ML20049H277

From kanterella
Jump to navigation Jump to search
App 4A to Gessar, Control Rod Patterns & Associated Power Distribution for Typical Bwr.
ML20049H277
Person / Time
Site: 05000447
Issue date: 02/12/1982
From:
GENERAL ELECTRIC CO.
To:
References
NUDOCS 8202230043
Download: ML20049H277 (52)


Text

- . ..

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O O

a APPENDIX 4A CONTROL ROD PATTERNS AND ASSOCIATED POWER DISTRIBUTION FOR TYPICAL BWR

O I

l O

8202230043 820212 PDR ADOCK 05000447 K PDR

f GESSAR II- 22A7007

238 NUCLEAR ISLAND Rev. O

,I APPENDIX 4A CONTENTS i

Section Title Page

4A.1 INTRODUCTION 4A.1-1
4A.2 POWER DISTRIBUTION STRATEGY 4A.2-1 4A.2.1 Principle 4A.2-1 4A.2.2 Explanation of Principle 4A.2-1 4A.2.3 Target Power and Exposure Shape 4A.2-2 j 4A.2.4 Operational Implementation 4A.2-3 4A.3 RESULTS OF CORE SIMULATION STUDIES 4A.3-l' 4A.3.1 Description of Model 4A.3-1 1

4A.3.2 Cycle Analysis 4A.3-2 4A.3.3 Uncertainty Analysis ~4A.3-4

4A.4 GLOSSARY OF TERMS 4A.4-1 j 4A.5 REFERENCES .4A.5-1 i

i 4

O i

!~

l i

l I.

4A.i/4.A.ii

(

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

,n.

(,)

APPENDIX 4A ILLUSTRATIONS Figure Title Page 4A-la Summary of Haling Condition 4A.6-1 4A-lb Relative Axial Power and Exposure (Haling) at 6.69 GWd/st Cycle Exposure 4A.6-2 4A-lc Integrated Power per Bundle (Haling) at 6.69 GWd/st Cycle Exposure 4A.6-3 4A-ld Average Bundle Exposure (Haling) at 6.69 GWd/

st Cycle Exposure 4A.6-3 4A-2a Summary of 0.2 GWd/st Condition 4A.6-4 4A-2b Relative Axial Power at 0.2 GWd/st Cycle Exposure 4A.6-5 4A-2c Relative Axial Exposure at 0.2 GWd/st Cycle Exposure 4A.6-5 4A-2d Integrated Power per Bundle at 0.2 GWd/st Cycle Exposure 4A.6-6 73

( ,)

4A-2e Average Bundle Exposure at 0.2 GWd/st Cycle Exposure 4A.6-6 4A-3a Summary of 1.0 GWd/st Condition 4A.6-7 4A-3b Relative Axial Power at 1.0 GWd/st Cycle Exposure 4A.6-8 4A-3c Relative Axial Exposure at 1.0 GWd/st Cycle Exposure 4A.6-8 4A-3d Integrated Power per Bundle at 1.0 GWd/st Cycle Exposure 4A.6-9 4A-3e Average Bundle Exposure at 1.0 GWd/st Cycle Exposure 4A.6-9 4A-4a Summary of 2.0 GWd/st Condition 4A.6-10 4A-4b Relative Axial Power at 2.0 GWd/st Cycle Exposure 4A.6-ll 4A-4c Relati;3 Axial Exposure at 2.0 GWd/st Cycle Exposure 4A.6-ll 4A-4d Integrated Power per Bundle at 2.0 GWd/st Cycle Exposure 4A.6-12 4A-4e Average Bundle Exposure at 2.0 GWd/st w Cycle Exposure 4A.6-12

\v/

4A-iii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O APPENDIX 4A ILLUSTRATIONS (Continued)

Figure Title Page 4A-Sc Summary of 3.0 GWd/st Condition 4A.6-13 4A-5b Relative Axial Power at 3.0 GWd/st Cycle Exposure 4A.6-14 4A-Sc Relative Axial Exposure at 3.0 GWd/st Cycle Exposure 4A.6-14 4A-5d Integrated Power per Bundle at 3.0 GWd/st Cycle Exposure 4A.6-15 4A-Se Average Bundle Exposure at 3.0 GWd/st Cycle Exposure 4A.6-15 4A-6a Summary of 4.0 GWd/st Condition 4A.6-16 4A-6b Relative Axial Power at 4.0 GWd/st Cycle Exposure 4A.6-17 4A-6c Relative Axial Exposure at 4.0 GWd/st Cycle Exposure 4A.6-18 4A-6d Integrated Power per Bundle at 4.0 GWd/st Cycle Exposure 4A.6-18 4A-Ge Average Bundle Exposure at 4.0 GWd/st Cycle Exposure 4A.6-18 4A-7a Summary of 5.0 GWd/st Condition 4A.6-19 4A-7b Relative Axial Power at 5 GWd/st Cycle Exposure 4A.6-20 4A-7c Relative Axial Exposure at 5 GWd/st Cycle Exposure 4A.6-20 4A-7d Integrated Power per Bundle at 5.0 GWd/st Cycle Exposure 4A.6-21 4A-7e Average Bundle Exposure at 5.0 GWd/st Cycle Exposure 4A.6-21 4A-8a Summary of 6.0 GWd/st Condition 4A.6-22 4A-8b Relative Axial Power at 6.0 GWd/st Cycle Exposure 4A.6-23 4A-8c ' Relative Axial Exposure at 6.0 GWd/st Cycle Exposure 4A.6-23 4A-8d Integrated Power per Bundle at 6.0 GWd/st Cycle Exposure 4A.6-24 4A-8e Average Bundle Exposure at 6.0 GWd/st Cycle Exposure 4A.6-25 4A-9a Summary of 6.6 GWd/st Condition 4A.6-25 4A-iv

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 7-

! ,/ APPENDIX 4A ILLUSTRATIONS (Continued)

Figure Title Page 4A-9b Relative Axial Power at 6.6 GWd/st Cycle Exposure 4A.6-26 4A-9c Relative Axial Exposure at 6.6 GWd/st Cycle Exposure 4A.6-26 4A-9d Integrated Power per Bundle at 6.6 GWd/st Cycle Exposure 4A.6-27 4A-9e Average Bundle Exposure at 6.6 GWd/st Cycle Exposure 4A.6-27 4A-10 Sequence A and B Designations 4A.6-28 4A-ll Minimum Critical Power Ratio as a Function of Cycle Exposure 4A.6-29 4A-12 Maximum Linear Heat Generation Rate as a Function of Cycle Exposure 4A.6-30 4A-13 Achieved End-of-Equilibrium-Cycle Axial Exposure and Target Haling Distributions 4A.6-31 3

) 4A-14 Under-Beactive Model at 0.2 GWD/st Cycle

' Exposure 4A.6-32 4A-15 Under-Reactiva Model at 3.0 GWD/st Cycle Exposure 4A.6-33 4A-16 Over-Reactive Model at 3.0 GWd/st Cycle Exposure 4A.6-34 l

~

l l \

'O' 4A-v/4A-vi l

l

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

,w

, APPENDIX 4A

(,,) CONTROL ROD PATTERNS AND ASSOCIATED POWER DISTRIBUTION FOR TYPICAL BWR 4A.1 INTRODUCTION This appendix contains a typical simulation of the equilibrium cycle as analyzed by the three-dimensional BWR simulator'. The control rod patterns used are just one example of a set of control rod patterns which could be used to provide the radial and axial power shaping (Subsection 4.3.2.5) needed to meet the Technical Specifications.

The basic control rod strategy consists of alternating between four types of control rod patterns: A2-B2-Al-Bl. The defi-nition of these rod pattern types, commonly referred to as control rod sequences, is given in Figure 4A-10. By changing sequences regularly [ typically every 1 GWd/st (1.102 3 GWd/Te) ),

) the locations of the deeply inserted rods are continually being moved. This precludes any bundle from being significantly controlled over a long period of exposure. In turn, control rod history is reduced and the bundle average exposure is more evenly distributed to obtain a better power distribution and better MCPR performance.

Finally, the all-rods-out condition at end-of-cycle is shown in Figure 4A-9a. Note that, although there are no control rods to shape the power distribution, thermal performance parameters are well within design limits. This can be attributed in part to the fact that the exposure distribution closely resembles the target distribution that gives minimum peaking.

\m./

tA.1-1/4A.1-2

GESSAR II 22A7007

' 238 NUCLEAR ISLAND Rev, 0 4A.2 POWER DISTR 27UTION STRATEGY.

4 a

4A.2.1 Principle i

1 A basic operating principle used to minimize power peaking throughout an operating cycle has been developed and is applied to boiling water reactors. The principle is described in Reference 2 and is referred to as the " Haling principle" or "the J

! minimum power peaking principle". The main concept is that "for any given set of end-of-cycle conditions, the power peaking

! factor is maintained at the minimum value when the power shape does not change during the operating cycle".

- 4A.2.2 Explanatjan of Principle J'

I Assume that the target constant power shape has been determined and assume further that at some point during an operating cycle

() a flatter power distribution can be attained. To achieve this lower peaking, the reactivity distribution must be such that in i

the region of peak power, the reactivity is less than in the target case. Since fuel reactivity is normally u decreasing function of exposure, this lower value of reactivity implies that the exposure in the region of peak power is high, relative to the target case. This situation could have been achieved only j

by operating with a power distribution more peaked than the target distribution during some earlier portion of the operating cycle.

In short, it is possible to obtain a power peaking factor lower than the constant power shape peak at some time during the cycle only by operating with a peaking factor higher than that of the a

target chape at some earlier time in the cycle. Therefore, the constant power shape corresponds to the minimum peak-to-average value - that can be maintained throughout the cycle.

4 i

j 4A.2-1 l

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 4A.2.3 Target Power and Exposure Shape The desired end-of-cycle power and exposure distributions are cal-culated uniquely for each operating cycle using the Haling prin-ciple. The power shape, if maintained through the cycle, would result in minimum power peaking throughout the cycle and is, therefore, used as the target shape, operationally, compromises are made because the target power shape cannot be held precisely throughout the cycle.

The calculated target average axial power and exposure distribu-tions are shown on Figure 4A-lb. These were calculated using a three-dimensional BWR simulator code l.

The desired power distribution is determined by iterating between the end-of-cycle exposure and power to determine mutu-ally consistent distributions. Based upon the assumed beginning and end-of-cycle conditions, the results of the calculation supply the target power distribution. If the objectives are fully realized, the chosen set of conditions for the end-of-cycle will permit operation at full power with all rods withdrawn.

Given the target power shape, a series of additional calculations are performed to devise control rod patterns that will produce this shape throughout the cycle. Many items such as finite control elements (rods), electrical system demands and other hardware and procedural constraints must be factored into the operating strategy. The basic-strategy is to deliberately peak the axial power in the bottom portion of the core early in the cycle more strongly than the target shape dictates. This compensates for the condition late in the cycle in which most of the control rods are fully withdrawn and not available for axial power shaping.

O 4A.2-2

_. .. . . . - _- .. . . .. -. . . . . - - ~ - -. .

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

()

d 4A.2.4 Operational Implementation The resulting control rod sequences are utilized throughout the I cycle to approach the end-of-cycle target power shape as closely as possible, using the core nuclear instrumentation as a check.

l Sinco power shaping is the goal, the rod sequences are used as 4 guides in producing the desired power shapes. Using this I

strategy, operating conditions that require deviations from the j desired power shapes can be accommodated later in the cycle by deliberate power-shaping action.

i The control rods are divided into two sequences of rods desig-

! nated "A" and "B". In general, only one sequence of rods is used in any one cycle. Within each sequence, the control rods j are divided into " deep" and " shallow" rods (see Section 4A.4 i for definitions).

i

-x The deep rods are used to control the reactivity and radial power shape. The shallow rods are of very little reactivity-

< worth and therefore, do not appreciably affect the reactivity; but, in combination with the axial gadolinia, provide the axial

[ power flattening, j

i Since shallow rods tend to retard exposure near the bottom of the core, they are used only when necessary.

In summary, the total strategy involves calculating the target

, power shape for the cycle, calculating control rod sequences l that approximate that shape, and using those rod sequences and in-core nuclear instruments as guides to operationally produce the target power shape as closely as possible.

I I

!O

! 4A.2-3/4A.2-4 4

Y

+e+..,..m--v+- -,- -,- - - - -r-a, ,-,.n .nea.,,,m,,rv-,vm---nnm-,,-_,nn-,-,,--w--,. .,n.,,,n,-- -v,~-m-.,-v.~,,, en v -- w

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

'4A.3 RESULTS OF CORE SIMULATION STUDIES 4A.3.1 Description of Model The-model used for the simulation studies was the BWR/6-238-748 standard plant with a reload enrichment of 2.85 wt% U-235. This core is identical to the typical plant described in previous sec-tions of this report. The following table describes the pertinent characteristics of this plant:

Product Line BWR 6 Rated Power (MWt) 3579 Rated Flow (Mlb/hr) 104 Core Average Pressure (psia) 1055 Inlet Enthalpy (Btu /lb) 527.7 Number of Bundles 748 Number of Control Rods 177

() Size of Pressure Vessel i.d.

Active Core Height (in.)

(in.) 238 150 Lattice Type 8x8R Reload Bundle Enrichment (wt% U-235) 2.85 Reload Batch Fraction 0.251 Number of Bundles in Central Orifice Region 656 Number of Bundles in Peripheral Orifice Region 92 Circumscribed Core Diameter (ft) 16.16 Average Core Power Density (kW/ liter) 54.1 i

The analytical procedures for this study were described in preceding sections. The technical specification limits assumed f

for this study are as follows:

i

! MLHGR (kW/ft) 13.4 MCPR 1.23 l

i 1

O I

i

' 4A.3-1

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 4A.3.2 Cycle Analysis Near beginning-of-cycle, the steps are 0-200, 200-1000 mwd /t and then in intervals of 1000 mwd /t to end-of-cycle.

Figures and graphs are included to show the following data at each exposure step:

(1) Control rod pattern with associated:

a. Maximum core average power and location - ( AXI AL)
b. Maximum radial power and location - (RADI AL)
c. Minimum critical power ratio and location -

(MCPR)

d. Maximum linear heat generation rate and location -

(MLHGR)

e. R-factor (2) Core average axial power distribution (3) Core average axial exposure distribution (4) Bundle radial power map (5) Bundle average exposure map O

4A.3-2

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 4A.3.2 Cycle Analysis (Continued)

The following table itemizes the_ exposure step and its relat2d figure numbers:

Incremental

' Exposure (GWd/st) Sequence

  • Figure Numbers 6.69 All-rods-out - Haling EOC 4A-la through 4A-1d

~

0.2 A-2 4A-2a through 4A-2e 1.0 B-2 4A-3a through 4A-3e 2.0 A-1 4A-4a through 4A-4e 3.0 B-1 4A-Sa through 4A-Se 4.0 A-2 4A-6a through 4A-6e 5.0 B-2 4A-7a through 4A-7e 6.0 A-1 4A-8a through 4A-8e 6.6 All rods out 4A-9a through 4A-9e O In summary, the detailed data presented demonstrates that this design can be operated throughout the cycle with adequate margins to allow for operating flexibility. The variation of the maxi-mum linear heat generation rate (MLHGR) with cycle exposure is presented in Figure 4A-12. The upper limit of the MLHGR is 13.4 kW/ft and, as the data show, significant margin exists.

Maximum average planar linear heat generation rates (MAPLHGR) are not calculated for this design since calculations show the peak clad temperature (PCT) to be less than the 2200 F limit when the maximum single rod is at the 13.4 kW/f t limit.

Adherence to the MLHGR limit will always assure meeting the MAPLHGR limit. The variation of the MCPR with cycle exposure is shown in Figure 4A-ll. Similarily, a large margin is indicated with respect to the expected MCPR limit of 1.23. A design allowance is applied to the Technical Specifications' values of MLHGR and MCPR to account for any difference which O

  • The A and B rod sequence designations are sho"n in Figure 4A-10.

4A.3-3

1 GESSAR II 22A7007 1 238 NUCLEAR ISLAND Rev. O  !

4A.3.2 Cycle Analysis (Continued might exist between the BWR simulator calculations and the actual reactor performance. The modified values, called design targets, are 12.1 and 1.32, respectively, for MLHGR and MCPR.

Figure 4A-13 shows a comparison of the achieved end-of-cycle axial exposure distribution and the target Haling distribution.

This illustrates that deviations from the Haling target distri-bution can be tolerated and still meet all design limits, as evidenced by the data presented.

4A.3.3 Uncertainty Analysis Operating experience with the BWR has shown that there is suffi-cient flexibility to accommodate significant uncertainties in core reactivity. Additionally, analyses of the BWR product lines has shown that reactivity uncertainties can be accommodated while still meeting the required performance limits. Since the historical uncertainty in core reactivity is small, the BWR is able to accom-modate reactivity uncertainties.

O 4A.3-4

t /

GESSAR II 22A7007

] 238 NUCLEAR ISLAND Rev. 0 /-

/ -

')

4A.4- GLOSSARY OF TERMS v

O~ Axial Power Peaking Factor i 'The maximum relative axial power density (also called Axial Factor and Axial Peak). Defined as: -,

, i j Max P for all k NAS i, j, k 1,j l . .

where NAS = total number of assemblies in the core,  !

P i,j,k = relative power density at node 1,j,k, i,j = radial' location of fuel assemblies, and

i. , ~

j k = the number of nodes per assembly.

Integrated Radial Power Peaking Factor The maximum of the integrated relative power of all channels.

{

. Commonly called Radial Factor or Radial Peak. - Defined as:  :( 3 N"* E i,-j, k _

for all 1, j k .

where i

K = the total number of nodes per assembly. -

q.

j Local Power Peaking Factor i The maximum of the ratio of the power, density in a fuel rod to the power density in the fuel bundle based on the unit cell l

lattice calculation (also called Local Factor) . Defined as:

. p  :

--n Max N . fpr all N fuel rods. , ,

p

, n where P = the power density in fuel rod n, and n

N = number of fuel rods per assembly. '

4A.4-1

-,,,v-y,-- -- ..~-y.,a -,r. .-gw.v.-- ,4cy..4 -y ,.9.,. mm,. . - ,e--v-se., -w.--m, , - - ,en..,-...--.._ye--,, -

,- , - y ...%. .

3 GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 4A.4 GLOSSARY OF TERMS (Continued)

Gross Power Peaking Factor The maximum nodal relative power density in the core. Often called gross peaking factor and sometimes called the global power fac, tor. Defined as: ,

r Max P. .

.!for all . .

k

_1 ,

J (kJ 1 , 3 ,

Overall Power Peaking Factor

  • The maximum relative power in any fuel rod at any node in the model (the maximum produc't of the gross and local factors).

Pelative Power Density The ratio of the power density at any node in the model to the average power in the model. Designated P k*

Linear Heat Generation Rate (LHGR)

, The hdat generated in a fuel rod per unit length of the fuel rod.

It is expressed in terms of kW/ft and bears a constant relatior.-

ship with overall power peaking factor.

Minimum Critical Power Ratio (MCPR) .

The minimum value of the ratio of the bundle power at start of boiling transition to the calculated bundle power.

Control Raj3 Notch A 6-in. movement of the control rod. Each control rod has 24 notches.

4A.4-2

GESSAR II - 22A7007 2 38 NUCLEAR ISLAND Rsv. 0 4A.4 GLOSSARY OF TERMS (Continued) }

(~*)

\~J  ;

Control Rod Position Ti}c notches referred to in the analysis are actual positions.

Kotch position 48 is fully withdrawn (ind;icated by a blank square on the rod pattern maps) and notch position 0 is fully inserted.

" Shallow" Control Rod A con' trol rod inserted a relatively short distance into the core L

(not more than 3 f t) . -

" Deep" Control Rod -

Acontrolrodinsertedarelativelykongdistanceintothecore

()

s_-

(ct least 8 ft).

Control Rod Pattern A group of control rods and the respective position of the control rods. The rods are divided in a checkerboard fashion into sequence A and B rods.

Exposure Step An exposure calculation covering a fixed interval with a calculated power shape.

IIaling Step An iterative power-exposure step to the end-of-cycle under the assumption of the same shape for the power and exposure.

V) 4A.4-3

GESSAR II 22A7007 238 NUCLEAR ISLN4D Rev. 0 4A.4 GLOSSARY OF TERMS (Continued)

Model Critical Reactivity A value of the model reactivity (i.e., k-ef fective or eigen-value) for which the actual core would reasonably be expected to be critical. This value is different than unity by any model bias or reactivity allowance such as crud, spacers, instruments, etc.

Shutdown Margin The reactivity difference between the calculated shutdown reactivity and the model critical reactivity.

Exposure Units mwd /t and mwd /st = mwd /short ton, where a short ton = 2000 lbs mwd /Tc = mwd / metric tonne, where a metric tonne =

2000 lb

  • 1.1023 0

4A.4-4

i GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 l t

i 4A.5 REFERENCES 1

(1) J A. Woolley, "Three-Dimensional BWR Core Simulator", i

! May 1976 (NEDO-20953).

(2) R. K. IIaling, " Operating Strategy for Maintaining an Optimum Power Distribution Throughout Life", page 205,

, ANS Topical Meeting, Nuclear Performance of Power l Reactor Cores", September 26-27, 1963, San Francisco,

! California.

1 1

4 s

4

!O J

~

4 i l

2 I

l

.i O

] i i

4A.5-1/4A.5-2

,..,4---..m , ,y , , . , - ~ . . - . . . . . ~ . ..wre,--,3.-.,..m---v+.,,_, , ,...., n,,- vi--.-e---r, ,. .... . , . -

GESSAR II 22A7007 238 NUCLEAR ISLAND Rsv. 0 X- 2 6 to 14 18 22 26 30 34 38 47 46 50 54 58

/

I I I I I I I I i V) l I I I I I  ;

I I I I I I I I I I I I I I t I I - -i - r - t- l- - - '

5, _ _ _ L _I_ _1. _J '

I I I I I I 55 _ _ _ 4_ q _p g r -l- -- -

1 I .

L_L__5 Si - - - t- J l I d ---1 9

43 - - - - -

- - il 39 - - -

- - i3 35 - - -

- - 15 31 - - -

- - 17 2,---

- - i9 23 - - -

- - 21 19 - p -

- - - 23

/m' 15 _ _ _l . - --

V) 11 _ _

j_ .

- - 25 I

_ h _[%

I I 11

/--l-h l - h 4 - - - 29

-- 27 7 T Fl I i I i I v I I I I I I I I I I I I I I I I I I I I I I I i l 1 I I l l l~ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES 1J = MODEL COORDIN ATES LOCATIONS CYCLE EXPOSURE 6 69 GWd/st DESIGN FACTORS I J K ROD SEQUENCE ARO K EFg 1.006 AXI AL PE AKING 1.20 - -

6 RADI AL PE AKtNG 1.31 12 8 -

MCPR 1.39 12 8 -

MLHGR 10.6 12 6 4 R F ACTOR 1.03 12 8 -

A

Figure 4A-la. Summary of Haling Condition 4A.6-1 l

l

24 2.2 -

20 -

1.8 -

1.6 -

E a w o 1.4 -

W I

  • w a Z 2

< 12 ~

a O t9 x t~ cn

> w tt In

- E m 21.0 >>

b i- ss tn m

)> O8 -

h Z

P O 5

g o6 -

04 0.2 -

o  ! I I  ! I I I  !  !  !  !

, 1 3 5 7 9 11 13 15 17 19 21 23 25 N gg BOTTOM AX1AL NODE TOP O>

e O O

Ow Tigure 4A-lb. Relative Axial Power and Exposure (Haling) at 6.69 GWd/st Cycle Exposure 9 9 9

. _ _ _ . _ _ _ . _m. . _ _ _. . _ _ . - - _ _ _ - . . _ m. .. - _ - ._. __ _ _ . . ._ _ _ _ _ _ _ _ . _ - . _ . . _ _ -

I 9 9 9  ;

s l

I t

i 1 1 2 3 4 5 6 7 8 9 10 11 12 11 14 15 1 J [

1 0.3068 0.3823 0.4183 0.4314 0.4375 0.4331  !

] 2 0.3135 0.4562 0.6641 0.8316 0.9170 0.9658 0.9359 0.3565 i 3 0.4063 0.7246 0.9057 0.8545 1.0565 0.9403 1.1083 0.9498 1.0101 .

4 0.4230 0.7727 0.9805 0.9238 1.1252 1.0119 1.1948 1.0451 1.1993 1.0114 l 5 0.4318 0.7902 1.0105 0.9481 1.0614 1.06E4 1.1359 1.1000 1.1724 1.0952 1.1348 .

j 6 0.4246 0.7936 1.0280 0.9660 1.1825 1.0594 1.2484 1.0299 1.2811 1.1104 1.2769 1.0336 s 7 0.4071 0.7757 1.0199 1.0420 1.0800 1.0883 1.1551 1.1171 1.1916 1.1393 1.2225 1.1311 1.1664 l t 8 0.3335 0.7248 0.9808 0.95C6 1.1762 0.9793 1.2351 1.0276 1.2604 1.0538 1.3059 1.1267 1.2948 1.0340 I i 9 0.4552 0.9043 0.9217 1.0567 1.0481 1.1394 1.0229 1.1807 ^1.1306 1.2073 1.1417 1.2227 1.1303 1.1632 i 10 0.3070 0.6628 0.8528 1.1242 1.0518 1.2404 1.1083 1.2741 1.1092 1.2907 1.0524 1.2881 1.0562 1.2779 1.0245

  • 11 0.1821 0.8006 1.0552 1.0106 1.1310 1.0258 1.1849 1.0511 1.2057 1.0542 1.2040 1.0480 1.2156 1.1069 1.1416 12 0.4'12 0.9115 0.9400 1.1928 1.0931 1.2779 1.1386 1.3054 1.1441 1.2982 1.1301 1.2755 1.0370 1.2431 0.9870 g i 13 0.4313 0.8644 1.1074 1.0440 1.1696 1.1081 1.2217 1.1280 1.2243 1.0602 1.2044 1.0398 1.1913 1.0021 1.0967 y 14 0.4374 0.9352 0.9484 1.1980 1.0950 1.2762 1.1311 1.2955 1.1321 1.2814 1.1131 1.2543 1.0779 1.1965 0.9394 m j

{ 15 0.4330 0.8560 1.0101 1.0109 1.1347 1.0337 1.1665 1.0345 1.1670 1.0284 1.1448 0.9967 1.1047 0.9407 0.9741 ,

! Ea  !-

i om a t- v>

> m tfl I'

In I

Figure 4A-lc. Integrated Power per Bundle (Haling) at 6.69 GWd/st Cycle Exposure N ,

t w HH '

E z

1 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 a J i 1 25540.2 24535.6 24734.0 24798.3 24794.8 24793.8

, 2 25453.0 25117.4 4438.1 13925.7 6095.8 14315.8 6255.7 14269.5

! 3 24700.4 13473.0 6uS3.7 21303.3 7061.9 21997.8 7408.3 42077.9 14657.4 i j 4 25390.7 13826.5 6554.1 20813.2 7540.9 M74 4.4 7986.8 21970.9 8014.7 22571.4

! 5 24892.1 14012.9 6754.4 21907.3 15627.1 19715.1 .4995.7 20835.9 14591.9 21315.9 15573.7

6 25406.1 13985.0 6871.1 21626.2 7904.4 21750.8 8345.1 28205.8 8564.2 23166.7 8536.3 26621.8 i 7 24716.4 13842.5 6816.9 15692.5 15755.6 19677.2 15236.6 21304.2 14837.1 21724.4 14424.6 21838.0 15813.8 8 25385.7 13457.4 6556.1 21601.5 7862.0 28465.8 8256.7 28463.6 8559.7 28670.3 8730.6 23577.1 8657.6 27739.9 9 25140.3 6044.5 20786.8 15581.4 22013.6 15158.3 28435.3 14956.6 21714.3 14628.5 21922.0 14229.6 21882.7 16034.6 10 25412.8 4429.6 21284.9 7514.3 20497.2 8291.9 21330.2 8517.9 23369.8 8630.0 28754.4 8613.1 28216.6 8544.8 27630.2 i l

11 24517.1 13911.0 7052.9 21603.2 14969.5 28152.0 14974.3 28645.8 14615.9 28755.8 14146.9 28745.5 12567.0 22005.2 15945.9 12 24543.7 6092.5 21921.3 7972.9 21159.2 8543.1 21634.6 8727.5 21928.5 8660.7 21991.4 8529.0 28211.4 9412.5 28425.2 l 13 24795.8 14342.9 7401.9 21945.8 14635.5 23232.0 14423.7 23498.8 14279.1 28335.6 14099.1 28229.4 12396.1 28008.5 15721.0 i

14 24796.8 6251.4 22105.4 8008.5 21255.5 8531.7 21801.2 8661.9 21923.5 8568.2 21876.9 8387.9 2'834.2 8001.6 28110.9 g

! 15 24808.1 14265.7 14614.7 22576.6 15559.1 26583.4 15808.1 27723.4 15803.8 27363.9 15947.9 27815.4 15733.3 28085.3 21160.8 yy I (o >

<a

.o o

Figure 4A-ld. Average Bundle Exposure (Haling) at 6.69 GWd/st Cycle Exposure

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 X- 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 I I I I I I I I I i l l 1 1 I  ; &

I I I I I I I I I I I I I I t W 5,_ _ _ L _I_ _L _ i - -i - t- t- l- - - '

l I I I J l I I 55 - - -1-y i T- I I I .L_L__3 Si- - p _f 34 34 q l 4,___ _

20 14 20 6 ---7 43 - -

- - 1, 39 - - - 20 8 20

- - 13 35 - - - 34 34

- - 15 31 - - - 14 8 8 14 27--- 34 34

- - 19 23 - - - 20 8 20

- - 21 to -

T l- 20 20

- - - 23 h

i4 -

13 _

I I 11 _ _ _1 _ .L 34 34 I T - - - 25

,__l_h- }--l-k --- 27 I I I 11 I - i- 4 - - - 29

~~ l l l l ll l l l l v I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l l~ 1 3 5 / 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDIN ATES 1, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 0.2 GWd/st i J K ROD SEQUENCE A2 1.20 8 K AXIAL PE AKING - -

EFF 1.0055 R ADI AL PE AKING 1.37 11 11 -

MCPR 1.32 11 11 -

MLHGR 11.9 13 5 9 R F ACTOR 1.03 11 11 -

Figure 4A-2a. Summary of 0.2 GWd/st Condition 4A.6-4

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O i

2.0 l

l 1.s -

l5

, ~ -

5 y 1.0 -

T P

5 a

0.5 -

1 I I l y a 11 16 21 26 AXIAL NODES

. Figure 4A-2b.

O 2.0 Relative Axial Power at 0.2 GWd/st Cycle Exposuro 1.6 -

8 2

x

.2 5 1.0 -

E s

p 5

a 05 -

l l l l 0

1 6 11 16 21 25 AX1 AL NODES Figure 4A-2c. Relative Axial Exposure at 0.2 GWd/st Cycle Exposure 4A.6-5

b I

i i

l l

l 3 4 5 6 8 4 10 1 12 13 14 15 1 .

' O.2'74 0.3593 0.3936 0.4279 0.4467 0.4742 0.1165 0.41 4 0.5409 0.7S16 C . 7 513 0.efl0 0.9161 . 9601 2.4037 0.7107 t .'54 0.8216 0.6977 0.9184 0.969g 1.0274 . 1616 6 3

C.4297 0.762. 0.Es19 C.946s 0.9442 1.0374 ..C573 1.0661 1.1793 I 15C7 '

4 0.4413 0.9104 0.995' O.9947 1.1716 1.1550 1.2162 1.1663 1. 152 a.1404 - 2870 l 5

0.9178 1.1C35 1.1591 1.0729 1 1383 1.12;5 1.1167 1.C9s5 6 2.4307 0.6144 1.025' 1.1683 1.02 33 i

O.#039 0.'845 0.904  !.1133 1.2166 1. 201 . 31$1 1.2059 1.1038 1.03e7 1.2666 1.1695 0.8501 0.9949 1.0916 1.C'69 1.1916 1.1369 1.1990 0.9676 1.0302 1.1794 1.1528 0.9205 6 n.3158 0.7096 l 2521 1625 1.1497 4 .2P43 1.129' 3524 1.2611 1.3332 1.2 302 1.3411 1.21 4 9 r.1152 0.7506 0.9419 4 0.9F73 '.1331 1.1473 1.1925 1.1801 1. 2 3 t- 1.2190 1.1601 1.2144 1.13pg 1.1670 1.0639 10 u.2 76 6 0.5353 0.8175 0 9210 11 0.1530 0.7579 0.8340 1.03?9 1.2276 1.0666 1.0494 0.9td4 1.3135 1.1644 1. % 92 1.1460 1.2941 1.1465 s46 1.C3'8 '.0126 1.2386 1. 348 1.2631 1.2043 1.1101 1.1060 0.7939 bJ 12 0.3934 ^ 7496 0.9160 .0532 '.15'O 1 l.1220 1.29;5 1.0792 1. 110 LJ 13 0.4267 C .e St i 0.9658 .04 37 ...5 1. l f. 9 1.267. 1.1848 1.3514 1.1554 1.340'

. 0755 CO 1.168. 1.1259 1.1'63 1.1456 14 0.4457 0.93!6 ..CC38 1.1073 1.1409 '.1169 1.1713 1.1566  !.2211 1.1'92 1.C772 1.17'?

15 J.4'37 c.95?' '.1623 . 1497 . 2870 4 .0437 1.' 4' O.90?% 1.2611 1.0710 0.9246 0.8046 1.2194 2

c: C1 2 ca to i

  • t< to rn u0 l f Figure 4A-2d. Integrated Power per Bundle at 0.2 GWd/st Cycle Exposure $$

m FM kW U3 >d Z

! l . 3 4 5 6 7 8 9 10 il 12 13 14 .5 t3 5 23551.0 22051.5 22022.0 20001 ' 21958.1 21985.9 2 23291.1 2216C.0 132.8 8727.8 182.4 8701 5 IST.1 8715.6 3 20066.5 8774.8 ldl.1 15762.5 211.3 15890.2 ..:.6 15919.0 81C6.9 2 4 22649.4 6316.4 196.1 14823.1 225.6 15182.9 239.9 15143.9 239.8 16013.7 i 5 22092.8 Evid.9 202.1 15759.? 6744.5 127R7.4 '629.' 13702 7 696S.0 14213.4 8214.7 6 22653.6 6819.1 205.6 15 %2.3 236.5 14990.5 249.7 21526.6 256.2 15965,2 255.4 19918.2 l 14335.' 649e.C 14502.3 8248.6 l 7 22079.4 RS12.6 203.9 593b.3 9752.9 12620.4 7746.2 14060.0 71C9.3 S 23223.6 9757.9 196.1 15437.5 235.2 .2115.2 247.0 21799.2 256.1 21335.S 261.2 16269.5 259.0 21033.4 i

l 9 2:189.4 190.8 14810.3 8729.5 15:16.6 7769.6 21801.7 7299.3 14391.8 6799.0 14516.7 6298.8 14551.2 8489.6 j 10 2142..! 132.; 15755.1 224.9 13677.2 248.1 14143.1 254.8 16175.6 259.2 '1927.9 257.7 21365.3 255.6 209s4.5 11 22040.1 9720.1 211.0 150.9.9 7635.2 21499.8 729C.6 21923.3 6795.7 21918.0 6337.1 21947.4 4681.8 14824.5 8540.1 l

218.5 140'l.. 255.6 14250.5 261.1 1450?.5 259.7 14660.6 255.2 21494.6 248.' 22C22.6 12 21926.3 182.3 15625.9 15175.6 21455.4 t- 2 8 6.1 21524.3 466e.4 21507.4 8606.5 13 21999.7 8737.7 221.4 7050.' 16045.6 6500.3 161R3.0 6337.S

.2016.6 14 21960.8 187.0 15955.5 239.6 14154.7 255.2 14465.2 259.1 14590.3 256.1 14e56.0 250.9 14R81.4 219.4 19379.5 .1 n 13.1 S234.3 2C603.1 8521.s 21349.6 8566.7 21982 ' 14841.5 15 22001.1 S715.0 8C64.2 16020.7 E200.8 6242.5 bJ 20 >J O >$

<: -a

. C3 0

Figure 4A-2e. Average Bundle Exposure at 0.2 GWd/st Cycle Exposure o 3 i

O O O

GESSAR II 22A7007

  • 238 NUCLEAR ISLAND Rev. O p I X - 2 6 to 14 18 22 26 30 34 38 42 46 50 54 58 t

I I I I I I I I I l l 1 1 I I  ;

I I I I I I I I I I I I I I t w _ _ _ L _i__ _1. _ I - -i - t - t- - l- - - '

l I I I J l I l 3

55 - - - h --l - - [ l l l

.L_L__5 5' - - - t- J 1 1 4,___ - 24 24 P--7 38

~~~'

43 - - - - - 38

--u 39 - - - 26 12 12 26

- - 13 35 - - -

- - 15 31 - - - 12 4 4 12 27--.

23 - - . 26 12, 12 26

--2,

- 38 38 19 - - p U iS _

l-I i4 i4 -

I

---23 1, _ _ J _ .L 34 f T -- - - 25

_ h__ . -l- f - -- 27 I I I 11 l - l- -l - - 29 1 I F- ~~l I I I I I v I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l l -- 1 3 5  ? 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES t, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 1.0 GWd/st p

1 J X ROD SEQUENCE B2 1.22 6 K 1.0059 AXI AL PE AKING - -

EFF RADIAL PE AKING 1.36 7 13 -

MCPR 1.33 11 9 -

MLHGR 11.9 11 9 7 RFACTOR 1.05 11 9 -

gi t

'V Figure 4A-3a. Summary of 1.0 GWd/st Condition 4A.6-7

GESSAR II o 22A7007 238 NUCLEAR ISLAND Rev. 0 2.0 1.5 -

5 E

? ~

i y 1.0 -

G 5

E 0.5 0

1 6 11 16 21 25 AX1AL NODES Figure 4A-3b. Relative Axial Power at 1.0 GWd/st Cycle Exposure 2.0 1.5 -

E 8

2 5

a 5 1.0 -

E 1 p 5

E O.5 -

0 1 6 11 16 21 25 AX1 AL NODES Figure 4A-3c. Relative Axial Exposure at 1.0 GWd/st Cycle Exposure 4A.6-8

I i

I i

l i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3

) 1 0.2853 0.3682 0.4034 0.4358 0.4524  :. ,

i 2 0.3233 0.4283 0.5609 0.7813 0.7818 0.878s 0.8606 . **;- '

1 3 0.4097 0.7231 0.7815 0.8420 0.9295 0.9446 1.0138 1.02.- .*4

) 4 0.4340 0.7918 0.6802 0.9625 1.0405 1.0659 1.1170 1.1199 1.162, 34-5 0.4433 0.8166 0.9216 1.0062 1.1854 1.1818 1.2760 1.2101 1.3065 1.20 9 24 .

6 0.4301 0.8157 0.9392 1.0301 1.1416 1.1861 1.2324 1.1344 1.2264 1.1720 1.1999 2395 7 0.4011 0.7807 0.9187 1.1098 1.2097 1.2214 1.3292 1.2502 1.3438 1.2068 1.0529 0.9713 .-' 64 8 0. 3131 0.7031 0.8564 0.9843 1.1093 1.0703 1.2103 1.1375 1.2512 1.1368 1.1944 0.9510 0.9721 !a6 9 0.4122 0.7515 0.9240 1.1321 1.1300 1.2736 1.1131 1.3108 1.2239 1.2875 1.1817 1.2834 1.1 33 . 4ec 10 0.2747 0.5376 0.8049 0.9798 1.0668 1.1485 1.1946 1.1916 1.1421 1.1638 1.0681 1.1723 1.1117 1.1993 '.097-11 0.3563 0.7518 0.BR48 0.9941 1.0709 0.9701 1.2684 1.0639 0.9845 0.8461 1.2402 1.0926 1.3013 1.19e3 1.2A68 12 0.3939 0.7581 0.9102 1.0521 1.0363 1.0810 1.2045 1.1704 0.9251 0.9225 1.1487 1.1784 1.0920 1.1618 1.0502 bJ I 13 0.4282 0.8607 0.9921 1.0950 1.2801 1.1996 1.3558 1.1960 1.2658 1.0617 1.2754 1.0237 1.2444 1.0266 1.13 % W I 14 0.4482 0.8524 1.0132 1.1603 1.2282 1.2574 1.2589 1.2313 1.1763 1.1589 1.1733 1.1479 1.0832 1.0106 0.9153 00 15 0.4737 0.9562 1.1615 1.1609 1.3201 1.1701 1.3288 1.1119 1.0279 0.6915 1.2 36 ' l.0307 0.8476 0.6952 0.9590 g

I CO 1

OM

.a t* m Mm f cn Figure 4A-3d. Integrated Power per Bundle at 1.0 GWd/st Cycle Exposure I

]. O NN Ul H U

Z O

! 1 2 3 4 5 6 7 8 9 10 11 ?e  !* 15 ,

J 1 23772.9 22344.9 22 ::6.9 22i44. 2a;_;., 2214 .'

j 2 23544.3 22493.9 565.5 9317.. 741.4 's i 's '. . . .8.. 3433.-

3 22389.4 9343.4 784.3 16419.8 921.4 18024.'s "s 9 '. . - _ t, i- i,M.2 4 22992.1 9442.2 877.6 15580.7 1021.0 16012.8 l 'n 4 k Ae.- , .2 s);,.a 5 22445.8 9537.4 918.7 16555.5 9681.8 13711.4 8618.6 146i',. 7 9'J. . . r. ii4,.3 6 22998.1 9490.7 919.9 16182.9 1119.3 15815.1 1177.0 22384.8 1166.- ' '. 4 61

. , . r. .

-)(.)

7 22402.4 9440.3 927.3 9827.1 9726.2 13596.5 8797.5 15024.7 7992.2 15164.9 52- . , - . i '. s. . -

B 23476.2 9325.5 876.3 16233.6 1108.8 22976.7 1193.9 22708.7 1206.5 22609.8 1035... 72'. .. . ..; i; ? .(

9 22521.6 751.3 15563.8 9659.6 16136.3 8801.0 22705.5 8380.8 15390.7 7864.5 15500.8 .7..- . ,, i,);.2 10 23643.6 563.1 16409.2 1014.7 14583.7 1165.9 15097.1 1198.9 17161.7 1249.4 22856.0 1229.2 222 '.. . 13. .. .:.6 11 22326.5 9326.5 918.2 15876.9 861'.3 22353.0 8169.2 22602.9 7862.5 22849.9 7431.8 22864.2 572".. . .- . .. 3. c..

a 12 22141.0 781.1 16558.7 1081.1 14996.7 1163.2 15080.6 1087.1 15498.3 1247.6 15671.1 1218.7 221 2. a r

..r l 13 22341.0 9422.6 994.1 16042.5 8020.6 16943.0 7530.0 17130.9 7419.0 22382.8 7358.7 22402.0 ,694.- 21,-.. 3: :.,

14 22317.3 853.9 16758.5 1125.4 15067.4 1148.7 15402.1 1184.4 15557.1 1199.7 15590.6 1151.7 15782.5 ..!(.. .,

15 22380.0 9481.0 8992.9 16940.4 9230.4 20758.5 9062.1 21735.8 9243.2 21549.9 9261.2 21993.2 9542.2 H i44 (

i M

4M 2 to >

! <wo Figure 4A-3e. Average Bundle Exposure at 1.0 GWd/st Cycle Exposure o  !

i 1 j 4

a i

GESSAR II 22A7007 238 HUCLEAR ISLAND Rev. 0 X~ 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 I I I I I I I i i l I l l 1 1  ;

I I I I I  ! I I I I I I l I i s, _ _ _ t _,_ i 2_i _g 7-p_;---i l

l l I J l I I 55 - - - h- -l - 36 34 36 --[----3 l l 1 .L_L__5 Si - - - t- f q j l_ L-)- - - 7

~

43----- 10 8 8 10

- - 11 39 - - - 36 36

- - 13 35 - - - 8 8

- - 15 31 - - - 34 34

- - 17 27--- 8 8

- - 19 36 36 23 - - .

- - 21

' 8 " '

19 - - -lT

- - - 23 33__

, , _ _ _1_ J_1 I T - - - 25 l l l 27 7-- - - 36 34 36 l l

~~

I I I 11 i I- I- 4- - - - 29 l I ~ T~ ~~l l' l l l l v I I I I I I I I I I i i l I I I I I I I I I I I I I I I I I I- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES 1, J = MODEL COORDINATES LOCATILNS CYCLE EXPOSURE 2.0 GWd/st DESIGN F ACTORS I J K ROD SEQUENCE A1

' K AXIAL PE AKING 1.31 - -

8 EFF 1.0058 R ADI AL PE AKING 1.36 33 7 -

MCPR 1.33 13 7 -

MLHGR 12.0 12 4 8 R F ACTOR 1.03 13 7 -

Figure 4A-4a. Summary of 2.0 GWd/st Condition 4A.6-10

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O 2.0 O

1.5 -

5 8

3 s

y 1.0 -

G 0.5 0 I ' ' I 1 6 11 16 21 25 AX1 AL NODES Figure 4A-4b. Relative Axial Power at 2.0 GWd/st Cycle Exposure 2.0 ,

1.3 -

a

?

5 a

f 1.0 -

a E

d e

0.5 --

0 1 6 11 16 21 25 AX1AL NODES Figure 4A-4c. Relative Axial Exposure at 2.0 GWd/st Cycle Exposure 4A.6-ll

r I 1 2 3 4 5 6 7 8 9 10 1I 12 13 14 15 1 0.2e42 0.3652 6.4014 0.4322 0.4459 0.4607 C.. 27 C.4285 0.5670 0.'703 . 7927 0.3723 0.6702 0.9217 '

s C.4J75 0.7204 0.7965 0.8319 0.9:33 0.9037 1.03t2 1.0019 1.C674 l 4 0.4311 0.?F62 0.9974 0.9474 1.0532 1. 'd 1.1027 1.1173 1.1984 1.0826 O.4415 0.611. 0.9397 0.9569 1.1485 1.1502 1.2450 1 2049 1.32(2 1.2395 .3166 6 0.4322 C.9151 0.9598 '.0190 1.1451 1.1360 1.2374 1.1171 1.2961 1.24.6 1.3220 1.1375 -

O.40?e 0.7S92 0.9491 1.0941 1.1635 1.1569 1.2379 . 1556 1.1017 1.2 3FS 1.3605 1.2519 1.3375  !

e G.3219 0.7192 0.9944 0.9974 1.1335 1.0267 1. M 2 7 1.0104 1.1602 1.0676 1.2240 1.1407 1.2042 1.1032 l 9 0.4261 0.7916 e.942F 1.141. 1.1215 1.2161 1. C 0 36 0.8912 0.6419 1.1705 1.0947 0.9129 0.s494 1.1835 j

.0 C.2d12  ; 5635 0.52 . 0440 1.129; 1.2217 1 '729 1.1497 2.9225 C.8625 c.9811 . 1109 0.7716 0.8709 1.0200 i l 11 0.363s 0.'t69 C.9041 s.0053 1.2403 1.1113 1.2926 ..C644 1.1755 0.9e62 1.1965 1.0334 1.2113 1.1193 1.23e9 i i .2 0.4011 0.7991 0.9016 1.0476 1.1961 1.2837 1.2343 . 2216 1.1021 1.1190 1.1294 1.2005 1.0995 1.2256 1.1047 N '

13 C.4311 C.8639 1.0121 . .1143 1.3204 1.2354 1.3501 .1396 0.9165 C.7'87 1.2162 1.0950 1. 3 2 3e> 1.1289 1.2997 W l O 14 C.44'. 0.667' O.9991 1 195' l.2376 1.3213 '

2467 2.2130 0.8537 0.8764 1.1316 1.242' 1.2259 1.2662 1.1237 15 G 46G3 0.920i 1.06'4 ..0813 I 50 4 14'6 !36 3 1.1045 1.1935 1.027' 1 2415 1.1183 1.3142 1.12?2 1.2C70 g '

j a co a tn i > cm M t?)

i cn Figure 4A-4d. Integrated Power per Bundle at 2.0 GWd/st Cycle Exposure >>

! H I xx I N HH i mH

=

C

. I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Is 1

J t 1 24258.2 22713.. 22740.2 22??9.9 22767.8 22640.3 2 - 23967.6 22922.2 1126.3 10116.7 1565.2 10269.2 1716.7 10443.5 i 3 22799.2 1C166.6 1565.9 17261.9 1851.0 17569.5 2010.6 l'747.2 10199.4 t 4 23426.1 10234.0 1757.9 16543.2 2061.5 17078.7 2201.' l'a .? 22e9.6 180R9.9 s 5 22589.1 10353.9 1840.3 17561.8 1C567.2 14693.2 9294.7 15946.3 9267.6 16333.5 10491.7 I 6 23429.. 10 3 C 6. 4 1879.2 l'213.0 2260.9 17C01.2 2409.4 23519.3 2393.2 18035.1 2337.5 21816.4 1 7 .2803.5 10221.1 1646.1 10936.9 1C935.9 14?l9.0 10126.7 16283.9 9336.0 16371.7 8573.1 16409.1 10 34 4.C 8 ;1'c* 1002B.6 1732.7 17217.9 2219.1 .4047.0 2404.3 23846.2 245'.? 23746.6 2279.5 18163.9 2153.3 22943.2

< 9 22911 ~ Is32.9 16467.2 10791.6 l'266.3 1C0'4.7 23818.6 9691.6 16614.7 9152.0 16652.5 E655.1 16695.3 10737.2 10 23918.2

  • 17214.. 1944.. 15670.5 2314.4 16291.7 2190.5 19303.8 2413. 23924.1 2401.5 23398.0 2388.6 22923.3 11 22662 ' 1902.9 16571.0 96EE., 23123.1 9437.6 21666.F 8R47.0 2!695.9 8671.0 23956.5 7022.4 16939.5 10543.6

^ ' ..

a U 22534.8 '9 7468.9 2133.1 16233.0 2:44.. 16295.2 2:57.5 16423.4 2170.0 16819.9 2397.0 23464.6 2295.3 23707.9 1 13 22769 1 *s 1996.1 17137 5 9300.9 19142.6 $835.9 18326.9 E684.3 23444.5 9634.. 23485.6 6919.0 23397.7 107C9.0 j 14 22765.5 ~2t. 1 177'l.8 2285.5 10295.5 2406.1 16661.0 2415.7 16733.4 2358.E 16?63.9 2299.6 16866.1 2186.5 23792.9  :

-l 15 .2853.6 104r . 4 0154.4 1F101.3 10550.5 21928.6 10390.9 22R47 7 1C271.1 22443.3 10497.9 23023.9 10359.s 21539.7 16743.5 N I 4

xw i o> r

<w

.o i Figure 4A-40. Average Bundle Exposure at 2.0 GWd/st Cycle Exposure o8 i

i O O O

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 7' 'N X -. 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

/ l l l 1 l l l l l l l l l l l J l i i l i I I I I I I I I i I

5, _ _ _ L _I_ _L _ I - Ml - r - t- - l- - - '

I I I J i I I---

55 - - -1 1-I t 3 T- l L_L__5 Si - - t- g 30 q l 47 - - - 36 36

---9 43 - - 12 12

- - 11 39 - - - 38 38

- - 13 L 35 - - - 10 12 12 10

- - 15 31 - - -

- - 17 27--- 10 12 12 10

- - 19 23 - - . 38 38

- - 21 19 - - 7 12 12

- - - 23 (v~^) 15 _ _ _l I

- as 36 _

I 11 _ _ _1 _ L 10 l T - - - 25 I I

,..-4-y_y y- i 1, - T ~ ~ ~

I I I 11 l - h -i - - - - 29 I I f- I ll l l l l Y I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l -+ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y

  • PLANT COORDINATES
1. J = MODEL COORDINATES LOCATIONS CYCLE FXPOSURE 3.0 GWd/st 1 J K ROD SEQUENCE B1 AX1AL PEAKING 1.28 K 1 EFF 1.0062 RADIAL PEAKING 1.33 13 7 -

MCPR 1.37 13 7 -

MLHGR 12,1 9 7 8 R FACTOH 1.03 13 7 -

, ,e~.

iV) Figure 4A-Sa. Summary of 3.0 GWd/st Condition 4A.6-13 l

l 1

GESSAR II 22A7007 238 NUCLEAR ISLAND Re'c . 0 2.0 1.5 -

5 8

a N

j 1.0 -

P 5

E

-04 -

I I I f g

1 6 11 16 21 25 AX1 AL NODES Figure 4A-5b. Relative Axial Power at 3.0 GWd/st Cycle Exposure 2.0 1.5 .-

8 2

5

.a f 1.0 -

E s

G 5

E 0.5 -

0 1 6 11 10 21 25 AX1At NODES Figure 4A-Sc. Relative Axial Exposure at 3.0 GWd/st Cycle Exposure 4A.6-14

l I l

i i

l l

l l

l l

1 1 2 3 4 5 6 7 R 9 10 11 12 13 14 15 J

'f 1 0.3016 0.3S33 0.4173 0.4390 0.4462 0.4531 1 2 0.3393 0.4532 0.6117 0.8113 0.8487 0.8869 0.8926 0.9059 3 0.4252 0.7508 0.8551 0.8761 1.0183 0.9698 1.0825 0.9893 1.0742 l 4 0.4495 0.8165 0.9590 0.9786 1.1299 1.0786 1.2039 1.1048 1.1969 1.0393 j 5 0.4605 0.8425 1.0045 1.0177 1.1654 1.1672 1.2525 1.1982 1.2695 1.1286 0.9203 i 6 0.4498 0,8459 1.0267 1.0435 1.2189 1.1541 1.2907 1.1179 1.3268 1.1941 1.2520 0.9349

! 7 0.4230 0.8164 1.0134 1.1308 1.1947 1.1891 1.216tt 1.156S 1.2841 1.2227 1.3304 1.1956 1.1958 8 0.3349 0.7437 0.9509 1.0166 1.2115 1.0703 1.2717 1.0592 1.2203 1.0605 1.2576 1.1848 1.2900 1.0748 l 9 0.4445 0.8398 0.9637 1.1505 1.1443 1.2607 1.1047 1.2650 1.1389 0.969R 0.9173 1.2583 1.1945 1.2416 1 10 0.2954 0.5976 0.8566 1.0976 1.1231 1.2646 1.1984 1.2917 1.1662 1.2078 0.8301 0.9557 1.0554 1.2577 1.0845

! 11 0.3754 0.7945 0.9896 1.0414 1.1684 1.0455 1.2531 1.0916 1.2677 1.0573 1.1765 1.0123 1.2488 1.1685 1.2254 j

12 13 0.4102 0.4323 0.8300 0.8708 0.9445 1.0583 1.1534 1.0710 1.0996 1.2018 1.1960 1.0748 1.1215 0.9268 1.2119 0.8518 1.1520 1.1930 1.2078 1.0127 1.0864 0.9503 1.1647 0.8285 1.0540 1.2052 1.2363 1.0597 1.0535 1.2018 N

14 0.4420 0.8831 0.9773 1.1723 1.1105 1.1701 0.8525 0.9210 1.0958 1.1618 0.8878 0.9471 1.1003 1.2083 1.0376 g

! 15 0.4517 0.9029 1.0744 1.0513 1.1464 1.0101 1.1472 1.0191 1.2085 1.0566 1.1742 1.0202 1.1955 1.0380 1.1048 cQ

\

u n tn i

a t* m W

j f Figure 4A-5d. Integrated Power per Bundle at 3.0 GWd/st Cycle Exposure :o$

H HH j tp U1 H I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 '15 U t

3 i 1 24342.3 23078.2 23141.6 23212.0 23213.7 23301.1 l 2 24190.2 23350.7 1693.3 10889.0 2358.1 11142.0 2587.0 11365.3 i

, 3 23206.6 10786.9 2362.3 18093.8 2759.3 18473.3 3046.9 18749.0 11265.7 l 4 23857.2 11020.6 2655.3 17490.6 3114.8 IP086.8 3304.6 18300.1 3488.1 19171.7 i 1

i 5 23330.6 11165.1 2779.0 18548.7 12015.6 16043.5 11139.7 17051.3 10593.9 17573.1 11808.4 l 6 23860.4 11121.5 2838.9 18221.1 3406.2 18139.2 3646.8 24636.4 3689.3 19277.7 3659.6 23083.9 j 7 23211.0 11010.2 2794.1 12030.9 12099.5 15974.9 11364.6 17469.8 10637.7 17610.5 9938.9 17660.9 11681.6 j i 8 24111.2 10747.7 2627.5 18205.8 3351.5 25073.8 3567.0 24856.7 3617.9 24814.2 3503.5 19304.5 3357.4 23946.4 -

i 9 23359.8 2324.5 17430.6 11932.8 18387.8 11290.8 24822.2 10582.9 17456.7 10322.5 17777.2 9568.1 17544.8 11920.6 }

10 24201.4 1664.0 18041.9 3038.6 16800.5 3536.1 17464.6 3540.3 19126.4 3275.8 24905.1 3512.3 24159.7 3259.4 23943.3 1 1 11 23046.5 10845.1 2707.1 17876.4 10929.0 24434.5 10730.2 24731.2 10022.5 24682.0 9868.6 24990.1 8233.6 18058.7 11780.2 I

12 22936.0 2328.4 18370.5 3230.8 17229.1 3527.8 17519.4 3479.1 17525.5 3288.9 17949.2 3599.4 24553.2 3520.7 24812.5 I

13 23200.2 11152.2 3018.4 18251.9 10621.6 19378.0 10236.0 19465.4 9601.4 24223.2 9850.2 24580.5 8262.4 24526.4 12008.4 14 23210.5 2574.1 18771.0 3481.6 17533.2 3727.4 17907.7 3628.7 .17587.1 3235.0 17895.3 3542.2 18091.8 3452.4 24916.4 15 23314.0 11357.6 11222.0 19184.8 11865.6 23115.2 11727.3 23952.2 11464.4 23470.9 11739.2 24142.1 11703.8 24667.8 17950.3 g I 00 t0  !

I o>  ;

4 < -a 1 . o .

4 Figure 4A-Se. Average Bundle Exposure at 3.0 GWd/st Cycle Exposure o3

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O x- 2 6 10 14 18 22 26 30 24 at 42 4e so 54 58 l 1 i  ; I I I i l i I i l i I  ;

I l l l l 1 I I I I l 1 1 I i 59 - - - --

-J l 1

ss _ _ _ 4_ q _ p l

I l

I

%rIi I

.L_L__3 l

si___p_yl 3e 38 q

47---

l-34 12 12 12 34 d ---1

---9 43-----

39 - - - 12 10 10 12

__j3 35 - - - 36 36

- - 1s 31 - -

12 12

- - ,1 27 - -

36 36

- - 19 23 - _ . 12 10 10 12

- - 21 19 -

7 15

_1 I- 34 12 12 12 34 -

I

- - - 23 h

,, _ _ _1 _ 1 30 3e I T - - - 2s

,__l_[_f y--l -- >>

I I i -11 l - l-- 4 - - - 29 1 I I l l I I l I v I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l 1 -+ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES 1, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 4.0 GWd/st DmM mm i J K ROD SEQUENCE A2 AXI AL PE AKING 1.25 - ~

8 EFF 1.0038 R ADIAL PE AKING 1.33 14 14 _

MCPR 1.37 14 14 _

MLHGR 11.9 6 14 g R F ACTOR 1.03 14 14 _

Figure 4A-6a. Summary of 4.0 GWd/st Condition 4A.6-16

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 2.0 0

1.5 -

l z

E 2

4 g 1.0 -

G 5

E 0.5 -

0 1 6 11 16 21 25 AX1 AL NODES l Figure 4A-6b. Relative Axial Power at 4.0 GWd/st Cycle Exposure 2.0 1.5 -

E 8

2 5

  1. 1.0 -

E G

5 m

" 0.5 -

0 -

1 6 11 16 21 25 AX1AL NODES Figure 4A-6c. Relative Axial Exposure at 4.0 GWd/st Cycle Exposure 4A.6-17

i 13 14 15 10 11 12 6 7 8 9 4 5 1 1 2 3 0.4393 0.4599 0.4693 0.4735 0.3154 0.3998 0.9356

.' 0.9058 0.9201 0.9565 0.3485 0.4687 0.6450 0.8377 1.0199 1.1056 1

0.8926 1.0691 0.9910 1.1426 C.4304 0.7619 0.8959 1.1010 1.2427 1.0676 0.9766 1.1565 1.0677 1.2256 3 0.4502 0.8190 0.9914 1.1139 1.1750 1.0989 1.1677 1.0021 1.1316 1.1265 1.1865 1.2075 1.0154 4

0.4600 0.8377 1.0251 1.015. 1.2254 1.0703 5 1.0420 1.0106 1.2064 1.1100 1.2548 1.1749 1.0658 0.9183 0.4521 0.8419 1.1018 0.9311 0.8810 0.8247 6 1.0367 1.0929 1.0769 1.0775 1.1876 0.8170 0.9736 1.0778 1.2197 0.4 !! 4 0.?222 0.9675 1.1780 1.0383 1.2198 1.1490 1.1751 7

0.9908 1.0059 1.1999 1.1242 1.1620 1.0920 1.2290 8 5 .48_ 76; .

1.0987 1,1711 '

.'T 1.2050 1.1957 1.0645 1.2971 1.0864 466' 5916 0.9745 1.1281 1.1005 1.2283 0.9943 1.2576 y 9 1.2464 1.0936 1. 132 0.5075 1.2243 1.1791 "s9' .1520 1.1112 1.1615 0.9967 0.9122 1.103d 0.8180 10 C.s!49 0.6415 1.0141 0.9281 1.0560 1.3128 g f641 1.067~ 1.1H71 1.C962 1.2075 0.8707 0.9611 11 0.3995

^

s.

1.1302 1.2218 0.8850 0.9751 1.0621 1.2872 1.1163 1.2568 ao 0.4381 0.9019 5.9897 1.2244 1.0824 1.2356 1.0717 1.2217 1.0903 12 1.10G1 1.1750 1.0714 1.1782 1.1910 1.3240 1.2049 1.3268 13 0.4591 s.9109 1. I M 9 1.0879 1.2205 1.1542 1.3012 1.2716 1.0944 1.1495 ;g 1.0171 1.2409 1.0996 1.2090 1.1844 1.0934 1.2638 1.1164 ca '

14 0.46a6 0.95.5 1.0134 0.9188 0.8269 15 0.4731 0.9343 1.1051 1.0466 1.1813 om cm u mm s/ >>

  • xx Figure 4A-6d. Integrated Power per Bundle at 4.0 GWd/st Cycle Exposure HH

$ U3 H z

14 15 U 11 12 13 8 9 10 5 6 7 4

I 1 2 3 21558.9 23651.0 23659.9 23754.1 14643.9 23461.5 3479.6 12271.2 J

2304.9 11700.4 3206.7 12029.0 12339.9 l 24529.5 21803.8 3777.7 19443.1 4129.4 19738.4 23631.8 11517.8 3217.5 18969.9 4674.9 20211.0 2

4244.7 19165.4 4508.5 19404.9 11837.1 3614.4 18169.3 11863.4 18701.7 12728.6 24306.7 17210.7 12392.2 18249.5 20471.8 3

4 12007.6 3783.5 19566.5 1T1R1.0 4911.6 23918.8 23791.1 19293.4 4937.5 25754.3 5016.2 12R77.4 5 3967.7 19264.6 4625.1 11269.3 16856.5 6

24310.2 11967.4 13294.1 17164.0 12581.4 18626.6 11921.8 18333.2 20489.3 4647.5 25021.2 23634.0 11826.7 3807.5 13161.7 25915.8 4838.2 25874.7 4761.1 7 26144.1 4R38.8 10826.3 18739.2 13162.2 18395.6 11292.3 18694.5 25215.0 4',63.1 24446.0 11491.5 3578.5 19222.4 '.1848.0 4517.1 25027.8 3

3164.4 18394.4 13083.3 19532.2 12551.5 25927.0 4483.6 25735.2 4468.0 9 23804.3 4800.2 4832.0 20292.6 9482.5 19227.2 13005.6 10 24496.6 2261.5 1P898.4 4136.1 17923.6 1 563.0 1.983.4 25822.8 11290.4 25739.3 11045.1 26002.4 25607.2 4757.0 25865.9 11639.6 3696.8 18917.7 12097.4 254R0.0 4496.7 19015.5 764.1 11 23421.9 18641.0 4691.1 18677.5 9467.5 25596.0 13210.3 12 23346.2 3158.5 19315.1 4384.2 18328.7 4723.8 11162.8 20317.2 10794.3 25235.9 10800.4 25408.9 19192.1 4660.7 25954.0 12023.0 4076.7 19322.9 11823.5 20452.R 4396.8 18783.1 4499.3 13 23632.5 18760.2 4549.7 186R2.9 25705.7 19055.0 14 23652.5 3457.2 19748.3 4653.9 18643.8 4B 7.e 12H74.5 24971.1 12672.9 1452'.5 12913.4 15162.3 12899.3 N 15 23765.7 12260.5 12296.4 20236.1 13012.0 24125.3 l0 M O>

<w ou Figure 4A-6e. Average Bundle Exposure at 4.0 GWd/st Cycle Exposure

  • O e

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 X4 2 6 22 26 30 34 38 42 46 50 54 58 (V )

l l 10 I

14 I

18 I I I i i l l I I I I  ;

I I I I I I I I I I i l l l t 5, _ _ _ L _I_ _L _J I - -il - t - t- - l-I I I l I I

$5 _ _ _ f- t i T--l---'

I I 36 36

.L_L__5 51 - - - f -

4,___ _

20 10 ti---7 43 - -

--is 39 - - - 14 10 10 14

- - 13 35 - - -

_ _ 15 31 - - -

--37 27- --

~~

14 10 10 14 23 - - .

- - 21

,_s is - - 1 C ,5 _ I-I 10 10 -

l

- - - 23

,1 _ _ J __ .4_ 36 36 d T - -- - 25

- - - - - - 27 I 1 l 11 1

~ _J - h- H - -l - - - 29

' - - f T f- I 11 1 I I I v i I I I I I I I I I I I I I I I I I I I I I I I I I I l l l l -* 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y

  • PLANT COORDINATES t, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 5.0 GWd/st F RS i J K ROD SEQUENCE 82 5 K IM AXIAL PE AKING 1.26 - -

EFF RADIAL PEAKING 1 38 12 14 MCPR 1,32 12 14 .-

MLHGR 12,1 8 6 4 R F ACTOR 1.03 12 14 -

O Figure 4A-7a. Summary of 5.0 GWd/st Condition 4A.6-19

l GESSAR II 22A7007 1 238 NUCLEAR ISLAND Rev. 0

~

2.0 O

1.5 -

l 5

c 2

5 1.0 -

E G

e 0.5 -

i I I i g

1 6 11 16 21 25 AXI AL NODES Pigure 4A-7b. Relative Axial Power at 5 GWd/st Cycle Exposure 2.0 i .5 -

E d

2 5

a g i .0 -

s p

5 E

0.5 -

I l I I I o

1 6 11 16 21 25 Ayl AL NODES Figure 4A-7c. Relative Axial Exposure at 5 GwD/st Cycle Exposure 4A.6-20

l. - . ._. . . - . _ _. .. . . ._. . _ _ _ _ __. . . _ . _ - .

~ - - . - - .- -- . _ - - _ - . _ _ . . -- - . - . . - . -~ _- . .- _ _ .___._ ~ .-

t 1

i i

i I l 1,

4

?

! i l

i 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 '

] J 1 0.3148 0.3957 0.4326 0.4488 0.4545 0.4507

2 0.3486 0.4708 0.6586 0.9311 0.9213 0.9010 0.9542 0.8926 3 0.4294 0.7612 0.9211 0.8873 1.0822 0.9738 1.1412 0.9891 1.0541 I l 4 0.4456 0.8177 1.0161 0.9696 1.1663 1.0423 1.2179 1.0734 1.2322 1.0481 l 5 0.4546 0.8344 1.0533 1.0023 1.1198 1.1091 1.1174 1.0657 1.1731 1.1046 1.1638 6 0.4405 0.8306 1.0669 1.0208 1.2462 1.1169 1.2901 1.0052 1.2076 1.0530 1.2201 1.0291 7 0.4130 0.7968 1.0410 1.0895 1.1394 1.1505 1.2178 1.1622 1.2101 1.0929 0.9021 0.8383 1.1307 8 0.3293 0.7263 0.9732 0.9680 1.2034 1.0153 1.2850 1.0691 1.3246 1.0720 1.2655 0.8422 0.9548 1.0033

] 9 0.4408 0.8653 0.9111 1.0495 1.0476 1.1546 1.0390 1.2067 1.1563 1.2429 1.1565 1.2090 1.1147 1.1895 10 0.2941 0.6129 0.8261 1.0702 0.9898 1.1707 1.0801 1.2435 1.0682 1.2528 1.0640 1.3255 1.0972 1.3350 1.0857 bJ

11 0.3717 0.7800 1.0013 0.9393 0.8505 0.7777 1.1093 0.9777 0.8916 0.7917 1.1968 1.0922 1.3022 1.1971 1.2503 ya 12 0.4111 0.P709 0.9132 1.1096 0.8269 0.9576 1.0648 1.2172 0.8497 0.9675 1.1282 1.3440 1.1250 1.3648 1.0959 og i 13 0.4317 0.8663 1.0926 1.0226 1.1177 1.0558 1.2032 1.1120 1.1979 1.0475 1.2631 1.1235 1.3178 1.1177 1.2343 I 14 0.4440 0.9320 0.9646 1.2074 1.0993 1.2754 1.1448 1.3155 1.1648 1.3356 1.1999 1.3757 1.2036 1.3411 1.0638 g*

f 15 0.4471 0.8856 1.0471 1.0416 1.1610 1.0456 1.1838 1.0526 1.2188 1.0953 1.2540 1.1081 1.2474 1.0677 1.1090 c: C) i I

() 03

\

x. t< Cn ,

l i

p MM

?> >$

m Figure 4A-7d. Integrated Power per Bundle at 5.0 GWd/st Cycle Exposure NN 1

ba F4 F4 ya U3 F4 a- -

C3 ,

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 l 1

l 1 ?4959.2 23861.3 23996.9 24110.9 24129.1 24227.6 2 24878.0 24272.5 2949.9 12538.2 4112.6 12949.1 4436.2 13206.9 3 24062.3 12299.9 4113.5 19962.6 4846.9 20434.2 5272.2 20758.2 13445.6 4 24756.9 12656.2 4605.9 19446.0 5403.2 20231.2 5717.3 20505.9 5917.7 21298.6

! 5 24251.1 12845.4 4808.7 20568.7 14312.7 18337.3 13578.8 19383.4 13038.4 19800.6 13916.3 j 6 24762.3 12809.5 4910.8 20275.3 5831.6 20403.4 6192.3 26770.0 6241.5 21542.0 6119.1 24934.1 i

! 7 24065.4 12649.0 4844.4 14254.7 14371.1 18241.5 13769.0 19728.4 12852.8 19716.1 12444.2 19942.3 13795.5 j 8 24794.4 12253.6 4569.4 20228.3 5763.1 27111.6 6016.9 26954.0 6057.9 26691.6 5734.6 21567.0 SR67.1 25845.7 '

9 24271.0 4056.0 19369.0 14211.5 20630.9 13722.6 26960.2 13052.9 10719.8 12454.2 19786.4 12055.3 19888.1 14337.3 10 24811.8 2903.0 19788.3 5288.2 19034.9 6047.3 19756.6 6045.2 21393.1 5712.0 26729.5 5663.6 26279.4 5814.2 26114.1 11 23820.9 12474.8 4761.0 19985.5 13284.5 26494.1 12911.4 26640.7 12451.5 26735.9 11957.1 26809.8 10706.7 20406.3 14263.1 12 23784.2 4060.4 20304.9 5608.7 19458.9 5945.7 19525.8 5666.1 19773.7 5704.2 19906.0 5725.1 26663.1 6069.7 26969.6 13 24091.6 12939.8 5215.7 20423.1 12998.5 21524.2 12340.9 21399.5 12028.9 26307.5 12022.1 26470.9 10754.7 26702.3 14467.0 14 24121.1 4410.7 20765.4 5894.9 19743.3 6106.5 19843.1 5770.5 19837.1 5697.9 19974.1 5813.2 20397.0 5987.5 27044.2 15 24238.8 13194.9 13401.6 21322.7 14195.3 25138.7 13793.1 25798.1 13856.2 25620.9 14177.1 26279.7 14170.8 26800.1 20204.4 bJ DO hJ m 3s i < -a

. C3 Figure 4A-7e. Average Bundle Exposure at 5.0 GWd/st Cycle Exposure o C3 %J

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 X - 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 I I I I I I I I I I I I I I I  ;

I I I I I I I I I I I i l I 4 w _ _ _ L _.l _ _1 _ l dl T - t- -- l- - - '

I I I J i I I 36 30 55 _ _ _ 4_ _l _ p i T- l I I .L_L__5 Si - -

t- g q l 4 7 - _. - l _l 11- - - 7

---9 43----- 14 14

--si 39 - - - 36 36

- - 13 35 - - -

- - 15 3i- --

- - 17 27---

- - 19 23 - - . 36 36 14 14 --

19 - - p is-q-

I j 7 i

---23

- - 25 g

11_ _ 3 __ 4 .

~ ~ ~ ~ ~ ~ ~

7-- - - 36 36 l i I 11 l - i- H - 4 - - 29

-- I l F ~l i I I I I v I I I I I i l i I I I I I I I I i I i i l I I I I I I I I I I -+ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDIN ATES 1, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 6.0 GWd/st DESIGN FACTORS I J K HOD SEQUENCE A1 9 K 1.0072 AX1 AL PE AKING 1.23 - -

EFF R ADI AL PE AKING 1.38 8 14 -

MCPR 1.32 8 14 -

MLHGR 11.8 14 8 4 RFACTOR 1.03 8 14 -

Figure 4A-8a. Summary of 6.0 GWO/st Condition 4A.6-22

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 2.0 l

1.5 -

5 6

a y 1.0 -

5 P

5 E

o.5 -

0 '  !

1 6 11 16 21 25 AXI AL NODES Figure 4A-8b. Relative Axial Power at 6.0 GWd/st Cycle Exposure 2.0 1.5 -

E R

?

5 i

1.0 -

s_

b d

x 0.5 -

I I I I o

1 6 11 16 21 25 AX1AL NODES Figure 4A-8c. Relative Axial Exposure at 6.0 GWd/st Cycle Exposure .

4A.6-23

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3

1 0.2955 0.3709 0.4099 0.4268 0.4365 0.4342 2 0.3255 0.4429 0.6304 0.7764 0.8840 0.6585 0.9329 0.A599 3 0.3987 0.7119 0.8900 0.8305 0.9872 0.8892 1.0989 0.9541 1.0'.92 4 0.4156 0.7609 0.9609 0.9068 1.101e 0.9570 1.1355 1.0435 1.2167 1.0291 I

5 0.4251 0.7787 0.9914 0.9315 1.0411 1.0505 1.1196 1.0966 . 1868 1.1216 1.1690 6 0.4191 0.7838 1.0098 0.9477 1.1569 1.0346 1.2299 1.0254 1.3028 1.1402 1.3316 1.0767 7 0.4027 0.7689 1.0054 1.0247 1.0529 1.0513 1.1074 1.0823 1.1864 1.1626 1.2729 1.1686 1.2302 i

8 0.3286 0.7186 C.9693 0.9407 1.1575 0.9486 1.1731 0.9451 1.19e8 1.0300 1.3380 1.1737 1.3742 1.0915 i 9 0.4464 0.8869 0.9141 1.0474 1.0324 1.09;5 0.9432 0.8801 0.6538 1.1487 1.1507 1.2689 1.1870 1.2238 10 0.2982 0.6338 0.R377 1.1128 1.04b4 1.2385 1.0835 1.1986 0.8385 0.9780 1.0033 1.3066 1.0913 1.3449 1.0735 11 0.3740 0.7630 0.9970 0.9671 1.1362 1.0372 1.1934 1.0365 1.1601 1.0117 1.1998 1.0688 1.2571 1.1520 1.1943

1. 0.4130 0.8905 0.8969 1.1480 1.1075 1.3204 1.1727 1.3484 1.16*6 1.3299 1.1593 1.3270 1.0743 1.2972 1.0286 y 13 0.4296 0.8631 1.1068 1.0510 1.1949 1.1457 1.2745 1.1778 1.2707 1.1028 1.2559 1.0923 1.2365 1.0393 1.1354 y 14 0.4382 0.93 9 0.9571 1.2215 1.1252 1.3337 1.1875 1.3748 1.1933 1.3566 1.1675 . 3185 1.1197 1.2436 0.9709 m 15 0.4146 0.8607 '.0206 1.0297 1.1658 1.0749 1.2298 1.0925 1.2332 1.0819 1.2009 1.C410 1.1485 0.9745 1.0032 bo om 4

a t~ u)

, > M ul l 'm Figure 4A-8d. Integrated Power per Bundle at 6.0 GWd/st Cycle Exposure y@

I M MH A U3 H t"

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 O 1

25274.0 24257.0 24429.4 24559.8 24583.7 2467H.3 2 25226.6 24743.2 3608.4 13369.4 5033.9 13850.1 5390.4 14099.5 3

24491.6 13061.1 5034.6 20750.0 5929.1 21408.1 6413.3 21746.4 14499.7 4 25205.5 13474.0 5622.0 20415.7 6569.6 21275.6 6955.2 21579.4 7149.9 2?346.7 14696.4 14211.6 209n5.3 15080.1 5 24705.8 13680.1 5862.0 21571.1 15432.6 19446.5 20449.4 6 45202.9 13640.1 L977.7 21296.1 7077.8 215z0.4 7482.5 27775.4 7449.3 22595.2 7339.2 25963.4 7 24478.4 13445.8 5885.3 15344.? 15510.5 19392.1 14986.9 20990.6 14062.9 20609.1 13346.5 20780.7 14926.2 8 25123.7 12980.0 5542.6 21196.4 6966.5 28127.0 7301.8 28023.2 7'382.5 27763.7 7000.0 22409.4 6822.1 26849.0 9 24711.8 4921.3 20280.2 15261.1 21678.6 14877.3 27999.4 14259.7 20B76.1 13697.1 20942.8 13263.2 21002.7 15526.6 10 2%105.9 3515.9 20614.5 6358.5 20024.9 7218.1 20836.8 7288.7 21461.3 6964.8 27793.5 6989.0 27376.5 7149.0 27199.6 11 24192.6 13254.9 5762.4 20925.0 14135.4 27272.1 14020.8 27618.5 13343.3 27529.8 13153.8 27901.8 12008.7 21603.2 15513.1 12 24195.3 4931.4 21218.2 6718.5 202H6.2 690.1.5 20590.7 6883.3 20623.6 6671.8 '1034.1 7068.8 27787.9 7434.1 29066.3

. 13 24523.3 13806.2 630a.1 21445.8 14116.3 22500.1 13544.1 22511.5 13226.7 27355.0 .3284.9 27594.4 12072.1 27819.7 15700.9 14 24565.1 5342.7 21730.1 7102.3 20942.7 7381.9 20992.8 7085.8 21001.7 7033.3 21173.7 7188.6 21600.3 7328.1 28107.8 15 24686.0 14080.6 14448.7 22364.4 15356.3 26184.3 14176.3 26850.7 15074.8 26716.1 15430.0 273F6.5 15417.9 27867.4 21313.1 N

WM C>

< -J Figure 4A-8e. Average Bundle Exposure at 6.0 GWd/st Cycle Exposure o .a O O

~

O

f

. . .i .GESSAR II 22A7007

' E ,238 NUCLEAR ISLAND #

Rev. O

\

f X4 2 6 to 14 18 ' '2 26 30 34 38 42 46 50 54 58

(' l I

I I

i I

i I

I

~J i

l l

l i

I i

I i

I i

I i

I I

I I

I i

5,_ _ _ Ll _I_ _L _1 I _ [ _-il

- -t - t- - l- - -- '

l l l l l 55___p_i__f I I 3ri . J_ _ L __ _ 5 55--

t-f -

, q l l ,

d---7

-7 -

9 J

- - 11 39 _ .

- - 13 35 - - -

s - - 15 31 - - -

- - 17 2r - .

1 - - 19 22 _ _ .

to__.y_ ,

__--2i

~

("N

'q 15 -

( - - - 23 g

l i

- - 25 11 _ . 3 __ 4 f.r

, ._ - -y -_

1 I I Il 1 ,

l--l-h I- l- -l - - 29

-- 21

' ~ ~~

, l 1 f~ l ll l l 1 l l Y .I I I I I I I I I I I I I I I i l I i l l l l l l f I I l l 1 -+ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES 1, J = MODEL COORDINATES

CYCLE EXPOSURE 6.6 GWd/st LOCATIONS DESIGN F ACTORS J HOD SEQUENCE ARO I K, ~

K 1.0001 AX1 AL PE AKfNG 1.22 - -

5 EFF RADIAL PEAKING 1.35 8 12 -

MCPR 1.34 8 12 -

MLHGR 12.1 6 12 4 RFACTOR 1.03 8 12 -

Figure 4A-9a. Summary of 6.6 GWd/st Condition

.j 4A.6-25 t

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 2.0 0

1.5 -

5 8

m 1.0 -

E -

t p l 5

E 0.5 0

1 6 11 16 21 25 AX1AL NODES Figure 4A-9b. Relative Axial Power at 6.6 GWd/st Cycle Exposure 2.0 1.5 -

8 2

5 a

1.0 -

4 p

5 E

O.5 l

0 1 6 11 16 21 25 AXlAL NODES

) Figure 4A-9c. Relative Axial Exposure at 6.6 GWD/st Cycle Fxposure 4A.6-26

i

',l 1

}

I 4

4 i

2 3 4 5 6 7 8 9 10 11 12 13 14 15 i 1 1

  • J 1

0.3003 0.3751 0.4104 0.4224 0.4272 0.4216 '

f

2 0.3264 0.4470 0.6476 0.7892 0.6983 0.85C1 0.9179 0.8340 3 0.3973 0.7105 0.8897 0.8405 1.0449 0.9271 1.0938 0.9306 0.9546
  • t

( 4 0.4135 0.7566 0.9627 0.9058 1.1126 0.9967 1.1841 1.0292 1.1840 0.9919 j 5 0.4228 0.7741 0.9921 0.9291 1.0382 1.0492 1.1179 1.0873 1.1562 1.0837 1.1220 9 6 0.4169 0.7790 1.0108 0.9478 1.1650 1.0415 1.2384 1.0224 1.2853 1.1098 1.2855 1.0328 l 7 0.4015 0.7645 1.0059 1.0239 1.0607 1.0728 1.1411 1.1122 1.1962 1.1506 1.2385 1.1460 1.1783

! 8 0.3299 0.7175 0.9717 0.9383 1.1657 0.9693 1.2345 1.0273 1.2973 1.0679 1.3422 1.1495 1.3314 1.0479 9 0.4507 0.8980 0.9138 1.0451 1.0396 1.1325 1.0255 1.1956 1.1518 1.2314 .1.1653 1.2452 1.1481 1.1739 I

? 10 0.3038 0.6522 0.8489 1.1252 1.0482 1.2477 1.1135 1.2993 1.1351 1.3368 1.0769 1.3257 1.0722 1.3017 1.0298 11 0.3789 0.7970 1.0573 1.0108 1.1363 1.0354 1.2034 1.0739 1.2427 1.0854 1.2336 1.0652 1.2242 1.1065 1.1411 g 12 0.4152 0.9065 0.9373 1.1993 1.0999 1.3049 1.1610 1.3530 1.1803 1.3502 1.1549 1.3026 1.03S5 1.2438 0.9801 g ,

13 0.4254 0.8553 1.1027 1.0377 1.1670 1.1156 1.2403 1.1534 1.2547 1.0836 1.2228 1.0462 1.1834 0.9901 1.0766 g 4 14 0.4291 0.9217 0.9336 1.1891 1.0875 1.2876 1.1448 1.3304 1.1540 1.3135 1.1235 1.2648 1.0663 1.1812 0.9185 15 0.4221 0.8348 0.9660 0.9923 1.1190 1.0310 1.1779 1.0487 1.1826 1.0378 1.1473 0.9920 1.0890 0.9220 0.9463 g

! CQ

?

! s om i

t< us M U2 f

N

' Figure 4 A-9d. Integrated Power per Bundle at 6.6 GWd/st Cycle Exposure $$

4 HH Cl3 H i z '

t O i

! I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 j J 1 25451.2 24479.5 24674.7 24815.8 24845.5 24938.7 ,

l 2 25421.8 25008.9 3966.5 13835.1 5564.2 14365.2 5949.9 14615.4 i 3 24730.8 13488.2 5562.5 21248.2 6521.8 21941.6 7072.6 22318.8 15111.2 3 4  ;$454.8 13930.5 6199.4 20959.7 7230.6 21849.8 7636.5 22205.5 7879.8 22964.1 5 24960.7 14147.2 6456.7 22129.9 16057.2 20076.8 15368.1 21107.3 14923.6 21578.1 15781.5 6 25454.2 14110.3 6583.4 21864.7 7771.8 22141.2 8220.4 28390.7 8231.0 23279.3 8138.1 26609.4

} 7 24720.0 13907.1 6488.4 15959.0 16142.2 20022.9 15651.3 21540.0 14774.7 21506.6 14110.2 21493.9 15664.3 i 8 25320.8 13411.0 6124.1 21760.8 7660.9 28696.2 8005.6 28590.3 8100.6 28381.7 7802.9 23113.6 7646.6 27504.0 1 9 24979.5 5453.4 20828.6 15889.5 22298.0 15536.4 28565.3 14787.8 21388.5 14296.4 21633.2 14024.6 21715.0 16261.0 {

j 10 25284.8 3896.0 21117.1 7026.1 20653.9 7961.1 21486.9 8007.8 22964.5 7551.7 28395.6 7773.1 28031.4 7956.0 27843.9

11 24417.0 13724.6 6360.5 21505.3 14817.1 27894.4 14736 8 28240.4 14039.5 20136.9 13873.8 28543.2 12763.1 22294.5 16229.8

! 12 24443.1 5465.6 21756.3 7407.2 20950.7 7695.7 21294.4 7692.4 21323.0 7469.9 21729.8 7865.1 2E432.7 8212.6 28681.6 i 13 24761.0 14323.9 6972.3 22076.4 14833.1 23267.4 14308.8 23218.2 1399*.0 20016.8 14038.6 28243.7 12814.2 28443.5 16382.4 j 14 24827.9 5904.2 22304.3 7835.0 21517.7 e182.1 21705.3 7910.7 21717.8 7847.4 21874.4 7979.9 22272.3 8074.4 28690.5 y l

15 24946.7 14596.9 15061.0 22982.1 16055.7 26829.3 15714.7 27506.3 15814.8 27365.3 16151.4 20011.3 16107.2 28452.3 21915 2 gy 1 (D :>

.I < .a l

. o

Figure 4A-9e. Average Bu11dle Exposure at 6.6 GWd/st Cycle Exposure e$

1

GESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 1 2 1 2 1 2 1 3 4 3 4 3 4 3 4 3 1 2 1 2 1 2 1 2 1 2 1 3 4 3 4 3 4 3 4 3 4 3 4 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 4 3 4 3 4 3 4 3 4 3 4 3 1 2 1 2 1 2 1 2 1 2 1 3 4 3 4 3 4 3 3 4 1 2 1 2 1 2 1 SEQUENCE:

A-1 = F100 TYPE 1 DEEP; TYPE 3 SHALLOW;2 AND 4 OUT.

A-2 = It00 TYPE 3 DEEP; TYPE 1 SHALLOW; 2 AND 4 OUT.

B-1 = HOD TYPE 2 DEEP; TYPE 4 SHALLOW;1 AND J Oui.

B F100 TYPE 4 DEEP; TYPE 2 SHALLOW,1 AND 3 OUT Figure 4A-10. Sequence A and B Designations O

4A.6-28

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 1.50 O

l l

i 1.45 -

E t>

2 9

7 e i.40 -

5 8

a.

Y 9

t 5

O i I

1.35 -

/

DESIGN TARGET 1.30 -

I I I I I I I 1.25 O 1 2 3 4 5 6 7 8 CYCLE EXPOSURE (GWd/st)

O . Figure 4A-ll. Minimum Critical Power Ratio as a Function of Cycle Exposure 4A.6-29

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 13.0 0

12.5 -

=

c c .

E DESIGN TARGET g _____ _ _ __. _ - - - - - - - - - - - i 2.i a

2

  1. 12.0 -

9 4

m E

3 l

i x

y 11.5 -

e l 3 s

\ 3 l

2 X

l <

s 11.0 -

I I ' I I I I 10.5 0 1 2 3 4 5 6 7 8 l

CYCLE EXPOSURE (GWd/st) l Figure 4A-12. Maximum Linear Heat Generation Rate as a Function i

of Cycle Exposure 4A.6-30

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 1.4 O

1,2  %

\

N N

\

1.0 -

/

/ \

\

/ \

/

8 I

08 -

f 4

I I

G Ob 06 I

f I

I E ND OF-EQUILIBRIUM CYCLE

==== H ALING (OPTIM AL)

, 04 l 0.2 -

I l I I I I I I I I I o

1 3 5 7 9 11 13 15 17 19 21 23 25 BOROM TOP AX1 AL NODE Figure 4A-13. Achieved End-of-Equilibrium-Cycle Axial Exposure and Target IIaling Distributions 4A.6-31

1 GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 X -. 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 I I I I I I I I i l l l l l l  ;

I I I I I I I I I I I I I I 4 5___L_I__L_I _

- H' -- r - t- - l- - - '

I I I J I I I e5 - - - F -I-y i T- 1 l I L_L__5 51 - - - t- p q l 47 - - - - 30 16 30 43-----

--is 39 - - - 30 16 30

- - 13 35 - - -

- - 15 31 - - - 16 16 16 16

- - 17 27---

- - 19 23 - - . 30 16 30

- - 21 19 - - g

~~~

15 - -

30 16 30 -

, , _ _ ._1 _ L d T -- - - 25

, _ _. d _ [ _h g--l-f --- 27

'~~

I I I 11 l - h -l- - - - 29 l i I- -l ll l l l l v i l I I I I I I I I I I I I I I I I I I I 1 l l 1 1 I I I I l -+ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COORDINATES 1, J = MODEL COORDINATES LOCATIONS CYCLE EXPOSURE 0.2 GWd/st 1 J K ROD SEQUENCE A-2 K 1.0117 AX1 AL PE AKING 1.22 - -

5 EFF R ADI AL PE AKING 1.32 9 13 -

1, J, K COOL COORDIN ATES MCPR 1.32 9 13 - k. = 1 - BOTTOM OF CORE MLHGR 12,1 11 , 11 K = 25 - TOP OF CORE R FACTOR 1.026 9 13 -

Figure 4A-14. Under-Reactive Model at 0.2 GWd/st Cycle Exposure 4A.6-32

GESSAR II 22A7007 l 238 NUCLEAR ISLAND Rev. 0 x-2 6 10 14 is 22 26 3o 34 38 42 48 50 54 58

(]

\v l l I I I I I i i l I i l I i j I l l l l l l l l l l l l l 3 59 - _ _ L _!_ _L._ I - -i - t - f- l- - - ' l I I I J l l l l 55 - _ _ p q _ y q p  ;---3 I I . J__t___,

Si - - - t- f 35 q l 4,-__ -

40 ,o L- ---7

-~~

9 43 - - 14 14

--si 39 - - - 40 40

-~U 35 - - - 16 14 14 Ig

- - 15 31 - - -

27--- 16 14 14 16 23 - - - 40 40

- - 21 19 - - 7 -

14 14

,A - - - 23 15 - - I . -

40 40 -

( s) i I 11 - - _1 - .L 36 - I T - -- - 25

,___h_h '

/-l-h --- 27 I I i 11 l - H -l - -+ - - - 29 I l II I I i l I y

i I I I I I I I I I I I I I I I I I I I i i i l i I I I l l l 14 1 3 5 7 9 ?1 13 15 17 19 21 23 25 27 29 l X, Y = PLANT COORDINATES l 1. J = MODEL COORDINATES l LOCATIONS CYCLE EXPOSURE 3 GWd/st l DESIGN FACTORS l 1 J K ROD SEQUENCE B1 i AXtAL PEAKING 1.26 7 K 1,0109 EFF R ADI AL PE AKING 1.35 13 7 -

1, J. K CODE COORDIN ATES MCPR 1.35 13 7 -

K= 1 - BOTTOM OF CORE

[ MLHGR 12,1 11 13 19 K = 25 - TOP OF CORE

{ HFACTOR 1.027 13 7 _

Figure 4A-15. Under-Reactive "odel at 3.0 GWD/st Cycle Exposure v

)

t l

4A.6-33 i

CESSAR II 22A7007 2 38 NUCLEAR ISLAND Rev. 0 X-- 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 l l l l l l l l l l l l l l l J l l l 1 I I I I I I I I I I i I - t - t- l- - - '

59 _ _ _ l L _I_ _tI _J '

I I I I---

55 _ _ _ p _i _f q ri 1 I 6

L_L__5 51 - - - f -

47---

1 30 32 32 30 d---7

---9 43----- 6 6

_. - i l 39 - - . 32 32

- - 13 35 - - - 6 12 12 6

- - 15 31 - - -

--i7 27--- 6 12 12 6

- - 19 23 - - . 32 32

~ ~ 21 19 - - . - 6 6

~~~

15- -

30 32 32 30 i i i _ _ J _ .L 6 dT -- - 25 l 1 1 I

_K- . , 7 - - - 27 I I I Il l - l 4 - - 29 7 T F 1 i i i i I y I I I I I I I I I I I I I I I I I l I l l 1 1 I I I I I l l 1- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 X, Y = PLANT COOHDINATES I, J = MODEL COOHDINATES LOCATlONS CYCLE EXPOSUHE 3 GWoht DESIGN FACTOHS I J K HOD SECUENCE n.1 k 1.0019 AX I AL PE AKING 1.24 - -

10 EFF H AOI AL PE AKING 1.31 12 6 -

l, J. K CODE COOHDINATES MCPit 1.36 13 7 - K= 1 - BOTTOM OF COHE MLHGH 11.9 13 7 10 K = 25 - TOP OF COHE f t F ACTOFI 1.067 13 7 -

Figure 4A-16. Over-Reactive Model at 3.0 GWD/st Cycle Exposure 4A.6-34

O.,

g<.

W-WM2st"t@%#;<pt wh&smon d

~ Y

v. r

/

k M*. - (, s i

g

-f e$'

f s.

I^. ..

? ^

N (4, w,D;%w e .mw

~- ,

L Y

'T i

'.1

/

t C

e 1

i g Aj*."-'

  • a4

,.*M, N

%y

~

j'

?

's, ,#

A

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

/~'s

SUMMARY

TABLE OF CONTENTS Chapter /

Section Title Volume 1 INTRODUCTION AND GENERAL DESCRIPTION OF PLANT

1.1 INTRODUCTION

1 1.1.1 Type of License Required 1.1.2 Identification of Applicant 1.1.3 Number of Plant Units 1.1.4 Description of Location 1.1.5 Type of Nuclear Steam Supply System 1.1.6 Type of Containment 1.1.7 Core Thermal Power Levels 1.1.8 Scheduled Completion and Operation Dates 1.2 GENERAL PLANT DESCRIPTION 1 1.2.1 Principal Design Criteria f-~s 1.2.2 Plant Description (s 1.3 COMPARISON TABLES 1 1.3.1 Comparisons with Similar Facility Designs 1.3.2 Comparisons of Final and Preliminary Information 1.4 IDENTIFICATION OF AGENTS AND CONTRACTORS 1 1.4.1 Applicant 1.4.2 Architect Engineer - Nuclear Island Design 1.4.3 Nuclear Steam Supply System Supplier 1.4.4 Turbine-Generator Vendor 1.4.5 Consultants 1.5 REQUIREMENTS FOR FURTHER TECHNICAL INFORMATION 1 1.5.1 Current DeveJnoment Programs 1.5.2 PSAR Commitment Items 1.6 MATERIAL INCORPORATED BY REFERENCE 1 O

iii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 1.7 DRAWINGS AND OTIIER DETAILED INFORMATION 1 1.7.1 Electrical, Instrumentation, and Control Drawings 1.7.2 Piping and Instrumentation Diagrams 1.7.3 Abbreviations and Symbols CONFORMANCE TO NRC REGULATORY GUIDES 1 1.8

1.8.1 Compliance Assessment Method STANDARD DESIGNS 1 1.9 1.9.1 Interfaces l 1.9.2 Exceptions l l

O

\ O I

iv

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 r

SUMMARY

TABLE OF CONTENT 5 (Continued) v Chapter /

Section Title Volume 2 SITE CHARACTERISTICS 2.0

SUMMARY

l 2.1 GEOGRAPHY AND DEMOGhAPHY l 2.1.1 Site Location and Description 2.1.2 Exclusion Area Authority and Control 2.1.3 Population Distribution 2.2 NEARBY INDUSTRIAL, TRANSPORTATION AND MILITARY FACILITIES 1 2.2.1 Location and Routes 2.2.2 Descriptions 2.2.3 Evaluation of Potential Accidents 2.3 METEOROLOGY l 2.3.1 Regional Climatology f3 2.3.2 Local Meteorology i i

( ,/ 2.3.3 Onsite Meteorological Measurements Program 2.3.4 Short-Term Atmospheric Diffusion Estimates 2.3.5 Long-Term Atmospheric Diffusion Estimaten 2.4 HYDROLOGIC ENGINEERING 1 2.4.1 Hydrologic Description 2.4.2 Floods 2.4.3 Probable Maximum Flood (PMF) on Streams and Rivers 2.4.4 Potential Dam Failures, Seismically Induced 2.4.5 Probable Maximum Surge and Seiche Flooding 2.4.6 Probable Maximum Tsunami Flooding 2.4.7 Ice Effects 2.4.8 Cooling Water Canals and Reservoirs 7g 2.4.9 Channel Diversions

( ) 2.4.10 Flooding Protection Requirements v

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 2.4.11 Low Water Considerations 2.4.12 Dispersion, Dilution, and Travel Times of Accidental Releases of Liquid Effluents in Surface Waters 2.4.13 Ground Water 2.4.14 Technical Specifications and Emergency Operation Requirements 2.5 GEOLOGY, SEISMOLOGY, AND GEOTECHNICAL ENGINEERING 1 2.5.1 Basic Geologic and Seismic Information 2.5.2 Vibratory Ground Motion 2.5.3 Surface Faulting 2.5.4 Stability of Subsurface Materials and Foundations 2.5.5 Stability of Slopes 2.5.6 Embankments and Dams O

Vi

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 (O

SUMMARY

TABLE OF CONTENTS (Continued) v}

Chapter /

Section Title Volume 3 DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1 CONFORMANCE WITH NRC GENERAL DESIGN CRITERIA 2 3.1.1 Summary Description 3.1.2 Criterion Conformance 3.2 CLASSIFICATION OF STRUCTURES, COMPONENTS, AND SYSTEMS 2 3.2.1 Seismic Classification 3.2.2 System Quality Group Classifications 3.2.3 System Safety Classifications 3.2.4 Quality Assurance 3.2.5 Correlation of Safety Classes with Industry Codes 3.3 WIND AND TORNADO LOADINGS 2 3.3.1 Wind Loadings

( ';

3.3.2 Tornado Loadings 3.3.3 BOP Interface 3.3.4 References 3.4 WATER LEVEL (FLOOD) DESIGN 2 3.4.1 Flood Protection 3.4.2 Analytical and Test Procedures 3.4.3 BOP Interface 3.4.4 References 3.5 MISSILE PROTECTION 2 3.5.1 Missile Selection and Description 3.5.2 Structures, Systems, and Components to be Protected from Externally Generated Missiles

3.5.3 Barrier Design Procedures

! 3.5.4 BOP Interface

(

3.5.5 References

(%

vii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued) 1 Chapter /

Section Title Volume 3.6 PROTECTION AGAINST DYNAMIC EFFECTS ASSOCIATED WITl! THE POSTULATED RUPTURE OF PIPING 2 3.6.1 Postulated Piping Failures in Fluid Systems Inside and Outside of Containment 3.6.2 Determination of Break Locations and Dynamic Effects Associated with the Postulated Rupture of Piping 3.6.3 References 3.7 SEISMIC DESIGN 3 3.7.1 Seismic Input 3.7.2 Seismic System Analysis 3.7.3 Seismic Subsystem Analysis 3.7.4 Seismic Instrumentation 3.7.5 BOP Interface 3.7.6 References 3.8 DESIGN OF SEISMIC CATEGORY I STRUCTURES 3 3.8.1 Concrete Containment 3.8.2 Steel Containment 3.8.3 Concrete and Steel Internal Structures of Steel Containment 3.8.4 Other Seismic Category I Structures 3.8.5 Foundations 3.8.6 BOP Interface 3.9 MECdANICAL SYSTEMS AND COMPONENTS 4 3.9.1 Special Topics for Mechanical Components 3.9.2 Dynamic Testing and Analysis 3.9.3 ASME Code Class 1, 2 and 3 Components, Component Supports, and Core Support Structures

) 3.9.4 Control Rod Drive System 3.9.5 Reactor Pressure Vessels Internals 3.9.6 Inservice Testing of Pumps and Valves 3.9.7 BOP Interface 3.9.8 References viii

GESSAR II 22A7007 238_ NUCLEAR. ISLAND Rev. 0

[ \

SUMMARY

TABLE OF CONTENTS (Continued) "

\,,)

Chapter /

Section Title Volume 3.10 SEISMIC QUALIFICATIONS OF SEISMIC CATEGORY I INSTRUMENTATION AND ELECTRICAL EQUIPMENT (INCLUDING HYDRODYNAMIC EFFORTS) 5 3.10.1- Seismic Qualification Criteria (Including Hydrodynanic Loads) 3.10.2 Methods and Procedures for Qualifying Electrical Equipment and Instrumentation 3.10.3 Methods and Procedure of Seismic Analysis or Testing of Supports of Electrical Equipment and Instrumentation (Including Hydrodynamic Loads) 3.10.4 Seismic Qualification Tests and Analyses (Including Hydrodynamic Loads) 3.11 ENVIRONMENTAL DESIGN OF 3AFETY-RELATED MECHANICAL AND ELECTRICAL EQUIPMENT 5

( )

3.11.1 Equipment Identification and Environmental Conditions 3.11.2 Qualification Tests and Analyses 3.11.3 Qualification Results 3.11.4 Loss of Ventilation 3.11.5 Estimated Chemical and Radiation Environment APPENDIX 3A SEISMIC SOIL-STRUCTURE INTERACTION ANALYSIS OF THE NUCLEAR ISLAND 5 ,

APPENDIX 3B CONTAINMENT LOADS 6,7 APPENDIX 3C COMPUTER PROGRAMS USED IN THE DESIGN I OF SEISMIC CATEGORY I STRUCTURES 8

'PENDIX 3D ANALYSIS OF RECIRCULATION MOTOR AND PUMP UNDER ACCIDENT CONDITIOND 8 APPENDIX 3E DESCRIPTION OF SAFETY RELATED MECHANICAL AND ELECTRICAL EQUIPMENT 8 APPENDIX 3F DYNAMIC BUCKLING CRITERIA FOR CONTAINMENT VESSEL 8 O

ix

GESSAR II 22A7007 238 NUCLEAR ISLIiND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume APPENDIX 3G PIPE FAILURE ANALYSIS 8 APPENDIX 3H EFFECT OF CONCRETE ANNULUS BELOW ELEVATION (-) 5 FT., 3 IN. ON SEISMIC DESIGN LOADS AND BUILDING RESPONSES 8 9

i i

l O

x

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

SUMMARY

TABLE OF CONTENTS (Continued)

(' ')'

Q/

Chapter /

Section Title Volume 4 REACTOR 4.1

SUMMARY

DESCRIPTION 9 4.1.1 Reactor Vessel 4.1.2 Reactor Internal Components 4.1.3 Reactivity Control Systems 4.1.4 Analysis Techniques 4.1.5 References 4.2 FUEL SYSTEM DESIGN 9 4.2.1 General and Detailed Design Base 4.2.2 General Design Description 4.2.3 Design Evaluations 4.2.4 Testing and Inspection 4.2.5 Operating and Developmental g3 Experience k_,) 4.2.6 References 4.3 NUCLEAR DESIGN 9 4.3.1 Design Bases 4.3.2 Description 4.3.3 Analytical Methods 4.3.4 Changes 4.3.5 References 4.4 THERMAL - HYDRAULIC DESIGN 9 l 4.4.1 Design Basis l

4.4.2 Description of Thermal Hydraulic Design of the Reactor Core 4.4.3 Description of the Thermal and Hydraulic Design of the Reactor

! Coolant System 4.4.4 Evaluation 4.4.5 Testing and Verification i

4.4.6 Instrumentation Requirements

-s 4.4.7 References v

(

xi

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O l

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 4.5 REACTOR MATERIALS 9 <

4.5.1 Control Rod System Structural Materials 4.5.2 Reactor Internal Materials l

4.5.3 Control Rod Drive Housing Supports 4.6 FUNCTIONAL DESIGN OF REACTIVITY CONTROL SYSTEMS 9 4.6.1 Information for Control Rod Drive System (CRDs) 4.6.2 Evaluations of the CRDs '

4.6.3 Testing and Verification of the CRDs 4.6.4 Information for Combined Performance of Reactivity Systems 4.6.5 Evaluation of Combined Performance 4.6.6 References APPENDIX 4A CONTROL ROD PATTERNS AND ASSOCIATED POWER DISTRIBUTION FOR TYPICAL BWR 9 4A.1 Introduction 4A.2 Power Distribution Strategy 4A.3 Results of Core Simulation Studies 4A.4 Glossary of Terms 4A.5 References O

xii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

['wj)'

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 5 REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS 5.1

SUMMARY

DESCRIPTION 10 5.1.1 Schematic Flow Diagram 5.1.2 Piping and Instrumentation Diagram 5.1.3 Elevation Drawing 5.2 INTEGRITY OF REACTOR COOLANT PRESSURE BOUNDARY 10 5.2.1 Compliance with Codes and Code Cases 5.2.2 Overpressure Protection 5.2.3 Reactor Coolant Pressure Boundary Materials 5.2.4 Inservice Inspection and Testing of Reactor Coolant Pressure Boundary 5.2.5 Reactor Coolant Pressure Boundary and ECCS System Leakage Detection System

(l

'\ -

3 5.2.6 References 5.3 REACTOR VESSEL 10 5.3.1 Reactor Vessel Materials 5.3.2 Pressure / Temperature Limits 5.3.3 Reactor Vessel Integrity 5.3.4 References 5.4 COMPONENT AND SUBSYSTEM DESIGN 10 5.4.1 Reactor Recirculation Pumps 5.4.2 Steam Generators (PWR) 5.4.3 Reactor Coolant Piping 5.4.4 Main Steam Line Flow Restrictors 5.4.5 Main Steam Line Isolation System 5.4.6 Reactor Core Isolation Cooling System (RCIC) 5.4.7 Residual Heat Removal System 5.4.8 Reactor Water Cleanup System 5.4.9 Main Steam Lines and Feedwater Piping

[ ) 5.4.10 Pressurizer x ,/

xiii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 5.4.11 Pressurizer Relief Valve Discharge System 5.4.12 Valves 5.4.13 Safety and Relief Valves 5.4.14 Component Supports 5.4.15 References O

l l

I l

l xiv

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O f;

SUMMARY

TABLE OF CONTENTS (Continued) b Chapter /

Section Title Volume 6 ENGINEERED SAFETY FEATURES 6.0 GENERAL 11 6.1 ENGINEERED SAFETY FEATURE MATERIALS 11 6.1.1 Metallic Materials 6.1.2 Organic Materials 6.2 CONTAINMENT SYSTEMS 11 6.2.1 Containment Functional Design 6.2.2 Containment Heat Removal System 6.2.3 Secondary Containment Functional Design 6.2.4 Containment Isolation System 6.2.5 Combustible Gas Control in Containment 6.2.6 Containment Leakage Testing

() 6.2.7 6.2.8 Suppression Pool Makeup System References 6.3 EMERGENCY CORE COOLING SYSTEMS 11 6.3.1 Design Bases and Summary Description 6.3.2 System Design 6.3.3 ECCS Performanca Evaluation 6.3.4 Tests and Inspections 6.3.5 Instrumentation Requirements 6.3.6 References 6.4 HABITABILITY SYSTEMS 11

( 6.4.1 Design Basis 6.4.2 System Design 6.4.3 Systems Operational Procedures 6.4.4 Design Evaluations l 6.4.5 Testing and Inspection 6.4.6 Instrumentation Requirements 6.4.7 Nuclear Island / BOP Interface 1 (

x_-)

XV

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 6.5 FISSION PRODUCT REMOVAL AND CONTROL SYSTEMS 11 6.5.1 Standby Gas Treatment System (SGTS) 6.5.2 Containment Spray Systems 6.5.3 Fission Product Control Systems 6.5.4 Ice Condensers as a Fission Product Control System 6.5.5 References 6.6 INSERVICE INSPECTION OF CLASS 2 AND 3 COMPONENTS 11 6.6.1 Components Subject to Examination 6.6.2 Accessibility 6.6.3 Examination Techniques and Procedures 6.6.4 Inspection Intervals 6.6.5 Examination Categories and Requirements 6.6.6 Evaluation of Examination Results 6.6.7 System Pressure Tests 6.6.8 Augmented Inservice Inspection to Protect Against Postulated Piping Failures 6.7 MAIN STEAM POSITIVE LEAKAGE CONTROL SYSTEM (MSPLCS) 11 6.7.1 Design Bases 6.7.2 System Description 6.7.3 System Evaluation 6.7.4 Inspection and Testing 6.7.5 Instrumentation Requirements 6.8 PNEUMATIC SUPPLY SYSTEM 11 6.8.1 Design Bases 6.8.2 System Description 6.8.3 System Evaluation 6.8.4 Inspection and Testing Requirements 6.8.5 Instrumentation Requirements APPENDIX 6A IMPROVED DECAY HEAT CORRELATION FOR LOCA ANALYSIS 11 xvi

GESSAR II 22A7007 4

238 NUCLEAR ISLAND Rev. O i

()

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /.

Section- . Title Volume j

7 INSTRUMENTATION AND CONTROL SYSTEMS' I

7.l' INTRODUCTION (All Systems) 12 7.1.1 Identification of Safety-Related

! Systems

. 7.1.2 Identification of Safety and Power Generation Criteria 7.2 REACTOR PROTECTION (TRIP)-SYSTEM (RPS) 12 l 7.2.1 Description j 7.2.2 Conformance Analysis 7.3 ENGINEERED SAFETY FEATURES SYSTEM, l 13 INSTRUMENTATION AND CONTROL 7.3.1 Description l 7.3.2 Analysis l -HPCS -Shield' Building

() -ADS

-LPCS A nulus Mixing

- econdary Cgntain-ment Isolation

- HR/LPCI -Primary Containment j -CRVICS Isolation LCS ,

-MSPLCS -Standby Power I -RHR/ Containment -D-G Support Systems bP#"Y -Essential Service l

-RHR/ Suppression Pool Water Cooling -ESF Area Cooling

! -Suppression Pool -Pneumatic Supply i

Makeup

-CB Atmospheric
-Combustible Gas Control j Control 1 -CB Chilled Water

-SGTS f

7.4 SYSTEMS REQUIRED FOR SAFE SHUTDOWN 14 l.

7.4.1 Description 7.4.2 Analysis

-RCIC -RHR/ Shutdown Cooling l -SLC -Remote Shutdown

)

xvii I

.,c.,. ,~._,__._.-.._.._,__,_,_..,____.,_..,,_,__......_____.._,.,_,_.m_._,_,.__,.,m., .,__,,,..,__._,,..,,,_,.,,.,__,__.,_,_,,,,,_.,m._,,

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

O Chapter / Volume Section Title 14 7.5 SAFETY-RELATED DISPLAY INSTRUMENTATION 7.5.1 Description 7.5.2 Analysis

-Nuclenet Control -BOP Benchboard nsole -Supervisory Moni-

-Standby Information toring Console anel -Display Contro.'

-Rx Core Cooling BB System 7.6 ALL OTHER INSTRUMENTATION SYSTEMS REQUIRE' FOR 14 SAFETY 7.6.1 Description 7.6.2 Analysis 7.6.3 Additional Design Considerations Analyses 7.6.4 References

-Neutron Monitoring -FPCCS

-Process Radiation -DW/ Containment Monitoring Vacuum Relief

-Refueling Interlocks -Vent & Pressure Control

-Leak Detection

~ ^"

-Rod Pattern Control

-Suppression Pool

-HP/LP System Interlock emperature Monitoring

-Recirculation Pump Trip 1

0 xviii

GESSAR II 22A7007 238 P',CLE!sR ISLAND Rev. 0

SUMMARY

TABLE OF CONTENTS (Continued)

}

Chapter /

Title Volume

_Section 7.7 CONTROL SYSTEMS NOT REQUIRED FOR SAFETY 14 7.7.1 Description 7.7.2 Analysis 7.7.3 References

-RPV Instrumentation -Leak Detection

-Rod Control & -Rod Block Trip Information -Fire Protection

-Recirculation Flow -Drywell Chiller &

Control Cooling

-Feedwater Control -Plant Instrument Air

-Performance Moni- -Neutron Monitoring l

toring System

-Radwaste 7.8 NI/ BOP INTERFACES 14 A

e 7.8.1 Essential Service Water (Supply)

\- System Instrumentation and Controls 7.8.2 Diesel Generator Fuel Oil Transfer System APPENDIX 7A I&C ELEMENTARY DIAGRAMS 15 i

e xix

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 8 ELECTRIC POWER

8.1 INTRODUCTION

16 8.1.1 Utility Grid Description 8.1.2 Onsite Electric Power System 8.1.3 Design Bases 8.2 OFFSITE POWER SYSTEM 16 8.2.1 Description 8.2.2 Analysis 8.2.3 Nuclear Island - BOP Interface 8.3 ONSITE POWER SYSTEMS 16 8.3.1 AC Power Systems 8.3.2 DC Power Systems 8.3.3 Fire Protection of Cable Systems O

O XX

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

SUMMARY

TABLE OF CONTENTS (Continued) i

(}!

G Chapter /

Section Title Volume 9 AUXILIARY SYSTEMS 9.1 FUEL STORAGE AND HANDLING 17 9.1.1 New Fuel Storage (High Density) 9.1.2 Spent Fuel Storage (digh Density) 9.1.3 Fuel Pool Cooling and Cleanup System 9.1.4 Fuel-Handling System 9.2 WATER SYSTEMS 17 9.2.1 Essential Service Water (ESW) System 9.2.2 Closed Cooling Water System 9.2.3 Demineralized Water Makeup System 9.2.4 Potable and Sanitary Water Systems 9.2.5 Ultimate Heat Sink 9.2.6 Condensate Storage Facilities and

'~g Distribution System

\_ / 9.2.7 Plant Chi] led Water Systems 9.2.8 Heated Water Systems 9.2.9 Nuclear Island / BOP Interfaces 9.3 PROCESS AUXILIARIES 17 9.3.1 Compressed Air Systems 9.3.2 Proces - Sampling System 9.3.3 Floor and Equipment Drainage Systems 9.3.4 Chemical and Volume Control System (PWR) 9.3.5 Standby Liquid Control System 9.4 AIR CONDITIONING, HEATING, COOLING AND VENTILATION SYSTEM 17 9.4.1 Control Room HVAC System 9.4.2 Fuel Building HVAC System 9.4.3 Auxiliary Building HVAC Systems 9.4.4 Turbine Building Area Ventilation System 9.4.5 Reactor Building HVAC System

(-]

V xxi

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 9.4.6 Radwaste Building HVAC System 9.4.7 Diesel-Generator Buildings HVAC Systems 9.5 OTHER AUXILIARY SYSTEMS 17 9.5.1 Fire Protection System 9.5.2 Communications Systems 9.5.3 Lighting Systems 9.5.4 Diesel-Generator Fuel Oil Storage and Transfer System 9.5.5 Diesel-Generator Cooling Water System 9.5.6 Diesel-Generator Starting Air System 9.5.7 Diesel Engine Lubrication System 9.5.8 Diesel Generator Combustion Air Intake and Exhaust System 9.5.9 Suppression Pool Cleanup System 9.5.10 Nuclear Island - BOP Interface APPENDIX 9A FIRE lIAZARD ANALYSIS 18 O

xxii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0 1

1

SUMMARY

TABLE OF CONTENTS (Continued)

}

i Chapter /

l Section Title Volume i

) 10 STEAM AND POWER CONVERSION SYSTEM

! 10.1

SUMMARY

DESCRIPTION 19 i

j 10.2 TURBINE GENERATOR 19 10.2.1 Design Bases Functional Limitations by Design or Operational Charac-teristics of the Reactor Coolant System 10.2.2 System Description  ;

10.2.3 Turbine Disk Integrity  ;

1 10.2.4 Evaluation 10.3 MAIN STEAM SUPPLY 19 ,

s i

i 10.4 OTHER FEATURES OF STEAM AND POWER CONVERSION i SYSTEM 19 i l

10.4.1 Main Condensers 10.4.2 Condenser Air Removal System G 10.4.3 Main Condenser Evacuation System 10.4.4 Turbine Bypass System 10.4.5 Circulating Water System 10.4.6 Condensate Cleanup System  !

10.4.7 Condensate and Feedwater System j 10.4.8 Steam Generator Blowdown System (PWR)  !

10.4.9 Auxiliary Feedwater System (PWR) j l

r xxiii  !

J

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Contir.uod)

Chapter /

Section Title Volume 11 RADIOACTIVE WASTE MANAGEMENT 11.1 SOURCE TERMS 19 11.1.1 Fission Products 11.1.2 Activation Products 11.1.3 Tritium 11.1.4 Fuel Fission Production Inventory and Fuel Experience 11.1.5 Process Leakage Sources 11.1.6 Radwaste System 11.1.7 Radioactive Sources in the Gas Treatment System 11.1.8 Source Terms for Component Failures 11.1.9 Other Releases 11.1.10 References 11.2 LIQUID WASTE MANAGEMENT SYSTEM 19 ll 11.2.1 Design Basis 11.2.2 System Descriptions .

11.2.3 Estimated Releases 11.3 GASEOUS WASTE MANAGEMENT SYSTEMS 19 11.3.1 Design Bases 11.3.2 Main Condenser Steam Jet Air Ejector Low-Temp RECHAR System Description 11.3.3 RECHAR System Operating Procedure 11.3.4 Radioactive Releases 11.3.5 References 11.4 SOLID RADWASTE SYSTEM 19 11.4.1 Design Bases 11.4.2 System Description O

xxiv

GESSAR II 22A7007 238 NUCLEAR ISLAND Rrw . 0

[)

V

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volumr-11.5 PROCESS AND EFFLUENT RADIOLOGICAL MONITORING AND SAMPLING SYSTEMS 19 11.5.1 Design Bases 11.5.2 System Description 11.5.3 Effluent Monitoring and Sampling 11.5.4 Process Monitoring and Sampling 11.5.5 Calibration and Maintenance 11.6 OFFSITE RADIOLOGICAL MONITORING PROGRAM 19

)

v

\

G XXV

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 0

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 12 RADIATION PROTECTION 12.1 ENSURING THAT OCCUPATIONAL RADIATION EXPOSURES ARE AS LOW AS REASONABLY ACHJEVABLE (ALARA) 19 12.1.1 Policy Considerations 12.1.2 Design Considerations 12.1.3 Operational Considerations 12.2 RADIATION SOURCES 19 12.2.1 Contained Sources 12.2.2 Airborne Radioactive Material Sources 12.2.3 References 12.3 RADIATION PROTECTION DESIGN FEATURES 19 12.3.1 Facility Design Features 12.3.2 Shielding 12.3.3 Ventilation 12.3.4 Area Radiation and Airborne Radioactivity Monitors 12.3.5 References 12.4 DOSE ASSESSMENT 19 12.5 HEALTH PHYSICS PROGRAM 19 i

I xxvi

. - - . - . . . . _ _ - -- . _ . - - . - . . . . _ . . . ~ - . . - _ . _ = .. -_. - ._ _ _ _ -. -. - _ __ -

, GESSAR II 22A7007 l

{ 238 NUCLEAR ISLAND Rev. O i i

3

SUMMARY

TABLE OF CONTENTS (Continued) {

i i Chapter /  !

l Section Title Volume i

13 CONDUCT OF OPERATIONS 19 i

4 i

i I t

]' I t

i i I

l l

i 5

I l i

. t

.i i  !

i t

i  !

4 I

i l

I i

i l

l 1

i O  :

l l

l l

xxvii

_ _ . _ _ _ _l

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O Su. B RY TABLE OF CONTENTS (Contiaded)

Chapter / ,

O Section Title Volume 14 INITIAL TEST PROGRAM 14.1 T 3T PROGRAM 20 14.1.1 Administrative Procedures (Testing) 14.1.2 Administrative Procedures (Modifications) 14.1.3 Test Objectives and Procedures 14.1.4 Fuel Loading and Initial Operation 14.1.5 Administrative Procedures (System Operation) 14.2 SPECIFIC INFORMATION TO BE INCLUDED IN SAFETY ANALYSIS REPORTS 20 14.2.1 Summary of Test Program and Objectives 14.2.2 Organization and Staffing 14.2.3 Test Procedures 14.2.4 Conduct of Test Program 14.2.5 Review, Evaluation and Approval of Test Results 14.2.6 Test Records 14.2.7 Conformance of Test Programs with Regulatory Guides 14 2.8 Utilization of Reactor Operating and Testing Experiences in tne Develop-ment of Test Program 14.2.9 Trial Use of Plant Operating and Emergency Procedures 14.2.10 Iritial Fuel Loading and Initial Criticality 14.2.11 Test Program Schedule 14.2.12 Individual Test Descriptions O

xxviii

GESSAR II 22A7007 238 NCCLEAR ISLAND Rev. 0 3

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title , Volume 15 ACCIDENT ANALYSES 15.0 GENERAL 21 15.0.1 Analytical Objective 15.0.2 Analytical Categories 15.0.3 Event Evaluation 15.0.4 Nuclear Safety Operational Analysis (NSOA) Relationship 15.0.5 References 15.1 DECREASE IN REACTOR COOLANT TEMPERATURE 21 15.1.1 Loss of Feedwater lleating 15.1.2 Feedwater Controller Failure -

Maximum Demand 15.1.3 Pressure Regulator Failure - Open 15.1.4 Inadvertent Safety / Relief Valve gs Opening r i

\s / 15.1.5 Spectrum of Steam System Piping Failures Inside and Outside of Containment in a PWR 15.1.6 Inadvertent RIIR Shutdown Cooling Operation 15.1.7 References 15.2 INCREASE IN REACTOR PRESSURE 21 15.2.1 Pressure Regulator Failure - Closed 15.2.2 Generator Load Rejection 15.2.3 Turbine Trip 15.2.4 MSLIV Closures 15.2.5 Loss of Condenser vacuum 15.2.6 Loss of Offsite AC Power 15.2.7 Loss of Feedwater Flow 15.2.8 Feedwater Line Break 15.2.9 Failure of RIIR Shutdown Cooling O

U XXiX

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

O Section Title Volume 15.3 DECREASE IN REACTOR COOLANT SYSTFM FLOW RATE 21 15.3.1 Recirculation Pump Trip 15.3.2 Recirculation Flow Control Failure -

Decreasing Flow 15.3.3 Recirculation Pump Seizure 15.3.4 Recirculation Pump Shaft Break 15.4 REACTIVITY AND POWER DISTRIBUTION ANOMALIES 21 15.4.1 Rod Withdrawal Error - Low Power 15.4.2 Rod Withdrawal Error at Power 15.4.3 Control Rod Maloperation (System Malfunction or Operator Error) 15.4.4 Abnormal Startup of Idle Recirculation Pump 15.4.5 Recirculation Flow Control with Increasing Flow 15.4.6 Chemical and Volume Control System Malfunctions 15.4.7 Misplaced Bundles Accident 15.4.8 Spectrum of Rod Ejection Assemblies 15.4.9 Control Rod Drop Accident (CRDA) 15.5 INCREASE IN REACTOR COOLANT INVENTORY 21 15.5.1 Inadvertent HPCS Startup 15.5.2 Chemical Volume Control System Malfunction (or Operator Error) 15.5.3 BWR Transients Which Increase Reactor Coolant Inventory 9

XXX

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

' O Chapter /

Section Title Volume I

i 15.6 DECREASE IN REACTOR COOLANT INVENTORY 21 15.6.1 Inadvertent Safety / Relief Valve Opening J

15.6.'2 Failure of Small Lines Carrying Primary Coolant Outside Containment 15.6.3 Steam Generator Tube Failure 15.6.4 Steam System Piping Break.Outside Containment 15.6.5 Loss-of-Coolant Accidents (Resulting l from Spectrum of Postulated-Piping

Breaks Within the Reactor Coolant Pressure Boundary) - Inside Containment 15.6.6 Feedwater Line Break - Outside Containment 15.7 RADIOACTIVE RELEASE FROM SUBSYSTEMS AND I COMPONENTS 21

( 15.7.1 Radioactive Waste System Leak or Failure 15.7.2 Liquid Radioactive System Failure i 15.7.3 Postulated Radioactive Releases Due to Liquid Radwaste Tank Failure i 15.7.4 Fuel-Handling Accident 15.7.5 Spent Fuel Cask Drop Accidents APPENDIX 15A PLANT NUCLEAR SAFETY OPERATIONAL ANALYSIS 21 APPENDIX 15B BWR/6 GENERIC ROD WITHDRAWAL ERROR ANALYSIS 21 1

I l

i O

...+ 1 l . _ . _ . - . . . . _ . . , , - - . . . _ _ . . _ _ _ . _ _ _ . . , . --. . - . _ _,.

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

Chapter /

Section Title Volume 16 STANDARD TECHNICAL SPECIFICATIONS FOR GENERAL ELECTRIC BOILING WATER REACTORS 16.1 DEFINITIONS 22 16.1.1 Action 16.1.2 Average Planar Exposure 16.1.3 Average Planar Linear Heat Generation Rate 16.1.4 Channel Calibration 16.1.5 Channel Check 16.1.6 Channel Functional Test 16.1.7 Core Alteration 16.1.8 Critical Power Ratio 16.1.9 Dose Equivalent I-131 16.1.10 E-Average Disintegration Energy 16.1.11 Emergency Core Cooling System (ECCS)

Response Time 16.1.12 Frequency Notation 16.1.13 Identified Leakage 16.1.14 Isolatien System Response Time 16.1.15 Limiting Control Rod Pattern 16.1.16 Linear Heat Generation Rate 16.1.17 Logic System Functional Test 16.1.18 Maximum Total Peaking Factor 16.1.19 Minimum Critical Power Ratio 16.1.20 Operable - Operability 16.1.21 Operational Condition (Condition) 16.1.22 Physics Test 16.1.23 Pressure Boundary Leakage 16.1.24 Primary Containment Integrity 16.1.25 Rated Thermal Power 16.1.26 Reactor Protection System Response Time 16.1.27 Recirculation Pump Trip System Response Time xxxii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O fg

SUMMARY

TABLE OF CONTENTS (Continued)

U Chapter /

Section Title Volume 16.1.28 Reportable Occurrence 16.1.29 Rod Density 16.1.30 Secondary Containment Integrity 16.1.31 Shutdown Margin 16.1.32 Staggered Test Basis 16.1.33 Thermal Power

  • 16.1.34 Total Peaking Factor 16.1.35 Unidentified Leakage 16.2 SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 22 16.2.1 Safety Limits 16.2.2 Limiting Safety System Settings 16.B2 SAFETY LIMITS 22 16.B2.1 Bases 5

s , ) 16.B2.2 Limiting Safety System Settings 16.3/4 LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS 22 16.3/4.0 Applicability 16.3/4.1 Surveillance Requirements 16.3/4.2 Power Distribution Limits 16.3/4.3 Instrumentation 16.3/4.4 Reactor Coolant System 16.3/4.5 Emergency Core Cooling Systems 16.3/4.6 Containment Systems 16.3/4.7 Plant Systems 16.3/4.8 I:lectrical Power Systems 16.3/4.9 Refueling Operations 16.3/4.10 Special Test Exceptions O

XXXiii

GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O

SUMMARY

TABLE OF CONTENTS (Continued)

O Chapter /

Section Title Volume 16.B3/4.0 Applicability 16.B3/4.1 Reactivity Control Systems 16.B3/4.2 Power Distribution Limits 16.B3/4.3 Instrumentation 16.B3/4.4 Reactor Coolant System 16.B3/4.5 Emergency. Core Cooling System 16.B3/4.6 Containment Systems 16.B3/4.7 Plant Systems 16.B3/4.8 Electrical Power Systems 16.B3/4.9 Refueling Operations 16.B3/4.10 Special Test Exceptions 16.5 DESIGN FEATURES 22 16.5.1 Site 16.5.2 Containment 16.5.3 Reactor Core 16.5.4 Reactor Coolant System 16.5.5 Meteorological Tower Location 16.5.6 Fuel Storage 16.5.7 Component Cyclic or Transient Limit O

xxxiv

i 1

GESSAR II 22A7007 l 238 NUCLEAR ISLAND Rev. O j i

SUMMARY

TABLE OF CONTENTS (Continued)

I l Chapter /

j Section Title Volume 5 17 QUALITY ASSURANCE l 17.1 QUALITY ASSURANCE DURING DESIGN AND CONSTRUCTION 22 l I 17.2 OUALITY ASSURANCE DURING THE OPERATING PHASE 22 4

i i i

4 i  :

i l

i i

i i

2 i

l O

i xxxv/xxxvi i

_ _ _ _ _ . _ -