ML19350C190

From kanterella
Jump to navigation Jump to search
Radiological Impact Assessment,Sequoyah Nuclear Plant, Jul-Dec 1980.
ML19350C190
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 03/24/1981
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML19350C185 List:
References
RH-81-2-SQ1, NUDOCS 8103310490
Download: ML19350C190 (23)


Text

,._A- m..___ma. L4-.--h e -4 m A-,- - - , - -4 - 4 - - - . -+T',-. >- a4%__ 4 aa - AiA- L--m--.-------,------,.a.~- A* #e s -.4---mwa 4

4 RH-81-2-SQ1 i

l J

i l

i RADIOLOGICAL IMPACT ASSESSMENT SEQUOYAH NUCLEAR PLANT i

JULY-DECEMBER 1980 i

i i-I' i -

9 l

l

> = -

t 81088104%O,.

RADIOLOGICAL IMPACT ASSESSMENT SEQUOYAH NUCLEAR PLANT JULY-DECEMBER 1980 Introduction Potential doses to individuals and populations have been calculated for the time period July 1 through December 31, 1980. The calculations have been made using the measured releases listed in tables 1-2 for radioactivity in both gaseous and liquid effluents. Dispersion of radioactive effluents in the environment has been calculated using meteorological data and river flow data measured during this period.

Meteorological Data Meteorological data were measured, and average quarterly joint frequener distributions (JFD's) for ground-level releases were calculated.

The groundi level JFD was derived from wind speeds and directions measured 10 meters above ground level and from the vertical temperature gradient between 10 and 45 meters.

, The wind speeds were divided into nine wind-speed ranges. For calculational purposes, calma were distributed into the lowest wind speed range (0-0.5 mph) according to the directional probabilities in the 0.6-1.4 mph range. The quarterly JFD's are listed in tables 3 and 4 for ground-level - -

releases.

I Gaseous Effluents Ground-level dispersion models were applied to all releases.

Radionuclides in gaseous effluents were assumed to be released continuously.

l Dose estimates for external air exposures were made at the site boundary.

l I

i

2 External doses to the skin and total body were estimated for the nearest residence in each sector. Internal doses were estimated for real receptors due to the ingestion, inhalation, and external exposure pathways. The milk ingestion doses were calculated for farms where milk is consumed without commercial preparation. Doses are given in tables 5 and 6 for these individual exposure pathways at the maximum exposure locations.

' ~

Population doses were calculated for an estimated 1,057,010 persons living within a 50-mile radius of the plant site. Population doses were calculated assumihg that each individual consumas vegetables and meat produced within the sector annulus in which he resides. Doses from milk ingestion were calculated from data on milk production within 50 miles of the plant site. Doses from external pathways, inhalation, and beef and vegetable ingestion are based on the 50-mile human population distribution.

Population dose estimates for the gaseous effluents are presented in table 7.

Liquid Effluents Doses from liquid effluents were calculated using measured hydraulic data. The average river flows at the plant site were 26,640 cfs for the third quarter and 18,860 cfs for the fourth quarter. Radioactivity concentrations in the Tennessee River were calculated assuming that releases in liquid effluents were continuous.

Doses were calculated for recreation, consumption of fish, and drinking water from public water supplies between the plant site and the mouth of the Tennessee River. The maximum individual dose from drinking water was assumed to be that calculated at the nearest downstream public water supply (C. F. Industries, Inc.). The maximum potential recreation dose was

3 calculated for a location immediately downstream from the plant outfall.

Dose estimates for the liquid effluents are presented in tables 8 and 10.

Direct Radiation External gamma radiation levels are measured by thermoluminescent dosimeters (TLD's) deployed around Sequoyah Nuclear Plant. During the preoperational period from August 1975 to January 1980, these levels averaged approximately 23 mR/ quarter at onsite stations and 19 mR/ quarter offsite. These data reflect a difference of 2-5 nR/ quarter (average approxi-mately 4 mR/ quarter) between onsite and offsite radiation levels. These higher values measured onsite may be attributable to natural variations in environmental radiation levels, earth moving activities onsite, the mass of concrete employed in the construction of the plant, or other influences.

Analysis of environments 1 TLD data for the reporting period showed that extreme gamma radiation levels averaged 20.3 mR/ quarter at onsite stations and 16.0 mR/ quarter offsite. This indicates that there was no identifiable increase in dose rate levels attributable to direct radiation from plant equipment and/or gaseous effluents. Fluctuations in natural background dose rates and in TLD readings tend to mask any small increments which may be due to plant operations.

Dose Summary Doses calculated for this semiannual period result from the low-level effluent releases of unit 1. For gaseous effluents released in the third quarter, the maximum gamma and beta air doses were calculated to be

~

2 1.4x10 and 8.4x10 ' mrad, respectively. During the fourth quarter, the

4 gamma and beta air doses were 2.3x10 ~1 and 1.3xlC' mrad, respectively.

These quarterly doses are well below the annual air dose guidelines (as specified in Appendix I to 10 CFR 50) of 10 and 20 mrad for gamma and beta radiation, respectively, for one reactor unit. (All doses and dose limits referred to will be for one reactor unit.) The maximum doses from air sub-mersion to the skin and total body during the third quarter were calculated to be 2.3x10 -2 and 1.1x10 2 mrem. During the fourth quarter, the skin and total body submersion doses were 2.7x10 ~1 and 1.2x10 ~1 mrem, respectively.

These compare with annual dose guidelines of 15 mrem to the skin and 5 mrem to the total body. Internal doses to the maximum exposed organ were estimated to be 3.1x10 ~7 and 1.7x10~1 mrem for the third and fourth quarters.

The maximum exposed individual was identified as a nearest resident without a milk cow. Therefore, these doses result from the ingestion of meat and vegetables, inhalation, and exposures to external sources of radiation.

For liquid effluents released in the third quarter, the maximum individual doses to the total body and the maximum exposed organ (i.e., bone) were calculated to be 0.35 and 9.1 mrem, respectively. In the fourth quarter, the maximum doses to the total body and bone were calculated to be 0.53 and 13.7 mrem, respectively. These compare with annual dose guidelines as specified in Appendix I to 10 CFR 50 of 3 and 10 mrem to the total body and

, maximum exposed organ (bone), respectively, for one unit.

Population doses from gaseous effluents during the third quarter

~

were estimated to be'6.1x10 man-rem to the total body and 6.1x10-2 man-rem

~1 to the GI tract. For the fourth quarter, population doses were 7.9 x10 man-rem to the total body and 8.6 x10 ~1 man-rem to the bone.

5 From liquid releases during the third quarter, the total popula-tion along the Tenneasee River was estimated to receive 7.7 man-rem to the total body and 200 man-rem to the maximum exposed organ (bone). For the fourth quarter, the Tennessee River population was estimated to receive 10 man-rem to the total body and 260 man-rem to the maximum exposed organ (bone). -

In summary, all gaseous ef fluent doses and the total body liquid effluent doses calculated were below the guidelines of Appendix I to 10 CFR 50 and below the limits specified in the Sequoyah Nuclear Plant Technical Specifications for plant operation. The liquid effluent bone doses calculated exceed the guidelines of Appendix I to 10 CFR 50. The calculated bone doses are due almost entirely to reported levels of phosphorus-32 (P-32) in the liquid effluent. The most significant release path is through the turbine building sump (T3S). More than 80 percent of the calculated bone doses are from releases via the T3S (7.9 mrem third quarter, 11 mrem fourth quarter, tables 9 and 11). This is interesting because P-32 is an activation product and should exist in higher concentrations in other effluent streams. Investi-gations are being conducted to determine the origin of inplant P-32 and to .

verify the levels of P-32.

l

TABLE 1 SEQUOYAH NUCLEAR PLANT GASEOUS '. LUENT RELEASES Third Quarter 1980 Fourth Quarter 1980 Nuclide (C1) (C1)

Xa-131m - 4.58x10 2 Xe-133 234 2.20x10 8 Xe-133m -

7.69x10 -7 5

Xe-135 1.41x10 1.23x10 2 I-131 -

3.96x10 -s I-133 -

5.54x10 -8 5.35x10 -s Ce-144 3.07x10 '

Na-24 -

1.96x10-'

Mrt-54 -

3.16x10-' -

1" Co-58. 3.68x10 4.40x10 '

Co-60 -

2.45x10-s -

Sr-89 -

9.95x10 " -

Sr-90 -

2.82x10 '

Tc-99a 1.23x10 -7 7.59x10 -5 t

\ -

t L

I I

l t.

L I_

f:

TABLE 2 SEQUOYAH NUCLEAR PIANT LIOUID E"LUENTS Activity (uCi)

'Nuclide Third Ouarter Fourth Ouarter Total TBS Total TBS H-3 2.57E+4 2.47E+4 2.60E+5 5,22E+4 Na-24 0.00 0.00 1.44E+5 P-32 0.00 1.08E+5 9.33E+4 1.15E+5 9.45E+4 i Ar-41 0.00 0.00 1.61E+2 Co-57 0.00 1.03 E+0 0.00 0.00 0.00 Co-58 - 4. 99E+4 6.62E+3 5.32E+4 Co-60 0.00 3.18E+3 0.00 3.91E+3 0.00 Fe-55 0.00 0.00 1.69E+4 1.43E+4 Fe-59 2.34E+2 0.00 6.31E+2 Cr-51 0.00 1.45E+4 1.25E+4 2.93E+3 0.00 Mn-54 1.34E+4 0.00 2.52E+4 Kr-85 0.00 1.15E+3 0.00 8.60E+3 0.00 Zr-95 1.09E+2 0.00 6.65E+1 0.00 Nb-95 1.09E+2 0.00 6.65E+1 0.00 Tc-99M 0.00 0.00 1.44E+3 0.00 i

1-131 -.3.43E+3. O.00 2.97E+3 0.00 1-133 0.00 0.00 5.48E+2 0.00 Cs-137 1.24E+1 0.00 3.27E+0 0.00 Xe-131M 0.00- 0.00 3.01E+4' O.00 Xe-133 1.08E+2 0.00 1.98E+6 0.00 Xe-135 0.00 0.00 3.20E+2 0.00 Sb-124 2.17E+2 0.00. 1.06E+2 0.00

~Ce-144 3.I8E+0 0.00 5.24E+2 0.00 W-187 0.00 0.00 3.58E+2 0.00 t

'y-y

-= <.-. g y .-p .

,..w.. e e ret.. , --. , m gg =.,-..-y,_m.- .c ,pv ,, . ,,- -

TABLE 3 SEQUOYAH NUCLEAR PLANT METEOROLOGICAL DATA GROUND LEVEL JOINT FREQUENCY DISTRIBUTION IN PERCENT THIRD QUARTER 1980 STa81LITY CLa$$ A WIND SPEEDS Ih METERS PER SECOND FRou THE SECT 045 INDICATED SECTOR 0 13 0.45 1.10 1.99 2.80 4.45 6.91 9.59 13.00 TOTALS h 0.0 0.0 0.0!0 0 100 0 140 0 140 0.0 00 0.0 0.429 hNE 0.0 0.0 0.708 0.708 0 189 0.239 0.0 00 ht 0.0 0.0 0.0 1.944 1.515 2.272 0.189 0.0 0.0 00 0.0 3.976 ENE 00 C.0 0.239 0.140 0.0 0.0 0.0 00 0.0 0.379 E 0.0 0.0 0.189 0 100 0.0 0.0 0.0 E5E 0.0 0.0 0.209 0.0 0.0 0.050 0.0 0.0 0.0 0.0 00 0.0 0.050 SE 0.0 00 0.140 0.050 0.0 0.0 0.0 00 0.0 0 189 55E 0.0 0.0 0.429 1.046 0.239 0.140 0.0 0.0 5 0.0 00 0.0 1.854 0.050 0.807 0.757 0.140 0.0 00 0.0 1.754 SSW SW 0.0 0.0 0.379 1.943 2.083 0.568 0.0 0.0 0.0 4.973 0.0 0.0 0.100 1.136 0.947 0.299 00 mSW 0.0 0.0 0.0 2.472 0.0 00 0.100 0.100 0.050 0.0 00 0.0 0 249 m 0.0 0.0 0.050 0.100 0.0 0.189 0.0 00 0.0 0.339 mNw 0.0 0.0 0.0 0.0 0.050 0.0 0.0 0.0 0.0 0.050 hw 0.0 0.0 0.0 0.0 0.239 0.0 0.0 00 0.0 0.239 hNu 0.0 0.0 0.0 0.239 0 189 0.239 0.0 0.0 0.0 0.648 TOTALS 0.0 0.0 3.497 8.740 5.122 1.993 0.0 00 0.0 19.752

~

STa81LITY CLASS 8 WIND SPEEDS IN mETEa5 PER SECOND FRQu YME SECToe5 Iho!CATED SECTOR 0 13 0.45 1 10 1.99 2 80 4.45 6.91 9.59 13.00 TOTALS _ ,

N 00 0.0 0.0 0.0 0.050 0.0 Nht 0.0 00 0.0 0.050 00 0.0 0.140 0 100 0.0 0.050 0.0 00 0.0 0.289 NE 00 0.0 0.429 0.379 0.140 0.0 0.0 0.0 0.0 0.947 kNE 0.0 0.0 0.0 0.050 0.0 0.0 0.0 0.0 0.0 0.050 E 0.0 0.0 0.100 0.0 0.0 0.0 0.0 0.0 0.0 0.100 ESE 0.0 0.0 0.050 0.0 0.0 0.0 0.0 0.0 0.0 0.050 5t 00 0.0 0.050 0.0 0.0 0.0 0.0 0.0 0.0 0.050 SSE 0.0 0.0 0.050 0.050 0.050 0.0 0.0 0.0 0.0 0.149 5

$$w 0.0 0.0 0.050 0 100 0.050 0.0 0.0 00 0.0 0.199 0.0 0.0 0.379 0.757 0.050 0.050 0.0 0.0 0.0 1 236 Sw tSw 0.0 0.0 0.289 0.668 0.429 0.0 0.0 0.0 0.0 1.385 0.0 0.0 0.100 0.140 0.0 0.0 0.0 00 0.0 0.239

=

  • NW 0.0 0.4 0.050 0.050 0 140 0.050 0.0 0.0 0.0 0.289 0.0 0.0 0.0 0 100 0.0 0.0 0.0 00 0.0 0 100 hw 0.0 0.0 0.050 NNW 0.0 0.0 0.0 0.0 00 0.0 0.050 0.0 0.0 0.0 0.140 0.100 0.0 0.0 00 0.0 0.239 TOTALS 0.0 0.0- 1.734 2.531 1.007 0.149 0.0 0.0 0.0 5.421 l

TABLE 3 (Continuedl STABILITY CLASS C WIND SPEEDS IN SETERS PER SECOND FROM THE SECTORS INDICATEC S L ".T OR 0.13 0.45 1.10 1.99 2.e0 . 45 6.91 9.59 13.00 TOTALS h 0.0 0.0 0.0 0.0 0.0 0.050 C.0 00 0.0 0.050 hNE 0.0 0.0 0.140 C.050 0 100 0.0$0 0.0 C.0 0.0 0.339 hL 0.0 0.0 C.429 C.lec 0.100 0.050 0.0 ENE 0.0 0.0 0.0 0.0 0.718 0 100 C.100 0.0$0 0.0 0.0 0.0 0.0 0.249 L 0.0 0.0 C,050 C.0 0.0 0.0 0.0 00 0.0 0.050 ESE 0.0 0.0 0.0 C.0 0.0 0.0 0.0 00 0.0 0.0 SE 0.0 0.0 0.0 C.c 0.0 0.0 0.0 0.6 0.0 0.0 SSE 0.0 0.C C.050 0.100 0.050 0.0 0.0 0.0 0.0 0.199 5 0.0 0.0 0.c 0.050 0.050 0.0 0.0 0.0 0.0 0.100 55W 0.0 0.0 0.269 C.618 0.14C 0.0 5m 0.0 00 0.0 1.046 0.0 0.0 0.1e9 0.51e 0.189 0.0 0.0 00 0.0 0.897 h5W 0.0 0.0 0.050 C.140 0.140 0.050 0.0 00 0.0 0.379 W 0.0 0.0 0.050 C.0 0.0 0.0 0.0 00 0.0 0.050 kNw 0.0 0.0 0.c 0.050 C.0 0.0 hw 0.0 0.0 0.0 0.050 0.0 0.0 C.050 C.0 0.050 0.0 0.0 0.0 0.0 0.100 hNw 0.0 0.0 0.C. 0.0 00 0.0 0.0 00 0.0 0.0 TOTALS 0.0 0.0 1.395 1.714 0.917 0.199 0.0 00 0.0 4 226 STAGILITY CLASS 0 w!ND SPEEDS IN wETERS PER SECOND FROM THE SECTORS INCICATED

.5LCTOR 0.13 0.45 1.10 1.99 2.60 4.45 6.91 9.39 13.00 TOTALS A 0.0 0 100 C.239 0.289 0.050 0 140 0.0 00 0.0 0.817 hNE 00 0.050 1.136 1.565 0.807 0.050 0.0 00 00 3.608 AE 00 0 140 1.186 0.379 0 289 -0.050 0.0 00 0.0 2.043 ENE 00 0.050 C.100 0.100 0.0 0.0 0.0 00 0.0 0.249 E 00 0.0 0.239 0.0 0.C 0.0 0.0 00 0.0 0.239 EbE 00 0.0 C.0 0.0 0.0 0.0 0.0 .0 0 0.0 0.0 SE 0.0 0.050 C.lCC 0.0 0.0 00 0.0 00 0.0 C.149 SSE 0.0 0.0 0.ela 0.C5C 0.100 0.0 0.0 0.0 C.0 0.767 5 00 0.0 0.5te 0.e97 0.le9 0.050 0.0 00 0.0 1.704 55m 0.0 0.100 C.447 .l.565 0.239 0.0 0.0 0.0 0.0 2.650 5m 0.0 0.0 C.757 0.eSe 0.429 0 050 00 wsw 0.c 0.0 0.0 0.0 1.903 h

0.329 0.289 0.189 0.050 0.0 00 0.0 0.957 00 00 0.c!c 0.189 0.239 0 140 0.0 00 eNW 0.100 0.0 0.618 0.0 0.140 0.050 0.050 0 100 0.0 0.0 0.0 0.438 hw 0.0 0 189 0.129 0.0 0.100 0.050 0.0 00 0.0 0.528 NNd 00 0.0h0 0.169 0.189 0.289 00 0.0 00 0.0 0.718 TOTALS 00 0.827 e.767 6.229 2.970 0.67e 0.0 00 0.0 17.490

)

TABLE 3 (Continued)

STABILITY CLASS E WIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATED SECTOR 0.13 0.45 1.10 1 99 2.80 4.45 6.91 9.59 13.00 TOTALS N 0 014 0.379 1.614 0.478 0 100 0.050 0.0 00 0.0 2.635 hhE 0.028 0.757 3.648 1.375 0.379 0.050 0.0 0.0 0.0 6.237 ht 0.016 0.429 1.046 0.289 0.050 0.050 0.0 00 0.0 1.880 LhE 0.016 0.*29 0.189 0.0 0.050 0.0 0.0 00 0.0 0.684 E 0.012 0.329 0.289 0.0 0.0 0.0 0.0 0.0 '0.0 0.630 ESE 0.018 0.478 0.140 0.0 0.0 0.0 0.0 0.0 0.0 0.636 SE 0.012 0.329 0.239 0.0 0.0 0.0 0.0 00 0.0 0.580 SSE 0.009 0.239 0.618 0.239 0.050 0.050 0.0 00 0.0 1.205 5 0.007 0.189 2.043 0.568 0.050 0.0 0.0 00 0.0 2.857 55w 0.011 0 289 3.129 1.565 0.140 0.0 0.0 0.0 0.0 5.133 SW 0.016 0.429 1.565 1.425 0.379 0.0 0.0 00 0.0 3.813 wSw 0.018 0.478 0.618 0.379 0.100 0.0 0.0 00 0.0 1.593 w

WNW 0.012 0.329 0.478 0.050 0.239 0.0 0.0 00 0.0 1.108 0.014 0.379 0 289 0 100 0.0 0.0 0.0 00 0.0 0.781 hw 0.016 0.429 0.429 0.289 0.0 0.0 0.0 0.0 0.0 1.162 NNW 0.019 0.518 0.947 0 140 0.0 0.0 0.0 00 0.0 1.623 TOTALS 0.237 6.408 17.281 6.896 1.535 0.199 0.0 00 0.0 32.556 STARILITY CLASS F WIND SPEEDS IN METEAS PER SECOND FROM THE SECTORS INDICATED SECTOR 0 13 0.45 1 10 1.99 2.80 4.45 6.91 9.59 13.00 TOTALS I

N 0.004 0 189 1.545 0.189 00 0.0 NNE 0.014 1.086 5.362 0 100 0.0 0.0 00 0.0 1.945 0.0 0.0

  • 00 0.0 6.562 NE 0.007 0.568 1.046 0.0 00 0.0 0.0 00 0.0 1.621 ENE 0.001 0.050 0.140 0.0 0.0 0.0 0.0 0.0 0.0 0.190 L 0.005 0 379 0.0 0.050 0.0 0.0 0.0 00 00 0.434 ESE 0.001 0.100 0.s00 0. 0 - 00 0.0 0.0 00 0.0 0.200 SE 0.002 0.1 0 0 140 00 0.0 0.0 00 00 00 0.281 l

SSE 0 004 0.329 0.289 0.140 0.0 0.0 0.0 00 0.0 0.761 5 0.002 0 140 0.429 0.100 0.0 0.050 0.0 SSw- 4.001 0.050 1.425 0.289 00 0.0 0.720

! 00 0.0 0.0 00 00 1.765 SW 0.002 0 189 0.947 0.239 0.0 0.0 0.0 0.0 0.0 1.377 wSw 0.001 0.050 0 189 0.0 00 00 0.0 00 0.0 0 240 l = 0.003 0.239 0.289 00 kNW 00 0.0 0.0 0.0 0.0 0.531 l 0.002 0.140 0.100 00 00 0.0 0.0 00 0.0 0.241 i hw 0.0 0.0 0.189 0.0 0.0 0.0 0.0 00 0.0 0 189 l NNw 0.0 0.0 0.R07 0.050 0 050 00 0.0 00 0.0 0.907 TOTALS 0.047 3.447 13.015 1.156 0.050 0.050 0.0 00 0.4 17.965 i

l l

l e

TABLE 3 (Continuedi

em
  • STA81LITY CLA5$ G SECTOR WIND 0.13 SPEEDS 0.45 Ih 1.10 PETERS 1.99 PER 2.80 SECCND FR0u TPE SECTORS INDICATED 4.45 6.91 9.59 13.00 TOTALS h 00 0.050 00 00 0.0 0.0 00 00 00 kNE 00 0.0 0.421 0.0 0.0 0.050 hE 00 0.0 00 00 0.429 00 0 100 0.329 0.0 00 0.0 0.0 00 LNE 0.0 0.050 0.0 0.0 0.0 0.429 0.0 0.0 0.0 00 0.0 0.050 E

ESE 00 00 0 189 0 050 00 0.0 0.0 0.0 00 0.0 0.239 0.050 0.0 0.0 0.0 00 00 SL 0.0 3 100 00 00 00 0 050 0.0 0.0 0.0 0.0 00 i SSE 0.0 0 140 0 289 0.0 0.0 0.0 0.0 0 100

$ 0.0 0.100 0.0 00 0.0 0.429 0.140 0.0 0.0 0.0 0.0 SSW 0 0- 0.050 0.269 0.050 00 0.0 0.239 5=

0.0 0.0 0.0 00 0.0 0.389 00 0.0 0.140 0.0 0.0 W5W 0.0 0.0 0.0 00 0.0 0.140 0.0 0.0 0.0 0.0 0.0 0.0 00 W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 kNW 0.0 00 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 00 hm 0.0 0.050 0.0 0.0 0.0 0.0 0.0 NNW 0.0 0.0 00 0.0 0.0$0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 TOTALS 0.0 0.877 1.664 0.050 0.0 0.0 0.0 0.0 0.0 2.591 I

i

TABLE 4 SEQUOYAH NUCLEAR PLANT METEOROLOGICAL DATA GROUND LEVEL JOINT FREQUENCY DISTRIBUTION IN PERCENT FOURTH QUARTER 1980 SIAh!LITV..CL&55 A __

vfNS (Prp01 fN "FTFet pga SFCNNO 8tSu fur SECTCRS INSfCATFS SECTOR 0 13 0 45 1.10 1.99 2:40 4.45 6.91 9.59 13 00 TOTAL 5 N 0.0 0.0 0.0 0.0 0.179 0.140 0.0 00 0.0 0 318

_Mhs n.n Ao 0 0 5 0_ 0. 319_0. 2 6 9__0. 9 5 2__0. 0___ J1ao a.o 1 192___

NE 0.0 0.0 0.409 0.857 0.179 0.319 0 050 00 0.0 1 815 sus e.n n.o e.e s.ege 3.0 e.9 e.c ee e.o o.egs E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0

___E5E 0.0 0.0 ot?___0.0 0. 0.__ __ p . 0___ _Q ._0 00 2 0.0 0.0 SE 0.0 0.0 0.050 0.0 0.0 0.0 0.0 00 0.0 0.050

.._55f._ _.Q.0 ___.0.0 _ _.0 020 0.090_ 3.050__Q.0.___.0 0 0,0 0.0 0 159 5 0.0 0.0 00 0.050 0.179 0.090 00 00 0.0 0 319 ttw o.S e.S 0.0 0.179 0.689 0.179 0.5 0.0 0.0 0.91a

$d 0.0 0.0 0.0 0.319 'J .16 0 0.0 00 00 0.0 0.659

_ _ WSW 3.a 30 One 0.0 0.0 ___0.0.___0 0 1.0 0.0 0.D W 0.0 0.0 0.0 0.0 0.050 0.050 0.0 00 0.0 0 100

_ JLNW bo 20 CaQ _ 0.0 0.050_Q.22L_Qe0 00 0.0 0.279 Nd 0.0 0.0 00 0.0 0.0 0.090 0.0 00 0.0 0.090 unw o.9 S.o 0.9- 0.6 S.0 0.050 S.0 0.0 0.0 0.080

___IDI A L 5_ 94.0 0.D_ _0M ).8 la994 12175__2a104 01.Q3 0 0.0 0.0 6 171 CTAettffy Cligt a l

  • 1N0_32E1Q.5_lM TEIE!5,Pga 5E llND _P RC5_TML 1ECICRS IN0!CAff0
__ SECTOR 0 13 0.45 1.10 1.99 2 80 4.45 6.91' 9.59 13.00 TGTAL5 I

l . N 0.0 0.0 0.0 0.090_ _ _ _ _ _ .0.0900.0 0.0 0.0 0.0 0 179 NNE S.o 0.0 0.e 0.160 0.050 0.319 0.0 0.0 0.0 0.509 NE 0.0 00 0 090 0.319 0.179 0.140 0.0 00 0.0 0 723 1 __ENE Q.0____0.Q 0 0____0.0 0.0.___c.0____0.0 00 0.0 0.0 _ ,

E u.0 0.0 0 140 0.0 0.0 c.0 0.0 00 0.0 e.140 l . E5E.___0.0.__.0.0 0.0 0.0.___0.0____0.0 0.0 0.0 0.0 0.0 SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0

___jit S.o S.O 0.c90 0.050 0.0 q.0 0.0 0.0 0.0 0.16e l 5 0.0 0.0 0.050 0.0 0.0 0.050 0.0 0.0 0.0 0 100

__ $54- 0.0 00 0.050 0.090 0.319 0.050 00 00 0.0 0.500 3d 0.0 0.0 0 140 0.609 0.050 0.0 0.0 00 0.0 0.398

_. W S W 0. 0. 00 00 0.0 .0.050_0.0.___0.0 00 00 0.059___

w 0.0 00 0.0 0.0 0,000 0.090 0.0 00 0.0 0 140 WNW 3.c 0.0 0.e 0.0 ,.'12 0.050 0.0 0.0 0.0 0.109 Nm 0.0 0.0 Q.C 0.0 07 0 0.050 00 0.0 0.0 0.05n

.. NNW 0.0 f.0 0.0 0.050 0.0 0.0 0.0 0.0 0.0 0.05c l __ TOTALS .00 g.0 OtsSe 1.t6.1.__0.s37 _0 16a _g 0 0.0 0.0 3.29e l

TABLE 4 (Continued)

SLA$1LITy CL451_I WIND 5pf!05 IN *E? ras are SECON: FROM f*E SECTop5 IN0!CAffe

. SECTOR 0 13 0 45 1.10 1 99 2 43 *.45 6.91 9.29 13.00 TOTAL 5 N 0.0 0.0 0.c 0.0 0.053 0.090 0.0 0.0 0.0 0.140

_NNE 0.0 0.0 0.0_. .0.229. 0.143__0.319__0.0 0 0____p.0 0,6 t 0_

NE 0.0 0.0 0.609 0.319 0.053 0.179 0.0 00 0.0 0.9.'7 ENE c.0 0.0 0.160 0.9 0.0 0.0 0.0 0.0 0.0 0.160 E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

_E $f 0.0 0,0 _ 0,0 __0.0__ 0.0.___ C.0__ 0.0 00 0,0 0.0 SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.u

___55[_ _0,0_ _ C,0 0.090 _0.090. 0.093 _0.c 0.0 0.0 0,0 0.269_

5 0.0 0.0 0.050 0.140 0.093 0.050 0.0 0.0 0.0 0 329 11W o.e 0.0 0.fjo 0.165 0.160 0.229 0.0 0.0 0.S 0.558 5W 0.0 0.0 0.050 0.319 0.319 0.056 00 00 u.0 0.738

___ W5W 0,0 Qto 0,050 0.0___,0.0 __0. 0 5 0__0._C 0.0 0.30 0.100 W o.0 0.0 0.0 0.0 0.053 0.050 0.0 0.e 0.0 0.100

_ NWW c . 0. o.0._ _ 0.0 _ 0.0_.__3.053_ 0.050._Q.0 01 0,0 0.100 N. 0.0 0.0 1.0 0.0 0.050 0.090 00 00 0.0 0 140 NNW 0.0 0.0 S0 g 0.0 0.090 0.0 0.0 0.0 0.0 0.090

.,_ TOTAL $__0.0 0.0 0.837 1.236 1.117 1.156 0.0 0.0 0.0 *.347 STA91LITY CL455 0 WIUD_3p!LC5 !N_f rign 5_p tt. 5 ECCND F Re _THE_5ECTOR5 IN0!Cg]{0 SECT 04 0 13 0.*5 1.10 1.99 2 83 4.45 6.91 9.59 13.00 TOTAL 5 N 0.0 0.0 0 140 ~ 0.818 1.656 1.49$'~d.224~ 0 0 0.0 ,4 157 NNr e.n ee 0.9e7 1 1*e g 1 72 2 '51 0.17' 0S 0S 6.5?S NE 0.0 0 050 0.857 0.f18 0.768 1.316 0.0 00 0.0 3.SDe

f u.E .C . 0 00 0.229 0.0 ~- 0.0 0.0 ~-0.0 00~ 0.0 0.229 E 0.0 0.5 0.140 '0.0 0.0 ~"0.0 0.0-~ -~0. 0 0.~ 6 6 I*o

_..ESE___0.O__.. 0.050 0.0 0.0 0.0 0.0 0.0 0,0 0.050__

SE 0.0 0.0 0.050.. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05u SSE 0.0 0.0 0.609 c.]{9 0,031__t 090 0.0 0.0 0.0 0 867 5 0.0 0.0$0 0.*59 0.9S7 0.269 OD. 39 0.0 0.0 u0 2.094 55W 0.0 0.0 c.e57 1.226 1.60S 1.067 0.050 00 0.0 6.5f6 Sw 0.0 0.050 1.087 1.226 0.857 0.957 00 00 00 4.177 W5W 0. 0 .___f'. C 5 0__0,2 e 9 0.229_ 0.269 0.409 _0 0 00 00 1 226__.

W 0. 0 - 0.0 0 140 0.090 0.093 C.090 00 00 0.0 0.609 kNW 0.0 0.0 0.0 0.0 0.160 0.096 0.0 0.0 0.0 0.229 Na 0.0 0 090 0.c50 00 0.319 e.229 0 050 00 0.0 0.73e N3W Q,0 00 0 479 0.269 0.678 0.720 00 00 0.0 1 856 701ALS 0.6 0 339 5.773 7.218 7.527 9.760 0 508 00 0.0 31 120'

TABLE 4 (Continued)

._ _ . _ . _ __ STABILiff CL453 t__ . . _ _

dtNn terrOS IN Hrtrat era $rtcNo 84eM Twr 1rcT0n1 IN0fCaTra SECTOR 0 13 0 45 1.10 1 99 2 80 4.45 6.91 9.59 13 00 TQTAL5 N 0.009 0.140 0.588 1.316 0.857 0 4$9 00 0.0 0.0 3 369

_N N E 0 017 0.2$9 11 115._.13316_0.588 _0e359 00 00 0.0 4. 3 ti_

NE 0 046 0 728 0 907 0.548 0.179 0 229 00 00 00 2.638 snr n.nt? n.2s* c. tag o.e 9.0 e.0 9.e 0.n n.e 0.231___

E 0.020 0.319 0 050 0.0 0.0 0.0 00 00 0.0 0.389

___tSt 0,000. 0 090 00 Q2 0.0 0.0 00 3 0.0 0.0 0.096 SE 0.015 0.229 0.090 0.0 0.0 0.0 00 00 0.0 0.334

_55E 0.029 0.459. 0s039___0.090 _0.090__Deo Qto 0.0 0.0 1.3c5 5 0.029 0 439 1 137 0.588 0.583 0 090 00 00 0.0 2.890 11W S 029 c.319 1.406 1.815 0.907 0.409 0 050 0.0 0.0 4.925 SW 0.023 0.359 1 316 1 450 0.818 0 179 0 0$0 00 0.0 *.20J

__N S W 0 011 _2.J29 0.76t_ 0.t179 0 . 0 5.0__Q . 0 Qo 00 0 ._0 1.241 W 0.006 0.090 0 179 0.0 0.0 0.0 00 00 0.0 0.273

_ N NW  % 006 0 090__0.319_._2.119 _ L 9___ _0.0 0:0 0.0 0.0 0 194 Nw 0.011 0 179 0 229 0.209 0.319 0 090 00 00 00 1 098

. NNW d.003 0.050 0.670 0.907 0.319 0.179 0.0 0.0 0.0 2.137 I

T074L 5_0 271 4_,Ul 10118 9 82 664 e d16._1.t994 0 100 0.0 0.0 30.410 l STARIt!?Y CL&$1 8 4 R 1?_Ef05 (N 3(f(1$J [3,$[CgND FROM THE_, SECTOR $. INDIC ATED

_ _ __ SECTOR 0 13 0 45 1.10 1.99 2 80 6.45 6.91 9.59 13 00 TOTAL 5 N 0.006 0.179 1.226 0.319 0.090 0.0 0.0 00 0.0 1.820 l

NME 0.025 0.728 3.998 0.140 0.0 0.0 0.0 0.0 0.0 4.890 i NE 0.017 0.498 1 176 0.2$9 0.173 0 050 00 00 00 2 190 Euf,__0.009 _0.269..,0.090_,0.0 _ 0.0_ 0.0,_00 0.0 0.0 0.368 E 0.009 0.2h9 00 0.0 0.0 0.0 00 00 0.0 0.27e

_ ESE _ c.006 _ 4179 0.0 . _0.0 _ _0.0 _._0.0 __ 0,0 00 0.0 0 185 - -

SE 0.006 0.179 0.C50 0.0 0.0 0.0 00 00 0.0 0.235 11E 0.019 0.S48 0 229 0.0 1.0 0.0 0.0 00 0.0 0.797 5 0.017 0.494 0 078 0.269 Q.0 00 00 00 0.0 1 463

__3 5 W 0,006__0,179 _1.366 _0.229 _0.c._ _0.0 040 00 0.0 1.78t SW 0.006 0.179 U.459 0.359 0.090 00 00 00 0.0 1 093 WIW ___0,002__Q 050__0 179._0.229 0.0 _,_0.0 0.0 0.0 0.0 0.461 W 0.002 0.050 0 090 0.050 0.0$3 0.0 0.0 00 0.0 0.241 WNW 0.0 0.0 0.050 0.0$0 0.0 0.0 00 0.0 0.0 0.10b Nw 0.0 0.0 0 179 0.140 0.0 0.0 0.0 0.0 0.0 0.319

,,_N3W U ._0_Q 3 0.090 0.319 0.498 0.053 0.0 00 0.0 0.0 0.960

.T0tAL L Qal33 3.8_94 10 089 2.552 _0.459 0.050 00 00 00 17 181

TABLE 4 (Conti tued)

$7 ABILITY,CLAS5 0 blNS 10EEC5 IN WETEas pet $rCONS FLD= THE SECTOR $ IN01CATEC SECTDR 0 13 0.65 1.10 1.99 2 83 6.42 0.91 9.*v 13.00 TLTAL5 N 0.002 0.0$0 0.090 0.0 0.0' O.D 0.0 00 0.0 C.162

.._ NNE 0.010_.0,229 C.907 1 0. 2 2 9 . 0. 0 . _._ 0. 0 _ _ _ 0. 0 __0 0_ _. 0,0___1 3 7 6 _

NE 0.010 0.229 1 595 0.090 C.C 0.0 00 00 0.0 1 916 ENE 0.008 0.179 0.16S 0.0 0.C 0.0 0.0 00 0.0 0.327 E o.019 0.6c9 0. esc 0.0 a.c c.0 0.0 0.0 0.0 c.*7.

__ E $ E 0.006__S.090__0,0 0.0 0.C_ 0.0 00 00 0.0 C.096 st 0.00s 0.179 C.c 0.0 0.0 0.0 0.0 00 0.0 0 1P7

___55E 0.0.06__0,090__C,229__0.0 0 0.0 0.0 0.0 0, 0 0.323____

5 0.019 0.609 0.359 0.0 0.C

0. 0.0 0.0 0.0 00 0.767

-5SW 0.006 0.16e C.568 0.0$0 0.0 0.0 0.0 0.0 0.0 0.76=

$m 0.0 0.0 0.609 0.179 0.053 0.0 0.0 0.0 c.0 0.630 W57 0,0 0.0 0 160 0.090 0.0 0.0 00 00 0.0 0.229

~~~E 0.0 0.0 0.0 0.050 0.6 0.0 f~0 00 0.0 0.0$a

___ WNW 0.0 0,0 C . 0_ ___0 . 0 00 0,0 0.0 0.0 0.0 0.0 Na 0.0 0.0 0.0$0 0.050 0.0 0.0 0.0 00 00 0 100 NNW O.0 0.0 0.0* 0.095 0.0 n.0 0.0 0.0 0.0 0.090 TOTALS o.090 2.004 6.506 0.E27 0.,C S D 0.0 0.0 0.0 0.0 7.677 t P * #^ w

TABLE 5 SEQUOYAH NUCLEAR PLANT - INDIVIDUAL DOSES FROM GASEOUS EFFLUENTS THIRD QUARTER 1980 Effluent Pathway Guideline Point Dose Noble gases y Air dose 10 Max. Exp.I 1.4x10 2 mrad S Air dose 20 Max. Exp.I 8.4x10~3 mrad Total body

  • 5 Residence 3 1.1x10 2 mrem Skin 2 15 Residence s 2.3x10 2 mrem Iodines /

Particulates GI Tract 15 Real (critical organ) Pathway 3 3.1x10 ~7 mrem Breakdown of Iodine / Particulate Exposures (mrem)

Child Adult Vegetable 3.0x10 ~7

~

Ingestion 7.7x10 '

Beef ~

Ingestion'

~

6.3x10 ' 3.9x10 '

~

l Inhalation 8.4x10 ~18 3.4x10 '

l l

Cround Contamination 8.1x10 ~18 8.1x10 ~18

~

-Total 3.1x10 ~7 8.5x10 ' ~ '

~

  • These are the annual guidelines per unit defined by Appendix I to 10 CFR 50.
1. Maximum exposure point is at 1,840 meters in the SSW sector.
2. Dose from air submersion.
3. Receptor is at 1,980 meters in the SSW sector.
4. Maximum exposure point is at 730 meters in the NNW sector.

TABLE 6 SEOUOYAH NUCLEAR PIANT - INDIVIDUAL DOSES FROM GASEOU3 T*LUENTS - FOURTH OUARTER 1980 Effluent Pathway Guid eline* Point Dose Noble Gases Y Air dose 10 Max. Exp.' 2.3x10 ~1 mrad S Air dose 20 Max. Exp.3 1.3x100 mrad Total body 5 Resid ence 8 1.2x10 ~I nrem Skin

  • 15 Re sid enc e ' 2.7x10 2 mrem Iodines /Particulates

~

Bone . 15 Real 1.7x10 3 mren (critical organ) Pathway 3 Breakdown of Iodine / Particulate Exposures (mrem)

Child Adult Vegetable Ingestion 1.3x10 -2 1.7x10 1 Beef Ingestion!

~

9.6x10 " 1.1x10

~

Inhalation 7.8x10 " 3.2x10~3 Ground ~ ~

Contamination 4.7x10 " 4.7x10 "

TOTAL 1.3x10 ~1 1.7x10 1

  • These are the annual guidelines per unit defined by Append!x I to 10 CFR 50.
1. Maximum exposure point is at 950 meters in the N sector.
2. Dose from air submersion.
3. Receptor is at 1980 meters in the SSW sector.

I TABl.E 7-CASEOUS EFFillENT POPill.ATION DOSES g Third Quarter 1980 Cl Tract Total Body Infant Child Teen -Adult Totals Infaat Child Teen Mult Totals

  • i Sutocrsion 2.07E-03 1.29E 8.20E-03 3.80E-02 6.llE-02 2.07E-03 1.29E-02 8.20E-03 1.30E-02 6.llE-02 Ground 6.98E-Il 4.35E-10 2.77E-10 1.28E-09 2.06E-09 6.98E-Il 4.35E-10 2.77E-10 1. 28 E-09 2.06E-09

. . Inhalation ' t . 24 E-10 1. 42E-09 ' 4.40E-10 l'.70E-08 1.90E-08 2.81E-Il 3. 23 E-10 1.00E-10 3. 86E-09 4.31 E-09 Cow Mllk 1.63E-09 4.79E-09 1. 02 E-09. 3. 31 E-09 't.08E-08 2.59E-13 7.60E-13 1.62E-13 5.2 5 E- 13 1.71E-12 Beef Ingestion :0.0' 4.64E-09 1. 5tlE-09 8.20E-09 1. 44 E-08 0.0 7.37E-13 2.51E-13 1.30E-12 2.29E-12 Veg Ingestion 0.0 2.59E-OH 8.95E-09 4.33E-08 7.81E-08 0.0 4.IIE-12 1.4 2E-12 6.87E-12 I.24E-11 Total N not.em 2.07E-03 I.29E-02' 8.20E-03 3.80E-02 6.1IE-02 2.07E-03 1.29E-02 8. 20E-01 3. 80E-02 6.1IE-02 t

Fourth Quarter 1980 Bone Total Rody Infant Child Teen Mult Totals Infant Child Teen Adult Totals

. Sulmersion 2.63E-02 1.64E-01 1.04E-01 4.83E-01 7.78E-0! 2.63 E-02 1. 64 E-01 1. 04 E-01 4.83E-01 7.78E-01 Crmai=1 4 24E-05 2.64E-04 1.68E-Q4 7.79E-04 1.25E-03 4.24E-05 2.64E-(% 1. 68 E-(M 7.79E-(M l . 25 E-03 Inhalation 1. 52 E-04 1. 74 E-03 5.43E-04 2.14E-02 2.38E-02 9.33E-06 1.07E-04 3.33E-05 1.31E-03 1.4hE-03 Cow Mllk' 4.18E-04 1.66E-03 6.52E-04 2.19E-03 5.00E-03 1.02E-04 4. 29 E-04 1. 59 E- O'e 5. 34 E-04 1.22E-03 B:ef Ingestion ,0.0 7.46E-04 4.39E-04 2.37E-03 3.55E-03 0.0 1.82E-04 1. 07 E-f% 5. 7 7 E-(n 8.66E-04 Veg Ingestion 0.0 9.23E-03 5.54E-03 2.83E-02 4.31E-02 0.0 2. 25 E-03 1.35E-03 6.90E-03 1. 0$ E-02 i

4

' Total Man-kene 2.69E-02 1.78E-01 1. ll E-01 5. 38E-01 8.55E-01 2.65E-02 1.67E-01 1. 06 E-01 4. 94 E-01 7.9 F-01 1

9

?

l 4 i

,- . - - - - - . = , .- .

- ' ~

5 3 1 0 - 1 0_

N. 0 0 0 o ~

t . a - - i ' - R.

I 0

0

+

n t E f t 3 2 -

n E E

$ 7 7 3 6 0 D -- s 5

~. ~N . - - 7, 4 e 3 7 I . E r - 3 7

-T N5 K.

. 9 6 I .

~

5 2 1

~

1

_ T.v T.0 E 1_ ~ -

1 1 0 o _

m.

s i

0 6

i _

C.0 w 8 .

3 o

2 6

- t .

s 0

0 v 't 3

r E E _ S = - - ii E E i 2 _ L E E - l .

L. i. T.  ; .

A 3

i. T. 2, 7 1 S 1 T S. ~

S 1 O. 2 2 T .

Y. V.

0 S & b .

0 S 3 1 6 0 0 0 1 0

s. 0 0 6 N =  ; 4 . 0 0 To = - i - +

L S 7 t

7 F r i RI W E 0

i.

F E t T 5, E TS '9 A

S.

7 0 O T .

F. 8 3 D A w.

7 - i 0

1 3 7 8 .

i 9 9

v.D t .Y.

  • 1 R

O0 8 S

o

=

_4

_o -

E D.

I

. 4 2 0

1 0 D O B.

A L A

E 7

f 0 . 1 0

. T ~o 5 t 0 0 R

A U

O Y

f-o.

E 1

E 5

- I F

7 T .

O.

T .

2 1 o.

A T

E 6,

E 7

H 3 .

S E

Q T . 3 S 3 f W 1 1, S D 3 6 A R 0 _0 E 3 N L I E t E

R

- T C

. 4 o

2 0

0 g

1 6

R.S .

E.

E.

I.

7 3  ? . 0 1 t . 0 9 S - +

L E 4

R f

=

E E 6 A T l A E 1

1 A

T O

S A

E l.

l. 1 O.

5 3 1 p

, U 1

W.Y N.D 5

_1 5

t .

~

l . 1 0, 1 2

T L i.

J I .O.B . 0 5 c.

=

E L f l 8 - R E S E A

T O

f.

2 G L E N 3 1 q } T o 3 B S I 0 0 q 0 ' g 0 A O T E . 6 - * + ' t i ,t D N E E E l i E i T U D 1 9 la lu c O D. 3 o. B a T

N R 1 1 T 2

_

  • M r E T U N L A F L F P E

R D A I E U L Q C I U ) l L N M l M E

I U

R G

)

E R~ E I

M i R

i E

I M

Al A - R ~ R - R Y M N RN N '~ M1 N M O ( A IQ A~ IQ A I U _)

.F M

I S M'

( 5_

M L_

M E

Q tA 6 . E fi t_ E E $A 5O - 5Q _ S R.

S OV E 0L E 0L E O N 5 0[ 3 0E f A D_ ( D 8 0 0 D_ t P

L . D L 0 L S. L I AC AE AE D_ A UN NR UM t" a UK NR U a DI UE DA '0 t DA Dt D br I  !

N I 1V IV L. !v l 5y V. !I V 1_ 1I fi Y 0l IA

/

IC AI L 4 IA DS AR L

lA 0G Ah L

I D 0 l.

N j

NI U f- 0 NU UE NU tJE U NE PL 1 IA P( IA PE OE fj I_ P E O5 T M Ds M ') 5 I. ,

I1 l 4N P5 P MA s NA s M Ti

i. UA E M UN P. E UM F_ r U At E M LN L U ML LN N MC Lu M La G II At 5 I1 AN O II AP I Ut N KC TE 4 t

K !d 1t I RH IE M PE I AI OT a Af 07 T DT A O T C H 1 A M P' LJ l

l A

6 A 6 H

S I

F A

s

~

f d

C F

R A

a

. C_ I_

8 L

A T

T O

d A S f I t V I i I l

l I  !

l f' l

@ mel =4 sO l *e O 2* e eu Og . O 10 * ' l . .E* O O me a 6s af 31 t+ l t == e8 8( **

we . we tas :w a  :# w se ene I and eMB e 4l O 'e O O . e4 e CD es

,i ee g e ie .

2e i e e e e

m e e e i < es e as t ens as a de 9 O l ens e'eM e e ae 2 o+
  • O de i e i 4

==,a

. e. l

- i e

ens .. > e i i

et ee == se og e. O e me

  • O Q O OeOe ff en ee .Os s's ;e ae O *G ed. t0 al e 2eee O gC en a 5: l *e .

3a e e ens end anJ ens we o e 4 e 4> as us i and me o P O og me .4 e end t ene iem se d>= ==0 4e , e W 4 e se e erg ice .a a e e i et .* apt es e= a e i e d' e4 oe el ie

> e. I

>e >a O8 s't # 1 O es da we m == O O O 10 ed me C el e O O Q O 2e e e ie Q I2 t t 81 + ** e end ens a ej e4

  • J e ene end and eas aawe ei e t% ma and es e on e e e a e esa e m a e e 6 as e O ce g e 1 e e >e ed ee e= e e e M Qe m get am e an e. i. O et e eq pe e 2 et s= a f.0 @ se>a W ee .ns es O e tA > e. O e es
  • M O ea e e O O w w m e er e a: s e p ci e et == 0 asaJe ed aan toe .4 a y g me e Qe

.O O Q ej O

+

as e

>e O

e

  • e 8 == a C4 0 E 4, 8 9 - e I Q et e6 *9 as e j ene end ens one Oe ed se ae end end
  • 3* e Ie f Q d >= a >= e a 43 faa C %8 [ e < a e Zq e g g _

-. es e e -, - as m a m O e

O a

U z

==

i ,ee m .

me e e se -e er a wt e e e o= a sa ==

C to oe o a O wa su a ua O c 4 W *e e a e + >m as se ei of

.e t,n eg e ens eel ens me e at E and one m .q* Po e ce Q ab 3 e D= a o= E e SI "g"g ,e $ e a' e 8 Se O e e 4 y me e en en n me Zeoe e4 m m ==

w w u e -ees a O ==

o n.

e z x _. e e, en, se as e og O M 32 W >e e e a M g e

Oe en 4 cc g e.,e ** "J ee D= 4 C et 4 y O C C O O C enie a e * + ens a de e N 2e eaa and end ens z4 and and 1 C 5o -e 4 sq pe Oe ce 8=.

d. ge e 4 4 e ea e i f.0 4 en == sa =e r= =

W h CA 2 k

N C.e H

b 6

! 6 d

w d e I =  ;

! W z ,e

,, y- ,o y1 31 .e C *'"

$ ena E and 2* ene C 1 >==

p al end at eaa aJ tas eC and i

),a er s eg > a e e c 21 Z ZF 2" E2 2 A

, ca

. p =* =a E

wa E

as == 0 =4 ='* a E,

i

  • S O

==> en e4 C l

W s en an s me saa

, as as i est 1 t u i

to wt me we c wt Q t w1 e 3> ena 0- emi C' -a ese Q Z Q om vs O eni wt O ens wt Q as O e Q E l

.e

=) Q J as em,

.J e et Q -s l ==

=4 u se ene e as 32 2e 3 as W 3 34 2 er 3 e Q ee o en O4 Q ens O as d .aa Q ens one se me 3 oo e4 3p ee .J ene > e's we 3$

$ = o= == > o o me . > a **== :se O e4 ao se se e == 4 4 et ce at at et me Qe Ou a 2' OC .A O L3 A Q 3' 4 == 3 en O 2 4 ans Z3 Q and Tn3 Z en C ee er ek == == == eu an aae == es a. ens = 0 na e'i j end CW t= I Q em $ Q e4 == W' D$ X db w & T4 Oswp E ad enen I >w e$ Q .E If E 3 31 t ens 3 mi i saa  : as eni 3 .J 3 E% .J Z 2 Eu .82 E # *1 ee == =a we ==== a4 2 O se me at Z =e 32 se u e- 2 st 2 == ens == st 3 *'*W W ek ==

ej se Q>, Q es e,. Q >= >= ee Q Q p= at O>-

3 0= u E e" me E #

M' &

a' ene J T 5 as ed.*i e

  • we e < u e o > o e aF el 8 e= as e es as & C e 8 3I en. E >=

. e e e a6

.em se >

. se se me

,- 1 TABLE 10 i

LIQUID EFFLUENT DOSES - TOTAL RELEASES SEQUOYAll NUCLEAR PLANT ROUTINE RELEASES - 4Til QUARTER 1980 RON, r-L_T R ACT. THY A010. YDTAC_BUDY LIVER SKIN _

..... e...

e.,e ... esses e...... ..... ....

!. -!?$=. !'GG5?!D" _

^_ M AXIMUR_1tJDI VIOU AL_005EJMEEM t 3.4E-03 4.6E-04 7.6E oS 1.2E-o* t _. 6 E -05..._.

1.6E-03 ICI AMERILAs INC. (VAAP) -

4. TOTAL DOPULATIDH 00$E INAN Reil 4.sE,at va t-02 IJEr02 Z,1l-QL 1. 3 E -0 2_

2,71.nl

,puatuf f s tuse

!!. FISH CONSUMPTIQN -- - - . . _ - . . . - - . - _ _ . . _ . _ . - -

A. MAXIMUM IN0lV100AL DOSE (MREMI 1.hEt0Q 3.3L-D1 5.3E-01 0.3E-01 .3 3E-01__

t r 64 t CKAM AUG A.L AKf_J1 ELD.L3 QN 1.4Etol_

70TAL_PDFULATIDM. DOSE tMAN.R531 1.oE*01 1.0E.01 1.6E.01 1.0E.01.__

t_ 2.6E+02 2.9E*01 - .

TENNESSEE RIVER -- -

JN-WATER ABOVE-hATEn 550*ELIN[

.eg.sesses. . .....e..

III. RECaEATION

.meaness .___

Sk!k 5AIN TOTAL 90DV Su!N TOTAL acDv TOTAL BDDY senemmeses.__ mess ...se..... _ =m . . __ _..........___..=> _. __

A. MAXIMUM IN0!VIOUAL DOSE (MREM) 4.3E.04 9.7 E-05_4.2 E-oi _ __2.4E-o3 _ 2. E-0 3 __.

9.9E 05 CHICKAMAUGL LAKE SELOW.3QN.

2.oE-02 2.3E-C2

.4 TOTAL _DCFUL&!!Dft DOSE __tM AN RLil_ _. . 1 2E-04 4.05-04 3.2E-04. _ _ - _ . .1.cf 03 TENNESSEE RIVER THYR 01D TOT AL' ~E,0DY~ ~ ~ ' LIU R ~ ~ '  !*IN -

BONE GI TRACT ..... ....

IV. TOTAL .... a g_m ,_nm .y....e .e..._.... .

9.4Er0L 3.3E-01 9.6E-01 . _ 5. 3 E-01_

1.6Ee01 1.6E+on a_ MAKIMUM_INalVIDUAL_ DOSE _INAEM)

(MAN REM) 1.6E.01 1. C E ,01_

A. 2_6D08 1.0f+01 t enE*D1 1.CEe01 PD.PULATION 5-=5s.$1s_JLis t005E e

TABLE 11 LIQUID EFFLUENT DOSES - TURBINE BUILDING SUMP RELEASES SEQUOYAll NUCLEAR PLANT ROUTINE RELEASES - 4Til QUARTER 1980 SONE GI TRA Q THYROIO TOTAE 800y (IVan SKIN t_ WAfeP f f ME t Y f f1H L

MA11tiutLlhulMluuALD01E _.tM.RD11 ICI AMERICAS it:C .~ ( V A A P ) 1.3E-02 1.5E-04 iWO3 5.1E-05 87GB5 3.lE-DI

a. TOTAL PCPUL ATiliti 005E (MAN AE11 TfNNr%5LF Rly[R 2.2E-01 2.SE-02 8.5E-03 8.5E-03 1.4E-02 8.5E-03 II. FI5H C0f450HP710tl A. MAXIMUM lil0lVIDUAL DOSE ( Mr.E M )

CHtCW AMAIJG A L AKE BEL 0d S Qre 1.1E+01 1.3E*00 4.4E-01 7.0E-01 4 '. 4 E -01 4.4E-01 R-70rALf 0EUL A110!LLD3 E IN AN RM1 TENNESSEE RIVER 2,1E+02 2.4E+01 8.2E+00 8~.2E+00 1.3E*01 8.2E+00 III. RECREATION IN-WATER ABOVE-WATER SHORELINE TOTAL 66 SKIN TOTAL BdDY $ KIN TOTAL adDY -$ KIN A. MAXIMUM INUIVIOUAL 005E (MREM)

ClilGKaf11!)GA3AELDELQ1_1QN

  • 1aM-05  ! ale-05 1.5E-05 Ig5E-05 0.0 0.0 A. YnIAL_EDEULATID!Lc0$L_t!!A!idul *3 '

TENNESSEE RIVER 2.6E-05 2.6Esos 6.7E-05 6 7 G65 0 /J 0.0 IV. TOTAL SDRE GI TKIT.T THYRUID TUFA M DOY LIV 8R 3KIM A. M A XIMllM Iflu lVIDl! ALDQiU NRE M I 1 1E+01 13 }E*00 4.4E-01 4.4E-01 7.0E-01 4.4E-01 8 POPULAT!0tl DOSE ( tt AN-R E M )

T F UNFL1E F RIVER i 2.1E+02 2.4E+01 8.2E+00 8.2E+00 1.3E+01 8.2E+00 i