ML20217F104

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Pages,Revising TS Sections 2.2 & 3.0/4.0,necessary to Support Mod P000224 Which Will Install New Power Range Neutron Monitoring Sys & Incorporate long- Term thermal-hydraulic Stability Solution Hardware
ML20217F104
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 10/14/1999
From:
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20217F098 List:
References
NUDOCS 9910200227
Download: ML20217F104 (131)


Text

ATTACHMENT 2 LIMERICK GENERATING STATION i

UNITS 1 and 2 DOCKET NOS. 50-352 50-353 LICENSE NOS. NPF-39 NPF-85

)

TECHNICAL SPECIFICATIONS CHANGE REQUEST NO. 99-05-0 LIST OF AFFECTED PAGES UNIT 1 UNIT 2 l

2-3 2-3 2-4 2-4 B2-6 B2-6 B2-7 B2-7 3/4 3-1 3/4 3-1 3/4 3-1a(new proposed page) 3/4 3-ia(new proposed page) 3/4 3-2 3/4 3-2 3/4 3 4 3/4 3-4 3/4 3 5 3/4 3-5 3/4 3-6 3/4 3-6 3/4 3-7 3/4 3-7 3/4 3-8 3/4 3-8 3/4 3-57 3/4 3-57 3/4358 3/4 3-58 3/4 3-59 3/4 3-59 3/4 3-60 3/4 3-60 3/4 3-60a 3/4 3-60a 3/4 3-61 3/4 3-61 3/4 3-62 3/4 3-62 3/4 4-1a 3/4 4-ia B3/4 3-1 B3/4 3-1 B3/4 3-1a (new proposed page)

B3/4 3-1a (new proposed page)

B3/4 3-1b (new proposed page)

B3/4 31b (new proposed page)

B3/4 3-ic (new proposed page)

B3/4 3-1c (new proposed page)

B3/4 3-9 (new proposed page)

B3/4 3-9 (new proposed page)

no2ggg gggs p

PDR

I i

SAFETY LIMITS AND LIMITIM SAFETY SYSTEM SE1 TINGS

=

2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOI 2.2.1 consistent with the Trip Setpoint values shown in Ta e set APPLICABILITY:

As shown in Table 3.3.1-1.

ACTION:

/ yj With a reactor protect system instrumentation setpoint less conservative than'the value shown d apply the applicable ACTION statement the channel inoper of Specification 3.3.

ntil the channel is restored to OPERA 8LE status its setpoint adjusted consistent with the Trip Setpoint value 1

~

The APRM Simulated Thermal Power - Upscale Functional Unit j

f need not be declared inoperable upon entering single reactor I

recirculation loop operation provided that

}

the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

iy.

~

~

cC m

~

g Oa c..

LIERICK - UNIT 1 2-3 Aac 08 1985

=

ec

  • -8 s

3 g

  • a
3. k

=

$M M NE q:

"I 31

.1

.2 = 1 W

O=

m a e

~

a s

-u as

=..

.-a s.a va....

o

~-

s

=-

a o

a s.

-=

m.-; = 330 g-33 "

S-w s.a

'E E

~'

O E:::w * " 2N w

~e O-w

~~----

w. w n. w =. o.

~ ~. w w

s w

~

w w

zu wu wow www n==

Nw M

u ee M

e e a

cc C

M C.

D A

C 77 8'

J

/

S=

ae e

=

-u

~w<

~,

gm W.=

em N.

m

.%.% g uW

-u m

=

INb.

l W-N-

4 b.

s M C m

u m

.8 a-99.

m

-s a

4

%. J

-Q

. e=

6 m

I E

W E

WW owe

  • o' o w

O W

W W

S **

-W OO O

E

.M ON.Ww i

c, M

w

--u.o-.-

w e.M

.c

-. ~

On-

~~

=

w

~

w w

w.w-w=

=

wn~ wow www u==

5 wa M

=

4.

i 8

8 3

c e

~

5 7.-

.IN 4

u

.u z

=

o C

E i

v

.=

.a v

u u.

u -

=

W 58 E

s a

A 3

2 3 ".

= '

.o u

u

.u u n

=

=

u

.u

~

. a.

.e

.a

-=

E.

3 A

3 i=3 s'.amEJ A3 u

.v v

- =

gu 5

.5=".%.'".

e. 1

.' T.

.3

...F

,

.s

==

.u.'s.-u-R E* "e. *s E :". e EU

.g*

  • _

rg T1 u

=

a

.= =

==

.m*.

u w

uv a

u

.u.

==

6-3 w

w-

-=

u

=

m w

v E

I

.u.u So-E

.:u"

=

ww-5" 5

~~

3.~ k WW w

.f. f. S W E

= a.

6 1

v u..

g

.---==

- <l.

~

v

==

x

.O eN 4 4

- =

l 9 n,.

mese m-e E

I FD 12 SN El tu i

LusticK-arr1 2-4 Amendment no.7,38.N,88.W H

0 v.e L

R A

35 M

2 R

0 E

d d

0 e

H n

n 9

g T

aD aD 9

a P

E E

G.

D

%T

%T D

1 E

3A 3A E

T

.RR

.RR TR R

A 3

E 8

E AE C

R 6fW 5fW RW E

oO oO O

f

+

P

+

P fP o

o W0L W0L L

.A

.A

%A 0R 67M 67M 7M

.E 61R 61R

.R 0W 1E 1E 8E A

A 2O 0

0 1

l I

l i

I i

5P 5 sT 5 sT 1T N

N L

A M

RE d

d l

n n

iT aD aD E

E D

%T

%T D

E 8A 8A E

T

.RR

.RR TR A

2 E

7 E

AE R

6fW 5fW RW P

oO oO O

l f.

+

P P

fP i

e K

o o

R W6L W6L L

.A

.A

%A A

0R 66M 66M 3M M

.E 61R 61R

.R C

5W 1E 1E 8E A.

A.

1O 0

0 l

I E

5P 5 sT 5 sT 1T N

N I

1H i

PS l

lC ET no i

n t

eo a

)

li r

n at e

w ca p

o ur O

d pe t

Up p

e O

o S

o

(

p L

ro e

eo n

e l

wL o

l a

o i

a c

Pn t

c s

o a

s p

li l

p U

at u

U r

ma c

e rl r

t eu i

o x

hc c

x V

u Tr e

u e

l i

R l

v 4

F dc F

i ee e

t f

n tR l

n a

O o

a g

o r

1 r

lo n

r e

t t

uw i

t p

u T

u mT S

u o

O R

e i

e n

E N

S-N I

T.

S N

a b

c d

e I

3901000402

2. 2 uMmma sArrTy system sEmacs BASES J

REACf0R PROTECTION SYSTEM INSTRUME 2.2.1 z

Table 2.2.1-1 are the values 'at which thThe Reac ATION SETPOINTS meter.

umentation setpoints specifled in and reactor coolant system are prevented froTh e reactor trips are set for eacn para-curing normal operation and design basis antici m exceeding their Safety Limi and to assist in mitigating the consecuences trip set less conservative than its Tri of accidents. pated operational occurren Allowable Value is acceptable on the c p 5etpoint but within its specifiedOperati Trip Setooint and the Allowable Value is eq asis that the differnnce Detween e allowance assumed for each trip in the safety a ual to or less than the crift 1.

nalyses.

Intermediate Rance Monitor, Neutron Flux

- Hion The IRM system consists of 8 chambers systems.

civisions of scale is active in each of the 10 rThe I The trip setpoint of 120 ranged uo to accommodate the increase in po n.

also ranged up.

anges.

wer level Thus as the IRM is The IRM instruments provide for over,lapthe trip setpo and SRM systems.

with both the APRM increase is due to control rod withdrawalThe most si changes during the power provices the required protection, a range.

In order to ensure that the IRM teen analyzed.

POWER is at approximately 1% of RATED T FSAR.

.4 of the L POWER. condition in which THERMA was taken in this analysis by assumi rod being withdrawn is bypassed.

ng the IRN channel closest to the controlA with the peat fuel enthalpy well beloreactor is shutdown a The res'lts of this analysis show that the u

2 ed to 21% of RATED THERMAL POWER Sased on this analysis the IRM provides protection against localw the fu errors and continuous w,ithdrawal of control rods i protection for the APRM.

control rod n sequence and provides backut I W S E R T

fA for operation at low pressure and low flo

~

setting of 15% of RATED THERMAL POWER provides adequa the setpoint and the safety Limits maneuvers associated with power plant startup The margin accommodates the anticipatede th at zero or low void content are minor and cold wat Effects of increasing pressure during startup is not much colder than th t already in the systes.er from sources avalla ture coefficients are small and control r d a

RWM.

withdrawal is the most probable cause of siOf all the po Tempera-o u, unifore contr gnificant power increase.ol rod 8

LIMERICK - UNIT 1 N

8 2-6 M22W Amendment No. 17 i

l

F ECR O LG 9940253 Rev.0 w

TECH SPEC MARKUP INSERT I A:

^

The APRM system is divided into four APRM channels and four 2-Out-Of.4 Voter chan The four voter channels are divided into two groups of two each. with each group of providing inputs to one RPS trip system. All four voters will trip (full scram) when a

. APRM channels exceed their trip setpoints.

4 1

1

F LJMITING SAFETY SYSTEM SETTfNGS BASES REACTOR PROTECTION SYSTEM INSTRUMENTATION SETo0fMTS i

(Continued) averaoe power Ranoe Monitor _ (Continued)'

8ecause the flurdistribution associated with uniform ro involve high local peaks and because several rods must be moved oy a significant amount the rate of power rise is very slow.

power heat flux is in near equ,ilibrium with the fission rate.

Generally the than 5% of RATED THERMAL POWER per minut In an assumed uniform than adequate to assure shutdown before the power could exceed 3

The 15% M trip remains active until the mode switch is placed in m

the Run position.

l ggg_

j The APRM trio system is ca 1 steady state conditions. Fission chambers provide the basic input to system and therefore the monitors respond directly and Quickly to change to transient operation for the case of the Neutron Flux-pasha 3*N f3 setpoint; i.e., for a power increase, the THERMAL POWER of the fuel wt t i psee/e, a

than that indicated by the neutron flux due to the time constants of the h be less transfer associated with the fuel.

eat Limits and yet allow operatino margin that reduces 1

l sary shutdown.

3.

Reactor vessel Steam Dome Pressure-Hioh system process barrier resulting in the release of fissio compressing voids thus adding reactivity. increase while oper A pressure The tri neutron flux, counteracting the pressure increase.p will quickly reduce the higher than the operating pressure to permit normal operation without trips.

The setting provides for a wide margin to the maximum allowab pressure and takes into account the location of the pressure measureme to the highest pressure that occurs in the system during a transient and control fast closure trips are bypassed.setpoint is effective at This trip under these conditions, the transient analysis indicated an adequate the thermal hydraulic limit.

i l

l LIMERICK - UNIT 1 '

B 2-7 Amendment No. 66 s

FE8toim l

p

ECR s LG 9Mg253 Rar.0 TECH SPEC MARKUP l

INSERT 2:

For the simulated Thermal Power - Upscale setpoint, a time APRM in order to simulate theconstant of 6 - 0.6 seconds is intr fuel thermal transient characteristics.

the flow-biased setpointA-more conservative maximum value is used for as shown in Table 2.2.1-1.

i l

I i

)

%4 6!

.0 ?Q Position # n. Q, 3/4.3 INSTRtMENTATION 3/4.3.1 RFACTOR PROTECTION SYSTEM INSTRUMENTATION

[TMITING CONDITION FOR OPERATION 3.3.1 As a minimum, the reactor protection system instrumentation ch j

in Table 3.3.1-1 shall be OPERABLE with the REA annels shown TIME as shown in Table 3.3.1-2.

ONSE i

APPLICABILITYt As shown in Table 3.3.1-1. W.SEE D j

ACTION-

/a._

ith e numb of OPE LE channel less than equired the Min '

OPE LE Cha eis per Tr System r utrement fo th inoper e channe s) and/or at trip sy em in the ipped m

one trip stem, p1 e ndition within 12 urs. The et appl able.

ovisions of Specificat on 3.0.4 e

b With e number OPEkABLE hannels les than reau ed by t e Mint

/

OP LE Channel per Trip S tem requir t for bot trip sys s,

pl e at least ne trip sy es** in the ipped cond ion with' I hour

/

f Qa take the TION requi d by Table 3

.1-1.

SURVETLtANCE REOUTREMENTS y

4.3.1.1 demonstrated OPERABLE by the performance of the C TEST and CHANNEL CALIBRATION operations for the OPERAT frequencies shown in Table 4.3.1.1-1.

, CHANNEL FUNCTIONAL and at the 4.3.1.2 channels shall be performed at least once per 4.3.1.3 functional unit shown in Table 3.3.1-2 shall be dem g

~

limit at least once per 24 months.

per trip system such that all channels are tested at least onc n its months where N is the total number of redundant channels in a spe s 24 trip system.

or An para cnan I r...h OT. De

ed in e trip d cond' lon whe this d ca the ip Fun ion to cur. I these e es, th inopera e ch nel all resto to OP LE s tus wit n 6 hou or the ACTI requi by T e 3.3.?

for th Trip F ction s 11 be

    • Th trip s
en nee not be, aced in e trip d condit n if th s woul en.

use th rip Fu

ton to ccur.

n a tri system n be pla ed in tripp conditi withou causing Trip F ction t occur, p ace th trip e

syst with t most in rable e nnels in he trip d condit n; if th I

s ens hav he same r of operabl channels place of er tr syst "he trLA condi on.

LIMER;CK - LMI 2

4 3/4 3-1 Amendment No. II, 71

= ~ -

D&ETED RL 2819N

ECR # LG 99 00253 Rev, o Pase --

TECH SPEC MARKUP INSERT 3:

ACTION:

Note:

Separate condition entry is allowed for each channel.

With the number of OPERABLE channels in either trip system a.

for one or more Functional Units less than the Minimum OPERABLE Channele oer Trip System required by Table 3.3.1-1 within one hour for each affected functional unit either verify that at least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable channel in the affected trip system in the tripped condition.

b.

With the number of OPERABLE channels in either trip system less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, channel (s) place either the inoperable condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.or the affected trip system ** in the tripped j

i With the number of OPERABLE channels in both trip systems c.

for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

I' within the allowable time allocated by actions a, b or c, it is not desired to place the inoperable channel or trip system in trip (e.g., full scram would occur), Then no later i

than expiration of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

i For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE or tripped.

For Functional Unit 5, both trip systems shall have each channel associated with the MSIVs in three main steam lines (not necessarily the same main steam lines for both trip systems)

OPERABLE or tripped.

For Function 9, at system shall be OPERABLE or tripped.least three channels per trip For Functional Units 2.a., 2.b, 2.c, 2.d, inoperable channels shall be placed in the tripped condition to comply with Action b.

Action c does not apply for these Functional Units.

l

\\

l l

L

I-ECR # LG 99-00253 Rev. O 1

hse TECH SPEC MARKLP INSERT 4:

... months, except Table 4.3.1.1-1 Functions 2.a, 2.b, 2.. c,

2.d, and 2.e.

Functions 2.a, 2.b,

2. c, separate LOGIC SYSTEM FUNCTIONAL TESTS.and 2.d do not require shall be performed at least once per 24 months.For Function 2.e, tests LOGIC SYSTEM

. FUNCTIONAL TEST for Function 2.e includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations of two tripped inputs to the 2-Out-Of-4 voter, logic in the voter channels.

i e

$c,

Q Q2Q pN Is TO@f.Q3 {$

,w N

O

)

D 3@'3 I_

b G

T 3

12 3 4 123 1

1 4

1 g

C e

A

~

)a 5' (

LEM NE NT AS MliY e

UCS v

H

)

)

)

lEP Dd b )d l

a d

d HtI 3G(3 3V (3 v

(

(

I8R

/

2 2 22 22 2 2

2 1

O HAT R

N ER O

PE O P.

I T

6 A

D T

D

/

N A

EM U

m T R

T R

S 1

N E

I 1

M S

)

E L

3 T

EAS C

N

)

3 S

LHN

(

1 Y

BDO 1

.' I

(

E S

AII

)

)

)

L CTT B

N IAI

(

c f

9

(

( (

(

(

A O

LRD 2

2A5 23 5 11 235 1 2

2 1

T I

PEN W

V T

PPO C

AOC 1

1 1

E C

G T

O R

P n

RO T

~

t C

w e

o e

A

)

I S

L v

E b

R

(

I d

a l

s r

e e

e V

r o

l l

p l

o t

a m

e e

n t

h i

c a

m v

o i

g n

s l

o e

i n

l o

p p C D

L t

o M

U U

a i

l M

s m

r l

e

- a a

e o

e g

l1 e

t s

g x n

x xBF th a

I n

u e

a u

u Sg W a

l v

R l wh e

i R F i

Fogl e

lH l

n t

r li l

l e

e i

e n

a e

n nFH a a

s-s L

t o

r w

o o

r t

s s

T a

r e

o r

r e

s ee e

n I

i t

p P

t t))

p n

Vr V3 ee N

d u

o u

u12 o u

er U.

e e

n e

e e

n rs rl t u m N I

g H

N I

os oe Ss L

r a

t e tv o

A e

r cr ce nl N

t e

aP aL iC O

n v

e e

a I

I a

b A

a c

d R

R T

^

f' CN U

F 1

2 3

4 5

k*ga E, g ~ "

gh9 pgq "

yto g[', CU-

^

0 ve R

3 5

2 1

4, 4

41 41 0

0 se 99 a

P G

L RC E

)

)

)

) )

m m

m mm 22

(

(

(

( (

3 3

3 33 2

1 1

12 12 P

J tK R

AM

.C

.E PS l

iC ET e

)

l n

a w

c o

s d

p t

U e

S

(

r e

e e

l w

l a

o a

c P

c a

s p

l p

U a

U r

~

m e

r t

e o

x h

x V

u T

u e

l l

v 4

F d

F i

e t

f n

t n

a O

o a

o r

r l

r e

t

. 5 t

u t

p u

u m

u o

O T

e i

e n

.R N

S N

I 2

E SN I

a b

c d

e

[

Refer 20 PORC'

~

TABLE 3.3.1-1 (Continued)

QlIV1lOF E REACTOR PROTECTION SYSTEN INST % siAilun TF Q we 1

i J

ACTION STATEMENT 5

\\

ACTION 1 Be in at least HDT SNUTD0ldN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

f ACTION 3 all insertable control rods within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. Suspend all o ACTION 4 Se in at least STARTUP within'6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

ACTION 5 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> er in at least ICT Smml ACTION 6 Initiate a reduction in TMNIAL POWR within 15 minu reduce turtles first stage pressure until the function is autaastically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 Verify all insertable control rods to be inserted within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> ACTION 8 Lock the reactor mode switch in the Shutdoun position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 9 Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactar mode switch in the $1WTDoldN position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

i e

D 9

e LIERICK - UNIT 1 3/4 3-4 3lE 3 135 g

p a arr eggy" JFr t0 atAc70s pacTICT!0e SYSTDs tws7alMEN7aTf0N TAasr apTaff0ES (a)

A channel any be placed in an inoperaale. status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for reeutred survettlance without placing the trip systan in the tripped l

annitoring that parameter. condition provided at least one OPEAASLE cnan (b)

This function shall be automatically bypassed wnen the reacter mode is in the Aun posttton(ergt.ma/****)stgr77.ps mp(supson)d)

(c)

T shh nks

'll tbd drp'tt%pf1' ggq tr i

.h /'/ / /

i 1

(d) - The noncoincident 1885 reactor trip function logic is sucn that all cnann po to both trip systans. Therefore, wnen the

  • the Mtntaus OPDARLI channels Per Trip Systas is ints' are removed i

6 IRMs M (e)

An APRM is inoperable if there are less than@3 or less than inputs to an APRM cnannel LPitM inputs per level (f) vessel head is removed per Specification 3.10.1.This functio (g)

This function shall be automatically bypassed when the reactor ande s is not in the Aun position.

(h)

This function is not required to be OPDABLI wnen PRIMARY CDNTAlletEN IlffEGRITY is not required.

(1)

With any control ro1 witherewn.

Speciffr.ation 3.9.10.1 or 3.9.10.2.Not applicable to control roes removed per (j)

This function shall be automatically bypassed unen turbine first stage pressure is equivalent te a THERMAL POWER of less than 305 of RATG THER Pan-(k)

Also actuates the EDC-APT systas.

'" Y '8* W *" $ $ E W f mser 6 (m) Euh MKM deneiprovides inpTs To bon Trip systems.

@~1ggTJ6ssz6.ovg per

~

Apactrfcau6n 3Z10 or

.s.

, or llr.rore Thu 9 URM inpTs R e ",e : io

? O R C

r. nc m1 aa ca h-i-

? 0 S U O n #,. u. n brec"co' "~ e nc /<st NM atitca %(wec4 96 camg _

BEC 17 !!!!

LIM' RICK - UNIT 1 3/4 3-5 4 No. 41. 53

ECR # LG 9940253 Rev. O

~

TECH SPEC MARKUP INSERT 6:

(n)

A channel or trip system which has been placed in the tripped condition to satisfy Action b. or Action c. may be returned to the untripped condition under administrative i

control for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

4 l

esp I

=

l 1

=

e*

g i

y r

E e

en w

=

e em m m s0 p.=

>= M iO cm

o. (.
  • =

C.

o.

o.

o.

o.

m w

"O aC aC aC e

-J

(

aC. aC.

aC.

eC.

WC O

+

  • C O

w

=

==

MO E2 X

M 2

C Z Zg u

w

=g O

c bc=a M-a g'

W 4

==

E C

ed==

MC 6

46 3 3&

ed M U

&.CL M

.=

W 88 E6 A

=o.*

ed 4

a D

[

On

-Q S?M.C

==

C 'O

-ed O3 88 C Cha==

.C W M U E

C WC s

O E==

b LJ

.W

'O ed bR ' ed C HC DU

~ es M=

3 A:

W i

w 6

E g

O. 6

=

0, N

l ed UC d

E

)

w~

\\

n

..M C m.

m Wa~

gj g

6 E

m M"

Obed "3 & W C em MAb D';

== 6 O ed a

o Q

ed== =

W j

fN M ta= Q b c. ~

MS U

W w

M L

>=

88 m On O o

E na C tem K

=

==

A m W

A 4

ed O W ed M On 6

01

> M.w=

=

m 3

=

CE W ed

=

W M

== 89 e o

C 0

M3 m ed.E

>==

3 4

W I

C C Ch>

U O

OC

& 8==

W W

eC SJ

=

=

=

-. E. W W

ed kJ L'

=

i W

L

==

O E

D 3

3 3

m b

nJ

==

Lw>

M e4 O

W W

we O

C W ed M

.=J

=.J O

A E

O we se W

m OE UCb e.

WW 6

1 85 6

W LJ C

6O C ad M

L --

glL h

W 6

3 h 6 W Eb en 6

O 85 8W 3

ed 3

ed o

ta C we==

OE ed WW 88 W

W C

4 M

M3 "O

>J

==

=d Ut W C "O M en E

Q 3

O 8C O

=d EbJ3 6== es C Q. CL"U U C

W

=

.C 6

= =

C=

O b D ep Q

.=J ed D1 WW bJ

.C 4 =.J 3

0 6

Eb o

C we 2 8W D E "e *O O==

E =*

's a m

=

E4 i se O E

6 Z

3 ed I

BP

.d O W

88 er O

-~

== m

.C u s.6 O"

)

G3 M O M CD 6 Si ed M

l OE4 W

88 6 U

p ** FO Eb

=WW Dt 3 87 C 3 W

ed 88

==

> M U

> d3 ed 3

"O ee C->

4 = = = = =

E>

M 3

W C ** -

M

=

85 6d. *==

Cr. A6 SJ 88 L

W 89 =

85

- we 3

6 ed O6 WOmJW W

CC ed m

ed -

C 3

Ol b 3 3s=

OW m

46 e se ed 85 C 88 6 C C6 =

8W W

W

=

M b b== M 66

=0ed C WO6

& OO U

M M

-J M

8W CL ** A GP E

    • M== W U
    • 6 CA 3 b. b er en wt SA C" m ed O

C "o

g =E U==

85 ed CL O me ed CL es es E

6 U W 88 ed ca -

O 85 W'

6

== C 06

>=

=

."J O CL 33 O

85 Q.

M> 0 W

W a=

E U

W O-40

.=.

"O tu C 48 - C.= C O

88

=We Q

M.

.d i

2 4p y*==

W bWE*

  • =. N o 6

6

  • d O

Q J6 W

W 6

88 h=

6 5

E CP

.O O

M had a

C C

o 8==

D MCh

.d

>==

W E

==.CL

. ed 6

e

==

==

85 -

W43 ** 8s= 88 J

47 L.

U U

.C kJ 3 ' 85

.O Ab U

,3.

C2 W C 8= =

eC ed W

88 85

==

J h

6 L.

6 p-88 C

ed 66OW g

g..

87 GJ 85 LJ 6

U..

3 3

et 88 3 OU6

.O

== 85.O 85.O U *D K

M E C C M N.O

>== >==

E E M M pm.

88 C *U 'O er 9 es C C E EM 85 85

. )

=.

N M v M N

m

.O c*.*

==

N' W

=

JAN O 7 ISIS.

LIMdtICK - UNIT 1 3/4 3-6 Amendment No. 49,132 3

y O

v.e R

e ee rnhm 3

5 aota 2

i s

0 0

st e

ca3e 9

g 9

a iv.h P

G.

ni1t ot l

rc3f ta.o R

c 4

C em t

?

I lonr eroa fip l

t adad tece irir gufe 5

isid 0

daci A.

A.

A.

A.

ees 0

lmpn N

N N

N s

e So ne c

nbf a

oe hl r

clna ao s

rhil este t

an P

oecn U

Vmia K

ilh R

4tpc p

A fear M

Os e

C

- nrt E

tooo P

upFv S

Os

- e 2R 4

I IC yf E

d ao T

n.l -

)

l aget n

a w

c nru li o

o s

ett -

d p

t U

nsu2 e

nep atth S

h uc

(

r ceoa m

e e

e e

Mir l

w l

Rtem a

o a

P to c

P c

Aeor s

s sVf p

l p

,n U

a U

r so4s4 m

e rpt r

t osfu=

e o

teOp x

h x

V cr tN u

T u

e e

tu l

l v

4 tmuoo F

d F

i eoO s

e t

f drt n

t n

a O

f2n, o

a o

r n

al r

l r

e t

otede t

u t

p u

r ph n n 7

u m

u o

O 8

tmtun e

i e

n ue da T

N S

N I

2 T

exfeh R

R Neorc ES ES N

a b

c d

e N

I I

=. -

QQ

~~

l

)

5E 7

1ga c

2

- am. as

==

=

3 est an A.

e.*

e-

==

N N

N

. had N

N ew o=

g

_g_.

t.4 M'

i E

M d

aut M. ".

E' tad

=

m O

u had

,=

b a.,

g er eg ag O

== E M

M

=

=

a o e

==

=

and i

_.i_-

e. et pm. en.d ses pm

.=.

q

==.

=

tu$

"'t

  • "1

""9 "9

ans

,E d

w 23 3

& W W c

e C &

We i

W

_l me l

w C

u e

e.,

E A

  • C.

a O.

aC.

dC.

m

==.

s=

an,a W

MM E

MM M

M M

M M

E c M

ME es:

w

~.

a g

.~

a=

w med

>=

E 5

  • 8 Si,
    • O a-a==

en t

gg

,e,.

e e

=e y

. g, g

.,,e

. e..e

,,e..

a s

3

.c 2

e n

'. a * '

e

.c

~,

2 l =2 z g =i

,e g

g g

=

e e-e es

.e

,e

.e.,

s e =~ -

i e -

rb e

-M

.=

M.=.

=

e._ >

se. e 5.a a==

he e

w

.4 ee b

O E +.*

A me s

ge as L

e C

e e m

o e

-m en e=

am f'l Cb 3

I M e ""

e b

a=

e e-

==

=

9.h. tre3 u

se e es d we e.

. e.A.

e b

6. h 3

ese og es e e

e ee

.s ma e.

me e.

A.'"."=.a 8

.e e

4. W 3

e

- ee e>

=

6

  • .e w

> 6.

>e W

A

.=.

.e=.

.c.

3

_en a e se e

. w L' on La

.e e mo e

c

_ m e-e==

e e se

.- h

..o. en w

e n ee.

L

. e 4

e e-e E>

us u

> w

.e.e e '*

1.

eA *ea

.c..-

3e ee 'e a

6.a e A

.s. e - a me

_m-u o a a

z>

= m n

. e e

ee+ w 6

u Q

}

w.

~,. es.

m e,

=

l 1.! M RIQ C - tat!T 1 3/4 3-7 Amendment 'n,5Je89.113 t

.k FB 2 2 996 e

g-h i

=&

0 ve 2

2 R

3 5

2 I

1 1

1 20 0

e 9

g 9

a P

G.

1

)

g R

(

C R

R E

)

)

d d

A A.

(

(

R W

W N

N

)

)

1 e

(

(

A A

A A

A S

S S,

S S

P UK R

)

A b

(

M A.

C D

D_

D N

D E

PS HC E

T e

)

n l

w a

o c

d s

t p

e U

S

(

r e

e e

l w

l a

o a

c P

c s

s p

l p

U a

U r

m e

r t

e o

x h

x V

u T

u e

~

l l

v 4

F d

F i

e t

f n

t n

a O

o a

o r

r l

r e

t

9 t

u t

p u

u m

u o

O T

e i e

n R

N S

N I

2 E

S N

I a

b c

d e

2

i[

y 2l D

b w

g h l

Hf 55 2

dI o

a t

n

.oa a

Ct l

t oi

_e 2.t h A

1 W

/

el /

ll ttw t

s 1

tP lU s

t 0p t

7 aA A

44 1

1 0 de a

1.ud rtt l

e ec c

a ey E

o e

ue t

n i

LRR M

T

9. orr 33 t

ch a

f A0 l

e1 i

3fl A

f t lt NfE R

aI a

0 C

22 p

h1 r c

o c

1SN ct l

t o

e rdr o

E TNA pt s

l sc p

oet n

ua su a

t rc S

l n 4OL 1

1

.11 t

E S

d RIL ej ea 1l o rr ud N

ETI r

.ac r

PIE ao lA w

e 0t e

T.

tf a

ODV o

p 1 so p

s v

o l a

.nn NR OU p

t fra d

ha rR

9. i d

CS gr at e

ed go cl eE epa v 3rn ar wW d

o a

ee oO m

ne o

S v

pP f

.e e

ob,

T go n

)

t r

f d

r i

N n

eL o

a t ye l

E io.

hA c

P ert s

aad i

/e N

'N rt s tM F noc i

cmn u

y R

d E sfa E

O dda oE J

( i i

e s

R n= d I

fyp a

1 LT A. A.

ed t

l I

de i

a ies sn T

l s

h U

EA R

R NH ei7 m

e r i e

chu Q

NR d' gD t ah et s E

NB dm rD n

u t r a

p ars oE

.n o sof l

S

,e a

R Al ceu fTR a h eco e

lll et o NAE n

.e s

r o

2. b E

CA dei oRW p r srst s t

N t

C C

@o e 9. l N

dv c O e

n se a

p l

d A

2 e

fP o w

eo ev 3a m

L

/er oo e

o i

st d

h yc l

1bp t

L s p.

e ens l

%A a fr r

r r

vo o

,l

)

E tl e l5M l

l a

u oiS m

.la pt s mtN d

V slh e2R p

/np2 l

e R

aat nae e

u hmr s eaO eh n H w

f soa e rcI u

U L

l sn ART o

Ct r iT n

S LA hE l

e s p sfA i

i F

EN pP, t sh cWD r

v nt diR g

t N

N0T i

alt OE n

0 NlS Q

Q RW ei MPT n

t hds o

ret D

i aa.

r ocE r

o AiE o

.rnw R

A u c t pt t pL /

C T

l l

CT Non PLR p e

,i c

lSA l

(

A CNU Ofad AA A

f mhf a o

T n

I he Mf f

aso e rrE w

1 N

F E

T pc m eRo e

e t

n r

t eR o

g.

M Aa r

hE h

a n

npO d

1 U

RlMo tH%

t 0 eo e

o C

t i 2 1

R BrRf T2 0

rrt h

cd 6

Te Y w

T l ePr f

r 0

gpas t

e,

r r

S lvAe onn p

3 L

1 l u ove

)s Ao p

ea t el n

t om N

EK C

d thh t

r src e

mi g

n D 4

I NC ont nwt n

e n h eet n

NE A.

A.

A. A.

Lt ao e

e p o o w l r i

E M

Al e 0 l

E n

mI r m

t c

b s

r 1

L E

l i C_

N N

HN NdM t

et e

pt E

aei f nh B

T C

A S

N eRf sNt s c )uf L

cbh A

e l

T Y

AnIi uOa u

n wtihB i

t l

b 9

i S

jI e 1 o orct A

l o d

lCme dTr d ae R

pt g n

iu n

N rhn aI g a t

t ps E p

n a

O met w D

s s a P adi i

I ot o

ens e a e s O er o

d c

T redd hoi n e re a

tru - I e

C fdnt tC s

l ohh e

oiDn e T

)f rtm n

E au e

ctt b Nu a -

T de h

fLc r/

t c

q l

a O

eb2s oAn o a iggn o

e

.t i e

Tfo R

d Ne nnet

. ret r

P ulNd tor t d

im n

cn n

f llOe sI e s e o hm d wena c

e R

caIl iTf i t g o e aran I E r

r xhTl sAf t a

Te O

u t

c r ral T

e T

esI o nRi p r

l i

Dpf s

s d

l a n C

Dr oEd a b u

.b o

a u

hsin o A

esNt cP c

i o

al q tkei Pb r.

l F1 n

blOn Oe l

)t a e invtt e

E C

1 o

eCo l

t1 a

sh r wira' R

e0 yn c

l gu1 c

es l ut i

v w

t anL anl a e

t d

sn*f o

s l po hi maAh hioi erf d o og a*

T r

e ail cs hNc srsm bo n

rnd E L u

v Vr t o scOa ub clf i en P l

T -

iP r

I e nda n

l s

lt ri 0 nJ o I

a l

w oMT o

o l ~

h f

V o

.e sn tRAg iee v

a-t1 rou s

oril e

rer w

cSRn t ch h-s n

th qmb p

t ru eom e

Ei ant s'

aao nseo r2 o

nus dda tdPr ra i

t oss ot r enOu blf s_s ii o

rr o v1 T

S Coe Muc da d

iai Me w c

a rt cS ft Pr y

I l r hS g

lb l

Rs o n

yR o d "5 ri N

e ecP rS e

nMn a

l a

P l ei u.n fe-o Ri g ct e U

n n

o l

L fdrf

.ae vr 1

i i t

a rI r an ic i

L b

b c

u t

e sen v

s0ht rm hsof TT A

r r

a n

uet iha er ei t

u N

u u

e a

ehn h h he hh1. i f o e n

No O

T T

R M

NTe Tac T

T3WIhb u

I T

C N

))

)

)

))

)

))

)

.\\

U 9

0 1

2 ab d

e ff h

1j k

I)

F 1

1 1

((

(

((

(

((

(

(

" I g %. 8. 5

,E *~,,Jg.jg. g.2 gh*

EQ 3 4

c; ECR # LG 99 00253 Rev. 0 TECH SPEC MARKUP INSERT 10:

CHANNEL FUNCTIONAL TEST shall include the flow input function,

excluding the flow transmitter.

INSERT Ili.

Calibration includes the flow input function.

l' l.

l l

l

INSTRt3BTATION 3/4.3.6 CONTR0t R00 RLOCK INSTRUMENTATION LiMiTINGCONDITIONFOROPERkTIGN 3.3.6.

shall be OPERABLE with their trip setpoints set cons shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY:

As shown in Table 3.3.6-1.

ACTION:

With a control rod block instrumentation channel trip set a.

Table 3.3.6-1, declare the channel inoperable until th with the Trip Setpoint value. restored to OPERABLE status with its tri b.

OPERABLE Channels per Trip Function requirem required by Table 3.3.6-1.

SURVEf tlANCE RE00fREMENTS 4.3.6 Each of the above required control rod block trip systems and

)

the CHANNEL CHECK, CHANNEL FUNCTIONA l

for the OPERATIONAL CONDITIONS and at the frequencies shown in

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> f surveillance without pir,cing the trip system in the tripped condition, p least one other operabie channel in the same trip system is moni U

).

=

O O

A'nendnent No. 90,131 LHERICK - talIT 2 3/4 3-57 I0

r.

ECR # LG 9M025') Rev. O i"

her TECH SPEC MARKUP I

INSERT 12:

The. APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation. loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

4 f

i

l \\

I, I(

E 3

~

I

/ y A

1 7

f N

O I

000 1ll 11

l 1111 2

2 3

T 666 6EE6 666

l 6666 6

66 6

CA

)

I I

5 I 5

L I

EAS

,I LNN 5

SOO 5555 2

4 AII aa*

CTT ll1 111 2 5 j ;l

' 222 1

3 IAI PEW LR PP0 N AOC O

I T

A T

N E

M 5N t

1 R

LO T

EI 6

S NT N

NC I

MAN 3

UMU 222 44 32l ; l 6666 2

22 2

~

3 K

MCF C

I E

O NEP t

L ILI 8

B MBR A

AT T

0 R

W 0

ER O

L 2

PE

[N N

OP O

LO p

O T

I

^

R u

I I

T t

T S

N r

O A

O P

M C

N W

)

S I

O e

b R

C D

F l * (

O E

T a*

n T

n R

IR n

c*

i I

i d

o s

N E

IS r

p 5 l

D l

M

)

t U R l

M l

U h

T H

o O

u u

L g

S C

I T

f m)

E f

O i

Y T

R I

G V

H S

I O

m I

t N

t

)

W T

e e

uN o

,e d A o

g E

l 4 e

S R

I v

v l I n

)

I R

n

{

G e

vr N

ie s

l eF C

i e

l eR v A io E

M eaa l a anG o

e tl a

l E

r I

t.

l E

r tl A e

L Lt D

aT oeaaH L

0 a

D l rc Bc ceN t

l cA tl rcC 0

rr N

N K aes se rA c

a e,

nD e c pn I

e R

s I

caes S r

C t

O C

cpn pp t 4 e

c I

O ssw Us t

s wE t sowD t d O

T L

pno n

E e

p o

EW epno a

T C

s UID I

C D

U i D DUID N W Q C

l N

l U

s e

R E

A A

U I

R A

E f

F o

..p O

.N

....C

. E R

n ab c A s

cd S a

b c d

]

abcd S a

R c

P f

(

I R

T 1

2 3

4 5

6 7

R. Et4 gg NS=

e

O.ve R

3 3200 e

-9 w

9 I

G L

1 1

1 1

1 1

6 6

6 6

6 6

RC E

2 2

1 1

2 1

1 1

3 3

3 3

3 3

PU KRAM C

E

)

P n

S w

H o

C d

E t

T eS

(

e e

l l

a a

c c

s s

p p

e U

U la c

e s

r l

r p

e a

e U

w c

w o

s o

P n

P w

w l

o l

o a

D a

l m

m F

r r

t e

e n

n h

x h

o u

T e

u T

i o

v l

t C

d i

F d

a e

t e

l w

t a

n t

u o

a r

o a

c L

l e

r l

r u

p t u

i M

3 m

o u

m c

R 1

i n

e i

e P

T S

I N

S R

L R

ES a

b c

d e

f N

I

TAttF 3.3+1 (Contin:ed)

CONTROL R0D VfTHDRAWAt Rtotr INSTRIMENTATf0N

-- =

ct. kecb $

Q anne!

_=

Declare the RBM noperable and take the ACTION required i

ACTION 60 by Specification 3.1.4.3.

l With the number of OPERABLE Channels:

l ACTION 61 a.

One less than required by the Minimum OPERABLE Channels per Trip Function requirement, restore the inoperable channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.

b.

Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one incperable channel in the tripped condition within one hour.

With the number of OPERABLE channels less than required by the ACTION 62 Minimue OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

l With the number of OPERABLE channels less than required by the.

ACTION 63 Minimum OPERABLE Channels per Trip Function requirement, initiate I

a rod block.

HQIII For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.

(a)

The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of I

RATED THERMAL POWER.

(b)

This function shall'be automatically bypassed if detector count rate is

> 100 cps or the IRN channels are on' range 3 or higher.

(c)

This function is automatically bypassed when the associated IRN channels are on range 8 or higher.

)

I (d)

This function is automatically bypassed when the IRN channels are on range 3 or higher.

I (e)

This function is automatically bypassed when the IRM channels rre on range 1.

(f) [

ired be DP o y pri to a duri sh margd N

-T Q

=

i

/

nst ions perfo Specif ation

.10.3.

/

)

m--

Art 28 BM LIMERICK - UNIT I 3/4 3-59 Amendment No. d. (I 66

{

70 j

l i

RR l

\\

l RRR l

a EEE u

c WGO IW f

f i

FfP L

o t

A f

a s

o v

M LLL n

e AAA EE e

s l

e E

MMIM H H t

n e

U s

T s

o I

L p

EEE 9

4 l

i A

HHH 5

5 c

v s

6 V

1TT E

i i

1

+

TA

'0 T

d v

/

E DDD AR 1

s 5l d

e 9

i L

EEE W

R B

TTT f

p 2a 7

A AAA 6

6 fo x

c 1 c 5

W RRR

/s 2

O 6

6 e%

6 8

0 1 e 1

L A

0 0

A. 3 A.1 A.1 A. 1 l A.3 a 1l

./l 5

L

/

A N*

2 u

c s

s N2s NsM2 N5fN2s s

32 3 3 6 7 RR EE S~

WW I

OO N

RRR PP l

l n

I EEE LL u

o O

WWW f

f P

OOO o

t i

T PPP f

a E

s o

v t

S LLL n

e l t AAA o

s l

ii Tl N

MMIM i

n e

G DD s

o I

lT EEE 5

EE s

i i

lN HHH 5

TT p

v s

6 At TTT A

c i

i 1

2T o

5 E

T DDD R

d v

/

t r

+

+

- s e

9 i

5 5l d

EEE W W f

M E 0

TTT oo 2a 5

3U S

A A

6 6

1 s

1 c 5

R R

R p

/s 2

6 x

3T P

.c 6

1 e 7'

42 S

I A

0l

./l 5

0 A.

A.1 A. 3 A.1 l A.5 a E N R

/

1 2

L I

T N * /=

u c

s N2s NsN2 NsfN2s 5

l i A K TC

/.

O 8

3 LB 2 4 1 DO R

)

)

P L

P S

p O

S P

o R

I I

e o

T I

(

p l

N

(

o O

t n

p C

t n) s o

u n)

)iP p

t

)iP PoS Un r

PoS S pP e

a a

S pT PtH t

l t

TtH Le(

t u

S Le(

($

xa c

(S I

t l

r t

S

  • trn u i e

R t pn aei F

c l

nii tl wo e

a n

T n O

ro neop nt c

i i

oT p i pP t oc s

I i p

t ot e

re e

p Si O l M

N E

t ee

) pees t r l

U R

etS Pt St u

g O u u

L gc Hl U hh l

Sa Sa ar e

n Tf c

f O it ip TS ri e wnin I

pdi D

edw oso I t V Hi ier e(eweo d

t w

W t

ie u

rmT v

gomP e

gt v l

o e

o e

r lS I n v

P_ n v

e e Tr enPr s

naieF ie ie n

vt i

eh tl a eh at r rtl r r tl E r tl a ea wt g a aR wt g l re aan oeaa T

oe aa t

oni rc oni Bop rco i

Lo N

LIH esrLIH Do esr

  • caes I

ca es 5

rF tl rc A

tl rc C

l O

pne t

e c pn D ec pn 1

e I

oww u

ts ow E

ts ow D t

T

)))

noo)))

)

)

e E epno M ep no a.

C 123 IDP123 f

2 I

c DUID R DU ID M Wa fs m

n E

A iF u

T R

P o

N C

P bcd n a b cd S ab cd I

ab cd Sa I

.fJ 1.

R T

1 2

3 4

5 T

~

- R 3W 5

5p.E4-Eg Sj,

,w* Y 5 r

N*g M h.? N g

NI

0 ve L

R A

L 3

M L

A 5

R A

M 20 E

M R

0-e d

dH R

E 9

w n

nT E

H l

9 a

a H

T e

G.

D D

T v

I 1

% E

% E D

e l

7 T 7 T D

E el R

.A

.A E

T n

C 5RR 0R T

A nl E

5 E

5 A

R aa f W f

R hi oO o

f cx

+

+

P W%

W%.

f o

a o

r 4 L 4

er 6

.A 6

0 pe 68 M 68 R 8 R

.R p

0R 0E

.E 3E 0

01 E 01 W A

2W 1

W 23 H

O O

O 5$T 5$P N

2P

$P LA L

M L

A R

A M

E M

R d

dH R

E n

nT E

H l

a a

H T

e D

D T

v

% E

% E D

l e 2T 2 T D

E el

.A

.A E

T n

P 5RR 0R T

A nl 5

E 5

A R

aa U

fW f

R hi K

+ oO

+ o f

cx R

P f

o a

A W%

W%

o r

M 0 L 0

er 6

.A 6.

0 pe C

68 M 68 R 2R

.R p

E 0R 0 E

.E 2E 0

P 01 F 01 W A

3 W 1 W 23 S

O O

O H

5$Z 5$P N

2P 5P C

ET no i

n t

eo a

e l i r

l at e

a ca p

c sr O

s pe p

e U p p

U l

O o

a o

c p

L e

s ro l

r p

eo n

a e

U wL o

c w

o i

s o

P n t

n P

o a

w w

l i l

o l

o at u

D a

l ma c

m F

rl r

r t

eu i

e n

n h c c

x h

o u

Tr e

e u

T i

o i

R v

l t

C d c i

F d) a ee e

t en l

w t R l

a n

t w u

o 4

a g

r o

ao c

L 1

l o n

e r

l d r

T uw i

p t

ut i

M R

mT S

o u

me c

R i

n e

iS e

P E

S -

I N

S(

R L

SN a

b c

d e

f I

{

1 m

r e

o ll e aah n

mcT

.i o

rs l

)

a t

ep

.P E

a o

hu)S m

U l

t t

PP L

v t

eS e

e h P (H A

a h

V r

rTI t

o (t

E w

e c.

e n

L o

s

)ti r

B gP n o o

l i

A f

o n Si p c

W n

iPot r

O tLpe e

1 o

a(t s L

A. 1 A.

t r

e p

L o

A et sr

  • N5 H

r pn e

l oirw p

an o eo g

dpwp e

et o h

i s

t i e ph fs g

r d

i ei n

crth e

S n

a ee a v

I o

pwie o

N i

e sodh I

t t

pet s

O a

a s

m p

P l

r t w i

rd r

T R

io t

en E

S d

n t a tM 1

l 1

r n

R

)

0 u

e e eP d

N P

w o

vh it e

O T

o c

n lA a

ot ei u

I E

l ce n

T S

f d

ywho sh A

e ot p pt i

t T

P v

l t

u r

nl de n

N I

e y

e obns eb o

E B

A.

A.

c M

1 s

a t

b e

r

  • N$

N l

(

U d

ad R

o be) e ie 2

T s Pw rd S

n a sSo pi 6

N a

c app ov l

L t

I i p( e n ro s

3 a

p y pr K

ti pb pp h

3 C

e a

t ao a

O r

m ynip s

E idt fi L

l o

u s

oee o

L U

l t

l i

apms M

B i

o A

0 n

v hct r tO ieer nR T

0 o

c st e e

R N

M e

a t O

a nw me g

Em rI o eh L

I e1 r

g-a o e p

ct T

O d

.t we r

s n6 h

s R

u ohh oo t

a c

l i

apt g f t U

n R3 s

e lf0 C

i i

n i

v e wnh el 0

R o

e3 d

e I

N p c r oe s

a C

W t

re m

al ee l

l n E

O e

ur a

psett og wh R

D s

ou r

i ri

[I ph e t s 1

Sg c

ritb e U

e n

i s

t i

l s

eF

/

r v

or T

S e

h t nd o ce s

e ee S

h t

Me(b w

n n

l l

Y l

t a

so C

d o

a8w1 i

S t p l

cRt pd n

T r

e n l

s epe ie m

r d

T I

o iw a

pl b a i t

W f

o g

ul oh M

t S

v l

h pT eaa R

o Adsp l

l l

s 3

e ei p e

0 rr E

L r

aea 1

i O

pe e

l 0

cpp W

a s.

r

.IP C

C dv o h e pS s ee s

som no N

e e r t

t gpTi gg i

d N

u C

R 0 h

c O

naI nn u c t

ea P

aa O

1 t

I T

C Tl d

n rrseS rr C

A C

i o

e e e

a ilI rh l

r al rr N

E A S t

t a

eePc ee l

E O U

I F

ab c RP r be I

e v

rwSse ww i

e o T ph oo e

v u h pL u T Pp P

I f

yo q T e

ab E

R

~

R Ma L

J 6

)

7 a

)

b

(

(

fFEA-M Y8

" F*, y g g R-N 7.I 0

D HE l

CR lI liU LWQ

)

A E

5 N RR O O I

FE 5

T ASN 5

5555 C

5555 2

R NA

  • a
  • EOL 1l 1 4

PIL 2222 II OTI 2222 1

11 IE 3

DV NR OU y

CS S

T N

E N

E_

M LO 5-E EI L

R NT h

NA I

U AR p

Q B

l l

E Cl R

l A.

A. A A.

A.

A.

A.

A RNR(T A

E C

A. A A.

SHSS HRHR C

A HRHR R

SHS N

N A

E L

L S

I E

b

~

V L

R A

U N

5

'W'W'W W 1

S LOT i

6 EIS N

NTE L

O NCT

~

3 I

AN T

4 HU A

Cr

'Q 'Q 'Q E

QQQQ

'M 'M 'N 'N h'

T WWWW Q

Q R

N L

E BM A U T R T

.S N I

L EK K

NC C

NE O

AH A. A. A.

i C_

A. A. A. A.

A. A. A. A.

A.A.A. A.

A.

W L

l B

C HNH O

A. A. A.

A.

HHN HHHN HNNH N

L HHN N

DO F/

R p

L O

t O

R

'r I

T T

a A

N t

L O

S C

x U

C M

S N

e F

R W

l O

C O

a n

T n

E D

n c

R I

i I

i o

s N

V r

S l

E h

M t

O l

l M

M g

E S

R l

i u

O u

U l

i T

e T

f u

/

R i

L N

E f

l l

O Y

O G

I iC x

N t

V S

T T

e N

t e

u O

o e

A o

e E

l T

I v

e v

l M

n v

R n

v G

e N

v S

I N

i e s

eF W

O tl a

E r

tl E

r tl A

i e ie R

v A

i M

eaa ea n

G oeaa T

oeaa l

ek l rc Bl r N

tl rc A

tl rc C

tt E

N K

aes l

L eaa D

l aes A

caes I

O C

cpn wcpnt R

ecpn D

ecpn I

e l rr O

caes S

r C

ea M

O sow osowu I

T L

pno pnoe E

epno M

epno t sow E

t sow D

t R

s R ON C

B UID N

UIDN C

DUID R

DUID M

W a

O pn O

m I

U D

R d

UI T T E

U A

F O

e a.

T C I O

N R

A A S R

abc cdCS C

E P

abcd I

abcd S

a R

RP E O I

T_

1 t

lc" R

G f

2 3

4 5

6 7

2 g oc. h R,E?

t' t* yO I

n 5(m(y 3' $

O.v e

R 3

5200-e 9

g 9

a P

G L

2 2

R C

1 1

1 2

1 1

E A.

R N

R R

R R

4 A

A A

A A

A S

S S

S S

S PUK R

A A.

A.

A.

A.

A.

A.

M N

N N

N N

N C

EPS i

)

l n

C w

E o

T d

teS

(

e e

l l

a a

c c

s s

p p

e U

U l

a c

e s

r l

r p

e a

e U

w c

w o

s o

P n

P w

w l

o l

o a

D a

l m

m F

r r

t e

e n

n h

x h

o u

T e

u T

i o

v l

t C

d i

F d

a e

t e

l w

t a

n t

u o

5 a

r o

a c

L 1

l e

r l

r u

p t

u i

M T

m o

u m

c R

R i

n e

i e

P E

S I

N s

R L

S N

a b c

d e

f I

talTROL Alm RLDCK IIRETERENTATI(M SURVEILLANCE RFiglTREMENTS M EEEEEE5 3

(a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b) Deleted.

(c) Includes reactor manual control multiplexing system input.

For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

j 1

ELE TED Requi to be ERABLE pri o and ing shu own in

/

d stratio as perf d per ecific n 3.10 (d)WheninOPERATIONALC5NDITION2.

(e) The provisions of Specification 4.0.4 are not applicable provided.that the surveillance is perfonned within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below during a shutdown.

(f) When in OPERATIONAL CONDITION 5.

(g) The provisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within I hour after the Reactor Mode Switch has-been placed in the shutdown position.

~

_.]

[

9 l

l LilERICK - UN5T 1 3/4 3-62 h e No. (I, 66, 99 AIE O 8 3g5

m mesesa m.m m

,,,,,,,,,,3

~~

=

1 sinalaTJ Tkuni %- upcak 2.

Within 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />s:

Reduce the Average Power Range Monitor APM) Scram and Rod Eleck Trip 3etpoints and A11eueble Value(s, to these applicable f single recirculation lasp operation per S t

3.3.6, or declare the assectated channel (pecifications 2.2.1 and s) inoperable. and take the actions required by the referenced specifications, and,

'The provistens of Specification 3.0.4 are not applicable.

3.

4.

Otherwise be in at least NOT SWTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b.

With no reactor coolant system recirculation loops in operation, immediately initiate action to reduce THEMAL POWER such that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in NOT SWTDolff within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

With see or tus reactor coolant system recirculation leaps in c.

operatten and total care flew

~then W het then 395 ofc peGesserefew est M sfthta the' cted zone of Figure 3.4.1.1-1:

1.

Determine the ApM and LPlWP* noise levels (Surveillance 4.4.1.1.3):

i a.

At least'once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and b.

Within 30 minutes after the ' completion of a THERMAL POWER.

increase of at least 55 of RATED TIEM4L POWER.

2.

With the APM or LPIDP* neutron flux moise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to resters the noise levels within the ragsfred Itaits withte 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by tecreasing core flew or by reducing TIENEL PERIER.

d.

With one er two reacter coolant System recirculation loops in operation and total core flow last than or equal to 335 and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THER;14L POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to 1

greater than 3g5 within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

    • Detector levels A and C of one LPipt string per corv octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

j LIIERICK - IRl!T' 1 3/4 4-la.

Amanhent Gs. N. 66 PEB 18 34

ECR # LG 9940253 Rev. 0 Page TECH SPEC MARKUP INSERT 16 (eace 1 of 4h The reactor protection system is made up of two independent trip systems.

There are usually four channels to monitor each parameter with two channels in each trip system.

The outputs of the channels in a trip system are combined in a logic so that either channel will trip that trip system.

The tripping of both j

trip systems will produce a reactor scram.

The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter channels.

Each APRM channel provides inputs to each of the four voter channels.

The four voter channels are divided into two groups of two each, with each group of two providing inputs to one RPS trip system.

The system is designed to allow one APRM channel, but no voter channels, to be bypassed.

j i

The system meets the intent of IEEE-279 for nuclear power plant protection systems.

Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A,

" Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability Trip Function."

The bases-for the trip settings of the RPS are j

-discussed in the bases for Specification 2.2.1.

Actions a, b and c define the action (s) required when RPS channels are discovered to be inoperable.

For those actions, separate entry condition is allowed for each inoperable RPS channel.

Separate entry means that the allowable time clock (s) 1 for actions a, b or c start upon discovery of inoperability for that specific channel.

Restoration of an inoperable RPS channel satisfies only the action statements for that particular channel.

Action statement (s) for remaining inoperable channel (s) must be met according to their original entry time.

Because of the diversity of sensors available to provide trip signals and the redundancy of the RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown to be acceptable (NEDC-30851P-A and NEDC-32410P-A) inoperable channel to OPERABLE status.to permit restoration of any However, this out of service t.me is only acceptable provided that the associated i

Functiou's (identified as a " Functional Unit" in Table 3.3.1-1) inoperable channel is in one trip system and the Function still maintains RPS trip capability.

i 4

)

ECR # LG 99 00253 Rev. 0 hoe TECH SPEC MARKUP INSERT 16 (cont.'- cane 2 of 4h The requirements of Action a are intended to ensure that appropriate actions are'taken if multiple, inoperable, untripped channels within the same trip system for the same Function result

'in the Function not' maintaining RPS trip capability.

A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (or the associated trip. system is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal.

For the. typical Function with one-out-of-two taken twice logic, including the: IRM Functions and APRM Function 2.e -(trip capability associated with APRM Functions 2.a.

2.b, 2.c, and 2.d are discussed below), this wculd require both. trip systems to have one - channel' OPERABLE or in trip (or the associated trip system in trip).

For Punction 5 (Main Steam Isolation Vi,1ve --Closure), this would

. require both trip systems to have each channel associated with.

the MSIVs in three main steam lines main steam lines _for both trip systems)(not necessarily the same the associated trip system in trip).

OPERABLE or in trip (or For Function 9 (Turbine Stop Valve - Closure), this would require both-trip systems to have three channels, each OPERABLE or in trip-(or the. associated trip system in trip).

The completion time to satisfy-the requirements of Action a is intended to allow the operator time to evaluate and repair any discovered inoperabilities.

The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

With' trip capability maintained, i.e.,-Action a satisfied, Actions b and c as applicable must still be satisfied.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or,the associated trip system must be placed in the tripped condition.

the associated trip system in trip) Placing the inoperable channel in trip (or j

1 would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue.

~

l I

ECR 0 LG 99-00253 Rev. 0 Page TECH SPEC MARKUP INSERT 16 (cont. - cane 3 of 4h As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability of one required APRM channel affects.both trip systems.

For'that condition, the Action b requirements can only be satisfied by placing the inoperable APRM channel in trip.

Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only' actions that will restore capability to accommodate a single APRM channel failure.

Inoperability of more than one required APRM channel of the came trip function results in loss of trip capability and the requirement to satisfy Action a.

The requirements of Action c must be satisfied when, for any one or more Functions, at least one required channel is inoperable in each. trip system.

channel per trip system is OPERABLE,In this condition, provided at.least one normally the RPS still maintains trip capability for that Function, but cannot accommodete a' single failure in either trip system (see additional bases discussion above related to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b.,

2.c, 2.d, 5 and 9).

The requirements of Action c limit the time the RPS scram logic, for any Function, would not accommodate single failure in both trip systems for a typical four channel Function).(e.g., one-out-of-one and one-out-of-one a this logic arrangement was not evaluated in NEDC-30851P-A for theThe redu

12. hour Completion Time.-

Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associated Function must have all required channels OPERABLE or in trip (or any combinatic 6 in one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851p-A, which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> allowable out of service time as allowed by Action b.-

To satisfy the requirements of Action c, the trip system in the more degraded state should be placed in trip or, alternatively, system should be placed in trip (e.g.,all the inoperable channels in that trip a trip system.with two inoperable. channels could be in a more degraded state than a trip system with four inoperable channels if the two inoperable channels are'in the same Function while the four-inoperable channels are.all in different-Functions).

The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e., what +NHME the plant. is in).

If this action would result bpod; wd cawda y

\\

ECR # LO PS4033 R9v. 0 1

Page TECH SPEC MARKUP.

INSERT 16 (cont. - oane 4 of 4h I

i in a scram or RPT, it is permissible to place the other trip i

system or its inoperabl'e channels in trip.

based on the remaining capability to trip,The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable!

sensors available to provide the trip signals,the diversity of the the low probability of extensive numbers of inoperabilities affecting all

{

diverse Functions, and the low probability of an event the initiation of a scram.

requiring As noted, Action c is not applicable for APRM Functions 2.a, i

2.b,

}

2.c, or 2.d.

Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM 2-Out-Of-4 voter and other non-APRM channels for which Action c applies.

For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel.

inoperable APRM channel in trip are the only actions that willRestoring restore capability to Accommodate a single APRM channel failure.

If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action (e.g., as in the case where placing the inoperable channel in c

trip would result in a full scram), Action d requires that the Action defined by Table 3.3.1-1 for the applicable Function be initiated immediately upon_ expiration of the allowable out of service time.

The Two-Dut-Of-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware.

The voter Function 2.e is accomplished by the 2-out-of-4 voter hardware which includes redundant outputs.

The analysis in NEDC-32410P-A took credit for this redundancy in the justification for the 12-hour allowable out of service time, so the voter Function 2.e must be declared i

inoperable if any of the 2-out-of-4 voter hardware's functionality is inoperable.

The voter Function 2.e does not need to be declared inoperable due to any failure affecting only the APRM Interface hardware portion of the Two-Out-Of-Four Logic Module.

t

3 /a : 3~ Ie r==wmiTion BASES 3 /a. 3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION _

The reactor protection system automatically initiates a reactor sc Preserve the integrity of the fuel cladding.

a.

b.

Preserve the integrity of the reactor coolant system.

Minimize the energy which must be adsorbed following a c.

loss-of-coolant accident, and d.

Prevent inadvertent criticality.

INSER7 16 This specification provides the limiting conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of se because of maintenance.

for brief intervals to conduct required surveillance.When necessary, one c reacter ion sys s made op s two indeperdnt trip ystems.)

There usually channels monitor each arameter w i two ch els in each ip system, he outputs the channel n a trip s tem are ined in ogic so th either cha 1 will trip at trip sys The ripping of be trip syst will prod a reactor sc The sys meets he intent IEEE-279 f nuclear p r plant protee on systems Specifi urveillance ntervals an surveillance maintenan outage mes have determined accordance ith NEDC-3085:

" Technic Specific ion

}

Improvese Analyses f BWR Reactor itection Sy es," as a roved by t NRC and cumented in e NRC Safety aluation Pickens com A. Thad i dated July

, 1987.

bases (SER) (letter to rt

.A.

of RPS re discuss in the bases r Specific ion.2.2.1for he trip se ings u

Automatic reactor trip upon receipt of a high-high radiation signal

~

from the Main Steam Line Radiation Monitoring System was removed as t of an analysis performed by General Electric in NEDD-31400A.

the results of this analysis as documented in the SER The NRC approved BWR owner'r Group from A.C. Thadt.ni, NRC, dated May 15,(letter to George J. Beck, 1991).

The measurement of response time at the specified fr assurance that the protective functions associated with eac uencies provides

~

taken for those channels with response times indicated as n channel are total channel test measurement, provided such tests de IM5fSI overlapping or j 7 c-channel response time as defined.

demonstrated by either (1) inplace, onsite or offsite test measureme

/

(2) utilizing replacement sensors with certified response' times.

analysis in NED0-32291-A. testing for the sensors as noted in Table 3.3.1-2 is no Response time components is required as noted. Response ti,ae testing for the remaining channel MERT 18 M

JAN 0 7195 LIIERICK - UNIT I 8 3/4 3-1 Amendeent No. 53,89,132

ECR # LG 99 00253 Rev.O TECH SPEC MARKUP INSERT 17:

... applicable except and Neutron Flux - Upscale trip functions (Table 3.3.1-2,for APRM 2.b and 2.c).

Items INSERT 18:

For the digital electronic portions of the APRM functions, performance characteristics that determine response time are checked by a combination of automatic self-test, calibration activities, and response time tests of the 2-Out-Of-4 Voter (Table 3.3.1-2, Item 2.e).

i 1

ECR 99-00253 REV.0 PAGE INSERT 19 BASES FIGURE B 3/4.3-2 APRM CONFIGURATION LPRM 1 LPRM 3 LPRM 2 LPRM 4

+= ;

APRM 1 APRM 3 APRM 2 APRM 4 n

b A{

h

~

s F

y P

\\F APRM APRM APRM APRM 2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4 VOTER Al VOTER A2 VOTER 81 VOTER 82 H

U U

U RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL 81 RPS CHANNEL 82 RELAYS K12A & K12E RELAYS K12C & K12G RELAYS K128 & K12F RELAYS K12D & K12H ADD AS NEW PAGE B 3/4 3-9 j

SAFETY LIMITS ANO LIMITING SAFETY SYSTEM SETTINGS b,

2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The reactor protection system instrumentation setpcints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

  1. d With a reac' tor protectic system instrumentation setpoint less conservative than the value shown i the Allowable Values column of Table 2.2.1-1, declare the channel inoperabl
  • nd apply the applicable ACTION statement requirement

(

of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.

The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

Adc[

1 LIMERICK - UNIT 2 2-3 E25m i

j

r v

~

CC OO C

W 2

3 22 at

.w w N

.E gg

>W M 01.-

M Q

-U I

@1 W

gy

.g a a v.

.=

W Di W

mm

+ wJ

+

J ch M

O mm "m

gg_

s* 5

=

-2g n

EW Nb a

EM O

m

o.,.

w 3

==

N M

.=W W

o M

C4 Nb O

mE m

4 M2 m

,=e c N

w mO N

O MW GOK MW m

m-m m

nu gg 4

M M

M M

E M

W

,M c

M MM N,

G EW Lt>

D'"

E 44 4 4 CC Q -

5 d

C CO s.s.

,_w a

.=

M C

W O

5

%W g

eW TT

.w==

e-o w

H

>m W

MO M

C \\

D.=

s a adC 2

=

>=

T

.U' l=4

.N N

W W

We H

m g

W H

M E T

m NN 5

2.=

wa

+5 a

M

~~

m-

'TE PA

~E a

P N-4

-C5 8 88 a=

o a

mm O

w, O

'D 8

o w

=

W

. s.

r mm M

A.

Nb

-MZ O

N&

M w

e N E

+=e O m

OWm O

C

  • W >-

M M N

  • =e NN g

N M

M M

M MZ E

W M

N M

Q M

MM b

W 4 >

sEC M

5 s

B l

3 5

W e

O A,

M W

R G

o

-x e

C s.

Di O,

m

=

Q..

Q.

=

6 a.

e-O O

E Z

s W

O O

.c Q

c b

M b

O O

C W

r==

O b-g b

I W

"O 6

Y E

O c

e E

E W

O N

J J

N W

=

1 4

b U

s.

m U

E W

w O

=

.t.

j W

E 4

U O

3 e

.=

M..

a.

.U.

b b

a s.

=

Es

. h.

4 Q.

Q. %.

s==.

4 W

O.

r== 9

% On D

4 05 4 W

g I

OW M

.k s' k b

6 bb M

3

=

=

=

=

E m.

. u.e E%,

T5 k T.

5 E

E:3 En l,.u

=

a

=, 0

.-m E

.= s.

0 g

O%

a UWm ee e

W e

W.O 5

s.

e

=W.

==

W r= 4 s.

m g

g a

O O

M W

>O WW Y

U C

5 NE ya e

e 4

4 J

L CD.>c=

g 4

U W

W W

W L

U **

=

=

=

a

=

w..o

.=

A.

ota.

N m

~

T Nd f

FEB 161995 LIMERICK - UNIT 2 2-4 Amendment No. #, H, 52

0 ve L

R A

D M

2 R

0 E

d d

0 e

H n

n

-9 g

T aD aD 9

a P

E E

G D

%T

%T D

L E

3A 3A E

T

.RR

.RR TR R

A 3

E 8

E AE C

R 6fW 5fW RW E

oO oO O

f

+

P

+

P fP o

o W0L W0L L

A

.A

%A 0R 67M 67M 7M

.E 61R 61R

.R 0W 1E 1E 8E A

A 2O 0

l 0

1l l

i i

i 5P 5 sT 5 gT 1T N

N LA M

RE d

d i

n n

iT aD aD E

E D

%T

%T D

E 8A 8A E

T

.RR

.RR TR A

2 E

7 E

AE R

6fW 5fW RW P

oO oO O

U f

+

P

+

P fP K

o o

R W6L W6L L

.A

.A

%A A

0R 66M 66M 3M M

.E 61R 61R R

5W 1E 1E 8E A

A.

C 1O 0

1 l

1 0

1I E

$P 5 sT 5 sT 1T N

N i

I P

S l

iCE I'

no i

n t

eo a

)

li r

n at e

w ca p

o sr O

d pe t

Up p

e O

o S

o p

L

(

ro e

eo n

e l

wL o

l a

o i

a c

Pn t

c s

o a

s p

li l

p U

at u

U r

ma c

e rl r

t eu i

o x

hc c

x V

u Tr e

u e

l i

R l

v 4

F dc F

i ee e

t f

n tR l

n a

O o

a g

o r

1 r

lo n

r e

t t

uw i

t p

u T

u mT S

u o

O R

e i

e n

E N

S-N I

2 S

N a

b c

d e

I

2.2 LIMITING SAFETY SYSTEM SETTINGS BASES 2.2.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS The Reactor Protection System instrumentation setpoints specified in Table 2.2.1-1 are the values-at which the reactor trips are set for each para-meter. The Trip Setpoints have been selected to ensure that the reactor core and reactor coolant system are prevented from exceeding their Safety Limits during normal operation and de.lgn basis anticipated operational occurrences and to assist in mitigating the consequences of accidents. Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is equal ~to or less than the drift allowance assumed for each trip in the safety analyses.

1.

Intermediate Range Monitor, Neutron Flux - High The IRM system consists of 8 chambers, 4 in each of the reactor trip systems.

The IRR is a 5 decade 10 range instrument.

The trip setpoint of 120 divisions of scale is active in each of the 30 ranges. Thus as the IRM is s

ranged up to accommodate the increase in power level, the trip setpoint is also ranged up. The IRM, instruments provide for overlap with both the ADRM and SRM systems.

4 The most significant source of reactivity changes during the power

. increase is due to control rod withdrawal.

In order to ensure that the IRM provides the required protection, a range of. rod withdrawal accidents have been analyzed.

The results of these analyses are in Section 15.4 of.the FSAR.

The most severe case involves an initial condition in which THERMAL POWER is at approximately 1% of RATED THERMAL POWER.

Additional conservatism was taken in this analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed.

The results of this analysis show that the.

reactor is shutdown and peak power is limited to 21% of RATED THERMAL POWER with the peak fuel enthalpy well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, the IRM provides protection against local control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

Fhu - UpacA le-W(sef bER Averace Power Range Monitor EdRON

,{, A J

For operation at low pressure and low flow during STARTUP, the APRM scram setting of 15% of RATED THERMAL POWER provides adequate thermal margin between the setpoint and the Safety Limits.

The margin accommodates toe anticipated maneuvers associated with power plant startup.

Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system.

Tempera-ture coefficients are small and control rod patterns are constrained by the RWM. Of all the possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power increase.

LIMERICK - UNIT 2 B 2-6 AUS 2 513H

E 1

ECR O LG 99-00253 Rev. 0 TECH SPEC MARKUP

' INSERT 1 A:

The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter chann The four voter channels are divided into two groups, of two each, with each group o providing inputs to one RPS trip' system. All four voters will trip (full scram) when an APRM channels exceed their trip setpoints.

LIMITING SAFETY SYSTEM SETTINGS

]

BASES REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor (Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high_ local peaks and because several rods must be moved to change power

)

. by a significant amount, the rate of power rise is very slow.' Generally the heat flux is in near equilibrium with the fission rate. In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 55 of RATED THERMAL POWER per minute and the APRM system would be more than adequate to_ assure shutdown before the power could exceed the Safety Limit.

The 155hre#tytyf4Muf.tri ins acti,ve un g t Q mode swite gl iv ced in the Run position.

gggugggg g geggg }gg4c,,gg

[_fgx _

p The APRM trip system s ca ibra using eat alance da a taken during steady state conditions. Fission chambers provide the basic input to the system'and therefore the monitors respond directly and quickly to changes due to transient operation for the case of the Neutron Flux mersis riam turam L)pscAlr setpoint; i.e, for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel, w Q The APRM setpoints were selected to prov e a equate margin for the Safety Limits and yet allow operatir.g margin that. reduces the possibility of unneces-sary shutdowii.

3.

Reactor Vessel Steam na== Pressure-Hiah High pressure in the nuclear system could cause a rupture to the nuclear system process barrier resulting in the release of' fission products. A pressure increase while operating will also tend to increase the power of the reactor by compressing voids !Ns addin reactivity. The trip will quickly reduce the neutron flux, cot.Ateracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious

, trips. The setting provides for a wide margin to the maximum allowable design pressure and takes into account the location of the pressure measurement compared to-the highest pressure that occurs in the system during a transient. This trip setpoint is effective at low power / flow conditions when the turbine stop valve and control fast closure trips are bypassed. For a turbine trip or load rejection under these conditions, the transient analysis indicated an adequate margin to the thermal hydraulic limit.

LIMERICK - UNIT 2

,B 2-7

. Amendment No. 48 i

J4ll 31 1995

ECR # LG 9M0253 Rev.0 TECH SPEC MARKUP INSERT 2:

For the Simulated Thermal-Power - Upscale setpoint, a time constant of-6 0.6 seconds is introduced into the' flow-biased 2

APRM in order to simulate the fuel thermal transient characteristics.

the flow-biased setpoint as shown in Table 2.2.1-1.A'more conservat

{

t h

=

Refer to PORC 3,. 3 mS = " -'a = "

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION I

LIMITING CONDITION FOR OPERATION

, 36, 53 3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

LsM3 a.

With an r of ERABLE channe less than equir by e Mkfinus OPE LE tha eis y Trip S em T r

t une t p sy lace th inoper e ch nel(s) nd/or at tr p sy en in ) e tri ed c

ition* within 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. The rovis ns o Specificatio /.0.

are 3

ot appl able, b.

With en

of 0 RABLE channe s le s than requir by the Mi mum OPE ' LE Cha nels pe Trip stem r quir ment f both rip,tystems, pla at 1 st one rip syt es**

th tripped condi on)(ithin 1 ur a

take e ACTI requirfed by able.3.1-1/

/

SURVEILLANCE RE0UIREMENTS 4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the perforisance of tiie CHANNEL CHECK,# CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1, 4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simula.ted automatic operation of all channels shall be perforised at least once per 24WoMh4 4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 24 months. Each test shall include at least one channel I

per trip system such that all channels are tested at least once every N times 24 months where M is the total number of redundant channels in a specific reactor trip system.

inopera le ch nel ne not be laced n the rippedcondit'onwhe[ethi uld ca e the rip F ction t occur.

In th e case, the noperdle anne shall resto to ERABLE atus w hin 6 ours o the TION quir by Table

.3.1-for th Trip F nction all taken.

    • The rip stem n not placed n the ripped condit,on if is uld ca se th Trip F nction occur. When tripsstempnbe aced the ipped condit n with causi the T p Fun ion t occur place the t ip yst with the most i operable channe s in t tri conption;ifbo):

sys have he s number o inope able e nnel placefeithertripfyste f

in a trip d cond ion.

/

bEIEka LIMERICK - UNIT 2 3/4 3-1

.= 4=+nt No. 17, 34 JUL 2 8 IfH i

m e

ECR # LG 99-0)1i3 Rev. 0 e

L TECH SPEC MARKUP

~

l INSERT 3:

ACTION:

Note:

Separate condition. entry is allowed for each charmel.

With the number of OPERABLE che.inels in either trip system a.

for oneoor more' Functional Units less than the Minimum i

OPERABLE Channels per Trip System required by Table 3.3.1-1, within one hour for each affected functional unit either verify ~that at least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable channel in the affected trip system in the tripped condition, b.

With the number of OPERABLE channels in either trip system less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) or the affected trip system ** in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

With the number of OPERABLE channels in both trip systems c.

for one or more-Functional Units less than the Minimum OPERABLE Channels per Trip System required by' Table 3.3.1-1, place either the. inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

If within the allowable time allocated by actions a, b or c, it.is not desired to place the inoperable channel or trip system in trip (e.g.,. full scram would occur), Then no later than expiration'of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

-For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE or tripped.

For Functional Unit both trip systems shall have each channel associated with 5,

the MSIVs in three main steam lines (not necessarily the same main steam lines for both trip systems) OPERABLE or tripped.

For Function 9, at least three channels per trip system shall be OPERABLE or tripped.

For Functional Units.2.a.,- 2.b, 2.c, 2.d, inoperable channels shall be placed in the tripped condition to compl with Action b.

Action c does not apply for these Functional Units.

f

I-ECR

  • LG 99-00253 Rev. 0 l -

TECH SPEC MARKUP i

INSERT _41

... months, except Table 4.3.1.1-1 Functions 2.a, 2.b, 2.c, 2.d, and 2.e.

Functions 2.a, 2.b, 2.c, and 2.d do not require separate LOGIC SYSTEM FUNCTIONAL TESTS.

shall be performed at least once per 24 months.For Function 2.e, tests LOGIC SYSTEM conditions at the APRM channel inputs to the voter chann check all combinations of two tripped inputs to the 2-Out-of-4 voter, logic in the voter channels.

l i

l l

Be"er

o.Pv,RC Posi': ion #w.-:,,

c

~.... g

. _k......

~

e-e w

m m.

y, N m ld

-Y i

E i

m 3

M i

^

. ws N M M

N NN NN N

N N

M 8

EE

!.e"'

5 o

r I

o E

'<\\

O M'Q o

3 A

5 a

n W

m

"!gg 6

O O

r m

g--

.(

x, Nmh $

yf fg W

t N

Nm m a

asl 1 19 a

a a

e 3

W E

4 a.

E 3

g g-

' g-a 3

e 2

8

- I e=s W

u Jm 3 e 41

.33 5-5

)g I

GEE S

4

.?g 5 "8

c!5 5 ac 5

c m

3 e

g g

e as :-

=

-=

e s

.g g

3~g l aiss a

g s e

" 13 e

8 3

Ws W3 SG 4

.A E

4 i

a 4

E E

r ~~

C A

A 4

i 3/4 3-2 Amendment No.7 LIMERICK - WIT 2 JE 3 e BN

0 v.e R

3 5

2 I

4 4

'41 41 00 e

9 g

9 a

P G

L RC E

)

)

)

) )

m m

m mm 22

(

(

(

( (

3 3

3 33 i

2 1

1 12 12 P

I lK R

AM C

EPS l

iC ET e

)

l n

a w

c o

s d

p t

U eS

(

r e

e e

l w

l a

o a

c P

c s

s p

l p

U a

U r

m e

r t

e o

x h

x V

u T

u e

l l

v 4

F d

F i

e t

f n

t n

a O

o a

o r

r l

r e

t 5;

t u

t p

u u

m u

o O

T e i e

n R

N S

N I

2 E

SN I

a b c

d e

Refer

':0 PORC TABLE 3.3.1-1 (Continued) kEACTOR PROTECTION SYSTEM INSTmh.mauun ACTION STATEMENTS ACTION 1 Be in at least HOT SI"JTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

-ACTION 2

'V 1

al i le'7t 1 ins d

t co k

r vi i

Sh sit n

/

l>EIEd6d in ACTION 3 Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 4 Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

ACTION 5 Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HDT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 6 Initista a reduction in THERMAL POWER within 15 einutes and reduce turbine first stage pressure until the function is automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 Verify all insertable control rods to be inserted within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 8 Lock the reactor mode switch in the Shutdown position within i kw.

ACTION 9 Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

O e

9 LIERICK - UNIT 2 3/4 3-4 AUG 2 5 bis l

t

last.t aa1-1 gentinued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS l

(r.)

A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for l

required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE-channel in the same trip system is monitoring that parametar.

(b)

This function shall be automatically b sed when the reactor mode switch

~

is in the Run position @hVthef 4ds9CF IVnts defwrfcS %.

2 (c) p

" ing s*

11 ed f the c

it pri to nd s

dur ti any rod wi mary EE ti per ifi ion 3 0.3.

L (d)

The noncoincident lets reactor trip function logic is such that all channels go to both trip systems. Therefore, when the *s link.s* are removed the Minimum GPERA8LE Channels Per Trip System is f 6 IRMs (iEifTEMI.

(e)

An APRM 1 is inoperable if there are less than%LPRM inputs per level or less than LPRM inputs to an APRM channeg 3

ao l

(f)

This function is not required to be OPERA 8LE when the reactor pressure l

vessel head is removed per Specification 3.10.1.

i (g)

This function shall be automatically bypassed when the reactor mode switch is not in the Run position.

4 s

I 5

t (h)

This function is not required to be OPERA 8LE uhen PRIMARY CONTAINMENT INTEGRITY is not required.

(i)

With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

(j)

This function shall be automatically bypassed when turbine first stage pressure is equivalent to a THERMAL POWER of less then 305 of RATED THERMAL POWER.

(k)

Also actuates the EOC-RPT system.

P.a 2 & _Yner,::% 2 e e N T o)

Rk%. ~,% m, mm s,su y

N rp4uped/fo/sd.ryi rplis [umn/d /er[pec/ic/1od.p(10((37pd@,

Refer to PORC f p ' u,n e h a og iC me ci LPRH u e +s Position #

m.

.m h-6 >'e ssrs "~

& /ne APRH cn/:banhbJ (WEEKLY }nia ce//bnNod)

LIIERICK - UNIT 2 3/4 3-5 Wt No. 7,17 DEC 17 lig

ECR # LG 99 00153 Rev. 0 TECH SPEC MARKITP INSERT 6:

(n)

A channel or trip system which has been placed in the I

i tripped condition to satisfy Action b. or Action c. may be returned to the untripped condition under administrative L

control for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

i i

)

i t

l E

D M

E Il 99 5

5 6

T 6

8 Tsd A. A.

A.

0 0.A.A.

5 0

0 E

0 0

L A.

A. A.

A.

A.

En

.0 o

l 0

E 0

0 So NN N

sNN s

s s

D N NN 5

5 N N.

Nc Oe PS g

S(

n E

e it R

tisn eu t

p eimr it t

g en si nd ou h

sc S

pl EM en 1

Ri I

T

.l E

sne S

c N

tn b

?

O ia uh P

r cc S

+ 4_

igr ER M

A.

R cn M

E i

r E

S Sn T

.Pi Iu 3

S a era r

m Y

3 S

b uee shr E

t_

ot N

LB O

l e

I crh A

ot T

T tf C

E s

r T

t ago O

f nf R

h 3

e h

i P

g r

g ets vst i

l u

i R

H e

s H

l ei O

v o

n atm n v T

e l

o i

C L

C el i

m A

d e

l e

t l

oie r

e r

i E

t rtv

. R e

u w

v u

s t

i S

s o

e e

s o

t net s

L v

L o

P osa d

e l

l cnr e

r a

r e

C n

s r l p

P V

e r

w ot r

o aa s

l t

u t

o eps t

nsi o h cc e

e n

a s

sw d i e nd tg ss m

v o

W o

ao t

i b ri e i

n pd C o

e i h

r l

FL u

i r

mr nH o

e D

L t

g e e

C h

umdi o

M sw a

i mt e-S M-o m

r l

H ut v

toaur q

e a

e o

l l e h

i ffee e x c XxB e

t s

o mh e

ar c

o hr gue n

t a

I Vsc v Vu t

Mu dt lwh S

W e

n a

l v nt l

s i te e

aFi R

F o gi e '

u grw V oe S

r e ai a

ls w

rtor R

t itl l

l n

i s

rTS rr aata r

na nnF aa e

e otn e or e oo rc s

s L

s a

p tP e

m siec tre w rr es s

s e

h lt o

n d

a mci t

gh e

e m

r c ea t

o1 o

r a tp o

ming

.T iuo P

V V a

P s vo S

C1 M

c oy ol ao den 1n o e

i el 0

S I

LF e

e r

reml N

eNI e

2ID r

r t

D l

D f

r U

m g

o o S E

l n

np o

l soy r

a t

t T

e m

i ii t

a difa

.L e

r c

c n

E w

a b br c

u h

e nl t

e a

a i L

y r r

rT a

n rroe A

e e

a E

r

c..

u u

e a

N n..

v uocr I ab A a c$

R R M D D Sab T T

R M O

ss I

andd T

eenn C

1 MSaa N

J 1

2 3

4 5

6 7

8 9

0 1

2 D

1 1

1 O

E r*i9 y 8 c$ ~

g ym

.3' @&j i, = bw

- i f

O v

e e

ee R

3 rnhm 5

aota 2

i s

SU st e

ca3e 9

g 9

a iv.h P

G.

ni1t ot 1

rc3f K

ta.o c

4 F

em t

I l onr eroa fi p l

t adad tece i ri r 5

gufe i sid 0

daci A.

A.

A A.

0 ees lmpn N

N N

N s

e So ne c

nbf a

oe hl r

cl na ao rhil este t

an P

oecn l

V mi a i

K ilh R

4tpc p

AM fear os e

C

- nrt E

tooo P

u pF v S

Ose 2 R'. 4 l

i C

yf E

d aO e

T n.l -

)

l n

a aget w

c nru li O

o s

d p

ett -

t U

nsu2 e

nep atth S

h uc

(

r ceoa m

e e

e e

Mir l

w l

Rtem a

o a

P to c

P c

Aeor s

s sVf p

l p

,n U

a U

r so4s4 m

e rpt r

t osfu e

o teOp=

x h

x V

cr tN u

T u

e e

tu l

l v

4 tmuoo F

d F

i eoO s

e t

f drt n

t n

a O

f2n, o

a o

r n

al r

l r

e t

o t ed e t

u t

p u

r ph n n 7

u m

u o

O 8

tmtun e

i e

n ue da T

N S

N I

2 T

exfeh R

E R

Neorc S

ES N

a b

c d

e N

I I

b l

l b

A D

HE CR II HU LWG A

E 2

{

NRS OO

(

IFE 5

))

TASK

/y l1 Q

((

RNA 5

3

)

D 55 EOL k

h E

_g PIL

(

(

/

T OTI p

5 2

2 2

E 2

22

/

lE

/

L lV E

E1E 2

s 2

23 1

I.

1 1

1 1

1 D

1 11 0I y

/ /

CS S

/

T n

N a

E l

i E

Lm

'A R

Ei 5,

l lT u

g Hm

)

)

D A

lA e

e

/

E E

(

T tl Ci

)

)

E A.

d A.

L L

E AA

(

A E

A CN C

RR N SS W W S

R R

R D R RR A

LL I

E VRU L

S LA EN 1

ll NOT D

0 1

NIS a

E 1

ATE T

T HCT

)

)

)

)

E 1

A CN jJ j

j L

T U

(

(

(

(

E 3

N F

WW W QQ Q

Q Q Q

Q Q D Q

QQ 4

E B

E IR L

T B

S A

N D

L T

EK

)

E I

NC g

T NE

)

)

(

E M

AH b

A.

b 0,

A, A.

L A.

E HC

(

(

E T

C

$S M

S 5

S M /'S S

S N D S

SN S

Y

/

S NO I

TCE T

O R

)

P f

(

r R

r l

d e

O s

e a

e l

t T

rh t

c p

e e

n a

E og i

s m

m v

o W

ti n

p a

o e

i h

E iH o

n U

l D

L t

g e r

t n

M w

d C

a i

m e

l o

o e

m r

l H

u t

M-e d

s w

a e

o l

t x

m xt xa o

e t

s o

i e

u l

e f.

th a

I V

mh ev a

S lB F

v Sg W e

sc R F F

i e

i ee r

e nt i

t w

t l

lH l3 nr u

gh a i Rn a

r ne o

s a a

e e

iu s

rgrw o

r e ol l

i c

s -

sl Ls s

aiTS er e

w ra F

H s

s se o

e hH ee ev ml r

c lt tt p otc

,fnw Vr Ve aC P

s ea T

au o

P s

I ie n

p

)

o u

l e

i vo dN I

e U

1 2

I D

rs r,

t -

D l

Dl el IN e

g os o

S E

l ELF I

m a

te tw e

T e

mv L

r r

cr co nv E

w ae A

e.

e aP aL il L

y rLab t

v e

e aa E

r c

l lo na b

A a d

R R

MV D D S

I I

T CN U

l 2

3 4

5 6

7 8

h.

F CR?R'$[

R g y~

kE Eg pM Es 5e u s

_9

. 1 b-

O v.e 2

2 R

3 5

2 I

1 1

1 200-99 G.

1

)

g R

(

C R

R E

)

)

d d

A.

A.

(

(

R W

W N

N

)

)

1 e

(

(

A A

A A

A S

S S

S S

PUKR

)

A b

(

M A.

C D

D D

N D

EPS HC ET e

)n l

w a

o c

d s

t p

e U

S

(

r e

e e

l w

l a

o a

c P

c s

s p

l p

U a

U r

m e

r t

e o

x h

x V

u T

u e

l l

v 4

F d

F i

e t_

f n

t n

a O

o a

o r

r l

r e

t

9 t

u t

p u

u m

u o

O T

e i e

n R

N S

N I

2 E

SN I

a b

c d

e

j Ad oht

~

2l b

5 5

D b

g l

HE 4

4 n

t n

.oa

.g CR 2

dM 1

oi o

2.t h

/

eR w

II i

s 1

tP s

t 0p HU 3

3 i

A WQ aA id a

1.ud t

rt l

ec c

E o

t es ue t

n i

LRR 2

2 rr t

9. o t a ch b[a AO a

r NFE fe lt j

e1 t

3fl f

k al a

O C

1 I

1 1

h1 r c

o i

ISN ct i

o e

rdr c

pt s

l sc p

oet TNA e

ua su a

t s

l n N

AOL R

t ej

_c ae 1l o

)

RIL ETI rr ud t

r

.ac PIE ao lA n

e 0t (r

tf a

ODV i

p 1 so s

v

, o NR i

.nn p

OU p

t r d

9. i CS ha rR a

e R "'

ed t

cl eE epa v

3rn e

t ar wW d

s a

p ee oO o

n ne r

d S

v pP f

. C e

ob,

o W#

T go n

)

t r

i d

f N

n eL H

u tye ef s

E io.

hA P

rt s

aad M

rts tM F

oc i

cmn p

E u

y R

o E

s a.

i e

R dda oE t

(i pa m d fyp I

ed tH ld a

ies

)

sn T

s beh e

chu U

a

$* m O

ei7 m

e r

adt gh et s s

(

dm rD n

'u r

o p

n E

N ars oE.

n o s fr l

S

,e 6

R O

ceu fTR h

ec p e

2. b

)

I eto NAE e

s r

E LT A.

A.

dei oRW c

r orst s

o t

C EA R

R N

N dv c

O e

ns e

e 9.l c

l a

N NR p

f 2

e fP d

w oe v

3a A

NB 3

  • d

)s

/er oo e

o l

t d

h L

AI 1bp t

L L

HL

[s p a e

ens n

CA

%A ul r r

vo 6

I

)

E tl e l5M i

l ql au u

oiS p

C d

V slh e2R b

l e a pt s

mtN E

e e

R aat n2E u

mr s

eaO d

u U

eh n

H f

r oa e

rcI i

i hE l

e a

p sfA M

+a n

S l sn ART o

t r

iT

  • f f

t N

tsh cWD f

v t

diR g

n O

alt OE i

.e r ocE r

Non# PLR e

MPT t

h o

ret a

< o I

rn R

A c t p

t pL m

.C T

L

.-(

A A

Ofad AA A

f mhf a

o e

,i c

lSA g

nS T

LN I

he Mf f

e so e

rrE 1

N E0T Q

Q R

W Tpcm eRo e t r r

t eR o

e E

N1S Aa r

hE ag n pO d

d *e 1

M NTE RlMo tH%

t 0

eot e

o C

t U

ACT BrRf T2 0

rti h

cd r

1 R

HN I ePr f

f 0

pas t

e p

T CU LvAe onn o

1 l u ove s

4 3

S F

N Ao p

ea e

l n

t om 4

I C

d thh r bsr e

mi g

d" ont nwt n

e e

h eet d

E M

Ltao e

p otdo w

l r

)r L

E E

n mI r pl E

aei u

ec b

s NdM t

e e

e B

T L

NeRf sNt c )

fe L

cbh d

A S

EK mr AnIi uOa u

n wt h

B i

t T

Y NC A.

A.

A.

A.

Hi jI e j

o orc A

l o g

e S

NE Cme dTr d

t pn E

p n

3 r

ae R

pt g n

AH N

N N

N rhn aI g Wo

/e N

HC met w D

t O

C ot o

ens s

sso P

adi a e pO er o

I T

redd hoi h

e r u

tru.

t C

fdnt tC t

l oh e

oiDn e

E au e

ctt b

Nu o f de h

fLc t

c q i n

pe TO eb2s oAn o

a ggn o

e

.t i

R d

Ne a

n t

.rei r

r P

ulNd tor p

d ti n

cs p

u llOe sI e e or d

weno e c>

e caIl iTf R

r xhTl sAf s

a Di r

ral J

bh i

t us e

arapy O

u t

esI o nRi n

r l

i d

l g n

T s

s Dr oEd b

w l

u hsin o

C o

a esNt cP i

o.

l q

tk ei A

z l

F1 n

blOn Oe l l)td e

invt E

ht E

C 1

o eCo l

t 1 a fwsh r

wirs R

e0 yn c

l gu 1 c

oes l ui i

v w

t anL anl l

t d

sx A l po hi maAh hio e

rd o

og e R t0 e

ail cs hNc srs s

b e

e n rnd E

c v

Vr to scOa ub c%

ies f e+

l T -

iP r

I e nda n

1 s

ltrt O cm a

l w

oMT o

l s1i orii V

o

,e Sn tRAg iee a

i1 rou oa A

rer w

cSRn tch t h

r s

n th qm p

t ru eo m

e Ei ant a

s u a o nseo r

t o

nus dd a

tdPr ra s(

i o

rr o

t oss ot r

enOu blf s a t

cS f

T S

Coe Mu c

da d

i ai N

wae c

Pr p 4re I

l r h

S g

lb 1

R

'o t

n yR o d N

e eCP rS nMnsDa l

P ei u

.n fe e

w U

n n

o l

oRieEcte L y-r f1.ae v

0 i

i t

a rI rdT an f

c hso C

L b

b c

u t

eaEsen i p v,'

s0ht rm u t

A r

r a

n uet cLiha e t oo i 1t u

q L

N u

u e

a ehneEh h

h yorh h.ifoe pb O

T T

R M

NTedDTac T

I Vfpt T3WIhb M

T o

C r)

N

))

))

)

))

)

))

)

T U

9 0

1 2

ab cd e

fg h

1j k

A 6 F

1 1

1

((

((

(

((

(

((

(

R t

f ggaga g.* $Q c

hEMM gq ~

$ Y"

" nh g.

c L

F-ECR # LG 99 00253 Rev. 0 Pw TECH SPEC MARKUP i

INSERT 10:

CHANNEL FUNCTIONAL TEST shall include the flow input function, excluding the flow transmitter.

4 INSERT 11:

Calibration includes the' flow input function.

s

INSTRUMENTATION 3/4.3:5

  • CONTROL R0D BLOCK _ INSTRUMENTATION LIMITING CONDITION FOR OPERATION J.3.6.

The control.. rad block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with'the values shown in the Trip setpoint column of Table 3.3.6-2.

APPL'ICABILITY: As shown in Table 3.3.6-1.

g nggt Asb.

a.

With a control rod block instrumentation channel trip setpoin conservative than the value shown in the Allowable Values tolumn of Table 3.3.6-2, declare the channel inoperable until the channel is restored to 0PERABLE status with its trip setpoint adjusted consistant with.the Trip setpoint value.

b.

With the number of OPERABLE channels less than required by the Ninimum 0PERABLE Channels per trip Function requirement, take the ACTION required by Table 3.3.5-1.

s SURVEILLANCE RE0UfREMENTS 4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERA 8LE* by the performance of l

the CHANNEL.CNECK, CHAlBIEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL C0WITIONS and at the frequencies shown in Table 4.3.6-1.

hscRh(2 4

A channel say be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.

LINERICK - UNIT 2 3/4 3-57 Amendment No.33 APR 2 61994

ECIL # LG 9ME253 Itev. 0

.IECif. SPEC MARKUP INSERT 12:

The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-blased

'setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specificatier.

3. 4. '...~.

l l

l t

l t.

7 d

-g D

F f

N O

/

I 000 11 11 1111 2

222 3

T 666 t6 66yy 6666 6

66$

6 C

j/

/_

A

)

I I

I 5

L I

EAS I

LNN S

5555 2

4 BOO AII

    • a CTT 11l I7 25lf 2222 1

111 3

IAI

/

LRD

/

PEN PPO N

AOC

/

O

./

I TATN

/

E S

SN I

5 R

LO T

EI 5

S NT

/

N NC 3

  1. AN

/

8 I

t HU 222 444 32lfj 6666 2

22 2

3 K

fCF C

I E

O NEP L

L ItI B

B M8R A

AT T

0 R

0 ER t

R PE OP h

N L

O

=

I O

T R

I T

t i

S N

r A

O O

a A~

P C

t S

N

/

W

/

)

S I

O e

' b R

C D

F l

  • (

O a

n T

n d

TU n

c

  • i I

i H

e N

E N

S

)

' r S

l D

l R

l M

l h

H s

H t

O u

u t

g 5

C I

T f

)

E f

0 i

V T

R I

G V

H 5

I I

O N

t I

)

N t

)

V W

T e

o ed A

o g

E l

e S

R n

)

v( R n

{

G e

s r

t v

O i

ie eF C

i e

1 eR v

u E

fD tl a

E r

I t

l E r

tl A e

J-t 0

M eaa l

G o

e a

a T oeaaH L

eaa e

l rc r

N t

l r

cA tl rcC a

l rr N

K aes A

c a

e s I caesS r h f

aMa pn M

R e

c p

nD e c pn I e

O C

WID

/c p R ow t

s s

wE tsswD t

R I

A s

O E

e p

n o

epno a

U no 1

T L

p o

T C

D U

I D N DUID M W

T UIf C C

D F

I N

M R

E A

C A

U

.T R

A E

U 0

N F

0

.P O

C E

R 8

ab c A a

cd S

a b

c d I abcd S a

R /.4c P

I

~

R T

1 2

3 4

5 6

7 h5Q, gQ m R['

l" I* y g *e

  • E I

v.

O e

C 3

0 3

20 e

9 g

9 a

P G

L 1

1 1

1 1

1 6

6 6

6 6

6 RC il 2

2 1

1 2

1 1

1 3

3 3

3 3

3 PUKRAM C

EP

)

S n

w H

o C

d E

t T

eS

(

e e

l l

a a

c c

s s

p p

e U

U l

a c

e s

r l

r p

e a

e U

w c

w o

s o

P n

P w

w l

o l

o u

D a

l m

F

-r r

t e

e n

n h

a h

o u

T e

u T

i o

v l

t C

d i

F d

a e

t e

l w

t a

n t

u o

a r

o a

c L

l e

r l

r u

p t

u i

M 3

m o

u m

c R

1 i

n e

i e

P T

S I

N S

R L

R E

S N

a b

c d

e f

I

TABLE 3.3.6-1 (Ccntinued)

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION gpqc{g TION. STATEMENTS

,wcU Declare the RBM nopeYaliTe and take the ACTION required by ACTION 60 Specification 3.1.4.3.

ACTION 61 With the number of OPERABLE Channels:

One less than required by the Minimum OPERABLE Channels per Trip a.

Function requirement, restore the inoperable channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.

b.

Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped condition within one hour.

ACTION 62 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 63 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

HQIES For OPERATIONA' CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.

(a)

The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of RATED THERMAL POWER, (b)

This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(c)

This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

(d)

This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e)

This function is automatically bypassed when the IRM chann21s are on range 1.

bE

'(f)

R 'uir to OP BLE nly p ortr[and rin shutd wn ma gi jhu[EIE i

on ati sa perf rmed p Sppifica on

.10.3.

__ /

JAN 31 1995 LIMERICK - UNIT 2 3/4 3-59 Amendment No. 7, 33, 48

cl' 5l" 555 EEE I

mom

~

EEE 55 m

=

wgE E

.x e

e E*8N s.

888

=

g x

o g

O 40 4) dn:p dada x

a

++

u+

w w

w

=w=u cete te rrr m'A W fd q4 ct,ac M

E 555 mm

?

EEE BE M

yy mom lli E

il 3

++

?

=

l WWW tt 2

EEE 3

3 a

x e

a 1 d

d 4

4-de 5

=+

w duw dwdu e

a s

y n

u en en a

was E

e a

ma C

2 8

in Mb 5

a m

_ar egg s

t h ac E-=

i-bt5 da~

x%

v

~"o

- a ut 35 3

4 125 553-

"E W

' 1. A R 5123

=

p :'

nt.a

~

e -

a%

h"*%u jg

!=

2 3'-

i gI.- #

5s*].f-s*.A ~g,j].g-Es. Nx I8 2

1 ps gs

  • E t's A A s*

w u

  1. Eu 20"ETE E g * ' g.2 3 [ l 3*t3 g

em-=

g-um-=

g.

get.

6 e a=ca.Ehh=cR 8 i assa hE EEEh

"= cE 6

I isd a

sav 2

s

~

a m

4 k+

FEB 1 61995 4

LIMERICK - UNIT 2 3/4 3-6 1% ~

Anendment No. 48, 51

/

O v

e L

R A

L 35 M

L A

2 R

A M

0 0

E M

R e

d di R

E l

9 g

n nT E

9 a

l i

l P

a a

T e

l G.

D D

T v

i I

L E

1, E

D 1

e l

7 T 7 T D

E el R

.A

.A E

T n

C 5RR 0 R T

A nl E

5 E

5 A

R aa f W f

R hi oO o

e f

cx P

f o

a W%

W%

o r

4 L 4

er 6

.A 6.

0 pe 68 M 68 R 8 R

.R p

0R 0E

.E 3 E 0

01 E 01 W A

2W W

23 1

l O

O O

i

$5T 5$P N

2P

$P LA L

M L

A R

A M

E M

R d

dH R

E n

nT E

l i

l a

a T

e l

i D

D T

v

% E

% E D

l e 2T 2T D

E el

.A

.A E

T n

P 5RR 0 R T

A nl 5

E 5

A R

a a U

f W f

R hi K

oO o

e 5

f cx R

P f

o a

A W%

W%

o r

M 0L 0

er 6

.A 6

0 pe C

68 M 68 R 2R

.R p

E 0 R 0E

.E 2E 0

P 01 E 01 W A

3W W

2 3 1

S I

O I

O O

H 55T 55P h

2P

$P C

E T

no i

n t

eo a

e l i r

l at e

a ca p

c sr O

s pe p

e U p p

U l

O o

a o

c p

L e

s ro l

r p

eo n

a e

U wL o

c w

o i

s o

P n t

n P

o a

w w

l i l

o o

l at u

D a

l ma c

m F

rl r

r t

eu i

e n

n h c c

x h

o u

T r e

e u

T o

i i

R v

l t

c d c i

F d) a ee e

t en w

l t R 4

a n

t w u

o l

a g

r o

ao c

L 1

l o n

e r

l d r

T uw i

p t

ut i

M R

mT S

o u

me c

R i

n e

iS e

P E

S -

I N

S(

R L

S N

I a

b c

d e

f

l l

n l

o e

l ll f

u n

o aae o

f o

i mch i

t rsT s

f t

a ep l

n o

a o

r hu

)

a i

t

.P m

o v

i s

e t

e e)S r

s' ehPP e

s n

l a

i rTSl h

l E

i o

e iv o

o P(

t U

v i

L i

s e

n c

.I A

d i

8 d

(t e

V v

/

o g) n r

5e i

1 w

t nPti o

E 2l d

o iSno c

L 1 a 9

l tPip a

aLot r

f, B

/c 5

n r( pe e

A 0s 2

W 1

1 e 7

g e

ts p

i pt e o

O

.1l

./l 5

.l s

onsr r

A. s ul A. 3 a A. l A.

2 L

i e

p c

L A

N fN2s s

Ns N

d dorw n

epeo e

a it wp h

feo t

e i s ph t

c g

r S

a erei e

T r

peth v

N swa o

I l

t

- oie O

l n

s pd h s

P u

n u

t et p

T f

f o

o i

wm i

E o

i c

ord r

S f

t n

rl en tM

)

s o

a o

d e

t a R

d N

n v

i e

ven eP e

O o

s e

v ohit lA r

t n

a u

I i

n l

n T

s o

e i

e y

ei ce i

A i

i v

s l who sh e

b not p pt t

T T

v s

"8 d

o ol t

u n

N N

i i

o E

I d

v

/

ede y

C M

O e

i 3

w n

ebns eb

(

U P

5l d

o a

l a

t R

T 2a 7

l bd r

ad 2

T E

1 c 5

f s

ae) e ie a

csPw rd S

S

/s 2

6 N

8 1 e 7

h i sSo pi t

I P

0l

./l 5

e l app.

ov I

2 r

m ppL t

ro 3

A.1 l A. 5 a A. I A.

o u

py( en pr K

R u

c 3

C T

NsfN2s 5

  • Ns N

t l

ab ti pp i

o tao a

O E

L n

v s y ni p s

L B

o ilidt fi B

m.

e l oee o

A 0

1 g hapms M

T 0

e-r cct r tB R

g6 a

aieer nR n

h Et st e e

/

a3 c

a nw me L

s r

s mrio eh O

N R

t 3

i

.oe p

ct O

n e

d st we r

T I

i ce l uohh oo N

T o

rr m

e a pt g ft O

A p

uu a

v i

n C

L t

og r

eewnh el U

e si c

l roe a

C s

F s

al ee l n R

N e

/

p wh og S

I W

e hn s

i sett ri R

C O

s ti n

r ph e t s O

E D

e o

titbe n

H T

h dn l

r v

or T

n U

t ew l

et ndo ce I

i h

I N

E c

t l

r ih g

aMeia so do a

l eeb w

M t

E S

O l

l U

hi T

o vs cBwl t p M u L

gw S

e f

o 6

sRt pd n

l i

E f

O iS Y

vr C

re 5

p epe ie G

V i

S i o T

R pv ulbai oh l

N t

t tt I

L r

3 l

l pT R

n v

G eo N

l

- a W

O

,u 1

A o

e E

l a T

e eAdsp t

r S

C dc e

eip e

d ie R

vl ae e

o r

i a

s.

cp E

e ce t

h

.lP s

E r tl A

eF T

oe aa l

L 0

so D

h uh t e pS s ee l

0 pno O

t dt t

gpTi gg A

tl rc C

I ca es S

ra C

UIC M

e n

enaI nn D

ec pn I

e N

o re e

ra P

aa N

E t s ow D

t R

R O

t v

l arses rr O

M ep no a

O O

I eo a

ilT d

a c

T T

r bb v

er all rr I

R Dt I D M W i

lN N

C E

W C

I e

a i

rePc ee T

E A

C T

R A 0 A

S f

y u

ewSse ww (E

E O

e ar q

h o T ph oo R

P R

Ho E

T pL u T Pp I

ab cd S

a R

i F

P

]C

)

)

I f

a b

R

. h T

4 5

6 7

(

(

f gV g w E * [== Z m w2 5o k(6P, v.P u'*.

r*

m~

D HE CR II HU WQ E

RR O

5 s

FE L

C 5

ASN NNA 2

5 5555 5555 2

4 OOL IIL TTI 1 1 1 112 2 222 2222 AIE 1

111 3

RDV ENR POU OCS

)

S

(

TN N

E O

M LI s

R NA A A. A E

ET A.A A A.

A.

A.

A.

i uSNSS A. A A.

A NR SNS A

NRNR NRNR R

/

SNS N

I U

AB

}

Q HI p

E CL R

A e

C s

E C

NA

) ) } )

L f f f f L

L I

( C C C A

E WWWW LN V

EOT R

) ) ) )

NIS U

NTE 1

S

( C I(

ACT

) ) )

} ) ) )

i HN d dd d 6

N CU

( C (

( ( ( (

)

O 8

3 F'

QQQ oQQQ MMMM WWWW Q

QQQ R

(

I T

4 AT t

N L

E B

j M

A U

T RT S

N A. A. A.

a.

A.

A. A. A. A.

A. A. A. A.

A.

A. S. A/

A.

I L

./

K EK NNN NNN'if NNNN NNNN N

NNN NC C

s N

NE O

AH L

'W HC O

B C

L D

F O

R N

u O

L t

I O

.r T

R a

A T

t f

N S

U O

x C

C u

R N

S l

e I

W R

F l

C O

O E

O a

n T

n R

T c

i i

s U

"0 E

h M

H r

p S

l l

M g

E S

t U

R l

N l

U i

T u

O u

u L

H S

H e

T f

E f

O Y

C R

N I

G V

S T

O x

N t

N t

.T e

e u

O o

e A

o e

E l

T e

W I

v v

l M

n v

R n

v G

e N

vr I

i e s

eF i

S N

e ie R

v A

io O

tl a

E r

tl E

r tl A

e

(

tt E

M eaa i eaa G

o ea a T

oeaa li L

0 eaa D

l rc Birco N

t l rc A

tl rc C

0 rr O

K aes aesr A

ca es caes S

r I

C ea M

C cpn pnt R

e c pn D

ecpn e

cp p N

NO s ow o

wu t s ow E

t sow D

t R

I pnp so R O O

L pno l n e

E epno M

epno a

O I

B UI D FUI C

DUI D R

DUID M

W O

I UIC T

T d

T M

R E

A C

I C

0 R

U T

R A

A S

N 0

P O

N C

E E

O U

R ab c A

a d

S F

ab cd I

abcd S

a R

c R

P P

7[

I R

T 1

2 3

4 5

6 7

"k5Ri@4u R O**

t*$-

ko8' l g- [

0 ve R

33 2

0 0-e 9

g 9

a P

G L

2 2

R C

1 1

1 2

1 1

E A.

R N

R R

R R

A A

A A

A A

S S

S S

S S

P

~

U

~

KR A

A A.

A.

A.

A.

A.

M N

N N

N N

N C

E P

S 1

)

1C nw E

o T

d te S

(

e e

l l

a a

c c

s s

p p

e U

U l

a c

e s

r l

r p

e a

e U

w c

w o

s o

P n

P w

w l

o l

o a

D a

l m

m F

r r

t e

e n

n h

x h

o u

T e

u T

i o

v l

t C

d i

F d

a e

t e

l w

t a

n t

u o

5 a

r o

a c

L 1

l e

r l

r u

p t

u i

M T

m o

u m

c R

R i

n e

i e

P E

S I

N S

R L

S N

a b

c d

e f

I

I

]

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE RE0VIREMENTS TABLE NOTATIONS (a)

Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b)

Deleted.

l (c)

Includes reactor manual control multiplexing system input.

For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not a plicable to control rods removed per Specification 3.9.10.1 or 3.9.1.2.

ddd

$f$ t k

a p

10 (d)

When in OPERATIONAL CONDITION 2.

I (e)

The provisions of Specification 4.0.4 are not applicable provided that the surveiilance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below during a shutdown.

(f)

When in OPERATIONAL CONDITION 5.

j (g)

The provisions of S ecification 4.0.4 are not a licable provided that the surveillance is per ormed within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after t Reactor Mode Switch has been placed in the shutdown position.

\\

AUG 0 81995 LIMERICK - UNIT 2 3/4 3-62 Amendment No. 7, 48, 63

F REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION (Continued) gJJQN: (Continued)

N 2.

Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s:

a Reduce the Average Power Range Monitor Block Trip Setpoints and Allowable Value(APRM)fScram and Rod s, to those applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associated channel (s) inoperable and take the actions required by the referenced specifications, and, 3.

The provisions of Specification 3.0.4 are not applicable.

4.

Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, i

b.

With no reactor coolant system recirculation loops in operation, immediately initiate action to reduce THERMAL POWER such that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

i With one or two reactor coolant system recirculation loops in l

c.

l operation and total core flow less than.45% but greater than 39% of rated core flow and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1:

l j

l.

Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):

a. At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and
b. Within 30 minutes after the completion of a THERMAL POWER

. increase of at least 5% of RATED THERMAL POWER.

2.

With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to restore the noise levels within the required limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by reducing THERMAL POWER.

d.

With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate ccrrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

i' Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

LIMERICK - UNIT 2 3/4 4-la Amendment'No. 48 JMI 31 1995 l

l L

L-l.

~3/4.3 INSTRUMENTATION-BASES

'3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION i

l The reactor protection system automatically initiates a reactor scram to:

Preserve the integrity of the fuel cladding.

i a.

b.'

Preserve the integrity of the reactor coolant system.

Minimize the energy which must be adsorbed following a c.

loss-of-coolant accident, and l

'd.

Prevent inadvertent criticality.

i This specification provides the limiting conditions for operation i

necessary to preserve the ability of the system to perform its intended

. function even during periods when instrument channels may be out of service l

because of maintenance.

When necessary,- one channel may be made inoperable y#y for brief intervals to conduct required surveillance.

k/

l The reactnr protection system is made 4 of two independent trip systems.

c' _

.There are usually four channels to monitor each parameter with two channels in each trip system. The outputs of the channels in a trip. system are combined

-in a logic so that either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The system meets the intent of IEEE-279 for nuclear power plant protection systems.

Specified-surveillance intervals and surveillance and maintenance outage times have been determined in accordance with NEDC-30851P, " Technical Specification l-Improvement Analyses for BWR Reactor Protection System," as a proved by the NRC and documented in the NRC Safety Evaluation Report ( ER) letter to T. A.

Pickens from A. Thadant dated July 15, 1987. The bases or t e trip settings of-RPS are discussed in the bases for Specification 2.2.1.

Automatic reactor trip upon. receipt of a high-high radiation signal from the Main Steam Line Radiation Monitoring System was removed as the result of an analysis performed by General Electric in NED0-31400A.

The NRC approved the results-of this analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15, 1991).

The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are

[MR4 completed within the time limit assumed in the safety analyses. No crodit was taken for those channels with response times indicated as not isonntatrW Response time may be demonstrated by any series of sequential,' overlapping or F

' total channel test measurement, provided such tests ~ demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either (1) inplace, onsite or offsite test measurements, or 0

(2) utilizing replacement sensors with certified response times. Response time testing for the sensors as noted in Table 3.3.1-2 is not required based on the analysis in NEDO-32291-A.

Response time testing for the remaining channel components is required as noted. <

Lsed W JAN O 71999 l

tIMERICK - UNIT 2 S3/43-1 Amendment No. 47,52,93

[

i ECR 8 LG 9800253 Rev. 0 TECH SPEC MARKUP Pg IF

-INSERT 16 (nane 1 of 4h l

i The reactor protection system is made up of two independent trip i

i systems.

There are usually four channels to monitor each

. parameter with two channels in each trip system.

either channel will. trip that trip system.the channels in a trip trip systems will produce a reactor scram.

The tripping of both divided into four APRM channels and four 2-Out-Of-4 VoterThe APRM system is channels.

Each APRM channel provides inputs to each of the-four voter channels.

The tour voter channels are divided into two i

groups of two each, with each group of two providing inputs to one RPS trip system.

channel,'but no voter channels,The system is designed to allow one~APRM to be bypassed.

The system meets the intent of IEEE-279 for nuclear power plant u

protection systems.

_Specified surveillance intervals and surveillance and maintenance outage times have been determined in i

accordance with NEDC-30851P-A, l

" Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-Ai

. Neutron Moniror (NUMAC-'PRNM)" Nuclear Measurement Analysis and' Con i

The bases for the trip settings of the RPS areRetrofit

. Trip Function."

discussed in the bases ~ for Specification 2.2.1.

Actions a, b and e define the actiot(s) channels are discovered to be inoperable. required when RPS l

For those actions, separate entry condition is allowed for each inoperable RPS channel.

Separate entry means that the_ allowable time clock (s)

I the.t specific channel.for actions a,~b or c start upon discovery of inoperabili i

Restoration of an inoperable RPS channel satisfies only the action statements for that particular channel.

Action statement (s) for ~ remaining inoperable channel (s) met according co their original entry time.

must be Eecause of the diversity of sensors available to provide trip signals and the-redundancy of the RPS design, an allowable out service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.has been shown to be acceptable of 30851P-A and NEDC-32410P-A)

(NEDC-inoperable channel to OPERABLE status.to permit restoration of any However, this out of service time is only acceptable provided that the associated i

Function's '(identified as a " Functional Unit" l'

in Table 3.3.1-1) inoperable channel is in one trip system and the Function still maintains RPS trip capability.

L l^

l

ECR # LG 9940253 Rev. 0 hee TECH SPEC MARKLP INSERT 16 (cont. - cane 2 of 4h The requirements of Action a are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels wir':in the same trip system for the same Function result s

in the Fune son not maintaining RPS trip capability

{

is considered to be maintaining RPS trip capability when A Function I

sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal.

including.the IRM Functions and APRM Function 2-.eFor th capability associated with APRM Functions 2.a, (trip 2.b, 2.c, and 2.d j

are discussed below), this would require both trip systems to

)

have one channel OPERABLE or in trip (or the associated trip system in trip).

For Punction 5 (Main Steam Isolation Valve --Closure),

.the MSIVs in three main steam lines (not necessarily th this would main steam lines for both trip systems) the associated trip system in trip).

OPERABLE or in trip (or For Function 9. (Turbine Stop Valve - Closure),

both trip systems to have three channels, each OPERABLE or inthis would requir trip (or the associated trip. system in trip).

The completion time to. satisfy the requirements of Action a is discovered inoperabilities. intended to allow the operator time to evalua The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

With trip capability maintained, i.e., Action a satisfied Actions b and c as applicable must still be satisfied.

inoperable channel cannot be restored to OPERABLE status within If the

- the allowable out of service time, Action b requires that the channel or the associated trip system must be placed in the tripped condition.

the associated trip system in trip) Placing the inoperable channel in trip (or would conservacively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue.

i

ECR O LG 99-00253 Rev. 0 TECH SPEC MARKUP Page INSERT 16 (cont. - oane 3 of 4h As noted,-placing the trip system in trip is not applicable to satisfy Action b for.APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability'of one required APRM channel affects both trip systems.

be satisfied by placing the inoperable APRM chann Restoring OPERABIL!TY or placing the inoperable APRM channel in trip are the only accions that will restore capability to accommodate a single APRM channel failure.

in. loss of trip capability and the requirementthan one requ to satisfy Action a.

The requirements of Action c must be satisfied when, for any one or more Functions, at least one required channel.is inoperable in each trip system.

channel per trip system is OPERABLE,In this condition, provided at least one maintains-trip capability for that Function, but cannotnormally the RPS still accommodate. a single failure in either trip system (see additional bases discussion above related to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b.,

2.c, 2.d, 5 and 9).

The requirements of Action c limit the time the RPS scram logic

'for any Function, would not accommodate single failure in both trip s for a.ystems (e.g., one-sit of-one and one-out-of-one arrangement typical four channe; Function).

this logic arrangement was not evaluated in NEDC-30851P-A for theThe 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Completion Time..Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allcwance, the associated Function must have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent'to that which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />' allowable out of service time asevaluated in NEDC-30 allowed by Action b.

To satisfy the requirements of Action c, the trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that

?

system should. be placed in trip (e.g.,

trip a trip system with two

-inoperable channels could be inLa more degraded state than a trip system with fourl inoperable channels if the two inoperable channels are in the same Function while the four inoperable channels are all in different Punctions).

The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant connitions (i.e., what 1991HE the plant is in).

If this action would result bpred wwd cag d,,e

ECR 8 LG 99 00253 Riv. 0 l~

Page TECH SPEC MARKUP INSERT 16 (cont. - oane 4 of 41:

in a scram or RPT, system or its-inoperable channels-in trip.it is permissible to place th The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable out of service time is judged acceptable

-based on the remaining capability to trip, the diversity of the sensors available to provide the. trip signals, the low diverse Functions,.and the low probability of an eve the initiative of a scram.

As noted,' Action c is not applicable for APRM Functions 2.a, 2.c, or 2.d.

2.b, systems and is~not associated with a specific trip system a

.the APRM 2-Out-Of-4 voter and other'non-APRM channels for wh

-Action e applies.

For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel.

inoperable APRM channel in trip are the only actions that willResto restore capability to accommodate a single APRM channel failure.

If it is not desired to place the channel (or trip system) trip to satisfy the requirements of Action a, in Action b or Action c (e.g., as in the case where placing the inoperable channel in trip would result in a full. scram), Action d requires that the Action defined by Table 3.3.1-1 for the applicable Function be initiated immediately upon expiration of the allowable out of service time.

The Two-Out-Of-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware.

The voter Function 2.e is accomplished by the 2-out-of-4 voter hardware which includes redundant outputs.

The. analysis in NEDC-32410P-A took credit this redundancy in the justification for the 12-hour allowable for out of service time, inoperable if.any of the 2-out-of-4 voter hardware'sso the voter Function 2 functionality is inoperable.

The voter Function 2.e does not need to be declared inoperable due to any failure affecting only the APRM Interface hardware portion ~of the Two-Out-Of-Four Logic Module.

n

ECR # LG 9940253 Rev. 0 TECH SPEC MARKUP

~

INSERT 17:

... applicable except and Neutron Flux - Upscale trip fur.ctionsfor APRM Simulated Therma 2.b and 2.c).

(Table 3 3.1-2, Items INSERT 18:

For che digital electronic portions of the APRM functi performance characteristics that determine response time are

ons, checked by a combination of automatic self-test, activities, and response time tests of the 2-Out-Of-4 calibration (Table 3.3.1-2, Item 2.e).

Voter

r ECR 99-08253 REY.O PAGE INSERT 19 1

BASEE F.?GURE B 3/4.3-2 APRM CONFIGURATION LPRM 1i LPRM 3 LPRM 2 LPRM 4 J

{

APRM 1 APRM 3 APRM 2 APRM 4 h

~

d a

n x

w Y,

P

[

Y i

APRM APRM APRM APRM 2

2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4

}

VOTER Al VOTER A2 VGTER 81

'/0TER 82 I I I f 17 RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL 81 RP$ CHANNEL B2 RELAYS K12A & K12E RELAYS K12C & K12G RELAYS K128 & K12F RELAYS K120 & K12H

= _ -

I i

g ADD AS NEW PAGE 8 3/4 3-9

?

_ SAFETY' LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 2. 2' LIMITING SAFETY SYSTEM SETTINGS r

y

. REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The' reactor protection system instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY:

.As shown in Table 3.3.1-1.

ACTION:

With a reactor protection system instrumentation setpoint less conservative than' the value shown in the Allowable Values column of Table 2.2.1-1, declare the channel inoperable

  • and apply. the applicable ACTION statement requirement I

of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.

I i

j i

1 i

j I

I I

i l

i

  • The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared

, inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpointslare adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

. LIMERICK - UNIT 1 2

nn co ii d

d tt s

n n

e aa n

a a

v vv o

D D

oo ee i

D

%E

%E br ll s

E

3. T
3. A T

D ae ee i

T A

E z

ve AR 3RR 8RR TR s

il RE 6

E 5

E AE etd 8 "8 da W

fW fW RW gh n e g //

c fO

+oO

+oO O

i ces i

55d g

E 5s oP P

P fP snmo s

e i

LS 2

W%

W%

o pi u l p

55s s

BE 1l

%L

0. A
0. L L

rcd o

p L

AU

/l

0. M A

6 6

A

%A 3 0.t E8

' ' l WL 2u 7M 7M M

0 s%T8 11 c 5

6.1 R 6.1 R

7. R OA 2f 0R 11 n2E 66 6

LV 1

2E 01E 01E 8E A.

A.

11i1L1 22%

4 A.A.

L f

H H

H 1H E :

7 A

so sT ssT ssT 1T N

N s2 sDs sss 2NN R

t E

n W

e O

m P

u S

r T

L t

N A

s nn I

M n

oo O

R i

ii P

E d

d tt T

s H

n n

e aa E

n T

a a

v vv S

o D

D o

ee i

D

%E

%E b

ll N

se E

8. A
8. A T

T D

a ee O

il T

E I

va A

2RR 7RR TR s

8 "8 T

ic R

6 E

5 E

AE e

A ds fW fW RW gh d

g

//d T

f

+oO

+oO O

ic e

i 55e g

T 5l o

P P

fP sn s

s s

i NE N

2l W%

W%

o pi o

p 99o s

I M

1 u L

L L

lD l

p

6. A
6. A 1

U O

/f P

0 6

6

%A 6 5.

  • cE8 c

9 T6 0 '0 0

R 0

6M 6M M

6.1 R 6.1 R

3. R 1

T T

2f 5

02o%E 66%

0..

E S

1 o 1

01E 01E 8E A.

A.

11 r8L1 225 5 A.A.

2 N

S H

H 1H e

E I

s s

ssT ssT 1T N

N s2 zsDs sss 2NN P

2 I

M R

E E

L T

T B

S A

Y e

T S

mu N

h l

O g

o I

i v

T H

n e

C o

h3 e

h E

x g

r g

g i

r T

u

n t

il u

i o

a He s

H a

O l

R F

e r

v o

n h

i P

l t e

- e l

o cs n

a a p

l C

, i R

o

)

c r O

e l

e t

i d

O r

n s

r e

r i

e T

t w

p p

p uw v

u s

C u

o U O o

so e

e s

o m

A e

d o

sL v

L o

P ar E

N t

p L

e-l l

R

e o

r-a r

eC n

cs rS r

P V

e r

w o

n r

o(

eL o

e l

t ut o

./

s o

t w

l ee n

a ss d

t ie o n t

a mv o

Wr oa t

i 1 n o

a c

oe i

h e

lFwu

- o i

nl P

n oa s

DL t

get C

oh

3. l l

i l

o Mc l t u

p a

imt eLS a

c U

r mr l

Hu

- v 4a i

M s

a mh l

h

/g ep m

r e

ae o

l l

t et s

o sc ea c

3 e

gU r u i

Vnt vVet 5

g n-e c c

o t a I

n ax hr e

x V

SW e

ai ri B4 rwl a

Ru T

R u

e e

re al uw i

R l

c l

v 4

ll n

u gT S VosS e5 rF de e

F i

ee i

sr rs r2 e

e eR t

f ss L

s al t pt e e m u

lg n

a 0

ss ehea onrda go t'

wn t

T a

oo a

I o

n o

r ee m

rc votoPor it r

e t

VV a

Ps elSC Mc F

i Pr l

w N

d t

uT S

i LF t

t p

u e

i 1

S U

e eu m

u o

O rr tDlD ee1 r sn e

n oo SEl nn0ol ee m

ge i

L r

aN S

N I

2 tt Tem ii t a sl A

e r

cc nEwa bbpcu aa N

t e

aa iL y r rrian Bv O

i n

v.

ee aE rc

.uurea I

Aa b

c d

e RR MDDSabTTTRM eu I

T eq C

SE N

U 0

12

-F 1

2 34 5678 91 11

,E9M7 'Ep.

5 ri o

2.2 LIMITING SAFETY SYSTEM SETTINGS w.

BASES 2.2.1 REACTOR PROTECTION SYSTEM' INSTRUMENTATION SETPOINTS The' Reactor-Protection System instrumentation.setpoints specified in Table 2.2.1-1 are the values at which'the reactor trips are set for each para-meter.: The Trip Setpoints have been selected to ensure that the reactor core

.and reactor coolant system are prevented from exceeding their Safety Limits during normal operation and design basis anticipated operational occurrences and to assist'in mitigating the consequences of accidents. Operation with a

-trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis tnat the difference between each Trip Setpoint and:the Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.

1.

Intermediate Ranae Monitor. Neutron Flux - Hiah The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRM is a 5 decade 10 range instrument. The trip setpoint of 120 divisions of scale is active in each of the 10 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up. The IRM instruments provide'for overlap with both the APRM and SRM systems.

The most signif : ant source of reactivity changes during the power increase is due to e +rol rod withdrawal.

In order to ensure that the IRM 2rovides the requit protection, a range of rod withdrawal accidents have

>een analyzed. -The, asults of these analyses are in Section 15.4 of the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at ap)roximately 1%'of RATED THERMAL ~ POWER. Additional conservatism was taken in tiis analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed. The results of this analysis show that the

, reactor is shutdown and peak ~ power is limited to 21% of RATED THERMAL POWER with the peak fuel enthal ay well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, t1e IRM provides protection against local control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

2.

Averaae' Power Ranae Monitor The APRM system is divided into four APRM channels and four 2-Out-0f-4 Voter channels. The four voter channels are divided hte two groups of two each, with each group of two providing inputs to one RPS tr 4 system. All four voters will trip (full scram) when any two APRM channels exceed their trip setpoints.

For operation at low pressure and low flow during STARTUP, the APRM Neutron Flux-Upscale (Setdown) scram setting of 15% of RATED THERMAL POWER provides adequate thermal margin between the setpoint and the Safety Limits. The margin accommodates the anticipated maneuvers associated with power plant startup.

Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system.

Tempera-

~ ture coefficients are small and control rod patterns are constrained by the

- RWM. -Of all the possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power increase.

LIMERICK - UNIT 1 B 2-6

LIMITING SAFETY SYSTFM SETTINGS BASES REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor -(Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high local peaks and because several rods must be moved to change

>ower by a significant-amount, the rate of power rise is very slow. Generally. tie

-heat flux is in near equilibrium with.the fission rate.

In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 5% of RATED THERMAL POWER per minute and the APRM system would be more than adequate to assure shutdown before the power could exceed the Safety Limit.

.The 15% Neutron. Flux - Upscale (Setdown) trip remains active until the mode l

switch is placed in the Run position.

The APRM trip system is calibrated using heat balance data taken during steady state conditions. Fission chambers provide the basic input to the 1

. system and therefore the monitors res)ond directly and quickly to changes due 1

to transient operation for the case of the Neutron Flux - Upscale setpoint; i.e.,

I for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel. For the Simulated Thermal Power - Upscale setpoint, a time constant of 6

  • 0.6 seconds is introduced into the flow-biased APRM in order to simulate the fuel thermal transient characteristics. A more conservative I

maximum-value is used for the flow-biased setpoint as shown in Table 2.2.1-1.

The.APRM setpoints were selected to provide adequate margin for the Safety Limits and yet allow operating margin that reduces the possibility of unneces-sary shutdown.

j 3.

Reactor Vessel Steam Dome Pressure-Hiah High pressure in the nuclear system could cause a rupture to the nuclear system process barrier.resulting in the release of fission products. A pressure

-l increase while operating will also tend to increase the power of the reactor by compressing voids thus adding reactivity. The trip will quickly reduce the neutron flux, counteracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious i

trips. The setting provides for a wide margin to the maximum allowable design i

pressure and takes into account the location of the pressure measurement compared j

to the highest pressure that occurs in the system during a transient. This trip setpoint is' effective at low power / flow cor.ditions when the turbine stop valve and control fast closure trips are bypassed.

For a turbine trip or load rejection under these conditions the transient analysis indicated an adequate margin to the thermal hydraulic limit.

LIMERICK -' UNIT'1 B 2-7

3/4.3 INSTRUMENTATION

~

3/4.3.1 pEACTOR PROTECTION SYSTEM INSTRUMENTATION l

. LIMITING' CONDITION FOR OPERATION 3.3.1.As a minimum, the reactor protection system instrumentation channels shown xin Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION. SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

Note:

Separate condition entry. is allowed for each channel.

a.

With the number of OPERABLE channels in either trip system for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table. 3.3.1-1, within one hour for each affected functional I

unit either verify that at least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at~1 east one inoperable channel in the affected trip system in the tripped condition.

b.

With the number of OPERABLE channels in either trip system less than the

. Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) or. the affected trip system ** in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

I c.

With the number of OPERABLE channels in both trip systems for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

If within the allowable time allocated by actions a, b or c, it is not l

desired to place the inoperable channel or trip system in trip (e.g., full scram would occur), Ihan no later than expiration of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

' SFor Functional Units 2.a 2.6, 2.c, 2.d, at least two channels shall be OPERABLE or tripped.

For Functional Unit 5, both trip systems shall have each channel associated with the MSIVs in three main steam lines (not necessarily the same main

-steam lines for both trip systems) OPERABLE or tripped.

For Function 9, at least three channels per trip system shall be OPERABLE or tripped.

    • For Functional Units 2.a,. 2.b, 2.c, 2.d. inoperable channels shall be placed in the. tripped condition to comply with Action b.

Action c does not apply for these

. Functional. Units.

LIMERICK - UNIT 1 3/4 3-1

i 1

3/4.3 INSTRUMENTATION

~

3/4.3.1 ~ REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS 4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 24 months, except Table 4.3.1.1-1 Functions 2.a. 2.b, 2.c, 2.d, and 2.e.

Functions 2.a. 2.b, 2.c, and 2.d do not require separate LOGIC SYSTEM FUNCTIONAL TESTS.

For Function 2.e, tests shall be performed at least once per 24 months.

LOGIC SYSTEM FUNCTIONAL TEST for Function 2.e includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations of two tripped inputs to the 2-Out-0f-4 voter logic in the voter channels.

4.3.1.3 The REACT 0k PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its li:it at.least once per 24 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 24 months where N is the total number of redundant channels in a specific reactor trip system.

l l

1 l

LIMERICK - UNIT 1 3/4 3-la

NO I

T 1

3 1

3 I

4 4

4I 41 1

1 4

CA

)a Si LEM NE MNT e

UAS v

MHY l

N ICS

)

)

)

)

)

))

a O

N d

d m

m m

mm v

I IEP

(

(

(

(

(

((

/

T MLI 3

3 3

3 3

3 3

33 22 2

2 1

A BR T

AT N

R E

ER M

.PE U

OP RTSN 1

I 1

M E

3 T

S 3

YS E

L N

L B

O EAS

)

)

)

)

A I

LNN i

1 f

g T

T BOO

(

(

(

(

C AII 2

5 2

5 2

1 1

12 12 2

2 1

E CTT T

IAI O

LRD 1

1 R

PEN e

P PPO

)

l AOC n

a R

w c

O o

s T

d p

C t

U A

e w

E S

o e

R

(

L v

r

)

)

l e

e e

a s

r l

w l

V r

o a

o a

l o

h t

c P

c e

e n

t g

i s

s m

v o

i i

n p

l p

o e

i n

H o

U a

U r

D L

t o

M m

e a

M t

m r

l e

e o

a e

o e

x g

x h

x V

e t

s g

u e

n u

T u

e th a

I n

l v

a l

l v

4 Sg W a

F i

R F

d F

i i

e R

t e

t f

lH l

n n

a r

n t

n a

0 e

e i

e o

r e

o a

o r

s -

s L

t r

e w

r l

r e

t s

s a

t p

o t

u t

p u

ee e

m T

i u

o P

u m

u o

O Vr V3 ae I

d e

n e

i e

n u

er N

e N

I e

N S

N I

2 rs rl tu U

m g

os oe Ss r

a te tv o

L e

r cr ce nl A

t v

e e

a e

aP aL iC N

n O

I a

b A

a b

c d

e R

R M

I TCNU F

1 2

3 4

5

- R5R h5]

r

i~.

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION ACTION STATEMENTS ACTION 1 Be in at least H0T SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 2 DELETED l

ACTION 3

-Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within I hour.

ACTION 4 Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

ACTION 5 Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 6 Initiate a reduction in THERMAL POWER within 15 minutes and reduce turbine first stage pressure until the function is automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 Verify all insertable control. rods to be inserted within I hour.

ACTION 8 Lock the reactor mode switch in the Shutdown position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 9 Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

LIMERICK - UNIT.1 3/4 3-4

V TABLE-3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS

.(a)

A channel may be placed in an' inoperable status for up to-6 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.

1

.(b)

This function shall be automatically bypassed when the reactor mode switch is.in the-Run position.

l

'(c)

DELETED l

(d)

The noncoincident NMS reactor trip function logic is such that all channels go to both trip systems. Therefore, when the " shorting links" are removed, j

the Minimum OPERABLE Channels Per Trip System is 6 IRMs.

l j

(e)

An APRM channel is inoperable if there are less than 3 LPRM inputs per level or less than 20 LPRM inputs to an APRM channel, or if more than 9 LPRM inputs to the APRM channel have been bypassed since the last APRM calibration (weekly gain calibration).

(f)

This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1.

.(g)

-This function shall be automatically bypassed when the reactor mode switch is not in the Run position.

(h)

This function is not required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY is not required.

(1)

With any control rod withdrawn. Not applicable to control rods removed per Specificat:on 3.9.10.1 or 3.9.10.2.

(j)

This function shall be automatically bypassed when turbine first stage pressure is equivalent to a THERMAL POWER of less than 30% of RATED THERMAL POWER.

(k)

-Also actuates the EOC-RPT system.

(1).

DELETED 1

I (m)

Each APRM channel provides inputs to both trip systems.

l (n)

A channel or trip system which has been placed in the tripped condition to satisfy Action b, or Action c. may be returned to the untripped condition

'under administrative control for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

LIMERICK - UNIT.I.

3/4 3-5 l

E D

M E

4 I) 5 5

5 6

T 6

8 Ts 0

5 0

0 E

0 0

f d

A. A.

A.A.A.A.0 A.

A. A.

L A.

A.

m 0

En 0

l 0

E 0

0 or-So NN NNNNs s

s s

D N

NN s

s N

N ret Nc Oe ftu PS oO g

S(

tV -

n E

p 2 it R

m4 ti eh sn xfc eu e0a t

- e p

et ei rum mr aOo it

- r t

s2f g

c en ies si nht nd otu ou S

r p

pl tft sc EM cou en e

o Ri I

l n T

eot

.l E

in e

lta sn S

N aad tn O

tvn ia P

iiu uh S

gtd cc ice 4 r

E R

dar ig 2

=

cn l me i

M 1

eohN Sn E

nrt

.Pi T

nf oeRa 3

S a

,sr m

Y 3

hd3 uee S

ce

,sh r E

r 1. l ot N

ru L

el e

O B

ncrh e s 3. n I

A ta ot T

T oe4atf C

Vm hs r

E ncago T

4eo fnf O

- bie i

R h

3 e

h f

tmets P

g r

0l aavst e

i l

u l csl ei R

)l H

e s

tai atm O

na v

o n

uhfev i T

wc e

l o

Osih el C

os L

C i

ctl m A

dp e

l e

t 2ee oie E

tU r

e r

i m pf r t v R

e u

w v

u s

diSot i

S -

s o

e e

s o

nt net

(

s L

v L

o P

a ftosa r

e l

l eorcnr

  • eee r

a r

e C n

l s a

ot s

rl wl P

V e

r w

ennpeps r

oaoa l

t u

t o

noo nsi.

oh tcPc e

e n

a s

sw d

n pi d i e n d tg is s

m v

o W

o ao t

astebrie ii n pl p o

e i h

r l

FL u

hearr mr nH oU aU r D L

t g

ee C

h cRceumdi o

M m

e a

i mt e-S idtoau M-r-

t m

r l

H ut v

M r

q

.lipsffee e

e o

a e

o li l e h

R ex gxhx V

e t

s omh e

ar c

P gpn o hr gue nuTue t

a I

Vsc v Vu t

Anao dt nl v al l v4 S

W e

nt l

s i

i cte e

aFi RFdFi -

e r

eai a

l s w

,t r rtor R

t e

tf l

l n

u grw V

oe S

ssoeaata na rntna0 e

e i s

rTS rr reFrtn eor eoaor-s s

L s

a p tP e

m ot a si e c tre wrl ret s

s e

hlt o

n d

a t

mci atp otutpu e

e m

r cea t

o1 o

r ce

.l mi n g T

i uo PumuoO V

V a

P svo S

C1 M

c e m y e ol ao I

den eien-e iel 0

S ti anreml N

eNI eNSNI2 r

r t

D l

DLF e

e r

etl nf r

U m

g o

o S

E l

n np o

l d

ea soy r

a t

t T

e m

i ii t

a erhdifa L

e r

c c

n E

d a

b br c

u ns ce nl A

t e

a a i L

r r

rT a

n ont rroe N

n..

v.....

e e

a E

r c..

u u

e a

rouruocr O

I ab Aabcde R

R M

D D Sab T T

R M

tppess I

usttandd T

eeuoeenn C

NroVMSaa N

U 1

2 3

4 5

6 7

8 9

0 1

2 F

1 1

1 zIl -

a%, '

R33 CFi5, c c3

I l

D HE CR IIHU LWQ A

E NRR OO IFE T

C

))

ASN ii

((

RNA

)

)

D 55 EOL i

h E

PIL

(

(

T OTI

)

5 2

2 2

2 E

2 22 IE 1

L DV

(

E NR 25 2

2 I

1 1

1 1

1 1

D 1

11 OU CS S

)

T a

N f

E N

M LO

)

E EI g

R NT

(

I NA R R D

U AR E

Q HB T

E CI

)

)

E R

L A.

d d A.

A.

L A

(

(

E E

C RR N

R W

W N N

R R

R D

R RR CNA L

L I

E VR L

U LA S

EN NOT D

1 N

NIS E

O ATE

)

)

T 1

HCT

)

)

1 e

E I

T CN j j

(

(

L 1

A U

(

(

A A A A A E

T F

WW W S

S S

S S

Q Q

Q D Q QQ 3

N E

4 M

U E

R L

T L

D B

S EK E

A N

NC T

T NE

)

)

E I

AH b

A.

b A.

A.

A.

L N

HC

(

(

E E

C SS N

D D D N D S

S N

D S

SN TSYS e

)

l N

n a

O w

c I

o s

T d

p C

t U

E e

T

S O

)(

R f

r P

(e e

e r

rl w

l e

R s

oa o

a l

t O

rh tc P

c e

e n

a T

og is s

m v

o W

C ti np l

p o

e i

h A

iH oU a

U r D L

t g

e r

E n

M m

e a

i m

e R

o-r t

m r

l H

u t

M e

e o

a e

o l

t x

gx h

x V

e t

s o i eu e

nu T u

e th a

I V

mh gl v

al l

v 4

Sg W e

sc nF i

RF d

F i

i ee r

e nt a

t e

t f

lH l3 nr u

gh a i Rn a

rn t

n a O e

e iu s

rgrw o

r eo a

o r

s-sl Ls s

aiTS er e

wr l

r e

t s

se o

e hH tt p

ot u

t p

u ee ev m1 r

c lt T

au o Pu m

u o O Vr Ve aC P

s ea I

ie n

e i e

n u

L e

i vo N

dN I

eN S

N I

2 rs r

t -

D l

Dl el U

e g

os o, S E

l ELF m

a te tw e

T e

mv L

r r

cr co nv E

w ae..

A e

e aP aL il L

y rLab N

t.

v.

e e

aa E

r c

O na b

Aa b c d e

R R

MV D

D S

I I

TCN U

1 2

3 4

5 6

7 8

F CMiQ,$*-

5[

S

1 1

l l y

2l b

l D

n

.oa HE 55 dM o

2.t h s

CR 2

eR i

s r

II

/

tP t

0p u

HU 44 1

aA a

1.ud o

WQ r

l c

o h

E et ue i

rr

9. o LRR 33 ts ch f

2 AO fa lt i

3fl 1

N F E' ae a

c o

O C

22 l

ct e

rdr l

ISN p

s p

oet i

TNA ua su S

l n t

AOL 1

1 11 t

ej RIL rr ud r

1. l o n

ac u

ETI ao lA e

0t PIE tf a

p 1 so I

ODV s

v

.nn NR p

r d

9. i N

OU ha rR e

e ed O

CS cl eE t

v 3rn I

ar wW t

o a

T ee oO i m

ne I

S v

pP m.

e ob,

D T

go s) r i d N

N n

eL nH t ye O

E N

io.

hA aP s

aad C

M rts tM rF i cmn E

N u

y R

tE i

e L

R O

dda oE

(

d fyp A

A. J.

ed tH w

a ies N

I I

U LT sn T

os e

chu O

Q EA R

R NN ei7 m

r h

ets I

.lfu p

T NR dm rD ER NB ars oER o

l S,e A

AI ceu fTEeh e

2. b R

E HL eto nAWh s

r E

CA dei oROtr s

e 9.l P

CN C

dv c

P e

e p

l O

A 2

e f

gw v

3a L

/er ooLno d

h m

L 1bp t

Aip e

ens o

I

%Md r

vo r

)

E tl e l5Rul u

oiS f

d V

slh e2 Ell s

mtN e

R aat nt Hcu s

eaO 2

u U eh n Txf e

rcI L-n S

l sn aR e

r iT N

A i

hED e

p sfA O

i t

N LN tsh cWE

,v diR I

n O EOT alt OTni r

ocE T

NIS Q

Q RW ei MPAot o

ret I

o I

C T

NTE

.rnw R

Ric t

pL D

(

A ACT Non PL te c

lSA N

T HN Ofad AAfcf a

o O

1 N

CU I

he Monf e

rrE C

F~

T pc m eR ue r teR E

1 M

Aa r

hE%f n pO L

U RlMo tH2 0

e o

C A

1 R

BrRf T

t0 h

cd NO T

I ePr f nu0 t

e 3

S LvAe o n a p1 ove I

L N

Ao p

ehn n tom T

EK C

d thtir e

mi A

4 I

NC ont nw e

h eet R

E M

NE A.

A.

A. A.

Ltao e

rwp w l r E

AH E

n m1eo b

s P

L E

B T

HC N

N NN NdM t

tl enE aei O

C NeRf sNafcoL cbh A

S T

Y AnIi uOe nib i

t g

S Hi jI reotA l a n

Cme

, d T gh cR pF g i

N rhn aI ttnE p

n r.

O metw Ds suP adi e2 I

ot o

eNieafO er t

T redd hO de tru.

nN C

fdnt tCeulte oiDn eO E

au cl ub Nu o

I T

de h

fLnctp q

nT

.i O

eb2s oAenano e

t eI R

d Nri it

.rei h0 P

ulNd toe d n

cs wh llOe sIfl ewd weno 0

R e

caIl iTfltoe arap dC r

xhTl sAiaal r ral e

O T

u t

esI o nRdhrfi d

l g mL s

s C

Dr oE sb u

hsin rA A

o a

esNt cPe ieq tkei oN E

l F1 n

blOn OtTlhe invt fO R

C 1

o eCo l

uSatr wirs rI e0 i

yn c

l gl E c l ui eT v

w t

anL anoT st d sx pA l po hi maAh his eeo og e R

e ail cs hNc srbLbdn rnd eE v Vr to scOa uaA u

i es bP l

T -

iP r

I e nd Nll s ltrt O

a l

w oMT o

Ol ci orii o

V o

,e Sn tRAg i eeI an rou tg rer w

cSRn tchThin th qm n

p tru eom e

Ei antCs o

nseo di o

nus dda tdPr ra N ni o

rr er t

oss otr enOu blfUsot cS f

re T

S Coe Muc da d i aiFMic Pr i t I

l r hS g

lb Rtn yR o d un N

e eCP rS nMnsDa lLPau

.n f eD qe U

n n

o l

oRieEcteELrf1

.ae vee i i t

a rI rdT ann b

hsoTrr L

b b

c u

t eaEsenN is0htrmE e

7 A

r r

a n

uetcLihaAeli1t u

Ltt N

u u

e a

eh n eEh hHhah.ifoeEof O T T R

M NTedDTacCTCT3WIhbDNa I

T CN

))

))

))))

))

))

U 9

0' 1

2 ab cd e f gh ij k1 F

1 1

1

((

((

((((

((

((

g ! ;;; ^

I g*~

R* ym

INSTRUMENTATION 3/4.3.6 CONTROL R0D BLOCK INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.6.

The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY: As shown in Table 3.3.6-1.

ACTION:

a.

With a control rod block instrumentation channel trip setpoint** less I

conservative than the value shown in the Allowable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.

b.

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

jgVEILLANCERE0VIREMENTS 4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE

  • by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.

i

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.
    • The APRM Simulated Thermal Power - Upscale Function Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are ad;usted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

i LIMERICK - UNIT 1 3/4 3-57

l D

N E

O TE I

L T

000 111111 11111111 1111 2

E 3

C 666 666666 66666666 6666 6

D 6

A L

5 D

EAS E

, T LNN 2'

2 5555 2

E 4

BOO L

AII

, E CTT 111 111211 25252525 2222 1

D 3

IAI LRD PEN PPO AOE NO I

T SN A

LO EI TN NT NC EM AN HU U

1 R MCF T

U D

E 6

S MEP T

ILI 222 333333 32323232 6666 2

E 2

N NBR 3

IAT I

L E

3 K MR ER D

C PE E

O L

L B

B

- OP

)n A

w T

P o

0 d

R te L

S(

O RT e

e N

l l

O a

a N

C c

c O

s s

I p

pe T

U~

Ul I

a S

c O

e s

P r

l rp e

aeU N

N w

cw S

W o

so-n R

n O

P. nP O

D i

i w

w T

T l

ol o I

U l

l N

E l

h H

D a 'F a

i l

m S

u O

u M

m g

S r

r t

R f

M f

U i

e enn O L

)

H H

)

h xhou T

t E

t O

C

(

R e

TeuTio o

e I

G o

e)

V T

)

O l

vl N

N "e

n v (*

e v

I diFddC n

v T

ie O

A ie v

W E

tl et el w M

r M R

r tl G

e S

i I

t l

N eaa tantuo o

e a

a oeaa R

L Wl E

E rc aroacL t

l r

c tl rc A E

~a e s l erl r G

c a

e s

T caes H

r D

cpn u pt u i M N

e c

p n A ecpn C

e O

Ksow moumcR A I

M t

s o

w tsow S

t COtno ineieP R

e p

n o D epno a

I UID SINSRL D U I

D E

DUID D

W D R

N L

E M

E O

O B

C R

M T

T I

T E

R E

A E

C C

D U

T R

L A

E ' a.

N 0

O N

C E

E U

Rabc A

bcdef S

a b

c d I

abcd S

a D R

F P

I R

T 1 '

2 3

4 5

6 7

CzEE7 Ep,_

w1 m.E I

TABLE 3.3.6-1 (Continued)

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION ACTION STATEMENTS ACTION 60 Declare the affected RBM channel inoperable and take the ACTION required by Specification 3.1.4.3.

q ACTION 61 With the number of OPERABLE Channels:

\\

a.

One less than required by the Minimum OPERABLE Channels per Tri)

Function requirement, restore the inoperable' channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.

'b.

Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirerent, place at least one inoperable channel in the tripped condition within one hour.

With the number of OPERABLE channels less than required by the ACTION 62 Minimum OPERABLE Channels per Trip Function requirement, place I

the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 63 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

NOTES 1

For OPERATIONAL CONDITION of Specification 3.1.4.3.

1 With more than one control rod withdrawn. Not applicable to c'antrol rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel asemblies, adjacent to the SRMs, are in the core.

(a)

The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of RATED THERMAL POWER.

(b)

This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(c)

This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

(d)

This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e)

This function is automatically bypassed when the IRM channels are on range 1.

(f)

DELETED I

LIMERICK - UNIT 1 3/4 3-59 L

RRR EEE L

WWW L

A OOO A

M PPP M

R d

d R

E l

LLL n

n E

H e

AAA a

a H

T v

MMM D

D T

l e RRR

%E

%E D

el E

EEE T

7. A
7. T D

E n

s U

HHH A

E T

nl p

L TTT 5RR 0RR T

A aa c

A 5

E 5

E A

R hi V

DDD fW fW R

cx 5

EEE

+oO

+oO f

a 0

E TTT P

P f

o r

1 s

L AAA W%

W%

o er p

B RRR L

4. A
4. L pe x

c A

6 6

A p

8M R

0. R W

6.0 R 68M

8. E 0

6 8

O 444 0R 3E 23 L

A 01E 01E A.

2W 1W A.1 A.1 L

/

833 H

H O

O A

N*

268 ssT ssT N

2P sP NsN2 S

RRR T

EEE L

L N

WWW A

A I

OOO M

M O

PPP R

R P

d d

E E

l T

LLL n

n H

H e

E AAA a

a T

T v

S MMM D

D l e RRR

%E

%E D

D el N

EEE

2. T
2. T E

E n

A A

T T

nl O

HHH T

TTT 5RR 0RR A

A aa I

s T

N 5

E 5

E R

R hi p

A DDD fW fW cx I

c 2T O

EEE

+oO

+oO f

f a

- N P TTT P

P o

o r

6ET AAA W%

W%

er

'0 M E RRR

0. A
0. L pe 1

s L

3 U S 6

6 A

p p

8M 8M

2. R
0. R R

6.0 R 6.0 R 0

.x.c 3T P

111 3E 2E 23 S

A 01E 01E A.

W 1W A.1 A. 3 I

E N R

/

833 H

H O

O LIT N*

268 ssT ssT N 2P sP NsN2 BA K TCO L

B DO n

R

)

o

)

P i

L P

S n

t O

S P

o a

R T

I

i r

I

(

et e

e T

(

l a p

l N

O t

ar O

a C

t n) ce c

n)

)iP sp p

s

)iP PoS pO o

p e

PoS S pP U

o U

l S pT PtH p

l a

TtH Le(

o c

Le(

(S o

n e

s (S

t rL o

l r

p Ntrn t

e i

a e

U nei wn t

c w

tpn nii tiwo oo a

s o

n i ro noop Pi l

n P

i oT p i pP t t

u w

w p

t ot e

l a c

o l

o ST tee

) pees al r

D a

l RT etS PtSt mu i

m F

C ?.

Sa Se ar rc c

t Tf B

i p TSrie er e

e n

n I

Q pdi D

edw hi R

x h

o u

N t

T ier e(eweo Tc e

u T

i o

O o e

I rmT v

gomP e

e v

l t

C M n v

N Tr ienPr dR l

i F

d) a ie O

eh tl a eh e

g t

en l

w E r tl M e wt g aaRwtg to n

a n

tw u

o G oeaa l oni rc oni aw i

r o

ao c

L N tl rc 1

K aLIH esrLIH lT S

e r

ld r

A caes C

C c pne u

p t

ut i

M R

ecpn I

O s oww m

o u

me c

R tsow T

L p)))

noo)))

i n

e iS e

P E

epno C

BU123 IDP123 S -

I N

S(

R L

CDUID N

M R

U D

R U

F O

P O

R a bcd A a b

c d

e f

S abcd P

I R

T 1

2 3

gh7**g"~

{

t @

l

- l l

n r

u e

o f

f i

o t

n f

a o

e s

o v

ll n

e o

aae o

s l

i mch i

n e

t rsT l

E s

o a

ep

)

a U

i i

r hu

.P m

L v

s 6

t

)S r

A i

i 1

e ePP e

V d

v

/

s ehSH h

e i 9

rTP(

t i

E 5l d

o o

I L

2a 7

n c

.(t e

B 1c 5

D

)

n r

A

/s 2

E o

gPti o

W 0

e 7

T t

nSno c

1 O

1l

/l 5

E iPip A.1l A. 3 a L

A.

2 L

l tLot r

L u

c E

a a(pe e

A NsfN2s s

D N

n r

ts p

g ete o

i pnsr r

s oi e

p orw d

d pe o e

n etwp h

a i eo t

f s ph e

i g

r t

crei e

a eeth v

E l

r pwa o

T.

l n

soie i

u o

t pd h s

!1 f

f i

n s

et p

Q o

t u

twm i

2 f

a o

i ord r

I s

o v

c l en tM I

n e

r ta R

S o

s l

d een eP L

i n

e e

vhit lA

)

s o

v ot n

a de G u

I T

- i i

r ei ce v

s 6

e ywho sh n

T.

N i

i 1

s l ot p pt 1

t D O

- d v

/

b nl t

u I

i e i 9

o o ed e y

n i P 5l

.d bns eb o

d T 2a 5

n e

a t

E 1 c 5

D a

ld r

ad MT c

S

/s 2

E be)e ie 8

1 e 7'

T s

asPw rd

(

P 0l

/l 5

E a

csSo pi 2

A.1l A. 5 a A.

2 L

I h

i aP p.

ov R

u c

E 6

l pL t

ro NsfN2s s

D N

r py(en pr o

e pb ti pp 3

t m

a tao a

i u

y ni p s

3 n

l slidt fi E

o o

il oee o

M v

apms M

LB hctr tB A

e.

e cieer nR T

g1 g

atste e

n-r Ea nw me

.s a6 a

mrio eh t

R h

.oe p

ct n

3 c

stwe r

i e.

s l uohh oo o

c3 i e a pt g ft p

r d

v i

n t

ue eewnh el e

or m

l roe a

s Su a

al ee l n g

r p

wh og e

ei c

isett ri s

hF s

r ph e ts e

t

/ titbe n

N h

n s

r v

or S

W t

di n

etndo ce R

O e

o l

eeb w

O D

r dn l

aMeia so T

n T

o iw l

cBwl tp Ii U

f vo a

s R t pd n

N E

H oh g

p epe ie Ol M

S R

rs ulbai oh Ml U hh L

p 3

l l

pT u

L gc H

O e

1 eAdsp t

Ef O it C

C dv e

ei p e

G V Hi T

er o

r i a

s.

N t w

I e

cu t

h

.lP s

A o e

ElS W

h uc t e pS s ee R n v

G e S

t d

t gpTi gg ie R

vt ee n

enaI nn E r tl A ea E

o rh e

ra P

aa T oe aa H Lo D

t t

l arses rr A tl rc C

l O

e a

ilT N

I ca es S

rF M

r be v

er aH rr O D ec pn I

e N

e v i rePc ee I

E ts ow D t D R O

f yo u

ewSse ww T M ep no a.

E O

I e

ab q h o T ph oo C

RDU ID M Wa T T

T R

Ma E

T pL u T Pp N

E A

E C

I U

T R

L A S F

N C

E E

O I

ab cd S

a D

R P P

)

)

I a

b R

(

(

T 4

5 6

7 E#

il.

M wb=

EE.

1 l

D HE CR II HU WO E

RR O

- FE L

C ASN 5

D NNA E

OOL

, T IIL 2

2 5555 5555 2

E 4

TTI L

AIE E

RDV 111 111 211 2222 2222 1

D 3

ENR POU OCS ST N

E

)

M ER N

I O

U I

O T

E LA D

R ER E

NB T

E NI E

C AL A.

A.

A.

A.

A.

A.

A.

L N

HA E

A CC RNR RNR RRR NRNR NRNR R

D N

L L

I E

VRU L

S A

1

)

)

)

)

LN 6

N EOT WWWW D

O NIS E

3 NTE T

I

)

)

)

)

T ACT E

4 A HN

) )

)

L

)

T CU AAA AAA E

(

E N

F QQQ SSS SSS MMMM WWWW Q D R

L E

3 M A U T RTSN D

I E

T K

L E

C EK A. A. A.

A. A. A.

A. A. A.

A.A.A. A.

A. A.A.A.

A.

A.

L O

NC E

L NE NNN NNN NNN NMNN NNNN N

D N

- B AH HC D

C O

R L

e O

l R

a T

c N

e s

N O

r l r p

S W

- C e

ae U R

O w

tw O

D o

so n

T n

T P

nP) i I

i U

w nw N

E h

H l

ol wo S

l O

l M

g S

a Dael R

l M

l U

i m

mdf O

u u

L H

H r

- rt t

T f

E f

O C

R e

eenr I

G V

T O

h xhSeu N

t N

t I

T

. e T

euT(i o O o

e A

o e

E l

W I

v vl tC M

n v

R n

v G

e S

N i e deiFdea ie ie R

v O

tl elt ell w E

r tl E

r tl A

e E

M eaa taantauo G

oeaa T oeaa H

L D

l rc acroaccL N

tl rc A tl rc C

O N

K aes l serl sr A

caes I

caes S

r M

O C

cpn u p pt u pi M R ecpn D ecpn I

e N

I O

sow mUoumUcR tsow E

tsow D

t D

R O T

L pno i

nei eP E

epno M epno a

E O

I C

B UID S

INS RL C

DUID R

DUID M

W T T

T N

M R

E A

E C

I U

D R

U T

R L

A S

F O

P O

.... N C

E E O R

abc A a bcd ef S

abcd I

abcd S

a D

R P P

I R

T 1

2 3

4 5

6 7

-rEEgn8 c$ ~

b

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE RE0UTREMENTS

. TABLE NOTATIONS (a)

Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b)

Deleted.

(c)

Includes reactor manual control multiplexing system input.

For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn.- Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

Deleted.-

l (d)

When in OPERATIONAL CONDITION 2.

(e)

The provisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are 04 Range 2 or below during a shutdown.

(f)- When in OPERATIONAL CONDITION 5.

(g)

The provisions of Specification 4.0.4 are not a)plicable provided that the surveillance is performed within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after tie Reactor Mode Switch has been placed in the shutdown position.

I l

1 1

LIMERICK - UNIT 1 3/4 3-62 m

REACTOR COOLANT SYSTEM l

LIMITING CONDITION FOR OPERATION (Continued)

ACTION:

(Continued) 2.

Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s:

Reduce the Average Power Range Monitor (APRM) Simulated Thermal Power -

U) scale Scram and Rod Block Trip Setpoints and Allowable Values, to tiose applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associated channel (s) inoperable and take the actions required by the referenced specifiertions, and, 3.

The provisions of Specification 3.0.4 are not applicable.

4.

Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b.

With no reactor coolant system recirculation loops in o 3eration, immediately initiate action to reduce THERMAL POWER suci that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

c.

With one or two reactor coolant system recirculation loops in operation and total core flow less than 45% but greater than 39% of rated core flow and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1:

1.

Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):

a.

At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and b.

Within 30 minutes after the completion of a THERMAL POWER increase of at least 5% of RATED THERMAL POWER.

2.

With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate m^rective action to restore the noise levels within the recuir w limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by recucing THERMAL POWER.

d.

With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

" Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

LIMERICK - UNIT 1 3/4 4-la c

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

'The reactor protection system automatically initiates a reactor scram to:

a.

Preserve-the integrity of the fuel cladding, b.

Preserve the integrity of the reactor coolant system,

c..

Minimize the energy which must be adsorbed following a loss-of-coolant accident,, and

~d.

Prevent inadvertent criticality.

This specification provides the limiting conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of service because of maintenance. When necessary, one channel may be made inoperable

. for brief intervals to conduct required surveillance.

The' reactor protection system is made up of two independent trip systems.

-Therelare usually.four channels to monitor each parameter with two channels in each trip system.' The outputs of the channels in a trip system are combined in a logic so that either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter channels.

Each APRM channel provides inputs to each of the four voter channels. -The four voter channels are divided into two groups of two each, with each group of two providing inputs to one RPS trip system. The system is designed to allow one APRM channel, but no voter channels, to be bypassed.

The system meets the intent of IEEE-279 for nuclear power plant protection systems.. Specified surycillance intervals and surveillance and maintenance outage

times have been determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A, " Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability' Trip Function." The bases for the. trip settings of the RPS are discussed in the bases for Specification 2.2.1.

- Actions a, b and c define' the action (s) required when RPS channels are discovered to be inoperable.

For those actions, separate entry condition is allowed for each inoperable RPS channel.

Separate entry means that the allowable time

clockJs)lfor actions a, b or c start upon discovery of inoperability for that specidic channel.

Restoration of an ino statements for that particular channel. perable RPS channel satisfies only the action Action statement (s) for remaining inoperable channel (s) must be met according to their original entry time.

~

.Because of the diversity of sensors available to provide trip signals and the

~ redundancy of the RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown' to be acceptable (NEDC-30851P-A and NEDC-32410P-A) to permit restoration of any inoperable channel'to OPERABLE status. However, this out of service time is only acceptable provided that the associated Function's (identified as a " Functional Unit" in Table 3.3.1-1) inoperable channel is in one trip system and the Function still maintains RPS trip capability.

LIMERICK - UNIT 1 B 3/4 3-1

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

. :The requirements of Action a are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same trip system for the same Function result in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both trip systems will generate a trip signal from the_ given Function on a valid signal.

For the typical Function with one-out-of-two taken twice logic, including the IRM l

Functions and APRM Function 2.e (trip ca 2.b, 2.c, and 2.d are discussed below), pability associated with APRM Functions 2.a.this one channel OPERABLE or in trip (or the associated trip system in trip).

For Function 5 Main Steam Isolation Valve--Closure), this would require both trip systems to have e(ach channel associated with the MSIVs in three main steam lines not necessarily the same main steam lines for both trip systems) OPERABLE or in trip or the associated trip system in trip).

For Function 9 (Turbine Stop Valve-Closure), this would require both trip I

systems to have three channels, each OPERABLE or in trip (or the associated trip system in trip).

The completion time to satisfy the requirements of Action a is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is acce) table because it minimizes risk while allowing time for restoration or tripping of clannels.

With trip capability maintained, i.e., Action a satisfied, Actions b and c as applicable must sill be satisfied.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or the associated trip system must be placed in the tripped condition.

Placing the inoperable channel in trip (or the associated tri) system in trip) would conservatively compensate for the inoperability, restore capa)ility to accommodate a single failure, and allow operation to continue.

As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Functi ons 2.a. 2.b, 2.c, or 2.d.

Inoperability of one required APRM channel affects both trip systems.

For that condition, the Action b requirements can only be satisfied by placing the inoperable APRM channel in trip.

Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actions that will restore capability to accommodate a single APRM channel failure.

Inoperability of more than one required APRM channel-of the same trip function results in loss of

. trip capability and the requirement to satisfy Action a.

The requirements of Action c must be satisfied when, for any one or more Functions, at least one required channel is inoperable 6 each tri) cystem.

In this condition, provided at least one chnnel

)er trip system is OPERAB.E, normally the RPS still maintains trip capability for t1at Function, but cannot accommodate a

. single failure in either trip system (see additional bases discussion above related to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b, 2.c, 2.d, 5 and 9).

LIMERICK - UNIT 1 B 3/4 3-la l

F 3/4.3 INSTRUMENTATION l

BASES l

3/4.3'1-REACTOR PROTECTION SYSTEM INSTRUMENTATl0N (continued) i The requirements of Action c limit the time the RPS scram logic, for any Function, would not accommodate single failure in both tri) systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four clannel Function). The reduced reliability of this logic arrangement was not evaluated in NEDC-30851P-A for o

the P. hour Completion Time..Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associsted Function suso have all required channels OPERABLE or in trip (or any combination) in one trip l

l system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851P-A, which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> allowable out of service time as allowed by Action b.

To satisfy the requirements of Action c, the trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g., a trio system with two inoperable channels could be in a more degraded state.than a trip system with four inoperable channels if the two inoperable channels are in the same Function while the four inoperable channels are all in different be based o)n prudent judgment and take into account current plant conditions (i.e.,Th Functions.

what OPERATIONAL CONDITION the plant is in).

If this action would result in a scram or RPT, it is permissible to place the other trip system or its inoperable channels in trip.

The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. allowable out of service time is judged acceptable based on the remaining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting al,1 diverse Functions, and the low probability of an event requiring the initiation of a scram.

As noted, Action c is not applicable for APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM 2-Out-0f-4 voter and other non-APRM channels for which Action c applies.

For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel.

Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actions that will restore capability to accommodate a single APRM channel failure.

l L

.If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action c (e.g., as in the case where placing the ino>erable channel in trip would result in a full scram), Action d requires that tie Action defined by Table 3.3.1-1 for the applicable Function be l

initiated immediately upon expiration of the allowable out of service time.

L l

The Two-Out-0f-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware. The voter Function 2.e is accomplished by the 2-out-of-4 voter l

l hardware which includes redundant outputs. The analysis in NEDC-32410P-A took credit

-for this redundancy in the justification for the 12-hour allowable out of service time, so the voter. Function 2.e must be declared inoperable if any of the 2-out-of-4 voter hardware's ' functionality is inoperable. The voter Function 2.e does not need to be declared inoperable-due to any failure affecting only the APRM Interface hardware portion of the Two-Out-Of-Four Logic Module.

l LIMERICK - UNIT-I B 3/4 3-lb I

i

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

Automatic reactor trip upon receipt of' a high-high radiation signal

. from the Main Steam Line Rac,iation Monitoring System was removed as the result of an analysis performed by General Electric in NED0-31400A. The NRC approved the results of thir analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15,1991).

1 The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the safety analyses. No credit was taken for those channels with response times indicated as not applicable except for APRM Simulated Thermal Power - Upscale and Neutron Flux - Upscale trip functions (Table 3.3.1-2, Items 2.b and 2.c)l channel test measurement, provided such testsRe of. sequential overlapping or tota

- demonstrate the total channel res)onse time as defined.

Sensor response time verification may be demonstrated )y either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times.

. Response time testing for the sensors as noted in Table 3.3.1-2 is not required based on.the analysis in NED0-32291-A.

Response time testing for the remaining channel components is required as noted.

For the digital electronic portions of the APRM functions, performance characteri.c*' s that determine response time are checked by a

- combination of automatic self-tett n.libration activities, and response time tests 1

of the 2-Out-0f-4 Voter (Table 3.3.1-2, Item 2.e).

t l

i

)

LIMERICK - UNIT 1 B 3/4 3-fc l

L

I LPRM 1 LPRM 3 LPRM 2 LPRM 4

\\-

s.

9

-l APRM 1 APRM 3 APRM 2 APRM 4 h

h N

i f

16 N., /

x APRM APRM' APRM APRM i

2-OUT-OF-4 2-OUT-OF-4 2-OUT-OF-4 2-OUT-OF-4

}

VOTER Al.

VOTER A2 VOTFR B1 VOTER B2

)

ir ir q,

q, l

RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL B1 RPS CHANNEL B2 RELAYS K12A & K1'E RELAYS K12C & K12G RELAYS K128 & K12F RELAYS K12D & K12H l

'l BASEt3 FIGURE B 3/4.3-2 APRM CONFIGURATION f '

1 LIMERICK - UNIT 1 B 3/4 3-9

+

MlILMD_LIMIMG SAFETY SYSTEM SETTINGS 2.2 LIMITING SAFETY SYSTEM SETTINGS i

s kEACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The reactor protection' system instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY:

As shown in Table 3.3.1-1.

ACTION:

With a reactor protection system instrumentatica setpoint less conservative than the value shown inlthe Allowable Values column of Table 2.2.1-1, declare the channel inoperable

  • and apply the applicable ACTION statement requirement I

of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.

i

  • The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the-flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

I LIMERICK - UNIT 2 2-3

nn oo ii d

d tt s

n n

e aa n

a a

v vv o

D D

oo ee i

D

%E

%E br ll T

T D

ae ee s

E

3. A
3. A i

T E

z ve AR 3RR 8RR TR s

il RE 6 - E 5

E AE etd 44 da W

fW fW RW gh n e g //

c fO

+oO

+oO O

ices i

11 E

5s oP P

P fP snmo s

LS 2

W%

W%

o pi u l p

99 L

L rcd BE 1l

%L

0. L
0. A A

6 A

6

%A 3 0.t E8 AU

/l

0. M WL 2u 7M M

0 s%T8 11 7M 6.1 R 6.1 R

7. R OA 2f 0R 11 n2E 66 LV 1.

2E 01E 01E 8E A.

A.

11i1L1 22 L

f H

H H

1H E

A so sT ssT ssT 1T N

N sa sDs ss tnemu S

r T

L t

N A

s nn I

M n

oo O

R i

ii P

E d

d tt T

s H

n n

e aa E

n T

a a

v vv S

o D

D o

ee i

D

%E

%E b

ll T

D a

ee

8. T
8. A N

se E

A E

O il T

I va A

2RR 7RR TR s

T ic R

6 E

5 E

AE e

44 A

ds fW fW RW gh d

g //

f

+oO

+oO O

ic e

i 11 T

T 5l o

P P

fP sn s

s N

N 2l W%

W%

o pi o

p 11 E

I L

L L

lD M

1 u

6. A
6. A

%A 6 5.

  • cE8 O

/f

0. R 6

6 1

U P

0 6M M

9 T6 11 6M 6.1 R 6.1 R

3. R R

T 2f 5E 02o%E 66 1

T E

S 1 o 1W 01E 01E 8E A.

A.

11 r8L1 22 2

N S

O H

H 1H e

E I

s sP ssT ssT 1T N

N sazsDs ss P

2 I

N R

E E

L T

T B

S e

A Y

m T

S u

l N

h o

O g

v I

i T

H ~

n e

C o

h3 e

h E

x g

r g

g i

r il u

i T

u n

t a

He s

H O

l

o a

h v

o R

F ei r

c e

l P

l t e

s L

C n

a a p

i R

o

)

c r O

e l

r,

e d

O r

n s e uw v

T t

w p p p

m so e

e C

u o

U O o

a sL v

L A

e d

o r

e l

E N

t p

L r-a r

c

e o

R s

P V

e rS

.r o n

./

r o(

eL o

e l

t s

o t

w l

ee n

a a

mv o

Wr 1 n i

t ie o n t

c oe i

h e

- o i

nl P o a

n oa s

DL t

get

3. l.

p a

imt i

l o

Mc l t u

U r

mr l

Hui 4a M'

s a a c

mh

/g ep ml r

e ae o

l t

et s

- o sc 3

e gU. e c c

r u i

Vnt 8

g n-o ta I

ai B5 x

V SW e

n ax hr e

a Ru T

R u

e e

re rw l

v 4

ll n

u gT S e5 i

R l

c F

i ee i

sr r2 rF de e

e e

eR t

f ss L

salt u

n a

0 ss ehea go l

t wn t

g o

r ee m

rc vo it I

a oo a o n

r e

t VV a

Ps el F

Ei P r' l w i

LF t

t p

u e

i d

t uT S

sn U

e eu m

u o

O rr tDlD ee m

ge i-e n

oo SEl sl L

r aN S

N I

2 tt Tem aa A

e r

cc nEwa Bv N

t e

aa iL y r i

O n

v.

ee aErc eu I

I Aa b

c d

e RR MDDSab T

eq C

SE N

U F

1 2

34 5678

,. E9;3 ' Ep m

2.2 LIMITING SAFETY SYSTEM SETTINGS BASES-2.2.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS

.The Reactor Protection System instrumentation setpoints specified in Table 2.2.~1-1 are the values at which the reactor trips are set for each para-

)

-meter. The Trip Setpoints have been selected to ensure that the reactor core and reactor coclant system are prevented from exceeding their Safety Limits during normal operation and design basis anticipated operational occurrences and to assist in mitigating the consequences of accidents. Operation with a trip set less conservative than its. Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and te Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.

1.

Intermediate Ranae Monitor. Neutron Flux - Hiah The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRM is a 5, decade 10 range. instrument. The trip setpoint of 120 divisions of scale is active in each of the 10 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up, The IRM instruments provide for overlap with both the APRM

.and SRM systems.

The most significant source of reactivity changes during the power increase is due to control rod withdrawal.

In order to ensure that the IRM provides the required protection, a range of rod withdrawal accidents have been analyzed. The results of these analyses are in Section 15.4 of the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at ap)roximately 1% of_ RATED THERMAL POWER. Additional conservatism was taken in t11s. analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed. The results of this analysis show that the

- reactor is shutdown and peak power is limited to 21% of RATED T'IERMAL POWER with the peak fuel enthal)y well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, tie IRM provides protection against local-control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

I 2.

Averaae Power Ranae Monitor 1

The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter l

channels. The four voter channels are divided into two groups of two each, with each group of two providing inputs to one RPS trip system.. All four voters will trip (full scram) when any two APRM channels exceed their trip setpoints.

= For operation at low' pressure and low flow during STARTUP, the APRM Neutron

-Flux-Upscale (Setdown) scram setting of 15% of RATED THERMAL POWER provides adequate

' thermal margin between the setpoint and the Safety Limits. The margin accommodates the anticipated maneuvers associated with power plant startup.

Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system. Tempera-

-ture coefficients are small and control rod patterns are constrained by the RWM. Of all the possible sources of reactivity input, uniform control rod uithdrawal is the most probable cause of significant power increase.

. LIMERICK'- UNIT 2 8 2-6

LIMITING SAFETY SYSTEM SETTIhrd BASES REACTOR PROTECTION SYSTEM @lTRUMENTATION SETPOI i

.i^

Averaae Power Ranae Monitor (Continued)

Because the flux distribution associated with uniform by a significant amount the rate of power rise is very slow.

heat flux is in near equ,il,1brium with the fission rate.

Gener In an assu@ ally the than 5% of RATED THERMAL' POWER per minute and th d uniterm than adequate to assure shutdown before the power could excebd the Safet The 15% Neutron Flux - Upscale (Setdown) trip remains active u6t il the m;v t hu i switch is placed in the Run position.

e steady state conditions. Fission chambers provide the 14stc 3

system and therefore the monitors respond directly and 'quicOy TOhd y to transient operation for the case of the Neut.r0n Flur y for a power increase, the THERMAL POWER of the. TucllriT) bnMj;:Opu de S ltyn indicated by the neutron flux due to the timo t%M n c6ntinau M tbQtjMWL.

associated with the fuel.

For the Simulated 7h& mal Meri!$u le bl4

~g a time constant of 6 4 0.6 seconds H intrbduded into t b maximum value is used for the flow-bus'cc: ntes M M Un d

fa Limits and yet allow operating Wmi, &rThe APRM setpoints werc[tclettrQ.to@N e

m.

o sary shutdown, f

3.

EtLqtor VeEfL$tts:NhnNo @

9 W Qh pftS$Urc lu the M i W M M/D, s p;

increase'while opern%q vdMr;? Ohklf#$f&ff[

-sySteG p50ce55lbarrierITc%M N V

"O Cot"pressiny SbMaAhurd4$Di DNA I. x b Ih neutron Bux 40c3:

hichLr 1##69 IR $$c46 dhh

'tr1p,lh2rs4 hec 6M*d D ^ N'iN'@M O Q if

%nn%4&f %rW O hy ste we orgew*e n c gr@@ym/ly mg[yN m

s ntr@ $ C % M M M N f V,'

M g[3~#H'

$ IIe;-

o5Fw/u qygg ag7W % o f, 3-

-Q -lit MF,

  • n.h may %+Me '

'~

~<

, p*.#4; 7

v n

4

( E, s

,y,.

1 F

, g;q i

o j

, +

~,

.y "5

J 8

r If

b

. a 3

'NN i

W 9_ en t

5

. h :.

l g

A~

g' MF 9

L

u LIMITING SAFETY SYSTEM SETTINGS BASES REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor (Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high local peaks and because several rods must be moved to change )ower by a significant amount, the rate of power rise is very slow. Generally tie heat flux is in near equilibrium with the fission rate.

In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 5% of RATED THERMAL POWER per minute and the APRM system would be more than adequate to assure shutdown before the power could exceed the Safety Limit.

The 15% Neutron Flux - Upscale (Setdown) trip remains active until the mode switch is placed in the Run position.

The APRM trip system is calibrated using heat balance data taken during steady state conditions. Fission chambers provide the basic input to the system and therefore the monitors respond directly and quickly to changes due to transient operation for the case of the Neutron Flux - Upscale setpoint; i.e.,

I for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel. For the Simulated Thermal Power - Upscale setpoint, a time constant of 6

  • 0.6 seconds is introduced into the flow-biased APRM in order to simulate the fuel thermal transient characteristics. A more conservative maximum value is used for the flow-biased setpoint as shown in Table 2.2.1-1.

The APRM setpoints were selected to provide adequate margin for the Safety Limits and yet allow operating margin that reduces the possibility of unneces-sary shutdown.

3.

Reactor Vessel Steam Dome Pressure-Hiah High pressure in the nuclear system could cause a rupture to the nuclear system process barrier resulting in the release 0; fission products. A pressure increase while operating will also tend to increase the power of the reactor by compressing voids thus adding reactivity. The trip will quickly reduce the neutron flux, counteracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious trips. The setting provides for a wide margin to the maximum allowable design pressure and takes into account the location of the pressure measurement compared to the highest pressure that occurs in the system during a transient. This trip i

setpoint is effective at low power / flow conditions when the turbine stop valve and control fast closure trips are bypassed.

For a turbine trip or load rejection under these conditions, the transient analysis indicated an adequate margin to the thermal hydraulic limit.

LIMERICK - UNIT 2 B 2-7

m 3/4.3 INSTRUMENTATION 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.1' As a minimum, the ' reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABJILIJ1: As shown in Table 3.3.1-1.

ACTION:

Note:

Separate condition entry is allowed for each channel.

a.

With'the number of OPERABLE channels in either trip system for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, within one hour for each affected functional unit either verify that at least onc* channel in cach trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable channel in the affected trip system in the tripped condition.

b.

With the number of OPERABLE channels in either trip system less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1 '1, place either the inoperable channel (s) or the affected trip system ** in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

c.

With the number of OPERABLE channels in both trip systems fcr one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

Ji within the allowable time allocated by actions a, b or c, it is not desired to place the inoperable channel or trip system in trip (e.g., full scram would occur), Ibg!1 no later than expiration of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

"For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE i

or tripped.

For Functional Unit 5, both trip systems shall have each channel i

associated with the MSIVs in three main steam lines (not necessarily the same main steam lines' for both trip systems) OPERABLE or tripped.

For function 9, at least three channels per trip system shall be OPERABLE or tripped.

    • For Functional Units 2.a, 2.b, 2.c, 2.d, inoperable channels shall be placed in the tripped condition to comply with Action b.

Action does not apply for these Functional Units.

j J

LIMERICK - UNIT 2 3/4 3-1

3/4.3 INSTRUMENTATION 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE RE0VIREMENTS 4.3.1.1<

Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 24 months, except Table 4.3.1.1-1 Functions 2.a, 2.b, 2.c, 2.d, and 2.e.

Functions 2.a. 2.b, 2.c, and 2.d do not require separate LOGIC SYSTEM FUNCTIONAL TESTS.

For Function 2.e, tests shall be performed at least once per 24 months.

LOGIC SYSTEM FUNCTIONAL TEST for Function 2.e includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations of two tripped inputs to the 2-Out-0f-4 voter logic in the voter channels.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per.24 months. - Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 24 months where N is the total number of redundant channels in a specific reactor trip system.

LIMERICK - UNIT 2 3/4 3-la I

p r

NO I

T 1

3 1

3 I

4 4

4I 41 1

1 4

CA

)a Sf L

.EM NE mNT e

iAS v

MHY l

N ICS

)

)

)

)

)

))

a O

N d

d m

m m

mm v

I IEP

(

(

(

(

(

((

/

T MLI 3

3 3

3 3

3 3

33 22 2

2 1

A BR T

AT N

R E

ER M

PE U

OP RTSN 1

I 1

M E

3 T

S 3

Y S

E L

N L

B O

EAS

)

)

)

)

A I

LNN 1

i f

g T

T BOO

(

(

(

(

C AII 2

5 2

5 2

1 1

12 12 2

2 1

E CTT T

IAI O

LRD 1

1 R

PEN e

P PPO

)

l AOC n

a R

w c

O o

s T

d p

C t

U A

e w

E S

o e

R

(

L v

r l

)

)

"r e

e e

a l

w l

V sr o

a o

a l

o h

t c

P c

e e

n t

g i

s s

m v

o i

i n

p l

p o

e i

n H

o U

a U

r D

L t

o M

m e

a M

r t

m r

l e

e o

a e

o e

x g

x h

x V

eh t

s g

u e

n u-T u

e tg a

I n

l v

a l

l v

4 Si W

a F

i R

F-d F

i H

e R

t e

t f

l l

n n

a r

n t

n a

0 e-e i

e o

r e

o a

o r

s s

L t

r e

w r

l r

e t

se s

a t

p o

t u

t p

u er e3 m

T i

u o

P u

m u

o O

Vu V

ae I

d e

n e

i e

n s

l er N

e N

I e

N S

N I

2 rs re tu U

m g

oe ov Ss r

a tr te o

L e

r cP cl nl A

t e

a a

iC

.N n

v e

e a

O I

a b

A a

b c

d e

R R

M

.I T

.C

.NU F

1 2

3 4

5 E

[zZ w*

~

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION ACTION STATEMENTS Be in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 1 ACTION 2 DELETED l

Suspend all operations involving CORE ALTERATIONS and insert ACTION 3 all insertable control rods within I hour.

ACTION 4 Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

i Be in STARTUP with the main steam line isolation valves closed ACTION 5 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

Initiate a reduction in THERMAL POWER within 15 minutes and ACTION 6 reduce turbine first stage pressure until the function is I

automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 Verify all insertable control rods to be inserted within I hour.

Lock the reactor mode switch in the Shutdown position within

)

ACTION 8 I hour.

ACTION 9 Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within I hour.

l LIMERICK - UNIT 2 3/4 3-4 l.

1 b

[-

TABLE 3.3.1-1 (Continued) l REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS

.(a)

A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.

(b)

This function shall automatically be bypassed when the reactor mode switch is in the Run position.

l (c).. DELETED.

l (d)

The noncoincident NMS reactor trip function logic is such that all channels go to both trip systems. Therefore, when the " shorting links" are removed, the Minimum OPERABLE Channels Per Trip System is 6 IRMs.

l (e)

An APRM channel is inoperable if there are less than 3 LPRM inputs por level or less than 20 LPRM inputs to an APRM channel, or if more than 9 LPRM inputs

]

i.

L to the APRM channel have been bypassed since the last APRM calibration (weekly gain calibration).

(f)

This function is not required to be OPERABLE when the reactor pressure vessel head is removed per. Specification 3.10.1.

(g)

This function shall be automatically bypaved when the reactor mode switch i

is not in the Run position.

-(h)~

This function is not-required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY.is not required.

(i)'

With;any control rod withdrawn.

Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

.(j)

This function shall be automatically bypassed when turbine first stage pressure is-equivalent to a THERMAL POWER of less than 30% of RATED THERMAL

. POWER.

(k)-

Also actuates the E0C-RPT system.

. (1)

DELETED-l (m)

Each APRM channel.provides inputs to both trip systems.

1 (n)

A channel or. trip system which has been placed in the tripped condition to

. satisfy' Action b. or Action c. may be returned to the untripped condition under administrative control' for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

I I

LIMERICK - UNIT 2 3/4 3-5 1

E D

M E

4 I)

..5 5

5 6

T 6

8 Ts 0

5 0

0 E

0 0

f d

A. A.

A.A.A.A.0 A.

A. A.

A.

A.

m 0 L

En 0

1 0

E 0

o or-So NN NNNNs s

s s

D N

NN s

s N

N ret Nc ftu Oe oO g

PS tV -

n S(

p 2

it E

m4 ti R

eh sn xfc eu e0a t

- e p

et ei rum mr aOo it

- r t

s2f g

c en ies si nht nd otu ou r

p pl S

tft sc E

cou en M

e o

Ri I

l n T

eot

.l in e

E lta sn S

aad tn N

tvn ia O

iiu uh P

gtd cc S

ice 4 r

E dar ig R

2

=

cn l me i

M 1

eohN

.S n E

nrt Pi T

nf oeRa 3

S a

,sr m

Y 3

hd3 uee S

ce

,shr E

r1l ot N

ru

. el e

L O

ncrh e s 3. n B

I ta ot A

T T

oe4atf C

Vm hs r

E ncago T

4eo fnf O

bie i

R h

3 e

h f

tmets P

g r

g 0l aavst e

i l

u i

l csl ei R

)l H

e s

H tai atm O

na v

o n

uhfev i T

wc e

l o

Osih el C

os l

C i

ctl m A

dp e

l e

t 2ee oie E

tU r

e r

i m pf r t v R

e u

w v

u s

diSot i

S -

s o

e e

s o

nt net

(

s L

v L

o P

a ftosa r

e l

l eorcnr

  • eee r

a r

e C

n l s a

ot s

rl wl P

V e

r w

ennpeps r

oaoa l

t u

t o

noo nsi.

oh tcPc e

e n

a s

sw d

n pi d i e n d tg is s

m v

o W

o ao t

astebrie ii n pl p o

e i h

r l

FL u

hearr mr nH oUaU r

D L

t g

ee C

h cRceumdi o

M m

e a

i mt e-S idtoau M-r-

t m

r l

H ut v

M r

q

.lipsffee e

e o

a e

o li l e h

R ex gxhx V

e t

s omh e

ar c

P gpn o hr gue nuTue t

a I

Vsc v Vu t

Anao dt nl v al l v4 S

W e

nt l

s i i

cte e

aFi RFdFi -

e r

eai a

l s w

,t r rtor R

t e

tf l

l n

u grw V

oe S

ssoeaata na rntna0 e

e i

s rTS rr reFrtn eor eoaor-s s

L s

a p tP e

m ot asiec tre wrl ret s

s e

hlt o

n d

a t

mci at p otutpu e

e m

r cea t

ol o

r ce

.l ming T

iuo PumuoO V V

a P

svo S

Ci M

c emyeol ao I

den eien-e iel O

S ti a n r e ml N

eNI eNSNI2 r

r t

D l

DLF e

e r

etl nf r

U m

g o

o S

E l

n np o l

d ea soy r

a t

t T

e m

i ii t

a erhdifa L

e r

c c

n E

w a

b br c

u ns ce nl A

t e

a a i L

y r

r rT a

n ont rroe N

n..

v.....

e e

a E

r c..

u u

e a

rouruocr O

I ab Aabcde R

R M

D D

Sab T T

R M

tppess I

usttandd T

eeuoeenn C

NroVMSaa N

U 1

2 3

4 5

6 7

8 9

0 1

2 F

1 1

1 rj=F7 'E:q

  • j C5

I r

D HE CR II HU LWQ A

E NRR OO IFE

))

T C

i1 ASN

((

RNA

)

)

D 55 EOL i

h E

PIL

(

(

T OTI

)

5 2

2 2

2 E

2 22

IE 1

L DV

(

E NR 25 2

2 I

1 1

1 1

1 1

D 1

11 OU CS S

.)

T a

N

-(

E N

M LO

)

E EI g

R NT

(

I NA R R D

U AR E

Q HB T

E CI

)

)

E A.

d d

A.

A.

R L

L A

(

(

E E

C RR N R W W N N

R R

R D

R RR CNA L

L I

E V

R L

U LA S

EN NOT D

1 N

NIS E

O ATE

)

)

T 1

HCT

)

)

1 e

E I

T CN j j

(

(

L 1

A U

(

(

A A A A A E

T F

WW W S

S S

S S

Q Q

Q D Q

QQ 3

N E

4 M

E UR L

T L

D B

S EK E

A N

NC T

T NE

)

)

E I

AH b

A.

b A.

A.

A.

L N

HC

(

(

E E

C SS N

D D D N D S

S N

D S S'N TSYS e

)

l N

n a

O w

c I

o s

T d

p C

t U

E e

T

S O

)(

R f

r P

( e e

e r

rl w

l e

R s

oa o

a l

t O

rh tc P

c e

e n

a T

og is s

m v

o W

C ti np l

p o

e i

h A

iH oU a U r D L

t g

e r

E n

M m

e a

i m

e R

o-r t

m r

l H

u t

M e

e o

a e

o l

t x

gx h

x V

e t

s o i eu e

nu T

u e

th a

I V

mh gl v

al l

v 4

Sg W e

sc nF i

RF d

F i

i ee r

e nt a

t e

t f

lH l3 nr u

gh a i Rn a

rn t

n a 0 e

e iu s

rgrw o

r eo a

o r

s-sl Ls s

aiTS er e

wr l

r e

t s

se o

e hH tt p

ot u

t p

u ee ev ml r

c lt T

au o Pu m

u o

O Vr Ve aC P

s-ea I

i e n

e i e

n u

l e

i vo N

dN I

eN S

N I

2 rs r

t -

D l

Dl el U

e g

os o,

S E

l ELF m

a te tw e

T e

mv L

r r

cr co nv E

w ae..

A e

e aP aL il L

y rLab N

t.

v.

e e

aa E

r c

O na-b Aa b

c d e R R

MV D D S

I I

TCN U

1 2

3 4

5 6

7 8

F 5R c5* "

w4

l l

r y

2l b

l D

n

.oa HE 55 dM o

2.t h s

CR 2

eR i

s r

II

/

tP t

0p u

HU 44 1

aA a

1.ud o

W0 r

l c

o h

E et ue i

rr

9. o LRR 33 ts ch f

2 AO fa lt i

3fl 1

NFE ae a

c o

O C

22 l

ct e

rdr l

ISN p

s p

oet i

TNA ua su S

l n t

AOL 1

1 11 t

ej 1l o n

RIL rr ud r

.ac u

ETI ao lA e

0t PIE tf a

p 1.so 1

ODV s

v nn NR p

r d

9. i N

y.

OU ha rR e

e ed O

CS cl eE t

v 3rn I

ar wW t

o a

T ee oO i m

ne I

v pP m.

e ob,

D ST go s) r i d

N

)

n eL nH tye O

N a

io.

hA aP s

aad C

E

(

rts tM rF i cmn M

N u

y R

tE i

e L

E R

O dda oE

(

d fyp A

A. A.

ed tH w

a ies N

I I

LT sn T

os e

chu O

V0 EA R

R NN ei7 m

l r h

ets I

NR dm rD

.f u p

T E

NB ars oER o

l S

,e A

R AI ceu fTEeh e

2. b R

HL eto nAWh s

r E

E CA d ei oROtr s

l P

e 9.l C

C dv c

P e

e p

O N

2 e

f gw v

3a A

/er ooLno d

h m

L 1bp t

Aip e

ens o

L

%Md r

vo r

I

)

E tl e l5Rul u

oiS f

slh e2 Ell s

mtN d

V aat n1Hcu s

eaO 2

e R

eh n Txf e

rcI u

U L

l sn aR e

r iT N

n S

LA i

hED e

p sfA O

i EN tsh cWE

,v diR I

t N

NOT alt OTni r

ocE T

n O

NIS Q

Q RW ei MPAot o

ret I

e I

ATE

.rnw R

Ric t

pL D

C T

(

A HCT Non PL te c

lSA N

CN Ofad A Af cf a

o O

T 1

N U

I he Monf e

rrE C

F T pc m eR ue r

teR E

Aa r

hE%f n pO L

1 M

RlMo tH2 0

e o

C A

U BrRf T

t0 h

cd N

1 R

I ePr f

nu0 t

e,

O T

LvAe o n a p1 ove I

3 S

L Ao p

eh n n

tom T

N EK C

d thtir e

mi A

4 I

NC ont nw e

h eet R

A.

A.

A. A.

Ltao e

rwp w l r E

NE E

M AH E

n m1 eo b

s P

L E

B T

HC N

N NN NdM t

tl enE aei O

C NeRf sNafcoL cbh A

S AnIi uOe nib i

t g

T Y

Hi jI reotA l o n

S Cme d T gh cR pt g i

rhn aI ttnE p

n r.

NO metw Ds suP adi e2 ot o

eNieafO er t

I T

redd hO de tru.

nN fdnt tCeulte oiDn eO C

au cl ub Nu o

I E

de h

fLnctp q i nT T

eb2s oAenano e

.t eI O

d Nri it

.rei hD R

ulNd toe d

n cs wN P

llOe sIfl ewd weno O

e caIl iTfltoe arap dC R

r xhTl sAiaal r ral e

O u

t esI o nRdhrfi d

l g mL T

s s

Dr oE sb u

hsin rA C

o a

esNt cPe i eq tkei oN A

l F1 n

blOn OtTlhe invt fG E

C 1

o eCo l

uSatr wirs rI R

e0 i

yn c

l gl E c l ui eT v

w t

anL anoT st d

sx pA l po hi maAh his eeo og e R

v Vr to scOa uaA u

ies bP e

ail cs hNc srbLbdn rnd eE l

T -

iP r

I e nd Nll s ltrt O

a l

w oMT o

Ol ci orii o

V o

,e Sn tRAg ieeI an rou tg rer w

cSRn tchThin th qm n

p tru eom e

Ei antCs o

nseo di o

nus dda tdPr ra N

ni o

rr er t

oss otr enOu blfUsot cS f

re T

S Coe Muc da d

iaiFMic Pr it I

l r hS g

lb Rtn yR o d un N

e eCP rS nMnsDa lLPau

.n f eD qe U

n n

o l

oRi eE c t e EL rf1.ae vee hsoTrr i i t

a rI rdT ann b

L' b

b-c u

t eaEsenN is0htrmE e

A r

r a

n uetcLihaAeli1t u

Ltt N

u u

e a

ehneEh hHhah.ifoeEof O

T T F.

M NT ed DT a c CT CT 3WIhb D N a I

T C

N

))

))

))))

))

))

U 9

0 1

2 ab cd e f gh 1j k1 F

1 1

1

((

((

((((

((

((

, E5R h9" wi w&

n INSTRUMENTATION 3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.6.

The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY: As shown in Table 3.3.6-I.

ACTION:

a.

With a control rod block instrumentation channel trip setpoint** less I

conservative than the value shown in the Allowable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.

j b.

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

SURVEILLANCE REQUIREMENTS 4.3.6-Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE

  • by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.

)

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.
    • The APRM Simulated Thermal Power - Upscale Function Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

LIMERICK -' UNIT 2 3/4 3-57

i l

f D

N E

O T

I E

T 000 111111 11111111 1111 2

L 3

C 666 666666 66666666 6666 6

E f.

A D

5 D

~

L E

EAS

, T LNN 2

2 5555 2

E 4

BOO L

AII E

CTT 111 111211 25252525 2222 1

D 3 IAI LRD PEN PP9 AO[

N 0

lI SN A

LO EI T

NT N

NC D

E M

AN E

.HU U

T MCF E

1 R_

U I

L MEP E

6 R

ILI

. 222 333333 32323232 6666 2

D 2

S NBR

. 3 I

IAT L MR 3

ER IC PE E

O

. L L

OP

)

B B

n A

w D_

o

.T d

O

.t R

e L

S

(

Q RI e

e l

l H

N a

a 0

O c

c 0

I s

s p

pe T

I U

Ul S

a O

- c P

e s

rl rp e

aeU N

w cw S

W O

o so-n R

n P

nP O

D i

i w

w T

T l

ol o I

U l

l a

Dal l

l h

H N

E m

mF u

O u

M g

S S

r

' r t

R f

M f

U i

H H

e enn O L

)

E O

C

.h xhou T

t "e

t R

e TeuTio o

G o

e' V

T I

)

l O

. v 'e vl tC N

n v

N n

v" e

I "e

E W

i diFda O

A i9 v

T

)

i

.tl et el w M

r "

t l

R r

t1 G

e S

I N eaa tantuo o

e a

a oeaa R

L O

rc aroacL t

l r

c tl rc A

E E

E l

M aes

.l erl r G

c a

e s

T caes H

r DO cpn u pt uiM N

A ecpn C

e e

c p

n M

K sow moumcR A I

S t

t s

o w

tsow C

pno ineieP R

e p

n o D epno a

I E

D R N_

OUID

.SINSRL D U I

D DUID O

W L

E M

E O

Q B

C R

M T

T J

1 R

E A

E C

T 2

C D

B U

T R

L A

C E

E

...... O N

2 N O U R abc 8 aicdef S

a b c d I

ab cd S

a D R

i F

P I

R T

1 2

3 4

5 6

7

,o C 3 En* ' E Q m w1 w4c 1

J

E TABLE 3.3.6-1 (Continued)

CONTROL R00 WITHDRAWAL BLOCK INSTRUMENTATION ACTION STATEMENTS ACTION 60 Declare the affected RBM channel inoperable and take the ACTION required by Specification 3.1.4.3.

ACTION 61 With the number of OPERABLE Channels:

a.

One less than required by the Minimum OPERABLE Channels per Trip runction requirement, restore the inoperable enannel to OPERABLE

.tatus within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> er place the inoperable channel in the tripped condition..

b.

Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped conoition within one hour.

ACTION 62 With the ntaber of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

With the number of OPERABLE channels less than required by the ACTION 63 Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

NOTES For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicalle to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMc, are in the core.

(a)

The RBM shall be tutomatically bypassed when a peripheral control rod is selected or tha.eference APRM channel indicates less than 30% of RATED THERMAL NWER.

(b)

This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(::)

This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

(d)

This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e)

This function is automatically bypassed when the IRM channels are on range 1.

(f)

DELETED I

LIMERICK - UNIT 2 3/4 3-59

.I f

R:

E 9. R E

L WVW L

A OOO A

M PPP M

R d

d R

E l

LLL n

n E

H e

AAA a

a H

T v

MMM D

D T

l e RRR

%E

%E D

el E

EEE

7. T
7. T D

E n

s U

HHH A

A E

T nl p

L TTT 5RR 0RR T

A aa c

A 5

E 5

E A

R hi V

DDD fW fW R

cx 5

EEE

+oO

+oO f

a 0

E TTT P

P f

o r

1 s

L AAA W%

W%

o er p

B RRR

4. A
4. L pe x

c L

A 6

6 A

0. R p

W 8M 8M R

0 6

8 6.0 R 60R

8. E O

444 3E 23 L

A 01E 01E A.

2W 1W A.1 A.1 L

/

833 H

H O

O A

N*

268 ssT ssT N

2P sP

  • NsN2 S

RRR T

EEE L

L N

WWW A

A I

OOO M

M O

PPP R

R P

d d

E E

l T

LLL n

n H

H e

E AAA a

a T

T v

S MMM D

D l e RRR

%E

%E D

D el N

EEE T

2. A
2. T E

E n

O HHH A

T T

nl I

T T T.T 5RR 0RR A

A aa s

T N

5 E

5 E

R R

hi p

A DDD fW fW cx c

I 2T O

EEE

+oO

+oO f

f a

- N P TTT P

P o

o r

6 E

T AAA W%

W%

er

'0 M E RRR

0. L
0. A L

pe 1

s 3U S

6 A

6

2. R
0. R p

p R

8M 68M 6.0 R 0

.x.c 3T P

111 0R 3E 2E 23 A

01E 01E A.

W 1W A.1 A.3 I

S EN R

/~

833 H

H O

O LIT N*

268 ssT ssT N 2P sP NsN2 B

AK TCO LB D

O n

R

)

o

)

P i

L P

S n

t O

S P

o a

R T

I

i r

I

(

et e

e T

(

N l a p

l O

t ar O

a C

t n) ce c

n)

)iP sp p

s

)iP PoS pO o

p e

PoS S pP U

o U

l S pT PtH p

L a

TtH Le(

o c

Le(

(S o

n e

s (S

t rL o

l r

p Ntrn e

i a

e U

t nei wn t

c w

tpn nii tiwo oo a

s o

n iro noop Pi l

n P

i oT p i pP t t

u w

w p

t ot e

l a c

o l

o Sl tee

) pees al r

D a

l R

l etS PtSt mu i

m F

O u Sa Se ar rc c

r t

T f

R i p TSrie er e

e r.

n I

O

. pd i D

edw hi R

x h

o u

N t

T ier e(

weo Tc e

u T

i o

O o e

I rmT v

gomP e

e v

l t

C M n v

N" Tr ieiPr dR l

i F

d) a i e O

eh tl a eh e

g t

en l

w E

r tl M'e w t g a aR wt g to n

a n

tw u

o G oeaa l oni rc oni aw i

r o

ao c

L N tl rc N

K aLIH esrLIH lT S

e r

ld r

A caes M

R ecpn O

C c pne u

p t

ut i I

O s oww m

o u

me c

R tsow T

L p)))

noo)))

i n

e iS e

P E

epno C

B U123 IDP123 S -

I N

S(

R L

C DUID N

M R

U D

R U

P O

F O

R a bcd A a b

c d

e f

S abcd P

I R

T 1

2 3

CR5p,EZo

$ wg r

l r

l

.lu n

f f

o n

o i

o f

t' e

s

.o a

o ll n

v' i

aae o

s e

t mch i

n l

a rsT.

l E

s o

e r

ep

)

a U

i i

hu

.P m

m L

v s

" ~

e t

)S r

8' A

. i i

s ePP e

V d-v

/

i ehSH h

o'i 3

o rTP(

t E

5l d

n o

I L

2a 9

c

.(t e

B 1 c 5

D o

)

n-r A

/s 2

E t

gPti o

W 0

1 e 7

T nSno c

O 1l

/l 5

E l

iPip A.1l A. 3 a L

2 L

A.

a tLot r

L u

c E

n a(pe e

A NsfN2s s -

D N

g r

ts p

i ete o

s pnsr r

oi e

p d

orw n

d pe o e

a etwp h

ieo t

e f s ph t

i g

r a

crei e

r eeth v

S l

pwa o

T l

t soie N

u n

n pd h s

I f

f o

u s

et p

O o-i~

o twm i

P f

t c

i ord r.

T s

o a

l en tM E

n v

d r

ta R

n S

o' s

e e

een eP

)

i n

l v

vhit lA d N s-o' e-r ot n

a e O i

i e

ei ce u

I T

.v s

" ~

s ywho sh n

T N

i i

8 b

l otp pt I

d v

/

o nl t

u i A t

T O

e i 3

o ed e y

n N P

5l d

n bns eb o

E T

2a 7

a e

a t

C M

E 1 c-5 D

ld r

ad

(

U S

/s 2

E s

be)e ie R

8 1 e 7

T a

asPw rd a

2 T

P 0l

/l 5

E h

pi n

csSo.

A.1l A. 5 a E

S I

2 L

A.

e i aP p ov 6

N R

u c

r m

l pL t

ro u

I T

MsfNas s

D N

o u

py(en pr 3

t l

rG ti pp K

i o

a tao a

3 C

n v

y ni p s

~

m O

o slidt fi E

L M

e il oee o

L B

1 g

apms M

B e-r hctr tB A

D g6 a

cieer nR T

O n

h atste e

R a3 c Ea nw me s R s

mrio eh L

t 3

i

.oe p ct O

n e

d stwe r

R i

ce l uohh oo T

o rr m

e a pt g ft N

p uu a

v i

n O

t og r e e w 'n h el C

e Si c

l roe a

s F

s al ee l n e

/

p wh og e hn s i sett ri s

ti n

r ph e ts e

o titbe n

N h

dn l

r v

or S

W t

ew l

etndo ce R

O do a

l eeb w

O D

r ih g

aMeia so T

n T

o vs c9wl tp U

f o

6 s R t pd n

Ii -

E H

re 5

p epe i e e

N Ol M

S R

pv ulbai oh M l Uhh L

r 3

l l

pT u

L gc H

O

,u 1

eAdsp t

Ef Oit C

C dc e

ei p e

G VHi T

e o

r i a

s.

N t w

I e

ce t

h

.lP s

A o~

e ElS W

h uh t e pS s ee a

R n v

Ge S

t dt t

gpTi gg u

ie Rvt e

n enaI nn m

E r

tl Aea E

o re e

ra P

aa T o 'e aa HLo D

t v

l arses rr A tl rc C

l O

eo a

ilT N

I ca es SrF M

r bb v

er aH rr O D ec pn I e N

e a i rePc ee I

E ts ow Dt D

R O f

y u

ewSse ww T M ep no a.

E O

I e

ar q h o T ph oo C RDU ID MWa T

TT R

Mo E

T pL u T Pp N

E A

E CI U

T R

L A S F

N C.

E E O I

ab cd Sa D

R P P

)

)

a b

I R

(

(

T 4

5 6

7

,-lk i ci* "

,1 * $

I D

HE CR II HU WQE R'R O

FE L

C ASN 5

D NNA E

OOL

, T IIL 2

2 5555 55S5 2

E 4

TTI L

AIE E

RDV 111 111 211 2222 2222 1

D 3

ENR POU OCS S

TN E

M

)"

ER N

I O

I UQ T

E LA D

R ER E

NB T

E NI E

A. A A.

A.

A.

A.

A.

C AL A.

L N

HA A

E A

CC SNS RNR RRR NRNR NRNR R

D N

L L

I EVRU L

1 S

A

) 3 '

)

N 6

N LOT WWWW D

OEIS E

3 NTE T

I

) )

3 )

T NCT

-)

AAA AAA E

E 4 A AN l

L

)

T HU E

E

~

QQQ SSS SSS MMMN WWWW Q D R

N CF LB M A U TRTSN D

I E

T K

L E

C EK A. A. A.

A. A. A.

A. A. A.

A.A.A.A.

A. A.A. A.

A.

L A.

O NC E

L NE NNN NNN NNN NNNN NNNN N

D N

B AH HC D

C O

l R

L e

O l

R a

T c'

N e

s N

O r

l r p

S W

C e

ae U R

O w

cw O

D o

so n

T n

T P

nP) i I

i U

w nw N

E h

H l

ol wo S

l O

l M

g S

a D a ol R

l M

l U

i m

mdF O

u u

L H

H r~

- rt t

T f

E f

O C

R e

eenn I

G V

T O

h xhSou N

t N

t I

T e

T euT(i o O o

e A

o e

E l

W I

v vl tC M

n v

R n

v G

e S

N ie deiFdea ie ie R

v O

tl elt ell w E

r tl E

r tl A

e E

M eaa taantauo G

oeaa T

oeaa H

L D

l rc acroaccL N

tl rc A tl rc C

O N K aes l serl sr A

caes I

aes S

r M

O C

cpn u p pt u pi M R

ecpn D ecpn I

e N

I O sow mUoumUcR tsow E

tsow D

t D

R O T

L pno i

nei eP E

epno M epno a

E OI C

B UID S

INS RL C

DUID R

DUID M

W T TT N ~

N R

E A

E CI U D R

U T

R L

A S C

E EO P

O

.... N F

O R

abc A a bcd ef S

ab cd I

abcd S

a D

R'P P

IR I

1~

2 3

4 5

6 7

5R, c2U N wE~

r.

w TABLE 4.3.6-1 (Continued)

CONTROL R0D BLOCK INSTRUMENTATION SURVEILLANCE RE0UIREMENTS TABLE NOTATIONS (a)

Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b)

Deleted.

(c)

Includes reactor manual control multiplexing system input.

For OPERAT10NAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable ',a control i

rods removed per Specification 3.9.10.1 or 3.9.10.2.

f Deleted.

l (d)

When in OPERATIONAL CONDITION 2.

(e)

The ptovisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below during a shutdown.

l l

-(f)

When in OPERATIONAL CONDITION 5.

i (g)

The provisions of Specification 4.0.4 are not aaplicable provided that the surveillance is performed within I hour after tie Reactor Mode Switch has been placed in the shutdown position.

1 i

l l

i LIMERICK

. UNIT 2 3/4 3-62

u lE ACTOR C00L'A!(T SYSTEM M DITION FOR OPERATION (Continued)

ACTION:

(Continued) 2.

Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s:

Reduce the' Average Power Range Monitor (APRM) Simulated Thermal Power -

U) scale Scram and Rod Block Trip Setpoints and Allowable Values, to tiose applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associ&ted channel (s) inoperable tnd take the actions required by the referenced specifications, and, 1

3.

The provisions of Specification 3.0.4 are not applicable.

4.

Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b.

With no reactor coolant system recirculation loops in o)eration, immediately initiate action to reduce THERMAL POWER suc1 that it is not within ti,e restricted zone of Figure 3.4.1.1-1 wi'.nin 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at'least JTARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

c.

With one or two reactor coolant system recirculation loops in operation and total core flow less than 45% but greater than 39% of rated core flow and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1:

1.

Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):

a.

At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and b.

Within 30 minutes after the completion of a THERMAL POWER increase of at least 5% of RATED THERMAL POWER.

2.

With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to restore the noise levels within the required limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by reducing THERMAL POWER.

d.

With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

    • Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in-the center of the core should be monitored.

LIMERICK - UNIT 2 3/4 4-la 4

m 3/4.3 INSTRUMENTATION j

BASES

' :l3/43 l1 REACTOR' PROTECTION SYSTEM INSTRUMENTATIf,

I The reactor protection system automatically initiates a reactor scram to:

a.

Preserve the integrity of the fuel cladding.

b.

' Preserve the integrity of.the reactor coolant system.

c.

Minimize the energy which must be adsorbed following a loss-of-coolant accident, 'and.

d.-

' Prevent inadvertent' criticality.

-This specification provides the limiting' conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of service because of meintenance. When necessary, one channel may be made inoperable l

for brief intervals to conduct required surveillance.

J 1

The reactor protection system is made up of two independent trip systems.

1 There'are usually four channels to monitor each parameter with two channels in each I

trip system. The outputs of the channels in a trip system are combined in a logic so that.either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The APRM system is divided into four APRM channels and four 2-Out-0f-4 Voter channels.

Each APRM channel provides inputs to each of the

'four voter channels. Tne four voter channels are divided into two groups of two j

. each, with each group of two providing inputs to one RPS trip system.

The system is designed to allow one APRM channel, but no voter channels, to be bypassed.

The system meets the intent of IEEE-279 for nuclear power plant protection systems. Specified surveillance intervals and surveillance and maintenance outage times have.beeu determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A, " Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability Trip Function." The bases for the trip settings of the RPS are discussed in the Lases for Specification 2.2.1.

Actions a, b and c define the action (s) required when RPS channels are

. discovered to be inoperable.

For those actions, separate entry condition is allowed for each inoperable RPS channel. Separate entry means that the allowable time

- clock (s) for Actions a, b or c start upon discovery of inoperability for that specific channel.

Restoration of an ino statements for that particular channel. perable RPS channel satisfies only the action Action statement (s) for remaining inoperable channel (s)'must be met'according to their original entry time.

Because of the' diversity of sensors available to provide trip signals and the redundancy of the' RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown to be acceptable (NEDC-30851P-A and NEDC-32410P-A) to permit restoration of any

inoperable channel' to OPERABLE status. However, this out of service time is only acceptable provided that the associated Function's (identified as a " Functional Unit"
in Table 3.3.1-1) inoperable channel is in one trip system and the function still E

f

.gaintains RPS trip capability..

i

) LIMERICK-UNIT 2 B 3/4 3-1

)

i j

c

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued) l The requirements of Action a are intended to ensure that appropriate actions are taken if multiple,-inoperable, untripped channels within the same trip system for the same Function result.in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels

.are OPERABLE or in trip (or the associated trip system is in trip), such that both l

trip systems will generate a trip signal from the r'ven Function on a valid signal.

For the typical Function with one-out-of-two taken.wice logic, including the IRM Functions and APRM Function 2.e (trip) capability associated with APRM Functions 2 2.b, 2.c, and 2.d are discussed below, this would require both trip systems to have one channel OPERABLE or in trip (or the associated trip system in trip).

For Function 5 Main Steam Isolation Valve--Closure), this would require both trip systems to have e(ach channel associated with the MSIVs in three main steam lines l

(not necessarily the same main steam lines for both trip systems) OPERABLE or in trip (or the associated trip system in trip).

For Function 9 (Turbine Stop Valve-Closure), this would require both trip systems to have three channels, each OPERABLE or in trip (or the associated trip system in trip).

i The completion time to satisfy the requirements of Action a is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The I hour Completion Time is acce) table because it minimizes risk while allowing time for l

restoration or tripping of ciannels.

i applicable m(ust sgil be satisfied.

l With ip cp ability maintained, i.e., Action a satisfied, Actions b and c as l

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or the associated trip system must be placed in the tripped condition.

Placing the inoperable channel in trip (or the associated tri) system in trip) would conservatively compensate for the inoperability, restore capa)ility to accommodate a single failure, and allow operation to continue.

As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Funct1 ons 2.a. 2.b, 2.c, or 2.d.

Inopera',ility of one' required APRM channel affects both trip systems. For that conditir,n, the Action b requirements can on!" he satisfied by placing the inoperable APRM channel in trip.

Restoring OPEM RITY or placing the inoperable APRM channel in trip are the only actions that will restore capability to accommodate a ' single APRM channel failure.

Inoperability Lof'more than one required APRM channel of the same trip function results in loss of

_ trip capability and the requtrement to satisfy Action a.

'The requirements of Action c must be satisfied when, for any one or more Functions, at least one required channel is inoperable in each tri) system.

In this

,. condition, provided at;least one channel )er trip system is'0PERAB.E, normally the RPS still maintains trip capability for t1at Function, but cannot accommodate a single failure in either trip system (see additional bases discussion above related j

to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b, 2.c, 2.d, '; and 9).

1' LIMERICK - UNIT 2 B 3/4 3-la l

i

1 s

3/4.3 INSTRUMENTATION-i BASES-3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

)

The re irements of Action c limit the time the RPS scram logic, for any Function,wouIdnotaccommodatesinglefailureinbothtri) systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four ciannel Function). The reduced reliability of this logic arrangement was not evaluated in NEDC-30851P-A for the 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Completion Time. Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associated Function must have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851P-A, which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

' allowable out of service time as allowed by Action b.

To satisfy the requirements of

~ Action c, the trip system.in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g.,-a trip system with two inoperable channels could be in a more degraded state than a trip system with four incperable channels if the two inocerable channels are in the same Function while the four inoperable channels are all in different Functions). The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e.,

i what OPERATIONAL CONDITION the plant is'in.

If this action would' result in a scram or RPT, it is permissible to place the othe)r trip system or its inoperable channels in trip.

. The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable out of service time is judged acceptable based on the remtining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of a scram.

As noted, Action c is not applicable for APRM Functions 2.a. 2.b, 2.c, or 2.d.

Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM 2-Out-0f-4 voter and other non-APRM channels for which Action c applies.

For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel. Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actic cs that will restore capability to accommodate a single APRM channel failure.

If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action c (e.g., as in the case where placing the inoperable channel in trip would result in a full scram), Action d requires that the' Action defined by Table 3.3.1-1 for the applicable Function be initiated immediately upon expiration of the allowable out of service time.

The Two-Out-0f-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware. The voter Function 2.e is accom lished by the 2-out-of-4 voter hardware which includes redundant outputs. The anal sis in NEDC-32410P-A took credit for this redundancy in the justification for the 12-our allowable out of service time, so the voter Function 2.e must be declared inoperable if any of the 2-out-of-4 voter hardware's functionality is inoperable. The voter Function 2.e does not need to be declared inoperabis due to any failure affecting only the APRM Interface hardware portion of the Two-Out-0f-Four Logic Module.

' LIMERICK IT 2 B 3/4 3-lb I

'~

3/4.3 INSTRUMENTATION BASES L

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

Automatic reactor trip upon receipt of a high-high radiation signal l'

from the Main Steam Line Radiation Monitrring System was removed as the result of an analysis performed by General Electric in NE00-31400A. The NRC approved the results of this analysis as documented in the SER BWR Owner's Group from A.C. Thadani, NRC, dated May 15(letter to George J. Beck,

,1991).

The measurement of response time at the specified frequen'cies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the safety analyses. No credit was taken for those channels with response times indicated as not applicable except for APRM Simulated Thermal Power - Upscale and Neutron flux - Upscale trip functions l

(Table 3.3.1-2, Items 2.b and 2.c). Response time may be demonstrated by any series of sequential, overlapping or total channel test measurement, provided such tests demonstrate the total channel res)onse time as defined. Sensor response time verification may be demonstrated )y either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times.

Response time testing for the sensors as noted in Table 3.3.1-2 is not required based

)

on the analysis in NED0-32291-A. Response time testing for the remaining channel components is required as noted.

For the digital electronic portions of the APRM functions, performance characteristics that determine response time are checked by a combination of automatic self-test, calibration activities, and response time tests l

of the,2-Out-0f-4 Voter (Table 3.3.1-2, Item 2.e).

i e

1 l

LIMERICK - UNIT 2 B 3/4 3-)c l

b.

y, e

g'y l

j '.

j

~

e J

i

,,r 1

i l

I LPRM 1.

LPRM 3-LPRM 2 LPRM 4 L

/

)

x

. APRM 1~

APRM 3 APRM 2 APRM 4 i

Il db

)

di I

w x

.W l>

v

,~

v v

APRM.

APRM APRM APRM 2-00T-OF-4 2-0UT-OF-4 2-0UT-OF-4 2-00T-OF-4

f. VOTER Al_

' VOTER A2 VOTER B1 VOTER B2 6-l 6

- v v

v 1

-RPS CHANNEL A1

,. j.

'RPS CHANNEL A2 RPS CHANNEL S1 RPS CHANNEL B2

.' RELAYS K12A & K12E7 RELAYS K12C & K12G RELAYS K12B & K12F RELAYS K12D & K12H i

.i-..

1 i

RASE 5 FIGURE B 3/4.3-2 APRW^ CONFIGURATION

. LIMERICK -_. UNIT 2 B 3/4'3 9' i

,