ML20198J445

From kanterella
Jump to navigation Jump to search
Rev 2 to SIR-97-003, Review of Test Results of Two Surveillance Capsules & Recommendations for Matls Properties & Pressure-Temp Curves to Be Used for Monticello Rpv
ML20198J445
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 10/22/1998
From: Licina G, Stevens G, Suaby M
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20198J434 List:
References
SIR-97-003, SIR-97-003-R02, SIR-97-3, SIR-97-3-R2, NUDOCS 9812300187
Download: ML20198J445 (180)


Text

._ .-. . . .- -. -- - - - - - - - _ ._

Report No.: SIR-97-003 Revision No.: 2 l l ProjectNo.: NSP-21Q SIFile No.: NSP-21Q-401 October 1998 l Review of the Test Results of Two Surveillance Capsules, and Recommendations for the Materials Properties and Pressure-Temperature Curves to be Used for the Monticello Reactor. Pressure Vessel Preparedfor:

Northem States Power Company Prepared by:

StructuralIntegrity Associates,Inc.

Prepared by: - [ - m- 2 Y, Date: /0f2bl96 M. E. Sauby, P. E.

, I Date: lo/21/98 1- uf i G . Stevens, P. E.

Reviewed by: ,

Date: I% ~ LZ -9R

! . J. Licina Approved by: Date: l* **Y v

I M. E. Sauby, P. E 9812300187 981221 PDR

?

P ADOCK 05000263 1 PDR J

~'

StructuralIntegrity Associates, Inc.

- - . . _ . - - .. - - . - . - ._. .. -. . . . _ .=__- - _-

REVISION CONTROL SHEET Document Number: SIR-97-003

Title:

Review of the Test Results ofTwo Surveillance Caosules. and Recommendations for l

the Materials Properties and Pressure-Temocrature Curves to be Used for the l Monticello Reactor Pressure Vessel Clie it
Northern States Power Comoany SIProject Number: NSP-210 Section Pages Revision Date Comments A 01/06/97 Draft Issue B 07/31/97 Draft Issue All All 0 9/26/95 InitialIssue l

All All 1A 3/27/98 Rev.1 Draft Issue All All 1 5/18/98 Rev.1 InitialIssue 6 and 9 iii, 6-4, 9-4 2 ' 10/22/98 Rev.2 a

{ StructuralIntegrityAssociates,Inc.

- - . _ _ . _ _ _ . ... . - _ _ . . . = . . - - . _ - . - .-- ---- -. - --

(

l l

l l

l CERTIFICATION Report No.: SIR-97-003 Revision No.: 2 l Project No.: NSP-21Q SI File No.: NSP-2IQ-401 October 1998 l l Review of the Test Results of Two l Surveillance Capsules, and Recommendations for the l Materials Properties and Pressure-Temperature Curves j to be Used. for the Monticello Reactor Pressure Vessel L Gary L Stevens, being a duly licensed professional engineer under the laws of the State of California, certify that this document was prepared by me or under my responsible direction, or reviewed by me. I further certify that this document meets the applicable requirements of Title 10 of the Code of Federal Regulations Part 50, Appendix G and of ASME Boiler and Pressure l

Vessel Code Section XI Appendix G 1989 Edition, to the best of my knowledge and belief. I l further certify that this document is correct and complete to the best of my knowledge, and that I l am competent to review this document.

g gcFEss ,

b I d a ct- ME d

.. , Gary L Stevens, P.E.

l l  % kM9\ 03s State of California dl ip Certificate No.: 23942

\Q C:. MD2:3.i? )ifl f^^:;p c.R l 10 l22-f 98 V October 22,1998 l

l l

l SIR-97-003, Rev. 2 iii Structural Integrity Associates, Inc.

..--___m ~ . _ _____. _ _ . _ - - -___ _ _ _ ___._._ _ ____._ _

n L

EXECUTIVE

SUMMARY

I This report reviews the results of the Charpy V-Notch impact tests for the two surveillance capsules containing materials from the Monticello reactor pressure vessel beltline region. The l[ Monticello Technical Specification pressure-temperature (P-T) curves were verified and revised

..,,, P-T curves were generated based upon the review of the surveillance capsule information.

l l . .. The two Monticello surveillance capsules had significantly different irradiation exposure. The i

first capsule was irradiated in a relatively low flux location with a lead factor of about 0.3. The '

l,. second capsule contained specimens that were removed from Monticello with the first capsule j

<s.

li-f-

but were subsequently re-encapsulated and irradiated at a high lead factor (>10) in the Prairie jp Island Unit 1 (PWR) reactor pressure vessel. The impact properties for the specimens from both

!i' capsules showed irradiation shifts that were only slightly larger than would be predicted by the Regulatory Guide 1.99, Rev. 2 chemistry factors.

,a .

1

! The surveillance data were reviewed against criteria given in Regulatory Guide 1.99, Rev. 2 and L

pertinent ASTM standards to determine whether the data constituted credible data sets. Based upon this evaluation the data meet all of the conditions that define credible data s:ts with the exception that correlation monitor material was not included in the Monticello capsules. The

( observed shifts in impact properties for the base (plate) material are consistent with the predictions of Regulatory Guide 1.99, Rev. 2. Therefore, the two Monticello surveillance data j

[ sets are considered to be credible.

A power uprate EOL adjusted reference temperature at 1/4t of 156.5'F for plates C2220-1 and C2220-2 was determined based upon the plant specific chemistry factor.

V

'h The existing Technical Specification P-T curves were verified. The curves were found to be i- conservative since no 1/4t crack tip to fluid temperature difference was considered. New P-T

." (pressure test) curves were generated based upon the plant specific chemistry factor and an lh evaluation of all of the Monticello RPV materials.

.1 -

SIR-97-003, Rev.1 iv f StructuralIntegrityAssociates,Inc.

w - . , . . -

a t -

Table of Contents Section -

Pace

.~

1.0 INTRODUCTION

AND B ACKGROUND ..................................... ................................. . 1 - 1

{" Pops I-I tWS I - S 2.0 REVIEW OF CHARPY V-NOTCH TEST INFORMATION ................... ........ ... .. . .... 2-1

r 2. I Unirradiated Properties .......... ......... .. ......................... ..... ........ .................. ............ ....... ... .. 2-2 2.2 First Capsule (G-1) Removed from Monticello ........................................................... .... 2-4 2.3 Second Capsule (W) Irradiated at Prairie Island ............................................ .................. 2-6 Pc 2-1 wy 2- 12

, y.

. 3.0 ESTIMATION OF THE REFERENCE TEMPERATURE SHIFT ..................................... 3-1 3.1 Estimation Using Regulatory Guide 1.99, Rev. 2................................... ......................... 3-1 lf 3.2 Measured Shift Using Charpy V-Notch Impact Test Results....:....................................... 3-2

'E 3.3 Comparison of the Regulatory Guide 1.99 Estimates to the Measured Results................ 3-2 3.4 Estimation of Regulatory Guide 1.99, Position 2.1, Plant Specific f Chemistry Factors (CF) ....... ............ ....................... .................. .... ........... ............. .... ..... .. 3 -3 Il f43 3-i fbqh 3-6

_ 4.0 REVIEW OF CREDIBILITY PER REGULATORY GUIDE 1.99, REVISION 2 AND

INDU STRY POLICY . . . ....... ... . .. .. . . . . . ..... .. . . . ............ ... .... . .. ... .. .. . . . . . ... . . . . . .... .... ... . . ... . . .. . . .. . .. .. 4- 1 r 4.2ASTME185.....................................................................................................................4-2 L 4.3 Regulatory Guide 1.99, Rev. 2 (5-88) ............................................................................... 4-2 4.4 D iscussi on of Credibility ................................................. .......................... .......... .. ........... 4-3

, fases 4 -I Wov3h 44 5.0 ESTIMATE OF ADJUSTED REFERENCE TEMPERATURE.......................................... 5-1 5.1 Initial Reference Temperature (RTmtr)............................................................................. 5- 1

. . 5.2 Reference Temperature S hift, ARTsor.............................................................................. 5-6 5.3 Margin...............................................................................................................................5-7 5.4 Monticello Reactor Pressure Vessel Materials and Properties.......................................... 5-8 l i.

%9 e3 5-s twcqk s-M 6.0 PRESSURE-TEMPERATURE CURVE DEVELOPMENT................................................ 6-1

' 6.1 Me th odol o gy ....... ..... . ....... ... . .. .. .. . ... . .. ..... ........ .... .. .. ... . .. . ..... .. . ... .... .. ..... .. ... .. . ..... . . . . .. . . .. . .. . . 6- 1

' k- 6.2 S ampl e P-T Curves. .. . . .. .. . .. ..... . .... . . ......... . . .... ....... ... .. .. . .. ..... . .... ..... .... ... .... .... .. . .. ..... . .. . .. .. 6-2 6.3 Development of Revised P-T Curves ................................................................................ 6-4 g- 6.4 Co n c lusi o n s . . ... . ..... ... . . ..... . . .. . .. . .. .. . . ... ...... .. . ... .. ... . ... ... .. . . .. . ......... . . .. .. .. . .. .. .... ... . ... . . . .. .. . . . 6- 10 l

d (9s (-l Mr.wp 6-ja i

1 ..

l -

L 0:

a z.

'l-t

  • r l ga ' SIR-97-003. Rev. I v

~

f StructuralIntegrityAssociates,Inc.

c Table of Contents (Concluded)

Section - pace 7.0

SUMMARY

..........................................................................................................................7-1

, t-ys T-l nrov% r-1

, 8.0 RECOMMEND ATIONS ....................... . . ............................... ... ........... ........ ............... .. ... 8 - 1 fe n 8-1 r 9.0 REFEREN CES ... ... . . . . . . . .. . . . .. . . ....... . ... ....... . ... . .. .. . .... .. ....... ... . . .. . .. .. .. . ... . . . ... .. ... . .. . . . . . .

fm es 9-l stesf 9 .9 APPENDIX A Baseline (Unirradiated) CVN Properties From Plate C2220-2...... .................. A-0 fuses n- o scoop A-I1 ,

L APPENDIX B Monticello Capsule 1 (G-1) Impact Data........................... . ............................. B-0 f %u 6-o %eocyh p-17

(

' ~

APPENDIX C Monticello Capsule 2 (W) Impact Data ........................................................... C-0 twyS c.~ o twup c-nn .

E h

r L

n~

c I

I rE r.

[- .

L .

t  !

-. I 1

h n

e SIR-97-003, Rev. I vi f StructuralIntegrityAssociates,Inc.

a ,

1 l List of Tables i

. Table Page Table 2-1 Summary of Charpy V-Notch Impact Test Results for Monticello ........................... 2-8 re g Table 2-2 Chemistry Of Beltline Plates From Heat C2220........................................................ 2-9 l- Table 2-3 Comparison of the Heat Treatments of Plates C2220-1 and C2220-2 l

(from Reference 7) ...................... ......... . .............. .....-................................... .. ... 2- 10 Table 2-4 Base Metal Tensile Properties for Plates from Heat C2220.................................... 2-10 m .

Table 2-5 Tensile Properties for Weld Metal Samples from the Monticello Surveillance Cap sules . .... . . . .. ......... .... ...... ...... .. .. ..:. .. .. .. ......... .. ....... ...:.. .. .... . . ........... . . .. . . . . . .... 2 - 1 0

{- '

l Table 3-1 Summary of Estimated Shift per Regulatory Guide 1.99, Rev. 2 and Measured Shift from the Charpy V-Notch Test Data for the Base Metal (Plate)....................... 3-4 l c(.

t_ Table 3-2 Summary of Estimated Shift per Regulatory Guide 1.99, Rev. 2 and Measured l g, Shift from the Charpy V-Notch Test Data for the Surveillance Weld Metal............. 3-5 1

Table 3-3 Calculation of Plant Specific Chemistry Factor for Heat C2220 per l.L Regulatory Guide 1.99, Rev. 2, Position 2.1 [3] ....................... ............................... 3-6

'y Table 3-4. Calculation of Plant' Specific Chemistry Factor for Other Beltline Materials per lja Regulatory Guide 1.99, Rev. 2, Position 2.1 [3] .............. ........... ....................... 3-7 i

(F Table 4-1 Comparison of Monticello Surveillance Data to Credibility Criteria (1) .................. 4-5 l b-

Table 5-1 Monticello Reactor Pressure Vessel Shell Materials ASTM A-533 Grade B,

[

.h Class 1 Plate and ASTM A-508 Class 2 Flange Forgings . .... ............................. 5-13

, Table 5-2 Monticello Reactor Pressure Vessel ASTM A508, Class 2 Pressure Boundary i : Nozzle Materials .............. ....... .. ........ ..... .... ....... .... ......... .............. 5- 18

!L

' Table 5-3 ORNL Drop Weight Test Results on Plate C2220-2 [44] .......................................5-24 d '

- Table 5-4 Monticello Reactor Pressure Vessel Materials ASTM A-533 Grade B, Class 1 Plate, ASTM A-508 Class 2 Flange Forgings, and E8018 Weld Material.. 5-25

3 .

W. i e<

..n.

- SIR-97-003, Rev.1 - vil f StructuralIntegrityAssociates,Inc.

List of Figures Figure Pace

Figure 1-1. LowerBound Ku nd a Ku s.v Temperature Curves From Tests e of SA-533 Grade B Class 1, SA-508 Class 2, and SA-508 Class 3 Steels .........1-5 g Figure 2-1. Plate C2220-2 Charpy V-Notch Impact Energy for LT Orientation, Tested by ORNL, Curve Fit by CV Graph ........................................................ 2- 1 1 Figure 2-2. Plate C2220-2 Charpy V-Notch Lateral Expansion for LT Orientation, l -

Tested by ORNL, Curve Fit by CVGraph ...................... .................................. 2- 1 1 Figure 2-3. Plate C2220-2 Charpy V-Notch Percent Shear for LT Orientation, Tested by ORNL, Curve Fit by CVGraph .......... .............................................. 2- 12

i. . Figure 2-4. Capsule 1 (G-1) Base Metal Charpy V-Notch Impact Energy, Curve Fit by CV G raph .. .. . . . .. . . . .. . .. .... . . .. . .. .. ...... . .. ... .. .. . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . .... . . . . . .. . . . . . . 2- 12 Figure 2-5. Capsule 1 (G-1) Base Metal Charpy V-Notch Lateral Expansion, Curve Fit l [2. by CVGraph .'. . . .. .. . . .. . . . . .. ...... . .. . .. . ... ...... . . . .. . .... . .. . . .. .. .. .. . . . . . .. . . .. . . . . . . . .. .. . . . . . . . . . . .

Figure 2-6. Capsule 1 (G-1) Base Metal Charpy V-Notch Percent Shear, Curve Fit lh l"

l Figure 2-7.

byCVGraph......................................................................................................2-13 Capsule 1 (G-1) Weld Metal Charpy V-Notch Impact Energy, Curve Fit

. by CVG raph . .. . .. .. .. . . .. .. .. ... .. .. ... . . . . .... ... .. .. . ... . . . . .. . . . . . . .. . . . . .. .. . . . . . . . . . . . . . . .. .. . . . ... .. .. .. . 2- 14 l "j Figure 2-8. Capsule 1 (G-1) Weld Metal Charpy V-Notch Lateral Expansion, Curve Fit l byCVGraph......................................................................................................2-14 lf Figure 2-9. Capsule 1 (G-1) Weld Metal Chagy V-Notch Percent Shear Curve Fit l[ ,

byCVGraph......................................................................................................2-15 l Figure 2-10. Capsule 1 (G-1) Weld HAZ Charpy V-Notch Impact Energy, Curve Fit

l. b y CVGraph . .. . . . . . .. . . .. .. .. .. .. . . .. . . l. . .... .......... .... ... . . . . . ... . . . . . . ... .. . . .. . .. . . . . . . ...... .. .. . . . . .. . 2- 15 l Figure 2-11. Capsule 1 (G-1) Weld HAZ Charpy V-Notch Lateral Expansion Curve Fit CVGraph...........................................................................................................2-16 Figure 2-12. Capsule 1 (G-1) Charpy V-Notch Percent Shear, Curve Fit CVGraph............. 2-16 l}

lw Figure 2-13. Capsule 2 (W) Base Metal Charpy V-Notch Impact Energy, Curve Fit byCVGraph......................................................................................................2-17 Figure 2-14. Capsule 2 (W) Base Metal Charpy V-Notch Lateral Expansion, Curve Fit l- byCVGraph....................................................................................................2-17 Figure 2-15. Capsule 2 (W) Base Metal Charpy V-Notch Percent Shear, Curve Fit lf i by CVGraph .'.. ... . . . . ... . .... . ... . .. .. ... .. ........ .... .... . .. . .. ... . . .. . . .. . .. . . .. .. .. . .. .. ... .... . .. .. . .. ... 2- 1 8 ln pigure 2-16. Capsule 2 (W) Weld Metal Charpy V-Notch Impact Energy, Curve Fit

!, byCVGraph......................................................................................................2-18 f

Figure 2-17. Capsule 2 (W) Weld Metal Charpy V-Notch Lateral Expansion, CurveFit by CV G rap h . . . . . . .. . .. .. . .. .. .. . ... . . . .. ... . . . . . .... .. . . .. ..... . . ... .. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .. . .. .. . 2 - 1

.- Figure 2-18. Capsule 2 (W) Weld Metal Charpy V-Notch Percent Shear, Curve Fit i ,,,, by CV Grap h . . . . . . .. . . . . . . . .. .. . . . . . . . . .. . . . . . . .. .. .. . .. .. . .. .. . . . . . .. . . . . . . . . . . . .. . . . . . . . . ... . . ... . . . . .. . . . . .. 2 - 19 Figure 2-19. Capsule 2 (W) Weld HAZ Charpy V-Notch Impact Energy, Curve Fit 4

m b y CV G rap h . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -2 l6 Figure 2-20. Capsule 2 (W) Weld HAZ Charpy V-Notch Lateral Expansion, Curve Fit

by C V G raph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

T

.ai SIR-97-003, Rev. I viii 7 { StructuralIntegrityAssociates,Inc.

l

List of Figures (concluded)

. Firure Pace Figure 2-21. Capsule 2 (W) Weld HAZ Charpy V-Notch Percent Shear, Curve Fit b CVGraph.............................................................................................y . ... ... . .. 2-21 Figure 3-1. Best Fit Curves for Base Metal Surveillance Materials from Monticello........... 3-8

. Figure 4-1. Yield Strengdi as a Function of Fluence for the Monticello Base Metal

_ (Plate) and Weld Metal Surveillance Materials .................... ............................. 4-6 Figure 5-1. Monticello Reactor Pressure Vessel Shell Plates, Flange Forgings, Nozzle Forgings and Seam Weld Locations (Inside Looking Out View .......... 5-28

__ Figure 5-2. Monticello Reactor Pressure Vessel Top and Bottom Head Plates, Nozzles,

'~

and We l d Locati ons ....... ............... ................ ......... ........................... ..... .... . .. 5-29 Figure 5-3. Plate C2220-2 Charpy V-Notch Impact Energy for the TL (Transverse) y Orientation, Tested by ORNL, Curve Fit by CVGraph..................................... 5-30 Figure 5-4. Plate C2220-2 Charpy V-Notch Impact Energy for the Minimum Data in l[

Figure 5-3 (Point on or Below the Best Fit Curve) ...... ............................ ....... 5-30 p Figure 5-5. Plate C2220-2 Charpy V-Notch Lateral Expansion for the TL (Transverse) h Orientation, Tested by ORNL, Curve Fit by CVGraph.................. ............... .. 5-31 Figure 5-6. Plate C2220-2 Charpy V-Notch Lateral Expansion for the Minimum Data

~~'

in Figure 5-5 (Points on or Below the Best Fit Curve) . ... ........ ..................... 5-31

. .; Figure 6-1. Monticello P-T Curves for Beltline Region With a Fluid to 1/4t Crack Tip Temperature Adj ustme nt .... ............ .................................. .......................... ... 6- 1 1 Figure 6-2. Monticello P-T Curves for Beltline Region With a 0 F Fluid to 1/4t Crack Tip

' Temperature Adj ustment............. ........................ ... .. ......................... . . ......... 6- 12 Figure 6-3. Effect of RTer Shift on Curve A (Pressure Test) P-T Curves ........................ 6-13 L Figure 6-4. Monticello Liiniting Beltline Shift Curves................................. ..................... 6-14 L Figure 6-5. Monticello P-T Curve for Pressure Test ................................... ....... ......... .... 6-15

,. Figure 6-6. Monticello P-T Curve for Non-Critical Core Operation... ............................... 6-16 i Figure 6-7. Monticello P-T Curve for Critical Core Operation ........................................... 6-17 Figure 6-8. Example of the Monticello P-T Curve for Pressure Test with Irradiation Shift of 150 F in the Beltline Properties ........................................................... 6-18 Ei F ,

i=

1 i e m -

SIR-97-003, Rev.1 ix

l

1.0 INTRODUCTION AND BACKGROUND

l l~

l Structural Integrity Associates (SI) was requested to assist Northern States Power (NSP)

Company in preparing for the revision of the Monticello Nuclear Power Plant reactor pressure vessel pressure and temperature (P-T) curves and the 1/4 T fluence curve in the Technical 1 --

l Specifications. There are concems that the temperature re. quired to perform the pressure tests of l the Monticello reactor pressure vessel is becoming too high.

l l .: -

l F1 An important input parameter used in the estimation of the allowable limits for temperature and I l

_ pressure is the fracture toughness of the vessel where the hypothetical flaw is located. The ln fracture toughness of ferritic steels, which fodn the pressure boundary in reactor pressure vessels, is a strong function of temperature. In Appendices A and G of Section XI of the ASME Boiler

-, and Pressure Vessel Code [1,2], fracture toughness is correlated with the " reference temperature, t! RTuor" which is a characteristic temperature that defines a transition from ductile to brittle )

l behavior. The relationship between the fracture toughness (both in terms of Ku and Kie defined

' below), the service temperature (T), and RTuor from ASME Section XI [1,2] is shown in Figure l5 1-1. Ku and K ei are the Icwer bound critical stress intensity factors for crack arrest and static

'ki l crack initiation, respectively. The fracture toughness can readily be determined from this

,m

{ relationship once the service temperature and RTuor are established. It can be seen from this figure that for a specific service temperature, the fracture toughness decreases as RTsor l-increases. In the beltline region of the vessel, accumulated fast neutron irradiation leads to an increase in the v'alue of RTuor, thereby leading to a decrease in the toughness. The increase in RT Nor due to neutron irradiation is characterized by a parameter called the adjusted reference Ih temperature (ART).

e-I -

.4 The ART is defined by the guidelines of Regulatory Guide 1.99, Rev. 2 [3], and basically consists of an unirradiated initial value plus a shift (increase) due to irradiation (ARTsor), plus

. margin (uncertainty) terms. The value of ART is given by Equation 1:

,a T.

.A l SIR-97-003, Rev. I 1-I a

l-ART = Initial RTN or + ARTsor + Margin (Eq.1).

The terms in Equation 1 are discussed in more detail in Section 4. Regulatory Guide 1.99, Rev. 2 l also allows the Owner to use the results of surveillance tests to refin- the estimate of shift. If the n

_ plant has two or more credible surveillance sets, a plant specific chemistry factor may be l_. calculated, and the margin may be decreased.

l Two surveillance capsules containing materials representative of the beltline region of the l . Monticello reactor pressure vessel have been irradiated and tested. The plate materials in the l r. surveillance capsules are from heat C2220. Two plates from this heat (C2220-1 and C2220-2) l' are in the beltline region of the Monticello RPV (lower intermediate shell course). The weld lgg material in the capsule is froin a heat of shielded metal are weld material used to fabricate the

.a l" .RPV, but the actual heat number is unknown. One capsule (G-1) was removed from Monticello

~~

in 1981 [4]. That capsule had a low lead factor of 0.3 (ratio of the capsule neutron fluence to the

[ highe'st neutron fluence experienced by the RPV wall). Two sets of specimens were contained in

)

the first capsule. One set of specimens was tested. The secora set was set aside and at a later time the specimens were inserted into a new capsule designed to be installed in the Prairie Island F

lg FN.t for continued irradiation. The second capsule saw accelerated fluence (lead factor >10) and was tested in 1996 [5]. NSP performed calculations per the requirements of Regulatory Guide

i.

( l.99, Rev. 2, Position 2.1 to determine if the results of the tests indicate that a lower chemistry l factor may be allowed.

SI.was requested to evaluate the results of the tests of the surveillance materials and to calculate adjusted reference temperatures for the predicted end of life power uprate fluence. The Technical 7 Specification pressure-temperature curves were also calculated. The objectives of this report are d to:

i l- 1. Summarize the hyperbolic tangent (tanh) curve fits of the Charpy V-Notch test results from

, the two tested surveillance capsules (4,5].

ii i

a-~

SIR-97-003, Rev. I l-2

{ StructuralIntegrityAssociates,Inc.

s _ . . . .- - - --

.. ~ . . . . _ . . _ _ - . _. _ . _ . _ _ _ _ ._ _ ._ ._.-.. _. . . _ _ _ _ . _ _ . _ _

(

I 2.~ Determine if Monticello has two credible surveillance sets per Regulatory Guide 1.99, Rev. 2

[3] and other applicable references.

l_

3. Use the Oak Ridge National Laboratory (ORNL) Charpy V-notch test results for plate 31-3 C2220-2 [44] to estimate a baseline, unirradiated Charpy curve for the surveillance material from heat C2220 and to calculate the irradiation shift in the reference temperature for the two surveillance data sets. i lI ld 4. Estimate the initial RTmyr values for all of the materials in the Monticello RPV, including g shell and head plates, flanges and all ferritic nozzles. .

LL -

p 5. Predict the end oflife (EOL) reference temperature with respect to the EFPY exposure value.

a l

6. Verify the accuracy of the " Core Beltline Operating Limits Curve Adjustment vs. Fluence" i

curve, Figure 3.6.1 of Reference 26.

E.

L

7. Verify that the pressure-temperature (P-T) curves in the cturent Technical Specification are ia reasonable, based upon the information used to determine the P-T curve, n

a i 8. Calculate new pressure-temperature curves based upon the initial RTror values determined in this report. Compare the new P-T curves to the original Technical Specification P-T curves.

- L .- .

t 9. Provide any additional recommendations that would assist and clarify the information for the pending NRC review.

1

-w _ In Section 2 the available Charpy V-Notch impact data and the curve fits through the data are

' discussed. The estimation of the shift in the reference temperature due to irradiation and the

- comparison of the results to the estimates of shift made per Regulatory Guide 1.99, Revision 2, j r. are discussed in Section 3. Credibility of the surveillance capsule test data is discussed in

! N- Section 4. Estimates of the adjusted reference temperature (ART), including a dstalled in I

~

l SIR-97-003, Rev. I l-3 h StructuralIntegrity Associates, Inc.

v . . .

.5 -

'~'

discussion of the initial RTsor valties, are described in Section 5. The calculation of the pressure-temperature curves is described in Section 6. Sections 7 and 8 summarize the results and provide reconunendatiom for future work.

ei amp 4 eMe -

b$ .

P. * '

1 9

e

'bi.

Sue S 'am Om  ?

L. .

,q. -

.1 Id A'

t r-t b .

k p.

u -

M i

h '.

e

.0 SIR-97-003, Rev. I 14

l -

220 L

200 -

180 - -

160 -

Ku 3 - .

.) 140 i w

E 120 -

j Kg, I 100 - -

Ea .

  1. 80 -

i 2 en -

.2 _

~

40 -__

20 - RINor ,

to I  !  ! I I I I I 0

R,

- 40 0 40 80 120 160 200

$ (T- RTuor). *F E

ECa 2.

T i'

& Figure 1-1. Lower Bound Ki, and Kie vs. Temperature Curves From Tests of SA-533 Grade B Class 1, S A-508 Class 2, and SA-508 Class 3 Steels  ;

$ t m- '

-* i f SIR-97-003, Rev.1 1-5 t

b

l  !

l l

! l l

2.0 REVIEW OF CHARPY V-NOTCH TEST INFORMATION 2 i

l As described in Reference 7, each of the surveillance capsules contained Charpy V-Notch i

specimens machined from:

1. Beltline plates from heat C2220. Reference 7 states that surveillance samples were to be made from plate C2220-1 (heat C2220, Slab 1) and to be marked with identification numbers starting with a "D" prefix. However, almost all of the specimens removed and tested from Monticello's first surveillance capsule were marked with identification ,

numbers using a "J" prefix. Battelle [4] hypothesized that the "J" samples were machined i from plate C2220-2. GE had ordered two pieces of plate C2220-2 [STP-1 and SPT-2] to l be used as archive material [7].

l l 2. An E8018 shielded metal arc weld (SMAW), heat number not identified.

, 3. A weld heat affected zone (HAZ).

Sufficient specimens from each capsule were tested to allow fitting of a Charpy curve through the data. .

i i NSP supplied SI with a software package developed by ATI named "CVGraph" and the data files i [6] containing the surveillance data. The data files were verified against the surveillance reports l and corrections were made where necessary. CVGraph provides an estimate of the Charpy V-Notch curve through the data using a hyperbolic tangent (tanh) fitting routine. The Charpy curve is described by:

i l

y = A + B

  • tanh ((T -T.)/C) (Eq. 2a) where:

. A, B, C and To are constants l T = Temperature, *F or *C l

, y = Impact energy, ft/lbs.

' The data files, curve fit and calculations discussed in this section were validated and verified in Reference 27.

! SIR-97-003, Rev.1 2-1 f StructuralIntegrityAssociates,Inc.

1 4

Fitting data to a tanh fit is an iterative process that is run until the change in the standard error between iterations is less than a predefined value. CVGraph allows the user to choose between treating the standard error as a standard distribution or a log normal distribution. Chagy impact data is considered to be nonnally distributed. Therefore, for this analysis the log normal option was not used.

\~

To provide an independent verification of the CVGraph curve fits, SI obtained a copy of a

j. commercial, shareware program called CurveExpert [8]. This program incorporates many curve fitting routines and allows user defm' ed functions, such as the tanh relationship for Charpy data.

In CurveExpert the Charpy curve is described as:

l y = a + b

  • tanh ((x-c)/d) (Eq. 2b) l l whem:

l 4 a, b, c and d are constants x = Temperature, 'F or *C y = Impact energy, ft-lbs l -

i' An additional feature of CurveExpert that is useful in the evaluation of the quality of the data is an estimate of the standard error of the fit and the ability to plot the error bars.

l 2.1 Unirradiated Properties l

A necessary component in the measurement of shift in the surveillance capsules is the establishment of a well defined and characterized baseline curve for the surveillance heat in the L unitradiated condition. Unfortunately, there is no indication that GE, CB&I or NSP tested the surveillance heat in the pre-irradiation condition. However, ORNL obtained the base metal

archive plate (C2220-2, labeled STP1) from GE for a program evaluating the ductile fracture
toughness of modified ASTM A302 Grade B plate (including ASTM A533. Grade B, Class 1 i

a i

e SIR-97-003, Rev. I 2-2 f StructuralIntegrity Associates, Inc.

l plate [44]). As a part of the program, ORNL performed sufficient Charpy V-notch impact tests to produce full Charpy curves.

ORNL conducted tests on specimens of three orientations from archive plate C2220-2 (STP-1).

The impact data for the LT (lateral-transverse, longitudinal), the TL (transverse-lateral, transverse) and the LS (lateral-short transverse) are summarized in Appendix A, Tables A-1 to I A-3. The CV Graph curves for the three data sets are also shown in Appendix A. The curves for the LT orientation energy and lateral expansion will be used for comparison with the surveillance

. data since the surveillance specimens were machined from the LT orientation.

For this analysis plates C2220-1 and C2220-2 are treated as identical for the purposes of

. establishing:

(1) baseline, unitradiated 30 ft-Ib transition temperature for the calculation of the measured irradiation shift.

(2) that a mixture of samples from both plates C2220-1 and C2220-2 in the surveillance program does not compromise the significance of the program.

The energy, lateral expansion and shear Charpy V-notch transition curves for the Reference 44 results with plate C2220-2 are shown in Figures 2-1 to 2-3. The temperatures corresponding to 30 and 50 ft-lbs and 35 mils lateral expansion (MLE) are summarized in Table 2-1.

The available chemical alyses show that all samples identified with heat C2220, whether from the ladle analysis (CMTRs in references 7 and 17),'"J" prefix test samples or a sample from C2220-2 archive plate STP-1, are from one heat, as is shown in Table 2-2. Plates C2220-1 and C2220-2 were ordered on the same mill order number, were austenitized on the same day in the same fumace (but not the same furnace load), and were tempered in the same furnace on successive days. The simulated post weld heat treatments on the test materials and the stress relief after gas cutting of the plate are the same. The only significant difference noted is the SIR-97-003, Rev. I 2-3 l f StructuralIntegrity Associates, Inc.

slightly lower tempering temperature used on plate C2220-1. The heat treatment information is I- summarized in Table 2-3.

I The tensile properties reported in the CMTRs, the CB&I as fabricated tests and the ORNL tests shown in Table 2-4 are essentially identical. In Reference 11 the Charpy V-notch test results from the CMTRs and the CB&I as fabricated tests for the two plates from C2220 are essentially

l. identical:

l I

L C2220-1 10'F 60 - 93 ft-lbs 40*F 77 - 89 ft-lbs l

C2220-2 10*F , 33 - 81 ft-lbs 40'F 77 - 79 ft-lbs The slightly lower tempering temperature used on plate C2220-1 did not adversely affect the i

l . tensile or impact properties compared to C2220-2. Based upon the information discussed above i

j it is justifiable to consider plates C2220-1 and C2220-2 as a single plate for the purposes of f

i evaluation of the Monticello surveill'ance data.

i 2.2 First Capsule (G-1) Removed from Monticello l l l The first capsule, identified as capsule G-1, was removed from Monticello during the shutdown

of November 1981 [ 4 ]. The capsule contained two baskets of test specimens representing base metal, weld heat affected zone and weld metal. Each of the baskets contained a total of eight tensile specimens and 36 Charpy specimens. The capsule had been irradiated for 7.63 effective 2

full power years (EFPY) with an estimated fluence of 2.93 x 10" n/cm A capsule flux to maximum wall flux ratio of 0.31 (lead factor) was reported. This lead factor indicates that the

- flux at the capsule actually lags the flux at the vessel wall positions of peak flux. The irradiation

, temperature for capsule G-1 was reported as 550'F in the CVGraph data files [6] and Reference

31 estimates that the temperature of the annulus region containing the surveillance capsules is j

. SIR-97-003, Rev. I 2-4

1 between 525 and 535'F. No thermal monitor data was reponed in Reference 4. Therefore, the irradiation temperature for the Monticello capsule will be estimated as 525 to 550 F. It should be noted that Reference 4 states that many of the surveillance samples came from plate C2220-2

("J" prefixes).

The Charpy V-Notch data was evaluated using both of the curve fitting programs CVGraph and CurveExpert. The results of all of the evaluations are included in Appendix B. The graphs produced by CVGraph for the base metal plate energy, lateral expansion and percent shear fracture are shown in Figures 2-4 to 2-6. The CurveExpert analyses of this data are shown in Appendix B, Figure B10 to B12. The results are the same. The data is well distributed and the fit through the data is good. The three curves, show similar behavior in defining the shape of the curves. The error bars define the i 2 standard deviation of each fit. In each case the upper shelf starts at about 250*F. A larger amount of scatter was evident in the impact energies for the weld and HAZ specimen sets, as shown in Figures 2-7 to 2-12. The results of the CurveExpert analyses for the weld and HAZ are shown in Figures B-13 and B-14, respectively.

Regulatory Guide 1.99, Rev. 2, defines shift as the change in the 30 ft-lb transition temperature.

For evaluation of the effects ofirradiation on the shift it is necessary to determine the values of the 30 ft-lb temperature from the curves. This value, as well as the 50 ft-lb temperature, the temperature corresponding to 35 mils of lateral expansion, and the upper and lower shelf energies were recorded. These values are summarized in Table 2-1. Note that the CVGraph analyses and the CurveExpert analyses are almost identical.  !

The base metal and weld metal tensile properties are summarized in Tables 2-4 and 2-5, respectively.

SIR-97-003, Rev. I 2-5 f StructuralIntegrityAssociates,Inc.

2.3 Second Capsule (W) Irradiated at Prairie Island The specimens from the second basket removed from Monticello in 1981 were re-encapsulated in a capsule, identified as W, compatible with the Prairie Island Unit I reactor vessel. The purpose was to accelerate the exposure to a fluence corresponding to the end-of-life fluence for the Monticello vessel. Capsule W was installed in the 13* po,sition and irradiated during cycle 16 in Prairie Island for 1.31 Effective Full Power Years (EFPY). The samples received an additional average fast fluence of 2.98 x 10'8 nicm2 (E > 1 MeV). Reference 5 reports a range of fluence t

values for the individual samples. Framatome grouped each of the material types and assigned a

, nominal total fluence for each group. That practice will be continued in this report. The, test

< sample groups are defined below:

' 1 2 s Base Metal Plate 3.33 x 10 : n/cm (E> 1.0 MeV) 2 Weld Metal 3.26 x 10'8 n/cm (E> 1.0 MeV) 2 HAZ 3.31 x 10'8 n/cm (E> 1.0 MeV) '

. l The capsule contained three pairs oflow' melting point thermal monitors. The melting points of l

the thermal monitors were reported as 579'F and 590 F. The monitors were visually evaluated p after exposure. The post irradiation condition of both monitors was " unmelted". This shows that the temperature during irradiation was less than 579'F. References 19 and 43 indicate that the temperature of the surveillance samples during irradiation was 535 to 545 "F. The estimated irradiation temperature is similar to that given for capsule G-1 removed from Monticello.

The test data was evaluated using both CVGraph and CurveExpert. The results of the analyses are shown in Appendix C. CurveExpert was used to verify the results of selected data. The results of the CVGraph analyses for the base metal are shown in Figures 2-13 to 2-15. The three base metal curves (energy, lateral expansion, and amount of shear, respectively) exhibit good consistency, with miminal scatter. The results of the Curve Expert analyses are shown in Figures C10 to C12. The data quality looks excellent for this type of test. Figures 2-16 to 2-21 show the analyses for the weld metal and the HAZ samples. Similar to capsule G-1 there is greater scatter i

SIR-97-003, Rev.1 2-6 h StructuralIntegrityAssociates,Inc.

i l -

! in the weld and HAZ specimens. The results of the CurveExpert analyses of the weld and HAZ energy are shown in Figures Cl3 and Cl4, respectively.

l The values of the 30 ft-lb,50 ft-lb and 35 mils lateral expansion temp:ratures, and the upper and lower shelf energies were measured and are summarized in Table 2-1. The values obtained using the standard distribution treatment of the error of fit was about the same for the two curve fitting i

i programs. -

1 The base metal and weld metal tensile properties are summarized in Tables 2-4 and 2-5, respectively.

l

. \

l l

l l

l l

i SIR-97-003, Rev.1 2-7 f StructuralIntegrityAssociates,Inc.

l t.

Table 2-1 Summary of Charpy V-Notch Impact Test Results for Monticello l Temperature. *F Shelf Energy, ft-lbs Material Condition Source of 30 ft-lbs 50 ft-lbs 35 mils lat. exp. Lower Upper Estimate (1)

Base Metal Unitradiated CV Graph l 27 l 51 l 41 l 8 l 133 Plate C2220-2(44) For ORNL das on C2220-2. LT orientation.

Battelle [4] 56 100 85 N.R. 109 l 1" Capsule (G 1) CV Graph 56 100 80 Note 2 109 CrvExpt 56 100 80 Note 2 108 l 2" Capsule (W) CVGraph 118 154 132 3 106 l

(Note 3) CrvExpt .

I18 154 134 3 105 Weld Metal Unirradiated (1) No Data Available for Estimation of Unirradiated Properties Battelle [4] -58 15 -37 N.R. 129 j 1" Capsule (G-1) CVGraph -58 -15 -37 Note 2 130 CrvExpt -58 -15 Not Plotted Note 2 129 l 2" Capsule (W) CVGraph 0 35 16 Note 2 121

! (Note 3) CrvExpt 0 35 Not Plotted Note 2 120 HAZ

! Unirradiated (1) No Data Available for Estimation of Unirradiated Properties Battelle [4] -67 -22 -45 N.R. I18 1" Capsule (G-1) CVGraph -83 (4) -19 -44 23 (4) 116

, CrvExpt -84 (4) -19 Not Plotted 23 (4) 116 2" Capsule (W) CVGraph 113 159 122 4 85 l (Note 3) CrvExpt i13 159 Not Plotted 4 84 i

1. CrvExpt = CurveExpert, Version 1.3, Shareware Software CVGraph = CVGraph, Version 4.1, Produced by ATI
2. Tanh curve fit does not define lower shelf; value less than zero (0) i
3. Framatome did not curve fit the data and did not estimate the 30 ft-lbs., 50 ft-lbs., or 35 mils lateral expansion transition temperatures or the upper shelf energies.

l 4. Care should be used with this value. Here was insufficient data in the transition and lower shslf regions to l provide a good estimation of the 30 ft-lb transition temperature (the lower shelf wm estimated as about 30 ft-lb) and the lower shelf energy.

5. N.D. = Not Determinable. He data in Reference 11 does not include lateral expansion.

N.R. = Not Reported r

SIR-97-003, Rev. I 2-8 f StructuralIntegrityAssociates,Inc.

= .

Table 2-2' Chemistry Of Beltline Plates From Heat C2220 .

LINE REFERENCE PLATE C Mn P S' SI Ni Cr Mo- V Nb Co Cu Al I 44 C2220-2 < 0.27 1.49 0.01 0.02 0.23 0.68 0.12 0.45 0 0 0.01 0.16 0.02 }

2 (b) 17- C2220-1 0.20 131 0.010 0.01 0.22 0.58 NR 0.45 NR NR NR NR NR '

3 (b) 17 C2220-2 0.20 131 0.010 0.01 0.22 0.58 NR 0.45 NR NR NR NR NR 4 (b) -7 C2220-2 0.20 131 0.010 0.01 0.22 0.58 NR 0.45 NR NR NR 0.17 NR i 5 4 C2220-2(a) 0.24 1.41 0.01 0.01 032 0.66 0.1 0.43 -0.01 NR NR 0.17 NR  :

6 . 4 C2220-2(a) 0.24 1.42 0.01 0.01 032 0.65 0.1 0.43 0.01 NR NR . 0.17 NR 7 7 4 C2220-2(a) 0.24 1.42 0 0.01 032 0.66 0.1 0.44 0.01 NR NR 0.17 NR f 8 4 JBL Sample 0.25 1.41 0.01 0.01 03 0.65 0.1 0.43 0.02 NR NR 0.17 NR [

9 4 JBL Sample 0.25 1.43 0.01 0.01 03 0.65 0.1 0.44 0.01 NR NR 0.17 NR 10 4 JBL Sample 0.25 1.41 0.01 - 0.01 032 0.65 0.1 0.44 0.01 NR NR 0.17 NR Average of unique measurements. 0.242 1.413 0.007 0.012 0.290 0648 0.100 0.439 0.012 0.003 0.012 0.166 0.016 .

lines 1,4,5-10 t CF for 0.17% Cu and 0.65% Ni = 1283 Note a. From comer of test plate STP1 of C2220-2. Same plate as sent to ORNL. -

b. 'Ihe chemical analyses shown on lines 2 and 3 are from the CMTRs [17] and are the same analysis, except Cu, as given en line 4.

y c. NR = Not Reported E

iil  !

iir i tir E

9 k I E

B-

?

$ SIR-97-003, Rev. I 2-9  ;

i

= _ _ . -- _-_______- - _ _. .

. . . 4 --

Table 2-3 ,

Comparison of the Heat Treatments of Plates C22.20-1 and C2220-2 (from Reference 7)

Control Thermocouples, During Hold -

Plate Mill Order Furnace Set Time at Date Furnace istTC istTC 2nd TC 2nd TC Number Point "F Temperature Number Min *F Max *F Min *F - Max *F  !

C2220-1 47248-1 1650 5 Hr 20 Min 11/30/66 2 1635 1635 1650 1650 Piece i 1-14 1225 5 Hr 20 Min  !!/30/66 7 1185 1185 1230' 1230

[

l150 50 hrs , 1/11/67 A 1150 1150 Single Thermocouple Simulated PWHT on Test Mat'l 1100 ,

3 hrs 12/19/66 6 1 f00 1100 Single Thermocouple Stress Relief After" Gas Cutting" C2220-1 and C2220-2 in same heat treat lot .

! C2220-2 47248-1 1650 5 Hr 20 Min 11/30/66 2 1620 1620 1650 1650 i Piece 1-15 1230i10 5 Hr 20 Min f2/1/66 7 1215 1215' 1240 1240 i 1150 50 hrs 12/6/66 B 1150 1150 Single Thermocouple Simulated PWHT on Test Mat'l i

% 1100 3 hrs 12/19/66 6 1100 1100 Single Thermocouple k Stress Relief After" Gas Cutting"

{ , C2220-1 and C2220-2 in same heat treat lot

~~.

W

,E The CMTRs [11] show thr.t the size of each of the two plates is 390 x 132-1/2 x 5-5/16" k

a '

g.

W y

i-f SIR-97-003, Rev.1 .

2-10

l Table 2-4 Base Metal Tensile Properties for Plates from Heat C2220 Fluence 70 F 550 F l Source Reference Factor 0.2%YS UTS R of A Elong 0.2%YS UTS R of A Elong i

bi bi  %  % bi bi  %  %

CMTR C2220-1 11 0 64.8 90 N.R. 30 Not determined CMTR C2220-2 11 0 65.2 91.4 N.R. 31 Not determined CB&1 C2220-1 11 0 63.1 89.8 N.R. 26 Not determined CB&I C2220-2 11 0 62.2 88 N.R. 30 Not determined ORNL C2220-2 44 0 63.7 89.5 N.R. 27 57.3 87.1 N.R. 26 ORNL C2220-2 44 ,

0 62.7 88.3 N.R. 25 57.6 87.3 N.R. 27 Capsule G-1 5 0.2166 71.6 85.3 73.5 27.4 62.6 90.1 61.1 19.6 Capsule W 6 0.6974 79.6 103 67.2 24.7 Not determined i

N.R. = Not Reported Table 2-5 -

Tensile Properties for Weld Metal Samples from the Monticello Surveillance Capsules Fluence 70 F 550 F Source Reference Factor 0.2%YS UTS R of A Elong 0.2%YS UTS R of A Elong ksi ksi  %  % ksi ksi  %  %

l Capsule G-1 4 0.2'66 1 67.2 , 91.7 66.1 28 58.3 87.6 59.5 22.1 l

Capsule W 5 0.6974 79.2 89 72 5.07* 67.4 85 70.6 19.1

  • Specimen failed outside of the gage section SIR-97-003, Rev. I 2-11 f StructuralIntegrityAssociates, lac.

__ .m. . . _ .- . _ _ _ - . . . . _ . _ .-.m . m. __. _. ._. _ - .. _ _ . . .

Cwificuats d Curve I l A : E8 9 St2 C StO in a nas! l l fquates b CYN : A o 8 '( tanhilf - MC l-l Uner Set fangr III:t Temp at 3 ft-lis 3LT Temp at 50 fHlc 505 1.we hit Energy 8.18 l

blannt PLATI SA3321 liset Number:C D 2 Artinse lang Onentaten: LT Capsule Talal Fluence 0 I

s'

.E

  • Ta w=

l h

tu I

u m ,

l z-l O

50- .

s" u i i i i i i i i

-300 -200 -100 0 100 200 300 400 500 600 Temper'ature in Degrees F -

Data Setisi Pintled .

l PInst let Cap: htenat FIATI S45ZR Ort LT But & C5D-2 Archin tong I

Figure 2-1. Plate C2220-2 Charpy V-Notch Impact Energy for LT Orientation, Tested by ORNL, Curve Fit by CV Graph Cseffinents of Daru !

  • A 4C5 8 a 413 Ca804 10 ?u j l l j Equeuse is LF. : A + 3 '1 taand(T - TUl/C) l Opper Shelf Lt.: 8151 Tamperature at LE 35r 41 taser hit LZ: I nxed hierint RAf! SA533 But Number: C2P t Arddve lang Orientation: LT l Capide Total Flusaec 0 iluu

! 01

': m c.

H wu

.5 -

/

I u  :  :  : a i i i

-300 -200 - 10 0 0 100 200 300 400 500 600
Temperature in Degrees F 1

nata utna.1 '

Plant: 110N Cap: htaint M.ATI 5&53E1 M: LT Heat & C23HI Archive long j Figure 2-2. Plate C2220-2 Charpy V-Notch Lateral Expansion for LT Orientation, Tested by ORNL, Curve Fit by CVGraph i

! SIR-97-003, Rev. I 2-19~

StructuralIntegrity Associates, Inc.

- _ - . - _ . ~ - - . . . - - - - . - - - - . . - . - . . - . . . . - -.

Cadfrunts af Carw I l l As3 IsD C s Bar 3 a mg l

Equeuen a Sheirr. = A + s a t tanut - 1sya i l tes,mture at s>. shene a.1 man.t mu sem w m.br:c=>< m % an uw a

l. Capsule Talat nurane 0 l suu  :- l I

l i

- )

u au  ;

e l

.o ,

1 m -

}

a c

e i O .

i

  • 6 g  ;~-

e m

u , , , , ,

-soo -ano -100 0 m 2ao ano 4o0 soO eoo Temperature in Degrees F -

i.a saw anw ,

n=e a cis munit ma smi are u w t. e41,e is.,

l Figure 2-3. Plate C2220-2 Charpy V-Notch Percent Shear for LT Orientation, Tested by ORNL, L- Curve Fit by CVGraph t

l Cismmets af Carw I l A

  • dat B s 8123. C a 12151 3 : gas l

Equhne is CYN : A + B 'l tanWT - 1BVQ l .

UPPer Shelf Energy: geot Tang d :D ft-iks 318 Ts.p at 5 fHhm 28 lasw Shelf W -tm  !

man.t mu sem w n h.ec=s on.uu : a Capsrk G-1 Total anna: 2sEI7 Suu l

l m ou l O h

A -u h

as y mu  !

' c l

W ' L-l 2:

ra . ,

W Q

)

U , i I , , 1

-JoO -200 -100 0 100 200 300 400 500 600 L Temperature in Degrees F n.u s ua sw nem  :.5 c-i mi.n.t un sma are a w a c=o i

l Figure 2-4. Capsule 1 (G-1) Base Metal Charpy V-Notch Irnpact Energy, Curve Fit by CVGraph

. SIR-97-003, Rev. I 2-13 h StructuralIntegrityAssociates,Inc.

, _ ~ . _ . _ _ _ _ _ . _ . . . . . _ _ _ _ . _ _ _ _ . _ _ _ . . . - . _ . . . . _ _ _ _ _ . . _ . .

i cua e cum i

[. As34 8s33 C a utt;,8 3 s :5.3 l rg.t a a a a A B . w - ava i rppr Shelf LT.:um Tempestwe at u :!k e io e Shelf LE:i rusil listenst PLATE SASIBi But Ihunnec C25 Onentatswr LT Capule c-i Total nusace 2Mr/

=u L

E iso E

c.

M W . iou '

2u o -

G r , '

t 3 no i r;

/

l-J ui i i i i i i i i

-m -200 -10 0 o a 200 soo eo soo eoo

! Temperature in Degrees F w.se nmaw not u es,: ra ww.e run sem w: LT set 3 C=m Figure 2-5. Capsule 1 (G-1) Base Metal Charpy V-Notch Lateral Expansion. Curve Fit by CVGraph Castfkisats of Cww i l A s $0 8s5 C

  • Et3 3 a 3rl l Fq.tma k Sluarx s & + B ' l tanbMT - @ l Tanperatae at Sr.Shane 1219 listansk PLATE SASIIBI Hunt Numbec C=3 orientatima: LT

. cm,* c-i w nom :n

, j- - .

no s

e G

A su

.a C e

/

[o E l r

b a n.

oc )

m -

ll j

u3 i i i I i 1 8 i

-m 400 soo 800

-m 200 o ano 200 300 Temperature in Degrees F wa sa rww noe a e, c ww.e run sem are LT amt i c=0 Figure 2-6. Capsule 1 (G-1) Base Metal Charpy V-Notch Percent Shear, Curve Fit by CVGraph l

SIR-97-003, Rev. I 2-14 h StructuralIntegrityAssociates,Inc.

.. -. . ,~_ .. . .- -- - --

Cuerkenu of Curve 1 a a 6t2 5 a E42 C = tt!n M 11.3 l l

g.im.kCn.4+i iinut-mv0i UMur Shelf Energy im Temp at 3 ft-Ik -31 Temp at 21 ft4k -til tower Wif EnertT -113 hiensk fu lhet .Mumler: 01118 M EAT UNDufN Onentaten:

C2puk G-1 Total Buence 2SE!7 30u .

j9 " .

T l s -u i A

ca 5* _

I S ,[

z> '" an U

a

> i i i i i i i i

-300 -200 -100 0 100 200 000 400 500 600 Temperature in Degrees F mu w notw noe a e, G-i men. tin are ata msuna mf m mN Figure 2-7. Capsule 1 (G-1) Weld Metal Charpy V-Notch Impact Energy, Curve Fit by CVGraph Csemnents af Curw 1 l & z E25 I s 43 C s IE:2 3 -M131 l Equatin, k LI a A + 8 'l taaldif - 101/01 Upper Shelf 2 SL5 . Temperature at II 2 @J !awer bif 11 Rzed .

listerut TED list Number: 2018 TRIL BEAT UNU0fX Orientatios

. Dipuk G-1 Total Muenz 23t17 mu m

= im E

l a 5 200

$6 o.

O

\ 3m .

o

  1. i i ui i i i i i i

-300 -200 -10 0 0 10 0 200 300 400 500 600 f

Temperature in Degrees F mu w ntw noe a C ,G-t murut vu are ut t. ma run mT mMDEN

Figure 2-8. Capsule 1 (G-1) Weld Metal Charpp'V-Notch Lateral Expansion, Curve Fit by CVGraph i

I SIR-97-003. Rev. I 2-15 f StructuralIntegrityAssociates,Inc.

! Carrcenu af Curre i )

l 6s2 3s2 Cs mal 3 : .m l rausten b swar: = a + 8 'l tanWT - 1m/01 Temperstm at

  • Shene -s un=t mD smi som6ee as a mT unoon onenut. l C.% c-i mi noence sa l m -

o I

/

i

- au I

! 8  !

! o l l

au )

a o  ;

c 8

-)

i 5

c., o Q

_ \

( l j

u a i i  ! 6 4 1

-m -200 -m 0 m a a 400 s00 e00 l

. Temperature in Degrees 'F

= w mw e ri.ne a C.,: c-i w mt m amttaus a mtunoon Figure 2-9. Capsule 1 (G-1) Weld Metal Charpy V-Notch Percent Shear Curve Fit by CVGraph I Cseffrents of curve t l A a 585 I s 421 C s 2J8 10 s lu l Equatie, is CVN : A + B ' l tanWT - 14/Q l Uppe Shelf Energy:!!535 Temp at 3 fHhs -lEL4 Temp at 50 ft-lbs -its lover Self f.nergy *:!! j Maternt HEAT AFFD 20NE SASEBt Best ihunlur. CED / HR)l0 WE13 RAI Onentatan: LT Capsule C-4 Total Fluence 25t!7 l Juu m au

.c T

a N mu h

e:o D"

e I

la N _

ani -

Z

.o

.}

l u i i i . i i i

-300 -200 -100 0 10 0  :%)0  :!00 400 500 600 Temperature in Degrees F o.u ses sw Flant EN Cap: G-1 llatenat Et1T AfrD 2!NE SASDBt Ort: LT Heat & C:3 / Dm8 W RAI l

l Figure 2-10. Capsule 1 (G-1) Weld HAZ Charpy V-Notch Impact Energy, Curve Fit by CVGraph l

SIR-97-003, Rev. I 1-16

~

StructuralIntegrity Associates, Inc.

. .. . . .. . - - . . . . - - - - - . . . - . _ ~ . . . _ . - ~ . _ . _ . . _ . . ~ . . - _ ~ - - . - . . . -

l CarfTrients of Curve t

~l A s 43 B z 44.3 C a Isas7 aa4g l huatma is LT. s A o B 'l LanM7 - 101/Q j

. Lipper :ibelf LZ: 22 Temperature at LT.1 438 tower shelf LL i raad listernt EAT AfrD M 5ASERI list Number. C:5 / W18 TELD ILtZ Onentaten: LT Capsule C-1 frMI Runnec 2307 icuu

. I l I i m l l

= mo , ,

b *

c.  !

M 100 l

o la i l

} [ o 3

i.

/

0 0 (

oi i i , , , , , , .

-m -a -too .o ioo a a ao a soo .

Temperature iri Degrees F mia see n.us Finet:lElH Cap: G-1 listensk EAT AfrD M SSR Gri: LT Bel &C210/ EtBTU BA1 Figure 2-11. Capsule 1 (G-1) Weld HAZ Charpy V-Notch Lateral Expansion Curve Fit CVGraph Cnemments af Curw I AaS B=2 C : 337 10 s -IL7,

, l l gustan is Sbar. s A + B 'l taaWT - 10VQ l Tanperature at 5k Sune -uJ listannt HAT AFrD M SASDBt list Number.C:10 / IB)l0 WED liAZ Onenbtma: LT Capsule G-1 Total Rumme *.SE7

)

200

=/

u. au

, e e

.c cn su / j a

c i e

O

h. #

0-  :

m j

u i i , i i i i i i

_a -a -too o ioo a a ao soo soo Temperature in Degrees F ma seu n.uw nint: a cip: G4 listanik EAT AFrD M sma are LT lint i c:3 / nas vu.D HAZ Figure 2-12. Capsule 1 (G-1) Charpy V-Notch Percent Shear, Curve Fit CVGraph l SIR-97-003, Rev. I 2-17 StructuralIntegrity Associates, Inc.

. . . -. . . . _ - . _ . _ . . _ _ _ . . . . - . - _.- .~..- _.--- . . ..

l Cedraunts d Cwn i l Aa Su8 i s $lEl C a 812 m a mal l fqmtian e Gli a A + B 'l tanhqT - Bl/O l Upper Shelf Energr inut Temp at 3 43 fang at to it-lbs ist lawr Shelf Energy 254 itstend RATE SASDBt itt Numhec C:':5 Onentatma: LT C ,, w n- xmos

  • ;sJu ,

I l

l m aso l 6 i xt@

l l ga c

ca __- .-.

2: '

[

b / '

e, , ,

. ) , , , , , , .

-m -200 -iOO o 20 0 200 a00 400 s00 e00 Temperature in Degrees F -

in w mw Plant 1Elli Cap: t lhiannt FIATE $6EEE Ort LT Rent i CC'B Figure 2-13. Capsule 2 (W) Base Metal Charpy V-Notch Impact Energy, Curve Fit by CVGraph Cadmasts af Cww I l 4s4G B = CSE C a su M s 15LM l Iquatus it E a A + 1 'l tamb4? - MyQ j u,,.r u m sur T.,.it at u a as to r u m i rw w nd run simum m.t s =6.r: C=s Dr ia* u Ca,anic I Total Momen 35E18 m

= im E

c.

5=

c -

~

b^

.5 -

/

Ug g g o

j g g l

i l 3 , 3

-100 -200 -100 0 200 200 300 400 500 e00 Temperature in Degrees F nm w M.tw Mant IRIN Cap: f lisunat Plan SA OBt Ort LT But & C::D Figure 2-14. Capsule 2 (W) Base Metal Charpy V-Notch Lateral Expansion, Curve Fit by CVGraph i

SIR-97-003, Rev. I 2-18 StructuralIntegrity Associates, Inc.

1 . .- ....___..._.__m. ..-._----._____._.-_-_.m..._._ . - .. - _. . _ _ _ _ . . .. . . _ . . _ -

I Geffemals el Cum i f l Aa2 ism C a Sc7 3a23 l Equalism a Shear.: a a + B 'I tanMT - 10l/01 Temperature at Sk Shar. E*

I hienst MT! SnSDDI lisal Numbsc C=D Onentatan LT Cagnie f Total flusar 33108 l 100 -

o

&= N d3 o u G5 au 3

C o

CJ c.

  • {

I o I 2

U g g g a g g i

-300 -200 -100 0 300 200 300 400 S00 600 Temperature in Degrees F m sm.i n.us ame van C,e m.n.t un sma are it s tt.cza Figure 2-15. Capsule 2 (W) Base Metal Charpy V-Notch Percent Shear, Curve Fit by CVGrap' .

Cufrustats of Cum 1 l AsSE I s ELD 4 C s ELS! E a 282 l Equitain is CVN s & + 8 'I tanh(T - M 1 * .

Upper Shelf Ibargy: 1R'."1 Temp at 3 ft-lbs -J Temp at S ft-lbs 53 loser Shelf Energ -L%.

untarist rum amt Numba: BDB fna HEAT tmDets ornatauss Capsule I Total fluener 32EEe i

m au 2

.h sz. =u A l tio l i U"  !

,c l

g sur r

> V U o /

/  !

u j"

o a i l l i

- 3 10 - 2 10 -10 0 0 100 200 3 30 400 $00 000 Temperature in Degrees F i a sie n.ua nine now . cap r warnt sna are set t. une WEUL BEAT 15ENDIN Figure 2-16. Capsule 2 (W) Weld Metal Charpy V-Notch Impact Energy, Curve Fit by CVGraph f

SIR-97-003 Rev.1 2-19 f StructuralIntegrityAssociates,Inc.

..,.,-.~x-

. . . ~ . - . - . . . _ _ . . . . , , _ . _ _ _ . _ _. _ _ _ _ . . _ . _ . . _ _ , . .. . _ _ _ . . _ . . . - . _ ._

l Castrumets of curn I A : au 3 att c : gas? 10 s 4 2 l l Iquation it LF. 1 + B

  • 1 tanW(f - 101/Q l Upper Shelf LE: 972 Tampestum at L12 55 lower Shelf LE:I rual listerish IE3 Rest Ness 6sc IRX8 TBA ilEAT UNDDTN Onentatma:

Capmale f Total Russee 32500 m

I m

= is0 i

1 I

c M

oc 200  % ,

3 i-Y

i. .

f s_

I , , ,

-300 -200 - 10 0 ,0 100 200 300 400 s00 600 Temperature in Degrees F

mi. sue niud l nea 0, i munit as art
het1:ansrun atuuDern l

l Figure 2-17. Capsule 2 (W) Weld Metal Charpy V-Notch Lateral Expansion, CurveFit by CVGraph Csemannis of Orw 1

( l A2 8 s to C = 7382 10 s llLa j squatima le amarr a a + B

  • I taanst - Int /c) I Tennyaratum at 50c Sbsec 54 listansk TE3 Heat Nunnher:INXS ftlA RE&T UMDiotN Orientation:

l Capsule f Total Fluence 32508

/

=

! ce

! O 5 ou a

c o

O 4" '

L . b c.

  • idU C

Ul 3 [ l l l l g g l

-a00 -200 -100 0 20 0 200 300 400 s00 e00 Temperature in Degrees F' mia s.e asum nint: m es,: a miensk raa Dru sent & ame una at UNDetN Figure 2-18. Capsule 2 (W) Weld Metal Charpy V-Notch Percent Shear, Curve Fit by CVGraph

. SIR-97-003. Rev. I 9.00

~~

i Structural Integn.ty Associates, Inc.

_ _ _ . . . _ _ . _ . _ _ _ _ _ _ _ _ _ . _ . ~ . ~ . ~ ~ . . _ _ _ _ _ . _ .

j Caffrents af Curn i l l A:4@ B : as C 33 1D : is.:8 l Iquatina la CVN : A + 8

  • l taaldt - TOl/Q l Upper Shelf Energy GUE Temp at 3)ft-ils 10 Temp at 50 ft4hc 15fL8 lower hl Energr W listernt ifEAT A}TD 2DNE SAS:DBt list Number: CCD / IIDl8 W !!A1 Oruntaten: LT l Opsule f Total Muence 131D8 l

= I  !

i I

m a i

! :S  !

=

l N .

1 tic L. 1Su o

c -

l r.c  ;

luu i 7

> "E I O a/ l eu

, f, e, A u i i i i i i i

-300 -200 - 10 0 ,0 100 200 300 400 500 800 Temperature in Degrees F w s.ild M.tw Mnat M Cap:I hierek HEAT AFFD1DNt SAsnm Ori: LT Het & C=0 / Ellms W HAZ Figure 2-19. Capsule 2 (W) Weld HAZ Charpy V-Notch Impact Energy, Curve Fit by CVGraph Carffkunts of Curw i l A a 3L41 B s 3L41 C

  • 131/4 10 m CtII l f Fquation is LF. = A + B 'l tanhili - 1%/Q l .

[ ,

Upper Shelf LZ: TIE 1 Temperature at IIlllk 12L8 lower Shelf LE: 1 Fttai listerut HEAT AFFD 2DNE SA533Bt Rest Number: C::31/ IIDtB W RAZ Oruntatiam LT Capsule i Total Musase 13tE18 ,

a:uu i

e

= imu ,

E.

c.

5 20 0 2 .

,$ su <7 o[" -

, s

! u a i i i  !  ; e i i -300 -200 - 10 0 0 10 0 200 000 400 500 800 l

Temperature in Degrees F w seua notw Maat WIN Cap: I bier:at Hf_tf ATTD 2DNE SAE281 Ori: LT Heat & C::31/ IBD!8 W BA1 Figure 2-20. Capsule 2 (W) Weld HAZ Charpy V-Notch Lateral Expansion, Curve Fit by CVGraph SIR-97-003, Rev. I 22i StructuralIntegrity Associates, Inc.

_. - . .- _ . - - _ . _ . -. - ~--. . . - . . . - . . - - . - ~ . . _ . , ,

Carmcents of Cww i l A2 32 C M31 to a m l Equatma a Stuart : A + 8 'i tanWIT - 15/0 l Tanparature at Sk Shenc CD8 ut.n.t mr m m sam n t w c=o / me ru iuz on.nuto tr l Capsule: I Total Fhmace 33tE18 l m = -

? -

_ = ,

m I

m ou a

c o .

e a

e

  • i  %

1 l }

m i

Q ll D UL 1 l l ' i i i* i (

-m -m -m o a a a a a a i Temperature in Degrees F nii. s.e sw Finnt: una cap: r untenik at AFFs a sasmut ei: LT amit A c=o / me rn.D aAz l

Figure 2-21. Capsule 2 (W) Weld HAZ Charpy V-Notch Percent Shear, Curve Fit by CVGraph 1

1 l l l

1

\

r I

r l

i l

l l

i SIR-97-003, Rev.1 ,_9 9

- ~ ~

l StructuralIntegrity Associates, Inc.

t

~_ _ _. - . .__ . .. .- -.

! l 1

3.0 ESTIMATION OF THE REFERENCE TEMPERATURA SHIFT 3 l 3.1 Estimation Using Regulatory Guide 1.99, Rev. 2 Per the Regulatory Guide, the predicted shift in the reference temperature, as a result of neutron

~

! irradiation, is the product of a chemistry factor (CF) and a fluence factor (FF) [ 3 ]:

ARTmyr = (CF) * (FF) (Eq.3)

The chemistry factor, a function of the copper and nickel content, is different for weld and wrought (base metal) materials. Tables 1 and 2 of Regulatory Guide 1.99, Revision 2 [ 3 ), give the chemistry factc,rs for welds and base materials, respectively, based on the measured values of

! Cu and Ni for the specific heat of material. ,

l j The fluence factor is based upon the accumulated fast (E > 1 MeV) neutron exposure. The fluence factor can be found using the following equation or from Figure 1 of Reference 3: ,

1 FF = f( "' ' 80 fEq.4) l where: f = fast neutron fluence (in units of 10 ' n/cm2 , E > 1 MeV).

! The base metal heat of material (heat C2220) has a best estimate composition of 0.17% Cu and j 0.65% Ni (see Table 2-2). The chemistry factor given by Regulatory Guide 1.99, Rev. 2 is 128.3 F. The surveillance weld heat numberis unknown. Reference 4 reported the chemistry of weld test samples. The maximum measured values of the Cu (0.06 %) and Ni (0.95 %) were l used to determine the chemistr/ factor of 82 F. Based upon the fluence values corresponding to The data files, curve fit and calculation discussed in this section were validated and verified in Reference 27.

! SIR-97-003, Rev.1 -

3-1 h StructuralIntegrityAssociates,Inc.

the samples in the two surveillance capsules, the predicted shifts for the base metal and weld metal are given in Tables 3-1 and 3-2, respectively.

3.2 Measured Shift Using Charpy V-Notch Impact Test Results Based upon the discussion in Sections 2-1,2-2 and 2-3, the Charpy impact energy curves were established. These three curves are shown in Figure 3-1. From these best fit curves the three measured values of the 30 ft-lb temperature were obtained. These values and the shifts due to.

irradiation for the two surveillance capsules relative to the estimate of the unirradiated curve are summarized in Table 3-1.

In Table 3-2 the measured values of temperature for 30 ft-lb are summarized for the weld metal samples from the two surveillance capsules. Since there is no impact data for the unirradiated condition it is not possible to determine the shift in the impact properties due to irradiation. The measured shift between the first and second capsule for the weld is similar to the measured shift observed for the base metal.

3.3 Comparison of the Regulatory Guide 1.99 Estimates to the Measured Results Table 3-1 shows the estimated shift and the measured shifts in the RTwr for the base metal. The estimated shifts using the Regulatory Guide chemistry factors are slightly lower than the measured values,28*F vs 29 F for the first capsule and 89 F vs 91 F for the second capsule.

The predicted and measured shifts are well within the 17 F scalter band required by Regulatory Guide 1.99, Revision 2 [3]. This is an indication that irradiating the second capsule in Prairie Island was not unreasonable.-

Since there is no unirradiated data for the weld metal or HAZ it is not possible to determine the shift caused by irradiation for each capsule. However, it is possible to use the measured 30 ft-lb temperature to estimate the shift between the first and second capsules. For the weld metal, the SIR-97-003, Rev.1 3-2 h StructuralIntegrityAssociates,Inc.

l l

1 i

measured shift value of about 65 F is greater than the calculation using the Regulatory Guide i 1.99 chemistry factor of about 39'F, but is certainly not unreasonable.

I 3.4 Estimation of Regulatory Guide 1.99, Position 2.1, Plant Specific Chemistry Factors (CF)

When two or more " credible" surveillance capsules are available, Position 2.1 of Regulatory Guide 1.99 provides a procedure for calculating the plant specific chemistry factor using Equation 5.

CF, = I(FF i* ARTuon)/ IFF,2 - (Eq. 5) where:

3 CFp = the plant specific chemistry fac. tor FFi = Fluence factor for capsule i ARTwon = Measured shift for capsule i Table 3-3 sununarizes the calculation of the chemistry factor for heat C2220 based upon a preliminary assessment that Monticello has two " credible" surveillance capsules. The resulting chemistry factor value of 130.8 is slightly higher than the 128.3'F value given by Table 2 of Regulatory Guide 1.99. As will be shown in Section 5, plate heat C2220 is the most limiting material. Table 3-4 summarizes the estimated chemistry factors for the other two beltline plates and the weld material using the ratioing procedure shown in Regulatory Guide 1.99, Rev. 2,

' Position 2.1 [3].

l i

SIR-97-003, Rev.1 3-3 f StructuralIntegrityAssociates,Inc.

I .

Y Table 3-1

. Summary of Estimated Shift per Regulatory Guide 1.99, Rev. 2 and Measured Shift from the Charpy V-Notch Test Data for the Base Metal (Plate)

Reg Guide - Temperature Measured Measured-Fluence (f) f/10" - Fluence Chemistry 1.99 Rev. 2 (3) @30 ft-lbs, *F Shift *F Predicted 2

n/cm 2

Factor Factor, *F - Predicted From CVGraph Capsule - Shift, "F . -

n/cm (1)

  • Condition E> 1 MeV E> 1 MeV FF(2) From Table 2-2 Shift "F Analysis Unirradiated Unirradiated 0 0 - 1283 - 27 - -

1st Capsule 2.93E+17 0.0293 0.2166 -

1283 . 27.8 56 29 1.2 2nd Capsule 333E+18 0333 0.6974 1283 89.5 118 91 1.5 1st to 2nd capsule shift 61.7 62 62 .

Notes ,

1. Fluence values for the 1st and 2nd capsules are from References 4 and 5, respectively.
2. Fluence factor = FF = f"'"""*80, where f is the fluence at the point of interest.
3. Predicted shift ARTwor = (CF) * (FF), where CF is the chemistry factor [3].

L en E '

E k- i k l S. i e e N

a -

B- I N t k

S1R-97-003, Rev. I ~3-4 j

t

-i Table 3-2 .

Summary of Estimated Shift per Regulatory Guide 1.99, Rev. 2 f and Measured Shift from the Charpy V-Notch Test Data for the Surveillance Weld Metal l t

Reg Guide Temperature - Measured r Fluence (f) f/10" Fluence = Chemistry 1.99 Rev. 2 (3) @30 ft-Ibs, 'F Shift *F i 2 2 n/cm (1) n/cm Factor Factor, *F - Predicted From CVGraph Capsule - l Condition E>1 MeV E> 1 MeV FF(2) (Note 4) Shift *F Analysis 1 Unirradiated [

Unirradiated 0 . 0 -

82 - . Unknown -

1st Capsule - 2.93E+17 0.0293 0.2166 82 17.8 -65 Unknown f 2nd Capsule 3.26E+18 0326 0.6918 82 56.7 -0.1 Unknown .I ist to 2nd capsule shift 39.0 64.9 l Notes I. Fluence values for the 1st and 2ml capsules are from References 4 and 5, respectively. '[

2. Fluence factor = FF = f*'", where fis the fluence at the point ofinterest. -

i

3. Predicted shift ARTwor = (CF)*(FF), where CF is the chemistry factor [3]. ~
4. Chemistry factor is from Reference 3 for a composition of Cu=0.06% and Ni=0.95% (highest measured values from Reference 4).  !

l t

en i G-E 1 a

iir t iir t

. E t

4 '

k a

S i B  !

f SIR-97-003, Rev. I 3-5 r

.--e- '=/g e 'Tt ww w gen .u+4u -Ws+-* 4 1-4 N W me - '- d-- ------

.- . . . - . . . . - . . - . . . . . . - . . . - - . . - . . ~ . . - ..- -.-- . -.- --.- - -.

L .

Table 3-3 .

Calculation of Plant Specific Chemistry Factor for Heat C2220 j per Regulatory Guide 1.99, Rev. 2, Position 2.1 [3]

l Measured l

Fluence (f) f /10 Fluence FF* Shift *F 2 2 i n/cm (1) n/cm Factor Irradiated- FF*ARTsor l

E> 1 MeV E> 1 MeV FF(2) Unirradiated "F Unirradiated 0 0 - -

1st Capsule 2.93E+17 0.0293 0.2166 0.04692 29 6.28 2nd Capsule 3.33E+18 0.333 0.6974 0.48636 91 63.46 Sum 0.53328 69.74 l

\

2

. CF, = I(FF i* ARTNun) /I(FF )i = 130.8*F l

1. Fluence values for the 1st and 2nd capsules are from References 4 and 5, respectively. ^
2. Fluence factor = FF = f( 28-0 '*8 0, where fis the fluence at the point ofinterest I

9 SIR-97-003, Rev.1 3-6

i 1

1 I

l l

l l

Table 3-4  !

Calculation of Plant Specific Chemistry Factor for Other Beltline Materials I per Regulatory Guide 1.99, Rev. 2, Position 2.1 [3]

Measured Chemistry CF Ratio Fluence (f) f /10" Fluence FF' Shift "F Factor Adjusted 2 2 n/cm n/cm Factor Irradiated - Ratio (2) Shift FF*ARTwor E> 1 MeV E> 1 MeV FF(1) Unirrad(3) ARTmn. *F *F  !

Plate A0946-1 (Chemistry: Cu=0.14%, Ni=0.56% [10,11), CF=98.2F [3]) I Ist Capsule 2.93E+17 0.0293 0.2166 0.04692 29 98.2/128.3 22.2 4.81 2nd Capsule 333E+18 0.333 0.6974 0.48655 91 98.2/1283 69.7 48.57 i Sum 0.53328 53.38 I 2

CF, = I(FFi *ARTren) / I(FFi ) = 100. l *F l l

Plate C2193-1 (Chemistry: Cu=0.17%, Ni=0.50% [10,11], CF=118.5F [3]) '

Ist Capsule 2.93E+17 0.0293 0.2166 0.04692 29 118.5/1283 26.8 5.80 2nd Capsule 333E+18 0333 0.6974 0.48636 91 118.5/1283 84.0 58.62

- Sum 0.53328 64.42 l 2

CF, = I(FFi *ARTunn) / I(FF i) = 120.3*F l

Weld Metal - Surveillance Capsule (Chemistry: Cu=0.06%, Ni=0.95% [4], CF=82.0F [3])

Ist Capsule 2.93E+17 0.0293 0.2166 0.04692 29 82/1283 18.5 4.01 2nd Capsule 3.26E+18 0326 0.6918 0.47864 91 82/128 3 58.2 40.24 l Sum 0.52556 44.25 2

CF, = I(FFi *ARTwen) / I(FFi ) = 84.2*F Weld Metal - Limiting Case [10] (Chemistry: Cu=0.10%, Ni=0.99% [10], CF=134.9F [3])

ist Capsule 2.93E+17 0.0293 0.2166 0.04692 29 134.9/1283 30.5 6.60 2nd Capsule 3.26E+18 0.326 0.6918 0.47864 91 134.9/128 3 95.7 66.20 Sum 0.52556 72.8 s

CF, = I(FFi *ARTuori) / I(FFi ) = 138.5'F l 1. Fluence values for the 1st and 2nd capsules are from References 4 and 5, respectively.

2. Fluence factor = FF = fn2mmos o, where f is the fluence at the point of interest
3. ARTuor is adjusted by the ratio of the chemistry factor of the heat in question to the surveillance heat
4. Measured shift is for the surveillance plate.

SIR-97-003, Rev.1 3-7 f StructuralIntegrity Associates, Inc.

l

- 1 140 130  : p-120 i

/ i

~

H0 i

/

100 i

f f 7-

- dW o  : Baseline Curve / j / s

,0}

C2220-2 / Capsule G-1/'[

h " b ) , f -/

a t ""

/

/

/

/ /

/

8. -n  : / / /

!  ! / Capsule W ,

[27F 56F  !!8F 6

!?

a f

J: V p-/

i/ /

lo c....

f

/

k ica

-100 50 -25 0 25 50 75 100 125 150 175 200 225 250 275 300 325 -

@ Test Temperature, F k

$ Figure 3-1. Best Fit Curves for Base Metal Surveillance Materials from Monticello s- ,

Eir Er 9 SIR-97-003, ltev.1 ma 3-8

4 l

l l

4.0 REVIEW OF CREDIBILITY PER REGULATORY GUIDE 1.99, REVISION 2 AND INDUSTRY POLICY l

A review of ASTM E900, several versions of ASTM E185, and Revision 2 of Regulatory Guide 1.99, was performed to evaluate whether the surveillance data from Monticello qualify as credible data sets for reactor pressure vessel (RPV) surveillance.  ;

I 4.1 ASTM E900 l l

- j This standard practice is applicable for irradiation temperatures in the range of 277*C to 310 C 2 2 2 (530 F to 590 F) and fast neutron (E>1MeV) fluences from lx10'7 n/cm to 1x10 n/cm . It  !

also notes that " neutron flux and energy spectra (should be typical of those) expected at the reactor vessel core beltline region".

Both E900-83 and -87 note that a reactor-specific best fit chemistry factor may be combined with the fluence fact 6r provided that credibility criteria are met. Those include:

a) Surveillance material really represents the controlling material in the vessel, b) The change in the yield strength is consistent with the shift in Charpy curves, c) The shift for the correlation monitor material in the capsule falls within the scatter band j for that material, and <

d) The shift for the surveillance material (s) is consistent with the normal trends of similar

. materials and with previous surveillance data for the same reactor.

i l

l SIR-97-003, Rev.1 4-1 l

4.2 ASTM E185 '

This standard defines lead factor as the ratio of the neutron flux at the capsule to the neutron flux l

at the ID of the reactor vessel. Lead factor must be 5;5 for vessel wall capsules. Iflead factor is

> 5, the validity of the data must be verified (e.g., from correlation monitor material). Other issues mentioned include: l a) Accelerated capsules (i.e., those with larger lead factors) may be used.

f '.

b) Index temperatures and RTmyr re a based on best fit Charpy curves.

c) The maximum exposure temperature must be.within 25'F of that of the vessel wall.

The only criterion for credibility of surveillance data deals with correlation monitor material.

The ARTmyr for correlation monitor material in the capsule should fall within the scatter band for the data base for the material, References 29 and 30 are noted in ASTM E185 as sources of information on correlation monitcr materials.

43 Regulatory Guide 1.99, Rev. 2 (5-88)

By noting that paragraph II.B of Appendix H of 10CFR50 incorporates ASTM E185 (since paragraph 5.1 of E185-82 is referenced), this revision of the Regulatory Guide ties the regulatory documents to the ASTM standards that apply to irradiation embrittlement. The difference in temperature at 30 ft-lb between the irradiated and un-irradiated transition curves is defm' ed as the shift to be used for calculations. Per the Regulatory Guide, the shift is predicted from the product of the chemistry factor, which is a function of the copper and nickel contents, and the fluence factor (Equation 4). Different chemistry factors are given for welds and wrought products.

l l

When two or more credible data sets exist for a plant, a plant-specific chemistry factor may be developed by fitting the measured values of shift to fluence per Position 2.1. When the predicted SIR-97-003, Rev.1 4-2 l

shift is determined by this method, the value of orused in the determination of the margin term i

may be halved.-

Relative to credibility, the Regulatory Guide [3] specifically notes on page 1.99-2; "The use of surveillance data from a given reactor (in place of the calculative procedures given in this guide) requires considerable engineering judgment to evaluate the credibility of the data and assign suitable margins". Weighting factors to determine

  • credibility include:
1. Use of controlling material.

p 2. Scatter in the plots of,Charpy energy ve'rsus temperature for the irradiated and l unirradiated conditions should be small enough to permit the determination of the 30 ft-lb j temperature and the upper shelf eners unambiguously.

3. When there are two or more sets of surveillance data from one reactor, the scatter of ARTmyr about a best fit line, drawn as described in Regulatory Position 2.1, normally

~

should be less than 28*F for welds and 17 F for base metal. Even if the fluence range is .

large (two or more orders of magnitude), the scatter should not exceed twice those values.

Even if the data fail this criterion for use in shift calculations, they may be credible for determining the decrease in upper shelf energy. .

4. The irradiation temperature of the Charpy specimens in the capsule should match vessel l wall temperature at the cladding / base metal interface within i25"F.

l- 5. Surveillance data for the correlation monitor material in the capsule should fall within the 1

l scatter band of the data base for that material.

n i

~ .

4.4 Discussion of Credibility The two Monticello capsules generated immediate questions regarding their inclusion as credible daia sets since their irradiation conditions were dramatically different. The first capsule l-

! experienced a " lag factor" (lead factor less than one) in a BWR, while the second capsule saw a

[ very high lead factor (n3) in a PWR. This situation is not within the guidance of ASTM E185, j i.e., lead factor in the range of 1 to 3. None of.the standard practices or regulatory documents SIR-97-003, Rev.1 4-3 StructuralIntegrity Associates, Inc.

L . . ___ ._ _ _ . --- - -

I l

)

i addresses such a unique situation. In this assessment, the evaluation of the credibility of the data j has been based upon specific characteristics of the data; ignoring the large differences in lead  ;

1 factor that the two capsules experienced.  !

The base metal surveillance capsule data from the Monticello program are compared to the criteria that define a credible. data set, as outlined in the various standards and regulations that govern irradiation embrittlement concerns for reactor pressum vessels, in Table 4-1.

As shown in Table 4-1, the only credibility criterion that cannot be resolved relates to the stiift i for correlation monitor material. The Monticello surveillance program was design prior to the establishment of most of the regulatory and ASTM standards requirements. Based upon the discussion above the surveillance capsules are judged to be credible.

l l

l l

i i

I I

d i

l l

1 i

! SIR-97-003, Rev,1 4-4 i StructuralIntegrity Associates, Inc.

i I

l Table 4-1 Comparison of Monticello Surveillance Data to Credibility Criteria (1)

Criterion Document Status .

Surveillance material represents controlling material in ASTM E900; Met the vessel Regulatory Guide 1.99, Rev.2 Scatter in plots of Charpy energy versus temperature Regulatory Guide Met for the irradiated and unirradiated conditions should be 1.99, Rev. 2 ,

small enough to avoid uncertainty in curve fitting

]

Change in yield strength is consistent with the shift in ASTM E900 Met, see Figure 1 Charpy curves 4-1 Shift for correlation monitor material in the capsule ASTM E900; Not met -

falls within the scatter band for that material ASTM E185; no correlation Regulatory Guide monitor 1.99, Rev. 2 materialincluded Shift for surveillance material (s) is consistent with the A STM E900 Met normal trends of similar materials and with previous surveillance data for the same reactor.

When there are two or more sets of surveillance data Regulatory Guide Met from one reactor, the scatter of)RTNorabout a best fit 1.99, Rev. 2 line, drawn as described in Regulatory Position 2.1, normally should be less than 28"F for welds and 17 F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values.

Irradiation temperature of the Charpy specimens in the Regulatory Guide Met capsule should match vessel wall temperature at the 1.99, Rev. 2 cladding / base metal interface within i 25 F

1. All of these requirements were established after the Monticello surveillance program was designed.

l t

i l

SIR-97-003, Rev.1 4-5 StructuralIntegrity Associates, Inc.

Yield Strength vs Fluence Factor l

85 80

'- W m" 75 '

f 70 E s& #

~~~ ~

/

E E 65 ,

'8' g'/ ~~,,,.

- ~ ..

+

E

'e 60 ~# -

'!!! (g y- 1

> 55

$ 50 f 45 40 ,

" 0 0.1 0.2 0.3 0.4 03 0.6 0.7 0.8 8

Fluence Factor (FF=f "%0) m 0.2% Y.S. @ 70F (Plate) 0 0.2% Y.S. @ 550F (Plate)

A 0.2% Y.5. @ 70F (Weld) A 0.2% Y.S. @ 550F(Weld) 70F Plate 550F Plate

- -70F Weld --- 550F Weld Figure 4-1. Yield Strength as a Function of Fluence for the Monticello Base Metal (Plate) and Weld Metal Surveillance Materials a

SIR-97-003, Rev. I ~

h StructuralIntegrity Associa e"s?ln

! l l

5.0 ES'I.MATG OF ADJUSTED REFERENCE TEMPERATURE 1 Regulatory Guide 1.99, Revision 2 [3], describes general procedures to calculate the effects of l

neutron irradiation embrittlement of alloy steel used in the fabrication of reactor pressure vessels.

Irradiation embrittlement increases the value of the reference temperature, RTwor, thereby l reducing the fracture toughness. The adjusted reference temperature (ART) is used to determine

the reduction in fracture toughness causell by irradiation embrittlement and uncertainties in the i'

prediction on the measured data. From Reference 3, ART is calculated using Equation 1 (see Section 1.0). For unirradiated materials, only the margin term in Equation 1 is added to the v to determine the ART v,alue.

initial RTuor alue 5.1 Initial Reference Temperature (RTwnr) o ,

l The initial reference temperature (initial RTwor) is a conservative measure of the nil-ductility -

transition temperature of an unirradiated material. The guidelines for determining the initial reference temperature for new plants is specified in subparagraph NB-2331 of Section III of the ASME Code [12]. Subparagraph NB-2331 requires that a temperature, Tuor, that is at or above the nil ductility transition temperature (ND'IT), be determined by a drop-weight test t

(ASTM E203 [13]). The initial reference temperature.(RTuor) will be equal to Tuor provided that each specimen (transverse orientation) of a Charpy V-notch (CVN) test exhibits no less than 50 ft-lbs absorbed impact energy and at least 35 mils lateral expansion (MLE') at a temperature of l

l ,

TNor+60*F. If the CVN test at TNor + 60'F has not been performed, or if the 50 ft-lbs/35 MLE

. . criterion has not been met at that temperature, then a transition temperature representing 50 ft-lbs l and 35 MLE may be obtained from a full CVN curve developed from the minimum results of all the CVN tests performed. The reference temperature would then be this 50 ft-lbs/35 MLE transition temperature minus 60*F. In all cases, the reference temperature is defined by the value 8The data files and calculations discussed in this section were validated and verified in References 36 and 45.

SIR-97-003, Rev.1 5-1 Structural Integrity Associates, Inc.

~ . - - .. -- - -

of Tsor as determined by drop-weight testing (DWT) or by the lower bound 50 ft-lbs/35 MLE

transition temperature minus 60 F, whichever is higher.

Many older plants, Monticello among them, were built while the ASME Code requirements were still evolving. For many such plants, not all of the tests required to determine the initial RTuor, per the present version of the Code, were performed. Therefore, estimation methods were developed which could be used to determine the initial RTuor, using the available test data, in the same terms as the new requirements. Four estimation methods are presented in this evaluation that may be used to estimate the initial RTunt of the materials used to fabricate the Monticello reactor pressure vessel. A discussion of these procedures is presented in the following sections. ,

5.1.1 Estimation Method 1 (EM-1) - ASME Code Section HIRequirements As discussed above in Section 5.1, the ASME Code states that the initial RTuor value can be set equal to the drop weight test (DWT) NDTT if the results of CVN tests, with transverse specimens, at a test temperatore of NDTT + 60 F exceed 50 ft-lbs and 35 MLE. The only data available for all of the RPV materials, except plate C2220-2, was produced using longitudinally oriented specimens. Per Reference 16, Paragraph B.1.l(3)(b), the temperature at which 50 ft-lbs and 35 mils lateral expansion were obtained on longitudinally oriented specimens can be increased by 20 F to provide a conservative estimate of the temperature that would have been required to obtain the same values on transversely oriented specimens. Using the Reference 16 rationale, if longitudinal oriented specimens were tested at the NDTT+40*F, or less, and the minimum energy was greater than 50 ft-lb and the minimum lateral expansion was greater than 0.035-inch, then the requirements of NB-2331 are considered to have been satisfied. If the minimum energy values or lateral expansion values do not exceed the 50 ft-lb/35 MLE requirements, the initial RTuor value will be equal to the CVN test temperature at which the requirements are met using transverse specimens, minus 60 F. Since the minimum CVN test SIR-97-003, Rev.1 5-2 g

l l

. l l

l l

impact energy values are used, the method is considered conservative. A value of zero for at '

will be used in subsequent calculations. Note that lateral expansion was not recorded for the Monticello CVN tests, and the 35 mils lateral expansion requirement can not be verified. Since i

only two of the NB-2331 criteria for measurement of the initial value of RTsor are satisfied, i.e.,

NDTT and 50 ft-lbs temperature, the value determined by this method is an estimated value, not a measured value.

i i

5.1.2 Estimation Method 2 (EM-2) - GE Procedure .

In the 1970's, GE Nuclear Energy (GE) developed a procedure to estimate the RTuor where limited CVN impact data was available [14, l5]. GE developed this technique for evaluating the CVN test data for vessels manufactured prior to 1972, to comply with the current requirements.

The estimation procedure is based upon the test temperature, the minimum impact energy 2

l- observed and a conservative estimate of the inverse slope of the transition region of a Charpy l . curve. . GE has veiified the procedure for the inverse slope of the Charpy curve transition region

. using a large amount of CVN test data (full CVN curves) for base and weld metal used in reactor pressure vessels. Reference 15 discusses this data and the conservative nature of the procedure. I The method has been applied to vessel plate (ASTM A-533, Grade B, Class 1), forgings (ASTM A-508, Class 2), shielded metal arc welds (SMAW-Type E8018), submerged arc welds (S AW, with Linde 124 flux), and equivalent materials.

l

1. Plate Material - The steps in the estimation are: .

l

  • ci = The standard deviation for the initial RTuor (*F) value.

I 2Charpy curves are drawn with impact energy (y-axis) as a function of test temperature (x-axis).

i

The slope of the transition region is in units of ft-lbs/*F. The GE procedure uses the inverse slope ("F/ft-lb) to allow the value of RTuor to be estimated as a function of impact energy (ft-Ibs).

j L SIR-97-003, Rev.1 5-3 h StructuralIntegrityAssociates,Inc.

i i

I

a. If the minimum energy value is less than 50 ft-lbs, the 50 ft-lbs longitudinal test temperature is estimated, using the following procedure. It is assumed that the CVN specimens were longitudinal in orientation and were tested at one temperature. Using the lowest Charpy V-notch test energy (CVNmi ), adjust the test temperature (Tf) to T5 ot (the temperature at which the longitudinal test specimen is predicted to have 50 ft-lbs energy) by adding 2*F per each unit of energy (ft-lb) below 50 ft-lbs. The following equation shows this calculation:

T 5aL*F = Tr*F + (50 - CVNmi ) ft-lbs x 2oF/ft-!b (Eq. 6)  !

l l

The factor of 2*F/ft-lb in Equation 6 is an estimate of the inverse slope of the Charpy curve in the transition region.

If the minimum energy value is equal to or greater than 50 ft-lbs, the value of T5otis set  !

equal to the test temperature. The value of T50 twill not be estimated by adjusting TT in Equation 6 in a negative direction.

b. Estimate the transverse impact capability (T5ar) for the sample by adding 30 F to the value of T50L:

Tsar *F = Tsot*F + 30 F (Eq.7)

Reference 10 lists a 20*F adjustment to convert from the longitudinal to transverse direction. The 30*F adjustment used here is more conservative.

c. If drop weight tests were performed, compare the NDIT based upon drop weight tests to the estimated RTmyr value of Equation 8.

i SIR-97-003, Rev.1 5-4 i StructuralIntegrity Associates, Inc.

l

s i

RTer F= T 'ar5 'F- 60*F (Eq. 8) o I'

The RTmn is the greater of the NDTT or the result of Equation 8.

l

d. If drop ~ weight tests were not performed, estimate the NDTT as equal to the longitudinal l

CVN transition temperature defined by 35 ft-lbs. For single temperature tests the test temperature will be equal to NDTT if all energy values exceed 35 ft-lb. The initial RTmn is determined from Equation 8 or the estimated NDTT, whichever is greater.

2. Flange and Nozzle Forgings The estimation method for initial RTmyr is identical to that used for plate, except that the procedure for estimating NDTT differs. If dmp weight tests wem not conducted, the GE procedure [14] requires that the NDTT be estimated as the lower of 70*F or the CVN test temperature where a minimum of 100 ft-lb or 50% shear was achieved. It is assumed that the forgings were tested in the longitudinal direction; therefore, the longitudinal to transverse correction procedure of Equation 7 is required.

This estimation method uses the minimum energy value of the CVN specimens (typically three) at one test temperature and a conservative estimation of the inverse slope of the CVN curve in the transition region. Therefore, a value of og equal to zero is reasonable. Note that this j procedure does not verify that the lateral expansion is equal to or greater than 35 mils at the

' initial RTmyr value, as required by NB-2331 of the Code [12]. ,

5.1.3 Estimation Method 3 (EM 3) - Estimate ofInitialRTarfor the Forgings .With No l 1

Impact Test Data L

l l

l . GE issued a purchase specification (33] for the Monticello RPV. That document required that the NDT temperature for the materials not exceed 10*F for the flanges and plates attached to the  ;

SIR-97-003, Rev.1 5-5

i flanges and not exceed 40*F for all other materials. For materials with no reported impact data it will be assumed that the requirements of this document were satisfied, since no deviations have been identified. Therefore, the initial RTer values will be set equal to the maximum allowed NDTT values:

10*F for flanges and attached material 40*F for all other RPV materials i .

The values above are the maximum allowable values and are considered to be conservative,

. th'erefore, or will be estimated as equal to zero.

S.I.4 Estimation Method 4 (EM-4) - Estimate ofInitial RTarfor Shielded Metal Arc

. Welds (SMAW) With No Impact Test Data There are no available impact test resuhs for the weld filler heats used to fabricate the Monticello RPV. Weld niaterials 6m a company named Alloy Rods were used to fabricate the Monticello RPV [35]. Alloy Rods determined the NDTT for a large number of SMAW heats using drop

, weight testing. This test data was analyzed by GE to determine an average value of the NDTT I

and the variance [35]. The average NDIT equals -65.6*F and the standard deviation equals 12.7"F. These values will be used for the initial RTwor and og for the Monticello welds, respectively.

5.2 - Reference Temperature Shift, ARTer In Section 3.1, the Regulatory Guide 1.99, Revision 2, requirements for predicting the shift in the reference temperature were discussed relative to the surveillance samples. To predict the shift l for the reactor pressure vessel an additional factor must be accounted for, i.e. the fluence decreases with distance into the vessel wall from the ID surface. To determine the fluence at a i

! distance within the vessel wall, the calculated or measured fluence at the inside surface of the l

l vessel is attenuated by the formula (5],

L-SIR-97-003, Rev.1 5-6 .

StructuralIntegrity Associates, Inc.

.r n v - , - , . .- n , . , , - + , ,,

i i  !

i l

i f = f, g (e42u) .

(Eq. 9) where: f = fast neutron fluence (in units of 10" n/cm2 , E > IMeV),

f un = fast neutron fluence at the vessel inside surface, (same units as f),

x = depth into the vessel wall, (inches)

For ASME Code Section XI, Appendix G [2] evaluations, x is taken at one quarter of the base metal thickness (1/4t). The st'ainless steel cladding at the inside surface of the vesselis, by design, treated purely as a lining and is not treated as a load-bearing member. However, the fast neutron fiux can be attenuated through the cladding. For this evaluation, it will be assumed that the estimated inside surface fluence, as reported in Reference 20, is given at the cladding-base metal interface. That is, no credit will be taken for attenuation of the fluence through the cladding. The minimum beltline wall thickness is 5.06 inches [10,37].

5.3 Margin The margin term required by Regulatory Guide 1.99, Revision 2 [3] accounts for uncertainty in the initial reference temperature and for variance in the reference temperature shift. The margin term is calculated by Equation 10:

2 M = 2 e do[ +og (Eq.10) where: o=r the standard deviation for the initial RTmyr ( F) and c6 = the standard deviation for ARTemi("F). Reference 3 states that ca is 28 F for welds and 17*F for base metal and that ca need not exceed 0.5 times the mean reference temperature shift (ARTemy). If a plant-specific chemistry factor determined from two or more surveillance capsules that are considered credible is used, then the value of oa may be cut in half.

SIR-97-003, Rev.1 5-7 .

StructuralIntegrity Associates, Inc.

._ - . --.. . = - . - - - - -

i l

The o rterm is related to the uncertainty in the precision of the initial RTuor, either when i

determined by measurement or when default or generic values are used. Most of the estimation methods have established the initial RTuor value based upon analyses of measured data. The value of ci for each method may vary, depending upon the estimation method used. The values of c used in this evaluation will be discussed along with the methods for determining the initial reference temperature (RTuor)in Section 3.

5.4 Monticello Reactor Pressure Vessel Materials and Properties -

The Monticello reactor pressure vessel was constructed from ASTM A-533, Grade B, Class 1 plates. Flanges and most other forged parts mre fabricated ASTM A-508, Class 2 forgings

[33,34]. The drain nozzle forging was made from ASTM A-508, Class 1. Structural welds for

^

the RPV were made using the shielded metal arc (SMAW) welding processes [35]. The plate, flange foiging and nozzle forging materials were tested by tensile, CVN, and DWT methods.

A map of the Monticello reactor pressure vessel showing the approximate locations of the vessel shell plates, flanges, nozzles, and weld seams is shown in Figure 5-1. The layouts of the plates, nozzles, and weld seams used in the top and bottom heads are shown in Figure 5-2. The information in these two figures is based upon information from Reference 37.

5.4.1 InitialRTuor Calculations .

The materials used in the Monticello RPV are documented in Tables 5-1 (plate and flange forgings) and 5-2 (nozzle forgings). The part identifications, heat numbers, CVN impact properties, DWT properties, Ni and Cu content, and estimates of RTuor are iv ,luded. Estimation Method EM-1 was applicable to almost all of the plates and forgings. For pu e C2220-2 the initial RTuor was measured per NB-2331 using the ORNL data [44]. Based upon the discussion in Section 2.1 plate C2220-1 is considered to be identical to plate C2220-2. For comparison 1

SIR-97-003, Rev.1 5-8 Structural Integrity Associates, Inc.

\

purposes, the initial RTnm values for the plates and forgings were determined using both EM-1 and EM-2. EM-3 was applied to the A-508, Class I drain nozzle since no impact data was available. The weld materials were evaluated using EM-4. Table 5-3 summarizes the reconunended initial RTum values and the estimation method used for each value.

Two test plates cut from plc.e C2220-2 (Piece Mk 1-15) labeled STP1 (Base Metal) and STP2 (Base Metal with full penetration seam weld) were prepared for shipment to General Electric per CB&I Surveillance Test Specimen Preparation Plan, Procedure Number STP-1 [7].

Subsequently, Oak Ridge National Laboratories (ORNL) requested samples of A302 Grade B '

and early A533, Grade B, Class 1 plate for a program to evaluate the fracture toughness of RPV steels [44]. ORNL received eight plates from GE for testing. The base metal archive plate fr.om C2220-2 was forwarded to ORNL for this program. The size and shape of the plate supplied to ORNL [44] (14 x 24 3/4" with about 6" square removed from one corner) has almost exa :uy the dimensions given in Procedure Number STP-1 in Reference 7. Note that a sample of C2220-2 about the size of the missing comer was sent to Battelle for chemical analyses. ORNL conducted a wide range of tests including tensile, drop weight, Charpy V-notch (CVN), and fracture toughness tests. The drop weight and CVN (TL orientation, transverse) tests were of sufficient quantity that the initial RTsm values for this plate can be measured to the requirements of NB-2331. The documentation on this plate indicates that it was " formed and qualified by satisfactory NDT tests " in drawing T7, page 60 of Reference 7. Per procedure STP-1 [7] all of the test plates were given a simulated post weld heat treatment to simulate that seen by the vessel during fabrication.

The results of the drop weight tests conducted by ORNL on plate C2220-2 are summarized in Table 5-3. Per ASTM E208 [13] the NDT temperature = -22 F (-30 *C).

The Charpy V-notch test data for the transverse (TL - transverse lateral) specimens from plate C2220-2 tested by ORNL are summarized in Table A2 and on Figure 5-3 (energy) and 5-5 (lateral expansion). The best fit curves through the data were produced using CVGraph [6].

SIR-97-003, Rev.1 5-9 Structurallategrity Associates, Inc.

)

Per NB-2331 the minimum data points shall be used to determine the test temperatures yielding a minimun$ energy of 50 ft-lbs (T50) AND a minimum of 35 mils lateral expansion (MLE) 35 (T ).

The data points shown on Figures 5-3 and 5-5 to be below the best fit curves were replotted and l curve fit to determine the temperatures corresponding to 50 ft-lbs and 35 MLS for the minimum data points. These two curves are shown in Figures 5-4 and 5-6. CVGraph also calculates the values of temperature for the 50 ft-lb and the 35 MLE points, which are 50 T =87 F and T35=63*F, I respectively.

l l Per NB-2331 the initial RTmyr value is the higher of the NDT temperature, T 30-60 F, or T35-60*F. The results are summarized below:

NDT temperature = -22*F Tso-60*F = +27 F m

T35-60*F = +3*F Therefore, the initial RTmyr for C2220-2 is based upon the value determined from the CVN

, - energy of 27*F. As shown in Table 5-1 plate C2220-2 has the highest initial RTmyr value of the beltline plates. Since plate C2220-2 and its sister plate C2220-1 were processed during the same l time frame as shown in the records of Reference 7, an initial RTmyr value of 27 F shall also apply to plate m20-1.

It should be noted that the initial RTmyr value for beltline plate C2193-1 in this report is lower i than the value reported by GE in Reference 10. It appears that some of the information contained in Reference 11 was not considered in the estimation of the initial reference temperatures. GE used only the original certified mill test reports (CMTRs) in their estimates. As was discussed in Section 2-1, additional drop weight and Charpy V-notch tests were conducted by CB&I to l represent the as-fabricated condition of the materials. Plate C2193-1 was tested by Charpy V-notch tests at 10*F and 40 F, and by drop weight tests at 10 F and 50 F. Both sets of drop weight tests had a no-break result. Therefore, the NDTT for this plate can be set equal to 0*F.

CVN tests performed by CB&I were at 40 F using longitudinal oriented specimens and all of the i

SIR-97-003, Rev.1 5-10

I i

. I energy values exceeded 63 ft-lbs. With energy values greater than 63 ft-lbs. it is expected that a minimum of 35 mils lateral expansion would be achieved. Per Section 4.1.1, the initial RTsor value equals 0*F for this plate.

It should also be noted that the initial RTwor value for beltline plate A0946-1 has been increased from the value of 0 F (shown in References 10 and 17) to 27 F. The CMTR for plate A0946-1 l

included in Reference 17 shows that the drop weight test was done at 40 F not at 10*F as shown in Reference 11. The upper bound NDT temperature would be 30*F not 0*F as used in i 1

. Reference 10. Using EM-2 with the 10*F and 40*F CVN data sets indicate that an initial RTuor value of 10 F or less would be expected. The initial RTwor value for plate A0946-1 (and non beltline ~ plate C2613-1 which,also had a RWT at 40 F) will be set at the maximum measured shell course value of 27"F to maintain conservatism.

4 5.4.2 Irradiation Efects l

Beltline regions includ,e Shell Courses 1 (lower) and 2 (lower intermediate), the vertical welds in these two shell courses, and the circumferential weld thatjoins these two shell courses. An estimate of the maximum end oflife (EOL) neutron fluence for a Monticello power uprate at the l 2

vessel inside surface at 32.03 EFPY is 5.11E18 n/cm (E > 1 Mev) [20]. The fluence value will be assumed to be at the vessel-cladding interface. This assumption results in a conservative adjusted reference temperature in the beltline since no attenuation of the fluence by the cladding is considered.

The predicted reference temperature shift due to irradiation, the margin factors, and adjusted reference temperature (ART) for each of the shell and head plates, and flange and nozzle forgings

- are summarized in Tables 5-1 and 5-2. The values of ART were calculated at EOL for the % t location (1/4 of wall thickness from the inside surface) for the beltline materials. Table 5-4 summarizes the initial RTuor value,its preferred method of determination, and the ART values that should be used in subsequent calculations. Note that the full value of c3 was used in the SIR-97-003, Rev.1 5-11

{ StructuralIntegrityAssociates,Inc.

- - - _ . . - _ - = - - - - _ .- - - -.. - - .- -

l l

l calculation of the ART. Even though the surveillance data isjudged to be credible and plant i

specific chemistry factors were calculated there are uncertainties concerning the baseline, unirradiated data for heat C2220 and the irradiation of the second set of surveillance samples in

! Prairie Island.

5.4.3 Adjusted Reference Temperature for Non Irradiated Materials ART values were also calculated for the non-beltline materials so that the margin termt, would be accounted for. The ART values for all of the non-beltline plate, flanges and nozzles are e,qaal to l the individual initial RT or N alues v since ci s iequal to zero in each case. However, the ART values for the weld" material is higher than the inith:' RTNor value due to the uncertainty in the average value of the drop weight test NDTT values as calculated by GE [35]. As shown in Equations I and 5 the ART is equal to the initial RTNor value plus the margin (in this case M = 2 . ci).

l l

l r

SIR-97-003, Rev.1 5-12

{ StructuralIntegrityAssociates,Inc.

Table 5-1 MONTICELLO REACTOR PRESSURE VESSEL SIIELL MATERIALS ASTM A-533 GRADE B, CLASS 1 PLATE AND ASTM A-508 CLASS 2 FLANGE FORGINGS Part Piece Data Source Garpy V-Notch Tests 1111 Ikop WeightTests!I11 Estmuted Adjustments For II4 e at EOL Name MK Hest Ill}/ Temp. Energy. ft-bs Test NDIT Iaidal RTm Oemistrylill Genistry ARTmyr Margin ART S/N IIll S/N(Ii1 No. II11, Loessian P values Min. Teny,P Result sP P Metod Ot wt % Ni wt % Paaer, P P o,.T o,,*F P BGTTOM IIEAD 1-28 A0998-2 CMTR 10 31 31 10 No 0 0 10) NR 0.45 NA NA NA 0 0 DOI 1AR PLATE 37 Break 18 2 18 55 ASPABR 40 77 61 50 No 94 Break 61 1-27 C2193-3 CMTR 10 50 26 10 No 0 NR 0.50 NA NA i NA 0 0 0{ l G) 26 Break 28 2 28 35 AS PABR 40 86 86 50 No 124 Break ,

113 l-26 C1946-3 CMTR 10 56 52 10 No 0 NS 1 (7) NR CL50 NA NA NA 0 NS 55 Bnsk 26 2 (6) 26 52 ASPABR 40 42 42 50 '

Na 70 h .k

. 44 l BOTTOM HEAD l-18 Cl485-3 CMTR 10 65 32 10 No 0 0 i G) NR 0.50 NA NA NA 0 0 LOWER TURUS 1-19 32 Break 16 2 16 PLATB l-20 47 ,

"DOTTOM IIEAD l-21 ASPABR 40 77 68 50 No KNUCKLE" 94 Break l 68 1-22 AIO00-2 CMTR 10 67 38 10 No 0 0 I p) NR 0.54 NA NA NA 0 0 (

l-23 71 Break 4 2 4 1-24 38 l-25 AS PABR 40 123 105 50 No 105 Break 118 r

t SIR-97-003, Rev.1 5-13 3/24/98

Table 5-1 (continued)

MONTICELLO REACTOR PRESSURE VESSEL SHELL MATERIALS ASTM A-533 GRADE B, CLASS 1 PLATE AND ASTM A-508 CLASS 2 FLANGE FORGINGS Part Piece Data Source aarpy V-Nords Tests [Ill Drop Weight Tests [11] Estsmated Adjustnm.as f%r 1/4 e at EOL Name MK Heat [11]/ Tenga. Energ'r, A4s Test NDTT laitialRT ,, Gemistry1111 Genistry ARTurr Margin ART S/Nilll S/N [ll] Na [Ill Locatma P Values Min. Temp.P Resuk sP P MC Ca wt s Ni wt % Pacsor, *F P o, *P o,T P S!!EI1 COURSE 1 1 17 C2193-1 CMTR 10 37 37- 10 No 0 0 RI7 0.50 1 (7) 120.8 38.2 17 01 122.2 0.OWER) 53 Break 6 2 1101 (See Note 8) 128.2 PLA7E 37 ASFABR 40 82 32 50 No BELTLINE 88 Break -

~

87 1 16 A0946-1 CMTR 10 53 42 40 No 30 30 I(7) 0.14 036 100.1 73.1 17 0.0 l ' i.

42 47

[17] Break 27 2 (9) [10] (See Note s)

~ 5.i 1

ASPABR 40 68 63 50 No 64 Break 63 SliELL COURSE 2 1 14 C2220-1 CMTR 10 60 60 10 No 0 27 NB. El7 0.65 130.8 95.5 17 0,0 156.5 (t.OWER IN1ER.) 93 Break 2331 [27] [27] (See Note 8) 11 ale 81 -

[45]

ASPABR 40 77 77 10 No BELTLINE 89 Break 83 ORNL E LT and 13 CVN Tests, and drop weight tests at a range of

[44] temperatures. RT,syrmeasured per h3-2331, see Reference 45.

1 15 C2220-2 CMTR 10 81 33 10 No 0 27 NB. OLl7 0.65 130.8 95.5 17 156.5 33 0.0l Break 2331 [27] [27] (See Note 8) 61

[45]

ASPABR 40 77 77 0 No 77 Break 79 ORNL TI, LT sad LS CVN Tests, and drop weight tests at a range of

[441 temperatures. RT,svr measured per NB-2331, see Reference 45.

l SIIELL COURSE 3 1-13 C2613-1 CMTR 10 49 40 40 No 30 30 NR a49 NA NA 1 (7) NA 0 30 (UPPER INTER.) 40 Break 27 2 (9) 27 PLA7E 50 ISPABR 40 74 74 50 No 78 Break 79 SIR-97-003, Rev.1 "

5-14

F Table 5-1 (continued)

MONTICELLO REACTOR PRESSURE VESSEL SHELL MATER 5ALS ASTM A-533 GRADE B, CLASS 1 PLATE AND ASTM'A-508 CLASS 2 FLANGE FORGINGS Part Piece Data Source Garpy V-NoediTesas [11] DropWeight Tests [Ill Estimated Adjustments Far IM t at EOL Name MK Heaa [II]I Tony. Energy,it-bs Test NDTT Initial rte,r i Genusay[Ill Oesnistry ARTurr Margia ART S/NIIII S/NlI11 NailiI Im:aasan T Vakses Min. Teny,T Resuk sT T Meshod On wt % Niwt% Facsor. *F T c, T o,,T T SilELL COURSB 3 1-12 C2009-1 CMTR 10 29 29 10 No 0 0 I (7) NR a50 NA NA NA 0 0 Conainued 48 Break 22 2 22 38 l AS FABR 40 86 76 50 No  ;

76 Break 109 SilELL COURSE 4 1-11 C2510-1 CMTR 10 63 52 to No 0 0 1 (7) NR 0.56 NA NA NA 0 0 (UPPER) 76 Break 0 2 0 PLATE 52 l

ASPABR 10 71 20 No 70 Break ,  ;

55 I-10 C25to-2 CMTR 10 73 51 10 No 0 0 1 (7) NR 0.56 NA NA NA 0 0 51 Break 0 2 0 57 AS FABR 10 75 20 No 65 Break 87.5 C1.OSURE IIEAD l-1 C2297-3 CMTR 10 84 75 10 No . O J l(7) NR 0.63 NA NA NA 0 0 DOLLAR 82 Break 0 2 0 PLATE 75 ASFABR 10 82 20 Na 57 Break 92 SIR-97-003, Rev. I 5-15 anos

_ _ _ _ _ _ _ _ _ _ _ _ _ _ =_ _ _____ -_. . _ . _ _ _ __ _ _ . _ _ _ - _ . . _ _ . _ _ _ .-. - _ _ _ - _ _ _ . _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 5-1 (continued)

MONTICELLO REACTOk ZhESSURE VESSEL SHELL MATERIALS AS'IM A-533 GRADE B, CLASS 1 PLATE AND ASTM A-588 CLASS 2 FLANGE FORGINGS Part Piece Data Source Garpy V-Notch Tests [11) Drop Weight Tests [11] Estimated Adjamments For 1/4 t at EOL Name MK Heat III]/ Temp. Emergy. A-he . Test NDTT Initial rte,r i Gemisry[III Genniary ARTer Margia ART S/N lll] 5/N lll] No. [lI] im T Values Min. Temp,P Resuk sP P Metad Oswt% Niwis Pacsor. T P o,T o,,T P TOPIIEAD. 1-2 C2361-IB CMTR 10 76 75 -10 No -20 0 1 (7,1@ NR 0.56 NA NA NA 0 0 TDRUS I-3 75 Break 0 2 (10) O SEGMENTS 1-4 83 WPIIEAD- AS PABR 10 90 20 No KNUCKLE" 78 Break 89 I-5 C2669-3 CMTR 10 68 68 10 No 0 0 1 (7) NR CL59 NA NA NA 0 0 1-6 78 Break 0 2 0 I

1-7 108 ASPABR 10 90 20 No 83 Break .

97 VESSEL I-9 l NR 0 deg 10 66.5 66.5 20 No 10 to I(7) NR 0.79 NA NA NA 0 10 ;

ILANGE [34] [34] Il [34l Break 10 2 [34] [34l 10 R)RGING 122.5 180 des 10 77.5 20 No

[34] 82 [34) Break CMTR Copy Not12aible 79.5 TOP l-8 ALX8 Odeg 10 164 109 20 No 10 10 1 (7) NR 0.76 NA NA NA 0 10 ;

IIEAD [341 [38] {34; 125 [341 Break 10 2 134] [34) 10 ILANGB 109 R)RGING 180 des 10 135.5 20 No

[341 186 [341 Break  ;

CMTR Copy Partia!!yI2gible 126 i Silt-97-003, Rev.1 5-16 3/24ss

Table 5-1 (concluded) ~

MONTICFI.I.O REACTOR PRESSURE VESSEL SHELL MATERIALS ASTM A-533 GRADE B, CLASS 1 PLATE AND ASTM A-508 CLASS 2 FLANGE FORGINGS ,

Part Piece Data Scanece Garpy V-Notch Tests [Ill Drop Weight Tests [III Estimated Adjustments For 1/4 at EOL Name MK liest [11]I Energy A-Ibn Test NDIT Initial RT,arr Gemistry [Ill Oemistry ARTearr Margin ART S/N IIll S/N [tI1 No. [11] f <rmion l TTemp.Values l Min. Temp,P Result sT T lMetod Q wt %l Ni wt % Factor. *F T o,.*F l o,,*F T End ofI .ife Fluence per References 20.

Attenuation,1/4 t Fluence Fluence Pacaw Minimum Wall Thickness, Cladding not included [10L 37]

thence at ID (n/cm', E>l MeV) e* 1/4 t 1"'"'*** WallThickness: 5.06 in.

Mrzinnom Vessel Wall 5.IIE+18 abn* 0.737 3.77E+I8 0.730 1/4 t = 1.27 in.

NUIES:

1. Number in [ j are the reference aunken from which part identifemi'= heat number, paperty and chemistry data was obtained.
2. NR = Not Reported
3. 74A = Not Applicable For Regions Outside of the Beldias
4. 241. = Not 1.cgible on CM1R Copy
5. N3 = Estimating the initial RT,s,rvalue using this method is not supported by the data. ,
6. Pur this plate the minimum CVN test energy was below 50 A-lbs at 407 Therefore this data was used la the calculation of initial RT,arn
7. For this estimation procedure the lowest NDTTvalue (based upon the lowest drop weighttest i -.h typically from the CMIR) and the highest CVN test temperature (typically from the As Fabr data) are used.

B. The diendstry factor shown is the plant specific value caladated using the surveillance data as shown in Reference 27.

9. He mininnern drop weight test temperature for this plata was 40T (ugger bound NDTT=307) while other shell course pistes were tested at 10*F or less (ulper bound ND1T=107 or less).  !

The mininuam CVN energy values at 10T and 40T are comparable to the values at these tenperatures for the otherplates with drop weight tests at 10*F. And, using the GE Pr-Are with each of the 107 and 40T .

CVN data sets indicate that an initial RTsarrvalue of 107 or less would be espected. To maintain - ..- the initial RT,arrvalue will be set equal to the marinuun RPV shell course value of 27'F. .

10. Even though Reference 11 states that drop weight tests were ev=w ta-10T. the NDTT will be defined as equal to OT to be consistest with the other plates.

Note that almost all of the other plates were tested at a mininnun of 10T and na NDTT value of zero is coaststent with this other data.

ESTlMATTON METilODS IVR DETERMINA"110N OFIN111AL RT,urr

1.Section III. NB-2331, specifies that RTearr = NITITif CVN energy (fcr transverse specimens) at NDTT + 60*F250 ft-Ibs.

Itr Reference 16 Paragraph B.I.l(3)(b), the test temperature at whidalongitudinal criented specimens yield 50 ft-Ibs of energy can be increased by 20T to provide a conservative estimaec of the tenperanue diat would be required for transverse oriented specsmens, therefore, longitudinal oriented speciarns tested at NIylT+40T woukt be equivalent to testing transverse oriented specinras at NITIT+60"P.

NS if energy at NDTT + 40T (or less) < 50 ft-Ibe for longitudinal oriented spedmens.

2. OE Proadure: R 6s>r determined fiam estimate of Garpy 50 A.lbs transition tenpermane based on the CMTR tests,if min CVN energy value is less than 50 ft-Ibs.

Tset. = lengitudinal Test Tenperature + (50 - CVN min value) x (1T/ft-lb); Tser = Tsa. + 30T (transverse capability ad,iustment, not required fcr welds ).

RT,a,r = (Tser - 60T) or drop weight NDTT, whichever is greater.

3. Assume that the material was tested to, and met, the requirements of Reference 33, therefore, RT,arr = 40T.
4. Pcr welds use the initial RTesirand og values given in Reference 35.

t SIR-97-003, Rev.1 5-17 3m8

Table 5-2 MONTICELLO REACTOR PRESSURE VESSEL ASTM A508, CLASS 2 PRESSURE BOUNDARY NOZZLE MATERIAIE Nau:zle  !!eas No. IArsi=g Data Source Garpy V-NasdaTests [341 Drop Weisht Tests [34] Estinwed Adjussments For 1/4 e at EOI.

Namdwr il'isco ID No. ID [34]I Tany. P.ner8y. 6-Rw Test Result NDTT Initial RTwer Osmistry Osadstry ARTm Marsia ART hfarkl34,37l Alloy [34I Na [321 Location *F Values Min. Teny,T s *P *P Method Q mt % Ni we % Factor. *F T o a,*P o,,*F T NIA E20VW 154G-2 One side 40 89 78 50 No Break 40 40 i NR(34,32] 0.90 [32) NA NA NA 0 40 itecircadeians  ? 78 40 2 0.81134] 40 I

Oustet 110 Otherside 40 116 50 No Break .

6-I A 84 l 85 Nin E20VW 154 0-1 One side 40 114 67 50 No Break 40 40 I NRj34,32] O.91 l32) NA NA NA 0 40 Retiriaal tion 7 104 40 2 0.81 (341 40 Outlet 67 Other Side 40 79 50 No Break 6- 1 11 121 99 N2A U21VW 155G-9 One Side 40 69 68 50 Par &! 40 40 1 NRl34,32] 0.86 [321 NA NA '

NA 0 40 Reciresdation 77 Break 40 2 0.76[34] 40 Inics Same Ileat 80 Note 6 TreatI.on as Oiler Side 40 83 50 No Break 7-I A 155G-7 82 68 N2D E21VW 155G-10 One Side 40 56 56 50 Partial 40 40 I NRl34,32] 0.88{32] NA NA NA 0 40 iteciacidation 74 Break 40 2 0.76[341 40 ImLt 67 Note 6 Other Side 40 87 3 50 No Break 7-Ill ,

99 88 N2C E2t VW 155G 4 One Side 40 48 47 50 No Break 40 NS I NR[34,32] O.881321 NA NA NA 0 NS lten ia culatiam 67 40 2 0.76 l341 40 lukt Same lleat 56 Treat 1.ut as (hher Side 40, 47 50 No lireak

7. l(! 155G-3 59 49 ,

N2D li2 t VW 155G-8 OneSiJe 40 96 72 50 No Break 40 40 1 NR(34,32] 0.78 l12l NA NA NA 0 40 itecinud4 tion 100 40 2 0.76 [34] 40 Inlet 87 Other Side 40 87 50 No lireak 7-11 72 80 l SIR-97-003, Rev, I 5-18

_ _ _ _ _ _ -. . _ _ _ _ _ _ _ _ .-_ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ - . - _ _ _ _ - . _ _ _ _ _ _ . _ _ _ _ . _ _ _ . - _ _ _ _ _ _ - . _ _ _ _ _ _ . -__a___ _ _ _ _ , __ __-_ .- __ -- __ _ - _ _ _ - _ _ _ _ - - - . _ . - - _ _ _ _ . . - _

Table 5-2 (continued) .

Af0NTICELLO REACTOR PRESSURE VESSEL ASTM A508, CLASS 2 PRESSURE BOUNDARY NOZZLE AfATERIALS Noule IIcat No. Ibraing Data Source Qiarpy V-NotdiTests (341 Drop Weight Tests (341 Estimated Adjustments For It4 at EOL muider / Piece ID No. ID [3411 Temp. Energy. ft-Ibs Test Result N!YIT Taitial RTsayr Ownustry Chensary ARTeos Margia ART Mark l34,37) A!!ay!34l No. [32l Locatlan P Vaknes Min. Temp.T sP P  : Method Q: et % ! Ni we % Paaor. P P ca.T o.T s T N211 U2t VW 155G-6 One SiJe 40 85 46 50 No Dreak 40 NS I NRj34.3210L881321 NA NA NA 0 NS Recisculation 97 40 2 0.76(341 40 Inkt Same IIcat 66 Treat Los as Oiher Side 40 46 50 No Dreak 7-lE 155G-5 58 58 N2F E21VW 155G-7 One Side 40 95 50 50 Panial 40 40 i NR134.32) 0.86 [321 NA NA NA 0 40 stecirculaeion 94 Break 40 2 0.76 [34] 40 laks Same IIcat 88 Note 6 Treat tm as OtherSide 40 86 50 No Break 7-!P 155G-9 50 si N2O  !!2t VW 155G-2 One side 40 96 74 50 No Break 40 40 i N5134.32] 0.86 l32] NA NA NA 0 40 Recirculatis 95 40 2 0.76 [34] 40 Inlet SanzIleal 115 Treat 14 as Other Side 40 74 50 No Dreak 7 10 155G-1 86 83 N211 E2 t VW 155G-3 One Side 40 80 68 50 No Break 40 40 1 NR[34.32] 0.88 l321 NA NA NA 0 40 Recisculei.us 73 40 2 0.76 l34] 40 Inkt Same llent 68 Treat In as Other Side 40 78 50 No Break 7-111 155G-4 73 80 N21 E2tVW 1550-1 One side 40 62 57 50 No Jlreak 40 40 1 NR[34.32] 1188(32] NA NA NA O 40 ltwirenleion 66 .

40 2 Inics 0.76 (34) 40 Sanic Ileat 57

'Ireat In as Other Side 40 62 50 No Dreak 7 13 155G-2 72 80 '

N2K  !!21VW 155G-5 One side 40 96 61 50 No llreak 40 40 1 NRl34.32] O.us l321 NA NA NA Og 40 Itctinuiteiun 65 40 2 a76 l341 40 lukt Same IIcat 78 Teeat Imi as (kler Side 40 72 30 No lireak I 7 IK 155 0-6 61 g

70 , I SIR-97-003, Rev. I 5-19 i

i l -

1 l

l l

l Table 5-2 (continued)

MONTICELLO REACTOR PRESSURE VESSEL ,

ASTM A508, CLASS 2 PRESSURE BOUNDARY NOZZLE MATERIALS Osamy V-NordiTests [341 Drop Weisht Tests (341 Estinuted AJjuanwnts fiw 1/4 at EOt.

Nouk IInt N. I;rging Data Source Test Result NDTT Initial RTser Oienistry Owaimry ARTuot Margia ART Nuitwr / l'iece ll) No. ID 13411 Tony. Emersy. ft-Es T Cu wt % Ni wt % Factor. T T c a ,T as,T T klak {3 4,37l Alloyl34l No. l32l Iecation T Values Min. Teny,P sT Method 40 40 t NRl34,32] 0.88 [32] NA NA NA 0 40 N3A E2tVW 156G-1 One Side 40 66 52 50 No Break 40 2 0.76 [34] 40 Stemit 68 t kulet Same !! eat 67 Treat Ian as OilerSide 40 52 50 No Break 15-l A 156G-3 73 70

' 50 No Break 40 40 1 NR[34,321 a881321 NA NA NA 0 40 N316 E21VW 1560-2 One side 40 92 58 40 2 a76134) 40 Steau 82 I holet 83 Other Side 40 77 50 No Break 15 lit 58 69 40 82 69 50 No Break 40 40 I NR(34.321 (189 1321 NA NA NA 0 40 f43C U2iVW 156G-3 One Side 40 2 a76 [34) 40 Steen 69 t kulet Same ll'at 71 Trsat I.in as (kher Side 40 76 50 No Break 15-14: 156G-1 79 70 NID l'2 t VW l!NK One Side 40 79 48 50 No Break 40 NS I NR l34l 0.76 [341 NA NA NA , O NS 40 2 40 i hun 70 t kulet 48 Other side 40 78 50 No Break 15-lp 65 W t'ki l R 67 50 . No Break 4n 40 NR l34l 0.76 [341 NA NA NA 0 40 N4A I?21VW llNK Oue Side 40 139 130 1 40 I;ccJuder 139 40 2 149 (hher Side 40 130 50 No Break 9-l A I40 W t'kt IR 150 50 No Break 40 I NR [34l 0.76 [341 NA NA NA 0 40 N4ft li2 t VW llNK One Side 40 125 122 40}

40 2 40 IWJwder 122 .

137 (hher side 40 141 50 No Break 9 - 1 11 143 W tklIV I40 SIR-97-003, Rev.1 5-20

Table 5-2(continued) .

MONTICELLO REACTOR PRESSURE VESSEL ASDf A508, CLASS 2 PRESSURE BOUNDARY NOZZLE MNERIALS Nuk fleet N. Ihging IkaaSource aarpy V.NediTests 134l Drop Weisha Tests I34] Estimmied Advimments Fur 1/4 e me EDI.

Namulo /1%ce ID No. ID [34]/ Ternp. Energy. A-Rio Test Result NDTT Initial RTser Gendstry G endary ART,e, Margie ART him k (14,37l Alloy (34l No. [321 tecarica T Values Mia. Tesy,T sT T Medied ce wt % Ni wt S Pactor. T T 0 4 ,7 cT u T Nic E21VW UNK One Side 40 129 129 50 No Break 40 40 I NR {34) a761341 NA NA NA 0 40 lbl.asa 133 40 2 40 13I .

Other Side 40 137 50 No Break 9-IC 147 No e 'ktllt 137 Nil)  !!2t VW IINK one side to 140 94 50 No Break 40 40 1 NR l34] a76 l341 NA NA NA 0 40 lblwases 136 40 2 40

'd 40 i

Other Side 133 SQ No Break 9-ID 130 '

No e 'kfl14 140 NSA  !!2tVW UNK One side 40 117 101 NR NR ND NS I NRl34l a76 l34] NA NA NA 0 NS Gwe 127 40 20) 40 St ray 135 Other Side 40 121 i I

101 A 10I N Ckt l R 117 N5tl E2iVW IINK One Side 40 151 141 NR NR ND NS I NRl34l 0.76 l341 NA NA NA 0 NS Gne 141 40 . 2 p) 40 Stuay 141 .

Other Side 40 162 10-1 B 149 N CAITR 145 i N6A I!20VW UNK One Side 40 145 125 50 No Break 40 40 I NR l34l R88134l NA NA NA 0 40 Tay llaad 127 40 2 40 i tuaninwidation 125 Other Side 40 127 50 No fireak  ;

ll 1 A 129  :

N rkl'Ilt 125 l N6B E20VW UNK One side 40 161 139 50 No Break 40 40 I NR [34) a79134] NA NA NA 0 40  :

Tip ikaJ 161 40 2 40 [

Indiunwntation 147  ;

Other Side 40 155 50 No Break >

I l-116 139

{

No t 'Al'Ilt 147 SIR-97-003, Rev. I 5-21  !

. t

__. _____ = _ ._. _ _____ -_ _ _ - _ _ _ _ . _ _ _ _ _ _ _ . . _ _ - _ - _ _ - _ _ _ _ _ _ _ _ __ _ _ _ _ - _ _ _ _--__ _ _ _ _ _ _ ____

Table 5-2 (continued) i MONTICELLO REACTOR PRESSURE VESSEL

[

ASTM A508, CLASS 2 PRESSURE BOUNDARY NOZZLE MATERIA!E i

Nute IIcas No. Forging Data Saiera Omarpr V-Esch Tests [34] Drop Wei8ht Tests [34] Estianseed AJjustamentsFar1/4 atEOf *

&niher / Piece illW. ID 134)/ Teny. Energy. A-Ris Test Resuk NDIT Initial RTourr Giendstry Ciensary ARTraw Margia ART Man k 134,371 Alloy [34] No. [321 I me== P Vehies Min. Tany,P sP P Method Cu we % Ni wt % Passer P P oT u ci,T T N7 E20VW R1600 One Side 40 155 148 50 No Break 40 40 1 NR[34,32l 0.88 (32] NA NA NA 0 40 Tap liced 157 40 2 (L81 [34] 40 Vent 148 4

OtherSide 40 163 50 No Break 12-1 167 156 NSA E20VW UNK One Side 40 118 86 50 No Break 40 40 1 NR l34l 0.81 134) NA NA NA 0 40 Jet Pung 117 40 2 40 12strunwaration 101 Other Side 40 120 50 No Break I4 IA 127 .

, W CMTR 86 ,

N815 E20VW UNK One Side 40 124 87 50 No Break 40 40 1 NR l34l 0.811341 NA NA NA 0 40 letPung 114 40 2 40 Instrunwatation 126 -

Other Side 40 106 50 No Break i 14-IB 87 .

Nan CMTR 96 [

N9 UNK UNK One Side 40 97 91 50 No Break 40 40 1 NR [34] 0.81[341 NA NA NA 0 40 9 l CitD flydraulic 91 40 2 40 l Return i14 -

l ,

Otherside 40 til 50 No Break

  • 13-1 128 Na CMTit 103 NIO II20VW R163G One side 40 110 60 50 No Dreak 40 40 t NR134.32l 0.92132l NA NA NA 0 40 Case licha l*ress 125 40 2 0.81{341 40
  • i .t.1 i.pii.I Contr..I _

l15 Other Side 40 60 50 Nollreak 63 ,

78 i i

NI5 [ WIW NR NR NR ND NR NR ND 40 3 NR NR NA NA NA 0 40  ;

Ihain Sule, Ma.le liunt ASnf A Suel, Class I lIIeas anJ 5eri.il Nundier linkauwn. No CMTR i

i l

SIR-97-003, Rev. I 5-22 l

a Table 5-2 (concluded) t MOffrICELLO REACTOR PRESSURE VESSEL ASTM A588, CLASS 2 PRESSURE BOUNDARY NOZZLE MA*IERIALS

- Noule IIcar No. ciaspy V.Nond Tests [341 DropWeinbe Tests f341 Estinialed

  • Adjummenes For I/4 at EOI.

. Ibrains 13 eta source Numf ast i1%cc ID No. ID [341 / Temp.l Bnergy, A.Ris Test Resuk NDTT Initial RTearr ciendsery Oneedsery 4RT, sos biargia ART klark [34. 371 Alloy (341 New(12] Lacusion T l Values l Mio. Temp,T sT T l Medied On we % l Ni wt % Pacsar,T T o u? l ai,T T ,

NIIA & B are made front Alloy 600(58-166)

NI2A & B are made fruen Alloy 600(58 866)

  • Nf 3 mmJ N14 are nudeinun Alloy 600($I1-166) ,

NO'll!S:

1. Nimula:r in [ l are the reference mundiens from which part identification, heat number, guaperty and chemisty data was obtained.
2. NS = IIsetnusing the initial RTearr alue v using this == shad is not supposted by the data.
3. NR = Nut Regnated  ;
4. NA = Nui A[pm: lale Pur Regions Outsede of she Behline  ;
5. IINK = Unkisown
6. Na at die any weight test samples developed a crack that did met guapagate ar ass die full width of the , Decaniementica described the results as a *no-break
  • l32) er " partial break"[341 ASTkl li208 states alias if the crack Jnes not penpagnes to either edge of die tensile sieface that she test result can be described as "no-break". .
7. Ilm swd .I sainiases a value.4 Itrl'. inst there are an dr9 weight test resides. All of des selaer ausule fasgings have an NIYlT vahse espaal to 40"18. To be samscrvative, stie NITIT vakne far etnis soule well be act empial to 40*ll, dicrcture. RT,ayr = 407. ,

liSTIkl AllON MLrillODS IUR DErnIRhlINA'110N OP INITIAL RTesyr i I. Nettiam in. NH-2 5JI, specesses Usat KTeatrr

  • INEJ & R 83 4.,VM emergy Ser transverse speciniana) et ND1T + 60*P2 50 ft-Nie. ,

j l'er Hefesence 16,l'aragrag4i II.I.l(3)(b), she test tesuperanse at whida longitudiinal criented specimens yield 50 A-Ibs of emergy can be inciemmed by 20T to provide a conservativs estimase of the testign:s ature llaat wuuld be respaired Ier ransverse cricated spectinets, thelefore,longitudital OrieRted specimeRs tested at NDTr+40T would be equivalent to nesting transverse encased specimens at NDTr+607.

rds if energy mi NDTI + 407 (or less) < 50 h-Ibs for longanadiaal oriessed specisness. l 2L s it? 1%cedure: RTuor deterndeed frosa estimmes of Onespy 50 A-lbs transition semperamme based on the CM11t tests,if min CVN caergy value is less dina 50 A-Ihs. ,

Tw = lusigitudsmal Test Temperanws + (50. CVN ada vahse) x (2 TAI.lh); Tser"Tsu + 30T (transverse capability adjustnwnt, not respaired for welds ).

RTea.r = fTser . 60*l') or dry weight ND1T whidiever is greater.

3 Assmw staat slw maecrial was tested to, and snet, the requiresnents of Reference 33, therefore, RTsarr = 407. -  !

4. Iis w.lJs use the initial RTsayr and ai values given le Refereace 35.  !

(

t t

r 1

SIR-97-003, Rev.1 5-23

i Table 5-3

. ORNL Drop Weight Test Results on Plate C2220-2 [44]

4 Test results

] Specimen Number TestTemperature F(*C) Break No Break 1

4 Z81-03 -4*F (-20*C) V '

4 - 1 Z81-06 -13'F (-25*C) V l

Z81-09 -22*F(-30 C) 4 Z81-01 -13*F(-25 C) V i .

)

i 1

l 1

1

)

6 SIR-97-003, Rev.1 5-24

t t

, t i

Table 5-4 i MONTICELLO REACTOR PRESSURE VESSEL MATERIALS ASTM A-533 GRADE B, CLASS I PLATE, ASTM A-508 CLASS 2 FLANGE FORGINGS, AND E8018 WELD MATERIAL Adjustnwats its 1/4 e at EOL Part Piece lient Na / Est taitialRT, eve Owmistry Ormistry ARTesyr Margia ART  !

Nane MK Parging ID No. *P Method Q wt % Niwt % Padar *F 'F o,*P o,.*F *P l BOTTOM IIEAD DOLLAR PLATE l-28 A0998-2 0 1 NR 0.48 NA NA NA 0 0 1-27 C2193-3 0 1 NR 0.50 NA NA NA 0 0  ;

l-26 C1946-3 26 2 NR 0.50 NA NA NA 0 26 BOTIDM WEAD

  • KNUCKLE"Pf.A1E l-18,1 19,1-20,1-21 C1485-3 0 1 NR 0.50 NA NA NA 0 0 l

I-22,1-23,1-24,1-25 .%I000-2 0 1 NR 0.54 NA NA NA 0 0 l SIIELL COURSE I (LOWER)PLA1B 1-17 C27 I (Note 8) 0 1 0.17 0.50 120.8 88.2 17 0.0 122.2 BELTLINE l-16 Afm6-1 (Nose 8) 27 2 (10) 0.14 0.56 100.1 73.1 17 0.0 134.1 SilELL COURSB2 @WERINTER.) PLATE 1-14 C2220-1 (None s) 27 NB-2331 at? O.65 130.8 95.5 17 0.0 156.5 BELTLINE I-15 C2220-2 (Note 8) 27 NB-233I O.11 0.65 130.8 95.5 17 a0 156.5 ,

SifELLCOURSB3 (UPPER LVIER.) PLATE l-13 C2613-1 27 2 (10) NR 0.49 NA NA NA 0 27 ,

1-12 C2089 1 0 1 NR 0.50 NA NA NA 0 0 SI! ELL COURSE 4 (UPPER) 1-11 C2510-1 0 1 NR 0.56 NA NA NA 0 0 1-10 C2510-2 0 1 NR 0.56 NA NA NA 0 0 CLOSUREIIEAD DOLLAR PLATE I-I C2297-3 0 t NR 0.63 NA NA NA 0 0 TOP IIEAD

  • KNUCKLE" PLA1B 12.1-3,1-4 C2361-1B 0 1 NR 0.56 NA NA NA 0 0 1-5,I-6,1-7 C2669-3 0 1 NR 0.59 NA NA NA 0 0 VESSEL R.ANGE FORGING l-9 CM1R Copy Not legible 10 i NR O.79 NA NA NA 0 10 CLOSUREIIEAD FLANGHIORGING l-8 ALX8 10 I NR 0.76 NA NA NA 0 10 }

RECIRCULATION OU11ET NOZZLB NIA E20VWI I54G-2 40 1 NR 0.90 NA NA NA 0 40 NIB E20VW /154G-1 40 1 NR 0.91 NA NA NA 0 40 l

RECIRCULA110N INLET NOZZLB N2A E21VW /155G-9 40 1 NR 0.86 NA NA NA 0 40 i N2B E21VW/155G-10 40 1 NR 0.88 NA NA NA 0 40  ;

N2C E21VW /1550-4 40 2 NR 0.88 NA NA NA 0 40 f

N2D E2tVWt 155G-8 40 1 NR 0.78 NA NA NA 0 40 N2B E21VW /155G-6 40 2 NR 0.88 NA NA NA 0 40  ;

N2P E2tVWil55G 7 40 i NR 0.86 NA NA NA 0 40 N2O E21VW /155G-2 40 1 NR 0.86 NA NA NA 0 40 N211 E21VWI 155G-3 40 1 NR 0.88 NA NA NA 0 40 N2J E2tVW /155G-1 40 1 NR 0.88 NA NA NA 0 40 N2K E21VW /155G-5 40 1 NR 0.88 NA NA NA 0 40 ,

STEAM OtTILET NOZZLE N3A E21VW /155G-1 40 1 NR 0.88 NA NA NA 0 40 [

N3B E21VW /156G-2 40 1 NR 0.88 NA NA NA 0 40 i N3C E21VW /156G-3 40 1 NR 0.89 NA NA NA 0 40 N3D E21VW 40 2 NR O.76 NA NA NA 0 40 i i

i SIR-97-003, Rev.1 5-25 3/24o8 i i

Table 5-4 (continued)

MOffl1 CELLO REACTOR PRESSURE VESSEL MATERIALS '.

ASTM A-533 GRADE B, CLASS 1 PLYfE, ASTM A-588 CLASS 2 FLANGE FORGINGS, AND E8818 WELD MA1ERIAL Ad itisements For 1/4 a se EOI.

Part Psece Heat Na s Est. Initial RT ,r. Queaustry Oienssary ARTuur Margia ART Name MK Forging ID No. T Medied On wt % Niwt% Faaor.T T o,,T a,,T T REDWATERN0ZZG N4A E21VW 40 I NR 1176 NA NA NA 0 40 N4B E21VW 40 I NR 0.76 NA NA NA 0 40 N4C E21VW 40 I NR 0.76 NA NA NA 0 40 N4D E21VW 40 1 NR 0.76 NA NA NA 0 40 CORESPRAY NOZZLB N5A E2tVW 40 2 (7) NR a76 NA NA NA 0 40 N5B E2tVW 40 2 (7) NR- 0.76 NA NA NA 0 40 CLOSURBill!ADINST1tUMENTATION N6A E20VW . 40 1 NR RSI NA NA NA 0 40 N6B B20VW 40 1 NR a79 NA N4 NA 0 40 TOPIIEAD VENTNOZZLB N7 E20VWIR1600 40 1 0.43 att NA NA NA 0 40 JIITPUMPINSTRUMENTAllONNOTIf Pt NSA E20VW 40 1 NR asi NA NA NA 0 40 Naft E20VW 40 I NR 0.51 NA NA NA 0 40 CRil llYDRAUI.IC RITIURN N9 E20VW 40 -I NR O SI NA NA NA 0 40 del.TA PRESSURE & LIQUID Cor(TROL NO771 R9 NIO E20VW / R161G 40 1 0.44 0.92 NA NA NA 0 40 DRAIN NOZZLE NI5 WIW 40 3 NR NR NA NA NA 0 40 INS 11tUMENT NOZZLES N11 A & B N12A & B Alloy 600- Analyses not Required.

H.ANGE VENT NOTII Rt Nt? NI4 Alloy 600- Analyses not Required.

1.lMI11NG WELD - BE! "ILINE, Re ference 35 - NR 45.6 4 at 0.99 138.5 101.1 28 12.7 97.0 i SEE NON-BEI.T1.INE FOR UNIRRADIATED PROPER 11ES (Note s)

JMrtlNG WPI D - NON Ill!I 'IT ANE, Referena 35 l - NR -65.6 4 0.1 0.99 NA NA O 12.7 40.2 4

r l

l l

.I SIR-97-003, Rev.1 5-26 ams

Table 5-4 (concluded)

' MONTICELLO REACTOR PRESSURE VESSEL MATERIALS ASTM A-533 GRADE Be CLASS 1 PLATE, ASTM A-508 CLASS 2 FLANGE FORGINGS, AND E8018 WELD MATERIAL

^; For I/4 e et EOL Part Piece liest No./ Est. Initial RT ierr Chanustry Chanastry DRTser Margin ART -l Name MK Ferging ID No. T l Method Cu wt %l Niwt % Factor,T T sg *F l s57 T 1

.{

NOTES:

1. See Tables I and 2 for the reference ==d=re Aesa which part idesdification, best number, property and demistry data was obtained
2. NS - Estimating the initial RTie,rvalue using this =M is met supported by the data.
3. NR = Not Reported
4. NA = Not Applicable For Regions Outside ofthe hht-a j
5. UNK = Unknown
6. One of the drop weight test samples developed a crack that did not propasste across the AsE width of the specamen, described as a no-break reauk.
7. "neis medied estunates a value of107,but there are no drop weigk test results. AR of the ether nearle forgings have en NDTT vahm equalto 40T. To be conmarvative,the NDTT vehne for this nozzle

, will be set equal to 40T,thW RTerr = 407. i .

8. Plant specino chernestry faders used in this table for1he beltline misterials are Acan Reference 27. i i 9. RTearr = OF,not 30F per DWT st 40F.

f

10. The -m drop weight test- , for this plate was 40T (upper bound NDIT=307) while other shell course plates were tested at 107 or less (upper bound NDTT=107 or less). -

The minannun CVN energy values at 107 and 407 are . .:.;. to the values at these temperatures for the ciber plates with drop weigN tests et 107. And, using the OE Proce&are with each of the ICT arul CVN data sets in&cate that an initial RTsuirvokse of 107 or less would be avar*=d To meantam conservatium the initial RTsarrvalue will be set equal to the maximum RPV shell course value of 27T.

ESTIMATION METHODS POR DETERMINATION OF INITTAL RT,asr

1. Sedian Ill, NS-2331, spacines that RT ssr = NDTT ifCVN energy (for transvesse , -) et NDTT + 60T > 50 A-Ibs.

Per Reference 16, Pareysph B.I.l(3)(bk die test temperature at which " . I oriented spacemens yield 50 A-Ibs ofenergy can be increased by 20*F to provute a conservative estimate of the temperature that would be regered for traarverse enseded specumans, duW ' f * ' anseted specunens tested at NDIT+40T would be equivalent to testing transverse oriented specunens at NDTT+60*

NS ifenergy at NDTT + 40T (or less) < 50 A-Ibs for Pt ariarded specimens. j

2. GE Procedure: RT e,ri determened Anna estimate ofCharpy 50 A-Ibo transstaan __ based on the CMTR tests,ifmin CVN energy value is less than 50 A-lbs.

' Test Tesaparature + (50 - CVN sein value) z (2T/A-Ib); Tser = Tsas, + 30T ( transverse capability . '. not required for welds ) i Tsa. = 1 _

RT,arr = (Tser . 60T) er drop weidd NIYIT, windiever is greeter.

3. Assumethatthematerialwastested to,andniet,the. , of Reference 33, therefore, RTsarr - 407.
4. ForweldsusetheinitialRTerrand sivalues given in Reference 35.

i I

S. End oflife licence per References 20 at ID surfacet . 3.IIE+18 n/an' hiinimum Wall Hickness, Clad &ng not included l10,37j Auenuassen,1/4 t, e* 0.737 Wall Hickness: 5.06 t/4 T, Fluence Factor. RO.28-0.10 tag f) 3.77Etl8 n/cm' 1/4T = I.27 t/4 t, Fluence Fedor,i"'" O.730 l

i 1

I i

SIR-97-003, Rev.1 -

sn v98 i 5-27 t t

- _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ - _ - _ _ _ _ _ _ _ - _ - - _ __ _ - - - -__ --_--__-- _______J

e

} TOP HEAD FLANGE

' ( MATERIALID NO. ALX 8 PCIW(

14- .

-) i l SHELL FLANGE PC MIC. 14 - -

  • l 1 MATERIAL 10 NO. Unimown N13OON14 1 l  : HEAT NO. C2510-1  :  : HEAT NO. C2510-2  : (

, .: PC MK ' 1-11  :  ; PC MK 1-10 ~  :

.o O ,j O,,, j Oj O, y3 j Niis  :  : N11A HEAT NO. C2613-1  : HEAT NO. C2089-1  :

PC MK 3-13 PC MK 1 12 -  :

ON4C.  :

O N40 O N4A ON48 g N5a

oNS g.NSA .

i O N128 j o N12A j ,

HEAT NO. C22203  : HEAT NO. C2220-2  :

PC MK 1-14 :  :

PC MK 1-15 :  :

,6 Y

I HEAT NO. A0946-1  : HEATNO. C2193-1  : I "

I PC MK 1 16 j PC MK 1 17 jI ,,

\ O N2F O N2a N2s O N2J O N2K O N2A O N2s DN2C O N2n O N2E h\

j NSB O  !

h"IA j NBA 3 N18-D 97150r0 l l ]

E

= 270*

O' 90* 180*

iir 4

Figure 5-1. Monticello Reactor Pressure Vessel Shell Plates, Flange Forgings, Nozzle Forgings and Seam Weld 3 Locations (Inside Looking Out View) [37]

fit

=

E R

E 8

m-Ei?

? .

F k SIR-97-003, Rev.1 5-28 j I

_ _ _ _ _ _ _ _ _ _ _ . - _ _ _ _ _ . . _ . _ _ - ._ _ . _ . , . _ _ - . _ _ _ _ _ _ - _ _ _ ___ __o

0.* 0.*

. HEAT NO. A1000-2 HEAT NO. C28604 PC MK 1-2S O HEAT NO. C1485-3 PC MK 1-18 PC MK j1-5 N10 ,

~

HEAT NO. C2361-1B HEAT NO. C2069 3  ;

PC MK 14 -

PC MK 1-6 HEAT NO. A1000-2  : HEAT NO. C1485 3 4

,' NSA PC MK 1-24 j PC MK 1-19 HEAT NO. C2297-3 g

!2% g \

PC MK 1 4 N15 g4 270*- - -

90* 270*- - - ~- -

%-@y" - ~- ' -

90*

- - @N7---

( i- @ -

k HEAT NO.C2361-1B HEATNO. A1000-2 PC MK 1-23

@(

s

$o

$e{ o 6o s{ /

j  ;

PC MK 1-3  : IL-  : Ia rE HEAT NO. C1485-3 i PC MK 1-20 O* m HEAT NO.C2959-3 TO SHEL  :  ;

j

~

PC MK 1-7 HEAT NO{ C2361-18 HEAT NO. A1000-2 HEAT NO. C1485-3 PC MK : 1-2 PC MK 1-22 PC MK 1 21

'==^  :

N .

/ l 180* 180*

t PLANVIEW Pi ANVIEW (TOP HEAD ASSEMBLY) (BOTTOM HEAD ASSEMBLY) m -

E Figure 5-2. Monticello Reactor Pressure Vessel Top and Bottom Head Plates, Nozzles, and Weld Locations [371 n.

=::

E.

E E

2.

9 h

M R

in-E 9 -

f SIR-97-003, Rev.1 5-29

l l a e sts ~ ssum c = 64s: to,so j reunusa is CTN : A + B 'l tanhET - WyQ [

Uppt Shelf Energr 94J8 Temp at 3 ft-tz 23 Temp at !Io it-the 74 3 to.er hlf W 944 we run sma n t somben c=>4 us. tra on nat n

' caisuie Total Fluence 6 j au ,

)

m asu  !

S x

un b"

c i Ex.1 z> '" " --

a U .

. e)

~

p /-

o , i i i i i

-s00 -a00 -i00 0 200 200 a00 400 s00 a00 l Temperature in Degrees F l n.u s,a n.umi nine a cw we run sma are n a t t czo4 archi,.Triamre Figure 5-3. Plate C2220-2 Charpy V-Notch Impact Energy for the TL (Transverse) Orientation, l, Tested by ORNL, Curve Fit by CVGraph

! Carincents of cur e 1 l i a 47N 3 s as c a sus 10 m sig l

Iquausa is CYN : A + 8

  • l taandlT -ltq/Q l Upper Shelf Energr E47 Tang at 3 ft-Ins 14 Temp at 5 ft-(bs 25 laser bif Energr 85  ;

l me run sma wx i.eem nmm ra.ru en.num n Cap.is Total Fluenos ,

suo l l

l l 6

m asu

! B h

w-h l

l E=

c Es.1 l z* l D

[_

r ,

U l 1 i O $ 4 l

-300 -200 - 10 0 0 10 0 200 000 400 s00 600 Temperature in Degrees F n.a s,e t w nine a c.,: we run sem are n w a c=54 n maimum to.ru Figure 5-4. Plate C2220-2 Charpy V-Notch hnpact Energy for the Miniinum Data in Figure 5-3 (Point on or Below the Best Fit Curve) l SIR-97-003, Rev.1 5-30

_....m - .. . _ _ . - _. _ _ _ _ _ _ _ , , . . . -

l A 3151 8 s *4.g

. C a 10CD E a sfc j Equation la 3 s A + 8 * ! tanhllt - 10l/Q l um, ur e am t ,,r.t. .t u a at to ,urairu Matannt m* . : *.5DBt liest Musder. C D-2 ArdL% fran. vers Onentatma: TL l Cap.ule Total Rurnar 0

= ,

l m

= ts0 E

z x

tou

~

m L

i j '

3 aa-ll U i

-f } g i i i i

-300 200 -100 0 10 0 200 300 400 500 600 Temperature in Degrees F' a s.if4 n.u nea C, mw mm sma eu s w A asse 1,*,. Tr o Figure 5-5. Plate C2220-2 Charpy V-Notch Lateral Expansion for the TL (Transverse)

.! Orientation, Tested by ORNL, Curve Fit by CVGraph Ca.meunts er Cur,e 1 l A 33 3 : Est C s 908 3 E.34 l fqueusa is 3 a A + B 'l tan (r - TOl/Q l u,,.c urm nu 7.,.r.tm .t u a n.s w urairu, mi.n.t u n s a a n,.i ii-w. c=s4 s m m or-tau a capade Total Ru. ace mu m

= tw z

d xxr

%u -

3 f

~

3=

U J

1 1 I i i I 41 -200 -100 0 100 200 3x) 400 500 000 l

Temperature in Degrees F a s.ei n.u n=e a em mw mn sez et:a w a cz:w s ma== nr Figure 5-6. Plate C2220-2 Charpy V-Notch Lateral Expansion for the Minimum Data in Figure 5-5 (Points on or Below the Best Fit Curve) i SIR-97-003, Rey, t 5-31 Structural Integrity Associates, Inc.

6.0 PRESSURE-TEMPERATURE CURVE DEVELOPMENT i

A third party review was performed of the existing beltline region P-T curves [24]. Attention

- was given to identifying conservatisms. In addition, the results of the review of the surveillance capsule information and the estimation of the adjusted reference temperature were used to develop alternate sample pressure-temperature (P-T) curves. Following the completion of this .

j review activity, revised P-T curves were developed for the Monticello beltline, bottom head, and

. feedwater nozzles. Both the review and detailed development activities are discussed in this section.

6.1 Methodology ,

l A verified calculation model $XCEL spreadsheet) was used to generate the Monticello P-T .

curves. The methodology used by the spreadsheet is summarized below. The methodology is based on the requirements of References 2 and 25.

l The following steps were performed to generate the P-T curve: j

a. Assume a coolant temperature,Tw. l
b. For the Tw : assumed in step (a), compute the temperatum at the assumed flaw tip, Tue (i.e ,1/4t into the vessel wall). This is accomplished by adding a through-wall temperature drop term, T n (determined by heat transfer analysis) to Ta.c.
c. Calculate the allowable stress intensity factor, Km, based on Tua using the relationship from Reference 2.
d. Calculate the allowable pressure stress intensity factor, Kr, using the appropriate relationship (i.e., safety factor) from Reference 2 for the P-T curve under consideration.
e. Compute the allowable pressure, P.
f. Repeat steps (a) through (e) for other temperatures to generate a series of P-T points.
g. Add any applicable temperature instrument errors to Ta.t; substract pressure errors

! from P, respectively. The resulting pressure and temperature series constitutes the P-T l

SIR-97-003, Rev.1 6-1 f StructuralIntegrity Associates. Inc.

i 1

curve. Instrument errors were assumed to be zerofor Monticello. The P-T curve relates l . the minimum required reactor fluid temperature in the beldine region to the allowable reactor pressure in the beltline region.

There are additional requirements for non-beltline discontinuity regions, typically used to further limit the lower portion af the P-T curves [25]. However, these limits were not considered iri the l review since the objective was to compare results and identify conservatism. Therefore, only the beltline portions of the P-T curves were compared, and the resulting conclusions are assumed to equally apply to non-beltline limits.

6.2 Sample P-T Curves '

l. The P-T curves for no irradiation shift are shown in Figures 6-1 and 6-2. The curves produced by the methodology of Section 6.1 are shown in Figure 6-1 and are compared to the existing Tech-Spec P-T curves (GE curves)3. Accounting for the higher temperature at the crack tip (at the 1/4t location) versus the fluid temperature results in a shift of the curves to the left (i.e., less limiting). The P-T curve analysis was repeated using a 0*F fluid-to-1/4t temperature adjustment to verify that the difference between the two sets of curves was due to the temperature adjustment. The results of this analysis are shown in Figure 6-2. The two sets of P-T curves are seen to be almost the same. Therefore, it is reasonable to conclude that the GE curves are l conservative in that they do not take benefit of the fluid-to-crack tip temperature difference.

1 i

l- A third set of P-T curves was generated. The pressure test P-T curves (Curve A in Figures 6-1 and 6-2) for ART of 0*F 125.5'F, and 178.8 F are shown in Figure 6-3.

The technical specification P-T curves used by Monticello start with a baseline unirradiated condition. The P-T curves are used with a shift curve that provides an estimate of the irradiation j ' An initial RTuor f o14'F was used for the calculation to be consistent with the past l

work.

!' SIR-97-003, Rev.1 . 6-2 l f StructuralIntegrityAssociates,Inc.

o -_

l l

l shift plus margin as a functio,n of accumulated fluence. During operation the baseline P-T curves

~

are shifted by adding the appropriate value from the shift curve. Equation 2 from Regulatory Guide 1.99, Rev. 2, Position 1.1 is used to calculate the shift. The margin value is from Equation 4 of Position 1.1 of the Regulatory Guide 1.99, Rev. 2 [3], assuming that ci=0 and that ca=17".

The calculated plant specific chemistry factor for the limiting beltline material (this is the surveillance plate for Monticello) is used to generate the new shift curve. Figure 6-4 shows the recommended beltline irradiation adjustment curve (revised shift curve + magin (34*F)). For comparison purposes the original shift curve in ".eference 26, determined using the Regulatory Guide 1.99, Rev. 2 chemistry factor for heat C2220 is also shown (GE estimated shift curve + l margin (34 F)). This original shift curve is identical to Figure 3.6.1 of Reference 26 above a 38 2 fluence of about 0.5 x 10 n/cm . It is noteworthy that this technique would not be, appropriate if the material toughness (Km) computed in the P-T curve calculations happened to correspond to the upper shelf (i.e., Km has a ceiling value of 200 ksid).

t .

Based on the difference between the curves shown in Figure 6-3, applying the material shift directly to the P-T curves (as recommended by GE) is appropriate, as demonstrated by the following results: .

P-T Curve P-T Curve P-T Curve Temperature Temperature Temperature Shift from ART,'F from ART, *F frera ART,'F Versus Pressure, psig = 0 F Curve = 125.5'F Curve = 178.8*F Curve 0 F Curve, 'F 1150 101.3 -

780.2 178.9 1121 77.5 a 203.0 -

125.5 l

SIR-97-003, Rev. I 6-3 f StructuralIntegrityAssociates,Inc.

1 I

i i

I 6.3 - Development of Revised P-T Curves t

The purpose of this section is to summarize the development of initial pressure-temperature (P-T) curves for the feedwater nozzle, beltline, and bottom head regions of the Monticello reactor pressure vessel (RPV) based on the calculations in References 36 and 46. This section will also l

review the non-beltline materials to verify that the beltline materials are limiting after a certain l

amount ofirradiation.

6.3.1, Technical Approach & Methodology P-T curves were generated for each of the following three (3) regions:

l Region Reason-L ,

! Feedwater Nozzle Potentially limiting due to high stresses.

Beltline Potentially limiting due to inadiation effects.

Bottom Head Potentially limiting because of discontinuity stresses.

l~ The approach used is similar to that in Section 6.1. This is summarized below:

a. Assume a coolant temperature, T. Calculate the metal temperature Tu4e at % t.

l b. Calculate the critical stress intensity factor, Km, based on Tu4c., using the relationship l from [2 and 25):  !

Km = 1.223e tm45@ARNW 4 gg,7g 1

I l where: T = Tu4: = temperature perrrGttet At

i. ART = adjusted reference temperature, *F Km = allowable stress intensity factor, ksi4 inch Note that a maximum value of200 ksidinch is allowed.

i r

l l

SIR-97-003, Rev. 2 6-4 Structural Integrity Associates, Inc.

l

c. ' Calculate the allowable pressure stress intensity factor, Ky, using the appropriate safety factor, n. i.e., Ky = Kmh) . 9 = 1.5 for the pressure test [2]; q = 2.0 for normal heatup and I
cooldown process [2].

\

. d. Compute the allowable pressure stress intensity factor, for the heatup/cooldown transients, Ky, using an appropriate relationship between K and P developed using 'the methods of[2 and 25].

~

Ky _ Km -Krr 9

where: ,

Ky = allowable pressure stress intensity factor (ksiVinch) rg 9

- Krr = thermal stress intensity factor ( ksi/ inch) due to thermal stress.

The value of Krr for the feedwater nozzle was computed by Figure 4-5 of Reference 38

~

which is conservative. The Krr for the beltline and bottom head was computed based on the " PIPE-TS2" [39] temperature solution and method of Reference 2. The detailed calculations for Krr are provided in section 63.3. q l

e. Compute the pressure, P. The relationship between the pressure, P, and the allowable pressure stmss intensity factor, Kr, is as follows:

Ky = M.c. + Mean l

where: M. = membrane stress correction factor from Figure G-2214-1 of Reference 2. The upper line for M. in Figure G-2214-1 (corresponding to c/c y, = 1.0) was conservatively used (Vinch).

U. = , membrane stmss due to pressure (ksi)

L SIR-97-003, Rev. I 6-5 StructuralIntegrity Associates, Inc.

~

= PR/t for a beltline region

=

K x PR/(2t) for bottom head. The stress concentration factor l K t= 3 is used to account for tae structural discontinuity.  !

l P = pressure (ksi)

! R =- vessel radius (inches) l t =

vessel minimum wall thickness (inches)

M-6 = bendirig stress correction factor = (2/3)M. (Vinch)

= bending stress due to pressure (ksi) =0 for a thin-walled ob vessel l.

1 Thus,. . P = Ket/(RM.) for beltline.

, P = 2Kyt/(K RM.) for bottom head.

i .

The relation between Ki and P for a corner crack in a 2" nozzle has been detehnined in Reference 46 as P = 21.53K, based upon 3D finite element analysis. Here, this equation is used for feedwater nozzle. This gives a conservative value at t=l/4 t m .for the feedwater nozzle at Monticello.

l l f. Repeat steps (a) through (e) for other temperatures :o p erate the P-T curve.

[ g. Add any applicable instrument errors for temperature and subtract instrurnent errors for pressure from coolant temperatu're and P, respectively. The resulting pressure and l ' temperature series constitutes the P-T curve. Instrument errors were assumed to be zero for the Monticello Plant. The P-T curve relates the minimum required reactor fluid temperature to the corresponding reactor pressure in the considered regions.

Per [25], the temperature limits for the core in crtitical operation are established by adding 40 F j to the non-critical curve limits.

SIR-97-003, Rev. I 6-6

. - .. __ - .. .-. ~ . . .-- - - - -. - ..

)

l 6.3.2 Design inputs l

The following inputs were used to develop the P-T curves documented in this calculation: j Limiting Beltline Material .= Plate 1-15,16 (Initial RTuor = 27 F) . [36, pg.4]

Feedwater Nozzle Material = Forging N4A-N4D (Initial RTuor = 40 F) [36, pg.29] l l

Bottom Head Material = Plate 1-26 (Initial RTwor = 26*F) . [36, pg.29] j Vessel Dimension: [37]

Base Metal Thickness = 5.0625" Inside Radius = 103.0" (to surface of cladding)

Cladding Thickiless = 0.1875" Bottom Head Dimension: [37]

Base Metal Thickness = 5.9375" I

.. J Inside Radius = 103.0"(to surface of cladding)

Cladding Thickness = 0.1875" Feedwater Nozzle Dimension: [41]

Outer Radius = 11.5" -

Inner Radius = 5.25"

' Heat Transfer Coefficient: [42,pg.I-T3-4]

h = 235(AT)"' for a warm vessel wall exposed to cool fluid, where AT= Tw n - Tould (Btu /hr-ft2.p),

6.3.3 Thermal Stress Interisity Factor Analysis l

Heat transfer analysis for beltline .md bottom head under heatuo and cooldown operation A heat transfer analysis was conducted to establish the following two items: (1) the temperature drop between the reactor fluid and the crack tip (i.e., at the 1/4t location), and (2) the through-i SIR-97-003, Rev. I 6-7

wall temperature drop for computing Krr. Both of these values were obtained using the PIPE-TS2 computer program (39].

A 100 F/hr cooldown transient [10] was run using PIPE-TS2, based on the data above, and material properties were obtained from Reference 12 at an intermediate temperature 350 F. The heat transfer coefficient used was established by trial-and-error, and its adeque.cy is demonstrated i below.

. The folicwing temperature results for the beltline were obtained:

Fluid temperature at 18,000 seconds, Tn w = 50*F Tue = 70.4'F (@ R=104.5") -

- Inside surface temperature at 18,000 seconds, bi = 56.2*F Outside surface temperature at 18,000 seconds, L = 83.3*F Fluid-to-1/4t temperature drop = Tue - Tn,u = 70.4 - 50 = 20.4'F Fluid-to-surface temperature drop = Li- Tn.w = 56.2 - 50 = 6.2*F Through-wall temperature drop = b - La = 83.3 - 56.2 = 27.1'F h = 235 (AT)"3 = 235 (6.2)"3 = 431.7 Btu /hr-ft2,op With respect to the thermal stress intensity factor, Krr, Figure G-2214-2 of Reference 2 was consulted. For a wall thickness of 5.0625", % = 0.26. . Accounting for differences in E and cr.,

l the following was obtained:

l Krr = % At n (Ecx iy i,/Ect ,.) = 0.26x27.1x (27.7x0.75y(29.2x0.7) =7.162 ksilin The following temperature results for the bottom head were obtained:

L Fluid temperature at 18,000 seconds, Tn.w = 50 F Tue = 74.1*F (@ R=104.5)

Inside surface temperattire at 18,000 seconds, Lu = 56.9*F l

i i

L . SIR-97-003, Rev. I 6-8 h StructuralIntegrityAssociates,Inc.

i Outside surface temperature at 18,000 seconds, T = 93.4"F Fluid-to-1/4t temperature drop = Tu4,- Tn.w = 74.1 - 50 = 24.1"F

- Fluid-to-surface temperature drop = T a - Tn.w = 56.9 - 50 = 6.9"F

' Through-wall temperature drop = T - T a = 93.4 - 56.9 = 36.5"F i h = 235 (AT)'8 = 235 (6.9) 8 = 447.4 Btu /hr-ft2 ,.p j i

With respect va the thermal stress intensity factor, Km Figure G-2214-2 of Reference 2 was consulted. For a wall thickness of 5.9375", Mi . 0.286. Accounting for differences in E and cx, the following was obtained:

L Krr = M At n (Eowgi,/E%) = 0:286x36.5x (27.7x0.75)/(29.2x0.7) =10.61 ksiVin I

~

l Thermal stress intensity factor for feedwater nozzle under heatuo and cooldown operation

, For Krr fofeedwater nozzle, Figure 4-5 of [38] was used. Since there is no cooling rate in the l L j l .

figure for 100*F/hr, the Krr for 100*F/hr was estimated as follows : 1 i .

L

{ Kn(@l00*F/hr) = 2 x Krr(@SO F/hr) = 2 x 3.2 = 6.4 ksiVin i

The temperature drop between the fluid and the crack tip for the feedwater nozzle was assumed to be the same as the beltline, or 20.4*F. This is reasonable based on past work performed by SI.

6.3.4 P-T Curves

  • I The P-T curves (for no irradiation shift) for pressure test, non-critical core operation, and core i

critical operation are provided in Figure 6-5,6-6, and 6-7, respectively.

l i '

SIR-97-003, Rev. I 6-9 Structural Integrity Associates, Inc.

,_ ..m

.i,,.,. ...,w~ ,.-- .

L  !

l l

An additional case for pressure test (Rhr = 150 F for beltline, i.e., due to radiation shift) was also mn. Figure 6-8 shows the beltline material tends to be more limiting than any other region l in the RPV afterirradiation.

6.4 Conclusions Based on the above results the initial bottom head P-T curves are bounding at beginning of life (BOL) of the plant. When the RPV receives more irradiation, the beltline materials become more limiting, as can be seen in Figure 6-8. ,

I

)

P .

i SIR-97-003, Rev. I 6-10 l

I Structural Integrity Associates, Inc.

7 1,600 i  !

i ,. ,

1,400 l b, ,

b i

, n

, l l 8 ' '

s ,,

1,200

{ i

  • l  !

i 8 ,  ;

s ,.  : .

l r .

,31,000 -- ,'  :

l '

E ,

a , -  : .

e * ,

l-g -

, 800 J ' -

1 e 8 8 s  !

l i

  • ~~

g * , f 1 3 *

, I to ,

I 2u u

(,-

600 8 n , ! 1 f,,-

y  ;-

1 Legend.

, s ,

. i

," l j ,

Curve A = Pressure Test

[ [-

400 l Curve B = Heatup/Cooldown,

, j Core NOT Critical

; Curve C = Heatup/Cooldown, 200 Core Critical d

SIA Curves l  ; - - - - GE Cumes' I

O O 100 200 300 400 500 600 Minimum Reactor Vessel Metal Temperature (*F)

Figure 6-1. Monticello P-T Curves for Beltline Region With a Fluid to 1/4t Crack Tip Temperature Adjustment SIR-97-003, Rev.1 6-11 h StructuralIntegrityAssociates,Inc.

~ _.

I L

l 1,600 l

i 1

A B C l 1,400 , ,

t 8

i a

s .. , ,;

  • I e

sl

i 1,200 ' ' '

se = -

l ,

I, '

I

.!? e  !

$ 1,000 l '

e ,

I 8

l e ,

' s a ,

n ,

- . i , ,

Ic 800 o

  • I, y
  • a o e , l'
  • M o u
  • 2u ,
  • ', o 600 - -

en a s -

E e ..

, l ',

s j legend.

9 Curve A = Pressure Test l

400 ',

, Curve B = Heatup/Cooldown, l Core NOT Critical

, - - . . .e t

Curve C = Heatup/Cooldown, 200 Com Neal SIA Curves

..)

e  ! ---- GE Curves 0

0 100 200 300 400 500 600 l

l Minimum Reactor Vessel Metal Temperature ('F)

Figure 6-2. Monticello P-T Curves for Beltline Region With a 0 F Fluid to 1/4t Crack Tip Temperature Adjustment l'

! SIR-97-003, Rev. I 6-12 StructuralIntegrity Associates, Inc.

l l

l 1,600 .

l .

1 i ,

ART = 0*F . ART = 125.S*F -

1,400 k n I f i ART = 178.8'F l .

I 1,200 i i I g  !

e i I'

~

n. 1,000 - -

l 2-3 s

. i e  !

$  ! l i

E ' i e 8@  ;

e  ! -

E l l e

m >

o .

I I '

u 600 '

E i i l

a:  : .  ;

l I I

I '

400 _

! I i i l i

1 200 i

l .

I i

0 0 100 200 300 400 500 600 i Mir.imum Reactor Vessel Metal Temperature (*F)

Figure 6-3. Effect of RTmyr Shift on Curve A (Pressure Test) P-T Curves i

1 SIR-97-003, Rev. I 6-13

{ StructuralIntegrityAssociates,Inc.

Monticello Core Beltline Operating Limits Curve Adjustment vs. Fluence 140 .

130

120

}_

~ -

S _.

110 M -

, p7 ' ..

, g c s W '

t  : y V

in 80 ! 4 bc 70 i }

H@

60 g

) r' sd 50

-/ -

40 -

[

30 M

g

=

20

$ 10 samassa samassa messere staansa amaneet assames annassa tenansa estamaa asaanes amanaPa aaRaeta aaa8aei aaeaaaa eeataea aaeaaae aeasaea asaeaea ,aaeeaa Raatata

=

1 9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 2

D w %t Fluence (10 n/cm )

8 l--- GB Estimated Shift Curve + Margin (34*F) Revised Shift Curve + Margin (34*F)l im Ei?

Figure 6-4. Monticello Limiting Beltline Shift Curves R

SIR-97-003, Rev. I 6-14

Monticello P-T Curve For Pressure Test 300 250

~ 200 F.W. Nozzle

, Bottom Head ,'

g

  • 100 ff -

i E. 50 E

0 h

m

-50 E

n.

=::

-100

-150 f

$w 0 500 1000 1500 2000

@ Pressure (psi) ,

B

$ Figure 6-5. Monticello P-T Curve for Pressure Test Er 9

SIR-97-003, Rev.1 6-15

_ _ - _ - _ _ . _ _ _ _____..____-m._ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ ______ _ _ _ _ _ . _ _ . _ _ _ _ . _ _ _ _ _ _ _ . - _

~ .

Monticello P-T Curve For Non-Critical Core Operation 250 200 F.W  ;

150

[ Bottom Head .

^

u, 100 M E

fE.

50 e i

$ 0

/

-50 en kE -100 E ,

k -150 9 0 500 1000 1500 2000

$ Pressure (psi) 8 9 Figure 6-6. Monticello P-T Curve for Non-Critical Core Operation E

9 SIR-97-003, Rev. I 6-16

Monticello P-T Curve For Critical Core Operation 300 250 ,

F.W. No; l A// '

om Head C

c 2 100 -

B 2

E. 50 E

A 0

h en

-50 E

g -100 1l d

E g -150 Y 0 500 1000 1500 2000 9

Pressure (psi)

R m

$ Figure 6-7. Monticello P-T Curve for Critical Core Operation E

D SIR-97-003, Rev. I 6-17

- . _ . .- __ .. . . . . . - - . . . - - . . - - - . . . ~ . . . . . . -

Monticello P-T Curve For Pressure Test 300 Beltline (ART = 150*F) f Bottom Hoad g F.W. Nonle 150 e(ro radiation)

~

(/

1 E. 50 E /

  1. l 0

1 -50

- r a

E -100 E

sr

$ -150 4

4 o 500 1000 1500 2000 y Pressure (psi) g Figure 6-8. Example of the Monticello P-T Curve for Pressure Test with Irradiation Shift of 150 F in the Beltline Properties ,

~*

SIR-97-003, Rev.1 6-18

l I

l 7.0

SUMMARY

1. The Charpy V-Notch test data for all of the surveillance materials (base metal, weld t

material and HAZ) were well behaved. Sufficient data was available to produce full Charpy energy, lateral expansion and shear curves for each material in the irradiated condition. Best fit curves, using a relationship containing the hyperbolic tungent (tanh) function, were generated using both CVGraph (supplied by NSP) and a commercial software package (CurveExpert). The scatter in the curve fits looked good for the base  ;

metal samples for both capsules. The weld and HAZ data showed a slightly higher degree of scatter.

2. A segment of plate C2220-2 was tested by ORNL [44]. The plate was supplied by GE for

,,, the ORNL program. ORNL conducted sufficient Charpy impact tests to produce full l Charpy transition curves. The longitudinal curve was used as the unirradiated baseline to determine the irradiation shift of each capsule.

3. The measured shifts in the energy curves were only slightly larger than predicted by the calculation procedures of Regulatory Guide 1.99, Rev. 2 for both capsules.
4. Based upon the analysis the data sets meet all but one of the conditions that define credible data sets for use in predicting future irradiation effects. The only exception to the credibility criteria is the use of correlation monitor mz,terial. At the time that the Monticello surveillance program was designed this was not a requirement. The

~

surveillance capsule data sets are considered to be credible, and the EOL-ART should be determined using the plant specific chemistry factors.

5. The Charpy V-notch test data for all of the RPV materials were myiewed to determine the initial reference temperatures. Transverse Charpy specimens were tested by ORNL to produce a full curve and a full series of drop weight tests measured the NDT temperature.

SIR-97-003, Rev. I 7-1 f StructuralIntegrityAssociates,Inc.

- - _ _ ._ _ _ _ _ ._..___... _ _ _ . ~ . _ _ _ . . . _ . _ _ _ _ _ _

Using this data, the initial RTmrr values for plates C2220-1 and C2220-2 were measured per ASME Section III, NB-2331.

6. Adjusted reference temperatures for the 1/4t position were calculated for an estimated power uprate, end oflife (EOL) alloy steel / cladding interface fluence of 5.11 x 108 n/cm2 (E > 1 MeV) [20]. The EOL 1/4t adjusted reference temperature for the beltline plates are 123 F to 157 F using the plant specific chemistry factors (Table 5-4).
7. The P-T curves in Reference 10 were verified using a 0*F fluid to 1/4t temperature adjustment. These P-T curves in Reference 10 are the bases for the P-T curves in the Monticello Technical Specifications, Section 3.0.B [26]. .
8. A new beltline shift curve for the Technical Specification based upon the plant specific chemilstry factor for plate C2220-1 was produced to replace Figure 3.6.1 in the Technical Specification (Figure 6-4). ,
9. It was verified that the GE recommended procedure [10] to increase the beltline (zero full power years) P-T curve by the value of the material shift (ARTuor + Margin) is appropriate.
10. The P-T curves generated in this report can be used to replace the existing curves in the Technical Specification. These curves have been validated and verified.

i i

SIR-97-003, Rev.1 7-2 h StructuralIntegrityAssociates,Inc.

8.0 RECOMMENDATIONS '

1. No baseline curve is available for the surveillance weld. NSP should verify that GE does not have any remnant material from plate C2220-2 that contains a weld. Charpy V-notch data from the weld will increase the confidence that the estimated irradiation shift for the weld is conservative..This infonnation will strengthen the argument that the beltline plate heats will be most limiting (see Table 5-4).

1

2. The information supplied to SI indicates that the irradiation temperature for Monticello  !

was 525'F to 535"F [31], possibly as high as 550 F [6]. The irradiation temperature at

~

Prairie Island was about 535*F to 545'F (19,43). It is recommended that plant data be obtained to provide a more accurate estimate of the irradiation temperatures at both Monticello and Prairie Island.

3. It is recommended that Monticello revise the Technical Specification P-T curves to reflect the results of this analysis.

l l

l l

l l

i SIR-97-003, Rev.1 - 8-I f StructuralIntegrityAssociates,Inc.

9.0 REFERENCES

,j 1. Amedcan Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, Appendix A, " Analysis of Flaws," 1989 Edition.

s 2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, Appendix G, " Fracture Toughness Criteria for Protection Against Failure,"

. 1989 Edition.-

v 3. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, " Radiation Embrittlement of Reactor Vessel Materials," May 1988. Structural Integrity File No.

NSP-21Q-218.

, 4. Battelle , " Final Report on Examination, Testing, and Evaluation of Irradiated Pressure Vessel Surveillance Specimens from the Monticello Nuclear Generating Plant", BCL-585-84-2, Revision 1, Dated November 5,1984, Structural Integrity File No. NSP-21Q-206.

/5 . Framatome Technologies, " Test Results of Capsule W, Northem States Power Company, Monticello Nuclear Generating Plant, (Irradiated at Prairie Island Unit 1), Reactor Vessel Material Surveillance Program", B AW-2277, Dated June 1996, Structural Integrity File No. NSP-21Q-207.

/ 6. CVGraph, Version 4.1, "Charpy Graphics Program User's Manual and Software" l (Including Data Files); ATI Consulting, March 1996, Structural Integrity File NSP-21Q-219.

/ 7. GE Nuclear Energy, "Monticello Nuclear Generating Plant Information on Reactor Vessel Material Surveillance Program", NEDO-24197, Rev.1, Dated October 1979, Structural Integrity File No. NSP-21Q-211.

8. CurveExpert, Version 1.3, "A Comprehensive Curve Fitting System for Windows",

I Shareware Software by Daniel Hyams,1996.

9. Deleted

. /10. GE Nuclear Energy, " Implementation of Regulatory Guide 1.99, Revision 2 for the Monticello Nuclear Generating Plant", S ASR 88-99, DRF 137-0010, Rev.1, Dated l January 1989, Structural Integrity File No. NSP-21Q-202.

11. Chicago Bridge and Iron Company, " Skirt Knuckle, Heads & Shell & Misc Heat Number Summary", Dwg. No. R-7, Rev. O, Dated 3-6-69 (8290-133), Structural Integrity File No.

NSP-21Q-213.

SIR-97-003, Rev.1 9-1 Structural Integrity Associates, Inc.

t

l l

l l

l

12. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section III,1989 Edition.

/13. ASTM E208-87a, " Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels",1990 Annual Book of ASTM Standards.

l

/ 14. GE Nuclear Energy, " Methods for Establishing Reference Temperatures (RTwor) for l Vessel Steels for Certain Plants", Y1006A006, Revision 0, January 25,1979, Appendix B I to NEDO-24197 ( 7 ], Structural Integrity File No. NSP-21Q-211. l

/15. GE Nuclear Energy, " Approval of GE Basis Document on RTmyr Estimation Method",

Letter OG93-712-142 (portions of GE-NE-523-109-0893, " Basis for GE RTuor Estimation Method" attached) , Dated August 9,1993, Structural Integrity File No. NSP-21Q-205.

p 16. Branch Technical Position - MTEB 5-2, " Fracture Toughness Requirements," Revision 1, '1 July 1981, Structural Integrity File No. NSP-21Q-238.

v 17. " Transmittal Manifest, Northem States Power Company, Nuclear Support Services Depamnent, Monticello Nuclear Generating Plant, Response to Generic Letter 92-01, Reactor Vessel Structural Integrity", by Mark Hugo, dated July 6,1992, Structural Integrity File No. NSP 21Q-203. -

d18. Mark Hugo to Michael Sauby," Calculation of the Chemistry Factor (CF) from the two sets of surveillance data for Monticello", Dated November 21,1996, Structural Integrity File No. NSP-21Q-209.

v 19. E-mail from Mark Hugo to Mike Sauby, dated 12/3/96, Structural Integrity File No. NSP-21Q-103.

/ 20. Interoffice Memorandum from Jeff Olson to Tom Crippes, "End of Life Vessel Fluence",

Dated 17-Aug-1995, Structural Integrity File No. NSP-21Q-204.

/ 21. ASTM E900, " Standard Guide for Predicting Neutron Radiation Damage to Reactor Vessel Materials, E706(BF)", American Society for Testing and Materials.

, 22. ASTM E185, " Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF)", American Society for Testing and Materials.

/

/ 23. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 1, " Effects of

, Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials", April 1977.

SIR-97-003, Rev. I 9-2 1 f StructuralIntegrity Associates, Inc.

l

._ m . _ ___ .- . . _ . _ _ _ . . . _ . _ _ . _ . _ _ _ _ _ _ . _ _ _ _

t 24. SI Calculation No. NSP-21Q-301, Revision 0, " Pressure-Temperature Curve

~ .

Development",3/7/97.

  • l i

/ 25. U. S. Code of Federal Regulations, Title 10, Part 50, Appendix G, " Fracture Toughness Requirements",1-1-9'6 Edition.  !

/ 26.

P Monticello Technical Specification, "3.0 Limiting Coaditions for Operation, 4.0  !

Surveillance Requirements, and Figures 3.6.1 through 3.6.4", Revision 122,11/2/89, Structural Integrity File No. NSP-21Q-212.  !

!27. SI Calculation No. NSP-21Q-302, Revision 2, "Charpy V-Notch (CVN) Test Data Files for the Monticello RPV Plates, Curve Fits of the CVN Data, and Calculation of Plant i Specific Chemistry Factors",5/11/98.

28. Deleted

. i

.2 29. Stallmann, F. W., Analysis of the A302B add A533B Standard Reference Materials in  !

Surveillance Capsules of Commercial Power Reactors, NUREG/CR-4947, ORNL, Oak l Ridge, TN, January 1988.

  • 30. Wallin, K., Valo, MJ., Rintamaa, R., Rorronen, K., and Ahlstrand, R., " Characteristics of i the IAEAA Correlation Monitor Material for Surveillance Programs", Radiation Embrittlement and Surveillance ofNuclear Reactor Pressure Vessel Steels: An -

InternationalReviewl Third Volume, ASTM STP 1011, L.E. Steele, ed., February 1989,

p.91.

I

31. GE Nuclear Energy,"BWR Owner's Group Supplemental Surveillance Program Phase 1 Report: Surveillance Data Collection and Evaluation", GE-NE-523-93-0792, DRF B 11-00392-1, Dated March 1989, Structural Integrity File No. NSP-21Q-232.

V32. Pressure Vessel Record, Exhibit D, Certified Test Reports", Author and Date Not Identified, Structural Integrity File No. NSP-21Q-233.

/ 33. GE Nuclear Energy, " Purchase Specification for Reactor Pressure Vessel, Special Project, Monticello",21A1112, March 5,1%9. StructuralIntegrity File No. NSP-21Q-214.

l- - K 34. Chicago Bridge and Iron Company, " Nozzle & Flange Heat No. Summary", Dwg. No. R-l 8 through R-12 (8290-128 to 132) Rev. O, Dated 3-8-69, Structural Integrity File No. j L NSP-21Q-237.  !

p .

i.

SIR-97-003, Rev.1 9-3

i

35. GE Nuclear Energy," Revision of Pressure-Temperature Curves to Reflect Improved Beltline Weld Toughness Estimate for the Monticello Nuclear Generating Plant", SASR 87-61, DRF 137-0010, December 1987, Rev.1, Structural Integrity File No. NSP-21Q-201.
36. SI Calculation No. NSP-21Q-303, Revision 1, " Determination of the Initial RTuorand ART Values for the Monticello RPV Materials", Dated 5/11/98.
37. Chicago Bridge and Iron Co. Drawing No.1, Revision 8, Contract No. 9-5624, " General Plan,17'2"ID x 63'2" Ins. Heads Nuclear Reactor for General Electric Co. For Northern States Power Co., Monticello, Minnesota," 2/1/68, Structural Integrity File No. NSP-21Q-210.
38. WRC Bulletin 175, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," PVRC Ad Hoc Group on Toughness Requirements, Welding Research Council, August 1972.
39. PIPE-TS2, Program to Compute the Transient Thermal and Stress Response of an Axisymmetric Two-Material Cylinder, Version 1.01, Structural Integrity Associates, Structural Integrity File No. QA-1260.
40. Deleted
41. Chicago Bridge and Iron Co. Drawing No. 9, Revision 7, Contract No. 9-5624, " Detail of 10"4 Stub Mk # N4A/D for 17'-2" ID x 63'-2" Ins. Heads Nuclear Reactor for General Electric Co. For Northern States Power, Monticello, Minnesota," 12/12/66, Structural Integrity File No. NSP-21Q-235.
42. Chicago Bridge and Iron Co. Stress Report, "Section T3, Thermal Analysis, Shroud Support, Monticello Reactor Vessel, CB&I Contract 9-5624," Structural Integrity File No.

NSP-21Q-223.

43. Mark Hugo to Mike Sauby," Calculation of the Surveillance Capsule Temperature at the P.I. Plant Based on Known Reactor Vessel Flows /I'emps," Dated September 11,1997, Structural Integrity File No. NSP-21Q-239.

44 " Ductile Fracture Toughness of Modified A 302 Grade B Plate Materials," NUREG/CR-l 6426, ORNL-6892/V2, Vol. 2, February 1997, Structural Integrity File No. NSP-2 IQ-240.

45. SI Calculation No. NSP-21Q-306, Revision 0," Calculation of the Initial RTuor Values for Monticello Plates C2220-2 and C2220-1".

i SIR-97-003, Rev.2 9-4 StructuralIntegrity Associates, Inc.

- ,. . . - . - . . . . . ~ - . - . - - . . . - - - . . . - .

i l

t-( .

. ' 46. SI Calculation No. NSP-21Q-304, Revision 1, " Pressure Test, Non-Critical Core l- Operation, and Critical Core Operation P-T Curve Development," Dated 4/6/98.

i

)

I i

i.

l v.

l 1

1 l

l '

i l J

[. .

l l

l h

L ,

u ,

SIR-97-003, Rev. I 9-5 h StructuralIntegrityAssociates,Inc.

1 I.

l. .

I i

i I

r APPENDIX A Baseline (Unirradiated) CVN Rogdes l-l.

,..' From Plate C2220 2 -

I 1-I l

j- i. ,

t l

('

1 i

1 0

f.

SIR-97-003, Rev. !' A-0 ww --w-- e.,. n . , , , _ _ _

1 l

Table Al CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Lateral Transverse, LT, q l- (Longitudinal) Orientation i i

~

PLANT
MON MONTICELLO h, CAPSULE ID  : -

l i

PRODUCT CODE : PLATE MATERIAL-ID- : S.A533B1

~ ORIENTATION  : LT Lateral-Transverse HEAT.NO  : C2220-2 Archive Long SPECIMEN INFORMATION l Specimen ID~ Test % :sture Ispnet Energy 14teral r=paamion 0 Shear Fluence capsule Temperature.

  • F -St.1b all n/cm8 *F
e. .

3820 -50.00 4.40 3.00 5.00 0 0.00

3819 -25.00 16.00 13.00 5.00 0 .0.00 3818 0.00 22.00 18.00 10.0c 0 0.00 3817 25.00 23.10 22.00 20.00 0 0.00 l '3416 50.00 $4.20 41.00 40.00 0 0.00 l

' 3815 75.00 73.40 51.00 50.00 0 0.00 l

3421 100.00 103,30 14.00 70.00 0 0,00  ;

3826 125.00 114.00 16.00 85.00 0 0.00 8822 150.00 132.10 83.00 90.00 0 0.00 3823 200.00 140.00 81.00 100 00 0

  • 0.00 3024 300.00 127.00 81.00 100.00 0 0.00 3825 400.00 130.30 82.00 100.00 0 0.00 l- End of Report i

1 i

b 1-t .

t.

SIR-97-003, Rev.' 1 A-1

l l

o Table A2 '

CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Transverse Lateral, TL, (Transverse) Orientation l

l PLANT  : MON MONTICELLO

- CAPSULE ID  :

PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 ORIENTATION  : TL Transverse-Lateral

- HEAT NO  : C2220-2 Archive Transvers SPECIMEN INFORMATION  !

4 Specimen ID Test Temperature Impact Energy Lateral Expansion 8 Shear Fluence Capsule Temperature

  • r ft lb mil n/ cme *r i

1834 -50.00 9.80 8.00 5.00 0 0.00 1 1833 -25.00 18.00 15.00 5.00 0 . 0.00 1832 0.00 25.40 24.00 10.00 0 0.00 3831 25.00 20.60 21.00 15.00 0 0.00 3830 50.00 42.40 38.00 35.00 0 0.00 1829 75.00 53.00 44.00 40.00 0 0.00 3839 100.00 57.10 49.00 E5.00 0 0.00 3840 125.00 70.40 54.00 85.00 0 0.00 i

1835 150.00 86.70 65.00 90.00 0 0.00 3836 200.00 93.60 69.00 100.00

  • 0 0.00 1837 300.00 86.20 68.00 100.00 0 0.00 1838 400.00 99.00 69.00 100.00 0 0.00 End of Report l

l l

i SIR-97-003* Rev. I A-2 .

StructuralIntegrity Associates, Inc.

l-i l

l l .

l l t

Table A3 l- ,

t CVGraph - Charpy V-Notch Data Report for Plate C2220-2 in the Lateral - Short Transverse, LS, Orientation

,. PLANT  : MON MONTICELLO ,

CAPSULE ID  :

PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 l

ORIENTATION  : -

l l

HEAT NO  : C2220-2 Archive LS COMMENT LS= Lateral w/Short Transverse Fracture -

l

\

SPECIMEN INFORMATION SpecjanaID Test Te p ture Impact Energy Lateral Expansion % Shear Fluence Capsule Temperature

  • F ft-lb mil n/cus er l

i 586 -50.00 4.40 3.00 0.00 0 0.00

' 385 -25.00 15.10 13.00 5.00 0 0.00 244 8.00 15.00 14.00 15.00 0 1.00 EC3 ~ 25.00- 46.40 38.00 30.00 0 .00 1

382 50.00 82.50 60.00 60.00 0 0.00 l 301 75.00 101.50 69.00 75.00 0 C.00 389 100.00 98.50 65.00 70.On 0 0.00 587 125.00 116.50 , 81.00 85.00 0 0.00

. 388 150.00 117.70 71.00 90.00 0 0.00 E010 175.00 135.20 83.00 100.00 0 0.00 5811 200.0C 141.50 85.00 100.00 0 0.00 3812 250.00 133.00 85.00 100.00 0 0.00 2813 400.00 156.10 79.00 100.00 0 0.00 3814 400.00 100.10 . 87.00 100.00 0 0.00 l End of Report l

l l

SIR-97-003, Rev.1 A-3

l C2220-2 ARCHIVE LT ENERGY (STANDARD FIT)

CVGRAPH 4.1 Hypertolic Tangent Curve Printed at 185054 on 03-01-1996 Page1 Coefficients of Curve !

I A = M76 B = 62 2 C=54S6 E = 6953 l

Equation is CVN = A + B * [ tanh((T - W)/C) ]

Upper Shelf Energy:13334 Temp at 30 ft-lbs 217 Temp at 50 ft-lbs 505 lower Shelf Energy: 818 Materiah PIATE SA533B1 Heat Number: C22H Archive long Orientation: LT Capsule Total Fluence 0

! 3 300 .

m 25o .

.o I

o r=., 2m N

tw a 150 o

! ca o " "

100

> 1 o l so O

s" o q l

-300 -200 -100 0 100 200 300 400 s00 600 l Temperature in Degrees F Data Setts) Plottal .

Plant: MON Cap: Materiah PIATE SA533B1 Ori: LT Heat f. C220-2 Archive long

Charpy V-Notch Data i Temperature input CVN Energy Computed CVN Energy Differential l -50 459 957 - 1 17

-25 16  !?JTl 192 0 22 17.41 42 25 211 2835 -175 50 542 49.41 4.78 75 714 7697 -357 100 103.9 10229 L6 12 5 114 3 11836 -326 15 0 121 126.99 il

~2X) 140 13227 772 300 127 13331 -621 400 1313 1234 -104 SUM of RESIDUAIS = 0 Figure Al. CVGraph Analysis of Plate C2220-2, LT Orientation, Impact Energy SIR-97-003, Rev. I Structural Integrity Associates, Inc.

A.4

- . ., - - - - . . . . . . . _ . . - -. -- = . - .

I 1

1 C2220-2 ARCHIVE LT MLE (STANDARD FIT) 1

\

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 185301 on 03-01-1998 l

.Page1 Coefficients of Curve 1

)

j A = 4225 B = 4125 C = 6434 it = 525 )

Equation is 2 : A + B ' [ tanb((T - TD)/C) l l Upper Shelf 2: 8151 Temperature at 2 35: 41 Imer Shelf 12.1 Fixed Materiah PLATE SA533B1 Heat Number: CD-2 Archive long Orientation: LT Capsule Total Fluence 0 200 i m

= 150 m

M M 100 u ..

a ce /

a so u

U

) ~

l [

-300 -200 -t00 0 100 200 300 400 500 600 Temperature in Degrees F Data Setts) Plotted Plant: MON Cap: Materint PLATE SA5EB1 Ori: LT. Heat f. C2220-2 Archive long l Charpy V-Notch Data i -

Temperature Input Lateral Expansion Computed 2 Differential

-50 3 43 -t3

-25 13 735 5.14 0 18 14fi5 3.44

, 25 22 25R -3M 50 41 4035 24 75 51 56DB -EOS 10 0 74 8&l1 538 l 12 5 78 7532 27 15 0 83 79 s 332 200 Sgg -138 81 300 8147 -2.47 81 g 8151 -151 400 SUM of RISIDUAIS = E8 d

Figure A2. CVGraph Analysis of Plate C2220-2, LT Orientation, Lateral Expansion SIR-97-003, Rev. l Structural Integrit%ssociates, Inc.

A.5

. .~ _ _ _ __ _ _ . __ .

1 C2220-2 ARCHIVE LT SHEAR (STANDARD FIT) i l CVGRAPH 41 Hyperbolic Tangent Curve Printed at IE43 on 03-01-1998 i . Page1 l Coefficients of Curve 1 A = 50 B = $0 .C = 6837 10 = 7031 Equation is Shear /. = A + B ' [ tanh((T - TO)/C) 1 Temperature at 50/. Shear. 703 Materiah PLATE SA533B1 Heat Number: C2220-2 Archive long Orientation: LT

. Capsule Total Fluence O

! 100 v

! I

! u m ca c) c ,

$ eu

/

a i c

e 1 , G g e cL.

20

)

o N j u i ,

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: WON Cap.: Materiah PIATE SA533B1 Ori: LT Heat l: C2220-2 Archive long Charpy V-Notch Data Temperature Input Pen:ent Shear Computed Percent Shear Differential

-60 5 2S4 205

-25 5 5.9 -S 0 10 IL48 -l48 25 20 2115 -LIS 50 40 35S6 433

! 75 50 .

5339 -33 l 100 2 703 -3 l 125 85 8103 L96 15 0 90 91 -1

~200 10 0 97.73 226 m im mm 2 400 100 99Sg 0 SUM of ESSIDUAIS = ?48 Figure A3. CVGraph Analysis of Plate C2220-2, LT Orientation, Percent Shear f StructuralIntegrityAssociates,Inc.

I CPJ220-2 ARCHIVE TL ENERGY (STANDARD FIT) ,

l i

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1&l?.49 on 03-02-1998 Page1 Coefficients of Curve 1 A = 5L9 B = 4?.86 C = 8424 TO : 78.43 Equation is: CVN = A + B * [ tanh((T - 10)/C) l Upper Shelf Energy: 94.76 Temp. at 30 ft-Ibs: 30.8 Temp. at 50 ft-lbs 74.8 Imer Shelf Energy 9.04 Materiah PLATE SA53381 Heat Number: C2220-2 Archive Transv.rs Orientation TL Capsule Total Fluence 0 300 -

en 250 -

,o

~

l M

- I i

N 2m .

t:0 1 4 150 1 0

c m

100 '

Z o -

o 0 a so 0 -

? I o I i 1

-300 -200 - 10 0 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: Materiah PIATE SA53391 Ori: TL Heat l: C2220-2 Archive Transvers Charpy V-Notch Data Temperature . Input CVN. Energy Computed CYN Energy Different!al

. -50 93 12.93 -313

-25 18 1523 216 0 2529 2059 43 25 203 2738 -728 50 4?.4 375/ 4.42 75 53 5015 234 10 0 57119 6232 -552 125 70.4 13.42 -3.02 i 150 8639 8L49 52

'200 93.59 9022 337

, 300 8 6.19 9422 -832 400 99 94.72 4fl SUM of RESIDUAIS = 0 l

Figrre A4. CVGraph Analysis of Plate C2220-2, TL Orientation, Impact Energy STR-97-003, Rev.1 A-7 StructuralIntegrity Associates, Inc.

i

-= . - - -- ._ _. .- -- . . _

C2220-2 ARCHIVE TL MLE (STANDARD FIT)

CVGRAPH 4j Hyperklic Tangent Curve Printed at 11B8:24 on 03-01-1998 Page1 CoefCcients of Curve 1 A = 3551 8=3451 C = 1012 'm = 50.62 Equation is: 1.F. = A + B ' [ tanh((T 'm)/C) ]

Upper Shelf II: 70.03 Temperature at E 35: 49J lower Shelf II: 1 Fired Waterial: PLATE SA53381 Bent Number. C2220-2 Archive Transvers Orientation: TL Capmle Total Fluence 0 bM b 4

>i 100 cd L "

q) ,,

A 60 '

o ,

U i j ,

i l 1 I i

-300 -200 -100 0 100 200 300 400 600 600 Temperature in Degrees F Data Set (s) Plotted -

Iht: MON Cap: Material: PIATE SA533Bt Ori: TL Heat f. C223M Archive Transvers Charpy V-Notch Data Temperature Input lateral Erpanson Computed 2 Differential

-50 -

8 92 -l33

-25 15 1287 122 0 24 1957 4 42 25 21 2S 51 -597 50 38 353 2f9 75 44 43B6 23 100 49 SL12 -2.12 1 125 54 57.1 -11

! 150 65 S152 ,

3.47 200 69 ~6659 2.4 000 68 6953 -153 400 69 69S6 M SUM of REIDUAls = -26 Figure AS. CVGraph Analysis of Plate C2220-2, TL Orientation. Lateral Expansion l

l SIR-97-003. Rev.1 A-8

l l

C2220-2 ARCHIVE TL SHEAR (STANDARD FIT) l CYCRAPH 4J Hyperbolic Tangst Curve Printed at 1900f)5 on 0:H)1-1998 l Page1 Coefficients of Curve 1 A = 50 B = 50 C=6145 10 : 7&75 l

Equation is: Shearx = A + B ' [ tanh((T - TO)/C) ]

Temperatun at 5&. Shean 7&7 Material: PLATE SA533B1 Heat Numben CD-2 Archive Transven Orientation: TL 1

Capsule Total Fluence 0 l

M

~

100 , .

o y Bu j cd 0

4 5 t Cn i 4

d e

O '

~  % zu D a Q< -

au c

0 I i l i 1

-300 --200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted ~

Plant: MON Cap: Material: P! ATE SA53381 Ori.: TL Heat f. C2220-2 Archive Transvers Charpy V-Notch Data Tempenture Input Percent Shear Computed Percent Shear Differential

-50 5 L91 3.08

-25 5 433 .98 0 10 827 L72 ,

25 15 1821 -121 2 5

50 35 2925 5S4 75 40 47J3 -713 i 100 65 65 fib -48 12 5 85 8(t42 457

15 0 90 8921 .18 l ~200 100 7759 2.4 l 300 100 9938 11 400 10 0 99.99 0 SUM of REIDUAIS = 937 Figure A6. CVGraph Analysis of Plate C2220-2 TL Orientation, Percent Shear Structural Integrity Associates, Inc.

STR-97-003. Rev.1 A-9

l C2220-2 ARCHIVE IS ENERGY (STANDARD FIT)

CYGRAPH 41 Hyperbolic Tangent Cune Printed at 1&45:39 on 03-01-1998 Page1 Coefficients of Curve 1 A = 2102 B = 1414 C = 1873 TO = -14E8 Equation is CVN = A + B ' [ tanh((T - 11))/C) l Upper Shelf Energy: 166.42 Temp. at 30 ft-Ibs -55 Temp. at 50 ft-lbs 21 laer Shelf Energy -1203 Material: PLATE SA533B1 Heat Number: C2220-2 Archive IS Orientation:

Capmle Total Fluence 0 l

300 I

en 250 Q

~

al ,

% 200 -

a  ;

b a l

bD f N 150 g C a c

N -

Z a o

  • f o '

o [ i i i i 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: Material: P! ATE SA533B1 Ori: Heat f. C220-2 Ldive IS Charpy V-Notch Data Temperature loput CYN Energy Computed CYN Energy Differential

-60 -

4.4 -16 6 1516 .06

-25 15 1 0 15 3421 -1921 25 46.4 52R -6.47 50 025 W53 11.9 6 75 1015 86.71 14.78 10 0 985 10109 -259 125 116 5 11354 295 15 0 117 S 9 124 2 -62

~

1323 239

~175 13119 13933 L66 200 141S IS)25 -1725 l 250 13 3 162 S 9 17 1 l 400 1801 156J 16299 -629

, 400 l SUM of PEIDUAIS = 0

, Figure A7. CVGraph Analysis of Plate C2220-2, LS Orientation, Impact Energy SIR-97-003. Rev.1

  1. %#M" '

. 4 30 ,

C2220-2 ARCHIVE LS MLE (STANDARD FIT)

CYCRAPH 4.1 Hyperbolic Tangent Curve Printed at 1&47:28 on 03-01-1998 Page!

coerricients or Curve i A = 412 B = 40 2 C = 5321 1D = 30.93 Fquation is E = A + B ' [ tanh((T - TO)/C) l Upper Shelf E: 8111 Temperature at E 3E 22.8 laer Sheir LE: 1 Fixed Material: PLATE SA533B1 Heat Number. C220-2 Archive IS Orientation:

Capsule: Total Fluence 0 200

<n

1s0

$ 4 m

M 100 g n no a o

% r, "

O ce a so o l

] l l

-300 -200 -100 0 100 200 300 400 s00 600 Temperature in Degrees F Dets Set (s) Plotted .

Plant: WON Cap: Material: PLATE SA53381 Ori: Beat l. C220-2 Archive IS Charpy V-Notch Data Temperature input lateral hpansion Computed E Differential

-50 _ 3 45 -15

-25 13 92 32/

0 14 20 2 - 408 25 38 363 129 50 60 54R 517 75 69 68 21 .72 100 85 7555 -105 12 5 81 7834 235 150 71 8021 -921 17 5 83 80 2 223 200 85 80 7/ 42 250 85 8109 19 400 87 8L11 52 400 79 Bill -?11 SUM or RESIDUAIS = -34 Figure A8. CVGraph Analysis of Plate C2220-2, LS Orientation, Lateral Expansion SIR-97-003. Rev.1 A-11

C2220-2 ARCHIVE LS SHEAR (STANDARD FIT)

CVGRAPH 41 Hyperbobe Tangent Curve Printed at 1&4112 on 0:H)l-1998 i

Page1 l Coefficients of Curve 1 1

l A = 50 B = 50 C = 6727 TO=4936 Equation is: Shar/. = A + B ' [ tanh((T - TO)/C) l Temperature at 50/. Shean 49.7 Materiah PLATE SA53381 Beat Numben (Z20-2 Archive IS Orientation:

l Capsule Total Fluence 0 100 --

o l l

a $

co 0 3 0

.c =

M , =

a c

o.

O I u e, D

4 .

20 e i

0 0 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted . 1 Plant: MON Cap.: Materiah PIATE SA533B1 Ori: Heat l:(2220-2 Archive IS Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 4 . 0 5.02 -E02

-25 5 934 434 0 15 1&75 -1i5 l 25 30 32.52 -152 j

' 50 60 5017 932 75 75 6727 722 100 70 8L45 -1145 12 5 85 9037 - i 17 150 90 9E04 -104 97 2 2.43 17 5 100 100 9821 IJ8 200 10 0 99.72 21 250 99S9 0 400 10 0 9999 0 400 10 0 SUM of REIDUAIS :-16S8 l

Figure A9. CVGraph Analysis of Plate C2220-2, LS Orientation, Percent Shear StructuralIntegrity Associates, Inc.

SIR-97-003. Rev. : A-12 .

i l

l 1

APPENDIX B Monticello Capsule 1 (G-1) Impact Data 4*

l l

l

\

l l

l l

l SIR-97-003, Rev B-0

{ Sin'cturalIntegrity Associates, Inc.

i l

i l l' l I l l l Table Bi l CVGraph - Charpy V-Notch Data Report for Capsule G-1 Plate t

l i

1

PLANT
MON MONTICELLO '

CAPSULE ID  : G-1 PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 ORIENTATION  !

,  : LT Lateral-Transverse '

HEAT NO  : C2220 COMMENT 1

, Capsule tested by Battelle SPECIMEN INFORMATION I l

s specimeu ID Test Temperature Impact EnerTy Lateral Expansion % Shear Fluence Capeule Temperature

  • F ft-lb mil n/cma er JE3 0.00 1.00 11.60 10.00 2.9E17 550.00 JDU 40.00 34.80 22.60 25.00 2.9E17 550.00 JBT $0.00 30.50 . 30.00 25.00 2.9E17 550.00 I JE1 76.00 44.10 35.80 30.00 2.9517 550.00 ,

JDY 100.00 55.40 43.60 35.00 2.9517 550.00 JD1 110.00 58.70 45.80 40.00 2.9E17 550.00 JE5 120.00 43.30 .40.60 40.00 2.9E17 550.03 JCF 160.00 75.50 57.60 55.00 2.9E17 550.00 JE4 200.00 91.00 74.40 100.00 2.9E17

  • 550.00 JDL '

300.00 110.00 69.80 100.00 2.9E17 550.00 JD5 350.00 . 103.00 73.80 100.00 2.SE17 550.00 JD4 400.00 105.00 11.20 100.00 2.9E17 550.00 End of Report l

l l

i SIR-97-003, Rev. I B-1 .

StructuralIntegn.ty Associates, Inc.

Table B2 CVGraph - Charpy V-Notch Data Report for Capsule G-1 Weld PLANT  : MON- MONTICELLO CAPSULE ID G-1 PRODUCT CODE,: WELD MATERIAL ID  :

ORIENTATION  :

-HEAT NO  : E8018 WELD, HEAT UNKNOWN SPECIMEN INFORMATION 1 Specimen ID Test Temperature Impact Energy lateral Expansion % Shear Fluence Capsule Temperature

  • r ft-lb mil n/cm* 'r JEE -80.00 24.50 20.90 25.00 2.9E17 550.00 JEL -60.00 22.50 20.60 20.00 2.9E17 550.00 JJE -40.00 68.70 54.00 40.00 2.9E17 550.00 JJP -35.00 22.00 24.50 30.00 2.9E17 550.00 D6E -30.00 22.90 32.00 30.00 2.9217 550.00 ,

JEM -20.00 39.50 34.40 35.00 2.9E17 550.00 D57 -15.00 78.50 70.20 65.00 2.9E17 550.50 JJM 0.00 36.30 30.80 35.00 2.9E17 550.00 JEP I 0.00 65.20 51.20 55.00 2.9E17 550.00 l JEY 20.00 75.30 58.80 50.00 2.9E17 550.00 JJT 75.00 96.00 $1.40 $0.00 550.00 2 . 9 E17 ,

JJ7 150.00 118.50 90.20 100.00 2.9E17 550.00 JEU - 225.00 127.80 86.40 100.00

, 2.9E17 550.00 End of Report 1

i t

t..

SIR-97-003, Rev. I B-2 l

{ StructuralIntegrityAssociates,Inc.

l' I:

I L

Table B3 L CVGraph - Charpy V-Notch Data Report for Capsule G-1 Heat Aff'd Zone l

PLANT  : MON. MONTICELLO l CAPSULE ID  : G-1

  • PRODUCT CODE : HEAT AFF'D ZONE I MATERIAL ID : SA533B1 ORIENTATION  : LT Lateral-Transverse j HEAT NO  : C2220 */ E8018 WELD HAZ SPECIMEN INFORMATION s.
  • I speciana In Test Temperature Impace Energy I eral hp=== ion t she.r riuence capsule Temperature
  • r ft.lb mil n/cm a er JED -79.00 19.50 32.60 15.00 2.9E17 550.00 JLE -60.00 28.50 25.40 20.00 2.9E17 550.00 JEE -40.00 65.00 49.40 35.00 2.9517 550.00 JEA -30.00 71.30 54.00 50.00 2.9E17 550.00 JLC -20.00 40.00 33.60 50.00 2.9E17 550.00 ;

j JET -10.00 33.00 27.60 40.00 2.9E17 550.00 JLB ' -10.00 50.10 38.60 50.00 2.9517 550.00 JL2 0.00 57.90 43.00 50.00 2.9E17 550.00 I JIBt 76.00 110.20 04.40 100.00 2.9E17 550.00 JIJE 159.00 303.00 70.00 100.00 2.9E17 550.00 JLE 225.00 123.30 94.00 100.00 2.9317 550.00 JK5 ' 300.00 113.00 82.00 100.00 2.9E17 550.00 ,

End of Report i

i SIR-97-003, Rev. I B-3 f StructuralIntegrityAssociates,Inc.

i MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT)

CYCRAPH (! Hyperbolic Tangent Curve Printed at 17d061 on 02-28-1998 Page1 Coefficients of Curve 1 A = 4581 B = 6123 C = 13597 TO = 9032 Equation is CYN A + B ' [ tanh((T - 10)/Q l Upper Shelf Energy:109.04 Temp. at 30 ft-lbs Si8 Temp at 50 ft-lbs 995 leer Shelf Energy:-17.42 Material: PLATE RAim Heat Number: C2220 Orientation: LT Capsule G-1 Total Fluence 2SE17 300 m esu .

S

.h 1 E am A

i:o u 150 0

. C

% 1 -

g 1* cr o t so . o a 0 l i i  !

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: G-1 Materiah PIATE SA53381 Ori: LT Heatf.C2220 Charpy V-Notch Data Temperature Input CYN Energy -

Computed C7N Energy Differential 0 _ 7 8S6 -L96 40 24.79 2329 15

. 60 305 31D -L3 76 44D9 39D3 5,06 100 514 5016 523 110 S&7 54.75 3S4 12 0 4329 5926 -15.96 160 755 7553 -D3 200 91 - 87S5 3.04

'300 11 0 10148 631 350 103 10621 -3.31 400 105 107.n -2.n SUM of REIDUAIS = 0 Figure Bl. CVGraph Analysis of Capsule G-1 Plate Impact Energy SIR-97-003. Rev. I B-4

I l

f MONTICELLO CAPSULE G-1 MLE (STANDARD FIT)

CVGRAPH (1 Hyperbolic Tangent Curve Printed at 17:36:25 on 02-28-1998 Page1 Coefficients of Curve !

A = 37.15 B = 3lL15 C = 10334 1D = 8625 F4 uation is a = A + B * [ tanh((T - 70)/C) ]

Upper Shelf LF.: 7331 Tenperature at E 35: 80 lower Shelf II: 1 Fixed l Material: PLATE SA53381 Heat Number. C2220 Orientation: LT l Capsule G-1 Total Fluence: 2SE17 am ,

i en O 150 j

$ 1

.I i

n

  • M N 100

- i ce u a em m

e  !

Y A m e p;

/

2 0 i i 1

-300 -200 -100 0 100 200 300 400 500 600

Temperature in Degrees F l Data Set (s) Plotted .

Plant: MON Cap: G-1 Materiah PLATE SA53381 Ori: LT Heatf.C2220 l

Charpy V-Notch Data Temperature Input Lateral Erpnen Computal E -

Differential 0 _  !!A  !?46 -36 40 22.6 2ts7 32 i

60 lm 2816 133 l 76 35,79 3358 221 10 0 4359 4194 L65 110 4E79 45 2 .47 12 0 4059 4856 -7S6 160 5759 59 2 -L72 200 7(4 6611 828

'300 893 '7218 -238 7238 S1 350 73 3 400 7L19 7315 -1S5 SUM of REIDUAIS = L11 t

Figure B2. CVGraph Analysis of Capsule G-1 Plate Lateral Expansion SIR-97-003, Rev. I B-5 f StructuralIntegrityAssociates,Inc.

~

MONTICELLO CAPSULE G-1 SHEAR (STANDARD FIT)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 17:3236 on 02-28-1996 Page1 Coefficients of Curve 1 A = 50 B=50 C = 102.58 10 = 12597 Equation is Shear /. = A + B * [ tanh((T - TV)/C) l Temperature at 50'./ Shear: 12 5.9 Materiah PLATE SA53381 Heat Number. C!220 Orientation: LT Capsule G-1 Total Flaence 2.9E17 100 f~ .

u ao e

e ,

a cn

~

eu a a c

e

~

O 40 h {

4 a

. aa au o

j l 0 l l t ,i , l

-coo -200 - 100 o too 200 soo 400 soo eco Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: G-1 Materiah P! ATE SA53381 Ori: LT Heat f. (2220

'Charpy V-Notch Data Temperatun Input Perent Shear Computed Percent Shear Differential 0 _ 10 7.89 2.1 40 25 IE75 924 60 25 2154 325 76 30 21.4 2.59 l 10 0 35 37S -2S 110 40 4221 -22/

120 40 47119 -7D9 160 55 66 - 11

! 80l!9 19 3 200 10 0 "E 1@ E74 2 350 10 0 9&74 125 400 10 0 99.52 .47 SUM of RSIDUAIS = 1&4 Figure B3. CVGraph Analysis of Capsule G-1 Plate Percent Shear SIR-97-oo3, Rev.1 tructor IlategrIW ciates, Inc.

l B-6

MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT) l CVCRAPH 4.1 Hyperbolic Tangst Curve Printed at 175h45 on 02-?3-1998 l Page!

Coefficients of Curve 1 A = 6458 B = 6E42 C = 118.73 TO = 11.75 Equation is CYN = A + B ' [ tanh((T - 1V)/C) l Upper Shelf Energy: 13Q01 Temp. at 30 ft-lbs -58.1 Temp at 50 ft-lbs -lil lower Shelf Energy:-33 Materiah MD Heat Number: E8018 ED, HEAT UNDVYN Orientation: i Capsule G-1 Total Fluence 29E17 300 m 250 p

I a ,

x 200 -

A uD w 150 c) c  :

N 100

, [

2:

> ao o ,

5 o

a y

o i i i l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: G-1 Materiat TELD Ori: Heat f E8018 IEIA HEAT'UNIN0TN Charpy V-Notch Data Temperature Input CVN Energy Comouted CYN Energy Differential

-80 245 2116 233

-60 225 2925 -E75

-40 68 s :rt.75 3a94

-35 22 40 2 -18 2

-30 2229 4148 -1938

-20 395 475 -6

-15 785 50m 214 0 SE19 5&l3 72 0 3629 Sal 3 -2123

~ ~

20 753 69.12 637 76 96 9629 -39 160 118 5 12 0 s -136 1265 129 225 1273 SUM of RESIDUAIS = 0 Figure B4. CVGraph Analysis of Capsule G-1 Weld Impact Energy SIR-97-003. Ra 8 B-7

MONTICELLO CAPSULE G-1 MLE (STANDARD FIT)

CYCRAPH 4.1 Hyperhohe Tangent Curve Printed at 175&l0 on 02-28-1998 l

  • Page1 l Coefficients of Curve 1 A = 4625 B = 4525 C = 10172  % = -1021 Equation is M = A + B ' l tanh((T - E)/C) ]

Upper Shelf M: 915 Temperature at M 32 -37.1 lower Shelf M: 1 Fixed Material IELD Heat Numben 1B018 E1D, HEAT UNUiOIN Orientation:

Capsule G-1 Total Fluence 29E17 200 1

= 1s0 6 4 m

i M N 100

%b a /

y a l a

Cd 0 ,

A SU j (1

O J l u l l  ; l

-300 -200 - 100 0 100 200 000 400 500 600 Temperature in Degrees F ,

Data Set (s) Plottal . l Plant: MON Cap: G-i Material: TED Ori: Heat l: IB018 YllD, dEAT UNINOWN Charpy V-Notch Data Temperature input Lateral Expannon Computai M Differential

-80 _ 20m 21 39 l

-60 ma m42 -532 l

-40 mia 54 33s7

-35 24A 3E87 -1127

-30 32 37 2 -52

-20 34.4 4 ? 11 -7.71

-15 M19 4424 2195 l 0 512 5035 34 l 0 3039 5035 -1925 20 5&79 5&BB -2 76 8L4 M71 48 l 160 90J9 E03 E16 225 863 90.46 . -3S6 i

SUM of RE5DUAIS : -HT Figure B5. CVGraph Analysis of Capsule G-1 Weld Lateral Expansion f StructuralIntegrity Associates, Inc.

l MONTICELLO CAPSULE G-1 SHEAR (STANDARD FIT) i CYGHAPH 41 Hyperbolic Tangent Curve Printed at 1800:36 on 02-28-1998 Page1

Coefficients of Curve 1 A = 50 B=50 C = 10161 TO=-S3 Equation is Shearx = A + B ' [ tanh((T - TO)/C) ]

Temperatmt at $&/. Shear: -J Materiah IELD Heat Number. IB018 YELD, HEAT UNKN0fN Orientation:

l Capsule G-1 Total Fluence: 2.9E17 2 E

. 100 ,

a u 80 ca o 2 M '

0 cn , - - - -

o o C 0 o

0 u a =

o o g

! a i

= -

1 o l

-300 -200 - 10 0 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted .

Plant: MON Cap:G-1 Materiah TELD Ori.: Heat l: EB018 TELD, HEAT UNIN0fN

( Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential l

-80 - 25 1735 714

-80 20 24Z1 -423

-40 40 3L99 8

-35 30 34J3 -4J3

-30 30 303 -03

-20 35 403 -53 l -15 85 4325 2L74 l 0 55 50.45 4fA 0 35 50.45 -15.45

~ 20 50 5936 -936 76 90 SL53 8.48 16 0 10 0 95.71 428 225 10 0 9&73 126 SUM of RESIDUAIS = 9.43 Figure B6. CVGraph Analysis of Capsule G-1 Weld Percent Shear l.

SIR-97-003. Rev.
B-9 f StructuralIntegrityAssociates,Inc.

MONTICELLO CAPSULE G-1 ENERGY (STANDARD FIT)

CVGRAPH 41 Hyperbolic Tangent curve Printed at 181239 on 03-01-1996 Page1 .

Coefficients of Curve 1 A = 69E5 B=4633 C = 7&l6 TO = 16.4 Equation is CVN = A + B ' [ tanh((T - M/C) ]

UPper Shelf Energy:11196 Temp. at 30 ft-lbs -814 Temp. at 50 ft-lls -119 lower Shelf Energy: 2331 Material: HEAT AITD ZONE SA53381 Heat Numben C2220 / E8018 TELD HAZ Orientation: LT Capsule G-1 Total Fluence 29E17 l

Cn 250 A

al 4 ,

N 200 .

x tw L 150 0

d D N .

af, u 100

> p O J

[

} O l

D 1. 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set .

Plant: MON Cap: G-1 Material HEAT AITD SA533B1 ZONEOri: LT (s)Heat Plotted

f. C520 /13018 NELD HAZ Charpy V-Notch Data Teniperature input CVN Energy Computed CVN Energy Diffentatial

-79 -

19 5 3(L73 -1123 l

-60 285 343 -63 l

-40 65 41D2 2397

-30 7L3 44W 2E32

-20 40 495 -95

-10 33 5457 -2157 l

-10 50D9 5457 , -4.47 0 57.9 60N - 217 76 11019 99.42 1&77

~

~ 159 10 3 113 S 3 -10E3 225 1213 11554 7.75 300 113 11192 -2.92 SUM of REDUAIS = 0 Figure B7. CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Impact Energy StructuralIntegrity Associates, Inc.

MONTICELLO CAPSULE G-1 MLE (STANDARD FIT)

CYCRAPH 41 Hyperbolic Tangent Curve Printed at 18:16M on 03-01-1998 Page1 .

Coefficients of Curve 1 A : 45.76 B = 44.76 C = 143E2 TO = -832 Equation is !.F. : A + B ' [ tanh((T - TO)/C) ] l Upper Shelf LE: 9052 Temperature at E 35: -433 Imer Shelf LE: 1 Fixed Material:IEAT AFFD ZONE SA533B1 Haat Numben C2220 /12018 YELD HAZ Orientation: LT l Capsule G-1 . Total Fluence 29E17 200 rn

.O 150 b E 1

M E o d U g 0 e

+.J d _a A 50 "

[

o o

- d u l l l~ l l l 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set .

Plant: MON Cap: G-1 Waterial: HEAT SA533B1 AFFD ZONE Ori: LT (s)

HeatPlotted

f. 0220 /12018 YELD HAZ Charpy V-Notch Data Temperature Input lateral Expanson
  • Computei 2 Differential

-79 _

3259 2E43 716

-60 2539 30.4 -5

-40 49.4 3633 1326

-30 54 3914 1425

-20 3359 4222 -af2

-10 273 45 3 -17.73

-10 3859 45 3 4 73 l

0 43 4&44 -14 76 84.4 69.45 1434

' 15 9 78 82f1 ~4fl 225 94 3 8719 3

,!22

xx) 82 89 2 SUM of REIDUAIS : 226 Figure B8. CVGraph Analysis of Capsule G-1 Heat Affec:ed Zone (HAZ) Lateral Expansion 1

f StructuralIntegrityAssociates,Inc.

MONTICELLO CAPSULE G-1 SHEAR (STANDARD FrT)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 18242 on 03-01-1998 Page!

Coefficients of Curve 1 A = 50 B = 50 C = 757/ W = -1171 Equation is Shear /. = A + B ' [ tanh((T - W)/C) l Temperature at Sk Shear: -1L7 Material: IIEAT AFFD 2DNE SA533B1 ' Heat Number. C2220 /13018 YELD HAZ Orientation: LT Capsule G-1 Total Fluence 2.9E!7 100 2 2 2 a 80 cc e

.c

  • eu
  1. (

J d I e

. a g 40 -

a ,

20 o l l l t 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap: G-1 Material: HEAT AFFD ZDNE SA5:DB1 Ori: LT Heat ) C220 /13018 IEIS HAZ Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-79 -

15 1522 -22

-60 20 2258 -258

-40 35 322 229

-30 50 3854 IL45

-20 50 44.73 526

-10 40 SLO 9 -ILO9

-10 50 SLD9 -L09 0 2 57.C -7.G 76 10 0 9026 933

  • 15 9 100 9&73 12S 225 100 9936 23 n 300 10 0 99S6 IU i SUM of REIDUAIS = 7.76 Figure B9. CVGraph Analysis of Capsule G-1 Heat Affected Zone (HAZ) Percent Shear o P 7 p ,q

1 y-.

g.

S i: 6 E E i n E B E R E M k B I '

gg l 1 -

l l i. i,. M,,

C, - _ ___-

- _SM""'"

a

' 4 l i j i

. l l

D

-w@

l l 1 T' *}l@*

Ed__ _u I l l

i --

0 g,

~

$t

.. g.

ihaussiEMa l i $2

.l. n, - ,i

% f@

l l l I / l I l

}' h }

Wi & I l l-- }V " i h

l l

-- l  ! .:. h "O ~1) I l K: sessa="! _ ,A

+

Y$

EiNNWHIE5 -_ Y  ! $

3 / -

l  !!!

am r-

/

m; =~

I I M ts

. n_ _n _r ;-.sghq w Edpggg':g{ ---. =

_--]'jpgig;ggApff6tj

=-= M Q#wli,s1-. m, y4 , -

-m -

Hann

. ,,aa - ,

User-Defined Model: y=a+b*tanh((x-c)/d)

CoefEdent Data:

a= 45.802899 b= 63.258675 c= 90.613176 d= 136.09598 User-Defined Model: y=a+b*tanh((x-cyd)

Standard Error: 7.0830240 l Correlatica Coefficient: 0.9844198 i Cornmente  !

The fit converged to a tolerance of le-06 in 10 iterations. No weighting used.

l 30 ft-Ibs = 55.88 i

50 ft-Ibs = 99.66 l 450 F = 108.42 '

Lower Shelf Not Dehed Figure B 10. CurveExpert Analysis of Capsule G-1 Plate Impact Energy SIR-97-003 Rev. I B-13 StructuralIntegrity Associates, Inc.

kkf$MYN$NihfMN!f I Yhh$$3k$

if'EM$Ni"

)l NM

% BBRE l

b I eMEM fk h.= l l

??

- nar.r- M

' ~

l

, .. fs!

lEb' ---

j ii 0

I I

n I 3 I$2

' i '

o g!

+.t [_.._ ,

+

. y3 I i-- 1 at y +175 : 1 l l l ,- __ pg f-c

.  : - g E . --T i l fkf M" ,

d '" i$$

I?-- 1 l __ Wa 28 Miammt -'

~jV- 1 l . $i munrunn- .. i p3

~~~

j d;%.  ;  !!N I

hl A '

Nf W

-- ?hE ,

3;

,,,,,,,,,l,,,,-,,,,

- . . ~ . . .

g.a

,,,, ,,,, ii.,

ygg pg m '

44, p.E 7MMJ ~

yq:w,g -

"::.'.iE

@._a' EM ""

-F9' i

vu h

-m e-+ 226EC Nc - -w ^ "w'4504wg a 1. :;a.m spe d;

_=

w: em w- --ye

%y; .gg, m

I rgig. -a - -

pe f g . ; ...jpg.g w _, ,.tg.

I gng

.iesu w.ua . - - - -c S .

l l,[u ll l"l 9q ddG <-$J 1 . .. .. en%;.;Ng.f.g;.

g h C _ ,. ~, wsws . m. II

,1 t

' p(,

nd User-Defiwri Model: y=a+b*tanh((x-cyd)

Coefficient Data

a= 37.854596 b= 35.500608 c= 88.293491 d= 102.11354 User-Defin~1 Model: y=a+b*tanh((x-cyd)

Standard Error: 4.4353634 Correlation C-ffidat- 0.9841045 Conunents:

The fit converged to a tolerance of le-06 in 3 iterations. No weighting used.

35 MLE = 80.06 F 1

Figure B11. CurveExpert Analysis of Capsule G-1 Plate Lateral Expansion )

SIR-97-003, Rev. ! B-14 h StructuralIntegrityAssociates,Inc.

[]liH$9EnddMkJBM v

$!d a_ns un-

_1 --

f m l l i r l

i M.@

j

_, i l

[I '

7

~

7 $$

3 J ME i I i i i g EN _ _ _ _

l

. l ) l l l n

tem at m ----

4 --- le l l j g4 we

l .

m g r

igl' bSN

$b-,_ o Y i N

s.

Ih --J7 ---

l m

if E --

k. U ~*

l- Ems- i d$

er8 eeet t t t t t t ee t t t t t t t t t ee t , et t i,,

t ei1 e,,,let ,e ,et ,

w T

7M n y em "~ M ^

fjg is y gwg g{i

. sme ragg _m -

,~E _ _ _ m 9 y ify:;h + m yi w" atI

g. ,R r 7Isg.

J 9 g.dnir --

LW enlli@$ij ks fQggg gff"g Wd@M 4 E! "#' ^

  • l .: py r. : - ,c)%Mg gggij@E%lbli_ f .p g g jp User-Defined Model: y=a+b*tanh((x-cyd)

CoefHeient Data:

a= 60.485874 b= 41.473022 c= 151.07786 d= 62.798615 User-Defined Model: y=a+b*tanh((x-cyd)

Standard F.rror: 7.3952806 Correlation Cdet- 0.9835391 Commeme The St converged to a tolerance of le 06 in 17 iterations. Regression weighted by uncertainty.

Figure B-12. CurveExpert Analysis of Capsule G-1 Plate Percent Shear SIR-97-003. Rev.1 B-15

{ Structural Integrity Associates, Inc

p?mf.,nr,M:,2f%5E,b.^2 .-- w . w r. w .~.. m -- m - = , ---.,.. ...

A*if Wk r .  : 5 '.M .. -

"s:: s T .- r

!m%@4W.geyGr/et 1W)W% ld *?("Y:s'C.' +& ~+ . ',.?.'? e' sl hs C. >a..psule[1,.-,-.Gh.1._ g.,,;,e ~.*k&

A.r.t ;.+#

31g'f;.,g,,4 W4f d.+w.;

.yyJ7(,J..* r,7 3 3.,kr@..

" : m

.,4,ff;L f . 4-~..<

. .s c' T yn *w A .3h &.>

r -

/.:1.r , -:

c ..,,.

. ./. ,. ?

. ;.j . ,. - -

I.K$tg e g .,::., L

'f14% ^~ 9 ~~

$ Egg % ~~

ts - i'

-[N.S=[w .d5

.n gi .n D:

-~

2 L@$@.r$:

g e~0 TJ9 ::

D. . ,~

Ume/vrAbE: -

4C 7/w c W g '-

iek.J t - O 4>Wb- 0 0

% rn K**: .:

~~.

.1 Ab. .

M e @:$tsis: .

/ .A' '

~

e,' u -

.  ?

4:a

* $9' ggg

,_s.gv.e

..nu 4:- x.y "g; - 4.:, . N.

p* _ --

y a

~41/W-2 4 U #' I'12.';3:' Uc!d.*J#M '. '.' 'M' 'A' 'f 54 ' ' ' 4:;

NY0iff5 1003150a200$2506 300t350 ?

'2

%;4 , jh300$ah'-200Tf150.f-100.li YWeQ$$M,5.0. 4fit 5.,'J4AJulh'db N 60rW fd 7

TnU INNGiTOOIESOIN M k# 56D hMI$1[$

%rsEhin1%%MEsShch&~2%@%d l!@*h@TI N N MN ET5m M :')%.T4M d[rituregj,$2jf/$hMDNN5 M.& + w %d A f 9'~:.*Th i J User. Defined Model: y=a4*tanh((z.cyd)

Coefficient Data: '

a= 64.55567 b= 65.493987 c= 11.692249 d= 118.93523 -

User-Defined Model y=a4'tanh((x.cyd)

Standard Error: 18.7573788 Correlation Coefficient: 0.8986325 Comrnents; a he fit converged to a tolerance of Ic.006 in 11 iterations. %ression weighted $y uncertainty.

30 ft-Ibs =.58.10 s 50 ft-Ibs = -15.19 350*F = 129.61

-350*F = -0.25 Curve Expert Analysis of G-1 Weld Impact Energy Figure B-13. CurveExpert Analysis of Capsule G-1 Weld Impact Energy SIR-97-003. Rev. I B-16 StructuralIntegrity Associates, Inc.

I l

?. _.-.-m. m ,n:-

r.,@. , ; ::

H4,.7.e. g@-a  :....,.a..n m m ,a. ,.W W. n G :qmmE.=4: .6 Tr1.pn&yc.w:nanSECapsule,12 e s.- ^

w,MdhWG;;ny.tt%ht.

yd .nn:./A(G-1)nHAZe' n $ e . z ); m - N M av'Ni:izaTW T c, M$a m. .s-3 a.s .

m,2r- w -~;

q tg'42* ~ * ~{ ,

i

.N:,  :

,. +m .,._ :-

s...

.w  : o _

n::e.  ; e p 5e09 a._ - -=

yn  : -

,i --

. b.g%g"p':

, m . ..,v e-l

w 5 J .< . 1 0-.

g>. s,Srgi.=L'g :! .

-o - - -

w.C D T . .

4 u.W1.$"

ma: -";=

  • l

-s

'rfcs / 'm 1 m

..sm.

w;93..: .

fe

. . v.

p ..: ._

w =

rgg ,:. o 8

.-L

-a . :

dA

/ )e . ..

+:t4

. . - Q ll . e e

~

". 1 r1a::q

.r.,

. . . . . ., .. .S y,

W,o -c

. m 30i:su phw n, '

" w5sp&200.

w qJ 250 5p300swes- '*L9-pA g50 350;i 0ffkW5031 Gy4fT150;p-w:mm.w g&

VP@&m>W-100 %I y d%i MS%  % dh  % * *H b s;"$- :oyupyM;00:e2%

Tsstirem erat 0ife1Ed9: i M gn2 \ew&

w y%a.nsk)c  :--,. u, Me&W 2c.. re f n.c ;rzm3..wu.m sng;c.e:gv.k;&. C.n:, s.w .k-s.ind 5%&. ,a n, n ;. m u. .- .a x, . - r.r ar -n-a -

.Wmw - m un-User Dermed Model: y=a+b'tanh((x cyd)

Coef5cient Data:

am 69.709258 .

b= 46.276763 c= 16.533372 d= 77.995781 User-Defined Model: y=a+b*tanh((x cyd)

Srnndard Error: 17.0010162 Correlation Coefficient: 0.9165205 Cornments:

The 6: converged to a tolerana of le-006 in 17 iterations. Regression weighted by uncertamty.

30 ft-Ibs = -83.77 50 ft-lbs = -18.95 350'F = 115.97

-350'F = 23.44 1

i Figure B-14. CurveExpert Analysis of Capsule G-1 HAZ Impact Energy I

SIR-97-003. Rev ' B-17

APPENDIX C 1

hionticello Capsule 2 (W) Impact Data SIR-97-003, Rev.1 C-0

{ StructuralIntegrityAssociates,Inc.

Table C1 CVGraph - Charpy V-Notch Data Report for Capsule W Plate [2]

i PLANT  : MON MONTICELLO CAPSULE ID :W PRODUCT CODE : PLATE MATERIAL ID  : SA533B1 ORIENTATION  : LT Lateral-Transverse HEAT NO  : C2220 l

COMMENT '

l Additional IrradiatiBn in Prairie Island .

SPECIMEN INFORMATION

-Specimen ID Test Temperature In9ect Energy Lateral Expansion % Shear Fluence Capsule Temperature

. *F ft-lb mil n/cm* 'F D3B -50.00 3.50 5.00 0.03 3.33E18 545.00 DiC 0.00 4.00 2.00 0.00 3.33E18 545.00 D37 50.G0 10.50 14.00 0.00 3.33E18 545.00 D36 70.00 11.00 15.00 10.00 3.33E18 545.00 D3P 100.00 23.50 23.00 10.00 3.33E18 545.00 D3Y 125.00 33.00 29.00 30.00 3.33E18 545.00 D33 150.00 50.00 41.00 50.00 3.33E18 545.00 D3M 200.00 66.50 63.00 70.00 3.33E18 545.00 D3A 225.00 98.50 80.00 95.00 3.33E18 545.00 JE7 250.00 94.50 85.00 100.00 3.33E18 545.00 D35 300.00 99.50 79.00 100.00 3.33E18 545.00 D3L 350.00 105.50 88.00 100.00 3.33E18 545.00 Die 400.00 105.00 86.00 100.00 3.33E18 545.00 End of Report ,

l i:

i SIR-97-003, Rev.1 C-1 h Sin!cturalIntegrityAssociates,Inc.

Table C2 l

CVGraph - Charpy V-Notch Data Report for Capsule W Weld [2]

I l

l PLANT  : MON MONTICEILO l CAPSULE ID :W PRODUCT CODE.: WELD MATERIAL ID :

ORIENTATICN  :

HEAT NO  : E8018 WELD, HEAT UNKNOWN COMMENT I

- Additional Irradiation in Prairie Island i

l l SPECIMEN INFORMATION i

I Fluence Capsule Temperature Specimen ID Test Te p rature Impact Energy lateral Expansion % Shear j

'F ft-lb rdi n/cas er  ;

I D52 -100.00 2.50 0.00 0.00 3.26218 545.00 l l

DSB -50.00 10.00 13.00 5.00 3.26E18 545.00 D51 -25.00 15.00 19.00 20.00 3.26E18 545.00 l D56 0.00 55.00 44.00 60.00 3.26E18 545.00 DSA 25.00 21.00 24.00 50.00 3.26E18 545.00 D53 70.00 77.50 65.00 75.00 3.26E18 545.00 D6A 150.00 106.50 84.00 100.00 3.26E18 545.00 DSS 200.00 118.50 97.00 100.00 3.26E18 545.00 D5C 300.00 117.50 95.00 100.00 3.26E18 545.00 End of Report '

l I

l c

I i

SIR-97-003, Rev.1

~

C-2

{ StructuralIntegrityAssociates,Inc.

l 'l l

Table C3 CVGraph - Charpy V-Notch Data Report for Capsule W Heat Aff'd Zone [2]

t l PLANT  : MON MONTICELLO CAPSULE ID :W PRODUCT CODE : HEAT AFF'D ZONE ~

MATERIAL ID )

SA533B1 ORIENTATION  : LT Lateral-Transverse .

HEAT NO  : C2220 / E8018 WELD HAZ COMMENT ,

'A Additional Irradiation in Prairie Island .

SPECIMEN INFORMATION Specimen ID Test Temperature

  • Iapact Energy Lateral Expansion % Eiw 'r Fluence

'F ft lb Capsule Tempirature mil n/cma 'F D77 -50.00 9.50 20.00 5.00 3.31E18

. 545.00 D75 0.00 4.50 10.00 5.00 3.3121s 545.00 D71 50.00 10.50 11.00 0.00 3.31218 545.00 D74 70.00 12.00 13.00 5.00 3.31Els 545.00 D50 100.00 30.00 34.00 40.00 3.31E18 545.00 DAE US.00 23.50 29.00 40.00 3.31 Ele 545.00 D76 150.00 65.00 68.00 75.00 3.31E18 545.00 D7E 175.00 37.00 39.00 50.00 3.31E13 545.00 D7A 200.00 73.50 40.00 100.00 3.31213 545.00 DET 250.00 76.00 70.00 100.00 3.31Ela 545.00 D73 300.00 84.00 70.00 100.00 3.31 Ele 545.00 End of Repcrt t

SIR-97-003, Rev.1 C-3 g,

l MONTICELLO CAPSULE W ENERGY (STANDARD FIT)

{. CVGRAPli 41 HypeMic Tangent Cune Printed at 182323 on 0341-1990 Page-1 Coefficients of Cune 1 i A = 54J8 B = 51113 C = 8355 10 = 160.78 Equation k CVN = A + B ' l tanh((T - 10)/C) ]

Upper Shelf Energy.10551 Temp. at 30 ft-lbs: 118 3 Temp. at 50 ft-lhe: 154 kwer Shelf Energy: 254 Material: PLATE SA533B1 Heat Number. C220 Odentation: LT Capsule: W Total Fluence: 3mE18 300 l

l rn 250

,o I

a N 200 v.

x te L 150 as

. c N -

l Z

too '

[;-

$ / '

~

_ M / '

u l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap:Y Materiah PLATE SA533B1 Ori: 1.T Heatf.C2220 Charpy V-Notch Data Tem;cature . Input CVN Energy Computed CVN Energy Differential

-50 35 32 29 0 4 4.7 .7 50 10 5 9.35 11 4 70 11 13.1 -11 100 215 22D9 L4 12 5 33 3332 -2 l 15 0 50 4755 144

' 200 66 5 76.78 -1028 225 985 8754 10.95

~

l 250 945 sis .4 i

300 995 10225 -E75 i S 1055 104.71 .78

40Q l05 105.47 .47 SUM of IQSIDUAIS = 0 l

Figure Cl. CVGraph Analysis of Capsule W Plate Impact Energy i

SIR-97-003. Rev. I C-4

. - -. - - _ = . . _ . . - . . - _ - - . _ - - . . - .

r MONTICELLO CAPSULE W MLE (STANDARD FIT)

CVCRAPH 41 Hyperbolic Tangent Curve Printed at "k25:30 on 0341-1998 Page1 Coefficierts of Curve !

A = 4456 B = 4356 C = El 1D = 15L48 Equation is: E = A + 2 * [ tanh((T - 10)/C) l Upper Shelf LE: 88.12 Temperature at M 35: 1315 lower Shelf II: 1 Fixed Material: PLATE SA533B1 Heat Number. (2220 Orientation: LT l Capsule i Total Fluence 333E18 200 Cn O 150 _

b i a  :

t X

N g

~

  • a o o n 1

l

{

e l A 50 t

a _ ~

o , ,

g i

-300 -200 -100 0 100 200 300 400 500 800 l Temperature in Degrees F Data Setts) Plotted .

Plant: MON Cap:Y Materiah PIATE SA5EB1 Or2 LT Heat h (2220 Charpy V-Notch Da.ta Temperature Input lateral Expanson Luputed E Differential

-50 5 133 3D6 0 2 3bi -131 50 14 9.1 439 70 15 . 1305 LS4 100 23 2L97 L12 125 29 3L99 -2S9 15 0 41 4384 '34 200 63 6&l9 -319 225 80 74D9 19 86 ~7957, 6.47 250 300 79 85J2 -E!2 350 88 87J2 El 400 86 87.79 -L79 SUV of RISIDUAIS = 551

( Figure C2. CVGraph Analysis of Capsule W Plate Lateral Expansion STR-97-C03. Rev. I mmluralIntegrit9ssociates,Inc.

C-5

MONTICELLO CAPSULE W SHEAR (STANDARD FIT)

CVCRAPH 4J Hyperbolic Tangent Curve Printed at 182/d7 on 03-01-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 6421 11) = 15521 Equation is Shearx = A + B * [ tanh((T - TO)/C) l

]

Temperature at 50x Shear: 1552 i Material: P! ATE SAS:DB1 Heat Number. C220 Orientation: LT Capmle: I Total Fluence: 333E18 100 -

0 l l

w au ,

I e

c.) o

.c 1 cn -

ou a

c e

O 4

5 4 .

/

O I U 1; i l l l l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plottal Ihnt: MON Cap;Y Materfah PLATE SA533B1 . Ori: 1.T Heat f. N Charpy V-Notch Data Temperature Input Percent Shear Computed Pertent Shear Differential

-50 0 JS -16 0 0 .79 .79

, 50 0 354 -164 i 70 10 657 142 l 10 0 10 1538 -518

! E5 30 2804 1.95 l 15 0 50 45.0 4D9 i 200 70 80D8 -10.0 8 225 95 89.74 525 250 10 0 95.01 4S8 300 100 983 109 350 100 99.76 23 400 100 99S5 D4 SUM of RESIDUAIS = L2 Figure C3. CVGraph Analysis of Capsule W Plate Percent Shear l STR-97-003, Rev.1 C-6 f StructuralIntegrityAssociates,Inc.

MONTICELLO CAPSULE W ENERGY (STANDARD FIT)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1&2859 on 03-01-1998 Page1 Coefficients'of Curve 1 A = 592 B = 6LO4 C = 9552 It) = 50f2 Equation is CVN = A + B ' l tanh((T - TO)/Q l

  • Upper Ebelf Energy: 120.73 Temp. at 30 ft lbs -1 Temp. at 50 ft-lbs 353 lower Sbelf Energy:-135 Materiat WED Heat Number. IB018 NELD, HEAT UNKNOTN Orientation:

Capsule Y Total Fluence 326E18 30u l l

. m 2su

A aI -

g am -

1

. l' l h

! u 4

150 a) \'

. C n ".

M f l j ga / .

l >

C o

/ 4 J

u  ; l .I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MON Cap:Y Mateint TEID Ori: I$at l: 18018 NED, HEAT UNKNOTN Charpy V-Notch Data Temperature Input CYN Energy Computed CYN Energy Differential

-10 0 25 384 -1.14

-50

~

10 11 2 -12

-25 15 19.44 -4 44 0 55 3036 24.93 25 21 43f19 -22S9 70 775 7L9 559 15 0 1065 1(T1J8 -38 200 118 5 11 5 S 239

-257 l' 310 117 5 12051 SUM of RISIDUAIS = 0

?

l l Figure C4. CVGraph Analysis of Capsule W Weld Impact Energy

SIR-97-003. Rev. . C-7 StructuralIntegrity Associates, Inc.

l MONTICELLO CAPSULE W MLE (STANDARD FIT)

CVGRAPH 41 Hyperbohe Tangent Curve Printed at 18m41 on 03-01-1998 Page!

Coefficients of Curve 1 A = 49.11 B = 4&11 C = 98E7 TO = 4535 Equation is 2 : A + B ' l tanh((T - IV)/C) ]

Uppe Shelf I.E: 7/22 Temperature at E 3E 115 lower Shelf E 1 Fixed Material: TED Heat Number. IBD18 NELD, HEAT UNKNOWN Orientation:

Capsule i Total Fluence 326E18 aou

<n

.= 150 b 4 m

M 100 o .

3e /

a/

M 50 n

-^ '~ ~ '

U T i ll

-300 -200 -100 o too 200 aoo 400 soo eco i Temperature in Degrees F Plotted .

Plant: MON Cap:Y Data Set (s)Heat Material: WED Ori:

f.18018 TED, HEAT UNKNOWN Charpy V-Notch Data Temperature Input lateral hpansa Computed 2 Differential

-10 0 0 58 -58

-50 13 E16 -16

-25 19 19f4 -34 0 44 2143 1556 25 24 3922 -1532 70 85 60 2 4.11 15 0 84 86.92 -232 200 FI 9321 178 300 95 9657 -L67 SUM of REIDUAIS = -1(Tl Figure C5. CVGraph Analysis of Capsule W Weld Lateral Expansion 1

5IR-97-003. Rev, I c.g g,,,,,,,,, ,,,,,,,,, ,,ggg,,7,,, ,gg.

, MONTICELLO CAPSULE W SHEAR (STANDARD FIT) l

[ CYGRAPH 41 Hyperbobe Tangent Cune Printed at la217 cn 03-01-1998 l Page1 Coefficients of Cune 1 A = 50 B = 50 C = '7.162 TO = li46 Fquation is Shear /. = A + B ' [ tanh((T - 1D)/C) l l Tempenture at 50/. Shean 114 l Material: TED Heat Number:18018 TEIA lEAT UNDOWN Orientation:

CapsuleY Total Fluence 328E18 1m .

/

a e

e

.c 4 m ,

c e

O l  % T Q .

20 3

O I J l 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Platted .

Plant: MON Cap:Y Material: TEDData Set (s)Heat Ori:l: 18018 TE!A HEAT UNIN0fN Charpy V-Notch Data Temperalme input Percent Shear. Computed Percent Shear Differential

- 10 0 0 436 -418

-50 5 14A5 4 45

-25 20 2438 -438 0 60 3934 2025 25 50 E43 -6A3 70 'i5 81.47 -6.47 150 10 0 97.47 252

! 200 10 0 9923 46 l

300 10 0 9935 D4 SUM of REIDUAIS = -7.93 l

Figure C6. CVGraph Analysis of Capsule W Weld Percent Shear

[

i STR-97-003. Rev. I c.9 h StructuralIntegrityAssociates,Inc.

1.

l MONTICELLO CAPSUL 2 W ENERGY (STANDARD FIT) l CVGRAPH (l Hyperbolic Tangent Cune Printed at 18:3:k42 on 0341-1998 Page!

Coefficients of Cune 1 1 A = 4453 B = 4051 C = 8929 1D [14656 Equation is CVN = A + B ' [ tanh((T - 1D)/C) ]

l Upper Shelf Energy 85.u5 . Temp. at 30 ft-lbs: 113 Temp. at 50 ft4bs 15&S leer Shelf Energy. 4.02

! Materiah HEAT AFD 20NE SA53381 Heat Number. C?220 /1B018 TELD HAZ Orientation: LT Capsule Y I Total Fluence 3.31E18 300 " (

cn 250 A

m I

a >

, Er 200 -

N t::D L 150 0

C N

Z ,,

U o f c/

a

. o o

D I i i l 1

-300 -200 -100 0 100 200 300 400 560 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap:Y Materiah HEAT AFD 2DNE SA533B1 Ori: LT Heat f. C220 / IB018 TELD HAZ Charpy V-Notch Data Temperature Input CYN Energy Computed CYN Energy Differential

-50 . 95 5 4.49 0 45 6.95 - 145 50 10 5 1238 -138 70 12 16.38 -428 100 30 2E14 435 12 5 285 3434 -6.44 15 0 85 46D9 18.9 i 17 5 Tl 57D2 -20.02 i 200 73 5 6625 724 3 -L78

'250 77.78

, 3)0 84 82 2 L47 l SUM of RESIDUAIS = 0 Figure C7. CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Impact Energy STR-97-003. Rev. ' StruduralIntegrl!Qssociates, Inc.

C-10

l 1

MONTICELLO CAPSULE W MLE (ST NDARD FIT) 1 CVGRAPH (1 Hyperbolic Tangent Curve Printed at 183606 on 03-01-1998 i Page1 l Coefficients of Curve 1 A = M41 B = 3&41 C = 13&G4 70 = 13741 l Equation im 2 = A + B ' l tanh((T - TO)/C) ]

Upper Shelf I.F.: 7733 Temperature at 2 35: 12LS lower Shelf LE: 1 Fired 1 Materiah HEAT AFFD ZONE SA5'DB1 Heat Number. C22 / IB018 NELD HAZ Orientation: LT - l C:psule i Total Fluence 331E18 m l i

~

l en

= 150

$ 4 a -

1 5 100 e ,

.3 a

ce so-u

[

o O

0 g 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap:Y Materiah HEAT AFFD 2DNE SA533B1 Ori: LT Heat l:(25 / E8018 NELD HAZ Charpy V-Notch Data ,

Temperature Input lateral Expansion Computed E Differential

-50 . 20 53 1 ( 19 0 10 10Z1 -Z1 50 11 1732 -E92 70 13 2?.03 -943 10 0 ' 34 2924 L3 125 29 35S2 -632 i 15 0 68 4233 2116 i

17 5 3g 49 2 -10 2 200 48 5532 -732 250 70 6E!5 434 300 70 71.09 -LO9 SUM of RESIDUAIS = 654 Figure C8. CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Lateral Expansion l

l f StructuralIntegrityA.ssociates,Inc.

I MONTICELLO CAPSULE W SHEAR (STANDARD FIT)

, CVCRAPH 41 Hyperbobe Tangent Curve Printed at 18fa19 on 03-01-1998 Page1 ,

Coefficients of Cee 1 A = 50 B = 50 C = 70.01 11) = 13188 Equation is: Shear /. = A + B ' I tanh((T - 70)/C) l Temperature at 507. Shean 1318 Material: HEAT AFFD 20NE SAS:DB1 Heat Numben C2220 / EB018 YELD HAZ Orientation LT Capsule i Total Fluence 331 Eta

= 1

. 100 i

o/

a es OJ > ,

,,C

  • 1 m

a d a .

c.) l O

y @ '

x -

)

20 O t! O s _

o i 1 l i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: MON Cap:Y Materiah HEAT AFFD ZONE SA533B1 Ori: LT Heat f. C2220 / D018 TELD HAZ Charpy V-Notch Data Temperature Input Percent Shear "omputed Percent Shear Di#erential

-50 . 5 52 4.47 0 5 213 286 50 0 834 -834 70 5 1338 -838 100 40 E52 12 47 12 5 40 43SB -168 150 75 613 1369 ri5 50 7629 -2629 200 10 0 8635 1114 l ~250 10 0 9E49 35 l 300 10 0 9933 36 SUM of REIDUAIS : 369 l

Figure C9. CVGraph Analysis of Capsule W Heat Affected Zone (HAZ) Percent Shear SIR-97-003, Rev. t C-12 h StructuralIntegrityAssociates,Inc

h  ?

fs l l l l l l Ai w#004 :aM --- .

i' , i em .

G T. @ %

uzm:::4 (:e:: -

c l i. l N

w i

I v? , ne 4  % l, l 1 T T Pd

.. s4 m 1 w

.M

  • m

'o l 7 m ,. y

,)._-

E4h O. l l . l t-ils m

m

= n u  ! l l

/ I  !

mas El l l /# .

I

p l l 1  ! a i . l .-

2 l

-- I .

l --

l l a g

g 7"

__._ ._._ N .___ _ _______

Q 2:

gw;.  : - ::::::::we s

% -9 d'.L W

.ss. iW..a-

..uphr:;!!8nl%WtTOWTRW y 4-,J . vhM '#

- i M

U. .r. A_..F. . ; C, T . .. lo, .:yy B4j?jk14

n. . . MC-v.

.. t ggp .mE j-,& ', Kwf.+iy'  ;

'jz';;_lf]Q'.) Q'"~gj
m:ws e  : mu

. j J'

.%adst hmer.*dQiefs%Md$2hh;;' .+ " 1 %'

. User-Defined Model: y=a+b*tanh((x<)/d)

Coefficient Data:

a= 54.170559 b= 51'.620818 c= 160.73631 d= 83.482587 User-Defined Model: y=a+1,%uh((x-c)/d)

Standard Error: 5.2573785 Correlation Coefficient: 0.9941374 Comments: .

The fit converged to a tolerance of led in 4 iterations. No weighting used.

30 ft-Ibs = 118.34 50 ft-Ibs = 133.98 350 F = 104.70

-350 F = 2.55 i

i l

Figure C10. Cur-'eExpert Analysis of Capsule W Plate Impact Energy SIR-97-003, Rev.1 C-1 Structural Integrity Associates, Inc.

egw mir ms wn em z msggg V m Wgevnh, F.

at .'m4@na m>m wwo .~ e>mm *m4cc

. ,w rasgayww%jj93=wmue..ra:emm#esaggp&aW.ww.

m/+:+4:eA~~:p w F

Np,rJ"%r - - 7 >yjamnv e m

=wr39Amn,,. y .swm msy#

a l xtaasn:.g,QT;thmd. 1 *w x.N.4%eg>p.s

~ -rca ,-.9m

>g 5 >c+

~

t 4% A j3n.g.  % gud%rm*xwdr W.ig&5piSanssasCG301Gh '

.t m urpmgg M-- L.w4 Thi&JJanged -C1 g "^g "

i Q

%as <w- agggwwmumsgTAg2p wla ssanT mP&fnth m sg u .udt hq dv i.

MMwda-#mm. gmurm.d.umsa gMpksnoMuu%+Kam:messuun mmwwwn ' w am%ensramanca%fpM{G2?Nj?;ELEEawam&pe metuta w an a m m w w .m smea s- . , ,. . ,

gngg . .

o . w.. I i 1 = i ms.

(h*, pF: , i i l  ?@

j - T,4 ,r e T_ a i .e

[ , i i j u -a i i i I n I i l @

l w

.-s

a. .

i

-~ ~

me e ..

. .w w

m . I y '

I i , -- i g i

i i

mm....,

, .~> . n n m -

. m lj:

L a H-b am [- e i

i i.

.{.

I.

i i

$.mi a

Vcul_

b e --

m._

w g '

,-- F= d i g

1.

q d

ar t:

s-I  !

i e

l T, e,m o*

a - ,

l ki!}llb- u . -.. --

k ap N.w.g..

,r S LW: w, u

y I

.. I l

M y

r.g m.L e

mu .-

n rek-.

a '

- - d -- m gg.3 H.M}

.. _ ~ =,,,l.,,,i,,,,l...4F....O ...I,...

, ,,,, ,,,,1. .. ,,,, ,,,, ,,,, , , , , .

d':P m

thhhk~ i<nIAT$W kN

, hhh e,9rpm m aum

.a m yple,.ap

m. ,ag -

L. n , A%eRen ,

gum ng ene

["$N ND$MNN b N Me E N 3:e ,g m,e ,g.s;g w :gw; m d:w ma

,m yg- - - .

,ww.7pm.. ,  : amme3 imassvi hb kEk .) -- >" MNNNNN N' User-Defined Modch y=a+b*tanh((x-cyd)

CoefHeientData:

a= 46.135666 b= 41.077 % 8 c= 156.23414 d= 78.247295 User-Defined Model: y-a+b*tanh((x-cyd)

Standard Error- 4.2428742 Correlation Coefficient- 0.9941676 Comments-The fit converged to a tolerance of le-06 in 5 iterations. No weighting used.

35 mils = 134.48 F l

r Figure C11. CurveExpert Analysis of Capsule W Plate Lateral Expansion i SIR-97-003, Rev. I C-14 StructuralIntegrity Associates, Inc.

1 l

i i

e Akh Maromanp $JEffffM5Mf# mpewgessm:ssti hied sffk g#srqympgem;3ergy

bNd$Rh$$$ihNyM'*%[mMBFng)!%$$$.hEdOiIM$$4$R$N5hu.uzum!E95$s$ffMW:@9ip:sM(($$)J5$pd

$$!wd

%4 ih ng%wgxun%g f

@$ % ggggg 23g&yn%gdi+bp%q l m@as^3%qh@6%sise gnadU m @QE44%m ?N gd R egt;4jn$

f QM W d snittsijps

@Q yB;yngg a ,

, , i t ir r ir ir ge m

! n:-

+

1 l

6

^

i 6 l4 i

l ess m I m:i lld I

}

i I d.h:yi j D  !

Ri"J{:: r i i  ! @ l u .3 A..

m 1.

l mu l

- e l

!$k%h

  • O
  • k i

mwearde7-sw moveEN% il~

l

/ I

}

r a&

m:

W)+

l E N I ,

/  !

i SI 29

.m-

-m .a; < f i g

j y6m - _-- -g- - i Area j

/_. i gg -

r Ap. .

m

.4,e_em, A e4. t i

eg ,

hNh .

L b ;i m

vasen: m -

g m

!  : E n

" .g W e

s wL . y., -- -

l p p- - p w emses: SIFh S"Ittt tttt tttt tit tAkt t t f dkt Mkt tt tift tt t t tttt tttt t tIf ftt I Tttt IWE l9ifg@]A,bjg igteniWic&" fwd

~,..g:sa ikin* pap #eA0074 W Wih4iMrds d 'E do t<m y W h*4ns4"'iMatei@ @Wh@

,M wy - .,.m

@pS O mam Til0

- Jpg y%a f mm ungar gh ~

ma '

JWy%. . Pkt6 A M 8n- km% @ 1R

,,.g ,

Q A gi frsli1l \rm- ' jy,n-@m$$ju$;m.:. 4s . l -i M- M+

i g

a wt M{#uh x'$-lQ%%% 32! ,

w.^t

?

w,._wmygnnn m u. wRg+r .w . . -m x Q4

.aw%)rs:b User-Di: fined Model: y=a+b*tanh((xE)/d)

CoefHeient Data:

a= 50.128898 b= 51.502981 c= 155.81589 d= 67.912247 User-Dehed Model: y=a+b*tanh((x-c)/d)

Standard Error: 4.9127839 Correlation Cym+r 0.9953691 Comments:

The fit converged to a tolerance of le-06 in 11 iterations. No weighting used.

l l

I t

I I

Figure Cl2. CurveExpert Analysis of Capsule W Plate Percent Shear t

SIR-97-003. Rev.1 C-15 f StructuralIntegrityAssociates,Inc.

ang W en mmm 4 xtn..g *&g ggit m % %keis w F* wn

.. ~ -  % 2ey g%b au.q ' w-w wMglg ... w.a gg.m!;m t;;c Matg.,4M99. th(Mm#sthyw!PfMirt.nbyh;%.gf 3

E^iMbh 844 i,%-d

3 3., .

eA en www - 4ppj m- mwg"wu

~~

^ Vin P % dM MEu M Mhis 225%.n:in"ME.rar*2a%EnewW~e M52 W

?

.2)#*.

m %. m J ..>uw:m $$$dJ"%nnm  % YdM y.;.- apt;E msssapmun%etreg, d: nw. mm.4:h"ang:--.g~

~wesmg

~

5 l i l n -M- l 1

' l l l l -

L

.s.

m gi.  : e I

i j i

! I d$ I

^W 1

.  ? i ,

1, n i

i  ; 5 i as ki.sl 3

I i  ! t .  %@ ,

iawer:

i --

'-~

i  % )

IQ k 1 } l 9 g

a .- -

l . ,

i - - .

- - r- - '

d

' EEs ifi n

,, t i I, l l i.

$y.

@NlE4p l l l

f l yd HEM s81! $ l q - --

7

! 1Q a

M_5als 4fEG #6A i' l '

l

!, i ,2 (

i is l 0-  !.

a 1

re - --_ , ~"

l l {

P# ]!$. l ?. I _I ~  ; l l

, $s! .

$ a>

j um e _

l i g

=

g w..

j

.e.

9

- - as sm:

WRi 4 0 m ,

> l d,s#

N ' sE l w

-a A N. Nhwr* A5mMgema L it -- " W

'iN ti " x T t W M J/ # Mis! l

'" W ,n . _ h,3_50*

946Gr a 4

3.,0E!w .

n _a

.=6 . ,g M @{

Q p

..j . t kpP M

. 0?!. .~ M.<g.. -m . "f myy

'";-- mw g e ,

ov.v .m

,. n .. -;3 3,

,a . . ~

x: .-

,r.

6 .  % m, . -s .-. .

came h' . _ i%eb,.; am Nf_""

  • JMSn%iH!K wbbbe User-Defined Model: y=a+b*tanh((x-cyd)

Coef5cient Data:

a= 59.684564 b= 61.035953 c= 50.603007 d= 95.495727 User-Defined Model: y=a+bM((x-cyd)

Standard Error. 15.5460958 Correlation CoefEcient: 0.9668691 Commentt:

The St converged to a tolerance of le46 in 5 iterations. Regressior, weighted by uncertaulty.

30 ft-Ibs = -0.13 50 ft-Ins = 35.32 350 F = 120.49

-350 F = -1.32 l

l Figure C13. CurveExpert Analysis of Capsule W Weld Impact Energy SIR-97-003, Rev.1 C-16 Structural Integrity Associates, Inc.

A

i l 1 I 1

i 1

I f

L I

l i

^

- b s' wwg,y$mf*.- =F Ca>p$sule2! W , HAZw-9m 2 &'e*:*uw< m< a*em l

$.$D.

bw pys.n.

nwnt uc S

wg%. , d $$$$Nh$id@$NEMbMininen(AFA)NdE l

l i

i. i.- i. i i - -
g a.;g

.aa uw ^

N' gi g

i g[

' I 3 M.

N t

'i

~'*

i h

l.

1 l

.i- 8 g:g: .g

-- 1@n l 1 l I e l ML 3 . . -

w

?

'Mh { , - P 3d l pmq qm ..

i l

, , i i m.

w i

-= WN l 1 'I l

.t j i a m m

i s

t l i i m?%

W 1>; i i l

11 3  ! I i

I i 9 t is

) ,

l .l l j

9 r

/ __ N sg i

i I  ! i

/

/ _

@s!

.1  ; J i i  ;

' i var n

I 4

~

!  ! / - . A_ i

! F y 1

[

W l

l. l -- T -

! l t@w l n )8 j M l/'V E

a l.

  • L

, I  !

e. T:

l m

Mi '

,M _e __ --

- l i I

@7 a-l-

I, l I l I @

= M;E%@4 '

Wi n

~g s,=wm ==vem@m m @y M#if GW #M50E200!!!E!isME&WMAWsMW@E353 f m .g;

< ..= agi gh ,m i

-w. @.=22% ..,th.M@y y ._

h "cs} %-

% % e gm mperNoregljjgn%$Wg;M.g$E jpgW8p gg :mm.3 l

s$$un!#

2W& -

21 :h:44N 4A318@PJhssMV nds% sdjggyS$5WWpphm**WW!@mW*n$ l

  • 1 User-Defined Model: y=a+b*tanh((x-cyd)

Coefficient Data: l a= 44.501878 b= 40.50658 c= 146.40929 j d= 89.292654 ,

1 User-Denned Model: y=a+b*tanh((x-cyd)

Standard Error. 11.5273943 Correlation enemr-im- 0.9472588 Conunents:

The fit converged to a tolerance of le 06 in 6 iterations. Regn:ssion weighted by uncertainty.

30 f1-Ibs = 112.95 50 ft-Ibs = 158.61 350 F = 84.17

-350 F = 4.00 l

l r

Figure C14. CurveExpert Analysis of Capsule W HAZ Impact Energy SIR-97-003' Rev' ' C-17 StructuralIntegrity Associates, Inc.

l l

MONTICELLO NUCLEAR GENERATING PLANT 3495 I TITLE: CALCULATION / ANALYSIS VERIFICATION Revision 5 CHECKLIST Page 1 of 1 Place initial by items verified. CA- 46 - p76 Attachment A Page 1 of I REVIEW Verified

1. Inputs correctly selected. /kJ/ 9/I.b4
2. Assumptions described and reasonable.

044/9M&

3. Applicable codes, standards and regulations identified and met. TA/ ##io/h
4. Appropnate m? nod used. p / 98A'k
5. Applicable construction and operating experience considered. 644 /7)t4/h
6. Applicable structure (s), system (s), and component (s) listed. 60/ 7p/F
7. Formulas and equations documented, unusual symbols defined. 044 / 771 A'k  !
8. Detailed to allow verification without recourse to preparer. 1644 /'htC4 l
9. Neat and legible, pages all correctly numbered. AJA/ eAll  !
10. Signed by preparer, hw/9fM
11. Interface requirements identified and satisfied. Ed>M
12. Acceptance criteria identified, adequate and satisfied. JM/97M#
13. Result reasonable compared to inputs. tl AA/tnM
14. Basis of all assumptions, acceptance criteria and inputs are identified. W/9n#P'
15. Conclusions not in conflict with previous analysis, USAR, Technical Specifications or NRC Safety Evaluatiorus.

ALTERNATE CALCULATION

16. Altemate calc resu!ts consistent with original. MA.
17. ftems 1-4 above verified. (Required by ANSI N.45.2.11) t4A TESTING
18. Testing requiroments fully described and adequate, klA
19. Shows adequacy of tested feature at worst case conditions. t4-3fe
20. If test is for overall design adequacy, all operating modes considered in determining test conditions. BA
21. If model test, scaling laws and error analysis established. i HA
22. Results meet acceptance criteria, or documentation of acceptable resolution is attached. t@h OTHER (Explain)

FINAL DOCUME'NTATION (Verify appilcable items included)

23. Altemate or checl< cales N
24. Summary of test results. M4;/9:44

, 25. Comments (errors, discrepancies, recommendations). MA/92/M l 26. Method of resolution of comme 7ts. dudlM/

Completed By: M b i k nl' 1 9/d.ed M [ vk r h M Date: (%-hf/782/P l 3087 (DOCUMENT CHANGE, HOLD AND COMMENT/Fp)h)) incorporated:

C " /U 4'd-Mk/?9 QRfADMileSTRATWElji Reso Suov- GSE-NGSf46fAssee Ref: AWi-05.01.25 l SR: A N. Frea: 10 ,vrs

&dE#ndss#dNilS?$MMk ARMS: 3495 M Doc Tvoe: 3042 l Admin initials: % Oate:Tlb/47 M/jrs