ML20153E936
| ML20153E936 | |
| Person / Time | |
|---|---|
| Site: | Monticello |
| Issue date: | 09/08/1998 |
| From: | Bonneau C, Rohrer R, Wegener D NORTHERN STATES POWER CO. |
| To: | |
| Shared Package | |
| ML20153E904 | List: |
| References | |
| NUDOCS 9809280298 | |
| Download: ML20153E936 (16) | |
Text
{{#Wiki_filter:. MONTICELLO NUCLEAR GENERATING PLANT Core Operating Limits Report Cycle 19 Revision 1 Prepared By: d8 26 9S Richard J. Rohrbr Date Project Manager, Nuclear Analysis and Design Reviewed By: w/^ 'i-8-f,f / D. G. Wegener Date Superintendent, Nuclear Engineering - Monticello /A -__I f[C/[f 7 C Reviewed By: e,w CA nneau / Date M a er Nuclear Analysis and Design Reviewed By: sh/ " jj _ /L 0.pd' rson Date e Director, Nuclear Energy Engineering Departrnent 9809280298 980909 PDR ADOCK 05000263 p PDR Monticello Cycle 19 Core operating Limits Report, Rev. 1 Page 1 of 16
l Introduction 'this report provides the values of the limits for Cycle 19 as required by Technical Specification Section 6.7.A.7. These values have been established using NRC approved methodology and are established such that all applicable limits of the plant safety analysis are met. A SLCPR of 1.10 was used for two-loop operation for all fuel types in Cycle 19 (GE10, gel 1, GE12, and Siemens QFA fuel). This is consistent with the values specified by GE in Reference 2. The SLCPR for single-loop operation is 1.11. Preliminary SLCPR values of 1.11 (two-loop) and 1.13 (single-loop) were accepted by Siemens in Reference 3. Ilowever, Siemens did not review the updated SLCPR values of 1.10 (two-loop) and 1.11 (single-loop) for the revised. core loading pattem. Therefore, it was decided by the Monticello Engineering staff to apply a 0.02 administrative adder to the OLCPR for the Siemens QFA bundles in the core monitoring database as a conservative bounding measure. This report includes stability exclusion region definition, buffer region definition, and power distribution limits as required by amendment 97 to Monticello's operating license approved by the NRC in Reference 4. Reference 1: NSPNAD-98001 revision 0 "Monticello Cycle 19 Final Reload Design Report (Reload Safety Evaluation)", March 1998 Reference 2: Letter from T. R. Brohaugh (GE Nuclear) to K. S. Schnoebelen (NSP), "Monticello Cycle 19 SLMCPR Calculation", January 26,1998. l Reference 3: Letter from K. V. Walters (Siemens) to K. S. Schnoebelen (NSP), "MCPR Safety Limit for SPC l QFAs in Monticello Cycle 19", KVW97:238, October 29,1997. I i Reference 4: Letter from Tae Kim (USNRC) to Roger O. Anderson (NSP),"Monticello Nuclear Generating i Plant - Issuance of Amendment Re: Implementation of Boiling Water Reactor Owners Group Option 1 D Core Stability Solution (TAC No. M92947)", including enclosures, September 17, 1996. Rod Block Monitor Operability Requirements The MCPR limit associated with the Rod Block Monitor operability is: l l MCPR < l.71 l l Whenever the monitored core MCPR is less than 1.71, a limiting control rod pattern exists and the RBM system is required to be operable. l Reference Technical Specification Section 3.2.C.2.a Rod Block Monitor Upscale Trip Setpoints Low Trip Setpoint (LTSP) s 120/125 of ft.c Intermediate Trip Setpoint (ITSP) s 115/125 of ft liigh Trip Setpoint(IITSP) s 110/125 of f6 e i Reference Technical Specification Sections: Table 3.2.3 Item 4.a Table 3.2.3 Note 8. l Monticello Cycle 19 Core Operating Limits Report, Rev. 1 Page 2 of 16 l
Minimum Critical Power Ratio ,The Minimum Critical Power Ratio (MCPR) limit shall be determined for two Recirculation Loop Operation as follows: If thermal power > 45%, then the MCPR for GE10 is the greater of: 1.50
- K, (K, from Figure 3) or TICPR, from Figure 5.
If thermal power > 45%, then the MCPR for Siemens Fuel is the greater of: 1.52
- K,(K, from Figure 3) or TICPR, from Figure SW.
) If thermal power > 45%, then the MCPR for gel 1 fuel is the greater of: i l 1.47
- K,(K, from Figure 4) or TICPR, from Figure 5.
If thermal power > 45%, then the MCPR for GE12 Fuel is the greater of: 1.49
- K,(K, from Figure 4) or TICPR, from Figure 5.
If thermal power s 45%, then the MCPR limit for GE10 and Siemens fuel is obtained in figure 3. If thermal power s 45%, then the MCPR limit for gel 1 and GE12 fuel is obtained in figure 4. I For single recirculation loop operation the MCPR limit as defined previously by two recirculation loop operation is increased by the following adders: 0.01 AMCPR to account for core flow measuring and TIP reading uncertainties. 0.05 AMCPR to preclude fuel failures for a 1 out of 2 Pump Seizure Event (Reference 1). Reference Technical Specification Section: 3.11.C. (1.) Note that the only reason that the QFAs are higher than GELO was an NSP decision to add a 0.02 administrative adder because NSP did nat ask Siemens to re-review the impact of 1.10/1.11 SLCPRs 1 compared to the 1.1I/1.13 SLCPR values that they reviewed. The MCPRs calculated above may be replaced by values calculated in table 3 if taking credit for scram speed. Power-Flow Operating Map The Power-Flow Operating Map based on analysis to support Cycle 19 is shown in Figures 6 & 7. l l l Monticello Cycle 19 Core Operating Limits Report, Rev. 1 Page 3 of 16
Approved Analytleal Methods ,NEDE-24011-P-A Rev 13 " General Electric Standard Application for Reactor Fuel" NSPNAD-8608-A Rev 4 " Reload Safety Evaluation Methods for Application to the Monticello Nuclear Generating Plant" NSPNAD-8609-A Rev 3 "Qualificat on of Reactor Physics Methods for Application to Monticello" i ANF-91-048 (P)(A) Rev 0 " Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors-EXEM BWR Evaluation Model," Siemens Power Corporation NEDO-31960-A "BWR Owners Group Long-Term Stability Solutions Licensing Methodolog,,' Licensing Topical Report, November 1995. NEDO-31960-A Sup1 "BWR Owners Group Long-Term Stability Solutions Licensing Methodology," Licensing Topical Report, Supplement 1, March 1992. Maximum Average Linear Heat Generation Rate as a Function of Exposure When hand calculations are required, the Maximum Average Linear Heat Generation Rate (MAPLHGR) for each fuel bundle design as a function of average planar exposure shall not exceed the limiting lattice (excluding natural Uranium) provided in Table 1 (based on straight line interpolation between data points) multiplied by the smaller of the two MAPFAC factors determined from Figures 1 and 2. The MAPLHGR limits in Table 1 are conservative values bounding all fuel lattice types (excluding natural Uranium) m a given fuel bundle design and are intended only for use in hand calculations as described in Technical Specification 3.11.A. No channel bow effects are included in the bounding MAPLHGR values below because there are no reused channels. MAPLHGR limits for each individual fuel lattice design in a bundle design as a function of axial location and average planar exposure are determined based on the approved methodology referenced in Monticello Tecimical Specification 6.7.A.7 b and loaded in the process computer for use in core monitoring calculations. The SPC 9x9-IX Qualification Fuel Assemblies (QFAs) will be monitored to the GE10-DXB333-10GZ MAPLHGR and LHGR limits to protect the steady state LHGR limit of the QFAs. When hand calculations are required, the GE10-DXB333-10GZ MAPLHGR and LHGR limits can be used to calculate the appropriate limits for the QFAs. Reference Technical Specification Section 3.11.A. l l r l Monticello Cycle 19 Core Operating Limits Report, Rev. 1 Page 4 of 16 l
i l l Table 1 MAPLHGR for each fuel type (kW/ft) l Exposure GE10-GE10 GE10-GE10-IIXB324-HXB324-DXB333-DXB324-IWWD/STU 11GZ 10GZ1 10GZ llGZ l l 200 10.36 11.19 11.64 10.71 1000 10.47 11.42 11.70 10.82 5000 11.55 12.20 12.30 11.78 10000 12.95 12.65 12.88 13.17 15000 12.97 12.47 12.65 12.88 20000 12.22 11.81 11.97 12.25 l 25000 11.52 11.21 11.31 11.60 30000 10.90 10.67 10.67 10.95 35000 10.28 10.14 10.02 10.30 40000 9.61 9.55 9.21 9.61 45000 8.94 8.97 8.40 8.92 50000 6 45 6.49 5.93 6.43 Exposure Gell-Gell-GE12 Gell-Gell-DUB 348-DUB 347-DSB330-DUB 366-DUB 366-MWD /STU 10GZ 10GZ 12GZ 16GZ 17GZ l 200 10.32 9.96 8.54 9.96 9.45 1000 10.47 10.02 8.57 10.17 9.64 5000 11.21 11.04 9.31 11.21 10.73 10000 12.21 12.32 10.25 12.21 12.05 15000 12.06 11.93 10.13 12.03 11.92 l 20000 11.40 11.32 9.78 11.58 11.50 l 25000 10.71 10.73 9.45 10.90 10.75 30000 10.03 10.15 9.08 10.20 10.00 35000 9.37 9.56 8.66 9.54 9.28 40000 8.71 8.91 8.19 8.88 8.54 45000 8.05 8.27 7.46 8.22 7.85 50000 7.38 7.59 6.70 7.56 7.19 l 55000 6.70 6.62 5.99 6.90 6.55 57680 6.28 6.29 I 57900 6.18 58050 6.06 58220 6.14 60060 5.31 l' i l Note: Table 1 is for two recirculation loop operation. For single loop operation, multiply these values by 0.85. l Honticello Cycle 19 Core operating Limits Report, Rev. 1 Page 5 of 16
~. --. Linear Heat Generation Rate Table 2 LHGR for Each FuelType(kW/ft) GE10-GElo-GE10-GE10-Gell-Gell-GE12-Gell-Gell-DXB324-DXB324 DXB333-DXB324-DUB 347-DUB 348-DSB330-DUB 366-DUB 366-10GZ 11GZ 10GZ 11GZ 10GZ 10GZ 12GZ 16GZ 17GZ 14.4 14.4 14.4 14.4 14.4 14.4 11.8 14.4 14.4 Reference Technical Specification Section: 3.11.B. Core Stability Requirements Stability Exclusion Region The stability exclusion region is shown in Figure 6 and is given in greater detail in Figure 7. Stability Buffer Region The stability buffer region is shown in Figure 6 and is given in greater detail in Figure 7. Power Distribution Controls Prior to intentionally entering the stability buffer region, the hot channel and core wide decay ratios will be shown to be within the stable portion of Figure 8. While operating in the stability buffer region, the hot channel and core wide decay ratios will be maintained within the stable portion of Figure 8. Reference Technical Specification Section 3.5.F. l l Monticello Cycle 19 Core operating Limits Report, Rev. 1 Page 6 of 16
Seram Time Dependence Technical Specification 3.3.C provides the scram insertion time versus position requirements for continued operations. j Technical Specification 4.3.C provides the surveillance requirements for the CRDs. Data from testing of the CRDs, or frcm an unplanned scram, is summarized in Surveillance Test 0081. Using this cycle specific information, values of T3 can be calculated in accordance with the equation at the 20% insertion position, which is: - l/2 n [ N,t, yt 720 = 'i + 1.65g Eq. [5.1) [ N, { g, s.\\ I _i=1 where: t, the weighted cycle average scram time at a 95% confidence level at the 20% insertion position. = the number of surveillance tests performed following core alterations. n = the number of control rods measured in the i* test. N, = the total number of active rods measured in the first test following core alterations, N = i t, average scram time at the 20% insertion position of all rods measured in the i* test. = Standard deviation of scram times o = tm = 0.900 sec. shall be assumed until cycle specific scram data following a core alteration becomes available. When scram insertion time data is available, credit may be taken for faster insertion times, if desired. It should also be noted that when data does become available, the average scram time values must be calculated with either CRD insertion time data at reactor pressures above 965 psia, or with data that is corrected for low reactor pressures in accordance with SurveillanceTest0081 Appendix A. After obtaining the cycle specific values of t for the 20% insertion positions, a comparison can be made to Table 3 in 3 order to get the scram time adjusted OLCPR. The value of the scram time adjusted OLCPR is obtained from Table 3 by linearly interpolating the value of t at the 20% insertion position. Note that extrapolation is not permitted in Table 3. I i l l Monticello Cycle 19 eoro operating 1.imits Report, Rev. 1 Page 7 of 16
Table 3
- Monticello Cycle 19 Full Power / Flow OLCPR as a Function of Scram Time x,,
0.682 0.769 0.845 0.900 OLCPR GE10* 1.38 1.42 1.45 1.50 OLCPR gel 1 1.36 1.40 1.43 1.47 OLCPR GE12 1.37 1.41 1.44 1.49
- The eight Siemens QFA bundles are included with the GE10 data.
Sample Intemolation After a Surveillance Test 0081 has been completed for cycle 19 the results can be used to calculate a new average scram insertion time at the 20% insertion position. This time can then be linearly interpolated to change the OLCPR values found in Table 3. If the scram insertion time changed from 0.769 seconds to 0.750 seconds then the OLCPR values would change as follows: Table 4 t,, 0.682 _0.750-0.769 0.845 0.900 OLCPR GE10' l.38 1.41 1.42 1.45 1.50 OLCPR Gell 1.36 1.39' l.40 1.43 1.47 OLCPR GE12 1.37 - 1.40 : 1.41 1.44 1.49 From Table 4 the OLCPR for GE10 would be 1.41 instead of 1.50 at the technical specification scram insertion time thus increasing operating margin. I I Monticello Cycle 19 Core operating Limits Report, Rev. 1 Page 8 of 16 l l
4 Figure I Monticello Cycle 19 ~ Power Dependent MAPLHGR Limits ~ i i l l 1.0 i i l i l l l I I I I I I I i i f i i l l I I l i I I I I i (f I I I I I I I -s
F--
- --F----- -[-------t------- - - - - - -{ - - - - -j -- - - - - - 0.8 1 1 I I I I i l I I I i i I I I I I I I 1 I I I I I I lE s-mR P < 25% NO I
f-------------
e 0.6 g9 ED l l I i l l FOR 45% 2 P225%: I g l l l l f M APFACp = 0.635 + 0.0075 (P - 45) O 0.4 ,------'------[-------t------ FOR CORE FLOW s 50% A CORE FLOW > 50% g M APFACp = 0.530 + 0.0075 (P - 45) M l g l g O l I I I i FOR CORE FLOW > 50% Z l i I I I d l I I I I -- - - l - - - b - - - - - - - b - - - - - - - b - - - - - - - - - - - - - _ FOR P > 45% 0.2 l l l l l MAPFACp = 1.0 + 0.006909 (P - 100) l I I I i 1 I I i l 1 1 1 I P = POWER (% RATED) I i i 1 I 0.0 20 30 40 50 60 70 80 90 100 POWER (% RATED) Monticello Cycle 19 Core Operating Limits Report, Rev. 1 p 9
Figure 2 Monticello Cycle 19 Flow Dependent MAPLHGR Limits ~ 1 I i l l l I I j j l l l l l [I --- r_- r____rl-_ J__- I-- r-_.T--_r 7 T--- - - - ~ ^ 100% Power MAX FLOW = 107% m 0 0.95 l i I I MAPMULT, I I I I 45% Power MAX FLOW = ll2% U4 I I l i I I I I I I A -- -l' - --l'- - L - - L -- L - - L - -- l l MAPFAC, = MINIMUM (MFRPD,, MAPMULT,) 1-- 1--- 0'90 l l l l v I i i i I I i 1 0.85 ,6---f---f---f---f-- f---p---f---f---- MAPMULT, = 1.00 FOR FLOW > 80% g_, j j j j l l l l = 0.94 FOR FLOW s 80% U 0.80 - - - - l- - - - t- - - - r - - - -- e- -- r--- r - - - t - - - t - - - - 4 l l l l l l l l l MFRPD, = MINIMUM (1.0, nF + b) g 3 0.75 ----h---h-r---b---h---h---h---h___y____ F = CORE FLOW (% RA'IllD) O i l l i l i i n = 0.006758 0 70 ---- - - ' - - - - - - - - - - - - - - - - - - - - - - - - - g i i l I i i i g I i i i i i i l l i I I I I I I I I i i i i i ya 0.65 ---- j---- f --- f --- f --- p--- f--- j---- f --- f --- f ---j ---j --- j - ---j -- -j ---- 1 I l l l 1 1 I I I i i I i l 2 0.60 ---- ---- b --- b --- b --- b --- b --- --- --- -- - --- E ---I--- 4 --- d ---d ---- 1 I I I I I I I I I I I I i i 1 I I I I I I I I I I I I i 0.55 - --- h - - - h - - - h -- - h - -- h-- - h --- f --- h - -- f - - - Y - - - Y -- - ---f ----l---- 1 I I l i I I I I I I I i l 1 1 I I I I i i l i i l i i i 1 0.50 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 CORE FLOW (% RATED) Monticello Cycle 19 Core Operating Limits Report, Rev. 1 "I* =
.--,--w--------a Figure 3 Monticello Cycle 19 Power Dependent CPR Limits (GE10, QFA) 3.6 i i i i 3.3 -- -I---- --f- --- - FOR P < 25%: NO TilERMAL LIMITS MONITORING l g l l REQUIRED - NO LIMITS SPECIFIED 3.0 -------t--------
F-------+--
-~ l l l FOR 45% 2 P225%: I g" 2.7 - - - - - - - r - - - - - r - - }- - r - - - - - T - ~ TicPRp = 2.24 + 0.034 (45 - P)
l--- ' OW s 50%- - - - -
- - I-- - I- - - - - - - f _ - M 2.4 FOR CORE FLOW 550% i H --- !- CORE FL l l 1 TICPRp = 2.90 + 0.030 (45 - P) --f------f-- --- f-- - --+-~ 2.1 FOR CORE FLOW > 50% j,g _ _ _ _ g_ _ -_ Ip--__--h- - - - _ - h - --- - - - h - - P = POWER (% RATED) 1 I I I 1 i 1.5 g j j j poR 60% > p> 45% l 1 l l 1 Kp = 1.17 + 0.0070 (60 - P) j,4 _L---_-- L-__ ---- p ----- -- f ---- -- P = POWER (% RAED) i i i i I i l l 1 i FOR 100% > P > 60% l l l l l Kp = 1.00 + 0.00425 (100 - P) M' l l l 1 g l [ P = POWER (% RATED) ~~ 1.2 ---+---t--------t------t--- --r----- l l I I l l l l I I I I i t i i I I I I g l 1 1 I I ~ l l l l l l 1 I I I I I I I l t i I I I I I 1.0 20 30 40 45 50 60 70 80 90 100 POWER (% RATED) Page 11 of 16 Monticello Cycle 19 Core Operating Limits Report, Rev. 1
Figure 4 Monticello Cycle 19 Power Dependent CPR Limits (Gell, GE12) ~ 3.6 i i i i i i i I -- -- --f ORE FLOW > 50%----4-------[-------t-- FOR P < 25%: NO TIIERMAL LIMITS MONITORING 3.3 i C l l REQUIRED - NO LIMITS SPECIFIED
F------+--------+--
3.0 -l---- 2.7 l l l FOR 45% 2 P225%: ---{- - -- p - -- --- J - - wga mugn p,4 ___._____L_____ _L___l____L-----l-- FOR CORE FLOW s 50% CORE FLOW s50% I l i TICPRp = 2.66 + 0.025 (45 - P) 2.1 ---f--- ---F--- --- f --- - -- f - - i FOR CORE FLOW > 50% ---l----b------b---- -- - h------- h -- P = POWER (% RATED) 1.8 1 I i i FOR 60% > P > 45% g l l 1 I I Kp = 1.13 + 0.0050 (60 - P) 1.4 -l- -- f --- --- f--- ---- h --- ----Y - - --- - p,powgg(,g37eg) 1 i l i I i l i l FOR 100% > P > 60% l l Kp = 1.00 + 0.00325 (100 - P) - - - - l - --- l - - - - -- t-- l l P = POWER (% RATED) [ 1.2 t --t-------t--- I I I I I I 1 I I i 1 1 I I r l 1 1 I I I l I I I I I I l 1 I l I I I I I I i I I 1.0 20 30 40 45 50 60 70 80 90 100 POWER (% RATED) Page 12 of 16 Honticello Cycle 19 Core Operating Limits Report, Rev. 1
Figure 5 Monticello Cycle 19 Flow Dependent CPR Limits ~ 1.7 i l FOR W (% RATED CORE FLOW)240% e l l 1 l TICPR = MAX (l.32, A W /100 + B ) l l l j g g c g i I I i 1.6 - - - - - - - f - - - - - - y - - - -- - y -- - - - - -j -- - - - -- FOR W (% RATED CORE FLOW) < 40% e I I I i I l l l TICPR = (A W /100 + B ) g p c g 1 I I l l l l l
- [l + 0.0032 (40 - W )]
c 1.5
t---
--t-------t------m------- d l l l 1 MAX FLOW A B p p b l l l 107.0 % -0.454 1.636 i I I I i 1.4
l-------L------
l------
l------ IM Power MAX FLOW = 107% 1 1 I I I I I I I I I l l l 1 1 I l l l 1 1 I I I l 3 g I I I I I I l l l 1 l l l I l t 1.3 - - - - - - - E - - - - - - - - - - - - -i - - - - - - -l - - - - - - -l- - - - - - - l- - - - - - - j- - -- - - -.? - _ - -- _ _ i i l l l l l l 1 1 I I I I l l l 1 1 I I I l [ l l I I I 1 i I I I I l l l l 1 I i i I i i l i 1.2 20 30 40 50 60 70 80 90 100 110 CORE FLOW (% RATED) Monticello Cycle 19 C re Operating Limits Report, Rev. 1
Figure 6 Monticello Nuclear Generating Plant Power-Flow Operating Map Eiiirik[' 'f(! Operation noe r allowed in the ! iiilt i gjel"i iiiii Iq i ~ slanted shading area-a u 10i3!4!ii i hIN! A !t-=i ti,.a!= "n, ana; 3 3a.; !Eit!!!!!!Fj M i M.j~- hk::l mi ~!~ I I5!! 1750- ~- Rated .! EXCLUSION ? OU Power REGION: { i j lInnediate , Ib!ye,y~ y .a- - - y-1500- - ! exit .y irequired,ipi p5 g f i 2n the h dotted ti. f[ "k - lllQilQ&&yy..,. --l- ~7~ ~j~ - ~ ~j~ lIh. area. - {- ~ ~ " 1250-i' / i i ' l !5llE ....i.b.ii. 0 03 !! ! !!!ilj0i'i y i 3 51 H... /i i 3 ~ ' ~~ gl, 2000- - glphyQ!'!;{"!!'nllll' -Whhh' d O / I- -~y~- ~j" - - - ~ " - i ~qs~ 4 na ~ I BUYFER REGIONi O i i L3 -. -.poQev distribdtion - U 750 cotxtrols required in .f-MO thy double- / N hatched area. : 500- ~ 5 -~h ~ ~ ~ ~ Legend 4 i .um.1 es,na.u un n o 250- - - - - - ~ - -~ M UAL *t W ~CSX AWIQD- - ~ ma could differ from - aver nr u,. am u e.maruaan. that shiown-AAAL 2 4.hAnt staan -.aser resa. mar LJJ uen-s, 122' eet.uns. - 0.,.. .v. i. 0 10 20 30 40 50 60 Rated Total Core Flow,'MLb/Hr) Flow Page 14 of 16 Monticello Cycle 19 Core Operating Limits Report, Rev. 1
Figure 7 I. Monticello Nuclear Generating Plant Power-Flow Operating Map 90-mmmm m.e. ) Operation not 85 ~ ~ f;a "' ' ' _i i i i allowed in the 1
- i slanted shading area.
J :
- a. -
- e .c t r - : gQ. ~~r tr=" ~~' '~'* -~ - f c i - - E-:o * / .M.M....b.,g", ".":. ::...... s...... 7..;r. : :... : ; 75-E: : I 2 qHg p p. i.. p+ = ; sn .n - m m 7
- m g 7Q.
......3.........:. w u i i i g,5. ,E,XCLUSI M
- .....i...............:......
o1. i e arre i 5 Inunediate exit i iREGIM: O required in the i i % 60-gogg,g ,7,,, -~~5-~ ~"~~5pygg;;~;gygy;:35,yt;;gg-i icontials ziequisied in 9 wg g ti g
- l y l l
i ithe double-i O l - ~ ~ ~.~ihabched.e M a~~: 55-u O 3 3 3 3 q
- ~-~~:
% 50-n; ~~ ' . ~ ~;- - ~;- ~ ~ - 45- ~~ fQ i. i i i
- Actisal atural Circ ation
+ 35- ~~:
- could iffer from t' at Ehowni i
~ ~ ~ - i 5 .i. 30 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ? Totmi Core F1ow (MLb/Hr) 1 i t i lentioD11o Cycle 19 Core operating Limits Report, Rev. 1 Page 15 of 16
Figure 8 Stability Criterion Map I.0 0.3 0.3 g cteccially Ucstab!e 0.7 - 9 7 0.s - C 0.s, Uw l l _ Stable l j c l 0.1 -- C U 0.1 - ,/ Q.2 - \\ 0.1 - / 0.0 i i i i i i i i 0.0 0.2 0.4 0.6 0.3 1.0 CHANNEL OCCAY RATIO Monticello cycle 19 Core Operating Limits Report, Rev. 1 Page 16 of 16 ..}}