ML20044H192

From kanterella
Jump to navigation Jump to search
Primary Reactor Containment Integrated Leakage Rate Test, Final Rept
ML20044H192
Person / Time
Site: Limerick Constellation icon.png
Issue date: 04/26/1993
From:
GENERAL PHYSICS CORP.
To:
Shared Package
ML20044H188 List:
References
GP-R-643-93-008, GP-R-643-93-8, NUDOCS 9306080043
Download: ML20044H192 (81)


Text

..

l O

l I

PIIIIADELPIIIA ELECTRIC j COMPANY Limerick Generating Station Unit 2 i

FINAL i REACTOR CONTAINMENT IlUILDING INTEGRATED LEAK l

'O RATE TEST REPORT April 26,1993 l

l GENERAL PIIYSICS CORPORATION GP-R-643 93 008 O

9306080043 930527 PDR ADOCK 05000353 P PDR

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION ,

Limerick Generating Station Unit 2 ILRT GP-R-643-93-008

1. LNTRODUCTION The Reactor Containment Building Integrated Leakage Rate " Type A" Test is performed to demonstrate that leakage through the primary reactor containment systems and components penetrating primary reactor containment do not exceed the allowable leakage rates specified in the Plant Technical Specifications.

The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Limerick Generating Station Unit 2 Integrated Leakage Rate Test (ILRT).

Highlights of activities and events which occurred prior to and during the ILRT are presented in Section II, Test Synopsis.

Section III, Test Data Summary, contains data and results necessary to demonstrate containment atmosphere stabilization, acceptable leakage rate, and a successful verification test. In addition, plots provided in Appendices B and C supply a visual history of containment atmospheric conditions beginning with the ILRT test period and ending with the verification test.

O Information in Section IV, Analysis and Interpretation, supplies the technical details -

associated with the ILRT computer program and its associated hardware as well as the instrumentation used during the ILRT.

Section V, References, lists the documents used for the conduct of the ILRT.

The successful periodic Type A and verification tests were performed according to the requirements of the Limerick Generating Station Unit 2 Technical Specifications and 10 CFR 50, Appendix J. The test method used was the Total Time Method, as described in ANSI N45.4-1972, " Leakage-Rate Testing of Containment Structures for Nuclear Reactors" and Bechtel Topical Report BN-TOP-1 Revision 1, " Testing Criteria for Integrated Leak Rate Testing of Primary Containment Structures for Nuclear Power Plants."

Leakage rates were calculated using the Total Time Analysis technique. Mass Point i Analysis equations from ANSI /ANS-56.8-1987, " Containment System Leakage Testing Requirements" were run concurrently for informational purposes. The test results are i reported in accordance with the requirements of 10 CFR 50, Appendix J, Section V.B3.

1 l

4 e

i PHILADELPHIA ELECTRIC COMPANY GENERAL PITYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 II. TEST SYNOPSIS Prior to commencing containment pressurization at 0355 (first data point at 0415) on March 9,1993, site personnel were engaged in prerequisite activities for the conduct of the ILRT. The ILRT was conducted at the end of Limerick Unit 2's second refueling outage. The following discussion highlights some of the activities that were essential to the successful and timely completion of the ILRT. These items are presented in chronological order.

A. Pre-pressurization Activities These activities included ILRT procedure review and finalization, ILRT computer program checkout and linkup to the Volumetrics A-100 Data Acquisition System, ILRT instrumentation calibration, installation, and operability checks. A containment temperature survey had been performed prior to the test in the ventilation lineup used for the ILRT.

The ILRT test procedure was reviewed against the requirements of the Plant Technical Specifications; 10 CFR 50, Appendix J; BN-TOP-1; ANSI /ANS-56.8-O 1981; and recent plant modifications.

The ILRT instrumentation was calibrated prior to the ILRT as recommended by ANSI N45.4-1972, Sections 6.2 and 6.3. Final ILRT instrumentation operability checks and in-situ checks, as specified in ANSI /ANS-56.8-1987, Section 4.2.3.1, were performed to ensure that all instrumentation was operating correctly.

Calibration records for the ILRT instrumentation system components are retained at the plant.

O 2

+ .

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 B. Test Summary Time-Line PRESSURIZATION PHASE:

Pressurization Started (approximately) 03:55 Julian Date 068 (3/9/93)

First Pressurization Data Point 04:15 068 Fans secured at 46.172 psia 08:30 068 First Compressor Secured at 57.16 psia 10:15 068 Second Compressor Secured at 57.9 psia 10:26 068 Reached Pa 44.02 psig (58.72 psia) 10:45 068 Pressurization Last Pressurization Data Point 11:45 068 Duration 7.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> Last Compressor Secured at 61.4 psia 11:53 068 STABILIZATION PHASE:

First Stabilization Data Point 12:00 068 Stabilization Last Stabilization Data Point 17:45 068 Duration 5.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> TEST PHASE:

First Test Data Point (Aborted Test) 18:00 068 Turned off Safeguards Keep-fill Pump to O stop loss of Supp. Pool Level Last Test Data Point before restarting 23:15 068 00:45 069 New Stablization Duration 12.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> Restarted Test, New Starting Test Data Pt. 01:00 069 Test Last Test Data Point 07:15 069 Duration 6.25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> VERIFICATION PHASE:

Imposed Ie of 5.67 scfm 07:20 069 First Hold data point 07:30 069 Hold Last Hold data point 08:30 069 Duration 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> First Verification Data point 08:45 069 Verification Last Verification Data point 12:45 069 Duration 4.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> DEPRESSURIZATION PHASE:

First Depressurization to 4.5 psig Data Pt. 13:00 069 Last Depressurization at 4.5 psig Data Pt. 21:00 069 Duration 8.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> BYPASS PHASE:

First Bypass Data Point -21:15 069 Last Bypass Data Point 23:15 069 Duration 2.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> O 3

i PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 C. Containment Pressurization Containment pressurization started at 0355 on March 9,1993 using three 1500 cfm diesel-driven 100% oil-free air compressors. The pressurization rate was maintained at approximately 6-7 psi per hour. This was within the procedural limitation of 8 psi per hour. The pressurization rate was gradually reduced as the containment pressure approached 44 psig by reducing the number of operating compressors. All compressors were stopped when the containment pressure reached 61.4 psia (46.7 psig) at 11:53, on March 9,1993. This was within the procedural limits of 44.0 +3, -0 psig. During pressurization a containment walkdown was performed to identify potential leakage. No excessive measurable leakage was observed. Pressurization was conducted with the use of the Reactor Containment Fan Cooling Units until rising fan motor currents required them to be secured at 0830 on March 9,1993.

D. Containment Atmosphere Stabilization The stabilization phase was started at 1200 on March 9,1993. By 1600 on March  :

9,1993, the temperature stabilization criteria of ANSI /ANS-56.8-1987 and BN-TOP-1 had been met. Prior to the test, it was determined that the acceptance criteria of .75 L awas equivalent to about 4 lbm per 15 minute reading. Mass swings at the beginning of stabilization were between 16 and 9 lbm during 15 minute readings. Eventually, this began to taper off to a change of 9-12 lbm/ reading and appeared to be steadily decreasing over the last hour's readings.

Based on this trend and having met the temperature stabilization criteria, the conditions supported starting the test.

E. ILRT Test Period i i

The ILRT was officially started at 1800 on March 9,1993. Almost immediately j I

after starting the test, the observed downward trend reversed itself and stabilized at a higher value. Excessive leakage (approximately 3-4 times the acceptance criteria as determined at 15 minute intervals) was detennined to exist early on in the test as mass swings settled out. Initial investigations for leakage yielded a ,

number of small leaks which were left as they were. It was determined that the  !

combined magnitude of these smallleaks did not approach the magnitude of the -l computer determined measured leakage rate. This magnitude ofleakage would be typical for a large volume between inboard and outboard isolation valves or inside air locks that were equalizing. This was the case in a few of the monitored areas, but again, evaluated independently or combined, these leaks were not determined to be excessive.

4 1

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 E. ILRT Test Period (Continued)

Investigations continued while the test was still being conducted. It was later determined that Suppression Pool level that was "the same", by earlier reports, had actually changed by what experience dictated was a significant amount (over 1 inch in 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />).

New investigations were made into the possible sources of liquid level loss from the Suppression Pool. The safeguards keep-fill pump was decided on as the most likely problem. At 2130 on March 9,1993 discussions started on the ramifications of securing the safeguards keep-fill pump. At 2315, after a shift change, the decision had been made and implemented to secure the suspect pump to aid in troubleshooting.

Observation of the next few data points showed that leakage had dropped down to about one half of the allowable rate. Operations was requested to keep the pump secured for the remainder of the test. A contingency plan was developed for the possibility of restarting the pump for ECCS. The containment had by now been stabilized with no major perturbations since 1600 on March 9,1993. It was concluded that safeguards piping fill was removing approximately 15 gpm from the suppression pool and discharging to the condenser. A decision to abort the present test and restart a new test was made.

A new test was started at 0100 on March 10, 1993 and was successfully completed at 0715 on March 10,1993. The maximum allowable leakage rate (La) for the containment is 0.5 wt.%/24 hours with a test acceptance limit of 0.375 wt.%/24 hours (0.75 La). Total Time and Mass Point Analyses were run concurrently on the General Physics ILRT Computer Program. The leakage rate results are as follows:

Total Time Mass Point Analysis Analysis wt.%/24 hours ,

wt.%/24 hours Calculated Leakage Rate 0.1269* 0.1344*

95 % Upper Confidence 0.2148' O.1398*

1eakage rate Does not include penalties for nonstandard alignments, HCU leakage and water level changes 5

1 l

l PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 F. Verification Test After the required one hour hold between imposing the known leak and taking four hours of data, a successful verification test was conducted following the ILRT. At 0715 on March 10, 1993, a leakage rate of 5.67 scfm (corrected for actual versus calibration conditions) was imposed on the primary containment.  !

The leakage imposed (Lo) on the existing containment was slightly less than La (0.5 wt.%/24 hours) at 0.4998 wt.%/24 hours. The verification phase was I completed at 1245 on March 10,1993.

The verification test results are presented below:

Total Time Mass Point Analysis Analysis wt.%/24 hours wt.%/24 hours leakage Rate (Lam) 0.1269 0.1344 Imposed Leak (L) 0.4998 0.4998 Lower Limit:

L+L -0.25 La 0.5017 0.5091 o am Composite Leakage (Lc) 0.5267 0.5214 Upper Limit:

0.7517 0.7591 L+ g Lam + 0.25 La G. Law Pressure Drywell Bypass Area Test After the verification test was completed, the suppression pool was completely depressurized. The drywell was depressurized to an approximate differential pressure of 4.23 psid corresponding to the approximate submergence of the downcomer vents. (Initial depressurization to 4.5 psid with a minimum of 4.0 psid during the two hour test.) The calculated maximum differential drywell to suppression pool pressure (based on the height of water in the downcomers and a conversion to psi) for the test conditions was 5.0 psid (before all water was forced out of the downcomer vents). Depressurization was kept below the procedural limitation of 8 psig per hour. The first data point was taken at 2115 on March 9,1993. After two hours of data, at 2315 on the same day, the bypass test was satisfactorily completed.

6 m .

/ '

PHIIADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 G. Low Pressure Drywell Bypass Area Test (continued) .

Using the Total Time technique, the calculated orifice size was as follows:

BYPASS ACCEPTANCE TEST RESULTS CRITERIA 2

Measured Orifice Size 0.01065 in (First to Last Data Point)

Calculated Orifice Size 0.01089 in2 50.72 in2 (Entire Test)

The calculated orifice size had originally been reported as 0.02284 square inches, which was still well belovi the acceptance criteria. Due to a data handling problem with the bypass test compuar code, the average drywell and suppression pool weighted temperatures were calculated incorrectly. This error was found in the.

bypass test computer code during General Physics' standard post-test data review.

This portion of the code is independent from the ILRT code and does not affect other sections of the program.

The data handling program code was modified to accept a greater number of inputs (sensors) in September 1992, after its last use at Peach Bottom. The December 1991 Peach Bottom bypass test results were successfully verified. The Peach Bottom data and results were thus not affected. Prior to the test at Limerick, hand calculations required by the General Physics software installation procedure were made to verify only the ILRT portion results. The Bypass test is an independent section of code which is only used on Philadelphia Electric Company-BWRs. The modification to accept a greater number of inputs in September 1992 was not expected to impact the calculation of an equivalent orifice size when it was installed and verified. Retest guidelines in September 1992 only ensured that the ILRT portion of the code was properly operating. The Umerick test was the first time that the bypass program had been used since then. The retest requirements at that time therefore did not include the independent hand calculations that have now been implemented.

The revised orifice size calculations are smaller than the originally reported values by a factor of greater than two. Thus, the error was in the conservative direction.

The programming for the bypass test is plant specific and thus no other ILRTs that this code was used for were affected. The computer code has since been modified in accordance with the requirements of General Physics' Software Control Procedure. Using the same raw sensor data, the new modified program code results matched 100% in a comparison to hand calculations performed by two separate individuals.

7

I 1

l l

1 PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 G. Low Pressure Drywell Bypass Area Test (continued)

As a permanent corrective measure, a change to the General Physics Software Control Procedure now requires the same hand verification steps for the Bypass test as is required for the ILRT portion of the code. (Stabilization, Test, and Verification Modes)

J i

l l

l I

O 8 ,

l l

l l

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 III. TEST DATA

SUMMARY

A. Plant Information Owner Philadelphia Electric Company Plant Limerick Generating Station Unit 2 Location Pottstown, Pennsylvania Containment Type BWR Mark 11 NSSS Supplier, Type General Electric, BWR Date Test Completed March 10,1993 B. Technical Data Containment Net Free Volume 394,022 (403,120) cubic feet f Corrected to 23 ft.,7.5 in.

(22 ft. supp. pool low level per T.S.) at end of test:

Drywell 243,060 (243,580) cubic feet Suppression Pool 150,962 (159,540) cubic feet Design Pressure 55 psig Design Temperature 340 F Calculated Peak Accident Pressure, Pa 44.02 psig Containment ILRT Average Temperature Limits40-120 F Calculated Peak Accident  !

Temperature 330 F 9

PIIILADELPIIIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643 93-008 C. Test Results - Type A Test Method Absolute Test Pressure 50.0 psig Integrated Leakage Rate Total Time Analysis Test Results:

Calculated Leakage Rate, Lam 0.1269 wt.%/24 hours  :

95 % Upper Confidence Limit Leakage Rate 0.2148 wt.%/24 hours Integrated Leakage Rate Mass Point Analysis Test Results (Presented for information only):

Calculated Leakage Rate, Lam 0.1344 wt.%/24 hours 95 % Upper Confidence Limit "

Leakage Rate 0.1398 wt.%/24 hours Maximum Allowable Leakage Rate, La 0.5000 wt.%/24 hours ILRT Acceptance Criteria,0.75 La 0.3750 wt.%/24 hours Verification Test Imposed Leakage Rate, Lo 5.67 scfn or 0.4998 wt.%/24 hours Verification Test Total Time Analysis Results and Limits:

Upper Limit 0.7517 wt.%/24 hours i

(Lo+ Lam + 0.25 La)

Calculated Composite 0.5267 wt.%/24 hours .  !

Leakage Rate, Lc Lower Limit 0.5017 wt.%/24 hours (Lo + Lam - 0.25 La)

O 10

u) PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93 008 Verification Test Mass Point Analysis Results and Limits (Presented for information only):

Upper Limit 0.7591 wt.%/24 hours (Lg+ Lam + 0.25 La)

Calculated Composite 0.5214 wt.%/24 hours Leakage Rate, Lc Lower Limit 0.5091 wt.%/24 hours (Lo + Lam - 0.25 La)

D. Test Results - Low Pressure Drywell Bypass Area Test Test Method Absolute Data Analysis Technique Total Time Test Pressure (end of test)

Drywell 19.114 psia Suppression Pool 14.477 psia Differential 4.537 psid Maximum Bypass Area 0.72 square inches Calculated Bypass Area 0.01089 square inches Report Printouts The report printouts of the ILRT and verification test calculations for the Total Time and Mass Point Analyses are provided in Appendices B and C.

Stabilization data is provided in Appendix A. Law Pressure Drywell Bypass Area Test data is included in Appendix I.

E. Test Results - Type B and C Tests The total acceptance criteria for Type B and C tests is 0.6 La . A summary oflocal leakage rate test results since the ILRT in 1987 are included in Appendix F.

O 11

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 F. Integrated Leakage Rate Measurement System

1. Absolute Pressure Quantity 2 Manufacturer Mensor Type Quartz Bourdon Tube Precision Pressure Gauge with BCD 8421 shaft encoder kit Range 0 - 100 psia Accuracy
  • 0.015% Reading Scale (0.0088 psia) or 0.002% Full Scale (0.002 psia)

Repeatability 0.0005% Full Scale (0.0005 psia)

Resolution 0.001 psia Sensor Sensitivity Error 0.001 psia

2. Drybulb Temperature Quantity 17 Type 100 ohm platinum resistance temperature detectors (RTDs)

Range, calibrated 60 - 120 F Accuracy 0.06 F Repeatability 0.01 F A-100 Resolution 0.01 F Sensor Sensitivity Error 0.036 F 12

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008

3. Relative Humidity Quantity 9 Manufacturer General Eastern Type Chilled Mirror Hygrometer Range, calibrated 32-122 F Accuracy
  • 0.54 F Repeatability 0.1 F A-100 Resolution 0.01 F Sensor Sensitivity Error 0.1 F
4. Verification Flow Quantity 2 (1 plus 1 spare)

Type Mass Flowmeter Range 0 - 10 scfm .

Accuracy 2% full scale

5. Data Acquisition System Quantity 1 ,

Manufacturer Volumetrics .

Type Model A-100 v

13 l

e .

P1IILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008

5. Data Acquisition System (continued)

Repeatability Drybulb Temp 0.01 F Dewpoint Temp 0.01 F Absolute Pressure

  • 0.001% Full Scale Resolution Drybulb Temp 0.01 F Dewpoint Temp 0.01 F Absolute Pressure 0.001 psi e

The Instrumentation Selection Guide (ISG) value from ANSI /ANS-56.8-1987 based on a 6.25 hour2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> test and the above ILRT instrumentation configuration is 0.02875 wt.%/24 hours. (Refer to Appendix D for calculations.) The sensor locations and volume fractions as installed for the ILRT are shown in Appendix G.

G. Information Retained at Plant The following information is available for review at the Limerick Generating Station:

1. Access control method used to control access to the containment during testing.
2. A listing of all containment penetrations, including the total number, size, I and function.
3. A listing of instrumentation used for the leakage test.
4. A system lineup (at time of test), showing required valve positions and status of piping systems. )

l

5. A continuous, sequential log of events from the initial survey of containment to restoration of tested systems.

14

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 3

G. Information Retained at Plant (continued)

6. Documentation of instrumentation calibrations and standards, including a sensor failure analysis.
7. Data to verify temperature stabilization criteria as established by test procedure (Appendix A).
8. The working copy of the test procedure that includes signature sign-offs of procedural steps.
9. The procedure and data that verifies com,nletion of penetration and valve testing, including as-found leak rates, corrective action, and final leak rates.
10. Computer printouts of ILRT data and automated data acquisition printouts along with a summary description of the computer program.
11. The Quality Assurance audit plan or checklist that was used to monitor the ILRT with proper sign-offs.
12. A listing of test exceptions including changes in the containment system boundaries.
13. Description of methods to be used to redistribute volume weighting fractions to operating instrumentation based on postulated sensor malfunctions.
14. A review of confidence limits of test results with accompanying computer printouts. ,
15. Description of the method of leakage rate verification.
16. ILRT data plots obtained during the test.
17. The P&lDs of pertinent systems.

O 15

& PillLADELPHIA ELECTRIC COMPANY Limerick Generating Station Unit 2 ILRT GENERAL PHYSICS CORPORATION GP-R-643-93-008 IV. ANALYSIS AND INTERPRETATION The 95% upper confidence limit (UCL) Total Time and Mass Point leakage rates calculated during the ILRT were less than the test acceptance criteria of 0.75 La (0.375 wt.%/24 hours). Additions to the calculated leakage rates must be made to account for penetration paths not exposed to the ILRT pressure and for changes in the net free containment volume due to changes in containment subvolume water levels. These additions are discussed below.

A. "As-Left" Type B and C Penalties Penetration paths not exposed to the ILRT pressure and the corresponding ,

minimum pathway leakage rates are as follows:

PENETRATION DESCRll' TION SCCM

1. X-009A Feedwater 253
2. X-009B Feedwater 652
3. X-012 RHR Shutdown Cooling 450.5
4. X-013A RHR Shutdown Cooling 20
5. X-013B RIIR Shutdown Cooling 20
6. X-014 RWCU Suction 25.6
7. X-016A Core Spray 20
8. X-016B Core Spray 50
9. X-023 RECW Supply Recirc Pump 20
10. X-024 RECW Return Recirc Pump 20
11. X-28A Recirc Supply Line 84.05
12. X-039A Drywell Spray 944.45
13. X-039B Drywell Spray 435.75
14. X-40G ILRT Pressure Sensor 20
15. X-042 Standby Liquid Control 20
16. X-044 RWCU Alternate Return 32.7 16

PHILADELP1HA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 JLRT GP-R-643-93-008 PENETRATION DESCRII'fION SCCM

17. X-053 Drywell Chill Water 28.3
18. X-054 Drywell Chill Water 229
19. X-055 Drywell Chill Water 35
20. X-056 Drywell Chill Water 735
21. X-061-1 CRD Recire Seal Purge 212
22. X-061-2 CRD Recirc Seal Purge 3058
23. X-205A Suppression Pool Spray 13
24. X-205B Suppression Pool Spray 2002.25
25. X-227 ILRT Pressure Sensor 26
26. X-228D HPCI Exh Vac Bkr Line 97.79
27. X-241 RCIC Exh Vac Bkr Line 459.5 LLRT results based on the above minimum pathway leakage rate (MNPLR) results total 9963.89 secm. This equates to a Type B and C penalty addition of 0.03157 wt.%/24 hours.

I i

O 17

_ m

l PHIIADELPIIIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 1

B. Water Volume Corrections The following volumes were monitored for liquid level changes which would affect the containment net free volume:

Subvolume Name Total Change Conversion Factor Volume (Units) (cu.ft)

Reactor Vessel 94.35 - 93.41 = 28.6 cu.fi/in - 26.884 1 in = 0.007 wt-%/ day 0.94 inches Suppression Pool 0 inches 439.63 cu.ft/in (S.P.) 0 (205 ft,6-3/8 in.)

26.67 cu.ft/in (D.W.) 0 Drywell Floor Drain 130.54 - 129.57 = 0.134 cu.ft/ gal + 12998 Sump 20T215 (200 gal) 0.97 gallons 1 in= .00655 wt-%/ day Drywell Equipment 181.37 - 102.52 = 0.134 cu.ft/ gal +10.5659 Drain Tank 20T214 78.85 gallons Total Correction (none if water volume decreased) -16.1881 Based on the volumes monitored, the containment net free volume increased during the ILRT by 16.1881 ft . Since this is a conservative representation already included in the reported leakage rates, no additional penalty or correction is made.

C. IICU Leakage Corrections From the pressure changes in the IICU accumulators during the test, an equivalent leakage of 0.01278 wt.%/24 hours will be added to the 95% UCL leakage rate.

D. Total Leakage Rate Correction Water Volume Correction 0.00000 wt.%/24 hours Type B&C LLRT Penalties 0.03101 wt.%/24 hours IICU Leakage Correction 0.01278 wt.%/24 hours TOTAL Leakage Rate Correction 0.04379 wt.%/24 hours O 18

. . .= .

PHILADELPHIA ELECTRIC COMPANY GENERAL PIIYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 E. "As-Left" ILRT Results The As-Left ILRT leakage rate including the required additions is as follows:

. Total Time Mass Point Analysis Analysis (wt.%/24 hours) (wt.%/24 hours) 95 % UCL leakage Rate 0.2148 0.1398 Total Leakage Rate Corrections 0.04379 0.04379 As-Left 95 % UCL Leakage Rate 0.25859 0.18359 The As-Ieft Total Time and Mass Point 95 % UCL leakage rates are less than the test acceptance criteria value of 0.75 La (0.375 wt.%/24 hours).

O O 19 1_

PHILADELPHIA ELECTRIC COMPANY GENERAL PHYSICS CORPORATION Limerick Generating Station Unit 2 ILRT GP-R-643-93-008 V. REFERENCES A. Limerick Generating Station Surveillance Test, ST-1-060-490-2, Rev. 0; Integrated Leak Rate Test

b. Limerick Generating Station Unit 2 Technical Specifications.

C. Limerick Generating Station Unit 2 Updated Final Safety Analysis Report.

D. Code of Federal Regulations, Title 10, Part 50, Appendix J; Primary Reactor Containment Leakage Testing for Water Cooled Power Reactors.

E. ANSI N45.4-1972, Leakage-Rate Testing of Containment Structures for Nuclear Reactors.

F. ANSI /ANS-56.8-1981, Containment System Leakage Testing Requirements.

G. ANSilANS-56.8-1987, Containment System Leakage Testing Requirements.

O O 20 l

l i

I

O -:

1 i' - .

I VI. APPENDICES d

1 n

1 N

O

' I

. . . , . . ..n,. , . . ... . . . . - n-,..

d' l l

t O APPENDIX A STABILIZATION PHASE DATA r 1

'l O

1

STABLIZATION MODE TIME : 1745 MODE

SUMMARY

().PTIONS

\_ ~

- MANUAL DATA ENTRY # OF DATA POINTS = 24

- PARAMATER GRAPHS MODE DURATION (IN HRS) = 5.75 3 - SENSOR PLOTS TOT TIME MEASURED LEAK = -0.0001 4 - SENSOR DIFFERENTIALS TOT TIME CALCULATED LEAK = 3.4832 5 - ANSI STABILIZATION CRITERIA TOT TIME 95% UCL = 13.5178 6 - BN-TOP-1 STAB. CRITERIA MASS PT LEAK = 1.0620 7 - ANSI CRITERIA PRINTOUT MASS PT 95% UCL = 1.3711 8 - BN-TOP-1 CRITERIA PRINTOUT 9 - REPRINT CURRENT DATA POINT P - PASS WORD MENU 0 - FLASH OFF ANSI TEMPERATURE STABLIZATION CRITERIA MET BN-TOP TEMPERATURE STABLIZATION CRITERIA MET POINT

SUMMARY

CURRENT VALUE/ DIFFERENCE FROM PREVIOUS POINT AVG TEMP: 78.696/ +0.002 AVG' PRESS: 60.903/ -0.006 MASS: 123089.57/ -12.922 AVG DEW PRESS: 0.3521/+0.0007 TOTAL PRESS: 61.255/ -0.006 f

O l

O STABLE MODE LIMERICK UNIT 2 Page 1 ,

TEMP STABILIZATION

SUMMARY

UNIT 2 ANSI /ANS-56.8 BN-TOP-1 TIME fEMP 1HR F/HR 4HR F/HR 4-1 HR BN dT BN dT2 0.00 79.719 0.0000 0.0000 0.0000 0.0000 0.0000 0.25 79.671 0.0000 0.0000 0.0000 0.0000 0.0000-0.50 79.368 0.0000 0.0000 0.0000 0.0000 0.0000 0.75 79.215 0.0000 0.0000 0.0000 0.0000 0.0000 1.00 79.130 0.7368 0.0000 -0.7368 0.0000 0.0000 1.25 79.058 0.7663 0.0000 -0.7663 0.0000 0.0000 1.50 79.009 0.4495 0.0000 -0.4495 0.0000 0.0000 1.75 78.961 0.3169 0.0000 -0.3169 0.0000 0.0000 2.00 78.918 0.2649 0.0000 -0.2649 -0.4007 0.0000 2.25 78.876 0.2267 0.0000 -0.2267 -0.3972 0.0140 2.50 78.845 0.2044 0.0000 -0.2044 -0.2616 0.5425 2.75 78.829 0.1656 0.0000 -0.1656 -0.1930 0.2743 3.00 78.798 0.1502 0.0000 -0.1502 -0.1660 0.1078 O-3.25 78.785 0.1141 0.0000 -0.1141 -0.1363 0.1188 3.50 78.738 0.1345 0.0000 -0.1345 -0.1356 0.0030 i

3.75 78.743 0.1074 0.0000 -0.1074 -0.1092 0.1055 4.00 78.729 0.0860 0.3095 0.2235 -0.0945 0.0589 4.25 78.723 0.0772 0.2961 0.2188 -0.0765 0.0717 4.50 78.717 0.0251 0.2034 0.1782 -0.0639 0.0507 4.75 78.714 0.0360 0.1565 0.1205 -0.0573 0.0261 5.00 78.706 0.0290 0.1325 0.1035 -0.0460 0.0454  ?

5.25 78.701 0.0282 0.1116 0.0833 -0.0422 0.0152  ;

5.50 78.695 0.0286 0.0982 0.0695 -0.0215 0.0827 5.75 78.696 0.0221 0.0828 0.0607 -0.0232 -0.0068

l l

STABLE MODE Page 1 i AVERAGE DATA VALUES DATE TIME RTD DEW PT. VAP PRESS DRY PRESS MASS 68 0.00 79.7:.9 69.041 0.351 61.018 123089.50 68 0.25 79.671 68.885 0.349 61.187 123441.40 68 0.50 79.368 68.722 0.347 61.147 123429.50 68 0.75 79.215 68.640 0.346 61.126 123422.10 68 1.00 79.130 68.629 0.346 61.109 123406.40 68 1.25 79.058 68.615 0.346 61.094 123393.90 68 1.50 79.009 68.580 0.346 61.082 123379.60 68 1.75 78.961 68.641 0.346 61.069 123364.70 68 2.00 78.918 68.658 0.347 61.058 123351.90 68 2.25 78.876 68.634 0.346 61.047 123340.80 68 2.50 78.845 68.688 0.347 61.037 123326.30 68 2.75 78.829 68.732 0.348 61.027 123309.80 68 3.00 78.798 68.726 0.347 61.018 123298.80 68 3.25 78.785 68.751 0.348 61.008 123282.90 68 3.50 78.738 68.767 0.348 60.964 123203.10 68 3.75 78.743 68.800 0.348 60.958 123190.00 60,950 123177.70 0 68 68 68 4.00 4.25 4.50 78.729 78.723 78.717 68.814 68.909 68.925 0.348 0.350 0.350 60.942 60.935 123163.50 123149.20 68 4.75 78.714 68.971 0.350 60.929 123137.70 68 5.00 78.706 69.018 0.351 60.921 123125.30 68 5.25 78.701 69.031 0.351 60.915 123113.00 68 5.50 78.695 69.061 0.351 60.909 123102.50 68 5.75 78.696 69.117 0.352 60.903 123089.60 l

i l

' l I

1

1 1

1 I

o

-e

  • f,*

i

i. ,, .m

+

m f

,'s. N  ;

+

i

'I

'I l

  • f*e
  • 3.,

I

"*e,

'../ . . Z m -

b,% -

e [

,v'

.I l'

g'l' i

..I

- 'e'-d C0 t,0

=""__.

b !a R R 1m*" 3 A R R $ e R R S 3 e a a a fb 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 -

M15 N f G M M @

i

. H . N L

ew ee Z

D CDC DAM AMMmm .

,r - , __ .e_ . , <m.

.-,ea-. ee#___ -.& - .*-_.a e4m 4 m _

_.- ._ , 4_ m O

W M (C. .

N l,.fi 8' N j

O I 1

I, s

. . E m

N I - -

,,s I

' ^

--~~ g T:  : : :  : :  : :  : : :: :;;;i:: F N i T) N CD @

O m N e t

. H .

N l c w E CD e mZ 4 N M 3 Awkh ZCmm* I i

I

t O ,

i.

w m_8 6 .

/

5 _

- 4 _

7 1

O -

~

~

~

_- E

, . .M I

x T

s

\

N . .

x i

i'-

g'a '\ 8 ,

g i 6

_. T'i.,ili,i

) " .....""""

... 5 /

]

1 2 9 0 7 6 0 O . T 8

. 2 1

9 I n

7 N p 7 -

U TEMPERATURE -

~,_ .a - - - - ----,-

O.

t i

I i 1 I l 1

l l g

,a .  ;

g' i (c .;

i-I t

/ 1.0  !

T

~ ~

/ .l i

N j +

~ l

=" i g'

I' . .

,a e'

i

'8' i

/.',

1 ,

,8

  • M8 E'

,/ M

,/ N  ;

i 5

j f

f.#

s' V

V . .

(**

,.l g"

~

w I E E E I R I E E A"****h A G R R R I A E B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 W F 2 N G G

  • D G

. H g . N l e = w GD e

@ Z @ @

D AAMmWDAM A .

, A ,.4-,._ A J Aw 4-- a -

A. A a- mJ - - -- - m4 -- ar AC& m

  • aw n-er.e E - -

O t

h 4

O APPENDIX B .

ILRT TEST DATA AND PLOTS

)

d I

b t

.i i

4 O

A0ffff7) (W /MTR, l TEST MODE ffSffff" A7 47/0p p FLEASE SELECT THE OPTION TEST DATA 0045 Q TU WISH TO USE:

1 MANUAL DATA ENTRY # OF DATA POINTS = 28 2 -

PARr ETER GRAPHS MODE DURATION (IN HOL'RS) = 6.75 3 - SENL: R Pl,OTS TOT TIME MEASLEED LEAK = 0.7881 4 -

TREND ANALYSIS TOT TIME CALCULATED LEAK = 0.8914 5 -

REPRI!.T CLTtRENT DATA PT TOT TIME 95% UCL = 0.9965 6 -

SENSOR DIFFERENTIALS MASS POINT LEAK = 0.8594-MASS POINT 95% UCL = 0.8986 75% La = .375 P -

PASS WORD MENU MASS = 122804.63 SELECTED OPTION =

POINT

SUMMARY

CURRENT VALUE/ DIFFERENCE FROM PREVIOUS POINT AVG TEMP: 79.100 / +0.021 AVG PRESS: 60.807 / +0.002 MASS: 122804.63 / -1.484 AVG DEW PRESS: 0.3634 / +0.0004 TOTAL PRESS: 61.171 / +0.002 f

e

] '.

GRAPil INCLUDING i

ABORTED TEST

! .1_0471~ v

_p=--m \

UNIT 2 -g 3..

. s.g

. f.r, .., '

1

[ N, N

T0T_ SE URE SAFEGUARDS

~~. 95% UCL TIME ".". KEEPFILL PUMP

-. . ,~.-

RNAL. . .

'l ' . _ .

s' -

RESTART TEST

-~~

HT%/ . . . ..

. %x.

DRY . . -.. .

LEGEND; .

.,s Le

__ L . .

i B.9000i, .

.i 1800/ 68 TIME 9715/ 69

._____._._.____._.____.__.___m____- _ _ _ _ _ _ _ _ .____ v - - . - =_

GRAPli INCLUDING ABORTED TEST 1 0027: .'._

s

/ . ,.

UNIT 2.' : .

~.

SECURED SAFEGUARDS '.,'*,

~ ~

MASS j .f.:

RNRL- :: RESTART TEST

' ' . .,-_ .~...

i HT2/ .

~~

DAY

._.. .~~ .

LEGEND' : ._:

_ L . .

I m menn- -

U UUUU . . . . . . . . . . . . . 1 1800/ 68' TIME 8715/ 69 l

l l

l l

\

l l-I

GRAPil INCLUDING '

O . 3 7 3-.

^8onreo resr

'h UNIT 2: : _

g . .

U G . .

U -

p . .

P y . .

E ' ' ',r-S ,.- ,r' g - .

c t

S 352' :r ' , 5 5

5 5

5 5

5 5

I 5

5 5

5 5

1800/ 68 TIME 8715/ 69 4

9

+ .-, y , . ~ , - .. . -

.O O O GRAPli INCLUDING

- 60.89 7 .,., AsoRrED rESr

, UNIT 2.". ' . .

s, P . .

R s,

E ,

s..s.

S g - -

r, s

U . .

s

~.,

R "

E . .

. ~

PSIA . .

's.

, ~~

. . \, '

\,# .

, ,, 1

\,

SECURED SAFEGUARDS KEEPFILL PUMP _-

_~

\ _-

'\ -

. - ~~

~

6 g 8 0, 3 - . . . . . s.

{ . . . . . . . i 1800/ 68 TIME 0715/ 69 RESTART TEST O

'___m.. . - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ , . . - . . _ _-w. - . - - .. - _ , - . _ - , -- _ _ _ _ . _ _ _ . _ ____-_________.___________i_._.__.__'

O O O

. GRAPil INCLUDING I-

.., ABORTED TEST UNIT 2.' :

N.

i

)

MRSS  :: N x.

' ' ..s LBM \

X10^5 ". .

\- s,,

8

. . g

~

. . ' \,

\

s

"'* SECURED SAFEGUARD s

g KEEPFILL PUMP

. . \. f 1 2276  :  :  :  :  :  :  :  :  :  :  :

r ;I 1888/-68 TIME 0715/ 69 RESTART TEST

GRAPIl INCLUDING ABORTED TEST 79 52T.- .

UNIT 2". _.

/

o .  ?*

ee*

E . . -

M . .

P "

E . . ..-

./

R '

F1

. W m ums" U . . .#

e' R . . g gd

[

E . . g d

_e E

1 2"

e F

/

. . .~

/

. . .I J

s' 78e 696

  • =="*~i* E A E I B B E i R R 8 I 5 5 5 5 5 5 5 5 5 5 5 5 5 8 l1800/ 68 - TIME 0715/-69 i

4

. . -- , . - . . . - . , - -c. - - - - .e w -- - , , - -. - - - - - - - - - - - - - - - - - - - -

(

70.823" canen 1sctuorno '

ABORTED TEST _-

UNIT 2." .

" ~~~

R .-

U "

G .

l Wll IIB e D " "

W e"

E ., '/

y . .

E ,

g . .

~

s

, -)

t

,.I

,-.s

  • 69m A 3e .# B E

B E

R 5

R 5

R 5

R 5

I 5

i E

1 E

A 5

R 5

R 5

R 5

5 1800/ 68 TIME 0715/ 69-L mm -,v- , , . + ,- , .,w -

-.a < ~ ,- - , = < . =

DATA INLCUDING ABORTED TEST O TEST MODE Limerick UNIT 2 Page 1 LEAKAGE RATE

SUMMARY

UNIT 2 TOTAL TIME MASS / POINT DATE TIME TTLM LMCALC SL LAM L95 ,

1 1800 68 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 68 0.25 0.8617 0.Q000 0.0000 0.0000 0.0000 ,

68 0.50 0.9658 0.9658 0.0000 0.9669 1.4787 68 0.75 0.9446 0.9655 1.4613 0.9574 1.0376 68 1.00 0.9263 0.9505 1.1906 0.9383 0.9834 68 1.25 0.9193 0.9387 1.1048 0.9271 0.9576 68 1.50 0.9176 0.9313 1.0607 0.9201 0.9417 68 1.75 0.9298 0.9325 1.0385 0.9249 0.9412 68 2.00 0.9367 0.9359 1.0269 0.9308 0.9448 68 2.25 0.9777 0.9536 1.0401 0.9541 0.9817 68 2.50 0.9780 0.9657 1.0451 0.9690 0.9957 68 2.75 *0.9707 0.9718 1.0446 0.9738 0.9965 68 3.00 0.9825 0.9796 1.0471 0.9816 1.0023 68 3.25 0.9562 0.9781 1.0440 0.9764 0.9947 68 3.50 0.9664 0.9793 1.0423 0.9767 0.9924

% 68 3.75 0.9598 0.9786 1.0399 0.9743 0.9882 68 4.00 0.9639 0.9788 1.0382 0.9738 0.9860 68 4.25 0.9579 0.9776 1.0359 0.9711 0.9821 68 4.50 0.9606 0.9771 1.0340 0.9698 0.9797 68 4.75 0.9548 0.9754 1.0316 0.9674 0.9767 68 5.00 0.9551 0.9741 1.0294 0.9657 0.9742 68 5.25 0.9541 0.9727 1.0272 0.9637 0.9717 68 5.50 0.9294 0.9672 1.0240 0.9559 0.9663 68 5.75 0.8928 0.9566 1.0214 0.9418 0.9589 69 6.00 0.8657 0.9431 1.0178 0.9241 0.9476 69 6.25 0.8385 0.9274 1.0127 0.9040 0.9335 69 6.50 0.8140 0.9101 1.0055 0.8825 0.9170 69 6.75 0.7881 0.8914 0.9965 0.8594 0.8986 i 69 7.00 0.7635 0.8716 0.9858 0.8358 0.8791 '

69 7.05 0.7605 0.8574 0.9767 0.8168 0.8619  ;

69 7.25 0.7417 0.8407 0.9651 0.7976 0.8444 l 69 7.50 0.7191 0.8221 0.9517 0.7773 0.8260 l 69 7.75 0.7077 0.8040 0.9373 0.7582 0.8081 69 8.00 0.6869 0.7853 0.9222 0.7381 0.7893 69 8.25 0.6695 0.7665 0.9064 0.7182 0.7705 69 8.50 0.6595 0.7483 0.8902 0.6997 0.7525 69 8.75 0.6439 0.7302 0.8737 0.6811 0.7343 69 9.00 0.6255 0.7119 0.8568 0.6625 0.7163 69 9.25 0.6137 0.6941 0.8398 0.6445 0.6985 69 9.50 0.6051 0.6770 0.8228 0.6277 0.6815 0

DATA INCLUDING  !

ABORTED TEST O TEST MODE Limerick UNIT 2 Page 2 LEAKAGE RATE SLWiARY UNIT 2 TOTAL TIME MASS / POINT DATE LIME TTLM LMCALC SL LAM L95 69 9.75 0.5910 0.6601 0.8059 0.6111 0.6648 69 10.00 0.5818 0.6437 0.7891 0.5956 0.6490 69 10.25 0.5732 0.6280 0.7726 0.5806 0.6335 69 10.50 0.5588 0.6124 0.7562 0.5658 0.6183 69 10.75 0.5486 0.5971 0.7399 0.5515 0.6034 69 11.00 0.5391 0.5823 0.7240 0.5378 0.5892 1 69 11.25 0.5328 0.5682 0.7085 0.5248 0.5756

  • 69 11.50 0.5209 0.5542 0.6932 0.5121 0.5623 69 11.75 0.5111 0.5405 0.6781 0.4998 0.5493 69 12.00 0.5027 0.5272 0.6634 0.4879 0.5367 69 12.25 0.4960 0.5144 0.6492 0.4767 0.5248 69 12.50 0.4877 0.5020 0.6352 0.4659 0.5133 69 12.75 0.4803 0.4899 0.6217 0.4556 0.5022 69 13.00 0.4705 0.4779 0.6083 0.4452 0.4912 69 13.25 0.4657 0.4665 0.5955 0.4355 0.4807 O

b l

l I

DATA INCLUDING ABORTED TEST TEST MODE Page 1 AVERAGE DATA VALUES DATE TIME RTD DEW PT. VAP PRESS DRY PRESS MASS 68 0.00 78.699 69.137 0.352 60.897 123077.45 68 0.25 78.696 69.195 0.353 60.891 123066.39 68 0.50 78.700 69.222 0.353 60.885 123052.68 68 0.75 78.703 69.211 0.353 60.880 123041.12 68 1.00 78.703 69.262 0.354 60.874 123029.95 68 1.25 78.702 69.283 0.354 60.868 123018.51 68 1.50 78.707 69.296 0.354 60.863 123006.86 68 1.75 78.719 69.336 0.355 60.858 122993.99 68 2.00 78.750 69.357 0.355 60.855 122981.37 68 2.25 78.787 69.443 0.356 60.851 122964.63 68 2.50 78.812 69.474 0.356 60.848 122952.07 68 2.75 78.828 69.507 0.357 60.844 122940.55 68 3.00 78.851 69.541 0.357 60.839 122926.28 68 3.25 78.862 69.528 0.357 60.837 122918.08 122903.99 68 3.50 78.881 69.595 0.358 60.832 60.828 122892.86 O 68 68 68 3.75 4.00 4.25 78.897 78.913 78.924 69.611 69.667 69.684 0.358 0.359 0.359 60.823 60.819 122879.71 122868.66 68 4.50 78.945 69.764 0.360 60.815 122855.76 68 4.75 78.956 69.781 0.360 60.811 122844.88 68 5.00 78.974 69.784 0.360 60.807 122832.54 68 5.25 78.990 69.838 0.361 60.803 122820.57 68 5.50 79.014 69.864 0.361 60.803 122815.32 68 5.75 79.033 69.905 0.362 60.804 122814.17 69 6.00 79.051 69.938 0.362 60.805 122811.08 69 6.25 79.070 69.944 0.362 60.806 122808.70 69 6.50 79.079 70.005 0.363 60.806 122806.12 69 6.75 79.100 70.037 0.363 60.807 122804.63 69 7.00 79.113 70.087 0.364 60.808 122803.38 -

69 7.05 79.119 70.068 0.364 60.808 122802.49 69 7.25 79.127 70.107 0.364 60.809 122801.70 69 7.50 79.137 70.134 0.365 60.810 122800.86 69 7.75 79.163 70.161 0.365 60.810 122796.16 69 8.00 79.183 70.164 0.365 60.812 122795.64 69 8.25 79.194 70.202 0.365 60.813 122794.20 69 8.50 79.216 70.253 0.366 60.813 122789.98 69 8.75 79.230 70.303 0.367 60.814 122788.52 '

69 9.00 79.243 70.296 0.367 60.816 122788.75 69 9.25 79.263 70.291 0.367 60.817 122786.31 69 9.50 79.285 70.365 0.367 60.817 122782.66 w

l

)

i DATA INCLUDING j

ABORTED TEST

() TEST MODE Page 2 i'

AVERAGE DATA VALUES DATE TIME RTD DEW PT. VAP PRESS DRY PRESS MASS 69 9.75 79.296 70.407 0.368 60.818 122781.95 69 10.00 79.314 70.438 0.368 60.819 122779.06 -

69 10.25 79.335 70.485 0.369 60,820 122776.14 69 10.50 79.345 70.503 0.369 60.821 122776.57 69 10.75 79.359 70.518 0.369 60.822 122775.00 '

69 11.00 79.374 70.568 0.370 60.823 122773.34 ,

69 11.25 79.400 70.585 0.370 60.824 122770.07 69 11.50 79.414 70.614 0.371 60.826 122770.23 69 11.75 79.422 70.653 0.371 60.826 122769.45 69 12.00 79.440 70.699 0.372 60.828 122768.07 69 12.25 79.464 70.698 0.372 60.829 122765.82 69 12.50 79.478 70.727 0.372 60.830 122764.77 69 12.75 79.496 70.743 0.372 60.832 122763.43 ,

69 13.00 79.507 70.786 0.373 60.833 122763.75 69 13.25 79.524 70.823 0.373 60.834 122761.02 O

l O

TEST MODE LEASE SELECT THE OPTION

!OU WISH TO USE: TEST DATA 0715 MANUAL DATA. ENTRY # OF DATA POINTS = 27 2 -

PARAMETER GRAPHS MODE DURATION (IN HOURS) = 6.25 3 -

SENSOR PLOTS TOT TIME MEASURED LEAK = 0.1324 4 -

TREND ANALYSIS TOT TIME CALCULATED LEAK = 0.1269 5 -

REPRINT CURRENT DATA PT TOT TIME 95% UCL = 0.2148 6 -

SENSOR DIFFERENTIALS MASS POINT LEAK = 0.1344 MASS POINT 95% UCL = 0.1398 75% La = .375 P -

PASS WORD MENU MASS = 122761.02 SELECTED OPTION =

POINT

SUMMARY

CURRENT VALUE/ DIFFERENCE FROM PREVIOUS POINT AVG TEMP: 79.524 / +0.017 AVG PRESS: 60.834 / +0.001 MASS: 122761.02 / -2.727 ' AVG DEW PRESS: 0.3732 / +0.0005 TOTAL PRESS: 61.207 / +0.001 O

f f

h h

O

I O TEST MODE LIMERICK UNIT 2 Page 1 LEAKAGE HATE

SUMMARY

UNIT 2 TOTAL TIME MASS / POINT DATE TIME TTLM LMCALC SL LAM L95 69 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 69 0.05 0.3462 0.0000 0.0000 0.0000 0.0000 69 0.25 0.1316 0.1316 0.0000 0.1163 0.4989 69 0.50 0.0987 0.0679 0.9015 0.0896 0.1430 69 0.75 0.1880 0.1182 0.6831 0.1637 0.2475 69 1.00 0.1514 0.1194 0.4931 0.1565 0.2035 69 1.25 0.1437 0.1172 0.4057 0.1485 0.1798 69 1.50 0.1746 0.1315 0.3812 0.1637 0.'1903 69 1.75 0.1661 0.1374 0.3560 0.1667 0.1867 69 2.00 0.1430 0.1329 0.3265 0.1568 0.1752 69 2.25 0.1483 0.1319 0.3077 0.1531 0.1682 69 2.50 0.1620 0.1359 0.2992 0.1562 0.1690 69 2.75 0.1524 0.1362 0.2882 0.1549 0.1657 O 69 69 69 3.00 3.25 3.50 0.1584 0.1638 0.1497 0.1383 0.1414 0.1405 0.2815 0.2774 0.2695 0.1563 0.1589 0.1562 0.1655 0.1672 0.1639 69 3.75 0.1479 0.1395 0.2623 0.1539 0.1610

, 69 4.00 0.1468 0.1385 0.2560 0.1514 0.1581 69 4.25 0.1532 0.1390 0.2521 0.1514 0.1573 69 4.50 0.1439 0.1378 0.2465 0.1491 0.1549 69 4.75 0.1396 0.1360 0.2408 0.1463 0.1522 69 5.00 0.1380 0.1342 0.2356 0.1436 0.1495 69 5.25 0.1398 0.1331 0.2313 0.1422 0.1478-69 5.50 0.1372 0.1317 0.2270 0.1401 0.1455 69 5.75 0.1358 0.1304 0.2230 0.1385 0.1439 69 6.00 0.1291 0.1282 0.2184 0.1357 0.1413 69 6.25 0.1324 0.1269 0.2148 0.1344 0.1398 O

O TEST MODE LIMERICK UNIT 2 Page 1 LEAKAGE RATE TREND

SUMMARY

UNIT 2 TOTAL TIME MASS / POINT DATE TIME TTLM LMCALC CHANGE LAM CHANGE 69 0.05 0.3462 0.0000 0.0000 0.0000 0.0000 69 0.25 0.1316 0.1316 0.1316 0.1163 0.1163 69 0.50 0.0987 0.0679 -0.0638 0.0896 -0.0267 69 0.75 0.1880 0.1182 0.0504 0.1637 0.0740 69 1.00 0.1514 0.1194 0.0011 0.1565 -0.0072  ;

69 1.25 0.1437 0.1172 -0.0022 0.1485 -0.0079 69 1.50 0.1746 0.1315 0.0143 0.1637 0.0152 69 1.75 0.1661 0.1374 0.0059 0.1667 0.0030 69 2.00 0.1430 0.1329 -0.0046 0.1568 -0.0099 69 2.25 0.1483 0.1319 -0.0009 0.1531 -0.0036 69 2.50 0.1620 0.1359 0.0040 0.1562 0.0031 69 2.75 0.1524 0.1362 0.0003 0.1549 -0.0013 O 69 69 3.00 3.25 0.1584 0.1638 0.1383 0.1414 0.0021 0.0031 0.1563 0.1589 0.0014.

0.0026 69 3.50 0.1497 0.1405 -0.0009 0.1562 -0.0027 69 3.75 0.1479 0.1395 -0.0010 0.1539. -0.0023 69 4.00 0.1468 0.1385 -0.0010 0.1514 -0.0025 69 4.25 0.1532 0.1390 0.0006 0.1514 -0.0000 69 4.50 0.1439 0.1378 -0.0013 0.1491 -0.0023 l 69 4.75 0.1396 0.1360 -0.0018 0.1463 -0.0027 1 69 5.00 0.1380 0.1342 -0.0018 0.1436 -0.0027 '

i 69 5.25 0.1398 0.1331 -0.0011 0.1422 -0.0014 69 5.50 0.1372 0.1317 -0.0014 0.1401 -0.0021 l 69 5.75 0.1358 0.1304 -0.0013 0.1385 -0.0015  ;

69 6.00 0.1291 0.1282 -0.0021 0.1357 -0.0029 l 0.1269 0.1344 69 6.25 0.1324 -0.0013 -0.0013 20 DATA POINT MEAN TOTAL TIME CALCULATED LEAKAGE = .1350525 20 DATA POINT MEAN TOTAL TIME MEASURED LEAKAGE = .1480978 20 DATA POINT MEAN MASS POINT LEAKAGE = .1504581 MASS POINT INTERCEPT = 122801.8 O

. . - .- - ~ .

O i TEST MODE Page 1 AVERAGE DATA VALUES DATE TIME RTD DEW PT. VAP PRESS DRY PRESS MASS 69 0.00 79.113 70.087 0.364 60.808 122803.40 69 0.05 79.119 70.068 0.364 60.808 122802.50 69 0.25 79.127 70.107 0.364 60.809 122801.70 69 0.50 79.137 70.134 0.365 60.810 122800.90 69 0.75 79.163 70.161 0.365 60.810 122796.20 69 1.00 79.183 70.164 0.365 60.812 122795.60 69 1.25 79.194 70.202 0.365 60.813 122794.20 69 1.50 79.216 70.253 0.366 60.813 122790.00 69 1.75 79.230 70.303 0.367 60.814 122788.50 69 2.00 79.243 70.296 0.367 60.816 122788.80 69 2.25 79.263 70.291 0.367 60.817 122786.30 69 2.50 79.285 70.365 0.367 60.817 122782.70 69 2.75 79.296 70.407 0.368 60.818' 122781.90 69 3.00 79.314 70.438 0.368 60. 819 122779.10 69 3.25 79.335 70.485 0.369 60.820 122776.10

  • 60.821 122776.60 O 69 69 69 3.50 3.75 4.00 79.345 79.359 79.374 70.503 70.518 70.568 0.369 0.369 0.370 60.822 60.823 122775.00 122773.30 69 4.25 79.400 70.585 0.370 60.824 122770.10 69 4.50 79.414 70.614 0.371 60.826 122770.20 69 4.75 79.422 70.653 0.371 60.826 122769.50 69 5.00 79.440 70.699 0.372 60.828 122768.10 69 5.25 79.464 70.698 0.372 60.829 122765.80 69 5.50 79.478 70.727 0.372 60.830 122764.80 69 5.75 79 496 70.743 0.372 60.832 122763.40 69 6.00 79.507 70.786 0.373 60.833 122763.80 69 6.25 79.524 70.823 0.373 60.834 122761.00 i

O s

t O

=-

9 6

/ -

__- 5 1

_ 7 0

O

__ E

__ M I

T

[f

~~

N ,

s.'

/. I

/> 9 h' ' 6 lt .

j

. ..+.

"": ' ' , ]l l

7 /

O

~  :

0 2 D 0 0 _

N 0 0 .

0 . _

0 T .EL / EL 0 1 5 I TMA 2Y G 0 0

.N OIN TA E= .

O U TTR HD L 0' .

O Cr) t.0 N

l.fi e

i B-

~ ~*

O W

I I M i ,I, .

.g l'i.,

4.,

i'

// I i

NN . .- m w

/ __

g ,

@ - Z @ S-

@ H WW N MW @

  • S 1.fi M f/JC M:lM C.5 @ l Z CZ HC M il . ,

G 3 ZC Xfll1 W. 'S l

( .

7 f

I, ..

t l-

cn

,e g i N Lfi e

- N

' ~ ~

  • O l l

J I,i y

,- z m

I . .

p

,S'

,s .

8' l.

.)

cn l 2 .

I f

I' . ................... ,

O 5 N W H W N

N m < N e N M m Z@ N @

- Z @ Ae .

e 3 Z AM e \

g ,m - -.u-. a m. . - - -

l l

l

's oa l,

I.,

..O.,.

8 CD g'

W e

..~,.

. ., . . G

  • 8 8

s.

'e s

8

't'g . .

I e,,I.

8 Z

m p

8

's 1

1 1

s L. ' . .

.,I l'

, CD s

1 e e , a n , , , , , , , , ,

a e e a s a a s , , , , , , , , , ,

e e a a a a a s M @ G CO H cc co c

. m m .. G

@ Z m @ '

t

@ D AMMMMDMM A .

_,._m_. . - . , 4 4 x-a a ar a. ;.,

P l

s j

8 0

'..'s i

  • f 6

"o g)

N, (0

. ,'t, \ l

, f

'.., e N  !

g

..,8 8.,

8 Ia i

i to

'e,s . m I,

l r a,

    • e
y. x m

8 s,

'I

  • s
  • 6

a, I

l

  • n I 8 e no
  • E

\ >

s ,'s g)

., go e

i a e a a a a e a 3.,

e a a a a a e e a a e a e

a a . . , , , , ,

a e a a e a e a e . .

f N tv)  !

N e@ >

Ltl N c e i

- M .

3- -

@ Z b @ .

N 3 HMZAMACHDAM -

N

-m O

9, "t,

    • en a f

's f.D

_~,

m e

', N i.

I I.

I

~s ~ .

t '.,

~,.

w o SF Z

.l m

~ ~

N k

n.A i,' @ '

.. fD 2 8 E B R R R S e B 9 R e R R R R R G B R )

I 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 O

s Ef.s N

N CD t,0 e

C0 H @

. m . @

S Z h @ .

N 3 @ D C.5 AMX H M Z A.e N

__ _ a ._ J6 ""' #

L I,

8.,

  • e e .

0

'l 8 8

3 t.D 4, -

., 1/1

' +

' N I

i

'l

  • s E.
  • e.

N s.. Dr.1 g

. .I - .

g i.,

8 9

  • 9,I.,

'4, .

1 t,D s

t R R R e R e e a e e e a e e e a e e a R J N mee M H M

. m .

S' Z G .

3 -

CDC DAA AAMMM

a a 4 * + a bA ,-n 6 am- 2 wJ.

O APPENDIX C VERIFICATION TEST DATA AND PLOTS f

O l

VERIFICATION MODE TIME = 1245-OPTIONS: TEST

SUMMARY

MANUAL DATA ENTRY # OF DATA POINTS =.17 2 -

PARAMETER GRAPHS MODE DURATION (IN HOURS) = 4.00 3 -

SENSOR PLOTS TOT TIME MEASURED LEAK = 0.5246 4 -

TREND ANALYSIS TOT TIME CALCULATED LEAK = 0.5267 5 -

REPRINT CURRENT DATA PT MASS PT LEAK = 0.5214 6 -

SENSOR DIFFERENTIALS IMPOSED LEAK =- 0.4998 TOT TIME UPPER LIMIT = 0.7517 P -

PASS WORD MENU TOT TIME LOWER LIMIT = 0.5017 MASS PT UPPER LIMIT = 0.7591 SELECTED OPTION = MASS PT LOWER LIMIT = 0.5091 TOT TIME VERIFICATION CRITERIA HAS BEEN MET MASS PT VERIFICATION CRITERIA HAS BEEN MET POINT

SUMMARY

CURRENT VALUE/ DIFFERENCE FROM PREVIOUS POINT AVG TEMP: 79.879/ +0.020 AVG PRESS: 60.802 / -0.001 MASS: 122616.42/ -6.555 AVG DEW PRESS: 0.3799/ -0.0000 TOTAL PRESS: 61.182 / -0.001 l

)

. l l

l O

O

-w LLES*0 PIES *0 L099*0 4929*0 9PZS*0 00*t 69 BLES*0 80Z9*0 PZ99*0 9939*0 80ZS*0 84*C 69 9639*0 FIZ9*0 0999*0 SLES*0 94ZS*0 C9'C 69 9LES*0 48IS*0 C999*0 P9Z9*0 6LIS*0 83*C 69 60C9*0 9029*0 6699*0 Z8ZS*0 PLOS*0 00*C 69 09E9*0 98Z9*0 6CLS*0 CPC9*0 PSCS*0 SL*Z 69 98CS*0 963S*0 CLLS*0 CSCS*0 96ZS*0 OS*Z 69 96CS*0 98ZS*0 S089*0 9PCS*0 89E9*0 CE*2 69 CZPS*0 98Z9*0 3989*0 LPCE*0 19E9'O 00*Z 69 ILPS*0 0639*0 PI69*0 8PCE*0 82C9*0 SL*I 69 89PS*0 6CES*0 L869*0 SOCS*0 C909*0 OS*I 69 ICSS*0 66C9*0 9009*0 6 CPS *0 P9CS*0 SC*I 69 C199*0 C9CS*0 PIZ9*0 90PS*0 1629*0 OI*I 69 2989*0 89C9*0 0699*0 99CS*0 99CS*0 SL*O 69 SP99*0 LIIS*0 0000'0 1019*0 LOIS*0 OS*0 69 0000'0 0000*0 0000*0 0000*0 108P*O SZ'O 69 0000*0 0000*0 0000'0 0000'0 0000'0 00'0 69 967 WY7 7S 37V3W7 W711 l

SWII 31YG INIOd/SSYW HWII 7V101 2 IING AHVKW3S 31VU HDYNV37 I 03Ed Z IING M3TJaWT7 300W JH3A O

O 3

_ 9

_ 8

/

_ 5 4

2 1

O -

E _

c.

M -

I T

_ 9 _

i l 1

1 lll 8 _

1 1 ,i 1

'""l l " "

~ -

1l

- - /

O

~

i 2 D 0 5 9 . N 0 4 5 T .EL / EL 0 8 9 I TMA %Y G 8 0

. N OIN TR E= .

~

0 U TTH HD L 0

ll1lllll!lll;l

ALa. a .m A&:.. m 4 w - , - - - - - - - - - - - - - , . , - - - ---,- ,

O O APPENDIX D INSTRUMENT SELECTION GUIDE CALCULATION l

O  :

a

l i

l O INSTRUMENTATION SELECTION GUIDE CALCULATION PRE-TEST ISG  ;

A. TEST PARAMETERS f

1. Test Pressure: 44.02 psig = 58.7159 psia
2. Containment Avg. Drybulb Temperature (T): 70 T = 529.67 'R
3. Containment Avg. Dewpoint Temperature (Tdp): .010645 psi /'F 65 'F B. Instrument Specifications
1. Total,' Absolute Pressure
a. Mensor Quartz Bourdon Tube Precision Pressure Gauges with BCD 8421 shaft encoder i t
b. No. of sensors used in calculation: 2 ,
c. Range: 0-100 psia -
d. Accuracy: 20.015% Rdg.= 30.00880738 psia -or-20.002% F.S.= 30.002 psia
e. Sensitivity: 30.001 psi ,
f. Repeatability: 20.0005% F.S.= 30.0005 psi
g. Resolution: 0.001 psi ,
b. Calibration Date: 2/12B3
2. Water Vapor Pressure
a. General Eastern Model Dew.10 Chilled Mirror Hygrometer

, b. No. of sensors: 9

c. Calibrated range: 32- 1227
d. Accuracy: 30.54*F
e. Sensitivity: 30.1T
f. Repeatability: 30.1 7
g. A-100 Resolution: 0.01 7
h. Calbration Date: 2/10/93
3. Drybulb Temperature ,
s. 100 ohm platinum RTDs
b. No. of acasars: 17
c. Calbrated range: 60 - 120 7
d. Accuracy: 30.06 7
c. Sensitivity: 30.1T L Repeatability: 30.036 7
g. A 100 Resolution: 0.01 7

{

h. Calibration Date: 2/10 S 3' s

D-1 9

I

/" =

4. Data Acquisition System
a. Volumetrics Model A-100
b. Drybulb Sign.: Conditioning / Readout
1) Repeatability: 30.01 7
2) Resolution: 0.01 7
c. Dewpoint Signal Conditioning / Readout
1) Repeatability: 0.01 7
2) Resolution: 0.01 7
d. Absolute Pressure (Total)
1) Repeatability: 30.001% F.S.-

2). Resolution: 0.001 psi B. Instrument and Measurement System Erron

1. Definitions
a. e= the error associated with the measurement of change in a given parameter.
b. E= the error associated with the sensitivity of the sensor,
c. E= the error associated with the measurement system readout and signal conditioning -

(ezdudes sensor), induding sesolution and repeatability.

1) Instrumentation errors (e.g., repeatability and resolution) are combined using'a root-sum-square formula (per ANSI /ANS-56.8-1987, Appendix G).
2) In cases where repeatability is tested and speciGed for both the sensor and the readout device, the largest source of error is used to calculate E.

D-2

C. Instrument Errors

1. Total, Absolute Pressure
a. E, = 30.001 psia (per manufacturer spec.)
b. E, = z[(0.001 psia)' + (0.001 psia)'j" 4

E, = *[1.0 x 104 + 1.0 x 10 ]"

E, = *[2.0 x 10*]"

E, = 31.414213 x 10 pais

c. e, = z[(Ep)' + (Ep)*]"/[no. of sensors]"

e, = *[(0.001)' + (1.1414213 x 10)2]"/(2)"

4 e, = *[1 x 104 + 2.0 x 10 )"/1.414 4

e, = z[3 x 10 ]"/1.414 e, = *1.224745 x 10 psia

2. Drybulb Temperature

. a. Er = 30.17

b. Er = z[(0.036)' + (0.01)'j" Er =.*[1.2% x 10 + 1 x 10dj" .

Er = z[1.396 x 10]"

E, = 30.0373630837

c. e, = z[(ET )* + (Ey)*]")(17)"

e, = z[(0.1)' + (0.037363083)'}"/(17)"

e, = z[0.01 + 1.39599 x 10'*]"/4.1231056 er= z[0.0113959]"/4.1231056 er= 20.106752/4.1231056 er= 30.02589117 O

D-3 .

l

i

3. Water Vapor Pressure
a. E,==0.17
b. Ey= z[(0.1): + (0.01)']"

d Ey = z[.01 + 1 x 10 ]"

Ey= z[.0101}"

Ey= 20.1004987567

c. At 657 dewpoint, water vapor pressure changer'F is 0.0106450 psia /T (from the General Physics ILRT Data Management Computer Program)
d. ey = *[(E y)* + (E )2)m/(no.

y of sensors)"

cy = z[(0.1)8 + (0.100498756)2jaj(9)m ey = z[0.0200999}"/3 ey= =0.1417745/3 ey = =0.04725827 x 0.0106450 psia /T ,

ey= 25.03063 x 10dpsia D. Instrumentation Sclection Guide Formula (24 hr. Test)

O r s e 3 r 12

'1.224745110-8'*+2 5.03063 x 10

, , 2400 2 , y 'O.025891132 24 S , 58.7159 , , 58.7159 , , 529.67 , -

4

= 2100 / (8.7018143 x 10-9 + (4.7788430 x 10 ) + (1.46812634 x 10-9 t

4  !

ISG = m 100 /5.795837 x 10 BG = 2100 (7.613039 x 10-8) l l

DG = 2 0.0076130 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> l

l O E. ISG st 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />s:

1. ISG st 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> = ISG st 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> x (24/8) = 0.007613039 x 3 = 0.022839 wt.%!8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> D-4 .

f

F. ISG Acceptance Criteria

1. ISG must be s 25% 1,
2. 25% (0.5 wt.%/ day) = 0.125 wt.%/ day
3. ISG = 0.007613039 s 0.125 wt.%/24 hours
4. ISG = 0.022839 5 1250 wt.%/8 hours POST-TEST ISG A. TEST PARAMETERS
1. Test Pressure: 46.5111 psig = 61.207 psia
2. Containment Avg. Drybulb Temperature (T): 79.524 7 = 539.194 'R
3. Containment Avg. Dewpoint Temperature (Tdp): .012755 psi /T 70.823 T B. Instrument SpeciGcations
1. Total, Absolute Pressure
n. Mensor Quartz Bourdon Tube Precision Pressure Gauges with BCD 8421 shaft encoder kit

\'

b. No. of sensors used in calculation: 2
c. Range: 0100 psia r d. Accuracy: 20.015% Rdg.= 30.00880738 psia -or-20.002% F.S.= 30.002 pais
c. Sensitivity: 30.001 psi L Repeatability: 20.0005% F.S.= *0.0005 psi
g. Resolution: 0.001 pal
h. Calibration Date: 2/12B3
2. Water Vapor Pressure
a. General Eastern Model Dew-10 Chilled Mirror Hygrometer
b. No. of sensors- 9
c. Calibrated range- 32- 1227
d. Accuracy: 30.547
c. Sensitivity: 30.17 L Repeatability: 30.1T
g. A-100 Resolution: 0.017
h. Calibration Date: 2/10S3 (s

D-5

3. Drybulb Temperature O a. 100 ohm platinum RTDs
b. No. of sensors: 17
c. Calibrated range: 60 - 120 7
d. Accuracy: 30.06 7
c. Sensitivity: 30.1T
f. Repeatability: 20.036 7
g. A-100 Resolution: 0.01 7
b. Calibration Date: 2/10/93
4. Data Acquisition System
a. Volumetrica Model A 100
b. Drybulb Signal Conditioning / Readout
1) Repeatability: 30.01 7
2) Resolution: 0.01 7
c. Dewpoint Signal Conditioning / Readout p 1) Repeatability: 30.01 7
2) Resolution.' O.01 7
d. Absolute Pressure (Total)
1) Repeatability: 20.001% F.S.
2) Resolution: 0.001 psi B. Instrument and Measurement System Errors
1. Definitions
a. e= the error associated with the measurement of change in a given parameter.
b. E= the error associated with the sensitivity of tbc sensor,
c. E= the enor associated with the measurement system readout and signal conditioning (exdudes sensor), including resolution and repeatability.
1) Instrumentation errors (e.g., repeatability and resolution) are combined using a root sum-square formula (per ANSI /ANS.56.8-1981, Appendix G).
2) In cases where repeatability is tested and specified for both the sensor and the readout device, the largest source of error is used to calculate E.

D-6

C. Instrument Errors O 1. Total, Absolute Pressure

a. E, = =0.001 rsia (per manufacta: +o .

, b. E, = *[(0.001 psia): + (0.001 psia)'j" E, = *[1.0 x 104 + 1.0 x 10 4 j"

4 E, = 2[2.0 x 10 )"

E, = 31.414213 x 10 psia c- e, = z[(Ep)' + (Ep)'j"/[no. of sensorsj" e, = *[(0.001)' + (1.1414213 x 10-*)2]"(2)"

4 d e, = z[1 x 10 + 2.0 x 10 ]"/1.414 d

e, = a[3 x 10 ]"/1.414 e, = *1.224745 x 10 psia

2. Drybulb Temperature O a. E,r = =0.1 7
  • b. Er = *[(0.036)' + (0.01)'j" d

Er = s[1.2% x 10-8 + 1 x 10 )"

E, = a[1.3% x 10-8]"

E, = so.0373630837

c. e, = {(E,)* + (Er)2j"(17)"

e, = a((0.1)8 + (0.037363083)2]"(17)"

e, = s{0.01 + 1.39599 x 10]"/4.1231056 e, = z[0.0113959j"/4.1231056 e, = 20.106752/4.1231056 ,

e, = =0.02589117 O l D-7 i i

l l

1 l

3. Water Vapor Pressure i
a. E,=30.1T -

, i i

b. Er = [(0.1)3 + (0.01)2j" Er = *[.01 + 1 x 10dj" Ey = [.0101}"

E, = 20.1004987567 i

c. At 70.8237 dewpoint, water vapor pressure changc6 is 0.012755 pslar'F (from the General Physics ILRT Data Management Computer Program)
d. c, = z[(E,)2 + (E,)']"/(no. of sensors)"

ey = s[(.1)2 + (.100498756)2]"/(9)"

e, = s[0.0200999]"/3 c, = 30.14177450 e, = 30.04725827 x 0.012755 psia /T d

c, = e6.0277834 x 10 psia D. Instrumentation Selection Guide Formula (6.25 hr. Test) r ss 1 81 e as BG = 2

  • +2 b +2 I

) 2 f,I t P i rPs r Ti d

, , 2400 '1.224745x10-s'8+2 '6.0277834 x 10 '* +2 '0.0258$ 1112 2

C.25 $ i 61.207 s , 61.207 3 s $39.194 i t

= r 384 / (8.0079079 x 10'$ + (4.6115127 x 10*) + (1.9397345 x 10-9 .;

4 BG = 1384 /5.606276 x 10 DG = 2 384 (7.487507 x 10-8)

DG = + 0.0287520 un O 625 hours0.00723 days <br />0.174 hours <br />0.00103 weeks <br />2.378125e-4 months <br /> D-8

e-r ,4 JPmm,a w '*

  • ** -- p +e--4 4e - * - --.A F-e-4 4& 1 -J a -..e-- - J m e

r J

t APPENDIX E ,

r

, GENERAL PHYSICS ILRT COMPlTTER PROGRAM DESCRIPTION 1

r e I

O-I I

9

)

. . . - .. -- .----- - , - . - - . - - - . . . - - , , , , , - . , . , . -.. - - - .., . - - - e -

DESCRIPTION OF GENERAL PHYSICS ILRT COMPUTER PROGRAM n

V The following paragraphs describe the various features and attributes of the General Physics ILRT Computer Program and the process used to certify it for each application.

REDUNDANCY The General Physics ILRT team was equipped with two fully operational IBM compatible microcomputers during the ILRT and for on site data reduction and analysis. The computer software and hardware interfaced directly with the ILRT Measurement System Volumetrics A-100 Data Acquisition System.

Two computers were brought on site for 100% redundancy, as each computer and its software is capable of independently performing the ILRT. The General Physics ILRT Computer Software is also capable of accepting manual input of raw sensor data and performing all required sensor data conversions if the data logger should cease to function. Each computer was equipped with back-up disks in the unlikely event of a disk " crash."

SECURITY -

The General Physics ILRT Computer Program is written in Microsoft's QuickBASIC Version 4.5. QuickBASIC is a high level programming language which combines v l programming ease with user oriented command functions to create an easy to use and understand program. In order to increase speed of operation the program was then compiled into an executable command file. Compiling was accomplished using the IBM Basic Compiler. In addition to execution speed, this had the added benefit of making the program more secure as compiled programs cannot be edited or changed.

The program requires a password to change modes of operation, start times, or enter the data editing routine to safeguard the integrity of the raw data files.

FEATURF3 The program itself is designed to be a menu driven program consisting of five ,

separate, menu driven operating modes. These are the:

1. Pressurization Mode 4. Verification Mode
2. Stabilization Mode 5. Depressurization Mode
3. Test Mode 6. Bypass Mode These modes also correspond to the phases of the ILRT. Menu driven means that the user is presented with a list of options that the program can perform and from which the user can choose. It allows for interactive information exchange between the user and the computer and prevents invalid information or user mistakes from crashing the (7 program. Program organization consists of a master menu which controls access to V the seven operating modes chained to the individual menus which control these modes.

The data processing, information display capabilities and function of each mode is as E-1

follows:

1. Pressurization Mode: All data reduction, graphic displays of average temperature, dewpoint, and corrected pressure.
2. Stabilization Mode: All data reduction, automatic comparison of data against ANSI 56 8 and BN-TOP-1 temperature stabilization criteria, notification when criteria is met, graphic displays of average temperature, dewpoint, and corrected pressure. ,
3. Test Mode: All data reduction, calculation of leakage rates using mass point, total time and point-to-point analysis techniques, display of trend report information required by BN-TOP-1, graphic display of average temperature, dewpoint, pressure and mass, as well as graphic display of mass point measured leakage,95% UCL; total time measured and calculated leakage and the total time leakage rate at the 95% UCL (as calculated by BN-TOP-1),

including a superimposed acceptance criteria line).

4. Verification Test Mode: With input of imposed leakage in SCFM automatically calculates and displays on graph and trend report the acceptance criteria band, plus all graphics displays available in test mode.
5. Depressurization Mode: All data and graphics capabilities of Pressurization Mode. In programs for BWR units.
6. Bypass Mode: This mode includes a Drywell to Suppression Chamber Bypass Test routine which calculates an equivalent orifice size for Philadelphia Electric Company BWR Units.

Other reduction and analysis capabilities of the General Physics ILRT computer program include:

1. Containment total pressure conversion fmm counts to psia (if required), and j averaging. I i
2. Containment drybulb temperature weighted averaging and conversion to ,

absolute units. i

3. Containment dewpoint temperature weighted averaging (conversion from Foxboro dewcell element temperature to dewpoint temperature if required) and i conversion to panial pressure of water vapor (psia).
4. Data storage of ILRT measurement system inputs for each data point.

2

5. Weight (macs) point calculations using the ideal gas law.

O 6. Automated Data Acquisition and/or Manual Data Entry.

l E-2 ,

I

7. Sensor performance and deviation information for sensor failure criteria, graphic display of individual sensor performance for selected operating mode.
8. Calculation of ISO formula at beginning of test; acceptance criteria based on number of sensors remaining and actual test duration.
9. Computer System Error Functions automatically checks for error in incoming data, printer or disk drive faults.

The computer program used by General Physics has been previously certified for six tests at the San Onofre Nuclear Generating Station and over a dozen other ILRTs.

The initial certi5 cation required verification of the program through hand calculations and an independent review by Bechtel Power Corporation. After certification was completed, a calibration set of raw data was used to verify software of the program prior to usage. Additionally, once the computer was linked to the data acquisition system and a complete data stream was available, the input function of each mode of the program was verified by comparing the data acquisition system output to the computer printout data point summary.

O E-3 ,

A a 4A a & ---<~-t. g ,x h

O 1

O ^erssoix E LOCAL LEAKAGE RATE TEST SUMMARIES f

O

, ., _ - -. , . .__ e ,

- .=. .

l i

r'; . l

'l c Uhli 2 AIR TE5 5 ER0v, 01-CMM) TO G-!Hn3 Pir'd 1 03-19-1993 1

q EENt TEsi iliLE DATE .SCCM PAS 3/ FAIL T0iAL A7 ILRT

,. JX-100A E01 ELECTRICAL PENETRAT10N 02-25-1991 B.20 I

12-22-1992 2.63 2.63

.J M 003 E02 E.ECTRICAL PENETRATION 02-25-!%1 2.73

^

12-22-1992 5.60 5.00 i

. J M 00C E03 ELECTR:C A FD ETFAi!C% 02-25-1931 12.30 12-21-192 29.60 39.60 m JMOE E04 ELECTRICAL PENETFAi!0% 02-25-191 9.30

~ '

12-23-1992 3.40 3.40 J H 01A E05 ELECTR! CAL PENEIPAi!0N 02-25-191 4.00

~

12-23-1932 3.60 3.60 J M 01B E06 ELECTR: CAL PENEisAi!ON 02-07-101 10.20 02-2 H H1 2.20 .

12-23-1992 3.40 3.40 t

Ja-101C E07 ELECTRICA PEETMTIDs 02-25-1991 3.30 12-23-1992 4.65 4.65 O J M 01D EOS E'. ECTR:CA'. FOETRATION 02-0MM1 13.30 02-25-!MI 3.50 12-23-!M2 13.EB 13.E8 JX '3A E09 ELECTRICA PENEiRATICN 02-25-1931 5.83 01-1 H 993 2.50 2.50 J H 03B E10 ELECTRICAL PENEIRAi!0N 02-27-1 % 1 5.50 12-23-l%2 7.28 7.28 JX-104A E!! ELECTRICAL FOETRAilCA 02-26-1931 1.90 0MH9N 1.90 1.90

%.Y JX-104B E12 ELECTRICAL PEETRATION 02-26-1991 - 4.33 12.-30-1992 2.23 2.23 JX-104C E13 ELECTRICAL PEETRAi!0N 02-27-1991 4.10 i 4

01-04-1993 4.75 4.75 JX-104D E14 ELECTRICA PEETFATION 01-! H 991 2.75 02-26-1991 4.53 0 01-051n3 c.05 c.03 JX-1054 E15 ELECTRICAL PEETMi!0N 02-27-1M1 2.65 O .

-3 ,

.a ep ,

g c

l#UT 2 AIR TESTS F.acti 01-01-1990 TO 03-1B-1993 PAGE 2 - >

-6 03-18-1993 FE!d TEST i!TLE '0 ATE SCDl PA33/ FAIL TOTAL Ai !LRT 01-04-1993 2.00 2,06 3-

.s JX-1053 E16 ELECTRICAL FOETRATION 02-26-1991 2.60 i

)

01-05-1933 ' 4. B0 - 4. B0 -

i h-K5: E17 EECTRICA PDEIRATION 02-16-1991 2.13 Ol + -1993 E.40 C. 40 h-1050 E13 ELECTRICk PDEIRAi!DN 02-27-1931 0.90 01-04-1993 8.60 6. B0 . ,

h-105E E19 EECTRICAL FOETRTiTION 02-25-1931 2.'10 01-12-1993 2.03 2.03 i

i A-106A E20 RECTR*CA. PCEi?Ai!0N 02-26-1991 0.30 C1-!3-lM3 3.75 3.75

~

h-10ds Ea ELECTRICALFOEi1Tii!0N 02-08-1991 1.30 r_ 02-28-133: 0.70 .

L i 01-13-1993 4.00 4.00 O h-Xic E22 EECTP:Cn FENETFATION 02-25-1931 1.08 ,

V, 01-!4-1993 0.90 0.90 A-222 E23 E:.!CT9.: CAL FOETRATION 02-26-1991 2.40 '

- 01-13-1993 2.08 2.08 7, h-230A E24 EECTRICA PDEIRai!0N 02-25-1931 1.00 -

01-13-1993 2.00 2.00-  ;

1-1 B04 EQUIP F.c.Ni ACCESS 000R 03-24-1991 1.60 L 05-13-1991 12.30

' ~ ~

01-22-1993~ 24.00 03-04-1993 21.60 - 21.60 -

(,

1-10 101 STEM TO FCIC TURB!rE 04-04-1931 57.70 l t

04-LS-1931 E5.30 -

U ' 05-15-1931 29.35 -

01-29-1993 52.45  :

02-12-1993 25.20 25.20 --

I-11 110 STEM TO FPCI TURBINE 03-Fr1991 '302.00 05-16-1931 17.45 l C 01-29-1933 180.10 l 02-1B-1993 33.*i5 .

O 2- . . . -

d ,

' () ,

~.\ UNIT 2 A:A TE5:S FRCr. 01-01-1930 TO 03-12-1933 FAGE 3

.,O ca->a-1$$2 '

,, Ela TE57 TITLE DATE SCCM FA5S/ FAIL TOTAL AT ILRT i

,. 33.75 i

03-28-1931 22.38 1-1173 561 DRYWELL MDIAtl0N MON! TOR SUPPLY AND ETURN 02-03-1993 68.95 68.95 ,

X-12 121 RSR SsVTDOWN COOLING SUOPLY 04-10-1991 .844.00 02-27-1993 450.50 450.50 X-13A 131 ' A' RriR SHUIDOJi COOLING KETUF14 04-05-1991 631.50 04-21-1991 195.70-02-12 1993 20.00 20.00 M 33 141 'B'RHR SiiUTDOWN COOLING RETURN 04-20-1931 0.00 FAIL 05-04-1991 145.40 .

02-21-1933 20.00 20.00 M4 15 '. EACTOR WATER CLEANUP EUPPLY 04-05-1931 6 % 7.50 i 05-07-1991 182.50 -

. 02-21-1993 25.60 25.60 161 ' A' CORE SPRAY PUMP DISCHARGE 03-25-1991 38.40 O M 6A 02-03-1993 608.25 b 02-09-1M3 20.00 20.00 H 63 171 'B' COE SRAY PUMP DI6 CHARGE 04-18-1991 50.00 02-19-1993 55.13 02-28-1993 56.70 56.70 1-2 B03 EQUIPhENTACCESSHATCHWITHAIRLOCK 03-12-1991 684.30 05-09-1991 . 911.7S..

10-30-1931 2071.75 04-16-1992 821.09 10-16-1992 '822.73 03-03-1993 1034.00 03-17-1993 390.25 E07 PERSONNEL AIRLOCK 000R SEALS 05-28-1M1 67.80 05-31-1931 5B.53

'L 06-02-1991 144.05 i 06-04-1931 144.05

. _ , 06-05-1991 9.20 U 03-13-1933 24.00 i 03-15-1933 29.60 ,

B13 Fersonnel Airlock Hatch Flange 03-23-1991' 33.90 0 0708-1931 7.92

  • 01-21-1993 23.50 03-02-1993 21.50 O

O

. - . . . - - - . . . _. - . - . = - . .

i q .

i N UNIT 2 AIR TE3'i FRar. 01-01-1990 TO 01-18-1M 3 PAGE 4 1

,0:

ci-:a-2992: ' '

_ . PENS TEST TITLE DATE' SCCM PAS 3/ FAIL TOTAL AT !LRT 1

441.35 -t X-200A B01 SUPPRESS!0N POCL ACCESS HATCH 03-22-1991 1.75 ,

05 4 7-1991 3.20 01-18-1993 21.80 03-05-19 % 22.10. 22.10 f

1-2006 602 S$ PRESS:0N P00. ACCES3 HATCn 03-22-1991- 1.03 05 4 9-1991 3.77 01-18-1933 20.40 03-08-1993 22.50 ,

03-12-1993 35.30- 35.30 X-201A 571 SU? PRES $10N POOL PURGE SLcPLY 04 4 5-1931 0.00 05-08-1991 1170.50 05-10-1991 699.83 CG-09-1993 1498.10 572 Sufi4ESSION POOL PURGE SUPPLY 03-25-1M1 511.30 02-03-1993 64.55 .

B14 VALVE 0-RING / PACKING - DRYWELL PURGE SUPPLY 03-29-1M1 8.45 10-13-1992 25.20

  • B;5 valve o-rtrig/pa:ktr.g - suppres. pool purge supply 03-25-1991: 3.50 11-30-1992 23.10  :

B;6 VALVE 041NU/ PACK!bG- B POST LOCA ECOMSINER 03-24-1991 1.43 11-30-1992 26.20 1627.15 X-202 541 SUPPES$10N POOL PURGE EXHAUST 04-03-1991 153.22 02-03-1993 27.00 -

ld2 SUDPRES$10N POOL PLf.5E EXHAUST 04-08-1991 1396.75 '

05 4 9-1991 407.30 02-23-1993 3434.70 B;7 VALVES 0-RING 3/ PACKING-SUME5510N POOL EEAUST 04-02-1991 3.90 11-30-1932 25.00 B18- VALVE 0-RING 5/ PACKING ' A' POST LOCA 03-27-1991 4.90  :

11-30-1992 21.60 3508.30 ,

I-203A 591 ' it' RHR PUMP SUCTION 03-24-1991 8.10' .

02 4 4-1993 1.28 1.'28 X-203B 601 'B' R'iR PUMP SJCTION 04-23-1991 2.68 C_ 02-24-1993 .6.70 -

03 4 9-1993 15.28 15.28  ;

O X-203C 611 'C' RHR PUMP SUCTION 04-05-1991 10.55 [

02-05-1993 5.84 5.84 k-203D 621 'D' RKR PJMD SUCTION 04-23-1911 6.95

. F

~ '

.9 .

o "f l NIT 2 AIR TESTS FROM 01-01-19'/0 1U 03-18-1933 in3E 5 03-18-19931 PEN # IEii TITLE DG'E SCCM PASS / FAIL TOTR' AT ILRT O -

. [3

,,, 02-25-1993 4.08 4.08 X-2054 651 ' A' RHR SUPPRESSION P0OL SPRAY 04-07-1991 39.83 l 02-02-1933 13.00 13.00 X-205B 661 'B' FHR SUcPREESIGN P00 SosM 04-22-! ?31 2.75 02-23-1993 2002.25 03-01-1933 62.40 82.40

, X-21 it SERVICE AIR 5Y37EM 03-27-1991 169.70 01-25-1993 297.50 297.U0 '

X-217 8)1 R:!C VACUUM PUMP DISCHA1GE 03-26-1991 522.20 ,

!!-13-1992 168.20 t 02-02-1933 137.40 137.40 1-218 511 INiiRUMENT Gns TO VACUUM FAIE' VALVES 03-30-1991 153.58 .

01-27-1933 153.40 '153,40 b I A-221A 831 WEiWELL H2/02 SA CLE 03-28-1991 33.03 '

02-09-1933 49.6B 4B.E8 V 1-241B 691 LE1WELL ff2/02 SA P E 04-09-1931 1920.75 01-10-1933 118.43 118.43 1-225 651 RHE VACUU% EE IEF SUCriON 03-23-1931 11520.25 05-05-1991 0.00 FAIL 05-20-1931 229.53 02-!?-1993 2794.75 02-25-1933 406.50 '

03-02-1993 471.40-- 471.40

~ X-li? 831 JLRT DATA ACQUi$! TION SYSTEM 03-29-1931 4.12

, 02-05-193 .30.50 30.50 t

X-22K 891 HPCI VACUUM RELIEF 03-27-1991 107.20 01-27-1993 155.58 -195.58 t)

X-23 201 REACTOR ENCLO3URE COOLING WATER SUPPLY 04-11-1991 112.57 01-26-1933 25.00 0 01-28-1993 ~39.70 39.70-X-238 961 B RHR HEAT EXCHANGER SHELL VENT 04-20-1991 7.42 0 04-24-1931 172.77 02-23-1993 496.93 O. .

O

-( ,.

D

\ LW!i 2 A!R TESTS FR0f. 01-O H 990 TO 03-15-1993 PAGE 6 i 03-16-1993; q PEhe TEST TITLE DATE SCCN PA$$/ FAIL TOTAL AT ILRT!

,s 496.93 X-239 971 A KHR HEAT EXCHANGER S C L VENT 04-07-1991 701.07 02-01-1993 648.43 ' 64B.43 X-25 211 REnCTOR ENCL 0iUE C00.!NG WATER ETU4.N 04-01-1991 735.00 01-25-1993 49.50 ,

01-29-1993 20.00 20.00

., X-240 981 R.HR 70 RCIC ViNT T0 S@E55 ION 901 04-01-1991 0.80-04-02-1991 836,45 02-09-1993 40.00 40.00 A-241 931 RCIC VAQf2 ELIE- 04-03-1991 119).00 11-14-1992 27752.33

., 12-05-1992 320E73 12-05-1992 34741.83 12-08-1992 7041.00

, . . . 03-03-1993 919.00 919.00 s

oo+ 'e "voaooc" ecc'*txt2 O ras o3-24->S$1 02-03-1993 13S s3 1E 32 U 222 DFYWELL NRCE SUPPLY 03-26-1991 116.53 01-27-1993 163.C0 609 VALVE 0-RDS3/ PACK!AG Dm.' ELL NRCE SU??LY 03-25-1991 4.00 1C-13-1992 29.00 WO Vim 0-RING 3/M'. KING-DRYELL PURGE SUPPLY 03-25-1991 2.80 10-13-1992 25.20 Bil VA'.VE O RING 5/ PACKING-DRYWELL PURGE S'JPPLY 03-24-1991 1.28 10-13-1992 21.70 435.42 X-2i 003 ' A' HYDROGEN RECOMINER 03-29-1991 2383. 5,

~

05-11-1991 4542.93' 02-03-1993 4565.42

'? -

231 DRYWELL PURGE EXHAUST 03-29-1991. 360.20 05-09-1991 370.0) 02-06-1993 408.40 d 232 ERYWELL PURGE EIHNJST 04-02-1991 202.20 02-05-1993 178.90 B12 VALVE 0-RINGS / PACK!AYr0RYWELL PURGE EXHAUST 03-29-1991 10.82-U.. . 02-03-1993 22.50 B13 VALVE E-RING /PACXING-DRYWELL PURGE E1HAUST 03-27-1991 10.88 10-13-1992 30.90 ~5027.22

.O X-27A 241 ItSTR WENT GA3 SUPit.Y 03-30-1991 4Ee)

T 01-29-1993 43.00 10 1 4

Q * *

  • W'- mtMi--e giqref M-mu.- e2h Ty 4+we a2 ==r-- --+O h- -<Ow- n y e gr s t -re e,

, . __ . . ~ . - . - - . -. - - -..

' r[ .

i e

O 4

,, UNii2A* RTE 375FR0?. 01-01-19 M 70 03-16-1993 PA3s 7 -

03-!B-!M3;

' FENS TEST T!iLE DATE S;CF. PASi/ FAIL 70if4. AT ILR7 i

~) ,

~i 43,00 M

'q d; ,

X-28A 261 FECIRC LOOP SASLE 27-1M1 943.50  ?

,. 02-26-1933 58.65 262 .RYWELL H2/02 S N E 03-25-1931 69.28 '.

02-06-1933 70.93 159.58 X-238 27; UWELL Hl/02 SACLE 04-03-1991 75.20 02-06-1933 26.30 36.30 X-35A 28: INSTRUMEt;i GA3 T0 717 !!DEXIt.G ECHAN!SMS 03-27-1931 832.78 01-27-1933 720.90 720.90 1-35C 231 I!?DRNES 03-28-1?31 18.10 01-28-1933 43.37 49.37 X-35D 301 ilP DRIVES 03-26-1931 21.90 05-10-1991 26.90

~_ 01-28-1933 5421.70 03-03-1933 42.50 42.50

'O

,. T-35E 311 717 LRIVES 03-28-1931 24.50

-77.30

-- 01-26-1393 77.30 _,

X-35 321 ilP LRIVES 03-25-1931 9.70 l 01-2B-1993 43.10 43.10 X-35G 331 ilp DRIVES 03-29-1931 18.20 01-EB-1933 41.70 41.70-X-38A-D 361 SCRM DISCHARGE VOLUME VENT AND DRAIN ViLVES 03-2B-1991 -2693.75.

U '02-18-1933 429.90 453.90 X-39A 371 A RdR DRYWELL SPRAY 04-06-1931 164.10 C. 07-17-1931 187.50 0242-1M3 1828.90 10BB 90 -

O X-393 331 B EHR DRWELL SPRAY 04-21-1931 353.75 07-17-1991 363.32 02-23-1993 871.50 B71.50 O..

1-33 011 INSTRUMENT GAS ElFPLY 03-291931 141.85-01-27-1993 95.B0 95.80 0

~

1-30 021 INSTRUMENT BAS SUPPLY 03-26-1931 43.23 l j 01-26-1933 72.40'

)

..O> .

1

R' l

-O ,

.) UNIT 2 AIR TESTS FROT. 01-01-199) TO 03-15-1933 PAC,E 9 03-15-1993-i-

PENI TE57 TITLE LATE SCCK PASS / Fall TOTAL AT ILRT

,. 3 72.40

. (3.

1-4 B';5 HEAD ACCE55 MeiO.E 03-23-1931 4.73'-  ;

4 01-24-1993 36.00 3B.00 1- W 39;  !!GTR1.GT GAS SUCT!Dh 03-27-1991 191.00 01-2s-1993 55.63 53.66 X-406 401 ILET DATA ACQU15I!!0N3Y3 TEM 03-3 H 991 49. 8-)

02-05-1933 40.00 40.00

+

X-4'h. 411 lh5iRUMENT GA3 SUPPLY 04-01-1991 46.18 01-27-1993 33.50 33.50 H2 421 $IAGY LIQUID C0CROL 04-06-1931 35.45 02-11-1993 75.10 7S.10 g

X-436 431 M:h STEArt SWtE 04-10-1931 1136.00 01-25-1933 20.00 20.00 C\

1-44 441 F.,'C'J ALTE4 ATE EEiURN 03-31-1931 26.00 02-10-1H3 32.70 32.70 1-4$A 451 ' A' RER LPCI 04-(6-1931 1324.50 OL-02-1M3 . 39.93 39.9B 1-453 461 'S' EbR LPC! 04-21-1931 34.2'i 02-22-1993 20.00 20.00 i..

X-950 471 'C' RHR LKi 04-07-1991 35.20 02-01-1993 271.75 271.75 U--

- X-450 491 'O' RHR LPCi 04-20-1991 1.75 02-21-1993 20.00 20.00 0

1-53 491 CEYWELL CHILLED kATER S $?tY 04-09-1991 B1.40 05-01-1991 131.10 0 01-26-1993 414.25 414.25 501 CR SELL CHILLED WATER RETURN 04-09-1991 125.55 0 ' X-54 01-26_i333 306.20 306.20 X-55 511 DRYWELL Cri!LLED WATER SUPPLY 04-13-1991 12.12 0 02-09-1993 50.40 50.40 531 IEYtELL CHILLED WATER RETURN 04-13-1991 800.00

-)X-56 4

O .

O-

-.4 ,

s) .

W ,

,I2 titili 2 AIA TESTS FROM 01-01-1990 TO 03-18-1993 PAGE 9 i 03-18-1993 )

i rev TEST TITLE DATE SCCM PAS $/ FAIT. TO'iAL AT !LRT 3 -

1 02-09-1993 1844.00 1644.00 0 k I-6 B06 CRD REMOVAL HATCH 03-23-1991 8.07 $-

05-17-1991 . 3.7B ~!

')

01-22-1993 20.70 i 03-06-1993 27.20 27.20  !

f.-614 531 ' A' REC!RC PUMP SEAL PURGE 03-26-1991 3892.50 01-24-1993 212.00 212.00

(

X-f.19 532 'B' RECIRC PUMP SEAL PURSE 03-26-1991 2387.50 02-10-1993 3058,00 3058.00- q f

i

. S' X-62 541 H2/02 SfGLE ETURN 04-09-1991 5215.00 02-03-1993 211.40 E!!.40 +

A-3 071 MIN ETEf7. LINE DRA!N 04-05-1991 31.83 ' .,

02-03-1993 24.60 24.60 *i.

I i MA 032 FW:V TO FEEDWATER 04-02-1991 0.00 .

04-16-1991 0.00 02-20-1993 0.00

/ 034 'id FEE 0 WATER 03-27-1991 0.00 05-07-19?! 9329.10 01-30-1993 23213.00  !

02-28-1933 EB05.50 0B05.50 MS 092 'B' FEE 0 WATER 03-30-1931 14446.00 05-02-1991 10415.00 01-26-1993 7314.10 7814.10

) 1-t1A B0B DRwELL HEAD SEAL 03-23-1991 12.83 05-12-1991 4.90 01-23-1993 101.50 0 03-08-1993 32.03 2.03

, RLNNING TOTAL Ai ILRT '41797.64 g< ,

O s )

- p D , . _ _ __ -

1 l

i 1

i

.I 3

. l i

i t

s 4

APPENDIX G ,

SENSOR LOCATIONS AND VOLUME FRACTIONS  !

A i

i -

-.h I

I i

I I

1

Sensor Number DAS Elevation Azimuth (Deg) Radius from Volume Fraction Channel (ft) Center (ft)

DRYWELL RTDs (Drybulb Temperature Elements)

TE-60-015A 1 335 245 15 0.0220 TE 60-015B 2 317 10 16 0.0240 TE-60-015C 3 317 165 16 0.0250 TE-60-015D 4 299 0 20 0.0460 TE-60-015E 5 301 180 16.5 0.0470 TE-60-015 F 9 246 38 22 0.0770 TE-60-015G 8 248 170 28 0.0770 TE-60-015H 6 268 167 20 0.0770 TE-60-015J 10 247 235 24 0.0770 TE-60-015 K 7 265 337 24 0.0770 TE-60-015L 11 244 350 22 0.0760 SUPPRESSION CHAMBER RTDs (Drybulb Temperature Elements)

TE 60-016A 12 222 35 Catwalk 0.0700 TE-60-016B 13 222 100 Catwalk 0.0700 TE-60-016C 14 222 170 Catwalk 0.0710 TE-60-016D 15 222 250 Catwalk 0.0710 TE-60-016E 16 222 320 Catwalk 0.0710 TE-60-016F 17 222 0 Catwalk 0.0220 DRYWELL DEWCELLS (Moisture Elements)

ME-60-015A 20 317 10 16 0.0710 ME-60-015B 26 244 38 22 0.0930 M&60-015C 22 267 170 22 0.1150 ME-60-015D 23 265 340 22 0.1150 ME-60-015E 24 300 10 20 0.1150 M560 015F 21 301 180 16.5 0.1160 SUPPRESSION CHAMBER DEWCELLS (Moisture Elementa)

ME-60-016A 25 222 35 Catwalk 0.1250 M&60-016B 27 222 250 Catwalk 0.1250 M&60-016C 28 222 170 Catwalk 0.1250

s_b, -s-+4,-em---r- n2Lmma- sa& K & _.m A k. A& Ana--+~4A.S M* G4- -- S- Abus k "- A G --Kr. L a -- ..m r w orswwres.a A..au -_w s s-ga

-L... -

O 4

i I

APPENDIX H

SUMMARY

OF ILRT RESULTS O

.-... ,- ,,- - - - , . , , . . . , - - , - , . , , . _ , - , . - - - . + , , . - . . ,,, , . . - , - -

SUMMARY

OF ILRT RESULTS Parameter or Data Pre-Op 1993 1989$

Computed Leak Rate (Total Time) wt.%/24 hours 0.214 0.1324 95% Upper Confidence Limit Ink Rate (Total Time) 0.235 0.2148 wt.%/24 hours LLRT Type B&C Penalty (Minimum Pathway leakage) 0.014 " 5 0.03101 wt.%/24 hours Water Volume Correction (wt.%/24 hours) 0.0009 0.0000 Hydraulic Control Unit Leakage (wt.%/24 hours) 0.000**

  • 0.01278 As-Left Leak Rate (Total Time) wt.%/24 hours 0.259' O.25859' Measured Leak Rate (Mass Point) wt.%/24 hours 0.216 0.1344 UCL Leak Rate (Mass Point) wt.%/24 hours 0.218 0.1398 Total Conection (wt.%/24 hours) 0.015 0.04379 As.Left Leak Rate (Mass Point) wt.%/24 hours 0.233* 0.18359' Imposed Leak Rate (wt.%/24 hours) 0.488"* 8 0.4998 O 0.698 0.5267 Q Composite Leak Rate (Calculated + Imposed)

(Total Time) wt.%/24 hours Composite Leak Rate (Measured + Imposed) 0.681 0.5214 (Mass Point) wt.%/24 hours Calculated Orifice Size low Pressure Test (in') 0.010 0.01089 Pressurization (Hours) 8.08 7.75 Stabilization (Hours) 14.3 5.75 Test (Hours) 8 6.25 1

Verification (Hours) 4+1 4+1 Comments or Problems (Note) 1 2

  • As-Left Limit for test is 0.75 La = 0.5 x 0.75 = 0.375 wt.%/24 hours l l

t Taken from Bechtel authored 1989 Final Report Note 1 Long stabilization time while attempting to locate excessive leakage through two hydrogen recombiner trains and 'B' Recirculation Pump seal purge line. Temperature stabilization only took 4.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

Note 2 Safeguarda piping fill was removing approximately 15 gpm from the suppression pool and discharging to the condenser causing an aborted test until the Safeguards keep. fill pump was secured and the test reinitiated.

Note 3 Calculated from total time as-left leakage rate minus the sum of the 95% UCL leakage and the water

> b volume correction.

Note 4 Although not added into leakage for this test, HCU leakage was reported as 4529.8 seczn. Under similar conditions as in the 1993 test, this would convert to an addition of 0.014 wt.%/24 hours. I Note 5 Calculated from total time upper ihnit during the verification test of 0.827 wt.%/24 hours minus the sum of 25% of La (0.125 wt.%/24 hours) and computed leakage rate.

a un at Am1 --mA.,-a -

4e-e E - - L- 3-~- - - -o- ~Abe o O

P I

k

-[

]

O APPENDIX I LOW PRESSURE DRYWEli BYPASS AREA TEST DATA i

L e

L

?

~!

7 l

O l

\

BYPASS MODE EASE SELECT THE OPTION WISH TO USE: TEST DATA l 1 -

MANUAL DATA ENTRY # OF DATA POINTS = 9 j 2 -

PARAMETER GRAPHS MODE DURATION (IN HOURS) = 2.00 '

3 -

SENSOR PLOTS TORUS VOLUME = 159540  ;

4 -

CHANGE TORUS VOLUME TORUS-PRESSURE = 14.577 l 5 -

REPRINT CURRENT DATA PT DRY WELL PRESSURE = 19.114 '

OBSERVED ORIFICE SIZE (SQ IN) = 0.01065 CALCULATED ORIFICE SIZE (SQ IN) = 0.01089 DRYWELL TO TORUS BYPASS CRITERIA IS MET P -

PASS WORD MENU SELECTED OPTION =

l i

=

j O

O

- 9 6

/ ,

5 ,

1 _

3 2

O , .

E M _

I _

T ,

- z 9

__ 6

- _ __. . . E'.

'." /

3 7

2

...".""."'D.

H LE 1

0 5

1 O 3 T BR 2 1

. I == . 2 0 N HP 9 U AyG gpR pEEgSDS _

O O O 74.839r :

UNIT 2: :

~ ~

A g _ _

g _ _

u

~

E g __

~~

T ~ ~

E "

4 M

V - -

F DN=BLU' E "

SP= RED "

50.573 ,

i l 2115/ 69 TIME 23157 69

. . .. . . . . . . . . , . - - . . .____J

O -

9 6 -

/

5 _

1 3

2 O ,

~

E _

M I

T 9 _

6 E:

7

~

~ " "

_  : " /

1 2 'D U 3 5 3 LE 3 1 O 9 T

)

BR

=

7 1

2 9 N 7WP 6 9 U TEgpERATURE .

DS 5 _

O 9

_ 6

  • e

/ e 5

1 3

2 ,

O ,

_ e E

M I

T 3

?

9 -

6

. "E:

/

d 2 UD 3 5

_ 2 LE 6 1 O 0 T ABR 0 1

. I I: = . 2 -

. 1 N SWP 3 s 2 U pEEgggpE PDS 1

1

)

l l

l O

i m

\

in H

m N

O _ _ .

W E

m .

H .

e

:  : :  : :  :  :  !':  : : : : : : : :  : \

b: N  ::3A m in 4 in JW m H O to - H M < fZlfE G 4  ;

N M M ES ll 11 4 N

  • Z c: fEl.424 -  :

S  :::: E JXAM S I

1 i

i l

l 1

t c i

i I

i, m i

t I

t \ '

l in

'l, m -

i, N 1,

i. .

8 y

/ g

/ w .

,a h ,

~

,.~

~

N

_~ _

m

~ ~ _ . _ _ _ ~ ~ _e

. i.i. . . . . . . . . . . . .

_ _ _ _ ~ r__

N O N 3 O S w 3 4

.4 La W>- H 3 .4 3 MNO M S os 9llw I Z .

S OtaA  :: CD  !

W

- - - - , e .

.A AVG. "! DOR PRESS

(/)

\_ DATE TIME VPSP VPDW 69 0.00 0.320 0.223 69 0.25 0.324 0.226 69 0.50 0.327 0.228 69 0.75 0.330 0.230 69 1.00 0.333 0.233 69 1.25 0.335 0.235 69 1.50 0.337 0.237 69 1.75 0.338 0.239 69 2.00 0.339 0.241 AVG. DEW TEMP

' DATE TIME DTSP DTDW

(' ^ -------------------------------------------------

(_/ 69 0 30 66.325 56.193 69 0.25 66.674 56.462 69 0.50 66.980 56.736 69 0.75 67.266 56.963 69 1.00 67.461 57.3~5 69 1.25 67.638 57.639 69 1.50 67.824 57.880 69 1.75 67.962 58.120 69 2.00 68.099 58.343

,, 3 l

~%~J i l

l

h i

AVG. TEMPERATURE  :

DATE TIME TSP TDW


_--_------_ ------_------_--. i 69 0.00 70.040 81.994 i 69 0.25 70.210- 82.081 69 0.50 70.363 82.155 69 0.75 70.491 82.242 69 1.00 70.602 82.323 69 1.25 70.710 82.403

'69 1.50 70.793 82.471 69 1.75 70.874 82.534 69 2.00 70.959 82.587 i

P AVG. PRESSURE ,

DATE TIME PSP PDW

'Th -------------------------------------------------

%- 69 0.00 14.514 19.073 69 0.25 14.524 19.079 '

69 0.50 14.534 19.084 69 0.75 14.542 19.088 ,

. 69 1.00 14.549 19.095 69 1.25 14.557 19.099 .

69 1.50 14.564 19.105 '

l 69 1.75 14.571 19.110 69 2.00 14.577 19.114 6

9 d

l s

'em a

-l

. .- l t

.. .. . _ - . ... .. . ._ _. . - - . . ~ . .

AVG. MASS DATE TIME ,MASSSP MASSDW 69 0.00 11539.C 22878.7 69 0.25 11540.1 22879.7 6S 0.50 11542.0 22880.0 69 0.75 11543.0 22878.8 69 1.00 11545.2 22880.0 69 1.25 11547.6 22878.8 69 1.50 11549.6 22880.8 69 1.75 11552.1 22881.8 69 2.00 11554.4 22882.1 5

ORIFICE SIZE PLOT

.DATE TIME ORIFICE SIZE (IN) 69 0.00 0.000 69 0.25 0.006 69 0.50 0.008 69 0.75 0.007 69 1.00 0.009 69 1.25 0.009 69 1.50 0.010 69 1.75 0.010 69 2.00 0.011 t

9 6

6 9

',j.

~ .

I

.i O I I

O O APPENDIX J SENSOR FAILURE ANALYSIS O

+

+

. - gr

TABLE OF CONTENTS O 1.0 INTRO D UCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 BASIS ..... ....... ... .. ........................... 2 P

TABLES TABLE 1 Drybulb (RTD) Volume Weighting Fractions . . . . . . . . . . . . 3 TABLE 2 Dewpoint Sensor Volume Wcighting Fractions . . . . . . . . . . . 4 TABLE 3 RTD Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TABLE 4 Dewpoint Sensor, Failure Analysis ................ .9 FIGURES FIGURE 1 Sensor Zone Definition - RTDs FIGURE 2 Se..sor Zone Definition - Dewpoint Sensors FIGURE 3 Sensor Location - Elevation Drawings FIGURE 4 Sensor Location Plan View (Elevation 237' 11")

FIGURE 5 Sensor Location Plan View (Elevation 253' 0")

FIGURE 6 Sensor Location Plan View (Elevation 295' 11 ")

FIGURE 7 Sensor Location Plan View (Elevation 312' 8 %")

FIGURE 8 Sensor Location Plan View (Suppression Chamber)

FIGURE 9 Drywell HVAC FIGURE 10 Drywell HVAC Isometric Layout (L. coking North to South)

FIGURE 11 Drywell HVAC Isometric Layout (Looking South to North) i I

l l

l O l 1

d

0

1.0 INTRODUCTION

Containment leakage rate testing is performed at the Umerick Generating Station using the absolute method of obtaining containment mass data, and the mass point or total time analysis techniques to analyze the data. The absolute method involves the determination of the containment air mass (weight) and the calculation of weight losscs during the ILRT by direct observation of containment pressure, temperature, humidity, and by the application of the ideal gas law.

The containment pressure during an ILRT is measured by a pair of precision pressure gauges which measure total pressure in absolute units. To make the application of the ideal gas law appropriate, the partial pressure exerted by the water vapor content of the containment air mass must be quantified and subtracted from the total pressure. Nine dew cells are used to obtain an average dewpoint temperature which can be converted to absolute pressure. The remaining component of the ideal gas law formula observed during an ILRT is temperature. Seventeen RTDs are currently used to derive an average containment drybulb .

temperature. A large number of sensors are ased because the containment is such a large volume; with several subvolumes of air whose individual temperature and dewpoint may not .

be represu.tative of the overall containment conditions. Some of these subvolumes are small and enclosed; like the reactor pedestal or drywell head areas. Others are large and open such as the sr , ession chamber. If a simple arithmetic mean was used to obtain the average Os drybulb amperature for use in the weight calculation, a sensor in the drywell head area measuring conditions in some 8,773 cubic feet would carry as much weight in the equation as v a sensor measuring conditions in 35,000 cubic feet in the drywell. Logic dictates that simple averaging of the sensor data is not appropriate, so weighting factors for drybulb and dewpoint sensor readings are employed.

Weighting factors are applied to the RTDs and dewpoint temperature sensor readings

- to achieve more representative measurements. Each weighting factor is based on the percentage of the containment free volume that the sensor is calculated to be monitoring (in communication with). The total of all volume weighting factors (or volume weighting fractions, VWF) is 1.00 for the drybulb temperature sensors. The dew cells have separately assigned weighting factors (also totaling 1.00) based on the percentage of containment free volume that they monitor.

O 1

i l

2.0 BASIS The containment has been divided into five zones based on clearly defined physical boundaries such as the suppression chamber, drywell head area, and floor areas. The net free volume of these zones has been calculated, and the fraction of the whole that they represent is determined. The fraction for each zone is then divided by the number of sensors in that zone to obtain a volume weighting fraction for the sensors in that zone. Table l' defines the zone's physical boundaries, the net free volume associated with each, the fraction of the whole each zone represents, the number of drybulb temperature sensors placed in the zone, and the >

. volume weighting fraction (VWF) assigned to each sensor in the zone. Table 2 defines the same parameters for the dewpoint sensors. Zone assignments and VWFs for the dewpoint sensors are different than those used for the RTDs because of the different number of sensors.

The use of VWFs improves the statistical value of the raw sensor data used in the air mass calculation. The weighted average values that result give a better representation of the conditions in the overall containment. If a sensor was declared failed prior to or at any time during the ILRT (up to and including' verification)it is required tha. the VWFs for the deleted sensors be reassigned and results recalculated. Table 3 provide. instructions for reassigning VWFs in the event of a single failure for drybulb sensors. Tath 4 provides similar instructions dewpoint sensors. Each table also includes instructions for applying a multiple failure methodology. The volume fraction reassignment methodology is based on the physical proximity of the failed sensor to the other sensors in that zone, or other zones if there is reasonable communication between the air volumes. Tables 3 and 4 reassignment instructions are based on an engineering assessment of actual sensor placement and air flow patterns. Figures 1 through 5 illustrate the sensor placement for the 1993 ILRT. These figu:es should be used to perform an engineering evaluation of any volume weighting factor reassignment beyor.d the guidance of Table 3 or 4.

E s

V I

2

~

O n DRYHULD (RTD) VOLUME WEIGirdNG FRACTIONS (VWF) O TABLE 1 Sensor DAS Elevation Azimuth Radius Volume Zone Zone Zone Zone No.of Number Channel (ft) (Deg) from Fraction Fraction Vol. Boundaries Sensors TE-60-# Center (ft) (ft')

DRYWELL RTDs (Drybulb Temperature Elements) 015A 1 335 245 15 0.0220 1 0.0220 8,773 El. 328'4" 1 to El. 343'9" 015B 2 317 10 16 0.0240 2 0.0490 19,619 El. 312'84" 2 to 328'4" 015C 3 317 165 16 0.0250 plus annulus 015D 4 299 0 20 0.0460 3 0.0930 37,147 El. 286'0" 2

~

to 312'8%"

015E 5 301 180 16.5 0.0470 015F 9 246 38 22 0.0770 4 0.4610 182,851 El. 238'0" 6 015G 8 248 170 28 0.0770 fnc des 015H 6 268 167 20 0.0770 downcomers

& reactor 015J 10 247 235 24 0.0770 pedestal 015K 7 265 337 24 0.0770 OiSL 11 244 350 22 0.0760 SlJPPRESSION CHAMBER RTDs (Drybulb Temperature Elements) 016A 12 222 35 Catwalk 0.0700 5 0.3750 152,945 Suppression 6 016B 13 222 100 Catwalk 0.0700 016C 14 222 170 Catwalk 0.0710 016D 15 222 250 Catwalk 0.0710 016E 16 222 320 Catwalk 0.0710 016F 17 222 0 Catwalk 0.0220 3

G~

DEWPOINT SENSOR VOLUME WE!GIITING FRACTIONS (VWF)

TABLE 2 Sensor DAS Elevation Azimuth Radius Volume Zone Zone Zone 7ene No.of Number Channel (ft) (Deg) from Fraction Fraction Vol. Boundaries Sensors TE-60-# Center (ft) (ft')

DRYWELL DEW CELLS (Moisture Elements) 015A 20 317 10 16 0.0710 1 0.0710 28,392 El. 312*8%" 1 to El. 343'9" plus annulus 015F 21 301 180 16.5 0.1160 2 0.2310 37,147 El. 286'0" to 2 015E 24 300 10 20 0.1150 015C 22 267 170 22 0.1150 3 0.323 182,851 El. 238' to 3 El.286' 015D 23 265 340 22 0.1150 includes downcomers

& reactor 015B 26 244 38 22 0.0930 pedestal SUPPRESSION CIIAMBER DEW CELLS (Moisture Elements) 016A 25 222 35 Catwalk 0.1250 4 0.3750 152,945 Suppression 3

^*

016B 27 222 250 Catwalk 0.1250 016C 28 222 170 Catwalk 0.1250 4

RTD FAILURE ANALYSIS TABLE 3 Single Failure Volume Weighting Fraction Reassignment Failed Original Zone RTD VWF VWF Calculation 015A 0.022 1 a. VWF 015A = 0.000 0.022/2 = 0.011

b. VWF 015B = 0.035 (0.024 + 0.011)
c. VWF 015C = 0.036 (0.025 + 0.011) 015B 0.024 2 a. VWF 015B = 0.000 0.024/3 = 0.008
b. VWF 015C = 0.033 (0.025 + 0.008)
c. VWF 015D = 0.054 (0.046 + 0.008)
d. VWF 015E = 0.055 (0.047 + 0.008) 015C 0.025 2 a. VWF 015C = 0.000 0.025/3 = 0.0083
b. VWF 015B = 0.033 (0.024 + 0.009)
c. VWF 015D = 0.054 (0.046 + 0.008)
d. VWF 015E = 0.055 (0.047 + 0.008) 015D 0.046 3 a. VWF 015D = 0.000 0.046/3 = 0.0153
b. VWF 015B = 0.040 (0.024 + 0.016) '
c. VWF 015C = 0.040 (0.025 + 0.015)
d. VWF 015E = 0.062 (0.047 + 0.015) 015E 0.047 3 a. VWF 015E = 0.000 0.047/3 = 0.0156
b. VWF 015B = 0.040 (0.024 + 0.016)
c. VWF 015C = 0.041 (0.025 + 0.016)
d. VWF 015D = 0.061 (0.046 + 0.015) 015F 0.077 4 a. VWF 015F = 0.000 0.077/5 = 0.0154
b. VWF 015G = 0.093 (0.077 + 0.016)
c. VWF 015H = 0.092 (0.077 + 0.015)
d. VWF 015J = 0.092 (0.077 + 0.015)
e. VWF 015K = 0.092 (0.077 + 0.015)
f. VWF 015L = 0.092 (0.076 + 0.016) 015G 0.077 4 a. VWF 015G = 0.000 0.077/5 = 0.0154
b. VWF 015F = 0.093 (0.077 + 0.016)
c. VWF 015H = 0.092 (0.077 + 0.015)
d. VWF 015J = 0.092 (0.077 + 0.015)
e. VWF 015K = 0.092 (0.077 + 0.015)
f. VWF 015L = 0.092 (0.076 + 0.016) 015H 0.077 4 a. VWF 015H = 0.000 0.077 S = 0.0154
b. VWF 015F = 0.093 (0.0',7 + 0.016)
c. VWF 015G = 0.092 (0.077 + 0.015)
d. VWF 015J = 0.092 (0.077 + 0.015)
e. VWF 015K = 0.092 (0.077 + 0.015)
f. VWF 015L = 0.092 (0.076 + 0.016)

I I

RTD FAILURE ANALYSIS TABLE 3 l Single Failure Volume Weighting Fraction Reassignment Instructions for VWF Reassignment Failed Original Zone RTD VWF VWF Calculation 0153 0.077 4 a. .VWF 015J = 0.000 0.077/5 = 0.0154

b. VWF 015K = 0.093 (0.077 + 0.016)
c. VWF 015F = 0.092 (0.077 + 0.015)
d. VWF 015G = 0.092 (0.077 + 0.015)
e. VWF 015H = 0.092 (0.077 + 0.015)
f. VWF 015L = 0.092 (0.076 + 0.016) ,

015K 0.077 4 a. VWF 015K = 0.000 0.077/5 = 0.0154

b. VWl 015F = 0.093 (0.077 + 0.016)
c. VWF 015G = 0.092 (0.077 + 0.015)
d. VWF 015H = 0.092 (0.077 + 0.015)
e. VWF 015J = 0.092 (0.077 + 0.015)
f. VWF 015L = 0.092 (0.076 + 0.016) 015L 0.076 4 a. VWF 015L = 0.000 0.076/5 = 0.0152
b. VWF 015F = 0.093 (0.077 + 0.016)

O c. VWF 015G = 0.092

d. VWF 015H = 0.092 (0.077 + 0.015)

(0.077 + 0.015) ,

e. VWF 015J = 0.092 (0.077 + 0.015)
f. VWF 015K = 0.092 (0.077 + 0.015) 016A 0.070 5 a. VWF 016A = 0.000 0.070/5 = 0.014
b. VWF 016B = 0.084 (0.070 + 0.014)
c. VWF 016C = 0.085 (0.071 + 0.014)
d. VWF 016D = 0.085 (0.071 + 0.014)
e. VWF 016E = 0.085 (0.071 + 0.014)
f. VWF 016F = 0.036 (0.022 + 0.014) 016B 0.070 5 a. VWF 016B = 0.000 0.070/5 = 0.014
b. VWF 016A = 0.084 (0.070 + 0.014)
c. VWF 016C = 0.085 (0.071 + 0 014)
d. VWF 016D = 0.085 (0.071 + 0.014)
e. VWF 016E = 0.085 (0.071 + 0.014) i
f. VWF 016F = 0.036 (0.022 + 0.014) l l

016C 0.071 5 a. VWF 016C = 0.000 0.071/5 = 0.0142

b. VWF 016A = 0.085 (0.070 + 0.015)
c. VWF 016B = 0.084 (0.070 + 0.014)
d. VWF 016D = 0.085 (0.071 + 0.014)

O' e. VWF 016E = 0.085 (0.071 + 0.014)

f. VWF 016F = 0.036 (0.022 + 0.014) i Y

RTD FAILURE ANALYSIS TABLE 3 Single Failure Volume Weighting Fraction Reassignment Instructions for VWF Reassignment Failed Original Zone RTD VWF VWF Calculation 016D 0.071 5 a. VWF 016D = 0.000 0.071/5 = 0.0142

b. VWF 016A = 0.085 (0.070 + 0.015)
c. VWF 016B = 0.084 (0.070 + 0.014)
d. VWF 016C = 0.085 (0.071 + 0.014)
e. VWF 016E = 0.085 (0.071 + 0.014)
f. VWF 016F = 0.036 (0.022 + 0.014) 016E 0.071 5 a. VWF 016E = 0.000 0.071/5 = 0.0142
b. VWF 016A = 0.085 (0.070 + 0.015)
c. VWF 016B = 0.084 (0.070 + 0.014)
d. VWF 016C = 0.085 (0.071 + 0.014)
e. VWF 016D = 0.085 (0.071 + 0.014)
f. VWF 016F = 0.036 (0.022 + 0.014) 016F 0.022 5 a. VWF 016F = 0.000 0.022/5 = 0.0044
b. VWF 016A = 0.075 O c. VWF 016B = 0.075 (0.070 + 0.005)

(0.070 + 0.005)

d. VWF 016C = 0.075 (0.071 + 0.004)
e. VWF 016D = 0.075 (0.071 + 0.004)
f. VWF 016E = 0.075 3 (0.071 + 0.004) 1 1

)

O  !

4

RTD FAILURE ANALYSIS

~e '

O Single Failure Volume Weighting Fraction Reassignment (CONTINUED)-

A. Sincie Failure Analysis Methodology

1. Refer to Table 3 for Drybulb (RTD) Sensors. -
2. Refer to Table 4 for Dewpoint Sensors.

B. Multiple Sensor Failure Example - RTDs

1. Assume sensor 015F fails, then sensor 015H:
a. Go to Single Failure Weighting Fraction Reassignment Table (Table 3) and apply instructions for the loss of sensor 015F (i.e. change the MVF for 015F to 0.000, and change the MVFs for sensors: 015G to 0.093, 015H to 0.092,015J to 0.092,015K to 0.092, and 015L to 0.092)
b. When sensor 015H fails, take the current VWF for the failed sensor (0.092) and divide by the number of sensors from Table 3 that will

" share" the failed sensor's redistributed volume weighting fraction. This should be the total number of the remaining active sensors from sensor 015H's single failure instructions column (sensors 015G,015J,015K, and 015L). Thus,015H's current VWF divided by 4 remaining active sensors is 0.092/4 = 0.023. Now s&'. the result to the current VWF of the remaining sensors from sensor 015H's single failure instructions column. (i.e. change the VWFs for sensors: 015H to 0.000,0150 to 0.116,015J to 0.115,015K to 0.115, and 015L to 0.115)

Note: The methodology would be identical if sensor 015H failed first and then sensor 015F failed.

c. Any multiple sensor failure reassignment should undergo a second person review by the ILRT shift test director for accuracy and wacurrence with the methodology based on the remaining sensors.
d. The ILRT computer program automatically checks and volume fraction changes to assure a total of unity (1.000).

O .

DEWPOINT SENSOR FAILURE ANALYSIS TABLE 4 O' Single Failure Volume Weighting Fraction Reassignment  !

l l

Instructions for VWF Reassignment Failed Original Zone RTD VWF VWF Calculation 015A 0.071 1 a. VWF 015A = 0.000 0.071/2 = 0.0355

b. VWF 015E = 0.151 (0.115 + 0.036)
c. VWF 015F = 0.151 (0.116 + 0.035) 015B 0.093 3 a. VWF 015B = 0.000 0.093/2 = 0.0465
b. VWF 015C = 0.162 (0.115 + 0.047)
c. VWF 015D = 0.161 (0.115 + 0.046) 015C 0.115 3 a. VWF 015C = 0.000 0.115/2 = 0.0575
b. VWF 015B = 0.173 (0.115 + 0.058)
c. VWF 015D = 0.172 (0.115 + 0.057) 015D 0.115 3 a. VWF 015D = 0.000 0.115/2 = 0.0575 '
b. VWF 015B = 0.173 (0.115 + 0.058)
c. VWF 015C = 0.172 (0.115 + 0.057) _

015E 0.115 2 a. VWF 015E = 0.000 0.115/2 = 0.0575 O b. VWF 015A = 0.129

c. VWF 015F = 0.173 (0.071 + 0.058)

(0.116 + 0.057) 015F 0.116 2 a. VWF 015F = 0.000 0.116/2 = 0.058

b. VWF 015C = 0.173 (0.115 + 0.058)
c. VWF 015E = 0.173 (0.115 + 0.058) 016A 0.125 4 a. VWF 016A = 0.000 0.125/2 = 0.0625
b. VWF 016B = 0.188 (0.125 + 0.063)
c. VWF 016C = 0.187 (0.125 + 0.062) 016B 0.125 4 a. VWF 016B = 0.000 0.125/2 = 0.0625
b. VWF 016A = 0.188 (0.125 + 0.063)
c. VWF 016C = 0.187 (0.125 + 0.062) 016C 0.125 4 a. VWF 016C = 0.000 0.125/2 = 0.0625
b. VWF 016A = 0.188 (0.125 + 0.063)
c. VWF 016B = 0.187 (0.125 + 0.062)

O 9 . - .

l

\

DEWPOINT SENSOR FAILURE ANALYSIS TABLE 4  :

Single Failure Volume Weighting Fraction Reassignment I

(CONTINUED)

A. Sincie Failure Analysis Methodology

1. Refer to Table 3 for Drybulb (RTD) Sensors.
2. Refer to Table 4 for Dewpoint Sensors.

B. Multiple Sensor Failure Example - Dewpoint Sensors

1. Assume sensor 015A fails, then sensor 015F:
a. Go to Single Failure Weighting Fraction Reassignment Table (Table 4) and apply instructions for the loss of sensor 015A (i.e. change the VWF for 015A to 0.000, and change the VWFs for sensors: 015E to 0.151 and 015F to 0.151)
b. When sensor 015F fails, take the current VWF for the failed sensor (0.151) and divide by the number of sensors from Table 3 that will O. " share" the failed sensor's redistributed volume weighting fraction. This should be the total number of the remaining active sensors from sensor 015F's single failure instructions column (sensors 015C and 015E).

Thus,015F's current VWF divided by 2 remaining active sensors is 0.151/2 = 0.0755. Now add the result to the current VWF of the remaining sensors from sensor 015F's single failure istructions column.

(i.e, change the VWFs for sensors: 015C to 0.249, and 015E to 0.248)

Note: The methodology would be identical if sensor 015F failed first and then sensor 015A failed.

c. Any multiple sensor failure reassignment should undergo a second person review by the ILRT shift test director for accuracy and concurrence with the methodology based on the remaining sensors.
d. The ILRT computer program automatically checks and volume fraction changes to assure a total of unity (1.000).

O

i

/ m -

g' h' ZONE 1 V=8,773 ft3 i n us - i o I  % i dL ZONE 2 V= 19,619 ft3 j

(INCLUDES ANNULUS) t U

, - ,cus,r

)iy ' M ,~ le ,,, . \

ZONE 3

@f t@h < ,.. t.- v=37,147 ft3

. -.n ,

]

F5- 1P'11b*

/ pa t ius t=e ec t\

Ovetenr [/

U 6,,....\

Q , ,,, {

~~~1 i i i e t os- iot it 9 20NE 4 c eciac enoe. i aus., i or V= 182,851 ft3 g (INCLUDES DOWNCOMERS AND RX PEDESTAL SUBVOLUME,

!y V MINUS 1,856 ft3 FOR l $! l ljhc[ 5 ,,

EQUIPMENT VOLUME) i i @ ' i ,i \

l l $l l r- - et. ric

/ \ u m

~

(~ ~

[. DOWNCOMERS (TYPICAL OF 87)

ZON (SUPPRESSION CHAMBER WITH WATER LEVEL AT 23')

FIGURE 1 Sensor Zone Definition - RTD's

O s 1 i

- s s

/ N i n n. .-  ; ZONE 1 N U 9. 11ULUS )

o I ^-  % i 2lQjj' 4i

/

/ I 2 in ser .-

}{ ZONE 2 wo l- lI A ,,. .

3

,,t,- V= 37,147 ft3

.y u s j 1i k, .

<r ow- ' . ,  ;, , , , , , . . .

m

/% _.

(ustavic t\

k et sta s' )]

d k. ...\ ,,

O /ol i I i ti Q)c.eciac-im.1un,ir

~N fos to\

V= 182,851 ft3 (INCLUDES DOWNCOMERS 8

j v

~  % AND RX PEDESTAL SUBVOLUME, MINUS 1,856 ft3 FOR k EQUIPMENT VOLUME) l'io.I 1,w,

jC_ r ,,,,.

/ W V ' 1 i \

l l $I l

-- et tirn-I / I \ y u

f' g : DOWNCOMERS *-3 ZONE 4

(TYPICAL OP 87)

V= 152,945 ft3 (SUPPRESSION CHAMBER WITH WATER LEVEL AT 23')

FIGURE 2 Sensor Zone Definition - Dewpoint Sensors

l i

.i

_, k

-- NN ~58 cc-

- a-GC ""

9 g X2

.~. ~

nn fs=:N

,o k~ *@h kk dd

.Q SS dd lb e 55 4N

" y-i t 8- .

ll d '[:  :

. =2,I- $.so (5 g s.

~

e ==* 5 2.n. A i_

g-sr*p::'u

, T

' <~' ' -

gY a- "'

1

- 3 I . J H

- , . is s.

-r- ._

5

.f-

= 88 w . a n ,

a yb q a r 5 yj i e e- > '9 c.

4 i .3 Z* -

- _ a o M
N ll! 9 8

i c

.. ,. Gn 'o b o n n n .s 3 .o a

.s ,s o a

  • m o y q

.# 2 ~ o G- $ ~2 .

2 I n 3

.. n n n e .s o a 2 $ 8 w d J hm .

o o

m e 'q c

.6 "

E / "

5 N d /

n w /,

d

-spjkggj 4 l'* li

- / -

m,.

sv

4. .1.T...,-~*. __

i H st i ,3

'W O l 'E 4d '-

, 1 ,

k. "

f-4.g..:

l '}~l = g$ .,._$

-- cr._ a

=

gp s

!_ _ _ h____. $ . . . ___ _. _c.'9__ .

b, ,_

g ,4

  • 1 i

I _.i. ')

.1 ..!- -I i N bN o- s. . ~ . . - - -

a.

s '

t-i c*.a.t . - *

  • l

~

l

{1 K - gm_.

_, , ,g., g 9 '"

a re! * , , . gg

' i .__. :a

  • J-(( d

. d5g j g__g, -- - .

_j wasL. =_. . , ._,q .,. g a.; _ ,

e n N

, . , ~ . . , - . . . . , ,-

rh

\v.

LOWER FROM ROPE LOOPED THROUGH 253' GRATING IN O' OPEN AREA. TIE OFF SO THAT l SENSOR ULTIMATELY ENDS UP C 8' OFF THE FLOOR. ANO ABOUT 4 8' FROM BIOLOGICAL SHIELD WALL.

SENSORS CAN BE SUSPENDEO FROM ROPE LOOP THROUGH 253' EL. AND HUNG IN OPEN AREA 3* AWAY FROM DRYWELL FAN DUCT. SECTION INN A5 8' OFF FLOOR TE EL. 244'/350*/22 i L

TE E L. 2 46'/38'/22'r ',

RX E L. 244'/38'/22'r -

RECIRC ME B PUMP 1 A

% 20TB030 242'/6714.5'r 20T8025 2 4 2'/6 8'/14.5'r }

270'- - go'

(% [ i

[

d 20TB028 2 4 3'/22 5'/14.5'r 1 j EL. 247'/235*/24*r k

Y CIRC J PUMPIB C AN LOOP ROPE FRCf A 253' GRATE.

H ANG APPROX. 4' BELOW GRATE IN 20TB026 r OPEN AREA' 2 52'/160*/20'r ,

(VISIBLE FROM LANDING JUST UNDER GRATE)

EL. 246'/170*/28'r 1 0.8.S. RA DIU S = 14' 6' M213 T.O.O. EL. 25 H ANG 4' BELOW - -

FLOOR EL. 237,3' M ,

253' STAIRW E LL g ENTRANCE.

180*

Limerick Unit 2 nGmtB 4 ILRT, March 1993 Sensor Location Plan View (EL. 237' 11")

[)]

\.

['% USE ROPE SLUNG OVER MAIN

( STE AM CR AIN PIPE ABOVE BOX TO HANG SENSORS. TIE OFF ROPE AT FLOOR LEVEL TO EASE RECOVERY.

l f%J

/

f 0

EQUIP. ACCESS DOOR X-1 se

/ g

' 15 15 K D E s U N EL. 265'/340*/22'r 20TB029 EL. 265'/337*/24'r 2 5 5'/33 5*/20'r N

RECIRC RX \ LOOP A MP A 0, g ~ .  %

x N 270* - --- ----Af -(j,8f +}- -

g

- 90*

s i \

\

RX RECtRC

" PUMP 1B RECIRC g LOOPB s

/ PERSONNEL EL. 268'/16f /20'r ;I 15 TE N AIRLOCK I

EL. 267'/17(f /22'r  :

C

  • ME se L' '

[5 3 0

  • _

O.B.S. R A DIUS = 14' 6* M225

~ 20TB027 g 258'/167*/ON WALL SUSPENDED SENSORS 180*

2 FT. BELOW NEXT ELEVATION GRATING f'\ AT LANDING (O 268' EL.)

Limerick Unit 2 m5 ILRT, March 1993 Sensor Location Plan View IEL. 253' 0")

('N O' 20TB023

,l_, 300'/100/24.5'r

's p -

N HANG FROM GRATE

,/ s EDGE ABOVE AND

/ \ ACROSS g FROM BOX.

/

f TE s

/ ,3 ' E

\

/ 0 E j 0 \

/ / EL.EL.

300'/10 299'/00/20'r

/20'r N

/ \

/ \

/

\ gf.

UINp f \

\

/

\ o/ \ \

l So 5 \ \

2700 I \! l l i

n '

1 r' U i i

,/ N ,

Y So l l

\ / \

' l 43

\ qs 0 NEl 0 '

j

\ \ /

\ /

TE o /

\ *

\ EL. 301'/180 116'/2'r #3 15 ,

/

\ @E" E @=t=g /

- F

\ ME ,/

N HANG SENSORS FROM THE g /

BOTTOM OF THE NEXT #

\ f ELEVATION'S LANDING y / PLATF.EL.

N ' 295' 11 /4' 1

ACROSS FROM BOX. N ,-

s

~~~ O.B.S. RADIU S a: 14' 6' 20TB024 / ' ~ T M235 294'/1808 /24.5'r 1800 (ON WALL AT LANDING)

Limerick Unit 2 ILRT, March 1993 FIGURE 6 Sensor Location Plan View (EL. 295' 11 1/4")

O SENSORS CAN BE HUNG FROM HANGER SUPPORT 0

BEAM IN FRONT AND TO

, SIDE OF 20TB021.

20TB021

/ 308/10 0/ WALL

,' I TE '

B 15 s

' ^ '

' 0 EL. 317'/10 /16'r 's

/ \

f

's 20TB037 e \

\

/ \

i

/

/ (gO O MS 'infeo s o

1 t

i t 270 - o .

- 90 0 i 0 e s o t MS l.

s 'nea p D **a ,'

b.,,

A TE -

i EL. 3 5'/2450/15'r ,'

' 3 l

, ,e q EL. 312' 8 /4* [TYP]

s - STABILIZER

's '

EL. 317'/1650 /16'r --* 15 TE '

- C ,- O.B.S. R ADIUS = 14' 6' '

20TB022 318/191 0/ WALL 180 0 )

i Limerick Unit 2 ILRT, March 1993 FIGURE 7 Sensor Iccation Plan View (EL, 312' 8 3/4")

O 20TB036 0' 228'/14' f

20TB031 16 228'/25' F

16 320 A ME 16 ACCESS l

2378035 E TE 228'/302'\ TE ,

/

SUPPRESSION POOL (ALL SENSORS ON CATWALK.

EL. 222')

20TB032 O- 228'/100' \

TE 16 B too n 16 TE D

16 ME 250' B 20TB034 227'/245' ME TE C .

20TB033 228'/160' 170' ALL CABLE LENoTHs Limerick Unit 2 nea ILRT, March 1993 Sensor Location Plan View (Suppression Chamber)

~

A ".' '. .*::t' U .' .' s Y

I

/ ./ s% .. ...A s

$ '\

', g

,-a . . . . . . . . . . , ,,.

v 8

\ . e.e..

.. .s.e a.m..g. 1 I

I l

",;;e .: ." . i ,,2...... \ _ _l

/'

. i

. . . . . . -+- ..-

~

4. "- ~

'O .+-

"-~""

tsu r L1 6 a q.

m  :

7"~' ** 4 &

l l @

i u u, .

i k- ,,,.,,.

..viso.e ,

S

.u- g p g

,,.g

<> ii .6; ii: 4 6 <t ,

,,,. L O ,

4 4. '** a

  1. o

, u

, . .m .

=

u. y a "

. ~

4 "Q b -1 -N-O ,

% )

,a. 4 : _.

4 Il M .

."*y pi

/s l i

l , *4*hn' l ~T isA.A

( 't I ll l'

,G

.s I I? I r" - *a 1_,L, 4

ea &= . . . ew ...

  • 7

...,c- y,,3,,

a ,  % ..

~>~..~<~ - 4, y & ., ,,

? q o

'>W 16. e. e h, ai ; L i

.?. I '$4 _+,

I 11 l I II l ,~.,JJ ll,II, M #,~,.J M l1,1I, ~J tIg l r,l I

t8 Ief.a

't' .

E p*-6. R,'1[ .~* *"

    • ' ? ' T 11.l'j.

.v,'t 'I V

'Ev

.. . st i'.1 t ww<

  • t i o _1. . j

S'.l ' 1

~ _ '* t ti vair9 t est.. n

[

.,. "@ emel- I ,_ ~

~4 7/  % ~.

~

9wwwwh/w WvndaoshwomWm/m gfggg toepet11'0w f a4Witt Y. >

FIGURE 9 s s,. Drywell HVAC

L l

v -

O h.- .

t . a...

db . ,

4

<

  • 7 %A-g5 s ". ,

. k.' (p...<Yr. #

s u.

.- e . . - u .....

... t .. . . . . -

,) . .u t _ M a.'.

.Jde' "E _ 'p gy;,

e -

.Gr~.r--

c .: -

. m. .

~.~ . . -

4,p, -

o e -c cn~

-3 . - .

9 . ;;;. .- o :$ / . ..

-. u. . .. -

sa

- .4

.4 'j . EC.

4 s

-4, .e. , , a*

l . . :: 7 <

.z- . na .-

t - g ,, ,,,,,,

e "' *' 3 I'M ,

H [ -

.~. . ::' '

/ 4

=% - - . .

- ..>= " . " . ' .% '"~

,.3,,

~

^- ***' ~

jf- * ~'.~ 3 A * * */l

= ";-

" G ,. ' . ' .

g.m.

-r- .

w .

a s.s t -. '.n\yP..

+ ..

/ n. .-

i o%

3 . m.. , , ,

= s- tr./

=

g j m .s w e - * =

g .- .

... g. g 2 O x , ;~~ .( _f _,

. ' .....~

,, m c

.. ,a e#:

. . _c ~o ..~. ... .
e. y.

. . . . . ~

sa

( , p ,,

&-- # M., $

g it aa

  • d b ,'*2 4

e .:f{., - s *.:.s M..:; .M., j !rN a c.L.. t y% i, ?

/- - = d.2 - Q ;,- - .. Y. $bb jp.u

I:

lt(

L

' ~. . .

  • ~ " ~ . ~ . ': -. .a.
n. *
')e# 4 en /

-[

j3 ... .,

+ ~ ~% ~.-.-

.;...... .- u.n c kl ; '

c: ,== ::. T ..

e 4 ., . ..

.s

a. 7..

4 " , . , , . 'N

'r

.c- w y'[b,,

-[ / , ... .

.. r- ,'

j :.i . 7 : s* 84 ... .l 4 s *-

4

" ,.~ ,

am /j-s .-

%~

% a . , s. ,

s. .

FIGURE 10 Drywell HVAC Isometric Layout (Looking North to South) g

-a.,l-

O

'.e

%. me. <.. . ,

\- t .. .

a (O hw #,

n~ .i.e ,.s*c,.

.-,p of' ' ._f.

t s v ,.

Qgi-

~

, . =. .f. . ~.;.h, o'r YA '

e.  :-6", ......

,s o g_,-w -

3 .= :.

!.,iNg % %..; ir;'c/,

. . . , . v ._ . .

..., t

! i- a

/ *.i

.- \

- J

. ,w. ,

\ ,

. u. g .: .-

x u -.

-- nw.

c .

. ,,....m....

m g ~ i w

y s.. _ . . . .

c.. ..

-- < #_ . .. . .. ;. I.:::

w .u..

x_g _ --.=_.~. - _ _ _ , ,

Lt. .

6 1. B. f

= u ~..

a . .. .i5, a.

<.  : ,i ..

e..., - ,.

g3u ;,..

2.. . f . , a. .# -

h- . ~

,a

=e./ , <,

w., -  ;,!

.-w ..

-- s  %

. fWQ  %=

~~ ~~

- +

2):.

i .,

. .. s a :. -

e) 2K. .. ,,. .

,, .-( %-

... q

., g< -- -, .,,, , - ...

r

- ..e _ , a n,.  %., ,t , ' ("-

4.tt u . -

  1. I i.

4 ,,

.. u

~** g l E

s. s. V

- , -- - *v aW,'

1 1 s

,,,,,g

- - - - y."* -- 8'T C a . ,

. f g, "-

i g:"" g ,,

g ,.,,4 a .

s l , *, .s L' ,

/ ,. S aae w p us t-as..se FIGURE 11

- . Drywell HVAC Isornetric Layout (Looking South to North) i Q

  • %.i

)

i

\ .

J j-A =. .; , , _