19 J

I l

l l

i 1

1 L ..

1 I

~_

f 9105220319 760721 's CF ADOCK 05000263 i CF I

T e

LIST OF TABLES Table No. Title Page No.

1.1-1 1ADTAP Input Data and 1-5 Results, Maximum Individual Dose Calculations for the Monticello Plant 1.1-2 Maximum Doses To An Individual 1-6 Resulting Prom Gaseous Effluents From the Monticello Plant (mrem /yr) 2.1-1 Monticello Liquid Radwaste System 2-7 2.1-2 Liquid Source Terms from the 2-8 I Monticello Plant 2.1-3 Gaseous Source Terms from the 2-9 Monticello Pla '

2.1-4 Monticello Ventilation and Exhaust 2-12 I' Systems 2.3-1 X/Q Values at Location of Nearest 2-20  ;

Dwelling, Bovine, Garden > 500 sq.

d it, and Milch Animals (Cows, Goats)

Within 5 miles of the Monticello Plant (Elevated Release) l 2.3-2 D/Q Values at Loca*; ion of Nearest 2-21  ;

7 t

Dwelling, Bovine, Garden ;> 500 sq.

ft. and Milch Animals (Cows, Goats Within 5 miles of the Monticello Plant (Elevated Release)

[  !

X/Q Values at Location of 2-22 f

! 2.1-3 Nearest Dwelling, Bovine, [

L  !

Gardens 2 500 sq. ft. and Milch Animals (Cows, Goats)

{

i Within 5 miles of the Monticello Plant (Reactor Building Vent)

('L. I 11 ,

LIST OF TABLES i (Continued) l Table No. Title Page No, j i

1 2.3-4 D/Q Values at Location of 2-23 l i

Nearest Dwelling, Bovine, Gardens p_500 sq. ft. and j Milch Animals (Cows, Goats)  :

. Within 5 miles of the Monticello l Plant (Reactor Building Vent) j 2.3-5 X/Q and D/Q Values at the 2-24 i Site Boundaries of the Monticello  ;

Plant i

c  :

i l

I I

+

g I  :

t f

-s .

I t

e i, i

{'

L I  !

111 ,

l I  ;

o LIST OF FIGURES Figure No. Title Page No. l t

2 .1 - 1. Liquid Radwaste Block 2-13 i Diagram 2.1-2 Solid Radwaste Block 2-14 Diagram 2.1-3 Low Purity Waste System 2-15 2.1-4 Laundry and Chemical 2-16 Waste System 2.1-5 Gaseous Radwaste Block 2-17 Diagram 2.1-6 Monticello Plant Layout 2-18 i {

c' 1 i

. f i

Y i

t f

1' -

{

i 9 a) t p i t.

=

s u

iv

! I i

--- ., y - , , - - ,- , , , , , - _ . . , . --_.a _n. - ,, , ,,.,,-,n.. , . , . , - , e,.. ~

s i

- i INTRODUCTION This supplement contains the responses to Item 1 of Enclosure 1 .

and Items 1 and 3 of Enclosure 2, as promised in the response to the above items in the Monticello Appendix I Analysis, filed l June 4,1976.

i f

h t

i 1

I l

I I

l

\

N II b4 V

f 1.2 Doses from Gaseous Effluents Gaseous source terms were calculated using the GALE code and are presented in Table 2.1-3 of the response to Item 1 of Enclosure 2. Inputs to the GALE i code were based upon: (1) actual plant operating experience, (2) informa-tion supplied previously in the Monticello FSAR and ER, and (3) NUREG-0016. -

Doses to the maximum individual from gaseous effluents were calculated by the NRC GASPAR code, using the models of Regulatory Guide 1.109. For the gamma air dose, the skin dose, and the total body dose due to noble gases the NUS computer code FIDOS was used in conjunction with GASPAR.

Dose factors, annual air intake, intakes of food products, and parameters for calculating radionuclide concentrations in food products as given in Regulatory Guide 1.109 and in the GASPAR code were used.

Dose contributions from the following pathways were calculated and analyzed in the assessment of the maximum individual: i

1. Immersion in the plume
2. ground contamination
3. inhalation, and
4. consumption of vegetables, meat and milk.

l For dose calculational purposes the source terms of Table 2.1-3 were divided into elevated releases (i.e. , those released from the Monticello stack) and i ground level releases (i.e. , those released from the reactor building vents). l' The sources of release from the Monticello stack are the mechanical vacuum pump, the turbine gland seal, and the air ejectors. Releases from the i reactor building, the turbine building, and the radwaste building all exit i from the reactor building vents. For dose calculations the reactor building vent releases were considered to be ground level and the X/Q and D/Q  ;

, values,as presented in Tables 2.3-3 and 2.3-4 of the response to Item 3 l of Enclosure 2, reflect this. This analysis is conservative. A more realistic n assessment would have these releases treated as ground level releases during

[] certain meteorological conditions and treated as elevated releases during  ;

others . Such a treatment, which is described in regulatory position 2.b of i j Regulatory Guide 1.111, would result in a reduction of the X/Q and D/Q L value presented in Tables 2.3-3 and 2.3-4 and ultimately the doses result ,

ing from vent releases. Tables 2.3-1 and 2.3-2 of the response to Item  !

1' 3 contain the X/Q and D/Q values applicable to the Monticello stack.

E i

1-3 k .

t

TABLE 1.1-1 LADTAP INPUT DATA AND RESULTS MAXIMUM INDIVIDUAL DOSE CALCULATIONS FOR THE MONTICELLO PLANT Usage Rates (Kg/yr or hrs /yr)

Exposure Pathway Dilution Factor Transit Time (hr) Adult Teen Child Infant Fish Ingestion 1 24 21.0 16.0 6.9 0.0 Water Ingestion 1 12 730.0 510.0 510.0 510.0 Shoreline use 1 0 12.0 67.0 14.0 0.0 Swimming 1 0 6.0 6.0 6.0 0.0 Boating 1 0 52.0 52.0 29.0 0.0 Dose Results (mrem /yr)*

Exposure Pathway Adults Teenager T. Body Bone Skin T. Body Bone Skin I'ish Ingestion 1.31 4.67 --

7. 6 3(- 1) 3.80 --

! Water Ingestion 2 . 62 (-2) *

  • 2 . 36(-2) --
1. 4 3(-2) 2 .15 (-2) --

Shoreline use 1.14(-3) 1.14(-3) 1. 3 3 f.- 3) 6 . 3 6(-3) 6 . 36 (-3) 7. 4 4 (-3)

Swimming 6. 82 (-5) 6 . 82 (-5) --

6 . 8 2(-5) 6 . 82 (-5) --

Boating 2 . 96 (-4) 2 . 96 (-4) --

2 . 9 6(-4) 2 . 96 (-4) --

1.34 4.69 1. 3 3(-3) 7.84(-1) 3.83 7. 4 4 (- 3) .'

Y$ses to other individuals and organs are smaller than those presented.

  • *2.62(-2) = 2.62 x 10" d

i i

Enclosure 2 MONTICELLO ltem 1 Provide the information requested in Appendix D of Draft Regulatory Guide 1.BB or 1.CC, as appropriate.

Response

Draft Regulatory Guide 1.CC has been replaced by Regulatory Guide 1.112, " Calculation csf Releases of Radioactive Materials in Gaseous and Liquid Effluents From Light-Water-Cooled Power Reactors." .

Appendix A of this Regulatory Guide contains the latest version of Appendix D. The information requested in Appendix A is provided below:  ;

APPENDIX A Units Value Source  ;

1. GENERAL (a) Maximum core thermal power evaluated for safety considerations in SAR MWt 1670.0 Pg.l.1-1, FSAR (b) Quantity of tritium released in liquid effluents C1/yr 21.0 Calculations GALE Code (c) Quantity of tritium released in I, gaseous effluents Ci/yr 21.0 Calculations
  1. GALE Code l 2. NUCLEAR STEAM SUPPLY SYSTEM (a) Total steam flow rate 10 lbs/hr 6.78 Fig.1 2 B l FSAR i

l

[' (b) Mass of reactor coolant at b full power Ibs 368,948 Plant

- Calculation (c) Mass of steam in reactor vessel at full power Ibs 11,348 Plant  ;

j Calculation

[  !

2-1 5

i i

The equipment drains were to be processed back to the primary system l while the floor drains were to be filtered, sampled, diluted with the I circulating water discharge and released to the Mississippi River as j were laundry wastes and chemical wastes. In order to keep the releases to a minimum, modifications were made to the radwaste system early in  !

plant start-up to allow reclaiming of floor drains as well as equipment drains . The essential physical modification was to combine the treatment of all sources of waste water in one processing chain (refer to Fig 2.1-1). l No distinction is now being made between floor drains and equipment drains.  ;

Both the waste collector tank and the floor drain collector tank are cross- i connected such that mixing of their respective contents occur. The mixing i is accomplished by continuously recirculating their contents with a common pump simultaneously drawing suction from both tanks and processing the waste water through a filter-demineralizer unit and returning the liquid back to the tanks. In this way, an inventory of high purity water is maintained in the collection tanks to serve as a diluent as fresh sump accumulation is discharged to the tanks. As the tanks are filled, the liquid is processed ,

through a deep bed demineralizer and sent to one of two waste sample tanks. .

There the contents are analyzed and, if acceptable, the effluent is reclaimed via the condensate storage tanks. If further processing is needed, the water is recycled back to the collector tanks and the process cycle repeated.

i The chemical and laundry waste processing chains have also been modified  !

to conform with the overall objective of maximum recycle of waste water. j Suspended solids are removed from laundry waste and chemical waste by i recirculating the respective tanks through cartridge type filters. The laundry tanks are pumped to the chemical waste tank where the contents are either used for making concrete in the solid radwaste system (refer to rigure 2.1-2),

or if the volume is too great, the contents of the chemical waste tank is pro-cessed a small amount at a time to the floor drain cdlector tank and reclaimed.

r in order for the maximum recycle approach to be most effective at the Monti-  ;

cello Plant the quantity of waste water generated has been minimized. Deep bed demi' eralizer resins are not regenerated but are disposed of as a solid waste.

The same procedures are used for the solka floc-powdered resin, waste filters, j- reactor cleanup filter-demineralizers, condensate filter-demineralizers and the l fuel pool filter-demineralizer. In addition, floors are wet wiped rather than ,

hosed down.

As previously mentioned in the above system the decant from the solid radwaste r3 system (i.e. , from the condensate phase separators and reactor cleanup phase

[, separators) and equipment drains are collected in the waste collector tank and the floor drains are collected in the floor drain collector tank. A crosstie 1

between the two tanks allows excess flow to pass from one to the other.  ;

i I

2-3

__ , - - - - . .m., , . - , , - - r

. l l

t

. i i

      • At the Monticello Plant the offgases from the air ejectors are routed to one of two recombiners which l tecombine the hydrogen and oxygen. The non-conden-sables are then routed to one of two compressors via a  !

42 " line. Prior to entering the compressor the gases pass through a charcoal and particulate filter. The i

compressor pumps the gases into one of five storage tanks (1250 ft3/ tank) up to a pressure of 285 psig.

While one tank is being filled another is released  ;

through a particulate filter and out the stack.  ;

Figure 2.1-5 depicts the Monticello offgas system. (

The mechanical vacuum pump, used during startup,  !

exhausts air and radioactive gases from the main steam condenser. Offgases from this system are l discharged to the gland seal holdup line before being '

released to the main stack.

Table 2.1-3 contains the gaseous source terms for i the hdonticello Plant. *** t Units Value Source (c) Expected inleakage per condenser Plant shell cfm 2.1 Experience i

(d) Number of condenser shells 2 Pg.11.3, FSAR (e) lodine source term from the '

condenser Ci/yr 5.0 GALE NUREG-0016 (f) Charcoal delay system NA (1) Mass of charcoal tons L. (ii) Operating and dew point temperatures, respectively op t,

(iii) Dynamic adsorption co-efficients for Xe and Kr,

, respectively (g) Cyrogenic distillation system NA (2) Description of system I (11) Fraction of gases partitioned L during distillation I i

(

2-5 P

-- - + .

1 ,

7 l

I i

l r i

i l

l TABLE 2.1-1 l

l MONTICELID LIQUID RADWASTE SYSTEM

' Chemical Leundry Low Purity Westes Westes Westes I Decent from Solid Laboratory Leundry Drain i

1. Source s rioor Drains Equipment Drains Redweste System Drain Sump Tank i

l Flow Re"a (gpd) 1.289 9.962 8.750 33 450 2.

3. Activity (FPCA) 0.231 0.196 1.46(-4) 0.02 --
4. Colhetion Tank Vol. (gel) 20.000 4.000 1.000 Collection Rete (gpd) 20.000 33 450 5.
6. Collection Time (deys) 0.4 48.5 1.78 7 Processing Pete (gpm) 110 50 25 N

0.02 0.02 h 8. Processing Time (deys) 0.055

9. Discherge Tank Vol. (gel) 10.000 10.000 1.000 i Discharge Rete (qpm) 50 50 25 10.
11. Discherge Time (deys) 0.055 0.055 0.02 12- Frection of Processed Stream Released 1.0 1.0 1.0 Weste Deminaretirer rioor Drain Filter Leuntry Drein Filter
13. Dr's I 100 1 1 2 1
14. Ca. Rb 1
15. Others 100 1 1
16. Regenerent Time (deys) Resins are not regen- N/A N /A 17 Regenerent Vol. (gel) of as solid weste .

184 R=generent Activity (1 t

19. Trection of Regenerents Discherged
20. Treatment c.f Regenerents
21. Source Terms See Table 2.1-2 See Table 2.1-2 Ses .eble 2.1-2 l i

e J

omorocoooooooooopo#MOPopeep o mNeoNooooooooooomeksooemmooo o eJ ENoooooeModomoNemocooromeoco

>b=MomoedmNNerNwooooomoooooo o o

> NoemomenoNomomoooooooooooooo O e

> u w *

  • e
  • e e *
  • e o e e o e * *
  • e e
  • e o e e * *
  • M* j w  !

> oceoconooooooooooooooooooo ZemoooooooooooooooooooooooNoe M e

WWEooooooomposoooooooooooocco e G>>ooooooomoomooooooooooooooo e me%ococonocococooooooooooooooo o Wew e e o oooo e o eaoe e o e o e e ee e e e o e e e e e o e e e m >Buoc oooooooooooo ooo

@ W w N D D C

i 3

I

' c emDeposetNeDPJNepeeMothemeo =

1 O O mNeMNMommeNerecemeesopeooooo e

! o WJENooomewoeaMneNomomoooomoooo o wewooeoMose=NemeNmooooomonoooo e p Wh%oomomeooNooomoooooooooooooo 3Ow e * * * *

  • e o e e o e *
  • e o e o e e e o e e o ee o e w 7>u
  • w M a O h

N b O e 3

O r ee receemseNNuee-NeewNm m a w e s am m e N e m e e e mm e N = m o e e.moNeooooo e e m ee e m o 4 > DJeNoeoeWeeeeeMNaomococeomoooo o i W X s O O WooNoNeeMMNecommooooowoooooo e i:

U JaJmoomommooNooomococconooooOOO egem e e e e e e e e e o e e e e o e e e e e o e e e e e e e i w

  • X $>3 m l Z esou i l O e ut>w 1 e > g A Y W 5 y W

= 3 G E tee J a. coecoecomoocoomacocoooooooo ookoerMNompeommeooNooomoooo e j

i H J

=

eguwooooooooooooooooooooooooooo e

2. ewwooooooooooooooooooooo o y a 1 O

W u s u m o. o.o o o. o. o o.o.o.o.o e

w t su W3 e e e e e e o o o.o o.o.o e

  • o.o o. o.o o o o o oo. o o.o.o o.

4 O Otuw 6 m e m 3 CS y G >$>

e w sparekwNeeeNNNeeN>ehNom-eNece. ~

W J etwMmmoNeeeerm%eNwo9eeGoNeooooo W W9EWWoeodemerepFNeococcowomooco e

H P S y M 93MooNON94#MNeeeNmococomoooooo M e ethWoomo WG 3 e e e e MooNooomoooooooooooOOO e b i g e o e e e e e e e e e o e e o e e e e o e e e > i g JSEU P W Suw l

D E 8J E O e W

f M > JSP a F e O

e 3,opmooooooOOooooooooooooooooOOO weooooooooooooooooooooooooooo o o e W

J E OTWo0000000000000000o00000000o D s ae3mooooooooooooooooooooooooooo o

o w

O E

}

+

3 oJ = earooooooooooooooooooooooooooo e 3 e e o e e o e e o e e e e o e e e o e e s e e e o e a

  • u 3

I J

etuoooooooooooooococoooooooooo*

eow o W tw N u tX =

5 w 2 e

=* > C N a

2 M> S e e4NNNeNee Mme M #MMerd eM =

N *a y

O E e**w t

%o ocooococo 9 4 8 8 8 6 0 8 6 ooo 4o8 coooco 8 8 op o 8 8 8 9 8 9 3 0 0 J RE FUW wwe WWWWWWWWW WWW W WWWWWW WW W m o ecoceerMr New N SeMobe ce N 4 2B sDP och rEceek P9N P emo@Ne er N b WEG2 *

  • e e e o e o e e e o e e e e o e e o e e o e *
  • e e u Cukomtmm*Nmeroee@ocoNeMNVNON= @
  • FFUM Qw 2 u w W oNooNmNNameMNNmoNm=MNo=NNm k cooooooooooooooooconococco a W wa6 S ee $ $ D e S ee D O S ee 9 9 9 9 S ee4 64 3 m JMWWWWWWWWWWWWWWWmWWWWWWWWWW 3 e 9 -@ereEch9&cobedemeMe9&mbeam M W kg NhoNekeshMehNbNeN4NeMMMeNm > J JD e e o e e o e o e e o e o e o e o e o e o e o e o a w W ewmme@

1

@eMb%mmeN@mmmmM> emmmmme E R E >

W W T O 3 > 3 I E * & M w

ma=NNFeerehkCroommmNNMmewhDJW >

u J MMMMMMMMMMMMmeseeeeeeeeees mm=======~mmmm==mmmmmmmmmmJpM eu w F

3 F WWwwwwwmMmmemeeeeeWeeWEWWOJDW

>> > u uumummJmJumJukuarg>w f

I 2-9 4

4

G 2

e 0 4 0 0 0 0 8 9 0 4 4 9 0 0 4 8 9 9 0 0 0 9 8 9 0 8 0 0 0 0 0 0 0 0 4 0 0 0 4 0 9 0 9 0 0 4 0 0 0 0 0 0 0 0 4 8 9 6 8 0 0 0 0

$ e 9 0 0 0 0 9 0 8 0 0 4 0 0 0 9 8 9 e N ** *86 M N e86 er en 3 e est w N  % e 0 ,

9 4 o o O C o o e o o o o o a o o 0 0 =0 0 0 0 0 0 0 0 e e a 8 0 8 8 8 0 e o e e as, asa ma A a, ens m. enJ k me es as es= ms =na 4 0 > S 3 e e E M N "ts **t o c e e N N e e e O O e o e e o e e e e o e * * *

  • e e e- O ** e == == N e e
  • O t. E t se se G $

e 8 0 0 8 8 0 S B 4 5 0 i 6 0 8 0 e e E t u e 0 8 e 9 8

^

N 8 E 8 e e se en 3 8 e c c a g . o. o.

.c 0 x.

ena O 0

B -

G o

o 0

a.0, o .

.O e

ed 0- 3 dL e o e e e o e e o e e e o e e e 0 8 0 o e o o o o 3 o o O ap N O g h 9 W G G t 0

0

  • e e e e a u a e 94 0 .R & e- S 8 2 s 0 em 0 e e ss as = o e e a e e a en e a n n e e o e e 0 e a > 4 L9 8 o o 3 o o o o o 3 et o o o te o e De S e O EJ 8 8 8 9 0 0 0 0 8 0 0 0 0 0 9 0 8 lof 7 *J $ e mJ ano A as w ad es 4 .ne as .J 8. ana e O e n ss. wr e a e.s c e .e u av e e e o e e o o e 0

=J B 4, ik 0 e e e e e o e e o e e e o e e 0 W e m e p *** == 3 e == a e .rt se e a p -= 4 s W G e e O e M.a 0 e p 8 4

a 3 2 0

0 0

9

% a a ; e e a O O s u ee e o m = = N *- en e = c 4 = m a = 0 y e8 u -

J e

  • L9 e

e o

a e

0 u

9 e

9 e

8 o

0 e

e e

4 e

9 e e.

0 u

0 e

0 e

0 o

0 0

9 IJ B *- 0 anJ da 4. #

  • mA .ma na ma me as 44 .s .e4 0 g 0 e as

? 0, e c e c- e c c c o o =. e o av c c 0 g 0 e e2 0 e e o e e e e e e e e o e e e 3 0 tb 0

  • M a 4
  • N & /. @ N e sa e 4 == 0 2 *8
  • Gm' S 'S O O  ; e O E e z o e t b e C 0 e r gr.3 0 tL .6 e N s a a M e M # 3 W e # e N e 0
e. e n / e e o o +3

. o o c, c c c o o c c c c 0 d 9 ** *= C 0 0 0 8 e G 8 8 8 8 8 9 9 8 9 9 0 E 9 4 T C. 8 A est en 4 .s = es w en i . * .n .6 e.J 4, 9

% 0 RJ $ e o C C c c c c O c' s o c c - c 8 0 01 g e e e e e e e o e e e e o e e e gJ 0 o- 0 += 4 # 4 ft 't 4 4 ** e9 7 ar 4 - 4 9 0 e 0

g 8 0

0 0 s 0 0 3 e e- e e O e r 0 e m a w 0 m a o e N m in e e s = a e a o e g 0 f e e C o e c ta O c *> *> c n C C n e 4 3 e se e 0 0 e a a e 0 0 0 e o e a e e e e ~= 0 s. .a as .s so as J as 1 s a. e .s n.> e e 4 .J c. c u.2 e c c c c C- c c c , c c e O.4 5 g e. y g e e e e e e o e e e e o e e e e g . O en e 3 e N y ,p 3 N g om er. 3 0 8  ? 0 8 0 e u e e e

e e ,

9 0 8

' M e 3 0 0 0 0 0 .

"" S 9

  • 3 I 8 0 9 L D8 0 e e P lal 8 0 0 J G e t 89 8 e 8

~~~  % 8 8 8 H a e a 0 8 4 4 e t 9 5 4 0 9 0 0 9 0 0 $ 0 0 9 0 0 9 0 0 9 0 l 0 La. 3 e e > C+ == 0 9 s2 0 == 3 (P E rp 1/' & t ee N *** *** M # 1* 9 f, 8 ea e # # # .T 4 4 E O e == == .= -e = ** 0 0 J 8 8 0 0 8 0 4 e 0 0 0 0 0 0 8 0 8 9 u 8 3 # a., O C. . 2 m in a en 40 el e e6 8 e L e u 3 es b u ed ## an N E h u u a u e 6 a e S S S S 9 0 0

  • 8 0 8 e S S 2-11 f

a

1 s

e DECANT FROM SOLID RADWASTE 7 EOulPMENT DRAINS FLOOR ORAINS RECYCLE I I

l f.I f$ If $

i WASTE . FLOOR DRAIN j [

COLLECTOR COLLECTOR

[ 4 l TANK TANK i.

5 FUEL POOL

  • FILTER - O

' DEMINERALIZER DEMINERAll2ER N

I

" l W i i

l

^

, OLLECTOR -

FIL TE R qf I

WA5TE 7 SAMPLE i FLOOR TANKS 42)

% DRAIN P ,

FILTER TO CONDENSATE STORAGE ,

TANKS h

t FIGURE 2.1-1 ,

LIQUID RADWASTE BLOCK DIAGRAM

. _ _ _ _ _ _ _ . _ . _ . . , _ _ _ . - . . _ _ _ _ . _ _ _ . . _ _ _ _ , _ . . . _ . . - . . . _ _ _ _ . . . _ - . _ _ _ _ _ _ _ _ , - - - _ _ _ _ - - - _ _. . . ~. _ _ . _ . . . - _ - _ - . . . - . _ _ _ _ - - - _ _ -

i e

CLEAN WASTE COLLECTOR WASTES TANK FLOOR WASTE WASTE DRAIN 7 ' #"

CROSSTIE COLLECTOR = - ' -

DEMINERALIZER

^

SAMPLE F.LTER TANK N FLOOR

' DIRTY DF DRAIN OF

  • I
  • WASTES I = 100 Tt.NK Cs, Rb = 1 Cs, Rb =2 Others = 1 Others = 100

'. TOTAL DF l = 100 Cs, Rb =2 Others = 100 FIGURE 2.1-3 LOW PURITY WASTE SYSTEM

- . , _ _ , . , . . . . _. ~ _ , .. , .

s e

a d

nTe cv.

= " "

Gl#,'D SFM D1W.lSI > XXn PAlfrIcutATE fl FILTET, 1,000 CIN D!!IriiON . ~4 y

, _ TAE 5 h N

g n <

y _-

- TANK hh l l _

l ., .!M 7-M -- tm.

O-

) it) NDVN F.. .

7m J - J Tm. ., D f

~}qTm 1 ) -

,<D 4( a

.h met, g (- . a rc.As

't atomi e ac d

g  : FAFTIMil A TF %

9, amm, J r flTF.1

~

m ,. : .r.

FIGURE 2.1-5 GASEOUS RADWASTE BLOCK DIAGRAM

O ENCIDSURE 2 MONTICELID Item 3 Based on consideration in Draft Regulatory Gulce 1.DD, provide estimates of relative concentration (X/Q) and deposition (D/Q) at locations specified in response to Item 2 above for each release point specified in response to Item I above.

Response

Tables 2.3-1 and 2.3-3 cwtMn X,' J values at the location of the nearest dwelling, bovine, garden (ucco greater than 500 square feet), cows and goats which were provided in Table 2.2-4 of the June 4,1976 submittal, for releases from the Monticello stack and the Monticello reactor building respectively. Tables 2.3-2 and 2.3-4 contain the relative deposition (D/Q) at the same locations for the respective release points. Table 2.3-5 con-tains the X/Q and D/Q values at the site boundaries for releases from the Monticello stack and reactor building.

I 1

l

)

l l

2-19

ENCIOSURE 2 l r i

TABLE 2.3-2 l

D/Q VALUES AT LOCATION OF NEAREST DWELLING, ' JINE, GARDENS 1500 sq. ft.

i AND MILCH ANIMALS (COWS, GOATS) WI*HIN 5 MILES OF THE MONTICELLO PLANT (ELEVATED RELEASE) m

-2 at the Location of the Nearest

! Sector l

Dwelling Bovine

  • Garden 2 500 sq. ft. Cows Goats NNE #8. 75 (-10) 4.67(-10) 3.03(-10) 5.07(-10) --

NE 6.89(-10) 3.58(-10) 1.28(-10) 1.32(-10) --

ENE 1.22(-9) --

1. 22 (-9) -- --

E 2 . 2 3 (-9) 2.59(-10) 2. 2 3 (-9) 7.98(-10) --

ESE 2 . 7 6(-9) 1.95 (-9) 1. 95 (-9) 1. 2 2 (-9) --

h SE 5 . 0 8 (-9) 5.08(-9) 4. 63 (-9) 3.73(-10) --

SSE 4 .14(-9) 4.14(-9) 1.29(-9) 2.48(-10) --

S 1.08(-9) 2.03(-10) 9.74(-10) 3.47(-10) --

SSW 2. 91(-9) 2.91(-10) 2.91(-10) -- --

SW 3 . 37(-9) 4.60(-10) 3 . 37(-9) -- --

WSW 1.85(-9) 4.14(-10) 1. 85 (-9) 1.0 4(-9) --

W 1.0 4(-9) 9.96(-10) 9.96(-10) 4.27(-10) --

WNW 1.09(-9) 1.86(-10) 8.20(-10) 1.76(-10) --

NNV 4.61(-10) 4.29(-10) 4.61(-10) 2.76(-10) --

NNW 7.10(-10) 7.10(-10)

N 9.51(-10) 3.09(-10) 9.51(-10) 4.01(-10) -- -

  • Bovine is defined as a cow which does not produce milk for human consumption but may be raised for meat consumption.

~

  1. 8.75(-10) = 8.75 x 10

., ._ s .

m. -

ENCLOSURE 2 s TABLE 2. 3-4 D/Q VALUES AT LCCATION OF NEAREST DWELLING, BCVINE, GARDENS >500 sq. ft.

AND MILCH ANIMALS (COWS, GOATS) WITHIN 5 MILES OF THE MONTICELLC PIANT (REACTOR B m' at the Location of the Nearest Sector Goats Garden 2500 sq. ft. Cows Dwellir.g Bovine

  • 8.17(-10) 1. 48(-9) --

NNE #2 .9 3(-9) 1. 35 (-9) 2.90(-10) 3.02(-10) --

NE 2 . 02 (-9) 9 .15(-10)

-- 6 . 35 (-9)

ENE 6. 35(-9) 7 . 78(-9) 1.87(-9) --

E 7 . 7 8(-9) 5.14(-10) --

4 .9 6(-9) 2 . 69 (-9)

ESE 7.80(-9) 4 .96(-9) 1.78(-8) 6.69(-10) --

SE 2 .17(-8) 2.17(-8) 7 4.16(-9) 5.79(-10) --

U SSE 3 .14(-8) 3 .14 (-8) 3.07(-9) 8.56(-10) --

S 3 . 51(-9) 4.70(-10) 4 . 84(-8) 8.45(-10) 8.45(-10)

SSvV -- --

4.16(-8) 8.75(-10) 4.16(-8)

SV/

4.32(-8) 7.14(-9) --

4. 32(-8) 1. 36 (-9)

WSW --

5.11(-9) 1. 59 (-9)

W 5 .9 8(-9) 5 .11(-9 )

3.5 2 (-9) 5.04(-10) --

WNW 5 . 63(-9) 5.33(-10) 1.51(-9) 8.30(-10) --

NW 1.51(-9) 1. 38(-9)

-- 2 .56 (-9)

NNW 2 . 5 6 (-9) 6.68(-10) 2 . 31(-9) 8.87(-10) --

N 2 . 31(-9)

  • Bovine is defined as a cow which does not produce milk for human consumption but may be raised for meat cons e2.93(~9) = 2.93 x 10

._____ _ ____ - _.