ML20217F104

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Pages,Revising TS Sections 2.2 & 3.0/4.0,necessary to Support Mod P000224 Which Will Install New Power Range Neutron Monitoring Sys & Incorporate long- Term thermal-hydraulic Stability Solution Hardware
ML20217F104
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 10/14/1999
From:
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20217F098 List:
References
NUDOCS 9910200227
Download: ML20217F104 (131)


Text

ATTACHMENT 2 1

LIMERICK GENERATING STATION i UNITS 1 and 2 DOCKET NOS. 50-352 50-353 LICENSE NOS. NPF-39 l

NPF-85

)

TECHNICAL SPECIFICATIONS CHANGE REQUEST NO. 99-05-0 LIST OF AFFECTED PAGES UNIT 1 UNIT 2 l

2-3 2-3 2-4 2-4 B2-6 B2-6 B2-7 B2-7 3/4 3-1 3/4 3-1 3/4 3-1a(new proposed page) 3/4 3-ia(new proposed page) 3/4 3-2 3/4 3-2 3/4 3 4 3/4 3-4 3/4 3 5 3/4 3-5 3/4 3-6 3/4 3-6 3/4 3-7 3/4 3-7 3/4 3-8 3/4 3-8 3/4 3-57 3/4 3-57 3/4358 3/4 3-58 3/4 3-59 3/4 3-59 3/4 3-60 3/4 3-60 3/4 3-60a 3/4 3-60a 3/4 3-61 3/4 3-61 3/4 3-62 3/4 3-62 3/4 4-1a 3/4 4-ia B3/4 3-1 B3/4 3-1 B3/4 3-1a (new proposed page) B3/4 3-1a (new proposed page)

B3/4 3-1b (new proposed page) B3/4 31b (new proposed page)

B3/4 3-ic (new proposed page) B3/4 3-1c (new proposed page)

B3/4 3-9 (new proposed page) B3/4 3-9 (new proposed page)

no2ggg p

gggs PDR

I

' i SAFETY LIMITS AND LIMITIM SAFETY SYSTEM SE1 TINGS

=

2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOI 2.2.1 consistent with the Trip Setpoint values shown in Ta . .

e set APPLICABILITY:

As shown in Table 3.3.1-1.

ACTION:

/ yj With a reactor protect than'the value shown system instrumentation setpoint less conservative the channel inoper of Specification 3.3. d apply the applicable ACTION statement! '

its setpoint adjusted ntilconsistent the channelwith is restored the Trip Setpoint to OPERA value 8LE status 1

~

j

  • f The APRM Simulated Thermal Power - Upscale Functional Unit I need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased

} setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification i

3.4.1.1.

y.

~

. ~

cC ~

m

  • g Oa c . .

LIERICK - UNIT 1 '

2-3 Aac 08 1985

-- =

ec

. -8 g

s

- 3  : .  :.

$M M

=

W

  • aNE 3. k m

~ O= a e q:_ "I a s 31 *

.1- **

.2 = 1- . ""

-u - ... .

o

~-

s.

~'

as s =.. a

-=

.-a s.a

=-

m.-

va.

w

= 330 g- 33 "

o a

'E E O E:::w *O-" 2N w w S-ss .a

~e ~~---- .<<

- %. w -

w ~ ~. ~w

< w w w . w n. w =. zu o . wu wow www n==

Nw M

- u ee M - e e

- a cc C

M C. -

. A D C

= 77

-u -

8' J -

~w< /

~, S= e ae gm W.= .. - em m uW -u N. = .%.% . g m l W- s MC m u m -

m N- 4 b. .8 a- . & 99. m

-s a 4 -

-Q . e= 6 w

I E W

W W E  %. J WW owe

  • o' o i

c, O

WE S ** -W OO O ON.Ww M . .

INb.

-. ~ -

- - On- -

.M w

=

--u.o-.- w w e .M

~~ .c <<

wn~. wow

~ w w w.w- w= = - www u==

w a

5 M

= ..

4

. i 8 3

- 8 c e ~ -

5 7.- $.  %"

  • 4 &

.IN o -.

z >

=

u

% .u . C E v

i

.. - . . i

.=

u

.a u .

v

.u -- - -

=

W . . 58 . E s

a A 3 -

2 3

u ". .

" = '

u l

u n . = = .u .o u -  :

. ~

.u -

. a.

-- . . .e .a ... - -=  ;

i=3" l

E. 3 A & 3 A3 '

u

.v v . . -

s'.amEJ -

. gu -* = -

5

e. 1 .' T. .3 .5=".%.'".  ;

. . .F .s

==

. > . . = ,= -

.g*

  • _

. u.'s.-u- -

". u

- " rg T1

  • EU

.. .= = a R

.m*. E* "e. *s . E :". e==

u .

=

- w . uv a u

-= u = m .u . == 6-3 w w v w-E

=

I- - -- .& .u .u ww- So-E .:u"

  • * * ** "" -- ~~ ..

" 5" 5 -

g 3.~ k . . - - .

WW 6

v .f. f. Su.. WE =., a. 1

- <l . - ~ v == x w .---== .

- =

l 9 n ,.

mese m-

.O eN 4 4 e

E I El tu FD 12 SN -

i LusticK- arr1 2-4 -

Amendment no.7,38.N,88.W H

0 v.

e L R

3 A

. 5 M 2

0 R

_ 0- E d d 9

e g H n n T

_ 9 P

a aD aD E E G.

1 D %T %T D

  1. E 3A 3A E R T .RR .RR TR C A 3 E 8 E AE E R 6fW 5fW RW oO oO O f + P + P fP o  %  % o W0L W0L L

.A .A %A 0R 67M 67M 7M

.E 61R 61R .R 0W 1E 1E 2O 0 l i 0 I 8El 1

A A 5P 5 sT 5 sT I

1T i

N N

L A

M R

E l

d d -

i n n T aD aD E E D %T %T D E 8A 8A E -

T .RR .RR TR A 2 E 7 E AE R 6fW 5fW RW P oO l

f. + P oO O i e P fP K o  %  % o R

W6L W6L L A .A .A %A 0R 66M 66M 3M M .E 61R 61R .R C 5W 1E 1E 8E E 1O 0 l i 0 I 1H A. A.

P 5P 5 sT 5 sT I

1T N S N l

l C

E T

n o

i

n t

)

eo li a

r n at e w

o ca ur p _

d pe O .

t Up p e O o S -

o

( p L _

e ro eo n e l wL o l a o i a c Pn t c s o a s p li l p U at u U r ma c

- rl r -

e .

x eu i t

o u

hc c x V Tr e u e l i R F dc l v 4 _

ee F i -

e

_ n tR t f

o a l

g n a O r o r -

1 lo n r e T t u

uw i t p t

u mT S u o R e i e n O _

E N S- -

N I T.

S . .

N I

a b c d

e

2. 2 3901000402 uMmma sArrTy system sEmacs

- BASES J

2.2.1 z

REACf0R PROTECTION SYSTEM INSTRUME ATION SETPOINTS Table 2.2.1-1 are the values meter. -

'at which thThe Reac umentation setpoints specifled in and reactor coolant system e reactor are prevented trips are set for eacn para- froTh curing normal operation and design m exceedingbasis antici their Safety Limi and to assist in mitigating the consecuences trip set less conservative than its Tri of accidents. pated operational occurren Allowable Value is acceptable on the c p 5etpoint but within its specifiedOperati Trip Setooint and the Allowable Value is eq allowance assumed for each asistrip that the differnnce Detween e

1. toinorthe ualnalyses. lesssafety than the a crift Intermediate Rance Monitor, Neutron Flux

- Hion systems. The IRM system consists of 8 chambers civisions of scale is active anges. in

n. each of the 10 rThe I The trip setpoint of 120 ranged also rangeduo up.to accommodate the increase in po and SRM systems. wer level Thus as the IRM is The IRM instruments provide for over,lapthe trip setpo with both the APRM -

increase is due to control rod withdrawalThe most sig changes during the power provices teen analyzed. the required protection, aIn range.

order to ensure that the IRM FSAR.

POWER is at was taken in this analysis by assumi approximately 1% .4 ofofthe RATED T L POWER. condition in which THERMAL rod being withdrawn is bypassed. ng the IRN channel closest to the controlA u

2 with the peat fuel The res'lts enthalpy wellofbeloreactor this analysis show that the is shutdown a Sased on this analysis ed to 21% of RATED THERMAL POWER errors and protection APRM.

the IRM for thecontinuous providesofprotection w,ithdrawal control rods against i localw the fu control rod n sequence and provides backut I W S E R T #"'***

fA for operation at low pressure and low flo

~

setting the setpoint ofand15% of RATED the safety Limits THERMAL POWER provides adequa maneuvers associated with power The marginplant startup accommodates the anticipatede th at zero or low is notvoid muchcontent areth t minor and cold wat Effects of increasing pressure during startup coldera than ture coefficients are small oand RWM. already in the rsystes.er control d Tempera- from sources avalla withdrawal is the most probable cause u , unifore of siOf all the pos contr gnificant power increase.ol rod 8 N

LIMERICK - UNIT 1 8 2-6 M22W Amendment No. 17 i l

F ECR O LG 9940253 Rev.0 TECH SPEC MARKUP w

INSERT I A:

^

The APRM system is divided into four APRM channels and four 2-Out-Of.4 Voter chan The four voter channels are divided into two groups of two each. with each group of providing inputs to one RPS trip system. All four voters will trip (full scram) when a

. APRM channels exceed their trip setpoints.

4 1

1

F LJMITING SAFETY SYSTEM SETTfNGS

, BASES i

SETo0fMTS averaoe power Ranoe Monitor _ (Continued)'

8ecause the flurdistribution associated with uniform ro involve oy highamount a significant local peaks and because several rods must be moved power the rate of power rise is very slow. Generally the heat flux is in near equ,ilibrium with the fission rate.

In an assumed uniform than 5% of RATED THERMAL POWER per minut 3 than adequate to assure shutdown before the power could exceed TheRun the 15% M trip position. remains active until the mode switch is placed m .

in ggg_ j l

The APRM trio system is ca 1 steady state conditions. Fission chambers provide the basic input to system and therefore the monitors respond directly and Quickly to change! -

to transient operation for the case of the Neutron Flux-pasha 3*N f3 M psee/e, setpoint; i.e., for a power increase, the THERMAL POWER ofa the fuel wt t i than that indicated by the neutron flux due to the time be less constants of the h transfer associated with the fuel. eat 1

l Limits and yet allow operatino margin that reduces sary shutdown. -

3.

Reactor vessel Steam Dome Pressure-Hioh system process barrier resulting in the release A pressure of fissio compressing voids thus adding reactivity. increase while oper The tri neutron flux, counteracting the pressure increase.p will quickly reduce the higher than the operating pressure to permit normal operation without trips.

The setting provides for a wide margin to the maximum allowab pressure and takes into account the location of the pressure measureme  ;

to the highest pressure that occurs in the system during a transient . This trip and control fast closure trips are bypassed.setpoint is effective at under the these thermal conditions, hydraulic limit. the transient analysis indicated an adequate i

l l

LIMERICK - UNIT 1 '

s B 2-7 Amendment No. 66 FE8toim l

p

ECR s LG 9Mg253 Rar.0 TECH SPEC MARKUP l INSERT 2:

For the simulated Thermal Power - Upscale setpoint, a time APRM in order to simulatefuel theconstant of 6 - 0.6 seconds is intr thermal transient characteristics.

the flow-biased setpointA-more conservative maximum value is used for as shown in Table 2.2.1-1.

i l

I i

)

%4 6! .0 ?Q Position # n. Q,,

3/4.3 INSTRtMENTATION .

3/4.3.1 RFACTOR PROTECTION SYSTEM INSTRUMENTATION

[TMITING CONDITION FOR OPERATION 3.3.1 j As a minimum, the reactor protection system instrumentation ch _

in Table 3.3.1-1 shall be OPERABLE with TIME as shown in Table 3.3.1-2. the REA annels shown ONSE i

j APPLICABILITYt As shown in Table 3.3.1-1.

ACTION- W.SEE D ith e numb of OPE OPE LE Cha eis per Tr LE channel less than equired ,

/a._ th inoper ndition within 12 urs. The et appl able.

System r utrement fo e channe s) and/or at trip sy em one trip in the ipped p1 e ovisions of Specificat on 3.0.4 e the Min '

stem, m

b With e number

/

Qa OP OPEkABLE hannels les LE Channel per Trip S tem requir pl e at least ne trip sy es** in the take the TION requi d by Table 3 than reau ed by t e Mint t for bot trip sys s, ipped cond ion with' I hour f

.1-1.

y

/

SURVETLtANCE REOUTREMENTS 4.3.1.1 demonstrated OPERABLE by the performance of the C TEST frequencies andshown CHANNEL CALIBRATION operations in Table 4.3.1.1-1. for the OPERAT

, CHANNEL FUNCTIONAL and at the 4.3.1.2 . -

channels shall be performed at least 4.3.1.3 g once per

~

functional unit shown in Table 3.3.1-2 shall limit at least once per 24 months. n its be dem per trip system such that all channels are tested at least onc months where N is the total number of redundant channels trip system. .

s 24 or in a spe An para d ca cnan I r...h OT. De ;ed in the ip Fun ion to e trip d cond' lon whe this all resto LE s tus wit n 6 hou e or cur. I these es, th inopera e ch nel to OP ACTI requi

    • Th trip s ;en nee not be ,

by T e 3.3.? for th Trip F ctionthe s 11 be use th rip Fu aced in en. '

tripp conditi  : ton to ccur. e trip d condit n if n a tri system n be pla ed in th s woul ,

syst with t withou causing e most in Trip F ction t occur, p ace th trip '

rable r of e nnels in he trip d condit n; if I

s ens hav he same th "he trLA condi on.

operabl channels place of er tr syst LIMER;CK - LMI 2 4 3/4 3-1

= ~ - Amendment No. II, 71 RL 2819N D&ETED

ECR # LG 99 00253 Rev, o Pase --

TECH SPEC MARKUP INSERT 3:

ACTION:

Note:

Separate condition entry is allowed for each channel.

a.

With the number of OPERABLE channels in either trip system for one or more Functional Units less than the Minimum OPERABLE Channele oer Trip System required by Table 3.3.1-1 within verify one that hour for each affected functional unit either at least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable tripped channel in the affected trip system in the condition.

b.

With the number of OPERABLE channels in either trip system less than the required Minimum by Table OPERABLE Channels per Trip System 3.3.1-1, channel (s) place either the inoperable ,

condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.or the affected trip system ** in the tripped j i

c.

With the number of OPERABLE channels in both trip systems I for one or more Functional Units less than the Minimum OPERABLE place either Channels per Trip the inoperable System(s) channel required by Table 3.3.1-1, in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

I' within it is notthe allowable time allocated by actions a, b or c, desired to place the inoperable channel or trip system in trip (e.g.,

full scram would occur), Then no later i than expiration of that allowable time initiate the action identified Unit. in Table 3.3.1-1 for the applicable Functional i

For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE or tripped. For Functional Unit 5, both trip systems shall have each channel associated with the MSIVs in three main steam lines (not necessarily the  :

same main steam lines for both trip systems) OPERABLE or tripped. For Function 9, at system shall be OPERABLE or tripped.least three channels per trip ,

For Functional Units 2.a., 2.b, 2.c, 2.d, inoperable channels with Actionshall

b. be placed in the tripped condition to comply Units. Action c does not apply for these Functional l

\ l l

L  ;

I- ECR # LG 99-00253 Rev. O 1 .

hse TECH SPEC MARKLP INSERT 4:

... months, and except Table 4.3.1.1-1 Functions 2.a, 2.e. Functions 2.b, 2.. c ,

2.a, 2.b, 2. c, 2.d, separate LOGIC SYSTEM FUNCTIONAL TESTS.and 2.d do not require shall be performed at least once per 24 months.For Function 2.e, tests LOGIC SYSTEM

. FUNCTIONAL TEST for Function 2.e includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations voter, logic in the voter of two tripped inputs to the 2-Out-Of-4 channels.

I l

i e

$cpN ,

Is-

Q Q2Q
  • N O ) D TO@f.Q3:{$ . " '

,w I_ , b T 1 G g 3 12 3 4 123 C

A 3@'3 e ,

1 1 4

~

)

5' (a L

EM NE NT AS MliY e UCS v H ) ) l lEP HtI Dd b )d d

(

)

d a v

(3

(

3G(3 3V I8R 2 2 22 / -

HAT 22 2 2 2 N

R ER O 1 O PE I

T O P.

D T

N E

A D

A 6 /

M -

U .

T R

mT 1

N S

R 1

I M

E .

S 3 E L _ )

T EAS C 3

E Y

S S LHN BDO AII

( N )

1 1

(

L CTT .'

(

I )

c

) )

B N IAI ( ( (

f

(

9 A O LRD 2 23 5 (

11 235 1 T I T

C PEN PPO AOC _

W 2A5 V ,

2 2

1 1 1 T

E C G 1 O

R P n _

R O ~

T t -

C  : e w A ) I S o e E b

  • L v R ( I . d l

s r e e e - a r o l l p l V

o t a m e e n t h i c a m v o i

n g '

n s l . o e i l o p p C D L t o l i

M U U a M s m r l

- e - - a a e o .

e g x g l1 e t s n x xBF th a .

n lu e a u u Sg W I _

a v R l wh i e

R F i Fogl e lH l n t r li l e e e n a e n nFH a l

a s- s L i _

t o r w o o r t s s T a r e o r r e s ee e n I i t p P t t)) p n N d u o u u12 o Vr V3 u ee U. e e n e e e er m N g H n rs rl t u L r I

a N I os oe Ss A e r t e cr tv o N t e ce nl _

O n v aP aL iC a

b A a

. . . e e a I

T I

c d R R '

^

C f' N , -

. U . .

F 1 2 3 4 5 -

gh9 pgq " yto k*ga E, g ~ "

g[' , CU-

^

_ 0 v

e R

3

- 5 2 1 4, 4 41 0 _ 41 0- .

e 9 s 9 a P

G L

R C

E

) ) ) ) )

(

m m m mm

( ( ( ( 22 3 3 3 33 2 1 1 12 12 P

J t

K R

A M

.C

.E P

S l

i C

E T ) l e

n a w c o s d p t U

_ e S

(

r e e e l w l a o a c P c a s p l p U a U r

~ m e

- r - t e o x

u h x V T u e l

F d l

F v 4 i -

_ e t f n t n a O o a o r -

r l r e t

. 5 t u t p u u m u o O T e N

i S

e N

n -

.R I 2 E

S N a b

c I d e

[

~

Refer 20 PORC' TABLE 3.3.1-1 (Continued)

  • QlIV1lOF we E 1 REACTOR PROTECTION SYSTEN INST % siAilun i

TF Q J l ACTION STATEMENT 5 -

\

ACTION 1 - .

I Be in at least HDT SNUTD0ldN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

f

  • ACTION 3 -

all insertable control rods within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. Suspend all o ACTION 4 -

Se in at least STARTUP within'6hours. .

ACTION 5 -

within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> er in at least ICT Smml ACTION 6 - .

Initiate reduce a reduction turtles in TMNIAL first stage pressure POWR until the function is within 15 minu autaastically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

  • ACTION 7 - ,

ACTION 8 -

Verify all insertable control rods to be inserted within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> .

1Lock hour. the reactor mode switch in the Shutdoun position within ACTION 9 -

Suspend all operations involving CORE ALTERATIONS, and insert mode all insertable switch in the $1WTDoldN control rods position within and lock 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. the reactar ,

i e

D 9

e LIERICK - UNIT 1 3/4 3-4 3lE 3 135 g

p a arr eggy" JFr t0 atAc70s pacTICT!0e SYSTDs tws7alMEN7aTf0N

. TAasr apTaff0ES (a)

A channel any be placed in an inoperaale. status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for reeutred survettlance without placing the trip systan in the tripped l annitoring that parameter. condition provided at least one OPEAASLE cnan (b)

This is in thefunction shall be automatically Aun posttton(ergt .ma/****)stgr bypassed wnen the reacter mode 77.ps mp(supson)d)

(c) T shh nks 'll ggq tbd drp'tt%pf1' '

tr i i 1

.h /'/ / /

(d) -

The po to noncoincident both trip systans. 1885 reactor Therefore, wnentrip the function

  • logic is sucn that all cnann i

the Mtntaus OPDARLI channels Per Trip Systas is ints' are removed (e) An APRM 6 IRMs M or less than is inoperable inputs to an APRM if cnannel there are less LPitMthan@3 inputs per level (f) vessel head is removed per Specification 3.10.1.This functio (g)

This is not function in the Aun shall position. be automatically bypassed when the reactor ande s!

(h)

This function IlffEGRITY is notis not required to be OPDABLI wnen PRIMARY CDNTAlletEN required.

(1) With any control ro1 witherewn.

Speciffr.ation 3.9.10.1 or 3.9.10.2.Not applicable to control roes removed per (j)

This function shall be automatically bypassed unen turbine first stage pressure is equivalent te a THERMAL POWER of less than 305 of RATG THER Pan-(k) Also actuates the EDC-APT systas.

'" Y '8* W *" $ $ E W f mser 6 (m) Euh MKM deneiprovides inpTs To bon Trip systems.  ;

@~1ggTJ6ssz6.ovg perApactrfcau6n 3Z10

~

or .s. .

R e ",e : ' , or llr.rore Thu 9 URM inpTs io ? O R C

? 0 S U O n # ,. u. n

r. nc m1 aa ca h- i-brec"co' "~ e nc /<st NM atitca %(wec4 96 camg _

BEC 17 !!!!

LIM' RICK - UNIT 1 3/4 3-5

4 No. 41. 53

ECR # LG 9940253 Rev. O

~

TECH SPEC MARKUP INSERT 6:

(n) A channel or trip system which has been placed in the tripped condition to satisfy Action b. or Action c. may be returned to the untripped condition under administrative control for up to two hours solely to perform testing i required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied. 4 l

l esp I

=

l

  • 1

=

g e*

i y r -- %

E en e

w .

= = = e

>= M em mm s0 p.=

iO

  • = . . m w cm WC "O aC aC

+

  • aC
  • O
o. (. e C.

. o. o. -J (

o. o.

=

C == O w aC. aC.

MO E2 X M 2 * *

  • C Z Zg O

u cw aC.

=g eC.

b c=a M-W a4 g'

==

E C ed ==

& MC 6 46 3 3& ed MU M & .CL

.=

W 88 E6 A =o.*

ed a 4

D [ On

-Q S?

== M .C -

" C 'O

-ed O3 88 C Cha==

E .C W MU C WC s O E ==

LJ b

'O < .W HC ed bR ' ed C DU ~ es M= 3 A:

W w i 6

N E l g O. 6 ed

=

UC 0,

d E w )

n

~ \ . .M .-C

m. m Wa~

m >

M" ,

g .

Obed "3 & W 6 E gj C em MAb a D'; == 6 O ed o Q ed == = W j fNw U M ta=

W Q b c. ~

MS L M

>= 88 m On O o E na C tem K A m W

=

4 A ed O W ed M On 6 01

m 3

CE = W M ."". W ed > ==M89.w= e o C > 0 M3 m ed

>== 3 4 W

  • I C C Ch> .E-U W W O OC & 8==

eC SJ

=== ==

kJ L' = i W

W ed O-. E. W E D 3 3 > L ==

Lw>

M e4 O W 3 m b nJ ==

W we O M .=J > =.J O A E C W ed

  • W m O we se
e.
  • WW 6 85 6

- OE UCb M L -- glL h 1

> W LJ C 6O C ad 6 O 85 8W W 6 3 h 6 3 - ed 3 W Eb en OE ed WW 88 W W C 4 ed o ta C we== *

=d Ut - M en - E > Q 3 M M3 "O >J == W C "O

= = = = C Q. CL"U U C W = O 8C O =d EbJ3 6 == es C= .C 6 -

o O b D ep Q .=J ed D1 WW bJ 4 =.J 3 0 6 Eb

C we 2 E =* .C O ==

E4 i se O E 6 -

8W =

Z 3 ed

's a m D EO "e *O

. .d W -- 88 er O -~

I > BP O" )

G3 M O M CD 6 Si ed M l OE4 W

== m .C u s.6=WW Dt 3 87 C 3 W ed 88 == 88 6 U p ** FO Eb C-> 4===== E> M

> M U > d3 ed 3 "O ee 85 6d. *== Cr. A6 SJ 3 W C ** - M =

WOmJW W 88 L W 89 = 85 - we CC ed m ed - *

  • C 3 3 6 ed O6 C 88 6 C C6 = 8W W W = M Ol b 3 b b== M 3s= OW m 46 e se ed 85 WO6 & OO U M M -J M 66 =0ed C 8W CL ** A
    • 6 CA 3 b. b er en wt SA C" m ed O GP E ** M == W U 85 ed CL O me ed CL es es E C O 85 W'

>= = ."J O CL 33 O > > 85 6

Q.

U W 88 ed ca - "o 6 g =E ==UC == 06

.=. "O tu C O M> 0 W W a= E U W O-40 2 4p y* == W 48*=.- C.= C 88 =We Q M. bWE*

5 E N o 6 6 *d O

  • Q J6 W W 6

.d 88 i

h= 6 CP O M had a C C o 6 e .O.d ** >== W E == ==.CL 8== D MCh J 47 L. U U

== . ed 85 - W43 ** 8s= 88 kJ 3 ' 85 .O eC ed W 88 85 .C

= J h 6 Ab U ,3. C2 W C 8=

g g . . > . . . . 87 GJ 85 LJ 6 L. 6 p- 88 C ed 66OW

== 85 .O U . . 3 3 88 3 OU6

.O 85.O U *D K M E C C M N .O >== >==

et E E MM pm. 88 C *U 'O

. er 9 es C C E EM 85 85 N . .

.)

=. .

M v M N m c*.*

W

== N'

.O= - .

JAN O 7 ISIS.

LIMdtICK - UNIT 1 3/4 3-6 Amendment No. 49,132 3

y O _

v.

e R e ee 3 rnhm

_ - 5 aota 2

s i

0 0 _

st ,

e g ca3e 9

9 a iv.h P ni1t G. ot .

l

  1. rc3f R ta.o C c 4

?

I em t lonr eroa fip l t adad

  • tece irir -

5 gufe 0 isid

. . . . . daci A. A. 0 ees A. A. lmpn N N s e N N ne Soc -

nbf a

hl oe r clna rhil ao s este P

t an U oecn Vmia K ilh R 4tpc p

A -

M fear Os e C - nrt E tooo upFv P

S Os I - e 4 I 2R -

C yf _

E T " d n.l -

ao -

) l _

n aget _

a nru _

w c li o o s ett -

d p t U nsu2 nep e

S - atth

( h uc r ceoa _

e m e e e Mir l w l a o a Rtem c P to P c Aeor _

s p s sVf l p ,n U a U r so4s4 m e rpt

- r - t e o osfu= -

x teOp u

h x V cr tN T u e e tu l

F l v 4 tmuoo d F i -

eoO s e t f drt n t n a O f2n, o a o r - n al r l r e t otede

t u t p u r ph n n 7 u m u o O tmtun e e n 8 T N i

S N I 2 T ue da exfeh R R Neorc E

S E N a

. . . . . S I

b c d e N I *

= . -

Q

~~ Q

) 5E < -

l 7

1ga -

c

- am. as 2* *

==

=

3 est an e-N

. A.

==

e.*

o= ..

N N

_g_. . had N N ew g __. _ _. _ _. _. _ . _.

t.4 _._.

M' i

E d aut M

E' M. ". -

tad m O *

=

u . . ... .

,=

had er eg b a.,

g == E M = = ag M = = a o e O

==

=

and i

,.,, _.i_- e. et

, pm. pm en.d ses

=

q .=. ==. -

, tu$ "'t *"1

". ,E w 23 3

""9

" "9 ans d

&WW & c ***

W i e C & We

_l

.&., me l w

u - C m e e.,

E A

  • C.

a

==. .

s=

an,a W

MM O. aC. .#

, E MM M M M dC. w es:

> < M M E c M ME

~.

a g

.~

  • a=

w med

>=

E ..

5

  • 8 a==

en Si,

,e,.

a-e **O e t =e

.. gg

. .e. .e a

y s

. g, 3

., g .,,e n

,,e..

. e e

.c 2

'. a * ' ~, "

" " .c

,e e 2 z g =i .

g g g = l =2

.. e- e es -

s e =~ - .e. , . e -

.e

.=

i e

,e s we rb

  • -M -

a==

.4 5 .a . he A

e M.=. = ee e._

b O e.

ge e

as L e C e e me s m e=

o am f'l e

Cb 3 E +.*

I M e ""

b e

a= e e- ==

u se e es

-m en = 3 b 6. h d we ee 9.h. tre

.e .s.A.ma e. me 3 ese og es e e e.

e

  • .e e.

8 .e e 4. W 3 e ee e> === 6 A.'"."=.a w

>e

. > 6. W A

.=. e .e=. .c. 3 _en a mo e se e

e . w L' on e se La . en

.e e c

_ m e-een ==

.- h . e . .o w ee.

L 4 e e- e E>

.e.e. e '*

1.* us u .c. >

.- w , ee 'e **

- . eA *ea 3e a 6.a e A

_ * .s. e - a me _m- u o a

. e a

e ee+ w z> = m n 6 u Q

. . . . ' " _ . .w.

~,. es.

m e,

=

. }

l 1.! M RIQ C - tat!T 1 3/4 3-7 t

Amendment 'n,5Je89.113 e

.k FB 2 2 996 g-h

=

i

0 v

e 2 2 -

R .

3 , , _

5 2

2 I 1 1 1 0

0-e 9

9 g

a -

P _

G.

1 )

  1. g R ( ' .

C R R E _

) ) . . .

d d A -

' ( ( . A. -

R W W N N

) ) _

e 1 -

( ( -

A A A A A S S S, S S P _

U K _

R )

b A (

M A. .

C D D_ D N D _

E .

P S -

H C

E .

T ) e n l w a _

o c d s t p _

e U

(

S

, r _

e e e l w l -

a o a

_ c P c _

s p s -

l p U a U r m

r -

e t

- e o

_ x h x V

_ ~ u T u e _

l F

l v 4

_ d F i -

e t f

- n t n a O

- o a o r -

r l r e t

_ 9 t u t p u u

m u o O T e i e n -

R N S N I 2 E ,

S N

I a b c d e _

2

i[

y 2l D b w o g h l >

. Hf 55 2 dIW a t n .oa a Ct / el l t oi _e 2.t sh ll lU A 0

, , 1 tP

/ ttw s

t 0p A 1 1 44 7 aA de t

a t

1 LRR A0 E

33 t ey rtt l ue ch t

e a

ec n i f

c 1

9.

.udo e orr M a

T

- NfE f t lt l e1 3fl R

, , i A 0 C aI a p h1 r c 1SN 22 ct o c TNA , ,

pt ua su s

l l

t sc o e p

rdr oet o

n E 4OL 1 1 .11 t ej a t rc S l n S RIL ETI PIE ODV rr ao tf s

ud lA a

v do w o

ea e

p r 1l o 0t 1 so

.ac Er e

p N

T.

NR p l a .nn OU . t fra CS ha cl rR eE at d

e 9. edi d ar ee wW oO go epa d

v 3rn o a gr S v pP f .e m ne o T go n e ob , f N n o

) t r i d r E

' io .

eL hA c l

i a t ye P ert s N

E

'N O . .

rt s u y tM R d F noc E sfa i

aad cmne /e R dda oEl i

s I

ed t J ( i fyp a 1 I

LT A. A. de sn n=ea d i

U ies EA R T s R

l Q NR NH ei7 m e r i ht ah chu dm et s E

R NB Al l

ars ceu rD oE fTR a

.n n u t r o sof a

l S p

,e d'a gDo ll et o h eco e E CA NAE n .e s r 2. b t C

N C dei dv e

oRW p c O r srst s e n se e 9. l p

t a N l

A L

2

/er 1bp t oofP o e L s w

o p .

i eost ev d

3a l

h dyc@om e ens

%A a fr r

,l ar u l

) E tl e l5M l l

. r vo o d

e V

R slh aat e2R nae p l u

.la pt s oiS mtN m e

i n

u U S LA EN L eh l sn t sh i

n H ART hE w

o l

f e

hmr s soa Ct r s p e eaO rcI sfA iT /np2 F t N N0T cWD r v nt diR i

g n 0 NlS Q Q RW alt OE i aa . r ocE r D o ei MPT n

/ pP, lo AiE .rnw t hds o ret C T R A u efc l

CT Non t pt t pL

( A T

l CN U Ofad PLR AA A p ,i c lSA N I he Mf mhf a o n e t aso e 1

f 1

1 E

M U

R F T pc m Aa RlMo BrRf r eRo hE tH%

h t

e 0 eo a n n

r e

rrE t eR npO o C d

t w

o g.

i 2 T2 0 rrt h cd 6r w . T l ePr f r 0 gpas t e , r 3 S lvAe onn p )s 4

N I

L EK NC NE Ao C

ont d

p thh nwt ea t

n 1

r e

t el src l u nh n

e ove t om mi g Ten D Y

E M A. Lt ao e e eet n L

B E l Al l N N A. A. A.

HN E

NdM n mI r m p o t c o w l r b s i

r e 0 1 T i C_ t et e enh C N eRf pt E aei f A S sNt s c )uf l T

S Y AnIi l i uOa jI e 1 u n wtihB o orct L

i cbh t A bi l

Cme ,

dTr d ae A l o d 9 N rhn aI g a t t ps E R pt g p n n

a u n _

O met w D s s a P adi i

I ot redd o ens e a e s O er o d c T

C fdnt hoi n s e re a e e au tC l ohh e tru oiDn - I T T

O E

de eb2s h fLc r/

oAn o e

t ctt c

b Nu q l a -

a

)f rtm n R d Ne a iggn o e .t i e P

e ulNd llOe tor t sI e s d

e o nnet im hm d n

. ret wena cn r

n Tfo f c R

O u r

t caIl xhTl esI o iTf i sAf t t

a g o e c r aran ral I E er T Te nRi p r T

C A l s

o s

a F1 n esNt blOn Dr oEd cP a

c b u .b i o l

al q i

u d

hsin o tkei l a n Dpf e r.

E R C e0 v

l po 1

w hi i

t o

yn eCo c anL maAh l

l gu1 Oe anl a t1 l

a c

e

)t a e sh r es t d invtt wira' l ut sn* f Pbo s e

v Vr ail cs hNc hioi srsm bo erf d o n

og rnd a*

E T r u

l a T -

t o iP scOa r I e nda ub n clf I s

i en P L nJ o l

o .e w oMT o o l

l ~ s lt ri 0 V sn oril e h p

o rer t ru nus eom dda w tRAg iee cSRn e

tdPr Ei t ch ant ra v

h-a-

s' t1 s

aao n

rou th qmb o

nseo f i r2 T

t S

oss ot r enOu blf s_s a ii rt rrft o v1 Coe Muc da cS y g d I iai Me w c Pr l r hS lb N e ecP rS nMnRi g ct a l Rs o n yR o d " e U n n o l ea P L

A N

i i b

r b

r t

o c

a l

a u

n t

rI r uet e sen iha an L er l ei u .n fdrf ic v s0ht 1

.ae hsof rm fe-u vr 5* TT ri i O T u

T u

R e

M a ehn NTe h h he ei hh1. i f o e t '

- n I

T Tac T T3WIhb No u

. C N . . . . )) )

.\ U F

9 0 1

1 1

2 1

ab

((

d

)

e

))

ff

)

h

))

1j

)

k

)I .

( (( ( (( ( (

" I g %. 8. 5 gh* EQ .

3 4

,E *~ ,,Jg .jg. g .2 ,

c; ECR # LG 99 00253 Rev. 0 TECH SPEC MARKUP INSERT 10:

CHANNEL excluding FUNCTIONAL TEST shall include the flow input function, the flow transmitter.

INSERT Ili.

Calibration includes the flow input function.

l' l.

l l

l

INSTRt3BTATION 3/4.3.6 CONTR0t R00 RLOCK INSTRUMENTATION LiMiTINGCONDITIONFOROPERkTIGN '

3.3.6.

shall be OPERABLE with their trip setpoints set cons shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY:

As shown in Table 3.3.6-1.

ACTION:

a.

With a control rod block instrumentation channel trip set Table 3.3.6-1, declare the channel inoperable until th with the Trip Setpoint value. restored to OPERABLE status with its tri b.

OPERABLE Channels per Trip Function requirem required by Table 3.3.6-1.

SURVEf tlANCE RE00fREMENTS 4.3.6

) Each of the above required control rod block trip systems and l

the CHANNEL CHECK, CHANNEL FUNCTIONAL for the OPERATIONAL CONDITIONS and at the frequencies .. .

shown in

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> fo surveillance without pir,cing the trip system in the tripped condition, pr least one other operabie channel in the same trip system is moni .

U ).

=

O O

A'nendnent No. 90,131 LHERICK - talIT 2 I0 3/4 3-57

r.

ECR # LG 9M025') Rev. O i"

her TECH SPEC MARKUP I

INSERT 12:

The. APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation. loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

4 f

i

l \

I, I

., ( .,

., E3 I

/ y

~

A ,

1 7

f N

O I 000 1ll 11 ;l 1111 2 2 3 T 666 6EE6 666 ;l 6666 6 C 66 6 A

)

I

  • I
  • 5 I 5 L I EAS ,I ,

LNN 5 5555 2 SOO 4 AII aa* ,

CTT ll1 111 2 5 j ;l ' 222 1 IAI 3 LR PEW PP0 N AOC I

O T ,

A T

N E

M t 5N 1 R LO

- T EI 6 S NT N NC 3 I MAN UMU 222 44 32l ; l 6666

~ 3 K MCF 2 22 2 C I .

E O NEP t L ILI 8 B MBR A ' AT T 0 R W -

0 ER O 2 PE L OP N L

O p ^ [NO I

T O

R T t u I I N T S O

r A O C - P e

, )

b S

R M I C

N W

O D

F l * ( O E T n a* n T n R I R

o c* i I i

)

r t

o s

p 5 U R O

l l

u N

D M

l l

u E

M U

L h

g d T S

I S

H C

I R

O T e e m

uN T

I I

t f

o m) ,e d A N

E G

f t

o g

)

O V

E i

H Y

S e

T I

W S

I N

v ie tl a s

v l eF l I R n r

)

C i I

e R n {

l eR G

l e

v A 4 vr io E E E r e M leaarc l a Bc l

anG ceN o

I e t., l aT oeaaH tl A L

L 0

Lt a

D D

N K aes se rA t

c l

a cA s tl rcC r 0 rr N O C cpn pp t 4 e c e, nD I caes S e c pn I e C t R

O ssw wE E I

T C

N L

s pno UID l Us I

n E C

R t

D e

s p

U i D o W epno l

t sowD DUID N t

a WQ d O T

C _

U s e f U E

I A

R A A

E F o ..p . . . . O . . . .N ....C . E R P

n ab c A s cd S a b c d ] abcd S a R c f _

I R . . . . . .

( .

T 1 2 3 4 5 6 7 R . Et4 gg ,

NS=

e

O.

v e

R

. 3 3

2 0

0- e 9

9 G

w I

L 1 1 1 1 1 1

  1. 6 6 6 6 6 6 R

C E

2 2 1 ,

1-2 1 ,

1 1 3 3 3 3 3 3 P

U K

R A

M C

E )

P n S w H o C d E t T e

(

S e e l l a a c c s s p p e U U l a

- - c e s r l r p e a e U w c w o s o -

P n P w w l o l o a D a l m m F r - r t e e n n h x h o u T e u T i o v l t C d i F d a e t e l w t a n t u o a r o a c L l e r l r 3

u p t u i M m o u m c R 1 i n e i e P T S I N S R L R

E S a N b c d e f I

, TAttF 3.3+1 (Contin:ed)

CONTROL R0D VfTHDRAWAt Rtotr INSTRIMENTATf0N

-- =

ct. kecb $

ACTION 60 -

_=

Q by Specification 3.1.4.3.

anne!

Declare the RBM noperable and take the ACTION required i l

ACTION 61 -

With the number of OPERABLE Channels: l

a. One less than required by the Minimum OPERABLE Channels per Trip Function requirement, restore the inoperable channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.
b. Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one incperable channel in the tripped condition within one hour.

ACTION 62 -

With the number of OPERABLE channels less than required by the Minimue OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. l ACTION 63 -

With the number of OPERABLE channels less than required by the .

Minimum OPERABLE Channels per Trip Function requirement, initiate I a rod block.

HQIII

  • For OPERATIONAL CONDITION of Specification 3.1.4.3.
    • With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.

(a) The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of ' I RATED THERMAL POWER.

(b) This function shall'be automatically bypassed if detector count rate is

> 100 cps or the IRN channels are on' range 3 or higher.

(c) This function is automatically bypassed when the associated IRN channels  !

are on range 8 or higher. )

I (d) This function is automatically bypassed when the IRN channels are on '

range 3 or higher. -

(e) This function is automatically bypassed when the IRM channels rre on _ _

I range 1. .

=

N -T Q i

(f) '[

ired be DP o y pri to a duri sh margd / ,

nst ions perfo Specif ation .10.3. / )

m--

Art 28 BM LIMERICK - UNIT I 3/4 3-59 Amendment No. d. (I 66 {

70 j l

i

RR l \ l RRR l a

EEE u c IW f

. WGO FfP L A

o f

f i

t a

s o v E

LLL AAA M EE n

e s l e

U MMIM H TH s t

n e e L

I EEE

%  % p s o A 9 4 c

l i "

V HHH 5 5 v s 6 1TT E T i i 1 E

L DDD EEE

+ TA AR '01 s

d e i v

9

/

B TTT W R p 5l d A f x 2a 7 W AAA 6 6 fo c 1 c 5 RRR 6 6 /s 2 O

L A . e% 6 8 0 1 e 1

L 0 0 1l ./l 5 A . . *

/

N* A. 3 A.1 A.1 A. 1 ul A.3 ac 2 _

s s N2s NsM2 _

N5fN2s s _

3 2 63 73 RR EE S~ WW

  • I OO "n N RRR PP l l

I EEE LL u o O

P WWW f f i T OOO o t E

PPP f a t s o v S LLL n AAA l t ii o s e

N Tl i n

l e

G lT MMIM I

EEE 5 DD i s o lN EE s i

  • Ato HHH 5 TT p v s 6 2T t TTT A c i i 1

- s r

+ + R d v /

5 E T DDD - e i 9

ME EEE TTT WW f oo 5

0 5l 2a d

5 3U S A A 6 6 1 s 1 c 5 R P R R p /s 3T E N R S I A

/

6 0

42 1

x .c 6 0l 2

1 e

./l 7'

5 L I T ***

A. A.1 A. 3 A.1 lu A.5 ac 2 s N2s NsN2 i l A K N * /= NsfN2s 5 TC /.

O 8 2 4 31 L

B ,

D O

R )

) P L P S p O S P o R I I e o T I ( p N (

o l

O t n p C t n) s o u n) )iP p t

)iP PoS Un r PoS S pP e a a S pT PtH t l t TtH Le( t u S Le( ($ xa c (S I t l r t S t pn nii

  • trn aei F u i c l e R O

i ro tl neop wo e a n T n oT p nt c i p t i pP t e oc s I i N

t ee ) pees ot re e p Si O l E

M etS Pt St t r l U R l Hl Sa Sa ar u g O u u U hh ip TS ri e e n - Tf c f L gc wnin I O it pdi D edw oso V Hi ier e(eweo d ie u I t o e ** to w rmT Tr i v

enPr gomP e s

t gt v l Wn I v P_ n e

v r lS e e eh tl a eh naieF ie ie n vt wt g at r rtl r r tl E r a t ea a aR wt g l re aan tl N

oni rc oni Bop rco

  • tloeaa T oe aa i Lo O LIH esrLIH pne Do esr
  • caesrc A tl ca rc C l I es 5 rF I

T ))) oww noo)))

t u

  • e c pn ts ow D

E ts ec pn ow D 1

t e

C 123 IDP123

) ) e E epno M ep no a .

f s f 2 I c DUID R DU ID M Wa i

m n E A F ... P u T R P bcd n a b cd o

S

.. . . N .. . . C .

I ab cd I ab cd Sa R

T 1 2

.fJ , 1. . . .

, 3 4 5 T ~

R 5 5p.E4- Eg 3W Sj, ,w* Y 5 r g N*g M h.? N N

I

0 v

. e L R A 3 L 5 M L A 2 R A M 0 E M R 0-e d dH R E 9 n nT E 9 w I a a H H

T l

e G.

1 D D T v

% E  % E D l e

  1. 7 T R

7 T D E el C

.A .A E T n 5RR 0R T A nl E 5 E f W 5 A R aa f R hi

+ oO + o f cx P f o a W% W%. o r 4 L 4  % er 6 .A 6 .

% 0 pe 68 M 68 R 8 R .R p 0R 0E .

.E 3E 0 01 E 01 W A 2W 1 W 23 H O .

O O 5$T 5$P N 2P $P * < <

L A L M L A R A M E M R d dH R E n nT E H l a a H T e D D T v

% E  % E D l e 2T 2 T D E el

.A .A E T n P 5RR 0R T A nl 5 E 5 A R U fW f R aa K hi

+ oO + o f cx R P f o a A W% W% o r M 0 L 0  % er 6 .A 6 .  % 0 pe C 68 M 0R 68 R 2R .R p E 0 E . .E 2E 0 P 01 F 01 W A 3 W 1 W 23 S " O .

O O H 5$Z 5$P N 2P 5P * < <

C E

T n

o i

n t eo a e l i r l at e a ca p c sr O s pe p e U p p U l O o a p

o - c L e s ro l r p eo n a e U wL o

o c w i s o -

P n t n P o a w w l i l o l o at u D a l ma rl c

r m F

- r t eu i e n n h c c x h o u Tr e e u T i o i R v l t C d c i F d) a ee e t en l w 4 t R l a n t w u o 1 a g r o ao c L l o n e r l d r T uw i p t ut i M R mT i

S o n

u e

me iS c

e R

P E S - - I N S( R L S

N I a b

c d

e f

{

1 m

. r e

- o ll e aah

.i n mcT rs t

o ep ) l a

E a o .P U l hu)S m v

t t PP e L t eS V

A r

a e h P (H rTI h

t w e o (t e

E c . n L o s )ti r B l i gP n o o A f o n Si p c W n- iPot r O tLpe L 1

. o a(t s e p

L A. 1 t r e A A. - o

  • N5 H l pn sr e et r a p oirw n

g dpwp o eo e i

et o h s i e ph t fs g d i ei r S n n crth e I o a ee a v N i e pwie o I t t sodh pet s O a a s p P l r t w rd m i T

E R 1

t io l en r tM

)

S 1 d n r tn a R 0 u e e eP d

e N P w o vh it lA u I O T E l o c ot ei n a ce n T S f d ywho sh i

A e ot p pt t T P v l t u

o n N I .

e r nl de e y c

E B A. obns eb

( U M 1

  • N$

A.

N b s

ed a r t R o l ad 2 T n

be) s Pwe ie rd 6

- S N a a c sSo app pi .

I _ l L t ov ro 3 s a

ip p( y e n pr K h . pb t ao ti pp 3 C a O r e a ynip s E m idt fi L

L U t o u s l l oee o B i l

o i

apms M A

T 0

0 n o

v hct c ieer r tO nR R N M e t st e e O . g a a nw me L

O T I

e1 g- r Emo rI e op eh

.t we R

i l

f d U t

s n R3 n6 a h c

s a

l s u ohh e apt g ct r

oo f t 0 C i i

v e wnh i n

0 R N

o e3 d e r el I

W p c oe a s C

O t re m l

al ee l n psett wh E

D e ur a og R s ou r ri

[I ph e 1 i Sg c t s U

i e i s ritb ev n l s eF /

t r or S e t h

ee o nd ce T s S h e S

Y l

l C

t d

t i

n n o

l a8w1 Me(ba so t p w

de n l

r T r l s cRt pd epe n T t I

W f o iwo a pl b a i ie m M l l eaa t

rr S

Ei R o vh r s 3 g ul e Adsp ei p l

l oh pT 0 aea L e e 0 cpp O pe 1 r .IP l

a s .

C som no W

i C

dv er t o h e pS s ee s .

N N e t gpTi .

gg d c u O C R 0 naI nn .

I O 1 h

t uc t n ea P aa T C Tl d rrseS rr _

C A C i o e rh e e a r ilI al N E . . . A S t t l

a l

rr U I E O v eePc ee I

ab c RP e rwSse ww F

r e bev i u h e o T ph pL u T oo P -

f yo q T Pp I

R ~

e ab E

. R Ma J 6 .

L 7 * ) .

  • *
  • a ) _

-

  • b _
  • ( ( _

fFEA- M Y8

" F* , y g g R-N 7.I _

0

D HE l CR lI l

iU *

)

ALWQ

  • E
  1. N OO RR 5
  • I T

FE C

, " 5 ASN R NA

  • a
  • 5 5555 5555 2 EOL 1l 1 II 4

PIL 2222 2222 OTI 1 11 IE 3 DV NR y OU CS S "

T N

E N M

E LO E_ _

R EI NT L _

I NA hp E

R E

U Q ARB l

l Cl l

A A.

5- A A. A A. A.

C A. A.

C SHSS HRHR A A. A HRHR A.

N A RNR(T R SHS N L

L I

E E

V S ~

R U

L A b

- 3 1

6 N S

O LOT EIS NTE NCT N

5 L

'W'W'W i

W

~

I AN ' ' ' '

4 T A HU E T Cr 'Q 'Q 'Q QQQQ L N

'M 'M 'N 'N WWWW h' E Q Q R BMU A R

- T T

.S N

I L EK K NC C NE . . .

O AH . . . . .... ....

L l A. A. A. A. A. A. A. .

B i C_

C HNH HHN A. A. A. A. A.A.A. A. A. W D HHHN HNNH O A. A. A. A.

O N L HHN N F

R L

O p /O t T

R 'ra I T

N t A L

O -

x S U C C

_ F l e S R

O M C N

W O

a n E D n c i T n R o s I N

i I t

r S l O l E h M V l

u R l M l M g E S i

e O u u U i T O

R N x

- T I

f E G

f L O

i l

/Y l i

C T e e N t N t V - S I v e u O o e A o T

N v l M n v R e E l T I

O i e tl s eF i e n v G e N v W M a E r ie v S eaa ea n tl E r R A i ek tl N K l rc l

Bl r G N

oeaa T oeaa A l tt E O aes aes tl rc A tl rc l L eaa D C

O cpn wcpnt A R

caes ecpn I

caes C r l rr O I

T L sow pno osowu tepnosow D

E ecpn I S

e C ea M C B pnoe E tepnosow D R N _

N UID UIDN C M t a

s R O DUID R DUID O pn O I F

U D O m R U E M A

W dA UI T T P

R abc e a.

. . . O . ...

abcd I T

N . ...

abcd R

C . E . .

C I A S E O

- I R .

cdCS S a f

R lc" RP G T_ t 1 .

2 3 4 -

5

, 6 7 2

t' R,E? g oc. h t* yO I n 5(m(y 3' $

O.

v e

R

. 3 5

2 0

0-e 9 g 9 a P

G L 2 2 R

C E

1 1 1 2 1 1 4

R A.

N R R R R -

A A A A A A S S S S S S P

U K --

R . . . . . .

A A. A. A. A.

M A. A.

N N N N N N C

E P

S i )

l C n E w T o d

t e

(

S e e

- l l a a c c s s p p e U U l a

- - c r

e s l r p e a e U w c w

_ o s o -

P n P _

- w w -

l o l o a D a l _

m m F -

r - r t _

- e e n n

- h x h o u -

T e u T i o

- v l t C d i F d a _

e t e l w _

t a n t u o 5 a r o a c L 1 l e r l r u p t u T m o u m i

c M R

R i S

n N

e i s

e P _

_ E I R L _

S . . . .

N I

a b c d e f

talTROL Alm RLDCK IIRETERENTATI(M SURVEILLANCE RFiglTREMENTS M EEEEEE5 3

(a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

, (b) Deleted.

(c) Includes reactor manual control multiplexing system input.

For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable to control j rods removed per Specification 3.9.10.1 or 3.9.10.2. 1 Requi to be ERABLE pri o and ing shu own in ELE TED

/

d stratio as perf d per ecific n 3.10 .

(d)WheninOPERATIONALC5NDITION2.

(e) The provisions of Specification 4.0.4 are not applicable provided.that the surveillance is perfonned within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below during a shutdown.

(f) When in OPERATIONAL CONDITION 5.

(g) The provisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within I hour after the Reactor Mode Switch has- been placed in the shutdown position. ~

_.] [

9 l

l LilERICK - UN5T 1 3/4 3-62 .

h e No. (I, 66, 99 AIE O 8 3g5

m mesesa m.m m 1

, ,,,,,,,,,,3 ~~ =

sinalaTJ Tkuni %- upcak

2.  ;

Within 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />s:

Reduce the Average Power Range Monitor APM) Scram and Rod Eleck Trip 3etpoints and A11eueble Value(s, to these applicable fo .

single recirculation lasp operation per S t 3.3.6, or declare the assectated channels)(pecifications 2.2.1 inoperable. and takeand the actions required by the referenced specifications, and,

3. 'The provistens of Specification 3.0.4 are not applicable.

4.

Otherwise be in at least NOT SWTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b.

With no reactor coolant system recirculation loops in operation, immediately initiate action to reduce THEMAL POWER such that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in NOT SWTDolff within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

c.

With see or tus reactor coolant system recirculation leaps in operatten and total care flew ~then W het peGesserefew est M sfthta the' then 395 ofc Figure 3.4.1.1-1: cted zone of 1.

Determine the ApM and LPlWP* noise levels (Surveillance 4.4.1.1.3):

i a. At least'once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and ,

b.

Within 30 minutes after the ' completion of a THERMAL POWER.

increase of at least 55 of RATED TIEM4L POWER.

2.

With the APM or LPIDP* neutron flux moise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to resters the noise levels within the ragsfred Itaits withte 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by tecreasing core flew or by reducing TIENEL PERIER.

d.

With one er two reacter coolant System recirculation loops in operation and total core flow last than or equal to 335 and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THER;14L POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to 1 greater than 3g5 within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

    • Detector levels A and C of one LPipt string per corv octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

j ,  ;

LIIERICK - IRl!T' 1 3/4 4-la . Amanhent Gs. N. 66 PEB 18 34

ECR # LG 9940253 Rev. 0 Page TECH SPEC MARKUP INSERT 16 (eace 1 of 4h The reactor protection system is made up of two independent trip systems.

There are usually four channels to monitor each parameter with two channels in each trip system. The outputs of the channels either channel in will a triptrip system that are combined in a logic so that trip system. The tripping of both trip systems will produce a reactor scram. The APRM system is j divided channels.intoEach four APRM channels and four 2-Out-Of-4 Voter APRM channel provides inputs to each of the four voter channels. The four voter channels are divided into two groups one RPSoftrip two each, with each group of two providing inputs to system. The system is designed to allow one APRM channel, but no voter channels, to be bypassed. j i

The system protection meets the intent of IEEE-279 for nuclear power plant systems. Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A,

" Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability Trip Function."

The bases-for the trip settings of the RPS are j

-discussed in the bases for Specification 2.2.1.

Actions a, b and c define the action (s) required when RPS channels are discovered to be inoperable. For those actions, separate entry condition is allowed for each inoperable RPS channel. Separate entry means that the allowable time clock (s) 1 for actions a, b or c start upon discovery of inoperability for that specific channel. Restoration of an inoperable RPS channel satisfies only the action statements for that particular channel.

Action statement (s) for remaining inoperable channel (s) must be  !

met according to their original entry time.

Because of the diversity of sensors available to provide trip '

signals and the redundancy of the RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown to be acceptable (NEDC-30851P-A and NEDC-32410P-A) inoperable channel to OPERABLE status.to permit restoration However, of any this out of service t .me is only acceptable provided that the associated i

Functiou's inoperable (identified channel isas in a one" Functional trip systemUnit" and in Table the 3.3.1-1)

Function still maintains RPS trip capability.  ;

i 4

)

ECR # LG 99 00253 Rev. 0 hoe TECH SPEC MARKUP INSERT 16 (cont.'- cane 2 of 4h The requirements of Action a are intended to ensure that appropriate actions are'taken if multiple, inoperable, untripped channels within the same trip system for the same Function result

'in the Function not' maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient trip. system channels are OPERABLE or in trip (or the associated is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal.

For the. typical Function with one-out-of-two taken twice logic, including the: IRM Functions and APRM Function 2.e -(trip capability associated with APRM Functions 2.a. 2.b, 2.c, and 2.d are discussed below), this wculd require both. trip systems to systemone have in -trip).

channel' OPERABLE or in trip (or the associated trip ,

For Punction 5 (Main Steam Isolation Vi,1ve --Closure) , this would

. require both trip systems to have each channel associated with.

the MSIVs in three main steam lines main steam lines _for both trip systems)(notOPERABLE necessarily or theinsame trip (or the associated trip system in trip).

For Function 9 (Turbine Stop Valve - Closure) , this would require both-trip systems to have three channels, each OPERABLE or in trip-(or the. associated trip system in trip).

The completion time to satisfy-the requirements of Action a is intended to inoperabilities.

discovered allow the operator time to evaluate and repair any The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

With' trip capability maintained, i.e.,-Action a satisfied, Actions b and c as applicable must still be satisfied. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or,the associated trip system must be placed in the tripped condition. j the associated trip system in trip) Placing the would inoperable channel in trip (or conservatively 1

compensate for the inoperability, restore capability to

~

accommodate a single failure, and allow operation to continue. l l

l 1

I I

ECR 0 LG 99-00253 Rev. 0 Page TECH SPEC MARKUP INSERT 16 (cont. - cane 3 of 4h As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability of one required APRM channel affects.both trip systems.

For'that condition, the Action b requirements can only be satisfied by placing the inoperable APRM channel in trip.

Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only' actions that will restore capability to accommodate a single APRM channel failure. Inoperability of more than one required APRM channel of the came trip function results in loss of trip capability and the requirement

a. to satisfy Action The requirements of Action c must be satisfied when, for any one or more each. tripFunctions, system. at least one required channel is inoperable in channel per trip system is OPERABLE,In this condition, provided at.least one normally the RPS still maintains trip capability for that Function, but cannot accommodete a' single failure in either trip system (see additional bases discussion above related to loss of trip capability for Functions and2.a, the requirements of Action a, and special cases 2.b., 2.c, 2.d, 5 and 9).

The requirements of Action c limit the time the RPS scram logic, for any trip Function, would not accommodate single failure in both systems for a typical four channel Function).(e.g., one-out-of-one and one-out-of-one a thishour

12. logicCompletion arrangement was not evaluated in NEDC-30851P-A for theThe redu Time.- Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associated Function must in trip (or any combinatic 6 in have all required channels OPERABLE or one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851p-A, which allowedjustified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> allowable out of service time as by Action b.- To satisfy the requirements of Action c, the trip trip or, system in the more degraded state should be placed in alternatively, system should be placed in trip (e.g. ,all the inoperable a trip channels system.with two in that trip inoperable. channels could be in a more degraded state than a trip system with four inoperable channels if the two inoperable channels are'in the same Function while the four-inoperable channels are.all in different-Functions). The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e. , what +NHME the plant . is in) .

If this action would result bpod; wd cawda y

\

ECR # LO PS4033 R9v. 0 1

Page TECH SPEC MARKUP.

!. INSERT 16 (cont. - oane 4 of 4h I

i in a scram or RPT, it is permissible to place the other trip system or its inoperabl'e channels in trip.

i' based on the remaining capability to trip,The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable!

sensors available to provide the trip signals,thethe diversity low of the  :

probability of extensive numbers of inoperabilities affecting all {'

diverse Functions, and the low probability of an event requiring the initiation of a scram.

As 2.c,noted, Action c is not applicable for APRM Functions 2.a, 2.b, or 2.d. }

i Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM Action 2-Out-Of-4 c applies. voter and other non-APRM channels for which For an inoperable APRM channel, the requirements inoperable APRM ofchannel.

Action b can only be satisfied by tripping the inoperable APRM channel in trip are the only actions that willRestoring restore capability to Accommodate a single APRM channel failure.

! If it is not desired to place the channel (or trip system) in trip c

to satisfy the requirements of Action a, Action b or Action (e.g., as in the case where placing the inoperable channel in trip would result in a full scram), Action d requires that the Action defined by Table 3.3.1-1 for the applicable Function be initiatedtime.

service immediately upon_ expiration of the allowable out of The Two-Dut-Of-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware. The voter Function 2.e is accomplished redundant outputs. by the 2-out-of-4 voter hardware which includes

! The analysis in NEDC-32410P-A took credit for ,

this redundancy in the justification for the 12-hour allowable out of service time, i

inoperable if any of the so the voter Function 2-out-of-4 2.e must be declared voter hardware's functionality is inoperable. The voter Function 2.e does not need to be declared inoperable due to any failure affecting only the APRM Interface hardware portion of the Two-Out-Of-Four Logic Module.

t

3 /a : 3~ Ie r==wmiTion BASES 3 /a . 3.1 _

REACTOR PROTECTION SYSTEM INSTRUMENTATION _

The reactor protection system automatically initiates a reactor sc a.

Preserve the integrity of the fuel cladding.

b.

Preserve the integrity of the reactor coolant system.

c.

Minimize the energy loss-of-coolant accident,whichand must be adsorbed following a d.

Prevent inadvertent criticality.

This specification provides the limiting conditions for operation INSER7 16 necessary to preserve the ability of the system to perform its intended function because even during of maintenance. periods when instrument channels may be out of se for brief intervals to conduct required surveillance.When necessary, one c reacter ion sys There usually s made op s two indeperdnt trip ystems.)

channels each ip system, he outputs monitor each arameter w i two ch els in in ogic so th the channel n a trip s tem are be either cha will prod 1 will trip at trip sys ined trip syst a reactor sc The sys The ripping of IEEE-279 f nuclear p .

meets he intent r plant protee on systems Specifi

, urveillance ntervals an surveillance determined maintenan outage

} accordance ith NEDC-3085: mes have Improvese Analyses f BWR Reactor

, " Technic Specific ion NRC and cumented in itection Sy es," as a roved by t e NRC Safety aluation rt Pickens com A. Thad i dated July , 1987. .A.

basesfor (SER) (letter to u

of RPS re discuss in the bases r Specific ion.2.2.1 he trip se ings

~

Automatic reactor trip upon receipt of a high-high radiation signal from the Main Steam Line Radiation Monitoring System was removed as t of an analysis performed by General Electric in NEDD-31400A.

the results of this analysis as documented in the SER The NRC approved BWR owner'r Group from A.C. Thadt.ni, NRC, dated May 15,(letter to George J. Beck, 1991).

~

The measurement of response time at the specified fr assurance that the protective functions associated with eac uencies provides channel are taken for those channels with response times indicated as n IM5fSI total channel test measurement, provided such tests channel response time as defined.

overlapping or j 7 c- de

/

demonstrated by either (1) inplace, onsite or offsite test measureme (2) utilizing replacement sensors with certified response' times. Response time analysis in NED0-32291-A. testing for the sensors as noted in Table 3.3.1-2 is no components is required as noted. Response ti,ae testing for the remaining channel MERT 18 M

LIIERICK - UNIT I JAN 0 7195 8 3/4 3-1 Amendeent No. 53,89,132

ECR # LG 99 00253 Rev.O TECH SPEC MARKUP INSERT 17:

... applicable except and 2.b andNeutron 2.c). Flux - Upscale trip functions (Table 3.3.1-2,for Items APRM INSERT 18:

For the digital electronic portions of the APRM functions, performance characteristics that determine response time are checked by a combination of automatic self-test, calibration activities, and response time tests of the 2-Out-Of-4 Voter (Table 3.3.1-2, Item 2.e).

i I

1

ECR 99-00253 REV.0 PAGE INSERT 19 BASES FIGURE B 3/4.3-2 APRM CONFIGURATION LPRM 1 LPRM 3 LPRM 2 LPRM 4

+= ;

APRM 1 APRM 3 APRM 2 APRM 4 n

b A{ h

~

s F y P \F APRM APRM APRM APRM 2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4 2-0UT-OF-4 VOTER Al VOTER A2 VOTER 81 VOTER 82 H U U U RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL 81 RPS CHANNEL 82 RELAYS K12A & K12E RELAYS K12C & K12G RELAYS K128 & K12F RELAYS K12D & K12H ADD AS NEW PAGE B 3/4 3-9 j

SAFETY LIMITS ANO LIMITING SAFETY SYSTEM SETTINGS b,

2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The reactor protection system instrumentation setpcints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION: #d With a reac' tor protectic system instrumentation setpoint less conservative than the value shown i the Allowable Values column of Table 2.2.1-1, declare the channel inoperabl

  • nd apply the applicable ACTION statement requirement of Specification 3.3.1 until the channel is restored to OPERABLE status with (

its setpoint adjusted consistent with the Trip Setpoint value.

  • The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

Adc[

1 LIMERICK - UNIT 2 2-3 E25m i

j

r v

~

CC OO C W $

2 3 22 at

>W

." .w w M 01.- M Q

N *

.E gg

-U W gy a a

v. I @1 >- = .= =

.g W Di ** .

W mm + wJ + J $= ch O Mn mm "m gg_ s* 5 *- * -2g EW

==

Nb a EM .

O m o. ,.

w-C4 N

Nb mO M

O N

mE

.=W

. 4 M2 W o m ,=e c M

N w 3 ..

gg m

O MW GOK MW m m- m m nu 4 M M M M E M N,

W ,M c M MM G

E W

Lt>

D'"

E 44

&. 4 4 d CC Q- C CO

,_ 5 -

w M

C a

W

.= . s.s.

5 O

%W g eW e- o .w== w .

. TT D.= H >m W MO M C \ . s a adC 2 === >= N W W We H m T .U' g .N W H M E T m NN l=4 5 2.= m-N- 4 wa +5 a  ; M *  ; ~~

P

-C5 8 88 a= - o a mm '

'TE PA ~E o

a w

& O . w, O

'D 8 . . .

= ,, W . . s. r .e mm

. M A. Nb * * * -MZ O N& M w ..

N E

, g +=e O m OWm O C

  • W >- M M N @ *=e NN N >- M M M M MZ E W M N M Q M MM W

4 b

sEC "

& M

  • 5 s

3 B* l 5>

W e o -x e

O A, M W R G C s. Di O, m = Q.. Q. - - = - 6

a. e- O O E . - Z s W O > O .c Q

b c

O O C W b r== -

M O b- g b . I W "O 6

E Y O c O

N E

$ e $J E W J > N

.. .' W = 4 b U

. s. m .. U E 1

W w O =
  • W E 4 *.

l

- - . U > O 3 e

- . - .t. j . - .= M. .

b b a.

. g D Q.

.U.

Q. %

4 s== .

05 4 a

4

. W s.

W 4

O.

=

I Es9 r==

OW

.%h.

M On s' k= b bb

.k = =

6

= M 3

. E . u .e m. ,

= E% ,

% . 5 E E:3 En e

T5 g

.-m O%

k -

E -

T.

a a

.= s.

UWm

=,

0 0 ee -

W e W .O W r= 4 &

. . 5

'. s. s. - e =W. ==

l,.u m g a g O O M W - >O WW a

y

$. e e *

  • Y4 U 4 -

C -

L 5 NE J CD g > 4 U W W W W L U ** .>c=

- '< = = = a = w . .o .=

. . A. .

- N m ~ ota.

! T **

f Nd FEB 161995 LIMERICK - UNIT 2 2-4 Amendment No. # , H , 52

0 v

e L R

A D

2 M

R 0 E 0- d d 9

e g H n n 9 a T aD aD

. P ,

E E G D %T L

E %T D

  1. 3A 3A E R T .RR .RR TR C A 3 E 8 E AE E R 6fW 5fW RW f

oO oO O

+ P + P fP o  %  % o W0L W0L L 0R A .A %A

.E 67M 67M 7M 61R 61R .R 0W 1E l 1E 8E A 2O 0 i 0 l i 1l .

A 5P 5 sT 5 gT 1T i

N N

L A

M R

E d d i

i n n T aD aD E E D %T %T D E 8A 8A E T .RR .RR TR A 2 E 7 E AE R 6fW 5fW RW P oO U f + P oO O

+ P fP K o  %  % o R  %

W6L W6L L A .A .A %A 0R 66M 66M 3M M .E 61R 61R .

R 5W C 1E 1 1E l 8E A E 1O 0 1 0 i 1I . A.

P $P 5 sT 5 sT 1T I

N N S

l i

C I

E n

o i

n t

)

eo a li r n at e w

o ca sr p

d pe O t Up p e O o S -

o -

( p L e

ro eo n e l wL o l a o i a .

c Pn t c s o a s _

p li l p _

U at u U r ma

- rl c e _

r - t x

eu i o

u hc c x V -

l Tr e u e i R l v 4 F

dc F i -

n ee e t f tR l n a O _

o a g o r -

1 r lo n r e T t u

uw i t p t

u mT S u o O R e i e n E N S- -

N I 2 S . .

N I

a b c d

e

2.2 LIMITING SAFETY SYSTEM SETTINGS .

BASES 2.2.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS The Reactor Protection System instrumentation setpoints specified in Table 2.2.1-1 are the values-at which the reactor trips are set for each para-meter. The Trip Setpoints have been selected to ensure that the reactor core and reactor coolant system are prevented from exceeding their Safety Limits during normal operation and de.lgn basis anticipated operational occurrences and to assist in mitigating the consequences of accidents. Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is equal ~to or less than the drift allowance assumed for each trip in the safety analyses.

1. Intermediate Range Monitor, Neutron Flux - High
  • The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRR is a 5 decade 10 range instrument. The trip setpoint of 120 s divisions of scale is active in each of the 30 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up. The IRM, instruments provide for overlap with both the ADRM and SRM systems.

4 The most significant source of reactivity changes during the power

. increase is due to control rod withdrawal. In order to ensure that the IRM provides the required protection, a range of. rod withdrawal accidents have been analyzed. The results of these analyses are in Section 15.4 of.the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at approximately 1% of RATED THERMAL POWER. Additional conservatism was taken in this analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed. The results of this analysis show that the.

reactor is shutdown and peak power is limited to 21% of RATED THERMAL POWER with the peak fuel enthalpy well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, the IRM provides protection against local control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

  • bER , Averace Power Range Monitor EdRON Fhu - UpacA le-W(sefc

,{, A J '

For operation at low pressure and low flow during STARTUP, the APRM scram setting of 15% of RATED THERMAL POWER provides adequate thermal margin between the setpoint and the Safety Limits. The margin accommodates toe anticipated

. maneuvers associated with power plant startup. Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system. Tempera-ture coefficients are small and control rod patterns are constrained by the RWM. Of all the possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power increase.

LIMERICK - UNIT 2 . B 2-6 AUS 2 513H

E 1

, ECR O LG 99-00253 Rev. 0 l TECH SPEC MARKUP

' INSERT 1 A:

The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter chann The four voter channels are divided into two groups, of two each, with each group o providing inputs to one RPS trip' system. All four voters will trip (full scram) when an APRM channels exceed their trip setpoints.

l

, LIMITING SAFETY SYSTEM SETTINGS

]

BASES I

REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor (Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high_ local peaks and because several rods must be moved to change power )

. by a significant amount, the rate of power rise is very slow.' Generally the heat flux is in near equilibrium with the fission rate. In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 55 of RATED THERMAL POWER per minute and the APRM system would be more than adequate to_ assure shutdown before the power could exceed the Safety Limit. '

The 155hre#tytyf4Muf.tri iv ced in the Run position. ins [_fgx gggugggg acti,ve_ un g t Q mode swite gl gpgeggg }gg4c ,,gg The APRM trip system s ca ibra using eat alance da a taken during steady state conditions. Fission chambers provide the basic input to the system'and therefore the monitors respond directly and quickly to changes due to transient operation for the case of the Neutron Flux mersis riam turam L)pscAlr setpoint; i.e, for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel, w Q The APRM setpoints were selected to prov e a equate margin for the Safety Limits and yet allow operatir.g margin that. reduces the possibility of unneces-sary shutdowii.

3. Reactor Vessel Steam na== Pressure-Hiah High pressure in the nuclear system could cause a rupture to the nuclear system process barrier resulting in the release of' fission products. A pressure increase while operating will also tend to increase the power of the reactor by compressing voids !Ns addin reactivity. The trip will quickly reduce the neutron flux, cot.Ateracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious

, trips. The setting provides for a wide margin to the maximum allowable design pressure and takes into account the location of the pressure measurement compared ,

to-the highest pressure that occurs in the system during a transient. This trip '

setpoint is effective at low power / flow conditions when the turbine stop valve and control fast closure trips are bypassed. For a turbine trip or load rejection under these conditions, the transient analysis indicated an adequate margin to the thermal hydraulic limit.

l LIMERICK - UNIT 2 ,B 2-7 . Amendment No. 48 i J4ll 31 1995

ECR # LG 9M0253 Rev.0 TECH SPEC MARKUP INSERT 2:

For the Simulated Thermal-Power - Upscale setpoint, a time constant of-6 2 0.6 seconds is introduced into the' flow-biased APRM in order to simulate the fuel thermal transient characteristics.

the flow-biased setpoint as shown in Table 2.2.1-1.A'more conservat

{

t h

=

3,. 3 mS = " -'a = " l Refer to PORC 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION I

, 36, 53 LIMITING CONDITION FOR OPERATION 3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION: LsM3>

a. With an r of ERABLE channe less than equir by OPE LE tha eis y Trip S em T e Mkfinus r t une t p sy lace th inoper e ch nel(s) nd/or at tr p sy en in ) e tri ed c ition* within 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> . The rovis ns o Specificatio / 3 .0. are ot appl able,
b. With en  ; of 0 RABLE channe s le s than requir by the Mi mum OPE ' LE Cha nels pe Trip stem r quir ment f both rip,tystems, pla at 1 st one rip syt es** th tripped condi on)(ithin 1 ur a take e ACTI requirfed by able .3.1-1/ / ,

SURVEILLANCE RE0UIREMENTS 4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the perforisance of tiie CHANNEL CHECK,# CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1, 4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simula.ted automatic operation of all channels shall be perforised at least once per 24WoMh4 4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 24 months. Each test shall include at least one channel I per trip system such that all channels are tested at least once every N times 24 months where M is the total number of redundant channels in a specific reactor trip system. -

  • inopera le ch nel ne not be laced n the rippedcondit'onwhe[ethi uld ca e the rip F ction t occur. In th e case , the noperdle anne shall resto to ERABLE atus w hin 6 ours o the TION quir by Table .3.1- for th Trip F nction all taken.
    • The rip stem n not placed n the ripped condit,on if is uld ca se th Trip F nction occur. When tripsstempnbe aced the ipped condit n with causi the T p Fun ion t occur place the t ip yst with the most i operable channe s in t tri conption;ifbo):

sys have he s number o inope able e nnel f in a trip d cond ion. /

placefeithertripfyste bEIEka LIMERICK - UNIT 2 3/4 3-1 .= 4=+nt No. 17, 34 JUL 2 8 IfH i

m e

- ECR # LG 99-0)1i3 Rev. 0 e

L ~

l TECH SPEC MARKUP INSERT 3:

ACTION:

Note:

Separate condition. entry is allowed for each charmel.

a.

With the number of OPERABLE che.inels in either trip system i for oneoor more' Functional Units less than the Minimum '

OPERABLE Channels per Trip System required by Table 3.3.1-1, within ~that verify one hour at for each affected functional unit either least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable channel in the affected trip system in the tripped condition, b.

With the number of OPERABLE channels in either trip system less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) or the12affected condition within hours. trip system ** in the tripped c.

With the number of OPERABLE channels in both trip systems for one or more-Functional Units less than the Minimum OPERABLE Channels per Trip System required by' Table 3.3.1-1, place either the . inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d.

If within the allowable time allocated by actions a, b or c, it.is not desired to place the inoperable channel or trip system in trip (e.g.,. full scram would occur), Then no later than expiration'of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

-For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE or tripped.

5, For Functional Unit both trip systems shall have each channel associated with the MSIVs in three main steam lines (not necessarily the same main steam lines for both trip systems) OPERABLE or tripped. For Function 9, at least three channels per trip system shall be OPERABLE or tripped.

For Functional Units.2.a.,- 2.b, 2.c, 2.d, inoperable channels with Actionshall

b. be placed in the tripped condition to compl Units.
  • Action c does not apply for these Functional f

I-ECR

  • LG 99-00253 Rev. 0 l -

TECH SPEC MARKUP i

INSERT _41

... months, and 2.e. except Table 4.3.1.1-1 Functions 2.a, 2.b, 2.c, Functions 2.a, 2.b, 2.c, 2.d, separate LOGIC SYSTEM FUNCTIONAL TESTS. and 2.d do not require shall be performed at least once per 24 months.For Function 2.e, tests LOGIC SYSTEM conditions at the APRM channel inputs to the voter chann check logic voter, all combinations of two tripped inputs to the 2-Out-of-4 in the voter channels.

l

, I i

l l

Be"er :o .Pv,RC Posi': ion #w.-:,,

c

.. ~ .. . . g . . .

. . . . . _k .. . . . . , , , . . . .

. l

~

w m m. y, N m

, e- e --

ld YE .

i i

m .

M <

^

.. . 3

. ws , , , i M NM M N NN NN N N N 8 EE

!.e"'

5 I

o o

r E

'<\ O -

o 3

A 5 n M'Q a r W m "!gg 6 O O

- m g-- .( @

- x, -

fg yf a W t Nm m Nmh $

a N

a e asl 3 1 19 a E

W ,

a. 4 . .

E 3 g g- ' g- a 3 e 2 %  %

I e 8

=s -

3 W

e u

41 ":

Jm . . .33 5- 5  %

)g I GEE S 4 ac  ! ' c c!5 5 m .?g 5 5 "8

3 e g g

-= e as  :- =

e s .g

" 13 g

e 3~g -

l aiss g .,

a se 3 $ Ws W3 SG 8 & 4 .A E 4 i a 4 E E &

r ~~

C A A & 4 i 3/4 3-2 Amendment No.7 LIMERICK - WIT 2 -

JE 3 e BN

0 v.

e R

3 _

- 5 2 _ I 4 4 0 -_

'41 41 0-e 9 g 9 a P

G L

R C

E

) ) ) ) )

(

m m m mm

( ( ( ( 22 3 3 3 33 i

2 1 1 12 12 P

I l

K R

A M

C E

P S

l i

C E

T ) l e

n a w c o s d p t U e

S

(

r e e e l

a c P w

o l

a c

s s p l p U a U r m e

- r - t e o x h x V u T u e l

F d l

F v 4 i -

e t f n t n a O o a o r -

r l r e t 5; t u

u t p u m u o O T e i N S e

N n -

R I 2 E

S N .

a b c

e I d -

Refer ':0 PORC TABLE 3.3.1-1 (Continued) kEACTOR PROTECTION SYSTEM INSTmh.mauun '

ACTION STATEMENTS ACTION 1 - '

Be in at least HOT SI"JTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

-ACTION 2

'V 1 al i le'7t 1 ins d co t

k r vi i Sh l>EIEd6d ,

in .

sit n /

ACTION 3 -

Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 4 -

Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

ACTION 5 -

Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HDT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 6 -

Initista a reduction in THERMAL POWER within 15 einutes and reduce turbine first stage pressure until the function is automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 -

Verify all insertable control rods to be inserted within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 8 -

Lock the reactor mode switch in the Shutdown position within i kw. ,

ACTION 9 -

Suspend all operations involving CORE ALTERATIONS, and l insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

O e 9

LIERICK - UNIT 2 3/4 3-4 .

AUG 2 5 bis t l

last.t aa1-1 gentinued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS ,

l (r.) A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped l

- condition provided at least one OPERABLE-channel in the same trip system is monitoring that parametar.

(b) This function shall be automatically b ~

sed when the reactor mode switch is in the Run position @hVthef 4ds9CF 2 IVnts defwrfcS %.

(c) pdur " ing ti s*

any 11 rod ed f wi the c it pri to nd s EE mary ti per ifi ion 3 0.3.

L (d)

' The noncoincident lets reactor trip function logic is such that all channels go to both trip systems. Therefore, when the *s link.s* are removed the Minimum GPERA8LE Channels Per Trip System is f 6 IRMs (iEifTEMI.

(e) An APRM or less than 1 is inoperable if there are less than%LPRM inputs per level

. LPRM inputs to an APRM channeg ao 3 (f) -

l This function is not required to be OPERA 8LE when the reactor pressure l

vessel head is removed per Specification 3.10.1.

i (g) This function shall be automatically bypassed when the reactor mode switch s is not in the Run position. 45 I

t (h) This function is not required to be OPERA 8LE uhen PRIMARY CONTAINMENT '

INTEGRITY is not required.

(i) With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

! (j) This function shall be automatically bypassed when turbine first stage

- pressure is equivalent to a THERMAL POWER of less then 305 of RATED THERMAL POWER.

(k) Also actuates the EOC-RPT system.

o)

P.a 2 & _Yner,::% 2 e e N T Rk% . ~ ,% m, mm s,su y

N rp4uped/fo/sd.ryi rplis [umn/d /er[pec/ic/1od.p(10((37pd@, , ,

og iC me ci LPRH Refer to PORC fh-p ' u u ,n eeh +s a Position # m. .m 6 >'e ssrs "~

& /ne APRH cn/:banhbJ (WEEKLY }nia ce//bnNod)

LIIERICK - UNIT 2 3/4 3-5 Wt No. 7,17 DEC 17 lig

ECR # LG 99 00153 Rev. 0 TECH SPEC MARKITP INSERT 6:

(n) A channel or trip system which has been placed in the i I

tripped condition to satisfy Action b. or Action c. may be returned to the untripped condition under administrative L control for up to two hours solely to perform testing required of to demonstrate other equipment itsAction provided operability or the operability

a. continues satisfied. to be i

i

)

i .

t

l E D M # E

. . Il -

99 5 5 6

  • Ts . . T 6 8

. . 5 0 0 E . . . 0 0 .

d .

En A. A. A. 0 .00.A.A. o l 0 L

E A. A. A. 0 0 A. A.

So NN N sNN s s s D N NN 5 5 Nc Oe N N .

PS g S( n E

R e it ti sn eu t

p ei it mr t

g en si nd ou S

E M h .

Ri pl sc en I

T E

1 - .l e S c sn N tn O

P -  ? ia uh S

r cc E

R b + 4_ R r

ig cn Mr M E A.

E S Sn i

T .' .Pi 3 S - a era r

3 E

L B

Y S

N O

b t_ Iu l uee shr ot m

e A I

, crh T T ot C tf E s ago r

T t O f nf R h 3 e h i P g r g ets i l u i vst R H e s H l ei O v o n atm T - e l - o n v i C L C , i el A d e l e t l m E t r ,

- e r i oie

. R e u w v u s rtv S s s

o e e s o t i L v L o P t net d e l l osa

  • e r - a r e C n cnr s rl p P V e r w ot r

oh t o cc aa s e l

e n t

a u

s t

sw d o eps nsi .

tg i

i n ss pd C m

o v

e i o W o ao t i e nd b ri e i

o h r l FL u r mr nH e D L t g e C mte o M h M- sw o m r a i H

e-v S umdi toau e - - a e l

o l ut -

l e h r q e

gue x c n XxB t e t a

s -

i o mh e ar c ffee o hr nl a Mu S W I

e Vsc v Vu t dt v

R F lwh l s i r nt te e RaFi t o gi e n ' e ai a ls w rtor r nnF itl l e

l u grw V oe S na aa e i s rTS rr aata e or tre e

w oo rr rc es s

s s

s L s e

a h lt p tP o n d e m a

otn siec a tp o t gh e e m r c ea t o1 o r mci ming

.T iuo P oy V V a P s vo S C1 M c I den 1n o e i el 0 S ol ao N eNI e 2ID r r t D l D LF e e r reml r

U m g o o S E l n np o l f

soy r a t t T e m i ii t a

.L e r c c n E w a b br c u difa A t e a a i L y r r rT a n h e nl N n . . v . . . e e a E r c. . u u e a rroe uocr O I ab A a c$ R R M D D Sab T T R M ss I

T andd C 1 eenn N . . . . . . . . . . . .

MSaa J 2 1 3 4 5 6 7 8 9 0 2 * #

D 1 1

1 1

  • g ym O E ,

r*i9

- i y 8 c$ ~ .3' @&j i, f = bw

O _

v R

e _

e ee 3

rnhm 5 aota 2

S i s U st ,

e ca3e 9 g 9 a P iv.h G.

ni1t 1 ot .

  1. rc3f K ta.o F c 4 I em t l onr eroa fi p l t adad
  • tece i ri r 5 gufe 0 i sid

. . . . . daci A. A.

A

. A. 0 lmpn ees N N s e N N ne Soc nbf .

a oer hl cl na ao rhil este P

t an l

i oecn V mi a K ilh R 4tpc A - p M fear os e C - nrt E tooo P u pF v S Os e

l i

C 2 R'.yf4 -

E e d aO T ) l n.l -

n a aget w c li nru o s ett -

O d p t U nsu2 nep e

S - atth

( h uc r ceoa e e e e m l w l Mir a o a Rtem P

c P c to s s Aeor p l p sVf U a ,n U r .

m e so4s4 rpt

- r -

t e o osfu teOp=

x h x V cr tN u T u e e l l v 4 tu F d F i tmuoo e t f eoO s n t n a drt o a O f2n, o r -

n al r l r e t

t u t p u o t ed e 7 u m u o  : r ph n n e O 8 tmtun T i e n -

ue da N S N I 2 T R R exfeh Neorc E

S E N a

. . . . . S I

b c d e N I

  • b l l b

A

- D HE _

CR II

. HU

_ LWG

. A E 2 {

_ NRS _

OO (

IFE 5 ))

ASK T

RNA 5 /y 3

) D l1

((

55 EOL PIL OTI

_g p

Q k

(

5 2 /

h

(

2 2 E

T E 2 22 lE lV E / , , ,

/ , ,

L E , ,.

1E 0I 2 s y 2 23

/

1 I. 1 1 1 1 1 D 1 11 CS S // -

T n

_ N a E l i

E R Lm 'A l Ei lT 5, , _

u g ) ) D A l A e e E

t l

Hm Ci . )

(

) .

/ E T

E E L d L A A. AA ( A. A E C

N C RR N SS WW S R R R D R RR _

A _

L L

I E

V R

U L S LA

- 1 l EN

. - l 0 NOT ., D a

. 1 1 NIS E T ATE T 1

A HCT ) ) ) ) E T CN jJ j j L 3 N U ( ( ( ( E _

4 E F WW W QQ Q Q Q Q Q Q D Q QQ _

B E I R ' _

L T B S A N L D EK T I

) E NC g T M NE ) . ) ( . . E .

E AH HC b

( A. b

( 0, A, A. L E A.

T M S S S SN S C $S 5 M /'S S N D S Y

S

/

N O

I T

C E

T -

O  :

R )

P f _

R

( r _

O

r l d - e _

s e a e l t _

T rh t c p e e n a EE og ti i

n s

p m a

m o

v e i o

h W _

t iH o n U l D L t g e r .

l n M w d C a i m e o o e m r H u t M-x e xt d

xa s wo a

e t e

l o

s -

l o

t i

e v

m a S e u lB l

F e

v

f. th Sg W a I e

V mh sc i R F F i e i ee nr r

u e nt t

a r ne w o s a t l a

lH e

l3 e s gh rgrw a i Rn iu o r e ol l i c s - sl Ls s aiTS er e w ra F H s s se o e hH r c lt tt p otc

,fn ee ev ml ea T

I au ie o P n

s p ) o w Vr Ve u l aC e

P i

s vo I

N dN e

I e g U 1 2 I D rs os r, o

t -

S D

E l

l Dl el ELF I

m a r

te cr tw co nv e T E

e w

mv ae . .

L r _

_ A l

te. .

e v . . . .

aP e

aL e

il aa L

E y rLab r c l

o I I na b A a d R R MV D D S T

C N

U F

l 2

h.

3 4

5 6

7 8

CR?R'$[

R g y~ kE Eg pM E

s -

5es u

_9 1 _

b-

O v.

e 2 2 R

3 , ,

5 2 I 2 1 1 1 0

0-9 9

G.

1

)

  1. g R (

C R R E

) ) . .

d d

( ( A. A.

R W W N N

) )

1

( (

e A A A A A S S S S S P

U K

R )

A (

b .

M A.

C D D D N D E

P S

H C

E T ) e n l w a o c d s t p -

e U

(

S

, r e e e l w l a o a c P c s s p l p U a U r m e

- r - t e o -

x h x V _

u T u e _

l F

l v 4 d F i -

e t_ f n t n a O o a o r -

-  : r l r e t 9 t u t p u u m u o O T e i e n -

R N S N I 2 E ,

S N a I b c d e

j HE D

5 5

, bAd ohtb ~

g n n 2l l

.oa

.g 4 4 t CR 2 dM 1 ' oi o II HU WQ 3

3

, /

1 eR tP aA s

id w i t

a 2.t sh 0p i LRR E , ,

rt es l

ue ec n

c 1

.udo t t

2 2 t i rr t AO t a ch a r 9. o j NFE O

ISN TNA AOL C 1 I 1

1

, fe al pt ua lt a

ct su s

b[a i

l a

e1 h1 r t

sc o

s t

c e

p 3fl rdr oet l n o

f i

R c

e k

A RIL ETI t

rr ej ud

_c ae t r 1l o

.ac

)

PIE ODV NR ao tf s

p lA a

v .

,o i i

n ep 0t 1 so

.nn (r p

N OU t r CS ha rR a d e 9. i ed t cl ar ee eE wW oO o epa d s v 3rn a

t e

p R "'

S v pP f C n

e ne r d' T go n )

t r ob , o N n eL H u i

d f E io . hA tye P rt s aad ef W#s M rts u y tM F oc i cmne p E

dda R o E s a . i R oE t (i md fyp I

)

sn ed tH ld a ies pa U a T s beh e chu O ( ei7 m e r adt gh et s s dm 'uo E

R N ars rD oE .

n n s r

fr o p n m

O ceu fTR l S ,e 6

. . h ec p e E

C LT EA I

A. A.

eto dei NAE oRW c r orst e s s

r 2. b )

t o c

N A NR NB R R N N 2 dv e

c fP d O e w

ns oe v e e 3a9.l p

l f

a 3

L AI /er 1bp oo e o l t d h )s L HL t

%A i L

[s p a e r ens n

  • d

)

I E CA tl e l5M ul r ql au u vo 6 d V C slh e2R l

oiS p e R aat n2E b l u

e a pt mr s

s mtN eaO d e E i

t u

n U

S N

eh l sn tsh i

n ART hE cWD f H

l f

f e

v r

o t

a oa t

e r

p rcI sfA diR iT Mg +a

.C

-(

n o I T

A O

L A Non#

alt rn e MPT PLR R

OE A

i t h ct e ,i p

.e r t

o c

ocE ret pL a

m r

  • f  !-

1 T

N E

LN E0T N1S Q Q R W Ofad I

Tpcm he AA eRo Mf A f f e e tagr so r mhf a e

lSA o

rrE g nS e

1 M NTE Aa r hE t eR n pO o

U RlMo tH% d ACT t 0 eot e o C tr d 4*e 1 R HN BrRf T2 0 rti h cd

. T CU I ePr f f 0 pas t e , p 3 S F LvAe Ao p onn ea o 1 l u ove  !

s N C d thh r e l n t om 4 I bsr e mi g E

L B

M E

T L Ltao E

NdM ont n

t nwt e

mI r e

n e p

e otdo e

pl ec w E

h b

eet l r aei s

d

)r u

d"e A S EK NeRf sNt c ) fe L cbh

. d AnIi mr T Y NC uOa u n wt h B i t r e S NE A. A. A. Hi jI e j o orc A g A. Cme ,

dTr d ae R l o N

AH N N N N rhn aI g t t pn E pt g p n n

HC O

I T

C met w ot redd o ens hoi D

/e h

s a e e r sso pO u

P adi tru .

er t

3 o

Wo+

C fdnt tC t oh e E au e l

ctt b oiDn Nu o f e T

O

- de eb2s h fLc oAn o t

a ggn c

o q i e .t n

i pe R d Ne a n t .rei r r P

R e r

ulNd llOe caIl tor sI e iTf p

i d

t e or ti us d

e n

weno arapy cs p e c>

u O xhTl sAf s a r T

C u

s t

s esI o Dr nRi oEd n r Di l b w i

u d

ral l g Jn bh o a esNt cP l hsin o .

A F1 n i o . l q tk ei z E

R l

C e0 v

1 w

i t

o blOn yn eCo anL c

l Oe l gu 1 anl t 1 l l)td a fwsh c oes t

e r invt wirs l ui E

ht d

og sx eAR l

l po hi maAh hio e o e

v ail cs hNc srs s b e rd e n rnd E t0 c l

a Vr l

T -

to iP w

scOa r

oMT I e nda o

ub n 1 c%

s ltrt iesO f e+

oacm V o ,e Sn l s1i orii tRAg iee a rou p

rer w cSRn tch t h r i1 s n th qm t ru eo m e rr A o nus a Ei ant a s u a o nseo r t dd ra t oss ot r tdPr enOu s( i o o $

T I

N U

S e

n Coe eCP n

l r Mu rS o

h S c da nMnsDa g

d blf i ai lb l

1 N

R P

s a waet c

'o ei t

n u .n cS Pr yR o d fe f

p e 4r e

L i

b r

i b

t c

l a

u t oRieEcte rI rdT eaEsen an L y-f i- p v,'

r f1 c .aehso v s0ht rm u 0

C -

w A

N u r

u a

e n

a uet cLiha ehneEh e t oo i 1t u q L t O

I T

T T R M NTedDTac h

T h yorh h .ifoe Vfpt T3WIhb '

pb M

o C

N U

F 9

0 1

1 1

2 1

. ))

ab

((

))

cd

((

)

(

e

))

fg

((

)

h

(

))

1j

((

)

k

(

r)

T A 6 R

t f

c hEMM gq ~ $ Y" ggaga " c nh g.*g.$Q L

F- ,

ECR # LG 99 00253 Rev. 0 Pw TECH SPEC MARKUP i

INSERT 10:

CHANNEL FUNCTIONAL excluding TEST shall include the flow input the flow transmitter. function, 4

INSERT 11:

Calibration includes the' flow input function.

s

INSTRUMENTATION

, 3/4.3:5

  • CONTROL R0D BLOCK _ INSTRUMENTATION LIMITING CONDITION FOR OPERATION -

J.3.6. The control.. rad block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with'the values shown in the Trip setpoint column of Table 3.3.6-2.

APPL'ICABILITY: As shown in Table 3.3.6-1. ,

g nggt Asb .

a. With a control rod block instrumentation channel trip setpoin conservative than the value shown in the Allowable Values tolumn of Table 3.3.6-2, declare the channel inoperable until the channel is restored to 0PERABLE status with its trip setpoint adjusted consistant with.the Trip setpoint value.
b. With the number of OPERABLE channels less than required by the Ninimum 0PERABLE Channels per trip Function requirement, take the ACTION required by Table 3.3.5-1. s SURVEILLANCE RE0UfREMENTS __

4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERA 8LE* by the performance of l the CHANNEL.CNECK, CHAlBIEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL C0WITIONS and at the frequencies shown in Table 4.3.6-1.

4 hscRh(2 .

  • A channel say be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.

LINERICK - UNIT 2 3/4 3-57 Amendment No.33 APR 2 61994

ECIL # LG 9ME253 Itev. 0

.IECif. SPEC MARKUP INSERT 12:

The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-blased

'setpoints 3 . 4 . '. . .~ .

are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specificatier.

l l

l t

l l

t.

7 d g D

N O

F _

f I 000 11 11 /

T 666 t6 66yy 1111 6666 2

6 222 66$

3 6

C A j/ /_

) ,

I

  • I
  • I 5 L I EAS I ,

LNN S

  • 5555 2 4 BOO AII **a , , , , , , , ,

CTT 11l I7 25lf 2222 1 111 / 3 IAI LRD /

PEN PPO N AOC /

O .

I T /

A T

N /

E S

I SN 5 R LO T EI 5

S NT /

N NC 8

  1. /

t AN 3 I 3 K fCF HU 222 444 32lfj 6666 2 22 2 E

C O

I NEP #

L L ItI B B M8R '

A AT T 0 0

R ER "

t R PE N L

OP h O I

O R

T t

=

i T

I S

N r A O O a P C - t

/ S A~ N

/ ) S W

e ' b I O R C D F l *( O n

a

  • n c
  • i T

I i n d T U

H e N E N S r S l D

)

R O

l u M l

l u

s t

t h

g H5 H

C I - T f ) E f 0 i V T R I " G V H 5 I O I t I ) N t ) - W T e v

N R o n ed A o g E l Vs e S t O ) v( R n { G e u r i

f ie a

eF E r C i e r 1 eR v E D tl eaa o I

e t

a l E tl A e J- t 0 M

l rc aes l

r G

N t c

l a e r

a T cA oeaaH tl rcC L

r eaa a l rr f e

N O

K C pn A R e c p s I nD caesS e c pn I e h p R I A ow t s s wE tsswD t R /c s O T L WIDno 1 E e p n Do NE epno a U aMa p o T C

N U

F D

0 0 . .P M

F I

M C

R U

O D

U I

. .T N DUID M A

R C

W C

A E

T UIf C A

E R

8 ab c A a cd S a b c d I abcd S a R /.4c P

I ~

R . . . . . . .

T 1 2 3 4 5 6 7 h5Q , gQ m R[' l" I* y g *e

  • E - _

I

O v.

e _

C 3

3 2

0 0 _

9 e

g 9 a P

L G

1 1 1 1 1

  1. 6 1 6 6 6 6 6 R

C i

l 2 2 1 , 1 2 1 ,

1 1

3 3 3 3 3 3 P

U K

R A

M C

E P )

S n w

H o C d E t T e

(

S _

e e ..

l l a a _

c s c -

p s p e U U l _

a -

c e s r l r p e

a e U w c w o s o - .

P n P w w l o l o _

D u a l -

r

- m F

- r t e e n n _

h a h o u T e u T i o _

v d i l

F t C e d a _

t e l w _

t a n t u o a r o a c L _

l e r l r 3

u p t u i M _

1 m o u m c R _

i n e i e P T S I N S R L _

R .

E .

S a N b c d e f I _

TABLE 3.3.6-1 (Ccntinued) ,

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION gpqc{g TION. STATEMENTS

,wcU ACTION 60 -

Declare the RBM nopeYaliTe and take the ACTION required by Specification 3.1.4.3.

ACTION 61 -

With the number of OPERABLE Channels:

a. One less than required by the Minimum OPERABLE Channels per Trip Function requirement, restore the inoperable channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.
b. Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped condition within one hour.

ACTION 62 -

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 63 -

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

HQIES For OPERATIONA' CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.

(a) The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of RATED THERMAL POWER, (b) This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(c) This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

(d) This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e) This function is automatically bypassed when the IRM chann21s are on range 1.

'(f) R 'uir to OP BLE nly p ortr[and rin shutd wn ma gi bE i on ati sa perf rmed p Sppifica on

.10.3. jhu[EIE __ /

JAN 31 1995 LIMERICK - UNIT 2 3/4 3-59 Amendment No. 7, 33, 48

c l'

555 5l" EEE

~ mom I _

m EEE 55 -

=

- wgE E  :.x e e

  • 888

= E*8N s.

g - - . x o g O 40 4)

x & a dn:p dada

< ++ u+ w w w =w=u cete te rrr W fd q4 m'A ct ,ac M

E 555 mm

? EEE BE M mom yy

?

lli

=

- E

++ il 3 l-.

  • WWW
  • tt 2
  • a a

EEE 3 3 x e 1 < d d 4 4-de

$ 5 *** =+ w duw dwdu e

n y a- - -s.

u en en a was E -

m e a a C 2

8 a in Mb 5 m s*

_ar egg t*

h ac E-= i-bt5 da~ x% v

~"o - a ut 35 3 4 125 553- "E W -

' 1..#

5123 A~ R nt .a p :'

e -

=

a% h"*%u

$ 3'-

jg i !=2 gI .- #

1 -Es.

ps gs *Nx I8 2 5s*].f-s*.A ~g,j].g

. E t's A A w u s*

  1. Eu 20"ETE g - em-= g-um-=

E g * ' g.2 3 [

, g. l 3*t3 get.

I hE "= cE 6 EEEh 6 e 2

a=ca.Ehh=cRisd a 8 i sav s

assa

  1. : ~ a m 4

k+ FEB 1 61995 4 LIMERICK - UNIT 2 3/4 3-6 1% ~ Anendment No. 48, 51

/

O v

e R L 3 _ A M L L

5 2 R A

0 _ A M 0- E M R 9

e g d di l R E 9 a n nT E l P a a l T

i l G. D D i

T e I L E 1, E v 1

7 T D l e

R 7 T D E el C .A .A E T n E 5RR 0 R T A nl 5 E 5 A R f W f R aa e

oO

  • o hi P f f

o cx W% W% o a 4 L 4 r

6 .A 6 .  %

% er 68 M 68 R 0 pe 8 R .R p 0R 0E . .E 3 E 0 01 E l 01 W A 2W 1 W 23 i

O .

O O

$5T 5$P N 2P $P ' < <

L A L M L A R A M E M R d dH R E n nT E l a a l i

i T

l e _

D D T v

% E  % E D 2T 2T l e D E el

.A .A E T n P 5RR 0 R T A nl U 5 E 5 A R a a K f W f R hi R

e oO 5 o f cx P f o A W% W% a 0L o r M 6 .A 6 0

0 er pe C 68 M 68 R 2R .R p E .

0 R . 0E . .E 2E 0 P 01 E 01 W A 3W 1 W 2 3 S I I

O .

O O H 55T 55P h 2P $P * < <

C E _

T n

o .

i

n t eo a e .

l i r l at e a ca p c sr O s pe p U p p e U l O o a

- o - c p L e s ro l r p eo n a e U wL o c w o i s o -

P n t n P o a w w _

l i l o l o

at u D a _

ma c l

rl r m F _

- r t

- eu i e n n

_ h c c x h o u T r e e u T i o _

i R v l t c .

d c i F d) a ee e t en l w 4 t R a

l g a n t w u o _

1 r o ao c L l o n e r l d r -

T uw i p t ut i M R mT S o u me c R E

i n e iS e P

_ S - - I N S( R L

_ S

_ N a c

I b d e f

l

. l n

l o e l ll f u n o aae o f o i t

mch i rsT s f t a ep . l n o a o r hu ) a

_ o v i e

t .P m i s e t s'

e)S r s n l a ehPP e E i o e i i

o rTSl l h

U v i v o P( t L i s " e n c A d i 8 d - .I (t e V v / o g) n r 5e i 1 w t nPti o E 2l d o - iSno tPip c

L 1 a 9 l _

B /c 5 a aLot r A 0s 2 ' f, n r( pe e .

W 1 1 e 7  % g e ts p _

O .1l ./l 5 .l . i s

pt e o onsr r L

L A. s fN2sul A. 3 a c 2

A. l A. i e p .

A N s Ns N d n dorw epeo e a it wp h _

feo t e i s ph t

a c g r _

S erei e _

T r peth v N

I l

  • t swa

- oie o _

n .

O l

  • s pd h s _

P u n u t et p _

T f f o o c

i wm i r

E o i ord .

S f t n rl en tM

) s o a o d e t a R d N n v i e ven eP e O o s e v ohit lA u I i n l r t n a n T s o e i e y ei ce i A i i v s l who sh t T T v s e b not p pt n N N i i "8 d o ol t u y o E I d v /

n ede C M O e i 3 w a ebns a

eb

( U P 5l d o l t R T 2a 7 l bd r ad 2 T E 1 c 5 f s ae) e ie ._

- S S /s 2 ' a csPw rd _

6 N 8 1 e 7 h . i sSo pi .

I P 0l ./l 5 . . e l app . ov t r m ppL t ro 3

K I

R A.1 luA. 5 ac 2 A. I A. o u py( en pr pp 3 C T NsfN2s 5

  • Ns N t l ab ti O i o tao a E L n v s y ni p s L B o ilidt fi B m.1 e l oee o A 0 e-g hapms r M T 0 cct r tB _

R g6 a aieer nR n h Et st e e c a nw me a3 L

O /N t s r 3 i s

.oe mrio p

eh ct R O n e T d st we r N I i ce l uohh oo O T o rr m e a pt g ft C A p uu a v i n L t og r eewnh el U e si c l roe a C s F s al ee l n _

R N e / p wh og S I W e hn s i sett ri R C O s ti n r ph e t s O E D e o titbe n T n T h dn l r v or I i E

h c H U I

t ew l a

et ndo ce N t l do l eeb w O l M t E S r ih g aMeia so _

M l U hi gw T o vs cBwl t p -

u L S e l i f o 6 sRt pd n _

E f O iS Y vr C re 5 p epe ie G V i l S i o T R pv ulbai oh N t t tt I L r 3 l l pT A o R n e

v E l a G eo T

N l e - ar W S

O C dc

,u 1 eAdsp e eip t

e ie R vl ae e o r a s .

E T

r oe tl aa A

l l L eF d 0

cp so E

D h e ce uh t h t e pS s i

.lP ee s

rc 0 pno O gg A tl I ca es C

S ra C UIC M t dt e

t n enaI gpTi nn _

D ec pn I e N o re e ra P aa _

. N E t s ow no D t a

R O

R O O

t eo v l a

arses rr O M epi .. I ilT _

a c r v er I

T R Dt E

I D M W A dA W T

C I A S T

f e

bb y

a i u

rePc all rr ee ww C T R 0 ewSse lN N . . . . C . E E O e ar q h o T ph oo i I ab cd S a R (E R P R Ho E T pL u T Pp F

P ]Cf * *

  • I * * ) )

R . . . .

  • a b T 4 5 6 hf 7 ( (

gV gw -@

E * [ == Z m w2 5o k(6P, v.P u'*. r*

m~

D HE CR - -

II HU .

WQ

  • L C
  • 5 ASN ,
  • NNA 2 5 5555 OOL 5555 2 4 IIL TTI 1 1 1 112 2 222 2222 AIE 1 111 3 RDV ENR POU OCS .

)

S

  • T (

N N O

E M

E LI ET

. ,s i A A. A R NA NR SNS A A.A A A. A. A. A. A A. A A.

I AB . }

- NRNR NRNR R / SNS N U -

Q HI CL p

E R

E C

N A

A C e s uSNSS L

L I L  % ) ) } )

f f f f

( C C C E

V LN A WWWW R EOT ) ) ) )

U NIS * * *

  • 1 S NTE ( C I(

- ACT ) ) ) } ) ) )

i 6 N HN *

  • d dd d )

O CU ( C ( ( ( ( ( 8 3 I F' QQQ oQQQ MMMM WWWW (

T Q QQQ R 4 A t T L N B E j A M T U R

T S . . . . . .

N . . . . . . . . . . . . .

I L A. A. A. a. ./ A. A. A. A. A. A. A. A. A. A.

EK NNN NNN'if A.

K C NC NNNN NNNN N A. S.

NNN A/ N NE s

O AH L

HC 'W _

B C O

L D F O

R N u O L t I O .r T R a A T t f U

N - S O x C C u S R N l e R I

W F l C O a n O E O c i T n R T

! i s h U r p S l "0 l E

g M H t U R l M E S u O u N l u U i T

e f f L H S H T E O R N I G

Y C O x N t t V - S T e e u o e N

.T v v O n A o e E l T e I W

I i e s l

M v R n v G e N vr N eF i e v S O tl a E r tl E r ie tl R

A e A io M leaa rc i eaa Birco G o ea a T oeaa li L

(

0 eaa tt E D

N t l rc A tl rc rr K cpnaes aesr A ca es I caes C S r 0 ea O C pnt R e c pn ecpn C M wue D e cp p NO s ow o tepnos ow I N

O L pno I B UI D l n FUI E

C DUI D E

M R

t sow epno DUID D t W

a R O pnp so R O O I M UIC T

C 0 N 0 M

R P

R U

E T

A R

dA T T C I A S

. . . . . . . O . . . . N . . . . C E . . E O U R ab c A a d S ab cd I abcd S a F -

R c R P P

I 7[

R . . . . . .

T 1 2 3 4 5 6 7 "k5Ri@4u R O** '

t*$- ko8' l - - g- [

0 v

e R

3 3

2 0

0- e 9 g 9 a P

G L 2 2

_ R 1 C 1 1 2 1 1 E

A.

R N R R R R A A A A A A S S S S S S P

~

~

U R

K

~

A A A. A.

M .

A. A. A.

N N N N N N C

E P

S 1 )

1 C n E w T o d

t e

S

(

e l

e l

a a -

c s

c p s -

p e -

U U l a .

- - c e s _

r l r p _

e a e U _

w c w P

o s o -

n P _

w w l o l o _

a D a l m

r m F _

- r t e e n n h x h o u T e u T i o v l t C d i F d a e t e l w

t a n t u o 5 a r o a c L 1 l e r l r u p u T m o t

u m i

c M R

R i S

n N

e i e P E I S R L S . . . .

N I

a b c d e f

I ]

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE RE0VIREMENTS TABLE NOTATIONS (a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b) Deleted.

l (c) Includes reactor manual control multiplexing system input.

For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn. Not a plicable to control rods removed per Specification 3.9.10.1 or 3.9.1 .2.

ddd

! $f$ t (d) a p When in OPERATIONAL CONDITION 2.

10 k I (e) The provisions of Specification 4.0.4 are not applicable provided that the surveiilance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below during a shutdown.

(f) When in OPERATIONAL CONDITION 5.

j (g) The provisions of S ecification 4.0.4 are not a licable provided that the I

' surveillance is per ormed within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after t Reactor Mode Switch has been '

placed in the shutdown position.

\

AUG 0 81995 LIMERICK - UNIT 2 3/4 3-62 Amendment No. 7, 48, 63

F REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION (Continued) gJJQN: (Continued) '

_ N

2. Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s:

a _

Reduce the Average Power Range Monitor Block Trip Setpoints and Allowable Value(APRM)fScram and Rod s, to those applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associated channel (s) inoperable and take the actions required by the referenced specifications, and,

3. The provisions of Specification 3.0.4 are not applicable.
4. Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />,
b. With no reactor coolant system recirculation loops in operation, i immediately initiate action to reduce THERMAL POWER such that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

i l c. With one or two reactor coolant system recirculation loops in '

l operation and total core flow less than.45% but greater than 39% of rated core Figure flow and THERMAL POWER within the restricted zone of 3.4.1.1-1:

l ,

' j l.

Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):

a. At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and
b. Within 30 minutes after the completion of a THERMAL POWER

. increase of at least 5% of RATED THERMAL POWER.

2. With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to restore the noise levels within the required limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by reducing THERMAL POWER.
d. With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate ccrrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. i' Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

LIMERICK - UNIT 2 3/4 4-la Amendment'No. 48 JMI 31 1995 l

l L

L- .

l. l

~3/4.3 INSTRUMENTATION-BASES

'3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION i l The reactor protection system automatically initiates a reactor scram to:

a. Preserve the integrity of the fuel cladding. i b .' Preserve the integrity of the reactor coolant system.
c. Minimize the energy which must be adsorbed following a loss-of-coolant accident, and  !

l 'd. Prevent inadvertent criticality.

i This specification provides the limiting conditions for operation '

i necessary to preserve the ability of the system to perform its intended

. function even during periods when instrument channels may be out of service l

because of maintenance. When necessary,- one channel may be made inoperable y#y for brief intervals to conduct required surveillance. k/

l l

The reactnr protection system is made 4 of two independent trip systems.

.There are usually four channels to monitor each parameter with two channels in c' _

each trip system. The outputs of the channels in a trip . system are combined

-in a logic so that either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The system meets the intent '

' of IEEE-279 for nuclear power plant protection systems. Specified-surveillance intervals and surveillance and maintenance outage times have been l-determined in accordance with NEDC-30851P, " Technical Specification Improvement Analyses for BWR Reactor Protection System," as a proved by the NRC and documented in the NRC Safety Evaluation Report ( ER) letter to T. A.

Pickens from A. Thadant dated July 15, 1987. The bases or t e trip settings >

of- RPS are discussed in the bases for Specification 2.2.1.

Automatic reactor trip upon. receipt of a high-high radiation signal '

from the Main Steam Line Radiation Monitoring System was removed as the result of an analysis performed by General Electric in NED0-31400A. The NRC approved the results-of this analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15, 1991).

The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are -

completed within the time limit assumed in the safety analyses. No crodit was taken for those channels with response times indicated as not isonntatrW [MR4 Response time may be demonstrated by any series of sequential,' overlapping or F

' total channel test measurement, provided such tests ~ demonstrate the total '

channel response time as defined. Sensor response time verification may be 0 demonstrated by either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times. Response time testing for the sensors as noted in Table 3.3.1-2 is not required based on the analysis in NEDO-32291-A. Response time testing for the remaining channel components is required as noted. <

Lsed W JAN O 71999 l

tIMERICK - UNIT 2 S3/43-1 Amendment No. 47,52,93

[  ;

i

. ECR 8 LG 9800253 Rev. 0 Pg TECH SPEC MARKUP I

F

-INSERT 16 (nane 1 of 4h l i

i The reactor systems. protection system is made up of two independent trip i There are usually four channels to monitor each

. parameter with two channels in each trip system.

either channel will. trip that trip system.the channels in a trip The tripping of both trip systems will produce a reactor scram.

divided into four APRM channels and four 2-Out-Of-4 VoterThe APRM system is channels.

voter channels.Each APRM channel provides inputs to each of the-four The tour voter channels are divided into two i

groups one RPSoftrip two each, with each group of two providing inputs to system.

channel,'but no voter channels,The to system is designed to allow one~APRM be bypassed. i u

The system protection meets the intent of IEEE-279 for nuclear power plant systems.

_Specified surveillance intervals and surveillance and maintenance accordance with NEDC-30851P- A, outage times have been determined in i l

" Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-Ai i

. Neutron Moniror (NUMAC-'PRNM)" Nuclear Measurement Analysis and' Conl;

. Trip Function." The bases for the trip settings of the RPS areRetrofit discussed in the bases ~ for Specification 2.2.1.

Actions a, b and e define the actiot(s) channels are discovered to be inoperable. required when actions, For those RPS l separate entry condition is allowed for each inoperable RPS channel. I Separate entry means that the_ allowable time clock (s) i the.t specific channel.for actions a,~b or c start upon discovery of inoperabili Restoration of an inoperable RPS channel satisfies Action only the statement (s)action statements for that particular channel.

for ~ remaining inoperable channel (s) must be met according co their original entry time. ,

Eecause of the diversity of sensors available to provide trip signals and the-redundancy of the RPS design, an allowable out service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.has been shown to be acceptable (NEDC- of 30851P-A and NEDC-32410P-A) inoperable channel to OPERABLE status.to permit restoration of any However, this out of service time is only acceptable provided that the associated i

l' Function's '(identified as a " Functional Unit" in Table 3.3.1-1)

!- inoperable channel is in one trip system and the Function still maintains RPS trip capability.

L .

l l^

l

. ECR # LG 9940253 Rev. 0 hee TECH SPEC MARKLP INSERT 16 (cont. - cane 2 of 4h The requirements of Action a are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels wir':in the same trip system for the same Function result s in the Fune son not maintaining RPS trip capability A Function.

{

is considered to be maintaining RPS trip capability when I sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal.

including.the IRM Functions and APRM Function (trip 2-.eFor th capability are associated discussed below), with APRM Functions 2.a, 2.b, 2.c, and 2.d j this would require both trip systems to )

have one channel system in trip). OPERABLE or in trip (or the associated trip For Punction 5 (Main Steam Isolation Valve --Closure) , this would

.the MSIVs in three main steam lines (not necessarily th main steam lines for both trip systems) the associated trip system in trip). OPERABLE or in trip (or For Function 9. (Turbine Stop Valve - Closure),

both trip systems to have three channels, each OPERABLE or inthis would requir trip (or the associated trip. system in trip) .

The completion time to. satisfy the requirements of Action a is discovered inoperabilities. intended to allow the operator time to evalua The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> completion Time is acceptable because it minimizes restoration or tripping of channels. risk while allowing time for With trip capability maintained, i.e.,

Action a satisfied Actions b and c as applicable must still be satisfied. If the inoperable channel cannot be restored to OPERABLE status within

- the allowable out of service time, Action b requires that the channelcondition.

tripped or the associated trip system must be placed in the the associated trip system in trip) Placing the inoperable channel in trip (or would conservacively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue.

l I

l i

. ECR O LG 99-00253 Rev. 0 Page TECH SPEC MARKUP INSERT 16 (cont. - oane 3 of 4h As noted,-placing the trip system in trip is not applicable to satisfy Action b for.APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability'of one required APRM channel affects both trip systems.

be satisfied by placing the inoperable APRM chann Restoring OPERABIL!TY or placing the inoperable APRM channel in trip are the only accions that will restore capability to accommodate a single APRM channel failure.

in. loss of trip capability and the requirementthan

a. to satisfy Action one requi Themore or requirements Functions, ofatAction c must be satisfied when, for any one each trip system. least one required channel.is inoperable in channel per trip system is OPERABLE,In this condition, provided at least one maintains-trip capability for that Function, but cannotnormally the RPS still accommodate. a single failure in either trip system (see additional bases discussion above related to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b., 2.c, 2.d, 5 and 9).

The requirements of Action c limit the time the RPS scram logic ,

'for tripany s Function, would not accommodate single failure in both for a.ystems typical (e.g.

four ,channe; one- sit Function).

of-one and one-out-of-one arrangement thishour 12 logic arrangement Completion Time.was not evaluated in NEDC-30851P-A for theThe

.Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allcwance, the associated Function must have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent'to that which justified allowed a 12b.hour' allowable out of service time asevaluated in NEDC-30 by Action To satisfy the requirements of Action c, the trip system in the more degraded state should be placed in

? trip or, alternatively, all the inoperable channels in that system should. be placed in trip (e.g. , a trip system with twotrip

-inoperable channels could be inLa more degraded state than a trip system with fourl inoperable channels if the two inoperable channels are in the same Function while the four inoperable channels are all in different Punctions). The decision of which trip system is in the more degraded state should be based on prudent (i.e. , what judgment 1991HEand the take plantinto account is in) . current plant connitions bpred wwd cag d ,,e If this action would result

. ECR 8 LG 99 00253 Riv. 0 l~

Page TECH SPEC MARKUP INSERT 16 (cont. - oane 4 of 41:

in a scram or RPT, system or its-inoperable channels-in trip.it is permissible to place th The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable out of service time is judged acceptable

-based on the remaining capability to trip, the diversity of the sensors available to provide the. trip signals, the low diverse the initiativeFunctions,.and of a scram. the low probability of an eve As 2.c,noted,'

or 2.d.Action c is not applicable for APRM Functions 2.a, 2.b, systems and is~not associated with a specific trip system a

.the APRM

-Action 2-Out-Of-4 e applies. For an voter andAPRM inoperable other'non-APRM channel, the channels for wh requirements inoperable APRM ofchannel.

Action b can only be satisfied by tripping the inoperable APRM channel in trip are the only actions that willRestor restore capability to accommodate a single APRM channel failure.

If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action c (e.g., as in the case where placing the inoperable channel in trip would result in a full. scram), Action d requires that the Action defined by Table 3.3.1-1 for the applicable Function be initiatedtime.

service immediately upon expiration of the allowable out of The Two-Out-Of-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware. The voter Function 2.e is accomplished redundant outputs. by the 2-out-of-4 voter hardware which includes ,

The. analysis in NEDC-32410P-A took credit for this of out redundancy in the service time, justification for the 12-hour allowable inoperable if.any of the 2-out-of-4 voter hardware'sso the voter Function 2 functionality is inoperable.

The voter Function 2.e does not need to be declared inoperable due to any failure affecting only the APRM Interface hardware portion ~of the Two-Out-Of-Four Logic Module.

n

ECR # LG 9940253 Rev. 0 TECH SPEC MARKUP ~

INSERT 17:

... applicable except andand 2.b Neutron 2.c). Flux - Upscale trip fur.ctionsfor APRM Simulated Therma (Table 3 3.1-2, Items INSERT 18:

For che digital electronic portions of the APRM functi ons, performance characteristics that determine response time are checked by a combination of automatic self-test, activities, and response time tests of the 2-Out-Of-4 calibration (Table 3.3.1-2, Item 2.e). Voter ,

r  !

ECR 99-08253 REY.O PAGE INSERT 19 1 .

BASEE F.?GURE B 3/4.3-2 APRM CONFIGURATION l l

l LPRM 1i LPRM 3 LPRM 2 J LPRM 4 ,

{

APRM 1 APRM 3 APRM 2 APRM 4 h ~

a d n x

' w Y,

i P

[ Y APRM APRM 2-0UT-OF-4 APRM APRM 2 2-0UT-OF-4 2-0UT-OF-4 l

VOTER Al 2-0UT-OF-4 VOTER A2 }

VGTER 81 '/0TER 82 II I f 17 RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL 81 RP$ CHANNEL B2 RELAYS K12A & K12E RELAYS K12C & K12G

= _ - RELAYS K128 & K12F RELAYS K120 & K12H I i

g ADD AS NEW PAGE 8 3/4 3-9

? _ SAFETY' LIMITS AND LIMITING SAFETY SYSTEM SETTINGS r y 2 . 2' LIMITING SAFETY SYSTEM SETTINGS

. REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The' reactor protection system instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY: .As shown in Table 3.3.1-1.

ACTION:

With a reactor protection system instrumentation setpoint less conservative than' the value shown in the Allowable Values column of Table 2.2.1-1, declare the channel inoperable

  • and apply. the applicable ACTION statement requirement I of Specification 3.3.1 until the channel is restored to OPERABLE status with  !

its setpoint adjusted consistent with the Trip Setpoint value.

I i

j i

1 i

j I

I I

i l

i I

  • The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared

< , inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpointslare adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

. LIMERICK - UNIT 1 2

_ . nn co ii d d tt s n n e aa n a a v vv o D D oo ee

- i D %E %E br ll s E T D ae ee i T 3. AT 3. A E z ve AR 3RR 8RR TR s "

il da RE W

6 fW E 5 fW E AE RW etd gh n e g //

8 "8

_ c fO +oO +oO O i ces i 55d g

- E 5s oP P P fP snmo s e i LS 2 W% W% o pi u l p 55s s BE 1l %L L L rcd o p AU /l A 6 0. A 6 0. AL %A E8 ' ' l WL 2u 0. M 7M 7M M 3 0 0.t s%T8 OA LV 2f 1

0R 2E 6.1 01E R 6.1 01E R 7. R 8E

. . 11 n2E 11 c 66 5

6 . .

11i1L1 22%

L A so f H H H 1H A. A. E : 7 4 A.A.

sT ssT ssT 1T N N s2 sDs sss 2NN R t E n W e O m P u S r *

  • T L t *
  • N A s nn I M n oo O R i ii P E d d tt T s H n n e aa E n T a a v vv S o D D o ee i D %E %E b ll N se E T T D a ee O il va T 8. A 8. A E I A 2RR 7RR TR s "

T A

ic ds R 6 fW E 5 fW E AE RW gh e

d g 8

//d "8

T T f +oO +oO O ic e i 55e g N N 5l o P P fP sn s s s i E I 2l W% W% o pi o p 99o s M O 1 u  % L L L lD l p U /f 0 6. A 6. A %A c 1

1

- R T

P T 0 2f 5 6

6.1 6M R

6 6.1 6M R 3. R M 6

9 5.

  • cE8 02o%E T6 0 '0 66%

0 0 . .

S E 1 o 01E 01E 8E S

1 11 r8L1 225

_ 2 N s s H H 1H A. A. e E 5 A.A.

I P ssT ssT 1T N N s2 zsDs sss 2NN 2 I M R E E T

L T B S .

A Y e T S m u

N h g

l o

O I i v T H n C -

o h3 e h e g

E x i g r g r

T u :n t il u i a

O He s H e o a l

R F r v o n h P l t i

e - e l - o c R o n

) a c r a O p

e l C l e

, i t i s

O r n s e r ,

- e r i d T t u

w o

p p p uw so e v u s m

C A e d UO o o sL v L e s o P o a E N t p L e- l l r R  : e r- a r eC n c

, rS r o o n P V e r w s r o( eL o e l t ut o ./ s o w ee n a ss t

i t

ie nl Po no i t

a l

a c

mv oe i o

h Wr e oa lFwu d

t 1 n

- o n

o oa Mc la t i l u

s p

DL t a

get imt C

eLS oh 3. l l

M ep s

m la c U r e

mr ae l

o Hu i mh - v 4a

/g r l l h e

g gU n- re uc i c

- t o

et t a I s o sc ea Vnt vVet ai c 3 5

n ax hri e x V SW e rwl al uw ri B4

_ a Ru T R u e e re R l c l v 4 ll n u gT S VosS e5 r2 rF de e F i - ee i sr rs u e e s al t pt e e m teR t f ss L T t' a

wn oo a o l

g n o

a r

0 ss ee m ehea rc onrda votoPor go it I

Pr n r e t VV a Ps elSC Mc F N

i d t l

w i p u e LF S t U e eu uT m S t u o O rr tDlD i

ee1 r 1

sn m ge i e n - oo SEl nn0ol ee L r aN S - -

N I 2 tt Tem ii t a sl

_ A N e r cc nEwa bbpcu aa Bv

- O t e aa iL y r rrian I

n v . . . . . ee aE rc . .uurea eu i

_ T I Aa b c d e RR MDDSabTTTRM eq C SE N . . .

U . . . . . ... 0 12 **

-F 1 2 34 5678 91 11 *

,E9M7 5'Ep.

o ri

2.2 LIMITING SAFETY SYSTEM SETTINGS w.

BASES 2.2.1 REACTOR PROTECTION SYSTEM' INSTRUMENTATION SETPOINTS The' Reactor-Protection System instrumentation.setpoints specified in Table 2.2.1-1 are the values at which'the reactor trips are set for each para-meter.: The Trip Setpoints have been selected to ensure that the reactor core

.and reactor coolant system are prevented from exceeding their Safety Limits during normal operation and design basis anticipated operational occurrences and to assist'in mitigating the consequences of accidents. Operation with a

-trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis tnat the difference between each Trip Setpoint and:the Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.

1. Intermediate Ranae Monitor. Neutron Flux - Hiah The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRM is a 5 decade 10 range instrument. The trip setpoint of 120 divisions of scale is active in each of the 10 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up. The IRM instruments provide'for overlap with both the APRM and SRM systems.

The most signif : ant source of reactivity changes during the power increase is due to e +rol rod withdrawal. In order to ensure that the IRM 2rovides the requit protection, a range of rod withdrawal accidents have

>een analyzed. -The , asults of these analyses are in Section 15.4 of the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at ap)roximately 1%'of RATED THERMAL ~ POWER. Additional conservatism was taken in tiis analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed. The results of this analysis show that the

, reactor is shutdown and peak ~ power is limited to 21% of RATED THERMAL POWER with the peak fuel enthal ay well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, t1e IRM provides protection against local control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

2. Averaae' Power Ranae Monitor ,

The APRM system is divided into four APRM channels and four 2-Out-0f-4 Voter channels. The four voter channels are divided hte two groups of two each, with each group of two providing inputs to one RPS tr 4 system. All four voters will trip (full scram) when any two APRM channels exceed their trip setpoints.

For operation at low pressure and low flow during STARTUP, the APRM Neutron Flux-Upscale (Setdown) scram setting of 15% of RATED THERMAL POWER provides adequate thermal margin between the setpoint and the Safety Limits. The margin accommodates the anticipated maneuvers associated with power plant startup. Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system. Tempera-

~ ture coefficients are small and control rod patterns are constrained by the

- RWM. -Of all the possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power increase.

LIMERICK - UNIT 1 B 2-6

LIMITING SAFETY SYSTFM SETTINGS BASES

. REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor -(Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high local peaks and because several rods must be moved to change >ower by a significant-amount, the rate of power rise is very slow. Generally. tie

-heat flux is in near equilibrium with.the fission rate. In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 5% of RATED THERMAL POWER per minute and the APRM system would be more than adequate to assure shutdown before the power could exceed the Safety Limit.

.The 15% Neutron. Flux - Upscale (Setdown) trip remains active until the mode switch is placed in the Run position. l The APRM trip system is calibrated using heat balance data taken during steady state conditions. Fission chambers provide the basic input to the 1

. system and therefore the monitors res)ond directly and quickly to changes due 1 to transient operation for the case of the Neutron Flux - Upscale setpoint; i.e., I for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel. For the Simulated Thermal Power - Upscale setpoint, a time constant of 6

  • 0.6 seconds is introduced into the flow-biased APRM in l order to simulate the fuel thermal transient characteristics. A more conservative I maximum-value is used for the flow-biased setpoint as shown in Table 2.2.1-1.

The.APRM setpoints were selected to provide adequate margin for the Safety Limits and yet allow operating margin that reduces the possibility of unneces- l sary shutdown. j

3. Reactor Vessel Steam Dome Pressure-Hiah  :

High pressure in the nuclear system could cause a rupture to the nuclear system process barrier.resulting in the release of fission products. A pressure -l increase while operating will also tend to increase the power of the reactor by compressing voids thus adding reactivity. The trip will quickly reduce the neutron flux, counteracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious i trips. The setting provides for a wide margin to the maximum allowable design i pressure and takes into account the location of the pressure measurement compared j to the highest pressure that occurs in the system during a transient. This trip <

setpoint is' effective at low power / flow cor.ditions when the turbine stop valve '

and control fast closure trips are bypassed. For a turbine trip or load rejection under these conditions the transient analysis indicated an adequate margin to the thermal hydraulic limit.

LIMERICK -' UNIT'1 B 2-7

3/4.3 INSTRUMENTATION

~

3/4.3.1 pEACTOR PROTECTION SYSTEM INSTRUMENTATION l

. LIMITING' CONDITION FOR OPERATION 3.3.1 .As a minimum, the reactor protection system instrumentation channels shown xin Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION. SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

Note: Separate condition entry. is allowed for each channel.

a. With the number of OPERABLE channels in either trip system for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System

, required by Table. 3.3.1-1, within one hour for each affected functional I

unit either verify that at least one* channel in each trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at~1 east one inoperable channel in the affected trip system in the tripped condition.

b. With the number of OPERABLE channels in either trip system less than the

. Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) or. the affected trip system ** in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. .

I

c. With the number of OPERABLE channels in both trip systems for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) in one '

trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.

d. If within the allowable time allocated by actions a, b or c, it is not  ;

l desired to place the inoperable channel or trip system in trip (e.g., full scram would occur), Ihan no later than expiration of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.  !

' SFor Functional Units 2.a 2.6, 2.c, 2.d, at least two channels shall be OPERABLE or tripped. For Functional Unit 5, both trip systems shall have each channel associated with the MSIVs in three main steam lines (not necessarily the same main

-steam lines for both trip systems) OPERABLE or tripped. For Function 9, at least three channels per trip system shall be OPERABLE or tripped.  !

    • For Functional Units 2.a,. 2.b, 2.c, 2.d. inoperable channels shall be placed in the. tripped condition to comply with Action b. Action c does not apply for these

. Functional . Units.

LIMERICK - UNIT 1 3/4 3-1

i 1

3/4.3 INSTRUMENTATION

~

3/4.3.1 ~ REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS 4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 24 months, except Table 4.3.1.1-1 Functions 2.a. 2.b, 2.c, 2.d, and 2.e. Functions 2.a. 2.b, 2.c, and 2.d do not require separate LOGIC SYSTEM FUNCTIONAL TESTS. For Function 2.e, tests shall be performed at least once per 24 months. LOGIC SYSTEM FUNCTIONAL TEST for Function 2.e  !

includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations of two tripped inputs to the 2-Out-0f-4 voter logic in the voter channels.

4.3.1.3 The REACT 0k PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its li:it at.least once per 24 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 24 months where N is the total number of redundant channels in a specific reactor trip system.

l l

1 I

l l

LIMERICK - UNIT 1 3/4 3-la 1

_ N O

I

. T 1 3 1 3 I 4 4 4I 41 1 1 4 C

A

)

a -

Si L

EM NE MNT e UAS v MHY l -

N ICS ) ) ) ) ) )) a O

I N

IEP d

(

d

( (

m (

m (

m mm

((

v

/

T MLI 3 3 3 3 3 3 3 33 22 2 2 1 A BR T AT _

N R E ER M .PE _

U OP _

R T

S N

1 I 1 M

. E 3 T .

S _

3 Y S

E _

L N L B O EAS ) ) ) ) _

A I LNN i 1 f g T T BOO ( ( ( ( -

C AII 2 5 2 5 2 1 1 12 12 2 2 1 E CTT T IAI , ,

O LRD 1 1 R PEN e P PPO ) l AOC n a R w c O o s p

T d C t U , -

A e w -

E S - o e R  :  : ( L v

) ) r l e e e - a s r l w l V .

r o a o a l o h g

t c P c e e n t i s s m v o i i n p l p o e i n H o U a U r D L t _

o M e a

. M - - m - t m r l x

e e o a e o _

e g

g x h x V e t s _

u e n u T u e th a I n l v a l l v 4 Sg W a F i R F d F i - i e R t e t f lH l n n a r n t n a 0 e e i e o r e o a o r - s - s L t r e w r l r e t s s a t p o t u t p u ee e m T i u o P u m u o O Vr V3 ae I d e n e i e n - u er N e N I e N S N I 2 rs rl tu U m g os oe Ss r a te tv o L e r cr ce nl A t .

e aP aL iC N n . v . . . . . e e a O I a b A a b c d e R R M I

T C

N U . . . . .

F 1 2 3 4 5 r R5R h5] ,

i~.

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION ACTION STATEMENTS ACTION 1 -

Be in at least H0T SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 2 -

DELETED l ACTION 3 -

-Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within I hour.

ACTION 4 -

Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

ACTION 5 -

Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 6 -

Initiate a reduction in THERMAL POWER within 15 minutes and reduce turbine first stage pressure until the function is automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 -

Verify all insertable control . rods to be inserted within I hour.

ACTION 8 -

Lock the reactor mode switch in the Shutdown position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ACTION 9 -

Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

LIMERICK - UNIT .1 3/4 3-4

V TABLE-3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS

.(a) A channel may be placed in an' inoperable status for up to- 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.

1

.(b) This function shall be automatically bypassed when the reactor mode switch is.in the-Run position. l

'(c) DELETED l (d) The noncoincident NMS reactor trip function logic is such that all channels  !

go to both trip systems. Therefore, when the " shorting links" are removed, j the Minimum OPERABLE Channels Per Trip System is 6 IRMs. l j (e) An APRM channel is inoperable if there are less than 3 LPRM inputs per level or less than 20 LPRM inputs to an APRM channel, or if more than 9  :

LPRM inputs to the APRM channel have been bypassed since the last APRM calibration (weekly gain calibration).

(f) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1. '

.(g) -This function shall be automatically bypassed when the reactor mode switch is not in the Run position.

(h) This function is not required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY is not required.

(1) With any control rod withdrawn. Not applicable to control rods removed per Specificat:on 3.9.10.1 or 3.9.10.2.

(j) This function shall be automatically bypassed when turbine first stage pressure is equivalent to a THERMAL POWER of less than 30% of RATED THERMAL POWER.

(k) -Also actuates the EOC-RPT system.

(1) . DELETED 1 I

(m) Each APRM channel provides inputs to both trip systems. l (n) A channel or trip system which has been placed in the tripped condition to satisfy Action b, or Action c. may be returned to the untripped condition

'under administrative control for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

LIMERICK - UNIT.I. 3/4 3-5 l

E D

  • M * # E
  • 4 I) 5 5 5 6 Ts . .

T 6 8 -

. . . 0 5 0 0 E . . . 0 0 . . f d L En A. A. A.A.A.A.0 0 0 E A. A. A. A. A. m 0 So NN NNNNs s l

s s D N NN 0

s 0

s N N or-ret Nc ftu Oe oO g PS S( tV -

p 2 n

E it R m4 ti eh sn xfc eu e0a t

- e p et ei rum aOo mr it

- r t s2f g c en ies si nht nd otu ou S r p pl E tft sc M cou en I e o Ri T l n eot E in .l e S lta sn N aad tn O tvn ia P iiu uh S gtd . cc E ice 4 r R dar ig 2 = cn M l me i 1

E eohN Sn T nrt .Pi 3 S nf oeRa a ,sr m Y

3 S hd3 uee ce ,sh r E

L N O rur 1.ell ot e B ncrh A

T I

T e ta s 3. n oe4atf ot C Vm hs r E ncago T 4eo fnf O - bie i R h 3 e h f tmets P g r  ; 0l aavst R

e i l u l csl ei

)l H e s tai atm O na v o n uhfev i T

C wc os

- e l - o Osih el L C , i - ctl m A dp e l e t 2ee oie E tU r ,

- e r i m pf r t v R e u w v u s diSot i S - s o e e s o nt net

( s L v L o P a ftosa

r e l l eorcnr s
  • eee r - a r e C n l s a ot rl wl P V e r w ennpeps r oaoa l t u t o noo nsi .
oh tg tcPc is s e

m e

v n

o W a s o

sw ao d

t n pi d i e n d astebrie ii n pl p o e i h r l FL u hearr mr nH oU aU r D L t g ee C h cRceumdi o M m e a i mt e- S idtoau M-e r-e t

o m r l H ut - v M .lipsffee r q a e o li l e h R ex gue gxhx V e t s - omh e ar c P gpn o hr nuTue t a I Vsc v Vu t Anao dt nl v al l v4 S W e nt l s i i cte e aFi RFdFi - e r eai a l s w ,t r rtor R t e tf l l n u grw V oe S ssoeaata na rntna0 e e i s rTS rr reFrtn eor eoaor- s s L s a p tP e m ot a si e c tre wrl ret s s e hlt o n d a t mci atp otutpu e e m r cea t o1 o r ce .l mi n g T i uo PumuoO V V a P svo S C1 M c e m y e ol ao I den eien- e iel 0 S ti anreml N eNI eNSNI2 r r t D l DLF e e r etl nf r U m r

g o o S E l n np o l d ea soy a t t T e m i ii t a erhdifa L e r c c n E d a b br c u ns ce nl A t e a a i L  ; r r rT a n ont rroe N n . . v . . . . . e e a E r c . . u u e a rouruocr O I ab Aabcde R R M D D Sab T T R M tppess I

usttandd T eeuoeenn C NroVMSaa N . . . . . . . . . . . .

U 1 2 3 4 5 6 7 8 9 0 1 2 * * #

F 1 1 1 *

R33 a% , '

CFi5, c zIl -- c3

I l D

HE CR II HU LWQ A E NRR

. OO IFE T C ))

ASN ii

((

RNA ) ) D 55 EOL i h E PIL ( ( T ,,

OTI ) 5 2 2 2 2 E 2 22 IE 1 L

DV ( , , , , , E , ,,

NR 25 2 2 I 1 1 1 1 1 1 D 1 OU 11 CS S )

T a N f E N M LO )

E EI g R NT (

I NA R R D U AR E Q HB , ,

T E CI . ) ) . .

E R L d d L A A. ( ( A. A. E E C RR N R W WN N R R R D R RR C

N A

L L

I E

V R L U LA S EN 1

NOT NIS D _

N E O ATE ) ) T 1 I HCT ) ) 1 e E T CN j j ( ( L 1

A U ( ( A A A A A E 3

T N

F WW W S S S S S Q Q Q D Q QQ 4 E M

E U L R T L D B S EK E A N NC T T I NE ) . ) . . E .

AH b b L N HC ( A. ( A. A. E A.

E C SS N D D D N D S S N D S SN T

S Y

S e

) l N n a O w c I o s p

T d C t U E e T  : S -

O )(

R f r P (e e e r s

rl w l - e R oa o a l t O rh og tc P c e e n a T is np s m v o W C ti l p o e i h A iH oU a U r D L t g e r E n M m e a i m e R o- - r - t m r l H u t M e e o a e o l t x gx h x V e t s - o i eu e nu T u e th a I V mh gl v al l v 4 Sg W e sc nF i RF d F i - i ee r e nt a t e t f lH l3 nr u gh a i Rn a rn t n a O e e iu s rgrw o r eo a o r - s- sl Ls s aiTS er e p

wr l u

r e t s se o e hH tt ot t p u ee ev m1 r c lt T au o Pu m u o O Vr Ve aC P s ea I ie n e i e n - u L e i vo N dN I eN S N I 2 rs r t - D l Dl el U e g os o , S E l ELF L

m r

a r

te cr tw co nv e T E

e w

mv ae . .

A e e aP aL il L y rLab N t . . v . . . . . e e aa E r c O

I I na b Aa b c d e R R MV D D S T

C N . . . . . . . .

U 1 2 3 4 5 6 7 8 F

S CMiQ,$*- 5[

1 1 l l y 2l b l D n .oa HE 55 dM o s CR 2 eR i 2.t sh r II ,, / tP HU 44 t 0p u 1 aA a 1 o WQ E

r l ue c .udo h LRR et i rr AO 33 ts fa ch lt f 9. o 2 N F E' ae a i 3fl 1 O C 22 c o ISN p l ct s

e p rdr l TNA oet i

,, ua su S l n t AOL 1 1 11 t ej RIL ETI rr ao ud lA e r 1.

0t lo ac n

u __

PIE tf a p 1 so I ODV s v .nn NR OU ha p

rR

. r e

d e 9. i ed N

O CS cl eE t v 3rn I ar wW t o a T ee oO i m ne I S go v pP m.

s) e ob , D T

n r i td ye N _

N eL nH O E N io . hA aP s aad C -

M E N rts u y tM R tE rF i i

cmne L R O . . dda oE ( d fyp A I

ed tH w a ies N -

I U LT A. J. sn T os e chu O Q EA R R NN ei7 m r h ets I E NR dm rD .lfu p T _

R NB ars oER o l S ,e A AI ceu fTEeh e R E HL CA eto nAWh s r 2. b E dei oROtr s C

N C 2

dv e

c P f gw e e v

e p 9.l l P

O A /er 3a L ooLno d h m L 1bp t Aip e ens o I %Md r vo r

) E tl e l5Rul u oiS f d V slh e2 Ell s mtN e R aat eh nt Hcu n Txf s

e eaO 2 u U L- rcI n S A l sn aR e r iT N i

LN i hED e p sfA O t N EOT tsh cWE ,v diR I _

n O Q Q alt OTni r ocE T _

o I NIS RW ei MPAot o ret I C T NTE ACT .rnw Non R

PL Ric t c

pL D

( A HN te lSA N T CU Ofad AAfcf a o O 1 N F~

I he Monf e rrE C

- E T pc m eR ue r teR 1 M Aa r hE%f n pO L U RlMo tH2 0 e o C A 1 R BrRf T t0 h cd N

. T I ePr f nu0 t e ,

O .

3 S L LvAe Ao p o n a p1 ove I N EK ehn n tom T _

4 I C d thtir e mi A NC NE Ltao ont nw e rwp ew h eet R -

E M AH A. A. A. A. l r E L E HC N E n m1eo . b s P -

B T N NN NdM t tl enE aei O A S C NeRf sNafcoL cbh .

T Y AnIi uOe nib i t g S Hi jI reotA l a n Cme , d T gh cR pF g i -

N rhn aI ttnE p n r .

O metw Ds suP adi e2 I ot o eNieafO er t T redd hO de tru . nN C fdnt tCeulte oiDn eO E au cl ub Nu o I _

T de h fLnctp q nT O

d eb2s oAenano Nri e .i t eI R it .rei h0 P ulNd toe d n cs wh R e llOe caIl sIfl ewd iTfltoe weno arap dC 0

O r xhTl sAiaal r ral e T u t esI o nRdhrfi d l g mL C s s Dr oE sb u hsin rA A o a .

esNt cPe ieq tkei oN E l F1 n blOn OtTlhe invt fO R C 1 o eCo l uSatr wirs rI e0 i yn c l gl E c l ui eT _

v w og e sx

- t anL anoT st d pA l po hi maAh his eeo R e ail cs hNc srbLbdn rnd eE _

v Vr to scOa uaA u i es bP l T - iP r I e nd Nll s ltrt O a l w oMT o Ol ci orii o V o ,e Sn tRAg i eeI an rou tg rer w cSRn tchThin th qm n _

p tru o eom e Ei antCs o nseo di nus dda oss tdPr ra N ni o rr er _

t otr re

- T I

N S

e Coe Muc eCP l r hS enOu da blfUsot g d i aiFMic lb Rtn cS Pr yR o d f

i t un n

rS nMnsDa lLPau .n f eD qe -

U L

i i b b n

t o

c l

a u t oRieEcteELrf1 rI rdT ann eaEsenN is0htrmE b .aehsoTrr vee e

7 A r r a n uetcLihaAeli1t u Ltt N u u e a eh n eEh hHhah .ifoeEof -

O T T R M NTedDTacCTCT3WIhbDNa I

T -

C N . . . . )) )) )))) )) ))

U 9 0' 1 2 ab cd e f gh ij k1 F 1 1 1 (( (( (((( (( ((

g ! ;;; ^ I g*~ R* ym

INSTRUMENTATION 3/4.3.6 CONTROL R0D BLOCK INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.6. The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY: As shown in Table 3.3.6-1.

ACTION:

a. With a control rod block instrumentation channel trip setpoint** less I conservative than the value shown in the Allowable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

jgVEILLANCERE0VIREMENTS 4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE

  • by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.

i l

l

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.
    • The APRM Simulated Thermal Power - Upscale Function Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are ad;usted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

i I

LIMERICK - UNIT 1 3/4 3-57

l D

E

- N O

I T

C 000 666 111111 666666 11111111 66666666 1111 6666 2

6 E

T L

E D

3 6

A L 5 D EAS E LNN BOO 2' 2 5555 2

, T E 4 AII *** , , ,,,,

L

, E ,

CTT 111 111211 25252525 2222 1 D 3 IAI LRD PEN PPO AOE N

O I

T SN A LO T EI N NT E NC M AN U HU 1 R T

MCF U D MEP E 6 S ILI 222 T N 333333 32323232 6666 2 E 2 3 I NBR '

L IAT E 3 K C

MR ER D E O PE L L - OP ) -

B B n A w T P o 0 d R t e

L S O (

R T e e N l a

l a N O c c O C s s I p pe T U~ Ul I a S

- c O e s P r l rp e aeU N N w

o cw so- n S

R W

O P . nP

  • i O n D i

w w

  • T T l ol o
  • l I l U a i l N E h H m

r D am 'F r t S

R u O M

l u M U

g S

) f f i

(

h e enn xhou O T t

)

" E L

O H H C

R t -

O e TeuTio I N o e ) G N o e) V l T v vl n v n v (* e I T

I ie tl diFddC et el w O

M r Me i t

"e l

A R r tl ie E G v e

W S

N eaa tantuo o a a oeaa R L Wl ~a rc cpne s aroacL l erl r u pt u i M E

G N

t c

e l

a c

r e

p c

s n AI E

T tl rc A caes ecpn H

C r

E D

O Ksow moumcR A S e M C R t s o w tsow t Otno ineieP e p n o DE epno I a

N O L UID SINSRL E D U I D M DUID D W DE R O

I B C R M T T T

C D E R U

E T

A R

E L

C A

0 . .. . . . . . O N N

U Rabc E A ' a. bcdef S a b

c d I

abcd C

S a D E E R

F P

I R . . . . . . .

T 1 ' 2 3 4 5 6 7 CzEE7 Ep ,_ w1 m.E I

TABLE 3.3.6-1 (Continued)

I CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION ACTION STATEMENTS ACTION 60 -

Declare the affected RBM channel inoperable and take the ACTION required by Specification 3.1.4.3. '

q ACTION 61 -

With the number of OPERABLE Channels:

\

a. One less than required by the Minimum OPERABLE Channels per Tri)

Function requirement, restore the inoperable' channel to OPERABLE status within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or place the inoperable channel in the tripped condition.

'b. Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirerent, place at least one inoperable channel in the tripped condition within one hour.

ACTION 62 -

With the number of OPERABLE channels less than required by the l Minimum OPERABLE Channels per Trip Function requirement, place I the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 63 -

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

NOTES l 1

  • For OPERATIONAL CONDITION of Specification 3.1.4.3. 1
    • With more than one control rod withdrawn. Not applicable to c'antrol rods removed per Specification 3.9.10.1 or 3.9.10.2.
      • These channels are not required when sixteen or fewer fuel asemblies, adjacent to the SRMs, are in the core.

(a) The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of RATED THERMAL POWER.

(b) This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(c) This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

(d) This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e) This function is automatically bypassed when the IRM channels are on range 1.

(f) DELETED I

l 1

LIMERICK - UNIT 1 3/4 3-59 L

RRR

_ EEE L WWW L A

_ OOO A M PPP M R

_ d d R E l LLL n n E H e AAA a a H T v MMM D D T l e RRR %E %E D el E EEE T D E n U HHH 7. A 7. AT E T nl s

p L TTT 5RR 0RR T A aa c A 5 E 5 E A R hi V DDD fW fW R cx 5

  • E EEE +oO +oO f a 0
  • TTT P P f o r 1 s L

B AAA RRR W% W% o er p A

L

4. A 4. AL  % pe x c 6 6  % p W  %%% 8M 68M R 0. R 0 6 8 O

A 444 6.0 R 0R . 8. E 3E 23 L 01E 01E 2W 1W A.1 A.1 L / 833 H H A. O O A * *

  • N* 268 ssT ssT N 2P sP * << NsN2 S RRR T EEE L L N WWW A A I OOO M M O PPP R R P d d E E l T LLL n n H H e E AAA a a T T v S MMM D D l e RRR %E %E D D el N EEE E E n O T HHH 2. AT 2. AT T T nl

_ I TTT 5RR 0RR A A aa s T IN 5 E 5 E R R hi p A

O DDD fW fW cx c 2T EEE +oO +oO f f a N P TTT P P o o r

  • 6ET E AAA RRR W%

L W%

er pe

'0

  • s M 0. A 0. AL 1 3 U S 6 6 p p
2. R 0. R 3T R

P S I A 111 6.0 01E 8M R 6.0 01E 8M R . 3E W

2E 1W 0

23 .x .c A.1 A. 3 E N R / 833 H H A. O O LIT N* 268 ssT ssT N 2P sP * << NsN2 B

A K

_ TC O -

L B

D O n R ) o

) P i _

L P S n t O S P o a _

R T I :i r _

T I

(

( et e p

e N l a l O t ar O a C t n) ce c n) )iP sp p s

)iP PoS pO o p e PoS S pP U p

o U l S pT PtH l a

_ TtH Le( o - c Le( (S o n e s (S t rL o l r p _

e a e U t

Ntrn i

tpn nii tiwo nei wn oo t

a c

s w

o n i ro noop Pi l n P i -

_ oT p i pP t t u w w _

_ p t ot e l a c o l o ST

_ tee ) pees al r D a l RT _

etS Sa PtSt Se ar mu rc i

c m F

t C ?.

- Tf

_ B i p TSrie er e e n n I Q pdi D edw hi R x h o u N t T ier e(eweo v gomP Tc e e e

v u T i o O o e

_ I rmT l t C M n v

_ N Tr ienPr dR l i F d) a ie O eh tl a eh e g t en l w E r tl M e wt g aaRwtg to n a n tw u o G oeaa l oni rc oni aw i r o r

ao c L N tl rc 1 K aLIH esrLIH pne lT S e ld r A caes C C c u p t ut i M R ecpn I

T O s L p)))

oww noo))) i m o n

u e iS me c e

R P E tsow epno C BU123 IDP123 S - - I N S( R L CDUID N M R U D R U F O . . . . P . . . . . . O . . . .

R a bcd A a b c d e f S abcd P

I R . . .

T 1 2 3 gh7**g"~ { t @

l

- l l n r u e o f f i o t n f a o e s o v ll n e o aae o s l i mch

. i n e t rsT .

E s o a ep )

l a

U i i " r hu .P m L v s 6 t )S r A i i 1 e ePP e V d v / s ehSH h e i 9 i rTP(I t E 5l d o o L 2a 7 n c .(t e B 1c 5 D - ) n r A /s 2 ' E o gPti o W 0 1 e 7 T t nSno c O 1l /l 5 E .

- iPip L

L A.1l uA. 3 ac 2 s

L E A. l a tLot a(pe r

e A NsfN2s D N n r ts p

- g ete o i pnsr r s oi e p d d pe o orw e n etwp h a i eo t f s ph e i g r t

a crei e eeth v E l

  • n r pwa o T. l soie i

f f u o t pd h s 1

o i n s et p Q t u twm i 2 f a o i ord r .

I s o v c tM I n o s e r l enta R S

n l

e d e een eP

)

d L i s o v vhit ot n lA a

e u I G T

- i v

i s

6 r

e ywho ei ce sh n T. N i i 1 s l ot p pt i 1 I - d v / b nl t u y t D O e i 9 o o ed e n i P 5l .d bns eb o d TE 2a 5 n e a t c 1 c 5 D a ld r ad

( S /s 2 E be)e ie P

8 0l 1 e 7' T E

s asPw rd 2 /l 5 . a csSo pi 6

- I R A.1l uA. 5 ac 2 s

L E A. h i aP p .

l pL t ov ro

- NsfN2s D N r . py(en pr 3 o e pb ti pp t m a tao a 3 i u y ni p s n l slidt fi E o o il oee apms o L M v M B hctr tB MT A e . e g

cieer nR T g1 atste e s

. n-a6 r Ea a mrio nw me eh t

n R h .oe p ct 3 c stwe r i e. s l uohh oo o c3 i e a pt g ft p r d v i n t ue eewnh el e or m l roe a s Su a al ee l n g r p wh og e ei c isett ri s hF s r ph e ts e t / titbe n N h n s r v or S W t di n etndo ce R O e o l eeb w O D r dn l aMeia so T n T o iw l cBwl tp Ii U f vo a s R t pd n N E H oh g p epe ie Ol M S R rs ulbai oh Ml U hh L p 3 l l pT u L gc H O e Ef G

O it V Hi C

T C dv er 1

o eAdsp e

r i ei p a

t e

s .

N t w I e cu t h .lP s A o e ElS W h uc t e pS s ee R n v G e S t d t gpTi gg r

ie R vt ee n enaI nn E tl A ea E o rh e ra P aa T oe aa H Lo D t t l arses rr A tl rc C l O e a ilT N I ca es pn S rF M r be v er aH rr O D ec I e N e v i rePc ee I E ts ep ow no D t a .

D R O

O f yo u ewSse ww T M E I e ab q h o T ph oo C RDU ID M Wa T T T R Ma E T pL u T Pp N E A E C I U T R L A S F N . . .. . C . E E O I ab cd S a D R P P * * * ) )

I *

  • a b

, R '. . . . * ( (

T 4 5 6 7 E#* ' il .

EE . M wb= -

1 l

D HE CR II HU

. WO E -

RR _

O

- FE

  • L C * .

ASN 5 D NNA E .

OOL , T IIL 2 2 5555 5555 2 E 4 TTI L _

AIE * * * , , ,,,, ,,,, , E , _

RDV 111 111 211 2222 2222 1 D 3 ENR -

POU -

OCS S -

T .

N _

E )

M "

E R N I O -

I U

O T E LA D R ER E NB T E NI . . . . . . E .

C AL L N HA A. A. A. A. A. A. E A. -

A CC RNR RNR RRR NRNR NRNR R D N L

L I

_ E V

R U L 1

S A ) ) ) )

- LN " " " "

6 N EOT WWWW D NIS 3 IO NTE E

) ) ) )

ACT * * *

  • T T

4 A HN ) ) ) " """ E L )

E N T CU (

"" AAA AAA """" E "

L E F QQQ SSS SSS MMMM WWWW Q D R 3 M A U T R T

S N D I E L .. . . . . ...

T K . . . . . . . . . E .

C EK L O NC A. A. A. A. A. A. A. A. A. A.A.A. A. A. A.A.A. A. E A.

L NE NNN NNN NNN NMNN NNNN N D N

- B AH HC D C O

R L e O l R a T - - c N e s N O r l r p S W

- C e ae U R O w tw O D o so - n T n T P nP) i I i U w

ol wo nw S N

O E h H

- l l l M g S a Dael R l M l U i m mdf O u u L H H r - rt t T f E f O C R e eenr I G V - T O h xhSeu N t N t I T .e T euT(i o O o e A o e E l W I v vl tC M n v R n v G e S N i e deiFdea ie ie R v O tl elt ell w E r tl E r tl A e E M eaa taantauo G oeaa T oeaa H L D l rc acroaccL N tl rc A tl rc C O N K aes cpn l serl sr A caes I caes S r M O C u p pt u pi M R ecpn D ecpn I e N I O sow pno mUoumUcR tsow E tsow epno D t D R O

- T L i nei eP E epno M a E O I

_ C B UID S INS RL C DUID R DUID M W T T T N M R E A E C I U D R U T R L A S

_ F P

I O

R abc A P .

a bcd ef

. . O S

. . . . N abcd I abcd C

S a

. E D

E O R P R . . . . . . .

T 1 2 3 4 5 6 7 rEEgn8 c$ ~

b

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE RE0UTREMENTS

. .TABLE NOTATIONS (a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b) Deleted.

(c) Includes reactor manual control multiplexing system input.

  • For OPERATIONAL CONDITION of Specification 3.1.4.3.

With more than one control rod withdrawn.- Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

      • Deleted.- l (d) When in OPERATIONAL CONDITION 2.

(e) The provisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are 04 Range 2 or below during a shutdown.

(f)- When in OPERATIONAL CONDITION 5.

(g) The provisions of Specification 4.0.4 are not a)plicable provided that the surveillance is performed within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after tie Reactor Mode Switch has been ,

placed in the shutdown position. I l

l I

1 I

1 LIMERICK - UNIT 1 3/4 3-62 m

REACTOR COOLANT SYSTEM l

LIMITING CONDITION FOR OPERATION (Continued) ,

ACTION: (Continued)

2. Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s: i Reduce the Average Power Range Monitor (APRM) Simulated Thermal Power -

U) scale Scram and Rod Block Trip Setpoints and Allowable Values, to tiose applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associated channel (s) inoperable and take the actions required by the referenced specifiertions, and,

3. The provisions of Specification 3.0.4 are not applicable.
4. Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
b. With no reactor coolant system recirculation loops in o 3eration, immediately initiate action to reduce THERMAL POWER suci that it is not within the restricted zone of Figure 3.4.1.1-1 within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
c. With one or two reactor coolant system recirculation loops in operation and total core flow less than 45% but greater than 39% of rated core flow and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1:
1. Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):
a. At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and
b. Within 30 minutes after the completion of a THERMAL POWER increase of at least 5% of RATED THERMAL POWER.
2. With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate m^rective action to restore the noise levels within the recuir w limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by recucing THERMAL POWER.
d. With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

" Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

LIMERICK - UNIT 1 3/4 4-la c

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

'The reactor protection system automatically initiates a reactor scram to:

a. Preserve-the integrity of the fuel cladding,
b. Preserve the integrity of the reactor coolant system,
c. . Minimize the energy which must be adsorbed following a loss-of-coolant accident,, and

~d . Prevent inadvertent criticality.

This specification provides the limiting conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of service because of maintenance. When necessary, one channel may be made inoperable

. for brief intervals to conduct required surveillance.

The' reactor protection system is made up of two independent trip systems.

-Therelare usually.four channels to monitor each parameter with two channels in each trip system.' The outputs of the channels in a trip system are combined in a logic so that either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter channels. Each APRM channel provides inputs to each of the four voter channels. -The four voter channels are divided into two groups of two each, with each group of two providing inputs to one RPS trip system. The system is designed to allow one APRM channel, but no voter channels, to be bypassed.

The system meets the intent of IEEE-279 for nuclear power plant protection systems.. Specified surycillance intervals and surveillance and maintenance outage

times have been determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A, " Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability' Trip Function." The bases for the. trip settings of the RPS are discussed in the bases for Specification 2.2.1.

- Actions a, b and c define' the action (s) required when RPS channels are discovered to be inoperable. For those actions, separate entry condition is allowed for each inoperable RPS channel. Separate entry means that the allowable time

clockJs)lfor actions a, b or c start upon discovery of inoperability for that specidic channel. Restoration of an ino statements for that particular channel. perableAction RPS channel statement satisfies (s) for only inoperable remaining the action channel (s) must be met according to their original entry time.

~

.Because of the diversity of sensors available to provide trip signals and the

~ redundancy of the RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown' to be acceptable (NEDC-30851P-A and NEDC-32410P-A) to permit restoration of any inoperable channel'to OPERABLE status. However, this out of service time is only acceptable provided that the associated Function's (identified as a " Functional Unit" in Table 3.3.1-1) inoperable channel is in one trip system and the Function still maintains RPS trip capability.

LIMERICK - UNIT 1 B 3/4 3-1

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

. :The requirements of Action a are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same trip system for the same Function result in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both l trip systems will generate a trip signal from the_ given Function on a valid signal.

For the typical Function with one-out-of-two taken twice logic, including the IRM l Functions and APRM Function 2.e (trip ca 2.b, 2.c, and 2.d are discussed below), pability associated with APRM Functions 2.a.this one channel OPERABLE or in trip (or the associated trip system in trip).

For Function 5 Main Steam Isolation Valve--Closure), this would require both trip systems to have e(ach channel associated with the MSIVs in three main steam lines  ;

not necessarily the same main steam lines for both trip systems) OPERABLE or in trip or the associated trip system in trip).

For Function 9 (Turbine Stop Valve-Closure), this would require both trip I systems to have three channels, each OPERABLE or in trip (or the associated trip system in trip).

The completion time to satisfy the requirements of Action a is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is acce) table because it minimizes risk while allowing time for restoration or tripping of clannels. ,

With trip capability maintained, i.e., Action a satisfied, Actions b and c as applicable must sill be satisfied. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or the associated trip system must be placed in the tripped condition.

Placing the inoperable channel in trip (or the associated tri) system in trip) would conservatively compensate for the inoperability, restore capa)ility to accommodate a single failure, and allow operation to continue.

As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Functi ons 2.a. 2.b, 2.c, or 2.d. Inoperability of one required APRM channel affects both trip systems. For that condition, the Action b requirements can only be satisfied by placing the inoperable APRM channel in trip. Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actions that will restore capability to accommodate a single APRM channel failure. Inoperability of more than one required APRM channel- of the same trip function results in loss of

. trip capability and the requirement to satisfy Action a.

. The requirements of Action c must be satisfied when, for any one or more Functions, at least one required channel is inoperable 6 each tri) cystem. In this condition, provided at least one chnnel )er trip system is OPERAB.E, normally the RPS still maintains trip capability for t1at Function, but cannot accommodate a

. single failure in either trip system (see additional bases discussion above related to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b, 2.c, 2.d, 5 and 9).

LIMERICK - UNIT 1 B 3/4 3-la l

F 3/4.3 INSTRUMENTATION l BASES l

3/4.3'1- REACTOR PROTECTION SYSTEM INSTRUMENTATl0N (continued) i The requirements of Action c limit the time the RPS scram logic, for any Function, would not accommodate single failure in both tri) systems (e.g., one-out-

, of-one and one-out-of-one arrangement for a typical four clannel Function). The o

reduced reliability of this logic arrangement was not evaluated in NEDC-30851P-A for the P. hour Completion Time. .Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associsted Function l

suso have all required channels OPERABLE or in trip (or any combination) in one trip l system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851P-A, which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> allowable out of service time as allowed by Action b. To satisfy the requirements of Action c, the trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g., a trio system with two inoperable channels could be in a more degraded state.than a trip system with four inoperable channels if the two inoperable channels are in the same Function while the four inoperable channels are all in different Functions .

be based o)n prudent judgment and take into account current plant conditions (i.e.,Th what OPERATIONAL CONDITION the plant is in). If this action would result in a scram or RPT, it is permissible to place the other trip system or its inoperable channels in trip.

The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. allowable out of service time is judged acceptable based on the remaining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting al,1 diverse Functions, and the low probability of an event requiring the initiation of a scram.

As noted, Action c is not applicable for APRM Functions 2.a, 2.b, 2.c, or 2.d.

Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM 2-Out-0f-4 voter and other non-APRM channels for which Action c applies. For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel. Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actions that will restore capability to accommodate a single APRM channel failure.

l L -

.If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action c (e.g., as in the case where

placing the ino>erable channel in trip would result in a full scram), Action d requires that tie Action defined by Table 3.3.1-1 for the applicable Function be l initiated immediately upon expiration of the allowable out of service time.

L l .

The Two-Out-0f-Four Logic Module includes 2-out-of-4 voter hardware and APRM l

Interface hardware. The voter Function 2.e is accomplished by the 2-out-of-4 voter l hardware which includes redundant outputs. The analysis in NEDC-32410P-A took credit

-for this redundancy in the justification for the 12-hour allowable out of service time, so the voter. Function 2.e must be declared inoperable if any of the 2-out-of-4 voter hardware's ' functionality is inoperable. The voter Function 2.e does not need to be declared inoperable-due to any failure affecting only the APRM Interface hardware portion of the Two-Out-Of-Four Logic Module.

l l

LIMERICK - UNIT-I B 3/4 3-lb I i

3/4.3 INSTRUMENTATION BASES ,__

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

Automatic reactor trip upon receipt of' a high-high radiation signal

. from the Main Steam Line Rac,iation Monitoring System was removed as the result of an analysis performed by General Electric in NED0-31400A. The NRC approved the results of thir analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15,1991).

1 The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the safety analyses. No credit was taken for those channels with response times indicated as not applicable except for  :

APRM Simulated Thermal Power - Upscale and Neutron Flux - Upscale trip functions (Table of. 3.3.1-2, sequential Items 2.bor overlapping and tota2.c)l channel test measurement, provided such testsRe

- demonstrate the total channel res)onse time as defined. Sensor response time verification may be demonstrated )y either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times.

. Response time testing for the sensors as noted in Table 3.3.1-2 is not required based on.the analysis in NED0-32291-A. Response time testing for the remaining channel components is required as noted. For the digital electronic portions of the APRM functions, performance characteri.c*' s that determine response time are checked by a

- combination of automatic self-tett n.libration activities, and response time tests 1 of the 2-Out-0f-4 Voter (Table 3.3.1-2, Item 2.e).

t l

l i

)

LIMERICK - UNIT 1 B 3/4 3-fc l L

I LPRM 1 LPRM 3 LPRM 2 LPRM 4

\- s.

9

-l APRM 1 APRM 3 APRM 2 APRM 4 h h N i f 16 N., / ,

x ,,

APRM APRM' APRM APRM i 2-OUT-OF-4 2-OUT-OF-4 2-OUT-OF-4 2-OUT-OF-4 }

VOTER Al. VOTER A2 VOTFR B1 VOTER B2

)

ir ir q, q, l

RPS CHANNEL Al RPS CHANNEL A2 RPS CHANNEL B1 RPS CHANNEL B2  ;

RELAYS K12A & K1'E RELAYS K12C & K12G RELAYS K128 & K12F RELAYS K12D & K12H l

'l BASEt3 FIGURE B 3/4.3-2 APRM CONFIGURATION f '

1 LIMERICK - UNIT 1 B 3/4 3-9

+

MlILMD_LIMIMG SAFETY SYSTEM SETTINGS __

l i

. 2.2 LIMITING SAFETY SYSTEM SETTINGS l s

l kEACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The reactor protection' system instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

With a reactor protection system instrumentatica setpoint less conservative than the value shown inlthe Allowable Values column of Table 2.2.1-1, declare the channel inoperable

  • and apply the applicable ACTION statement requirement I of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.

i I

  • The APRM Simulated Thermal Power - Upscale Functional Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the- flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

I LIMERICK - UNIT 2 2-3

nn oo ii d d tt s n n e aa n a a v vv o D D oo ee i D %E %E br ll s E T T D ae ee i T 3. A 3. A E z ve AR 3RR 8RR TR s " "

il RE 6 - E 5 E AE etd 44 da W fW fW RW gh n e g //

c fO +oO +oO O ices i 11 E 5s oP P P fP o

snmo s p

LS 2 W% W% pi u l 99 BE %L L L rcd AU 1l

/l A 6 0. AL 6 0. A %A 3 0.t E8 ' '

WL 0. M 7M 7M

7. M 2u 0 s%T8 11 OA 2f 0R 6.1 R 6.1 R R . . 11 n2E 66

_ LV L

1 .

f 2E H

01E H

01E H

8E 1H A. A.

11i1L1 sa E

22 ss

_ A so sT ssT ssT 1T N N sDs t

n e

m u

S r *

  • T L t *
  • N A s nn I M n oo O R i ii P E d d tt T s H n n e aa E n T a a v vv S o D D o ee i D %E %E b ll N se E
8. AT T D a ee O il T 8. A E

- I va A 2RR 7RR TR s " "

_ T ic R 6 E 5 E AE e 44 A ds fW fW RW gh d g // _

T T f +oO +oO O ic e i 11 -

N N 5l o P P fP sn s s _

E I 2l W% W% o pi o p 11 M  % L lD 1 u L L 1 U O /f 6 6. A 6 6. A %A 6

9 5.

  • cE8 P 0. R R 0 6M 6M M T6 11 1

T T E 2f 5E 1W 6.1 R 6.1 01E R 3. R 8E

. . 02o%E 11 r8L1 66 22 S S 1 o 01E A. A.

2 N O H H 1H e E I s sP ssT ssT 1T N N sazsDs ss 2 P _

I N R E E T L T .

B S e

_ A Y m

_ T S u _

l N h g o -

O v I i T H~ n e _

C - o h3 e h g E x i g r g r

T u n t il u i a

O l :o a He s H h R F ei r v o c P la t e e l -

s -

n a p L C i R o ) c r O e l d

O r n s r , - e .

T t u

w o

p ep p uw so e v

e m C

A e d UO o o sL v L a r

E N t p L e l c

R  : e r- a r r

, rS o( .reLoo n o e P

l V

t e

./

s s

o ee n a t

t ie w

on i

t l

a c

mv oe o

h Wre 1 n

- o -

i n

nl oa P o a s DL i

t get 3. l.

o Mc l t i l u p mr a imt 4a M' ep s a ml a c r

U r e ae l

o Hui l mh /g e

g gU n- . e r uc i c

- t o

et ta I s - o sc Vnt ai 3

B5 8

n ax hr e x V SW e -

a Ru T i R u e v

e n

re u gT rw S e5 _

R l c l 4 ll r2 rF de e F i - ee i sr u e e eR t f ss L salt go wn t t l

g n a 0 ss ehea

_ I a oo ao n o r

r e

- ee m a

rc vo Ps el it F

Ei U d e

P r' eu t l w uT m

i S t u

p o

t u

O VV rr e

tDlD i LF sn t

m ge e n - oo SEl ee L r aN i-S -

N I 2 tt Tem sl A e r cc nEwa aa N aa Bv O t e ee iL y r i n v . . . . . aErc . .

eu I

T I Aa b c d e RR MDDSab eq C SE N

U . . . . . ... *

  • F 1 2 34 5678 *

,. E9;3

' Ep m

2.2 LIMITING SAFETY SYSTEM SETTINGS BASES-

< 2.2.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS

.The Reactor Protection System instrumentation setpoints specified in Table 2.2.~1-1 are the values at which the reactor trips are set for each para- )

-meter. The Trip Setpoints have been selected to ensure that the reactor core  ;

and reactor coclant system are prevented from exceeding their Safety Limits during normal operation and design basis anticipated operational occurrences and to assist in mitigating the consequences of accidents. Operation with a trip set less conservative than its. Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and te Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.

1. Intermediate Ranae Monitor. Neutron Flux - Hiah The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRM is a 5, decade 10 range. instrument. The trip setpoint of 120 divisions of scale is active in each of the 10 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up, The IRM instruments provide for overlap with both the APRM

.and SRM systems.

The most significant source of reactivity changes during the power  !

increase is due to control rod withdrawal. In order to ensure that the IRM  !

provides the required protection, a range of rod withdrawal accidents have been analyzed. The results of these analyses are in Section 15.4 of the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at ap)roximately 1% of_ RATED THERMAL POWER. Additional conservatism was taken in t11s. analysis by assuming the IRM channel closest to the control

. rod being withdrawn is bypassed. The results of this analysis show that the

- reactor is shutdown and peak power is limited to 21% of RATED T'IERMAL POWER ,

with the peak fuel enthal)y well below the fuel failure threshold of 170 cal /gm.

Based on this analysis, tie IRM provides protection against local-control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

I

2. Averaae Power Ranae Monitor 1

The APRM system is divided into four APRM channels and four 2-Out-Of-4 Voter l channels. The four voter channels are divided into two groups of two each, with each group of two providing inputs to one RPS trip system.. All four voters will trip (full scram) when any two APRM channels exceed their trip setpoints.

= For operation at low' pressure and low flow during STARTUP, the APRM Neutron

-Flux-Upscale (Setdown) scram setting of 15% of RATED THERMAL POWER provides adequate

' thermal margin between the setpoint and the Safety Limits. The margin accommodates the anticipated maneuvers associated with power plant startup. Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system. Tempera-

-ture coefficients are small and control rod patterns are constrained by the RWM. Of all the possible sources of reactivity input, uniform control rod uithdrawal is the most probable cause of significant power increase.

. LIMERICK'- UNIT 2 8 2-6

LIMITING SAFETY SYSTEM SETTIhrd BASES i

REACTOR PROTECTION SYSTEM @lTRUMENTATION SETPOI .i

^

Averaae Power Ranae Monitor (Continued)

Because the flux by a significant amount distribution associated with uniform r the rate of power rise is very slow.

heat flux is in near equ,il,1brium with the fission rate. Gener In an assu@dally the uniterm than 5% of RATED THERMAL' POWER per minute and th than adequate to assure shutdown before the power could excebd the Safet ,

switch15%

The Neutron Flux Run- position.

Upscale (Setdown) trip remains active u6t il the m;v t hu i is placed in the e steady state conditions. Fission chambers provide the 14stc 3 system and therefore the monitors respond directly and 'quicOy TOhd y to transient operation for the case of the Neut.r0n Flur y '

for a power indicated by the increase,neutronthe fluxTHERMAL due to the timo POWER of the. TucllriT) t%M bnMj;:Opu n de S ltyn associated with the fuel. c6ntinau M tbQtjMWL . ,

a time constant of 6 4 For the Simulated 7h& mal Meri!$u le bl4 0.6 seconds H intrbduded into t b M Un

~g d

maximum value is used form. thefaflow-bus'cc: ntes M e .

Limits and yet allow operating Wmi, &rThe APRM '  ;'#

o setpoints werc[tclettrQ.to@N sary shutdown, -

f

3. EtLqtor VeEfL$tts:NhnNo @ 9 p; '

W Qh pftS$Urc lu the M i W M M/D, s

-sySteG p50ce55lbarrierITc%M N increase'while opern%q vdMr;? V Ohklf#$f&ff[

"O Cot"pressiny neutron Bux 40c3: SbMaAhurd4$Di DNA I. x b Ih hichLr 1##69 IR $$c46 dhh

'tr1p,lh2rs4 %nn%4&f hec 6M*d %rW O hy O Q if D ^ N'iN'@M ste we orgew*e m no5Fw/uc gr@@ym/ly mg[yN s ntr@ $ C % M M M N f V ,' M g[3~#H' $ IIe;-

qygg ag7W % o f , 3- -Q -lit MF ,

  • n.h may %+Me ' '~

. ~<

4 p*.#4; 7 -

v . ,

( E, *

. n s

,y,.

1

.; F *

, g;q ', , ', '

, i o ,

, + j

~,

.y # "5 8

- > J <

- r If

b , .a 3 i

'NN W 9_ en t 5

. h :.

l g

, A~

g' MF

! 9 L

u LIMITING SAFETY SYSTEM SETTINGS BASES REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Averaae Power Ranae Monitor (Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high local peaks and because several rods must be moved to change )ower by a significant amount, the rate of power rise is very slow. Generally tie heat flux is in near equilibrium with the fission rate. In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 5% of RATED THERMAL POWER per minute and the APRM system would be more than adequate to assure shutdown before the power could exceed the Safety Limit.

The 15% Neutron Flux - Upscale (Setdown) trip remains active until the mode switch is placed in the Run position.

The APRM trip system is calibrated using heat balance data taken during steady state conditions. Fission chambers provide the basic input to the system and therefore the monitors respond directly and quickly to changes due to transient operation for the case of the Neutron Flux - Upscale setpoint; i.e., I for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel. For the Simulated Thermal Power - Upscale setpoint, a time constant of 6

  • 0.6 seconds is introduced into the flow-biased APRM in order to simulate the fuel thermal transient characteristics. A more conservative maximum value is used for the flow-biased setpoint as shown in Table 2.2.1-1.

The APRM setpoints were selected to provide adequate margin for the Safety Limits and yet allow operating margin that reduces the possibility of unneces-sary shutdown.

3. Reactor Vessel Steam Dome Pressure-Hiah High pressure in the nuclear system could cause a rupture to the nuclear system process barrier resulting in the release 0; fission products. A pressure increase while operating will also tend to increase the power of the reactor by compressing voids thus adding reactivity. The trip will quickly reduce the neutron flux, counteracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious trips. The setting provides for a wide margin to the maximum allowable design pressure and takes into account the location of the pressure measurement compared to the highest pressure that occurs in the system during a transient. This trip i setpoint is effective at low power / flow conditions when the turbine stop valve and control fast closure trips are bypassed. For a turbine trip or load rejection under these conditions, the transient analysis indicated an adequate margin to '

the thermal hydraulic limit.

I LIMERICK - UNIT 2 B 2-7

m 3/4.3 INSTRUMENTATION 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.1' As a minimum, the ' reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABJILIJ1: As shown in Table 3.3.1-1.

ACTION:

Note: Separate condition entry is allowed for each channel.

a. With'the number of OPERABLE channels in either trip system for one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, within one hour for each affected functional unit either verify that at least onc* channel in cach trip system is OPERABLE or tripped or that the trip system is tripped, or place either the affected trip system or at least one inoperable channel in the affected trip system in the tripped condition.
b. With the number of OPERABLE channels in either trip system less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1 '1, place either the inoperable channel (s) or the affected trip system ** in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
c. With the number of OPERABLE channels in both trip systems fcr one or more Functional Units less than the Minimum OPERABLE Channels per Trip System required by Table 3.3.1-1, place either the inoperable channel (s) in one trip system or one trip system in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> **.
d. Ji within the allowable time allocated by actions a, b or c, it is not desired to place the inoperable channel or trip system in trip (e.g., full scram would occur), Ibg!1 no later than expiration of that allowable time initiate the action identified in Table 3.3.1-1 for the applicable Functional Unit.

"For Functional Units 2.a, 2.b, 2.c, 2.d, at least two channels shall be OPERABLE i or tripped. For Functional Unit 5, both trip systems shall have each channel i associated with the MSIVs in three main steam lines (not necessarily the same main steam lines' for both trip systems) OPERABLE or tripped. For function 9, at least three channels per trip system shall be OPERABLE or tripped.

    • For Functional Units 2.a, 2.b, 2.c, 2.d, inoperable channels shall be placed in the tripped condition to comply with Action b. Action does not apply for these ,

Functional Units. j J

LIMERICK - UNIT 2 3/4 3-1

3/4.3 INSTRUMENTATION 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE RE0VIREMENTS 4.3.1.1< Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 24 months, except Table 4.3.1.1-1 Functions 2.a, 2.b, 2.c, 2.d, and 2.e. Functions 2.a. 2.b, 2.c, and 2.d do not require separate LOGIC SYSTEM FUNCTIONAL TESTS. For Function 2.e, tests shall be performed at least once per 24 months. LOGIC SYSTEM FUNCTIONAL TEST for Function 2.e includes simulating APRM trip conditions at the APRM channel inputs to the voter channel to check all combinations of two tripped inputs to the 2-Out-0f-4 voter logic in the voter channels.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per.24 months. - Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 24 months where N is the total number of redundant channels in a specific reactor trip system.

I LIMERICK - UNIT 2 3/4 3-la I

p r

N O

I T 1 3 1 3 I 4 4 4I 41 1 1 4 C

A

)

a -

Sf L -

.EM NE mNT iAS e v

MHY l N ICS ) ) ) ) ) )) a O

I N

IEP d

(

d

( (

m (

m (

m ((

mm v

/

T MLI 3 3 3 3 3 3 3 33 22 2 2 1 A BR T AT N R E ER M PE U OP R

T S

N 1 I 1 M

. E 3 T S .

3 Y -

S -

E L N L B O EAS ) ) ) )

A I LNN 1 i f g T T BOO ( ( ( (

C AII 2 5 2 5 2 1 1 12 12 2 2 1 E CTT T IAI , ,

O LRD 1 1 R PEN e P PPO ) l AOC n a R w c O o s p

T d C t U ,

A e w -

E S '- o e R  :  : ( L v

) ) r -

l

" e e e a s

r "ro l a

w o

l a l V

o h g

t c P c e e n t i n

s s m v o i

n i p l p o e i H o U a U r D L t o M m e a M - - r - t m r l e e o a e o e x g x h x V eh t s g u e n u- T u e tg a I n l v a l l v 4 Si W .

a F i R F- d F i - H e R t e t f l l n -

n a r n t n a 0 e- e i -

e o r e o a o r - s s L .

t r e w r l r e t se s a t p o t u t p u er e3 m T i u o P u m u o O Vu V ae I d e n e i e n - s l er N e N I e N S N I 2 rs re tu U m g oe ov Ss r a tr te o L e r cP cl nl _

A t e a a iC _

.N n . . v . . . . . e e a O

.I I a b A a b c d e R R M T

.C

.N U . . . . .

F 1 2 3 4 5 E [zZ *!~

w*

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION ACTION STATEMENTS ACTION 1 -

Be in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 2 -

DELETED l ACTION 3 -

Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within I hour.

ACTION 4 -

Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

i ACTION 5 -

Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 6 -

Initiate a reduction in THERMAL POWER within 15 minutes and l reduce turbine first stage pressure until the function is I automatically bypassed, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ACTION 7 -

Verify all insertable control rods to be inserted within I hour.

ACTION 8 -

Lock the reactor mode switch in the Shutdown position within )

I hour. l ACTION 9 -

Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within I hour.

I I

l LIMERICK - UNIT 2 3/4 3-4 l.

1 b

[-

TABLE 3.3.1-1 (Continued) l '

REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS

.(a) A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.

(b) This function shall automatically be bypassed when the reactor mode switch is in the Run position. l (c). . DELETED. l (d) The noncoincident NMS reactor trip function logic is such that all channels go to both trip systems. Therefore, when the " shorting links" are removed, the Minimum OPERABLE Channels Per Trip System is 6 IRMs. l (e) An APRM channel is inoperable if there are less than 3 LPRM inputs por level

i. or less than 20 LPRM inputs to an APRM channel, or if more than 9 LPRM inputs ]

L to the APRM channel have been bypassed since the last APRM calibration (weekly gain calibration).

(f) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per. Specification 3.10.1.

(g) This function shall be automatically bypaved when the reactor mode switch i is not in the Run position. '

-(h)~ This function is not-required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY.is not required.

(i)' With;any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

.(j) This function shall be automatically bypassed when turbine first stage pressure is-equivalent to a THERMAL POWER of less than 30% of RATED THERMAL

. POWER.

(k)- Also actuates the E0C-RPT system.

. (1) DELETED- l (m) Each APRM channel.provides inputs to both trip systems. 1 (n) A channel or. trip system which has been placed in the tripped condition to

. satisfy' Action b. or Action c. may be returned to the untripped condition under administrative control' for up to two hours solely to perform testing required to demonstrate its operability or the operability of other equipment provided Action a. continues to be satisfied.

I I

LIMERICK - UNIT 2 3/4 3-5 1 ,

1

E D

  • M * # E
  • 4 I)

..5 0 5 5 6 T 6 8 -

Ts . . . 5 0 0 E . . . 0 0 . . f d L m 0 En A. A.

NN A.A.A.A.0 NNNNs 0

s 1

s 0

s E A. A. A. 0 os A. A. or-So D N NN s N N ret Nc ftu Oe oO g PS tV - n _

S( p 2 it E m4 ti R eh sn xfc eu

,' e0a t p

- e et ei _

rum aOo it mr _

- r t _

s2f g -

c en ies si nht nd otu ou _

S r p pl _

E tft sc _

M cou en I

e o Ri _

l n T eot E in .le S

lta sn N aad tn .

tvn ia _

O iiu uh P gtd . cc S ice 4 r E dar ig 2 R = cni _

M l me _

1

. E T

eohN nrt .S Pi n 3 nf oeRa S a ,sr m 3 Y hd3 uee S ce ,shr E r1l ot L N ru . el e B O ncrh A I T

e s 3. n ta ot T oe4atf

_ C Vm hsncago r E

T 4eo fnf O bie i R h 3 e h f tmets P g r g 0l aavst e u i l i l csl ei R )l H e s H tai atm O na v o n uhfev i

_ T wc - e l - o Osih el C os l C , i - ctl m A dp e l e t 2ee oie

_ E tU r ,

- e r i m pf r t v

_ R e u w v u s diSot i

_ S - s o e e s o nt net

( s L v L o P a ftosa

r e l l eorcnr
  • eee r - a r e C n l s a ot s rl wl P V e r w ennpeps

- r oaoa l t u t o noo nsi .

e e n a sw

, oh tcPc s d n pi d i e n d tg is s m v o W o ao t astebrie

_ ii nH n pl p oUaU r D o e i h g ee r l FL u hearr mr

. L t C h cRceumdi o M m e a i mt e- S idtoau M-e r- t m r l H ut - v M .lipsffee r q e o a e o li l e h R ex gue gxhx V e t s - omh e ar c P gpn o hr nuTue t a I Vsc v Vu t Anao dt nl v al l v4 S W e nt l s i i cte e aFi RFdFi - e r eai grw a l s w ,t r rtor

_ R t e tf l l n u V oe S ssoeaata na rntna0 e e i s rTS rr reFrtn eor eoaor- s s L s a p tP e m ot asiec tre wrl ret s s e hlt o n d a t mci at p otutpu e e m r cea t ol o r ce .l ming T iuo PumuoO V V a P svo S Ci M c emyeol ao I den eien- e iel O S ti a n r e ml N eNI eNSNI2 r r t D l DLF e e r etl nf r U m g o o S E l n np o l d ea soy r a t t T e m i ii t a erhdifa L e r c c n E w a b br c u ns ce nl A t e a a i L y r r rT a n ont rroe N n . . v . .... e e a E r c . . u u e a rouruocr -

O I ab Aabcde R R M D D Sab T T R M tppess I usttandd T eeuoeenn C NroVMSaa N . . . . . . . . . . . .

U 1 2 3 4 5 6 7 8 9 0 1 2 * *#

F 1 1 1

  • j C5 rj=F7 'E:q * " &**

I r

D HE CR II HU LWQ _

A E _

NRR _

OO IFE ))

T C i1 ASN ((

RNA ) ) D 55 EOL i h E PIL ( ( T , ,

OTI ) 5 2 2 2 2 E 2 22

IE 1 L

DV ( , , , , , E , , ,

NR 25 2 2 I 1 1 1 1 1 1 D 1 11 OU S

CS

.)

_ T a _

N -(

E N M LO )

E EI g NT R (

I NA R R D U AR E Q HB , ,

T E CI . ) ) . . E R L d d L A A. ( ( A. A. E E C RR N R W W N N R R R D R RR C

N A

L L

I

_ E

_ V L R '

U LA

- S EN 1

NOT D N NIS E O ATE ) ) T 1 I HCT ) ) 1 e E T CN j j ( ( L 1

A U ( ( A A A A A E -

3 T F WW W S S S S S Q Q Q D Q QQ N

4 E M

E U L R T L D B S EK E A N NC T T I NE ) . ) . . E .

AH b b L N HC ( A. ( A. A. E A.

E C SS N D D D N D S S N D S S'N T

S Y

S

)

e l

N n a O w c I o s p

T d C t U E e T :S -

O )(

R f r P ( e e e r

rl w l - e R s oa o a l t O rh og tc P c e e n a

_ T is s m v o W C ti np l p o e i h A iH n

oU a U r D L t g e r M m e a E i m e R o- - r - t m r l H u t M e e o a e o l t x gx h x V e t s - o i eu e nu T u e th a I V mh gl v al l v 4 Sg W e sc nF a

i RF d F i - i ee r e nt t

a rn e t f lH l3 nr u gh a i rgrw Rn r

t n a 0 e e iu s o eo a o r - s- sl Ls s aiTS er e wr l r e t s se o e hH

_ tt p ot u t p u ee ev ml r c lt au u o s- ea T m aC P

_ ' o Pu O Vr Ve I i e n e i e n - u l e i vo N dN I eN S N I 2 rs r t - D l Dl el U e g os o , S E l ELF L

m r

a r

te cr tw co nv e T E

e w

mv ae . .

_ e y A e aP aL il L rLab

_ N t . . v . . . . . e e aa E r c O

I I na- b Aa b c d e R R MV D D S T

C N . . . . . . . .

U 1 2 3 4 5 6 7 8 F

5R c5* " w4

l l

_ r y 2l

_ b l D n .oa HE 55 dM o s 2.t sh CR 2 eR i r II ,, / tP t 0p u HU 44 1 aA a 1 o W0 E

r l ue c .udo h et i rr LRR AO 33 ts fa ch lt f

i 9.

3fl o 2 1

NFE ,,

ae a c o O C 22 l ct e rdr l ISN p s p oet i TNA ,, ua su S l n t AOL 1 1 11 t ej 1l o n

_ RIL rr ud r .ac u ETI ao lA e 0t

.so PIE tf a p 1 1 ODV s v . nn -

NR p r e 9. ed i

y. . d N OU ha rR e O CS cl eE t v 3rn I ar wW t o a T ee oO i m ne I S go v pP m.

s) e ob , D T r i d N N ) n eL nH tye O E a io . hA aP s aad C M

(

N rts u y tM R

rF i tE i cmne L E

R O . . dda oE ( d fyp A I

I A. A. sn ed tH w a ies N V LT T os e chu O 0 EA R R NN ei7 m l r h ets I E NR dm rD .f u p T R NB ars oER o l S ,e A -

AI ceu fTEeh e R E HL eto nAWh s r 2. b E _

CA d ei oROtr s P e

p 9.l C l N C dv c P gw e e O A 2 e f v 3a L /er ooLno d h m L 1bp t Aip e ens o I %Md r vo r

) E tl e l5Rul u oiS f d V slh e2 Ell s mtN -

e R aat n1Hcu s eaO 2 u U eh n Txf e rcI n S L l sn aR e r iT N -

i LA i hED e p sfA O t N EN tsh cWE ,v diR I -

n O NOT alt OTni r ocE T e I NIS Q Q RW ei MPAot o ret I C T ATE HCT Non

.rnw R PL Ric te t

c pL D N

( A lSA T CN Ofad A Af cf a o O 1 N U I he Monf e rrE C .

- E F T pc m r

eR ue r teR 1 M Aa hE%f n pO L

. U RlMo tH2 0 e o C A 1 R BrRf T t0 h cd N I ePr f nu0 t e , O

. T LvAe o n a p1 ove I 3 S L p n N Ao eh n tom T EK C d thtir e mi A 4 I NC NE Ltao ont nw e rwp w e h eet l r R

E E M AH A. A. A. A. E n m1 eo . b s P L E B T HC N N NN NdM t tl enE aei O A S C NeRf sNafcoL cbh T Y AnIi uOe nib i t g S Hi jI reotA l o n Cme , d T gh cR pt g i N rhn aI ttnE p n r .

O metw Ds suP adi e2 I ot o eNieafO er t T redd hO de tru . nN C fdnt tCeulte oiDn eO E au fLnctp cl ub Nu o I T de h q i nT O eb2s oAenano e .t eI R d Nri it .rei hD P ulNd toe d n cs wN e

llOe caIl sIfl ewd iTfltoe weno arap dC O

R r xhTl sAiaal r ral e O u t esI o nRdhrfi d l g mL T s s Dr oE sb u hsin rA C o a esNt cPe i eq tkei oN A l F1 n blOn OtTlhe invt fG E C o eCo R

1 yn l uSatr wirs rI e0 i c l gl E c l ui eT

- v w t anL anoT st d sx pA l po hi maAh his eeo og e R e ail cs hNc srbLbdn rnd eE -

v Vr to scOa uaA u ies bP l T - iP r I e nd Nll s ltrt O a l w oMT o Ol ci orii o -

V o ,e Sn tRAg ieeI an rou tg -

rer w cSRn tchThin th qm n .

p tru o

eom e Ei antCs ra N o nseo o rr di er nus dda tdPr ni t oss otr enOu blfUsot cS f re T S Coe Muc da d iaiFMic Pr it I l r hS g lb Rtn yR o d un N e eCP rS nMnsDa lLPau .n f eD qe U n n o l vee _

_ i i t a oRi rI rdTeE c t anne ELb rf1.ae hsoTrr L' b b- -

c u t eaEsenN is0htrmE e _

A r r a n uetcLihaAeli1t u Ltt _

N u u e a ehneEh hHhah .ifoeEof _

O T T F. M NT ed DT a c CT CT 3WIhb D N a _

I _

T C _

N . . . . )) )) )))) )) ))

U 9 0 1 2 ab cd e f gh 1j k1 F 1 1 1 (( (( (((( (( ((

.. E5R h9" wi w&

n INSTRUMENTATION 3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.6. The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY: As shown in Table 3.3.6-I.

ACTION:

a. With a control rod block instrumentation channel trip setpoint** less I conservative than the value shown in the Allowable Values column of '

Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value. j

b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

SURVEILLANCE REQUIREMENTS 4.3.6-Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE

  • by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.

l

)

  • A channel may be placed in an inoperable status for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance without placing the trip system in the tripped condition, provided at least one other operable channel in the same trip system is monitoring that parameter.
    • The APRM Simulated Thermal Power - Upscale Function Unit need not be declared inoperable upon entering single reactor recirculation loop operation provided that the flow-biased setpoints are adjusted within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> per Specification 3.4.1.1.

LIMERICK -' UNIT 2 3/4 3-57

i l

f N D E

O I

T E

T 000 111111 11111111 1111 2 L 3

- C 666 666666 66666666 6666 6 E f.

A D L ~

5 D -

E EAS

, T LNN 2 2 5555 2 E 4 BOO L AII * * * , , ,,,, , E ,

CTT

_ 111 111211 25252525 2222 1 D 3 -

- IAI

- LRD PEN PP9 AO[

N

- 0 l

I SN A LO T EI N NT E NC D M AN E U .HU T

_ 1 R_ MCF E

- I U L 6 S MEP E R ILI . 222 333333 32323232 6666 2 D 2 NBR

_ .3 I IAT 3 L MRER I

C PE E O OP )

. L B

L B n A w D_ o

.T O d

.t R e

- L Q

S

(

R e e I l l H a a N 0 c c O 0 s s I p pe T I

U Ul S a O

- - c P rl rp e s e aeU " N w cw S W o so- n R n O P nP

  • i O i D w w
  • T T l ol o
  • l I

l U a Dal l N l E h H -

S u O u M g S m

r ' mFr t R f M f U i H -

" e enn O T

)

E L

O H C _

.h xhou t t -

R O e TeuTio I N o "e ) G N o e' V l T T .i v 'e vl tC O n )

v "e A n v" i9 E e v

I W _

diFda M i

R I

N .tl et el w r "e o

t a

l a

r t1 oeaa G

R e S O leaa rc tantuo aroacL E t l r c E tl rc A L E M aes .l erl r G c a e s T caes H r D cpn u pt uiM N e c p n A ecpn C e O K sow moumcR A t s o w I tsow S t M -

C pno ineieP R e p n o DE epno I a -

N_ OUID .SINSRL D U I D DUID O W D R Q L E M E O B C R M T T J

T D 1

2 B

R U

E T

A R

E L

C A

C . . . . .. O N C E E N O . . .

2 abc 8 aicdef i S

a b c d ab cd S a D R U

F R I P

I --

R . . . . . . .

T 1 2 3 4 5 6 7 _

,o C 3 En* ' E Q m w1 w4c 1

J

E TABLE 3.3.6-1 (Continued)

CONTROL R00 WITHDRAWAL BLOCK INSTRUMENTATION ACTION STATEMENTS ACTION 60 -

Declare the affected RBM channel inoperable and take the ACTION  :

required by Specification 3.1.4.3.

ACTION 61 -

With the number of OPERABLE Channels:

a. One less than required by the Minimum OPERABLE Channels per Trip runction requirement, restore the inoperable enannel to OPERABLE
.tatus within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> er place the inoperable channel in the tripped condition..
b. Two or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped conoition within one hour.

ACTION 62 -

With the ntaber of OPERABLE channels less than required by the  !

Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

ACTION 63 -

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

NOTES

  • For OPERATIONAL CONDITION of Specification 3.1.4.3.
    • With more than one control rod withdrawn. Not applicalle to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
      • These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMc, are in the core.

(a) The RBM shall be tutomatically bypassed when a peripheral control rod is selected or tha .eference APRM channel indicates less than 30% of RATED THERMAL NWER.

(b) This function shall be automatically bypassed if detector count rate is

> 100 cps or the IRM channels are on range 3 or higher.

(::) This function is automatically bypassed when the associated IRM channels are on range 8 or higher.

! (d) This function is automatically bypassed when the IRM channels are on range 3 or higher.

(e) This function is automatically bypassed when the IRM channels are on range 1.

(f) DELETED I

LIMERICK - UNIT 2 3/4 3-59

.I f

R:

E 9. ER L WVW L A OOO A M PPP M R d d R E l LLL AAA MMM RRR n

a

%E D

a n

%E D

E H

T H

T D

l e el e

v E EEE D E n U HHH 7. AT 7. AT E T nl s

p L TTT 5RR 0RR T A aa c A 5 E 5 E A R hi V DDD fW fW R cx 5 *

- EEE +oO +oO f a 0 *

- E TTT P P f o r 1 s L AAA W% W% o er p B RRR L  % pe x c 6 4. AL

- A 6 4. A  % p W  %%% 8M 0. R O

L A 444 6.0 01E R 60R 01E 8M . 8. E 2W R

3E 1W 0

23 6 8 L

A * * *

/ 833 H H A. O O A.1 A.1 _

N* 268 ssT ssT N 2P sP * << NsN2

_ S RRR T EEE L L N WWW A A I OOO M M O PPP R R P d d E E l T LLL n n H H e E AAA a a T T v S MMM D D l e RRR %E %E D D el N EEE T E E n O T HHH 2. A 2. AT T T nl _

5RR 0RR A A aa I

N T T.T 5 E 5 E R R hi s _

T p A I DDD fW fW cx c 2T O EEE +oO +oO f f a _

- N P TTT P P o o r

  • _ 6 E T AAA RRR W% W%

er '0

  • M E S 6 0. AL 6 0. A L  % pe p

1 s p

3U R  %%% 8M 68M 2. R 0. R 0

.x.c

- 3T P A

111 6.0 01E R 01E 0R . 3E W

2E 1W 23 -

A.1 A.3 I

S EN R /~ 833 H H A. O O LIT N* 268 ssT ssT N 2P sP * << NsN2 B

AK .

TC O

L B

D n -

O o _

R ) .

) P i

L P S n t O S P o a -

R T I :i r _

T I

(

( et e p

e _

N l a l O t ar O a C t n) ce p c

n) )iP sp s

)iP PoS pO o p e PoS S pP U o U l

_ S pT PtH p L a TtH Le( o - c Le( (S o n e s (S t rL o l r p e a e U tpn nii t

Ntrn tiwo nei wn oo i

t a

c s

w o - n iro noop Pi l n P i oT p i pP t t u w w

_ p t ot e l a c o l o Sl tee ) pees al r D a l R l etS Sa PtSt Se ar mu rc i

c -

m r

F t

O T f u

R i p TSrie er e e r. n I O . pd i D edw hi R x h o u N t

_ T ier e(

v gomP weo Tc e e e

v u T i o C

O o M n e

v I rmT l t N" Tr ieiPr .

dR l i F d) a i e O e g t en w E r tl M'e w eh tl a eh l t g a aR wt g to n a n tw u o G oeaa l oni rc oni aw i S

r e

o r

ao c r

L N tl rc A caes

_ N K aLIH esrLIH lT ld O C c pne u p t ut i M R ecpn I O s oww m o u me c e

R tsow E epno T L p))) noo))) i n e iS R

P C B U123 IDP123 S - - I N S( L C DUID N M R U D R U F O . . . . P . . . . . . O . . . .

R a bcd A a b c d e f S abcd P

I R . . .

T 1 2 3 CR5p,EZo r $ wg

l r

l

.l u n f

o f o n f

i t'

o s .o a e v'

n o ll o s e i aae i n l t

a mch E s o e rsT . l _

U i i r ep ) a -

_ L v s " ~ e hu t )S

.P m r

m -

A i . i 8' s ePP e V d- v / i ehSH h o'i 3 o rTP( t E 5l d n o I L 2a 9 - c .(t e B 1 c 5 D o ) n- r A /s 2 ' E t gPti o W 0 1 e 7 T nSno c O 1l /l 5 E .

l iPip L

L A.1luA. 3 ac 2 L E A. a n

tLot a(pe r

e A NsfN2s s- D N g r ts p i

s ete pnsr o r

orwe oi p

- d n d pe o e a etwp h ieo t e f s ph t

a i g r

  • r crei e S l
  • eeth pwa v T l
  • t o

u n soie N n pd h s I f f o u s et p O o- i~

o twm i P f t c i ord r.

T s o a l en tM E n v d r ta R n S o' s e e een eP n

) i s- o' l v vhit lA -

d N e- r ot n a -

e O T .v i i s e ei ce _

u I N

" ~ s ywho sh n T i i 8 b l otp pt i A I d v / o nl t u t T O e i 3 o ed e y n N P 5l d n bns eb o E T E

2a 7 D

a e a t C M S 1 c- 5 ld r ad -

( U /s 2 ' E s be)e ie _

R 8 1 e 7 T a asPw rd .

2 T P 0l /l 5 E . h a

icsSo.

. pi n A.1luA. 5 ac

- S I R

2 L A. e aP p ov _

6 N T MsfNas s E

D r m l pL t ro u N o u py(en pr I .

3 t l rG ti pp  :-

K i o a tao a 3 C n v y ni p s ~

O o slidt fi m

E L M . e il oee o L B 1 g apms M B e- r hctr tB A D g6 a cieer nR T O n h atste e R .

s R a3 c Ea s mrio nw me eh L t 3 i .oe p ct O n e d stwe r R i ce l uohh oo _

T o p

rr m e a pt g ft N uu a v i n O

C t

e og r Si c e e w 'n h l roe el a

s F s al ee l n e / p wh og e hn s i sett ri -

s ti n r ph e ts -

e o titbe n N h dn l r v or S

R W

O t ew l a l etndo ce -

O D r do eeb w g so T n ih aMeia T o vs c9wl tp Ii - U f o 6 s R t pd n -

N re E

H 5 p epe i e e

Ol M S R pv ulbai oh M l Uhh L r 3 l l pT u L gc H O ,u 1 eAdsp t Ef Oit C C dc e ei p e G VHi T e o r i a s .

N t w I e ce t h .lP s -

e A o~ ElS W h uh t e pS s ee a R n v Ge S t dt t gpTi gg u r

ie Rvt e n enaI nn m E

o 'e tl Aea E o re e ra P aa T

A aa HLo rc D t v l arses rr tl ca C l O eo a ilT N I ec es SrF pn M r bb v er aH rr O D I e N e a i rePc ee -

- I E ts ep no ow Dt a . D R O O I f y ar u ewSse ww T M C RDU E e q h o T ph oo ID MWa T TT R Mo E T pL u T Pp N E A E CI U T R L A S F N .. . . C . E E O -

I ab cd Sa D R P .

P * * * ) )

I R

T 4 5

.' 6 7

  • (

a b

(

,-lk i ci* "

_ ,1 * $ -

I D

HE CR II HU WQ E

R'R O

FE

  • L C
  • ASN 5 D NNA E OOL , T IIL 2 2 5555 55S5 2 E 4 TTI L AIE * ** , , ,,,, , , ,, , E ,

RDV 111 111 211 2222 2222 1 D 3 ENR POU OCS S

T N

E -

)

M "

E R N I O I

U T Q

E LA D R ER E NB -

T E NI . . . . . . E .

C AL L N HA A A. A A. A. A. A. A. E A.

A CC SNS RNR RRR NRNR NRNR R D N L

L I

E V

R L U

1 S A ) 3 ' )

6 N LOT N """"

WWWW D 3 OEIS

,' , E I NTE ) )

3 )

T 4 T NCT -) ' . """" E A AN HU l

" " " """" L )

T AAA AAA E E N CF L E

~

QQQ SSS SSS MMMN WWWW Q D R B

A M U TRT S

N D _

I E -

T -

K L . . . . . . .. . . . .. . . . . . E .

C EK L O NC A. A. A. A. A. A. A. A. A. A.A.A.A. A. A.A. A. A. E A. _

L NE NNN NNN NNN NNNN NNNN N D N -

B AH HC -

D C .

l O

R L e .

O l a

R T -

e

- c' s N N r p O l r S W C e ae U R O w

o cw so -

n O

T n D

T .

P nP) i I i U _

l w

ol wo nw S l N

O l E

M h

g H

S a D a ol R l M l U i m mdF O u u L H H _

r~ f E f O

- rt t T C _

R e eenn I G V - T O N N h xhSou t t I T e T euT(i o O o e A o e E l W I v vl tC M n v R n v G e S _

N ie deiFdea ie ie R v O tl elt ell w E r tl E r tl A e E M eaa taantauo G oeaa T oeaa H L D l rc acroaccL N tl rc A tl rc C O N K aes l serl sr A caes I aes S r M O C cpn u p pt u pi M R ecpn D ecpn I e N -

I T

O L

sow pno i mUoumUcR nei eP E tsow epno M E tsow epno D t a

D E

R O OI C B UID S INS RL C DUID R DUID M W T TT N ~ N R E A E CI U D R U T R L A S .

F O . . P . . . . . . O . . .. N . . . . C . E EO -

R abc A a bcd ef S ab cd I abcd S a D R'P _

P I

_ R . . . . . . .

I 1~ 2 3 4 5 6 7 5R , c2U N wE~

r.

w TABLE 4.3.6-1 (Continued)

CONTROL R0D BLOCK INSTRUMENTATION SURVEILLANCE RE0UIREMENTS TABLE NOTATIONS (a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b) Deleted.

(c) Includes reactor manual control multiplexing system input.

  • For OPERAT10NAL CONDITION of Specification 3.1.4.3.
    • With more than one control rod withdrawn. Not applicable ',a control i rods removed per Specification 3.9.10.1 or 3.9.10.2.

f

      • Deleted. l (d) When in OPERATIONAL CONDITION 2.

(e) The ptovisions of Specification 4.0.4 are not applicable provided that the surveillance is performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after the IRMs are on Range 2 or below  !

during a shutdown.

l l

-(f) When in OPERATIONAL CONDITION 5. I i

(g) The provisions of Specification 4.0.4 are not aaplicable provided that the '

surveillance is performed within I hour after tie Reactor Mode Switch has been -

placed in the shutdown position.

1 i l

l I

i I

LIMERICK . UNIT 2 3/4 3-62

u lE ACTOR C00L'A!(T SYSTEM M DITION FOR OPERATION (Continued)

ACTION: (Continued)

2. Within 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />s:

Reduce the' Average Power Range Monitor (APRM) Simulated Thermal Power -

U) scale Scram and Rod Block Trip Setpoints and Allowable Values, to tiose applicable for single recirculation loop operation per Specifications 2.2.1 and 3.3.6, or declare the associ&ted channel (s) inoperable tnd take the actions required by the referenced ,

specifications, and, 1

3. The provisions of Specification 3.0.4 are not applicable.
4. Otherwise be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
b. With no reactor coolant system recirculation loops in o)eration, immediately initiate action to reduce THERMAL POWER suc1 that it is not within ti,e restricted zone of Figure 3.4.1.1-1 wi'.nin 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, and initiate measures to place the unit in at'least JTARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
c. With one or two reactor coolant system recirculation loops in operation and total core flow less than 45% but greater than 39% of rated core flow and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1:
1. Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):
a. At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and
b. Within 30 minutes after the completion of a THERMAL POWER increase of at least 5% of RATED THERMAL POWER.
2. With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, within 15 minutes initiate corrective action to restore the noise levels within the required limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> by increasing core flow or by reducing THERMAL POWER.
d. With one or two reactor coolant system recirculation loops in operation and total core flow less than or equal to 39% and THERMAL POWER within the restricted zone of Figure 3.4.1.1-1, within 15 minutes initiate corrective action to reduce THERMAL POWER to within the unrestricted zone of Figure 3.4.1.1-1 or increase core flow to greater than 39% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
    • Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in-the center of the core should be monitored.

LIMERICK - UNIT 2 3/4 4-la 4

m 3/4.3 INSTRUMENTATION j BASES

' :l3/43 l1 REACTOR' PROTECTION SYSTEM INSTRUMENTATIf , I l

The reactor protection system automatically initiates a reactor scram to: '

a. Preserve the integrity of the fuel cladding.
b. ' Preserve the integrity of.the reactor coolant system.
c. Minimize the energy which must be adsorbed following a loss-of-coolant accident, 'and.

d .- ' Prevent inadvertent' criticality.

-This specification provides the limiting' conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of service ,

because of meintenance. When necessary, one channel may be made inoperable l for brief intervals to conduct required surveillance. J 1

The reactor protection system is made up of two independent trip systems. 1 There'are usually four channels to monitor each parameter with two channels in each I trip system. The outputs of the channels in a trip system are combined in a logic so that.either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The APRM system is divided into four APRM channels and four 2-Out-0f-4 Voter channels. Each APRM channel provides inputs to each of the 1

'four voter channels. Tne four voter channels are divided into two groups of two j

. each, with each group of two providing inputs to one RPS trip system. The system is '

designed to allow one APRM channel, but no voter channels, to be bypassed.

The system meets the intent of IEEE-279 for nuclear power plant protection systems. Specified surveillance intervals and surveillance and maintenance outage times have.beeu determined in accordance with NEDC-30851P-A, " Technical Specification Improvement Analyses for BWR Reactor Protection System" and NEDC-32410P-A, " Nuclear Measurement Analysis and Control Power Range Neutron Monitor (NUMAC PRNM) Retrofit Plus Option III Stability Trip Function." The bases for the trip settings of the RPS are discussed in the Lases for Specification 2.2.1.

Actions a, b and c define the action (s) required when RPS channels are

. discovered to be inoperable. For those actions, separate entry condition is allowed for each inoperable RPS channel. Separate entry means that the allowable time

- clock (s) for Actions a, b or c start upon discovery of inoperability for that specific channel. Restoration of an ino statements for that particular channel. perable Action RPS channel statement (s) satisfies only inoperable for remaining the action channel (s)'must be met'according to their original entry time.

Because of the' diversity of sensors available to provide trip signals and the redundancy of the' RPS design, an allowable out of service time of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> has been shown to be acceptable (NEDC-30851P-A and NEDC-32410P-A) to permit restoration of any

inoperable channel' to OPERABLE status. However, this out of service time is only acceptable provided that the associated Function's (identified as a " Functional Unit" E :in Table 3.3.1-1) inoperable channel is in one trip system and the function still

.gaintains RPS trip capability..

f i

) LIMERICK-UNIT 2 B 3/4 3-1 )

i c j

3/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued) l The requirements of Action a are intended to ensure that appropriate actions

are taken if multiple,-inoperable, untripped channels within the same trip system for the same Function result.in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels

.are OPERABLE or in trip (or the associated trip system is in trip), such that both l

trip systems will generate a trip signal from the r'ven Function on a valid signal.

For the typical Function with one-out-of-two taken .wice logic, including the IRM Functions 2.b, 2.c, andand 2.dAPRM Function are discussed 2.e (trip) below , this capability would requireassociated both trip with APRM systems Functions 2 to have one channel OPERABLE or in trip (or the associated trip system in trip).

For Function 5 Main Steam Isolation Valve--Closure), this would require both l trip systems to have e(ach channel associated with the MSIVs in three main steam lines (not necessarily the same main steam lines for both trip systems) OPERABLE or in trip (or the associated trip system in trip).

For Function 9 (Turbine Stop Valve-Closure), this would require both trip systems to have three channels, each OPERABLE or in trip (or the associated trip system in trip).

i The completion time to satisfy the requirements of Action a is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The I hour Completion Time is acce) table because it minimizes risk while allowing time for l

restoration or tripping of ciannels. i l With ip cp applicable abilitysgil m(ust maintained, i.e., Action a satisfied, Actions b and c as be satisfied.

l If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Action b requires that the channel or the associated trip system must be placed in the tripped condition.

Placing the inoperable channel in trip (or the associated tri) system in trip) would conservatively compensate for the inoperability, restore capa)ility to accommodate a single failure, and allow operation to continue.

As noted, placing the trip system in trip is not applicable to satisfy Action b for APRM Funct1 ons 2.a. 2.b, 2.c, or 2.d. Inopera',ility of one' required APRM  !

channel affects both trip systems. For that conditir,n, the Action b requirements can '

on!" he satisfied by placing the inoperable APRM channel in trip. Restoring OPEM RITY or placing the inoperable APRM channel in trip are the only actions that l will restore capability to accommodate a ' single APRM channel failure. Inoperability Lof'more than one required APRM channel of the same trip function results in loss of

_ trip capability and the requtrement to satisfy Action a.

'The requirements of Action c must be satisfied when, for any one or more '

Functions, at least one required channel is inoperable in each tri) system. In this

, . condition, provided at;least one channel )er trip system is'0PERAB.E, normally the RPS still maintains trip capability for t1at Function, but cannot accommodate a single failure in either trip system (see additional bases discussion above related j to loss of trip capability and the requirements of Action a, and special cases for Functions 2.a, 2.b, 2.c, 2.d, '; and 9). -

I 1'

LIMERICK - UNIT 2 B 3/4 3-la l i

1 s

3/4.3 INSTRUMENTATION- i BASES-3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued) )

The re irements of Action c limit the time the RPS scram logic, for any Function,wouIdnotaccommodatesinglefailureinbothtri) systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four ciannel Function). The reduced reliability of this logic arrangement was not evaluated in NEDC-30851P-A for the 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Completion Time. Within the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the associated Function must have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing the actions required by Action c restores RPS to a reliability level equivalent to that evaluated in NEDC-30851P-A, which justified a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

' allowable out of service time as allowed by Action b. To satisfy the requirements of

~ Action c, the trip system.in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g.,-a trip system with two inoperable channels could be in a more degraded state than a trip system with four incperable channels if the two inocerable channels are in the same Function while the four inoperable channels are all in different Functions). The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e., i what OPERATIONAL CONDITION the plant is'in . If this action would' result in a scram '

or RPT, it is permissible to place the othe)r trip system or its inoperable channels in trip.

. The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowable out of service time is judged acceptable based on the remtining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of a scram.

As noted, Action c is not applicable for APRM Functions 2.a. 2.b, 2.c, or 2.d.

Inoperability of an APRM channel affects both trip systems and is not associated with a specific trip system as are the APRM 2-Out-0f-4 voter and other non-APRM channels for which Action c applies. For an inoperable APRM channel, the requirements of Action b can only be satisfied by tripping the inoperable APRM channel. Restoring OPERABILITY or placing the inoperable APRM channel in trip are the only actic cs that will restore capability to accommodate a single APRM channel failure.

If it is not desired to place the channel (or trip system) in trip to satisfy the requirements of Action a, Action b or Action c (e.g., as in the case where placing the inoperable channel in trip would result in a full scram), Action d requires that the' Action defined by Table 3.3.1-1 for the applicable Function be initiated immediately upon expiration of the allowable out of service time.

The Two-Out-0f-Four Logic Module includes 2-out-of-4 voter hardware and APRM Interface hardware. The voter Function 2.e is accom lished by the 2-out-of-4 voter hardware which includes redundant outputs. The anal sis in NEDC-32410P-A took credit for this redundancy in the justification for the 12- our allowable out of service time, so the voter Function 2.e must be declared inoperable if any of the 2-out-of-4 voter hardware's functionality is inoperable. The voter Function 2.e does not need to be declared inoperabis due to any failure affecting only the APRM Interface hardware portion of the Two-Out-0f-Four Logic Module.

' LIMERICK IT 2 B 3/4 3-lb I

'~

3/4.3 INSTRUMENTATION BASES L

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (continued)

Automatic reactor trip upon receipt of a high-high radiation signal l' from the Main Steam Line Radiation Monitrring System was removed as the result of an analysis performed by General Electric in NE00-31400A. The NRC approved the results of this analysis as documented in the SER BWR Owner's Group from A.C. Thadani, NRC, dated May 15(letter to George J. Beck,

,1991).

1 The measurement of response time at the specified frequen'cies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the safety analyses. No credit was

, taken for those channels with response times indicated as not applicable except for APRM Simulated Thermal Power - Upscale and Neutron flux - Upscale trip functions l

(Table 3.3.1-2, Items 2.b and 2.c). Response time may be demonstrated by any series of sequential, overlapping or total channel test measurement, provided such tests demonstrate the total channel res)onse time as defined. Sensor response time verification may be demonstrated )y either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times. ,

Response time testing for the sensors as noted in Table 3.3.1-2 is not required based )

on the analysis in NED0-32291-A. Response time testing for the remaining channel '

components is required as noted. For the digital electronic portions of the APRM functions, performance characteristics that determine response time are checked by a combination of automatic self-test, calibration activities, and response time tests l of the,2-Out-0f-4 Voter (Table 3.3.1-2, Item 2.e).

i e

1 l

LIMERICK - UNIT 2 B 3/4 3-)c l b.

y, e

!: .  :;g'y l

~

j '. e j J

, ,r i 1

i l

I

, , LPRM 1. LPRM 3- LPRM 2 LPRM 4 L

/ )

x

. APRM 1~ APRM 3 APRM 2 APRM 4 i

Il '

db # ) di I

% w x

.W ,

v ,~ v l> v APRM. .

APRM APRM APRM 2-00T-OF-4 2-0UT-OF-4 2-0UT-OF-4 2-00T-OF-4

f. VOTER Al_ ' VOTER A2 VOTER B1 VOTER B2 6-l 6 -v v v 1

-RPS CHANNEL A1 ,. j . 'RPS CHANNEL A2 RPS CHANNEL S1 RPS CHANNEL B2

.' RELAYS K12A & K12E7 RELAYS K12C & K12G RELAYS K12B & K12F RELAYS K12D & K12H i

.i-..

1 i

RASE 5 FIGURE B 3/4.3-2 APRW^ CONFIGURATION

. LIMERICK -_. UNIT 2 , B 3/4'3 9' i '