ML17309A609

From kanterella
Jump to navigation Jump to search
Forwards Rev 13 to Rg Ginna Power Plant Ufsar.Detailed Set of Intructions Included in UFSAR Package,Identifying Pages to Be Removed & Replaced,Including Tables & Figures
ML17309A609
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/16/1996
From: MECREDY R C
ROCHESTER GAS & ELECTRIC CORP.
To: VISSING G
NRC (Affiliation Not Assigned), NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17264A769 List:
References
NUDOCS 9612230393
Download: ML17309A609 (1437)


Text

[[:#Wiki_filter:T05000244ENOTES:LicenseExpdateinaccordancewith10CFR2,2.109(9/19/72).CA.'j.aiU8.Xj.REGULATORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS)cACCESSIONNBR:9612230393DOC.DATE:96/12/16NOTARIZED:NODOCKETFACIL:50-244RobertEmmetGinnaNuclearPlant,Unit1,RochesterG05000244AUTH.NAMEAUTHORAFFILIATIONMECREDY,R.C.RochesterGas!'lectricCorp.RECIP.NAMERECIPIENTAFFILIATIONVISSING,G.

SUBJECT:

ForwardsRev13toRGGinnaPowerPlantUFSAR.Detailed'etofintructionsincludedinUFSARpackage,identifyingpagestoberemovedareplaced,includingtablesafigures.DISTRIBUTIONCODE:A053DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ORSubmittal:UpdatedFSAR(50.71)andAmendmentsRECIPIENTIDCODE/NAMEPD1-1PDINTERNAL:AEOD/DOA/IRBRGN1EXTERNAL:IHSNRCPDRCOPIESLTTRENCL101111NOACRECIPIENTIDCODE/NAMEVISSINGiG.11~CENTER111COPIESLTTRENCL112211DUNOTETOALL><RIDSnRECIPIENTSPLEASEHELPUSTOREDUCEWASTE!CONTACTTHEDOCUMENTCONTROLDESK,ROOMOWFNSD-5(EXT.415-2083)TOELIMINATEYOURNAMEFROMDISTRIBUTIONLISTSFORDOCUMENTSYOUDON'TNEED!5TOTALNUMBEROFCOPIESREQUIRED:LTTR9ENCLP i'i ANDROCHESTERGASANDEIECTRICCORTORATION~RREASTAYENIIEROCHESTER,NTId6.6RDDD)JrAREACODERI6566RRDDROBERTC.PAECREDYVicePresidentNvcteorOperotionsDecember16,1996U.S.NuclearRegulatoryCommissionDocumentControlDeskAttn:GuyVissingProjectDirectorateI-1Washington,D.C.20555

Subject:

SubmittalofUpdatedFinalSafetyAnalysisReport(UFSAR),Revision13R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(a):LetterfromR.C.Mecredy,(RG&E),toG.S.Vissing,(NRC),

Subject:

SubmittalofanInterimUpdatetotheUpdatedFinalSafetyAnalysisReport(UFSAR),Revision13-1,datedJuly22,1996

DearMr.Vissing:

Inaccordancewith10CFR50.71(e),RochesterGasandElectrichaspreparedRevision13totheUpdatedFinalSafetyAnalysisReport(UFSAR).Enclosedaretheoriginaland10copiesoftherevisedpages.TheinformationpresentedinRevision13reflectschangestothefacilityasdescribedintheUFSARandinformationandanalysessubmittedtotheCommissionorpreparedpursuanttoCommissionrequirementssinceourlastannualupdate(Revision12)submittedDecember18,1995andtheinterimupdate(Revision13-1)submittedbyreference(a).Followingthissubmittal,itisourintenttomodifyourannualUFSARupdatesubmittalintervaltoanintervalofwithin6monthsaftereachrefuelingoutage.Thismodificationisconsistentwith10CFR50.71(e)andwillresultinasubmittalbeingmadeapproximatelyevery18monthsorasdictatedbythenewfuelcyclerecentlyinstitutedbyRG&E.Asdescribedinreference(a),RG&Esubmittedaninterimupdate(Revision13-1)totheUFSARduetosignificantchangesthathadoccurredresultingfromsteamgeneratorreplacement,ourconversiontoan18-monthfuelcycle,andthereductioninT~G.UFSARsectionsthatwerecompletelyreplacedforRevision13-1wereidentifiedandclarifyinginformationabouttheupdatewasprovided.'st6122303'tt3'ts61216PDRADQCK05000244KPDRI11

ForRevision13,RG&EissubmittingtheremainingsectionsoftheUFSAR(i.e.,thosenotpreviouslysubmittedinRevision13-1),allofwhichhavebeensimilarlyrevised.Inaddition,thefollowingisareiterationoftheclarifyinginformationthatwasprovidedinRevision13-1.ThesubmittedUFSARsectionssupersedeandreplacetheexistingsectionsintheirentirety,includingtheTablesattheendofthesection.TheprimaryreasonforthiswastheconversionoftheUFSARtoasinglewordprocessingsoftware.Thenewsoftwarewaschosentosupportongoingeffortsforanimproved,fullelectronicallytext-searchableUFSAR.Thisconversion,andformatchangestoachieveconsistency,necessitatedre-issuanceofeachpage.Inaddition,wehaveincorporatedanumberofnomenclatureenhancementstomatchtherecentlyapprovedStandardTechnicalSpecificationnomenclature,inaccordancewiththepreferenceoftheNRCandRG&Estaff.Thisincludedsuchitemsastheadditionofacronyms,suchasRWST,ECCS,LTOP,RTS,MSSVs,MSIVs,etc.,whichareutilizedextensivelyintheTechnicalSpecifications,butnotpreviouslyusedintheUFSAR.Theseadditionsareconsideredadministrativeandwerenotdepictedwithachangebar.Inadditiontotheentiresections,anyTablesthatareincludedattheendofeachofthesesectionsarealsobeingtransmitted,sincetheyhaveallbeenreformatted,eventhoughthetabularvalueswithintheTablemaynothavechanged.PagenumbershavealsobeenremovedfromTables,sincetheTablenumberitselfisunique.AlargenumberofFigureswerealsoreplaced,however,onlynewormodifiedFiguresarebeingtransmitted.AdetailedsetofinstructionsareincludedintheUFSARpackagewhichidentifythepagestoberemovedandreplaced,includingtheTablesandFigures.ThesubmittalalsoincludestheTableofContentsforthesectionssubmitted,aswellastheupdatedListofEffectivePages.Inordertoidentifychangestoorremovalofexistingtext,thefollowingconventionwasadopted:~Changebarsappearintherightmarginofthepage,adjacenttothechange.~NewtextornumericvaluesareprintedinBoldforeaseinrecognition.~Sub-sectionsthatweredeleted,butnotreplacedwithnewtext,areidentifiedwithachangebarinthemarginadjacenttoablankarea.Thefooterofeachpagecarriestherevision"1312/96".ApagethatdoesnotincludeachangebarreflectsthatthetextonthepagewasunchangedfromthepreviousUFSARrevision,althoughtheplacementofthetextonthepagewouldappeardifferentfromthepreviousrevisionandthepagenumbersmostprobablywouldnot 7L coincidewiththepreviousrevision.Alsoincludedareindividualreplacementpagesforsectionswhichhadpreviouslybeen'ubmittedinRevision13-1andwhichhavesincebeenrevised.Instructionsfortheirreplacementhavebeenincludedinthedetailedsetofinstructionsprovided.Verytrulyyours,RobertC.MecredyAttachmentGT4445xc:Mr.GuyVissing(MailStop14C7)ProjectDirectorateI-1Washington,D.C.20555U.S.NuclearRegulatoryCommissionRegionI475AllendaleRoadKingofPrussia,PA19406GinnaSeniorResidentInspector I ANDROCHESTERGASANDELECTRICCORPORATION~89EASTAVENUE,ROCHESTER,N.Y.M6d9-0001AREACODE7165'.2700ROBERTC.MECREDYVicePresidenthlveleorOperotionsDecember16,1996U.S.NuclearRegulatoryCommissionDocumentControlDeskAttn:GuyVissingProjectDirectorateI-1Washington,D.C.20555

Subject:

SubmittalofUpdatedFinalSafetyAnalysis"Report(UFSAR),Revision13R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(a):LetterfromR.C.Mecredy,(RG&E),toG.S.Vissing,(NRC),

Subject:

SubmittalofanInterimUpdatetotheUpdated.FinalSafetyAnalysisReport(UFSAR),Revision13-1,datedJuly22,1996

DearMr.Vissing:

Inaccordance'with10CFR50.71(e),RochesterGasandElectrichaspreparedRevision13totheUpdatedFinalSafetyAnalysisReport,(UFSAR).Enclosedaretheoriginaland10copiesoftherevisedpages.TheinformationpresentedinRevision13reflectschangestothefacilityasdescribedintheUFSARandinformationandanalysessubmitted-totheCommissionorpreparedpursuanttoCommissionrequirementssinceourlastannualupdate(Revision12)submittedDecember18,1995andtheinterimupdate(Revision13-1)submittedbyreference(a).Followingthissubmittal,it,isourintenttomodifyourannualUFSARupdatesubmittalintervaltoanintervalofwithin6monthsaftereachrefuelingoutage.Thismodificationisconsistentwith10CFR50.71(e)andwillresultinasubmittalbeingmadeapproximatelyevery18monthsorasdictatedbythenewfuelcyclerecentlyinstitutedbyRG&E.Asdescribedinreference(a),RG&Esubmittedaninterimupdate(Revision13-1)totheUFSARduetosignificant.changesthathadoccurredresultingfromsteamgeneratorreplacement,ourconversiontoan18-monthfuel.cycle,andthereductioninT~t;.UFSARsections'thatwerecompletelyreplacedforRevision13-1wereidentifiedandclarifyinginformationabouttheupdatewasprovided. I ForRevision13,RGGEissubmittingtheremainingsectionsoftheUFSAR(i.e.,thosenotpreviouslysubmittedinRevision13-1),allofwhichhavebeensimilarlyrevised.Inaddition,thefollowingisareiterationoftheclarifyinginformationthatwasprovidedinRevision13-1.ThesubmittedUFSARsectionssupersedeandreplacetheexistingsectionsintheirentirety,includingtheTablesattheendofthesection.TheprimaryreasonforthiswastheconversionoftheUFSARtoasinglewordprocessingsoftware.Thenewsoftware.waschosentosupportongoingeffortsfor.animproved;fullelectronicallytext-searchableUFSAR.Thisconversion,'nd"formatchangestoachieveconsistency,necessitatedre-issuanceofeachpage.Inaddition,wehaveincorporatedanumberofnomenclatureenhancementstomatchtherecentlyapprovedStandardTechnicalSpecificationnomenclature,inaccordancewiththepreferenceoftheNRCandRG&Estaff.Thisincludedsuchitemsastheadditionofacronyms,suchasRWST,ECCS,LTOP,RTS,MSSVs,MSIVs,etc.,;,whichareutilizedextensivelyintheTechnicalSpecifications,butnotpreviouslyusedintheUFSAR.Theseadditionsareconsideredadministrativeandwerenotdepictedwithachangebar.Inadditiontotheentiresections,anyTablesthatareincludedattheendofeachofthesesectionsarealsobeingtransmitted,sincetheyhaveallbeenreformatted,eventhoughthetabularvalueswithintheTablemaynothavechanged.PagenumbershavealsobeenremovedfromTables,sincetheTablenumberitselfisunique.AlargenumberofFigureswerealsoreplaced,however,onlynewormodifiedFiguresarebeingtransmitted.AdetailedsetofinstructionsareincludedintheUFSARpackagewhichidentifythepagestoberemovedandreplaced,includingtheTablesandFigures.ThesubmittalalsoincludestheTableofContentsforthesectionssubmitted,aswellastheupdatedListofEffectivePages.Inordertoidentifychangestoorremovalofexistingtext,thefollowingconventionwasadopted:~Changebarsappearintherightmarginofthepage,adjacenttothechange.~N'wtextornumericvaluesareprintedinBoldforeasein"recognition.~Sub-sectionsthatweredeleted,butnotreplacedwithnewtext,areidentifiedwithachangebarinthemarginadjacenttoablankarea.Thefooterofeachpagecarriestherevision"1312/96".ApagethatdoesnotincludeachangebarreflectsthatthetextonthepagewasunchangedfromthepreviousUFSARrevision,althoughtheplacementofthetextonthepagewouldappeardifferentfromthepreviousrevisionandthepagenumbersmostprobablywouldnot

coincidewiththepreviousrevision.AlsoincludedareindividualreplacementpagesforsectionswhichhadpreviouslybeensubmittedinRevision13-1andwhichhavesincebeenrevised.Instructionsfortheirreplacementhavebeenincludedinthedetailedsetofinstructionsprovided.Verytrulyyours,RobertC.MecredyAttachmentGT4445xc:Mr.GuyVissing(MailStop14C7)ProjectDirectorateI-1Washington,D.C.20555U.S.NuclearRegulatoryCommissionRegionI475AllendaleRoadKingofPrussia,PA19406GinnaSeniorResident,Inspector

R.E.GINNANUCLEARPOWERPLANTUPDATEDFINALSAFETYANALYSISREPORTThefollowingRevision13instructionsindicatereplacementpagesandadditionalorremovedpagesfortheUpdatedFinalSafetyAnalysisReport.Removetheexistingpagesandinsertthereplacementandadditionalpageswhereindicatedbytheseinstructions.CAUTION:AlthoughalloftheTablesinthefollowingUFSARsectionsarebeingreplaced,NOTalloftheFiguresarebeingreplaced.Pleasefollowtheseinstructionscarefully.NOTE:TablesareinsertedafterthelastnumberedtextpageinasectionandbeforetheFiguresforthatsection.InsertVOLUMEILEP-1/LEP-2throughLEP-15/LEP-161-i/1-iithrough1.ix/1-x1.1-1/1.1-21.2<<1/1.2-2through1.2-17/blankFigure1.2-11.3-1/1.3-2through1.3-19/blank1.4"1/1.4-21.5-1/1.5-2through1.5-17/blankLEP-1/LEP-2throughLEP"17/LEP"181-i/1-iithrough1.ix-1-x1.1-1/1.1-21.2-1/1.2-2through1.2-19/1.2-20Figure1.2-11.3-1/1.3-2through1.3-3/1.3-4Table1.3-1Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Sheet7Sheet'8Sheet9Sheet10Sheet11Sheet12Sheet13Table1.3-2Sheet1Sheet21.4-'1/1.4-21.5-1/1.5-2through1.5-17/1.5-18

Insert1.6-1/1.6-2through1.6-11/blank1.7-1/1.7-2through1.7-13/1.7-141.6-1/1.6-2through1.6-9/blank1.7-1/blankTable1.7-1Table1.7-2Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6.Sheet7Sheet8Figure1.7-1Sheet3Figure1.7-1Sheet31.8-1/1.8-2through1.8-59/1.8-602-i/2-i'hrough2-vii/blank2.1-1/2.1-2through2.1-7/blank2.2-1/2.2-2through2.2-11/blank2.3-1/2.3-2through2.3"47/2.3-481.8-1/1.8"2through1.8-69/blank2-i/2-11through2-vii/blank2.1-1/2.1-2through2.1-7/blank2.2-1/2.2-2through2.2-7/blankTable2.2-1Sheet1Sheet2Sheet3Table2.2-22.3-1/2.3"2through2.3-17/blankTable2.3-1Table2.3-2Table2.3-3Table2.3-4Table2.3-5Table2.3-6Table2.3-7

Insert2.4-1/2.4-2through2.4-21/blank2.5-1/2.5-2through2.5-15/2.5-16Table2.3-8Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Sheet7Table2.3-9Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Sheet7-Table.2.3-10Table2.3-11Table2.3-12Table2.3-13Table2.3-14Table2.3-15Table2.3-16Table2.3-17Table2.3-18Table2.3-19Table2.3-202.4-1/2.4-2through2.4-19/2.4-20Table2.4-1Table2.4-2Sheet1Sheet2Sheet3Sheet42.5-1/2.5-2through2.5-11/2.5-12Table2.5-1Table2.5-2VOLUMEIIGhaxd~3-i/3-iithrough3-xxvii/blank3.1-1/3.1-2through3.1-83/blank3.2-1/3.2-2through3.2-25/3.2-263-i/3-iithrough3.xxxiii/3-xxxiv3.1-1/3.1-2through3.1-93/3.1-943.2-1/3.2-2through3.2-11/blank"3-

Iamain3.3-1/3.3-2through3.3-43/blank3.4-1/3.4"2through3.4"5/3.4-63.5-1/3.5-2through3.5-21/3.5-223.6-1/3.6-2through3.6-65/blank3.7-1/3.7-2through3.7-49/blank3.8-1/3.8-2through3.8-227/blankInsertTable3.2-1Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Sheet7Sheet8Sheet9Sheet10Sheet11Sheet12Sheet13Sheet14Sheet153.3-1/3.3-2through3.3-49/blankTable3.3-1Sheet1Sheet23.4-1/3.4"2through3.4-5/3.4-63.5-1/3.5-2through3.5"25/3.5-263.6"1/3.6-2through3.6-65/blankTable3.6-1Sheet1Sheet2Sheet3Table3.6-2Sheet1Sheet2Table3.6-33.7-1/3.7-2through3.7-51/3.7-52Table3.7-1Table3.7-2Sheet1Sheet2Table3.7-33.8"1/3.8-2through.3.8-229/blank

InsertTable3.8-1Sheet1Sheet2Table3.8-2Table3.8-3SheetSheetTable3.8-4Table3.8-5SheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheet12345678910111213Sheet16Table3.8-6SheetSheetSheet3Table3.8-7Table3.8-8SheetSheetTable3.8-9Sheet1Table3.8-10Sheet1Sheet2Table3.8-11SheetSheetTable3.8-12Table3.8-13Table3.8-14Table3.8-15SheetSheetSheetSheet234Figure3.8-48Table3.8-16Table3.8-17Table3.8-18Table3.8-19Table3.8-20Table3.8-21Table3.8-22Table3.8-23Figure3.8-48

L~d~nVOLUMEIII3-i/3-iithrough3-xxvii/blank3.9-1/3.'9-2through3.9-107/blankInsert3-i/3-iithrough3-xxxiii/3-xxxiv3.9-1/3.9-2through~3.9-93/3.9-94Table3.9-1Table3.9-2Table3.9-3Table3.9-4Table3.9-5Table3.9-6Table.3.9-7Table3.9-8Table3.9-9Table3.9-10Sheet1Sheet2Sheet3Sheet4Table3.9-11Table3.9-12Table3.9-13Table3.9-14Table3.9-15Table3.9-16Table3.9-17Table3.9-18Table3.9-19'Table3.9-20Table3.9-21Table3.9-22Table3.9-23Table3.9-24Sheet1Sheet2Table3.9-25Table3.9-26Sheet1Sheet2Sheet3Table3.9-27Table3.9-28Table3.9-293.10-1/3.10-2through3.10-29/blank3.10-1/3.10-2through3.10"21/3.10"22Table3.10-1Sheet1Sheet2Table3.10-2Table3.10-3Table3.10-4Table3.10-5Table3.10-6

Insert3.11-1/3.11-2through3.11-31/blank3.11-1/3.11-2through3.11"19/3.11"20Table3SheetSheetSheetSheetSheetSheetSheetSheetTable3SheetSheetTable.3SheetSheetTable3SheetSheetTable3SheetSheetTable3.11-112345678.11-212011-312.11-412.11-512.11-64-1/4-iithrough4-v/4-vi4.1-1/4.1-2through4.1-5/blank4.3-1/4.3-2through4.3-13/blank4.5-1/blank4.6-1/blank4-i/4-iithrough4-v/4-vi4.1-1/4.1-2through4.1-5/4.1"64.3-1/4.3-2through4.3-13/blank4.5-1/blank4.6-1/blankVOLUMEIVaha~~5-i/5-iithrough5-ix/blank5.1-1/5.1-2through5.1-17/5.1-185-i/5-iithrough5-ix/blank5.1-1/5.1-2through5.1-15/blankTable5.1-1Table5.1-2Table5.1-3Table5.1-45.2-1/5.2-2through5.2-45/5.2-465.2"1/5.2-2through5.2-45/blank"7-

Insert5.3"1/5.3-2through5.3-31/5.3-32Table5.2-1Table5.2-2Table5.2-3Sheet1Sheet2Sheet3Table5.2-4Table5.2-5Table5.2-6Table5.2-7Table5.2-8Table5.2-95.3-1/5.3"2through5.3-25/bl'ankTableTableTableTableTableTableTableTableTableTable5.3-15.3-25.3-35.3-45.3-55.3-65.3"75.3-85.3-95.3-105.4-27/5.4-28through5.4-63/blankFigure5.4-76-i/6-iithrough6-xvii/6-xviii,6.1-1/6.1-2through6.1-27/6.1-28Figure6.2-79Sheet16.3-1/6.3-2through6.3-55/blank5.4-27/5.4-28through5.4-63/5.4-64Figure5.4-76-i/6-iithrough6-xvii/6-xviii6.1-1/6.1-2through6.1-21/6.1-22Table6.1-1Sheet1Sheet2Table6.1-2Table6.1-3Table6.1-4Table6.1-5Table6.1-6Table6.1-7Figure6.2-79Sheet16.3-1/6.3-2through6.3-49/6.3-50

Xnsert6.4-1/6.4-2through6.4-13blank6.5-1/6.5-2through6.5-25/blankTable6.3-1Sheet1Sheet2Sheet3Table6.3-2Table6.3-3Table6.3-4Table6.3-5Table6.3-6Sheet1Sheet2Table6.3-7Sheet1Sheet2Table6.3-8Sheet1Sheet2Sheet3Table6.3-9Sheet1Sheet2Sheet36.4-1/6.4-2through6.4-11/6.4"12Table6.4-1Sheet1Sheet2Sheet3Sheet4Table6.4-26.5-3./6.5-2through6.5-29/6.5-30Table6.5-1VOLUMEV6.6-1/6.6-26.6-3/6.6-46.6-1/6.6-26.6-3/6.6-47-i/7-iithrough7-ix/7-x7.1-1/7.1-2through7.1-7/blank7.2-1/7.2"2through7.2-45/7.2-467-i/7-iithrough7-xi/blank7.1-1/7.1-2through7.Z.-7/7.1-87.2-1/7.2-2through7.2-47/7.2-48"9-I XnsertTable7.2-1Sheet1Sheet2SheetSheetSheet345Figure7.2-97.3-1/7.3-2through7.3-19/7.3-207.4-1/7.4-2through7.4-27/7.4-28Table7.2-2Table7.2-3Sheet1Sheet2Figure7.2-97.3-1/7.3-2through7.3-17/blank7.4-1/7.4-2through7.4-21/7.4-22Table7.4-1Table7.4-2SheetSheet12Sheet3Table7.4-3SheetSheetSheet1237.5-1/7;5-2through7.5-63/blankTable7.4-4Sheet1Sheet2Sheet37.5-2/7.5-2through7.5-5/7.5-6Table7.5-1Sheet1Sheet2SheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheetSheet345678910ll12131415161718192021

Insert7'"1/7.6-2through7.6-5/blank7.7-1/7.7-2through7.7-63/blankFigure7.7-58-i/8-iithrough8-iii/blank8.1-1/8.1-2through8.1-13/8.1-148.2"1/8.2-2through8.2-17/8.2-188.3-1/8.3-3through8.3-49/blankSheet22Sheet23Sheet24Sheet25Sheet26Sheet27Sheet28Sheet29Sheet30Sheet31Sheet32Sheet33Sheet34Sheet35Sheet36Sheet37Sheet38Sheet39Sheet407.6-1/7.6-2through7.6-5/7.6-67.7-1/7.7-2through77"65/7.7-66Table7.7-1Table7.7-2Table7.7-3Figure7.7-58-i/8-iithrough8-v/blank8.1-1/8.1-2through8.1-13/8.1-148.2-1/8.2"2through8.2-17/8.2-18Table8.2-1Table8.2-28.3-1/8.3-2through8.3-49/blankTable8.3-1Sheet1Sheet2Table8.3-2Sheet1Sheet2Sheet3

InsertTable8.3-3Sheet1Sheet2Table8.3-4VOLUMEVIFigure8.3-3Figure8.3-49-i/9-iithrough9-xv/9-xvi9.1-27/9.1-289.1-43/9.1-449.1"59/9.1"609.1-61/9.1-62Figure9.1-69.2-1/9.2"2through9.2-33/9.2-34Figure8.3-3Figure8.3-49-i/9-iithrough9-xv/9-xvi9.1-27/9.1"289.1-43/9.1-449.1-59/9.1-609.1"61/9.1-62Figure9.1-69.2-1/9.2-2through9.2-33/9.2-34Table9.2-1Table9.2-2Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Table9.2-3Sheet1Sheet2Table9.2-4Table9.2-5Figure9.2-1Sheet1Sheet2Sheet3Figure9.2-2Sheet1Sheet2"Figure9.2-3Figure9.2-4Sheet1Figure9.2-6Sheet1Sheet2Sheet39.3-1/9.3-2through9.3-75/blankFigure9.2-1Sheet1Sheet2Sheet3Figure9.2-2Sheet1Sheet2Figure9.2-3Figure9.2-4Sheet1Figure9.2-6Sheet1Sheet2Sheet39.3"1/9.3-2through9.3-76/9-3-76-12"

InsertTable9.3-1Table9.3-2Table9.3-3Table9.3-4Table9.3-5Table9.3-6Table9.3-7Sheet1Sheet2Table9.3-8Table9.3-9Sheet1Sheet2Table'9.3-10Sheet1Sheet2Table9.3-11Sheet1Sheet2Figure9.3-1Sheet1Figure9.3-2Sheet1Sheet2Figure9.3-3Sheet1Sheet2Figure9.3-5Figure9.3-6Sheet1Sheet2Sheet3-Figure9.3-10Sheet2Figure9.3-11Sheet1Sheet2Sheet3Sheet4Figure9.3-13Sheet1Sheet29.4-1/9.4-2through9.4-37/9.4-38Figure9.3-1Sheet1Figure9.3-2Sheet1Sheet2Figure9.3-3Sheet1Sheet2Figure9.3-5Figure9.3-6Sheet1Sheet2Sheet3Figure9.3-10Sheet2Figure9.3-11Sheet1Sheet2Sheet3Sheet4Figure9.3-13Sheet1Sheet29.4<<1/9.4-2through9.4-41/9.4-42Table9.4-1Sheet1Sheet2Sheet3FigureFigureFigureFigureFigure9.4-29.4-69.4-79.4-119.4-16FigureFigureFigureFigureFigure9.4-29.4-69.4-79.4-119.4-16

InsertFigure9.4-189.5-23/9.5-249.5-35/9.5-369.5-37/9.5-38Figure9.5-1Figure9.5-4Figure9.5-5Sheet1Sheet210-i/10-iithrough10-vii/blank10.1"1/10.1-2through10.1-11/blankFigure9.4-189.5-23/9.5-249.5-35/9.5-369.5-37/9;5-38Figure9.5-1Figure9.5-4Figure9.5-5Sheet1Sheet210-i/10-iithrough10-vii/blsnk10.1-1/10.1"2.through10.1-9/blankTable10.1-1Sheet1Sheet2Sheet310.2-1/10.2-2through10.2-11/10.2-12Figure10.3-1Figure10.3-2Figure10.3-3Sheet210.4-1/10.4"2through10.4-7/10.4-8Figure10.4-1Figure10.4-2Figure10.4-3Figure10.4-4Sheet1Sheet2Figure10.4-510.5-1/10.5-2through,10.5-13/10.5-14Figure10.5-1~10.6-1/10.6-2through10.6-5/10.6-610.2-1/10.2-2through10.2-13/blankFigure10.3-1Figure10.3-2Figure10.3-3Sheet210.4-1/10.4"2through10.4-9/10.4-10Figure10.4-1Figure10.4-2Figure10.4-3Figure10.4-4Sheet1Sheet2Figure10.4-510.5-1/10.5-2through10.5-17/10.5-18Figure10.5-110.6-1/10.6-2through10.6-7/blank

InsertFigure10.6-1Sheet1Sheet2Figure10.6-1Sheet1Sheet2VOLUMEVIIMa~~10.7-1/10.7-2through10.7-25/10.7-26Figure10.7-1Figure10.7-6Sheet.1Sheet2Figure10.7-7Figure10.7-1311-i/11-iithrough11-v/blank11.1-1/11.1-2through11.1-5/11.1-611.2-1/11.2-2through11.2-23/11.2-2411.3-1/11.3-2through11.3-11/11.3-1210.7-1/10.7-2through10.7-31/blankTable10.7-1Table10.7-2Figure10.7-1Figure10.7-6..Sheet1Sheet2Figure10.7-7Figure10.7-1311"i/ll-iithrough11-v/blank11.1-1/11.1"2through11.1-"7/blank11.2-1/11.2-2through11.2"17/11.2-18Table11.2-1Table11.2-2Sheet1Sheet2Sheet3Table11.2-3Table11.2-4Sheet1Sheet2Table11.2-5Sheet1Sheet2Sheet3Table11.2-6Sheet1Sheet211.3-1/11.3-2through11.3-7/11.3-8Table11.3-1Sheet1Sheet2Table11".3-2

Insert11.4-1/11.4-2through11.4-7/blankTable11.3-3Sheet1Sheet211.4-1/11.4-2through11.4.5/11.4-6Table11.4-111.5"1/11.5-2through11.5-17/blank12-i/12-iithrough12-iii/12-iv12.1-1/12.1-212.2-1/12.2-2through12.2-7/blank12.3"1/12.3-2through12.3-25/blank12.4-1/12.4-2through12.4-25/blank11.5-1/11.5"2through11.5-11/11.5-,12Table'11.5-1Sheet1Sheet2Table11.5-2Table11.5-3Table11.5-412-i/12-iithrough12-v/blank12.1-1/12.1-212.2-1/12.2-2Table12.2-1Sheet1Sheet2Sheet312.3-1/12.3-2through12.3-21/blankTable12.3-1Table12;3-2Table12.3-3Table12.3-4Table12.3-5Table12.3-6Table12.3-712.4-1/12.4-2through12.4-21/12.4-22Table12.4-1Table12.4-2Sheet1Sheet2Table12.4-3

Insert12.5-1/12.5-2through12.5-9/blankFigure12.5-113"i/13"iithrough13-iii/13-iv13.1"1/13.1-2'hrough13.1-19/blankTable12.4-4Sheet1Sheet2Table12.4-5Sheet1Sheet212.5"1/12.5-2through12.5-9/blankTable12.5-1Figure12.5-113-i/13-iithrough13-v/blank13.1-1/13.1-2through13.1-25/blankFigureFigureFigureFigureFigureFigureFigureFigureFigureFigureFigure13.1-113.1-213.1"313.1"413.1-513.1-613.1-713.1"813.1-913.1-1013.1-11FigureFigureFigureFigureFigureFigureFigureFigureFigureFigure13.1-113.1-213.1"313.1-413.1-513.1-613.1-713.1-813.1-,913.1-1013.2-1/13.2-2through13.2-9/blank13.3-1/blank13.4-1/13.4-213.5-1/13.5-2through13.5-7/13.5-813.6-1/blank14-i/14-iithrough14-v/14-vi13.2-1/13.2-2through13.2-9/blankTable13.2-1Sheet1Sheet213.3-1/blank13.4-1/13.4-213.5"1/13.5-2through13.5-9/13.5-1013.6-1/blank14-i/14-iithrough14-vii/blank 1 Iamf~nInsert14.1-1/14.1-2through14.1-25/14.1-2614.2-1/14.2-2through14.2-3/blank14.3-1/blank14.4-1/14.4-214.4-3/blank14.5-1/14.5-214.6-1/14.6-2through14.6-71/14.6"7214.1-1/14.1-2through14.1-23/14.1-24Table14.1-1Sheet.1Sheet2Sheet3Sheet414.2-1/14.2-214.3-1/blank14.4-1/14.4-214.4-3/blank14.5-1/14.5-214.6-1/14.6-2through14.6-69/14.6-70Table14.6-1Table14.6-2Table14.6-3Table14.6-4Table14.6-5Table14.6-6Table14.6-7VOLUMEVIIITable15.1-5Table15.1-6Sheet1Table15.7-1Table15.7-2Table15.7-317-i/17-ii17.1-1/17.1<<2through17.1-23/blank17.2-1/17.2-2through17.2-47/17.2-48Table15.1-5Table15.1-6Sheet1Table15.7-1Table15.7-2Table15.7-317-i/17-ii17.1-1/17.1-2through17.1-31/17.1-3217.2-1/17.2-2through17.2-65/blank

R.E.G/NNANUCLEARPOWERPLANTQwQ$ffg~i4%Q*'tRs0Ahlpj5+gg*UPDATEDFINALSAFETYANALYSISREPQRTREVISION13I2/96

ListofEffectivePagesPagePageRevPageRevPagePagePageRevPageRevCHAPTER1l-i.1ii1-iii1-iv1-v1-vi1-viiimiii1-ix1-x13131313131313131313SECTZON1.2l.2-11.221.2-31.2-41.25l.2-61.2-71.2-81.291.2-101.2-111.2-121.2-131.214'.2-151.2-161.2-111.2181.2-191.2-201313131313131313131313131313131313131313FZGURES1.2-11.2-21.2-31377SECTZON1.11.11,131.1-2131.2-41.25/1.25,1.25~1.2-5,1.2-6,1~26/1.2-7,1.2"7,1~27/1.28,l.2-8,1~28/1.2-9,1~29/1.2-101.2111.2-121.2"13l.2-141.2-151.2151.2-151.2151.2161.2-171.2181.2-191.2-191.2191.2-201.2-20l.2-211.2-217SH17SH27SH37SH47SH17SH27SH17SH27SH37SH17SH27SH37SH17SH2777777SH17SH21SH37SH47770SH17SH21SH31SH17SH27SH17SH2713131313SECTZON1.31.3-11.3-21.3-31.34TABLES1.3-1,SH1.3-1,SH1~31,SH1.3-1,SH1.31,SH1~31/SH1.31,SH1.31,SH1~31/SH1.3-1,SH1.31/SH1.31,SH1.31/SH1.3-2,SH1.32/SHSECTZON1.41.4"11.4-2SECTZON1.51.5-11.521.531.541.5-51.561.5-71.5-81.5-91.5101.5-111.5-121.5-131.5141.5-151.5-161.5171.51811321331341351361371381391310131113121313131132131313131313131313131313131313131313131313SECTZON1.61.6-1l.6-21.6-31.6-41.6-51.6-61.6-71.6-81.6-91.6-10SECTZON1~71.711.7-2TABLES1.7-11~72/SH1.7-2,SH1.7-2/SH172~SH1.7-2/SH1.7-2,SH1.7-2,SH1.'7-2,SHFZGORES1.7-1,SH1.7-1,SH1~7-1/SH1.7-1/SHSECTION1.81.811.8-21~8-31.841.8-51.861.871.8-8131313131313131313131311321331341351361371381311221131341013131313131313131.8-91.8101.8-111.8-121.8-131.8-141.8-151.8"161.8-171.8181.8191.8-201.8-211.8221.8-231.8-241.8-251.8261.8-271.8281.8-291.8301.8-311.8-321.8-331.8-341.8-351.8-361.8-371.8381.8-391.8-401.8411.8421.8431.8-441.8-451.8-461.8-471.8-481.8-491.8501313131313131313131313131313131313131313131313131313131S13131313131313131313131313131.8511.8-521.8"531.8"541.8551.8-561.8-571.8581.8591.8601.8-611.8621.8-631.8641.8-651.8-661.8671.8-681.8691.870CHAPTER22-i2-ii2-iii2-iv2-v2'mB.2-viiiSECTZON2.12.112.122.1-32.1-42.152.1-6F172.1-8131313131313131313131313131313131313131313131313131313131313131313FZGVRES2.1-12.122.132.1-42.1-52.1.5a2.1-62.1-72~1-8SECTZON2.22.212'-22'-32.2-42.2-52.2-62.2-72.2-8TABLES2.2-1/SH2.2-1,SH2.2-1,SX2.22SECTZON232.3-12.3-22.332.3-42.3-52.362~3-72.3-82.3-92.3-102.3112.3-122.3-132.3-140110001000013131313131313113213313131313131313131313131313131313"UnnumberedBlankPage ListofEffectivePagesPageRevPageRevPageRevPageRevPageRevPageRevPageRev2.3-152.3162.3-172.3-18131313TABLES2.312.3-22'-32.342.352.3-62.372'SI2.3-8,2.38,2.3-8(2.3-8,2.38,2~3SI2.3-9,2.3-9,2.3-9,2.3-9,2.39,2.3-9,2'9t2.3-102.3-112.3122.3132.3-142.3-%52.3-162.3-172.3-182.3-192.3-2013131313131313SH113SH213SH313SH413SH513SH613SH713SH113SH213SH313SH413SH513SH613SH7131313131313131313131313FIGURES2.3-102.3202'-32.342.352.3-62.3-72.3-8SECTIOH2'2.4-12.4-22.432.4-42.452.4-62.4-72.482.4-92.4-102.4"112.4-122.4132.4-142.4152:4162.4172.4-1$2.4-192.4-20TABLES2.4-12.4-2,SH2.42ISH2.4-2,SH2.4-2ISHPIGIES2.412.4-22.4-32.4-410100000131313131313131313131313131313131313131313113213313413SECTION2.52.5-12.522.5-32.5-42.5-52.562.5-72.5.-$2.5-92.5102.5-112.512TABLES2.512.5-2FIGURES2.512.522.53APPENDIX2A2A-1.2A22A-32A-42A-52A62A72A-82A-92A102A112A-122A-132A142A-152A-162A-172A-1813131313131313131313131313130,0000000000000002A-192A-202A212A-222A-232A-242A252A-262A-272A282A292A-302A31APPENDIX2B2B12B-22B-32B-42B52B62B-72B82B92B-102B112B-122B-132B142B-152B-162B-172B-182B192B202B-212B-222B232B242B-2528-262B-2'72B282B292B-302B312B322B332B-342B3528-362B-372B-382B392B-402B-412B-4228-4328442B-452B462B472B-4$2B492B-502B-5128-522B-532B542B-552B562B572B582B592B602B"612B"622B-632B-642B-652B-662B-672B-6828692B-702B-712B722B-732B-742B-752B-762B772B-7828-792B802B-812B"$22B-832B$42B-852B-862B872B-882B-$92B902B-912B-922B-932B942B952B-962B972B-982B-992B-1002B1012B-1022B-1032B-1042B1052B-106APPENDIX2C2C12C-22C-3000000000000002C42C-52C62C72C-82C-92C-102C112C-122C-132C142C-152C-162C172C-182C-192C-202C-212C-223-i3-ii3iii3-iv3-v3~i3-viiSmiii3-ix3-x3-xi3-xii3-xiii~3-xiv3XV3-xvi3-xvii3-xviii3-xix3-xx3xxi131313131313131313131313131313131313131313"Ural~redBlankPage0 ListofEffectivePagesPageRevPageRevPageRevPagePageRevPageRevPageRev3-xxii3.-xxiii3-xxiv3XXV3-xxvi3-xxvii3-xxviii3-xxix3xxx3-xxxi3-xxxii3-xxxiii3-xxxivSECTZON3.13~1-13.123.1-33.1-43.153.1-63.1-73~183.1-93.1-103.1113.1-123.1-133.1-143.1-153.1163.1-173.1%83.1-193.1-203.1213.1-223.1-233.1-243.1-253.1-263.1-27131313131313131313131313131313131313131313131313131313131313131313131313131313133.1-28~3.1293.1"303.1313.1323.1333.1-343.1-353.1-363.1373.1-383.1-393.1-403.1-413.1-423.1-433.1-443.1453.1463.1-473.1-483.1493.1-503.1513.1-523.1-533.1-543.1-553.1563.1-573.1-583.1-593.1-603.1-613.1-623.1-633.1-643.1653.1-663.1-673.1683.1-691313131313131313131313131313131313131313131313131313131313131313131313131313131313133.1-703.1-713~1723.1-733.1-743.1-753.1-763.1-773.1-783.1-793.1-803.1-813.1-823.1-833.1-843.1-853~1863.1-873.1-883.1-893.1903.1-913.1923.1-933.1-94TABLES3.21SH1SECTZON3.23.2-13.223.233.2-43.253.2-63.2-73.283.2-93.2-103.2-113.2-13131313131313131313131313131313131313131313131313131313131313131313131313*133.2-1,SH23.2-1/SH33.2-1,SH43.2-1/SH5321,SH63.2-1/SH73.2-1/SH83.2-1,SH93.2-1,SH103.2-1/SH113.21,SH123.2-1/SH133.21/SH143.2-1,SH15SECTZON3.33.3-13.323.3-33.3-43.3-53.3-63'-73.3-83.393.3-103.3-113.3-123.3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203.3-213'-223'-233.3243.3-253.3-26131313131313131313131313131313131313131313131313131313131313131313131313131313133'-273.3-283.3293.3-303.3313.3-323.3-333.3343.3353.3-363'-373.3-383.3-393.3-403.3-413.3-423.3-433.3-443.3-453.3-463.3-473.3483.3-493.3-501313131313131313131313131313131313131313131313*SECTZON3.43.4-13.4-23.4"33.4-43.453.4-6131313131313SECTZON3.53.5-13.5-23.533.5413131313TABLES3.3-1,SH1133.3-1,SH2133.5-53.5-63.5-73.5-83.5-93.5-103.5-113.5123.5133.5-143.5-153.5-163.5173.5183.5-193.5-203.5-213.5-223.5-233.5243.5-253.5-26SECTZON3.63.6-13.6-23.6-33.6-43.6-53.6-63.673.6-83.693.6-103.6-113.6-123.6-133.6-143.6-153.6163.6-173.618131313131313131313131313131313131313131313131313131313131313131313131313131313133.6-193.6203.6213.6-223.6-233.6-243.6253.6-263.6-273.6283.6-293.6303.6313.6-323.6333.6343.6-353.6363.6-373.6-383.6"393.6403.6-413.6423.6-433.6-443.6-453.6463.6-473.6-483.6-493.6503.6-513.6523.6-533.6-543.6-553.6-563.6-573.6583.6-593.6-60131313131313131313131313131313131313131313131313131313131313131313131313131313131313~nearedBlankPage LtstofEffectivePagesPagePageRevPageRevPageRevPageRevPageRevPage3.6-613.6-623.6-633.6-643.6-653;6-66Tables3.6-1,3~61~3~6li3~62I3.6-2,3.63SHSHSHSHSHSECTION3.73~7-13~7-23.1-33'-43'53.7-63.773.7-83.793.7103.7-113.7123.7133.7-143.7-153.7163.717I37183.7-193.7-203.7213.7-223.7-233.7243.7-253.7-261313131313*1132133131132131313131313131313131313131313131313131313131313131313133.7213.7"283.1-293.7303.7313.7-323.7-333.7343.7-353.1-363.7313.7383.7-393.7403.'1-413.7-423.7433.1-443.7453.7-463.7413.7-483.7-493.7-503.'7-513.7-52Tables3~7-13~72~3'-2I3.73SHSHFIGURES3.7-13.723.733.7-43.7-53.7-63.7-73.7-8131313131313131313131313131313131313131313131313131313113213130000000000000001100000000000SECTION3.83.8-13.8-23.833.8-43.8-53.8-63.873.883.8-93.8103~8113.8123.$13131313131313131313131313133.793.7-103.7113.7123.7133.7-143.7153.7-163.7-173.7-183.7193.1-203'-213.1-223.7-233.7-243.7-253.7263.7-273.'7283.729'.7-303.7"31,SH13.7-31,SH23.731,SH33.7-31,SH43~7-31,SH53.8-143.8-153.8163.8-173.8-183.8"193.8-203.8-213.8223.8-233.8-243.$-253.8-263.8-213.$"283.8-293.8303.8-313.8-323.$-333.$343.8-353.8363.$-373.8-383.8393.$-403.8-413.8-423.8-433.8-443.8-453.8-463.$473.8483.8-493.8-503.8-513.8-523.8-533.8-543.855131313131313131313131313131313131S131313131313131313131313131313131313131313131313133.8563.8-513.8583.8-593.$-603.8-613.8623.8-633.8643.$653.$-663.8-673.868S.S-693.8703.8-713.8-723.8733.8-743.8753.8-763.$773.8-783.8-793.$803.$-813.8823.8-833.8843.8$53.$$63.8873.8883.$"893.$903.8"913.8923.8933.8-943.8-953.$"963.$-911313131313131313131313131313131313131313131313131313131313131313131313131313131313133.8983.8-993.8-1003.8-1013.8-1023.8-1033.8-1043.8-1053.8-1063.$-1073.8-1083.8-1093.$-1103.8-1113.$1123.$-1133.8-1143.8-1153.8-1163.8-1113.8-11$3.$-1193.$-1203.8-1213.$-1223.8-1233.8-1243.81253.8-1263.8-127S.S-1283.$1293.8-1303.8-1313.8-1323.8-1333.8-1343.8-1353.8-1363.8-1373.81383.8-13913131313131313131313131313131313131313131313131S13131S131S1313131313131313131313133.8-1403.8-1413.81423.81433.8-1443.8-1453.81463.8-1473.8-1483.8"1493.81503.8-1513.81523.8-1533.8-1543.$-1553.81563.81573.8-1583.8159S.S-1603.8-1613.$-1623.8-1633.8-1643.$-1653.8-1663.8-1673.81683.8-1693.8-1703.8-1713.$-1723.8-173~3.8-1743.8-1753.8-1'763.8-1773.8-1783.8-1793.$-1803.$-18113131313131313131313131313131313131313131313131313131313131313131313'313131313131313UnntsheredBlankPage0 L>stofEffectivePagesPageRevPageRevPageRevPageRevPageRevPageRevPageRev3.81823.8-1833.8-1843.8-1853.8-1863.81873'-1883.8-1893.8-1903.8-1913.8-1923.8-1933.8-1943.8-1953.8-1963.8-1973.81983.8-1993.8-2003.8-2013.8-2023.82033.8-2043.8-2053.82063.8-2073.8-2083.8-2093.8-2103.82113.8-2123'.8-2133.82143.S-2153.8-2163.8-2173.8-2183.8-2193.8-2203.8-2213.8-2223.82231313131313131313131313131313131313131313131313'31313131313131313131313131313131313133~8"2243.8-2253.8-2263.82273.8-2283.8-2293.8-230TABLES3.8-1,N13.8-1,SH23.8-23.8-3,SH13.S-3,SH23.8-43.85(SH13.8-5(SH23.S"5,SH33.8-5(SH43.8-5/SH53.8-5,N63.8-5,SH73.8-5(SH83.8-5,SH93.85,SH103.8-5,SH113.8-5,SH123.8-5,SH133.8-5,SH143.85,SH153.8-5(SH163.8-6/SH13.86(SH23.8-6,SH33.8-73.8-8(SH13.8-8,SH23.89,SH13.810(SH13.8-10,SH23.8-11,SH13.8-11SH2131313131313131313131313131313131313131313131313,1313131313131313131313131313133.8-123.8-133.8-143.8-15,3.S-15,3.815/3~815/3'-163.8173.8-1$3.8-193.8203.8-213.8-223.8-23FIGURES3.8-13.823.8-33.8-4~3.8-53.$63.873.S-83.8-93.8103.8-113.8-123.8-133.8-143.8153.8-163~8-173.8-183.8-193.8-203.8-213.8223.8-233'-243.8-25SH1SH2SH3SH41313131313131313131313131313130000000000000000000000000~3.8-263.$-273.8-283.8-293.8-303.8313.8-323.8-333.8343.$353.$-363.8373.8383.$393.8-403.$-413.8423.8433.8-443.8-453.$463.8473.8-483.8493.8-503.8-513.8523.8533.8-543.8553.8-563.8-573.8-583.8-593.8603.8-613.$-62CHAPTER33-i3-ii3-iii000000000000000000000013000000000002221313133iv3~Smi3mii3miii3-ix3-x3-xi3-xii3-xiii3-xiv3xv3-xvi3xvia3-xvtb3-xvio3-xvid3-xvie3-xvii3-xviii3-xix3xx3-xxi3-xxii3-xxiii3xxiv3xxv3-xxvi3-xxvii3-xxviii3-xxix3xxx3-xxxi3-xxxii3-xxxiii3-xxxivSECTION3.93.9-13.9-23.933.9-4131313131313131313131313131313131313131313131313131313131313131313131313131313133~9-53.9-63.973.9-83.9-93.9-103.9-113.9-123.9-133.9-143~9153.9-163.9-173.9-183.9-193.9-203.9-213.9-223.9-233.9-243.9253.9-263.9-273.9283.9-293.9-303.9-313.9-323.9-333.9343.9353.9-363'-373.9-383.9"393.9-403.9-413.9-423.9433.9-443.9-453.9-461313131313131313131313131313131313131313131313131313131313131313131313131313131313133.9-473.9-483.9-493.9-503.9-513.9-523.9-533.9-543.9-553.9-563.9573.9-583.9-593.9603.9-613.9-623.9633.9-643.9-653.9-663.9673.9-683.9-693.9-703.9-713.9-723.9-733.9-743.9-753.9763.9-773.9-783.9-793.9-$0.3.9-813.9823.9833.9-843.9-853.9-$63.9-873.9$$131313131313131313131313131313131313131313131313131313131313131313131313131313131313"UnnumberedBlankPage L1stofEffectivePagesPageRevPageRevPageRevPagePageRevPageRevPageRev3.9-893.9-903.9-913.9-923.9-933.994TABLES3.9-13.923.933.9-43.953.963.9-73.9-83.9-93~910/3.910,3~9-10/3.910~3.9-113.9-123.9133.9143.9-153.9-163.9173.9183.9-193.9-203.9213.9223.9-233.9-24/3.924,3.9-253.9-26,3'-26,3.9-26/3.9-273.9-28SH1SH2SH3SH4SH1SH2SH1SH2SH3131313131313131313131313131313131313131313131313131313131313131313131313131313133.9-2913FIGURES3.9-13.9-23.9-33.9-43.953.9-63.9-6a3~9-73.983.9-93~9-10000000100000SECTZON3.103.1013.10-23.10-33.1043.1053.1063.10-73.1083.1093.10103.10113.10123.10"133.10143.10-153.10163.10173.10183.10-193.10203.10-213.102213131313131313131313131313131313131313131313TABLES3.101,SH1133.101SH2133.1023.10-33.10-43.1053.106FZGURES3.10-13.1023.10-33.104SECTZON3.113.11-13.11-23.11-33.11-43.11-53.11-63.11-73.11-83.1193.11103.11-113.11123.111S3.11-143.11-153.11163.11173~11-183.11193.1120TABLES3.11-1/SH3.11-1/SH3.11-1,SH3.11-1/SH3.111,SHS.11-1,SH3.111SH1313-13131313131313131313131313131313131313131313131132133134135136137133.111,SH3.112,SH3.11-2/SH3.11-3,SH3.113/SH3.11"4/SH3.114/SH3.11-5,SH3.115,SH3.116,SH81311321311S213113213113213113APPEHDZX3ASA-i3A-iiSA-13A-23A-33A-43A5SA-63A-73A-83A-93A-103A-113A123A-133A-143A153A-163A1701100009111100110FZCURES3A13A-23A3SA-43A-53A-6FZGURES3.111"23A7/3A-7,3A83A9SH1SH2APPEHDZX3838-i38ii.38iii38-iv3B~38mi38-vii38xiii38-138-23B-338-43B-538638138838938-1038-1138"123B-13381438153B-1638-1738183819382038-213822382338-2438-2538-263B-2738283B-2938-30383138-323B-3338-3438-3538-363B-3738-3838-39384038-4138-42384338443845384638-47384838493850385138-52385338-5438-55385638-5738-58385938-6038-6138-623B-633864386538663B-67FZGURES38138-238-338438-538638-738-838-938"1038-11381238-1338-143815381638-173B-1838-1938"2038-2138-2238-233B-24D421-023D421024APPEHDZXSB.A3B.A-l3B.A-23B.A33B.A-43B.A53B.A6SB.A1SB.A-SAPPEHDZX38.838.8-13B.B-238Add-i38Addii38Add-10000000000000000000000000+Unn~redBlankPage L>stofEffectivePagesPageRevPageRevPagePageRevPagePagePageRev3BAdd23BAdd-33BAdd-43BAd4-53BAdd-63BAdd-73BAdd83BAdd-93BAdd103BA44-113BAdd-123BAd4-133BAdd-143BAdd-153BAdd163BAchl-173BAdd-183BAdd19EIGURES3BAdd-1APPENDIX3C3C-13C-23C33C-43C-S3C63C-73C-83C93C-103C-113C123C-133C-143C-153C163C-173C183C-1900000000000000000003C-203C-213C-223C-233C-243C-25APPENDZX3D3D-13D-23D"33D-43D-53D-63D-73D83D-93D-103D113D-123D-133D-143D-153D163D-173D-183D-193D-203D-213D-223D233D-243D-253D-263D-273D283D293D-303D-313D-323D-333D3400000000000000000000000000000000003D35APPENDIX3E-13E-23E33E-43E-53E-63E-73E-83E-93E-103E-113E-123E-133E-143E-153E-163E-173E183E-193E203E-213E-223E-233E-243E"25~3E-263E-273E-283E-293E-303E313E-323E-333E-343E-353E00000000000000000000000000000000000APPENDIX3E3E-i0APPENDIX3F.13F.113F.1-23F.3-13F.323E.3-33F.3-43F.353F.3-63F.373F.3-83F.393F.3103F.3-113F.3123F.3-133F.3"143F.3153F.3-163E.3-17F.3'000000000000000003F.4-13E.4-23E.433F.443F.4-53F.463F.473F.4-83F.493F.40000.00000APPENDZX3F.23F.213F.2-23F.2-33E.2-43F.2-53E.263F.2-7CHAPTER4i4-ii4-iii4-iv4~4~14131313131313SECTION4.114.1-24.1"34.1-44.154.1-64.1131313131313SECTZON4.2-14.2-2,4.234.2-4-4.2-54.2-64'74.2-84.2-94.213-113113113-113113-113-113113-1APPEMDZX3E.53E.S13E.5"23F.5-33E.5-43F.S-S3F.5-63E.S73F.5-S3F.5-93F.5"103F.5-113E.5-123F.S133F.5-144.2-104.2-114.2-124.2-134'"144'-154.2-164.2-174.2-184.2-194.2-204.2-214.2-224.2-234.2-244.2-254.2264.2-274.2-284.2-294.2"304.2-314.2-324.2-334.2-344.2354.2-364.2374.2-38TABZES4.2-14.2-2SH14~22SH24.2-34.2-4FZGURES4.2"14.2-24.2-34.2-413-113113-113-113-113-113-113-113-113-113113-113-113-113-113-113-113-113113-113-113-113113-113113-113-113-113-113-113-113-113113-1001104.254.2-64.2-74.2-84.2-9SECTION4.34.3-14.324.334.3-44.3-54.3-64.3-74.384.3-94.3-104.3114.3124.3-134.314FIGURES4.3-1SECTION4.44.4-14.4-24.4-34.4-44.454.464.4-74.4-8r4.4-94.4-104.4-114.4-124.4134.4-144.4-154.4161313131313131313131313131313-113113-113-113-113-113-113-113-113-113-113-113-113-113-113-1UnncaheredBlankPage ListofEffectivePagesPageRevPageRevPagePageRevPageRevPageRevPage4.4114.4-184.4-194'204.42113-113-113-113-113-1TABLES4.4-1SH11314.4-1SH213-1FZGURES4.4-10SECTZON4.64.61134.62*CHAPTER5S-i5ii5iii5-iv5-v5-vi5-vii5-viii5-ix5-x13131313131313131313SECTZON5.1-15.125.1-35.1-45.1-55.1-65.1-75.285.11313131313131313SECTION4.54.51134.5-25~1-95.1-105.1-115.1-125.1-135.1145.1-15S.1-16TABLES5.115.1-25.135.1-4FZGURES5.2-2ISH5.1-1,SH5.1-25.1-3SECTZON5.25.2-15.225.2"35.2-45.255.2-65.2-75.2-85.295.2105.2115.2-125.2-135.2145.2155.2-165.2-175.2-185.2-195.2-20131313131313131313131311021199131313131313131313131313.13131313131313135.2-215.2-225.2235.2-245.2-255.2265.2-275.2-285.2295.2-305.2-315.2325'-335.2-345.2-355.2365.2375.2-385.2-395.2-405.2-415.2425.2-435.2-445.2-455.246TABLES5.2-15.2-25.23,SH5.23,SH5.2SiSH5.2-45.255.2-65.275.2-85.29FIGURES5.211313131313131313~131313131313131313131313131313131313131132133131313131313135.2-25.23SECTZON5.35.31S.3-2S.3-35.3-45.355.3-65.3-75.3"85.3-95.3105~3-115'-125.3135.3145.3-155.3165.3175.3-185.3195.3205.3215.3225.3-235.3-245.3-255.3-26TABLES5.3"15.325.3-35.3-45.3-55.3-65.3-75.3-85.395.3-10131313131313131313131313131313131313131313131313131313131313131313235.3-1,5'2I5.325.3-3SHSHSECTZONS.45.4-15.4-25.4-35.4-45.4-55.465.4-75.4-85.495.4-105.4-115.4-125.4-135.4-145.4-155.4-165.4175.4185.4"195.420S.4-215.4-225.4-235.4-245.4255.4-265.4-215.4-285.4295.4305.4-315.4-325.4335.4-345.43510207013113-113-113113-113"113-113113113-113-113113-113113"113-113113-113-113-113113113-113113-113-11313131313131313135.4-365.4375.4"385.4-395.4-405.4-415.4-425.4435.4-445.4"455.4465.4-415.4-485.4-495.4505.4-515.4-525.4535.4-545.4-555.4-565.4-575.4-585.4-595.4-605.4-615.4-625.4-635.4-64TABLES5.4-15.4-25.43SH5.4-3SH5.4-45.4-55.4-6SH5.44SH5.4-75.485.4-9SH12121131313131313131313131313131313131313131313131313131313131313-113113-113113113-113113-113"113-113-1FZGURES5.4"15.4-25.4-2a5.42b5.4-2o5.4-265.4-35.4-45.4-55.465.4-75.4-85.4-9CHAPTER66-j6-ii6-iii6-iv6m6'mii6-viii6-ix6-x6-xi6-xii6-xiii6-xiv6-xv6-xvi6-xvii.6-xviii0013-113-113113-120013-11300131313131313131313132323131313131313SECTZON6.16.116.1-26.136.1-4131323135.4-9SH213-1Unnv~redBlankPage.~ ListofEffectivePagesPageRevPagePageRevPageRevPagePagePage6.156.1-66.176.1-86~1-96.1-106.1-116.1126.1-136.1-146.1-156.1-166.1-176.1186.1-196.1-206.1-216.1-22TABLES6.1-1I6.1-1,6.1-26.1-36.1-46.1-56.1-66.1-7SHSHFZGURES6.1-16.1-26.1-16.146.1-56.1-66.116.1-86.1-96.1101313131313131313131313131313131313131132131313131313130002207000SECTZOH6.26.2-16.226.236.2-46.2-56.266.276.286.2-96.2106.2-116.2126.2136.2-146.2156.2166.2-176.2-186.2196.2-206.2-216.2-226.2236.2246.2-256.2266.2"276.2-286.2-296.2-306.2316.2-326.2-336.2346.2-356.2-366.2-376.2386.2-396.2-406.24113113-113-113113-113"113-113-113113113-113-113-113-113-113113113113-113-113113-.113-113-113-113-113-113-113113113-113-113-113-113-113-113-113-113113-113-16.2-426.2-436.2-446.2-456.2-466.2476.2-486.2"496.2506.2-516.2-526.2"536.2-546.2-556.2-566.2-576.2-586.2596.2-606.2616.2626.2-636.2-646.2-656.2-666.2676.2686.2-696.2-706.2-716.2"726.2736.2-746.2-756.2-766.2-776.2-786.2-796.2-806.2-816.2826.28313113-113-113-113-113-113113-113-113-113113-113113-113-113-113-113-113113-113-113113-113-113-113-113-113-113-113-113-113-113-113113-113-113-113-113-113113113-16.2-846.2-856.2-866.2-876.2-886.2-896.2-906.2-916.2-926.2-936.2-946.2-956.2-966.2-916.2986.2-996.2-1006.2-1016.2-1026.2-1036.2-104TABLES6.2-16.2-26.2-3SH16.2-3SH26.2-3SH36.2-3SH4623SHS6.2-46.2-56.2-66.2-76.2-86.28A6.2-8B6.2-96.2-9A6.2-9B6.2-106.210A13-113-113113-113-113-113-113"113-113-113-113-113-113-113-113113-113-113-113"113-113-113-113-113113113-113-113-113113-113113-113-113113-113-113"113113-113113113-113113113-113-113-113-113-113113-113"113-113-113-113113-113113-113-113113-113113-113-113-113113-113113-113-113-113-113-113"113113-113-113-11311316.2-10BSH16.2-10BSH26.2-10BSN36.2-116.2-11ASH16.2-11ASH26.211B6.2-126.2-136.213A6.2-14.6.2-15SH16.2-15SH26.215SH36.2-15SH46.2-15SHS6.2-15SH66.2-15SH16.2-15SH86.2-15SH96.215SH106.2-15SH116.2-15SH126.2-15SH136~2-15SH146.2-15SH156.2-15SH166.2-15SH176.2-15SN186.215SH196.2-15SH206.2-15SH216.215SH226.2-15SH236.2-15SH246.2-15SN256.2-16SH16.2-16SN26.2-16SH36.2-17SH16.2-17SH26.2-17SN36.217SH46.2-16.2-26.236.2-3a6.2-46.2-4a6.256.2-66.216.2-86.296.2106.2-116.2-126.2"136.2-13a6.2146.2156.2-166.2-176.2-186.2-196.2-206.2-216.2-226.2236.2-246.2"256.2266.2-276.2-286.2296.2-306.2-316.2-326.2-336.2-346.2-356.2-3613113113113-113113-113-113113113-11311310127111010111010101011101010111112101211101110101011106.2376.2-386.2-396.2-406.2416.2426.2-436.2-446.2456.2-466.2-476.2486.2496.2-506.2516.2526.2-536.2"546.2-556.2566.2576.2-586.2-606.2-616.2626.2-636.2646.2-656.2-666.2-676.2-686.2696.2-706.2-71.6.2726.2-736.2-746.2756.2-766.2776.2-786.2-7910101010101110'1101212121110101110121012101012101010101210101010101111101111121212SH113redBlankPage ListofEffect1vePagesPageRevPageRevPagoRevPageRevPageRevPageRevPage6.2796.2-80SHSECTION6.36.3-16.326.3-36.3-46.3-56.366.3-76.3-86.3-96.3-106.3-116.3-126.3-136.3-146.3-156.3-166.3-176.3-186.3-196.3-206.3-216.3-226.3-236.3246.3-256.3-266.3-27d.3-286.3-396.3-306.3-316.3326.3336.3-346.3-356.3-366.3-376.3-38210813131313131313131313131313131313131313131313131313131313131313131313131313136.3-396.3406.3-416.3-426.3-436.3446.3-456.3-466.3-476.3486.3-496.3-50131313131313131313131313TABLES6.3-1,6.31,6.31/6.3-26.3-36.346.3-56.3-6/6'6/6.3-7/6.37/6.38/6.38~6.38,~6.39/6.3-9,6.3-9/SH113SH213SH31313131313SH113SH213SH113SH213SH113SH213SH313SH113SH213SH313FZGURES6.3-1SH16.3-1SH26.3"26.336.3-41212544SECTION6.46.4-1136.42136.4-36.446.4-56.4-66.476.4-86.496.4106.4-116.4"12TABLES6.4-1,SH6.4-1,SH6.4-1,SH6.4-1/SH6.42FXGURES6.41SECTION6.56.5-16.5-26.5"36.5-46.556.5-66.576.5-86.596.5-106.5-116.5126.5136.5-146.5-156.5-166.5176.5186.5196.5"20131313131313131313131132133134131313131313131313131313131313131313131313136.5-216.5-226.5-236.5-246.5-256.5-266.5"276.5-286.5-296.53013131313131313131313FIGURES6.5-16.5-26.5-36.5-4SECTION6.66.616.6-26.636.6413131313CHAPTER77-i7-ii7-iii7-iv7~7mi7-vii7~iii7-ix7x7-xi7-xii1313131313131313131313TABLES6.5-113SECTION7.17.1-17.1-27.137.1-47.157.1-67.1-77.1-8SECTION7.27.2-17.227~2-37.2-47.257.2-61~2-77~2-87.2-91.2107.2117.2-127.2"137.2-147.2-151.2-167~2-177.2-187.2-197.2-207.2-211.2-221.2-237.2-247.2-257.2-267~2-277.2287.2-297.2-307.2311313131313131313131313131313131313131313131313131313131313131313131313131313131.2-327.2-337.2-347.2-357.2367.2-377~2387.2397.2-407.2-417'421.2437.2-447.2457.2-467.2-477.2-48TABLES7~2-1,N7.2-1/SH'7.2-1/SH7.21/SH7.2-1/SH7.227.2-3/N7.2-3,SHFIGURES7.2"17~2-27.237.2-41.2-51.2-67.2-77.2-87.2-97.2-107.2111.2-127.2-13131313131313131313131313131313131311321331341351313113213007111271113710457.2-147.2-157.216'7.2-177.2181.2-191.2-201.2-21SECTION7.31.3-17.3-27.331.3-47.3-57.361.3-77.3-87.397.3-107.3-111.3-127.3-137.3-147.3-151.3-167.317'7.3-18FIGURES1.3-1SH17.3-1SH27.3273-3~7.3-47.3-57.3-6SECTION7.41.4-17.421.43131313131313131313131313131313131310777.030131313UnnumberedBlankPage0 UstofEffectivePagesPagePageRevPagePageRevPageRev7~4-47.457.4-67.477.4-87.4-97.4-107.4117.4127.4-137.4-147.4-157.4-167.4177.4-187.4-197.4207.4217'22TABLES7.417.4-2,SH17.42,SH27.42ISH37.4-3,SH17.4-3,SH27.43(SH37.4-4,SH17.44ISH27.4-4)SH3SECTZON7.57.517.5-27.537.5-47.5-57.5-61313131313131313131313131313131313131313131313131313131313131313131313Tables7.5-1,7'-1I7~5-1I7.5-1,7.5-1,7.5-1,7.51,7.5-1,7.51(7.5-li7.5-1(7.5-1,7.5-li7.5-1,7.5-1(7.5-1,7.5-1,7~51,7.5-1,7~5ii7.5-1I7~51I'7.5"1(7.5-1,7~51I7.5-1,7.5-1,7~51I7~51I7.5-1,7~51I7~51I7.5-1,7.5-1(7.5-1,7.5-1,7.51,7~51I7~5-1I7.5-liSH1SH2SH3SH4SH5SH6SH7SH8SH9SH10SH11SH12SH13SH14SH15SH16SH17SH18SH19SH20SH21SH22SH23SH24SH25SH26SH27SH28SH29SH30SH31SH32SH33SH34SH35SH36SH37SH38SH39SH4013131313131313131313131313131313131313131313131313131313131313131313131313131313FIGURES7.5-1SECTZON7.67.617.6-27.6-37.6-47.6-57.6-6SECTZON7'7.7-1F7-27.737.7-47.7-57.7-67'-77.787.7-97i7-107~7.117.7-127.7-137.7-147.7-157.7-167'177.7-187.7-197.7-207.7-217.7-227'237.7-247.7-257.7-267'-277.7-287'297.7-301313131313131313131313131313131313131313131313131313131313131313131313137.7-317.7-327.7337.7-347.7-357.7-367.7377.7-387.7-397.7407.7-417.7427.7437.7-447.7-457.7-467.7477.7-487.7-497.7-507.7-517.7-527.7-537.7-547.7-557.7-567.7-577.7587.7-597.7-607.7-617.7-627.7-637.7647.7-657.7-66TABLES7.7-17.7-27.7-3131313131313131313131313131313131313131313131313131313131313131313131313131313FZGURES7.717.'7-27.737.7"47.7-4a7.7-57.7-6F7-77.'787.7-97.7107.7117.7-12SH7.7-12SH7.7-137.7147.7-157.7-16~8'-i8-ii8-iiiS-iv8-v8wiSECTZON8.18.118.1-28.1-38.148.1-58.1-68:1-78.1-88.1-98.1-108.1-118.1126000313000003102007771313131313e1313131313131313131313138.1-138.1-14FZGURES8~11SECTZON8.28.2-18.2-28~238.2-48.2-58.2-68.2-78.288.2-98.2-108.2"118.2128.2138.2-148.2-158.2-168.2-178.2-18TABLES8.2-18.2-2FZGURES8.2-1SECTZON8.38.3-18.3-28.3-38.3-48.3-58.3-68.378.3-81313131313131313131313131313131313131313131313131313131313138.3"98.3-108.3-118.3128.3138.3-148.3-158.3-168.3178.3-188.3-198.3208.3-218.3-228.3-238.3248.3-258.3268.3-278.3288.3-298.3-308.3-318.3328.3338.3-348.3358.3-368.3378.3-388.3-398.3-408.3-418.3-42~8.3438.3-448.3-458.3-4683-478.3-488.3-491313131313131313131313131313131313131313131313131313131313131313131313131313131313%nne4eredBlankPage UstofEffect1vePagesPageRevPageRevPageRevPageRevPageRevPageRevPageRev.TABLES8.3-1I8.3-1,8.3-2,8.3-2I8.3-2,8.3-3,8~3318.3-4SH113SH213SH113SH213SH313SH113SH21313FZGORE38.3-1N8.3-1N8.328.338.348.3-58.3-68.3-78.38112212111313912107CHAPTER99-29-ii9-iii9-iv9-v9-vi9-viiS-viii9-ix9-xS-xi.9-xii9-xiii9-xiv9-xv9-xvi1313131313131313131313131313131313113-1SECTZON9~19.1-19.129.1-39.1-49.159.1-69.179.1-89.1-99.1109.2-229.1-129.1139.1-149.1159.1-169.1179.1-189.1-199.1-209.1-219.1-229.1-239.1249.1-259.1-269.1279.1-289.1-299.1-309.1-319.1-329.1-339.1-349.1359.1-369.1-379.1389.1-399.1-409.1419.1-429.1-439.1-4413113-113-113113113-113-113113-113-113-113113-113113113113113-113-113-113113-113113-1131313-113113-113113113-113-113113113113-113-113-113-113139.1459.1-469.1-419.1489.1499.1-509.1-519.1529.1539.1-549.1-559.2569.1519.1589.1599.1609.1619.1-62TABLES9.119.1-29.1-39.1-4FIGURES9.119.1"29.13914'.1-4a9.1-4b9.14c9.2-4ct9.1-59.1-6'.179.189.1-99.1109.11113-113-113l.13-113-113-113-113-113-113113113-113113"11313131313-113-113-113-100213-113-113113113-213-11390700SECTZON9.29.2-19~229.239.2-49.2-59.2-69.2-79.2-89.2-99.2109.2-119.2-129.2139.2149.2-159.2-169.2-179.2189.2199.2-209.2219.2-229.2-239.2-249.2259.2269.2-279.2-289.2-299.2309.2"319.2-329.2-339.234TABLES9.2-19.2-2,SH9.2-2,SH9.2-2,SH9.22SH1313131313131313131313131313131313131313131313131313131313131313131313131313139~22I9.22,9.23I9.2-3,9.2-49.2-5SH513SH613SH113SH2131313FZGURES9.21SH9.21SH9.2-1SH9~2-2SHS.22SH9.2-39.2-4SH9.2-4SH9.24SH9.259.26SH9.2-6SH9.26N11321331311321313113211312101132133131313.1313131313131313131313131313131313SECTZON9.39.319.3-29.3-39.349.3-59.3-69.3"79.3-89.3"99.3-109.3119.3129.3-139.3-149.3-159.3-169.3179.3"189.3-199.3-209.3-219.3-229.3239.3249.3-259.3-269.3279.3-289.3-299.3-309.3-319.3-329.3339.3349.3-359.3-369.3-379.3-389.3-399.3-409.3-419.3-429.3-439.3-449.3-459.3-469.347.9.3-489.3-499.3-509.3-519.3529.3-539.3-549.3559.3-569.3-519.3"589.3-599.3-609.36113131313131313131313131313131313131313131313131313131313131313,13131313131313131313139.3629.3-639.3-649.3-659.3669.3679.3-689.3-699.3-709.3-719.3-729.3"739.3-749.3-759.3-76FZGURES931SH9.3-1SH9.3-2N9.3-2SH9.3-3SH9.3-3SH9,3-4SH9.3-4SH12121212TABLES9.3-19.3-29.339.3-49.3-59.3-69.3-7ISH19.3-7ISH29.3-89.3-9,SN19.39,SH29.3-20,SH29.3-10,SN29.3-11,SH19.3-21,SH21313131313131313131313131313132313131313131313131313131313131312132313131010Unntsnbered81ankPage. ListofEffectivePagesPageRevPageRevPageRevPageRevPageRevPagePageRev9.3-4SH39.3-4SH49.3-59.3-6SH1936SH29.3-6SH39.3-79.38SH19.3-8SH29.39SH19.3-9SH29.3-9SH39.3-10SH19.3-10SH29.3-11SH19.3-11SH29.311SH39.3-11SH49.3-129.3-13SH19.3-13SH29.3149.3-159.3-169.3-119.3-189.3-19SECTION9.49.4-19.4-20.4-39.4-49.4-59.4-69.4-79.489.4-99.4-109.4-119.4-129.4-131010131313131012121012101213131313131113131212911103131313131313131313131313139.4-149.4-159.4-169.4-179.4-189.4-199.4-209.4-219;4-229.4-239.4"249.4-259.4"269.4-279.4-289.4299.4-309.4-319.4-32-9.4339.4-349.4-359.4369.4-379.4-389.4-399.4409.4419.4-42TABLES9.4ii9.4-1,9.4iiFIGURES9.419.4-29.439.449.4-59.4-6SH1SH2SH313131313131313131313131313131313131313131313131313131313131313131013101211139.479.4-89.4-99.4-109.4-119.4129.4-139.4-149.4159.4-169.4119.418SECTZON9.59.519.5-29.5"39.5-49.5-59.5-69.579.589.599.5-109.5-119.5129.5-139.5-149.5159.5-169.5"179.5-189.5199.5-209.5219.5-229.5-239.5249.5-259.5-269.5"219.5-2813111212131010121013121313113-113-113-113-113-113-113-113-113113-113-113-113-113113113-113-113113-113113-1131313113"113113-19.5299.5-309.5319.5329.5-339.5349.5359.5-369.5-379.5389.5399.5-409.5419.5-429.5-439.5449.5-459.54613113-113-113-113-11311313131313-113-113113-113113-113-113-1TABLES9.51SH11319.5-1SH213-1CHAPTER1010-110-ii10iii10-iv131313139.5"1139.5-2SH1119.5-2SH2119.5-2a129.52b109.52cSH1109.5-2cSH2109.5-3119.54139.5-5SH1139.55SH2139.5-63jomjomijowjijomiii131313SECTION10.110.1110.1-210.1-310.1410.1510.1-610.1710.1-810.1-910.110131313131313131313SECTION10.210.2-110.2210.2-310.2410.2510.2-610.2710.2-810.2-910.21010.21110.2-1210.21310.2-1413131313131313131313131313FIGURES10.2-10TABLES10.1-1,SH11310~1-1,SH21310.1-1,SH313SECTION10.310.3-110.3-210.3310.3"410.3-510.3610.3-710.3-810.3910.3-1010.3-1110.31210.3-1313-113-113-113-113113-113113113-1.13-113113-1131FIGURES10.3-11310.321310.3-3,SH11210.3-3,SH21310.3"4,SH11210.34,SH212SECTZON10.410.4-110.4210.4310.4-410.4"510.4-610.4-710.4810.4-910-4-1013131313131313131313FIGURES10.411310.4-21310.431310.4-4SH11310.4-4SH21310.4513SECTZON10.510.5-110.5-210.5-310.5"410.5510.5610.5-710.5810.5-910.5-1010.51110.5-1210.5-1310.51410.5-1510.51610.5-1110.518131313131313131313131313131313131313FIGURES10.5-11310.5-212SECTION10.610.6-110.6-210.6"310.6-410.6510.6-610.6-710.6813131313131313'ZGURES10.61SH11310.6-1SH21310.62010.6-311Knn~eredBlankPage ListofEffectivePagesPageRevPagePageRevPageRevPageRevPageRevPageRevSECTZON10.710.7-110.7210.1-310.7-410.7510.7610.1-710.7-810.7910.7-1010.7-1110.1-1210.1-1310.71410.7-1510.1-1610.7-1710.7"1810.7-1910.72010.7-2110.1-2210.7-2310.7-2410.72510.1-2610.7-2710.7-2810.729Z0.73010.7-3110.7a32ITABLES10.7-110.7-2FZGURES10.1-110.7-210.1313131313131313131313131313131313131313131313131313131313131313*1313131212CHAPTER1111i11ii11iii11-iv11v11~11313131313SECTZON11.111~1111.1211.1"311.1-411.1-511.1611.1-711.1-813131313131313SECTZON11.211.2-111~2-211~2-311.2411.2-511.2-611.2711.2-811.2-913131313131313131310.7-41010~751210.7-6SH11310.7-6SH21310.7-71310.7-81210.791210.7-101210.7-11N11210.7-11SH21110.712SH11010.'7-12SH21010.7131311.2-1011.21111.21211~2-1311.21411.21511.2-1611.21711.218131313131313131313FZGURES11~2-11111.2-2SH11011.22N21111.23SH11211.2-3SH2911.241211.2-512SECTZON11.311.3111.3-211.3311.3-411.3-511.3-611.3711.3-81313131313131313TABLES11.211311.2-2,SH11311.2-2,SH21311.2-2,SH31311.2-31311.2-4,SH11311~24,SH21311.2-5,N11311.2-5,SH21311.2-5~SH31311.2"6,SH11311.2-6,SH213TABLES11.3-1,SH11.3-1,SH11.3211.33,SH11.3-3IN11321313113213SECTZON11.411.4111.4211.4311.4-411.4511.4-6131313131313*TABLES11.4113SECTZON11.511.5111.5-211.5311.5"411.5-511.5-611.5711.5-811.5-911.5-1011.5-1111.5-12131313131313131313131313TABLES11.51,SH11.5-1iSH11.5-211.5-3132131313FZGURES11.3-11211.3-2,SH11011.32,SH21111.5-413FZGURES11.5-1611.5-212CHAPTER1212-i12ii12iii12-iv12~12'313131313SECTZON12.112.111312.1213Tables12.2-1iSH11312.2-1,SH21312~2-1,SH313SECTZON12.312.3-112~3-212.3-312.3412.3-512.3-612.3-712.3-812;3-912.3-1012'-1112.31212.3-1312.3141313131313131313131313131313SECTZON12~212.211312.221312.3-1512.3-1612.31712.3-1812.31912.3-2012.3-2113.32213131313131313Tables12.3112.3-212.3-312.3412.3512.3-612~3-713131313131313SECTZON12412.4-112.4-212.4312.4-412.4512.4612.4-712.4-812.4912.4-1012.4-1112.4-.1212.4-1312.41412.4-1512.4'612.41712.4-1812.4-1912.4201313131313131313131313131313131313131313FIGURES12.3-1012.4-211312.4-2213TABLES12.4112.4-2,12.4-2,12.4312.44,12~44I12.4-5,12.45,13SH113SH21313SH113SH213SH113SH213SECTZON12.512.5-112.5212.5312.5-412.5512.5-612.5-712.5-812.5-912.5-10131313131313131313TABLES12.5-113FZGURES12.5-113CHAPTER1313-i13-ii'13-iii13-iv13-v13-vi1313131313tSECTZON13.113.1-11313.1-213*unnumberedBlankPage0 ListofEffectivePagesPagePagePageRevPageRevPagoPagePageRev13.1-313.1413.1-513.1-613.1713.1-813.1-913.1-1013.1-1113.11213.1-1313.11413.1"1513.1-1613.1-1713.1-1813.1-1913.1-2013.1-2113.1-2213.12313.1-2413.1-2513.1-26FIGURES13.1-113.1-213.1-313.1-413.1-513.1-613.1713.1-813.1-913.1-10SECTZON13.213.2113.2-213.2-313.2-4131313131313131313131313131313131313-1313131313t131313131313131313131313131313.2-513.2"613.2713.2-813.2-913.2-101313131313TABLES13.2-1,SH11313.2"1,SH213SECTION13.313.311313.3-2*SECTZON13.513.5-113.5-213.5"313.5-413.5-513.5613.5-713.5-813.5-913.5-1013131313131313131313SECTION13.613.6-11323.6-2CHAPTER1414i14-ii14"iii24-iv14-vlhwi1313131313SECTION13.413.4-11313.4-21314-vii14wiii13SECTZON14.114.1-114.1-214.1-314.1414.1-514.1-614.1-714.1-814.1-914.1-1024.1-1114.1-1214.11314.1-1414.1-1514.11614.1-1714.1-1814.1-1914.1-2014.1-2114.1-2214.12314.1-24131313131313131313131313131313131313131313131313TABLES.14.1-1,SH11314.1-1,SH21314.1-1,SH31314.11,SH413FIGURES~14.2-10SECTION14.214'-1.1314.2213SECTION14.314.3-114.32SECTION14.414.4-114.4-214.4-314.4-4SECTION14.514.5-114.52SECTION14.614.6-114.6-214.6314.6414.6-514.6-614.6-714.6-814.6-914.6-1014.,6"1114.6-1214.61314.6-1414.6-1514.6-1614.6-1714.6-1814.6-1914.6-2014.62114.6-2214.6-2314.6-2414,6-2514.6-2614.6-271313131313131313131313131313131313131313131313131313131313131313131314.6-2814.6-2914.6-3014.6-3114~6"3214.6-3314.6-3414.6-3514.63614.6-3714.6-3814.6-3914.6-4014.6"4114~6-4214.64314.6-4414.6-4514.6-4614.6-4714.6-4814.64914.6-5014.6-5114.6-5214.65314.6-5414.6-5514.6-5614.6-5'724.6-5814.6-5914.6-6014.6-6114,6-6214.6-6314.66414.6-6514.6-6614.6-6714.6-6814.669131313131313131313131313131313131313131313131313131313131313131313131313131313131314.6-7013TABLES14.6-114.6-214.6314.6-414.6-514.6-614.6-713131313131313FIGURES14.6-1SH1014.6-1SH2014.6-2SH1014.6-2SH2014.6-2SH3014.6-2SH4014.6-3014.6-4SH1014.6-4N2014.6-5014.6-6~014.67SH1014.67SH2014.6-7SH3014~6-7SH4014.6-8SH1014.6-8N2014.6-9SH1014.6-9SH2014.6-9SH3014.6-9SH4014~6-9SH5014.6-10SH1014~6-10SH2314.6"11014.6-12014.613SH1014.6-13SH2014.6-13SH3014.6-13SH4014.623I14.6"1414.61514.61614.6-1714.61814.6-1914.62014.6-2114~6-2214.62314.6-24CHAPTER1515-215ii15-iii15-iv15w15wi15wii15viii15-ix15-x25-xi15-xii15-xiii15-xiv15xv15-xvi15-xvii25-xviii15-xix15-xx15-xxi15-xxii15xxiii15-xxivSECTZON1515.0-115.02SH500000000000013-113-1131'3-113-113113-113113-113-113113-2,13-113-213-113-113-113-113113-113-123-213-1131013-1131"Unnumbered81antPage UstofEffectivePagesPage15.0-315.0415.0-515.0-615.0-715.0-815.0915.0-1015.0-1115.012TABLES15.0115.0-215.0-315.0415.0-5SH115.0-5SH215.0-5SH315.06SH115'-6SH2FIGURES15.0115.0-215.0-3SECTION15.115.1115.1-2I5.1-315.1415.1-'515.1-615.1-715.1815.1915.1-1015.1-1115.1-1215.1-1315.1-14Rev13113-113-113113-113113-113"113-113-113113113-113-113113113-113-113-113-1013-113113113-113-113-113113113-113113113-113-1131Page15.1-1515.1-1615.1-1'715.11815.1-1915.1-2015.12115.1-2215.1-2315.12415.1-2515.1-2615.1-2715.1-2815.12915.13015.1-3115F1-32TABLES15.1115.1-215.1-315.1415.1515.1-6SH115.1-6SH215.17FIGURES15.1-115.1-215.1-315.1-415.1-515.1-615.1-6415.1"6b15.1-6c15.1-715.1-815.1-913-113-113-113-113113-113-113-113113-113113113-113113-113-113113-113-113113113-1131313-113-100000013-113-113113-113-1131Page15~11015.11115.1-1215.11315.11415.1-1515.11615.1-1715.1-1815.1-1915.12015.1-2115.12215.1-2315.1-2415.1-2515.12615.1-2715.1-2815.12915.13015.13115.1-3215.1-3315.13415.1-3515.1-3615.13715~13815.13915.14015.1-4115.1-4215.1-4315.1-4415.1-4515.1-4615.1-4715.1-4813-113-113113-113-113-113-113-113-113-113-113-113-113-113-113-113-113-113-113-113-113113113-113-113113113-113-113-113113113-113-113113113-113-113-1SECTION15~215.2-113-1Page15.2215.2-315.2-415.2515.2615.2-715.2815.2-915.2-1015.2-1115.21215.2-1315.21415.21515.2-1615.2-1715.2"1815'-1915'-2015.22115.222'5.22315.2-24TABLES15.2115.2-215.2315.2415.25FIGURES15.2115.2-215.2-315.2-415.2-515.2615.2-7'5.2815.2915.2-10Rev13-113-113113-113-113113-113-113-113-113-113113-113-113"113-113-113"113-113-113-113113113-113-113-113113-113-113-113-113-113-113-113113-1131Page15.21115.2-1215.2-1315.21415.21515~2-1615~2-1715.2-1815.2"1915.22015.22115.2-2215.22315.2-2415.2-2515.2-2615.2-2715.2-2815.2-2915.230SECTION15~315.3-115.3215.3315.3-415.3-515.3615.3715.3"815.3-915.310TABLES15.3-115.3-215.3-3FIGURES15.3-115.3.215.3-3Rev13113-113113-113113-113-113-113-113-113-113113-113113-113-113-113-113-113-113-113-113-113113-113-113-113113-113"113113"113"113-113-1.13-1Page15.3-415.3-515.3-615.3715.3-815.3-915.3-10SECTION15.415.4-115.4-215.4-315.4-415.4-515.4615.4-715.4-815.4915.4-1015.41115.41215.4-1315.4-1415.4-1515.4-1615.41715.4-1815.4-1915.4-2015.4-2115.42215.4-2315.4-2415.4-2515.4-2615.42715.4-2815.4.2915.4-3015.4-3115.4=3215.4-33Rev13-113-113-113113-113-113-113-113-113-113-113113-113-113-113113-113-113-113-113-113-113-113-113-113113-113-113-113113113113113113-113-113113-113113-1Page15.4-3415.4-3515.43615.4-3715.4-3815.4-3915.44015.4-4115.44215.44315.44415.4-4515.44615.4-4715.4-4815.44915.4-5015.4-5115.4-5215.45315.4-5415.45515.4-5615.4-5715.45815.4-5915.46015.4-6115.46215.4-6315.4-6415.4-65TABLES15.4-115.4215.4-315.4-4FIGURES15.4-115.4-2Rev13-113-113-113-113-113-113-113-113-113-113113-113113-113-113-113-113-113-113-113113113-113113-113-113113-113-113-113-1131~13-113-113-113-11010Ann~redBlankPage L1stofEffectivePagesPageRevPagePageRevPageRevPageRevPagePageRev15.4315.4-415.4-515.4-615.4-115.4-815.4915~41015.4-1115.4-1215.4-1315'-1415.4-1515.4-1615.4-1715.4-1815.4-19444444444000010101010SECTZON15.615.6-115.6-215.6-315.6-415.6-515.6-615.6-715.6-815.6-915.61015.61115.6-1215.6-1315.6-1415.6-1515.6-1615.6-1115.61815.6-1913-113-113113-113-113113-113-113-113-113-113-113-113-113113113-113-113-1SECTZON15.515.5-113-115.5-215.6-2015.6-2115.6-2215.6-2315.6-2415.62515'-2615.6-2715.6-2815.6-2915'-3015.63115.63215.6-3315.63415.6-3515'-3615.63715.6-3815.6-3915.64015.64115.6-4215.6-4315.64415.6-4515.6-4615.64115.6-4815.6-4915.6-5015.6-5115.6-5215.6-5315.6"5415.6-5515.6-5615'-5715.6-5815.6-5915.6-6015.66113-113-113-113-113113-113113-113-113-113-113-113113-113-113-113-113113-113-113113-113-113113-113-113-113113-113-113-113-113-113113113-113-113113-113-113-113115.66215.6-6315.6-6415.6-6515.6-6615.6-6715.6-6815.66915.6-7015.6-7115.6-7215.6-7315.6-7415.6-7515.67615.6"7115.67815.6-7915.6-80TABLES15.6115.6-215.6-315.6415.6-515.6-6SH115.6-6SH215.6-715.6815.6-915.6"9A15.69B15.6-9C15.6-1015.6-1115.61215.6-1315.6-1415.6-1515.6-1615.6-1113113-113-113-113"113113-113-113-113-113-113-113113-113113113-113-113-113-113-113-113-113-113-113113-113-113-113-113-113113-113-113-113-113-113-113113-115.6-1815.6-1815.6-1815.6-1915.6-1915.62015.6-2115.62115.6-2115.6-2215.6-23FIGURES15.6115.6-215.6-315.6-415.6-515.6-615.6115.6-815.6915.6"1015.6-1115.6-1215.6-1315.6-1415.6-1515.6-1615.6-1715.6-1815.6-1915.62015.6-2115~6-2215.62315.6-2415'-2515.6-2615.6-2115.6-2815.6-29SH113-1SH213-1SH313-1SH1131SH213-113-1SH1131SH213-1SH313-113"113113-113-113-113-113-113-113113-113-113113-113-113113-113-113"113-113113-113-113-113-113-113-113-113-113113-113-115.63015.6-3115.6-3215.6-3315.6-3415.6-3515.6-3615.6-3715.6-3815.6-3915.6-4015.64115.6-4215.6-4315.6-4415.64515.6-4615.6-4715.64815.6-4915.6-5015.6-5115.6-5215.6-5315.6-5415.6-5515.6-5615.6-5115.6-5815.6-5915.6-6015.6-6115.6-6215.66315.6-6415.6-6515.6-6615.66715.6-6815.6-6915.67015.6-1113-113-113-113-113-113-113-113"113-113-113-113-113-113113-113-113113-113-113-113-113-113-113-113113-113-113-113-113113-113-113113-113-113113113-113-113-113-113115.6-7215.6-1315.6-7415.6-7515.6-7615.67715.6-78SECTZON15.715.1-115.1-215.7-315.7-415.7-515.7-615.7-715.7-815.1-915.7-1015.7-1115.7-1215.7-1315.1-1415.7-1515.1-1615.7-1715.7-1815.7"1915.7-20TABLES15.7-115.7-215.7-3FZGURES15.7-1SECTZON15.815~8-115.8215.8-313-113113113-113-113113-113-113-113-113-113"113-113-113-113113-113-113-113113-113-113-113-113-113-113-113131313-113-113-115.8415.8-515.8-615.8-715.88CHAPTER1717-117-iiSECTZON17.117~1-117.1-211.1-317.1417.1-517.1617~1-717.1-817.1-917.1"1017.11111.1-1217.1-1317.1-1417.1"1511.1-1617.1-1717.11817.1-1917.12011.1-2117.1-2217.1-23.17.1"2417.1~2517.1-2617.1-271'7.1-2817.1-2917.21-3017.1-3113-113113-113-1131313131313131313131313131313131313131313131313131313131313131313"UnorderedBlankPage ListofEffectivePagesPage17.1-32FIGURES17.1-1SECTION17.217.2117.2-217.2-317.2417.2-517.2-617.2717.2-817.2-917.2-1017.2-1117.21217.21317.2-1417.2-151'7.2-1617.2-1717.2-1817.2-1917.22017.2-2117.2-2217.2-2317.2-2417.2-2517.22617.2-2717.2~2817.2-2917.23017.2-31i7.2-3217.2-331'7.2-3417.23517.2-36Rev13131313131313131313131313131313131313131313131313131313131313131313131313Page17'-3717.23817.2-3917.24017.2-4117.2-4217.2-4317.24417.2-4517.2-4617.2-4717.24817.24917.2-5017.2-511'7.2-5217.2-5317.2-5417.2-5517.2-5617.2-5717.2-5817.2-5917.2-6017.2-6117'-6217.2-6317~26417.2-6513131313131313131313131313131S1313131313131313131313131313PageRevPageRevPageRevPageRevPagoRev"Unbred81ankPage GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectionritzePacCeINTRODUCTION1.21.2.11.2.21.2.31.2.3.11.2.3.21.2.3.31.2.3.41.2.3.51.2.3.61.2.3.71.2.3.81.2.3.91.2.3.101.2.3.111.2.3.121.2.41.2.51.2.61.2.71.2.81.2.91.2.101.2.111.2.11.11.2.11.21.2.11.31.2.11.41.2.11.51.2.11.61.2.11.71.2.121.2.13GENERALPLANTDESCRIPTIONSiteandEnvironmentSummaxyPlantDescriptionStructuresGeneralContainmentAuxiliaryBuildingIntermediateBuildingTurbineBuildingControlBuildingAll-Volatile-TreatmentBuildingStandbyAuxiliaryFeedwaterPump(SAFW)BuildingScreenHouseServiceBuildingDieselGeneratorBuildingOldSteamGeneratorStorageFacilityNuclearSteamSupplySystemReactorandPlantCoritrolWasteDisposalSystemFuelHandlingSystemTurbineandAuxiliariesElectricalSystemEngineeredSafetyFeaturesProtectionSystemsDesignHighlightsPowerLevelReactorCoolantLoopsPeakSpecificPowerFuelCladFuelAssemblyDesignEngineeredSafetyFeaturesEmergencyPowerStationWaterUseFacilitySafetyConclusions1.2-11.2-11.2-11.2-21.2-21.2-3L2<1.2-61.2-71.2-101.2-101.2-101.2-101.2-111.2-111.2-121.2-131.2-131.2-141.2-141.2-151.2-151.2-161.2-171.2-171.2-171.2-171.2-171.2-181.2-181.2-181.2-181.2-181.31.3.1COMPARISONTABLESComparisonswithSimilarFacilityDesigns1.3-11.3-1REV.1312/96 CHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectioni'ilia'~cCe1.3.21.3.2.11.3.2.21.3.2.31.3.2.41.3.2.51.3.2.61.3.2.71.3.2.81.3.2.91.3.2.101.3.2.11'.3.2.121.3.2.131.3.2.141.3.2.151.3.2.161.3.2.17ComparisonofFinalandPreliminarySafetyAnalysisReportInformationPartialLengthRodClusterControlAssembliesBurnableShimRodsSafetyInjectionSystemTripSignalContainmentSpraySystemSignalSafetyInjectionSystemAccumulatorsSprayAdditiveRodStopandReactorTriponStartupMiniatureNeutronFluxDetectorsCoreThermocouplesInitialLeakRateTestMethodAuxiliaryBuildingVentilationFiltersControlCenterBusesCondenserCirculatingWaterFlowRampLoadingRangeCondensateStorageTanksCapacityFuelTransferSystemDriveSteamLineFlowNozzles1.3-11.3-11.3-11.3-21.3-21.3-21.3-21.3-21.3-21.3-21.3-31.3-31.3-31.3-31.3-31.3-31.3-31.3<IDENTIFICATIONOFAGENTSANDCONTRACTORS1.4-11.51.5.11.5.21.5.31.5.3.11.5.3.21.5.3.31.5.3.41.5.41.5.51.5.61.5.71.5.81.5.8.11.5.8.21.5.9REQUIREMENTSFORFURTHERTECHNICALINFORMATIONIntroductionDevelopmentoftheFinalCoreDesignandFinalThermal-HydraulicandPhysicsParametersCoreStabilityCorePowerDistributionOut-of-CoreIonChambersIn-CoreControlEquipmentStartupTestProgramDevelopmentofLongIonChambersControlRodEjectionandDroppedControlRodAccidentAnalysesCharcoalFiltersReactorCoolantPumpControlledLeakageSealsSafetyInjectionSystemDevelopmentofSafetyInjectionSystemDesignDevelopmentofCoreCoolingAnalysisDevelopmentofDesign,Inspection,andAcceptanceCriteriaFor1.5-11.5-11.5-21.5-21.5-21.5-31.5-31.5<1.5-71.5-71.5-8.1.5-111.5-111.5-111.5-121.5-13REV.1312/96 \GINNA/UFSARCHAPTER1ZNTRODUCTZONANDGENERALDESCRZPTZONOFTHEPLANTIITABLEOFCONTENTSSectionTitlePacae1.5.9.11.5.9.1.11.5.9.1.21.5.9.21.5.9.31.5.9.41.5.9.4.11.5.9.4.21.5.10PrestressedReinforced-ConcretePressureVesselsRockAnchorsDesignCriteriaandAssumptionsTestVerificationandResultsRockAnchorGroutTendonInspectionandAcceptanceCriteriaWallTendonsCorrosionProtectionInspectionandAoceptanceDevelopmentofContainmentHydrogenRecombiner1.5-131.5-131.5-141.5-141.5-141.5-151.5-151.5-161.5-161.6ReferencesforSection1.5MATERIALINCORPORATEDBYREKZRENCE1.5-181.6-11.7DRAWINGSANDOTHERDETAILEDZNFORMATZON1.7-11.7.11.7.21.7.3Electrical,Instrumentation,andControlDrawingsPipingandInstrumentationDiagramsOtherDetailedInformation1.7-11.7-11.7-11.81.8.11.8.1.11.8.1.21.8.1.31.8.1.41.8.1.51.8.1.61.8.1.7CONFORMANCETONRCREGULATORYGUIDESConformancetoAECSafetyGuidesSafetyGuide1-NetPositiveSuctionHeadforEmergencyCoreCoolingandContainmentHeatRemovalSystemPumpsSafetyGuide2-ThermalShocktoReactorPressureVesselsSafetyGuide3-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLoss-of-CoolantAccidentforBoilingWaterReactorsSafetyGuide4-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLoss-of-CoolantAccidentforPressurizedWaterReactorsSafetyGuide5-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaSteamLineBreakAccidentforBoilingWaterReactorsSafetyGuide6-IndependenceBetweenRedundantStandby(Onsite)PowerSourcesandBetweenTheirDistributionSystemsSafetyGuide7-ControlofCombustibleGasConcentrationsinContainmentFollowingaLoss'-CoolantAccident1.8-11.8-11.8-11.8-21.8-31.8-31.8-31.8-3LS<REV.1312/96 GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectionTitleP~ae1.8.1.81.8.1.91.8.1.101.8.1.111.8.1.121.8.1.131.8.1.141.8.1.151.8.1.161.8.1.171.8.1.181.8.1.18.11.8.1.18.21.8.1.18.31.8.1.18.41.8.1.18.51.8.1.191.8.1.19.11.8.1.19.21.8.1.19.31.8.1.19.41.8.1.201.8.1.211.8.1.221.8.1.231.8.1.241.8.1.25~1.8.1.26SafetyGuideS-PersonnelSelectionandTrainingSafetyGuide9-SelectionofDiesel-GeneratorSetCapacityforStandbyPowerSuppliesSafetyGuide10-Mechanical(Cadweld)SplicesinReinforcingBarsofConcreteContainmentsSafetyGuide11-InstrumentLinesPenetratingPrimaryReactorContainmentSafetyGuide12-InstrumentationforEarthquakesSafetyGuide13-FuelStorageFacilityDesignBasisSafetyGuide14-ReactorCoolantPumpFlywheelIntegritySafetyGuide15-TestingofReinforcingBarsforConcreteStructuresSafetyGuide16-ReportingofOperatingInformationSafetyGuide17-ProtectionAgainstIndustrialSabotageSafetyGuide18-StructuralAcceptanceTestforConcretePrimaryReactorContainmentsStructuralIntegrityTestInstrumentationDisplacementMeasurementsStrainMeasurementsTestResultsSafetyGuide19-NondestructiveExaminationofPrimatyContainmentLinersTestProvisionsExaminationofWeldsPressureTestsQualityControlProvisionsSafetyGuide20-VibrationMeasurementsonReactorInternalsSafetyGuide21-MeasuringandReportingEQluentsfromNuclearPowerPlantsSafetyGuide22-PeriodicTestingofProtectionSystemActuationFunctionsSafetyGuide23-OnsiteMeteorologicalProgramsSafetyGuide24-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaPressurizerWaterReactorRadioactiveGasStorageTankFailureSafetyGuide25-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBoilingandPressurizedWaterReactorsSafetyGuide26-QualityGroupClassificationandStandards1.8<1.841.8-51.8-71.8-71.8-71.8-91.8-121.8-131.8-131.8-141.8-141.8-151.8-151.8-161.8-171.8-201.8-201.8-201.8-211.8-221.8-22'1.8-231.8-241.8-251.8-251.8-261.8-261-ivREV.1312/96 GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectiontitieP~cCe1.8.1.271.8.1.281.8.1.29'.8.21.8.2.11.8.2.21.8.2.31.8.2.41.8.2.51.8.2.61.8.2.71.8.2.81.8.2.91.8.2.9.11.8.2.9.2,1.8.2.10.1.8.2.111.8.2.12SafetyGuide27-UltimateHeatSinkSafetyGuide28-QualityAssuranceProgramRequirementsSafetyGuide29-SeismicDesignClassificationConformancetoDivisionIRegulatoryGuideRegulatoryGuide1.4-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequences'ofaLoss'-CoolantAccidentforPressurizedWaterReactorsRegulatoryGuide1.10-Mechanical(Cadweld)SplicesinReinforcingBarsofCategoryIConcreteStructuresRegulatoryGuide1.15-TestingofReinforcingBarsforCategoryIConcreteStructuresRegulatoryGuide1.17-ProtectionofNuclearPlantsAgainstIndustrialSabotageRegulatoryGuide1.18-StructuralAcceptanceTestforConcretePrimaryReactorContainmentsRegulatoryGuide1.19-NondestructiveExaminationofPrimaryContainmentLinerWeldsRegulatoryGuide1.29-SeismicDesignClassificationRegulatoryGuide1.30-QualityAssuranceRequirementsfortheInstallation,Inspection,andTestingofInstrumentationandElectricalEquipmentRegulatoryGuide1.31-ControlofStainlessSteelWeldingPlantConstructionPlantOperationRegulatoryGuide1.32-UseofIEEEStandard308-1971,CriteriaforClassIEEElectricSystemsforNuclearPowerGeneratingStationsRegulatoryGuide1.33-QualityAssuranceProgramRequirements(Operation)RegulatoryGuide1.34-ControlofElectroslagWeldProperties1.8-261.8-271.8-271.8-301.8-301.8-301.8-311.8-311.8-311.8-311.8-311.8-321.8-321.8-321.8-341.8-341.8-351.8-351.8.2.131.8.2.141.8.2.151.8.2.16RegulatoryGuide1.35-InserviceSurveillanceofUngroutedTendonsinPrestressedConcreteContainmentStructuresRegulatoryGuide1.36-NonmetallicThermalInsulationforAusteniticStainlessSteelRegulatoryGuide1.37-QualityAssuranceforCleaningofFluidSystemsandAssociatedComponentsofWater-CooledNuclearPowerPlantsRegulatoryGuide1.38-QualityAssuranceRequirementsforPackaging,Shipping,Receiving,Storage,andHandlingofItemsfor1.8-361.8-361.8-371.8-381-vREV.1312/96 GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectionK'i81ePacCe1.8.2.171.8.2.181.8.2.191.8.2.201.8.2.211.8.2.221.8.2.22.11.8.2.22.21.8.2.231.8.2.241.8.2.251.8.2.261.8.2.271.8.2.281.8.2.291.8.2.301.8.2.311.8.2.321.8.2.33Water-CooledNuclearPowerPlantsRegulatoryGuide1.39-HousekeepingRequirementsforWater-CooledNuclearPowerPlantsRegulatoryGuide1.40-QualificationTestsofContinuous-DutyMotorsInstalledInsidetheContainmentofWater-CooledNuclearPowerPlantsRegulatoryGuide1.41-PreoperationalTestingofRedundantOn-SiteElectricPowerSystemstoVerifyProperLoadGroupAssignmentsRegulatoryGuide1.42-InterimLicensingPolicyonAs-Low-AsPracticableforGaseousRadioiodineReleasesfromLight-Water-CooledNuclearPowerReactorsRegulatoryGuide1.43-ControlofStainlessSteelWeldCladdingofLow-AlloySteelComponentsRegulatoryGuide1.44-ControloftheUseofSensitizedStainlessSteelPlantConstructionPlantOperationRegulatoryGuide1.45-ReactorCoolantPressureBoundaryLeakageDetectionSystemRegulatoryGuide1.46-ProtectionAgainstPipeWhipInsideContainmentRegulatoryGuide1.47-BypassedandInoperableStatusIndicationforNuclearPowerPlantSafetySystemsRegulatoryGuide1.48-DesignLimitsandLoadingCombinationsforSeismicCategoryIFluidSystemComponentsRegulatoryGuide1.49-PowerLevelsofWater-CooledNuclearPowerPlantsRegulatoryGuide1.50-ControlofPreheatTemperatureforWeldingofLow-AlloySteelRegulatoryGuide1.51-InserviceInspectionofASMECodeClass2and3NuclearPowerPlantComponentsRegulatoiyGuide1.52-Design,Testing,andMaintenanceCriteriaforAtmosphericCleanupSystemAirFiltrationandAdsorptionUnitsofLight-Water-CooledNuclearPowerPlantsRegulatoryGuide1.53-ApplicationoftheSingle-FailureCriteriontoNuclearPowerPlantProtectionSystemsRegulatoryGuide1.54-QualityAssuranceRequirementsforProtectiveCoatingsAppliedtoWater-CooledNuclearPowerPlantsRegulatoryGuide1.55-ConcretePlacementinSeismicCategoryIStructures1.8-391.8<11.8<1L8411.8<31.8431.8431.8451.8451.8-471.8471.8491.8-501.8-501.8-511.8-511.8-521.8-531.8-531-viREV.1312/96 GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectionTit'lePacCe1.8.2.341.8.2.351.8.2.361.8.31.8.3.11.8.3.21.8.3.2.11.8.3.2.21.8.3.2.2.11.8.3.2.2.21.8.3.2.2.31.8.3.2.2.41.8.3.2.31.8.3.2.3.11.8.3.2.3.21.8.3.2.3.31.8.3.2.3.41.8.3.2.3.51.8.3.2.3.61.8.3.2.41.8.3.2.51.8.3.31.8.3.41.8.3.51.8.3.61.8.3.71.8.3.8RegulatoryGuide1.57-DesignLimitsandLoadingCombinationsforMetalPrimaryReactorContainmentSystemComponentsRegulatoryGuide1.58-QualificationofNuclearPowerPlantInspection,Examination,andTestingPersonnelRegulatoryGuide1.59-Design-BasisFloodsforNuclearPowerPlantsConformancetoIEEECriteriaCriteriaforProtectionSystemsforNuclearPowerGeneratingStations(IEEE279-1971)ClassIEElectricSystemsforNuclearPowerGeneratingStations(IEEE308-1971)PrincipalDesignCriteriaAlternatingCurrentPowerSystemsGeneralDistributionSystemsPreferredPowerSupplyStandbyPowerSupplyDirectCurrentPowerSystemsGeneralDistributionSystemBatterySupplyBatteryChargerSupplyProtectiveDevicesPerformanceDischargeTestProvisionsVitalInstrumentationandControlPowerSystemsSurveillanceRequirementsElectricalPenetrationAssembliesinContainmentStructuresforNuclearFueledPowerGeneratingStations(IEEE317-April1971)QualifyingClassIElectricEquipmentforNuclearPowerGeneratingStations(IEEE323-April1971)TypeTestsofContinuousDutyClassIMotorsInstalledInsidetheContainmentofNuclearPowerGeneratingStations(IEEE334-1971)Installation,Inspection,andTestingRequirementsforInstrumentationandElectricEquipmentDuringtheConstructionofNuclearPowerGeneratingStations(IEEE336-1971)TrialUseCriteriaforthePeriodicTestingofNuclearPowerGeneratingStationProtectionSystems(IEEE338-1971)SeismicQualificationofClassIElectricalEquipmentforNuclearPowerGeneratingStations(IEEE334-1971)1.8-541.8-541.8-551.8-571.8-571.8-571.8-571.8-581.8-581.8-591.8401.8401.8411.8-611.8<11.8-611.8421.8421.8421.8421.8431.8451.8461.8461.8<71.8-671.8481-viiREV.1312/96 GINNA/URSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANTTABLEOFCONTENTSSectionI'itIeP~cCeReferencesforSection1.81.8491-viiiREV.1312/96 GINNA/UFSARLIST'OFTABLES.'TableTitle1.3-11.3-21.7-11.7-2ComparisonofDesignParameterswithPointBeachComparisonofDesignParameterswithSanOnofreandConnecticutYankeeElectrical,Instrumentation,andControlDrawingsPipingandInstrumentationDiagramsREV.1312/96 GINNA/UFSARLISTOFFIGURESZi.t1eGinnaStationPlotPlanTurbineBuildingPlan-BasementFloorTurbineBuildingPlan-MezzanineFloorTurbineBuildingPlan-OperatingFloorTurbineBuildingSections(Sheets1through4)ContainmentandIntermediateBuildingPlan-BasementFloor(Sheets1and2)ContainmentandIntermediateBuildingPlan-IntermediateFloor(Sheets1through3)ContainmentandIntermediateBuildingPlan-OperatingFloor(Sheets1through3)ReactorContainmentStructure(Sheets1and2)AuxilimyBuildingPlan-BasementFloorAuxiliaryBuildingPlan-IntermediateFloorAuxiliaryBuildingPlan-OperatingFloorAuxiliaryBuilding-GeneralCrossSectionIntermediateBuildingPlan-Elevations293ft0in.,298ft4in.,and315ft4in.ControlBuilding(Sheets1through4)All-Volatile-TreatmentBuildingTechnicalSupportCenterPlanAboveElevations271ftand272ftStandbyAuxiliaryFeedwaterPump(SAFW)BuildingScreenHouse(Sheets1through3)ServiceBuilding'-OfficeFloorArea(Sheets1and2)ServiceBuilding-Basement(Sheets1and2)SymbolLegend(Sheets1through4)REV.1312/96 GINNA/UFSARCHAPTER1INTRODUCTIONANDGENERALDESCRIPTIONOFTHEPLANT

1.1INTRODUCTION

GinnaStationislocatedinWayneCounty,nearRochester,NewYork.TheGinnareactorisapressurizedlightwatermoderatedandcooledsystemdesignedbyWestinghouse.ThelicenseeisRochesterGasandElectricCorporation(RG&E).RochesterGasandElectricfiledtheapplicationforaconstructionpermitandoperatinglicenseinOctober1965.Theconstructionpermitwasissuedon-April25,l966.TheinitialsubmittaloftheFinalFacilityDescriptionandSafetyAnalysisReportwasfiledinMarch1969,andtheinitialprovisionaloperatinglicensewasissuedonSeptembez19,1969.GinnaStationbegancommercialoperationinJuly1970,atalicensedoutputof1300MWtandat420MWnetelectricalpower.OnMarch1,1972,thelicensedoutputwasincreasedto1520MWtandthenetelectricaloutputwasincreasedto490MW.InAugust1972RG&Eappliedforafull-termoperatinglicense.TheSafetyEvaluationReportrelatedtothefull-termoperatinglicensefortheR.E.GinnaNuclearPowerPlant(NUREG0944)waspublishedinOctober1983;Supplement1waspublishedinOctober1984.Thefull-termoperatinglicensewasissuedonDecember10,1984.ThelicensewastoexpireonApril25,2006.OnAugust8,1991,thelicensewasamendedtochangetheexpirationdatetoSeptember18,2009,whichis40yearsafterthedateofissuanceoftheprovisionaloperatinglicense.TheR.E.GinnaNuclearPowerPlantwasreviewedunderPhaseIIoftheSystematicEvaluationProgram(SEP).Thereviewbeganin1978andtheIntegratedPlantSafetyAssessment,FinalReport,NUREG0821,wasissuedbytheNRCinDecember1982.Supplement1toNUREG0821wasissuedinAugust1983.TheGinnaStationprimarycoolantsystemconfigurationconsistsoftwohotlegs,twoU-tubesteamgenerators,apressurizer,andtwocoldlegswithareactorcoolantpumpineachcoldleg.Thesecondarysystemconsistsbasicallyoftheturbinegenerator,thecondenser,andthefeedwaterandREV.1312/96 GINNA/UFSARcondensatesystems.Auxiliaryequipmentincludesaradioactivewastedisposalsystem,fuelhandlingsystem,maintransformer,circulatingwatersystem,engineeredsafetyfeaturessystems,andallauxiliaries,structures,andonsitefacilitiesrequiredtoprovideforacompleteandoperablenuclearpowerplant.Amoredetailedlistofstructures,systems,andcomponentsisprovidedinSection3.2.TheturbineandcondensersystemaswellasthenuclearsteamsupplysystemweredesignedandsuppliedbyWestinghouse.TheremainderoftheplantwasdesignedbyeitherRG&EorGilbertAssociates,Incorporated.ThereplacementsteamgeneratorsweredesignedandsuppliedbyBabcockandWilcoxInternational(BHZ).ThereactorcontainmentstructurewasdesignedbyGilbertAssociates.Itisareinforced-concrete,verticalrightcylinderwithaflatbaseandahemisphericaldome.Aweldedsteellinerisattachedtotheinsidefaceoftheconcreteshelltoprovideforleaktightness.Thecontainmentcylinderisfoundedonrockbypost-tensionedrockanchors.Thecylinderwallisprestressedverticallybytendonscoupledtotherockanchors.GinnaStationislocatedonthesouthshoreofLakeOntario,whichisthesourceofcirculatingwaterandtheultimateheatsink.Thesiteinitiallycontained338acres.In1973thesite,includingtheswitchyard,wasincreasedto488acres.1.1-2REV.1312/96 GINNA/UFSAR1.2GENERALPLANTDESCRIPTION1.2.1SITEANDENVIRONMENTThesiteisonthesouthshoreofLakeOntario16mileseastofRochester,NewYork,anurbanareaofabout700,000.Theareaimmediatelyaroundthesiteissparselypopulatedandisutilizedprimarilyforfarming.Thesite,inopen,rollingterrain,iswellventilatedandisnotgenerallysubjecttosevereflooding.Liquidsreleasedtothelakefromthesitewillmovepredominatelyeastwardanddiffuseslowly.Hurricaneshavenotseriouslyaffectedthesiteregionandtornadoesandsevereicestormsazerare.Onsitemeasurementsindicatethatgroundwaterwithinthesitewillflowtothelakeandwillnotaffectoffsitewells.Thesitehassoundbedrockonwhichmajorstructuresazefoundedandisinaseismologicallyquietregion.Itiswithinl50milesoftheSt.LawrenceValleyarea,whereearthquakesofRichtermagnitude7havebeenexperienced,and35milesfromtheareaaroundBatavia-Atticawhichhasexperiencedmoderateseismologicalactivityofsmallermagnitudes.1.2.2SUMMARYPLANTDESCRIPTIONTheinherentdesignofthepressurizedwaterreactorensuresthattheprobabilityofreleaseofsignificantquantitiesoffissionproductstotheatmosphereislow.Fourbarriersexist,betweenthefissionproductaccumulationandtheenvironment.Thesearetheuraniumdioxidefuelmatrix,thefuelcladding,thereactorvesselandcoolantloops,andthereactorcontainment.Theconsequencesofabreachofthefuelcladdingaregreatlyreducedbytheabilityoftheuraniumdioxidelatticetoretainfissionproducts.Escapeoffissionproductsthroughafuelcladdingdefectwouldbecontainedwithinthepressurevessel,loops,andauxiliarysystems.Abreachofthesesystemsorequipmentwouldreleasethefissionproductstothereactorcontainmentwheretheywouldberetained.Thereactorcontainmentisdesignedtoadequatelyretainthesefissionproductsunderthemostsevereaccidentconditions,thedesign-basisloss-of-coolantaccident.ThisaccidentanditsconsequencesareanalyzedinSection15.6.1.2-1REV.1312/96 Severalengineeredsafetyfeatureshavebeenincorporatedintotheplantdesigntoreducetheconsequencesofaloss-of-coolantaccident.Thesesafetyfeaturesincludeasafetyinjectionsystem(EmergencyCoreCoolingSystem(ECCS)).Thissystemautomaticallydeliversboratedwatertothereactorvesselfozcoolingunderhighandlowreactorcoolantpressureconditions.Thesafetyinjectionsystemalsoservestoinsertnegativereactivityintothecoreintheformofbozatedwaterduringanuncontrolledplantcooldownfollowingasteamlinebreakoranaccidentalsteamrelease.Othersafetyfeatureswhichhavebeenincludedinthereactorcontainmentdesignareacontainmentairrecirculation,cooling,andfiltrationsystem,whichwouldeffectadepzessuzizationofthecontainmentfollowingalossofcoolantand~provideforiodinefiltrationiffissionproductsarereleasedfromthecore;andacontai.nmentspraysystemwhichwoulddepressurizethecontainmentandremoveelementaliodinefromtheatmospherebyawashingaction.Thecontainmentspraysystemandcontainmentairrecirculation,cooling,andfiltrationsystemareredundantcontainmentheat,removalsystems.AdditionalengineeredsafetyfeaturesarelistedinSection3.2.1.2.3STRUCTURES1.2.3.1GeneralThemajorstructuresareareactorcontainment,auxiliarybuilding,intermediatebuilding,controlbuilding,turbinebuilding,screenhouse,allvolatile-treatmentorcondensatedemineralizerbuilding,standbyauxiliaryfeedwaterpump(SAFW)building,dieselgeneratorbuilding,andtheservicebuildingcontainingoffices,shops,andlaboratories.AgeneralplanofthebuildingarrangementisshowninFigure1.2-1.Figures1.2-2through1.2-21showthegeneralinternallayoutofthebuildings.Additionally,theoldsteamgeneratorstoragefacilityislocatednorthwestoftheplantoutsidethesecurityfence.Thereactorcontainmentisavertical,cylindricalreinforced-concretetypewithprestressedtendonsintheverticalwall,reinforced-concretezinganchoredtothebedrockandareinforcedhemisphericaldome.Thecontainmentisdesignedtowithstandtheinternalpressureaccompanyingaloss-of-coolant1.2-2REV.1312/96 GKNNA/UFSARaccidentormainsteamlinebreakandtoprovideadequateradiationshieldingforbothMODES1and2andaccidentconditions.1.2.3.2ContainmentThereactorcontainmentstructureisareinforced-concrete,verticalrightcylinderwithaflatbaseandahemisphericaldome.Aweldedsteellinerisattachedtotheinsidefaceoftheconcreteshelltoensureahighdegreeofleaktightness.Thethicknessofthelinerinthecylinderanddomeis3/S-in.andinthebaseitis1/4in.Thecylindricalreinforced-concretewallsare3ft6in.thick,,andtheconcretehemisphericaldomeis2ft6in.thick.Theconcretebaseslabis2ftthickwithanadditional2-ft-thickconcretefilloverthebottomlinerplate.Thecontainmentstructureis99fthightothespringlineofthedomeandhasaninsidediameterof105ft.Thecontainmentvesselprovidesaminimumfreevolumeofapproximately972,000ft.Accessisprovidedduringoperationbymeansoftwopersonnelaizlocks3designedwithaninterlockedsingle-door-openingfeaturethatisleaktestableatcontainmentdesignpressurebetweendoors.Theopenandclosedstatusofeachdoorisindicatedinthecontrolroom.Themajorcomponentsofthereactorcoolantsystemazelocatedwithinthecontainmentstructure.Thecontainmentstructure.providesaphysicalbarriertoprotecttheequipmentfromnaturaldisastersandshieldingtoprotectpersonnelfromradiationemittedfromthereactorcozewhileatpower.Thereactorvesselislocatedinthecenterofthecontainmentstructurebelowgroundlevel.Extendingaroundthereactorvesselisastainless-steel-linedrefuelingcavity.DuringMODE6(Refueling)operations,therefuelingcavityisfloodedwithboratedwatertoprovideshieldingoftheirradiatedfuelbeingremovedfromthereactorvessel.Thickreinforced-concretewallsarelocatedaroundthemajorreactorcoolantsystemcomponentstoserveasshieldingforplantpersonnel.Thesewallsalsoserveasamissilebarriertopreventdamagetothecontainmentwallandtocomponentsofthesafetyinjectionsystemshouldafailureoccurtooneofthereactorcoolantsystemcomponentslocatedinsidethewalls.1.2-3REV.1312/96 GINNA/UFSARThecontainmenthousesthefollowingmajorequipment(seeFigures1.2-6through1.2-9):(1)Reactorcoolantlooppiping,reactorcoolantpumps,andsteamgenerators.(2)Pressurizer.(3)Pressurizerrelieftank.(4)Reactorcoolantdraintankandpumps.(5)Containmentrecirculationfilteringandcoolingunits(four).(6)Safetyinjectionsystemaccumulators.(7)Refuelingcavityandequipment.1.2.3.3AuxiliaryBuildingTheauxiliarybuildingislocatedjustsouthofthecontainment.Theauxiliarybuildinghousesthemajorsupportandengineeredsafetyfeaturesequipmentforplantoperation.Theauxiliarybuildingisarestrictedareaandnormalexitisfromtheintermediatebuilding(hotside),asshowninFigure1.2-12Theauxiliarybuildinghasthreemajorlevelsandasubbasementlevelpitwhichcontainstheresidualheatremovalpumps.Therefuelingwaterstoragetank(RWST)extendsthroughallthreelevels.Thefollowingisalistofmajorequipmentoneachleveloftheauxiliarybuilding.AuxiliarBuildinBasement(SeeFiure1.2-10)(1)Chemicalandvolumecontrolsystemholduptanks.(2)Residualheatremovalpumps(subbasement).(3)Residualheatremovalheatexchangezs.(4)Spentfuelpoolpump.,(5)Residualheatpumpcooling.(6)Boricacidevaporator.(7)Gas*stripper.(8)Wasteholduptank.(9)Variousoperationspanels.(10)Wasteevaporator.(11)Blenderroom.1.2-4REV.1312/96 GINNA/UFSAR(12)Spentresintanks.(13)Safetyinjectionfilters.(14)Sealinjectionfilters.(15)Containmentspraypumps.(16)Nonregenerativeheatexchanger.(17)Sealreturnfilterandcooler.(18)Chargingpumproomsandaccumulator.(19)Sodiumhydroxidetankandleakofftank.(20)Safetyinjectionpumps(three).AuxiliarBuildin-IntermediateLevel(SeeFiure1.2-11)(1)Spentfuelpoolfilterandheatexchanger.(2)Chemicalandvolumecontrolsystemholduptanks.(3)Residualheatremovalheatexchangezs.(4)Wastegascompressorsandgasstripper.(5)Gasdecaytanks(four).(6)Reactorcoolantfilter.(7)Volumecontroltank.(8)Concentratesholdingtankandtransferpump.(9)Demineralizervault.(10)Highefficiencyparticulateairfilters.(ll)Nonregenerativeheatexchanger.(12)480-Vbus16(vitalbus).(13)Charcoalfilterunit.(14)Motorcontrolcenter1D.(15)Motorcontrolcenter1M.Auxiliar-Buildin0eratinFloor(SeeFiure1.2-12)(1)(2)(3)(4)(5)(6)(7)(8)Decontaminationpit.Spentfuelstoragepool,crane,andtransfercanal.Newfuelunloadingarea.Newfuelstorageracks.Cranebay.Refuelingwaterstoragetank(RWST)(alllevels).Componentcoolingpumps.Componentcoolingwaterheatexchangezsandsurgetank.1.2-5REV.1312/96 (9)Boricaciddemineralizers.(10)Monitortanksandpumps.(11)Wastecondensatetanks.(12)Reactormakeupwatertankandpumps.(13)Drummingstationanddrumstoragearea.(14)480-Vbus14(vitalbus).(15)Auxiliarybuildingsupplyfanandfilter.(16)Boricacidbatchingtank.(17)Boricacidstoragetankandboricacidtransferpumps.(18)Wastecondenserdemineralizer.(19)Motorcontrolcenter1C.(20)Motorcontrolcenter1L.(21)Motorcontrolcenter1E.(22)Vendorsupplieddeminezalizationsystem.1.2.3.4IntermediateBuilding(SeeFigures1.2-6,1.2-7,1.2-8,and1.2-14Theintermediatebuildingsurroundsthecontainmentbuildingtothewestandnorthandjoinstheservicebuildingandturbinebuilding.Itisdividedintotwosectionscalledthehotside(restrictedareaaccess)andthecoldside.HotSide(RestrictedAreaAccess)Thehotsideiswestofthecontainmentbuildingandjoinstheauxiliarybuilding.Theintermediatebuildinghotsideextendsfromthespentfuelpool(SFP)accesstotheRadiationProtectioncontrolaccessareaandhasthreelevels.Theareacontainstheprimarysampleroom,thepostaccidentsamplingsystemsamplepanel,andthehydrogenzecombinerpanel.Italsocontainsventilationunitsfozseveralsystemsincludingthecontrolledaccessareaexhaustfansandfilter,mainauxiliaryexhaustfansandfilter,auxiliaryexhaustfan1C,andthespentfuelpool(SFP)charcoalfilters.Theareaisenteredfromthemen'sorwomen'slockerroomschangeareasoftheservicebuilding.1.2-6REV.1312/96 GINNA/UFSARColdSideTheintermediatebuildingcoldsideisanunrestrictedareathatallowsaccesstothe.cabletunnelarea.Thebuildingisconstructedtosurroundthecontainmentstructuretothenorthandwestandhouseitssupportequipment.Accesstotheintermediatebuildingcoldsideisnormallymadefromtheturbinebuilding.Doorsfromthecold'sidetothehotsideareavailablebutnotnormallyused.Thefollowingequipmentisamongthatlocatedintheintermediatebuildingcoldside:(1)Turbine-drivenauxiliaryfeedwaterpump(TDAFW)(2)Motor-drivenauxiliaryfeedpumps(MDAFN)(two).(3)Rodcontrolpowerpanels.(4)Rodcontrollogiccabinets.(5)Roddrivemotor-generatorsetsandpowerpanels.(6)Reactortripandbypassbreakers.(7)Auxiliarybuildingandcontainmentventilationunits.(8)Safetyandreliefvalves(mainsteam).(9)Purgeexhaustfans.(10)Radiationmonitors(e.g.,R-ll,R-12).(11)Mainsteamandfeedwaterlines.1~2.3.5TurbineBuildingTheturbinebuildingislocatednorthoftheintermediatebuilding.Theturbinebuildinghousesthemajorsecondarysystemequipmentandsystems,includingthemainturbine,generator,andcondenser(seeFigure1.2-5).Thefollowingequipmentislocatedoneachleveloftheturbinebuilding:Basementlevel(SeeFiure1.2-2)(1)Mainfeedwaterpumps(2)(2)Fireservicewaterstoragetank(3)Turbineoilreservoirandpurifier.(4)Turbineoilpumps(ontopofreservoir).(5)Steamdumpvalves.(6)Circulatingwaterinletandoutletheaders.1027REV.1312/96 (7)Seal-oilunit.(8)Blowdownrecoverysystem.(9)Busductcoolingfans.(10)Condensatecoolers.(11)Condensatepumps(three).(12)Condensateboosterpumps(three).(13)Heaterdraintank.(14)Heaterdraintankpumps.(15)Motorcontrolcenter1A.XntermediateLevel-Mezzanine(SeeFiure1.2-3)(1)(2)(3)(4)(5)(6)(7)Low-pressureheaters(insideofcondenser).Moistureseparatorreheaterunits(four).Mainfeedwaterregulatingvalves.HydrazineandNHOHadditiontanks.4Feedwaterheaters1A,1B,2A,2B,3A,3B,4A,4B,5A,andSB.Airejectorandcondenser.Glandexhaustcondenser.(8)Generatorbusducts'9)Mainpowerpanelsandmotorcontrolcenters:4160-Vbuses11A,11B,12A,12B;480-Vbus13,15;andmotorcontrolcenter1B.(10)Secondarysamplingstation.(11)Electro-hydraulicoilsystem.0eratinFloor(SeeFiure1.2-4)(1)(2)(3)MainturbineandgeneratorXnterceptandlow-pressurestopvalves.Entrancetomaincontrolroom.1.2-8REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLZQ4K)1.2-9REV.1312/96 GINNA/UFSAR1.2.3.6ControlBuildingThecontrolbuildingisadjacenttotheturbinebuildingandconsistsofthreefloors(seeFigure1.2-15).ThemaincontrolroomisontheupperfloorTherelayroomisdirectlybelowthecontrolroomandhousesrelayracksandtheMUXroom.Thebatteryroomsandtheairhandlingroomareonthelowestlevelofthecontrolbuilding.1.2.3.7All-Volatile-TreatmentBuildingTheall-volatile-treatmentbuildinghousesdemineralizersandotherequipmentnecessaryforthecondensatepolishingsystemtoallowall-volatile-treatmentofsecondarywater(seeFigure1.2-16).Thetechnicalsupportcenterislocatedonthesecondflooroftheall-volatile-treatmentbuildingandhousesthecomputersandequipment,includingemergencypowersupplies(dieselgeneratorprovidethestafftechnicalsupportduring17).andbatteries),necessarytoanemergencyevent(seeFigure1.2-1.2.3.8StandbyAuxiliaryFeedwaterPumpBuildingThestandbyauxiliaryfeedwaterpump(SAFW)buildingislocatedonthesoutheastcorneroftheauxiliarybuildingandhousesthetwostandbyauxiliaryfeedwaterpumps(SAFW)andthe10,000-galcondensatetesttank.ThebuildingisaSeismicCategoryIconcretestructuresupportedbycaissons(seeFigure1.2-18)1.2.3.9ScreenHouseThescreenhouseislocatednorthoftheturbinebuildingonLakeOntarioandhousesthemaincirculatingwaterinletlinesandpumps;theservicewater(SW)pumps(four);480-Vswitchgearbuses17and18,thedieselfirepump,themotor-drivenfirepump,andmotorcontrolcenters1Gland1G2(seeFigure1.2-19).1.2-10REV.1312/96 GINNA/UFSAR1.2.3.10ServiceBuildingTheservicebuildingislocatedatthewestendoftheauxiliarybuilding.ThisbuildingprovidestheofficespacesfortheadministrativestaffatGinnaStation(seeFigures1.2-20and1.2-21)'.Theservicebuildinghastwolevels.Thebasementleveliscomprisedofstorerooms,machineshops,maintenanceareas,etc.Thegroundfloorleveloftheservicebuildinghousesthefollowingareas:(1)RadiationProtection.(2)Chemistry.(3)Engineering.(4)Shifttechnicaladvisors.(5)Cafeteria.(6)Mechanicalequipment.(7)Laboratories.(8)FirstAidroom.(9)Centralrecords.(10)Mainoffice.(11)Qualitycontroloffice.(12)Maintenanceoffice.(13)Plantsuperintendent'soffice.(14)Men'slockerroom.(15)Women'slockerroom.(16)Technicaloffice(17)Planningoffice.Thelockerroomsareusedasthechangeareasfozdonningorremovingprotec-tiveclothingusedintheauxiliarybuilding,intermediatebuilding,andcontainment.1.2.3.11DieselGeneratorBuildingThedieselgeneratorbuildingadjoinstheturbinebuildingontheeastendofthenorthwalloppositethecontrolbuilding.Thebuildingisaone-storyreinforced-concretestructurethathousestheemergencydieselgenerators.1.2-11REV.1312/96 GINNA/UFSAR1.2.3.12OLDSTEAMGENERATORSTORAGEFACILITYTheoldsteamgeneratorstoragefacility(OSGSF)isazeinforcedconcretebuildingwhichwillprovidelong-termstorageofthetwooldsteamgeneratorsandtheattachedinsulationmaterial.TheOSGSFisastand-alonefacilitylocatedoutsidetheexisting'securityperimetezfenceandwillhavenointerfacewithpermanentplantstructures.1.2-12REV.1312/96 1.2.4NUCLEARSTEAMSUPPLYSYSTEMThenuclearsteamsupplysystemconsistsofapressurizedwaterreactor,reactorcoolantsystem,andassociatedauxiliaryfluidsystems.Thereactorcoolantsystemisarrangedastwoclosedreactorcoolantloopsconnectedinparalleltothereactorvessel,eachcontainingareactorcoolantpumpandasteamgenerator.Anelectricallyheatedpressurizerisconnectedtooneoftheloops(loopB).Thereactorcozeiscomposedofuraniumdioxidepelletsenclosedinzircaloytubeswithweldedendplugs.Thetubesazesupportedinassembliesbyagridstructure.Themechanicalcontrolrodsconsistofclustersofstainlesssteelcladabsorberrodsandguidetubeslocatedwithinthefuelassembly.Thecorefuelisdividedintoseveralregions.ThereplacementsteamgeneratorsareverticalU-tubeunitscontainingInconeltubes.Integralseparatingequipmentreducesthemoisturecontentofthe.steamattheturbinethrottleto0.18ozless.Thereactorcoolantpumpsarevertical,single-stage,centrifugalpumpsequippedwithcontrolledleakageshaftseals.Auxiliarysystemsazeprovidedtoaddmakeupwatertothereactorcoolantsystem,purifyreactorcoolantwater,providechemicalsforcorrosioninhibitionandreactorcontrol,coolsystemcomponents,removeresidualheatwhenthereactorisshutdown,coolthespentfuelstoragepool,samplereactorcoolantwater,provideforemergencysafetyinjection,ventanddrainthereactorcoolantsystem,andforotherpurposes.1.2.5REACTORANDPLANTCONTROLThereactoriscontrolledbyacoordinatedcombination'fchemicalshimandmechanicalcontrolrods.Thecontrolsystemallowstheplanttoacceptsteploadincreasesof108andramploadincreasesof5%pezminuteovertheloadrangeof12.8%to100%.Similarstepandramploadreductionsarepossibleovertherangeof100%to12'%.1.2-13REV.1312/96 GINNA/UFSARCompletesupervisionofboththenuclearandturbinegeneratorplantsisaccomplishedfromthecentralcontrolroom.ThissupervisionincludesthecapabilitytotestperiodicallytheoperabilityoftheReactorTripSystem(RTS).1.2.6WASTEDISPOSALSYSTEMThewastedisposalsystemprovidesallequipmentnecessarytocollect,process,andpreparefordisposalallpotentiallyradioactiveliquid,gaseous,andsolidwastesproducedasaresultofreactoroperation.Liquidwastesrequiringcleanupbeforereleasearecollectedandprocessedbyavendorsupplieddemineralizationsystem.Afterappropriatecleaningandfiltering,theliquidiscollectedinthechemicalandvolumecontrolsystemmonitortankAorBforultimatereleasetothecirculatingwaterdischargecanalataconcentrationbelow10CFR20limits.Thespentdemineralizerresinispackagedandshippedfromthesiteforultimatedisposalinanauthorizedlocation.Liquidwasteswerealsoprocessedbythewasteevaporatorsystemuntil1990whenuseoftheevaporatorwasdiscontinued.Gaseouswastesarecollectedandstoreduntiltheirradioactivitylevelislowenoughsothatdischargetotheenvironmentdoesnotcreateradioactivityconcentrationsabove10CFR20limits.Solidwastesincludingevaporatorconcentratesazepackagedandshippedfromthesiteforultimatedisposalinanauthorizedlocation.Wetsolidwastesaresolidified.Drysolidwastesareshippedinbulkformtoavendorforvolumereductionandpackagingfordeliverytoadisposalsite.Operating,proceduresgenerallylimitnormaleffluentstowithin10CFR50,AppendixI,limits.SanitarywastefromGinnaStationispipedintotheTownofOntario,NewYork,sewersystem.1.2.7FUELHANDLINGSYSTEMThereactorisrefueledwithequipmentdesignedtohandlespentfuelunderwaterfromthetimeitleavesthereactorvesseluntilitisplacedinacask1.2-14REV.1312/96 GINNA/UFSARforshipmentfromthesite.Underwatertransferofspentfuelprovidesanopticallytransparentradiationshield,aswellasareliablesourceofcoolantforremovalofdecayheat.1.2.8TURBINEANDAUXILIARIESTheturbineisatandem-compound,three-cylinder,1800-rpmunithaving40-in.exhaustbladinginthelow-pressureelements.Fourcombinationmoistureseparatorreheaterunitsareemployedtodryandsuperheatthesteambetweenthehigh-andlow-pressureturbinecylinders.Asingle-passdeaerating,radialflowsurfacecondenser,steamjetairejectors,threehalf-capacitycondensatepumps,threehalf-capacitycondensateboosterpumps,twohalf-capacitymainfeedwaterpumps,andfivestagesoffeedwaterheatersareprovided.Onepreferredauxiliaryturbine-driven(TDAEW),twopreferredauxiliarymotor-driven(MDAFW),andtwostandbyauxiliarymotor-drivenfeedwaterpumps(SAFN)areavailableincaseofacompletelossofoffsitepower.1.2.9ELECTRICALSYSTEMThemaingeneratorisa1800-rpm,three-phase,60-cycle,hydrogeninnezcooledunit.Themainstep-uptransformerisaconventionaltwo-windingforcedoilaircooledunit.Thestationservicesystemconsistsofauxiliarytransformers,4160-Vand480-Vswitchgear,480-Vmotorcontrolcenters,and125-Vdcequipment,Emergencypowersuppliedbyoneoftwodiesel-engine-drivengeneratorsiscapableofoperatingpostaccidentsafeguardsequipmentozsafeshutdownequipmenttoensureanacceptableplantresponse.REV.1312/96 GINNA/UFSAR1.2.10ENGINEEREDSAFETYFEATURESPROTECTIONSYSTEMSTheengineeredsafetyfeaturesprotectionsystemsprovidedforthestationhavesufficientredundancyofcomponentandpowersourcessuchthatundertheconditionsofadesign-basisloss-of-coolantaccident,thesystemcan,evenintheeventofasinglefailure,maintainemergencycorecooling,maintaintheintegrityofthecontainment,andperformothersafeguardsfunctionstoensurethatpostaccidentexposuresaremaintainedbelowtheguidelinesof10CFR100.Thesystemsprovidedare:A.Thecontainmentsystem,whichprovidesanessentiallyleaktightbarrieragainsttheescapeoffissionproducts.Thecontainmentpenetrationsandlinerweldseamsareprovidedwithaleaktestsystem,whichcanbeutilizedtochecktheintegrityofthesetwolocationsthatarethemostlikelysourcesofcontainmentleakage.Verylowleakagerequirementsarealsoimposedonthecontainmentisolationvalves.B.Thesafetyinjectionsystem,whichprovidesboratedwatertocoolthecorebyinjectionintothecoldlegsofthereactorcoolantloopsandbyinjectionoverthetopofthecorethroughnozzlesthatpenetratethereactorvessel.CDThecontainmentrecirculationfancooler(CRFC)andfiltrationsystem,whichprovidesadynamicheatsinktocoolthecontainmentatmosphereandfiltrationofthecon'tainmentatmospheretoremoveairborneparticulateandhalogenfissionproductsthatformthesourceforpotentialpublicexposure.Thesystemutilizesthenormal~containmentventilationandcoolingequipmentinadditiontothecharcoalfilters.D.Thecontainmentspraysystem,whichprovidesasprayofcool,chemicallytreatedboratedwatertothrecontainmentatmospheretoprovideadditionalheatsinka'ndiodineremovalcapabilitytogetherwiththecontainmentaizrecirculationcoolingandfiltrationsystem.E.Thehydrogenzecombiners,whichlimittheconcentrationofhydrogenincontainmentfollowingaloss-of-coolantaccident.F.Auxiliarysystems,whichservetoensuretheoperabilityoftheabovesystems.1.2-16REV.1312/96 GINNA/UFSAR1.2.11DES1GNHXGHLZGHTSThedesignofGinnaStationwasbaseduponprovenconceptswhichhavebeendevelopedandsuccessfullyappliedintheconstructionofpressurizedwaterreactorsystems.1nsubsequent.sections,afewofthedesignfeaturesofGinnaStationarelistedthatrepresentslightvariationsorextrapolationsfromunitssuchasSanOnofreandConnecticut-Yankee,whichwerelicensedtooperatebeforeGinnaStation.1.2.11.1PowerLevelThepowerlevelis1520MWt.ThisisgreaterthanthecapabilityoftheSanOnofreplant,butsmallerthanthecapabilityoftheConnecticut-Yankeeplant(1825MWt).Therefore,thispowerleveldoesnotrepresentanysignificantvariationfromthepowerlevelsofotherpressurizedwaterreactorsinopera-.tionatthetimeGinnaStationwaslicensed.1.2.11.2ReactorCoolantLoopsThereactorcoolantsystemforGinnaStationconsistsoftwoloops,ascomparedwiththreeloopsforSanOnofreandfourloopsforConnecticut-Yankee,andrequiredanattendantincreaseinthesizeandcapacityofthereactorcoolantsystemcomponentssuchasthereactorcoolantpumps,piping,andsteamgenerators.Theseincreasesrepresentedreasonableengineeringextrapolationsofexistingandprovendesignsatthetimeand,assuch,thecomponentsofthereactorcoolantsystemweredesignedforconditionsexceedingoperationat1520MWt.1.2.11.3PeakSpecificPowerBasedonthedesignhot-channelfactors,operationat1520MWtproducesapeakspecificpowerof13.5kW/ft.1.2.11.4FuelCladThefuelroddesignforGinnaStationutilizeszircaloyasacladmaterial,whichhasprovensuccessfulinotheroperations.1.2-17REV.1312/96 GINNA/UFSAR1.2.11.5FuelAssemblyDesignThefuelassemblyisacanlesstypewiththebasicassemblyconsistingoftherodclustercontrolguidethimblesfastenedtothegridsandthetopandbottomnozzles.Thefuelrodsareheldbythegridsandgridsprings,whichprovidelateralandaxialsupport.GinnaStationwasinitiallyfueledwithWestinghousefuel.Startingwithcycle8(1978),Exxonfuelwasused.Startingwithcycle14(1984),Westinghouse(optimizedfuelassemblies)fuelisbeingused.1.2.11.6EngineeredSafetyFeaturesTheengineeredsafetyfeaturesprovidedareofthesametypesprovidedfortheConnecticut-Yankeeplantaugmentedbyboratedwaterinjectionaccumulators.ThereisasafetyinjectionsystemoftheConnecticut-Yankeetypewhichcanbeoperatedinpart(anytwoofthreehigh-headpumpsandanyoneoftwolow-headpumps)fromemergencyonsitedieselpower.Thesystemdesignissuchthatitcanbetestedwhiletheplantisatpower.Thereiscontainmentrecirculationfancooler(CRFC)andfiltrationforpost-loss-of-coolantconditionsinsidethecontainmentthatutilizethenormalventilationsystemflowpathsothatdeteriorationisnotexpected.Provisionsaremadeforperiodictestingtodeterminetheconditionofthefiltermaterial.Acontainmentspraysystemprovidescool,boratedwatersprayedintothecontainmentatmosphereforadditionalcoolingandiodineremovalcapacity.1.2.11.7EmergencyPowerInadditiontothemultipletiestooutsidesourcesfozemergencypower,twodiesel-generatorunitsareprovidedasbackuppowersuppliesincaseofalossofalloutsidepower.Eachgeneratoriscapableofoperatingsufficietsafeguazdsequipmenttoensureanacceptablepost-loss-of-coolantcontainmentpressuretransient.1.2.12STATIONWATERUSEThetotalnominalflowofcirculatingwaterthroughtheturbinecondenserandservicewater(SW)systemsisabout400,000gpm.Approximately340,000gpmisREV.1312/96 GINNA/UFSARusedintheturbinecondensersystemandtherestisavailablefortheservicecoolingsupplyandfireprotectionsyst'ems.Inaddition,domestic-qualitywaterataflowofabout60,000gal/dayispurchasedfromtheOntarioMaterDistrict,TownofOntario,fordrinking,sanitarypurposes,andauxiliaryboilerfeed.LakeOntarioisthesourceofthecirculatingwater,whichistakenthroughtheeight17.3-ft-wideby10-ft-highportsofthesubmergedoctagonalintakestructurethatliesabout3100ftoffshoreinabout33ftofwateratmeanlakelevel,244.7ft[InternationalGreatLakesDatum,1955(IGLD1955)].Eachportisscreenedforlargedebriswith3/4-in.diameterbarsspacedat10-in.intervals;thescreenscanbeheatedelectricallytoatemperature2'Faboveambientwatertemperaturetopreventaccumulationoffrazilice.Thewaterflowsbygravitythrougha10-ftdiameterconcrete-linedtunnelintothescreen.house,whereitpassesthroughafine-meshtravelingscreenbeforebeingpumpedthroughtheturbinecondenserorservicewater(SW)system.Thewaterfromthesetwosystemsiscombinedandisreleasedtothedischargecanal,whichopensintoLakeOntarioattheshoreline.Thedischargecanalisprotectedfromlargedebrisbyasubmarinenetplacedinsidethecanalneartheshoreline.Fishazediscouragedfromenteringthecanalandthescreenhousebyanelectricfishscreen(0.3V/in.betweeneachelectrode)locatedonthelakesideoftherecirculationwaterweir.1.2.13FACILITYSAFETYCONCLUSIONSThesafetyofthepublicandstationoperatingpersonnelandreliabilityofplantequipmentandsystemswereprimaryconsiderationsintheplantdesign.Theapproachtakeninfulfillingthesafetyconsiderationwasthree-fold.First,carefulattentionwasgiventothedesignsoastopreventthereleaseofradioactivitytotheenvironmentunderconditionswhichcouldbehazardoustothehealthandsafetyofthepublic.Second,theplantwasdesignedsoastoprovideadequateprotectionforplantpersonnelwhereverapotentialradiationhazardexists.Third,reactorsystemsandcontrolsweredesignedwithagreatdegreeofredundancyandfail-safecharacteristics.Basedontheoveralldesignoftheplantanditsengineeredsafetyfeaturesandtheanalysisofthepossibleincidentsandofdesi.gn-basi.sacci.dents,it1.2-19REV.1312/96 wasconcludedthatGinnaStationcanbeoperatedwithnounduehazardtothepublichealthandsafety.1.2-20REV.1312/96 iT.o.JSTORAGEO+BBLHghABA.V.T.TANKHZCSTORAGEl00~~0'~.xZ.Q0ATALCLh,YTENVIRONMENTALBUILDINGCOIITROLBLDG.1STEAMGENERATORFACILITIESBUILDING0I~0CRAFTSBUILDINGla50zC50N0CONTAINMENThUXILLAILYBLXKLSTANDBYAUXILIARYFEEDWATERBUILDINGCONTAMINATEDSTORAGEBUILDING00ROCHESTERGASANDELECTRICCORPORATIONR.E.GINNANUCLEARPOWERPLANTUPDATEDFINALSAFETYANALYSISREPORTFiguxe1.2-1GinnaStationPlotPlanREV.1312/96

GINNA/UFSAR1.3COMPARISONTABLESTheinformationpresentedinSection1.3'providesacomparisonoftheR.E.GinnaNuclearPowerPlantasoriginallylicensedat1300MWtoutputandasoriginallyupratedto1520MWtoutputtoPointBeachUnits1and2asoriginallylicensed.ItalsocomparesGinnaasoriginallylicensedat1300MWttoSanOnofreUnit1and.ConnecticutYankee.TheinformationpresentedinSection1.3.2identifiesthesignificantchangesmadeintheGinnaNuclearPowerPlantdesignbetweensubmittalofthePSARandsubmittaloftheoriginalFSAR.Ingeneral,neitherofthesesectionshavebeenupdated.TheinformationcontainedinthemmayormaynotrepresentthecurrentdesignoftheGinnaNuclearPowerPlant.1.3.1COMPARISONSWITHSIMILARFACILITYDESIGNSThedesignparametersoftheupratedGinnaNuclearPowerPlantarepresentedinTable1.3-1alongwiththecomparisonsofthemajorparametersfromthefinaldesignsofthepre-upratedGinnaNuclearPowerPlantandPointBeach,Units1and2.Table1.3-2presentsacomparisonoftheGinnaStationsteamandpowerconversiondesignparameterstothoseofSanOnofreUnit1andConnecticutYankeeaspresentedintheoriginalFSARsofthethreeplants.1.3.2COMPARISONOFFINALANDPRELIMINARYSAFETYANALYSISREPORTINFORMATION1.3.2.1PartialLengthRodClusterContxolAssembliesFourpartiallengthrodclustercontxolassemblieswereaddedtoimprovecontroloflong-termxenonoscillations.(Subsequenttotheirinitialinstallation,operatingstrategieswere'evisedtoadequatelycontrolaxialxenonoscillationswithoutthesexods,andtheywereremoved.)).3.2.2BurnableShimRodsBurnableshimrodswereaddedtoensureazeroornegativemoderatortemperaturecoefficientofreactivityatalltimes'Thesearenolongerused.)1.3-1REV.1312/96 GINNA/UFSAR1.3'.3SafetyInjectionSystemTripSignalTheactuatingsignalforthesafetyinjectionsystemwasrevisedtoincreasetheinitiationreliabilityandtoincreaseprotectioninthecaseofasteamlinerupture.1.3.2.4ContainmentSpraySystemSignalTheactuatingsignalforthecontainmentspraysystemwasrevisedtooperatefromtwosetsoftwo-out-of-threecontainmenthigh-pressuresignalchannels.1.3.2.5SafetyInjectionSystemAccumulatorsTwoaccumulatorswereaddedtothesafetyinjectionsystemtoprovideshort-'termcozecoolingbeforetheinjectionpumpsbecomeeffectivefozpostulatedlargeareaprimarysystemrupture.1.3.2.6SprayAdditiveThecontainmentsprayadditiveforincreasinginorganiciodineremovalrateincaseofaprimarysystemrupturewaschangedtosodiumhydroxide.(SeeChapter6).1.3.2.7RodStopandReactorTriponStartupTheautomaticrodstopsignalisactuatedbyanintermediate-rangefluxlevelsetting,andthereactortripsignalonstartupissuppliedbyahighfluxlevelsetting.1.3.2.8MiniatureNeutronFluxDetectorsFourminiatureneutronfluxdetectorscapableoftraversing36thimblesreplacetheoriginalthreedetectorsin25thimblestoprovidemoredetailedfluxmappingduringcorephysicstests.1.3.2.9CoreThermocouplesFewercorethermocouplesareprovided(39inplaceof45).1.3-2~REV.1312/96 GINNA/UFSAR1.3.2.10InitialLeakRateTestMethodTheinitialleakratetestingofthecontainmentmakesuseoftheabsolutemethodinsteadofthereferencevolumemethodtoprovidehighersensitivityatlowleakrates.1.3.2.11AuxiliaryBuildingVentilationFiltersAbsoluteandcharcoalfiltersareaddedtotheauxiliarybuildingventilationsystem(ABVS)toreduceairactivitylevelsincaseofrecirculationsystemcomponentsleakagefollowingaloss-of-coolantaccident.1.3.2.12ControlCenterBusesThe480-Vsystembusesareincreasedfromfourtosixtoprovidegreateroperatingflexibilityundersinglecomponentfailureoremergencypowerconditions.1.3.2.13CondenserCirculatingWaterFlowThecondensercirculatingwaterflowwasincreasedto334,000gpm.1.3.2.14RampLoadingRangeTheramploadingrangeisincreasedfrom15%to95%upto15%to1008offullload.1.3.2.15CondensateStorageTanksCapacityThetwocondensatestoragetankstotalcapacityis60,000gal(decreasedfrom72,000galor6.5hrversus8hrcapacity).Athirdtankwitha100,000-galcapacityhasbeenadded.Itislocatedoutdoorsnexttotheall-volatile-treatmentbuilding.SeeSection9.2.4.1.3.2.16FuelTransferSystemDriveAnair-motordrivereplacesthecabledriveforthefueltransferconveyorcar.1.3-3REV.1312/96 GINNA/UFSAR1~3.2.17SteamLineFlowNozzlesSteamlineflownozzleswereincorporatedtolimittheconsequencesofasteamlinerupture.1.3<REV.1312/96 GINNA/0FSARTABLE1.3-1COMPARISONOFDESIGNPAL&METERSWITHPOINTBEACHHYDRAULICANDTHERMALDESIGNPARAMETERSTotalheatoutput,MwtTotalheatoutput,Btu/hrHeatgeneratedinfuel,%Peakspecificpower,kW/ftSystempressure,nominal,psiaSystempressure,minimumsteady-state,psiaHot-channelfactorsHeatflux,F~Enthalpyrise,F~DNBRatnominalconditionsMinimumDNBRfordesigntransientsCoolantflowTotalflowrate,lb/hrEffectiveflowrateforheattransfer,lb/hrEffectiveflowareaforheattransfer,ftPointBeachUnits1and2FinalReort1518.5518181097.416225022202.801.602.111.3066.7x1063.6x1027.0GinnaFinalBeort13004437x1097.416.5225022203.381.772.151.3067.3x1064.3x1027.015205188x1097.416.0225022202.801.662.061.3068.0x1064.9x1027.0Sheet1REV.1312/96 GINNA/UISARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHAveragevelocityalongfuelrods,A/secAveragemassvelocity,ib/hr-ftCoolanttemperature,'FNominalinletMaximuminletduetoinstrumentation,error,anddeadbandAverageriseinvesselAverageriseincoreAverageincoreAverageinvesselNominaloutletofhotchannelAveragefilmcoefficient,Btu/hr-ft-'FAveragefilmtemperaturedifference,'FHeattransferat100%powerActiveheattransfersurfacearea,ftAverageheatflux,Btu/hr-ftMaximumheatflux,Btu/hr-ftpointBeachrrnits1and2FinalZeozt15.02.37x10552.5556.557.660.0582.5581.3642.9560031.028,715175,800491,000GinnaFinaIBeoxt14.72.38x10551.9555.949.552578.0577.0634.0559026.928,715150,500508,70014.82.41x10544.5548.558.060.5575.8573.5637.8569030.928,715176,700(Region4)176,000(Region3)494,800(Region4)Sheet2REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHPointBeachUnits1and2FinalReortGinnaFinalZeortAveragethermaloutput,kW/ftMaximumthermaloutput,kW/ftMaximumcladsurfacetemperatureatnominalpressure,'FFuelcentraltemperature,'FMaximumat100%powerMaximumatoverpowerThermaloutput,kW/ftatmaximumoverpower5.716.0657=3750&00017.94.8816.56573880410018.5492,700(Region3)5.716.06573900(Region4)3850(Region3)4500(Region4)4500(Region3)21.1COREMECHANICALDESIGNPARAMETERSFuelassembliesDesignRodpitch,in.Overalldimensions,in.RCCcanless14x140.5567.763x7.763RCCcanless14x140.5567.763x7.763RCCcanless14x140.5567.763x7.763Sheet3REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHFuelweight(asU02),lbTotalweight,IbNumberofgridsperassemblyFuelrodsNumberOutsidediameter,in.Diametralgap,in.Cladthickness,in.CladmaterialFuelpelletsMaterialDensity(%oftheoretical)Diameter,inLength,in.RodclustercontrolassembliesPointBeachUnitsland2ZinalReort118,729154,51921,6590.4220.00650.0243ZircaloyU02SinteredUnit194-92-91Unit294-93-920.36990.6000GinnaFinalZeort118,729150,75021,6590.4220.00650.0243Zircaloy-4UOSintered92-900.36990.6000118,246'50,267'1,6590.4220.0085(Region4)0.0065(Region3)0.0243Zircaloy-4UOSintered92(Region4)90(Region3)0.3649(Region4)0.3669(Region3)0.60000Sheet4REV.1312/96 GINNA/VFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHNeutronabsorberCladdingmaterialCladthickness,inNumberofclusters,full/part-lengthNumberofcontrolrodsperclusterCorestructureCorebarrelI.D./O.D.,in.ThermalshieldI.D./O.D.,in.PointBeac?xUnits1and2FinalBeort5%Cd,15%In,80%AgType304SS-ColdWorked0.0193716109.0/112.5115.3/122.5GinnaFinalBeort5%Cd,15%In,80%AgType304SS-ColdWorked0.01929/416109.0/112.5115.3/122.55%Cd,15%In,80%AgType304SS-ColdWorked0.01929/416109.0/112.5115.3/112.5NUCLEARDESIGNDATAStructurecharacteristicFuelweight(asU02),lbCladweight,lbCorediameter,in.(equivalent)ReflectorthicknessandcompositionTop-waterplussteel,in.118,72924,26096.514410118,72722,44096.5.144<<10118,72722,44096.5143.4(Region4)144(Region3)=10Sheet5REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHBottom-waterplussteel,in.Side-waterplussteel,in.Structurecharacteristic(Continued)H20/U,unitcell(coldvolumeratio)NumberoffuelassembliesU02rodsperassemblyPerformancecharacteristicsLoadingtechniqueFueldischargeburnup,MWd/MTUAveragefirstcycleFirstcoreaverageFeedenrichments,wt%RegionIRegion2(firstcorewithburnablepoison)Region3EquilibriumControlcharacteristics(beginningwf-life)Effectivemultiplication(withburnablePointBeachUnits1and2FinalBeort10153.351211793region,nonuniform15,10033,0002.273.033.043.40GinnaFinalBeort=103.351211793region,nonuniform=14,12624,4002.442.783.483.00103.351211793region,nonuniform=8,00024,4002.442.783.483.00Sheet6REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHpoison)Cold,nopower,cleanHot,nopower,clean(Tmod=573F)Hot,fullpower,xenonandSamariumequilibriumRodclustercontrolassembliesMaterialNumberofrodclustercontrolassembliesNumberofabsorberrodsperrodclustercontrolassemblyTotalrodworthBoronconcentrations(firstcyclewithburnablepoison)Toshutreactordownwithnorodsinserted,clean,(keff=.99)cold/hotTocontrolatpowerwithnorodsinserted,cleanequilibriumxenonandsamariumBoronworth,hotBoronworth,coldKineticcharacteristicsPointBeachUnits1and2FinalBeort1.2111.1671.1135%Cd,15%In,80%Ag37167.1%1598ppm/1676ppm1465,ppm/1007ppm1%5.k/k/130ppm1%5k/k/98ppmGinnaFinalReort1.1881.1371.0805%Cd,15%In,80%Ag331668%1630ppm/1580ppm1470ppm/1100ppm1%5k/k/120ppm1%5k/k/90ppm1.1881.1371.0805%Cd,15%In,80%Ag331668%1630ppm/1580ppm1470ppm/1100ppm1%dk/k/120ppm1%5k/k/90ppmSheet7REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHModeratortemperaturecoefficientPointBeachUnits1and2FinalReort+0.3x10"to-2.5x105k/k/'GinnaFinalZeort+.3to-3.5x105k/k'+0.3to-3.5x10"Bk/k/'FModeratorpressurecoefficientModeratorvoid(densitycoefficient)Dopplercoefficient-0.3x10to3.5x105k/k/psi-0.10to-0.305k/k/g/cm-1.0x10to-l.6x105k/k/'-0.3x10to+3.5x10-0.3x10to+3.5x10Bk/k/psi5k/k/psi-0.10to+0.30Bk/k/g/cm-0.10to+0.305k/k/g/cm-1.0x10to-1.6x10Bk/k/'0.93x10to-2.9x105k/k/'FFREACTORCOOLANTSYSTEM-CODEREQUIREMENTSComponentReactorvesselSteamgeneratorTubesideShellsidePressurizerPressurizerrelieftankPressurizersafetyvalvesASMEIII,ClassAASMEIIIClassAASMEIIIClassCASMEIIIClassAASMEIIIClassCASMEIIIASMEIII,ClassAASMEIIIClassAASMEIIIClassCASMEIIIClassAASMEIIIClassCASMEIIIASMEIIIClassAASMEIIIClassAASMEIIIClassCASMEIIIClassAASMEIIIClassCASMEIIIShcct8REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHReactorcoolantpipingPointBeachUnitsIand2FinalReortUSASB31.1GinnaFinalBeortUSASB31.1USASB31.1PRINCIPALDESIGNPARAMETERSOFTHEREACTORCOOLANTSYSTEMNuclearsteamsupplysystemheatoutput,MWtCoreheatoutput,Btu/hrOperatingpressure,psigReactorinlettemperature,'FReactoroutlettemperature,'FNumberofloopsDesignpressure,psigDesigntemperature,'FHydrostatictestpressure(cold),psigTotalreactorcoolantsystemvolume,ft'hot)Totalreactorflow,gpm1518.55181x102235552.5610.1248565031106450178,00013004437x102235551.9601.4248565031106245180,00015205188x102235551.9602.4248565031106245179,400Sheet9REV.1312/96 GINNA/VFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHPointBeachUnitsIand2FinalReortGinnaFinalReortPRINCIPALDESIGNPARAMETERSOFTHEREACTORVESSELMaterialDesignpressure,psigDesigntemperature,'FOperatingpressure,psigInsidediameterofshell,in.Outsidediameteracrossnozzles,in.Overallheightofvesselandenclosurehead,ft-in.Minimumcladthickness,inSA302GradeB,lowalloysteel,internallycladwithType304austeniticstainlesssteel248565022351322241/1639-05/32SA302GradeB,lowalloysteel,internallycladwithType304austeniticstainlesssteel248565022351322195/1639-15/32SA302GradeB,lowalloysteel,internallycladwithType304austeniticstainlesssteel248565022351322195/16391-5/165/32CIPALDEsIGNPARAMETERsOFPointBeachUnts0and2GinnaFjna)ReortTHESTEAMGENERATORSGinnaUratedNumberofunitsVertical,U-tubewithintegral'moistureseparator2Vertical,U-tubewithintegralmoistureseparatorVertical,U-tubewithintegralmoistureseparatorSheet10REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHTubematerialShellmaterialTubesidedesignpressure,psigTubesidedesigntemperature'FTubesidedesignflow,lb/hrShellsidedesignpressure,psigShellsidedesigntemperature,'FOperatingpressure,tubeside,nominal,P>>gOperatingpressure,shellside,maximum,P>>gMaximummoistureatoutletatfullload,%Hydrostatictestpressure,tubeside(cold),P>>gPointBeachVnits1and2FinalReortInconelCarbonsteel248565033.35x101085556223510201/43110GinnaFinalBeortInconelCarbonsteel248565033.63x10108555622359891/43110InconelCarbonsteel248565033.63x10108555622359891/43110PRINCIPALDESIGNPARAMETERSOFTHEREACTORCOOLANTPUMPSNumberofunitsType222Vertical,singlestageradialflowVertical,singlestageradialflowVertical,singlestageradialflowwithwithbottomsuctionandwithbottomsuctionandbottomsuctionandhorizontalhorizontaldischargehorizontaldischargedischargeSheet11REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPAIVQKTERSWITHPOINTBEACHDesignpressure,psigDesigntemperature,'FOperatingpressure,nominal,psigSuctiontemperature,'Designcapacity,gpmDesignhead,ftHydrostatictestpressure(cold),psigMotortypeMotorratingMaterialHotleg-I.D.,in.Coldleg-I.D.,in.Betweenpumpandsteamgenerator-I.D.,in.DesignpressurePointBeachUnits1and2FinalReozt24856502235551.589,0002593110acinductionsinglespeedaircooled6000hpAusteniticSS2927-1/2312485GinnaFinalReozt24856502235551.990,0002523110acinductionsinglespeedaircooled6000hpAusteniticSS2927-1/231248524856502235551.990,0002523110acinductionsinglespeedaircooled6000hpAusteniticSS2927-1/2312485NOTES'ThedatainthistablearenotcurrentRegion3wasofthenonpressurizedroddesign;Region4wasofthepressurizedroddesignSheet12REV.1312/96 GINNA/UFSARTABLE1.3-1COMPARISONOFDESIGNPARAMETERSWITHPOINTBEACHPointBeachUnitsland2FinalReortGinnaFinalReort'ssumesreloadwithpressurizedrodsTheshellsideofthesteamgeneratorconformstotherequirementsforClassAvesselsandissostampedaspermittedundertherulesofSectionIIISheet13REV.1312/96 GINNA/UIiSARTABLE1.3-2COMPARISONOFDESIGNPARAMETERSWITHSANONOFREANDCONNECTICUTYANKEESteamandPowerConversionDesiParametersSanOnofreFinalReortGinnaFinalReortConnecticutYankeeFinaldeoxtTurbinegeneratorTurbinetypeThreeelement,tandemcompound,'hreeelement,tandemThreeelement,tandemfour-flowexhaustcompound,four-flowexhaustcompound,four-flowexhaustTurbinecapacity,kWMaximumguaranteedMaximumcalculatedTurbinespeed,rpmGeneratorrating,kVaCondensersTypeNumberCondensingcapacity,Ibofsteam/hr450,000450,0001800500,000Singlepass,horizontaldividedbox,deaerating23,293,000496,322516,7391800608,400Radialflow,semi-cylindricalwaterboxes,deaerating23,448,805616,200646,1351800667,000Singlepass,dividedwaterbox,deaerating2CondensatepumpsTypeVertical,wetpitNumber4Designcapacityeach,(gpm)2900Multistage,verticalpit-typecentrifugal36600Seven-stagevertical,pit-type26200Shcct1REV.1312/96 GINNAIUIiSARTABLE1.3-2COMPARISONOFDESIGNPAI%METERSHITHSANONOFREANDCONNECTICUTYANKEESteamandPoverConversionDesiParametersSanOnoSreFinalReortGinnaFinalZeortConnecticutYankeeFinalR~eoztMotortypeMotorrating,hpFeedwaterpumpsTypeNumberDesigncapacity(each),gpmMotortypeMotorrating,hpEmergencyfeedwaterSourceVertical,induction700Two-stage,horizontalsplitcase,doublevolute,centrifugal27000(10,500duringsafetyinjection)Horizontal,induction3500240,000galcondensatestoragetankVertical1500Vertical,induction1500296007400Horizontal5000Horizontal,induction450030,000galineachofthetwo100,000galdemineralizedcondensatestoragetanks(CST);storagetankServiceWaterHigh-speed,barrel-type,singleTwo-stage,horizontalcentrifugalstage,doubleflow,centrifugal2EmergencyfeedwaterpumpsNumber2(1steam-drivenand1motordriven)Designcapacity,gpm300(steam-driven),235(motor-driven)'hedatainthistablearenotcurrent3(1steam-drivenand2motordriven)400(steam-driven),200(motor-driven)450Sheet2REV.1312/96

GINNA/UFSAR1.4ZDENTZFZCATZONOFAGENTSANDCONTRACTORSTheRochesterGasandElectricCorporation(RG&E),asowner,engagedorapprovedtheengagementofthecontractorsandconsultantsidentifiedbelowinconnectionwiththedesignandconstructionoftheR.E.GinnaNuclearPowerPlant.However,regardlessoftheexplanationofcontractualarrangementsofferedbelow,RochesterGasandElectricCorporationwasthesoleapplicantfortheconstructionpermitandoperatinglicenseandasownerandapplicantwasresponsibleforthedesign,construction,andoperationoftheplant.TheR.E.GinnaNuclearPowerPlantwasdesignedandbuiltbytheWestinghouseElectricCorporationasprimecontracto'rforRG&E.TheprojectwasdirectedbyWestinghousefzomtheofficesofitsAtomicPowerDivisioninPittsburgh,Pennsylvania,andbyWestinghouserepresentativesattheplantsiteduringconstructionandplantstartup.WestinghouseengagedtheengineeringfirmofGilbertAssociates,Znc.,ofReading,Pennsylvania,toprovidethedesignofthestructuresandnonnucleazportionsoftheplantandtopreparespecificationsfozthepurchaseandconstructionthereof.RochesterGasandElectricCozporationreviewedthedesignsandspecificationspreparedbyWestinghouseandGilbertAssociatestoensurethatthegeneralplantarrangements,equipment,andoperatingprovisionsweresatisfactorytothem.RochesterGasandElectricCorporationinspectedtheconstructionworktoensurethattheplantwasbuiltinaccordancewiththeapprovedplansandspecifications.TheplantwasconstructedunderthegeneraldirectionofWestinghousethroughageneralcontractor,BechtelCorporation,whowasresponsibleforthemanagementofallsiteconstructionactivitiesandwhoeitherperformedtheworkorsubcontractedtheworkofconstructionandequipmenterection.PreoperationaltestingofequipmentandsystemsandinitialplantoperationwasperformedbyRG&EpersonnelunderthetechnicaldirectionofWestinghouse.RochesterGasandElectricCorporationengagedthefirmofDamesandMooreofNewYork,NewYork,asconsultantsonstudiesofplantsitegeology,hydrology,andseismology.1.4-1REV.1312/96 GINNA/UFSARRochesterGasandElectricCorporationengagedDr.GeorgeSuttonofLaMontGeologicalObservatory,Palisades,NewYork,asanadditionalconsultantonseismology.RochesterGasandElectricCorporationengagedthefirmofPickard,Lowe,andAssociates,Washington,DAC.,asconsultantsonreactorandplantengineering,sitemeteorology,andgeneralsitestudies.Inaddition,specialistsinenvironmentalsciencesparticipatedindevelopinginformationconcerningthesite.Theseincluded:Dr.BenDavidson,meteorologistandDirector,GeophysicalScienceLaboratory,NewYorkUniversityCollegeofEngineering;Drs.DonaldPritchardandJamesCarpenter,hydrologists,andProfessorandassistantProfessor,respectively,DepartmentofOceanography,JohnsHopkinsUniversity;Dr.G.HoytWhipple,healthphysicist,ProfessorofRadiologicalHealth,SchoolofPublicHealth,UniversityofMichigan;andDr.RobertSutton,geologist,UniversityofRochester.WestinghouseengagedthefirmofPraeger-Kavanagh-WaterburyofNewYork,NewYork,asconsultantsonthestructuraldesignofthecontainmentandotherimportantstructures.ThefirmofHansen,Holby,andBiggs,MassachusettsInstituteofTechnology,wasengagedforstructuralengineeringanalyses.TheSouthwestResearchInstitute,SanAntonio,Texas,wasengagedasaconsultantforqualitycontrolandfortheestablishmentofanoperatingsurveillanceprogram.ContractualsupportavailableduringoperationsisdiscussedinSection13.1.1.3.8.1.4-2REV.1312/96 GINNA/UFSAR1~5REQUIREMENTSFORFURTHERTECHNICALINFORMATIONThissectionisprovidedforhistoricalpurposesandhasnotbeenupdated.ItincludesadiscussionofresearchanddevelopmentcompletedandtherequirementforfurtherresearchanddevelopmentperceivedtobenecessaryatthetimeofsubmissionoftheoriginalFSAR.1.

5.1INTRODUCTION

ResearchanddevelopmenttothelevelnecessazytoensuresafeoperationoftheR.E.GinnaNuclearPowerPlantwasconductedinthefollowingareas:(1)Developmentofthefinalcoredesignandfinalthermal,hydraulic,andphysicsparameters.(2)Corestabilityincludingadequacyofout-of-coreinstrumentation.(3)Developmentoflongionchambers.(4)Controlrodejectionaccidentanalyses.(5)Charcoalfilters-fortheremovaloforganicformsofiodinefromthecontainmentatmospherefollowinganaccident.(6)Reactorcoolantpumpcontrolledleakagesealtesting,(7)Safetyinjectionsystembothdesignandanalyticalmethods.(8)Developmentofdesign,inspection,andacceptancecriteriaforprestressedreinforced-concretepressurevessels.(9)Developmentofcontainmenthydrogenrecombiner.Theterm"researchanddevelopment"asusedinthissectionisthesameasthatusedbytheNRCinSection5.2ofitsregulationsasfollows:(n)"Researchanddevelopment"means(1)theoreticalanalysis,explorationorexperimentation;or(2)theextensionofinvestigativefindingsandtheoriesofascientificnatureintopracticalapplicationforexperimentalanddemonstrationpurposesincludingtheexperimentalproductionandtestingofmodels,devices,equipment,materials,andprocesses.TheresearchanddevelopmentdonefortheR.E.GinnaNuclearPowerPlantconfirmstheengineeringanddesignvaluesusedtocompletetheequipmentandsystemsdesigns.Itdidnot,ingeneral,involvethecreationofnewconceptsorideas.1.5-1REV.1312/96 GINNA/UFSARThetechnicalinformationgenerateddemonstratesthesafetyofthedesignandmoresharplydefinesmarginsofconservatism.1.5.2DEVELOPMENTOFTHEFINALCOREDESIGNANDFINALTHERMAL-HYDRAULICANDPHYSICSPARAMETERSThedetailedfinalcoredesignandthermal-hydraulicsandphysicsparametershavebeencompleted.Thenucleardesign,includingfuelconfigurationandenrichments,controlrodpatternandworths,reactivitycoefficients,andboronrequirementsazedescribedintheoriginalFSAR.Thefinalthermal-hydraulicsdesignparameters,aswellasthefinalfuel,fuelrod,fuelassembly,andcontrolrodmechanicaldesignarealsodiscussedindetailintheoriginalFSAR.Thecoredesignincorporatesfixedburnablepoisonrods(Reference1and2)intheinitialloadingtoensureanegativemoderatortemperaturecoefficientofreactivityatoperatingtemperature.Thisimprovesreactorstabilityandlessenstheconsequencesofarodejectionoraloss-of-coolantaccident.1.5.3CORESTABILITYCorePowerDistributionInthetransitionto12-ftlong,zircaloy-cladfuelcores,apotentialforcorepowerdistributionoscillationsduetospatialoscillationinxenonconcentxationwascreated.Analyticalmethodshavebeendevelopedtoexaminethisproblem,andtheirusehasresultedinthedevelopmentofsuitablecontrolhardwareandacontxolstrategy.Nuclearcalculationcodeshavebeenmodifiedtosimulatethesepoweroscillationsandtheoperatoractionsnecessarytodampouttheseoscillations.Theeffectofpowerredistributioninthecoreontotalpowercapabilityhasbeencalculatedandthecontxolsystemisdesignedtoautomaticallycutbackturbinepower,andthereforecorepower,iflimitsonpowerdistributionareexceeded.Theprotectionsystemisdesignedtoautomaticallyresetthermaltriplevelsiftheselimitsonpowerdistributionareexceeded.1.5-2REV.1312/96 GINNA/UFSARThecoreoftheR.E.GinnaNuclearPowerPlantcontainsburnablepoisonrods,whicheliminatethepositivemoderatorcoefficientthatwasexpectedatoperatingtemperaturesearlyinthefirstfuelcycleintheoriginalcoredesign.Theburnableexperimentshavebeenusingrodscontainingrods,2.27$enriched.poisonrodswillbeborosilicateglassyCriticalconductedattheWestinghouseReactorEvaluationCenter12.8wt8boronandzircaloy-claduraniumdioxidefuelThesevaluesaretypicalofthisplantalso.Theseexperimentsshowedthatstandardanalyticalmethodscanbeusedtocalculatethereactivityorthoftheburnablepoisonrods.ThedesignbasisandcriticalexperimentsaredescribedinReferencesIand2.(Note:burnablepoisonrodsarenolongerincludedinthecore.)In-cozetestingcompletedintheSaxtonreactorhasshownsatisfactoryperformance.Thetestsarecontinuingandtheresearchanddevelopmenteffortontheseburnablepoisonrodsis.describedinmoredetailintheR&DtopicalreportpresentedattheSalemPublicHearing,August15,1968.1.5.3.2Out-of-CoreIonChambersThecontrolsysteminputfromthenuclearinstrumentationisthesignalsfromfour10-ftlong,two-sectionionchambers(describedinSection1.5.4),mountedoutsidethereactorvessel.Calculationshaveshownthattheresponseoftheseionchambersshouldaccuratelyindicategrosspowerredistributioninthecore,bothaxialandtransverse,andthishasbeenconfirmedbyexperimentalmeasurementsmadeontheSENA,SanOnofre,andHaddamNeckreactors.Testsperformedtodateincludeforcingvariousaxialandtransversepowershapeswithfull-lengthcontrolrods,andcomparingthemeasuredout-of-corereadingswithdetailedin-coremeasurements.Excellentcorrelationhasbeenobtained.ThecalculationsandresultsaredetailedanddiscussedinRef'erence3.1.5.3.3In-CoreControlEquipment:Calculationsperformedfozthisplantdemonstratethatpoweroscillationsacrossthecorewillbeinherentlyhighlydampedandnocontrolapplieddampingiseitherprovidedornecessary.Inanycase,thereisnomodeof1.5-3REV.1312/96 GINNA/UFSARnormaloperation(MODES1and2)whichcouldcauseatransversepowertiltor,ifoneoccurred,wouldmakeitworse.Thereis,inazircaloycoreofthislength,thepossibilitythatxenon-inducedaxialpowerdistributionoscillationsmayoccur.Detailedcalculationshaveshownthattheseoscillationscanbesimplyandeffectivelycontrolled,andsuitableequipmenthasbeendevelopedforthisplant.Thein-.corecontrolequipmentconsistsoffourpart-lengthrods,symmetricallyplacedaboutthecoreaxialcenterline,andmovedinunison.Eachrodhasabsorberinthebottomquarteronly,andisraisedandloweredbyamechanismthatholdstherodinafixedpositionfollowingareactortriporlossofpowertothemechanism.Sincethexenonoscillationperiodisabout,1day,thepart-lengthrodsareunderoperatorcontrol.Thecontrolstrategyisbasedonmaintainingthedifferenceinoutputbetweenthetopandbottomsectionsofthelongionchamberswithinaspecifiedrange.Xftheoperatorallowsaxialpowerimbalancetoexceedoperatinglimits,automaticprotectionoccurs(Reference3).Theoperatingbandiswellinsidecorethermallimits.Thepart-lengthcontrolrodspermitaxialpowershapingaswellasaxialpoweroscillationcontrol.(Note:Thepart-lengthrodshavebeenremovedfromthein-cozecontrolequipment.)Thehardware,out-of-coreinstrumentationadequacy,controlstrategy,andzodinsertionlimitsaredescribedinRef'erence3.Theperformanceofthesystemwillbeverifiedandthecalculatedperformancecheckedduringthethoroughstartuptest,program,whichisdescribedbelowandinChapter14.1.5.3.4StartupTestProgramExperimentalverificationthatspatialpowerredistributiontransientscanbemonitoredandcontrolledistobeobtainedinfourconsecutivestagesofpowertestingintheoverallplantstartupprogram.Thesestatesofpowertestingaredescribedinthefollowing.1,5-4REV.1312/96 GINNA/UFSARA.Steady-statecalibrationofpowerrangeinstrumentationinwhichtheout-of-cozepower.rangenuclearchannels(usingthelongionchambers),in-corecoreexitthermocouples,andprimaryloopresistancetemperaturedetectorsarecalibratedonthebasesofmeasuredsecondaryheatbalancesanddetailedin-corepowerdistributionsmeasuredwiththemovabledetectorsystem.Theseinstrumentationintercalibrationsazerepeatedatseveralpowerlevelsofinterestbetween30%and100%offullpowerintypicaloperatingcontrolrodconfigurations.Theresultsofthesesteady-statemeasurementsazeanalyzedandcorrelationsdevelopedbetweenout-of-cozedetectorresponseandin-coredetectormeasurementsofpowerpeaking.Designoperationalcurvesareverifiedorappropriateadjustmentsmadetoensurethatdesignlimitsonpowerpeakingarenotexceeded.instrumentationaccuraciesareevaluatedinthesetests.B.Followofspatialpowerredistributiontransientsinwhichspatialtransientsareinitiatedat.areducedconstantpowerlevelbyprescribedcontrolrodmaneuversandtheresultantchangesincorepowerdistributionaremonitoredintermsofaxialandazimuthalpoweroffsets(Ref'erence3)asindicatedbytheout-of-corepowerrangenucleardetectorsandofassembly-wisepowersharingfactorsandgrosspowertiltsasindicatedbythein-corethermocouplesystem.Concurrentperiodicmeasurementsofthecorepowerdistributionmadewiththein-coremovabledetectorsallowverificationoftheinter-calibrationsoftheout-of-corepowerrangeinstrumentationundertransientconditionsanddirect,evaluationofnuclearhot-channelfactors.Transientreactivitychangesazemetbyadjustmentofthereactorcool'antboronconcentration.C.Controlledfollowofspatialpowerredistributiontransients-inwhichspatialtransientsareinitiated,asbefore,bycontrolrodmaneuveringatconstantpowerandtheresultantpowerpeakingtransientsaresuppressedbysubsequentmaneuveringofthepart-lengthcontrolrodsbytheoperator.Themaneuveringschemeforlimitinglocalpowerpeakingduringtheinducedtransientsistobethenormalprocedureprescribedforplantoperationwheresuccessivecontrolrodmaneuversaredictatedbythecurrentvaluesofaxialoffsetratiosderivedfromtheout-of-corepowerrangenucleardetectorresponses(forexampleseeReference3).Concurrentperiodicpowerdistributionmeasurementsmadewiththein-coremovabledetectorsystemallowverificationbothofthevaluesoflimitingpowerdistributionparametersasdeducedfromtheout-of-coreinstrumentationresponsesandoftheadequacyoftheprescribedoperatingprocedureforlimitingpowerpeakingduringspatialpowerdistributiontransients.1.5-5REV.1312/96 GXNNA/UFSARD.Controlledfollowofdynamicpowerredistributiontransients-inwhichtheoperationoftheplantreproducesatypicalloadvariationcycle,butatareducedpowerlevel.Spatialpowerredistributiontransientsresultingfromtheassociatedpowerlevelchangesandtheattendantcontzolrodmaneuversaremonitoredwiththeout-of-corenucleardetectorsandcozeexitthermocouplesandpowerpeakingisbypart-lengthcontrolrodmanipulationaccordingtostandardoperatingprocedures.Concurientdetailedcorepowerdistributionmeasurementswiththemovabledetectorsystemaremadetoevaluatenuclearhot-channelfactorsandverifycorrelationswithout-of-coreinstrumentation.Theresultsoftheseveralstagesofmeasurementandverificationarereviewedforadequacy,beforethenextstageoftestingisundertaken.Asburnupofthecoreprogresses,test1willberepeatedatregularintervalsundertypicaloperatingconditionsinaccordwithnormaloperatingpractice.Atlessfrequentintervalstest2andtest4duringanormalloadvariationcycle,includinginbothcasescomprehensivedetailedpowerdistributionmeasurementsmadewiththemoveabledetectorsystem,willberepeatedtoallowassessmentoftheeffectsofcoredepletion.1.5-6REV.1312/96 GINNA/UFSAR1.5.4DEVELOPMENTOFLONGIONCHAMBERSThisplantusesfourlongionchambers,mountedverticallyoutsidethereactorpressurevesselforpowerrangenuclearinstrumentation.Thechambersare90degreesapartinplan;eachchamberhasanactivelengthof10ftwithitscenterlevelwiththecorehorizontalmidplane.Eachchamberissplitintoanupperandlowersectiontoeffectivelyformtwouncompensatedionchambersofequalsize.Onepurposeoftheselongionchambersinthisplantistodetectaxialpowerredistributionswhentheyoccur,andanytransversepowertiltsthatcouldariseifcontrolrodsbecomemalpositioned..Theefficiencyoftheseout-of-corelongionchambersinaccuratelyreflectingin-corepowerdistributionisshowninRef'erence3.Also,theirlongtotalactivelengthminimizesdifferencesinindicatedcoreaveragepowerforthesameactualpowerbutdifferentcontrolrodpositions.ThisisthefirstU.S.planttouseuncompensatedlongionchambersasstandardinstrumentation,butthedesignissimilarinbothsizeandconfigurationtochambersthathavenowbeensuccessfullytestedoverextendedperiodsinsimilarreactorservice.Fourtwo-section(onesectioncompensated,theotheruncompensated)8-ftlongionchambershavebeenusedontheSENAreactorastheirstandardinstrumentationforaboutfourmonths.An8-ftlongtwo-sectionionchamber,similartotheGinnadesign,wastestedontheCarolinas-VirginiaTubeReactorforabout12months.ThischamberwasthentransferredtotheSanOnofrereactorwhereithashadabout15monthsoperation.Inaddition,alongionchamber,identicaltothosetobefittedonGinna,wasinstalledfortestingatSanOnofreinSeptember1968.Fromthisdesign,manufacturing,andtestexperienceoflongionchambers,itisexpectedthatthelongionchambersforthisplantwillperformsatisfactorily.1.5.5CONTROLRODEJECTIONANDDROPPEDCONTROLRODACCIDENTANALYSES'Theejectionofacontrolrodfromthecorewouldrequirethefailureofitscontrolrodmechanismhousing.Althoughsuchafailureisnotconsidered1.5-7REV.1312/96 GINNA/UFSARcredible,singlecontrolrodejectionanalysesusingthefinalcoredesignparameters,includingabnormalconditionsthatcouldoccurduringplantoperationandtolerancesforinstrumentationerrorandreactivitycoefficient,havebeencompleted.Thefourcasesanalyzedazezeroandfullpower;beginningandendofcorelife.Theseshowthatnoconsequentialdamagetothereactorcoolantsystemwilloccurundertheseadverseconditions.Thisplantcorewasinitiallydesignedtouseonlymovableabsorberrodsand,chemicalshimtocontrolreactivity,butwillnow,inaddition,haveburnablepoisonrodsinstalled.Theconsequencesofarodejectionaccidentareinherentlylimitedinacorewithchemicalshimcontrolsincetheamountofrodinsertionislimitedtothatnecessarytochangeload,whilethechemicalshimconcentrationisadjustedtocompensateforfuelburnup.Theadditionoftheburnablepoisonrodsnowalsoensuresthatthemoderatorcoefficientofreactivityisnegativethroughoutcorelifeatoperatingtemperature,furtherreducingtheconsequencesofanejectionaccident.TheresearchanddevelopmentprogramontheburnablepoisonrodsisdiscussedinSection1.5.3.Theconsequencesofdroppingsinglefulllengthcontrolrodshavebeenanalyzed.Eithertheactualroddroporitsresultanteffectsonlocalpowerandfluxdistributionwillbedetected,andactiontoprotectthecoreandcoolantsystemagainstdamageisautomatic.Thisprotectionincludesblockingcontrolrodwithdrawal.1.5.6CHARCOALFILTERSAtthetimetheplantwasproposed,it'appearedthatfurtherdevelopmentworkwouldberequiredtoprovetheeffectivenessofimpregnatedactivatedchazcoalfiltersinremovingradioactiveiodineinbothorganic(methyliodine)andinorganic(elemental)forms.Testsontheextractionofmethyliodidebyfull-sizecharcoalfiltersweremadeincooperationwiththeConnecticutYankeeAtomicPowerCompanyfortheirHaddamNeckplant.Thesedemonstratedthesuitabilityofusingiodizedactivatedcharcoalfilterstoremoveradioactivemethyliodidefromacontainmentenvironmentunderthemostextremeconditionsanticipatedfollowingaloss-of-coolantaccident.Theresultsofthesetests(Reference1.5-8REV.1312/96 GINNA/UFSAR4)filedwiththeAECunderDocketNo.50-213areapplicabletothecharcoalfiltersystememployedinthisplant.Beforeanytestingwasstartedontheextractionofelementaliodinebythecharcoalfilters,aliteraturesurveywasmade.Thisshowedthatsufficientexperimentaldatawasalreadyavailablefromothersources(References5through8)toconfirmthatactivatedcharcoalfilterswereevenmoreefficientinextractingelementaliodinethanmethyliodideunderanytypicalpost-loss-of-coolantaccidentenvironmentalconditions.Itwasthereforedecidedthattestsforelementaliodineextractionwerenolongernecessary,andnofurtherexperimentswereconducted.ThisconclusionthatfurtherresearchanddevelopmentonelementaliodineextractionbycharcoalfilterswasunnecessarywasalsoexpressedbytheAECstaffatthePublicHearinginthematteroftheSalemNuclearPlantforthePublicServiceElectricandGasCompany,August15,1968,DocketNumbers50-272and50-311.TheeffectivenessofthecharcoalfilterunitsduringplantusewillbedemonstratedbyperiodictestsatHaddamNeckandinthisplant,as.requiredbytheTechnicalSpecifications.Thesetestswilldetermineifthereisanyneedfozfilterreplacementbecauseofdeteriorationwithtime.1.5-9REV.1312/96 GINNA/UFSAR(ZNTENTZONALLYLEFTBL2~)1.5-10REV.1312/96 GINNA/UFSAR1.5.7REACTORCOOLANTPUMPCONTROLLEDLEAKAGESEALSThereactorcoolantpumpcontrolledleakagesealdesignforthisplanthasbeenfullydeveloped.Afullscalemock-upofthissealwasoperatedforover100hrtoconfirmthatsealdeflectionunderloadandleakrateareacceptable.Thesetestsalsoshowedthaterosionandcorrosionofthesealmaterialswerenotadverselyaffectedbytheslightincreaseinwatervelocitythroughthesealduetotheincreasedsealsizenecessarytofitthelargershaftsusedinthesepumps.Afull-scalemock-upwasusedduringthedevelopmentofthecontrolledleakagesealtoprovideinformationonlong-teanperformanceandthislifetestingwillcontinue.Oneofthesealsusedinthisplantwasoperatedabout300hrandtheotherabout100hr,eachinitspumpmotorunit.Duringhotfunctionaltestingintheplant,beforethecoreisloaded,additionaloperationwillbringthetotaloperatingtimeforeachsealtowellover500hours.Successfuloperationofsimilarsealshasbeendemonstratedwithover5000hourstotalrunningtimeinSanOnofxeandover3000hoursinHaddamNeck.Morethan10pumpshavealreadybeenbuiltforlaterplantsandtestedsuccessfullyforatleast100hourseach.Thesealsintheselatterpumpsarethesamesizeasthoseusedinthisplant.1.5.8SAFETYINJECTIONSYSTEM1,5.8.1DevelopmentofSafetyInjectionSystemDesignThedevelopmenteffortontheEmergencyCoreCoolingSystem(ECCS)designhasresultedinthemodificationofthesystemtotoincludenitrogenpressurizedaccumulatortanksforrapidcorerefloodingwithboratedwater.Theaccumulatorsarepassivedevices,andtheonlyvalvesbetweenthemandtheirinjectionnozzlesareswingcheckvalveswhichopenentirelyautomaticallyoncethereactorcoolantsystempressur'efalls.Theincreasedfloodingcapabilitylimitsthecladtemperatureafteraloss-of-coolantaccidenttowellbelowthemeltingtemperatureofZircaloy-4,minimizesmetal-waterreaction,andensuresthatthecoreremainsinplaceandintact,therebyensuringpreservationofessentialheattransfergeometry.Thesystemdesign1.5-11REV.1312/96 GINNA/UFSARincorporatesredundancyofcomponentssuchthattheminimumrequiredwateradditionratescanbemetassuminganyactivecomponenttofailconcurrentwiththeloss-of-coolantaccidentor,overthelong-termperiodofpostaccidentcoredecayheatremoval,apassiveozactivecomponentfailureineitherthesafetyinjectionorservicewatersystems,oranactivefailureinthecomponentcoolingwater(CCW)system.DevelopmentofCoreCooling.AnalysisTheloss-of-coolantanalysispresentedinthePSARwasbasedonaone-elementcode(LOCO)fortheblowdownandrefloodingportionsofthetransients.FortheFSARamoredetailedblowdowncode(FLASH)wasused.TheFLASHcodedividesthereactorcoolantsystemintothreeregions.Thisdivisionprovidesforamoreprecisedescriptionoftheblowdownprocess,andinparticularfortheinputtothereactorkinetics'ndcorecoolinganalysis.TheFLASHcodehasbeencomparedtomanyblowdownexperimentsprimarilythoseperformedatLOFT.Xthasbeendemonstratedthatthecodeisconservativeintwoprincipalareas:rateofdepressurizationandmassofwaterleftafterblowdown.TheFLASHcodewasrequiredtoanalyzetheperformanceoftheimprovedEmergencyCoreCoolingSystem(ECCS)forlargearearuptures.TheLOCTA-R2transientdigitalcomputerprogramwasdevelopedduringthefinaldesignoftheGinnareactorforevaluatingfuelpelletandcladdingtemperaturesduringaloss-of-coolantaccident.Thecodeisabletostackaxialsectionsandtherebydescribethebehaviorofafull-lengthregionasafunctionoftime.Amassandenergybalanceisusedinevaluatingthetemperatureriseinthesteamasitflowsthroughthecore.ThepresentcodeisamoresophisticatedversionofLOCTA-Rwhichwasusedintheloss-of-coolantaccidentanalysesreportedinthePSAR.LOCTA-Rwasabletodescribethebehaviorofonlyoneaxiallocationontherodwhileholdingtheenvironmentalsinktemperatureconstantthroughouttheaccident.TheSLAPcodehasreplacedLOCOforpredictingtheentireblowdownandrefloodingcharacteristicsofthesmallezruptures.TheSLAPcodeisessentiallyanextensionoftheLOCOcode,butitprovidesabetter1.5-12REV.1312/96 GINNA/UFSARdescriptionofthetransientonthesteam-generatorshellsideandtheheattransferredbetweenthereactorandsteamgeneratorduringblowdown.Forthesmallerbreaksitisimportanttodetermineifdeparturefromnucleateboilingoccursduringblowdown.TheSATAN-RandTHINCcodeswereusedforthispurpose.CozeparametersobtainedfromSATAN-R,suchaspressure,power,andflow,wereusedasinputtotheTHZNCcode.TheTHINGcodeisused'tocalculatecoolantdensity,massvelocity,enthalpy,vaporvoids,andstaticpressuredistributionalongparallelflowchannelsinthecore.ExtensiveworkonthedevelopmentofthesenewmodelswascompletedduringthefinaldesignoftheGinnareactor.159DEVELOPMENTOFDESIGNiINSPECTIONIANDACCEPTANCECRITERIAFORPRESTRESSEDREINFORCED-CONCRETEPRESSUREVESSELSAtthetimeGinnaStationwasproposed,theunusualfeatureofthesteel-linedreinforced-concretereactorcontainmentvesselwas.theuseofpost-tensionedprestressingtendons,althoughtheiruseinconstructioniswellproven.Thedevelopmentsandtestsdiscussedbelowarethereforeconfinedtothoseelementsdirectlyapplicabletothepzestressingofthecontainmentvessel.Theseare:Rockanchordesigncriteriaandtestresults.Rockanchorgrout.Tendoninspectionandacceptancecriteria.Tendoncorrosionprotectionsystem.Thesetopicsazediscussedinmoredetailbelow.1.5.9.1RockAnchors1.5.9.1.1DesinCriteriaandAssumtionsThebasiccriterionindeterminingthelengthofrockanchorsnecessarytodevelopadequatehold-downcapacity,isthatthepulloftheanchorisresistedonlybythesubmergedweightofrock.Theassumptionsaremadethat(1)therockhasnotensilestrength,(2)itbreaksoutatanangleof451.5-13REV.1312/96 degreestothevertical,withthedepthtakentothemidpointofthebonddevelopmentlength,and(3)thebond-stressbetweenrockandgroutis170psi.1.5.9.1.2TestVerificationandResultsTheseassumptionsandtheirhistoricaljustificationarediscussedinSection3.8.1.4.2.Enordertodeterminethefactorsofsafetyrepresentedbytheseassumptionsfortheconditionspertainingtothisplantsite,aseriesoftestswerecarriedoutonthreescaled-downtestanchors,todemonstraterockhold-downcapacityandbondstrengthbetweengroutandrock.ThesetestsandresultsaredescribedinSection3.8.1~7.1.5.9.2RockAnchorGroutGroutingtechniquesusedfollowedcloselythosedevelopedby'heSwissparentcompanyoftheBBRVsystem.Thegroutusedisamixof5gallonsofwatertoonebagofcement,with1lbofaspecialBBRVadditive.Thelatter,designedtoreducethewaterrequirementsofthecement(andsoretardthesettingtime),alsoprovidesacontrolledexpansionofthegroutofabout8%,accomplishedbythereactionofanaluminumpowderwiththealkaliesofthecement.Theadditiveisfreefromchlorides,sulfides,andothersaltswhosepresencecouldpossiblycreateacorrosionproblem.Thecementusedisnon-airentraining,TypeII.Atestwascarriedoutatthesitetoverifythegroutapplicationprocedureandtoensurecohesionandhardeningofthegrout,evenwhenpumpedunderwater.1.5.9.3TendonInspectionandAcceptanceCriteriaButtonheaddimensionalaccuracyandsymmetryareimportanttoensuremaximumdevelopmentofboththerockanchorandwalltendonstrength.Consistencyoflengthoftendonwiresisnecessarytoensureuniformloaddistributiononindividualwireelements.Uniformityofmaterialpropertiesisimportantinobtainingcorrecttendoncharacteristicscompatiblewiththoseassumedforanalysis,i.e.,ductilityandultimateandyieldstrengths.1.5-14REV.1312/96 GINNA/UFSARTheacceptancecriteriaandtheprogramtoensureconformitywiththeseweredevelopedafterinspectionofthefabiicator'sinitialproductionzunsandareoutlinedinSection3.8.1.6.7.1.5.9.4WallTendons1.5.9.4.1CorrosionProtectionTheuseofunbondedtendonsgives,inadditiontootheradvantages,accessibilityfozinspectionorreplacement.However,becausethetendonsarenotinintimateandintegralcontactwithsurroundingconcrete,theadvantageofthehighalkalineenvironmentgenerallyconsideredtopromoteadequatecorrosionprotectionislost.Therefore,thesetendonsmustbeprovidedwithacorzosionpreventivemediumthatgivesprotectionequivalenttoconcrete,butstillenableswithdrawalofatendonforinspectionorreplacement.Consequently,oneofthemoreimportantprogramsinconnectionwiththetendonshasbeentheselectionofacompletecorrosionprotectionsystem.Thevariouselementsinvolvedare(1)acathodicprotectionsysteminwhichalltendonsareconnectedtothelinerandthentoacoppergroundingsystemwhichiscompletedbytheadditionofreferencecellsandanodes,fromwhichaprotectivepotentialcanbegeneratediftheneedforcathodicprotectionisindicatedbythereferencecells,(2)asteelconduitsurroundingeachtendonprovidingshieldingagainststrayelectricalcurrents,(3)temporaryshippinganderectionprotectionofallwiresineachtendon,bytheapplicationofacoating,followedbycompletefillingofeachtendonconduitwithapetroleumbasewax,NO-OX-ID"CM,"thatprovidesapermanent,chemicallystableenvironmentforprotectionfromcorrosion,whilestillgivingflexibilityofwithdrawalforinspection.Theselection,testing,andapplicationofthecoatingandwaxwasanimportantprograminthedevelopmentoftheovezallcorrosionprotectionsystem.TestsattheW.R.Grace&CompanyDearbornDivisionResearchCenterareoutlinedbelow.Twotendonmock-uptestrigsweresetupfozevaluationofindividualwirecoveragebythewaxandfozdeterminationofpumpingcharacteristics.Onetestrigconsistedofatransparentpyrexglasstubetestsectioncontainingatendonsectionthroughwhichthewaxcouldbecirculated.Testsshowedthatasthewaxmovedthroughthetestsectionitcompletelyimmersedallthe1.5-15REV.1312/96 GINNA/UIiSARwires,eventhoughsomeweretightlybunchedtogethez.Subsequentinspectionofindividualwiresshowedcompletecoverage.Inasecondtest,aquantityofwaterwasintroducedintothetestsectionandpumpingstarted.Thewater"plug"wasdrivenaheadofthewax,whichprefezentiallywettedallthewires.Thereappearedtobenodiffusionozmixingofthewaterintothewax.Asecondtestrigconsistedofa20-ft-highconduitsectioncontainingashort-lengthtendon,completewithallanchorheadsandhardware.Thiswasusedtodeterminepumppressuresforcirculationunderambientconditions,flowrates,andfrictionlosses.Specimenscoatedwithboththeinitialcoatingandthewaxwerecomparedtouncoatedcontrolplatesunderextremeconditionsofcontinuousexposuretosaltwater,steam,relativehumidity,andtemperatureinenvironmentaltestingcabinets.Resultsobtainedaftermanyhundredsofhoursshowednodeteriorationofthecoatedspecimens.1.5.9.4.2InsectionandAccetancePzeoperationaltestingonthecompletecontainmentisdiscussedinSectionDEVELOPMENTOFCONTAINMENTHYDROGENRECOMBINERFollowingamajorloss-of-coolantaccidentintheGinnaStationreactor,hydrogenmaybegeneratedinsidethecontainmentbythemechanismsofradiolysis,zirconium-waterreaction,andthereactionofalkalinespraysolutionwithaluminum.Becauseofthehighlevelofradioactivityinthecontainmentwhichmayalsoresultfromtheaccident,thecontainmentmustbesealedforanextendedperiodtopreventthespreadofcontaminationtotheenvironment.Underthesecircumstances,ifthecontainmentisolationissufficientlylong,thepossibilityofhydrogenreachingaflammableconcentrationof4.1volumepercentinairmustbeconsidered.Equipmentwasthezeforeprovidedforthecontrolledrecombinationofhydrogenataconcentration.Thesystemselectedisaflamecombustorusingcontainmentatmosphere(containingalowconcentrationofhydrogen)asprimaryoxidantandsupplementalhydrogenasafuel.Theproductofcombustion,.watervapor,iscooledandcondensedfromtheatmospherebythevitalcoolingsystemsofthe1.5-16REV.1312/96 GINNA/UFSARcontainment.Operationofthesystemwillcontrolbuildupofhydrogentolessthan2volumepercentorone-halfofthelowerflammablelimit.Insidethecontainmentaretwocompletecombustozsystems,oneaspare.Eachsystemconsistsofabloweztocirculatecontainmentairtothecombustor,acombustionchambercompletewithmainburner,twoigniters(oneaspare),pilotburner,andadilutionchamberdownstreamoftheflamezonewhereproductsofcombustionazemixedwithalargeexcessofcontainmentaiztoreducethetemperatureofgasleavingthesystem.Testingofarecombinersystemwillbeusedto:Demonstratethatthedesignissound(prooftesting).Determinecertainlimitsforthecombustorinperformance.Adescriptionoftherecombinezandtheresearch,development,andtestprogramisdiscussedinmoredetailinReference9.REV.1312/96 GINNA/UIiSARREFERENCESFORSECTION1.51.P.M.Wood,E.A.Bassler,etal.,UseofBurnablePoisonRodsinWestinghousePressurizedWaterReactors,WCAP7113,October1967.2.WestinghouseElectricCorporation,NuclearDesignofWestinghousePressurizedWaterReactorwithBurnablePoisonRods,WCAP9000Series(Proprietary),1968.3.WestinghouseElectricCorporation,PowerDistributionControlofWestinghousePressurizedWaterReactors,WCAP7208,(Proprietary),October1968.4.ConnecticutYankeeAtomicPowerCompany,Connecticut,YankeeCharcoalFilterTests,CYAP101,December1966.5.R.E.AdamsandW.E.Browning,Jr.,RemovalofRadioiodinefromAirStreamsbyActivatedCharcoal,USAECReportORNL2872,OakRidgeNationalLaboratory,April1,1960.6.R.E.AdamsandW.E.Browning,Jr.,RemovalofRadioiodinefromAir-StreamMixtures,Report(ORNLCentralFilesNo.)CF60-11-39,OakRidgeNationalLaboratory,November14,1960.7.G.H.Prigge,ApplicationofActivatedCarbonin-ReactorContainment,USAECReportNo.DP778,E.I.duPontdeNemours&Co.,SavannahRiver.Laboratory,September1962.8.R.E.AdamsandR.D.Ackley,RemovalofElementalRadioiodinefromFlowingHumidAirbyZodizedCharcoals(Abstract),USAECReportORNLTM-2040,OakRidgeNationalLaboratory,November2,1967.9.WestinghouseElectricCorporation,AControlledCombustionSystemtoPreventHydrogenAccumulationFollowingaLoss-of-CoolantAccident,WCAP900(Confidential),December1969.1.5-18REV.1312/96 1.6MATERIALINCORPORATEDBYREFERENCEThissectionliststopicalreports,whi:charereferencedintheoriginalandUpdatedFSARandwhichhavebeensubmittedtotheAEC/NRC,insupportoftheGinnaorotherlicensingapplicationsand/orsignificantreviews.ItincludestheUFSARsectionthatcitesthereportwhenapplicable.titieVFS2&SectionsL.S.Tong,etal.,HYDNADiitalComuterProramforHdrodnamicTransient,CVNA77,1961.GilbertAssociates,Inc.,StructuralZnteritTestofReactorContainmentStructure,GAIReportNo.1720,October3,1969.1.8GilbextAssociates,Znc.,EffectsofPostulatedPieBreaksOutsidetheContainmentBuildin,GAIReportNo.1815transmittedbyletterfromK.W.Amish,RG6E,toA.Giambusso,NRC,November1973.3.11R.C.Daniel,etal.,EffectsofHihBurnuonZircaloCladBulkUraniumDioxide,PlateFuelElementSamles,WAPD263,September1965.H.AmsterandR.Saarez,TheCalculationofThermalConstantsAveraedOveraWinner-WilkinsFluxSectrum:DescritionoftheSOFOCATECode,WAPDTM-39,January1957.9.1H.Bohl,E.Gelbard,andG.Ryan,MUFT-4--FastNeutronSectrumCodefortheZBM-707,WAPDTM-72,July1957.9.1W.R.Cadwell,PDQ4,APxoramfortheSolutionoftheNeutronDiffusionEuationsinTwo-DimensionsonthePhileo-2000,WAPDTM-230,1961.J.A.Redfield,CHICK-KIN-AFortranProramforIntermediateandFastTxansientsinaWaterModeratedReactor,*WAPDTM-479,January1965.J.A.Redfield,J.H.Murphy,V.C.Davis,FLASH-2:AFortranProramforDiitalSimulationofaMultinodeReactorPlantDurinLossofCoolant,WAPDTM-666,April1967.3.61,6-1REV.1312/96 TitleUZSARSectionsW.R.Cordwell,PDQ-7ReferenceManual,WAPD-TM-678,January1967.9.1T.A.Porsching,J.HEMurphy,J.A.Redfield,andV.C.Davis,FLASH-4:AFullImlicitFORTRAN-IVProramfoztheDiital.SimulationofTransientsinaReactorPlant,WAPDTM-840,March1969.3.6,15.6WestinghouseElectricCorporation,AControlledCombustionSstemtoPreventHdroenAccumulationFollowinaLoss-of-CoolantAccident,WCAP900(Confidential),1969.1.5D.G.Sammazone,TheGalvanicBehaviorofMaterialsinReactorCoolants,WCAP1844,August1961.9.3R.F.Barry,TheRevisedLEOPARDCode-ASectzumDeendentNonSatialDeletionProram,WCAP2759,March1965.G.Hestroni,StudiesoftheConnecticut-YankeeHdzaulicModel,WCAP2761,June1965.4.4R.F~Barry,LEOPARD-ASectrumDeendentNonSatialDeletionCodefortheIBM-7094,WCAP3269,September1963.9~1G~Hestroni,HdraulicTestsoftheSanOnofreReactorModel,WCAP3269-8,June1964.4.4L.E.Strawbridge,CalculationsofLatticeParametersandCriticalitforUniformWaterModeratedLattices,WCAP3269-25,1964W.T.Sha,AnExerimentalEvaluationofthePowerCoefficientinSlihtlEnrichedPWRCores,WCAP3269-40,April1965.W.T~Sha,AnAnalsisofReactivitWorthoftheRodClusterControlElementsandLocalWaterHolePowerDensit~Peakin,WCAP3269-47,May1965.LareClosedCcleWaterReactorResearchandDevelomentProramQuarterlProressReorts,WCAP3738,3739,3750,3269-2,3269-5,3269-6,3269-12,and3269-13,January1963throughJune19654.21.6-2REV.1312/96 a'iticDZS2LRSecti.opsJ.A.Ctsistensen,R.J.Allis,andA.Biancteria~MeltinPointofIrradiatedUraniumDioxide,WCAP6065,February1965.H.Chelemer,T.Weisman,andL.S.Tong,SubchannelThermalAnalsisofRodBundleCores,WCAP7015,January1967.H~Chelemer,J.Weisman,andL.S~Tong,SubchannelThermalAnalsisofRodBundleCores,WCAP7015,Revision1,January19694,4~P.M.Wood,E.A.Bassler,P.E.MacDonald,andD.F.PaddlefordUseofBurnablePoisonRodsinWestinhousePressurizedWaterReactors,WCAP7113,October1967.1.5M.J.Bell,etal.,Investiations'ofChemicalAdditivesforReactorContainmentSras,WCAP7153(Proprietary),March1968.6.1,6.2,6.5L.F.Picone,EvaluationofProtectiveCoatinsforUseinReactorContainment,WCAP7198-L'Proprietary),April1969.6.1WestinghouseElectricCorporation,PowerDistributionControlofNestinhousePressurizedWaterReactors,WCAP7208(Proprietary),October1968.1.5,7.7WestinghouseElectricCorporation,RochesterGasandElectricR.E.GinnaUnit1ReactorVesselRadiationSurveillancePzoram,WCAP7254,May1969.5.3T.W.T.Burnett,ReactorProtectionSstemDiversitinNestinhousePressurizedWaterReactors,WCAP7306,April1969.7.1WestinghouseElectricCorporation,ReactorContainmentFanCoolerCoolinTestCoil,WCAP7336-L,July1969.WestinghouseElectricCorporation,PerformanceofZircalo-CladFuelRodsDurinaSimulatedLoss-of-CoolantAccident-MultirodBurstTests,NCAP7379-L,Vol.I(Proprietary),September5,1969.1.6-3REV.1312/96 2'itieUFSARSectionsWestinghouseElectricCorporation,SensitizedStainlessSteelinWestinhousePWRNuclearSteamSulSstems,WCAP7477-L,WCAP7477-LAddendumI,WCAP7735(Non-Proprietary),acceptedbytheAECMay15,19731.8.W.CDGangloff,M.A.Mangan,AnEvaluationofAnticiated0erationalTransientsinWestinhousePressurizedWaterReactors,WCAP7486-L,December1970.1.8WestinghouseElectricCorporation,PerformanceofZircalo-CladFuelRodsDurinaSimulatedLoss-of-CoolantAccident-MultirodBurstTests,WCAP7495-L,Vol.IandII(Proprietary),July12,1970.WestinghouseElectricCorporation,PowerDistributionMonitorinintheR.E.GinnaPWR,WCAP7542-L,September1970.AnticiatedReactorTransientsWithoutTri,WCAP7655,February1971.WestinghouseElectricCozporation,RobertEDGinnaNuclearGeneratinStation,March1971RefuelinShutdownReactorInternalsandCoreComonentsEvaluation,WCAP7780,October1971~1.8.WestinghouseElectricCorporation,RadioloicalConseuencesofaFuelHandlinAccident,WCAP7828,December1971.15.7J.Shefcheck,AlicationoftheTHINKProramtoPWRDas1can,WCAP7838,January1972.T.W.T.Burnett,etal.,LOFTRANCodeDescrition,WCAP7907,October1972.6.2,15.0WestinghouseElectricCorporation,LOFTRANCodeDescrition,WCAP7907Supplement,May1978.H.G.Hargrove,FACTRAN-AFortranIVCodeforThermalTransientsinaUraniumDioxideFuelRod,WCAP7908,June1972.15.4,15.01.6CREV.1312/96 TitleUFS2lRSecti.onsW.S.Hazelton,S.L.Anderson,andS.E.Yanichko,BasisforHeatuandCooldownLimitCurves,WCAP7924,July1972.H.Chelemer,etal.,THINGIV-AnImrovedProramforThermalHdraulicAnalsisofRodBundleCores,WCAP7956-P-A(Proprietary),February19894.2,4.4,15.0,15.4D.H.RisherJr.,andR.F.Barry,TWINKLE-AMultidimensionalNeutronKineticsComuterCode,WCAP7979-P-A(Proprietary),WCAP8028-A(Non-Proprietazy),January1975.15.0,15.4L.E.Hochreiter,etal.,AlicationoftheTHlNCIVProramtoPWRDesin;WCAP8054-P-A(Proprietary),February1989,WCAP8195(Non-Proprietary),October1973.4.2,4.4,15.0,'15.4R.D.Kelly,etal.,CalculationalmodelforCoreRefloodinafteraLoss-of-CoolantAccident(WREFLOODCode),WCAP8170Proprietary,WCAP8171(Non-Proprietary),June197415.6J.M.Hellman,FuelDensificationExerimentalResultsand~~ModelforReactorAlications,WCAP8218(Proprietary),WCAP8219,(Non-Proprietary),October1973.*4.4,15.6V.J.Esposito,D.Kesavan,andB.A.Maul,WFLASH-AFORTRANIComuterProzamforSimulationofTransientsinaMulti-LooPWR,WCAP8261,Revision1,July1974.15.6F.M.Bordelon,etal.,LOCTA-IVProram:Loss-of-CoolantTransientAnalsis,WCAP8301(Proprietary),WCAP8305(Non-Proprietary),June1974.15.6F.M.Bordelon,etal.,SATANVIPzoram:ComrehensiveSaceTimeDeendentAnalsisofLoss-of-Coolant,WCAP8302(Proprietary),WCAP8306(Non-Proprietary),June1974.15~6F.M.BozdelonandE.T.Murphy,ContainmentPressureAnalsisCode(COCO),WCAP8327(Proprietary),WCAP8326(Non-Proprietary)July19746~2,15.6I'CCSEvaluationModel-'ummar,WCAP8339,July197415.6R.Salvatori,WestinhouseECCS-PlantSensitivitStudies15'1.6-5REV.1312/96 amitieWCAP8340(Proprietary),WCAP8356(Non-Pzoprietary),July1974.VFSARSectionsWestinghouseElectricCorporation,WestinhouseECCSEvaluationModelSensitivitStudies,WCAP8341(Proprietary),WCAP8342(Non-Proprietary),July1974.15.6R.A.George,etal.,RevisedCladFlatteninModel,WCAP8377(Proprietary),WCAP8381(Non-Proprietary),July1974.4.2,4.4WestinghouseElectricCorporation,AnticiatedTransientsWithoutTriAnalsisforWestinhousePWRswith44SeriesSteamGenerators,WCAP8404,September1974'5.8WestinghouseElectricCorporation,AnalsisofCasuleRfromtheRochesterGasandElectric,R.E.GinnaUnitNo.1ReactorVesselRadiationSurveillanceProram,WCAP8421,November1974.5'F.M.Bozdelon,etal.,TheWestinhouseECCSEvaluationModelSulementarInfozmation,WCAP8471(Proprietary),WCAP8472(Non-Proprietary),January1975.15.6H,Chelemer,etal.*,ImrovedThermalDesinProcedure,WCAP8567-P-A(Proprietary),February1989.4.2,4.4,15.0,15',15.2,15.3,15.4WestinghouseElectricCorporation,FuelRodBowEvaluation,WCAP8691,Revision1,July1979.4.2,4.4J.V.Miller,Ed.,ImrovedAnalticalModelsUsedInWestinhouseFuelRodDesinComutations,WCAP8720,October1976.WestinghouseElectricCorporation,WestinhouseRevisedPADCodeThermalSafetModel,WCAP8720,Addendum2(Proprietary),transmittedbyletterfromE.P.Rahe,Westinghouse,toC.O.Thomas,NRC,datedOctober27,1982.4.2,4.4J.A.Fici,etal.,DesinBasesfortheThermalOverowerDeltaTandThermalOvertemeratuzeDeltaTTriFunctions,WCAP8745(Proprietary),March1977.F.E.Motley,etal.,NewWestinhouseCorrelationWRB-1fozPredictinCriticalHeatFluxinRodBundleswithMixin4.2,4.41.6-6REV.1312/96 FilleVESTSectionsVaneGrids,WCAP8762-P-A(Proprietary),July1984,WCAP8763(Non-Proprietary),July1976.WestinghouseElectricCorporation,FuelRodDesin4.2T.Delsignore,etal.,NestinhouseECCSTwo-LooSensitivitStudies(14x14),WCAP8854(Non-Proprietary),September1976.15.6D.H.Risher,etal.,SafetAnalsisfortheRevisedFuelRodInternalPressureDesinBasis,WCAP8964,June1977.EmezencCoreCoolinSstemSmallBreak,October1975Model,NCAP8970-P-A(Proprietary),NCAP8971-A(Non-Proprietary)January1979.15~6WestinghouseElectricCorporation,NuclearDesinofWestinhousePressurizedNaterReactorswithBurnablePoisonRods,WCAP9000Series(Proprietary),December1968.1.5WestinghouseElectricCorporation,AControlledCombustionSstemtoPreventHdroenAccumulationFollowinaLoss-of-CoolantAccident,WCAP9001(Proprietary),February1969.6.2R.D.Kelly,C.M.Thompson,etal.,NestinhouseEmezencCoreCoolinSstemEvaluationModelforAnalzinLazeLOCAsDuxin0exationWithOneLooOutofServiceforPlantsWithoutLooIsolationValves,NCAP9166,February1978.15.6C.Eicheldinger,WestinhouseECCSEvaluationModel,Februar1978Version,WCAP9220(Proprietary),WCAP9221(Non-Proprietary),February1978.15.6C.Eicheldinger,WestinhouseECCSEvaluationModel1981Version,WCAP9220-P-A,Revision1(Proprietary),NCAP9221-A,Revision1(Non-Proprietazy),February1982.4,2,15.6WestinghouseElectricCorporation,WestinhouseReloadSafetEvaluationMethodolo,NCAP9273-A,July1985.4'S.L.DavidsonandJ.A.Iorii,eds.,VerificationTestin1.6-7REV.1312/96 Fit1eUZS2LRSectionsandAnalsisofthe17x170timizedFuelAssembl,WCAP9401-P-A(Proprietary),WCAP9402(Non-Proprietary),March1979WestinghouseElectricCorporation,ReferenceCoreReort17x170timizedFuelAssembl,WCAP9500,May1982.4.2Westinghouse'ElectricCorporation,MechanisticFractureEvaluationofReactorCoolantPieContaininaPostulatedCircumferentialThrouhwallCrack,WCAP9558,Revision2,(Proprietary),WCAP9570(Non-Proprietary),May1981.5.4InvestiationoftheSteamGeneratorFeedwaterPiinCracksattheR.E.GinnaNuclearPowerGeneratinStation,WCAP9563,August1979.WestinghouseElectricCorporation,ReortforSmallBreakAccidentsforWestinhouseNSSSSstem,WCAP9600,June1979.15.6InvestiatioofCracksinthePressurizerNozzle-to-Safe-EndWeldoftheR.E.GinnaNuclearPowerGeneratinStation,WCAP9663,February1980.WestinghouseElectricCorporation,.WestinhouseOwner'sGrou,AsetricLOCALoadEvaluation-PhaseC,WCAP9748(Proprietary),WCAP9749(Non-Proprietary),June1980.3.9,4.2,6.2WestinghouseElectricCorporation,TensileandTouhnessProertiesofPrimazPiinWeldMetalforUseinMechanisticFractureEvaluation,WCAP9787,Revision1,May1981'.4WestinghouseElectricCorporation,ProbabilisticAnalsisand0erationalDatainResonsetoNUREG0737,ItemIII.K.3.2,forWestinhouseNSSSPlants,WCAP9804,February1981.15.6T.Mayer,SummarReortonReactorVesselInteritofWestinhouse0eratinPlants,WCAP10019,December1981.5.3WestinghouseElectricCorporation,AnalsisofCasuleTfromtheRochesterGasandElectricCororationofR.E.GinnaNuclearPlantReactorVesselRadiationSurveillance5.31.6%REV.1312/96 zirieVZSARSects.ons~preram,MCAP10086,April1982.R.A.Weiner,etal.,ImrovedFuelPerformanceModelsforWestinhouseFuelRodDesinandSafetEvaluations,WCAP10851-P-A(Proprietary),August1988.4'Y.S.Liu,etal.,ANC:AWestinhouseAdvancedNodalCode,WCAP10966-NP-A(Non-Proprietary),September1986.4.3WestinghouseElectricCorporation,WestinhouseSmallBreakLOCAECCSEvaluationModelGenericStudwiththeNOTRUMPCode,WCAP11145(Proprietary),May1986.15.6R.L.Haessler,D.B.Lancaster,F.A.Monger,andS.Ray,MethodolofortheAnalsisoftheDroedRodEvent,WCAP11394-P-A,January1990.15.4T.Q.Nguyen,etal.,QualificationofthePHOENIX-P/ANCNuclearDesinSstemforPressurizedWaterReactorCores,WCAP11597-A,June1988.4.3WestinghouseElectricCorporation,LossofResidualHeatRemovalCoolinWhiletheRCSisPartiallFilled,WCAP11916,Revision0,July1988.5.4WestinghouseElectricCorporation,AdvancedDi.italFeedwaterControlSstem,MedianSinalSelectorforRochesterGasandElectric,RobertE.Ginna,WCAP12347,September1990.7.7WestinghouseElectricCorporation,StructuralEvaluationoftheRobertE.GinnaPressurizerSureLine,ConsiderintheEffectsofThermalStratification,WCAP12928(Proprietary),WCAP12929(Non-Proprietary),May1991.3.9WestinghouseElectricCorporation,AnalsisofCasuleSfromtheRochesterGasandElectricCororationR.E.GinnaReactorVesselRadiationSurveillanceProram,WCAP13902,December1993.5.31.6-9REV.1312/96

GINNA/UFSAR1.7DRAWINGSANDOTHERDETAILEDINFORMATION1.7.1ELECTRZCAL,INSTRUMENTATION,ANDCONTROLDRAWINGSUpdatedelectricaldrawings,schematics,logicdiagrams,andelementarywiringdiagramsweresubmittedtotheNRCduringtheSystematicEvaluationProgram(SEP)asnecessarytopermitthestafftoreviewthesafety-relatedaspectsofGinnaStation.Figuresrepresentingtheelectrical,instrumentation,andcontrolsystemsarereferencedthroughouttheUFSARandareincludedinthelistoffiguresatthebeginningoftheUFSARchapterinwhichtheyappear.Alistofelectrical,instrumentation,andcontroldrawingsincludedasfiguresintheUFSARisgiveninTable1.7-1.1.7.2PIPINGANDINSTRUMENTATIONDIAGRAMSUpdatedpipingandinstrumentationdiagramsweresubmittedtotheNRCduringtheSEPasnecessarytopermitthestafftoreviewthesafety-relatedaspectsofGinnaStation.AlistofpipingandinstrumentationdiagramsincludedasfiguresintheUFSARisgiveninTable1.7-2.ThelegendforsymbolsusedinthesediagramsisincludedinFigure1.7-1,Sheet1throughSheet41.7.3OTHERDETAILEDINFORMATIONReferencestodetailedinformationsubmittedtotheNRCazeincorporatedintheappropriatesectionsthroughouttheUFSARandazenotduplicatedinthissection.1.7-1REV.1312/96

GINNA/VFSARTABLE1.7-1ELECTRICALiINSTRUMENTATIONiANDCONTROLDRAMINGSDrawinNumber03201-010203202-010221945-35733013-623Sheet1Sheet233013-65233013-65333013-756Sheet233013-1353Sheet1Sheet2Sheet3Sheet4Sheet5Sheet6Sheet7Sheet8Sheet9Sheet10Sheet11Sheet12Sheet13Sheet14Sheet15Tit1e120-VoltacInstrumentBusOne-LineDiagramElectricalOne-LineDiagram,125-VoltdcSystem125-VoltdcBatteryIntertie,TSCBattery-VitalBatterySystems,Two-LineWiringDiagramMainOne-LineOperatingDiagramMainOne-LineOperatingDiagram480-VoltOne-LineWiringDiagram4160-VoltOne-LineDiagramElectricalPanelArrangements,125-VoltdcSystemLogicDiagram,IndexandSymbolsLogicDiagram,ReactorTripSignalsLogicDiagram,TurbineTripSignalsLogicDiagram,ElectricalProtectionLogicLogicDiagram,EmergencyGenerator'B'tartingLogicDiagram,SafeguardsActuationSignalsLogicDiagram,SafeguardsActuationSignalsLogicDiagram,SafeguardsSequenceLogicDiagram,FeedwaterIsolationandAuxiliaryFeedwaterPumpActuationSignalsLogicDiagram,NuclearInstrumentationTripSignalsLogicDiagram,NuclearInstrumentation,Permissives,andBlocksLogicDiagram,PressurizerTripSignalsLogicDiagram,SteamGeneratorTripSignalsLogicDiagram,ReactorCoolantSystemTripSignalsLogicDiagram,StopsandTurbineRunbacks8.3-48.3-68.3-88.3-1,Sheet18.3-1,Sheet28.3-38.3-28.3-77.2-37.2C7.2-97.2-88.3-57.3-1,Sheet17.3-1,Sheet27.3-37.3-27.2-67.2-117.2-77.2-107.2-57.7-5REV.1312/96 TABLE1.7-2PZPZNGANDZNSTRUMENTATZONDZAGRAMSDrawinNumber33013-123133013-123233013-123333013-123433013-123533013-1236Sheet1Sheet233013-123733013-123833013-1239Sheet1Sheet233013-124233013-124533013-1246Sheet1Sheet233013-124733013-124833013-1250Sheet1Sheet2Sheet333013-1251Sheet1Sheet2TitleMainSteamSystem(SafetyRelated)-P&IDMainSteamSystem(NonSafetyRelated)P&IDCondensateLowPressureFeedwaterHeaters-P&IDCondensateStorageSystem-P&IDCondensateSystem(CondensateBoosterPumpstoHydrogenCoolersandBlowdownHeatExchanger)-P&IDFeedwaterSystem-P&IDFeedwaterSystem-P&IDAuxiliaryFeedwaterSystem-P&IDStandbyAuxiliaryFeedwaterSystem-P&IDDieselGeneratorSupportingSystems-P&IDDieselGeneratorSupportingSystems-P&IDFireProtection-RelayandComputerRooms-P&IDAuxiliaryCoolant,ComponentCooling-PAIDAuxiliaryCoolant,ComponentCooling-P&IDAuxiliaryCoolant,ComponentCooling-P&IDAuxiliaryCoolant,ResidualHeatRemoval-P&IDAuxiliaryCoolant,SpentFuelPoolCooling-P&IDStationServiceCoolingWater,SafetyRelated-P&IDStationServiceCoolingWater,SafetyRelated-P&IDStationServiceCoolingWater,SafetyRelated-P&IDStationServiceCoolingWater,NonSafetyRelatedP&IDStationServiceCoolingWater,NonSafetyRelated-10.3-110.3-210.4-310.7-510.4-210.4-4,Sheet110.4Q,Sheet210.5-110.5-29.5-5,Sheet19.5-5,Sheet29.5-39.2-4,Sheet19.2-4Sheet29.2-4,Sheet35.4-79.1-69.2-1,Sheet19.2-1,Sheet29.2-1,Sheet39.2-2,Sheet19.2-2,Sheet2Sheet1REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDrawinÃumber33013-125233013-125633013-125833013-125933013-126033013-126133013-1262Sheet1Sheet233013-126333013-126433013-1265Sheet1Sheet233013-126633013-126733013-126833013-126933013-1270Sheet1Sheet233013-127133013-1272Sheet1TitleP&IDCondensateSystem-PAIDTechnicalSuppoitCenterHVACSystem-P&IDReactorCoolantPressurizer-PAIDMiscellaneousLiquidWasteDisposal-P&IDReactorCoolantP&IDContainmentSpray-P&IDSafetyInjectionandAccumulators-P&IDSafetyInjectionandAccumulators-P&IDReactorCoolantSystemOverpressureProtection,NitrogenAccumulatorSystem-P&IDChemicalandVolumeControl,Letdown-PAIDChemicalandVolumeControl,Charging-P&IDChemicalandVolumeControl,Charging-PAIDChemicalandVolumeControl,BoricAcid-P&IDChemicalandVolumeControl,HoldupTankstoGasStripper-P&IDChemicalandVolumeControl,BoricAcidEvaporatortoMonitorTanks-P&IDChemicalandVolumeControl,ReactorMakeupWater-P&IDWasteDisposal-Liquid,WasteDrains,HoldupTanks,SpentResinTanks-P&IDWasteDisposal-Liquid,WasteDrains,HoldupTanks,SpentResintanksP&IDWasteDisposal-Liquid,LiquidWasteEvaporatorSystemandWasteCondensateTanks-P&IDWasteDisposal-Liquid,ReactorCoolantDrainTank10.4-19.4-175.1-1,Sheet211.2-15.1-1,Sheet16.2-116.3-1,Sheet16.3-1,Sheet25.2-19.3-149.3-13,Sheet19.3-13,Sheet29.3-159.3-189.3-179.3-1611.2-3,Sheet111.2-3,Sheet2.11.2411.2-2,Sheet1Sheet2REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDrawinPlumberP&ID-Ti.tieSheet2WasteDisposal-Liquid,ReactorCoolantDrainTankP&ID11.2-2,Sheet233013-1273Sheet1Sheet233013-127433013-1275'heet1Sheet233013-127633013-1277Sheet1Sheet233013-1278Sheet1Sheet233013-127933013-160733013-186333013-186433013-186533013-186633013-1867WasteDisposal-Gas-P&IDWasteDisposal-Gas-P&IDWasteDisposal-Gas,HgandNgandGasAnalyzer-PAIDWasteDisposal-Gas,HydrogenRecombiner-P&IDWasteDisposal-Gas,HydrogenRecombiner-P&IDWasteDisposal-Liquid,PolishingDemineralizers-P&IDSteamGeneratorBlowdown-P&IDSteamGeneratorBlowdown-P&IDNuclearSampling-P&IDNuclearSampling-P&IDPostaccidentSamplingSystem-PAIDFireProtectionSystemYardLoop-PAIDContainmentHVACSystems,ContainmentRecirculatingandCoolingSystem,PostaccidentCharcoalFilters-PAIDContainmentHVACSystems,ContainmentAuxiliaryCharcoalFilters,RefuelingWaterVentilation,ReactorCompartmentandControlRodDriveCooling-P&IDContainmentHVACSystems,PurgeSupply-P&IDContainmentHVACSystems,PurgeExhaust,PenetrationCoolingP&IDControlBuildingHVACSystems,ControlRoom11.3-2,Sheet111.3-2,Sheet211.3-16.2-79,Sheet16.2-79,Sheet211.2-510.7-6,Sheet110.7-6,Sheet29.3-10,Sheet19.3-10,Sheet29.3-129.5-49.4-19.4-29.4-36.4-1Sheet3REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDrawinNumber33013-186833013-186933013-187033013-187133013-187233013-187333013-187433013-187533013-187633013-187733013-187833013-187933013-1881FilleHVACControlRoomPostaccidentCharcoalFilters,ControlRoomLavatoryExhaust-P&IDControlBuildingHVACSystems,RelayRoomCoolingBatteryRoomAandBCoolingandVentilation-P&IDAuxiliary/IntermediateBuildingHVACSystemsCoolingforCharging,SafetyInjection,Containment,Spray,RHR,andStandbyAuxiliaryFeedwaterPumps,NitrogenandHydrogenVents-P&',IDAuxiliary/IntermediateBuildingHVACSystems,VolumeControlTankExhaust,AuxiliaryBuildingCharcoalFilter,AuxiliaryBuilding1GFilter-PAIDAuxiliary/IntermediateBuildingHVACSystems,IntermediateBuildingExhaustSystem,SpentFuelandDeconPitExhaustSystem,MainAuxiliaryBuildingExhaustSystem-PAIDAuxiliary/IntermediateBuildingHVACSystems,AuxilimyandIntermediateBuildingSupplyAirSystems-P&IDTurbine/MiscellaneousBuildingHVACSystems,VentilationforDieselGenerators,FeedPumps,OilStorage,TurbineBuildingGasBottleStorage,Elevator,andScreenHouse-P&IDTurbine/MiscellaneousBuildingHVACSystems,CondensateDemineralizer(AVT)BuildingVentilation-P&:IDServiceBuildingHVACSystems,ControlledAccessExhaustSystemandAirHandlingUnit1C-P&IDServiceBuildingHVACSystems,AirHandlingUnits1Band1D-PAIDServiceBuildingHVACSystems,AirHandlingUnit1AandReturnAirFan1A-PAIDServiceBuildingHVACSystems,MiscellaneousServiceBuildingHVACSystems-P&IDServiceBuildingHVACSystems,AirHandlingUnit1E-P&IDServiceBuildingHVACSystems,ServiceBuildingNorthEndHVACSystem(1980Addition)-PAID9.4-189.4-89.4-79.4-69.4-59.4-99.4-109.4-119.4-129.4-159.4-169.4-139.4-14Sheet4REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMS,DramaNumber33013-1885Sheet1Sheet233013-1886Sheet1Sheet233013-188733013-188833013-188933013-189033013-189133013-189233013-189333013-1894Sheet1Sheet233013-189533013-189633013-1897Sheet1Sheet233013-189833013-1899Sheet1Sheet233013-1900Sheet1P181eCirculatingWater-P&IDCirculatingWater-P&IDServiceAirP&IDServiceAirP&IDInstrumentAir,ContainmentBuildingP&IDInstrumentAir,containmentBuildingP&IDInstrumentAir,AuxiliaryBuildingP&IDInstrumentAir,AuxiliaryBuildingPAIDInstrumentAir,AuxiliaryBuildingP&IDInstrumentAir,AuxiliaryBuildingP&IDInstrumentAir,IntermediateBuildingP&IDInstrumentAir,TurbineBuildingP&IDInstrumentAir,TurbineBuildingP&IDInstrumentAir,TurbineBuildingPAIDInstrumentAir,TurbineBuildingandScreenHouseP&IDInstrumentAir,CondensateDemineralizer(AVT)BuildingP&IDInstrumentAir,CondensateDemineralizer(AVT)BuildingPAIDInstrumentAir,ServiceBuildingP&IDInstrumentAir,ServiceBuildingP&IDInstrumentAir,ServiceBuildingP&IDInstrumentAir-Compressors,Receivers,Filtersand10.6-1,Sheet110.6-1,Sheet29.3-1,Sheet19.3-1,Sheet29.3-3,Sheet19.3-3,Sheet29.3C,Sheet19.3P,Sheet29.3P,Sheet39.3P,Sheet49.3-59.3-6,Sheet19.3-6,Sheet29.3-6,Sheet39.3-79.3-8,Sheet19.3-8,Sheet29.3-9,Sheet39.3-9,Sheet19.3-9,Sheet29.3-2,Sheet1Sheet5REV.1312/96 GINNA/UPSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDrawinZumberSheet233013-190133013-190333013-190433013-190533013-190733013-1908Sheet1Sheet2Sheet333013-190933013-1910Sheet1Sheet233013-1911Sheet1Sheet233013-191233013-1918Sheet1Sheet233013-1919Sheet1Sheet233013-19212it'IeDryersPAIDInstrumentAir-Compressors,Receivers,Filters,andDryersPAIDTurbineLube-OilSystem-P&IDExtractionSteam-PAIDTurbineGlandSteamandDrains-P&IDGlandSealingWater-PAIDPrimaryWaterTreatmentChemicalSupplyTanks-P&IDPrimaryWaterTreatment-PAIDPrimaryWaterTreatment-P&IDPrimaryWaterTreatment-P&IDAmmoniaAdditionandSecondaryPlantWaterTreatment-P&IDCondensateDemineralizerRegenerationSystem-PAIDCondensateDemineralizerRegenerationSystem-P&IDCondensateDemineralizerServiceVessel-P&IDCondensateDemineralizerServiceVessel-PAIDCondensateDemineralizerRegenerationWasteHandling-P&IDMoistureSeparatorReheaterSystem-Steam-P&IDMoistureSeparatorReheaterSystem-Steam-PAIDMoistureSeparatorReheaterSystem-Drains-P&IDMoistureSeparatorReheaterSystem-Drains-PAIDCondenserAirRemovalandPriming-P&ID9.3-2,Sheet210.7-910.7-310.7-710.4-59.2-59.2-6,Sheet19.2-6,Sheet29.2-6,Sheet310.7-1010.7-12,Sheet110.7-12,Sheet210.7-11,Sheet110.7-11,Sheet210.7-1310.3-3,Sheet110.3-3,Sheet210.34,Sheet110.3P,Sheet210.7-8Shcct6REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDrawinNumber33013-192233013-192333013-192433013-192533013-198933013-1990Sheet1Sheet233013-199133013-199233013-1993Sheet1Sheet233013-2242Sheet1Sheet2Sheet3Sheet433013-2251Sheet1Sheet2Sheet32'iiieFeedwaterHeaterVents,ReliefandMiscellaneousDrains-P&IDFeedwaterHeaterDrainSystem-P&IDExtractionSteam-1,2,and3HeatersandDrainsP&IDServiceWaterforInstrumentAirandServiceAirCompressorsandAfterCoolers-P&IDFireProtectionSystemsFireServiceWater,PlantSystems-PAIDFireProtectionSystemsFireServiceWater,TurbineBuildingandTechnicalSupportCenterPAIDFireProtectionSystemsFireServiceWater,TurbineBuildingandTechnicalSupportCenterP&IDFireProtectionFireServiceWaterAuxiliaryBuilding,IntermediateBuilding,ContainmentBuilding-P&IDFireProtectionSystemsFireServiceWaterFireWaterHeader"A",AuxiliaryBuildingHeaderIGCharcoalFilter-PAIDFireProtectionSystemsFireServiceWaterHeader"B"-P&IDlfFireProtectionSystemsFireServiceWater,Header"B"P&IDSymbolLegend-P&IDSymbolLegend-'P&IDSymbolLegend-P&IDSymbolLegend-P&IDSecondarySamplingSystem-P&IDSecondarySamplingSystem-P&IDSecondarySamplingSystem-P&ID10.7-210.7-110.7-49.2-39.5-19.5-2,Sheet19.5-2,Sheet29.5-2a9.5-2b9.5-2c,Sheet19.5-2c,Sheet21.7-1,Sheet11.7-1,Sheet21.7-1,Sheet31.7-1,Sheet49.3-11,Sheet19.3-11,Sheet29.3-11,Sheet3Sheet7REV.1312/96 GINNA/UFSARTABLE1.7-2PIPINGANDINSTRUMENTATIONDIAGRAMSDravinNumberSheet42'itieSecondarySamplingSystem-P&ID9.3-11,Sheet4Sheet8REV.1312/96

TIREPROTECTIOCCPROCESPIPINGCcINSTRUCCENTTUSICCO~NNNINCOAKENCCNoNO)~~Ž~-}~~}OffOCCOCNCC-}<<}-fNONCCCuCCCNANIrNOCfIOCCCSINCcococftcstvtccswceoONONNCCCZNIfNINNOINNINfNNCCCCCOOOffNlISCnIICNEOUSOJNCCINNCICCNICON~ICICNIl'ItIOttcCNNNNOIICflICCNCtlXCNtf~NNtCICNttleINIOACCCOIACO~ttt5tfAICNC~~"ccNCNCCCCttcCCACCIOC~gleNNCCNI~sLGSCELVHEOUSI.~CCNCkacNOPCCCCÃIOO.CCVtOONI'fINNONIVINOgCCCCNfPOCOOKJOfItliltCICXII410ROCHESTERGASANDELECTRICCORPORATIONR.E.GINNANUCLEARPOWERPLANTUPDATEDFINALSAFETYANALYSISREPORTFigure1.7-1,Sheet3SymbolLegendDrawing33013-2242.Sheet3,Revision3REV.1312/96

GINNA/UFSAR1.8CONFORMANCETONRCREGULATORYGUIDES1.8.1CONFORMANCETOAECSAFETYGUIDESTheinformationinthissectionrepresentsthepositionoftheR.E.GinnaNuclearPowerPlantinAugust1972atthetimewhenRG&EappliedforaFull-TermOperatingLicensewithrespecttotheAECSafet'yGuidesforWaterCooledNuclearPowerPlants,numbers1through29.Theinformationhasnotbeengenerallyupdated.Xthasbeenrevisedtoremoveincorrectormisleadinginformation.ReferencestosectionsandfiguresrefertothisUFSARunlessthereferencesaretotheoriginalFSAR,inwhichcaseitissostatedandthereferencedinformationhasnotbeenincorporatedintotheUFSAR.1.8.1.1Safety'Guide1-NetPositiveSuctionHeadfozEmergencyCoreCoolingandContainmentHeatRemovalSystemPumpsThenetpositivesuctionhead(NPSH)oftheresidualheatremovalpumpsisevaluatedfornormalplantshutdownoperationandforboththeinjectionandrecirculationphaseoperationsofthedesign-basisaccident.RecirculationoperationgivesthelimitingNPSHrequirementsandtheNPSHavailableisdeterminedfromthecontainmentwaterlevel,thetemperatureandpressureofthesumpwater,andthepressuredropinthesuctionpipingfromthesumptothepumps'heNPSHforthesafetyinjectionpumpsisevaluatedforboththeinjectionandrecirculationphaseoperationsofthedesign-basisaccident.TheendofinjectionphaseoperationgivesthelimitingNPSHrequirementandtheNPSHavailableisdeterminedfromtheelevationheadandvaporpressureofthewaterintherefuelingwaterstoragetank(RWST)andthepressuredropinthesuctionpipingfromthetanktothepumps.TheNPSHforthecontainmentspraypumpisevaluatedfozboththeinjectionandrecirculationphaseoperationsofthedesign-basisaccident.TheendoftheinjectionphaseoperationgivesthelimitingNPSHrequirementandtheNPSHavailableisdeterminedfromtheelevationheadandvaporpressureofthewaterintherefuelingwaterstoragetank(RWST)andthepressuredropinthesuctionpipingfromthetanktothepumps.1.8-1REV.1312/96 1.8.1.2SafetyGuide2-ThermalShocktoReactorPressureVesselsTheeffectsofsafetyinjectionwaterontheintegrityofthereactorvesselfollowingapostulatedloss-of-coolantaccidenthavebeenanalyzedusingdataonfracturetoughnessofheavysectionsteelbothatbeginningofplantlifeandafterirradiationcorrespondingtoapproximately40yearsofequivalentplantlife.Theresultsshowthatunderthepostulatedaccidentconditions,theintegrityofthereactorvesselismaintained.FracturetoughnessdataareobtainedfromaWestinghouseexperimentalprogramwhichisassociatedwiththeHeavySectionSteelTechnology(HSST)ProgramatOakRidgeNationalLaboratoryandEuratomprograms.Sinceresultsoftheanalysesaredependentonthefracturetoughnessofirradiatedsteel,effortsarecontinuingtoobtainadditionalconfirmatorydata.Dataon2-in.-thickspecimensbecameavailablein1970fromtheHSSTProgram.Thisdataindicatedastrongtemperaturedependencewitharapidincreaseintoughnessatapproximatelynilductilitytemperature.Presently,4-in.-thickspecimensarebeingirradiatedandthesewillbetestedinthespringof1974.TheHSSTProgramisscheduledfozcompletionby1974,atwhichtimethereactorvesselthermalshockprogramwillhavebeencompleted.Adetailedanalysisconsideringthelinearelasticfracturemechanismmethod,alongwithvarioussensitivitystudies,wassubmittedtotheAECstaffandmembersoftheAdvisoryCommitteeonReactorSafety.RevisedmaterialforthisreportplusadditionalanalysisandfracturetoughnessdatawerepresentedatameetingwiththeContainmentandComponentTechnologyBranchonAugust9,1968,andforwardedbyletterforAECreviewandcommentonOctober29,1968.TheanalysisfozthepressurizedwaterreactorunderthepostulatedconditionsofSafetyGuide2showsthatnothermalshockproblemexists.Ztisnot.anticipatedthatthecontinuingHSSTProgramwillleadtoanynewconclusionsaboutreactorvesselintegrityunderloss-of-coolantaccidentconditions.1.8-2REV.1312/96 GINNA/UFSAR1.8.1.3SafetyGuide3-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLoss-of-CoolantAccidentforBoilingWaterReactorsThissafetyguideisnotapplicabletotheR.E.GinnaNuclearPowerPlantwhichisapressurizedwaterreactor.1.8.1.4SafetyGuide4-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLoss-of-CoolantAccidentforPressurizedWaterReactorsSafetyGuide4givestheassumptionsusedbytheAECtoevaluatethedesignbasisloss-of-coolantaccident.ThismethodologywasusedbyRG&Eatthattimetoperformloss-of-coolantaccidentanalyses.CurrentinformationisprovidedinChapter15.1.8.1.5SafetyGuide5-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaSteamLineBreakAccidentforBoilingWaterReactorsThissafetyguideisnotapplicabletotheR.E.GinnaNuclearPowerPlantwhichisapressurizedwaterreactor.1.8.1.6SafetyGuide6-IndependenceBetweenRedundantStandby(Onsite)PowerSourcesandBetweenTheirDistributionSystemsTheelectricallypoweredsafetysystemsaredividedintotwogroupssothatlossofeitheronewillnotpreventsafetyfunctionsfrombeingperformed.Eachacloadgrouphasaconnectiontothepreferred(offsite)powersource.Inasituationwhereoffsitepowerisnotavailable,twodieselgeneratorssupplystandbypowertoseparateredundantloadgroups.Thereisnoautomaticconnectionbetweeneitherthedieselgeneratorsortheloadgroups.Thedcsystemconsistsoftwoseparatebatteries,eachconnectedtotwobatterychargezs,whichsupplyseparatedcloadgroups.TheGinnadesignincludesautomatictransfersbetweentheloadgroups.However,necessaryfusingandelectricalinterlocksareprovidedtopreventparallelingofthetwodcsystems.1.8-3REV.1312/96 GINNA/UFSARSafetyGuide7-ControlofCombustibleGasConcentrationsinContainmentFollowingaLoss-of-CoolantAccidentTwohydrogenrecombinerunitsareinstalledintheGinnacontainment.Thepur-poseoftheseunitsistopreventtheuncontrolledpostaccidentbuildupofhydrogenconcentrationsinthecontainment.Therecombinersystemconsistsoftwofull-ratedsubsystems,eachcapableofmaintainingtheambientHqconcentrationat2volumeS.Eachsubsystemcontainsacombustor,firedbyanexternallysuppliedfuelgas,employingcontainment,airastheoxidant.Hydrogeninthecontainmentairisoxidizedinpassingthroughthecombustionchamber.Hydrogengasisalsousedastheexternallysuppliedfuelinorderthatnoncondensiblecombustionproductsareavoidedwhichwouldcauseapzogressiveriseincontainmentpressure.OxygengasismadeupthroughaseparatecontainmentfeedtopreventdepletionofOzbelowtheconcentrationrequiredforstableoperationofthecombustor.Eachrecombinerisequippedwithanaizsupplyblowertodeliverprimarycom-bustionairandquenchairtoreducetheunitexhaust.temperature,anignitionsystem,andassociatedmonitoringandcontrolinstrumentation.Thesystemisqualifiedtoperformitssafetyfunctioninapostaccidentenvironment.AdditionaldetailsareprovidedinSection6.2.5.1.8.1.8SafetyGuide8-PersonnelSelectionandTrainingPersonnelselectionandtrainingforGinnaStationwerecompletedbeforeANSI-18.1,ProposedStandardsforSelectionandTrainingofPersonnelforNuclearPowerPlants,waspublished.However,theexistingpersonnelandpositionsconformedverycloselywiththerequirementsofANSI-18.1.Sincethattime,selectionofpersonnel,theirqualifications,training,andretraininghavebeendonetoconformtoANSI-18.1-1971andsubsequentregulatoryguides.1.8.1.9SafetyGuide9-SelectionofDiesel-GeneratorSetCapacityforStandbyPowerSuppliesThediesel-generatorcapacitieswerebasedonaconservativeevaluationofpowerrequirementsintheeventofaloss-of-coolantaccidentsimultaneouswithalossofstationreservepowersupply.1.8<REV.1312/96 GINNA/UFSAREachofthegeneratorshasanameplatecontinuousratingof1950kWwitha0.8powerfactorat900rpmwiththree-phase,60-cycle,480-Voperation.Theunitsalsohaveextendedratingsof2300kWfor0.5hrand2250kWfor2succeedinghours.Whileparagraph2oftheSafetyGuideregulatorypositiondoesnotspecificallyapplytotheloadratingsoftheGinnadiesels,itdoesindicatethedesiredconservatism.Duringtheinitialinjectionphase,whichlastslessthan2.5hr,thepowerrequirementislessthan90%ofthe2-hrlimitof2250kW.Oncethisinitialphaseiscompleted,thepowerrequirementsarelessthan90%ofthecontinuousdutyratingofthediesel.Duringpreoperationaltesting,thedieselwasoperatedatthepowerlevelsspecifiedabove.Thepowerrequiredtorunthesafeguardsloadsunderpreop-erationaltestingwaslessthanthatestimatedbecauseofthedifficultiesinsimulatingaccidentloads.Thecontainmentair,forinstance,waslessdensethanthatexperiencedinanaccident,and'thusreducedthepowerloading.Becauseofthisthedieselwastestedatratedratherthanactualload.Bothdieselsarecapableofstarting,accelerating,andattainingratedvoltagewithin10secondsofalossofvoltageonasafeguardbus.Duringtesting,theloadingsequenceandtiminghasbeencheckedandhasperformedsatisfactorily.Duringthisloadingsequence,thevoltagehasnotdroppedbelow75%ofratedoutputandhasreturnedtowithin108ofratedvoltagewithin408oftheloadsequencetimeinterval.Aloadlossfrom100%tozeropowerwillnotcauseanoverspeedtripofeitherdiesel.Frequencychecksduringtestshavenotbeenaddressedspecifically,however,nounusualvariationshavebeennoticed.Thesuitabilityofbothdieselswasconfirmedthroughpreoperationaltestingandinperiodictestingdonesincethattime.1.8.1.10SafetyGuide10-Mechanical(Cadweld)SplicesinReinforcingBarsofConcreteContainmentsTensionsplicesforbarsizeslargerthan¹11weremadewithCadweldsplice.ToensuretheintegrityoftheCadweldsplice,thequalitycontrolprovidedforarandomsamplingofsplicesinthefield.Theselectedspliceswereremovedandtestedtodestruction.Asamplingofspliceswasinitiallytestedtodestructiontodevelopanaverage(X)anddeviation(cr).Sufficientsamplesweretestedtoprovidea99%confidencelevelthat958ofthesplicesmetthespecificationREV.1312/96 GINNA/UFSARrequirements.Thedistributionestablishedpermittedthedevelopmentofthelowerlimitbelowwhichnotestdatashouldfall.Iftheresultofanytestfellbelowthislimit,thesubsequentorprevioussplicewassampled.Iftheresultwasabovethelowerlimit,theprocesswasconsideredtobeincontrol.Ifthisresultwasagainbelowthelowerlimit,theprocessaveragewasrecalculatedandanengineeringinvestigationwasrequiredtodeterminethecauseoftheexcessvariationandtoreestablishcontroltheaverageofalltestswasrequiredtoremainabovetheminimumtensilestrength.Asadditionaldatabecameavailable,theaverageandstandarddeviationwereupdated.Theactualfrequencyoftestingcarriedoutwasonespecimenforeach25splicesmadeforeachcrewfozthefirst250splicesmadebythatcrewandonetestforeach100splicesthereafter.1naddition,~heredeformedbarswereattachedtostructuralsteelmembers,specimensweremadeandtestedtoensurethattheweldofthesplicetothememberdidnotfailbeforetherebarorthesplice.Thefrequencyoftestingthesespecimenswasthesameasthatforthenormalsplice.InsamplingtheCadweldsplicesatestwasconcurrentlyperformedontherebar.Wheretherebarfailedpriortothesplice,acheckwasprovidedontheultimatestrengthoftherebar,thusprovidingacheckonconformancewiththemanufacturer'scertificationsandtheASTMstandards.Inaddition,certifiedmilltestreportswerereceivedfromtherebarsupplierandcheckedforconformancewithspecificationrequirements.Wherethespeciallargesizebars(i.e.,14Sand18S)werespliced,theCadweldprocesswasusedsothattheconnectioncoulddeveloptherequiredminimumultimatebazstrength.WhereCadweldsplicewasused,includinginthecylinderanddome,thespliceswerestaggeredaminimumof3ft.Anexceptiontothispracticeisinthevicinityofthelargeopenings.Wherereinforcingbarsareanchozedtoplatesorshapes,suchasisthecaseforthedomebarsanchoredintothecylinderandtheinterruptedhoopbarsatpenetzations,theCadweldsplicesalloccurononeplane.LappedsplicesaredetailedinaccordancewithACI-63.WhereCadweldspliceswereusedtoanchorreinforcingbarstoastructuralsteelmember,aprocedureoftestingcouponswasusedtodemonstratethattheweldingprocesswasundercontrol.Thisprocedurerequiredeachweldertoinitiallymakecouponsasqualificationprocedure.Theprocedurewasrepeatedatafrequencyofonecouponforeach100productionunits.EachcouponrequiredtestingoftwoCadweldconnections.1.8<REV.1312/96 GINNA/UFSARInaddition,theweldingprocedurecompliedwiththespecificationsoftheAmericanWeldingSocietyandprovidedfor100$visualinspectionofwelds.1.8.1.11SafetyGuidell-InstrumentLinesPenetratingPrimaryReactorContainmentThecontainmentpressuretransmitterinstrumentlinespenetratethecontainment.Thesemustbeopenfollowinganaccident,buthaveamanualisolationvalveoutsidecontainment.Therefore,SafetyGuide11ismetaswellasGeneralDesignCriteria56onanotherdefinedbasis.1.8.1.12SafetyGuide12-InstrumentationforEarthquakesAstrongmotionaccelerographisinstalledattheGinnaplantandislocatedinthebasementoftheintermediatebuilding.Thislocationwaschosenratherthanthebasementofthecontainmentsinceitmoreeasilyfacilitatesperiodicsurveillanceoftheinstrument(thiswouldbedifficultshouldtheinstrumentbelocatedinthebasementofthecontainment),andtheretrievaloftheshockrecordcanmorereadilybemade.Theresponseoftheaccelerographlocatedinthebasementoftheintermediatebuildingwillbevirtuallythesameasonelocatedinthebasementofthecontainment.1.8.1.13SafetyGuide13-FuelStorageFacilityDesignBasisThespentfuelpool(SFP)isareinforced-concretestructurewithaseam-weldedstainlesssteelplateliner.ThisstructureisdesignedtowithstandtheanticipatedearthquakeloadingsasaSeismicCategoryIstructuresothatthelinerpreventsleakageevenintheeventthereinforcedconcretedevelopscracks.AllstructureshavebeendesignedforwindloadsinaccordancewiththerequirementsoftheStateofNewYork-StateBuildingConstructionCode.Thewindloadstabulatedinthiscodearebasedonadesignwindvelocityof75mphataheightof30ftabovegradelevel.Inaddition,thespentfuelpool(SFP)hasbeenevaluatedwithregardstotornadowindsandmissilesandfoundtobeacceptable.1.8-7REV.1312/96 GINNA/UPSARInterlockshavebeenprovidedontheauxiliarybuildingcranetopreventthecranehookfrompassingoverstoredfuelandthuspreventheavyloadsfrombeingdroppedonthespentfuel.Theareaaroundthespentfuelpool(SFP)isenclosedbytheauxiliarybuilding.Inadditiontootherventilationsystemsinthisbuilding,aventilationsystemisprovidedtoprovideasweepofairspecificallyacrossthetopofthespentfuelpool(SFP).Originally,airwasonlypassedthroughahighefficiencypazticulateairfilterbeforebeingexhaustedtotheatmosphere.Earlyin1971,however,acharcoalfilter,tobeplacedintooperationduringMODE6(Refueling),wasaddedtothisdischargesystemtofilterouttheiodineinthe.airandthusimprovethedesigntoaccountfortheassumptionthatallfuelrodsinonefuelbundlemightbebreachedifaMODE6(Refueling)incidentoccurred.Thefuelpoolhasbeenevaluatedonthebasisofdroppingafuelcaskintothespentfuelpool(SFP).Nhilesomedamagecouldpossiblyoccurtotheliner,thecaskwillnotbreakthroughthereinforcedconcretetocauseamajorleak.Inanycase,theczanemovingthecaskwouldbesingle-failureproof,thusprecludingtheneedtopostulatethecaskdropoccurzence.Therearenospentfuelpool(SFP)designs,permanentlyconnectedsystems,and/orotherfeaturesthatbymaloperationorfailurecouldcauselossoffuelstoragecoolanttotheextentthatfuelwouldbeuncovered.Amaloperationorfailureinthefilteringorcoolingsystemswillnotcausethefueltobeuncovered.Thespentfuelpool(SFP)isprovidedwithlevelmonitoringequipmentwhichgivesanalarminthecontrolroomiftheleveldrops.Theradiationleveljustabovethespentfuelpool(SFP)isalsomonitored.Areadingofthislevelisindicatedlocallyandatthecontrolzoom.Aradiationlevelabovethesetpointwillcauseanalarmonthecontrolboard.Thefilteringsystemassociatedwiththeairjustabovethespent.fuelpool(SFP)isalwaysinoperation.Beforebeingexhaustedfromtheplantthisairalwayspassesthroughhighefficiencyparticulateairfiltersfirst.DuringMODE6(Refueling)operationsthisairisalsofilteredwithimpregnatedcharcoalfilters.Theadditionofthecharcoalfilterstotheairstreamisdonemanually.1.84REV.1312/96 GINNA/UFSARAspentfuelpool(SFP)coolingsystemisinstalledtoremovedecayheat.Also,nonseismicmakeupsystemsincludingthefireprotectionsystem,areprovidedtoaddcoolanttothepool.1.8.1.14SafetyGuide14-ReactorCoolantPumpFlywheelIntegrityPrecautionarymeasures,takentoprecludemissileformationfromprimarycoolantpumpcomponents,ensurethatthepumpswillnotproducemissilesunderanyanticipatedaccidentcondition.Theprimarycoolantpumpsrunat1189zpm,andmayoperatebrieflyatoverspeedsupto109%(1295rpm)duringlossofoutsideload.Forconservatism,however,125'hofoperatingspeedwasselectedasthedesignspeedfortheprimarycoolantpumps.Fortheoverspeedcondition,whichwouldnotpersistformorethan30seconds,pumpoperatingtemperatureswouldremainataboutthedesignvalue.Eachcomponentoftheprimarypumpshasbeenanalyzedformissilegeneration.Anyfragmentswouldbeexpectedtobecontainedbytheheavystator.Themostadverseoperatingconditionoftheflywheelsisvisualizedtobetheloss-of-loadsituation.Thefollowingconservativedesignandoperationconditionsminimizemissileproductionbythepumpflywheels.Theflywheelsarefabricatedfromrolled,vacuum-degassed,ASTMA-533steelplates.Flywheelblanksareflame-cutfromtheplate,withallowanceforexclusionofflameaffectedmetal.AminimumofthreeCharpyV-notchtestsaremadefromeachplateparallelandnormaltotherollingdirection,todeterminethateachblanksatisfiesdesignrequirements.Anilductilitytransitiontemperaturelessthan+10'Fisspecified.Thefinishedflywheelsazesubjectedto100%volumetricultrasonicinspection.Thefinishedmachinedboresarealsosubjectedtomagneticparticleozliquidpenetrantexamination.Thesedesign-fabricationtechniquesyieldflywheelswithprimarystressatoperatingspeedtolessthan508oftheminimumspecifiedmaterialyieldstrengthatroomtemperature(100'Fto150'F).BurstingspeedoftheflywheelshasbeencalculatedonthebasisofGriffith-Irwin'sresultstobe3900rpm,morethanthreetimestheoperatingspeed.1.8-9REV.1312/96 GINNA/UFSARAfracturemechanicsevaluationwasmadeonthereactorcoolantpumpflywheel.Thisevaluationconsideredthefollowingassumptions:A.Maximumtangentialstressatanassumedoverspeedof125%comparedtoamaximumexpectedoverspeedof109%.B.Athroughcrackthroughthethicknessoftheflywheelatthebore.C.400cyclesofstartupoperationin40years.Usingcriticalstressintensityfactorsandcrackgrowthdataattainedonflywheelmaterial,thecriticalcracksizeforfailurewasgreaterthan17in.*radiallyandthecrackgrowthdatawas0.030in.to0.60in.per1000cycles.Theinserviceinspectionprogramincludesacompleteultrasonicvolumetricinspectionandsurfaceexaminationofallexposedsurfacesatapproximately10-yearintervals,andin-placeultrasonicvolumetricexaminationofareasofhigherstressconcentrationattheboreandkeywayatapproximately3-yearintervals.Thisisconsistentwi.thSafetyGuide14.1.8-10REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLAM%)1.8-11REV.1312/96 GINNA/UFSAR1.8.1.15SafetyGuide15-TestingofReinforcingBarsforConcreteStructuresThe1972codesfortestingofreinforcingbarsforconcretestructureswerenotavailableatthetimethatGinnaStationwasbuilt.Thecodesandpracticesfolloweddogenerallyconformtothesestandards,however.TheconcretereinforcementusedinthecontainmentbuildingandotherSeismicCategoryIstructuresisdeformedbarintermediategradebillet-steelconformingtotherequirementsofASTMA15-64,SpecificationsforBillet-SteelBarsforConcreteReinforcement,withdeformationsconformingtoASTMA305-56T,DeformedBarsforConcreteReinforcement.Speciallargesizeconcretereinforcingbarsaredeformedbarsofintermediategradebillet-steelconformingtoASTMA408-64,SpecificationsforLargeSizeDeformedBilletSteelBarsforConcreteReinforcement.Reinforcingsteelconformingtothesespecificationshasatensilestrengthof70,000psito90,000psiandaminimumyieldpointof40,000psiAllsplicingandanchoringoftheconcretereinforcementisinaccordancewithACI318-63.Therewasnosplicingofbarsbyarcwelding.ThespeciallargesizebarsweresplicedbytheCadweldprocess.Itistobenotedthatintermediategradereinforcingsteelisthehighestductilitysteelcommonlyusedforconstruction.Certifiedmillreportsofchemicalandphysicaltestsweresubmittedtotheengineer,GilbertAssociates,Inc.,forreviewandapproval.Eachbarwasbrandedinthedeformingprocesstocarryidentificationastothemanufacturer,size,type,andyieldstrength,fozexample:1.8-12REV.1312/96 GINNA/UFSARB-Bethlehem.18-Size18S.N-Newbilletsteel;Blank-A-15andA-408steel.6-A-432(60,000psiyield).7-A-431(75,000psiyield).Becauseoftheidentificationsystemandbecauseofthelargequantity,thematerialwaskeptseparatedinthefabricator'syard.Inaddition,whenloadedformillshipment,allbarswereproperlyseparatedandtaggedwiththemanufacturer'sidentificationnumber.Visualinspectionofthebarswasmadeinthefieldforinclusionsandrepresentativerandomlyselectedsamplesofreinforcingbarstockedonsiteweretestedforuser'stensiletests.Thespecificationsstipulatethat"arcweldingconcretereinforcementforanypurposeincludingtheachievementofelectricalcontinuityshallnotbepermittedunlessnotedotherwiseonthedrawings."ConcretecoverofreinforcingbarwasatleasttheminimumspecifiedbyACI-318.1.8.1.16SafetyGuide16-ReportingofOperatingInformationDuringtheoperatingperiodthatGinnaStationhasbeenproducingpower,reportinghasfollowedtheintentof10CFR20,40,50,70,and73.Therefore,RG&EconformstotheguidanceofSafetyGuide16aswellasallreportingrequirementssetforthintheTechnicalSpecifications.1.8.1.17SafetyGuide17-ProtectionAgainstIndustrialSabotageTheRochesterGasandElectricCorporationsubmittedaproprietarydocument,SecurityattheGinnaFacility,totheAECbycoverletterdatedOctober8,1971.ThisdocumentdescribesindetailtheimplementationbyRG&EofthosesectionsoftheSafetyGuideapplyingtocontrolofaccessandselectionofpersonnel.TheSecurityPlanwasupdatedbyRG&EsubmittalsofJanuary19,REV.1312/96 GINNA/UIiSAR1978,andApril12,1983.Theplanismaintainedcurrentincompliancewith10CFR50.54(p).1.8.1.18SafetyGuide18-StructuralAcceptanceTestforConcretePrimaryReactorContainments1.8.1.18.1StructuralanteritTestAftercompletionoftheconstructionoftheentirecontainmentvessel,astructuralintegritytestwasperformed,whereapneumaticpressureof69psig(115%ofthedesignpressureof60psig)wasmaintainedforapproximately4hours.Thepressurizationofthevesselwasdonesoastopermitreadingsandmeasurementswhicharemorefullydescribedhereafter.Thereadingsandmeasurementsweremadeduringtheinitialpressurization(withpressuremaintainedaminimumof3hrat0psig,14psig,35psig,60psig,andatmaximumtestpressureof69psig,andthereafterduringdepressurizationat60psig,35psig,and0psig.Exceptforthemaximumpressurelevel(69psig),thevesselpressurewasslightlyincreasedabovethelevelatwhichthemeasurementsweretaken;andthepressurewasthenreducedtothespecifiedvalueandobservationsmadeafteratleast10minutestopermitanadjustmentofstrainswithinthestructure.Becausethestructureissolarge,displacementmeasurementsweremadewithsufficientprecisiontoserveasconfirmationofpreviouslycalculatedresponse.Thetestpzogramfurtherincluded,inadditiontodisplacementmeasurements,acontinuousvisualexaminationofthevesseltoobserveconcretecracking.Observationsoftheentirevesselsurfaceweremadefromexistingortemporaryplatformswithspecialattentiongiventopertinentlocations,includingmajordiscontinuities.Acompletedescriptionoftheinstrumentationusedtomeasureresponseisdescribedbelow.Predicteddisplacementsdevelopedforaninternalpressureof69psig,whichisthemaximumpressurefozthestructuralprooftest,isincludedbelow.Althoughstrainmeasurementsweremade,nopredictedmeasurementsareprovidedconsistentwithagreementspreviouslydocumentedinAppendicesA,B,andCofGilbertAssociates,Inc.,ReportGAl1720(Reference2).Strainvaluesobtained,however,areanalyzedtodeterminemagnitudeanddirectionofprincipalstrains.Maximumpredictedcrackwidths.forspecificationsaredescribedbelow.1.8-14REV.1312/96 GINNA/UFSARP1.8.1.18.21nstrumentationTheinstallationofalltargets,linearvariabledifferentialtransformers,whitewashforcrackobservations,loadcells,tapes,straingauges,photoelasticdisks,cameras,junctionboxes,wires,readoutinstruments,supportstructures,andplatformswerecompletedpriortoinitiatingpressurizationofthevessel.ThelocationfozallinstrumentationisshowninTable1ofGAI1720(Reference2).Znaddition,thecoversontheenclosuresoverthetendonanchorsandthewaxsurroundingtheanchorheadwereremovedtopermitinspectionoftheanchorage,includingbuttonheads,duringthetest.Menwerestationedatthethreelocationsfortheodolitemeasurements,attheledgefortendonanchorageinspection,andateachlocationwherecrackmeasurementsweremade.Thesemenwereequippedwithcommunicationmeanstomaintaincontactwithacontrollocatedintheintermediatebuildingatelevation253ft6in.whereread-outinstrumentswerelocated.1naddition,threemenwereavailabletotraveloveraccessiblewalkwaystoinspecttheoutervesselsurfaceThetypeofinstrumentsusedwereasfollows:(1)Jigtransitwithscalesandtargets.(2)lnvartapes.(3)Linearvariabledifferentialtransformers.(4)Straingauges.(5)Rosettestraingauges.(6)Photoelasticdisks.(7)Loadcells.1.8.1.18.3DislacementMeasurementsCylinderbaserotationanddisplacementweremeasuredutilizinglinearvariabledifferentialtransformersatthreeazimuths,oneofwhichwasdirectlybelowtheequipmentaccessopening.Ateachazimuthtwolinearvariabledifferentialtransformerswerelocatednearthebaseofthestructurewith6-ftverticalseparation.Theseradialdisplacementswereusedtodeterminetheactualbaserotation.Also,ateachazimuthonelinearvariabledifferentialtransformerwasusedtodeterminetheverticaldisplacementoftheelastomerpad.Radialdisplacementmeasurementsweremadeatatotalof15locationsusingajigtransit,basetargets,andmountedscales.1.8-15REV.1312/96 GINNA/UFSARAbasetargetwasattachedtothestructureateachofthreedifferentazimuthsaroundthebaseofthecylinder.Fivescaleswereattached(ateachazimuth),threealongtheheightofthecylinderandoneeachjustaboveandbelowtheledge(i.e.,elevation343ft2in.)'.Relativeradialdisplacementsweredeterminedateachscalelocationbyaligningthetransitwiththebasetargetandbyplungingthescopeupfromthebasetargettoeachscale.Variationsinthescalereadingsfromtheoriginalr'eadingindicatedtheamountofdisplacement.Theverticaldisplacementofthecylinderatthetop(relativetothebaseringatthreeazimuthsforsidewallelongationandaveragetendonstrain)wasdeterminedusingthreeinvartapes.Thetapesweremountedattheledgeandextendeddowntothebasering,whereweightstensionedthetapes.Ascaleatthebasewasreadusinganengravedmarkonthetapetoindicaterelativeelongations.Linearvariabledifferentialtransformerswereutilizedat28locationsonconcretearoundtheequipmentaccessopeningtomeasurehorizontalandverticaldisplacements.Alongthehorizontalaxis,ononesideonly,sixhorizontalandsixverticaldisplacementswereobtainedtoapoint,21ftoutfromtheedgeofthehole.Anidenticalsetofdisplacementswasobtainedontheverticalaxisabovethehole.Additionally,onthehorizontalandverticalaxis,ofthosedisplacementspreviouslymentioned,anotherpointoneachaxiswasselectedtomeasureverticalandhorizontaldisplacementsatapoint2ftfromtheoppositeedgeofthehole.Displacementmeasurementaccuraciesareasfollows:thejigtransits,usinganopticalmicrometer,hadaresolutionof0.001in.andanaccuracyof0.005in.to0.010in.Thelinearvariabledifferentialtransformersandassociatedinstrumentationhadaresolutionofbetterthan0.001in.andanaccuracyof0.002in.to0.005in.1.8.1.18.4StrainMeasurementsAtotalof46reinforcingbarswereinstrumentedforstrainmeasurements,28wereatlocationssimilartolinearvariabledifferentialtransformerdisplacementmeasurementlocationsaroundtheequipmentaccessopening,and18wereatlocationsaboveandbelowtheledge.1.8-16REV.1312/96 GINNA/UFSARThelinerwasinstrumentedwithrectangularrosettesatsixlocations,toindicategeneralstraininregionsunaffectedbygeometricdiscontinuities,andat32locationsaroundfourtypicalpenetzations.Eightzosetteswereusedateachpenetration.Straingaugeswereattachedtothetendon-anchoragebearingplatesattendons13,53,93,and133.Loadcellswereinstalledunderthebuttonheadoftendons13,53,93,and133.Thestraingaugesonreinforcingbarsandassociatedinstrumentationhadaresolutionof0.4micro-inchpezinchstrainandanaccuracyof2to3micro-inchespezinch.Thestraingaugesonthesteellinerhadaresolutionof1micro-inchperinchandanaccuracyofapproximately5micro-inches.Thestraingaugesonthebearingplatesandtheassociatedinstrumentationhadaresolutionof1miczoinchperinchandanaccuracyofapproximately5micro-inchesperinch.Theinstrumentationutilizedforthetendonloadcellhadameasuringaccuracyof0.58offullloadcapacity.Photoelasticdisks,1.5in.to2in.indiameter,wereplacedontheliner,aroundthesamefourpenetrationswherestraingaugeswereinstalled,toqualitativelyaugmentthelocalvaluesindicatedbythestraingauges.Approximately15diskswerelocatedinonequadrantforeachoffourpenetrations.(Thisresultedinapproximately25'6surfacecoverageuptoonediameterawayfromtheopening.)1.8.1.18.5TestResultsReadingandrecordingofallmeasurementsweremadejustpriortopressurizing,afterdepressurizing,andateachpressureincrement,exceptthatonlyonequadrantofphotoelasticdisksateachpenetrationwerephotographedwhilethestructurewaspressurized.TheidentificationandlocationoftheinstrumentsareshownonFigures2through5ofGAIReportNo.1720(Reference2).Theseinstrumentswerelocatedinsuchawaythattheactualresponseofthevesselduringthetestwasdeterminedandverified,withthecriteriaestablishedpriortotheperformanceofthetest.ThelocationofscalesandgaugesareasdescribedinTableIofGAIReportNo.1720.1.8-17REV.1312/96 GINNA/UFSARTheresultsofthestructuralintegritytestshowedthestresses,strains,anddisplacementswerewithinthespecifiedlimitsandtheGAlpredictedresults.ThewhitewashareasrevealedcrackpatternsandspacingsingoodagreementwiththeGAXprediction;therewasnohorizontalcracksindomeconcreteexceptforconstructionjoints.Thebaseshearrestraintwasstifferthananticipated.Thestrainsanddisplacementsofthecylinderwall,thediscontinuityofdomeandcylinderwall,anddomerevealedthatthestructuralstiffnessofthecontainmentvesselisgreaterthananticipated.Thestructuralcapacityofthecontainmentmetandexceededitsimposedcriteria.AdetailedanalysisanddescriptionoftheGinnacontainmentstructuralintegritytestiscontainedinGAXReportNo.1720.1.8-18REV.1312/96 GINNA/UPSAR(INTENTIONALLYLEFTBLANK)1.8-19REV.1312/96 GINNA/UFSAR1.8.1.19SafetyGuide19-NondestructiveExaminationofPrimaryContainmentLiners1.8.1.19.1TestProvisionsTheweldseamsinthelinerplatearecoveredwithatestchanneltopermittestingforleaks.Exceptfortheequipmentaccesshatch,allpenetrationsprovideadoublebarrieragainstleakageandcanbepressurizedtopermittestingofleaktightness.Allpenetzationsthroughthecontainmentreinforcedconcretepressurebarrierfozpipe,electricalconductors,ducts,andaccesshatchesareofthedoublebarriertype.Ingeneral,apenetrationconsistsofasleeveembeddedinthereinforcedconcretewallandweldedtothecontainmentliner.Theweldtothelinerisshroudedbyatestchannelwhichisusedtodemonstratetheintegrityofthejoint.Thepipe,duct,oraccesshatchpassesthroughtheembeddedsleeveandtheendsoftheresultingannulusareclosedoff,generallybyweldedendplates.Pipingpenetrationshaveabellowstypeexpansionjointmountedontheexteriorendoftheembeddedsleevewhererequiredtocompensatefordifferentialmotions.TheonlyexceptionstoprovidinganannulusaboutpipingoccursforthethreedrainlinesfromsumpB.Penetrationsaredesignedwithdoublesealssoastopermitindividualtestingattherequiredtestpressure.Allpenetrationsareprovidedwithtestcanopiesoverthelinertopenetrationsleevewelds.Eachcanopy,exceptthosenotedbelow,isconnectedtoandpressurizedsimultaneouslywiththeannulusbetweenthepipeandsleevepenetrationwhenundertest.TheexceptionsarethecanopyforthefueltransferpenetrationwhichmustbepressurizedindependentlyoftheannulusbecauseoftheseparationposedbythetransfercanallinerandthethreepipepenetrationsinsumpBinwhichonlythecanopiesarepressurizedastherearenoannuli.1.8.1~19.2ExaminationofWeldsAllweldedjointsforthepenetzationsincludingthereinforcementabouttheopenings(i.e.,sleevetoreinforcingplateseam)werefullyradiographedin1.8-20REV.1312/96 GINNA/UFSARaccordancewiththerequirementsoftheASMENuclearVesselsCodeforClassBVessels,exceptthatnonradiographablejointdetailswereexaminedbytheliquidpenetrantmethod.Forfullyradiographedwelds,acceptancestandardsforporosityareasshowninAppendixZVoftheNuclearVesselsCode.(TheASMEUnfiredPressureVesselsCodestatesthatporosityisnotafactorintheacceptabilityofweldsnotrequiredtobefullyradiographed.)Longitudinalandcircumferentialweldedjointsofthelinerwithinthemainshell,theweldedjointconnectingthedometothecylinder,andalljointswithinthedomewereinspectedbytheliquidpenetrantmethodandspotradiography.AllpenetrationsincludingtheequipmentaccessdoorandthepersonnellockswereexaminedinaccordancewiththerequirementsoftheASMENuclearVesselsCodeforClassBVessels.Allothershopfabricatedcomponents,includingthereinforcementaboutopenings,werefullyradiographed.Allotherjointdetailswereexaminedbytheliquidpenetrantmethod.FullradiographyisperformedinaccordancewiththeproceduresandgovernedbytheacceptabilitystandardsofParagraphN-624oftheASMENuclearVesselsCode.SpotradiographyisperformedinaccordancewiththeproceduresandgovernedbythestandardsofParagraphUW-52oftheASMEUnfiredPressureVesselsCode.MethodsforliquidpenetrantexaminationwereinaccordancewithAppendixVZIZoftheASMEUnfiredPressureVesselsCode.1.8.1.19.3PressureTestsAllpipingpenetrationsandpersonnellockswerepressuretestedinthefabricator'sshoptodemonstrateleaktightnessandstructuralintegrity.Inordertoensurethatthejointsinthelinerplateandpenetrationsaswellasallweldconnectionsoftestchannelswereleaktight,itwasrequiredthatallweldsbeexaminedbydetectingleaksat69psigtestpressureusingasoapbubbletestoramixtureofairandFreon,and100$ofdetectableleaksbearrested.Thesetestswerepreliminarytotheperformanceoftheinitialintegratedleakratetestwhichensuredthatthecontainmentleakratewasnogreaterthan0.1%ofthecontainedvolumein24hoursat60psig.Thelinerweldseamswerealsoexaminedbypressurizingthetestchannelstodesignpressure(60psig)withamixtureofaizandFreon,andcheckingallseamswithahalogenleakdetector.Alldetectableleakswerecorrectedbyrepairingtheweldandretesting.1.8-21REV.1312/96 GINNA/UFSAR1.8.1.19.4QualitControlProvisionsThefollowingqualitycontxolprovisionswereemployedintheweldingprocedurefortheliner:ThequalificationofweldingproceduresandwelderswasinaccordancewithSectionIX,WeldingQualifications,oftheASMEBoilerandPressureVesselCode.ContractorshallsubmitweldingprocedurestotheEngineerforreview.ThequalificationtestsdescribedinSectionIX,PartA,includeguidedbendteststodemonstrateweldductility.AllpenetrationsshallbeexaminedinaccordancewiththerequirementsoftheASMENuclearVesselsCodefoxClassBVessels.Othershopfabricatedcomponentsincludingthereinforcementaboutopeningsshallbefullyradiographed.Allnon-zadiographablejointdetailsshallbeexaminedbytheliquidpenetrantmethod.Conformancetothiscodewasadheredto,inallapplicablecases.1.8.1.20SafetyGuide20-VibrationMeasurementsonReactor1nternalsAvibrationanalysisandtestprogramwasdevelopedforGinnaStationbyWestinghouseCorporation.ThepxeoperationaltestprogramanditsresultsarediscussedinSection14.6.TheresultsshowthatthevibrationofthereactorinternalsfortheGinnaplantarewellwithintheexistingcriteria.AprogramwasconductedduringthefirstMODE6(Refueling)shutdownoftheGinnareactor(March1971)toinspectandevaluatetheperformanceofthereactorinternalsandcorecomponents'hisinspectionprogramwasbasedonaninspectionofallcomponents,withemphasisonthethermalshieldareasincethethermalshieldhaspreviouslybeenthemostvulnerableproblemarea.Thestructuresinsideandoutsideofthelowerinternals,theupperinternals,threecontrolroddriveshafts,andallrodclustercontrolassemblycontrolrodswereinspectedusingaclosed-circuitunderwatertelevisionand/ozhoroscope.Alloftheinspectionsperformedbytelevisionwererecordedonvideotape;photographsweretakenthroughtheboroscopetorecordthatportionoftheinspection.Thisinspectionrevealednoproblemareasinanyoftheitemsinspected.1.8-22REV.1312/96 GINNA/UPSARTheinspectionprogramisdescribedinWestinghousereportWCAP7780,October1971,RobertE.GinnaNuclearGeneratingStation,March1971RefuelingShutdownReactorInternalsandCoreComponentsEvaluation.1.8.1.21SafetyGuide21-MeasuringandReportingEffluentsFromNuclearPowerPlants'IStartingonJanuary1,1972,planteffluentmonitoringandreportingwaspreparedintheformatgiveninAppendixAofSafetyGuide21andsubmittedtotheStateofNewYorkonamonthlybasis.AreportintheformatofAppendixAwasprovidedtotheAECfortheyear1971.TheTechnicalSpecifications,asrevisedonMarch1,1972,followedtheintentof,SafetyGuide21formeasuringandrecordingtheplanteffluents.TechnicalSpecificationsprovidetherecpxirementsforaRadiologicalEffluentcontrolsProgram.Plantrecordswillbemaintainedtodemonstratethatthesensitivityofanalysisiswithinthelimitsgiveninthesafetyguide.Anonsitemeteorologicaltowerwasfullyoperationalearlyin1965andwasusedextensivelyinthecollectionofpzeoperationalmeteorologicaldata.Duringearly1972,therecordinginstrumentationwasrelocatedinsidetheturbinebuilding,andsubsecpxentlythedatacollectionwasmovedtothePlantProcessComputerSystem(PPCS).Dataazecurrentlybeingusedinupgradingcalculationsofdilutionfactorsforradiologicalreleases.Preoperationalonsitemeteorologicaldatawereevaluatedtoprovideabasisforcontrolledradiologicalgasreleaselimits,accidentanalysis,andstormpredictioncriteriaintheFSAR.BasicandcriticalmeteorologicalparametersarerecordedattheGinnasite.SeeSection2.3.3foradditionaldetails.ThisinformationprovidesRG&Ewiththecapabilityofassessingthepotentialdispersioncharacteristicsofradioactivereleasestotheenvironmentthroughtheatmosphere.SuchassessmentsprovideRG&Ewiththeabilitytodemonstratethatoperationsarewellwithinthelimitsof10CFR20.Currentpracticeistomaintaineffluentreleaseswithin10CFR50,AppendixIlimits,asspecifiedintheOffsiteDoseCalculationManual(ODCM).1.8-23REV.1312/96 GINNAIUFSAR1.8.1.22SafetyGuide22-PeriodicTestingofProtectionSystemActuationFunctionsTheplantprotectionsystemhasbeendesignedtopermitperiodictestingtoextendtoandincludeactuationdevicesandactuatedequipmentwheneverpracticable.Whileitisnotpossibletooperateallactuationdevices(suchastripofcontrolrods)orsignificantlyvarymostoftheoperatingparameters(suchascoolantpressure)duringoperation,itispossibletotestmostequipmentwhentheplantisinfullpoweroperation.Thebistableportionsoftheprotectivesystem(i.e.,relays,bistables,etc.)providetripsignalsonlyaftersignalsfromanalogportionsofthesystemreachpresetvalues.Capabilityisprovidedforcalibratingandtestingtheperformanceofthebistableportionofprotectivechannelsandvariouscombinationsofthelogicnetworksduringreactoroperation.Theanalogportionofaprotectivechannel(i.e.,sensorsandamplifiers)providesanalogsignalsofreactororplantparameters.Thefollowingmeansareprovidedtopermitcheckingtheanalogportionofaprotectivechannelduringreactoroperation:A.Varyingthemonitoredvariable.B.Introducingandvaryingasubstitutetransmittersignal.C.Crosscheckingbetweenidenticalchannelsorbetweenchannelswhichbearaknownrelationshiptoeachotherandwhichhavereadoutsavailable.Duringoperationitisalsopossibletotestthepumpsusedinasafetyinjection.Fozinstance,eachhigh-headsafetyinjectionpumpcanbeandistestedinaccordancewiththeinservicepumpandvalvetestingprogram.TestingthatcannotbedoneduringoperationiscompletedduringMODE6(Refueling)shutdowns.Thesafetyinjectionsystemistestedtoseethatasasystemitcanperformaccordingtodesign.Whencompleted,thetestshowsthatseparateandredundantactuationsignalsazeoperativeandthatthevalvesandpumpsthatazerequiredforsafetyinjectionazeindeedoperable.Wheretheabilityofasystemtorespondtoabonafideaccidentsignalisintentionallybypassedforthepurposeofperformingatestduringreactor1.8-24REV.1312/96 GINNA/UFSARoperation,theexpansionofthebypassconditiontoredundantsystemsisprevented.Xnaddition,theconditionisautomaticallyindicatedtothereactoroperatorinthemaincontrolroom.1.8.1~23SafetyGuide23-OnsiteMeteorologicalProgramsTheGinnaplantsitemeteorologyisdescribedinSection2.3.The2-yearpre-operationalmeteorologicalprogramdataissummarizedinSection2.7oftheoriginalFSAR.ThesedatawereutilizedbytheNRCandRG&Efozaccidentanalysisandgaseousreleaselimitdeterminationduringtheinitiallicenseapplicationfora1300MWtratingand,morerecently,duringthereviewoftheapplicationbyRG&Etoincreaseitslicensedpowerlevelfrom1300MWtto1520MWt.MoreinformationonthemeteorologicaltowerisprovidedinthediscussionofSafetyGuide21.1.8.1.24SafetyGuide24-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaPressurizedWaterReactorRadioactiveGasStorageTankFailureTheactxvxtyxnagasdecaytankxstakentobethemaximumamountthatcouldaccumulatefromoperationwithcladdingdefectsin1%ofthefuelrods.Themaximumactivityisobtainedbyassuming.thenoblegasesxenonandkryptonareaccumulatedwithnoreleaseoverafullcorecycle.Thispostulatedamountofactivity,onereactorcoolantsystemequilibriumcycleinventory,is4.6x10CiequivalentXenon-133.Thisvalueisparticularlyconservativebecausesomeofthisactivitywouldnormallyremaininthecoolant,somewouldhavebeendispersedearlierthroughthestack,andtheshorter-livedisotopeswouldhavedecayedsubstantially.Samplestakenfromgasstoragetanksinpressurizedwaterreactorplantsinoperationshownoappreciableamountofiodine.Todefinethemaximumdoses,therelease,isassumedtoresultfromgrossfailureofagasdecaytankgivinganinstantaneousreleaseofitsvolatileandgaseouscontentstotheatmosphere.1.8-25REV.1312/96 GINNA/UFSARThemaximumwhole-bodybeta-gammadose,basedonmeteorologypreviouslydescribedinSafetyGuide4,islessthanafewrem(lessthanthree).Thisiswellbelowthe25remguidelinevaluein10CFR100.1.8.1.25SafetyGuide25-AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityfozBoilingandPressurizedWaterReactorsTheGinnaspentfuelpool(SFP)charcoalfiltersystemwasdesignedandcon-structedpriortotheissuanceofSafetyGuide25.AnanalysisbasedonRegulatoryGuide1.25wasperformedandisdescribedinSection15.7.3.Radiologicalconsequenceswerecalculatedtobelessthan34remtothethyroidattheexclusionareaboundary,whichiswellbelowthe10CFR100exposureguidelines.1'.1.26SafetyGuide26-QualityGroupClassificationandStandardsAlthoughSafetyGuide26wasnotineffectwhenGinnaStationwasconstructed,RG&EsubsequentlyclassifiedthesystemsinGinnaStationinaccordancewiththisguide.1.8~1.27SafetyGuide27-UltimateHeat,SinkThecirculatingwaterintakesystemofGinnaStationisdesignedtoprovideareliablesupplyofLakeOntariowater,regardlessofweatherozlakeconditions,toasuctionofthecondensercirculatingwaterpumps,houseservicewaterpumps,andthefirewaterpumps.Withtwopumpsoperating,theratedcapacityofthecirculatingwatersystemis334,000gpm.Operationofasinglecirculatingwaterpumpreducesthenominalflowratebyabout50%.Inmeetingthehighreliabilityrequirementsofthissafetyguide,theintakesystemiscompletelysubmergedbelowthesurfaceofthelake.A10-ftdiameterreinforced-concretelinedtunnel,driventhzoughbedrock,extends3100ftnoztherlyfromtheshoreline.Thetunnelrisesverticallyandconnectstoareinforced-concreteinletsection.Theminimummeanmonthlylakelevelofrecord(243.0ftmsl)willresultinadepthofwaterof26ftabovethelowestentranceintotheintakestructure.1.8-26REV.1312/96 GINNA/VFSARTheprobabilityofwaterstoppageduetopluggingoftheinlethasbeenreducedtoanextremelylowvaluebyincorporatingcertaindesignfeaturesinthesystem.Heavyscreenrackswithbarsspacedat10-in.centerswillpreventlargeobjectsfromenteringthesystem.Redundanttravelingwaterscreens,0.5-in.mesh,locatedinthescreenhousewillremovetrashfromthecoolingwater.Atconditionsoffullflow(approximately355,000gpm)thevelocityattheintakescreenracksis0.8ft/sec.Theplantcoolingwaterrequirementsduringanaccidentwouldbeapproximately10,000gpm,whichwouldresultinavelocityof0.02ft/sec.lnaddition,waterentersonafull360-degreecircletherebyprotectingagainstthepossibilityofstoppagebyasinglelargepieceofmaterial.Thelowvelocity,plusthesubmergence,providesassurancethatfloatingicewillnotplugtheintake.Theonlyphenomenonthatiscredibletocontributetothepluggingwouldbetheaccumulationoffraziliceonthescreenracks.Topreventsuchaformation,thebarshavebeenseparated10-in.oncenter,makingitveryunlikelythatfrazilicecouldsupportitselfoveraspanofthisdistance.Secondly,thebarshaveelectricheatersthatwillkeepthemetalsurfaceabove32'F,whicheliminatestheadhesivecharacteristicsoffrazilicetometalobjects,Warmwaterrecirculationisprovidedinthescreenhousetomeltanyicethatmightreachthispoint.Additionalinformationisprovidedin.Section2.4andAppendix2A.1.8.1.28SafetyGuide28-QualityAssuranceProgramRequirementsThestandards,specifications,andguidelinesexistingatthetimeGinnaStationwasconstructed,pertinenttoqualityassurance,wereatleastmetorexceeded.DetailsofthequalityassuranceprogramimplementedaredescribedinChapter1oftheoriginalFSAR.Currently,aqualityassuranceprogramisbeinginstitutedfortheoperation,maintenance,andsystemredesignoftheGinnaplantthatconformstotheguidelinesofN45.2-1971.1'.1.29SafetyGuide29-SeismicDesignClassificationAlthoughthisSafetyGuidehadnotbeenpublishedat,thetimeoftheGinnaStationdesignandconstruction,theseismicclassificationsgenerallyconformto1.8-27REV.1312/96 GINNA/UFSARthisGuide.TheseismicclassificationofequipmentisprovidedinSection3.2andintheUFSARsystemdescriptionsandisnotedontheGinnapipingandinstrumentationdiagrams(P&IDs).1.8-28REV.1312/96 GINNA/UFSAR(xmEmTxom~Lrx.EFTs~m)1.8-29REV.1312/96 GINNA/UFSAR1.8.2CONFORMANCETODIVISIONIREGULATORYGUIDESTheinformationinthissectionrepresentsthepositionoftheR.E.GinnaNuclearPowerPlantwithrespecttocertainoftheNRCDivision1RegulatoryGuidesinDecember1973.TheinformationwassubmittedtotheNRCasSupplement1totheTechnicalSupplement.AccompanyingtheApplicationforaFull-TermOperatingLicense.RegulatoryGuides1.3,1.5,and1.5.6arenotapplicabletotheR.'E.GinnaNuclearPowerPlantandaxenotdiscussed.RegulatoryGuides1.4,1.10,1.15,1.17,1.18,1.19,and1.29azeaddressedbecauseeithertheguidesortheR.E.Ginnapositionswererevisedsincethesubmissionofthepositionsrelativetolike-numberedSafetyGuidespresentedinSection1.8.1.RegulatoryGuides1.30through1.59werenotaddressedasSafetyGuidesinSection1.8.1andareincludedinthissection.1.8.2.1RegulatoryGuide1.4-AssumptionsUsedfozEvaluatingthePotentialRadiologicalConsequencesofaLoss-of-CoolantAccidentforPressurizedWaterReactorsTheloss-of-coolantaccidentradiologicalassumptionsfortheGinnaplantarediscussedinSection1.8.1.4.ThisdiscussionaddressedSafetyGuide4,whichwasreissuedasRegulatoryGuide1.4inJune1973.ThenewguiderecommendedrevisedpercentagesforiodineforminRegulatoryPosition1(a),decreasingtheorganiciodidepercentagefrom10%to48andincreasingtheelementaliodinepercentagefrom85%to91%.Theradiologicalevaluationforaloss-of-coolant.accidentisprovidedinSection15.6.ThedosescalculatedaccordingtoSafetyGuide4assumptionswerewellwithinthe10CFR100doselimits.TheeffectofthenewerRegulatoryGuide1.4percentagesfortheformofiodinewouldreducethethyroiddosesbyabout25%,toalevelevenfurtherbelowthe10CFR100thyroiddoselimitsof300rem.1.8.2'RegulatoryGuide1.10-Mechanical(Cadweld)SplicesinReinforcingBarsofCategoryIConcreteStructuresThissubjectisdiscussedindetailinSection1.8.1.10.1,8-30REV.1312/96 GINNA/UFSAR1.8.2.3RegulatoryGuide1.15-TestingofReinforcingBarsforCategoryIConcreteStructuresThissubjectisdiscussedindetailinSection1.8.1.15.1.8.2.4RegulatoryGuide1.17-ProtectionofNuclearPlantsAgainstIndustrialSabotageThissubjectisdiscussedindetailinSection1.8.1.17.1.8.2.5RegulatoryGuide1.18-StructuralAcceptanceTestforConcretePrimaryReactorContainmentsThissubjectisdiscussedindetailinSection1.8.1.18.1.8.2.6RegulatoryGuide1.19-NondestructiveExaminationofPrimaryContainmentLinerWeldsAdescriptionoftheinspectionmethodsemployedduringconstructionispresentedinSection1.8.1.19.1.8.2.7RegulatoryGuide1.29-SeismicDesignClassificationTheGinnaplantcomponents,systems,andstructureswereclassifiedforseismicdesignastabulatedinSection3.2.CurrentseismicclassificationsareprovidedinSection3.2,applicablesectionsoftheUFSAR,andontheGinnaP&IDs.ComparisonoftheGinnaplantseismicclassificationsystemwiththatrecommendedbyRegulatoryGuide1.29showscloseagreementbetweenthetwoclassificationsystems.Plant,0ezationTheGinnaStationOperationalQualityAssuranceProgramcoversallexistingSeismiCCategoryIstructures,systems,andcomponents,includingtheirfoundationsandsupports.Modificationsoradditionstoexistingstructures,systems,andcomponentsaredesignatedthesameseismicclassificationastheexistingsystem.Newstructures,systems,andcomponentsazedesignatedaseismicclassificationinaccordancewiththeguidelinesinRegulatoryGuide1.29.1.8-31REV.1312/96 GONNA/UFSAR1.8.2.8RegulatoryGuide1.30-QualityAssuranceRequirementsfortheInstallation,Inspection,andTestingofInstrumentationandElectricalEquipmentRegulatoryGuide1.30andtherelatedIEEEStandard336-1971werepublishedaftertheconstructionoftheR.E..GinnaNuclearPowerPlant.TheIEEEStandard336-1971is,however,discussedinSection1.8.3asitappliedtoGinnaStationinAugust1972.FuturemodificationswillfollowthegeneralproceduresasdiscussedforconstructioninSection1.8.3andwillincorporateinspectionsandtestsofinstrumentationandelectricalequipmentinaccordancewiththeproceduresoftheQualityAssuranceProgram.Requirementsfoxchecks,calibrations,andtestsofinstrumentchannelsaxegivenintheTechnicalSpecifications.1.8.2.9RegulatoryGuide1.31-ControlofStainlessSteelWelding1.8.2.9.1Plant,ConstructionRegulatoryGuide1.31waspublishedafterthefabricationcyclefortheGinnaplant.However,thestainlesssteelweldingfortheGinnaplantmeetstheintentofRegulatoryGuide1.31.AllweldingwasconductedusingthoseproceduresthathavebeenapprovedbytheASMECodeRulesofSectionIIIandIX.TheweldingprocedureswerequalifiedbynondestructiveanddestructivetestingaccordingtotheASMECodeRulesofSectionIIIandIX.Whentheseweldingproceduretestswereperformedontestweldsmadefzombasemetalandweldmetalmaterialswhichwerefromthesamelotsofmaterialsusedinthefabricationofcomponents,additional.testingwasfrequentlyrequiredtodeterminethemetallurgical,chemical,physical,corrosion,etc.,characteristicsoftheweldment.Theadditionalteststhatwereconductedonatechnicalcasebasisazeasfollows:lightandelectronmicroscopy,elevatedtemperaturemechanicalproperties,chemicalcheckanalysis,fatiguetests,intergzanularcorrosiontests,orstaticanddynamiccorrosiontestswithinreactorwaterchemistrylimitations.1.8-32REV.1312/96 GINNA/UFSARThefollowingweldingmethodswezetestedindividuallyandinmultiprocesscombinations,usingthefollowingenergyinputrangesfortherespectivemethodascalculatedbytheformula:(~)(~)(<o)S(1.8-1)whereHE-ISJ/in.voltsamperestravelspeed,in./minFeldinProcessMethodEnerXntRane(J:Olin.)ManualshieldedtungstenarcManualshieldedmetallicarcSemiautomaticgasshieldedmetalarcAutomaticgasshieldedtungstenazc-hotwireAutomaticsubmergedarcAutomaticelectronbeam-softvacuum20to5015to12040to6010to5060to14010to50Theintezpasstemperatureofallweldingmethodswaslimitedto350'Fmaximum.AllfullpenetrationweldswereinspectedinaccordancewithArticleNB5000ofthe1965ASMESectionIIICoderules.WeldingmaterialswererequiredtoconformandwerecontrolledinaccordancewithSubarticleNB2400ofthe1965ASMESectionIIICoderules.Znaddition,theausteniticstainlesssteelweldingmaterialusedforjoiningausteniticstainlesssteelbasematerialsinthereactorcoolantpressureboundary,systemsrequiredforreactorshutdownandemergencycorecooling,andthecorestructuralload-bearingmembersconformstoASMEMaterialSpecificationsSA-298andSA-371.Thesematerialsweretestedandqualifiedaccordingtotherequirementsstipulatedinthe1965ASMEBoilerandPressureVesselCodeSectionsIZ,IIZ,andIX,respectively.AlloftheseweldingmaterialsconformtoASMEweldmetalanalysisA-7.1.8-33REV.1312/96 GINNA/UFSAR1.8.2.9.2Plant0erationRegulatoryGuide1.31isthebasisforstainlesssteelweldingprocedures.Eachprocedureisdesignedtoproducehighqualityweldsusingthevariablesandmethodsoutlinedintheprocedure.QualificationoftheseproceduresisdoneinaccordancewithSectionI1IandSectionIXoftheASMEBoilerandPressureVesselCode.Inproductionwelding,strictcontrolismaintainedtoensurethat,everystepthatmayeffectthequalityofthefinalweldissupervisedandcheckedforcompliancewiththepropercriteriaandthattheweldingprocedureisbeingfollowed.TheconsumablesusedforstainlesssteelweldingjobsmeettherequirementsofSectionIIoftheASMECodeandarepurchasedwithactualchemicalcompositionandmechanicalpropertiescertified.Allstainlesssteelweldsarenondestructivelyexaminedtoverifytheirqualityandcodecompliance.1.8.2.10RegulatoryGuide1.32-UseofIEEEStandard308-1971,CriteriaforClassIEEElectricSystemsforNuclearPowerGeneratingStationsConformancetoIEEEStandard308-1971isdiscussedinSection1.8.3.RegulatoryGuide1'2(formerlySafetyGuide32,August1972)identifiestwoareasofpossibleconflictbetweenIEEEStandard308andCriterion17:availabilityofoffsitepowerandbatterychargersupply.TheavailabilityofoffsitepowerisdiscussedfullyinChapter8.Theelectricalpowersystemisdesignedwith.asinglestationauxiliary(startup)transformer,whichgivesimmediateaccesstotwoindependentsourcesofoffsitepower.Intheeventthatthisaccessisnotavailable,eitherofthetwobackupdieselgeneratorsiscapableofsupplyingsafeguardsloads.Asanindependentadditionalsource'ofoffsitepower,theunitauxiliarytransformercanbesuppliedfromthenormallyoutgoingpowerfeederbydisconnectingtheflexiblegeneratorbusdisconnects.Thiscanbeaccomplishedinashorttime,(lessthan8hr)afterwhichallthevitalloadscouldbesuppliedfromtheunitauxiliarytransformer.Becauseofthemultipleimmediateaccesspowersources,theonedelayedaccesspowersourceconformstoRegulatoryGuide1.32andGeneralDesignCriteria17.1.8-34REV.1312/96 GINNA/UFSARThebatterychargezsarediscussedinSection1.8.3.Operatingexperiencehasproventhatthebatterychargercapacityismorethansufficienttosupplyalllong-termplantloadswhilerestoringthebatteriesfromtheminimumchargetothefullychargedstate.1.8.2.11ReulatozGugyide1.33-QualityAssuranceProgramRequirements(Operation)ANSiN18.7-1972AAdministrativeControlsfozNuclearPowerPlants,andANSIN45.2-1971QualitQ'AssuranceProgramRequirementsforNuclearPowerPlants,wereusedasabasisfordevelopingtheGinnaStationOperationalQualityAssuranceProgramthatiscitedinSection17.2.AppendixAtoRegulatoryGuide1.33wasusedasguidanceindevelopingproceduresforoperatingandmaintenanceactivities.1.8.2.12RegulatoryGuide1.34-ControlofElectroslagWeldPropertiesRegulatoryGuide1.34waspublishedaftertheconstructionoftheGinnaNuclearPowerPlant;however,theelectroslagweldingperformedfortheGinnaplantmeetsalloftheguidelinesofRegulatoryGuide1.34.ThespecificapplicationsofelectroslagweldingfortheGinnaplantwerefortheshopassemblyweldsoftheprimarycoolantsystem,90-degreepipingelbows,andthereactorcoolantpumpcasings,asdiscussedindetailinSection5.2.3.1.2.Assemblyoftheelbowswasaccomplishedusingaprocedurespecifyingthefollowingparameters:A.Slag-electricallyconductivetypeARCOSBV-1Vertomaxorequivalent;pooldepth1to2in.B.Current-60cycleac;500to620amp.C.Voltage-44to50V.D.Feedrate-35lb/hr;1/8-in.singlewire;8to10oscillations/min,nominal2-in.oscillation.Assemblyofthepumpcasingswasaccomplishedusingasimilarprocedure,withidenticalweldingparameters,butusingtwoandthreewires.1.8-35REV.1312/96 GINNA/UFSARNoelectroslagweldingisnowbeingdoneattheGinnaplantanditisnotanticipatedthatanywillbedoneinthefuture.1.8.2.13RegulatoryGuide1.35-InserviceSurveillanceofUngroutedTendonsinPrestressedConcreteContainmentStructuresThetendonsurveillanceprogramforGinnaStationasrequiredbytheTechnicalSpecificationsisinaccordancewithRegulatoryGuide1.35,Revision2.AdetaileddiscussionofthisinservicesurveillanceprogramisprovidedinSection3.8.1.7.1.8.2.14RegulatoryGuide1.36-NonmetallicThermalInsulationforAusteniticStainlessSteelAlthoughRegulatoryGuide1.36hadnotbeenpublishedbeforethecompletionofconstructionoftheR.E.GinnaNuclearPowerPlant,thequalityofthethermalinsulationappliedtoausteniticstainlesssteelcomponentswascarefullyspecifiedandchecked.ThepracticeemployedduringconstructionoftheGinnaplantmeetstherequirementsofRegulatoryGuide1.36andismorestringentinseveralrespects.Thetestsforqualificationspecifiedbytheguide(ASTMC692-71orRDTM12-1T)allowuseofthetestedinsulationmaterialifnomorethanoneofthemetallictestsamplescrack.Westinghouseprocedurerejectedthetestedinsulationmaterialifanyofthetestsamplescracked.TheprocedurefollowedfortheR.E.GinnaNuclearPowerPlantwasmorespecificthanthepzoceduressuggestedbytheguide,inthattheWestinghousespecificationrequireddeterminationofleachablechlorideandfluorideionsfromasampleoftheinsulatingmaterial.ExperiencehasshownthatofthethreeanalysismethodsallowedunderASTMD512andASTMD1179forleachablechlorideandfluoride,therefereemethod,whichwasusedintheanalysisoftheGinnainsulation,isthemostaccurateandmostsuitablefornuclearapplications'lant0erationTheOwens-CorningKaylo-10insulation,conformingtoMilitarySpecificationMIL-I-24244,iscurrentlyusedforrepairsandmodificationsinvolvingausteniticstainlesssteel.Thelevelofleachablechloridesandfluoridesinthistypeof1.8-36REV.1312/96 GINNA/UFSARinsulationmeetstheguidelinesofRegulatoryGuide1.36.Procurement,packaging,andshippingofinsulationforrepairandmodificationwillbecontrolledbyproceduresintheGinnaOperationalQualityAssuranceProgram.1~8.2'5RegulatoryGuide1.37-QualityAssuranceforCleaningofFluidSystemsandAssociatedComponentsofWater-CooledNuclearPowerPlantsTheGinnaplantobtaineditsconstructionpermitinApril1966.RegulatoryGuide1.37andrelatedANSIStandardN45.2.1-1973werepublishedin1973;therefore,thesestandardswerenotavailableduringtheconstructionphaseoftheGinnaplant.However,aformalprogramforthecleaningofthefluidcomponentsofthepowerplantwasfollowedanddocumented.Theflushingwaterforthenuclearsteamsupplysystemmetthefollowingmaximumwaterchemistryspecifications:chlorides,maximumppm-0.15;undissolvedsolids,maximumppm-5.0;conductivity,maximummhos/cm-5;pH-6.0to8.0;andvisualclarity-noturbidity,oil,orsediment.Pipeandunitslargeenoughtopermitentrybypersonnelwerecleanedbylocallyapplyingapprovedsolvents(Stoddardsolvent,acetone,andalcohol)anddemineralizedwater.Alineorequipmentwasconsideredcleanwhenflushclothsshowednogrindings,filings,orinsolubleparticulatematterlargerthan40microns(nakedeyevisibilitylowerlimit)oroilstainsvisibletothenakedeye.Thefinalcleanedequipmentwasfreeofvisibledust,grit,rust,weldsplatter,scale,oil,grease,picklingsolutionresidue,cleaningfluidfilm,orotherforeignmatter.Onlyiron-freealuminum,oxidegrinderswereusedtoremovetrappedfozeignparticles.Thecleaningofthecomponentcoolingsystemwasaccomplishedfirstbyflushingseparatelinestowasteand,second,byflushingthecompletesystem.Stainlesssteelstrainezswereinstalledandutilizedduringthesecondphase.Thesystemwasconsideredcleanwhennosignificant,buildupwasnotedonthestzainers.Thedemineralizedwate'rusedmetthesamewaterchemistryspecificationsasthenuclearsteamsupplysystemflushingwaterandwastreatedwith100ppmhydrazineforoxygencontrol.Forthesecondaryplant,thecondensateandfeedwatersystemwascleanedbymanualcleaningofcondensersurfacesandhotwells,coldwaterflush,and1.8-37REV.1312/96 GINNA/UFSARalkalinecleaning.Themainsteamsystemcleaningproceduresincludedmanualcleaning,coldwaterflush,alkalinecleaning,andacidcleaning.TheseexamplesindicatetheconcernforsystemcleanlinessduringconstructionoftheR.E.GinnaNuclearPowerPlant,evenbeforetheexistenceofthecurrentguidelines.Plant0erationRochesterGasandElectricCorporationcomplieswiththeguidanceofthisRegulatoryGuideduringfabricationactivitiesofpipeandfittings.Cleaningrequirementsareincludedinengineeringtechnicalspecificationswhichareissuedforeachconstructionjob.Grindingrequirementsarespecifiedinweldprocedures,whileprecautionsforthecontrolofparticulatematterfromgrindingandweldingareincludedinmaintenanceprocedures.1.8.2.16RegulatoryGuide1.38-QualityAssuranceRequirementsforPackaging,Shipping,Receiving,Storage,andHandlingofZtemsforWater-CooledNuclearPowerPlantsRegulatoryGuide1.38andrelatedANSZStandardN45.2.2-1972,werepublishedaftertheconstructionoftheR.E.GinnaNuclearPowerPlant.However,eachpieceofequipmenthasdetailedequipmentspecifications.Thedetailedrequirementsforpreparationof'equipmentforshipmentwereincludedintheequipmentspecifications.Theseincludedsealingofallopenings,protectionofnozzlepreparations,theuseofdessicantsifrequired,etc.Whererequired,thesupplierssubmitteddetailedplansfozreviewandapproval.Forexample,thereactorvesselsupplierprovidedacoverandsealsystemtoprotectallinternalsurfacesandexternalstainlesssteelandmachinedsurfacesfromexposuretoambientenvironmentsduringshipment,storageatthesite,andinstallation.Theprotectivemeansincludedpressurizedinertgaswithcovers.Forthereactorinternals,thelowerassemblywasshippedonanup-endingskid,shock-mountedtolimitloadstransmittedtotheassemblyduringshipment.Priortoinstallationontotheskid,'helowerinternalswerewrappedinaplasticfilmandsealed.Znternalbracingwasusedinsidetheassembly.Theupperinternalassemblywasshippedinashock-mounted,dual-purposeshippingassemblystandin1.8-38REV.1312/96 GINNA/UFSARtheverticalposition.Thispackagewasalsowrappedandsealedinaplasticfilm.Boththeskidandthestandhadaprotectivemetalcoveringtoprovideweatherprotectionandlong-termstorageprotectionatthesite.Allothercomponentshadsimilarprotection,asrequired,againstmechanicalorenvironmentaldamageduringshipmentand/orsitestorage.TheR.E.GinnaNuclearPowerPlantissituatedonafreshwatersiteandithasbeenandcontinuestobethepracticetoprohibittheuseofsaltforroadmaintenance.Thesedetailedexamplesindicatetheconcernforcomponentsduringtransportationandhandling.Plant0erationCurrentapplicableGinnaStationqualityassurancerequirementsconformtothisRegulatoryGuide.1.8.2.17RegulatoryGuide1.39-HousekeepingRequirementsforWater-CooledNuclearPowerPlantsThehousekeepingawarenesshasandisgenerallyfollowedforqualityassurancejobsatGinnaStation.Thishasbeengenerallyhandledthroughprecautionslistedinmaintenance,repair,andmodificationsproceduresandalsothroughqualitycontrolinspectionandsurveillance.AdditionalqualityassuranceinformationisprovidedinChapter17.1.8-39REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)1.840REV.1312/96 GINNA/UFSAR1.8.2.18RegulatoryGuide1.40-QualificationTestsofContinuous-DutyMotorsInstalledInsidetheContainmentofWater-CooledNuclearPowerPlantsConformancetoIEEEStandard334-1971isfullydiscussedinSection1.8.3.Thecontainmentrecirculationfancooler(CRFC)andfiltrationsystemfanmotorsaretheonlycontinuous-dutyClass1Emotorswithinthecontainment.EnvironmentalqualificationisdiscussedinSection3.11.1.8.2.19RegulatoryGuide1.41.-PreopezationalTestingofRedundantOnsiteElectricPowerSystemstoVerifyProperLoadGroupAssignmentsThisRegulatoryGuidedescribesanacceptablemethodforverifyingpowerloadgroupassignmentsforonsiteemergencypowersystemsdescribedinRegulatoryGuides1.6and1.32.RegulatoryGuide1.6isdiscussedinSection1.8.1.6.RegulatoryGuide1.32isdiscussedinSection1.8.2.10.Theunderlyingstandard,IEEEStandard308-1971,isdiscussedinSection1.8.3.InitialstartuptestsarediscussedinChapter14.Thecapabilityofadequatelysupplyingthedemandofthesafeguardsbusloadgroupingswaspreoperationallydemonstrated.Buses14and18compziseoneredundantsafeguardstrainandbuses16and17comprisetheother.Thetwotrainswereisolatedfromeachotherandfromoffsitepowersources.Onedieselwasstartedandthetimingsequenceforstartingofallassociatedequipmentwascheckedagainstdesign.Thetestwasrepeatedfortheotherdiesel.Itwasparticularlyimportanttotestthedieselsseparatelysinceoneofthehigh-headsafetyinjectionpumpsisdesignedtooperatefromeitherdieselgenerator,switchingtoanoperatinggeneratorifoneisnotoperating.Testswerecontinuedforasufficienttimetoguaranteeproperstartingsequence.Theplantauxiliarystartuptransformerwasalsousedasapowersource.Allequipmentwasmonitoredduringthetests.1.8.2.20RegulatoryGuide1.42-InterimLicensingPolicyonAsLowAsPracticableforGaseousRadioiodineReleasesfzomLight-Water-CooledNuclearPowerReactorsGinnaStationismeetingas-low-as-practicablereleasesforgaseousiodinebytheuseofcharcoalfiltersonallexhaustairfromrestrictedareas.Asacheckon1.8-41REV.1312/96 GINNA/UFSARtheefficiencyofthecharcoalfiltersystem,allplantventexhaustairiscontinuallymonitoredforiodine.Afurthercheckismadebymonthlyanalysisofsamplesofmilktakenfromnearbydairyherds.ThesethreesystemsofcontrolarereferredtointheOffsiteDoseCalculationManual(ODCM)IntheinitialdesignandconstructionofGinnaStation,allairpurgedfromthecontainmentvesselpassedthroughhighefficiencyparticulateairandcharcoalfilters.Therewasthefurtheroptionofusingarecirculatinghighefficiencyparticulateairandcharcoalfiltersystemwithinthecontainment.Airfromhighactivityareasoftheauxiliarybuildingpassedthroughcharcoalandallaizfromrestrictedareaspassedthroughhighefficiencyparticulateairfilters.Priortothefirstspentfuelhandlingin1971,abankofcharcoalbedswasinstalledtofiltertheairfromthespentfuelpool(SFP)area.Acharcoalfilterwasalsoaddedtothelaboratoryexhaustairsystemin1971.InJune1972,anothercharcoalandhighefficiencyparticulateairunitwasaddedtofilteriodinefromtheremainingauxiliarybuildingair.Thesefiltersystemsazeperiodicallytestedforefficiencyofoperation.AleaktestusingFreonisdoneintheplantaccordingtotheVentilationFilterTestingProgramscheduleandtheefficiencyoftheactivatedcharcoaladsorberisdeterminedbyanindependentlaboratory.Boththeplantventandthecontainmentventhave'aniodinesamplerwithcontinuousmonitoring.ThemonitorisreadoutandrecordedinthecontrolroomandisprogrammedtoalarmatareleaseratewhichwouldresultintheOffsiteDoseCalculationManual(ODCM)limitatthesiteboundary.Actioncanthenbetaken,usingtheappropriateprocedure,tomeetthe24-hourlimitallowedbytheODCM.ThustheGinnaplantcanbeshowntomeettheguidelinesofRegulatoryGuide1.42onananalyticalbasisand,infact,severalyearsofoperationsconfirmthisconclusion.Subsequently,10'CFR50,AppendixI,waspublished.RochesterGasandElectricconformsto10CFR50,AppendixI,asdescribedintheGinnaStationTechnicalSpecifications.1.8-42REV.1312/96 GINNA/UFSAR1.8.2.21RegulatoryGuide1.43-ControlofStainlessSteelWeldCladdingofLow-AlloySteelComponentsTheR.E.GinnaNuclearPowerPlantreactorvesselandpressurizercarbonsteelsurfacesincontactwithprimarycoolantwerecladwithstainlesssteeltype304equivalentwelddeposit.Forthereplacementsteamgeneratorsallferriticsteelsurfacesincontactwiththeprimarycoolantarecladwithwelddepositedausteniticstainlesssteel(Tripes308Land309L)orAlloy600.TheseferriticbasesteelsareeitherSA-508Cl3orSA-533TypeBCl1procuredtofinegrainpracticeandarenotconsideredsusceptibletoundercladcracking.TheGinnaNuclearPowerPlantreactorvesselshellandnozzleforgingswerefabricatedfromA-508Class2material.However,thesesurfaces'werestainlesssteelweldcladonlybysingle-wirelowenergyinputweldprocesses,whicharenotrestrictedbyRegulatoryGuide1.43.ThevesseldomeplatewasfabricatedfromSA-302,gradeBmaterialandcladbyasingle-wirelowenergyinputweldprocess,neitherofwhicharerestrictedbytheguide.TheGinnapressurizerSA-302gradeBplateandSA-216WCCcastingsurfacesincontactwithprimarycoolantwerecladwithwelddepositedstainlesssteel.ThesebasematerialsarenotrestrictedbytherequirementsofRegulatoryGuide1.43.UndercladcrackingisnotexpectedfortheGinnaplantstainlesssteelweldcladcomponents.OfthosecomponentscladonlythereactorvesselshellandnozzleforgingsareA-508Class2basematerial.Alloftheweldingprocessesusedtocladcomponentsincontactwithprimarycoolantaresingle-wirelowenergyinputprocesses.Nostainlesssteelweldcladdingoflow-alloysteelcomponentsisnowbeingdoneattheGinnaplant,anditisnotanticipatedthatanywillbedoneinthefuture.1.8.2.22RegulatoryGuide1.44-ControloftheUseofSensitizedStainlessSteel1.8.2.22.1PlantConstructionRegulatoryGuide1.44waspublishedaftertheconstructionoftheR.E.GinnaNuclearPowerPlant.However,theR.E.GinnaNuclearPowerPlantmeetstheintentofRegulatoryGuide1.44.1.8A3REV.1312/96 GINNA/UFSARAllausteniticstainlesssteelmaterialsusedinthefabrication,installation,andtestingofnuclearsteamsupplycomponentsandsystemswerehandled,protected,stored,andcleanedaccordingtorecognizedandacceptedcontemporarymethodsandtechniques.Toensurethatthesemethodsandtechniqueswerefollowed,surveillanceofoperationswasconductedbyQualityAssurancepersonneloftheapplicantandthenuclearsteamsupplysystemsupplier.Stainlesssteelmaterialfromwhichcomponentswerefabricatedwereprocuredinthesolutionheat-treatedconditionasrequiredbytheASMESection1Zmaterialsspecifications.MethodsandmaterialsusedinmanufacturingstainlesssteelcomponentsoftheGinnareactorcoolantpressureboundaryaredescribedindetailinaletterdatedOctober6,1970,fromEdwardJ.Nelson,RG&E,toPeterA.Morris,AEC(DocketNo.50-244).Forinternalswhereausteniticstainlesssteelwasgivenastressrelievingtreatmentabove800'F,ahigh-temperaturesolutionheattreatmentprocedurewasused.Thiswasperformedinthetemperaturerangeof1600'Fto1900'Fwithsufficientholdingtimes.Forcoresupportstructuralloadbearing'membersandstainlesssteelreactorcoolantpressureboundarywelds,allweldingonstainlesssteelwasconductedbyproceduresthatlimittheinterpasstemperatureto350'Fmaximum.Allofthereactorvesselandpressurizernozzles,aswellasthereactorvesselcontrolroddrivemechanismadaptersandreactorvesselheadgasketmonitortubes,werepostweldstressreliefheat-treatedfortheminimumpracticaltime(3hoursto11hoursdependingonsize)at1125'F225'F.However,thereactorvesselprimarycoolantnozzles'elddepositsarecalculatedtocontainatleast5%ferriteaccordingtotheSchaefflerDiagram.Thus,aduplex(austeniteplusferrite)structurecanbeexpectedinthesafeendsofthesenozzles.Theguiderecognizesthatweldmetalwithduplexstructureshavedemonstratedadequateresistancetointergranularattack.Althoughtheremainderoftheitemslistedaboveunderwentaprocesswhichcouldresultinsensitization,Westinghousetechnicalbackgroundandserviceexperience,asdetailedinWestinghousetopicalreports,3supporttheconclusionthatseriousintergranularattackofsensitizedstainlesssteelisunlikelyinWestinghousePWRnuclearsteamsupplysystems,1.8<4REV.1312/96 GINNA/UISARsincewaterchemistryandcontaminationarekeptundercontrol.WaterchemistrycontrolisdiscussedinSections5.2.3.2and9.3.4.Note:Theprimarynozzlesonthereplacementsteamgeneratorsareintegrallyforgedwiththehead.NozzlesafeendsarestainlesssteelforgingsweldedtoZnconelbutteringontheendsoftheprimarynozzles.Thus,thenozzlesarenotexposedtopostweldheattreattemperatures.Inaddition,aspartoftheproceduresofthenuclearsteamsupplysystemsupplierandRG&E,allsafeendsweredyepenetrantinspectedaftershopfabricationpriortoshippingtothesiteandweresubsequentlyreinspecteduponcompletionofinstallationweldsatthesite.Also,allofthereactorcoolantpressureboundaryinstallationwelds,includingsafeends,werereinspectedbydyepenetrantuponcompletionofhydroandhotfunctionaltesting.Noevidenceofdiscontinuitiesassociatedwithcorrosionwerefound.RochesterGasandElectrichasandwillcontinuetocheckstainlesssteelweldsaccordingtotheGinnaplantinserviceinspectionprogram.1.8.2.22.2Plant0eration~~~~RegulatoryGuide1.44xsnowbeingusedasaguideforhandling,storing,andthefabricationofallstainlesssteelmaterial.Allweldingandrelatedactivitiesarecontrolledtoensurethatthechemicalcompositionofthestainlesssteelisnotaffected.Whenweldingisbeingdone,theinterpasstemperatureismaintainedbelow350'Ftoensurethestainlesssteelwillnotbecomesensitized.Thistemperatureischeckedusingtemperatureleveldevicesduringtheweldingfabricationprocess.1.8.2.23RegulatoryGuide1.45-ReactorCoolantPressureBoundaryLeakageDetectionSystemMethodsfordetectingleakagefromthereactorcoolantsystemboundaryarediscussedinSection5.2.5.Tworadiationsensitiveinstrumentsprovidethecapabilityfordetectionofleakage:thecontainmentaizparticulatemonitor(R-11)andthelesssensitivecontainmentradiogasmonitor(R-12).Additionalmonitorsincludethecoolantinventoryindication,containmentsumpAlevelindication(LT-2039andLT-2044),sumpApumpactuationindication,humiditydetector,thecondensatemeasuringsyst:em,andothers.1.8<5REV.1312/96 Leakagefromthereactorcoolantsystemtothecomponentcoolingsystemwouldbereflectedinanincreaseinthemakeupwaterflowratebutnotbytheleakagemonitorsdescribedpreviously.Theradiationmonitorinthecomponentcoolingpumpinletheaderwouldannunciateinthecontrolroomandwouldinitiateclosureoftheventlinefromthesurgetankinthecomponentcoolingsystemintheeventofleakagetothissyst:em.SensitivitiesofsomeofthesystemsarediscussedindetailinSection5.2.5.Thecontainmentairparticulatemonitoriscapableofdetectingleaksassmallas0.013gal/minute(50cm/minute)within20minutesofitsoccurrence.3Calculationshaveshownthatifonly10%oftheparticulateactivityisdispersedintheair,thissensitivityiswellwithinthedetectablerange.Thecontainmentradiogasmonitorisusefulasabackupand,accordingtothebasisoftheTechnicalSpecifications,iscapableofseeingleakageofbetween2and10gpmwithinanhour.Assumingacoolantactivityof0.3pCi/cm,ithasbeencalculatedthata2to4gpmleakwoulddoublethebackgroundactivitywithinanhour.Thereactormakeuprateisquitesensitive.Asignificantchange,requiringinvestigation,isanincreaseof0.25gpmoverthenormalrate.Thehumiditydetectorhastheadvantageofbeingsensitivetovaporfromallsources.Thissystemshouldbesensitivetoleakageofbetween2and10gpm.Thecondensatemeasuringsystemissensitivetovaluesfrom1to30gpmwithlowerlevelsbeingdetectablebyperiodicchangesinlevelchanges.Airborneradioactivitymonitorsalarminthecontrolroom.Eachactuationofthecontainmentsumppumpcausesanalarminthecontrolroom.Eachtimemakeupwaterisaddedtotheprimarysystem,analarmissoundedinthecontrolroom.Thetimeandamountofmakeupisloggedbytheoperators.CalibrationisperformedonsystemsateachMODE6(Refueling).Inaddition,thecontainmentairparticulatemonitorandthecontainmentradiogasmonitorsareregularlycheckedagainstlabanalysisofcontainmentatmospheregrabsamples.\TheTechnicalSpecificationspresentindetailleakagelimits,instrumentsensitivities,limitationsoninstrumentsoutofservice,andlevelsatwhichaninvestigationmustbeinitiated.1.8-46RKV.1312/96 GINNA/UFSAR1.8.2.24RegulatoryGuide1.46-ProtectionAgainstPipeWhipInsideContainmentThereactorvessel,steamgenerators,reactorcoolantpumps,andpressurizeraresupportedtoensurethatapostulatedruptureofthemainreactorcoolantpipingdoesnotpropagateintofailuresofconnectedsafety-relatedsystems,suchastheEmergencyCoreCoolingSystem(ECCS)andsecondarysystems.Barriersarealsoprovidedtominimizethepotentialforpipewhipandjetimpingement.AdditionalinformationconcerningprotectionagainstdynamiceffectsduetopostulatedpipefailuresinGinnaStationisprovidedinSection3.6.1.8.2.25RegulatoryGuide1.47-BypassedandInoperableStatusIndicationforNuclearPowerPlantSafetySystemsRegulatoryGuide1.47andtherelatedIEEEStandard279-1971werepublishedaftertheconstructionoftheGinnaplant.The1EEEStandardis,however,discussedinSection1.8.3.Bypassingordefeatinganyportionofaprotectivechannelresultsinanalarminthecontrolroomindicatingthechannelaffected.1.8-47REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)1.8-48REV.1312/96 GINNA/UFSAR1.8.2.26RegulatoryGuide1.48-DesignLimitsandLoadingCombinationsforSeismicCategoryIFluidSystemComponentsTheGinnaNuclearPowerPlant.equipmentwasdesignedandanalyzedtoensurestructuralintegrityandoperability.However,RegulatoryGuide1.48hadnotbeenpublishedatthetimeoftheGinnaStationdesignandconstruction.ThecodesandproceduresemployedintheGinnadesignhavebeenwidelyusedandprovenadequatebythenuclearindustryforthedesignofcomponentsinoperatingplants.Thevalvesweredesignedtofunctionatnormaloperatingconditions,maximumdesignconditions,andearthquakeconditionsperthedetailedequipmentspecifications.TherequirementsoftheANSIB31.1,ANSIB16.5,andMSS-SP-66codeswereadheredtointhedesign.TheallowablestressesintheabovecodesareconsiderablylessthanthelimitspresentlyproposedbytheASMETaskGrouponDesignCriteriaforClass2and3Components,e.g.,theallowablestressinANSIB16.5is7000psiasopposedtothemaximumlimitacceptedbytheASMEtaskgroupof2.4timestheASMESectionVIIIallowablestress.Priortoshipment,thevalvesweresubjectedtohydrostaticleaktestsinaccordancewithMSS-SP-61and.functionalteststoshowthatthevalveswillopenandclosewithinthespecifiedtimelimitswhensubjectedtothedesigndifferentialpressure.Inaddition,representativevalveswerecheckedforwallthicknesstoANSIB16.5andMSS-SP-66requirementsandsubjectedtonondestructivetestsinaccordancewithASMEandASTMcodes.Afterinstallationofthevalvestheyweresubjecttocoldhydrostatictestsandhotfunctionalteststoverifyoperation.Also,periodicinserviceinspectionsandoperationtestsareperformedasrequired.ActivepumpsweredesignedtotherequirementsoftheStandardsoftheHydraulicInstituteand/ortheASMECodeforPumpsandValvesforNuclearPower,dependingonthepumpspurchaseorderdate.Inaddition,thepumpsandtheirsupportsweredesignedtowithstandhorizontalandverticalearthquakeforces'hepumpswerehydrostaticallytestedto1.5timesthedesignpressureandweresubjectedtoASMESectionVIIInondestructivetests.Performancetestswereconductedtocheckthecapacity,totaldynamicheadorpressure,andnetpositivesuctionhead.Afterthepumpswereinstalledintheplant,theyweresubjected1.8<9REV.1312/96 GINNA/UFSARtocoldhydrostatictestsandhotfunctionalteststoverifyoperation.Also,periodicinserviceinspectionsandoperationtestsareperformedasrequired.AdditionalinformationisprovidedinSection3.9andinthespecificsectionsoftheUFSARapplicabletothefluidsystemcomponents.1.8.2.27RegulatoryGuide1.49-PowerLevelsofHater-CooledNuclearPowerPlantsTheR.E.GinnaNuclearPowerPlantislicensedtooperateat1520MWt,themaximumcalculatedturbinethermalpower.Thisislessthantheguidelineof3800MWt.1.8.2.28RegulatoryGuide1.50-ControlofPreheatTemperatureforWeldingofLow-AlloySteelRegulatoryGuide1.50waspublishedaftertheconstructionoftheGinnaNuclearPowerPlant.However,theWestinghousepracticefortheGinnaplantwasinagreementwiththerequirementsofRegulatoryGuide1.50,exceptforRegulatoryPosition1(b)and2.InthecaseofRegulatoryPosition1(b),theweldingprocedureswerequalifiedwithinthepreheattemperaturerangesrequiredbySectionIXoftheASMECode.HighqualityqualificationweldswereobtainedusingtheASMEqualificationprocedures.InthecaseofRegulatoryPosition2,theGinnapressurizerandsteamgeneratorswerefabricatedwithoutmaintainingthepreheattemperatureuntilthepostweldheattreatmenthadbeenperformed.However,forthereplacementsteamgenerators,eitherthenmuanunintezpasstemperatureismaintainedfourhoursortheminimuznpreheattemperatureismaintainedeighthoursafterwelding.Additionally,asrequiredbyRegulatoryPosition2,thesoundnessoftheweldsisverifiedbyanacceptableexaminationprocedureappropriatetotheweldunderconsideration.InthecaseoftheGinnareactorvesselmainstructuralwelds,thepracticeofmaintainingpreheatuntiltheintermediateorfinalpostweldheattreatmentwasfollowedbythefabricator.Foreachoftheabovecomponents,thequalification1.8-50REV.1312/96 GINNA/UFSARweldshaveshownhighintegrity,usingtheASMEBoilerandPressureVesselCodecriteria.Znallcasestheweldingparametersspecifiedintheprocedurewerecloselymonitoredduringproductionwelding.RegulatoryPosition4oftheguidewasmetfortheGinnaplantinthat,forASMESectionZIIClass1components,theexaminationproceduresrequiredbySectionZlIandtheinserviceinspectionrequirementsofSectionXIweremet.Plant0erationTherecommendedpracticeofRegulatoryGuide1.50isfollowedintheformatoftheweldingproceduresusedatGinnaStation.WeldingproceduresaredesignedaccordingtothecriteriaoutlinedinSectionIZIandSectionIXoftheASMEBoilerandPressureVesselCode.Allweldingproceduresarequalifiedfollowingthepreheat,interpasstemperature,andheattreatmentoutlinedintheprocedure.Productionweldsarecontrolledtoensurethattheweldingprocedures,variables,andrequirementsarecarriedoutproperly.1.8.2.29RegulatoryGuide1.51-ZnserviceInspectionofASMECodeClass2~~~and3NuclearPowerPlantComponentsTheoriginal5-yearinserviceinspectionprogram,asdefinedintheTechnicalSpecificationsatthattime,wasdevelopedbeforeASMESectionXZwasissued.ThisprogramaddressedClass1componentsonlyandcompleteditsfirst5-yearcycleattheSpring1974MODE6(Refueling)outage.Asaresultofpipewhipconsiderations,someoftheClass2requirementsformainsteamandmainfeedwaterwerefulfilledduringthe1974MODE6(Refueling)outage.Followingthe1974outage,theinserviceinspectionprogramwasrevisedtomeetthenewSectionXIoftheASMECodeandRegulatoryGuide1.51requirementsforClass1,Class2,andClass3NuclearPlantComponents.1.8.2'0RegulatoryGuide1.52-Design,Testing,andMaintenanceCriteriaforAtmosphericCleanupSystemAirFiltrationandAdsorptionUnitsofLight-Water-CooledNuclearPowerPlantsGinnaStationwasdesignedinconformancewiththeGeneralDesignCriteriaineffectin1968.Theatmospherecleanupsystemsweredesignedundertheapplicablecriteria(i.e.,41,52,58,59,61,62,63,64,65,70).ThisisREV.1312/96 GINNA/UPSARdiscussedinSections9.4.1,6.2.2,and6.5.1.Thecleanupsystemwasdesignedtooperateundertheenvironmentalconditionsresultingfromapostulateddesign-basisaccident.Allcomponentsofthecleanupsystemazecompatiblewithotherengineeredsafetyfeaturesandhavebeendesignedtobeconsistentwithradiationfieldsandisotopesexpectedduringthedesign-basisaccident.Therearenocomponentsofsystemsinunheatedcompartments.Charcoalfilterunitsareprovidedwithspraysystemstolimitadsorbezfires.Allcleanupsystemsaredesignedforeaseofmaintenanceandreadyremovalofelements.Lightingisprovidedinthehousingsandtestprobeholesforin-placetestingareavailable.Filter.unitsweretestedpriortostartupofGinnaStationandazeretestedaccordingtotheschedulesoftheVentilationFilterTestingProgram.Thesetestsaresubcontractedtoareliablevendorwhopreparesthereportoftestresults.SamplesfromthecharcoalfiltertraysaresentfororganiciodidesandelementaliodineefficiencytestsaccordingtoTable2ofGuide1.52.1.8.2.31RegulatoryGuide1.53-ApplicationoftheSingle-FailureCriterionToNuclearPowerPlantProtectionSystemsThisguideendorsestheuseofIEEEStandard379-1972,Trial-UseGuidefortheApplicationoftheSingle-FailureCriteriontoNuclearPowerGeneratingStationProtectionSystems.Subjectswhicharecoveredinthestandardincludeidentificationofundetectablefailures,analysisofchannelinterconnectionsforfailureswhichcouldcompromiseindependence,testingtodetermineindependencebetweenredundantpartsoftheprotectionsystem,andanalysistoshowthatnosinglefailurecancausealossoffunctionduetoimproperconnectionofactuatorstoapowersource.ProtectionsystemfailureanalysesandreliabilitystudiesapplicabletotheGinnaplantwereperformedasdescribedinthetopicalreportWCAP7486-L,December1970,AnEvaluationofAnticipatedOperationalTransientsinWestinghousePressurizedWaterReactors.ThisreportwassubmittedtotheAECbyWestinghouseinMarch1971.SubsequentevaluationshavedemonstratedtheconformanceoftheGinnaStationdesigntothisguide.1.8-52REV.1312/96 GINNAfUFSAR1.8.2.32RegulatoryGuide1.54-'QualityAssuranceRequirementsforProtectiveCoatingsAppliedtoWater-CooledNuclearPowerPlantsContemporarystandardswerespecifiedtoensurethatprotectivecoatingsappliedwouldperformtheirfunctionsunderenvironmentalconditionsexperiencedduringMODES1and2andthedesign-basisaccidentandtodosowithouthazardofinterferingwithothernuclearcomponents.OnestandardspecifiedwasSP-5485datedJanuary18,1968,entitledTechnicalSpecification,PaintingofStructuresandEquipment,RobertEmmettGinnaNuclearPowerPlantUnitNo.1,whichincludestechniquesforpreparationofsurfacestobepainted,sampling,thicknessmeasurementandcontrol,andadetailedpaintscheduleincludingcomponentsandpaintmaterialsforplantstructuresandequipment.Also,SP-5339datedMarch31,1967,entitledTechnicalSpecificationforPaintingtheInteriorSurfaceoftheContainmentVesselDomefortheRobertEmmettGinnaNuclearPowerPlantUnitNo.1,givesthespecificationsforthepreparation,application,material,andpaintsamplingfortheinteriorofthecontainmentdome.ThepaintingofthecontainmentstructureandcomponentsinsidethecontainmentwasgovernedbyWestinghouseprocessspecificationPWR597755,datedFebruary20,1968.Thisspecificationcoveredtheapplicationofpaintsystemstoequipmentandstructuresincontainmentswhichuseadditivespraysystemsforfissionproductremovaland/orcontainmentcooling.RegulatoryGuide1.54andrelatedANSIStandardN101.4werepublishedafterconstructionoftheGinnaplantandthuswerenotavailabletobeapplied.However,thepreviouslyreferencedprocessspecificationsdemonstratethatcarewastakenintheselectionandapplicationofprotectivecoatingsfortheGinna'Iplant.1~8.2.33RegulatoryGuide1.55-ConcretePlacementinSeismicCategoryIStructuresAllconcreteplacementfortheGinnaplantwasaccomplishedinaccordancewiththeproposedspecificationforstructuralconcreteforbuildingsACI-301andthedetailedconstructionspecification.1.8-53REV.1312/96 GINNA/UFSARInaccordancewiththespecification,thecontractorsubmittedplacingdrawings,reinforcingbardetails,andbarlists,etc.,forengineerapprovaltoensurethatthedetailswereingeneralcompliancewiththeengineeringdrawings.Constructionjointsnotshownonthedrawingswerelocatedinaccordancewiththerequirementof'hespecificationandonlyaftertheirinfluenceonthestructuralintegritywasreviewedandapprovedinwritingbytheengineer.Fieldgeneratedrevisionswerereviewedandapprovedbytheengineer.TheservicesofPittsburghTestingLaboratorywereobtainedtoensurethequalitycontrolonthejob.Wellbeforetheconcreteworkstarted,representativesamplesofingredientsfortheconcreteworkweretested'andconcretemixdesignwasestablishedtoconformtothedesignrequirements.Duringconcreteoperation,theTestingLaboratoryhadaninspectoratthebatchplantwhocertifiedthemixproportionsofeachbatchdeliveredtothesite,tooksamplesoftheconcreteingredients,andtestedthemperiodically.Anotherinspectorwasstationedattheconstructionsitewhoinspectedrebar,formplacements,tookslumptests,madetestcylinders,checkedaircontent,andrecordedweatherconditions.CylindertestsweremadeinaccordancewiththeprovisionoftheACICode.1.8.2.34RegulatoryGuide1.57-DesignLimitsandLoadingCombinationsforMetalPrimaryReactorContainmentSystemComponentsTheGinnacontainmentisacompositestructureasopposedtoametalprimaryreactorcontainment;thusthisguideisnotapplicable.1.8.2.35RegulatoryGuide1.58-QualificationofNuclearPowerPlantInspection,Examination,andTestingPersonnelRegulatoryGuide1.58advocatestheuseofANSIN45.6-1973asagenerallyacceptablebasisforcompliancewiththegeneralrequirementsof10CFR50,AppendixB,withregardtoqualificationofinspectionandtestingpersonnel.WhiletheGinnaplantwasconstructedbefoxetheprovisionsofthisstandardwereformulated,ithasalwaysbeenthepracticeofRG&Etoensurethathighstandardsofqualitywereandaremaintainedduringplantdesign,construction,andIoperation.1.8-54REV.1312/96 GINNA/UFSARThequalificationofinspection,examination,andtestingpersonneloutlinedinRegulatoryGuide1.58iscoveredintheNuclearPolicyManual.AdditionalinformationisprovidedinChapter13.1.8.2.36RegulatoryGuide1.59-Design-BasisFloodsforNuclearPowerPlantsTheR.E.GinnaNuclearPowerPlantsitehasbeenevaluatedfortheprobablemaximumfloodcoincidentwithwindandwaveactivityasoutlinedinSection2.4.Theanalysisforflood,storm,waves,andhardenedprotectionisgenerallyconsistentwithRegulatoryGuide1.59.SiteContingencyProceduresareavailabletobeimplementedintheeventofpotentialfloodingconditions.ArecentreviewofGinnafloodprotectionmeasuresdescribedtheconformanceofGinnaStationto,thisguide.1.8-55REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)1.8-56REV.1312/96 GINNA/UFSAR1.8.3CONFORMANCETOIEEECRITERIATheinformationinthissectionisgenerallythatsubmittedintheAugust1972TechnicalSupplementAccompanyingtheApplicationforaFull-TermOperatingLicenseastotheadequacyoftheR.E.GinnaNuclearPowerPlantdesignwithrespecttoIEEEStandards279-1971,308-1971,317-1971,323-1971,334-1971,336-1971,338-1971,and334-1971.1.8.3.1CriteriafozProtectionSystemsfozNuclearPowerGeneratingStations(IEEE279-1971)ConformancewithIEEE279-1971isdiscussedinSection7.1~2.1'.3.2Class1EElectricSystemsforNuclearPowerGeneratingStations(IEEE308-1971)1.8.3.2.1PrincialDesinCriteriaThecriteriastatesthatClass1Eelectricsystemsshallbedesignedtoensurethatanydesign-basiseventaslistedinTable1ofthestandardwillnotcausealossofelectricpowertoanumberofengineeredsafetyfeatures,surveillancedevices,orprotectionsystemdevicessufficienttojeopardizethesafetyofthestation.Thedesign-basiseventsincludeearthquakes,winds,tornadoes,othernaturalphenomena,andvariouspostulatedaccidents.Allelectricalsystemsandcomponentsvitaltoplantsafety,includingtheemergencydieselgenerators,azedesignedasClass1Eandaredesignedsothattheirintegrityisnotimpairedbythedesign-basisearthquake,windstorms,floods,ordisturbancesontheexternalelectricalsystem.Power,controlandinstrumentcabling,motors,andotherelectricalequipmentrequiredfozoperationoftheengineeredsafetyfeaturesaresuitablyprotectedagainsttheeffectsofeitheranuclearsystemaccidentorofsevereexternalenvironmentalphenomenainordertoensureahighdegreeofconfidenceintheoperabilityofsuchcomponentsintheeventthattheiruseisrequired.Thepreferredpowersupply(offsitepower)hasavoltagevariationofnotmorethanplusorminus10%andafrequencyvariationofnotmorethanplusorminus0.5%.Variationsofvoltageandfrequencyofthestandbypowersupply(diesel1.8-57REV.1312/96 GINNA/UFSARgenerators)willnotdegradetheperformanceofanyloadtotheextentofcausingsignificantdamagetothefuelortothereactorcoolantsystem.ControlsandindicatorsareprovidedinthecontrolzoomandlocallyforthestandbypowersupplyandforthecircuitbreakersrequiredtoswitchtheClass1Ebusesbetweenthepreferredandstandbypowersupply.Transferisautomaticon.lossofthepreferredsupply.~AllcomponentsoftheClass1Eelectricsystemsareidentifiedwithpermanentlyinstalledequipmentpiece-numbertags.Design,operating,andmaintenancedocumentsforeachmajorcomponentwereidentifiedastheywerereceivedfromtheequipmentsuppliers,andtheidentificationassociateseachcomponentwithitsparticularsystem.Class1Eelectricalequipmentisphysicallyseparatedtotheextentpracticalfromitsredundantcounterparteitherbydistance,barrierwalls,orbylocationondifferentfloors.EachtypeofClass1Eelectricequipmentwasdesigned,manufactured,andtestedinaccordancewiththelateststandardsinexistenceatthetimeofmanufacture.Thisequipmentwasanalyzedtoensurethatitwouldsuccessfullyperformitsfunctionundernormalanddesign-basisevents.Znadditiontothis,preoperationaltestingwasperformedtoverifyequipmentoperation.FailuremodeanalyseshavebeendoneforallClass1Eelectricalsystems.Theseanalysesshowthatasinglecomponentfailuredoesnot.preventsatisfactoryperformanceoftheClass1Esystemsrequiredforsafeshutdownandmaintenanceofpostshutdownorpostaccidentstationsecurity.TheClass1EelectricsystemsaredescribedindetailinChapter8.Thesystemsconsistofanacpowersystem,adcpowersystem,andaninstrumentationandacontrolsystemtosupplyacceptablepowertothestationforanydesign-basisevent.1.8.3.2.2AlternatinCurrentPowerSstems1.8.3.2.2.1GENERAL.Theacpowersystemsincludepowersupplies,distributionsystems,andloadgroupsarrangedtoprovideacelectricpowertotheClass1Eloads.1.8-58REV.1312/96 GINNA/UIiSARSufficientphysicalseparation,,electricalisolation,andredundancyazeprovidedtominimizetheoccurrenceofacommonfailuremodeintheClass1Esystems.TheClass1Eelectricsystemisdividedintotworedundantloadgroups.Safetyactionsbyeachgroupofloadsisredundantandindependentofthesafetyactionsprovidedbyitsredundantcounterpart.Eachloadgrouphasaccesstoboththeoffsiteandstandbypowezsupply.Twoindependent34.5-kVtransmissionlinesmakeupthepreferredoffsitepowersupplyandtwoindependentdieselgeneratorsmakeupthestandbypowersupply.Thepreferredoffsitepowersupplyisthe34.5-4.16-kVstationauxiliarytransformer.Thistransformerhastwosourcesofsupply,onefrom115-34.5-kVtransformerattheGinnaswitchingstationandonefroma34.5-kVline,theroutingofwhichisentirelyindependentofthemaintransmissionright-of-way.Ifthepreferredsourceshouldfail,thefinalsourcesofemergencypoweraretwoemergencydiesel-generatorsets.Theemergencydieselgeneratorsstartautomaticallyandcomeuptospeedwithin10secondsafterinitiationofthestartsignal.1.8.3.2.2.2DzsTRIBUTZoMSYsTEMs.Bydesign,eachdistributioncircuitiscapableoftransmittingsufficientenergytostartandoperateallrequiredloadsinthatcircuit.Distributioncircuitstoredundantequipmentarephysicallyandelectricallyindependentofeachother,totheextentpractical.Auxiliarydevicesrequiredtooperatedependentequipmentaresuppliedfromrelatedbussectionssuchthatlossofelectricpowerinoneloadgroupdoesnot,causethelossoffunctionofequipmentinanotherloadgroup.Bymeansofcircuitbreakerslocatedintheauxiliarybuildingandthescreenhouse(bothSeismicCategoryIstructures),itispossibletodisconnectportionsoftheClass1EsystemthatarelocatedinotherthanSei:smicCategoryIstructures.Thedistributionsystemismonitoredtotheextentthatitisshowntobereadytoperformitsintendedfunction.ThesurveillanceprogramisincludedintheTechnicalSpecifications.1.8-59REV.1312/96 GINNA/UFSAR1.8.3.2.2.3PREFERREDPowERSUPPLY.Thepreferredpowersupplyconsistsoftwo34.5-kVcircuitsthatazeindependent.Thissystemisdesignedtofuznishthestartingandoperatingpowerrequirementsfortheshutdownofthestationandfortheoperationofemergencysystemsandengineeredsafetyfeatures.Italsofunctionsasstartuppowerandreservepowerforallunitauxiliaries.AminimumofonecircuitisavailablefzomthetransmissionnetworkduringMODES1and2.1.8.3~2.2.4STANDBYPOWERSUPPLY.Thestandbypowersupplyprovidespowerfortheoperationofemergencysystemsandengineeredsafetyfeaturesduringandfollowingtheshutdownofthereactorwhenthepreferredpowersupplyisnotavailable.Thestandby'ourcesbecomeavailableautomaticallyfollowingthelossofthepreferredpowersupplywithinatimeconsistentwiththerequirementsoftheengineeredsafetyfeaturesandtheshutdownsystemsundernormalandaccidentconditions.Afailureofanyunitofstandbypowersourcedoesnotjeopardizethecapabilityoftheremainingstandbypowersourcestostartandzuntherequiredshutdownsystems,emergencysystems,andengineeredsafetyfeaturesloads.Two6000-gallonundergroundstoragetanksserveonlythetwoemergencydieselgenerators.Thesetankshavetheminimumrequiredcapacityof10,000gallonsfox48-hoursoperationofbothdieselgeneratorsatload,simultaneously,oronedieselgeneratoratloadfor80hours.Theactualloadonadieselgeneratorneededtoplacethestationinasafeshutdownconditionislessthanthefull-loadratingofthedieselgenerator.Thissupplyallowsadequatetimeformakeupsuppliesofoilifrequired.Thestandbypowersuppliesarestartedandoperatedatspecifiedloadsonamonthlybasis.ThisprogramisincludedintheTechnicalSpecifications.1.8-60REV.1312/96 GINNAfUFSAR1.8.3.2.3DirectCurrentPowerSstems1.8.3.2.3.1GENERAL.Thedcpowersystemsincludepowersupplies,adistributionsystem,andloadgroupsarrangedtoprovidedcelectricpowertotheClass1EdcloadsandforcontrolandswitchingoftheClass1Esystems.Sufficientphysicalseparation,electricalisolation,andredundancyareprovidedtominimizetheoccurrenceofcommonfailuremodesinthestationClass1Esystemsandincludethefollowing:a.Theelectricloadsareseparatedintotworedundantloadgroups.Safetyactionsbyeachgroupofloadsareredundantandindependenttothesafetyactionsprovidedbyitsredundantcounterpart.Eachredundantloadgrouphasaccesstoabatteryandtwobatterychargers.TheseitemsarediscussedinChapter8.1.8.3.2.3.2DIsTRIBUTI0NSYsTEM.Eachdistributioncircuitiscapableoftransmittingsufficientenergytostartandoperateallrequiredloadsconnectedtoit.Distributioncircuitstoredundantequipmentareindependentofeachothertotheextentpractical.Auxiliarydevicesrequiredtooperatedependentequipmentazesuppliedfromarelatedbussectiontocomplywiththiscriterion.ItispossibletodisconnectportionsofClass1EsystemslocatedinSeismicCategoryIstructuresfromthoseportionslocatedinotherthanSeismicCategoryIstructures.Thedisconnectingmeansarebreakersonthebatteryboards,whicharelocatedinSeismicCategoryIbatteryboardrooms.Thesystemismonitoredwithindicatorsandalarmsinthecontrolroomtotheextentthatitisshowntobereadytoperformitsintendedfunction.1.8.3~2~3~3BATTERYSUPPLY.Eachbatterysupplyconsistsofstoragecells,connectors,andconnectionstothedcdistributionsystemsupplybreaker.Eachbatterysupplyisindependentoftheothersupplyandiscapableofstartingandcarrying1.S41REV.1312/96 GINNA/UFSARallrequiredloads.EachbatterysupplyisimmediatelyavailableduringMODES1and2andfollowingthelossofpowerfromtheacsystem.Eachbatteryiskeptfullychargedandfloatingacrossitsbatterycharger.Storedenergyissufficienttooperateallnecessarybreakerstoprovideanadequatesourceofpowerforallconnectedloads.Batteryinstrumentationlocatedinthecontrolroomindicatesthestatusofthebatterysupplies.1.8.3.2.3~4BATTERYCHARGERSUPPLY~Thebatterychargersprovideallthedcpowerrequiredfornormalstationoperationaslongasacpowerisavailable.Eachbatterycanbesuppliedbyafullcapacitychargerorafullcapacitybackupcharger.Eachfullcapacitychargerhassufficientcapacitytorestorethebatteryfromthedesignminimumchargetoitsfullychargedstatewhilesupplyingnormalsteady-stateloads.Thetwosuppliesareindependentofeachother.Thecapabilityforisolatingeachchargerisprovidedbymeansofcircuitbreakersintheacfeederandthedcoutputcircuit.1.8.3.2.3.5PRoTEcTIvEDEYIGEs.Protectivedevicesareprovidedtoisolatefailedequipmentautomatically.Indicationisalsoprovidedtoidentifytheequipmentthatismadeunavailable.1.8.3.2.3.6PERfoRHAHGEDIscHARGETEsTPRovIsIQNs.Tobesurethatallcells,connections,jumpers,etc.,satisfactorilyhandlefull-ratedcurrentifnecessary,eachbatteryhasbeentestedunderfullloadandeachcomponentindividuallyexamined.1.8.3'.4VitalInstrumentationandControlPowerSstemsDependablepowersuppliesareprovidedforthevitalinstrumentationandcontrolsystemsoftheunitincludingthefollowing.A.Thenuclearplantprotectioninstrumentationandcontrolsystems.B.Theengineeredsafetyfeaturesinstrumentationandcontrolsystems.1.842REV.1312/96 GINNA/UFSARPowerissuppliedtothesesystemsinsuchamannerastopreservetheirreliability,independence,andredundancy.1.8.3.2.5SurveillanceReuirementsPreperationalEuimentTestsandInsectionTheinitialequipmenttestsandinspectionswereperformedwithallcomponentsinstalled.Theydemonstratedthefollowing:A.Allcomponentswerecorrectandproperlymounted.B.Allconnectionswerecorrectandcircuitswerecontinuous.CDAllcomponentswereoperational.D.Allmeteringandprotectivedeviceswereproperlycalibratedandadjusted.InitialSstemTestTheinitialsystemtestwasperformedwithallcomponentsinstalled.Thetestdemonstratedthefollowing:A.TheClass1Eloadscanoperateproperlyonthepreferredpowersupply.B.Thelossofthepreferredpowersupplycanbedetected.C.Thestandbypowersupplycanbestartedautomaticallyandcanacceptdesignloadwithinthedesign-basistime.D.ThestandbypowersupplyisindependentofthepreferredpowersupplyePeriodicTestsTheperiodictestprogramsareincludedintheTechnicalSpecifications.TestsareperformedatscheduledintervalstoA.Detectpossibledeteriorationofthesystemtowardanunacceptablecondition.1.8-63REV,1312/96 GINNA/UFSARB.DemonstratethatstandbypowerequipmentandothercomponentsthatarenotexercisedduringMODES1and2ofthestationareoperable.IfsurveillancetestsindicatethatanyClass1Esystemsaredegraded,theTechnicalSpecificationsimposeoperatinglimitations.1.8<4REV.1312/96 GINNA/UFSAR1.8.3.3ElectricalPenetrationAssembliesinContainmentStructuresforNuclearFueledPowerGeneratingStations(IEEE317-April1971)Electricalpenetrationsaredesignedanddemonstratedbytesttowithstand,withoutlossofleaktightness,thecontainmentpostaccidentenvironmentandmeetthefollowingguidethatwasavailableduringconstruction:IEEEProposedGuideforElectricalPenetrationAssembliesinContainmentStructuresforStationaryNuclearPowerReactors(EighthRevision).Theelectricalpenetrationsleeves,beingpartofthecontainmentvessel,weredesignedinaccordancewiththeASMEBoilerandPressureVesselCode,SectionIII,SubsectionB,forClassBvessels.Thepenetrationassembliesazequalifiedtopreventleakagefromthecontainmentundertheworst:-caseenvironmentalconditionsassociatedwithaloss-of-coolantaccidentormainsteamlinebreak.AllweldedjointsforthepenetrationsincludingthereinforcementabouttheopeningsarefullyradiographedinaccordancewiththerequirementsoftheASMENuclearVesselCodeforClassBVesselsexceptthatnonradiographablejointdetailsareexaminedbytheliquidpenetrantmethod.Verificationofleaktightnessisbymeansofpressurizingtestchannels.Thereazegenerallyfourtypesofelectricalcablepenetrationsrequireddependingonthetypeofcableinvolved:Type1-Highvoltagepower4160V.Type2-Power,controlandinstrumentation;600Vandlower.Type3-Thermocoupleleads.Type4-Coaxi'alandtriaxialcircuits.Allfourtypesofpenetrationdesignsazeacartridgetype.Thecartridgelengthandthesupportingofcablesimmediatelyoutsidecontainmentaredesignedtoeliminateanycantileverstressesonthecartridgeflange.Thespecificationforpenetrationscover'allaspectsofequipmentdesign,manufacture,inspection,qualification,andtesting.1.8-65REV.1312/96 GINNA/UFSAR1.8.3.4QualifyingClassIElectricEquipmentforNuclearPowerGeneratingStations(IEEE323-April1971)Thecomponentsoftheprotectionsystemaredesignedandqualifiedsothatthemechanicalandthermalenvironmentaccompanyinganyemergencysituationinwhichthecomponentsarerequiredtofunctiondoesnotinterferewiththatfunction.Theequipmentthatmustwithstandthemostsevereenvironmentisthatwhichisinthecontainment.Theinstrumentation,motors,cables,andpenetrationslocatedinsidecontainmentareeitherprotectedfromcontainmentaccidentconditionsoraredesignedtowithstand,withoutfailure,exposuretotheworstcombinationoftemperature,pressure,andhumidityexpectedduringtherequiredoperationalperiod.Qualitystandardsofmaterialselection,design,fabrication,andinspectiongoverningtheabovefeaturesconformedtotheapplicableprovisionsofrecognizedcodesandgoodnuclearpractice.1.8.3.5TypeTestsofContinuousDutyClassIMotorsInstalledInsidetheContainmentofNuclearPowerGeneratingStations(ZEEE334-1971)Ofthoseonvalvecooling,however,applytomotorsinstalledwithinthecontainmentofGinnaStationonlythemotorsoperatorsandthefanmotorsofthecontainmentairrecirculation,andfiltrationsystemarerequiredtobeClassZ.Thevalvemotors,arenotsubjectedtocontinuousduty.Therefore,ZEEE334-1971doesnotthem.Thecontainmentrecirculationfancooler(CRFC)andfiltrationsystemfanmotorsarecontinuousduty.Thefans,motors,electricalconnections,andallotherequipmentinthecontainmentnecessaryforoperationofthesystemarecapableofoperatingundertheenvironmentalconditionsfollowingaloss-of-coolantaccident.TheseenvironmentalconditionsaredefinedinSection3.11.Allcomponentsarecapableofwithstandingorazeprotectedfromdifferentialpressurewhichmayoccurduringtherapidpressureriseto60psigin10seconds.Anysingleactivecomponentfailureinthesystemwillnotdegradetheoverallrequiredheatremovalcapability.1.8<6'EV.1312/96 GINNA/UFSAROverloadprotectionforthefanmotorsisprovidedattheswitchgeaxbyovercurrenttripdevicesinthemotorfeederbreakers.Thefanmotorfeederbreakerscanbeoperatedfromthecontrolroomandcanbereclosedfromthecontrolroomfollowingamotoroverloadtrip.1.8.3.6Installation,Inspection,andTestingRequirementsforInstxumentationandElectricEquipmentDuringtheConstructionofNucle'arPowerGeneratingStations(IEEE336-1971)Anevaluationofprospectivesupplierswasconductedpriortoawardingofacontractforimportantcomponents.Thisevaluationestablishedthatthesupplierhasacceptabledesign,manufacturing,andqualitycontrolcapability.Toaccomplishhisworkhewassuppliedindividualequipmentspecificationscoveringallaspectsofequipmentdesign,manufacture,inspection,andtesting.ForClasslEcomponents,suchasthoseinthereactorcoolantsystem,aspecificationwhichdefinedthequalitycontxolrequirementswasmadeapartofeachpurchaseorder.Theinstrumentationandelectricalequipmentforengineeredsafetyfeaturesandreactorprotectionweresubjectedtoreceivinginspection,pzeinstallationoperabilityandcalibrationchecks,andpreoperationalfunctionalandcalibrationtests.ThequalityassurancerequirementsduringconstructionaredescribedinChapter17;initialtestsaredescribedinChapter14.1.8.3.7TrialUseCriteriaforthePeriodicTestingofNuclearPowerGeneratingStationProtectionSystems(IEEE338-1971)Thestationhasthecapabilityforsensorchecks,channeltests,andchannelcalibration.ThetestingprogramisbasedonthecalculationsthatwerepresentedonthebasisoftheTechnicalSpecifications.Allprotectiveinstrumentationhasthecapabilityofbeingtestedandcalibrated.InstrumentationthatrequirestestingbetweenreactorshutdownsalsohasthecapabilityforbeingtestedduringMODES1and2.Thesatisfactoryoperationofeachredundantchannelmaybeverifiedandcrediblefailurescanbedetected.AscheduledtestprogramispresentedintheTechnicalSpecifications.Allsensorchecksandtestsareeitherdonebyperturbingthemonitoredvariable,intzoducingasubstituteinput,orcomparingsensorswhichmeasurelikevariables.Thetestsignalamplitudeisvariedtodeterminethattheprotective1.847REV.1312/96 GINNA/UFSARactionwilloccurwhenthesetpointisreached.Thesesetpointsincludetheeffectsofinstrumentationeriors.Writtenproceduresaremaintainedforalltests.Theresultsaredocumentedandrecordsarekept.1.8.3.8SeismicQualificationofClasslElectricalEquipmentforNuclearPowerGeneratingStations(ZEEE344-1971)AllsystemsandcomponentsdesignatedClassIaredesignedsothat,thereisnolossoffunctionintheeventofthedesign-basisearthquakegroundaccelerationactinginthehorizontalandverticaldirectionssimultaneously.SubsequentlreviewsofthequalificationofthisequipmentisdescribedinSection3.10.1.8-68REV.1312/96 REFERENCESFORSECTION1.81.ErnestL.Robinson,BurstinTestofSteam-TurbineDiskWheels,TransactionsofASME,July1944.2.GilbertAssociates,Inc.,StructuralInteritTestofReactorContainmentStructure,GAIReportNo.1720,October3,1969.3.WestinghouseElectricCorporation,SensitizedStainlessSteelinWestinhousePWRNuclearSteamSulSstems,WCAP7477-L,WCAP7477-LAddendum1,WCAP7735,May15,1973.1.8-69REV.1312/96

GINNA/UFSARCHAPTER2SITECHARACTERISTICSTABLEOFCONTENTSSectionFillePacae2.1GEOGRAPHYANDDEMOGRAPHY2.1-12.1.12.1.22.1.32.1.3.12.1.3.22.1.3.32.1.3.42.1.3.52.1.3.6SiteLocationandDescriptionExclusionAreaAuthorityandControlPopulationDistributionPopulationWithinFiveMilesPopulationWithinFortyMilesTransientPopulationLow-PopulationZonePopulationCenter1989UpdatedPopulationData2.1-12.1-22.1-32.1-32.1<2.1<2.1-52.1-52.1-52.2ReferencesforSection2.1NEARBYINDUSTRIALgTRANSPORTATION~ANDMILITARYFACILITIES2.1-72.2-12.2.12.2.22.2.2.12.2.2.22.2.2.32.2.2.42.2.2.52.2.2.62.2.2.6.12.2.2.6.2LocationsandRoutesDescriptionRailroadsPipelinesWatenvaysAirportsMilitaryFacilitiesToxicChemicalsOnsiteToxicChemicalsOffsiteToxicChemicals2.2-12.2-12.2-12.2-22.2-22.2-32.2-32.2A2.2A2.2-5ReferencesforSection2.22.2-72.32.3.12.3.22.3.2.12.3.2.22.3.32.3.42.3.4.12.3.4.1.12.3.4.1.22.3.4.1.3METEOROLOGYRegionalClimatologyLocalMeteorologyMeteorologicalParametersSevereWeatherOnsiteMeteorologicalMeasurementsProgramDihionEstimatesLong-TermDiffusionCharacteristicsMeteorologicalDataAirflowTrajectoryandTerrainInfluencesAtmosphericDiftusionModel2.3-12.3-12.3-12.3-12.3-22.3-32.3-52.3-52.3-52.342.3-72-lREV.1312/96 GINNA/VFSARCHAPTER2SITECHARACTERISTICSTABLEOFCONTENTSSectionSiblePacCe2.3.4.1.42.3.4.1.4.12.3.4.1.4.22.3.4.1.52.3.4.1.62.3.4.1.72.3.4.1.82.3.4.22.3.4.2.12.3.4.2.22.3.4.2.3SourceConfigurationConsiderationsUnobstructedReleasePointObstructedReleasePointRemovalMechanismsSummaryofPlantDischargesInputAssumptionsResultsAccidentAnalysisDiffusionCharacteristicsNuclearRegulatoryCommissionEvaluationRochesterGasandElectricCorporationEvaluationConclusions2.3-82.3-82.3-102.3-112.3-112.3-122.3-122.3-132.3-132.3-142.3-15ReferencesforSection2.32.3-162.42.4.12.4.22.4.2.12.4.2.22.4.32.4.3.12.4.3.22.4.3.32.4.42.4.52.4.62.4.72.4.82.4.92.4.9.12.4.9.22.4.9.2.12.4.9.2.22.4.9.2.32.4.9.2.42.4.9.2.52.4.9.32.4.9.3.1~2.4.9.3.22.4.10HYDROLOGZCENGZHEERZNGHydrologicDescriptionFloodsFloodDesignConsiderationsEffectsofLocalIntensePrecipitationProbableMaximumFloodonStreamsandRiversFloodEvaluationSummaryDerivationofProbableMaximumFloodFloodProbabilityLakeOntarioSurgeFloodingIceEffectsCoolingWaterCanalsandReservoirsFloodingProtectionRequirementsLowWaterConsiderationsDispersion,Dilution,andTravelTimesofReleasesofLiquidEQluentsinSurfaceWatersNear-ShoreLakeCurrentsDispersionofRegulatedRadioactiveLiquidReleasesRegulatedRadioactiveLiquidReleasesLiquidDispersionEffectofLocalRecirculationConcentrationofNearestPublicWaterSupplyIntakeEnvironmentalMonitoringProgramDispersionofAccidentalRadioactiveLiquidReleasesAccidentialReleasestotheLakeAccidentialSpillsontheGroundGroundWater2.4-12.4-12.4-22.4-22.4-22.4-32.4-32.4Q2.4-52.4W2.442.442.4-72.4-72.4-102.4-102.4-112.4-112.4-122.4-132.4-142.4-142.4-142.4-142.4-162.4-182-llREV.1312/96 GINNA/UFSARCHAPTER2SITECHARACTERISTICSTABLEOFCONTENTSSectionTitlePacCe2.4.10.12.4.10.2Design-BasisGround-WaterLevelWaterUse2.4-182.4-192.52.5.12.5.1.12.5.1.22.5.22.5.2.12.5.2.22.5.2.32.5.2.3.12.5.2.3.22.5.2.3.32.5.32.5.3.12.5.3.22.5.3.32.5.3.4'ReferencesforSection2.4GEOLOGY,SEZSMOLOGY,AHDGEOTECHNZCALENGZNEERZNGBasicGeologicandSeismicInformationRegionalGeologySiteGeologyVibratoryGroundMotionSeismicityMaximumEarthquakePotentialSurfaceFaultingNearbyRegionalFaultingGinnaSiteVicinityFaultingGinnaExcavationStabilityofSlopesGeneralOnsiteSlopesStabilityAnalysisFailureEvaluation2.4-202.5-12.5-12.5-12.5-22.5-32.542.5<2.5-52.5-52.542.5-82.5-82.5-82.5-82.5-92.5-9ReferencesforSection2.5AdditionalReferencesforSection2.52.5-112.5-12Appendix2AProbableMaximumFloodandLowWaterConditions2A-1Appendix2BDriftandDispersionCharacteristicsofLakeOntarioNearshoreWaters,Rochester,NewYorktoSodusBay,NewYork2B-1Appendix2CReport,SupplementaryFoundationStudies,ProposedBrookwoodNuclearPowerPlant(R.E.GinnaNuclearPowerPlant),Ontario,NewYork2C-12illREV.1312/96 GINNA/UFSARLISTOFTABLES1'ab1e2.2-12.2-22.3-12.3-22.3-32.3ATypicalIndustriesinWayneCountyTypicalIndustriesintheRochesterAreaofMonroeCountyWindVelocitySummaryGinnaSiteTower,50-FtTowerWindVelocitySummaryGinnaSiteTower,150-FtTowerWindVelocitySummaryGinnaSiteTower,250-FtTowerWindVelocitySummary(Hours)RochesterAirportFiveYears2.3-52.342.3-72.3-8WindVelocitySummary(Hours)DuringPrecipitationRochesterAirportWindVelocitySummary(Hours)RochesterCoastGuardStationSummaryofMeteorologicalData,GinnaSiteJointFrequencyTablesofWindSpeedandDirectionFrom33-FtLevelfor19752.3-9JointFrequencyTablesofWindSpeedandDirectionFrom50-FtLevelfor1966,1967,and1973-742.3-102.3-112.3-122.3-13GaseousDischargePointsattheGinnaSiteVentDesignInformationforGinnaTabulationofInputAssumptionsforCalculationsTopographicElevationsFeet(MSL)forGinnaSite,PlantGradeis270Feet2.3-14AnnualDiffusionandDepositionEstimatesforAllReceptorLocations,ReleasePoint:PlantVentsWake-Split2.3-15GrazingSeasonDiffusionandDepositionEstimatesforLivestockReceptorLocations,ReleasePoint:PlantVents,Wake-Split2.3-16GrazingSeasonDiffusionandDepositionEstimatesforAllReceptorLocations,ReleasePoint:PlantVents,WakeSplit2.3-17AnnualDiffusionandDepositionEstimatesforAllReceptorLocations,ReleasePoint:GroundReleaseinBuildingWake2.3-18GrazingSeasonDiffusionandDepositionEstimatesforLivestockReceptorLocations,Release2-ivREV.1312/96 GINNA/UFSARLISTOFTABLESPoint:AssumedGroundReleaseinBuildingWakeGrazingSeasonDiQusionandDepositionEstimatesforAllReceptorLocations,ReleasePoint:AssumedGroundReleaseinBuildingWakeExclusionAreaBoundaryDistanceDeerCreekOverflowSummaryTableIndustrialandMunicipalWaterSuppliesEarthquakeActivitynearAttica,NewYorkMaterialPropertiesUsedintheNRCStaffAnalysisofSlopeStability2-vREV.1312/96 GINNA/UFSARLISTOFFIGURESFicpxreFitie2.1-12.1-22.1-32.1<2.1-52.1-5a2.1%2.1-72.1-82.3-12.3-22.3-32.3-42.3-5LocationoftheR.E.GinnaNuclearPowerPlantR.E.GinnaSiteGinnaSiteAerialPhotographProjectionofPopulationDistribution0-5Miles1980PopulationEstimates0-5Miles1992PopulationEstimates0-10MilesProjectionofPopulationDistribution040MilesLocationofGinnaSitePopulationCentersOver2000ClimateoftheGinnaSiteRegionWindDirectionPatterns-LongPeriodAveragesSensorPlacements,PrimaryMeteorologicalTowerSensorPlacements,Backup(Substation13A)MeteorologicalTowerGinna1966,50-FtWindRose2.342.3-7Ginna1967,50-FtWindRoseGinna1973-1974,50-FtWindRose2.3-82.4-12.4-22.4-32.4A2.5-1Ginna1975,33-FtWindRoseLakeOntarioLevelsGeneralNorth-SouthCrossSectionGinnaSitePeakDischargeatDeerCreekVersusProbabilityofOccurrenceper1000YearsGinnaSiteLayoutandTopographyPlotPlanShowingBoringLocations2vlREV.1312/96 GINNA/UFSARLISTOFFIGURESEpicentralLocationMapNRCSystematicEvaluationProgramSiteSpecificSpectrumGinnaSite(5%Damping)REV.1312/96

GINNA/GI'SARCHAPTER2SITECHARACTERISTICS2.1GEOGRAPHYANDDEMOGRAPHY2.1.1SITELOCATIONANDDESCRIPTIONThesiteisinthetownshipofOntario,inthenorthwestcornerofWayneCounty,NewYork,onthesouthshoreofLakeOntarioabout16mileseastofthecenterofthecityofRochesterand40mileswest-southwestofOswego,atlongitude7718.7'Wandlatitude43'6.7'N.ThegenerallocationisshowninFigure2.1-1.Thesite,includingtheswitchyard,comprises488acresownedbytheRochesterGasandElectricCorporation(RG&E).Figures2.1-2and2.1-3showthesiteanditsrelationshipstotopographicanddemographicfeatures.ThesurfaceofthelandonthesouthernshoreofLakeOntario,atthesiteandeastandwestofit,iseitherflatorgentlyrolling.Itslopesupwazdtothesouthfromanelevationofabout255ftabovemeansealevel(msl)neartheedgeofthelake;to440ftatRidgeRoad(NewYorkStateHighway104),3.5milessouthofthelake;andthentoabout1600ftatthenorthernedgeoftheAppalachianPlateau,30to40milestothesouth.SouthwardfromRidgeRoadtheterrainprogressivelyroughens,withaseriesofsmallabrupthills,commencingabout10milessouthofthesite.WayneCounty,inwhichthesiteislocated,isprimarilyofanagrariannatureandsparselypopulated.ThelocationisshowninFigure2.1-1.Therearenosubstantialpopulationcenters,industrialcomplexes,transportationarteries,parksozotherrecreationalfacilitieswithina3-mileradiusoftheGinnasite(Reference1).Roughly70$ofthecounty's600squaremilesareutilizedforapproximately2500farms,whichprimarilyproduceapples,grapes,cherries,dairyproducts,fieldcrops,andvegetables.About34%ofWayneCounty'sworkersareemployedinmanufacturingoperations,18%inserviceindustries,16%inretailtrade,148inagriculture,and18'binotheroccupations.TypicalindustriesazelistedinTable2.2-1.2.1-1REV.1312/96 GINNA/UFSARMonroeCounty,locatedadjacenttoandwestofWayneCounty,hasmanymanufacturingactivitiescenteredinandaroundRochester.Approximately22$ofthecounty's673squaremilesisinurbandevelopment,about28$isvacant,wooded,orwatersurface,and50%isfarmlanduponwhichdairyproducts,fieldcrops,poultry,livestock,fruits,andhorticulturalspecialtiesaxeproduced.OfMonroeCounty'sworkers,about458areemployedinmanufacturing,208inserviceindustries,168inretailtrade,1.4Sinagriculture,andtherestinotheractivities.TypicalindustriesarelistedinTable2.2-2.Thelandwithinaradiusof5milesofthesiteisusedforagriculturalpurposes,principallyfozgrowingapples,cherries,grapes,andfieldcrops.InFigure2.1-3,theorchardareasarecharacterizedbyasquarearrayoftrees,theopenfieldsbyrelativelyregularboundaries,andthewoodsbytheirdarkcolorandirregularshape.Thereareonlyafewdairyfarmsina5-milezadiusoftheplant.Theyaveragebetween50to75milkcowsperfarm.Partofthesiteisunderleaseforfruitfarming.2.1.2EXCLUSIONAREAAUTHORITYANDCONTROLThesiteexclusionareaiscompletelywithintheplantboundaries.Thedistancefromthecontainmenttothenearestsiteboundary(excludingtheboundaryonthelakefront)is1550ftbuttheminimumexclusiondistanceisassumedtobe450metersor1476ft.Thesiteboundaryshallbethatlinebeyondwhichthelandisneitherowned,norleased,norotherwisecontrolledbyRG&E.Nopublichighwaysorrailroadstraversetheexclusionarea.RochesterGasandElectricCorporationownsandcontrolsalloftheland,includingmineralrights,withintheexclusionarea.Regardingthelakeshorefrontagewithintheexclusionarea,RG&E,byNewYorkStateprocedures(Reference2),ownsthelandabove243.8ftmsl.Thisiswellbelowtheaveragelakestageof246ftmsl,butisabovetheextremelowwaterlevelof242.23ftmslandthelowestregulatedlevelof243ftmsl(seeSection2.4);however,sincethelowperiodisgenerallyinthewinterandthehighperiodinthesummer,itisnotexpectedthattherewouldbeanybeachuseofthisazea.TheexclusionareaisnotdefinedoverthewatersofLakeOntarioadjacenttotheGinnasite.WhileRG&Ehasnotspecificallydefinedanexclusionareaoverthewater,arrangementshavebeenmadewiththeU.STCoast,2.1-2REV.1312/96 GINNA/UFSARGuard,asdocumentedintheGinnaNuclearEmergencyResponsePlan,forthecontzolofwatertrafficintheeventofaplantemergency.2.1.3POPULATIONDISTRIBUTION2.1.3.1PopulationWithinFiveMilesThepopulationdistributionby1-mileincrementswithin5milesoftheplant,projectedfortheyears1970,1980,1990,and2010,isshowninFigure2.1-4.The1970estimateswerebasedona1967countofhousesandelectricmetersandincludessummerresidents.Theestimatesfor1980,1990,and2010weremadebytheRG&ERateandEconomicResearchDepartmentandwerederivedfromastudyofpasttrendsandprobablefutureindustrial,commercial,residential,andrecreationaldevelopment.4Updatedpopulationdatabasedonpreliminaryestimatesfromthe1980Census(Ref'erence3)azeshownonFigure2.1-5.RochesterGasandElectricCorporationestimatedthat10,864personsresidedwithin5milesoftheplantin1980,adensityof138personspersquaremileaveragedovertheentirearea.Itshouldbenotedthatthisfigurecomparesfavorablywiththe1980populationprojectionof10,934personsshowninFigure2.1-4.,Updated1992populationestimatesbasedondataobtainedfromtheCenterforGovernment,Researchand1990CensusdataareshowninFigure2.1-5a.RochesterGasandElectricCorporationestimatedthat11,277personsresidedwithin5milesoftheplantin1992.Itshouldbenotedthatthisfigureissignificantlylowerthanthe1990populationprojectionof14,491personsshowninFigure2.1-4.BasedontheoriginalFSARforGinnaStationpublishedin1968,fourschoolswerelocatedapproximately3.5milessouthoftheplant,andhadatotalenrollmentof2272pupilsandateachingstaffof180.Thenearestoffsiteresidenceisabout2000ftsouthwestoftheplant,andthereazetwooccupiedfarmhousesonthesite.ThefarmsazeownedbyRG&EandtheoccupantshaveleasesrenewableannuallyattheoptionofRG&E.Onefarmhouseisabout2200ftsoutheastoftheplantandtheotherisabout1500ftsouth.Bothfarmhousesareoutsidetheexclusionarea.Otherbuildings(horsebarns)arelocatedabout800fteastand1400ftsouthoftheplant.2.1-3REV.1312/96 GINNA/UFSAR2.1.3.2PopulationWithinFortyMilesThepopulationdistributionprojectionsby10-mileincrementswithin40milesoftheplant,fortheyears1970,1980,1990,and2010,areshowninFigure2.1-6.The1970estimateswerebasedonextrapolationsofthe1960CensusandaspecialcensusofMonroeCounty(Rochesterarea)datedApril1,1964.Theestimatesfor1980,1990,and2010weremadebytheRG&ERateandEconomicResearchDepartmentandwerederivedfromastudyofpasttrendsandprobablefutureindustrial,commercial,residential,andrecreationaldevelopment.2.1.3.3TransientPopulationBasedontheoriginalFSAR,thereisasummertimeincreaseofabout500peopleinthelakesidepopulationwithina5-mileradiusoftheplant,andasummer-timeincreaseof4000to5000peopleinthelakesidepopulationwithina20-mileradiusoftheplant.Thenearestgroupofhousesaresummercottages,0.8mileswest.OthergroupsazelocatedatBearCreek,1.5mileseast,andatOntario-on-the-Lake,2mileswest.Otherthanthesummertimeresidentsofthearea,therearenolargegroupsoftransientswithin5milesofthesite.TheonlyparksnearthesiteareWebsterBeachParkinMonroeCounty,approximately6mileswestoftheplantsite,andB.FormanParkinWayneCounty,approximately8mileseastoftheplantsite.Thereazenofederalrecreationalfacilitiesinthearea.Therearenostateparks,publiccampsites,orspecialuseareaswithin10milesoftheplant(Reference3).WayneCountydoeshaveamigrantlaborpopulationduringtheJune-Octoberseason,primarilyforapplepicking.Approximately115farm-workercampsoffiveormorepersonsarescatteredthroughoutWayneCounty,withatotalpopulationofabout4400migzants.InformationfromRuralNewYorkFarmworkerOpportunitiesshowsthatthereareonly12camps,withabout130migrants,locatedinthevicinityoftheGinnasite(Reference4).2.1.3.4Low-PopulationZoneThelow-populationzonespecifiedfortheGinnasiteistheareawithina3-mile(4827m)radiusoftheplant(Reference5).Areviewin1981ofpopulationestimatesandprojectedgrowthestimatesindicatesthatthepopulationgrowthintheareasincetheplantreceivedanoperatinglicensein1969hasbeenmodest,2.1-4REV.1312/96 GINNA/UFSARandthistrendisexpectedtocontinue.Nopopulationcenterof25,000residentshasdeveloped,orappearslikelytodevelop,closerthantheeasternboundaryoftheRochesterurbanizedarea.2.1.3.5PopulationCenterFigure2.1-7showsthelocationsofpopulationcenters(over25,000people)withinaradiusof100milesoftheplantsite.Figure2.1-8showsthelocationsandsizesofpopulationcentersofover2000peoplewithinaradiusof50miles.Thesefiguresazebasedonthe1960census,excepttheRochesterurbanizedarea,whichisbasedonthe1980census.Therehasbeennosignificantchangeinpopulationsincethattime.ThenearestpopulationcentertotheGinnasitecontainingmorethan25,000residentsistheRochesterurbanizedarea,whoseeasternboundaryisabout10milesfromthesite(Reference1).Theonlyotherpopulationcenterofmorethan25,000personsisthecityofAuburn(population32,442)(Ref'erence3),locatedmorethan40milessoutheastofthesite.2.1.3.61989UpdatedPopulationDataRG&EreviewedGinnaStationprojectedpopulationchangesthroughtheyear2009insupportoftheOctober5,1989,applicationforanextensionofexpirationoftheGinnaOperatingLicensefromApril25,2006,toSeptember18,2009(Reference6).RG&Eobtained1984populationdataforthethirteencountyareaincludedwithina50-mileradiusoftheplant.Thepopulationinthisareahadincreasedbyonly38overallsince1970,whichwassubstantiallybelowtheRG&E1970estimatesfor1984'he1980populationwithin2milesoftheplantwas1078people.Thispopulationwasestimatedtoincreaseto1390bytheyear2015basedonthe1980-1985populationgrowthrateforWayneCounty.Thepopulationcenterswithpopulationsgreaterthan25,000people,withinthe50-mileradiusoftheplant,continuedtobeMonroeCounty,whichincludesthecityofRochester(RocheSter1984populationequaled243,000),andthecityofAuburn,NewYork.Populationprojectionsfortheyear2015,basedonthe1970-1980growthrates,wereasfollows:2.1-5REV.1312/96 GINNA/UFSARPoulationPoulationCenterMonroeCountyAuburn,NewYorkLocation20milesWSW45milesESE1984711,20032,0002025742,10035,0002.1-6REV.1312/96 GINNA/UISARREFERENCESFORSECTION2.11.RochesterGasandElectricCorporation,R.E.GinnaNuclearPowerPlantUnitNo.1,EnvironmentalReport,Volume1,Sections2.1and2.2.2.NewYorkStatePolicyasestablishedbytheLandUtilizationDepartmentwithintheNewYorkStateOfficeofGeneralServices.3.U.S.CensusBureau,"General,Social,andEconomicCharacteristics,"CharacteristicsofPoulation,TC80-1-C34,U.S.GovernmentPrintingOffice,November1983.4.LetterfromThomasJ.Harris,RuralNewYorkFarmworkerOpportunities,toGeorgeNrobel,RG&E,April10,1981.5.SafetyEvaluationbytheDivisionofReactorLicensing,U.S.AtomicEnergyCommissionintheMatterofRochesterGasandElectricCorpozationRobertEmmettGinnaNuclearPowerPlantUnitNo.1,DocketNo.50-244(SER),Section2.1,June19,1969.6.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

EnvironmentalAssessment-GinnaNuclearPowerPlant,datedApril17,'991.2,1-7REV.1312/96

GINNA/UFSAR2.2NEARBYINDUSTRIAL,TRANSPORTATION,ANDMILITARYFACILITIES2.2.1LOCATIONSANDROUTESThereislittleindustrialactivityinthevicinityoftheR.E.GinnaNuclearPowerPlant.WayneCounty,whereGinnaStationislocated,isprimarilyaruralarea..TypicalindustriesinWayneCountyandMonroeCountyarelistedinTables2.2-1and2.2-2,respectively.IndustrialactivityismostheavilyconcentratedinthetownofWebster,about6milesfromthesite,andconsistsprimarilyoflightmanufacturing(Xeroxcopiers).NoindustrialdevelopmentisexpectedtooccurinthevicinityoftheGinnasite.ThenearesttransportationroutestotheplantazeLakeRoadandUPS.Route104,whichpassabout1700ftand3.5miles,respectively,fromtheplantattheirclosestpointsofapproach.ThehighwayseparationdistancesatGinnaStationexceedtheminimumdistancecriteriagiveninRegulatoryGuide1.91,Revision1,and,therefore,providereasonableassurancethattransportationaccidentsresultinginexplosionsoftruck-sizeshipmentsofhazardousmaterialswillnothaveanadverseeffectonthesafeoperationoftheplant.AnylargequantitiesofhazardousmaterialwouldbeshippedviaU.S.Route104whichissufficientlydistant(3.5milesfromtheplantsite)nottobeofconcern.2.2.2DESCRIPTIONTheeffectsofnearbyrailroads,pipelines,watezways,andairports,andtheeffectsofstoredchemicalsonsiteandoffsiteazediscussedinthefollowingsections.2.2.2.1RailroadsTherailzoadnearesttotheplantistheOntarioMidlandRailroadabout3.5milestothesouth.ComparingthisdistancewiththeguidanceprovidedinRegulatoryGuide1.91,potentialrailroadaccidentsinvolvinghazardousmaterialsarenotconsideredtobeacrediblerisktothesafeoperationoftheplant.2,2-1REV.1312/96 GINNA/UFSAR2.2.2.2PipelinesThenearestlargepipelinestotheplant'area12-in.gaslinelocatedabout6milessouthwestoftheplantanda16-in.gaslinelocatedabout10milessouthoftheplant.Thesepipelinesarefarenoughawaytoensurethatpipelineaccidentswillnotaffectthesafetyoftheplant.ThegaslineservicetotheGinnahouseheatingboilerandtheboilercontrolswerereviewedandcomparedwithNationalFireProtectionAssociation(NFPA)85andwerefoundacceptable.Onthebasisoftheresolutionofallgaslineitemsduringthefireprotectionreview,thegaslineontheplantsitedoesnotpresentasafetyhazard.FixeprotectionisdiscussedinSection9.5.1.2.2.2.3WaterwaysThereazenolargecommercialharborsalongthesouthernshoreofLakeOntarioneartheplant.SomefreightisshippedthzoughRochesterharborabout20milestothewest.Majorshippinglanesinthelakearelocatedwelloffshore,atleast23milesormorefromtheplant.AsdiscussedintheNRCSafetyEvaluationReportforSEPTopicII-1.C,shippingonLakeOntarioisnotconsideredtobeahazardtotheplant.Thepossibilityofshippingdamagetotheservicewaterintakestructurehasalsobeenconsidered.Theintakesystem(Section10.6.2)iscompletely2submergedbelowthesurfaceofthelake.A10-ftreinforced-concrete-linedtunnel,driventhroughbedrock,extends3100ftnorthfromtheshoreline.Thetunnelrisesverticallyandconnectstoareinforced-concreteinletsection.Theoccurrenceofhistoricallowwaterlevelwillresultinadepthofwaterof30ftattheinletandwith15ftofcoverovertheintakestructure.Thisissufficienttopreventdamagefromanyboatingwhichmightpassinthevicinityofthestructure.Furthermore,pluggingofinletwaterflowbyasinglelargepieceofmaterialispreventedbythedesignoftheintakestructure,inthatwaterentersonafull360-degreecircle.Anotherdesign2featureatGinnaStationwhichensurescontinuedavai.labilityofessentialservicewateristhatservicewaterintakecanbedirectlydrawnfromthedischargecanal,whichislocatedontheplantsite,protectedfromanypotentiallakeboating.Thus,lakenavigationisnotconsideredtobeahazardtotheplant.212-2REV.1312/96 2.2.2.4AirportsTheclosestairporttotheplantistheWilliamsonFlyingClubAirport,asmall,privatelyowned,generalaviationfacilitylocatedapproximately10mileseast-southeastoftheplant.Onepavedrunway,designated10-28andorientedinanalmosteast-westdirection,is3377ftlongand40ftwide.Therunwayisequippedwithlow-intensityrunwaylights.Theairporthasinstrumentapproachcapabilitytorunway10-28fromtheRochesterVORTAC.Thereisnocontroltoweratthisairport.Theairportisusedforgeneralaviationactivitiessuchasbusinessandpleasureflying,andforagriculturalsprayingoperations.Asof1981,therewere5000operationsperyearatthefacilityandabout30basedaircraft,includingpart-timebasedcropdusters.Thegreatmajorityoftheaircraftaresingle-enginepropellerairplanes,whichtypicallyweighontheorderof1500to3600lb.ThesmallnumberofoperationsatthisairportissubstantiallylessthanthecriteriainSectionIII.3ofSection3.5.1,5oftheStandardReviewPlan(SRP)andisnotconsideredapotentialhazard.MonroeCountyAirport,inRochester,NewYork,about25milessouthwestoftheplant,isthenearestairportwithscheduledcommercialairservice.TheNRChasreviewedtheprobabilitiesforanairlinecrashfromthelow-altitudeFederalairwaysinthevicinityofGinnaStation.ThecalculatedprobabilitiesareS.lx10fozairwayV2and1~4x10fozairwayV2N.Becausebothprobabilitiesarelessthanthe1x10acceptancecriteria,theNRCconcludedintheSafetyEvaluationReportforSEPTopicII-1.C,datedSeptember29,1981,thattheprobabilityofacommercialairtrafficcrashatGinnaisacceptable.2.2.2.5MilitaryFacilitiesAirForceRestrictedAreaR-5203islocatedabout8milesnorthoftheplantsite.WheneverflightactivityisconductedbytheAirForcewithinR-5203,radarsurveillanceismaintainedbythe21stNORADRegion,the108thTacticalControlGroup,orpossiblytheClevelandAirRouteTrafficControlCenter.Pilotsrelyupononboardnavigationalequipmenttomaintaintheirpresencewithinthespecifiedlimitsoftherestrictedarea.Pilotscanalsobeadvisediftheiraircraftstraybeyondtheirlimitsbytheradarsurveillanceunitcoveringtheareaatthetime.Thezestrictedareaisuseddailyfor2.2-3REV.1312/96 GINNA/UFSAR~militaryflighttrainingwhichincludes,high-speedinterceptortrainingmaneuvers,operationalflightchecks,andair-to-airrefueling.Thecurrentaltituderangesfrom2000to50,000ftabovethesurface.Thereisalsoaslow-speedlowaltitudemilitarytrainingroute(SR-826)whichpassesabout6mileswestoftheplant.AcceptancecriterionII.2ofStandardReviewPlan3.5.1.6statesthat,formilitaryairspace,aminimumdistanceof5milesisadequateforlow-leveltrainingroutes,exceptthoseassociatedwithunusualactivitiessuchaspracticebombing.AirForceRestrictedAreaR-5203isabout8milesawayatitsclosestboundary,andnounusualactivities,suchasbombingpractice,takeplace.Theslow-speedlowaltitudemilitarytrainingrouteSR-826isabout6milesfromtheplant.Therefore,thiscriterionismet.2.2.2.6ToxicChemicalsAnonsiteandoffsitetoxicchemicalevaluationwasperformedbyRG&EinresponsetotherequirementsofNUREG0737,ItemIII.D.3.4(Reference3).Sourcesofchemicalsidentifiedduringthechemicalsurveyandtheassociatedchemicalhazardsevaluationazediscussedbelow:2.2.2.6.1OnsiteToxicChemicalsA.A500-galanhydrousammoniatankwaslocatednexttotheall-volatile-treatmentbuildingabout40mfromthecontrolroomintake.Thetankwouldhaveposedaproblemwithrespecttocontrolroomconcentrationsfollowingapostulatedtankorlinerupture.ThistankhasbeenremovedasdiscussedinSection6.4.3.2.B.Two6000-galtanks(onecontaining988H2SO4,theothercontaining50%NaOH)arelocatedintheall-volatile-treatmentbuilding,about40mfromthecontrolzoom,andtwosimilartanksareintheprimarywatertreatmentfacilityabout100mfromthecontrolroomintake.Theall-volatile-treatmenttanksarecontainedinseparateareasoflargeenoughvolume,tocontaintheentirecontentsofbothtanks.Eachareaisdrainedtoacommonsumpthroughseparatelines.ValvesinthelinesazemaintainedintheclosedpositionsothatnomixingoftheH2SO4andtheNaOHislikelytooccur.H2SO4isnotconsideredahazardtothecontrolroomoperatorunlessheatedasaresultofdilutionormixturewiththecaustic.Neitherislikelytooccur.Spillsfromthetankintheprimarywatertreatmentfacilitywouldbedrainedtothebuildingfloordrainsleadingtoanundergroundretentiontank.Thesetanksaxenotconsideredahazardtothecontxolroompersonnel.2.2AREV.1312/96 GINNA/UFSARC.Several55-galdrumsof30%NH4OH,50-galdrumsof15%NH4OHand5SN2H4,anda35-galdrumof35%N2H4arelocatedintheturbinebuildingabout75mfromthecontrolroomintake.Also,avarietyofgasbottlesaremaintainedthroughouttheplant.ThedrumsofNH4OHandN2H4arediluteandstoredinsmallquantitiesandthusarenotconsideredahazard.Theindividualbottlesdonotposeathreattothecontrolroomoperatorsandthereisnopotentialidentifiedfordamagetoalargenumberofbottlesastheresultofasingleevent.D.TherearetwoHalon1301systemsforfireprotection.ThefirecontrolagentisBromotrifluoromethanewhichisstoredintanksoutsidetherelayroom.Thisagentisnotconsideredatoxichazardexceptasanasphyxiant.Thegasismuchheavierthanairandunlessitisstirredup,itwillsettletothefloor.Thecontrolroomisabovetherelayroom.Thesystemshouldnotbeactivatedunlessafirehasbeendetectedisolatingthecontrolroomfromtherelayroom.However,ifitisassumedthathalfthegas(640lb)isinjectedintoanunisolatedrelayroomandthatthegasiswellmixed,concentrationsashighas2x10mg/mmaybeattained.This53islessthanthegenerallyacceptedlimitforprotectiveaction(requiringuseofself-containedbreathingapparatus)of5.9x105mg/m.TheHalon1301systemdoesnotposeathreattocontrolroom3habitability.E.Anundergroundsodiumhypochloritetankislocatednearthescreenhouse.Thetankcontentsarenothighlyvolatileanddonotposeahazardtocontrolroomoperators.2.2.2.6.2OffsiteToxicChemicalsA.ThetownofOntariowaterplant,about1.1milesfromthesite,storeschlorineintwo2000-lbtanks.Onetankisrefilledeachmonthfromatruckcontaining2750lbofchlorinehousedina2000lbcylinderandfive150-lbcylinders.Thechlorinetanksmayposeahazardtocontrolzoomhabitabilityfollowingapostulatedcatastrophicrupturewithstablemeteorology.ThishazardisdiscussedinSection6.4.3.2.ThetruckwhichrefillsthechlorinetankstransportsthechlorineviaRoute104andposesnohazardmoreseverethanthatdiscussedinSection6.4.3.2.B.Chemicalsusedbylocalfruitgrowersaretransportedtolocaldistributionfirmsabout50timesperyear.Thesechemicalsaregenerallysolidsstoredinsmallcontainers.TheyarenotstoredinlargequantitiesanywhereintheGinnaStationarea.2.2-5REV.1312/96 GINNA/UFSARC.ChemicalslocatedintheOntarioAgwaystore,about4milesfromthesite,consistofvariouspesticidesinsmallcontainers,liquidswimmingpoolchlorine,and4000gallonsofNitan(32%nitrogensolutionsplitevenlybetweenureaandammoniumnitrate).Thesmallquantitiesofpesticidesandswimmingpoolchlorinearenotconsideredtobetoxichazards.Nitanisaliquidwithalowvaporpressureatnormaltemperaturesandpressuresanddoesnotpresentathreattocontrolroomhabitability.2.MREV.1312/96 GINNA/UFSARREFERENCESFORSECTION2.21.U.S.NuclearRegulatoryCommission,FireProtectionSafetEvaluationReort,Sulement2,February6,1981.2.RochesterGasandElectricCorporation,TechnicalSulementAccomaninAlicationforaFull-Term0eratinLicense,August1972.3.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

NUREG0737Requirements,datedSeptember4,1981.2,2-7REV.1312/96

GINNA/UIiSARTABLE2.2-1TYPICALINDUSTRIESINWAYNECOUNTY(CIRCA1969)CoanandProductDistanceSromSite(miles)DirectionFromSi.teNationalDistillers2ChemicalCorporation(Kordite'Division)MacedonPolyetheleneproducts14.5SouthDuKy-MottCompany,IncorporatedWilliamsonBabyfoods8.5SoutheastGarlock,IncorporatedPalmyraMechanicalpackings15.0SoutheastBloomerBros.CompanyNewarkFoldingpaperboxes19.0SoutheastJacksonPerkinsCompanyNewarkNurserymen19.0SoutheastSarahCoventry,IncorporatedNewarkDirect-mailsalesofcostumejewelry19.0SoutheastSheet1REV.1312/96 GINNA/UIiSARTABLE2.2-1TYPICALINDUSTRIESlNWAYNECOUNTY(CIRCA1969)CoanandProductNationalBiscuitCompany(DromedaryCompanyDivision)LyonsCakemixes,dates,andpeelsDistancefromSite(miles)19.0DirectionFromSiteSoutheastGeneralElectricCompanyClydeElectronicequipment27.5SoutheastComstockFoods,IncorporatedRedCreekCannedfoods31.0KenmoreMachineProducts,IncorporatedLyonsRefrigerantproducts22.0SoutheastOlney&Carpenter,IncorporatedWolcottCannedfoods27.5C.W.Stuart&CompanyNewarkNurserymen19.0SoutheastFrancisLeggettCompanySodusCannedfoods12.5Sheet2REV.1312/96 GINNA/UFSARTABLE2.2-1TYPICALINDUSTRIESINWAYNECOUNTY(CIRCA1969)CoanandProductDistancefromSite(miles)D~ectionZ5:omSiteTheWatermanFoodProductsCompanyFoodprocessingSouthOntarioKrautCorporationFoodprocessing'-4South-southwestVictorPreservingCompanyFoodprocessingSouthOntarioColdStorageFoodprocessingSouth-southwestWatermanFruitProductsCompanyFoodprocessingSouth-southwestOntarioFoodProductsFoodprocessingSouth-southwestLyndanProductsCompanyFoodprocessingSouth-southwestSheet3REV.1312/96 GINNA/UISARTABLE2.2-2TYPICALINDUSTRIESINTHEROCHESTERAREAOFMONROECOUNTY(CIRCA1969)(LOCATED18MILESWESTOFTHESITE)AssociatedDryGoodsCorporation(Sibley,Lindsay&CurrCompanysubsidiary)Bausch&Lomb,IncorporatedBondStores,IncorporatedBurroughsCorporation(ToddCompanyDivision)EastmanKodakCompanyFashionParkIncorporatedFriden,Incorporated(CommercialControlsCorporationsubsidiary)GannettCompany,IncorporatedGeneralDynamicsCorporation(GeneralDynamics-ElectronicsDivision)GeneralMotorsCorporation(DelcoApplianceDivision)GeneralMotorsCorporation(RochesterProductsDivision)GeneralRailwaySignalCompanyGleasonWorksHart'sFoodStoresIncorporatedLehighValleyRailroadCompanyLincolnRochesterTrustCompanyMcCurdy&CompanyMichaels,Stern&Company,IncorporatedNewYorkCentralSystemPfaudlerPermutit,Incorporated(PfaudlerCompanyDivision)RochesterGasandElectricCorporationRochesterTelephoneCorporationTaylorInstrumentCompaniesXeroxCorporationdepartmentstoreopticalinstrumentsandlensesmen'sandboys'pparelbusinessformsphotographicequipmentmen'sandboys'pparelspecialbusinessmachinesnewspaperpublishingcommunicationequipmentelectricmotorsmotorvehiclepartssignalingequipmentmachinetoolsdepartmentstoremen'sandboys'pparelfoodproductsandmachinerythermometersandinstrumentsphotographiccopyingequipmentREV.1312/96 GINNA/UFSAR2.3METEOROLOGY2.3.1REGlONALCLIMATOLOGYAtmosphericcharacteristicsofthesiteregionhavebeenevaluatedtoprovideabasisforregulatedradioactivegasreleaselimits(Section2.3.4.1),accidentanalysis(Section2.3.4.2),andstormprotection(Section2.3.2).GeneralclimaticconditionsatthesiteazeinfluencedbyitslocationinopenrollingterrainonthelakeshoreandbystrongwinterweathersystemswhichmoveacrosstheGreatLakes,usuallyfromthenorthwest.Wintersarerigorouswithabundantsnowfall(averagingabout75inchesofsnowperyear)andwithahighpercentageofcloudcover.Summersaremoderatelywarmwithanaverageof2.5to3inchesofrainfallpermonth.Thesiteiswell-ventilated.Calms(windspeedslessthanapproximately1mile/hzatabout50ftabovegrade)occurabout1%ofthetime.Prevailingwindsarefromwest-southwest(awayfromRochester).~~2.3.2LOCALMETEOROLOGY2.3.2.1MeteorologicalParametersTheclimateinthesiteregion,astypifiedbymozethan30yearsofrecordsatRochesterairport,20mileswest-southwestofthesite,isshowninFigure2.3-1..Averagewinddirectiondistributionmeasuredatthesite,attheRochesterairport,andattheRochesterCoastGuardstation,15mileswestofthesite,isshowninFigure2.3-2.DirectiondistributionduringprecipitationisalsoshownforthesiteandtheairportinFigure2.3-2.AveragewindvelocitydistributionfortheseplacesisshowninTables2.3-1through2.3-6.ThenormalwindspeedtobeusedinthedesignandstructuralupgradeofGinnaStationsafety-relatedstructures,inconjunctionwithanormalgroundsnowloadof40lb/ft,is75mphat30ft.2.3-1REV.1312/96 GINNA/UFSAR2.3.2.2SevereWeatherTheNRCevaluatedsevereweatherphenomenafortheGinnasiteaspartoftheSystematicEvaluationProgram(SEP)TopicII-2.AandconcludedinReference2thatthefollowingphenomenaappliedtotheGinnasite.Through1981,normaldailytemperatureshaverangedfromaminimumof18'FinJanuarytoamaximumof82'FinJuly(References264).Measuredextremetemperaturesforthesiteregionare100'F,whichoccurredinJune1953,and-16'F,whichoccurredinFebruary1961(Reference5).TheextzememinimumandmaximumtemperaturesappropziatetotheGinnasiteare2'F(equalledorexceeded99%ofthetime)and91'F(equalledorexceeded1%ofthetime)(Reference6).Meanannualsnowfallinthesiteregionisapproximately86inches.Inthesitearea,amaximummonthlysnowfalloccurredinFebruary1958andtotaled72.6inches(Reference7).Themaximummeasuredsnowdepthonthegroundforthesiteregionis48inches(Reference8).HighlylocalizedeffectsoperatetoproducesnowfallsintheLakeOntario"snowbelt"alongthesouthernandeasternshoresofthelake.Astudyofthearea(Reference9)hasshownthatsnowloadsforthesesectionsofthelakeshoreareabout40to50lb/ft.Ifthe48-hrprobablemaximumwinterprecipitation(Reference8)isaddedtotheload,atotalloadof100lb/ftresults(Reference10).Thundezstozmsoccuranaverageof29daysperyearinthesitearea.Basedontheannualnumberofthunderstormdays,thecalculatedannualflashdensityofgroundlightningstrikesisfourflashesperkm(Reference12).AstructurewiththeapproximatedimensionsoftheGinnareactorbuildingcanexpect,ontheaverage,onestrikeevery10years.AsaresultoftheSEPprogram(TopicIII-7.B)(Reference22),RG&EinitiatedtheGinnaStructuralUpgradeProgram(Section3.3.2)withacceptancecrite'riacorrespondingtoeventwithaprobabilityof10perreactoryear.ThesecriteriaincludedthedesigntornadofoztheGinnasitewithawindvelocityof132mph(Reference23).Thedesigncriteriaforsteelstructuresazeasfollows:A.Nosignificantyieldingatwindspeedsupto132mph2.3-2REV.1312/96 GINNA/UFSARB.Noinstabilityorcollapsethatmightaffectcomponentsorsystemsneededforsafeshutdownatwindspeedsuptoabout200mph.2.3.3ONSITEMETEOROLOGICALMEASUREMENTSPROGRAMA250-ftprimarymeteorologicaltowerislocatedontheGinnasite.Abackuptowerislocatedatsubstation13A,approximately0.5milessouthoftheGinnasite.Lightningprotectionisprovidedontheprimarytowertoprotecttheweatherinstrumentation.Theprimarytowerdewpointasshownmeasureswindspeed,winddirection,temperatures,andonFigure2.3-3.ThebackuptowermeasureswindspeedandwinddirectionasshownonFigure2'-4,.Precipitationismeasuredonaseparatepadnearthepzimarytower.TheoperationalmeteorologicalmeasurementsprogramforGinnaconsistsoftheprimary250-ftguyedtowerlocatedneartheLakeOntarioshorelineapproximately850ftnorthwestofthecontainmentbuilding.Listedbelowaretheinstrumentationandtheheightsofmeasurementonthetower.MeasuredPazametez'inddirectionandspeedDrybulb.temperatureVerticaltemperaturegradientZZevation2LboveGxound(St)33,150,25033,150,25033to150,33to250Dewpoint33ExaminationofthemeasurementssystemindicatesthatitconformstothepositionstatedinRegulatoryGuide1.23forsystemaccuracies,exceptforoneofthewinddirectionandspeedsensors.atthe150ftlevelandthoseatthe250ft,level.Thesewindsensorsarenotlow-thresholdinstruments(i.e.,startingspeedoflessthan1mph)duetotheshortlifetimeexpectedfromthemoresensitivesensorsatarelativelywindysitenearalargelake,suchasGinna.Theuseoflesssensitive,moresturdywindinstrumentationattheupperlevelsofthemeterologicaltoweratGinnaisacceptable.Strip-chartrecordersforwindspeed,winddirection,temperature,anddewpointmeasurementsfromtheprimarytowerarelocatedinanenvironmentally2.3-3REV.1312/96 GINNA/VFSARcontrolledequipmentshelterlocatedapproximately70ftsouthwestofthetower.Precipitation,measuredbymeansofarainfallbucketmountedataboutthe3-ftlevelonaseparateconcretepadlocatedapproximately30ftnorthwestoftheequipmentshelterisalsorecordedonastripchartintheshelter.Astrip-chartrecorderforwindspeedandwinddirectionmeasurementsfromthebackuptowerislocatedinanenclosureshedadjacenttothetower.Awindspeedanddirectionrecorder(33ft)andthreetemperaturedisplays(33,150,and250ft)arelocatedinthecontrolroom.Additionalrecordinganddisplayofmeteorologicaldataisprovidedbytheplantprocesscomputersystem(PPCS).Datafromthebackuptowercanbereviewedinthecontrolzoomortheemergencysurveycenterbymeansofmodemconnection.Aminicomputeratthemaintowercanbeaccessedbytelephone'togetaverageandinstantaneousvaluesofwindspeed,winddirection,temperature,andrainfallaswellasthemeanderrangeforwinddirection.Zn1981,RG6Ecommittedtoperformingsemi-annualprimaryandbackuptowerinstrumentationcalibrations(Reference20).Zn1992,themeteorologicaltowersystemwasreplacedwithstateoftheartmeasurementequipment.Zn1995,areviewof1994instrumentationcalibrationdataresultedinadeterminationthattheas-foundvalueswerewithintolerancesandthat,noinstrumentationadjustmentswererequired.Basedonthedemonstratedreliabilityoftheupgradedinstrumentation,thecalibrationfrequencywasmodifiedin1996toincludeannualinstrumentationcalibrations.2.3-4REV.1312/96 GINNA/UFSAR2.3.4DIFFUSIONESTIMATES2.3.4.1Long-TermDiffusionCharacteristicsThelong-termdiffusioncharacteristicsfortheGinnasitewerereevaluatedinJune1976pursuanttotherequirementsofAppendixIto10CFR50(References14and25).TheatmosphericdiffusionmodelsusedarethosedescribedinRegulatoryGuide1.111.Themeteorologicaldatausedforthecalculationsweredatafrom1975.Windrosesfor4years(1966,1967,1973-74,and1975)wereusedtodemonstratethatthe1975datausedintheanalysiswereconsistentwithlongertermconditionsatthesite.ThediffusionfactorsaregiveninSection2.3.4.1.8.2.3.4.1.1MeteoroloicalDataTable2.3-7summarizesdatabasesavailablefromthesitemonitoringprogram.ThedataperiodsusedfortheRegulatoryGuide1.111calculationsazeindicatedintherighthandcolumnofthetable.Datausedfortheanalysesarepresentedasjointfrequencytables.Thesetableswerecompiledforthe33ftlevelforthe1975periodofrecord.Table2.3-8isajointfrequencytableofwindspeed,winddirection,andstabilitygroupforthe33-ftlevelusingdeltaTbetween150ftand33ft.Thesedataareusedforevaluationofallplantventlocations.JointfrequencytablessimilartoTable2.3-8fortheyears1966,1967,and1973-74areshowninTable2.3-9.Figures2.3-5tthrough2.3-8representwind'rosesforeachyearofdatacollectedupto1975fromthelowerlevelofthemeteorologicaltower.Thelowersensorarraywasmovedfrom50ftto33ftin1974.Hourlydataonmeteorologicalconditionsoccurringduringintermittentreleaseperiodshavenotbeenincludedsincedatafor1973-1975showthatreleasetimeswerewelldistributedoverthe24-hoursperiod.Becauseoftheintermittentreleasedistributionwithregardtotimeofday,annualaveragemeteorologyisconsideredapplicabletosuchreleases.Inspectionoftheavailablerecordsshowedthatthe1975dataweresimilartolongertermrecordspreviouslycollectedatthesiteandthereforewereappropriateforanalysesatthesite.Forexample,diffusioncalculationsusingthewake-splitmodelweremadefortheplantventusing3-yearcomposite2.3-5REV.1312/96 GINNA/UFSARjointfrequencydataforcomparisonwiththecalculationusing1975jointfrequencydata.Resultswerenotsignificantlydifferent.Thus,fromadiffusionstandpointthe1975dataareconsideredrepresentativeoflongertermconditions.Anothercheckoflong-termrepresentativenesswasmadebycomparingwindrosesfromthefour1-yearsitedataperiods.Figures2.3-5through2.3-8werecompared.Theyshowedclosesimilarityformostyears,whichfurthersupportstheconclusionthatthe1975datawererepresentativeoflongertermconditions.2.3.4.1.2AirflowTra'ectorandTerrainInfluencesThegeneralflowpatternintheGinnasiteregion,asindicatedbythefourwindroses,isfromthenorthwesttothesouth.Duringthefallandwinter,theeasterntwo-thirdsoftheU.S.andthenortheasternU.S.inparticularisdominatedbyhigh-pressurecentersgenerallypassingtothesouthoftheGinnaregion.Withtheirclockwiseflowofair,thesehigh-pressurecentersproducewestorsouthwestwindswhentothewestofGinnaandsouthozsoutheastwindswhentqtheeastofGinna.InthespringandsummerthereisageneralwesttoeastflowacrosstheU.S.,whichproducesnorthwesttosouthwestwindsintheGinnasiteregiondependingonthepositionofthehigh-pressurecenter.Also,mostlyinthesummezandscatteredthroughtheyear,thereazesomeCanadianhigh-pressurecentersthatpasstothenorthofGinna,producingclockwisecirculationthataccountsformostofthenortherlyandeasterlywindsinthearea.Low-pressurecentersareratherfrequentintheGinnaareaparticularlybecauseofitscloseproximitytotheSt.LawrenceValleycyclonestormtrack.However,theselow-pressurecentersgenerallymoverapidlyandaffecttheareausuallywitheastornortheastwindsforonlyshortperiodsoftime.Duringperiodsoflightwinds,localterrainfeatures,andthepresenceofthelakehavesomeeffectonflowpatternsinthearea.BalloonsoundingsweremadeatGinnaandatOswegoabout60mileseastofGinnainsupportofafossilplantapplicationtothestateofNewYork(Reference16).Over100soundingsweremadeatvarioustimesduringa1yearperiod.Alakeeffectcirculationpatternwasonlyidentifiedinoneofthesoundings.Sincewindsaregenerallystronginthesiteregion,itisexpectedthatlakeeffectcirculationswilloccurinfrequently.Landbreezesduringperiodswhenthe2.34REV.1312/96 GINNA/UFSARlakeiswarmerthanthelandmayalsooccur;however,thesearenotapparentfromthesoundingprogramresultsorfromthemeteorologicaltowerrecords.Sincetheterrainisgentlyrollinginthesiteregion,itshouldnothaveastronginfluenceonwindpatternsozcauseflowchannelinginanyparticulardirectionatthesite.Thisisalsoconfirmedbymeasurementsatthemeteorologicaltower.Sinceitisnotconsideredpracticalatthepresenttimetocomputeestimatesusingparticle-in-cellorpufftrajectorydiffusionmodels,correctionfactorssuggestedinRegulatoryGuide1.111foropenterrainwereusedinthisanalysis.Thisisconsideredtoresultinestimatesatdistancesneartheplantwhichareveryunlikelytobeexceeded.2.3.4.1.3AtmoshericDiffusionModel'verageatmosphericdispersionevaluationsweremadeusingthestraightlineairflowmodelshownbelow:(+/Q')o=2.032Z/jinijt,NxuiZzj(x)]exp(he/2<zj(x)](2.3-1)where2.3-7REV.1312/96 GINNA/UFSARhetheeffectivereleaseheight.thelengthoftime(hoursofvaliddata)weatherconditionsareobservedtobeatagivenwinddirection,windspeedclass,i,andatmosphericstabilityclass,j.Nthetotalhoursofvaliddata.thegeometricalmeanofallspeedsinthewindspeedclass,i,ataheightrepresentativeofrelease,calmsareone-halfthethresholdanemometerspeedorless;extrapolationtohigherlevels,ifnecessary,isdonebyraisingtheratioofthetwoheightstothenpowerwheren=0.25,0.33,and0.5forunstable,neutral,andstableconditions,respectively.azj(x)=theverticalplumespreadwithoutvolumetriccorrectionatdistance,x,forstabilityclass,j(seeFigure1ofRegulatoryGuide1'11)basedonverticaltemperaturedifference(deltaT)andRegulatoryGuide1.23categorizationofPasquillGroupsbydeltaT.Zzj(x)theverticalplumespreadwithavolumetriccorrectS.onforareleasewithinthebuildingwakecavity,atadistance,x,forstabilityclass,j;otherwiseZzj(x)=czj(x).(X/0')~=theaverageeffluentconcentration,X,normalizedbysourcestrength,Q',atdistance,x,inagivendownwinddirection,D.2.032=(2/m)dividedbythewidthinradiansofa22.5'ector.1/2Insomecaseshourlydatawereusedandthesummationoveriandjintheaboveequationwasdeletedandthesummationwasaccomplishedforallhoursatalldistancesforeachdirection.DilutionwasdecreasedaccordingtoterraincorrectionfactorsinFigure2ofRegulatoryGuide1.11'l.ThesefactorsweremultipliedbytheresultsfromEquation2.3-1andvariedinaccordancewiththedirectionanddistancebeingevaluated.2.3.4.1.4SourceConfiurationConsiderations2.3~4~1.4.1UHoBBTRUCTEDRELEAsEPozHTIfareleasepointiselevatedandtherearenobuildingswhichwouldobstructtheplumeinitsnormaltrajectory,Equation2.3-1isusedwiththeheightofreleasedefinedasfollows:2.3-8REV.1312/96 he=hs+hpz-ht-cwherecorrectionforlowrelativeexitvelocity.he=effectivereleaseheight.hpz=riseoftheplumeabovethereleasepointbasedonBriggs(seebelow).hs=physicalheightofthereleasepoint(theelevationofthestackbaseshouldbeassumedtobezero).ht=maximumterrainheightbetweenthereleasepointandthepointforwhichthecalculationismade.Valuesofhprarecomputedfollowsfora"jet"sincenuclearplantventshaveaninsignificantamountofbuoyancyduetoheateddischargeshpz=1.44D(2.3-2)uptothepointwherehpzisthemaximumofthefollowingtwoequations:.(wo)'prmax=$fl(2.3-3)1/3(Fm~hprmax=15()SQ(2.3P)wheresymbolsareasbefore,and2.3-9REV.1312/96 GINNA/UFSARD=stackorventeffectiveinsidediameter(m)Wo=stackorventexitvelocity(m/sec)u=windspeedat,dischargelevel(m/sec)Fm=momentumflux(m/sec)42stabilityparametez(sec)2.3.4~1~4.2OBsTRUGTEDRELEAsEPOINT~Iftheplumetrajectoryfromareleasepoint(vent)doesnot,remainoutsideofbuildingwakeinfluencesnearlargestructures,allorportionsoftheplumeareconsideredtobeentrappedandbroughttogroundlevelintheturbulentwakeofthebuilding.ThecriteriafozdeterminingtheportionoftheplumetreatedasanelevatedorgroundreleasefollowfromEqqations6,7,and8ofRegulatoryGuide1.111andarerepeatedhereforcompleteness.IfW/u>5.0useheascalculatedabove0IfW/u<1.0usehe=0If1<W/0<1.5WoE=2.58-1.58u(2.3-5)If1.5<W/U<5.0WoE=0.3-0~06u(2.3-6)Theappropriatediffusionestimateisthencomputedbyassuminganelevatedrelease100(1-E)Softhetimeandbyassuminggroundreleaset100Et8ofthetime.Calculationsutilizingthismixedmodelarereferredtoaswake-splitcalculations.Abuildingwakecorrectioniscomputedforallgroundreleasesnearstructuresinaccordancewiththefollowinggeneralequation:cr,'+cH/n'1.73o,(2.3-7)2.3-10REV.1312/96 GINNA/UFSARwhereeffectivedispersioncoefficientforuseinEquation2.3-1(mp)buildingwakecoefficient(c=0.5).H=heightofthetalleststructureinthenuclearplantpowerblock(m)2.3.4.l.5RemovalMechanismsAsradioactiveeffluentinaplumetravelsdownwind,itissubjecttoseveralremovalmechanismsincludingradioactivedecay,drydeposition,andwetdeposition(duringrain).Coxxectionsforradioactivedecayarenotmadeintheestimatesreportedinthissection.DrydepositionwhichresultsindepletionofhalogenandparticulateisotopesfromtheplumeisconsideredonlytotheextentsuggestedinRegulatoryGuide1~111.Depletionfactorsinthesecurvesareafunctionofheightanddistance;therefore,forsiteswhereelevatedreleasesoccurtheterrainmustbesubtractedfromtheplumeheightbeforeenteringthecurvesattheappropriatedistance.EachelevatedorgroundlevelX/QismultipliedbythedepletionandtheterraincorrectionfactorsbefoxecombiningtogivethefinaldepletedX/Qvalue.Todeterminerelativedepositionrateasafunctionofdistance.andstabilitythecuivesgiveninFigures7through10ofRegulatoryGuide1.111areused.Again,terrainheightsaresubtractedbeforethetablelook-upismade.Terraincorrectionfactors,ifany,multiplyeachD/Qvalue.Valuesfromthecurvesaredividedbythesectorcross.width(arc)atthepointofcalculation.Drydepositionisbelievedtoadequatelyrepresentoveralldepositionrates,sinceseasonalrainfallisfairlyuniform;therefore,wetdepositionhasnotbeenconsidered.2.3.4.1.6SummarofPlantDischazesAsummaryofplantventinformationforeachdischargepointisgiveninTables2.3-10and2.3-11.Onlyventsusedduringroutineoperationareconsideredinthisevaluation.2.3-11REV.1312/96 GINNA/UFSAR2.3.4.1.7lnutAssumtionsTable2.3-12tabulatesallpertinentinputinformationutilizedinmakingthemodelcalculations.Table2.3-13givesterrainelevationsforalldistancesoutto10miles.TerrainheightisconservativelynotallowedtodecreasewithincreasingdistanceortodecreasebelowplantgradeinaccordancewithRegulatoryGuide1.111.2.3.4.1.8ResultsResultingX/Q,depletedX/Q,andD/QvaluesarelistedinReference14,(pages93-98)foreachdirectionsectorfortendistances.TheseresultsareusedasinputforthedosecalculationsdescribedinSection11.3~Tables2.3-14through2.3-19'summarizetheresultingdiffusionfactorsforeachofthezeceptozlocations.Eachtablerepresentsmodelresultsforoneventlocationforeachseasonbeingevaluated.Onesetofcalculationswasmadefortheplantventslocatedontheintermediatebuildingroofthroughwhichmosteffluentsaredischargedandasecondsetofcalculationswasmadeforventswhichazeassumedtoreleaseintothebuildingwakeinallwindconditions.2.3-12REV.1312/96 GINNA/UFSAR2.3.4.2AccidentAnalysisDiffusionCharacteristiesTheatmospherictransportanddiffusioncharacteristicsforaccidentanalysisattheGinnasitewerereevaluatedduringthereviewofSystematicEvaluationProgram(SEP)TopicXl-2.C.Specifically,theNRCcalculatedtheX/QvaluesfortheGinnasite,withtheresultsappearinginRef'erence17.TheresultsoftheRG&EevaluationappearinReference18.Thetwoevaluationsarediscussedbelow.2.3.4.2.1NuclearReulatorCommissi.onEvaluationTheatmospheric,dispersionfactorswerecalculatedusingthedirectiondependentmethoddescribedinRegulatoryGuide1.145.Themodelconsidersthedirectionallydependentatmosphericdispersionconditions.Specifically,themodelconsidersthefollowingeffects:A.Lateralplumemeander,asafunctionofatmosphericstability,windspeed,anddistancefromthesource,duringperiodsoflowwindspeeds(lessthan6m/sec)andneutralandstableatmosphericconditions.B.Exclusionareaboundarydistanceasafunctionofdirectionfromtheplant.C.Atmosphericdispersionconditionswhenthewindisblowinginaspecificdirection.D.Thefractionoftimethatthewindcanbeexpectedtoblowintoeachofthe16compassdirections.Forthepurposeofthisevaluationavailableonsitemeteorologicaldatafortheperiods1966-1967and1973-1974wereused(seeTable2.3-9).Forthecompositedataset,windspeedandwinddirectionweremeasuredatthe50-ftlevelwiththewindspeedsreducedbymeansofapowerlawtorepresentconditionsatthe33-ftlevel.Atmosphericstabilitywasdefinedbytheverticaltemperaturegradientmeasuredbetweenthe33-ftand150-ftlevels.ThemaximumX/Qvaluewascalculatedforthesoutheastdirection,503mfromtheplant.Usingthecompositeofonsitemeteorologicaldata,thefollowingX/Qvaluesforanassumedground-levelreleasewithabuildingwakefactor,cA,of440m2.3-13REV.1312/96 GINNA/UFSARweredeterminedatdistancescorrespondingtotheexclusionareaboundary(EAB)andtheouterboundaryofthelow-populationzone(IPZ)inanonshoredirection.TimePeriodDistanceZ/g(sec/m3)0to2hours0to8hours8to24hours1to4days4to30daysEAB(503mSE)LPZ(4827m)LPZ(4827m)LPZ(4827m)LPZ(4827m)44.8x10-53.0x10-52.1x108.6x10-62.5x102.3'.2'RochesterGasandElectricCororationEvaluationTheatmosphericdispersionfactorswerecalculatedusingthedirectiondependentmethoddescribedinRegulatoryGuide1.145(0.5%probability).Considerationsusedintheanalysisincludethefollowing:A.Lateralplumemeander,asafunctionofatmosphericstability,windspeedanddistancefromthesource,duringperiodsoflowwindspeeds(lessthan6m/sec)andneutralandstableatmosphericconditions.B.AtmosphericdispersionconditionswhenthewindisblowingineachspecificonshoredirectionusinghourlymeteorologicaldataintheWINDOWprogram(Ref'erence19).C.Thereleasewasassumedtobeatgroundlevel.D.Abuildingwakefactorhasbeenapplied(cA=440m)E.Threeyearsofmeteorologicaldata(1966,1967,and1973-1974)wereused(seeTable2.3-9).F.Theexclusionareaboundaryineachof16directionsisasshowninTable2.3-20.Thedistancetothelow-populationzoneis4827m.2.3-14REV.1312/96 TimePeriodLocati.onZ/Q(sec/m)0to2hours-42.2x100to8hoursLPZ(4827m)-52.3x108to24hoursLPZ(4827m)-67.0x101to4daysLPZ(4827m)-62.7x104to30daysLPZ(4827m)-61.1x102.3.4.2.3ConclusionsTheatmosphericdispersionvaluescalculatedbytheNRC(Section2.3.4.2.1)arethevaluesthatRG&Ewilluseinthefutureinestimatingoffsiteradiologicalexposuresfromhypotheticalaccidents.CurrentlynotalloftheradiologicalassessmentsappearinginChapter15usethemostrecentNRCvalues.However,thedifferencesaresuchthatthebasicconclusionscomparedto10CFR100guidelinesarenotaffected.Inaddition,duringtheSEP,theNRCevaluatedtheradiologicalconsequencesofallaccidentsandfoundthemacceptable.2,3-15REV.1312/96 GINNA/UFSARREFERENCESFORSECTION2.32.3.5.7.8.9~10.12.13.15.LetterfromD.M.Czutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicII-2.ASevereWeatherPhenomena,datedNovember3,1981U.S.DepartmentofCommerce,NationalOceanographicandAtmosphericAdministration,ClimatesoftheStates,Vol.1,1974.U.S.DepartmentofCommerce,ClimaticAtlasoftheUnitedStates,June,1968'.S.DepartmentofCommerce,NationalOceanographicandAtmosphericAdministration,ClimatesoftheUnitedStates,1973.U.S.DepartmentofCommerce,NationalOceanographicandAtmosphericAdministration,LocalClimatoloicalData,Rochester,Syracuse,andBuffalo,NewYork,1976.AmericanSocietyofHeating,RefrigerationandAirConditioningEngineers,Inc.,ASHRAEHandbookofFundamentals,NewYork,1976.SterlingPowerProject-NuclearUnit1(SNUPPS),PreliminarSafetAnalsisReozt,DocketNo.50-485.SeasonalVariationoftheProbableMaximumPreciitationEastofthe105thMeridianforAreasFrom10to1,000SuareMilesandDurationsof6,12,24,and48Hours,HydrometeorologicalReportNo.33,Washington,D.C.,April1956.L.T.Steyaezt,etal.,EstimatinWaterEuivalentSnowDethfromRelatedMeteozoloicalVariables,NUREG/CR-1389,U.S.NuclearRegulatoryCommission,Washington,D.C.,May1980.MemorandumfromHaroldR.Denton,NRC,(AssistantDirectorfozSiteSafety,DivisionofTechnicalReview,OfficeofNuclearReactorRegulation)toR.R.Maccazy,(AssistantDirectorfozEngineering,DivisionofTechnicalReview,OfficeofNuclearReactorRegulation),

Subject:

SiteAnalysisBranchPosition-WinterPrecipitationLoads,datedMarch24,1975.J.L.Marshall,LihtninProtection,JohnWileyandSons,NewYork,1973.LetterfromJ.C.Ebersole,ACRS,toN.J.Palladino,NRC,

Subject:

ACRSReportonFull-TermOperatingLicensefortheR.E.GinnaNuclearPowezPlant,datedApril9,1984.U.S.NuclearRegulatoryCommission,InteratedPlantSafetAssessment,SstematicEvaluationProram,R.E.GinnaNuclearPowerPlant,NUREG0821,SupplementNo.1,datedAugust1983.LetterfromL.D.White,Jr.,RG&E,toR.A.Purple,NRC,

Subject:

DoseCalculationstoConformwithAppendixIRequirements,datedJune3,1976.LetterfromL.D.White,Jr,,RG&E,toA.Schwencer,NRC,

Subject:

ResponsetoNRCAdditionalInformationRequests,AppendixI,datedOctober25,1976.16.ApplicationforTwo600MWeFossilUnitsatSterlingSite,Case80001,PublicServiceCommission,StateofNewYork.2.3-16REV.1312/96 GINNA/UFSAR17.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RGEE,

Subject:

SEPTopicII-2.C,AtmosphericTransportandDiffusionCharacteristicsforAccidentAnalysis,datedSeptember24,1981.18.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicII-2.C,AtmosphericTransportandDiffusionCharacteristicsforAccidentAnalysis,datedJune30,1981.19.K.Woodard,"AccountingforWindMeanderandSiteShapein~ProbabilisticAtmosphericDispersionModels,"TransactionsoftheAmericanNuclearSociet1975WinterMeetin,ANS22and365,1975.20.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

MeteorologicalAssessmentCapabilityinResponsetoNUREG-0737andNUREG-0654Recxuirements,datedApril28,1981.2.3-17REV.1312/96

GINNA/UIiSARTABLE2.3-1WINDVELOCITYSUMMARYGINNASITETOWER,50FT.TOWER(FEBRUARY1965JANUARY1967iINCLUSIVE)xvindcalmNNNEENEEESESESSESSSWWWWNWNTotAvgspeedNESWSWNWNW0157000000000000000015700.971-308286528311974757489124156115745585123146629.184-70128100871542661911862293866117875372652442781614610528.88-120134831021542591401232764824216026725655592991925063931.613-180686397105915719-25082344463464015928775129.355598469283541704510031125121214530211418.8581218217.626-320013121050.05100123769411821388282.533400032000000001181936079340.540+000000000000013307480.05TOT15742037139655277446842978413241235168018031908169413147001600910AVG0891198779977913131410100.972.652.352.503.504.862.942.694.928.327.7410.311.211.810.68.224.39REV.1312/96 GINNA/UFSARTABLE2.3-2WINDVELOCITYSUMMARYGINNASITETOWER,150FT.TOWER(FEBRUARY1965-JANUARY1967,INCLUSIVE)svindcalmNNNEENEEESESESSESSSWWWWNWNTotAvgspeedNESWSWNWNW0242000000000000000024201.481-30835766669047'75239456147425787'998526.04-70120921181912281471871491562002482252192461871382851517.58-120886710618323424223133546539165174161151626712252501032.213-180126729698124588032240832941552661356927318142901526.319-25026-3206531574535618143169316820634233421415819222111.831012164012922045812211612660583283.53340004920001001837296517173351.040+00100011001017627752500.3TOT242485334464601715501575103112599971448181219931873124677216348'12AVG010'0119988121210101214141614121.482.962.042.843.654.353.03.56.37.76.18.811.312.211.47.654.7REV.1312/96 GINNA/UFSARTABLE2.3-3HINDVELOCITYSUMMARYGINNASITETOHERI250FT~TOHER(FEBRUARY1965JANUARY1967IINCLUSIVE)ivindcalmNNNEENEEESESESSESSSWWWWNWNTotAvgspccdNESWSWNWNW0129000000000000000012900.781-305654'555170342635252250443654706474624.524-7098941251551521008885871011311151171631501131874511.38-120867412718220817115217522020231139138041528312034971021.133400111815313-1801008711012015614219-25096596765703126-32022121813202~1782904043145427598176154924934623733840161048231617451241531.134216136032121.7373102143089213230211691121286.7114190014819010731386352.340+0000000010003361639398450.6TOT1294593915105876814834979221203890140218162290206515187351657815AVG012121110111011161614141517171815150.782.752.323.053.54.12.93.05.557.305.358.511.013.812.59.24.4REV.1312/96 GINNA/UFSARTABLE2.3-4HINDVELOCITYSUMMARY(HOURS)ROCHESTERAIRPORTFIVEYEARSwindCNNNEENEEESESESSESSSWWWWNWNTotalspeedMPHNESWSWNWNWcalm65200000000000000006521.501-3070567413619426234626440329735716510297666629556.74-70216156185503624653716606100612481158783342347327245911520.88-1405486276627938626324567711732287921082813118813639387771914943.815-3902213033421041011087824948592210814392123315165172681192027.2404900200000000222050+0000000000005000026nil0005nilTOT6521055~114412631536178116551596189036265346470681802865332318481356438221.52.42.62.93.54.13.83.64.38.312.210.818.76.57.64.23.1REV.1312/96 GINNA/UFSARTABLE2.3-5WINDVELOCITYSUMMARY(HOURS)DURINGPRECIPITATIONROCHESTERAIRPORTwindCNNNEENEEESESESSESSSWWWWNWNTotalspeedNESWSWcalm600000000000000000600.711-3-641723262935212730321717168133213.804-7-2820371018410810270918411311263645930116613.88-14-12612615126121916697148169268228552235299230192346741.11539116140164644149295074121193111139353717815034104044049-0200000000050050+000000000000000007000TOT-2762923694493703522632893615035661797708916475-3858431603.283.484.385.334.44.183.13444.286.06.721.28.4110.85.644.57REV.1312/96 GINNA/UFSARTABLE2.3-6WINDVELOCITYSUMMARY(HOURS)ROCHESTERCOASTGUARDSTATION(1951-1955)WindNSpccdMPHNESESWCALMTOTALcalm1-34-78-1415-39404950+799392123161123135149183101122176135431251711043329957251522315738247031975136244179535310841820190510850.918.330.632.018.2TOTAL3485025684764331609132863459515.98.49.58.07.327.022.310.70.9REV.1312/96 GINNA/UFSARTABLE2.3-7SUMMARYOFMETEOROLOGICALDATAGINNASITEPeriodof'ecord~eedendDirectionLevel(ft.)DifferenceBetween(ft.)'ombinedPercentRecov~zeComment12/65-12/6650150-1091.0Usedfor3-yearcompositeforcomparison1/67-12/6750150-1095.0Usedfor3-yearcompositeforcomparison1/68-4/7350150-10NotdeterminedNotusedforanalysis5/13/73-5/13/7450150-1083.3Usedfor3-yearcompositeforcomparison1/75-12/7533150-3384.1UsedfordiffusioncalculationsCompositeof1/66-12/661/67-12/675/13/73-5/13/7450150-3392.3Usedforcomparisonwith1975dataREV.1312/96 GINNANFSARTABLE2.3-8JOlNTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETWEEN150FTAND33FT)TEMPERATUREDIFFERENCE5-1.0(F/100FT)SPEEDMPHHZ'ZRECTXON'ESWSWNNNEENEEESESESSESSSWWWWNWNTotal%GEONWNWMEANSPD(MPH)CALM0000000'0000000000.00.00CALM+-2.00I200000000I1221100.71.792.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALPERCENTAVGSPEED547210012I021487453.12.872614181042126131818275437365535024.315.073934106II104310182238701024900I9700320039255221137065140594319445653575281174175227126144117.321.187.830.06100.09.654.94.59.74.13.010.811.212.214.813.91.33.13.93.74.03.65.612.112.115.88.7100.09.310.512.311.311.013.114.413.615.518.712.1191432612591614121072246252026918.75.621723462213112220182314236523343140528.19.79AVERAGESPEEDFORTHISTABLEEQUALS13.8HOURSINABOVETABLEWITHVARIABLEDIRECTION=5Sheet1REV.1312/96 GINNA/UFSARTABLE2.3-8JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETWEEN150FTAND33FT)TEMPERATUREDIFFERENCE)-1~0BUT5-0.9(F/100FT)SPEEDMPHHZPDDERECTZOPNNNEENEEESESESSESSSWWWWNWNTotal/oGEONE~SWSWNW.NWMEANCALM000000000000000000.00.00CALM+-2.00000I00000000000I0.21.702.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALPERCENT2030I0I20000I24~2194.52.863582245312129334428119.35.79000181731II000I0I348141311283235313046413460256.030.59318420100.09.104.34.0743.33.12.6677.68.3747.111.09.88.1741.9100.055126451817111310121635I14334.09.70755342451046241262310224.314.44I232000502445111004911.721.84AVGSPEED11.311.19.813.611.59.19.311.29.99.611.814.514.319.117.79.3AVERAGESPEEDFORTHISTABLEEQUALS12.6HOURSINABOVETABLEWITHVARIABLEDIRECTION=2Shcct2REV.1312/96 GINNA/UFSARTABLE2.3-8JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETWEEN150FTAND33FT)TEMPERATUREDIFFERENCE>-0.9BUT5-0.8(F/100FT)SPEEDMPHRZNDDIRECTIONNESW~SWNNNEENEEESESESSESSSWWWWNWNTotal%GEOMEANSPD(MPH)CALM000000000000000000.00.00-CALM+'-2.0000000100I01100040.71.462.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALPERCENT0543II2024012334355.82.89678616361317141071094313923.25.6135410982534151517321970320634.39.715244419168211333386214824.715.010I230012III913670477.820.5700002002I0054430213.528.6914202226321344674437398882372312600100.08.142.33.33.74.35.32.27.311.27.36.26.514.713.76.23.82.0100.0AVGSPEED10.18.29.010.19.58.510.111.39.57.411.113.613.713.516.87.0AVERAGESPEEDFORTHISTABLEEQUALS11.3HOURSINABOVETABLEWITHVARIABLEDIRECTION=0Sheet3REV.1312/96 GINNAIUFSARTABLE2.3-8JOINTFREQUENCYTABLESOFHINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETHEEN150FTAND33FT)TEMPERATUREDIFFERENCE)-0.8BUT5-0.3(F/100FT)SPEEDMPHHZ'XRECTXONNESWSWNNNEENEEESESESSESSSWWWWNWNTotal%GEOMEANSPD(MPH)CALM00I0I00III0000I06CALM+-2.08243I2.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+3332324402I4514101567611101917887638155271724335434465311311768362821241971428122228604368120115102109132722242281011207934196226940254413499625425669173101240324134529592723223522I4500166052721181301210.20.301.51.155.22.8324.25.5834.29.7122.614.947.921.004.128.30TOTALPERCENT116538612015292153304309269241370290156162832956100.07.283.91.82.94.15.13.15.210.310.59.18.212.59.85.35.52.8100.0AVGSPEED10.28.88.911.39.88.09.112.09.38.09.913414.915.314.110.1AVERAGESPEEDFORTHISTABLEEQUALS11.3HOURSINABOVETABLEWITHVARIABLEDIRECTION=16Sheet4REV.1312/96 GINNA/UFSARTABLE2.3-8JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETWEEN150FTAND33FT)TEMPERATUREDIFFERENCE)-0.3BUT5-0.8(F/100FT)SPEEDMPHHZHDDIRECTIONNNNEENEEESESESSESSSWWWWNWNTotal%GEONE~SWSW-NWNWSPD(MPH)CALM00300000000000003CALM+-2.0023222753I5II02I372.1-3.5-3.6-7.57.6-12.512.6-18.518.6-24.524.6+0000000I20I54II0156710823611183191444212633121228202551140153571558545412321014222690674156362518125429I2042343836193631169542100000I031042I24320320.20.302.71.259.02.1338.85.3630.89.5515.114.722.321.531.127.61TOTALPERCENT1217303649507120627024716591594331161393100.05.660.91.22.22.63.53.65.114.819.417.711.86.54.23.12.21.1100.0AVGSPEED5.25.73.97.16.97.67.49.88.06.69.012.512.210.810.28.7AVERAGESPEEDFORTHISTABLEEQUALS8.5HOURSINABOVETABLEWITHVARIABLEDIRECTION=5SItcct5REV.1312/96 GINNA/UFSARTABLE2.3-8JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETWEEN150FTAND33FT)TEMPERATUREDIFFERENCE)-0.8BUT52.2(F/100FT)SPEEDMPHNESWSWHZNDDIRECTICKNNNEENEEESESESSESSSWWWWNWNTotalGEOMEANSPD(MPH)CALM000000000000000000.00.00CALM+-2.00I0II'I92.81.5223912.12.94III0000I02.1-3.53.6-7.57.6-12.512.6-18.518.6-24.5I52I4I37930000I2I57385208155119022421566.85.270294I0I52I4860635216.19.8400000072.214.5400000000.00.000021220000000000000024.6+000000000000000000.00.00TOTALPERCENTAVGSPEED.1.22.23.14.73.74.05.12.86.97.16.76.32.89.34.35.031.119.34.75.31.90.92.83.1100.05.45.46.97.58.74.48.66.54710151213930100621517639103220.04.86AVERAGESPEEDFORTHISTABLEEQUALS5.9HOURSINABOVETABLEWITHVARIABLEDIRECTION=2Sheet6REV.1312/96. GINNA/UFSARTABLE2.3-8JOINTFREQUENCYTABLESOFHINDSPEEDANDDIRECTIONFROM33-FTLEVELFOR1975(TEMPERATUREDIFFERENCEBETHEEN150FTAND33FT)TEMPERATUREDIFFERENCE)2.2(F/100FT)SPEEDMPHHZZG7DZRECTZONNNNEENEEESESESSESSSWWWWNWNTotal%GEONE~SWSW~NWNWSPD(MPH)CALM000000000000000000.00.00CALM+-2.00I0000000200000032.61.892.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALIIII4000I030II001412.12.843303684I8311643066959.55.46000I3320076400I22925.08.85000I000000000000I0.913.50000000000000000000.00.00000000000000000000.00.0045I613116I912201054I81160.05.16PERCENTAVGSPEED7.44.30.95.211.29.55.20.94.93.92.26.95.67.06.96.87.810.317.28.64.33.40.96.9100.04.77.06.47.04.64.612.26.9AVERAGESPEEDFORTHISTABLEEQUALS6.2HOURSINABOVETABLEWITHVARIABLEDIRECTION=0SI1cct7REV.1312/96 GINNAIUFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966I1967IAND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPERATUREDIFFERENCE5-1.0(F/100FT)SPEEDMPHCALMNESWSWNW2II20000I0I000I211HZ'ZRECTEONNNNEENEEESESESSESSSWWWWNWNTotalGEOMEANSPD(MPH)0.41.00CALM+-2.0000002.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+0000000000000.00.009.12.7344362335184I2136122452236263688986112677212932535825188017889101235.15.20131657106606114142244549351991552888730.89.4617.414.826.720.310.625.545182810815311501042314381922134055260I535033844900I8II04200000000I7II17TOTALPERCENT130158249356180173478131"8512198884305531752883100.06.564.55.58.612.36.20.61.22.74.52.94.23.43.114.919.26.1100.0AVGSPEED4.86.110.29.98.65.87.18.59.96.76.99.910.611.410.56.7AVERAGESPEEDFORTHISTABLEEQUALS9.3HOURSINABOVETABLEWITHVARIABLEDIRECTION=2Shcct1REV.1312/96 GINNA/VFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966I1967gAND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPERATUREDIFFERENCE)-1.0BUT5-0.9(F/100FT)SPEEDCALMNESWSWNWNWIII00I00I000001IHZ'IRECTIONNNNEENEEESESESSESSSW'WWNWNTotal%GEOMEANSPD(MPH)71.21.00CALM+-2.0000000000000000000.00.002.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTAL69533222321I0I67538.92.571196171538107111413816141317529.45.11521315184I5841312194513918631.29.6606181860023033151921311719.614.6804186400I000I53110538.920.65000400000000I00050.827.2223316163461011202217313048846633596100.06.49PERCENT'.95.210.210.67.71.7AVGSPEED5.48.113.411.99.65.91.83.43.72.94.88.07.76.55.25.08.114.111.15.57.98.712.210.611.66.6100.0AVERAGESPEEDFORTHISTABLEEQUALS9.9HOURSINABOVETABLEWITHVARIABLEDIRECTION=0Sheet2REV.1312/96 GINNA/UFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50-FTLEVELFOR1966,1967,AND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPEM,TOREDIFFERENCE)-0.9BUT5-0.8(F/100FT)SPEEDMPHCALMNESWSW000001000010100HZNDDZRECTZONNNNEENEEESESESSE-SSSWWWWNWNTotal%GEOMEANSPD(MPH)030.41.00CALM+-2.0000000000000000000.00.002.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALPERCENT5734721431210424507.02.6265103233398815188918231121630.15.3411152618236197619191027131322331.19.63I41310701100014108262001500000000302314254584877914122324224533428463357173.56.311.712.111.02.01.73.23.33.16.34.65.911.78.84.9100.08.620.902.028.01100.07.22214311692016054152515214920.814.69AVGSPEED8.010.613.111.38.97.87.48.18.26.48.29.513.011.411.610.3AVERAGESPEEDFORTHISTABLEEQUALS10.4HOURSINABOVETABLEWITHVARIABLEDIRECTION=ISheet3REV.1312/96 GINNA/UFSARTABLE2.3-9JOINTFREQUENCYTABLESOFHINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966I1967IAND1973-74(TEMPERATUREDIFFERENCEBETHEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPERATUREDIFFERENCE)-0.8BUT5-0.3(F/100FT)SPEEDWZNDDZRECTECKNNNEENEEESESESSESSSWWWWNWNTotalMPHNESWSWNWCALM74II75CALM+-2.02000I013I4334346570I10I01I0082.1-3.536472842624942503344624240424540704GEOMEANSPD(MPEj0.81.000.11.7510.12.773.6-7.5101665079132167128105961091661301151346068170624.65.567.6-12.516111577911261105312116889147216343253116163234933.89.6512.6-18.529747492423195380212486331267212129155422.414.9518.6-24.5513122016I2610017811321203646224.6+22360000000212174910103TOTAI.34332124533138636323533938926740448692784960645269436.720.881.527.85100.06.97PERCENT4.94.63.54.85.65.2AVGSPEED8.49.710.710.48.07.2AVERAGESPEEDFORTHISTABLEEQUALS10.3HOURSINABOVETABLEWITHVARIABLEDIRECTION=33.44.95.63.86.48.29.57.05.87.013.412.28.76.5100.07.29.212.312.714.711.2Sheet4REV.1312/96 GINNA/UFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966g1967gAND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPERATUREDZFFEREHCE>-0.3BUT50.8(F/100FT)SPEEDMPHCALMWINDDIBECTZOPNNNEENEEESESESSESSSWWWWNWNSW56791212859141232243Total%GEOMEANSPD(MPH)1131.31.00CALM+-2.07961518171214162291396441812.01.932.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+TOTALPERCENT1.61.11.11.32.94.03.45.712.69.613.412.513.98.25.83.0100.0282327275456796572127166825230363996310.92.72423623331062131712084264736724392811699057343938.85.48411726225951261584181903054245232947147267230.19.5517466117I471492025110270114744490510.214.665142000625I2287678157564415.021.06000000.000005203176191511.727.77145969911426035629750311158471191110412337245122698865100.05.70AVGSPEED7.55.56.75.55.85.44.87.58.66.16.48.410.711.515.612.2AVERAGESPEEDFORTHISTABLEEQUALS8.6HOURSINABOVETABLEWITHVARIABLEDIRECTION=8Sheet5REV.1312/96 GINNA/UFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966I1967~AND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEMPERATUREDIFFERENCE>0.8BUT52.2(F/100FT)SPEEDMPHCALMNNNEENEEESENEHXNDDIRECTIONSESSESSSWWWWNWNTotalSWSWNW223287374615I22156GEOMEANSPD(MPH)2.91.00CALM+-2.06312I647106875524774.01.9222.12.7478610381627284374893316151264282.1-3.53.6-7.57.6-12.512.6-18.50063931113039332720146120310.58.780.813.950.00.000.00.000112222000020220160000000000000000018.6-24.524;6+000000000000000001518222790796412721835142525411664461919350.03.88TOTALPERCENTAVGSPEED3.36.611.318.122.013.16.03.32.41.0100.04.04.65.25.24.85.45.65.45.43.60.80.91.11.44.74.12.23.65.75.04.44.50458324527741312262941807426227115559.75.19AVERAGESPEEDFORTHISTABLEEQUALS5.0HOURSINABOVETABLEWITHVARIABLEDIRECTION=7Sheet6REV.1312/96 GINNA/UFSARTABLE2.3-9JOINTFREQUENCYTABLESOFWINDSPEEDANDDIRECTIONFROM50FTLEVELFOR1966/1967~AND1973-74(TEMPERATUREDIFFERENCEBETWEEN150FTAND10FT;ADJUSTEDTO150FTTO33FT.SPEEDADJUSTEDTO33FT.)TEHPERATUREDIFFERENCE)2.2(F/100FT)SPEEDMPHCALMSTDDZRECTZOR360236955754108II75NNNEENEEESESESSESSSWWWWNWNTotalSWGEOMEANSPD(MPH)5.31.00CALM+-2.044I643313941074225812.1-3.53.6-7.57.6-12.512.6-18.518.6-24.524.6+35815282121385071662727178I4062I682832273894191197119426437980I0063I35484I222420000I00000000000I00000000000000000000000000000000005.81.9328.92.7456.94.963.08.580.113.160.00.000.00.00TOTALPERCENT12171531706561971632772861618435171214030.00.91.21.12.25.04.64.36.911.619.720.411.56.02.51.20.9100.03.26AVGSPEED2.32.43.73.04.24.23.43.74.24.44.54.83.63.14.03.7AVERAGESPEEDFORTHISTABLEEQUALS4.2HOURSINABOVETABLEWITHVARIABLEDIRECTION=6Sheet7REV.1312/96 GINNA/UFSARTABLE2.3-10GASEOUSDISCHARGEPOINTSATTHEGINNASITEVentNumberTurbinebuildingventilationAuxiliarybuildingventilation(ABVS)RadwastebuildingventilationContainmentpurgeventWastegasprocessingventCondenserairejectorexhaustSteamgeneratorblowdownexhaustSteamleakagefromsecondarysystemREV.1312/96 GINNA/UFSARTABLE2.3-11VENTDESIGNINFORMATIONFORGINNAVentNumberLocation~DischazaEIevation2&oveGrade(m)~ZeihtofDischare2&oveMaximumBuildinEEevation(m)EffectiveVentDiameter(m)PointofDischare(m/sec)Turbinebuildingroof(withhoods)NAAssumedgroundreleaseinbuildingwakeNANAPlantvent(intermediatebuildingroof)42.01.01.8Containmentpurgevent(intermediatebuildingvent)42.01.00.9114.4Blowdowntankvent(intermediatebuildingrrof,hooded)NAAssumedgroundreleaseinbuildingwakeNAAirejectorvent(turbinebuildingroof)NAAssumedgroundreleaseinbuildingwakeNA"NANoteNA=Notapplicable'ssumeddiameterof0.91mandvelocityof8.8m/secforwake-splitruns.REV.1312/96 GINNA/UFSARTABLE2.3-12TABULATIONOFINPUTASSUMPTIONSFORCALCULATIONSParameter2LssumedValueorCharacteristicHeightofmeteorologicalinstrumentsforstackrunsNotapplicabletoGinnaHeightofmeteorologicalinstrumentsforgroundlevel33-ftspeedanddirection,deltaT150-33releasesHeightofmeteorologicalinstrumentsforhourlywake33ftand150ftsplitrunsHeightofmeteorologicalinstrumentsforwakesplitruns33ftusingjointfrequencytablesMethodfordeterminingstabilityanddifRsioncoeKcientsTemperaturedifferenceusingRegulatoryGuide1.23andPasquillcurvesCairnstreatmentAssumed0.3mphandassumedtohavesamedirectionasmeasuredUpperlimitfor'cr~(m)1000HeightoftalleststructureforcomputationofZ(m)41.0Ventexitconditions'IFromTable2.3-11Delta-temperaturecorrectionfactor0.56fordatapriortoJuly1975onlyTerrainheightSeeTable2.3-13TerraincorrectionfactorsFigure2ofRegulatoryGuide1.111REV.1312/96 GINNA/UIiSARTABLE2.3-13TOPOGRAPHICELEVATIONSFEET(MSL)FORGINNASITEPLANTGRADEIS270FFETSectionDistanceinPiles0.511.522.533.544.555.566.577.588.599.510ENEESESESSESSWSWWSWlake-lake--------lake-270265265265270270280280290280290280275300300300300300300280270330290300335350330360370375370370405405430420455500500430300310330340350375385395415425440450445450500530550460450530330320335370385395410470440450450470510500520540520500520470310350340370380415430450460460480485490500540535530590550490270300350375380390405430450470495490500500500540540545525545270315330360360380400405410430450470475450475480475480515490275305300330320330325330340340335340350345360365375365370360280285270270270270250--lakelakelakelakeREV.1312/96 GINNA/UFSARTABLE2.3-14ANNUALDIFFUSIONANDDEPOSITIONESTIMATESFORALLRECEPTORLOCATIONS;RELEASEPOINTPLANTVENTSIWAKESPLITDirectionDistanceX/QDepletedD/QtoNearestX/Q-2Residence(m)(m)(sec/m)DistancetoNearestVegetableGarden(m)X/QDepletedD/QNearestX/QDepictedD/QX/QSiteX/Q-2(scc/m)3(nl)Eou(sec/nl)oun-(m)(scc/m)(sec/m)NSESSESSSWSWWSWlakelakelakelake1200950500600450750110016002900lakelake1.3E461.2E464.4E481.1E-069.6E474.4E482.5E462.3E461.4E471.4E461.3E465.5E-081.6E461.4E466.3E487.6E477.0E473.0E489.9E479.1E473.9E488.2E477.4E471.8E-087.8E477.1E471.1E-082.0E471.7E471.5E-09NANANANAlakelakelakelake7007006506009005002.5E462.2E469.8E-081.5E461.4E467.0E-OS1.8E461.7E-069.2E481.4E461.3E-065.5E-OS1.2E461.1E462.5E-OS9.4E478.6E-073.9E-081.6E461.5E467.3E-OS1400600lakelake8.7E-077.9E471.3E488.8E478.0E472.1E4S15007.1E476.4E471.2E48NoteNAindicatesthatdiffusioninformationforthisrunwasnotusedindosecalculationsforreceptorsinthiscolumn.REV.1312/96 GINNA/UFSARTABLE2.3-15GRAZINGSEASONDIFFUSIONAND'EPOSITIONESTIMATESFORLIVESTOCKRECEPTORLOCATIONSiRELEASEPOINT:PLANTVENTS,WAKE-SPLITDirectionDistancetoX/QDepletedD/QNearestX/Q2MilkCoiv(""m)(m-)(m)(scdm)DistancetoX/QDcplct-NearestMeatedX/QAnimal(m)(sedm)D/Q(m-)2DistancetoNearestMilkGoat(scdm)X/QDepict-D/Q(scdm)SSW70008.48-082.7E-102200SW1.0E-075.0E-102500WSW47004.9E477.2E-10W4.0E481.7E-102.8E481.28-10NWlakelakeNlakeNA'akeNNElakelakeNElakelakeENElakelakeE6.6E-105.7E48ESE80004.5E-101000SE4.7E482.8E-102200SSE55008.1E483.5E-104800S2.8E-105.9E485.78481.1E465.2E479.7E485.98485.4E478.0E476.0E484.0E482.9848NA6.68-103.88484.7E494.3E-102.8E-IO3.1E-096.4E-092.48-101.78-101.28-10lakelakelakelakelake5.7E484.48484.78484.2E-085.9E486.58481.0E-076.08-084.08482.98-08lakeNA6.6E-104.5E-IO2.8E-101.8E-102.8I';102.1P:105.0I':102.4E-101.7E-101.2E-10NNWlakelakelakeNoteNAindicatesthatdiffusioninformationforthisrunwasnotusedindosecalculationsforreceptorsinthiscolumn.(-)Indicatesreceptordistanceisgreaterthan8000m,diffusionvaluesgivenarefor8000m.lakeREV.1312/96 GINNA/UFSARTABLE2.3-16GRAZINGSEASONDIFFUSIONANDDEPOSITIONESTIMATESFORALLRECEPTORLOCATIONSIRELEASEPOINTPLANTVENTSIWAKESPLITDirectionDistancetoNearestResidence(m)X/Q(scc/m)DepletedD/QDistancetoX/QX/QNearest(m)Veetage(scdm)(sm)Qardcn(m)DepletedX/Q(sec/m)D/QNearestX/QDepictedD/QSiteX/Q-2(m)11(scc/m)(m)dary(m)(scc/m)NlakeNNElakeNElakeENElakeE1200ESE950SESSE500600S450SSWSW600750WSW11001600WNW2900NWlakeNNWlake1.5E461.2E461.8E-061.2E461.7E468.4E471.4E461.0E466.7H-071.7E47lakelakelakelakelakelakelakelake5.5E4853002.1E471.1E495002.3E-061.6E4814009.8E471.2E4815009.6E477.0E4956006.9E483.6E-IO14007.4E471.3E4944007.7H484.5E-106007.6E-07lakelakelakelake5.1E4866008.0E489.6E-107002.6E-064.0E489501.2E464.0E487001.6E465.3E-082800-38003.3E472.6E-096501.4E-062.6E4836001.7E477.9E-106001.2E465.4E48210042008.0E475.7H499001.7E462.3E-082300-36005.3E472.8E495009.5E471.0E476.4E483.8E482.6E-082.5E482.9E-081.0E-071.1E488.5E491.9E-08NoteNAindicatesthatdiffusioninformationforthisrunwasnotusedindosecalculationsforreceptorsinthiscolumn. GINNA/UFSARTABLE2.3-17ANNUALDIFFUSIONANDDEPOSITIONESTIMATESFORALLRECEPTORLOCATIONSgRELEASEPOINT:GROUNFRELEASEINBUILDINGWAKEDirectionNENEDistancetoNearestRcsidcnce(m)lakelakelakelakeX/Q(scdm)DepletedD/QDistancetoX/QzNearestVegetableGarden(m)NAX/QDepletedD/Q(sedm)(m)X/Q-2(scc/m)NANANearestSiteBoun-dary(m)lakelakelakelakeX/Q(sedm)DepletedX/Q(sec/m)D/Q(m)ESESESSESSWSWWSW1200950450600750110016002.3E-061.8E461.9H462.7E481.4E461.7E482.5E462.1E465.7E482.3E461.9E465.5E487.3E-066.4E461.8E474.2E463.6E467.2E487.8E466.9E-061.0E484.4E463.8E465.1E485.7E464.9E465.9E4870070065060090050050015006.1E-065.2E461.4E-073.8E463.3E469.3E-084.8E464.1E461.2H474.2E463.6E-067.2E482.6E462.2E-063.2E-085.9E-065.2E467.0E-081.1E-059.4E461.2E-071AE-061.1E461.7H4814002.2H-061.7E-062.1E482900lakelake3.7E472.7E472.5E49600lakelake5.8E-065.0E465.8E48NoteNAindicatesthatdilfusioninfoAnationforthisrunwasnotusedindosecalculationsforrcceptorsinthiscolunut.REV.1312/96 GINNA/UFSARTABLE2.3-18GRAZINGSEASON'DIFFUSIONANDDEPOSITIONESTIMATESFORLIVESTOCKRECEPTORLOCATIONS,RELEASEPOINT:ASSUMEDGROUNDRELEASEINBUILDINGWAKEDirectionDistancetoX/QDepletedD/QNcarcstX/Q-2(sedm)(m)(m)(sedm)DistancetoX/QNearest(sec/m)Animal(m)DepictedX/Q(scdm)D/Q(m)DistancetoNearestMilkGoat(sedm)X/QDepict-D/QedX/Q(sedm)(m)(scc/m)NlakeNAlakeNNElakelakeNElakelakeENElakelakeE7.9E-IO6.7E48ESE80004.5E-08S.OE-IO1000SESSE55004.6E487.7E482.9E-IO22004.2E-IO48005.7E48S2.8E-IOSSW70002.7H-IO2200SW5.1E-IO2500I.OE47WSW47001.8H47I.IE-09W2.4E-IO5.8E484.4E481.9E-IONWlakelakeNNWlakelake6.7E482.6E467.2E479.6E485.7E488.9E471.2H466.7E485.8E484.4E48NA7.9E-IO5.0E-086.4E495.3E-IO2.8E-IO4.7E-098.2E493.2E-IO2.4H-IO1.9H-IOlakelakelakelakelakelake6.7E484.5E-084.6E-083.9E-085.7E486.1E-086.7E486.7H485.8E484.4E48lakelakeNA7.9E-IO5.01:-IO2.9E-IO1.8E-IO2.8E-IO2.1E-IO3.2E-IO3.2E-IO2.4E-IO1.9E-IONoteNAindicatesthatdiffusioninformationforthisrunwasnotusedindosecalculationsforreceptorsinthiscolumn.(-)Indicatesreceptordistanceisgreaterthan8000m,diffusionvaluesgivenarefor8000m. GINNA/UFSARTABLE2.3-19GRAZINGSEASONDIFFUSIONANDDEPOSITIONESTIMATESFORALLRECEPTORLOCATIONS,RELEASEPOINT:ASSUMEDGROUNDRELEASEINBUILDINGWAKEDirectionDistancetoNearestRcsidcncc(m)X/Q(sedm)DepletedD/QDistancetoX/QaNearestVcgctablcGarden(m)X/QDcplctcdD/QNearestX/QDepictedD/QX/QSiteX/Q-2(scdm)(m)>>un(sedm)(m)(scc/m)(scc/m)NENEEESESESSESSWSWWSWlakelakelakelake1200950500600450600750110016002900lakelake3.2E462.9E-068.7E464.9E461.2E457.4E469.5H-063.3E461.6E463.3E-07NAlakelakelakelake6.1E4866005.5E489509.7E472.9E464.4E4836001.1E47210042001.8E479.6E475.2E482300-36008.1E478.4E4853002.8E4814001.1E4856002.0E494400lakelake2.1E472.3E461.0E-071.3E479.8E482800-38004.0E47NAlakelakelakelake1.2E497005.5E487003.4E-096501.1E496007.0E-099004.2E-095001.2E495001.9E4815005.1E-1014007.0E-10600lakelake7.7E464.8E-065.7E464.9E464.2E-069.9E-061.8E-052.1E-062.0E-065.4E-06NA1.41:-079.2E486.1E484.4E483.4E487.1E481.7E471.7E-081.4E484.6H48NoteNAindicatesthatdiffusioninformationforthisrunptasnotusedindosecalculationsforreceptorsinthiscolumn.REV.1312/96 GINNA/UFSARTABLE2.3-20EXCLUSIONAREABOUNDARYDISTANCESDirection'NEESESESSESSWSWWSWWDistance(m)800080008000800074764050345045045050391594570180008000'romplanttowardexclusionareaboundary.Forcalculationalpurposes,exclusionareaboundarydistancesoffshorewereassumedtobe8000m.REV.1312/96 GINNA/UFSAR2.4HYDROLOGICENGINEERING2.4.1HYDROLOGICDESCRIPTIONThehydrologyofthesiteregionhasbeenexaminedtoprovideabasisforassessingandlimitingregulatedradioactiveliquidreleasestothelake,forassessingandmitigatingpossibleeffectsofaccidentalradioactiveliquidreleasesonthegroundorintothelake,andforestablishinghigh-andlow-flowwaterprotectioncriteria.LakeOntario,onwhichthesiteislocated,isabout190mileslong,50mileswide,amaximumof780ftdeep,andcoversanareaofabout7500squaremiles.Theaveragelakelevel,basedonover100yearsofrecord,is246ftmeansealevel(msl).Thehighestinstantaneousstillwaterlevelwas250.2ftmsl.ThesuzfaceofthelandonthesouthernshoreofLakeOntario,atthesiteandeastandwestofit,iseitherflatorgentlyrolling.Itslopesupwardtothesouthfromanelevationofabout255ftmslneartheedgeofthelaketo440ftmslatRidgeRoad(NewYorkStateHighway104),3.5milessouthofthelake.MaterflowsintoLakeOntariofromotherGreatLakestothewestofitthroughtheNiagaraRiveratthewestend,fromnumeroussmallstreams,andfromfourriversalongthesouthshore(theGenesee,Oswego,Salmon,andBlack).ItflowsoutthroughtheSt.LawrenceRiverattheeastendofthelake.ThereisanannualcycleofwaterlevelvariationwithhighwaterinthelatespringorsummerandlowwaterinthewinterasisindicatedinFigure2.4-1.TherearenoperennialstreamsonthesiteexceptDeerCreek,anintermittentstreamwithadrainageareaofabout13.3squaremiles(Figure2.1-2)whichentersthesitefromthewest,passessouthoftheplant,andemptiesintothelakenearthenortheasterncornerofthesite.ThepredominantsurfacecurrentsinLakeOntarioazefromwesttoeastandtheytendtoswingtowardthesouthshore.Thishasbeensubstantiatedbybottletestswhichweremadefrom1892to1894andinthesummerof1957inthevicinityofRochester.Thiswatermovementwouldbeexpectedduetotheeffectofprevailingwindsandrotationoftheearth.2,4-1REV.1312/96 GINNA/UFSAR2.4.2FLOODS2.4.2.1FloodDesignConsiderationsTheprobablemaximumLakeOntariowaterlevelattheplantsiteis250.78ftmslbasedonastudyconductedin1968forRG&E.ThereportofthestudyisincludedasAppendix2A.Thelevelwasrevisedto253.28ftin1973basedonU.S.ArmyCorpsofEngineersprojection(Reference1).Thiswouldresultfromadesigntropicalstormandassociatedphenomena.Thedesign-basisfloodfortheplantsiteisthatresultingfromthefloodingofDeerCreek.Thereisnoinformationavailableregardingmajorhistoricalfloodeventsinthesiteregion.TheprobablemaximumfloodandfloodingelevationsattheplantsitewezedevelopedasdiscussedinSection2.4.3.Theplantisprotectedfromlakefloodingbyabreakwaterwithatopelevationof261ft.TheplantisprotectedfromDeerCreekfloodingtoanelevationof273.8fttoanelevationequivalenttoa26,000cfsDeerCreekflood.2.4.2.2EffectsofLocalIntensePrecipitationInanevaluationmadebytheNRCstaffofthefloodlevelswhichwouldoccuratsafety-relatedbuildingsassuminganoccurrenceofthelocalmaximumprecipitationontheimmediatesitearea,itwasconcludedthatfloodwaterwillpondtoanelevationofabout254.5ftmslatthenorthareaofthesiteinthevicinityofthescreenhouse.Thelimitingelevationfozsafety-relatedequipmentiselevation254.8ft(screenhousefloorelevationof253.5plus1.3fttodiesel-generatorbuses17and18).Therefore,safety-relatedequipmentwouldbeunaffectedbylocalfloods,andtheplantwouldbeabletowithstandimmediateplantareafloodingwithnodetrimentaleffects.2,4-2REV.1312/96 GINNA/UFSAR2.4.3PROBABLEMAXIMUMFLOODONSTREAMSANDRIVERS2.4.3.1FloodEvaluationSummaryTheRG&Efloodingevaluation(Ref'erence2)estimatedDeerCreekfloodflowdischargesusingtheHEC-1surfacerunoffmodelingroutine(Reference3).ThiscomputezprogramusestheSoilConservationServicesRunoffCurveNumberconceptandadevelopedunitresponsehydrographincombinationwithaselectedtotalstormdepthandarainstormdistribution(obtainedfromtheU.S.CorpsofEngineers)toestimatethewatershedfloodhydrograph.The24-hourrainfalldepthshavingreturnperiodsof5to100yearswereobtainedfromarainfallfrequencyatlasandreturnperiodsof500yearsandgreaterwereestimatedfromastraight-lineprojectiononGumbelextremeprobabilitypaper.RochesterGasandElectricthenusedtheserainfallsinHEC-1topredictpeakdischargeratesforvariousrainfalldepths(includingtheprobablemaximumprecipitationevent).Theestimatedprobablemaximumflood(PMF)dischargerateis32,500cfs.FloodingelevationsabouttheplantwerethenpredictedusingtheHEC-2floodroutingroutine(Reference4).AnindependentfloodingevaluationwaspreparedbyFranklinResearchCenterfortheNRCstaff(Reference5).TheNRCstudyusedrunoffrecordsfromeightsmallNewYorkStatewatezshedsvaryinginsizefrom1.5to44.4squaremiles,tabulatedthemaximumdischargeofrecord,andcalculatedthedischargeperunitareaandindividualwatershedreturnperiodsbyLogPearsonIIIprocedures.Thelargestdischargeperunitareaof284cfs/milewasfora13.6squaremilewatershed140milesfromtheplantneartheCatskillMountains.TheNRCstudyalsopredictedtheprobablemaximumfloodfozDeerCreekusingthesameHEC-1computerprogrammodelusedbyRG&E,butwithvariationsinantecedentmoistureandrainfalldistributionwhichresultedinamaximumdischargeof38,700cfs.FloodingdepthsattheplantwereestimatedusingthesameHEC-2modelwithsomechangesinroughnesscoefficients.TheNRCstaffconcludedthatfurtheranalysisshouldbeperformed(Reference6).Therefore,RG6EsubmittedafurtheranalysistodeterminewaterlevelsacrossthesitefromDeerCreektothescreenhouse,fozfloodflowsupto2.4-3REV.1312/96 GINNA/UFSAR38,700cfs,thelargestcalculatedprobablemaximumflood(Reference7)(Table2.4-1).TheresultsofthisanalysiswereamaximumelevationofDeerCreekdirectlysouthoftheguardhouseof275.7ftfortheNRCestimatedprobablemaximumfloodof38,700cfs,274.8ftfortheRG&Eestimatedprobablemaximumfloodof32,500cfsand273.8ftforaflowof26,000cfs.Amaximumelevationof262.3ftmslatthescreenhouseforthe38,700cfsprobablemaximumfloodwasalsocalculated.Figure2.4-2isanorth-southcrosssectionofthesiteshowinggradeelevationsslopingfromDeerCreektoLakeOntario.TheNRCstaffrecognizedthattherewereinherentconsezvatismsinitsestimateoftheprobablemaximumflood.Theseconservatismsresultinafloodwithvirtuallynochanceofbeingexceeded.TheNRCstaffreviewedthevariousconservatismsintheelementsoftheestimationoftheprobablemaximumfloodandmadeadditionalestimatesoftheprobabilityoffloodingatGinnaStation,asdescribedinthefollowingsections.2.4.3.2DerivationofProbableMaximumFloodTheconstructionoftheprobablemaximumfloodforanungaugedareaconsistsoftwoelements:selectionoftheprobablemaximumprecipitation,anddevelopmentoftherunoffhydrographfromthisprecipitation.FromReference8,ANSIN170-1976,aprobablemaximumprecipitationisdefinedastheestimated(precipitation)depthforagivenduration,drainagearea,andtimeofyearforwhichthereisvirtuallyno'iskofitsbeingexceeded.Theprobablemaximumprecipitationforagivendurationanddrainageareaapproachesandapproximatesthemaximumwhichisphysicallypossiblewithinthelimitsofcontemporaryhydrometeorologicalknowledgeandtechniques.Theselectedprobablemaximumprecipitationrainfallisthentransformedintoafloodhydrographbymethodsthatresultinaprobablemaximumfloodthatisahypotheticalflood(peakdischarge,volume,andhydrographshape)consideredtobethemostseverereasonablypossiblebasedoncomprehensivehydrometeoro-logicalapplicationofprobablemaximumprecipitationandotherhydrologicfactorsfavorablefozmaximumfloodrunoffsuchassequentialstormsandsnowmelt.2.4AREV.1312/96 GINNA/UFSAR2.4.3.3FloodProbabilityAnevaluation(Reference9)hasbeenperformedtoestimatetheprobabilityoffloodingto273.8ftmsl,whichistheGinnaStationleveloffloodprotection(Section2.4.7).Theestimateisbasedonthefollowingassumptions:A.ThefloodflowinDeerCreekcorrespondingtoelevation273.8ftis25,000cfsasdeterminedbytheNRCstaff.(TheRG&E-determinedvalueis26,000cfs.)B.Theoccurrencepzobabilityoftheprobablemaximumfloodisnogreaterthan10peryear.C.Aconservativeestimateoftheprobablemaximumfloodis38,700cfs.D.The100-yearfloodisabout3000cfs.E.Theprobabilityofanyflowbetweenthe100-yearfloodflowandtheprobablemaximumfloodcanbeapproximatelyestimatedbyastraight-lineinterpolationonlog-normalprobabilitypaper(Figure2.4-3).Fromthisplotofthe100-yearfloodandtheprobablemaximumfloodonlog-normalprobabilitypaper,theprobabilityofafloodflowreaching25,000cfsonDeerCreekwasdeterminedtobeabout5x10peryear.Therefore,theNRChasacceptedRG&E'sproposaltoprovideplantprotectiontolevelscalculatedtooccurfora26,000cfsDeerCreekflood.2.4-5REV.1312/96 GINNA/UPSAR2.4.4LAKEONTARIOSURGEFLOODINGAsaconditionoftheFull-TennOperatingLicense,theNRCrequiredtheplacementofadditionalshorelineerosionprotection.Thisprotectionwasaddedtoensureminimumwaveovertoppingoftheconcretewallfrontingtheplantandlowerwaterlevelsinthevicinityofthescreenhouse.TheNRCperformedananalysisusingproceduresfromtheShoreProtectionManual,U.S.ArmyCoastalEngineeringResearchCenter,1977,ofthestabilityandconditionoftherevetmentfrontingtheplantsiteandconcludedinApril1981(Reference10)thatiftherevetmentfrontingtheplantexistsasdesigneditwouldbecapableofresistingsurgefloodingfromLakeOntarioandthereforeitwouldmeetcurrentregulatorycriteria.SubsequentinspectionsoftherevetmentinNovemberandDecember1981showedthattherevetmentappearstobestructurallysoundandstablewithnoevidenceofmajorstructurestabilityproblems.Further,theinspectionsverifiedthattherevetmenthadnotdegradedfromtheoriginaldesign.Therefore,itwasconcludedthatadequateprotectionfromsurgefloodingexistsatGinnaStation.2.4.5ICEEFFECTSLakeOntarioseldomfreezesoverbuticedoesoccurinwinter,usuallyalongthesouthernandnorthernshoresandatthenortheasternendofthelake.ThepossibilityoficeblockageoftheDeerCreekdischargeisconsideredremote.IntheeventofsuchanoccurrencecombinedwithmaximumsurfacerunoffintoDeerCreek,itcanbeseenfromFigure2.4-4thatthesitetopographyissuchastopreventfloodingtheplant.Thereisalargeareaimmediatelyeastoftheplant,wherethegradelevelsare22Sto260ft,overwhichthedischargeofDeerCreekcouldspillandreachthelakebeforethewaterlevelwouldrisetothe270-ftgradeleveloftheplant.The270-ftgradeleveloftheplantisalsointerposedbetweenthechannelofDeerCreekandthescreenhouseandthesurroundingareabetweentheplantandthelake.2.4.6COOLINGWATERCANALSANDRESERVOIRSTheultimatesourceofcoolingwater(ultimateheatsink)forGinnaStationisLakeOntario.Theintakestructurefortheplantisonthelakefloorabout2.4<REV.1312/96 GINNA/UPSAR3000ftoffshore.Waterisconveyedfromtheintakestructuretothescreenhousethroughaburiedconcrete-linedtunnel.Thecirculatingwaterpumpsandtheservicewaterpumpsazelocatedinthescreenhouse.TheintakestructureandscreenhousearedescribedinSection10.6.2.2.4.7FLOODINGPROTECTIONREQUIREMENTSThemainplantareaandbuildingsareatgradeelevation270,0ftmsl;thenorthsideoftheturbinebuildingandthescreenhouseareatelevation253.5ftmsl.Theplantgradeentrancestotheauxiliarybuildingareatelevation271ftmsl.Thelowestlimitingelevationofsafety-relatedequipmentinthesub-basementwithintheauxiliarybuildingis221.5ftmsl.Theplantisprotectedfromlakesurgesandwind-drivenwavesbyashorelinerevetment,withatopelevationof261.0ftmsl.Theequipmentrequiredforsafeplantshutdownislocatedintheauxiliarybuildingandtheturbinebuilding.Protectioninthisarea(Reference11)isprovidedto273.8ftmsl,whichisequivalenttoanRG&Eestimateddischargeflowof26,000cfsfromDeerCreek.Becausetheprobabilityoffloodingbeyond273.8ftmslislow,itistheNRCstaff'sjudgmentthattheprobablemaximumfloodaccidentsequencewillnotdominateeventspotentiallyleadingtocoredamage.Also,RG&EemergencyproceduresrequireinstallationoffloodprotectiondeviceswellbeforerisingfloodwaterscanjeopardizesafeshutdowncapabilityasdiscussedinSection13.5.2.2.3(Reference9).2.4.8LOWWATERCONSIDERATIONSThelowestmonthlyaveragewaterlevelforLakeOntario(attheOswegogauge)fora107-yearperiodofrecordendingin1967was242.68ft(U.S.CoastandNGeodeticSurveyDatum).Fora65-yearperiodofrecord,thelowestinstantaneousstillwaterlevelwas242.17ftonDecember23,1934.Foreachyearduringthisperiod,theinstantaneousannuallowattheOswegogaugewasnotmorethan1.02ftbelowthecorrespondingannualmonthlylow.Foran8-yearperiodofrecordattheRochestergauge,thelowestinstantaneouslevelwas241.38andtheannualinstantaneouslowwasnotmorethan0.59ftbelowthecorrespondingmonthlyaveragelow.2.4-7REV.1312/96 GINNA/UFSARTheminimummeanmonthlylakelevelofrecordforLakeOntarioattheRochester,NewYork,gaugeiselevation243.0ftmsl.Thelowestentrancelevelintotheintakestructureiselevation217.0ftmsl.Having26ftofwaterabovetheintakestructureatminimumlakelevelismorethanadequatetoaccommodatethemaximumsetdown(negativesurge)forthispartofthelake,whichislessthan5ft.LowwaterconditionsforLakeOntarioarediscussedinAppendix2A.2.4-8REV.1312/96 GINNA/UPSAR(INTENTIONALLYLEFTBLANK)2.4-9REV.1312/96 GINNA/UFSAR2~4~9DISPERSIONiDILUTIONiANDTRAVELTIMESOFRELEASESOFLIQUIDEFFLUENTSINSURFACEHATERS2.4.9.1Near-ShoreLakeCurrentsThecharacterofnear-shorelakecurrentsduringthespringisillustratedbymeasurementsofapollutedmassofwaterwhichenteredthelakefromtheNiagaraRiver,March15,1933.Itmovedeastwardalongthesouthshoreatarateofabout5milesperdayandwasmeasuredinsuccessionbyanumberofwatertreatmentplants.ItwasdetectedatOswego,about130mileseastoftheNiagaraRiveronApril11,26daysafterenteringthelake.ThesurfacecurrentsinLakeOntarioazegeneratedprimarilybywindstressonthewatersurface.Thelakesurfacewind-drivencurrentshavespeedswhichaverageabout1.6%to2'hofthewindspeeds(measuredatanelevationofabout70ftabovethelakesurface),aswasdemonstratedbyexperimentsdescribedinAppendix2B;thus,anaveragewindspeedof15mphoverthelakewouldgenerateanaveragesurfacecurrentofabout0.2to0.3mph,orabout5to7miles/day.Theflow-infzomriversandflow-outthroughtheSt.LawrenceRiverhasanegligibleeffectbycomparison.Currentspeedsnearshoremaybesomewhat,greaterorlessthanoffshorespeeds--ifless,duetofrictionclose'toshoreand,ifgreatez,duetolongshorecurrentscausedbythepilingupofwaterneartheshorewhichiscreatedbywindswithashorewardvelocitycomponent.Measurementsnearthesitemadein1965(Appendix2B)indicatethatatypicalnear-shorecurzentisabout0.4ft/sec(0.27mph)or6.5miles/daytowardtheeast.Experimentswereconductedin1965tomeasurethedispersionofliquidsreleasedtothelakeunderseveraltypicalconditions.ThesearedescribedinAppendix2B.Theexperimentsinvolvedthereleaseofzhodamine-Bdyeataconstantrateofabout10lb/dayfromapointabout1000ftoffshoreforthree3-weekperiods:oneinthespring,oneinthesummer,andoneinthefall.Measurementsofdyeconcentrationweremadewithcontinuouslyreadinginstrumentsinanaccuratelynavigatedboatduringandaftereachreleaseperiod.TheresultsoftheseexperimentswereusedtodevelopestimatesofdispersiondiscussedinSections2.4.9.2and2.4.9.3below.2.4-10REV.1312/96 GINNA/UFSAR2.4.9.2DispersionofRegulatedRadioactiveLiquidReleases2.4.9.2.1ReulatedRadioactiveLiuidReleasesRegulatedreleasesofradioactiveliquidsaremadeintermittentlybymetereddilutionofmonitoredwastetankeffluentintocondenserandservicewateroutflowtothelake.Duringpoweroperation,condenserflowwillbeabout334,000gpmandservicewateroutflowabout15,000gpm.Theannualaverageconcentrationofradioactivematerialattributabletotheplantatthepointwheresuchoutflowentersthelakewillbelimitedsothatitwillbebelowthedrinkingwatermaximumpermissibleconcentrationfozunrestrictedareasasspecifiedin10CFR20,AppendixB,TableII.ThedoseordosecommitmenttoanindividualascalculatedintheOffsiteDoseCalculationManualforradioactivematerialsinliquideffluentsreleasedtounrestrictedareasislimitedduringA.Anycalendarquarterto~1.5mremtothetotalbodyandto65mremtoanyorgan.B.Anycalendaryearto~3mremtothetotalbodyand610mremtoanyorgan.Ifthedischargeweretobelimitedto1/10maximumpermissibleconcentration,theestimatedallowablelong-tennreleaseratewouldbeabout5mCi/sec(primarilytritium)assumingdilutionincondenserflowof334,000gpmandisotopiccompositionofreleasesasshowninTable11.2-5.Themaximumexpectedlong-termaveragereleaserateisabout0.05mCi/secorabout1/100oftheallowablerate.Theseestimatesareillustrative.ReleaseratelimitsarecontainedintheOffsiteDoseCalculationManual(ODCM).Considerationofreconcentrationeffectsinaquaticbiotaeatenbymanwouldnotlimitallowablereleaserates.Liquidwastetreatmentsystemsareusedtoreducetheradioactivematerialsinliquidwastespriortotheirdischarge,ifnecessary,toensurethatcumulativedosesduetoliquideffluentreleases,whenaveragedover31days,doesnotexceed0.06mremtothetotalbodyor0.2mremtoanyorgan.2.4-11REV.1312/96 GINNA/UFSAR2.4.9.2.2LiuidDisersionDispersionofliquidsafterreleaseintothelakefromthesitecanbeestimatedbymakingassumptionsconcerningthedirectionandrateofdriftofthereceivingwatersandoftherateofdiffusionduringinjectionanddrift,includingtheeffectsofthermalstratificationandshearcurrents.Forrelativelylong-termreleases(ice.,foranumberofhours)ataconstantdischargerate,thepeakconcentrationasafunctionofdistancealongthedirectionofmeanflowcanbepredictedbyseveraldifferenttheorieswithequationswhichdifferonlybyaconstantfactor.Xnallofthemtheconcen-trationisproportionaltothereciprocalofdistance.Thesimplestequationforpeakconcentrationasafunctionofdistanceisthefollowingoneinwhichtheboundaryeffectoftheshoreisapproximatedbydoublingconcentrationsfortheunconfinedcase.ThederivationofthisequationisdescribedinAppendix2B.Sp1(sec)q1.77Lhvxkm)(2.4-1)whereSppeakconcentration(pCi/m)q=dischargerate(pCi/sec)D=depthofmixing(m)w=diffusionvelocity(m/sec)x=distancefromreleasepoint(m)TheprogramofdirectdispersionmeasurementsdescribedinAppendix2Bshowedthatthenear-shoreregionofLakeOntarionearthesiteischaracterizedbyanaveragediffusionvelocity(w)of3.3x10m/sec.Observationsinreservoirs,estuaries,andtheoceanrangefrom2x10to2x10m/sec.Takingw=3.3x10andassumingthatthedischargedmaterialisconfinedtotheupper3mofthelakewater,theresultingequationisasfollows:2.4-12REV.1312/96 (2.4-2)However,nearthedischargepointthisequationisnotrealisticforthehigh-volumehigh-momentumdischargeatthesitefortworeasons:first,becausematerialswillbemixedwiththedischargebeforeitisreleased,andsecond,becausefurtherdilutionwilloccurafterreleaseduetomomentummixingofthe2ft/secdischargejetwithslowermovinglakewater.Ifmaterialismixedinthefulldischargeflowof334,000gpm,thenSp/qatentrytothelakeis5x10sec/moz5x10pCi/cmperpCi/secisreleased.Momentummixingwillcausefurtherdilutionbyafactorofabout7,1milefromthedischargepointasisdiscussedinAppendix2B.Betweenabout1and8miles,additionalsignificantdilutionofthepeakconcentrationzone(nearshore)wouldnotbeexpected.Atdistancesgreaterthanabout8milesalongtheshore,thedilutionscanbepredictedbytheequation.Estimatesmadeonthisbasiscanbesummarizedasfollows:DistanceFromSite2LlonShose/(Ci/cm~ei/see)zDilutionRelativetoConcentrationatZxitSwornDischazeCanalIncoolingwatercanalexittolake5x10OnemileFivemilesFifteenmiles7x10<7x102.4x1015Thepredictedmaximumconcentrationsareforsteady-stateconditionsandwouldoccuronlywithpersistent,winddirection;therefore,atdistancesgreaterthanabout20miles,thediffusionvelocityusedaboveisnotdescriptivesincevariationinwinddirectionduringthe50-to70-hourtraveltimetothesepositionswillproducemoredispersionthanpredictedabove.2.4.9.2.3EffectofLocalRecirculationLocalrecirculationfromthedischargetotheintake,whichwouldproducesignificantlyhigherconcentrationsinthesiteregionthanthoseestimated2.4-13REV.1312/96 GINNA/UFSARabove,isnotexpected.Theintakeforthecondensercoolingwaterislocatedonthebottomatadepthof30ft,about3000.ftoffshore.Thedensitydifferenceproducedbyheatingthecondensercoolingwaterwillusuallyrestrictitsmovementtoasurfacelayer6-to10-ftthickuntilithasmixedwithambientlakewaterbytenfoldorso.Asnotedabove,momentummixingwilldominateinthesiteregionanddilutionby4to1alongthedirectpathfromthedischargecanaltothesurfacelayerovertheintakewouldbeexpectedifthedischargeplumeweretobecenteredovertheintake.Ifthewaterwerethendrawnintotheintakealongwiththedeeperlayer,anadditionaldilutionofapproximatelythreefoldwouldoccurtoprovideatotalminimumdilutionofapproximatelytwelve-fold,orarecirculationofabout88forthiscase.RecirculationwouldbelessthanSSfozaverageconditionswherethedischargeplumecenterisnotovertheintake.LakeflowreversalinfrontofthesiteresultsinveryrapiddilutionasindicatedinAppendix2B.Itwouldbeexpectedtocauserecirculationoflessthan1%.2.4.9.2.4ConcentrationofNearestPublicHaterSulIntakeIfdischazgesaverage1/10maximumpermissibleconcentrationatentrytothelake,concentrationsontheaverageattheintakeofthenearestpublicwatersupplyatOntario6000fteastand1050ftoffshorewillbelessthan1/10ofthis(seeFigure9,Appendix2B),orlessthan1/100ofmaximumpermissibleconcentrationevenifthermalstratificationeffectsazeneglected.2.4.9.2.5EnvironmentalMonitorinProramAsindicatedintheOffsiteDoseCalcu1ationManual(ODCM),anenvironmentalmonitoringprogramisconductedincludingradioactivitymeasurementsofaquaticbiotaandlakesurfacewater.Thisprogramprovidesacheckofreleaselimitsandabasisforadjustingthemifnecessary.2.4'.3DispersionofAccidentalRadioactiveLiquidReleases2.4~9.3.1AccidentialReleasestotheLakeIfaccidentalreleasestothelakeoccuroverrelativelylongtimes(hours),resultingconcentrationscanbepredictedusingmethodssimilartothosein2.4-14REV.1312/96 GINNA/UFSARSection2.4.9.2;however,accidentalreleases,iftheyoccur,mightbeofrelativelyshortduration(i.e.,batchreleases).Estimatesofconcentrationofmaterialreleasedinbatchescanbemadebyseveraltheorieswhichpredictatimedependenceinverselyproportionaltoeitherthesecondorthirdpoweroftime.Availabledataareinadequatetoresolvethedifferencesinthesetheories,buttheuseofempiricalcoeffi-cients.permitsnearlyequalstatisticalfittingwitheitherofseveralfunctions;therefore,thefollowingequationofOkudoandPritchardisusedwithexperimentalcoefficients,accommodatingtheboundaryeffectoftheshorelinebydoublingtheconcentrationsfortheunconfinedcase:Sp2qt314W2<2(2.4-3)whereSp=peakconcentration(pCi/m)q'activitydischarged(pCi)w=diffusionvelocity(m/sec)t=time(sec)D=depthofwatercolumn(meters)Ztisassumedthattheequationaboveapplies,thatw=3.3x10m/secandD=3m,sothatSp/q'20000/tandthatthemeanvelocityofthewaterlayeris0.4ft/sec.ThenpeakconcentrationsatvariousdistancesfromthesiteintermsofpCi/cmperpCireleasedwillbeasfollows2.4-15REV.1312/96 GINNA/UFSARDistance(time)ZoomtheSiteCi/cmerCiReleased31mile(3.66hours)5miles(18.3hours)15miles(2.3days)1.1x104.6x105.1x102.4.9.3.2AccidentalSillsontheGroundAccidentalspillsofradioactiveliquidsonthegroundintheplantarea,iftheyoccur,andtotheextenttheydonotentertheground,willeitherrunoffonthesurfaceintotheDeerCreekchannelandtothelake,ozdirectlytothelakedependingonthelocationofthespillsThatpartofaspillwhichentersthegroundwouldberetainedinthegroundorwouldmoveslowlywiththegroundwaternorthwardintothelake.Groundwater,bedrock,andgroundsurfacecontoursareshowninPlateIIB-3ofthePSAR.AsindicatedinPlateIIB-3,'thegroundwaterlevelintheplantareagenerallyrangesfromaboutelevation245to250ftandslopesdownwardtowardthelake.Groundwateroccursintheoverburdensoilsinmostareasbutliesbeneaththerocksurfaceinpartofthesoutheasternsectorwherebedrocksurfacerisesmoresteeply.Measurementsinonetestindicatethattherockisalmostimpermeabletowaterflow.Soilpermeabilitywasobservedinsixtestpitsandatestwell(describedinPlateIB-4ofthePSAR)andrangedfrom10to10cm/sec.Mostoftheground-watermovementwithinthesitewilltakeplaceinthemorepermeablesoilsoverlyingtherock.Wellsareasourceofdrinkingwaterinthesitevicinity.ThewellsnearthesitenotownedbyRG6EarelocatedmostlyalongLakeRoadeastandwestofthepartoftheroadwhichpassesthroughthesite.AfewazeonOntarioCenterRoadwhichrunssouthfromLakeRoad.Thenearestwellisapproximately0.5milessouthwestfromthecenterlineofthereactorbuilding.Asaresultofthestratifiednatureoftherock,nomeasurableverticalpermeabilityisindicated.Horizontalbeddinglimitsverticalflowofwaterthroughtherockitself,andthecross-beddednatureoftherockprecludesanyhorizontalflowoveranyappreciabledistance.Thesmallgrainsize,anargillaceousmatrix,andthelackofsortingofthegrainsisnotconducivetoextensivehorizontalpermeability.Anymovementofwaterthroughtherock2.4-16REV.1312/96 GINNA/UFSARwouldhavetooccurinjointsandfractures.Thelimitedextentofjointsandfracturesintherockatthesitewouldminimizecirculationalongthesepaths.Theonlyopportunityforappzeciablemovementofwaterexistsnearthesurfaceoftherock,whereweatheringorpossiblereboundmayhaveopenedsmalljointsorfractures.Therockappearstobepracticallyimpermeableatthedepthssufficienttopreventreliefofstressesandconsequentopenjoints.InspectionofthereactorexcavationandthezelativelydryconditionofthetunnelsbelowLakeOntarioconfirmthisassessment.Noflowtowardinlandwellsisexpected.2.4-17REV.1312/96 GINNA/UFSAR2.4.10GROUNDWATER2.4.10.1Design-BasisGround-WaterLevelTheoriginalground-waterstudieswereconductedbyDames&Moorein1964-1965(Ref'erence12).Thedesign-basisground-waterelevationforthescreenhouseandemergencyservicewaterstructurewas253.5ftmsl,andthedesignbasisforallothersafety-relatedstructureswaselevation250ftmsl(Reference13).Aground-watermonitoringprogramwasestablishedinresponsetoSEPTopicIII-3.Atoverifytheoriginaldesign-basisground-waterelevationof250ftmsl(Reference6).Itconsistedofthreefullyencasedwellsdrilledintotheground-watertableontheplantsite.Aliquidleveldetectionandindicationunitwasinstalledinonewelltocontinuouslymonitorandrecordtheground-waterlevel.Theothertwowellswereavailableifmoredatawereneededtoestablishthedesignbasisground-waterlevel.Asaresultofmonitoringofgroundwaterlevelsovera4-yearperiodfrom1983through1987thenewdesign-basisground-waterlevelwasdeterminedtobeatelevation265'ftmsl.Thisvaluewasbasedonapeakground-waterlevelof264.69ftandusinga2%maximumexpectederrorintherecordingsystem.Anengineeringevaluationwasperformedoftheeffectsofthenewdesign-basisground-waterlevelonsafety-relatedstructuresbelowgrade.Asaconservativeapproach,theengineeringevaluationconsideredadesign-basisground-waterlevelatgradeelevation270.0ftmslor5fthigherthanthenewdesign-basislevel.TheevaluationwasbasedonfiniteelementanalysisofelasticplatesutilizingtheMacNeilSchwindlerCorporation(MSC)PAL2computerprogramandconventionalstructuralengineeringtechniques~Pressureloadsconsideredintheanalysisconsistedofhydrostatic,soil,andsoil-inducedearthquakeforces.Fourwallsrepresentativeoftheworst-caseloadconditionsofallbelow-gradesafety-relatedareasoftheauxiliary,intermediate,andcontrolbuildingswereselectedfortheengineeringevaluation.Theevaluationdemonstratedthatthebelow-gradesafety-relatedstructureswereadequatelydesignedtoresistthedesignloadsassociatedwith"ground-waterlevelsatgrade(270.0ftmsl)withoutrequiringstrengtheningmodifications.2,4-18REV.1312/96 GINNA/UFSAR2.4.10.2WaterUseLakeOntariowaterisusedforindustrialanddomesticwatersupplies,recreation,domesticandinternationalshipping,andalimitedamountofcommercialfishing.AdescriptionofprincipalwaterintakesonthesouthernshoreofthelakeisgiveninTable2.4-2.ThetownofOntariohasadomesticwaterintake1.1mileseastofthesiteextending1050ftfromshore.Thedemandonthissystemisapproximately1,800,000gallonsper24-hourperiod.Thewaterdistrictisexperiencinganaveragegrowthof10'hperyear.Atypical8-hourdaytimedemandisapproximately675,000gallons.ThecapacityoftheOntariowatertreatmentsystemis3.0milliongallonsperday.TheOntariowatersystemsupplieswatertothetownsofWalworthandMacedontothesouthofOntario,andtothetownofMariontothesoutheastofOntario.MarionalsopurchaseswaterfromWilliamsontoitsnorth.MacedonispartlysuppliedbyameteredconnectionwiththeMonroeCountyWaterAuthority.ThetownofWalworthhasemergencyconnectionswiththeMonroeCountyWaterAuthority.ThetownofOntariohasemergencyconnectionswiththetownsofWilliamsonandWebstertoitseastandwest,respectively.TheOntariowatersystemalsohasthreestoragetankswithatotalcapacityof3,250,000gallons,whicharenormallykeptfull.TheaveragedailywaterusefromtheOntariosystemisOntario,820,000gallons;Walworth,300,000gallons;Marion,400,000gallons;andMacedon,280,000gallons.=ThetownofOntariowatersystemcanwithstandashutoffoftheintakeforaperiodofapproximately43hours.2.4-19REV.1312/96 GINNA/UFSARREFERENCESFORSECTION2'3.7.8.9.LetterfromK.W.Amish,RG&E,toD.I.Skovholt,NRC,

Subject:

ArmozStoneAdditiontoGinnaBreakwall,datedMay15,1973'etterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicsZZ-3.A,ZI-3.B,XZ-3.B.1,IIZ-3.A-R.E.GinnaNuclearPowerPlant(withAttachment-GinnaStationDesignBasisFloodingStudyforRochesterGasandElectricCorporation,August1981,NUSCorporation),datedAugust18,1981.U.S.DepartmentoftheArmy,CorpsofEngineers,"HEC-1FloodHydrographPackage,"HydrologicEngineeringCenter,UsersManual,(February1981version),July1981.U.S.DepartmentoftheArmy,CorpsofEngineers,"HEC-2WaterSurfaceProfiles,"HydrologicEngineeringCenter,UsersManual,(April1980version),January1981.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

GinnaNuclearPowerPlant-FinalEvaluationofSEPTopicsII-3.A,ZX-3.B,ZZ-3AC,andZX-4.D,datedMay27,1982.,U.S.NuclearRegulatoryCommission,IntegratedPlantSafetyAssessment,SystematicEvaluationProgram,R.E.GinnaNuclearPowerPlant,FinalReport,NUREG0821,December1982.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicII-3.B,DeerCreekFlooding,datedJanuary31,1983.AmericanNuclearSociety,"StandardsforDeterminingDesignBasisFloodingatPowerReactorSites,"ANSXN170-1976,ANS-2.8,LaGrangePark,Xllinois.LetterfromD.M.Crutchfield,NRC,toJ.E~Maier,NRC,

Subject:

IntegratedPlantSafetyAssessment(IPSAR)Section4.5,PlantFloodingbyDeerCreek-R.E.GinnaNuclearPowerPlant,datedAugust19,1983.10.11.12'etterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

EvaluationofSEPTopicsZZ-3.A,3.B,3.B.1,and3.C,datedApril10,1981.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIZ-3.B,DeerCreekFlooding,datedMay20,1983.Dames&Moore,SiteEvaluationStudy,ProposedBrookwood(Ginna)NuclearPowerPlant,June14,1965.13.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

GinnaNuclearPowerPlant-FinalEvaluationofSEPTopicsZI-3.A,,II-3',and1I-3.C,datedJanuary28,1981,2.4-20REV.1312/96 GINNA/UFSARTABLE2.4-1DEERCREEKOVERFLOWSUMMARYTABLETotalFloodFlow(cfs)ElevationatScreenBoaseElevationatDeerCreekSection238014,60015,000'6,00017,30018,000253.5253.55253.7254.0254.2270.0270.1270.6271.1271.420,00020,60022,00024,00026,000254.8255.0255.4256.0256.0272.1272.3272.8273.3273.828,00030,00035,00038,700'57.8259.0261.6262.3274.2274.5275.1275.7'bout100ft.westofbridgeroverDeerCreekleadingtoplantChannelcapacity'tandardprojectfloodStandardprojectfloodplus1ft.'robablemaximumfloodREV.1312/96 GINNA/UFSARTABLE2.4-2INDUSTRIALANDMUNICIPALWATERSUPPLIESNameandLocation@peofWaterUse~gaaatitUsedTreatmentBeforeUseLocationWithBeecttoGinnaSite(miles)CommentsOntarioWaterDistrict,OntarioDomestic1,800,000gpdFiltrationchlorination1.1eastIntake1050ftfromshore;Serves3adjacenttownsWillaimsonWaterDomesticDistrict,Williamson149,000gpdFiltrationchlorination5.25eastServes4adjacentwaterdistrictsSodusPointWaterDomesticDistrict,Sodus84,000gpd-Filtrationchlorination15eastServesSouthShorewaterdistrictWolcottDomestic240,000gpdFiltrationchlorination24eastAuxiliarysourceComstockFoods,Incorporated,RedCreekIndustrailcooling100gpmChlorination25eastOperatesduringmonthsofOctoberandNovemberMarathonIndustrialCorporation,Oswegoprocess3to4mgdRapidsandfiltration,chlorination41eastWatertreat,mentplanthas5mgdcapacity.Intakepointabout250I1fromshoreSheet1REV.1312/96 GINNA/UFSARTABLE2.4-2INDUSTRIALANDMUNICIPALWATERSUPPLIESNameandLocationT~eoS~~tztgWaterUseUsedTreatmentBef'oreUseLocationWi,thBesecttoGonnaConnnentsNiagaraMohawkPowerCorporation,OswegoCooling500mgdNoneSite(nules)41eastOswegoCityDomestic5.0mgdChlorination41eastNewintakeunderconstruction;Serves4adjacentwaterdistrictsQueensboroFarmProducts,Incorporated,LycomingBoilerandcoolingwaterNotknownNone46eastRG&ERussellStation,GreeceEastmanKodakCompanyWaterworks,GreeceCondensercoolingIndustrialprocessing166mgd17.3mgdNoneFiltrationchlorination16west16westIntakeextends3660ftfromshoreTwointakes700ftapartandextending7800ftfromshoreRochesterPublicDomesticWaterSupply,Greece34mgdFiltrationchlorination16westPumpedfomEastmanKodakCompanyintakepipeSheet2REV.1312/96 GINNANFSARTABLE2.4-2INDUSTRIALANDMUNICIPALWATERSUPPLIESNameandLocationPg)eof~gltaahktPaterUseUsed2'reatmentBeforeUseLocationPithResecttoGonnaConunentsNewYorkWaterServiceCorporation,RochesterPlant,GreeceDomestic13.5mgdFiltrationchlorinationSite(miles)16westTwointakes100ftapartandextending4000ftfromshoreHiltonPublicWaterDomesticSupply,Parma0.2mgdFiltrationchlorination24westIntakeextends350ftfromshoreBrockportPublicDomesticWaterSupply,Hamlin1.3mgdFiltrationchlorination30westIntakeextends2600ftfromshoreLyndonvillePublicDomesticWaterSupply,Yates68,000gpdFiltrationchlorination53westIntakeextends530ftfromshoreBarkerPublicWaterDomesticSupply,Somerset0.1mgdFiltrationchlorination62westIntakeextends600ftfromshoreNewfaneWaterDistrictNo.1,NewfaneDomestic147,000gpdFiltrationchlorination68westIntakeextendsabout600ftfromshoreSheet3REV.1312/9G GINNA/OFSARTABLE2.4-2INDUSTRIALANDMUNICIPALWATERSUPPLIESNameandLocationP~eofPaterUse~guantitUsedTreatmentBeforeUseLocationPithBesecttoGinnaSite(miles)CommentsWilsonPublicWaterDomesticSupply,Wilson175,000gpdFiltrationchlorination76westIntakeextends450ftfromshoreSheet4REV.1312/96

GINNA/UFSAR2~5GEOLOGY'EISMOLOGY~ANDGEOTECHNICALENGINEERING2.5.1BASICGEOLOGICAND'SEISMICINFORMATIONAgeologicalprograminvolvingaregionalgeologicalsurvey,borings,andothertestsatthesitewasconductedtoprovideinformationneededtoassessfoundationconditions,seismicactivity,andground-waterconditions.ThedetailsoftheseinvestigationsarereportedindetailinAppendix2C(andinthePSAR,Volume1,AppendixD).Additionalstudieswereperformedin1973aspartoftheSterlingalternativesiteevaluation.ThisisdescribedinSection2.5.2.3.Theseresultsandsubsequentinformationdiscussedbelowindicatethattherockandcompactgranularsoilonthesiteprovideasuitablefoundationforplantstructureswithallowablebearingpressuresintherangeof3to6tons/ftforspzeadormatfoundationsonthecompactgranularsoilsandof302to40tons/ftonbedrock.~~2.5.1.1RegionalGeologyThesiteislocatedonthesouthernshoreofLakeOntariointheeasternportionoftheErie-OntarioLowlandsPhysiographicProvince(Fenneman,1938).Theregionaltopographyisoflowreliefandrisesgraduallyfromanelevationof+250meansealevel(msl)atthelaketo+500ftmslatthePortageEscarpment,whichisthenorthernboundaryoftheAppalachianPlateauProvincetothesouth.Abeachridge10-to25-fthighparallelstheshorelineofLakeOntario4milestothesouth.NorthoftheridgeisthelakeplainofformerglacialLakeIroquois.Thesiteliesonthisplain.ThesouthernmarginofLakeOntarioischaracterizedbymanypromontorieswhichseemtoreflectprominentjointdirectionsinbedrock.ThesiteislocatednearonesuchpromontorycalledSmokeyPoint.Majorjointdirectionsazenorth75to85'astandnorth10'astto30'est.Erosionalbluffsalongthelakerangefrom15-to30-fthigh.SmokeyPointislocatedattheeasternendofa5-mile-longridge,thecrestofwhichisabout+310ft.Reliefinthesiteareaislow,withelevationsrangingfrom+350to+300ft.Thesiteisunderlainby20to60ftofglacialdepositsandapproximately2700ftofPaleozoic(570millionyearsto225millionyearsbeforepresent)sedimentaryrocksovercrystallinebasement.TheuppermostPaleozoicunitissandstoneofUpperOrdovician(455to430millionyearsbeforepresent)2.5-1REV.1312/96 GINNA/UFSARQueenstonformation.TheQueenstonisroughly1000-ftthickinthisareaandoverlaysapproximately80ftofOswegosandstone,approximately600ftofLorraineshales,andprobablylessthan30ftofPotsdamsandstone.Thepre-Cambriansurfaceisroughly2600-to2700-ftdeepatthesite.Theglacialdepositsincludeatleasttwotillhorizons.Thelowerunitoverliesbedrockandvariesinthicknessfrom6to25ft.Thisunitconsistsofgrayish-red,calcareous,siltyclay.Theunitispoorlysortedandcontainsnumerousstriatedandfacetedpebbles,cobbles,andboulders.Theuppertillunitisatornearthegroundsurfaceandrangesfrom7to'0ftinthickness.Thisunitiscomposedofrelativelyuniformolive-graytoyellow-brownsilty,sandyclay,withlargebouldersseveralfeetindiameter.Betweenthetwotillhorizonsisazoneoflakebeddepositsconsistingofgray,veryplasticclay.RochesterGasandElectricCorporationhasdeterminedbyregionalcorrelationthatthelowertillunitisassociatedwiththeMoodfordianglacialadvance,asubstageoftheNisconsinanStage,whichtookplaceabout22,000yearsago.ThelakebeddepositisbelievedtohavebeendepositedinthebedofLakeIroquois.Theuppertillisrelatedtoaminorglacialzeadvancementthatoccurredabout12,000yearsago.2.5.1.2SiteGeologyThemajorGinnaStationstructuresaresupportedintheQueenstonformationoratopathinlayerofnaturalorcompactedgranularsoi:lsimmediatelyabovethebedrock.TheQueenstonformation,whichisgenerallyfoundatdepthsof30to40ft,iscomposedofalternatingstrataofthinlytothicklybedded,dense,fine-grainedsandstone,siltyandsandysiltstone,withoccasionalthinbedsoffissileshale.Beddingisessentiallyhorizontalwithoccasionalczoss-beddingandshalypartings.Thecolorispredominatelyzed,butrandomgreenblotchesandlayersoccurthroughoutthedepthsexplored.Occasionalcontinuousverticaljointswerenotedintheboringsandduringsiteinspections.Subsequenttotheinitialenvironmentalstudies,sevenadditionalboringsweredrilledtodepthsbetween35and90ftinthereactorareafozasupplementaryfoundationstudy.ThelocationsoftheseboringsareshowninFigure2.5-1.ThesoilandrockencounteredinthesevenboringsweresimilarinallrespectstotheonsitematerialsdescribedinthePSAR.2.5-2REV.1312/96 GINNA/UFSARNineboringsweredrilledfortheproposedintakeanddischargetunnels.AsshowninFigure2.5-1,these~boringsextendedfromtheshoretoadistanceofabout3000ftintoLakeOntario.Priortoconstructionoftheplantfoundations,thesoiloverburden(30to40ftofglacialdrift)wasremoved.Theexposedrocksurfacewasobservedtobesimilartothatexaminedinnearbyoutcrops.Beddingwashorizontalandoccasionalcross-beddingandshalypartingswereevident.Apatternofverticaljointsoflimitedverticalextentwasevidentintheoutcroppingrock,particularlyalongthelakeshoresideoftheexcavation.Theobservedjointscontinuedtodepthsoffrom20to30ftfromthetopoftherock,butnoevidenceofmovementalongthejointswasfound.ThemajorjointsystemswerefoundtobeinaccordancewiththosetrendsreportedinthePSAR.Someminorexfoliationnotedinthebottomoftheexcavationisbelievedtohavebeencausedprimarilybytheheavy-equipmenttrafficontheexcavationfloorandthedryingeffectsofexposuretoair.Thecoresextractedinthenineboringsdrilledfortheintakestructureinvestigationwerecomparedwiththecoresofthepreviousboringsdrilledatthesite.Asexpected,therockencounteredbelowthelakewasconsistentwiththerockencounteredinonshoreborings.Theonshoreshaftandtunnelswereinspected.duringconstructionaswellasaftercompletionofthetunneling.Examinationoftheexposedrockrevealedconditionsconsistentwiththoseencounteredduringthepreviousstudies.Nozonesofdefectiverockwerefoundandnoweatheredrockwasevidentinthetunnels.Therockinbothtunnelsissound.Waterflowwaspracticallynonexistent,beingessentiallylimitedtoscatteredareasofminormoistureinfiltration.Theactualconditionsfoundinthetunnelexcavationswereinagreementwiththoseencounteredinallpreviousboringsdrigledduringtheinitialsubsurfaceinvestigationandtheothersupplementaryinvestigations.2.5.2VIBRATORYGROUNDMOTIONAseismologicalprogramwascarriedouttoprovideinformationforpredictingpossibleseismiceffectsatthesite.EstimatesofsucheffectswhicharedescribedinthissectionindicatethattheseismicdesigncriteriasetforthinSection3.7areconservative.FieldinvestigationsandpredictionsaredescribedinthePSAR,Volume1,AppendixD.2.5-3REV.1312/96 GINNA/UIiSARThesiteiswithin150milesoftheSt.LawrencevalleyareawhereearthquakesofRichtermagnitude7.0havebeenexperienced.Itiswithin50milesoftheareaaroundBuffalowhichhasexperiencedmoderateearthquakeactivityofasmallermagnitude,andwithin35milesofthefaultsystemnearAttica.HistoricalandphysicalevidencedescribedinAppendixD,Volume1,ofthePSARindicatesthatthesiteisseismologicallyquiet.2.5.2.1SeismicityThefollowingexplorationsweremadetoevaluatetheseismologicalcharacteristicsoftheGinna.site.A.AninvestigationoftheearthquakehistoryofthenortheasternUnitedStatesandeasternCanadawasusedtodevelopestimatesofthemaximumexpectedandmaximumcredibleearthquakewhichcouldaffectthesite.AllrecordedearthquakesinthisregionwithModifiedMercalliIntensityofVozgreaterwereplottedandconsidered.Figure2.5-2isanupdatedepicentralmap.Table2.5-1listsnearbyearthquakeactivityinthemid-1960s.B.Investigationsweremadeonthesiteandinthesurroundingareatosearchforanyevidenceofseismicactivitysuchaswouldbeindicatedbyfaulting.Thisinvolvedexaminationofoutcrops,includingdipandstrikemeasurements,andthedevelopmentofabedrocksurfaceprofilefromonsiteborings,probings,andashallowanddeeprefractionsurvey.C.Microtremormeasurementsofgroundmotionanddeeprefractionsurveystomeasuretheelasticpropertiesofbedrockweremadetoprovideabasisfozestimatingeffectsatthesiteofthemaximumexpectedandmaximumpotentialearthquakes.ThenortheasternUnitedStatesandeasternCanadaaremoderatelyactiveearthquakeareasasindicatedinFigure2.5-2.However,thereisnoinstrumentalorverifiablerecordofextremelylargemagnitudeshocks(aboveRichter8)andasindicatedonFigure2.5-2,thereisnorecordofdamagingearthquakeswithepicentezswithin50milesofthesite.2.5.2.2MaximumEarthquakePotentialThehistoricalrecordindicatesthemaximumearthquakestobeexpectedinthesiteregionazethefollowing:A.AshockofepicentralintensityVIII(ModifiedMezcalliScale)atadistanceofabout60miles(similartothe1929Atticashock,whichisjudgedtobelessthanRichtermagnitude6).2.5AREV.1312/96 GINNA/UFSARB.AshockofepicentralintensityVIII(Richtermagnitude5.5)atadistanceof110miles(similartothe1914Lanarkshock).C.Amajorshock(Richtermagnitude7.0)fartotheeast,nearMontreal,200ormoremilesaway.Thesemaximumexpectedeazthquakeswouldnotresultinsignificantgroundmotionatthesite.Groundaccelerationatthesiteisestimatedtobelessthan1%ofgravity.ItisjudgedthatthemaximumcredibleearthquakewouldbeoneofRichtermagnitude6.0withanepicenter30milesfromthesiteoroneofmagnitude7.0ata90-mileepicentraldistance.AproceduredevelopedbyDamesaMoore,usingtheresultsofresearchattheEarthquakeInstituteinTokyo,wasusedtoestimategroundmotionatagivenlocationiftheearthquakemagnitude,epicentraldistance,andelasticpropertiesoffoundationsoilsandrockareknown.Usingthismethodandtheassumedmaximumcredibleearthquakesdiscussedabove,maximumaccelerationonthesitewascalculatedtobe8%ofgravityforsoilsurfaceand7%forbedrocksurface.Plantstructures,systems,andcomponentsdesignatedasSeismicCategoryI(seeSection3.7)aredesignedtoremainwithinapplicablestresslimitsfortheoperating-basisearthquake(0.08g)andthesafeshutdownearthquake(0'0g).ThegroundmotionspectrumusedinthedesignareshowninFigures3.7-1and3.7-2.In1980,theNRCdevelopedsite-specificgroundresponsespectrafortheeasternUnitedStates.ThespectraestablishedgroundmotionaccelerationvaluestobeusedinstructuralanalysestodetermineseismicloadsatthoseeasternpowerplantsthatwereapartoftheNRC'sSystematicEvaluationProgram.ThegroundresponsespectrumfortheGinnasiteisshowninFigures2.5-3and3.7-3.2.5.2.3SurfaceFaulting2.5.2.3.1NearbReionalFaultinWithintheOntariolowlands,thenearestregionalfaultingistheClarendon-LindenstructurenearBatavia,NewYork.Thestructuretrendsnorth-southandisabout35mileswestofGinnaStation.Thefaultisdescribedasacomplexfaultedzonewithamajornoith-southsetofsubparallelnormalandreversefaultsthathaveacumulativedisplacementofapproximately100mwitheast-sideup(ReferenceI).DatasuggestthatthezoneiscontinuoustothenorthacrossLakeOntarioforatotallengthofasmuchas180km.2.5-5REV.1312/96 GINNA/UFSARNounequivocalevidenceofpostglacialfaultingwasfoundamong36faults,6716joints,and87pop-upsstudiedaroundtheClarendon-Lindenfaultsyst:em(ReferenceI)..Ho~ever,numerousearthquakes,includingthe1929ModifiedMercalliIntensityVIIIearthquake,haveoccurredwithinthefaultsystemnearAttica.Anumberofseismologistshaveconcludedthattheseeventsareprobablyrelatedtosolutionminingofsalt.ThepzesenceoffaultshasbeendocumentedattheNine-MilePointandFitzPatricknuclearsitesapproximately50mileseastofGinna.Thestructuresarethreewest-northweststrikinghigh-anglefaults,andseveralnorth-southstrikingthrustfaultsandfolds.Displacementsrangefrominchestoseveralfeet.SeveralofthefaultsmappedatNine-MilePointUnit2havebeenshowntohaveundergonesomemovementduringthelast10,000years.Themostrecentdisplacementsaremostlikelyassociatedwiththecomplexphenomenacausedbyglacialloadingandunloading.However,nosuchpost-Pleistocene(lessthan10millionyearsbeforepresent)faultshavebeenidentifiedatGinnaStation.AstructuralcomplexwasalsodiscoveredattheproposedNewHavensitelocatedafewmileseastofNine-MilePoint.Thesestructuresconsistofalargenortheaststrikinganticlinewithseveralassociatedfaults.Thefoldsandfaultsweredemonstratedbytheapplicanttobenoncapable(Reference2).Severalminornormalfaultswith2to15ftofdisplacementshavebeenidentifiedbetweenthesiteandnorthwardprojectionoftheClarendon-Lindenfault.Thereisnoevidencethatindicatespost-Pleistocenemovementalongthesefaults.2.5.2.3.2GinnaSiteVicinitFaultinDuringaninvestigationconductedbyRG&Ein1973foranalternatenuclearsiteadjacenttotheGinnasite(proposedSterlingPowerProject),'videnceoffaultswasfoundincoreborings.Anextensiveinvestigationprogramwascarriedout.Theinvestigationsincludedalargetrenchexcavatedacrossthefaultzone,additionalborings,petrofabricandmineralogicalanalyses,testingofsamplesfromthefaultzones,geophysicalexplorations,andsurfacegeologicalmapping.Thestudiesrevealedthatthefaultzonewascomprisedofthreedown-to-the-northeastfaultsthattrendednorth65'est.Themaximumoffsetisabout26ftwhichdecreasestoabout6fttothesoutheastneartheplant.Thefault2.5-6REV.1312/96 GINNA/UFSARzonepassesabout30ftsouthwestofthereactorcomplex.Threegeologicalreconnaissancesweremadeby.astaffgeologistatthesitetoreviewprogressoftheinvestigationsandexaminefeaturesexposedintrenchesacrossthefaultzone.Alargetrenchacrossthefaultrevealedextensivedeformationofglaciallydepositedhorizonsbuttherewasnodeformationthatwasdirectlyattributabletotectonicmovementalongthefaults.Thestrongestevidencethatthesedeformationsarenotrelatedtotectonicdisplacementonthebedrockfaultsisthepresenceofahorizontalunitatthebaseofthelowertillthatliesundisturbedacrossthesouthernmostfaultandstackingplanes(imbricatethrustsheetscausedbythesouthwardadvancementoftheglacier)thatcutacrossthefaultswithoutdisplacements.RochesterGasandElectricCorporationalsoattemptedtodeterminetheageofthefaultgougebyradiometrictechniquesbuttheresultswereunreliable.However,otherlinesofevidenceindicateamucholderageoflastmovementthanPleistocene.Thisevidenceincludesthefollowing:A.Theobservationthatthecontemporarystressfieldisdifferentfromthatinwhichthefaultoriginated.AccordingtoSbarandSykes,3thecontemporarystresspictureinwesternNewYorkisoneofnearlyhorizontalcompressionorientedinaneast-westdirection.Evidenceforthisislocalsqueezeandpop-upfeaturesandinsitustressmeasurementsintheregion.Theexistingstressfieldisnotconsistenteitherinorientationortypeofstressfieldinwhichthefaultswereformed;andthestressregimeinwhichthefaultswereformedwasessentiallynortheast-southwestandtensional.B.ThepresenceofunshearedhydrothermalcrystalswithinthefaultzonedemonstratethatfaultingpredatesthehydrothermaleventwhichdepositedthecrystalsandthiseventprobablyoccurrednolaterthantheCretaceous(65millionyearsago).AnalysescarriedoutbyconsultantstoRG&Eshowthatthemineralizationoffluidinclusionsincalcitecrystalsalongwithsulfidemineralization,particularlypyrrhotiteandmolybdenite,morethanlikelyreflecthydrothermalmineralizationattemperaturesofatleast225'Cto300'C.Thelastknowntectonicenvironmentwithinwhichsuchconditionscouldhavedevelopedintheareawasabout65millionyearsago.C.Norecordedhistoricearthquakehasoccurredwhichcouldbeassociatedwiththefaults.Ztisconcludedthatthefaultsatleastpredatethelatestmajorglacialadvancewhichoccurredabout22,000yearsago.Theweightofalltheavailableinformationindicatesthatthefaultsaremorethan65millionyearsold.2.5-7REV.1312/96 GINNA/UFSARAdditionalinformationpertainingtotheevaluationdiscussedabovecanbefoundintheAdditionalReferencesfozSection2.5.2.5.2.3.3GinnaExcavationConstructionphotographsoftheGinnaexcavationwerealsoexaminedbytheNRCstaff.Therewereamplefair-qualityphotostocovermostofthewallsofthemajorexcavation.Bedrockbeddingcouldbeclearlyseeninmanyofthephotographsand,althoughtherearenumerousjoints,therewasnoindicationofdisplacement.ItisconcludedthatthereisnofaultingdirectlybeneaththemajorSeismicCategoryI'structuresoftheplant.2.5.3STABILITYOFSLOPES2.5.3.1GeneralThistopicpertainstothestabilityofallslopes,whosefailurecouldadverselyaffectthesafetyoftheplant.Thescopeofthetopicdiscussesthefollowingsubjects:(1)slopecharacteristics,(2)designcriteriaandanalyses,(3)resultsoffieldandlaboratorytests,(4)excavation,backfill,andearthworkinslopes,(5)liquefactionpotentialaffectingslopes,and(6)instrumentationandperformancemonitoring.Theapplicablerulesandbasicacceptancecriteriapertinenttothistopicarethefollowing:A.10CFR50,AppendixA:GeneralDesignCriteria1,2,and4.B.10CFR100,AppendixA.C.RegulatoryGuides.(1)RegulatoryGuide1.132,SiteInvestigationsforFoundationsofNuclearPowerPlants.(2)RegulatoryGuide1.138,LaboratoryInvestigationsofSoilsforEngineeringAnalysisandDesignofNuclearPowerPlants.2.5.3.2OnsiteSlopesTwoonsiteslopes,whosefailuresmaybeofsafetyconcern,wereidentifiedbyRG&E(Reference4).Thefirstslopeislocatedabout200ftnorthwestoftheturbinebuildingwhilethesecondslopeislocatedeastofthescreenhouse.Bothslopeswereexcavatedfromtheoriginalgroundelevationofabout270ft2.5-8REV.1312/96 GINNA/UFSARdowntoelevation255ftinsiltyclaysoilandweregradedatapproximately7.5horizontalto1vertical.Thesubsurfaceexplorationprogramof1964revealedthatthebedrockofredsiltstonewasatdepthsrangingfrom30to40ftbelowtheoriginalgroundsurface(Reference5).Theoverburdensoilsconsistedofreddish-brownclayeysilt,siltyclay,andsandandgravellayers.Thethicknessesandtheengineeringpropertiesofthosesoilsvariedconsiderablythroughoutthesite.Oneboring(No.1)wasdrilledatthefirstslope,andtwoborings(No.3andNo.119)weredrilledatthesecondslope.Thelaboratorytestsperformedin1964wereverylimitedandtheshearstrengthsofthesoftclayeysoilvariedinawiderange.Inordertoassessthestabilityofthoseslopes,assumptionshavebeenmadeaboutthesubsurfaceconditionsandthesoilparameters.ThesectionalprofileofthefirstslopewasassumedtoberepresentedbyboringNo.1,thesecondslopebyboringNo.3.Conservativesoilparametersobtainedfromthe1964investigationwereusedintheslopestabilityanalyses.2.5.3.3StabilityAnalysesStabilityanalyses,bothstaticandpseudostaticwithearthquakeload,wereperformedbytheNRCstaffusingacommerciallyavailablecomputerprogram,MCAUTO's"Slope"program.MaterialpropertieswhichcontrolledthestabilityanalysesareshowninTable2.5-2.TheresultsoftheslopeanalysesperformedbytheNRCstaffduringtheSystematicEvaluationProgramshowthatthefactorsofsafetyagainstslopefailureunderbothstaticandearthquakeloadingconditionsazelessthanunity,indicatingthattheseslopesarenotstableandthatfailurewouldtakeplacealonganarcofradiusabout175ft.TheNRCstaffbelievesthattheshearstrengthoftheinsitusiltyclaysoilshouldhavegainedstrengthbecauseofconsolidationoftheclayeysoil,butthereisnonewdataabouttheinsitusoilconditionsandstrengths,soreasonablyconservativesoildatahasbeenusedbythestaffintheanalyses.2.5.3'FailureEvaluationSincetheslopeswerenotdeterminedtobestable,theimpactoftheirfailureswasfurtherevaluatedbytheNRCstaff.Themostcriticalfailure2.5-9REV.1312/96 GINNA/UFSARarc,ascalculated,wouldintercepttheslopeatelevation276ft,adjacenttothecrestandatelevation257ft,adjacenttothetoe.Thelateralspreadoftheslopefailureadjacenttothetoeisestimatedbythestafftobesomewherearound8ft,basedonpostfailureequilibrium.Atthefirstslope,northwestoftheturbinebuilding,thereisnostructurenorequipmentlocatedwithinoradjacent,totheslopeexceptaroadway.Therefore,thefailureofthatslopewouldnotposeanysafetyconcernbutmightclosetheroad.Thesecondslope,eastofthescreenhouse,issufficientlyremovedfromanyrequiredsafety-relatedequipment.Thus,itsfailurewouldnotbeofsafetyconcern.2.'5-10REV.1312/96 REFERENCESFORSECTION2.51.'.H.Fakundiny,P.W.Pomeroy,J.W.Pferd,T.A.Nowak,Jr.,andJ.C.Meyer,StructuralInstabilityFeaturesintheVicinityoftheClarendonLindenFaultSystem,WesternNewYorkandLakeOntario,NewYorkStateMuseum,1978.2.NewYorkStateElectricandGasCorporation,PreliminarySafetyAnalysisReportNewHavenNuclearSite,Appendix2.5,1979.3.M.L.SbarandL.R.Sykes,"ContemporaryCompressiveStressandSeismicityinEasternNorthAmerica:AnExampleofIntra-plateTectonics,"GeologicalSocietyofAmericaBulletin,Vol.84,pp.1861-1882,1973.4.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicII-4',SettlementofFoundationsandBuriedEquipment,datedJune30,1981.5.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicII-4.D,StabilityofSlopesandSEPII-4.F,SettlementofFoundationsandBuriedEquipment,datedJanuary15,1982.2.5-11REV.1312/96 GINNA/UFSARADDITIONALREFERENCESFORSECTION2.5A.1A.2A.3A.4A.5A.6A.7A.8A.9Dames&Moore,Nine-MilePointNuclearStation,Unit2GeologicInvestigations,fozNiagaraMohawkPowerCorporation,1978.Dames&Moore,GeologicandGeophysicalInvestigationsGinnaSite,Ontario,NewYork,forRochesterGasandElectricCorporation,1974.DamesaMoore,SiteEvaluationStudy,ProposedBzookwoodNuclearPowerPlant,Ontario,NewYork,RochesterGasandElectricCorporation,1965.LetterfromJ.C.Tilson,EnvironmentalScienceServicesAdministration,toH.L.Price,AEC,

Subject:

1966ReportontheSeismicityoftheRochester,NewYorkArea,datedFebruary16,1966.N.M.Fenneman,PhysiographyofEasternUnitedStates,McGraw-HillBookCo.,NewYork,1938.R.F.Flint,GlacialandQuaternaryGeology,JohnWileyandSons,Inc.,NewYork,1971.PowerAuthorityStateofNewYork,JamesA.FitzPatrickNuclearPowerPlantFinalSafetyAnalysisReport,1972.StoneandWebster,ReportofFaultInvestigationsatFitzPatrickNuclearPowerPlant,forPowerAuthorityoftheStateofNewYork,1978.LetterfromtheActingDirector,U.S.GeologicalSurvey,toH.L.Price,AEC,

Subject:

GeologyandHydrologyoftheProposedA.10BrookwoodNuclearStationNo.1Site,WayneCounty,NewYork,datedFebruary28,1966.2,5-12REV.1312/96 GINNA/UFSARTABLE2.5-1EARTHQUAKEACTIVITYNEARATTICALNEWYORKYeazDate1mt~itz1965July1606:001965August2720:57'1966January108:231967July1314:08IV-VREV.1312/96 GINNA/UIiSARTABLE2.5-2MATERIALPROPERTIESUSEDINTHENRCSTAFFANALYSISOFSLOPESTABILITYSo@i~IeezNumberSo+1Tl~eThicknessB~eIoofoofSlcfeTotalUnit~eicrlxt~(ef)Cohesion~(sf)A~aleofZnteralZriction~(c(eees)1Reddish-brownclayeysilt12107130202Brownish-claysiltyclay24108120-2503Redfinesandandgravel130Bedrock(siltstone)NANANANANote:Ground-waterlevelwasassumedatelevation245ftabovesealevel(10ftbelowthetopoftheslopes).Theearthquakeloadusedintheanalysisisequaltothesafeshutdownearthquake,0.2g,forGinnaStation.REV.1312/96 GINNANFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSecti.onTi.t'ZePacae3.1CONFORMANCEWITHNRCGENERALDESIGNCRITERIA3.1-13.1.13.1.1.13.1.1.1.13.1.1.1.23.1.1.1.33.1.1.1.43.1.1.1.53.1.1.23.1.1.2.13.1.1.2.23.1.1.2.33.1.1.2.43.1.1.2.53.1.1.33.1.1.3.13.1.1.3.23.1.1.3.33.1.1.3.43.1.1.3.53.1.1.3.63.1.1.3.73.1.1.3.83.1.1.43.1.1.4.13.1.1.4.23.1.1.4.2.13.1.1.4.2.23.1.1.4.33.1.1.4.43.1.1.4.53.1.1.4.63.1.1.4.73.1.1.4.83.1.1.53.1.1.5.13.1.1.5.23.1.1.5.33.1.1.5.43.1.1.5.53.1.1.5.6nSystemsSystemsnSystemsAtomicIndustrialForumDesignCriteriaOverallPlantRequirementsQualityStandardsPerformanceStandardsFireProtectionSharingofSystemsRecordsRequirementsProtectionbyMultipleFissionProductBarriersReactorCoreDesignSuppressionofPowerOscillationsOverallPowerCoefficientReactorCoolantPrcssureBoundaryReactorContainmcntNuclearandRadiationControlsControlRoomInstrumentationandControlsSystemsFissionProcessMonitorsandControlsCoreProtectionSystemsEngineeredSafetyFeaturesProtectionSystemsMonitoringReactorCoolantLeakageMonitoringRadioactivityReleasesMonitoringFuelandWasteStorageReliabilityandTcstabilityofProtectionSystemsProtectionSystemsReliabilityProtectionSystemsRedundancyandIndepcndenecReactorTripCircuitsEngineeredSafetyFeaturesInitiationCircuitsSingle-FailureDefinition(Category.B)SeparationofProtectionandControlInstrumentatioProtectionAgainstMultipleDisabilityforProtectionEmergencyPowerforProtectionSystemsDemonstrationofFunctionalOperabilityofProtectioProtectionSystemsFailureAnalysisDesignReactivityControlRedundancyofReactivityControlReactivityMODE3(HotShutdown)CapabilityReactivityShutdownCapabilityReactivityHold-DownCapabilityReactivityControlSystemsMalfunctionMaximumReactivityWorthofControlRods3.1-13.1-23.1-23.1-33.1<3.1<3.1-53.1-63.1-63.143.1-73.1-73.1-83.1-113.1-113.1-113.1-123.1-133.1-133.1-153.1-153.1-163.1-173.1-173.1-183.1-183.1-193.1-193.1-203.1-203.1-203.1-203.1-213.1-243.1-243.1-243.1-253.1-253.1-263.1-26REV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTS~EQUIPMENTgANDSYSTEMSTABLEOFCONTENTSSectionPihieP~cCe3.1.1.63.1.1.6.13.1.1.6.23.1.1.6.33.1.1.6.43.1.1.73.1.1.7.13.1.1.7.23.1.1.7.33.1.1.7.43.1.1.7.53.1.1.7.63.1.1.7.73.1.1.7.83.1.1.7.93.1.1.7.103.1.1.7.113.1.1.7.123.1.1.7.133.1.1.7.143.1.1.7.153.1.1.7.163.1.1.7.173.1.1.7.183.1.1.7.193.1.1.7.203.1.1.7.213.1.1.7.223.1:1.7.233.1.1.7.243.1.1.7.253.1.1.7.263.1.1.7.273.1.1.7.283.1.1.7.293.1.1.83.1.1.8.13.1.1.8.2ReactorCoolantPrcssureBoundaryReactorCoolantPressureBoundaryCapabilityReactorCoolantPressureBoundaryRapidPropagationFailurePreventionReactorCoolantPressureBoundaryBrittleFracturePreventionReactorCoolantPrcssureBoundarySurveillanceEngineeredSafetyFeaturesEngineeredSafetyFeaturesBasisforDesignReliabilityandTestabilityofEngineeredSafetyFeaturesEmergencyPowerMissileProtectionEngineeredSafetyFeaturesPerformanceCapabilityEngineeredSafetyFeaturesComponentsCapabilityAccidentAggravationPreventionEmergencyCoreCoolingSystem(ECCS)CapabilityInspectionofEmergencyCoreCoolingSystem(ECCS)TestingofEmergencyCoreCoolingSystem(ECCS)ComponentsTestingofEmergencyCoreCoolingSystem(ECCS)TestingofOperationalSequenceofEmergencyCoreCoolingSystem(ECCS)ContainmentDesignBasisNilDuctilityTransitionTemperatureRequirementforContainmentMaterialReactorCoolantPressureBoundaryOutsideContainmentContainmcntHeatRemovalSystemsContainmentIsolationValvesInitialLcakagcRateTestingofContainmentPeriodicContainmentLeakageRateTestingProvisionsforTestingofPcnetrationsProvisionsforTestingofIsolationValvesInspectionofContainmcntPrcssure-ReducingSystemsTestingofContainmcntPrcssure-ReducingSystemsComponentsTestingofContainmentSpraySystemsTestingofOperationalSequenceofContainmentPressure-ReducingSystemsInspectionofAirCleanupSystemsTestingofAirCleanupSystemsComponentsTestingAirCleanupSystemTestingofOperationalSequenceofAirCleanupSystemsFuelandWasteStorageSystemsPreventionofFuelStorageCriticalityFuelandWasteStorageDecayHeat3.1-283.1-283.1-293.1-303.1-303.1-323.1-323.1-333.1-353.1-363.1-373.1-373.1-383.1-383.1-39'3.1-393.1-403.1403.1-403.1-413.1-413.1-413.1-423.1<23.1-433.1-453.1-453.1-463.1463.1463.1-463.1<73.1-473.1473.1<83.1-493.1<93.1-493-1IREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionZitieP~ae3.1.1.8.33.1.1.8.43.1.1.93.1.23.1.2.13.1.2.1.13.1.2.1.23.1.2.1.33.1.2.1.43.1.2.1.53.1.2.23.1.2.2.13.1.2.2.23.1.2.2.33.1.2.2.43.1.2.2.53.1.2.2.63.1.2.2.73.1.2.2.83.1.2.2.93.1.2.2.103.1.2.33.1.2.3:13.1.2.3.23.1.2.3.33.1.2.3.43.1.2.3.53.1.2.3.63.1.2.3.73.1.2.3.83.1.2.3.9FuelandWasteStorageRadiationShieldingProtectionAgainstRadioactivityReleaseFromSpentFuelandWasteStorageControlofReleasesofRadioactivitytothcEnvironmentGeneralDesignCriteriaOverallRequirementsGeneralDesignCriterion1-QualityStandardsandRecordsGeneralDesignCriterion2-DesignBasesforProtectionAgainstNaturalPhenomenaGeneralDesignCriterion3-FireProtectionGeneralDesignCriterion4-EnvironmentalandMissileDesignBasesGeneralDesignCriterion5-SharingofStructures,Systems,andComponentsProtectionbyMultipleFissionProductBarriersGeneralDesignCriterion10-ReactorDesignGeneralDesignCriterion11-ReactorInherentProtection.GeneralDesignCriterion12-SuppressionofReactorPowerOscillationsGeneralDesignCriterion13-InstrumentationandControlGeneralDesignCriterion14-ReactorCoolantPrcssureBoundaryGeneralDesignCriterion15-ReactorCoolantSystemDesignGeneralDesignCriterion16-ContainmcntDesignGeneralDesignCriterion17-ElectricalPowerSystemsGeneralDesignCriterion18-InspectionandTestingofElectricalPowerSystemsGeneralDesignCriterion19-ControlRoomProtectionandReactivityControlSystemsGeneralDesignCriterion20-ProtectionSystemsFunctionsGeneralDesignCriterion21-ProtectionSystemReliabilityandTestabilityGeneralDesignCriterion22-ProtectionSystemIndependenceGeneralDesignCriterion23-ProtectionSystemFailureModesGeneralDesignCriterion24-SeparationofProtectionandControlSystemsGeneralDesignCriterion25-ProtectionSystemRequirementsforReactivityControlMalfunctionsGeneralDesignCriterion26-ReactivityControlSystemRedundancyandCapabilityGeneralDesignCriterion27-CombinedReactivityControlSystemCapabilityGeneralDesignCriterion28-ReactivityLimits3.1-503.1-503.1-513.1-543.1-553.1-553.1-563.1-573.1-583.1-583.1-593.1-593.1-593.1-603.1-603.1-613.1-613.1423.1-633.1-663.1463.1483.1483.1483.1493.1-703.1-703.1-713.1-713.1-723.1-723hlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTi'tiePacCe3.1.2.3.103.1.2.43.1.2.4.13.1.2.4.23.1.2.4.33.1.2.4.43.1.2.4.53.1.2.4.63.1.2.4.73.1.2.4.83.1.2.4.93.1.2.4.103.1.2.4.113.1.2.4.123.1.2.4.133.1.2.4.143.1.2.4.153.1.2.4.163.1.2.4.173.1.2.53.1.2.5.13.1.2.5.23.1.2.5.33.1.2.5.43.1.2.5.53.1.2.5.63.1.2.5.7GeneralDesignCriterion29-ProtectionAgainstAnticipatedOperationalOccurrencesFluidSystemsGeneralDesignCriterion30-QualityofReactorCoolantPressureBoundaryGeneralDesignCriterion31-FracturePreventionofReactorCoolantPressureBoundaryGeneralDesignCriterion32-InspectionofReactorCoolantPressureBoundaryGeneralDesignCriterion33-ReactorCoolantMakeupGeneralDesignCriterion34-ResidualHeatRemovalGeneralDesignCriterion35-EmergencyCoreCoolingGeneralDesignCriterion36-InspectionofEmergencyCoreCoolingSystem(ECCS)GcncralDesignCriterion37-TestingofEmergencyCoreCoolingSystem(ECCS)GeneralDesignCriterion38-ContainmcntHeatRemovalGeneralDesignCriterion39-InspectionofContainmcntHeatRemovalSystemGeneralDesignCriterion40-TestingofContainmcntHeatRemovalSystemGeneralDesignCriterion41-ContainmcntAtmosphereCleanupGeneralDesignCriterion42-InspectionofContainmentAtmosphereCleanupSystemsGeneralDesignCriterion43-TestingofContainmentAtmosphereCleanupSystemsGcncralDesignCriterion44-CoolingWaterGeneralDesignCriterion45-InspectionofCoolingWaterSystemGeneralDesignCriterion46-TestingofCoolingWaterSystemReactorContainmentGeneralDesignCriterion50-ContainmentDesignBasisGeneralDesignCriterion51-FracturePrcvcntionofContainmentPressureBoundaryGeneralDesignCriterion52-CapabilityforContainmentLeakageRateTestingGeneralDesignCriterion53-ProvisionsforContainmentTestingandInspectionGeneralDesignCriterion54-PipingSystemsPenetratingContainmentGeneralDesignCriterion55-ReactorCoolantPrcssureBoundaryPenetratingContainmcntGeneralDesignCriterion56-PrimaryContainmentIsolation3.1-733.1-743.1-743.1-763.1-773.1-73.1-783.1-793.1-793.1-803.1-803.1-813.1-813.1-823.1-833.1-833.1-843.1-863.1-863.1-873.1-873.1-883.1-883.1-893.1-89.3.1-93.1-903-ivREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTS~EQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionTitlePacCe3.1.2.5.83.1.2.63.1.2.6.13.1.2.6.23.1.2.6.33.1.2.6.43.1.2.6.5GeneralDesignCriterion57-ClosedSystemIsolationValvesFuelandRadioactivityControlGeneralDesignCriterion60-ControlofReleasesofRadioactiveMaterialstothcEnvironmentGeneralDesignCriterion61-FuelStorageandHandlingandRadioactivityControGeneralDesignCriterion62-PreventionofCriticalityinFuelStorageandHandlingGeneralDesignCriterion63-MonitoringFuelandWasteStorageGeneralDesignCriterion64-MonitoringRadioactivityReleases3.1-913.1-923.1-923.1-923.1-933.1-933.1-943.23.2.2.13.2.2.1.13.2.2.1.23.2.2.1.33.2.2.1.43.2.2.1.53.2.2.1.63.2.2.23.2.2.2.13.2.2.2.23.2.2.2.33.2.2.33.2.2.43.2.2.5CLASSZFZCATZONOFSTRUCTURES~COMPONENTSIANDSYSTEMSIntroductionSystematicEvaluationProgramEvaluationFractureToughnessPressurizerAccumulatorsComponentCoolingWaterPumpsServiceWaterPumpsMainStcamPipingandValvesFecdwaterPipingandValvesRadiographyRcquircmentsClass2PressureVesselsClass1and2WeldedJointsMainSteamandFeedivaterPipingValveDesignPumpDesignStorageTankDesign3.2-13.2-13.2-23.2-33.2-33.2-43.2-43.2-53.2-53.2-53.243.2-63.2-73.2-83.2-83.2-93.2-10RefercnccsforSection3.23.2-113.33.3.13.3.23.3.2.13.3.2.1.13.3.2.1.2WINDANDTORNADOLOADZNGSIntroductionStructuralUpgradeProgramEvaluationStructuralEvaluationApproachRequirementsStructuralEvaluationProcess3.3-13.3-13.3-13.3-13.3-13.3-23-vREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSjEQUIPMENTSANDSYSTEMSTABLEOFCONTENTSSeatioai'itieP~cce3.3.2.1.33.3.2.1.43.3.2.1.53.3.2.1.63.3.2.23.3.2.2.13.3.2.2.23.3.2.2.33.3.2.2.43.3.2.2.4.13.3.2.2.4.23.3.2.2.4.33.3.2.33.3.2.3.13.3.2.3.1.13.3.2.3.1.23.3.2.3.1.33.3.2.3.1.43.3.2.3.1.53.3.2.3.1.63.3.2.3.23.3.2.3.33.3.2.3.43.3.2.3.4.13.3.2.3.4.23.3.2.3.4.33.3.33.3.3.13.3.3.23.3.3.2.13.3.3.2.23.3.3.33.3.3.3.13.3.3.3.23.3.3.3.33.3.3.3.3.13.3.3.3.3.23.3.3.3.3.33.3.3.3.43.3.3.3.53.3.3.3.63.3.3.3.7StructuralEvaluationComputerProgramInputLoadCriteriaGeneralAssumptionsLoadCombinationsandAcceptanceCriteriaStructuralEvaluationPrimaryMemberEvaluationSecondaryMemberEvaluationConnectionsandAnchoragesEvaluationExteriorShellEvaluationSidingConcreteMasonryBlockWallsArchitecturalItemsResultsoftheStructuralEvaluationPrimaryMembersGeneralSevereEnvironmentalConditionsExtrcmeSnowLoadCondition132-mphTornado188-mphTornado250-mphTornadoSecondaryMembersConnectionsandAnchoragesExteriorShellMetalSidingRoofDeckingBlockWallsTornadoMissilesandSafeShutdownApproachBackgroundShutdownMethodologyAssumptionsShutdownDetailsRequiredComponentsRefuelingWaterStorageTankElectricalBuses14,17,and18MainSteamLinesAandB,andMainFeedwaterLinesAandBResults-SteelRodResults-UtilityPoleFailureofBlockWallsSurfaceofthcSpentFuelPoolDieselGeneratorsandTheirFuelSupplyRelayRoomServiceWaterSystem3.3-33.3-33.3-53.3-63.3-83.3-83.3-93.3-93:3-103.3-103.3-113.3-113.3-133.3-13.3.3-133.3-143.3-143.3-143.3-153.3-153.3-163.3-163.3-17.3.3-173.3-173.3-173.3-193.3-193.3-193.3-193.3-203.3-223.3-223.3-223.3-233.3-233.3-233.3-243.3-243.3-253.3-253.3-263-vlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTS"Section2'it1ePacye3.3.3.3.83.3.3.3.93.3.3.3.103.3.43.3.4.13.3.4.23.3.4.33.3.4.43.3.53.3.5.13.3.5.23.3.5.2.13.3.5.2.23.3.5.33.3.5.3.13.3.5.3.23.3.5.43.3.5.4.13.3.5.4.23.3.5.4.33.3;5.4.43.3.5.53.3.5.63.3.5.7StandbyAuxiliaryFeedwatcrSystemInstrumentationCableTunnelDesignTornadoIntroductionSafetyAssessmentReservePlantCapacitySystemReserveCapacityStructuralUpgradeProgramIntroductionCriteriaChangesFirstStageReviewSecondStageReviewStabilityEvaluationPrimaryMembersConnectionsandAnchoragesNRCTcchnicalEvaluationReport(SEPTopic111-2)OpenItemsEffcctivcTornadoLoadingsStructuralLoadingsStructuralAcceptanceCriteriaStructuralSystemsSEPTopic111-7.B,Loads,LoadCombinations,andDesignCriteriaDieselGeneratorComponentOperabilityConclusionsReferencesforSection3.33.3-263.3-273.3-273.3-293.3-293.3-293.3-303.3-323.3-353.3-353.3-353.3-363.3-363.3-393.3-393.3-393.3413.3-413.3A23.3423.3A33.3-433.3453.3463.3483.43.4.13.4.1.13.4.1.1.13.4.1.1.23.4.1.1.33.4.1.23.4.23.4.3WATERLEVEL(FLOOD)DESIGNFloodProtectionFloodProtectionMeasuresforSeismicCategoryIStructuresIntroductionLakeOntarioFloodProtectionDeerCreekFloodProtectionPermanentDewateringSystemFloodingDuetoFailureofTanksRoofDrainageRcfcrenccsforSection3.43.4-13.4-13.4-13.4-13.4-13.4-23.4-33.4-33.4A3.4W3vllREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESJCOMPONENTSIEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectioni'i81eP~ae3.53.5.13.5.1.13.5.1.1.13.5.1.1.23.5.1.23.5.1.2.13.5.1.2.23.5.1.2.33.5.1.33.5.1.3.13.5.1.3.1.13.5.1.3.1.23.5.1.3.1.33.5.1.3.1.4.3.5.1.3.1.53.5.1.3.1.63.5.1.3.1.73.5.1.3.1.83.5.1.3.1.93.5.1.3.1.103.5.1.3.1.113.5.1.3.1.123.5.1.3.1.133.5.1.3.1.143.5.1.3.23.5;1.3.2.13.5.1.3.2.23.5.1.3.2.33.5.1.3.2.43.5.1.3.2.53.5.1.3.33.5.1.3.3.13.5.1.3.3.23.5.1.3.3.33.5.1.3.3.43.5.1.3.3.53.5.23.5.2.13.5.2.23.5.2.2.13.5.2.2.2MZSSZLEPROTECTZONInternallyGeneratedMissilesIntroductionDesignCriteriaSystematicEvaluationProgramTurbineMissilesIntroductionTurbineInspectionProgramSystematicEvaluationProgramTopicIII-4.BEII'ectsofInternallyGeneratedMissilesonSystemsandEquipmcntSystemsNccdcdtoPerformSafetyFunctionsReactorCoolantSystemEmergencyCoreCoolingSystem(ECCS)ContainmentHeatRemovalandAtmosphereCleanupSystemsChemicalandVolumeControlSystemResidualHeatRemovalSystemComponentCoolingWaterSystemServiceWaterSystemDiesel-GeneratorAuxiliarySystemsMainSteamSystemFcedwaterandCondensateSystemsAuxiliaryFccdwaterSystemStandbyAuxiliaryFcedwaterSystemVentilationSystemsforVitalAreasCombustibleGasControlSystemSystemsWhoseFailureMayResultinActivityReleaseSpentFuelPoolCoolingSystemSamplingSystemWasteDisposalSystemContainmcntShutdownPurgeSystemInstrumentandServiceAirSystemsElectricalSystemsDieselGeneratorsStationBatteries480-VoltSwitchgcar,ControlRoomCableSpreading/RelayRoomExternallyGcncratcdMissilesTornadoMissilesSiteProximityMissilesDesignCriteriaNearbyHazardousActivities3.5-13.5-13.5-13.5-13.5-13.543.5<3.543.5-53.5-73.5-73.5-73.5-83.5-103.5-113.5-123.5-14'.5-143.5-153.5-163.5-163.5-173.5-173.5-183.5-193.5-193.5-193.5-193.5-203.5-203.5-203.5-213.5-213.5-213.5-213.5-223.5-223.5-233.5-233.5-243.5-243.5-243-VillREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSgEQUIPMENT/ANDSYSTEMSTABLEOFCONTENTSSectionTitIePacCe3.5.2.2.3AircraAHazards3.5-24ReferencesforSection3.53.5-263.63.6.13.6.1.13.6.1.1.13.6.1.1.23.6.1.1.33.6.1.23.6.1.33.6.1.3.13.6.1.3.1.13.6.1.3.1.23.6.1.3.1.33.6.1.3.23.6.1.3.2.13.6.1.3.2.23.6.1.3.2.33.6.1.3.2.43.6.1.3.2.53.6.1.3.2.63.6.1.3.2.73.6.1.3.2.83.6.1.3.2.93.6.1.3.2.103.6.1.3.2.113.6.1.3.2.123.6.1.3.2.133.6.1.3.2.143.6.1.3.2.153.6.1.3.2.163.6.23.6.2.13.6.2.1.13.6.2.1.23.6.2.2PROTECTIONAGAINSTTHEDYNAMICEFFECTSASSOCIATEDWITHTHEPOSTULATEDRUPTUREOFPIPINGPostulatedPipingFailuresinFluidSystemsInsideContainmcntEvaluationProcedurePipeSelectionEffects-OrientedEvaluationMechanisticEvaluationRequiredEquipmentSafetyAnalysisSingle-FailureConsiderationsIntroductionContainmentFanCoolersLow-PrcssureSafetyInjectionIsolationValvesHigh-EnergyLineBrcakEffectsIntroductionAlternateChargingResidualHeatRemovalPumpSuctionReactorCoolantPumpSeal-WatertoSealsLetdownLineChargingLineStcam-GeneratorBlowdownLinesMainStcamandFccdwatcrLinesResidualHeatRemovalPumpDischargeLineStandbyAuxiliaryFeedwatcrLinesAccumulatorLinesandBranchLinesAuxiliarySprayLineReactorCoolantSystemPressurizerSurgeLincPressurizerSprayLinesPressurizerSafetyandReliefLinesPostulatedPipingFailuresinFluidSystemsOutsideContainmentIntroductionandSummaryInitialEvaluationSystematicEvaluationProgramReevaluationEvaluationProcedure3.6-13.6-23.6-23.6-23.6-23.6-33.6-33.6-43.643.643.6-53.6-53.6-63.643.6-63.6-73.6-73.6-83.6-93.6-123.6-123.6-163.6-173.6-173.6-203.6-203.6-223.6-223.6-233.6-253.6-253.6-253.6-263.6-293ixREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESiCOMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionTitleP~ae3.6.2.2.13.6.2.2.23.6.2.33.6.2.3.13.6.2.3.23.6.2.3.2.13.6.2.3.2.23.6.2.3.2.33.6.2.3.2.43.6.2.3.2.53.6.2.43.6.2.4.13.6.2.4.23.6.2.4.33.6.2.4.43.6.2.4.53.6.2.4.5.13.6.2.4.5.23.6.2.4.63.6.2.4.6.13.6.2.4.6.23.6.2.4.73.6.2.4.7.13.6.2.4.7.23.6.2.4.83.6.2.4.8.13.6.2.4.8.23.6.2.53.6.2.5.13.6.2.5.1.13.6.2.5.1.23.6.2.5.1.33.6.2.5.1.43.6.2.5.1.53.6.2.5.1.63.6.2.5.1.73.6.2.5.1.83.6.2.5.23.6.2.5.2.1InitialEvaluationSystematicEvaluationProgramReevaluationAnalysisCriteriaDecember18,1972,AECLetterEvaluationCriteriaSystematicEvaluationProgramCriteriaHigh-EnergyFluidSystemsPipingModerate-EnergyFluidSystemPipingTypeofBreaksandLeakageCracksinFluidSystemPipingAssumptionsEffectsofPipingFailureAnalysisinResponsetoDecember18,1972,AECLetterRuptureLoadAnalysisMainSteamSystemLoadAnalysisFeedwatcrSystemLoadAnalysisJctImpingementLoadAnalysisPipeWhipAnalysisforMainSteamandFccdwatcrPipingAnalyticalMethodsResultsofAnalysisBlowdownAnalysisMainStcamBlowdownAnalysisFeedwaterBlowdownAnalysisCompartmentPressurizationAnalysisMainSteamLineRupturesBuildingPressurizationforaBranchLineRuptureFloodingAnalysisIntcrmcdiateBuildingFloodingScreenHouseandTurbineBuildingFloodingSystematicEvaluationProgramAnalysisZoneReevaluationPerformedasPartofthcSystematicEvaluationProgramReviewScreenHouseIntermediateBuildingTurbineBuildingMainStcamandMainFecdwaterLineBreaksStructuralAnalysisoftheTurbineBuildingforPressurizationBatteryRoom/MechanicalEquipmentRoomFloodingAuxiliaryFccdhvatcrLincBreaksonthe253-FtElevationoftheIntermediateBuildingRelayRoomandAirHandlingRoomAuxiliaryBuildingMainSteamSafetyandReliefValvesPipeFailuresintheIntermediateBuilding3.6-293.6-303.6-323.6-323.6-323.6-333.6-353.6-363.6-383.6-383.6-413.6-413.6-413.6A23.6-423.642.3.6-423.6433.6-443.6443.6<53.6463.6463.6-463.6-473.6473.6483.6-503.6-50.3.6-503.6-513.6-533.6-543.6-583.6-583.6-583.6-593.6413.6-613-xREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionFille.PacCe3.6.2.5.2.23.6.2.5.2.33.6.2.5.2.4PipeFailuresintheTurbineBuildingDecayHeatRemovalFollowingBlowdownfromBothSteamGeneratorsConclusions3.6413.6423.643RcfercnccsforSection3.63.6-643.73.7.13.7.1.13.7.1.1.13.7.1.1.23.7.1.1.2.13.7.1.1.2.23.7.1.23.7.1.33.7.1.43.7.1.53.7.23.7.2.13.7.2.1.13.7.2.1.23.7.2.23.7.2.33.7.2.43.7.2.53.7.2.63.7.2.73.7.2.83.7.2.93.7.33.7.3.13.7.3.1.13.7.3.1.1.13.7.3.1.1.23.7.3.1.1.33.7.3.1.1.43.7.3.1.1.53.7.3.1.1.6SEISMICDESIGNSeismicInputIntroductionOriginalSeismicClassificationSeismicReevaluationScopeofReevaluationReevaluationCriteriaDesignResponseSpectraDesignTime-HistoryCriticalDampingValuesSupportingMediaforSeismicCategoryIStructuresSeismicSystemAnalysisSeismicAnalysisMethodsOriginalSeismicAnalysisSeismicReevaluationNaturalFrequenciesandResponseLoadsProcedureUsedforMathematicalModelingSoil-StructureInteractionDevelopmentofFloorResponseSpectraCombinationofEarthquakeDirectionalComponentsCombinationofModalResponsesInteractionofNonseismicStructureswithSeismicCategoryIStructuresUseofConstantVerticalStaticFactorsSeismicSubsystemAnalysisSeismicAnalysisMethodsOriginalDesignPipingandTanksStcamGeneratorControlRodDriveMechanismsReactorInternalsReactorVcssclPressurizer3.7-13.7-13.7-13.7-13.7-23.7-23.7-33.7A3.7-53.7-53.743.7-83.7-83.7-83.7-103.7-113.7-103.7-113.7-123.7-123.7-123.7-133.7-143.7-163.7-163.7-163.7-163.7-173.7-183.7-18.3.7-193.7-193-xlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTSgEQUIPMENTiANDSYSTEMSTABLEOFCONTENTSSects.one1e.Pacae3.7.3.1.23.7:3.23.7.3.33.7.3.43.7.3.53.7.3.63.7.3.6.13.7.3.6.23.7.3.6.33.7.3.6.3.13.7.3.6.3.23.7.3.6.3.33.7.3.73.7.3.7.13.7.3.7.23.7.3.7.33.7.3.7.3.13.7.3.7.3.23.7.3.7.3.33.7.3.7.3.43.7.3.7.3.53.7.3.7.3.63.7.3.7.3.73.7.3.7.3.83.7.3.7.3.93.7.3.7.3.103.7.3.7.3.113.7.3.7.3.123.7.3.7.43.7.3.7.53.7.3.7.5.13.7.3.7.5.23.7.3.7.5.33.7.3.7.5.43.7.3.7.5.53.7.3.7.5.63.7.3.7.5.73.7.3.7.63.7.3.7.73.7.3.7.83.7.3.7.9SeismicReevaluationBasisforSelectionofFrequenciesUseofEquivalentStaticAnalysisThrccComponentsofEarthquakeMotionCombinationofModalResponsesAnalyticalProceduresforPipingResidualHeatRemovalSystemLincfromReactorCoolantSystemLoopAtoContainmentSteamLinefromSteamGcncratorBtoContainmentPressurizerSafetyandReliefLinesAnalyticalMethodsTransferMatrixMethodStiffnessMatrixFormulationSeismicPipingUpgradeProgramProgramScopePipingSelectionCriteria*SelectedLinesReactorCoolantSystemMainSteamMainFecdwaterAuxiliaryFcedwaterSafetyInjectionResidualHeatRemovalContainmcntSprayChemicalandVolumeControlSystemStcamGeneratorBlowdownServiceWaterSystemComponentCoolingWaterStandbyAuxiliaryFeedwaterCodesandStandardsAnalyticalProceduresGeneralDampingValuesCombinationofModalResponsesSafeShutdownEarthquakeStrcsscsSmallPipingAnalysisBranchLineAnalysisPipingBeyondScopeofUpgradeProgramPipingSystemModelsValveModelEquipmentModelInteractionEffects3.7-203.7-223.7-223.7-203.7-23.3.7-233.7-243.7-253.7-253.7-253.7-263.7-273.7-303.7-303.7-303.7-313.7-313.7-313.7-323.7-323.7-323.7-323.7-333.7-333.7-343.7-343.7-353.7-363.7-363.7-393.7-393.7-393.7403.7-433.7-443.7443.7453.7-463.7-473.7A73.7483xllREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTitIePacCe3.7.3.7.103.7.3.7.10.13.7.3.7.10.23.7.4SupportModelsDeviationsSupport-WeldedAttachmentsSeismicInstrumentation3.7483.7-483.7493.7-51ReferencesforSection3.73.7-523.83.8.13.8.1.13.8.1.1.13.8.1.1.23.8.1.1.33.8.1.1.43.8.1;1.53.8.1.23.8.1.2.13.8.1.2.23.8.1.2.33.8.1.2.3.13.8.1.2.3.23.8.1.2.3.33.8.1.2.43.8.1.2.4.13.8.1.2.4.23.8.1.2.4.33.8.1.2.4.43.8.1.2.53.8.1.2.63.8.1.33.8.1.3.13.8.1.3.23.8.1.43.8.1.4.13.8.1.4.1.13.8.1.4.1.23.8.1.4.1.33.8.1.4.23.8.1.4.2.1DESIGNOFSEISMICCATEGORYISTRUCTURESContainmcntGeneralDescriptionContainmentStructureWaterproofingRockAnchorsConstructionSequenceSteelReinforcementMechanicalDesignBasesGeneralDesignLoadsDesignStressCriteriaLimitingLoadsLoadFactorsMaximumThermalLoadLoadCapacityReinforcedConcretePrestressedConcreteLinerRockCodesandStandardsCodeandStandardsStcamGcncratorReplaccmcnt(DomeOpeningRepairs)SeismicDesignInitialSeismicDesignSeismicReanalysisContainmentDetailedDesignStressAnalysisAnalysisMethodsAnalysisResultsAnalysisforsteamgcncratorRcplaccmcntDomeopeningsRockAnchorsRockAnchorDesign3.8-13.8-13.8-13.8-13.8-23.8-33.8-33.843.8-83.8-83.8-83.8-93.8-93.8-103.8-113.8-143.8-143.8-153.8-183.8-193.8-203.8-253.8-283.8-283.8-283.8-323.8-323.8-323.8323.8-343.8-353.8-353xlllREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSIEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTitleP~ae3.8.1.4.2.23.8.1.4.2.33.8.1.4.2.43.8.1.4.2.53.8.1.4.2.63.8.1.4.33.8.1.4.3.13.8.1.4.3.23.8.1.4.3.33.8.1.4.3.43.8.1.4.43.8.1.4.4.13.8.1.4.4.23.8.1.4.4.33.8.1.4.53.8.1.4.5.13.8.1.4.5.23.8.1.4.5.33.8.1.4.5.43.8.1.4.5.53.8.1.4.63.8.1.4.73.8.1.4.7.13.8.1.4.7.23.8.1.4.7.33.8.1.4.7.43.8.1.4.7.53.8.1.4.7.63.8.1.53.8.1.5.13.8.1.5.23.8.1.5.33.8.1.5.43.8.1.5.53.8.1.5.63.8.1.5.6.13.8.1.5.6.23.8.1.5.73.8.1.63.8.1.6.13.8.1.6.1.13.8.1.6.1.2PreinstallationGroutingTestPreviousApplicationsRockHold-DownCapacityHold-DownFactorofSafetyInstallationTendonsGeneralDesignSeismicConsiderationsStressingProcedureCorrosionProtectionHingeDesignTensionBarsLinerKnuckleElastomerBearingPadsConcreteRadialShearLongitudinalShearsHorizontalShearAnchorageStressesShellStressAnalyticalProceduresInsulationLinerVibrationsAnchorageFatigueAnalysisBaseSlabLinerLinerStressesLinerBucklingLinerCorrosionAllowancePcnctrationsGeneralElectricalPenctrationsPipingPcnctrationsAccessHatchandPersonnelLocksFuelTransferPenetrationTypicalPenetrationAnalysisLoss'-CoolantAccidentLoss'-CoolantAccidentPlusEarthquakePenetrationReinforcementAnalyzedforPipeRuptureQualityControlandMaterialSpecificationsConcreteUltimateCompressiveStrengthQualityControlMeasures3.8-363.8-363.8-373.8-383.8-393.8-423.8-423.8443.8-4S3.8-503.8-553.8-553.8-573.8-5S3.8423.8-623.8-633.8443.8-663.8-663.8-743.8-753.8-753.8-763.S-763.8-773.8-783.8-823.8-853.8-853.8-863.8-873.8-883.8-893.8-903.8-903.8-923.8-943.8-973.8-973.8-97"3.8-973xivREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTS~EQUIPMENTJANDSYSTEMSTABLEOFCONTENTSSectioni'itIePacCe3.8.1.6.1.33.8.1.6.1.43.8.1.6.1.53.6.1.6.1.63.8.1.6.23.8.1.6.33.8.1.6.43.8.1.6.53.8.1.6.5.13.8.1.6.5.23.8.1.6.5.33.8.1.6.5.43.8.1.6.5.53.8.1.6.63.8.1.6.73.8.1.6.7.13.8.1.6.7.23.8.1.6.83.8.1.73.8.1.7.13.8.1.7.1.13.8.1.7.1.23.8.1.7.1.33.8.1.7.1.43.8.1.7.1.53.8.1.7.1.63.8.1.7.1.73.8.1.7.1.83.8.1.7.23.8.1.7.2.13.8.1.7.2.23.8.1.7.2.33.8.1.7.2.43.8.1.7.2,53.8.1.7.33.8.1.7.3.13.8.1.7.3.23.8.1.7.3.33.8.1.7.3.43.8.1.7.3.5ConcreteSuppliersConcreteSpecificationsAdmixturesRcplaccmcntConcrctcforthc1996StcamGcncratorRcplaccmcntMildSteelReinforcementCadweldSplicesRadialTensionBarsContainmentLinerFabricationandWorkmanshipPcnctrationsWeldingErectionTolerancesPaintingElastomerPadsTendonsMaterialsTestsandInspectionLinerInsulationTestingandInscrviceInspectionRequirementsConstructionPhaseTestingLiner'PrestressingTendonsConcreteReinforcementConcreteElastomerBearingPadsRockAnchorTestsLargeOpeningReinforcementsLinerInsulationGeneralDescriptionoftheStructuralIntegrityTestPressurizationMeasurementsTestPrcssureJustificationTestResultsContainmcntReturntoServiceTestingPost1996StcamGcncratorReplaccmcntPostoperationalSurveillanceLeakageMonitoringInitialTendonSurveillanceProgramCurrentTendonSurveillanceProgramCurrentTendonSurveillanceProgramResultsTestonRockAnchors3.8-993.8-1013.8-1033.8-1043.8-1073.8-1083.8-1093.8-1103.8-1103.8-1113.8-1123.8-1133.8-1133.8-1133.8-1143.8-1143.8-1153.8-1163.8-1193.8-1193.8-1193.8-1203.8-1203.8-1223.8-1243.8-1243.8-1263.8-1263.8-1283.8-1283.8-1293.8-1313.8-1323.8-1323.8-1333.8-133.8-1333.8-1343.8-1353.8-1373-xvREV,1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTS~EQUIPMENTfANDSYSTEMSTABLEOFCONTENTSSecti.onZfCIeP~ae3.8.23.8.2.13.8.2.1.13.8.2.1.1.13.8.2.1.1.23.8.2.1.1.33.8.2.1.23.8.2.1.2.13.8.2.1.2.23.8.2.1.2.33.8.2.1.2.43.8.2.1.2.53.8.2.1.2.63.8.2.1.2.73.8.2.1.2.83.8.2.1.2.93.8.2.1.2.103.8.2.1.33.8.2.1.3.13.8.2.1.3.23.8.2.1.3.33.8.2.1.3.43.8.2.1.3.53.8.2.1.3.63.8.2.1.3.73.8.2.1.3.83.8.2.1.3.93.8.2.1.43.8.2.23.8.2.2.13.8.2.2.23.8.2.2.33.8.2.2.43.8.2.2.53.8.2.2.5.13.8.2.2.5.23.8.2.2.5.33.8.2.2.6StructuralReanalysisProgramDesignCodes,Criteria,andLoadCombinationsSEPTopicIII-7.BIntroductionSeismicCategoryIStructuresStructuralCodesCodeComparisonAssessmcntofDesignCodesandLoadChangesforConcreteStructuresColumnsWithSplicedReinforcingBracketsandCorbels(NotontheContainmcntShell)ElementsLoadedinShearWithNoDiagonalTension(ShearFrictionStructuralWalls-PrimaryLoadCarryingElcmcntsSubjecttoTemperatureVariationsAreasofContainmentShellSubjecttoPeripheralShearAreasofContainmcntShellSubjecttoTorsionBracketsandCorbcls(OntheContainmentShell)AreasofContainmentShellSubjecttoBiaxialTensionSteelEmbedmentsTransmittingLoadstoConcreteAssessmentofDesignCodesandLoadChangesforSteelStructuresShearConnectorsinCompositeBeamsCompositeBeamsWithSteelDeckHybridGirdersCompressionElementsTensionMembersCopedBeamsMomentConnectionsLateralBracingSteelEmbedmcntsSummary,StructuralReevaluationofContainmentIntroductionContainmentTemperatureContainmcntPressureSeismicLoadsDesignandAnalysisProceduresContainmentModelSeismicandLoss'-CoolantAccidentLoadsPressure,Seismic,andOperatingTemperatureLoadsStructuralAcceptanceCriteria3.8-1393.8-1393.8-1393.8-1393.8-1413.8-1423.8-1433.8-1433.8-1443.8-1453.8-147-3.8-1493.8-1503.8-151"3.8-1523.8-1523.8-1533.8-1563.8-1563.8-1573.8-1573.8-1573.8-1583.8-1593.8-1593.8-1603.8-1603.8-1623.8-1643.8-1643.8-1653.8-1653.8-1663.8-1663.8-1663.8-1673.8-1683.8-1703-xvlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionTitlePacCe3.8.2.2.73.8.2.2.7.13.8.2.2.7.23.8.2.2.83.8.2.2.93.8.2.33.8.2.3.13.8.2.3.23.8.2.3.2.13.8.2.3.2.23.8.2.3.33.8.2.3.3.13.8.2.3.3.23.8.2.3.43.8.2.3.4.13.8.2.3.4.23.8.2.3.4.33.8.2.3.53.8.2.3.5.13.8.2.3.5.23.8.2.3.5.33.8.2.3.63.8.33.8.3.13.8.3.23.8.3.33.8.3.3.13.8.3.3.23.8.3.43.8.3.4.13.8.3.4.23.8.3.53.S.3.63.8.3.73.8.43.8.4.13.8.4.1.13.8.4.1.23.8.4.1.33.8.4.1.43.8.4.1.5StructuralEvaluationofContainmentSeismicAnalysisLoadCombinationsStructuralEvaluationofLargeOpeningsStructuralEvaluationofTensionRodsDomeLinerReevaluationDomeLinerStudsLoadsLoss-of-CoolantAccidentSteamLineBreakModelDefinitionGeneralDomeModelInsulationTerminationRegionModelAnalysisControllingLoadsLiner-StudInteractionEfIectofInternalPressureonLinerBucklingResultsandConclusionsInsulationTerminationRegionGeneralDomeEAcctofInternalPrcssureonLinerBucklingandStudIntegrityOverallConclusionsContainmentInternalStructuresDescriptionoftheInternalStructuresApplicableCodes,Standards,andSpecificationsLoadsandLoadCombinationsLoadCombinationsConsideredApplicableLoadCombinationsDesignandAnalysisProceduresOriginalDesignSystematicEvaluationProgramReevaluationMethodofAnalysisStructuralAcceptanceCriteriaStructuralEvaluationOtherSeismicCategoryIStructuresDescriptionoftheStructuresAuxiliaryBuildingControlBuildingDiesel-GeneratorBuildingIntermediateBuildingStandbyAuxiliaryFeedwatcrBuilding3.8-1703.8-1703.8-1713.8-1723.8-1733.8-1753.8-1753.8-1753.8-1753.8-1753.8-1763.8-1763.8-1773.8-1783.8-1733.8-1793.8-1813.8-1833.8-1833.8-1843.8-1863.8-1893.8-1923.8-1923.8-1923.8-1923.8-1923.8-1933.8-1943.8-1943.8-1943.8-1953.8-1963.8-1963.8-1983.8-1983.8-1983.8-1993.8-2003.8-2013.8-2023xviiREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionR'it'leP~cCe3.8.4.1.63.8.4.1.73.8.4.1.83.8.4.1.93.8.4.23.8.4.33.8.4.43.8.4.4.13.8.4.4.23.8.4.4.2.13.8.4.4.2.23.8.4.4.2.33.8.4.53.8.4.5.13.8.4.5.2.3.8.4.5.33.8.4.5.3.13.8.4.5.3.23.8.4.5.43.8.4.5.53.8.4.5.63.8.4.5.73.8.4.5.7.13.8.4.5.7.23.8.4.5.83.8.4.5.8.13.8.4.5.8.23.8.4.5.8.33.8.4.5.93.8.5ScreenHouseTurbineBuildingServiceBuildingInterconnectedBuildingComplexApplicableCodes,Standards,andSpecificationsLoadsandLoadCombinationsDesignandAnalysisProceduresOriginalDesignandAnalysisProceduresSEPReevaluationDesignandAnalysisProceduresMathematicalModelMethodofAnalysisStructuralEvaluationMasonryWallsApplicableWallsLoadandLoadCombinationsStressAnalysisComputerProgramSeismicAnalysisIntcrstoryDriftMulti-WytheWallsBlockPulloutStructuralAcceptanceCriteria-AllowableStressesNormalOperatingConditionsSafeShutdownEarthquakeEvaluationResultsGeneralInelasticAnalysisWallModificationsMaterials,QualityControl,andSpecialConstructionFoundationsTechniques3.8-2023.8-2033.8-2043.8-2043.8-2053.8-2053.8-2073.8-2073.8-2083.8-2083.8-2113.8-2123.8-2153.8-2153.8-2153.8-2173.8-2173.8-2183.8-2193.8-2193.8-2193.8-2203.8-2203.8-2203.8-2203.8-2203.8-2213.8-2223.8-2233.8-225ReferencesforSection3.83.8-2263.93.9.13.9.1.13.9.1.1.13.9.1.1.23.9.1.1.2.13.9.1.1.2.2MECHANICALSYSTEMSANDCOMPONENTSSpecialTopicsforMechanicalComponentsDesignTransientsLoadCombinationsCyclicLoadsThermalandPrcssureCyclicLoadsPressurizerSurgeLine3.9-13.9-13.9-13.9-13.9-13.9-13.9-13-XVIIIREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS/EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTit1ePacCe3.9.1.1.2.33.9.1.1.33.9.1.1.43.9.1.1.53.9.1.1.63.9.1.1.73.9.1.23.9.1.33.9.1.3.13.9.1.3.23.9.1.3.33.9.23.9.2.13.9.2.1.13.9.2.1.23.9.2.1.2.13.9.2.1.2.23.9.2.1.2.33.9.2.1.2.43.9.2.1.2.53.9.2.1.33.9.2.1.43.9.2.1.4.13.9.2.1.4.23.9.2.1.53.9.2.1.63.9.2.1.6.13.9.2.1.6.23.9.2.1.6.33.9.2.1.73.9.2.1.83.9.2.23.9.2.2.13.9.2.2.23.9.2.2.33.9.2.2.43.9.2.2.4.13.9.2.2.4.23.9.2.2.4.3UnisolableConnectionstothcReactorCoolantSystemTransientHydraulicLoadsOperating-BasisEarthquakeSafeShutdownEarthquakeSecondarySystemFluidFlowInstability(WaterHammer)Loss-of-CoolantAccidentComputerProgramsUsedinAnalysisExperimentalStressAnalysisPlasticModelAnalysisPlasticModelDetailsPlasticModelTestArrangementDynamicTestingandAnalysisPipingSystemsGeneralSeismicCategoryIPiping,2-1/2InchNominalSizeandLargerStaticAnalysisDynamicAnalysisResidualHeatRemovalSystemLineFromReactorCoolantSystemLoopAtoContainmcntSteamLineFromSteamGeneratorBtoContainmentChargingLineSeismicCategoryIPiping,2-InchNominalSizeandUnder,OriginalDesignPrcssurizcrSafetyandReliefValveDischargePiping1972AnalysisNUREG0737,ItemII.D.1AnalysisMainSteamHea'dcrDynamicLoadFactorAnalysisSecondarySystemWaterHammerAnalysisEvaluationResultsCorrectiveActionsVclanSwingCheckValvesSeismicPipingUpgradeProgramSafety-RelatedMechanicalEquipmentOriginalSeismicInputandBehaviorCriteriaCurrentSeismicInputSystematicEvaluationProgramSystematicEvaluationProgramReevaluationofSelectedMechanicalComponentsforDesignAdequacyEssentialServiceWaterPumpComponentCoolingHeatExchangerComponentCoolingSurgeTank3.9-23.9-43.9Q3.9-43.943.9-53.9-53.943.9-63.9-73.9-83.9-113.9-113.9-113.9-123.9-23.9-133.9-143.9-153.9-163.9-173.9-183.9-183.9-193.9-223.9-233.9-233.9-243.9-243.9-263.9-273.9-303.9-303.9-313.9-313.9-333.9-333.9-343.9-353-XlXREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSiEQUIPMENTiANDSYSTEMSTABLEOFCONTENTSSectionPit1e,'acae3.9.2.2.4.43.9.2.2.4.53.9.2.2.4.63.9.2.2.4.73.9.2.2.4.83.9.2.2.4.93.9.2.2.4.103.9.2.2.4.113.9.2.33.9.2.3.13.9.2.3.1.13.9.2.3.1.23.9.2.3.1.33.9.2.3.23.9.2.3.2.13.9.2.3.2.23.9.2.3.2.33.9.2.3.2.43.9.2.3.33.9.2.3.3.13.9.2.3.3.23.9.2.3.3.33.9.2.3.3.43.9.2.3.43.9.2.3.4.13.9.2.3.4.23.9.2.3.4.33.9.2.3.4.43.9.2.3.4.53.9.2.3.4.63.9.2.3.53.9.2.3.5.13.9.2.3.5.23.9.2.3.5.33.9.2.43.9.2.53.9.2.5.13.9.2.5.23.9.33.9.3.13.9.3.2Diesel-GeneratorAirTanksBoricAcidStorageTankRefuelingWaterStorageTankMotor-OperatedValvesSteamGeneratorsReactorCoolantPumpsPressurizerControlRodDriveMechanismDynamicResponseAnalysisofReactorInternalsUnderOperationalFlowTransientsandSteady-StateConditionsDesignCriteriaGeneralCriticalInternalsAllowableStressCriteriaBlowdownandForceAnalysisComputerProgramBlowdownModelComparisonWithExperimentalDataForceModelVerticalExcitationofReactorInternalsbyBlowdownForcesStructuralModelandMethodofAnalysisResultsUpperPackageandGuideTubesFuelAssemblyThimblesTransverseBarrelExcitationbyBlowdownForcesGeneralHot-LcgBreakCold-LegBrcakInitialResponseSecondaryBarrelResponseConclusionsTransverseGuideTubeExcitationbyBlowdownForcesGeneralResponseofGuideTubeDescriptionofStressLocationAsymmetricLoss-of-CoolantAccidentLoadingAnalysisSeismicEvaluationofReactorVesselInternalsAnalysisProcedureAnalysisResultsComponentSupportsandCoreSupportStructuresLoadingCombinations,DesignTransients,andStressLimitsComponentSupports3.9-353.9-363.9-363.9-373.9-383.9-383.9-393.9403.9A23.9A23.9423.9A23.9-433.9-443.9443.9453.9463.9-473.9-473.9-473.9-483.9-503.9-503.9-523.9-523.9-523.9-543.9-553.9-553.9-563.9-563.9-563.9-573.9-583.9413.9-613.9-613.9-623.9-653.9453.9453-XXREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSection3.9.3.2.13.9.3.2.23.9.3.2.33.9.3.2.43.9.3.2.53.9.3.33.9.3.3.13.9.3.3.23.9.3.3.33.9.3.3.3.13.9.3.3.3.23.9.3.3.3.33.9.3.3.43.9.3.3.53.9.3.3.5.13.9.3.3.5.23.9.43.9.4.13.9.4.1.13.9.4.1.23.9.4.1.33.9.4.1.43.9.4.1.53.9.4.1.63.9.4.23.9.4.33.9.4.3.13.9.4.3.23.9.4.3.33.9.4.3.43.9.53.9.5.13.9.5.1.13.9.5.1.1.13.9.5.1.1.23.9.5.1.1.33.9.5.1.1.43.9.5.1.1.53.9.5.1.23.9.5.1.33.9.5.2ReactorVesselStcamGeneratorsReactorCoolantPumpsPressurizerReactorCoolantPipingPipeSupportsOriginalAnalysisIEBulletinReanalysisSeismicPipingUpgradeProgramApplicableSupportsLoadCombinationsandStressLimitsStructuralRequirementsBasePlateFlexibilitySnubbcrsDesignLoadsSurveillanceProgramControlRodDriveSystemsDescriptionGeneralLatchAssemblyPressureVesselOperatingCoilStackDriveShaftAssemblyPositionIndicatorCoilStackDesignLoads,StressLimits,andAllowableDeformationControlRodDriveMechanismHousingMechanicalFailureEvaluationHousingDescriptionEfrcctsofRodTravelHousingLongitudinalFailuresEffectofRodTravelHousingCircumferentialFailuresSummaryReactorPressureVesselInternalsDesignArrangemcntsLowerCoreSupportStructureSupportStructureAssemblyLowerCorePlateThermalShieldCoolantFlowPassagesSupportandAlignmentArrangcmcntsUpperCoreSupportAssemblyIn-CoreInstrumentationSupportStructuresLoadingConditions3.9453.9-663.9473.9-673.9473.9483.9483.9-683.9-693.9-693.9-693.9-693.9-723.9-733.9-733.9-743.9-763.9-763.9-763.9-773.9-773.9-783.9-783.9-783.9-783.9-793.9-793.9-793.9-803.9-803.9-813.9-813.9-813.9-813.9-813.9-823.9-833.9-843.9-843.9-863.9-873xxlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSection.Till.eP~cte3.9.5.33.9.63.9.6.13.9.6.23.9.6.3DesignBasesInserviceInspectionofPumpsandValvesGeneralInserviceTestingofPumpsInserviceTestingofValves.3.9-873.9-903.9-903.9-913.9-91RcfcrcnccsforSection3.93.9-933.103.10.13.10.1.13.10.1.23.10.23.10.2.13.10.2.23.10.2.33.10.2.43.10.2.53.10.2.63.10.2.73.10.33.10.3.13.10.3.23.10.3.2.13.10.3.2.23.10.3.2.33.10.3.2.43.10.3.2.53.10.3.33.10.3.43.10.43.10.53.10.5.13.10.5.1.13.10.5.1.23.10.5.23.10.5.2.13.10.5.2.2SEISMICQUALIFICATIONOFSEISMICCATEGORYIINSTRUMENTATZONANDELECTRICALEQUIPMENTSeismicQualificationCriteriaOriginalCriteriaCurrentCriteriaSeismicQualificationofElectricalEquipmentandInstrumentationIntroductionBatteryRacksMotorControlCcntcrs1Land1MSwitchgearControlRoomElectricalPanelsElectricalCableRacewaysConstantVoltageTransformersSeismicQualificationofSupportsofElectricalEquipmentandInstrumentationEquipmentAddressedRacewayAnchoragesTestProgramTestLoadsExpansionAnchorTestResultsFunctionalAnchorTestResultsEmbeddedAnchorTestResultsClass1EEquipmentAnchorageQualificationProgramConclusionsFunctionalCapabilityofComponentsSeismicCategoryITubingCodesandStandardsTubingDesignRequirementsTubingSupportsDesignRcquircmentsLoadConditionsTubingTubingSupports3.10-13.10-13.10-13.10-23.10-3,3.10-33.1043.1043.10-53.1043.10-73.10-83.10-103.10-103.10-113.10-113.10-123.10-133.10-133.10-143.10-143.10-153.10-173.10-173.10-173.10-183.10-183.10-193.10-193.10-193-xxllREV.1312/96 GINNANFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionPiLIe,PacCe3.10.5.3RoutingRequirementsReferencesforSection3.103.10-203.10-223.113.11.13.11.1.13.11.1.23.11.23.11.33.11.3.13.11.3.1.13.11.3.1.23.11.3.23.11.3.2.13.11.3.2.23.11.3.2.33.11.3.2.43.11.3.33.11.3.43.11.3.53.11.3.63.11.3.73.11.3.83.11.3.93.11.43.11.5ENVIRONMENTALDESIGNOFMECHANICALANDELECTRICALEQUIPMENTBackgroundInitialDesignConsiderationsReviewofEnvironmentalQualificationofSafety-RelatedElectricalEquipmentEquipmentIdentificationIdentificationofLimitingEnvironmentalConditionsInsideContainmentPostLoss-of-CoolantAccidentEnvironmentPostMainSteamLineBreakEnvironmentAuxiliaryBuildingHeating,Ventilation,andAirConditioningLossofVentilationRadiationLevelsFloodingIntermediateBuildingCableTunnelControlBuildingDiesel-GeneratorRoomsTurbineBuildingAuxiliaryBuildingAnnexScreenHouseEquipmentQualificationInformationEnvironmentalQualificationProgramRcfcrencesforSection3.113.11-13.11-13.11-13.11-13.11-23.11-43.11<3.11-43.11-63.11-83.11-83.11-93.11-103.11-103.11-123.11-143.11-143.11-153.11-163.11-163.11-173.11-183.11-183.11-193-XXlllREV.1312/96 GINNA/UFSARLISTOFAPPENDICESAPPENDIX3AINZTZALEVALUATIONOFCAPABILITYTOWITHSTAND3A-1TORNADOESAPPENDIX3BDESIGNOFLARGEOPENINGREINFORCEMENTSFORCONTAINMENTVESSEL3B-1APPENDIX3CCONTAINMENTSHELLSTRESSCALCULATIONRESULTS3C-1APPENDIX3DCONTAINMENTTENDONANCHORAGEHARDWARECAPACITY3D-1TESTSAPPENDIX3ECONTAINMENTLINERINSULATIONPREOPERATZONALTESTS3E-13-xxlvREV.1312/96 GINNA/UFSARLISTOFTABLESTableTi.tie3.2-13.3-1ClassificationofStructures,Systems,andComponentsPrimaryMcmbcrFailuresPerLoadingCombination3.6-1LinesPenetratingContainmentWhichNormallyorOccasionallyExperienceHigh-EnergyServiceConditions3.6-2LinesInsideContainmcntButNotPenetratingContainmcntWhichNormallyorOccasionallyExperienceHigh-EnergyServiceConditions3.6-33.7-13.7-2ContainmentPipeDataOriginalandCurrentRecommendedDampingValuesModalFrequenciesoftheInterconnectedBuildingModel3.7-3EquipmentandLocationsWhereIn-StructureSpectraWereGeneratedForTheSystematicEvaluationProgram3.8-13.8-23.8-3ComputerProgramSANDInputforContainmentSeismicAnalysisMajorStructuresforWhichPrestressedRockAnchorsWereUsedPropertiesandTestsforContainmentAnchorandTendonCorrosionInhibitor3.8A3.8-5AllowableStressesContainmentStructureStresses3.84ContainmcntStructureLoadingCombinations3.8-7ConcreteCoverRequiredforReinforcingStccl3.8-83.8-93.8-10ElastomerPadsPropertiesRockAnchorA-UpliATestWithJackingFrame,May19,1966DesignCodeComparison3.8-11ACI318-63VersusACI349-76CodeComparison3.8-123.8-13ACI301%3VersusACI301-72(Revised1975)ComparisonACI318-63VersusASMEB&PVCode,SectionIII,Division2,1980CodeComparison3-xxvREV.1312/96 GINNA/UFSARLISTOFTABLESTit163.8-14ASMEB&PVCode,SectionIII,Division2,1980(ACI359-80)VersusACI318-63CodeComparison3.8-153.8-16ListofStructuralElementstobeExaminedMasses,MomentofInertia(I),FlexuralArea(A),andShearArea(A~)fortheLLNLModel.3.8-17ModalFrequenciesfortheLawrenceLivermoreNationalLaboratoryContainmentShellModel3.8-18ResponseValuesforRegulatoryGuide1.60Horizontal(0.17g)andVertical(O.1lg)SpectraInput3.8-19PeakHarmonicAmplitudesofthcSeismicLoadonCylinderandDomeoftheContainmentShell3.8-203.8-213.8-223.8-233.9-13.9-23.9-33.9AMaterialPropertiesforSteel,Concrete,andFoamInsulationMaximumDisplaccmentsof5/8-InchS6LStudsintheInsulationTerminationRegionMaximumDisplacementsofStudsinGeneralDomeLoadDefinitionsOriginalDesignLoadingCombinationsandStressLimitsResidualHeatRemovalLoopAStressSummaryMainSteamLine-LoopBStressSummaryChargingLineStressSummary3.9-5LoadCombinationsandAcceptanceCriteriaforPressurizerSafetyandReliefValvePipingandSupports-UpstreamofValves3.94LoadCombinationsandAcceptanceCriteriaforPressurizerSafetyandReliefValvePipingandSupports-SeismicallyDesignedDownstreamPortion3.9-73.9-83.9-93.9-10DefinitionsofLoadAbbreviationsLoadingCombinationsandStressLimitsforPipingforSeismicUpgradeProgramsAllowableSteamGeneratorNozzleLoadsReactorCoolantPumpAuxiliaryNozzleUmbrellaLoads3.9-11SystematicEvaluationProgramStructuralBehaviorCriteriaforDeterminingSeismicDesignAdequacy3-xxvlREV.1312/96 GINNA/UFSARLISTOFTABLESTi.tie3.9-12MechanicalComponentsSelectedforSEPSeismicReview3.9-133.9-143.9-153.9-163.9-173.9-183.9-193.9-203.9-213.9-223.9-233.9-243.9-253.9-263.9-273.9-283.9-293.10-13.10-23.10-33.1043.10-53.104MaximumStressHot-LcgBrcakMaximumStressCold-LegBrcakMaximumCoreBarrelStressandDeflectionUnderHot-LcgBlowdownMaximumStressIntensitiesandDeflectioCold-LegBlowdownCoreBarrelStressesCoreBarrelStressesCoreBarrelStressesCoreBarrelStressesCoreBarrelStressesCoreBarrelStressesLoadCombinationsandAllowableStressLimitsforPrimaryEquipmentSupportsEvaluationResidualHeatRemovalLoopASupportLoadsCalculatedforIEBulletin79-07MainSteamLineLoopBSupportLoadsCalculatedforIEBulletin7947ChargingLineSupportLoadsCalculatedforIEBulletin7947LoadingCombinationsandStressLimitsforSuppportsonPipingSystemsAnalysisofTypicalPipeSupportBasePlatesCalculatedforIEBulletin79-02InternalsDefiectionsUnderAbnormalOperationMajorClass1EComponentsandtheBasisforSeismicQualificationElectricalComponentsSelectedforSeismicReviewShellAnchorTestSummaryFrictionBoltTestResultSummaryCategory3AnchorsTestSummaryStressLimitsforTubing3-xxviIREV.1312/96 GINNA/UFSARLISTOFTABLESTab1erieze3.11-1EnvironmentalServiceConditionsforEquipmentDesignedtoMitigateDesign-BasisEvents3.11-2EstimatesforTotalAirborneGammaDoseContributorsinContainmenttoaPointintheContainmentCenter-GinnaStation3.11-3EstimatesforTotalAirborneBetaDoseContributorsinContainmenttoaPointintheContainmcntCenter-GinnaStation3.11-4EstimatesforTotalAirborneGammaDoseContributorsinContainmenttoaPointintheContainmentCenter,RegulatoryGuide1.89,Revision13.11-5EstimatesforTotalAirborneBetaDoseContributorsinContainmenttoaPointintheContainmcntCenter,RegulatoryGuide1.89,Revision13.11<GinnaStation/RegulatoryGuide1.89ComparisonofPostaccidentRadiationEnvironmentAssumptions3-XXvlliREV.1312/96 GINNAIUFSARLISTOF,FIGURESZitiaSeismicResponseSpectra,8%gHousnerModelSeismicResponseSpectra,20%gHousnerModelNRCSystematicEvaluationProgramSiteSpecificSpectrum,GinnaSite(5%Damping)ComparisonoftheHousncrResponseSpectrumfor2%ofCriticalDampingwiththe7%RegulatoryGuide1.60SpectrumIn-StructureResponseSpectraforInterconnectedBuilding,Half-AreaandFull-AreaModelsContainmentBuildingandComplexofInterconnectedSeismicCategoryIandNonseismicStructures,PlanViewHorizontalResponseSpectra-SystematicEvaluationProgramStcamGeneratorMathematicalModelMathematicalModelofReactorVesselSeismicAverageAccelerationSpectrumDesignEarthquake,1%DampingLocationsWhereIn-StructureResponseSpectraWercGcneratcdinInterconnectedBuildingComplexSEPResponseSpectraforPrcssurizcrPR-1(ContainmcntBuildingElevation253ft)for3%,5%,and7%DampingSEPResponseSpectraforControlRodDrive(ContainmentBuildingElevation253It)for3%,5%,and7%DampingSEPResponseSpectraforControlRodDrive(ContainmcntBuildingElevation278A)for3%,5%,and7%DampingSEPResponseSpectraforStcamGeneratorSG-1A(ContainmentBuildingElevation250Iofor3%,5%,and7%DampingSEPResponseSpectraforSteamGeneratorSG-1A(ContainmentBuildingElevation278ft)for3%,5%,and7%DampingSEPResponseSpectraforStcamGeneratorSG-1B(ContainmentBuildingElevation250ft)for3%,5%,and7%DampingISEPResponseSpectraforSteamGeneratorSG-1B(ContainmentBuildingElevation278A)for3%,5%,and7%Damping3-xxlxREV.1312/96 GINNA/UFSARLISTOFFIGURESFicpxzel'iele3.7-193.7-203.7-21SEPResponseSpectraforReactorCoolantPumpRP-1A(ContainmentBuildingElevation247Il)for3%,5%,and7%DampingSEPResponseSpectraforReactorCoolantPumpRP-1B(ContainmentBuildingElevation247ft)for3%,5%,and7%DampingSEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingPlatform3.7-22SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingHeatExchanger353.7-23SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingSurgeTank343.7-243.7-25SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingBoricAcidStorageTank34SEPEquipmcntResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingOperatingFloor3.7-26SEPEquipmcntResponseSpectrafor3%,5%,and7%DampingatControlBuildingBasementFloor3.7-27SEPEquipmcntResponseSpectrafor3%,5%,and7%DampingatControlBuildingRelayRoomFloor3.7-283.7-293.7-303.7-313.8-13.8-23.8-33.8-4SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatControlRoomFloorResidualHeatRemovalLineInsideContainmentLumpedMassModel-StcamLineBStructuralModel,PressurizerSafetyandReliefLine(Sheets1through5)ContainmentCrossSectionandDetailsContainmcntMatFoundationandRingGirderContainmentMatFoundation,ReinforcementandDetailsContainmentWallReinforcementandDetails3.8-5ContainmcntDomeReinforcementandDetails3.84ContainmentMiscellaneousEmbeddedBack-UpSteel3-xxxREV.1312/96 GINNA/UFSARLISTOFFIGURESZicruseZiti.e3.8-73.8-83.8-93.8-103.8-113.8-12TendonVentCansandGreaseFillConnectionsTcmperaturcGradients-OperatingConditionsEarthquakeMeridionalForcesContainmentDynamicAnalysisModelGinnaContainmentModeSltapesGinnaContainment-EarthquakeResponse3.8-13Moments,Shears,Dcflcction,TcnsilcForce,andHoopTensionDiagramsLoadCombinationA3.8-14Moments,Shears,Deflectio,TensileFore'e,andHoopTensionDiagramsLoadCombinationB3.8-15Moments,Shears,Deflection,TensileForce,andHoopTensionDiagramsLoadCombinationC3.8-163.8-173.8-183.8-193.8-203.8-213.8-223.8-233.8-243.8-253.8-263.8-273.8-283.8-29TendontoRockCouplingContainment-TopTendonAccessContainmcntMiscellaneousSteelTendonConduit-HingeDetailLinerKnuckleDimensionsContainmentBasetoCylinderModelContainmentDometoCylinderDiscontinuityModelCrackedWallShearModulusAnalysisLinerShearStressAnalysisWindgirdcr,ShearChannels,andShearStudsCylinderLinerPlateSupportModelContainmcntPenetrationDetailsContainmcntPenetrationDetails(Typical)CompositeDraivingElectricalPenetrationContainmentPenetrationsSectionandDetails3xxxlREV.1312/96 GINNA/UFSARLISTOFFIGURESFicpxrcTitle.3.8-303.8-313.8-323.8-333.8-343.8-353.8-363.8-373.8-383.8-393.8e403.8-413.8e423.8e43ContainmentEquipmentHatchContainmentPersonnelHatchContainmcnt-FuelTransferTubePenetrationContainmcntPenetrationsArrangemcntsandLocationTestCoupon-ContainmcntConcreteShellCadwellSpliceTestResultsQualityControlChartfor5000PSIConcreteNeopreneBaseHingeLoadDeformationSpecimen1NeopreneBaseHingeLoadDeformationSpecimen2RockAnchorTestA-1Containment-RockAnchorATestContainment-RockAnchorBTestContainment-RockAnchorCTestAccidentTemperatureTransientInsidethcContainmentUsedforLinerAnalysis3.844AccidentPrcssureTransientInsidetheContainmcntUsedforLinerAnalysis3.845PlanViewoftheFacadeStructureandContainment3.8-46AccidentTemperatureGradientThroughtheUninsulatedContainmentShellAAer94Seconds3.8-47AccidentTemperatureGradientThroughthcUninsulatedContainmentShellAiler380Seconds3.8e483.8e493.8-503.8-513.8-52Gin'naContainmcntStructureLinerStudInteractionModelsAccidentTemperatureDistributioninthcStcclLinerForceDisplacementCurvefor3/4In.HeadedStudsForceDisplacementCurvefor5/8In.S6LStuds3xxxllREV.1312/96 GINNA/UFSARLISTOFFIGURES~Fiuzei'tie3.8-53StrutBucklingUnderPandDeltaT3.8-543.8-553.8-563.8-573.8-58PressureEffectonLinerBucklingComparisonwithLosswf-CoolantAccidentReactorContainmentInternalStructuresContainmentInteriorStructuresModelforSTARDYNESchematicPlanViewofMajorGinnaStructuresThree-DimensionalViewofInterconnectedBuildingComplex.3.8-59FlowChartoftheAnalysisoftheIntcrconncctcdBuildingComplex3.8403.8413.842MasonryWallReevaluation,WallLocationPlan,LowerLevelsMasonryWallReevaluation,WallLocationPlan,IntermediateLevelsMasonryWallReevaluation,WallLocationPlan,OperatingLevels3.9-1Steam-GeneratorWaterHammerPreliminaryForcingFunction3.9-23.9-33.9PPlasticModelofReactorCoolantSystem-PlanViewLumpedMassDynamicModelofPCV434LumpedMassDynamicModelofPCV4353.9-5ComparisonofWHAMResultsWithLOFTSemi-ScaleBlowdownExperiments,TestNo.5193.94ComparisonofWHAMResultsWithLOFTSemi-ScaleBlowdownExperiments,TestNo.5603.9%a3.9-73.9-83.9-93.9-103.10-13.10-2StcamGeneratorUpperSupportSystemsControlRodDriveMechanismAssemblyControlRodDriveMechanismSchematicReactorVesselInternalsDetailedViewofReactorVesselInternalsQ-DeckDetailUnistrutDetail3-XXXIliREV.1312/96 GINNA/UFSARLISTOFFIGURES~FiureTit1e3.10-33.1043.11-1ThreadedInsertDetailPouredinPlaceAnchorTraySupportTypesforFrictionBoltTestingContainmcntVolumeandReactorPopoverLOCADoseCorrections3xxxlYREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS/EQUIPMENT~ANDSYSTEMS3.1CONFORMANCEWITHNRCGENERALDESIGNCRITERIAThediscussionofgeneraldesigncriteriaisdividedintotwoparts.Section3.1.1discussesthegeneraldesigncriteriausedduringthelicensingofGinnaStation.Section3.1.2discussestheadequacyoftheGinnadesignrelativetothe1972versionoftheGeneralDesignCriteriain10CFR50,AppendixA.3.1.1ATOMICINDUSTRIALFORUMDESIGNCRITERIAThefollowinggeneraldesigncriteriacomprisetheproposedAtomicIndustrialForum(AIF)versionsofthecriteriaissuedforcommentbytheAEConJuly10,1967.Thesecriteriadefineordescribesafetyobjectivesandapproachesincorporatedinthedesignofthisplant.Eachcriterionisfollowedbyabriefdescriptionofrelatedplantfeatureswhichareprovidedtomeetthedesignobjectivesreflectedinthecriterion.ThedescriptionisdevelopedmorefullyinsucceedingsectionsoftheupdatedFSAR.ThecriteriaareidentifiedasAIF-GDCplustheiridentificationnumberstodistinguishthemfromthelater10CFR50,AppendixA,criteriawhichareidentifiedasGDCplustheiridentificationnumbers.3.1-1REV.1312/96 GINNA/UFSAR3.1.1.1OverallPlantRequirements3.1.1.1.1QualitStandardsCRITERION:THosEsYsTEMsANDcoMPoNENTsoFREAcToRFAGILITIEsNHIcHAREEssENTIALToTHEPREVENTIONiORTHEMITIGATIONOFTHECONSEQUENCESiOFNUCLEARACCIDENTSWHICHCOULDCAUSEVNDVERISKTOTHEHEALTHANDSAFETYOFTHEPUBLICSHALLBEXDENTIFZEDANDTHENDESIGNEDrFABRICATED'NDERECTEDToQUALITYSTANDARDSTHATREFLECTTHEZMPORTANCEOFTHESAFETYFUNCTIONTOBEPERFORMED.WHEREGENERALLYRECOGNIZEDCODESANDSTANDARDSPERTAININGToDSZGNiMATERZALSiFABRICATZONiANDXNSPECTXONAREUSED'HEYSHALLBEIDENTIFIED.WHEREADHERENCETOSUCHCODESORSTANDARDSDOESNOTSUFFICETOASSUREAQUALITYPRODUCTZNKEEPINGWITHTHESAFETYFUNCTIONSTHEYSHALLBESUPPLEMENTEDORMODIFIEDASNECESSARYQUALITYASSURANCEPROGRAMSiTESTPROCEDURESiANDINSPECTIONACCEPTANCECRITERIATOBEUSEDSHALLBEIDENTIFIED.ANINDICATIONOFTHEAPPLICABILITYOFCODES,STANDARDSQUALITYASSURANCEPROGRAMS1TESTPROCEDURES1ANDINSPECTIONACCEPTANCECRZTERXAUSEDISREQVZRED.WHERESUCHITEMSARENOTCOVEREDBYAPPLXCABLECODESANDSTANDARDS'SHO'NINGOFADEQUACYISREQUZRED(AIF-GDC1).Allstructures,systems,andcomponentsofthefacilitywereclassifiedaccordingtotheirsafetyimportance.Thoseitemsvitaltosafeshutdownandisolationofthereactororwhosefailuremightcauseorincreasetheseverityofaloss-of-coolant:accidentorresultinanuncontrolledreleaseofexcessiveamountsofradioactivityweredesignatedClassI.ThoseitemsimportanttoreactoroperationbutnotessentialtosafeshutdownandisolationofthereactororcontrolofthereleaseofsubstantialamountsofradioactivityweredesignatedClassII.ThoseitemsnotrelatedtoreactoroperationorsafetyweredesignatedClassIIZ.ClassIsystemsandcomponentsweredesignatedasessentialtotheprotectionofthehealthandsafetyofthepublic.Consequently,theyweredesigned,fabricated,inspected,anderectedandthematerialsselectedtotheapplicableprovisionsofrecognizedcodes,goodnuclearpracticeandtoqualitystandardsthatreflecttheirimportance.Discussionsofapplicablecodesandstandards,qualityassuranceprograms,testprovisions,etc.,aregiveninthesectionsoftheUFSARdescribingeachsystem.ItshouldbenotedthatGinnaStationnolongerusestheClassI,ZI,andZZZclassificationscheme.TheclassificationandcodesapplicabletoGinnaStationstructures,systems,andcomponentsarediscussedinSection3.2andintheapplicableUFSARsections.Referencechaptersareasfollows:3.1-2REV.1312/96 GINNA/UFSARReactorReactorCoolantSystemandConnectedSystemsEngineeredSafetyFeaturesInstrumentationandControlsElectricPowerAuxiliarySystemsSteamandPowerConversionSystemRadioactiveWasteManagementRadiationProtection~Cbater567891011123.1.1.1.2PerformanceStandardsCRITER1ON:THOSESYSTEMSANDCOMPONENTSOFREACTORFACILITIESWHICHAREESSENTIALTOTHEPREVENTIONORToTHEMITIGATIONOFTH.CONSEQUENCESOFNUCLEARACCIDENTSWHICHCOULDCAUSEUNDUERZSKToTHEHEALTHANDSAFETYOFTHEPUBLICSHALLBEDESIGNEDFABRICATEDANDERECT"-DToPERFORMANCESTANDARDSTHATENABLESUCHSYSTEMSANDCOMPONENTSTOWITHSTANDWITHOUTUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLICTHEFORCESTHATMIGHTREASONABLYBEIMPOSEDBYTHEOCCURRENCEOFANEXTRAORDINARYNATURALPHENOMENONSUCHASEARTHQUAKETORNADOFLOODINGCONDITIONHIGHWINDORHEAVYICE.THEDESIGNBASESSoESTABLISHEDSHALLREFLECT:(A)APPROPRIATECONSIDERATZONOFTHEMOSTSEVEREOFTHESENATURALPHENOMENATHATHAVEBEENOFFICIALLYRECORDEDFORTHESITEANDTHESURROUNDINGAREAAND(B)ANAPPROPRIATEMARGINFORWITHSTANDINGFORCESGREATERTHANTHOSERECORDEDTOREFLECTUNCERTAINTIESABOUTTHEHISTORICALDATAANDTHEIRSUITABILITYASABASISFORDEszGN(AIF-GDC2).AllsystemsandcomponentsdesignatedClassIweredesignedsothatnolossoffunctio'nintheeventofthemaximumpotentialgroundaccelerationactinginthehorizontalandverticaldirectionssimultaneouslywouldoccur.Similarly,measuresweretakenintheplantdesigntoprotectagainsthighwinds,suddenbarometricpressurechanges,seiches,andothernaturalphenomena.Referencechaptersareasfollows:ChatexTitIeSiteCharacteristicsDesignofStructures,Components,andSystemsReactorReactorCoolantSystemandConnectedSystemsEngineeredSafetyFeaturesInstrumentationandControlsElectricalPowerAuxiliarySystemsSteamandPowerConversionSystem~Chaher23456789103.1-3REV.1312/96 GINNA/UFSARRadioactiveWasteManagementRadiationProtection11123.1.1.1.3FireProtectionCRITERION:AREACTORFACILITYSHALLBEDESIGNEDSUCHTHATTHEPROBABILITYOFEVENTSSUCHASFIRESANDEXPLOSIONSANDTHEPOTENTIALCONSEQUENCESOFSUCH.VENTSDOESNOTRESULTINVNDVERISKTOTHEHEALTHANDSAFETYOFTHEPUBLICANONCCMBUSTZBLEANDFIRERESISTANTMATERIALSSHALLBEUSEDTHROUGHOUTTHEFACILITYWHEREVERNECESSARYTOPRECLUDESVCHRISKEDPARTICULARLYZNAREASCONTAININGCRITICALPORTIONSOFTHEFACILITYSUCHASCONTAINMENTCONTROLROOMANDCOMPONENTSOFENGINEEREDSAFETYFEATUREs(AIF-GDC3).Firepzeventioninallazeasofthenuclear-electricplantisprovidedbystructureandcomponentdesignwhichoptimizesthecontainmentofcombustiblematerialsandmaintainsexposedcombustiblematerialsbelowtheirignitiontemperatureinthedesignatmosphere.Firecontrolrequiresthecapabilitytoisolateorremovefuelfromanignitingsource,ortoreducethecombustible'stemperaturebelowtheignitionpoint,ortoexcludetheoxidant,andpreferably,toprovideacombinationofthethreebasiccontrolmeans.Thelattertwomeansarefulfilledbyprovidingfixedorportablefirefightingequipmentofcapacitiesproportionaltotheenergythatmightcrediblybereleasedbyfire.Thisstationisdesignedonthebasisoflimitingtheuseofcombustiblematerialsinconstructionbyusingfire-resistantmaterialstothegreatestextentpossible.Thefireprotectionsystemhasthedesigncapabilitytoextinguishanyprobablecombinationofsimultaneousfireswhichmightoccuratthestation.ThesystemisdesignedinaccordancewiththestandardsoftheNationalFireProtectionAssociationandisbasedgenerallyontherecommendationsoftheNuclearEnergyPropertyInsuranceAssociation.FireprotectionsystemsforGinnaStationarediscussedinSection9.5.1~3.1.1.1.4SharinofSstemsCRZTERZON:REACTORFACILITIESMAYSHARESYSTEMSORCOMPONENTSIFITCANBESHOWNTHATSVCHSHARINGWILLNOTRESULTINUNDVERISKTOTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC4).3.1<REV.1312/96 GINNA/UFSARAnalysesconfirmthatthesharingofcomponentsamongsystemsdoesnotresultininterferencewiththebasicfunctionandoperabilityofthesesystemsandhencethereisnounduerisktothehealthandsafetyofthepublic.3.1.1.1.5RecordsReuirementsCRITERIDN:THEREACTORLICENSEESHALLBERESPONSZBLEFORASSURINGTHEMAINTENANCETHROUGHOUTTHELIFEOFTHEREACTOROFRECORDSOFTHEDESIGNFABRICATIONANDCONSTRUCTIONOFMAJORCOMPONENTSOFTHEPLANTESSENTIALToAVOIDUNDUERISKToTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC5)~Acompletesetofas-builtfacilityplantandsystemdiagramsincludingarrangementplansandstructuralplansaremaintainedthroughoutthelifeofthereactor.AsetofcompletedtestproceduresforallplanttestingismaintainedasoutlinedinChapter14.Asetofallthequalityassurancedatageneratedduringfabricationanderectionoftheessentialcomponentsoftheplant,asdefinedbythequalityassuranceprogram,isretained.3.1-5REV.1312/96 GINNA/UFSAR3.1.1.23.1.1.2.1ProtectionbyMultipleFissionProductBarriersReactorCoreDesinCRITERzoN:THEREACTORCOREWITHITSRELATEDCONTROLSANDPROTECTIONSYSTEMSiSHALLBEDESIGNEDToFUNCTZONTHROUGHOUTITSDESIGNLIFETIMEWITHOUTEXCEEDINGACCEPTABLEFUELDAMAGELIMITSWHICHHAVEBEENSTIPULATEDANDJUSTIFIED.THECOREANDRELATEDAUXILIARYSYSTEMDESIGNSHALLPROVIDETHISINTEGRITYUNDERALLEXPECTEDcoNDITIoNSoFMODES1AND2wITHAPPRoPRIATEMARGINsFoRUNcERTAINTIEsANDFoRSPECZFZEDTRANSIENTSZTUATZONSWHICHCANBEANTICIPATED(AIF-GDC6)~Thereactorcore,withitsrelatedcontrolandprotectionsystem,isdesignedtofunctionthroughoutitsdesignlifetimewithoutexceedingacceptablefueldamagelimits.Thecoredesign,togetherwithreliableprocessanddecayheatremovalsystems,providesforthiscapabilityunderallexpectedconditionsofMODES1and2withappropriatemarginsfozuncertaintiesandanticipatedtransientsituations,includingtheeffectsofthelossofreactorcoolantflow(Section15.6.4),tzipoftheturbinegenerator(Section15.2.2),lossofnormalfeedwater(Section15.2.6),andlossofalloffsitepower(Section15.2.5).Thereactorcontrolandprotectioninstrumentationisdesignedtoactuateareactortripforanyanticipatedcombinationofplantconditions,whennecessarytoensureaminimumdeparturefromnucleateboilingratio(DNBR)equaltoorgreaterthanthesafetylimitandfuelcentertemperaturebelowthemeltingpointofuraniumdioxide.Referencedchaptersare:ChaterTitleReactorInstrumentationandControlsAccidentAnalyses3.1.1~2.2SuzessionofPowerOscillations~Chatez715CRITERION:THEDESIGNOFTHEREACTORCOREWITHITSRELATEDCONTROLSANDPROTECTIONSYSTEMSSHALLENSURETHATPOWEROSCILLATZONSgTHEMAGNITUDEOFWHICHCOULDCAUSEDAMAGEINEXCESSOFACCEPTABLEFUELDAMAGELZMITSiARENOTPOSSIBLEORCANBEREADILYsUPPREssED(AIF-GDC7)~3.1-6REV.1312/96 GINNA/UIiSARThedesignofthereactorcoreandrelatedprotectionsystemsensuresthatpoweroscillationswhichcouldcausefueldamageinexcessofacceptablelimitsarenotpossibleorcanbereadilysuppressed.Thepotentialforpossiblespatialoscillationsofpowerdistributionforthiscorehasbeenreviewed.lnsummaryitisconcludedthattheonlypotentialspatialinstabilityisthexenon-inducedaxialinstabilitywhichmaybeanearlyfreerunningoscillationwithlittleornoinherentdamping.Partlengthcontrolrodswereoriginallyprovidedtosuppresstheseoscillationsiftheyoccurred.Theyhavesincebeenremoved.Operatingcontrolstrategieshavebeendevisedthatdonotrequireinsertionofthepart-lengthzodsandeliminatethepotentialforaxialxenoninstabilities.Out-of-coreinstrumentationisprovidedtoobtainnecessaryinformationconcerningaxialdistributions.Thisinstrumentationisadequatetoenabletheoperatortomonitorandcontrolxenoninducedoscillations.Zn-coreinstrumentationisusedtoperiodicallycalibrateandverifytheinformationprovidedbytheout-of-coreinstrumentation.Thetemperaturecoefficientinthepoweroperatingrangewasmaintainedzeroornegativebyinclusionofburnablepoisonshimsinthefirstcoreloading.Theburnablepoisonshimshavesincebeenremoved.3.1.1.2.3OverallPowerCoefficientCRITERION:THEREACTORSHALLBED.SIGNEDSoTHATTHEOVERALLPOWERCOEFFICIENTZNTHEPOWEROPERATINGRANGESHALLNOTBEPOSITIVE(AIF-GDC8).Theoverallpowercoefficientinthepoweroperatingrangeismaintainednonpositive.ThenucleardesignofthereactorisdiscussedinSection-4.2.4.2.7.3.1.1.2.4ReactorCoolantPressureBoundarCRITERION:THEREACTORCOOLANTPRESSUREBOUNDARYSHALLBEDESIGNEDFABRICATEDANDCONSTRUCTEDSoASTOHAVEANEXCEEDINGLYLOWPROBABILITYOFGROSSRUPTUREORSIGNIFICANTUNCONTROLLEDLEAKAGETHROUGHOUTZTSDESIGNLIFETIME(AIF-GDC9).Thereactorcoolantsystem,inconjunctionwithitscontrolandprotectiveprovisions,isdesignedtoaccommodatethesystempressuresandtemperaturesattainedunderallexpectedmodesofplantoperationoranticipatedsysteminteractions,andmaintainthestresseswithinapplicablecodestresslimits.3.1-7REV.1312/96 GINNA/UI'SARFabricationofthecomponentswhichconstitutethepressureretainingboundaryofthereactorcoolantsystemiscarriedoutinstrictaccordancewiththeapplicablecodes.Inaddition,thereareareaswhereequipmentspecificationsforreactorcoolantsystemcomponentsgobeyondtheapplicablecodes.Materialsofconstructionwerechosentolessentheprobabilityofgrossleakageorfailure.DetailsaregiveninSection5.2.3.Thematerialsofconstructionofthepzessureretainingboundaryofthereactorcoolantsystemareprotectedbycontrolofcoolantchemistryfromcorrosionphenomenawhichmightotherwisereducethesystemstructuralintegrityduringitsservicelifetime.Systemconditionsresultingfromanticipatedtransientsormalfunctionsaremonitoredandappropriateactionisautomaticallyinitiatedtomaintaintherequiredcoolingcapabilityandto,limitsystemconditionssothatcontinuedsafeoperationispossible.Thesystemisprotectedfromoverpressurebymeansofpressurerelievingdevices,asrequiredbySectionIIIoftheASMECode.Lowtemperatureover-pressureprotectionisalsoprovided,togetherwithoperatingprecautionstominimizeoperationunderundesirableconditions(seeSection5.2.2).Isolablesectionsofthesystemareprovidedwithoverpressurerelievingdevicesdischargingtoclosedsystemssuchthatthesystemcodeallowablereliefpressurewithintheprotectedsectionisnotexceeded.3.1.1.2.5ReactorContainmentCRzTERzoN:REACTORCONTAINMENTSHALLBEPROVIDED~THECONTAINMENTSTRUCTURESHALLBEDESZGNED(A)ToSUSTAINWITHOUTUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPVBLICTHEINiTIALEFFECTSOFGROSSEQVZPMENTFAILURESSUCHASALARGEREACTORCOOLANTPZPEBREAKtWITHOUTLOSSOFREQUIREDINTEGRITYAND(B)TCGETHERWITHOTHERENGINEEREDSAFETYFEATURESASMAYBENECESSARYToRETAINFORASLONGASTHESITUATIONREQUIRESTHEFUNCTIONALCAPABILITYOFTHECONTAINMENTToTHEEXTENTNEGEssARYToAVQIDUNDUERIsKToTHEHEALTHANDsAFETYQFTHEPUBLIc(AIF-GDC10).Thereactorcontainmentstructureisareinforced-concreteverticalcylinderwithpre-stressedtendonsintheverticalwall,areinforced-concreteringanchoredtobedrockandareinforcedhemisphericaldome.SeeSection3.8.1.3.1-8REV.1312/96 GINNA/UFSARThedesignpressureofthecontainmentexceedsthepeakpressureoccurringastheresultofthecompleteblowdownofthereactorcoolantthroughanypiperuptureofthereactorcoolantsystemuptoandincludingthehypotheticalseveranceofareactorcoolantpipe,aswellasapostulatedmainsteamlinebreak.Thecontainmentstructureandallpenetrationsaredesignedtowithstandwithindesignlimitsthecombinedloadingsofthedesign-basisaccidentanddesignseismicconditions.Allpipingsystemswhichpenetratethecontainmentareanchoredattheliner.Thepenetrationsforthemainsteam,feedwater,blowdown,andsamplelinesaredesignedsothatthepenetrationisstrongerthanthepipingsystemandthatthecontainmentwillnotbebreachedduetoapostulatedpiperupture.Thelinesconnectedtotheprimarycoolantsystemthatpenetratethecontainmentarealsoanchoredinthesecondaryshieldwalls(i.e.,wallssurroundingthesteamgeneratorsandreactorcoolantpumps)andareeachprovidedwithatleastonevalvebetweentheanchorandthecoolantsystem.Theseanchorsaredesignedtowithstandthethrustmomentandtorqueresultingfromapostulatedruptureoftheattachedpipe,Allisolationvalvesaresupportedtowithstand,withoutimpairmentofvalveoperability,thecombinedloadingsofthedesign-basisaccidentanddesignseismicconditions.3.1-9REV.1312/96 GINNA/UFSAR(1NTENT1ONALLYLEFTBLANK)3.1-10REV.1312/96 GINNA/UIiSAR3.1.1.33.1.1.3.1NuclearandRadiationControlsControlRoomCRITERIoN:THEFACILITYSHALLBEPROVIDEDWITHACONTROLROOMFROMWHICHACTiONSToMAINTAINSAFEOPERATIONALSTATUSOFTHEPLANTCANBECONTROLLED~ADEQUATERADIATIONPROTECTZONSHALLBEPROVIDEDTOPERMITCONTINUOUSOCCUPANCYOFTHECONTROLROOMUNDERANYCREDZBLEPOSTACCIDENTCONDITIONORASANALTERNATIVEACCESSTOOTHERAREASOFTHEFACILITYASNECESSARYToSHUTDOWNANDMAINTAINSAFECONTROLOFTHEFAczLITYwzTHQUTExcEssivERADIATIoNExPosUREsojPERsoNNEL(AIF-GDC11).Theplantisequippedwithacontrolroomwhichcontainsallcontrolsandinstrumentationnecessaryforoperationofthereactorandturbinegeneratorundernormalandaccidentconditions.Thecontrolzoomiscapableofcontinuousoccupancybytheoperatingpersonnelunderalloperatingandaccidentconditions.Sufficientshielding,ventilation,andhabitabilityprovisionsexisttoensurethatcontrolroompersonnelcanperformallrequiredsafetyfunctionsfromthecontrolroom,underallcrediblepostulatedaccidentconditions(seeSection6.4.1).3.1.1.3.2InstrumentationandControlsSstemsCRITERION:INSTRUMENTATZONANDCONTROLSSHALLBEPROVIDEDASREQUIREDTOMoiNZTORANDMAINTAINWITHINPRESCRIBEDOPERATINGRANGESESSENTIALREACTORFACILITYOPERATINGVARIABLES(AIF-GDC12).Instrumentationandcontrolsessentialtoavoidunduerisktothehealthandsafetyofthepublicazeprovidedtomonitorandmaintainneutronflux,primarycoolantpressure,flowrate,temperature,andcontrolrodpositionswithinprescribedoperatingranges.Thenonnuclearregulating,process,andcontainmentinstrumentationmeasurestemperature,pressure,flow,andlevelsinthereactorcoolantsystem,steamsystems,containmentandotherauxiliarysystems.Processvariablesrequiredonacontinuousbasisforthestaztup,operation,andshutdownoftheplantareindicated,recorded,andcontrolledfromthecontrolroomintowhichaccessissupervised.Thequantityandtypesofprocessinstrumentationprovidedensuressafeandorderlyoperationofallsystemsandprocessesoverthefulloperatingrangeoftheplant.3.1-11REV.1312/96 GINNA/UFSARTheinstrumentationandcontrolssystemsarediscussedinChapter7.3.1.1.3.3FissionProcessMonitorsandControlsCRITERIoN:MEANSSHALLBEPROVIDEDFORMONZTORINGOROTHERWISEMEASURINGANDMAINTAININGCONTROLOVERTHEFISSIONPROCESSTHROUGHOUTCORELIFEUNDERALLCONDITIONSTHATCANREASONABLYBEANTICIPATEDTOCAUSEVARIATZONSINREACTIVITYOFTHECORE(AIF-GDC13).Thenuclearinstrumentationsystemisprovidedtomonitorthereactorpowerfromsourcerangethroughtheintermediaterangeandpowerrangeupto1208offullpower.Thesystemprovidesindication,control,andalarmsignalsforreactoroperationandprotection.Theoperationalstatusofthereactorismonitoredfromthecontzolzoom.Whenthereactorissubcritical(i.e.,duringMODE5(ColdShutdown)orMODE3(HotShutdown),MODE6(Refueling),andapproachtocriticality)therelativereactiv'itystatus(neutronsourcemultiplication)iscontinuouslymonitoredandindicatedbyproportionalcounterslocatedininstrumentwellsintheprimaryshieldadjacenttothereactorvessel.Twosourcerangedetectorchannelsazeprovidedforsupplyinginformationonmultiplicationwhilethereactorissubcritical.Areactortripisactuatedfromeitherchanneliftheneutronfluxlevelbecomesexcessive.Thissystemischeckedpriortooperationsinwhichcziticalitymaybeapproached.Thisisaccomplishedbytheuseofanin-coresourcetoprovideameaningfulcountrateeveIYattheMODE6(Refueling)shutdowncondition.Anyappreciableincreaseintheneutronsourcemultiplication,includingthatcausedbythemaximumphysicalborondilutionrate,isslowenoughtogiveampletimetostartcorrectiveaction(borondilutionstopand/oremergencyboroninjection)topreventthecorefrombecomingcritical.Whenthereactoriscritical,meansforshowingtherelativereactivitystatusofthereactorisprovidedbycontrolbankpositionsdisplayedinthecontrolzoom.Thepositionofthecontrolbanksisdirectlyrelatedtothereactivitystatusofthereactorwhenatpowerandanyunexpectedchangeinthepositionofthecontrolbanksunderautomaticcontrolorchangeinthecoolanttemperatureundermanualcontrolprovidesadirectandimmediateindicationofachangeinthereactivitystatusofthereactor.Periodicsamplesofthecoolantboronconcentrationaretaken.Thevariationinconcentrationduring3.1-12REV.1312/96 GINNA/UFSARcorelifeprovidesafurthercheckonthereactivitystatusofthereactorincludingcoredepletion.Highnuclearfluxprotectionisprovidedbothinthepowerandintermediaterangesbyreactortripsactuatedfromeitherrangeiftheneutronfluxlevelexceedstripsetpoints.Whenthereactoriscritical,thebestindicationsofthereactivitystatusinthecore(inrelationtothepowerlevelandaveragecoolanttemperature)isthecontrolroomdisplayoftherodcontrolgroupposition.ReactorTripSystem(RTS)instrumentationandcontrolsarediscussedinSection7.2.1.3.1.1.3.4CoreProtectionSstemsCRITERzoN:CQREPRoTEGTIoNsYsTEMs~TQGETHERNITHAssocIATEDEQUIPMENT~sHALLBEDEsIGNEDToPREVENTORTOSUPPRESSCONDITIONSTHATCOULDRESULTINEXCEEDINGACCEPTABLEFUELDAMAGELIMITs(AIF-GDC14).Instrumentationandcontrolsprovidedfortheprotectivesystemsaredesignedtotripthereactorwhennecessarytopreventorlimitfissionproductreleasefromthecore;tolimitenergyrelease;tosignalclosureofcontainmentisolationvalves;andtocontroltheoperationofengineeredsafetyfeaturesequipment.Duringreactoroperationinthestartupandpowermodes,redundantsafetylimitsignalswillautomaticallyactuatetworeactortripbreakerswhichareinserieswiththeroddrivemechanismcoils.Thisactionwouldinterruptpowerandinitiatereactortrip.Thiscriterion,asappliedtotheReactorTripSystem(RTS),isdiscussedmorefullyinSections3.1.1.4.8,7.2~1,and7.2.3.3.1.1.3.5EnineeredSafetFeaturesProtectionSstemsCRITERION:PROTECTIONSYSTEMSSHALLBEPROVIDEDFORSENSINGACCIDENTSITUATIONSANDINITIATINGTHEOPERATIONOFNECESSARYENGINEEREDSAFETYFEATURES(AIF-GDC15).TheEngineeredSafetyFeaturesActuationSystem(ESFAS)providesactuationofthefollowingfunctions:safetyinjection,containmentisolation,steamlineisolation,containmentsprayandfeedwaterisolation,automaticdieselstart-up,andauxiliaryfeedwaterpumpstartup.3.1-13REV.1312/96 GINNA/UFSARThesafetyinjectionsystemsdeliverswatertothereactorcorefollowingaloss-of-coolantaccident.Theprincipalcomponentsofthesafetyinjectionsystemaretwopassiveaccumulators(oneforeachloop),threehigh-headsafetyinjectionpumps,twolowheadsafetyinjection(residualheatremoval)pumps,andtheessentialpipingandvalves.Theaccumulatorsarepassivedeviceswhichdischargeintothecoldlegofeachloop.Thesafetyinjectionsystemmaybeactuatedbytwo-out-of-threelow-pressurizer-pressuresignals,two-out-of-thzeelow-steam-linepressuresignals,two-out-of-threehigh-containment-pressuresignals;orthesystemcanbeactuatedmanually.Anyofthesafetyinjectionsystemsignalswillopenthesystemisolationvalves,startthehigh-headsafetyinjectionpumpsandthelowhead(residualheatremoval)pumps(seeSection6.3).Thesteamlineisolationvalvesarecloseduponreceiptofhighsteamlineflowinconjunctionwithasafetyinjectionsystemsignal,bycontainment.pressure,orbymanualinitiation.Thecontainmentspraysystemconsistsoftwopumps,onesprayadditivetank,valves,piping,andspraynozzles.Containmentsprayisinitiatedbycoincidentsignalsfromtwosetsoftwo-outof-threecontainmentpressuresignalsmonitoringcontainmenthighhighpressure.Theactuationsignalstartsthepumpsandopensthedischargevalvestothesprayheader.Valvesforthesprayadditivetankopenafteravezyshorttimedelay.Containmentisolationisinitiatedbyanautomaticsafetyinjectionsystemsignalormanually.Actuationofcontainmentisolationtripsthecontainmentsumppumps,closesallcontainmentisolationvalves(e.g.,containmentsumppumpdischargeisolationvalves,steamgeneratorisolationblowdownvalves,reactorcoolantdraintankventheaderandpumpsuctionvalves,containmentventilationpurgevalves,containmentdepressurizationvalves,containmentairtestsupplyvalve,andcontainmentairtestvalves),andtripsthepurgesupplyandexhaustfans.Containmentventilationisolationanddepressuziztionvalvesarealsoisolatedonhighcontainmentactivity,anysafetyinjectionsignal,orfromamanualcontainmentspraysignal.Thefeedwatezisolationsystemconsistsofthetwomainfeedwaterandtwofeedwaterbypassisolationvalves.Thesevalvesclosewhentheyreceivea3.1-14REV.1312/96 GINNA/UFSARsafetyinjectionsystemsignaloranengineeredsafetyfeaturesequenceinitiationsignal.Theyfailclosedifpowezorairislost.Automaticdieselstartupwillbecausedbyundervoltageattheengineeredsafetyfeaturesbusesinadditiontobeingcausedbythesafetyinjectionsignal.Themotor-drivenauxiliaryfeedwaterpumps(MDAB'f)startuponasafetyinjectionsignal,eithersteamgeneratorlow-lowlevel,orlossofbothmainfeedwaterpumps.Theturbine-drivenauxiliaryfeedwatezpump(TDAFW)willstartonlow-lowlevelinbothsteamgeneratorsandlossofbusvoltageon11Aand11B.FurtherdetailsareprovidedinChapters5,6,7,8,and10.3.1.1.3.6MonitorinReactorCoolantLeakaeCRITERIQN:MEANssHALLBEPRovzDEDToDETEGTSIGNIFIcANTUNcoNTRoLLEDLEAKAGEFR0MTHEREAcTQRcooLANTPREssUREBoUNDARY(AIF-GDC16).Positiveindicationsinthecontrolroomofleakageofcoolantfromthereactorcoolantsystemtothecontainmentareprovidedbyequipmentwhichpermitscontinuousmonitoringofcontainmentaizactivity(R-11andR-12)andhumidity,containmentsumpAlevel(LT-2039andLT-2044),andofrunofffromthecondensatecollectionsystemunderthecoolingcoilsofthecontainmentrecirculationfancooler(CRFC)units.Thisequipmentprovidesindicationofnormalbackground'whichisindicativeofabasiclevelofleakagefromprimarysystemsandcomponents.Anyincreaseintheobservedparametersisanindicationofchangewithinthecontainment,andtheequipmentprovidediscapableofmonitoringthischange.Thebasicdesigncriterionisthe!detectionofdeviationsfromnormalcontainmentenvironmentalconditionsincludingairparticulateactivity,radiogasactivity,humidity,condensaterunoff,andtheliquidinventoryintheprocesssystemsandcontainmentsumpA.FurtherdetailsaresuppliedinSection5.2.5.3.1.1.3.7MonitorinRadioactivitReleasesCRITERION:MEANSSHALLBEPROVIDEDFORMONITORINGTHECONTAINMENTATMOSPHEREANDTHEFACILITYEFFLUENTDISCHARGEPATHSFORRADZOACTIVITYRELEASEDFROMMODES1AND2FROMANTICIPATEDTRANSIENTS'NDFROMACCIDENTCONDITIONS~ANENVIRONMENTALMONITORINGPROGRAMSHALLBEMAINTAINEDTOCONFIRMTHATRADIOACTIVITYRELEASESToTHEENVIRONSOFTHEPLANTHAVENOTBEENEXCESSIVE(AIF-GDC17)~3.1-15REV.1312/96 GINNAfUFSARThecontainmentatmosphere,thecontainmentpurge,theplantvent,thecontainmentfan-coolersservicewater(SW)discharge,thewastedisposalsystemliquideffluent,andthespentfuelpool(SFP)heatexchangerrawwaterdischargearemonitoredforradioactivityconcentrationduringMODES1and2,fromanticipatedtransients,andfromaccidentconditions.Allgaseouseffluentfrompossiblesourcesofaccidentalreleasesofradioactivityexternaltothereactorcontainment(e.g.,thespentfuelpool(SFP)andwastehandlingequipment)willbeexhaustedfromtheplantventwhichismonitored.Allaccidentalspillsofliquidsaremaintainedwithintheauxiliarybuildingandcollectedinadraintank.Anycontaminatedliquideffluentdischargedtothecondensercirculatingwatercanalismonitored.ProcessradiationmonitoringandarearadiationmonitoringazedescribedinSections11.5.2.2and12.3.4,respectively.AdditionaldetailsofoffsiteradiologicalmonitoringareprovidedintheOffsiteDoseCalculationManual(ODCM).3.1.1.3.8MonitozinFuelandWasteStoraeCRZTERION:MONITORINGANDALARMZNSTRUMENTATIONSHALLBEPROVIDEDFORFUELANDWASTESTORAGEANDASSOCIATEDHANDLINGAREASFORCONDITIONSTHATMZGHTRESULTZNLOSSOFCAPABILITYToREMOVEDECAYHEATANDTODETECTEXCESSIVERADIATIONLEVELS(AlF-GDC18).Monitoringandalarminstrumentationisprovidedforfuelandwastestorageandhandlingareastodetectinadequatecoolingandtodetectexcessiveradiationlevels.Radiationmonitorsazeprovidedtomaintainsurveillanceoverthereleaseoperation.Thespentfuelpool(SFP)coolingloopflowismonitoredtoensureproperoperationasdescribedinSection9.1.3.Acontrolledventilationsystemremovesgaseousradioactivityfromtheatmosphereandfuelstorageandwastetreatingareasoftheauxiliarybuildinganddischargesittotheatmosphereviatheplantvent.Radiationmonitorsareincontinuousserviceintheseareastoactuatehigh-activityalarmsonthecontrolboardannunciator,asdescribedinSections11.5and12.3.3.1-16REV.1312/96 GINNA/UFSAR3.1.1.43.1.1.4.1ReliabilityandTestabilityofProtectionSystemsProtectionSstemsReliabilitCRITERION'ROTECTIONSYSTEMSSHALLBEDESIGNEDFORHZGHFUNCTIONALRELIABILITYANDZNSERVICETESTABZLZTYNECESSARYTOAVOIDUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC19).ThereactorusesahigherspeedversionoftheWestinghousemagnetic-typecontrolroddrivemechanismsusedintheSanOnofzeandConnecticutYankeeplants.Uponalossofpowertothecoils,therodclustercontrolassemblyisreleasedandfallsbygravityintothecore.Thereactorinternals,fuelassemblies,controlrods,andcontrolroddrivesystemcomponents(asrequiredfortrip)aredesignedasSeismicCategoryIequipment.Thecontrolrodsazefullyguidedthroughthefuelassemblyandforthemaximumtravelofthecontrolrodintotheguidetube.Furthermore,thecontrolrodsareneverfullywithdrawnfromtheirguidethimblesinthefuelassembly.Duetothisandtheflexibilitydesignedintothecontrolrods,abnormalloadingsandmisalignmentscanbesustainedwithoutimpairingoperationofthecontrolrods.Thecontrolrodguidesystemthroughoutitslengthislockedtogetherwithpinstoensureagainstmisalignmentswhichmightimpaircontrolrodmovementundernormaloperatingconditionsandcredibleaccidentconditions.Allreactorprotectionchannelsazesuppliedwithsufficientredundancytoprovidethecapabilityforchannelcalibrationandtestatpower.Bypassremovalofonetripcircuitisaccomplishedbyplacingthatcircuitinahalf-trippedmode;i.e.,atwo-out-of-threecircuitbecomesaone-out-of-twocircuit.Testingdoesnottripthesystemunlessatripconditionexistsinaconcurrentchannel.Reliabilityandindependenceisobtainedbyredundancywithineachtrippingfunction.Znatwo-out-of-threecircuit,forexample,thethreechannelsazeequippedwithseparateprimarysensors.Eachchanneliscontinuouslyfedfromitsownindependentelectricalsources.Failuretodeenergizeachannelwhenrequiredwouldbeamodeofmalfunctionthatwouldaffectonlythatchannel.3.1-17REV.1312/96 GINNA/UFSARThetripsignalfurnishedbythetworemainingchannelswouldbeunimpairedinthisevent.3.1.1.4.2ProtectionSstemsRedundancandIndeendenceCRITERION:REDUNDANCYANDINDEPENDENCEDESIGNEDINTOPROTECTIONSYSTEMSSHALLBESVFFICIENTToASSURETHATNOSINGLEFAILUREORREMOVALFROMSERVICEOFANYCOMPONENTORcHANNELoFsvcHAsYsTEMwzLLREsvLTzNLossoFTHEPRDTEGTIoNFUNGTzoN~THEREDUNDANCYPROVIDEDSHALLINCLUDEASAMINIMUMTNOCHANNELSOFPROTECTIONFOREACHPROTECTIONFUNCTZONTOBESERVED(AIF-GDC20).3~1~1~4.2~lREAcToRTRIPCIRGUITs~Tworeactortripbreakersazeprovidedtointerruptpowertotheroddrivemechanisms.Thebreakermaincontactsareconnectedinserieswiththepowersupplytothemechanismcoils.Openingeitherbreakerinterruptspowertothemagneticlatchmechanismsoneachcontrolroddrivecausingthemtoreleasetherodstofallbygravityintothecore.Eachbreakerisopenedthroughanundervoltagetripcoil.Eachprotectionchannelactuatestwoseparatetriplogictrains,oneforeachreactortripbreakerundervoltagetripcoil.Theprotectionsystemisthusinherentlysafeintheeventofalossofrodcontrolpower.Thecoincidenttripphilosophyiscarriedouttoprovideasafeandreliablesystemsinceasinglefailurewillnotdefeatthefunctionofthechannelandwillalsonotcauseaspuriousplanttrip.Channelindependenceiscarriedthroughoutthesystemextendingfromthesensortotherelayprovidingthelogic.Inmostcases,thesafetyandcontrolfunctionswhencombinedarecombinedonlyatthesensor.Bothfunctionsarefullyisolatedintheremainingpartofthechannel,controlbeingderivedfromtheprimarysafetysignalpaththroughanisolationamplifier.Assuch,afailureinthecontrolcircuitrydoesnotaffectthesafetychannels.Thisapproachisusedforpressurizerpressureandwaterlevelchannels,steamgeneratorwaterlevel,TpveanddeltaTchannels,steamflow-feedwaterflow,andnuclearpowerrangechannels.Thepowersuppliestothechannelsarefedfromfourinstrumentbuses.Twoofthebusesaresuppliedbyconstantvoltagetransformersandtwoaresuppliedbyinverters.3.1-18REV.1312/96 GINNA/UFSAR3.1.1.4.2.2ENGINEEREDSAFETrFEATUREsINITIATIONCIRGUITs.Theinitiationoftheengineeredsafetyfeaturesprovidedforloss-of-coolantaccidents,e.g.,high-headsafetyinjectionandresidualheatremovalpumps,andcontainmentspraysystems,isaccomplishedfromseveralsignalsderivedfromreactorcoolantsystemandcontainmentinstrumentation.Channelindependenceiscarriedthroughoutthesystemfromthesensorstothesignaloutputrelaysincludingthepowersuppliesforthechannels.Theinitiationsignalforcontainmentspraycomesfromcoincidenceoftwosetsoftwo-out-of-threehigh-high-containment-pressuresignals.Onlossofvoltagetothesafeguardsbus,thedieselgeneratorwillbeautomaticallystartedandconnectedtothebus.Thesignalforcontainmentisolationofnon-vitalvalves,i.e.,theisolationvalvestripsignal,isderivedfromacoincidenceoftwo-out-of-threecontainmenthigh-pressuresignals.Thissetpointisbelowthatforcontainmentsprayactuation.Forthiscircuitalso,thechannelsareindependentfromsensortooutputrelayandaresuppliedfromindependentpowersources.Redundancyisprovidedinthattherearetwodiesel-generatorsetscapableofsupplyingtheseparate480-Vsafeguazdsbuses'necompletesetofsafetyfeaturesequipmentisthereforeindependentlysuppliedfromeachdieselgenerator.Intheeventthateitherdieselgeneratorfailstostart,abustiebreakermaybemanuallyclosedbytheoperatortoconnectthe480-Vsafeguardsbustotheseconddiesel-generatorset.Thiswouldthenallowaduplicatesafetyfeaturecomponentfromthebusassociatedwithafaileddieselgeneratortobefedfromtheotherbusintheeventofacomponentfailure.Xntheeventofafaultoneitherbus,closingofthetiebreakerisblocked.RequiredcontinuouselectricalpowersupplyisdiscussedinChapter8.3.1.1.4.3Sinle-FailureDefinition(CateorB)CRITERIoN:MULTIPLEFAILUREsREsULTINGFROMAsINGLEEYENTsHALLBETREATEDAsAsINGLEFAILURE(AZF-GDC21).3.1-19REV.1312/96 GINNA/UIlSARTherequirementsofthiscriterionareincludedinSection3.1.1.4.5.3.1.1.4.4SearationofProtectionandControlinstrumentationSstemsCRITERION:PROTECTIONSYSTEMSSHALLBESEPARATEDFROMCONTROLINSTRUMENTATZONSYSTEMSTOTHEEXTENTTHATFAILUREORREMOVALFROMSERVICEOFANYCONTROLINSTRUMENTATIONSYSTEMCOMPONENTORCHANNELiOROFTHOSECOMMONToCONTROLINSTRUMENTATZONANDPROTECTIONCIRCUITRYiLEAVESINTACTASYSTEMSATISFYINGALLREQUIREMENTSFORTHEPROTECTIONCHANNELS(AZF-GDC22).TherequirementsofthiscriterionareincludedinSection3.1.1.4.2.3.1.1.4.5ProtectionAainstMultileDisabilitforProtectionSstemsCRITERION:THEEFFECTSOFADVERSECONDITXONSTOWHICHREDUNDANTCHANNELSORPROTECTIONSYSTEMSMIGHTBEEXPOSEDINCOMMONSEITHERUNDERNORMALCONDITIONSORTHOSEOFANACCIDENTSHALLNOTRESULTZNLOSSOFTHEPROTECTIONFUNCTIONORSHALLBETOLERABLEONSOMEOTHERBASIS(AZF-GDC23)~Thecomponentsoftheprotectionsystemarequalifiedsuchthatthemechanicalandthermaladverseenvironmentresultingfromemergencysituationsduringwhichthecomponentsarerequiredtofunctiondoesnotpreventthemfzomaccomplishingtheirsafetyfunction.3.1.1.4.6EmerencPowerforProtectionSstemsCRXTERZON:ZNTHEEVENTOFLOSSOFALLOFFSITEPOWERSUFFICZENTALTERNATESOURCESOFPOWERSHALLBEPROVIDEDTOPERMITTHEREQUIREDFUNCTiONINGOFTHEPROTECTIONSYSTEMS(AIF-GDC24).TherequirementsofthiscriterionareincludedinSection3.1.1.7.3.3.1.1.4.7DemonstrationofFunctional0erabilitofProtectionSstemsCRITERION:MEANSSHALLBEINCLUDEDFORSUITABLETESTINGOFTHEACTIVECOMPONENTSOFPROTECTIONSYSTEMSWHILETHEREACTORISXNOPERATIONTODETERMINEIFFAILUREORLOSSOFREDUNDANCYHASOCCURRED(AIF-GDC25).Eachprotectionchannelinserviceatpoweriscapableofbeingcalibratedandtrippedindependentlybysimulatedsignalsfortestpurposestoverifyitsoperation.Thisincludescheckingthroughtothetripbreakerswhichnecessarilyinvolvesthetriplogic.Thus,theoperabilityofeachtripchannelcanbedeterminedconvenientlyandwithoutambiguity.3.1-20REV.1312/96 GINNA/UFSARPeziodictestingofthedieselgeneratorsisroutinelyperformedtoensuretheiroperability.Duringpoweroperation,surveillancetestingverifiesthatthefueltransfersystemisoperational,thedieselsstaztfromnormalstandbyconditions,thegeneratorsaxeproperlysynchronizedandloaded,andthatproperalignmentismadesothatthedieselgeneratorscouldsupplysafeguazdsbuspower.Duringshutdownconditions,thedieselgeneratorsaretestedtoensuretheycanrestoresafeguardsbusvoltageinatimelymannerbyautomaticallyactuatingbreakersinthetimeperiodrequired.3.1.1.4.8ProtectionSstemsFailureAnalsisDesinCRITERION:THEPROTECTIONSYSTEMSSHALLBEDESIGNEDToFAILINTOASAFESTATEORINTOASTATEESTABLISHEDASTOLERABLEONADEFINEDBASISZFCONDZTZONSSUCHASDISCONNECTIONOFTHESYSTEMS~LOSSOFENERGY(E~G.~ELECTRICALPONER~INSTRUMENTAZR)gORADVERSEENVIRONMENTS(EDG.EXTREMEHEATORCOLDFIRESTEAMORWATER)AREEXPERIENCED(AIF-GDC26).Eachreactortripcizcuitisdesignedsothattripoccurswhenthecircuitisdeenergized;anopencircuitorlossofchannelpowerthereforecausesthesystemtogointoitstripmode.Inatwo-out-of-threecircuit,thethreechannelsareequippedwithseparateprimarysensorsandeachchannelisenergizedfromindependentelectricalbuses.Failuretodeenergizewhenrequiredisamodeofmalfunctionthataffectsonlyonechannel.Thetripsignalfurnishedbythetworemainingchannelsisunimpairedinthisevent.Thesignalforcontainmentisolationofnonvitalvalvesisdevelopedfromatwo-out-of-threecircuitinwhicheachchannelisseparateandindependentandwhichsignalsforco'ntainmentisolationuponlossofpower.Thefailureofanychanneltodeenergizewhenrequireddoesnotinterferewiththeproperfunctioningoftheisolationcircuit.Reactortripisimplementedbyinterruptingpowertothemagneticlatchmechanismsoneachdrive,allowingtherodclusterstoinsertbygravity.Theprotectionsystemisthusinherentlysafeintheeventofalossofpower.Automaticstartingofeitheremergencydieselgeneratorisinitiatedbyredundantundervoltagerelaysonthe480-Vsafeguardsbustowhichthedieselgeneratorisconnectedoxbythesafetyinjectionsignal.Enginecrankingisaccomplishedbyastoredenergysystemsuppliedsolelyfortheassociated3.1-21REV.1312/96 GINNA/UFSARdieselgenerator.Theundervoltagerelayschemeisdesignedsothatlossof480-Vpowerdoesnotpreventtherelayschemefromfunctioningproperly.3.1-22REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLAT)3.1-23REV.1312/96 3.1.1.5ReactivityControl3.1.1.5.1RedundancofReactivitControlCRITERIoN:TWOZNDEPENDENTREACTIVITYCONTROLSYSTEMSIPREFERABLYOFDIFFERNTPRZNCIPLESIsHALLBEPRovIDED(AIF-GDC27).Xnadditiontothereactivitycontrolachievedbythecontrolrods,reactivitycontrolisprovidedbythechemicalandvolumecontrolsystemwhichregulatestheconcentrationofboricacidsolutionneutronabsorberinthereactorcoolantsystem.Thesystemisdesignedtoprevent,underanticipatedsystemmalfunction,uncontrolledorinadvertentreactivitychangeswhichmightstressthesystembeyondallowablelimits.3.1.1.5.2ReactivitHotShutdownCaabilitCRITERION:THEREACTZVZTYCONTROLSYSTEMSPROVIDEDSHALLBECAPABLEOFMAKINGANDHOLDINGTHECORESUBCRZTICALFROMANYHOTSTANDBYORHOTOPERATINGCONDITION(AIF-GDC28).Thereactivitycontrolsystemsprovidedazecapableofmakingandholdingthecoresubcriticalfromanyhotstandbycondition,includingthoseresultingfrompowerchanges.Themaximumexcessreactivityexpectedforthecoreoccursforthecold,cleanconditionatthebeginningofeachcycleconsideringthepositionofthecontrolrodsandconcentrationofsolubleneutronabsorber(boron).Thecontrolrodsaredividedintotwocategoriescomprisingacontrolgroupandshutdowngroups.Thecontrolgroup,usedincombinationwithchemicalshim(solubleboron),providescontrolofthereactivitychangesofthecorethroughoutthelifeofthecoreatpowerconditions.Thisgroupofcontrolrodsisusedtocompensateforshort-termreactivitychangesatpowerthatmightbeproducedduetovariationsinreactorpowerrequirementsorincoolanttemperature.Thechemicalshimcontrolisusedtocompensateforthemoreslowlyoccurringchangesinreactivitythroughoutcorelifesuchasthoseduetofueldepletionandfissionproductbuildupanddecay.3.1-24REV.1312/96 GINNA/UIlSAR3.1.1.5.3ReactivitShutdownCaabilit~~CRITERION:ONEOFTHEREACTIVITYCONTROLSYSTEMSPROVIDEDSHALLBECAPABLEOFMAKINGTHECORESUBCRZTICALUNDERANYANTICIPATEDOPERATINGCONDITION(INCLUDINGANTICIPATEDOPERATIONALTRANSIENTS)SUFFZCZENTLYFASTTOPREVENTEXCEEDINGACCEPTABLEFUELDAMAGELIMITS.SHUTDOWNMARGINSHOULDASSURESUBCRITICALITYWITHTHEMOSTREACTIVECONTROLRODFULLYWITHDRAWN(AZF-GDC29).Theshutdowngroupsareprovidedtosupplementthecontrolgroupofcontrolrodstomakethereactorsubcriticalwiththerequiredshutdownmarginfollowingtripfromanycredibleoperatingconditiontothehot,zeropowerconditionassumingthemostreactiverodclustercontrolassemblyremainsinthefullywithdrawnposition.Manuallycontrolledboricacidadditionisusedtosupplementtherodclustercontrolassembliesinmaintainingtheshutdownmarginforthelong-termconditionsofxenondecayorplantcooldown.SeeSections4.2.1and9.3'concerningdetailsofthecontrolrodsandchemicalandvolumecontrolsystems.3.1.1.5.4ReactivitHold-DownCaabilitCRITERIQN:THEREACTIVITYCONTROLSYSTEMSPROVIDEDSHALLBECAPABLEOFMAKINGTHECORESUBCRITICALUNDERCREDIBLEACCIDENTCONDITIONSWITHAPPROPRIATEMARGINSFORCONTINGENCIESANDLIMITINGANYSUBSEQUENTRETURNTOPOWERSUCHTHATTHEREWILLBENOUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC30).Normalreactivityshutdowncapabilityisprovidedbycontrolrodswithboricacidinjectionusedtocompensateforthelong-termxenondecaytransientandforplantcooldown.Anytimethattheplantisatpower,thequantityofboricacidretainedintheboricacidtanksorrefuelingwaterstoragetank(RIhtST)andreadyforinjectionwillalwaysexceedthatquantityrequiredforthenormalMODE5(ColdShutdown).ThisquantitywillalsoexceedthequantityofboricacidrequiredtobringthereactortoMODE3(HotShutdown)andtocompensateforsubsequentxenondecay.Theboricacidsolutionistransferredfromtheboricacidstoragetanksbyboricacidtransferpumpstothesuctionofthechargingpumpswhichinjectboricacidintothereactorcoolant.Anychargingpumpandboricacidtransferpumpcanbeoperatedfromdiesel-generatorpoweronlossofprimarypower.Boricacidcanbeinjectedbyonechargingpumpoperatingatthemaximumrateof60gpmandshutsthereactordownwithnorodsinsertedinapproximately81minutes.Sufficientboricacidcanbeinjectedtocompensate3.1-25REV.1312/96 GINNA/UFSARforxenondecaybeyondtheequilibriumlevel,withonechargingpumpoperatingatitsminimumspeed,,andtherebydeliveringinexcessofthecalculatedrequiredminimumof8.83gpmintothereactorcoolantsystem.AdditionalboricacidisemployedifitisdesiredtobringthereactortoMODE5(ColdShutdown)conditions.Onthebasisoftheabove,theinjectionofboricacidisshowntoaffordbackupreactivityshutdowncapability,independentofcontrolrodclusterswhichnormallyservethisfunctionintheshort-termsituation.Shutdownforlong-termandreducedtemperatureconditionscanbeaccomplishedwithboricacidinjectionusingredundantcomponents.Furthermore,boricacidfromtherefuelingwaterstoragetank(RWST)canalsobetransferredtothereactorcoolantsystemviathechargingpumps'.1.1.5.5ReactivitControlSstemsMalfunctionCRITERION:THEREACTORTRIPSYSTEM(RTS)SHALLBECAPABLEOFPROTECTINGAGAINSTANYSINGLEMALFUNCTIONOFTHEREACTIVITYCONTROLSYSTEMSSUCHASUNPLANNEDCONTXNUOUSWITHDRAWAL(NOTEJECTIONORDROPOUT)OFACONTROLRODiBYLIMITINGREACTIVITYTRANSXENTSTOAVOIDEXCEEDINGACCEPTABLEFUELDAMAGELIMITS(AIFGDC31)~AsdescribedinChapter7,theReactorTripSystem(RTS)isdesignedtolimitreactivitytransientstoDNBRgreaterthanorequaltothesafetylimitduetoanysinglemalfunctioninthedeborationcontrols.Reactorshutdownwithcontrolrodsiscompletelyindependentofthenormalcontrolfunctionssincethetripbreakerscompletelyinterruptthepowertothezodmechanismsregardlessofexistingcontrolsignals.DetailsoftheeffectsofcontinuouswithdrawalofacontrolrodandofcontinuousdeborationaredescribedinSections15.4.1and15'.4.MaximumReactivitWorthofControlRodsCRITERXON:LIMITS'HICHINCLUDEREASONABLEMARGINSSHALLBEPLACEDONTHEMAXIMUMREACTIVITYWORTHOFCONTROLRODSORELEMENTSANDONRATESATWHICHREACTIVITYCANBEXNCREASEDTOENSURETHATTHEPOTENTIALEFFECTSOFASUDDENORLARGECHANGEORREACTIVITYCANNOT(A)RUPTURETHEREACTORCOOLANTPRESSUREBOUNDARYOR(B)DISRUPTTHECORES'TSSUPPORTSTRUCTURES'ROTHERVESSELXNTERNALSSUFFICIENTLYToLosEcAPABILITYoFcooLINGTHEcoRE(AIF-GDC32).3.1-26REV.1312/96 GINNA/UFSARLimits,whichincludeconsiderablemargin,areplacedonthemaximumreactivityworthofcontrolrods,orelementsandonratesatwhichreactivitycanbeincreasedtoensurethatthepotentialeffectsofasuddenorlargechangeofreactivitycannot(a)rupturethereactorcoolantpressureboundaryor(b)disruptthecore,itssupportstructures,orothervesselinternalssoastolosecapabilitytocoolthecore.Thereactorcoolantsystememployscontrolrods,lessthanhalfofwhicharefullywithdrawnduringpoweroperation,servingasshutdownrods.Theremainingrodscomprisethecontrollinggroupwhichareusedtocontrolloadandreactorcoolanttemperature.Thecontrolroddrivemechanismsarewiredintopreselectedgroups,andarethereforepreventedfrombeingwithdrawninotherthantheirrespectivegroups.Thecontrolroddrivemechanismisofthemagneticlatchtypeandthecoilactuationissequencedtoprovidevariablespeedrodtravel.ThemaximumreactivityinsertionrateisanalyzedinthedetailedplantanalysisdescribedinSection15.4.'ocrediblemechanicalorelectricalcontrolsyst:emmalfunctioncancauseacontrolrodtobewithdrawnataspeedgreaterthan66stepsperminute.3.1-27REV.1312/96 GINNA/UFSAR3.1.1.6ReactorCoolantPressureBoundary3.1.1.6.1ReactorCoolantPressureBoundarCaabilitCRITERION:THEREACTORCOOLANTPRESSUREBOUNDARYSHALLBECAPABLEOFACCOMMODATZNGWITHOUTRUPTURETHESTATICANDDYNAMICLOADSIMPOSEDONANYBOUNDARYCOMPONENTASARESULTOFANINADVERTENTANDSUDDENRELEASEOFENERGYTOTHECOOLANT.ASADESIGNREFERENCEITHISSUDDENRELEASESHALLBETAKENASTHATWHICHWOULDRESULTFROMASUDDENREACTIVITYINSERTIONSUCHASRODEJECTION(UNLESSPREVENTEDBYPOSZTIVEMECHANICALMEANS)gRODDROPOUTSORCOLDWATERADDITION(AZF-GDC33)Thereactorcoolantboundaryisshowntobecapableofaccommodatingwithoutfurtherrupturethestaticanddynamicloadsimposedasaresultofasuddenreactivityinsertionsuchasarodejection.DetailsofthisanalysisazeprovidedinSection15.4.S.Theoperationofthereactorissuchthattheseverityofanejectionaccidentisinherentlylimited.Sincecontrolrodclustersareusedtocontrolloadvariationsonlyandcoredepletionisfollowedwithborondilution,onlytherodclustercontrolassembliesinthecontrollinggroupsareinsertedinthecoreatpower,andatfullpowertheserodsareonlypartiallyinserted.Arodinsertionlimitmonitorisprovidedasanadministrativeaidtotheoperatortoensurethatthisconditionismet.Byusingtheflexibilityintheselectionofcontrolrodgroupings,radiallocationsandpositionasafunctionofload,thedesignlimitsthemaximumfueltemperatureforthehighestworthejectedrodtoavaluewhichprecludesanyresultantdamagetotheprimarysystem,pressureboundary,i.e.,grossfueldispersioninthe'coolantandpossibleexcessivepressuresurges.Thefailureofarodmechanismhousingcausingacontrolrodtoberapidlyejectedfromthecoreisevaluatedasatheoretical,thoughnotacredible,accident.Whilelimitedfueldamagecouldresultfromthishypotheticalevent,thefissionproductsareconfinedtothereactorcoolantsystemandthereactorcontainment.Theenvironmentalconsequencesofrodejectionazelessseverethanfromthepostulatedloss-of-coolantaccident,forwhichpublichealthandsafetyareshowntobeadequatelyprotected.3.1-28REV.1312/96 GINNA/UFSAR3.1.1.6.2ReactorCoolantPressureBoundarRaidProaationFailurePreventionCRITERION:THEREACTORCOOLANTPR.SSUREBOUNDARYSHALLBEDESIGNEDANDOPERATEDTOREDUCEToANACCEPTABLELEVELTHEPROBABILITYOFRAPIDLYPROPAGATINGTYPEFAILURES~CONSZDERATIONSHALLBEGIVEN(A)TOTHEPROVISIONSFORCONTROLOVERSERVICETEMPERATUREANDIRRADIATIONEFFECTSWHICHMAYREQUIREOPERATIONALRESTRICTIONS'B)ToTHEDESIGNANDCONSTRUCTIONOFTHEREACTORPRESSUREVESSELINACCORDANCEWITHAPPLICABLECODES~INCLUDINGTHOSEWHICHESTABLISHREQUIREMENTSFORABSORPTIONOFENERGYWITHINTHEELASTICSTRAINENERGYRANGEANDFORABSORPTIONOFENERGYBYPLASTICDEFORMATIONAND(C)ToTHEDESIGNANDCONSTRUCTIONOFREACTORCOOLANTPRESSUREBOUNDARYPIPINGANDEQUIPMENTINACCORDANCEWITHAPPLICABLECODES(AIF-GDC34).Thereactorcoolantpressureboundaryisdesignedtoreducetoanacceptableleveltheprobabilityofarapidlypropagatingtypefailure.Inthecoreregionofthereactorvesselitisexpectedthatthenotchtoughnessofthematerialwillchangeasaresultoffastneutronexposure.Thischangetemperaturemannerthatmaterialistheductiletemperatureoperation.isevidencedasashiftinthenilductilitytransition(NDTT)whichisfactoredintotheoperatingproceduresinsuchafulloperatingpressureisnotobtaineduntiltheaffectedvesselabovethenowhigherdesigntransitiontemperature(DTT)andinmaterialregion.ThepressureduringstartupandshutdownatthebelowNDTTismaintainedbelowthethresholdofconcernforsafeTheDTTisaminimumofNDTTplus604Fanddictatestheprocedurestobefollowedinthehydrostatictestandinstationoperationstoavoidexcessivecoldstress.ThevalueoftheDTTisincreasedduringthelifeoftheplant,asrequiredbytheexpectedshiftintheNDTTandasconfirmedbytheexperimentaldataobtainedfromirradiatedspecimensofreactorvesselmaterialduringtheplantlifetime.FurtherdetailsaregiveninSections5.2and5.3.LowtemperaturereactorvesseloverpressureprotectionisdiscussedinSection5.2.2.PressurizedthermalshockofthereactorvesselisdiscussedinSection5.3'.5.Allpressure-containingcomponentsofthereactorcoolantsystemaredesigned,fabricated,inspected,andtestedinconformancewiththeapplicablecodes.FurtherdetailsaregiveninSection5.2.1.2.3.1-29REV.1312/96 GINNA/UFSAR3.1.1~6.3ReactorCoolantPressureBoundarBrittleFracturePreventionCRITERION:UNDERCONDITIONSWHEREREACTORCOOLANTPRESSUREBOUNDARYSYSTEMCOMPONENTSCONSTRUCTEDOFFERRZTZCMATERIALSMAYBESUBJECTEDTOPOTENTXALLOADINGSSUCHASAREACTIVITY-ZNDUCEDLOADZNGISERVICETEMPERATURESSHALLBEATLEAST120FABOVETHENZLDUCTILITYTRANSITIONTEMPERATURE(NDTT)OFTHECOMPONENTMATERIALXFTHERESULTINGENERGYRELEASEZSEXPECTEDToBEABSORBEDBYPLASTICDEFORMATIONOR60FABOVETHENDTTOFTHECOMPONENTMATERIALXFTHERESULTINGENERGYRELEASEXSExPEcTEDToBEABsoRBEDNITHINTHEELAsTzcsTRAxNENERGYRANGE(AIF-GDC35)~TherequirementsofthiscriterionareincludedinSection3.1.1.6.2.3.1.1.6.4ReactorCoolantPressureBoundarSurveillanceCRITERIQN:REACTORCOOLANTPRESSUREBOUNDARYCOMPONENTSSHALLHAVEPROVISIONSFORZNSPECTZONITESTINGANDSURVEILLANCEOFCRITICALAREASBYAPPROPRIATEMEANSToASSESSTHESTRUCTURALANDLEAKTIGHTZNTEGRITYOFTHEBOUNDARYCOMPONENTSDURINGTHEZRSERVICELIFETIME.FORTHEREACTORVESSELiAMATERIALSURVEILLANCEPROGRAMCONFORMINGÃITHCURRENTAPPLICABLECODESSHAL1BEPROVIDED(AEF-GDC36).Thedesignofthereactorvesselanditsarrangementinthesystemprovidesthecapabilityforaccessibilityduringservicelifetotheentireinternalsurfacesofthevesselandcertainexternalzonesofthevesselincludingthenozzletoreactorcoolantpipingweldsandthetopandbottomheads.Thereactorarrangementwithinthecontainmentprovidessufficientspaceforinspectionoftheexternalsurfacesofthereactorcoolantpiping,exceptfortheareaofpipewithintheprimaryshieldingconcrete.MonitoringoftheNDTTpropertiesofthecoreregionplateforgings,weldments,andassociatedheat-treatedzonesareperformedinaccordancewithASTME185,RecommendedPracticeforSurveillanceTestsonStructuralMaterialsinNuclearReactors.Samplesofreactorvesselplatematerialsareretainedandcatalogedincasefutureengineeringdevelopmentshowstheneedforfurthertesting.Thematerialpropertiessurveillanceprogramincludesnotonlytheconventionaltensileandimpacttestsbutalsofracturemechanicsspecimens.Thefracturemechanicsspecimensarethewedge-openingloadingtypespecimens.TheobservedshiftsinNDTTofthecozeregionmaterialswithirradiationwillbeusedtoconfirmthecalculatedlimitstostartupandshutdowntransients.TodefinepermissibleoperatingconditionsbelowDTT,apressurerangeisestablishedwhichisboundedbyalowerlimitfozpumpoperationandanupper3.1-30REV.1312/96 GINNA/UFSARlimitwhichsatisfiesreactorvesselstresscriteria.Toallowforthermalstressesduringheatuporcooldownofthereactorvessel,anequivalentpressurelimitisdefinedtocompensateforthermalstressasafunctionofrateofchangeofcoolanttemperature.ThereactorcoolanttemperatureandpressureandthesystemheatupandcooldownratesallowablearediscussedinSection5.1.3.9.SincethenormaloperatingtemperatureofthereactorvesseliswellabovethemaximumexpectedDTT,brittlefractureduringMODES1and2isnotconsideredtobeacrediblemodeoffailure.Thereactorvesselhasbeenevaluatedforpotentialdamagedueto"PressurizedThermalShock"(UnresolvedSafetyIssueA-49)anditwasconcludedthatthepotentialfordamagewasacceptablysmall.AdiscussionofreactorvesselintegrityundertransientconditionsisdiscussedinSections5.3.3.4and5.3.3.5.3.1-31REV.1312/96 GINNA/UIiSAR3.1.1.7EngineeredSafetyFeatures3.1.1.7.1EnineeredSafetFeaturesBasisforDesinCRITERION:ENGzNEEREDsAFETYFEATUREssHALLBEPRovIDEDINTHEFAczLITYToBAGKUPTHEsAFETYPROVZDEDBYTHECOREDESIGNSTHEREACTORCOOLANTPRESSUREBOUNDARY'NDTHEIRPROTECTIONSYSTEMS.SUCHENGINEEREDSAFETYFEATURESSHALLBEDESIGNEDTOCOPEWITHANYSIZEREACTORCOOLANTPIPINGBREAKUPToANDINCLVDZNGTHEEQUIVALENTOFACZRCVMFERENTZALRUPTUREOFANYPZPEINTHATBOVNDARYASSUMINGUNOBSTRUCTEDDISCHARGEFROMBOTHENDS(AIF-GDC37).Thedesign,fabrication,testing,andinspectionofthecore,reactorcoolantpressureboundary,andtheirprotectionsystemsgiveassuranceofsafeandreliableoperationunderallanticipatednormal,transient,andaccidentconditions.However,engineeredsafetyfeaturesareprovidedinthefacilitytobackupthesafetyprovidedbythesecomponents.Theseengineeredsafetyfeatureshavebeendesignedtocopewithanysizereactorcoolantpipebreakuptoandincludingthecircumferentialruptureofanypipeinthatboundaryassumingunobstructeddischargefrombothends,andtocopewithanysteamorfeedwaterlinebreakuptoandincludingthemainsteamorfeedwaterheaders.Thereleaseoffissionproductsfromthereactorfuelislimitedbythesafetyinjectionsystemwhich,bycoolingthecore,keepsthefuelinplaceandsubstantiallyintactandlimitsthemetalwaterreaction.Thesafetyinjectionsystemconsistsofhigh-andlow-headcentrifugalpumpsdrivenbyelectricmotorsandpassiveaccumulatortankswhichareself-energizedandwhichactindependentlyofanyactuationsignalorpowersource.Thereleaseoffissionproductsfromthecontainmentislimitedinthreeways:1.Blockingthepotentialleakagepathsfromthecontainment.Thisisaccomplishedbya.Asteel-linedconcretereactorcontainmentwithtestable,doublepenetrationsandlinerweldchannelswhichformavirtuallyleaktightbarriertotheescapeoffissionproductsshouldalossofcoolantoccur.b.Isolationofprocesslinesbythecontainmentisolationsystemwhichimposesdoublebarriersineachlinethatpenetratesthecontainment.3.1-32REV.1312/96 GINNA/UFSAR2~Reducingthefissionproductconcentrationinthecontainmentatmosphere.Thisisaccomplishedbya.Airrecirculationfilterswhichprovideforrapidremovalofparticlesandiodinevaporfromthecontainmentatmosphere.b.Chemicallytreatedspraywhichremoveselementaliodinevaporfromthecontainmentatmospherebywashingaction.Reducingthecontainmentpressureandtherebylimitingthedrivingpotentialforfissionproductleakage.Thisisaccomplishedbycoolingthecontainmentatmospherebythefollowingindependentsystemsofequalheatremovalcapacity:A.Containmentspraysystem.B,Containmentrecirculationfancooler(CRFC)andfiltrationsystem.3.1.1.7.2ReliabilitandTestabilitofEnineeredSafetFeaturesCRITERION:ALLENGINEEREDSAFETYFEATURESSHALLBEDESIGNEDToPROVIDESUCHFUNCTIONALRELIABILITYANDREADYTESTABILITYASISNECESSARYToAVOIDUNDUERISKToTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC38).Acomprehensiveprogramofplanttestingisperformedforallequipmentsystemsandsystemcontrolsvitaltothefunctioningofengineeredsafetyfeatures.Theprogramconsistsofperformancetestsofindividualpiecesofequipmentinthemanufacturer'sshop,andintegratedtestsofthesystemasawhole,andperiodictestsoftheactuationcircuitryandmechanicalcomponentstoensurereliableperformance,upondemand,throughouttheplantlifetime.Theinitialtestsoftheindividualcomponentsandtheintegratedtestofthesystemasawholecomplementeachothertoensureperformanceofthesystemasdesignedandtoproveproperoperationoftheactuationcircuitry.Routineperiodictestingoftheengineeredsafetyfeaturescomponentsisscheduled.Intheeventthatoneofthecomponentsshouldrequiremaintenanceasaresultoffailuretoperformduzingthetestaccordingtoprescribedlimits,thenecessarycorrectionsorminormaintenancewillbemadeasrequiredbytheTechnicalSpecifications.3.1-33REV.1312/96 GINNA/UFSAR(1NTENTXONALLYLEFTBLANK)3.1-34REV.1312/96 GINNA/UFSAR~~~3.1.1.7.3EmerencPowerCRITERION:ANEMERGENcYPowERsoURcEsHALLBEPRovIDEDANDDEsIGNEDwxTHADEQUATEZNDEPENDENCYgREDUNDANCY~CAPACITY'NDTESTABI'LITYTOPERMITTHEFUNCTIONINGOFTHEENGINEEREDSAFETYFEATURESANDPROTECTIONSYSTEMSREQUIREDToAVOIDUNDUERISKToTHEHEALTHANDsAFETYoFTHEPUBLIc~THxsPQNERsoURcEsHALLPRovxDETHIsCAPACITYASSUMINGAFAILUREOFASINGLEACTIVECOMPONENT(AIF-GDC39).Independent,redundant,alternatepowersystemsareprovidedwithadequatecapacityandtestabilitytosupplytherequiredengineeredsafetyfeatuzes.Theplantissuppliedwithnormal,standbyandemergencypowersourcesasfollows:A.Thenormalsourceofauxiliarypowerduringplantoperationisthegenerator.Powerissuppliedviatheunitauxiliarytransformerllthatisconnectedtothemainleadsofthegenerator,exceptfozsafeguardsloadsrequiredduringMODES1and2,whicharesuppliedfromtransformer12Aandtheoffsitesource.SeeSection8.2.1.2foranupdateddescriptionofthesupplytothesafeguardsloads.B.Standbypowerrequiredduringplantstartup,shutdown,andafterreactortripissuppliedfromthehightensiontransmissionterminalwhichhasmultiplelinesrunningtotheinterconnectedsystem.C.Twodiesel-generatorsetsareconnectedtotheengineeredsafetyfeaturesbusestosupplyemergencyshutdownpowerintheeventoflossofallotheracauxiliarypower.D.Emergencypowersupplyforvitalinstrumentsandcontrolandforemergencylightingissuppliedfromthetwo125-Vdcstationbatteries.Althoughtheengineeredsafetyfeaturesloadsarearrangedtooperatefromelectricalbusessuppliedfromnormaloutsideacpowerwhichisdesignedtoremainfunctionalfollowingreactortrip,reliableonsiteemergencypowerisprovided.Thus,ifnormalacpowertothestationislostconcurrentwithaloss-of-coolantaccident,powerisavailablefortheengineeredsafetyfeatures.Twodiesel-generatorsets,eachcapableofsupplyingthenecessaryengineeredsafetyfeaturesorsafeshutdownloads,areprovided.DetailsareprovidedinSections8.1.4.2and8.3.1.1.3.1-35REV.1312/96 GINNA/UFSAR3.1.1.7.4MissileProtectionCRITERIoN:ADEQUATEPROTECTIONFORTHOSEENGINEEREDSAFETYFEATURESTHEFAILUREOFHHICHCOULDCAUSEANUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLICSHALLBEPROVIDEDAGAINSTDYNAMICEFFECTSANDMISSILESTHATMIGHTRESULTFROMPLANTEQUZPMENTFAILURES(AIF-GDC40).Aloss-of-coolantaccidentorotherplantequipmentfailuremightresultindynamiceffectsormissiles.Forsuchengineeredsafetyfeaturesasarerequiredtoensuresafetyintheeventofsuchanaccidentorequipmentfailure,protectionfromthesedynamiceffectsormissilesisconsideredinthelayoutofplantequipmentandmissilebarriers.Fluidandmechanicaldrivingforcesazecalculatedandconsiderationisgiventothepossibilityofdamageduetofluidjetsandmissileswhichmightbeproducedbytheactionofsuchjets.Considerationisgivenduringthedesignofthefollowingpotentialsourcesofmissiles:valvestemsandbonnets,instrumentthimblesincludinginstalledsensors,bolts,completecontrolroddriveshaftsand/ozmechanisms,androtatingcomponents.Considerationisalsogiventopipewhipeffects.Layoutandstructuraldesignspecificallyprotectinjectionpathsleadingtounbrokenreactorcoolantloopsagainstdamageasaresultofthemaximumreactorcoolantpiperupture.Injectionlinespenetratethemainmissilebarrier,andtheinjectionheadersarelocatedinthemissile-protectedareabetweenthemissilebarrierandthecontainmentoutsidewall.Individualinjectionlines,connectedtotheinjectionheader,passthroughthebarrierandthenconnecttotheloops.Separationoftheindividualinjectionlinesisprovidedtothemaximumextentpracticable.Movementoftheinjectionline,associatedwithruptureofareactorcoolantloop,isaccommodatedbylineflexibilityandbythedesignofthepipesupports.Allhangers,stops,andanchorsaredesignedinaccordancewithUSASB31.1,CodeforPressurePiping,andAC1318,BuildingCodeRequirementsforReinforcedConcrete,whichprovidesminimumzequirementsonmaterial,design,andfabricationwithamplesafetymarginsforbothdeadanddynamicloadsoverthelifeoftheequipment.AdditionalinformationisprovidedinSections3.5and3.6.3.1-36REV.1312/96 GINNA/UIiSAR3.1.1.7.5EnineeredSafetFeaturesPerformanceCaabilitCRITERION:ENGINEEREDSAFETYFEATURESSUCHASTHEEMERGENCYCORECOOLINGSYSTEM(ECCS)ANDTHECONTAINMENTHEATREMOVALSYSTEMSHALLPROVIDESUFFICIENTP.RFORMANCECAPABILITYToACCOMMODATETHEFAILUREOFANYSZNGLEACTIVECOMPONENTWITHOUTREsULTINGINUNDUERIsKToTHEHEALTHANDsAFETYQFTHEPUBLIc(AEF-GDC41)~Eachengineeredsafetyfeatureprovidessufficientperformancecapabilitytoaccommodateanysinglefailureofanactivecomponentandstillfunctioninamannertoavoidunduerisktothehealthandsafetyofthepublic.Theextremeupperlimitofpublicexposureistakenasthelevelsandtimeperiodspresentlyoutlinedin10CFR100.TheaccidentconditionconsideredisthehypotheticalcaseofareleaseoffissionproductsperTZD14844.Also,thetotallossofalloffsitepowerisassumedconcurrentwiththisaccident.Undertheaboveaccidentconditions,allengineeredsafetyfeaturesequipmentisdesignedtoaccomplishitssafetyfunction,assumingtheworstcasesinglefailure.3.1.1.7.6EnineezedSafetFeaturesComonentsCaabilitCR'ITERIQN:ENGINEEREDSAFETYFEATVRESSHALLBEDESIGNEDSoTHATTHECAPABILITYOFTHESEFEATURESToPERFORMTHEIRREQUIREDFUNCTIONISNOTIMPAIREDBYTHEEFFECTSOFALOSS-OF-COOLANTACCIDENTTOTHEEXTENTOFCAUSINGUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC42)~Allactivecomponentsofthesafetyinjectionsystem(withtheexceptionofresidualheatremovallow-pressuresafetyinjectionlinedischargevalves)andthecontainmentspraysystemarelocatedoutsidethecontainmentandarenotsubjecttocontainmentaccidentconditions'nstrumentation,motors,cables,andpenetrationslocatedinsidethecontainmentareselectedtomeetthemostadverseaccidentconditionstowhichtheymaybesubjected.Theseitemsareeitherprotectedfromcontainmentaccidentconditionsorazedesignedtowithstand,withoutfailure,exposuretotheworstcombinationoftemperature,pressure,andhumidityexpectedduringtherequiredoperationalperiod.Thepipingandothercomponentsoftheengineeredsafetyfeaturessystemsaredesignedandqualifiedtoperformtheirsafetyfunctionduringandafterthe3.1-37REV.1312/96 GINNA/UFSARaccidentconditions,withconcurrentseismicforcesandaccidentoperationalloadings.3.1.1.7.7AccidentAravationPreventionCRITERION:PROTECTIONAGAINSTANYACTIONOFTHEENGINEEREDSAFETYFEATURES'WHICHWOULDACCENTUATESIGNIFICANTLYTHEADVERSEAFTEREFFECTSOFALOSSOE'ORMALCOOLINGsHALLBEPRovzDED(AIF-GDC43).Thereactorismaintainedsubcriticalfollowingaprimarysystempiperuptureaccident.Introductionofboratedcoolingwaterintothecoreresultsinanetnegativereactivityaddition.Thedeliveryofcoldsafetyinjectionwatertothereactorvesselfollowingareactorcoolantsystembreakorsecondarysystembreakwillnotfurtheradverselyaffecttheintegrityofthereactorcoolantpressureboundary.3.1.1.7'.8EmerencCoreCoolinSstem(ECCS)CaabilitCRITERIQN:ANEMERGENCYCORECOOLINGSYSTEM(ECCS)WITHTHECAPABILITYFORACCOMPLISHINGADEQUATEEMERGENCYCORECOOLINGSHALLBEPROVIDED.THZSCORECOOLINGSYSTEMANDTHECORESHALLBEDESIGNEDToPREVENTFUELANDCLADDAMAGETHATWOULDINTERFEREWITHTHEEMERGENCYCORECOOLINGFUNCTIONANDToLIMITTHECLADMETALWATERREACTIONTOACCEPTABLEAMOUNTSFORALLSIZESOFBREAKSZNTHEREACTORCOOLANTPIPINGVPTOTHEEQUIVALENTOFADOUBLEENDEDRUPTUREOFTHELARGESTPiPE.THEPERFORMANCEOFSUCHANEMERGENCYCORECOOLINGSYSTEM(ECCS)ISEVALUATEDCONSERVATIVELYINEACHAREAOE'NCERTAINTY(AIFGDC44).AdequateemergencycorecoolingisprovidedbythesafetyinjectionsystemwhichconstitutestheEmergencyCoreCoolingSystem(ECCS)whosecomponentsincludethepassiveaccumulators,high-pressuresafetyinjection,andresidualheatremovallowpressuresafetyinjectionandrecirculation.Theprimazypurposeofthesafetyinjectionsystemistoautomaticallydelivercoolingwatertothezeactorcoretolimitthefuelcladtemperatureandtherebyensurethatthecorewillremainintactandinplace,withitsessentialheattransfergeometrypreserved.Thisprotectionisprescribedforallbreaksizesuptoandincludingthehypotheticalinstantaneousdoubleendedruptureofthereactorcoolantpipe,therodejectionaccident,asteamorfeedwaterlinebreak,thesteamgeneratortuberupture,andotheraccidentsanalyzedinChapter15.3.1-38REV.1312/96 GINNA/UFSARTheabilityofthesafetyinjectionsystemtomeetitscapabilityobjectivesispresentedinSection6.3.3.3.1.1.7.9InsectionofEmerencCoreCoolinSstem(ECCS)CRITERION-DESIGNPROVISIONSSHALLYWHEREPRACTICAL'EMADETOFACILITATEPHYSICALINSPECTIONOFALLCRITICALPARTSOFTHEEMERGENCYCORECOOLINGSYSTEM(ECCS)gINCLUDINGREACTORVESSELINTERNALSANDWATERINJECTIONNOZZLES(AIF-GDC45).Designprovisionsaremadetotheextentpracticaltofacilitateaccesstothecriticalpartsofthereactorvesselinternals,injectionnozzles,pipes,valves,andsafetyinjectionpumpsfozvisual,boroscopic,andultrasonicinspectionforerosion,corrosion,andvibrationwearevidence,andfornondestructivetestinspectionwheresuchtechniquesaredesirableandappropziate.3.1.1.7.10TestinofEmerencCoreCoolinSstem(ECCS)ComonentsCRITERION:DESIGNPROVISZONSSHALLBEMADESOTHATCOMPONENTSOFTHEEMERGENCYCORECOOLINGSYSTEM(ECCS)CANBETESTEDPERIODICALLYFOROPERABILZTYANDFVNCTIONALPERFoRMANcE(AIF-GDC46)~Designprovisionsaremadesothatactivecomponentsofthesafetyinjectionsystemcanbetestedperiodicallyforoperabilityandfunctionalperformance.Eachactivecomponentcanbeindividuallyactuatedonthenormalpowersourceatanytimeduringplantoperation.Thesafetyinjectionpumpscanbetestedperiodicallyduringplantoperationusingtheminimumflowrecirculationlinesinaccordancewiththeinservicepumpandvalvetestingprogram.Theresidualheatremovalpumpsareusedeverytimetheresidualheatremovalloopisputintooperation,aswellasbeingperiodicallytested.Allremote-operatedvalvesareexercisedandactuationcircuitsaretestedduringroutinemaintenance.TheaccumulatorsaretestedforflowduringstartupafteraMODE6(Refueling)shutdown.Accumulatorflowismeasuredwhenvalvesintheaccumulatortestlineareopenedduringthetest.Thisflowisrecirculatedtotherefuelingwaterstoragetank(RWST).3.1-39REV.1312/96 GINNA/UFSAR3.1.1.7.11TestinofEmerencCoreCoolinSstem(ECCS)CRITERION:CAPABILITYSHALLBEPROVIDEDToTESTPERIODICALLYTHEOPERABILITYOFTHEEMERGENCYCORECOOLINGSYSTEM(ECCS)UPToALOCATZONASCLOSETOTHECOREASISPRACTICAL(AIF-GDC47).ThisinformationisincludedinSection3.1.1.7.10.3.1.1.7.12Testinof0erationalSeuenceofEmerencCoreCoolinSstem(ECCS)CRXTERION:CAPABILITYSHALLBEPROVIDEDToTESTINITIALLY'NDERCONDITIONSASCLOSEASPRACTXCALToDESIGNSTHEFULLOPERATIONALSEQUENCETHATWOULDBRINGTHEEMERGENCYCORECOOLINGSYSTEM(ECCS)INTOACTIONSZNCLUDINGTHETRANSFERToALTERNATEPowERsoURGEs(AIFGDC48).Thedesignprovidesforcapabilitytotestinitially,totheextentpractical,thefulloperationalsequenceuptothedesignconditionsforthesafetyinjection'systemtodemonstratethestateofreadinessandcapabilityofthesystem.DetailsoftheoperationalsequencetestingarepresentedinSection6.3.5,TestsandInspections.ThefunctionaltestthatwasperformedduringstartupisdescribedinSection14.6.3.1.1.7.13ContainmentDesinBasisCRITERION:THEREACTORCONTAINMENTSTRUCTUREiINCLUDINGACCESSOPENINGSANDPENETRATZONsiANDANYNECESSARYCONTAINMENTHEATREMOVALSYSTEMSSHALLBEDESIGNEDSOTHATTHEL~GEOFRADXOACTZVEMATERIALSFROMTHECONTAINMENTSTRUCTUREUNDERCONDITZONSOFPRESSUREANDTEMPERATURERESULTINGFROMTHELARGESTCREDIBLEENERGYRELEASEFOLLOWINGALOSS-OF-COOLANTACCIDENTINCLUDINGTHECALCULATEDENERGYFROMMETAL-WATEROROTHERCHEMICALREACTZONSTHATCOULDOCCURASACONSEQUENCEOFFAILUREOFANYSINGLEACTIVECOMPONENTZNTHEEMERGENCYCORECOOLXNGSYSTEM(ECCS)iWILLNOTRESULTINUNDUERISKToTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC49).Thefollowinggeneralcriteriaazefollowedtoensureconservatismincomputingtherequiredstructuralloadcapacity:1.Incalculatingthecontainmentpressure,rupturesizesuptoandincludingadouble-endedseveranceofreactorcoolantpipesandsteamlinesazeconsidered.2.Inconsideringpostaccidentpressureeffects,variousmalfunctionsoftheemergencysystemsareevaluatedconsistentwiththesingle-failurecriteria.3.1-40REV.1312/96 GINNA/UFSAR3.Thepressureandtemperatureloadingsobtainedbyanalyzingvariousaccidents,whencombinedwithoperatingloadsandmaximumwindorseismicforces,donotexceedtheload-carryingcapacityofthestructure,itsaccessopenings,orpenetzations.DetailsofthecontainmentevaluationareprovidedinSection6.2.3.1.1.7.14NilDuctilitTransitionTemeratureReuirementforContainmentMaterialCRITERION:THESELECTIONANDUSEOFCONTAINMENTMATERIALSSHALLBEZNACCORDANCEWITHAPPLIcABLEENGINEERINGcoDEs(AIF-GDC50).TheselectionanduseofcontainmentmaterialscomplywiththeapplicablecodesandstandardstabulatedinSection3.8.1.2.5.Theconcretecontainmentisnotsusceptibletolow-temperaturebrittlefracture.Thecontainmentlinerisenclosedwithinthecontainmentandthusisnotexposedtotheoutsidetemperatureextremes.Thecontainmentambienttemperatureduringoperationisbetween50'Fand120'FwhichisexpectedtobewellabovetheNDTT+30'Fforthelinermaterial.ContainmentpenetrationswhichcanbeexposedtotheenvironmentazealsodesignedtotheNDTT+30'Fcriterion.ThecontainmentlinerevaluationisdiscussedinSections3.8.1and3.8.2.3.1.1~7.15ReactorCoolantPressureBoundarOutsideContainmentCRZTERION:IFPARTOFTHEREACTORCOOLANTPRESSUREBOUNDARYISOUTSIDETHECONTAINMENTFEATURESSHALLBEPROVIDEDTOAVOIDUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLZCINCASEOFANACCIDENTALRUPTUREZNTHATPART(AIF-GDC51)~Thereactorcoolantpressureboundarydoesnotextendoutsideofthecontainment.3.1.1~7.16ContainmentHeatRemovalSstemsCRITERION:WHEREANACTIVEHEATREMOVALSYSTEMZSNEEDEDUNDERACCIDENTCONDITIONSTOPREVENTEXCEEDINGCONTAINMENTDESIGNPRESSURE~THISSYSTEMSHALLPERFORMZTSREQUIREDFUNCTIONASSUMINGFAILUREOFANYSINGLEACTIVECOMPONENT(AIF-GDC52).Twomeansofremovingheatfromthecontainmentatmosphereareprovided:thecontainmentrecirculationfancooler(CRFC)unitsandthecontainmentspray3.1-41REV.1312/96 GINNA/UFSARsystem.Sections6.2.2and6.5andChapter15describetheoperabilityandcapabilityofthecontainmentspraysystem,theresidualheatremovallooppartofthecontainmentheatremovalsystem,andthecontainmentrecirculationfancooler(CRFC)andfiltrationsystem.3'.1.7.17ContainmentIsolationValvesCRITERION:PENETRATIONSTHATREQUIRECLOSUREFORTHECONTAZNMENTFUNCTIONSHALLBEPROTECTEDBYREDUNDANTVALVZNGAHDASSOCIATEDAPPARATUS(AIF-GDC53).Isolationvalvesforallfluidsystemlinespenetratingthecontainmentprovideatleasttwobarriersforredundancyagainstleakageofradioactivefluidstotheenvironmentintheeventofaloss-of-coolantaccident.Thesebarriers,intheformofisolationvalvesorclosedsystems,aredefinedonanindividuallinebasis.Inadditiontosatisfyingcontainmentisolationcriteria,thevalvingisdesignedtofacilitatenormaloperationandmaintenanceofthesystemsandtoensurereliableoperationofotherengineeredsafetyfeatures.Withrespecttonumbersandlocationsofisolationvalves,thecriteriaappliedaregenerallythoseoutlinedbythefiveclassesdescribedinSection6.2.4.4.3.1.1.7.18InitialLeakaeRateTestinofContainmentCRZTERZOH:CONTAINMENTSHALLBEDESZGNEDSOTHATINTEGRATEDLEAKAGERATETESTINGCANBECONDUCTEDATTHEPEAKPRESSURECALCULATEDTORESULTFROMTHEDESIGH-BASISACCIDENTONCOMPLETIONAHDIHSTALLATIONOFALLPENETRATIONSgANDTHELEAKAGERATESHALLBEMEASUREDOVERASUFFICIENTPERZODOFTIMETOVERIFYITSCONFORMANCEHITHREQUIREDPERFCRMAHGE(AIF-GDC54).Aftercompletionofthecontainmentstructureandinstallationofallpenetrationandweldchannels,aninitialintegratedleakageratetestwasconductedatthepeakcalculatedaccidentpressure,maintainedforaminimumof24houzs,toverifythattheleakagerateisnotgreaterthan0.18byweightofthecontainmentvolumeperday.Theabsolutemethodwasused,andthetestcontinuedatareducedpressuretoprovidealeakrateversuspressurecharacteristiccurve.Weldchannelsanddoublepenetrationswerenotpressurizedduringthistest.Containmentrecir-3.1-42REV.1312/96 GINNA/UFSARculationunitsoperatedcontinuouslythroughoutthetesttoensuregoodairmixingandtemperaturecontrol.3.1.1.7.19PeriodicContainmentLeakaeRateTestinCRITERION:THECONTAINMENTSHALLBEDESIGNEDSOTHATANINTEGRATEDLEAKAGERATECANBEPERIODICALLYDETERMINEDBYTESTDURINGPLANTLIFETIME(AIF-GDC55)~Aleakratetestatthepeakcalculatedaccidentpressureusingthesamemethodastheinitialleakratetestcanbeperformedatanytimeduringtheoperationallifeoftheplant,providedtheplantisnotinoperationandprecautionsaretakentoprotectinstrumentsandequipmentfromdamage.However,inaccordancewith10CFR50,AppendixJ,subsequentcontainmentintegratedleakratetestswereconductedatreducedpressure,withappropriatecompensatorymodificationstotheleakageacceptancecriteria.SeeSection6.2.6forthelatestcriteria.3.1-43REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.1-44REV.1312/96 GINNA/UFSAR3.1.1.7.20ProvisionsforTestinofPenetrationsCRITERION:PROVISIONSSHALLBEMADETOTHEEXTENTPRACTZCALFORPERIODICALLYTESTINGPENETRATZONSWHICHHAVERESILIENTSEALSOREXPANSIONBELLONSTOPERMITLUKTiGHTNESSToBEDEMONSTRATEDATTHEPEAKPRESSURECALCULATEDTORESULTFROMOCCURRENCEOFTHEDESIGN-BASISACCIDENT(AIF-GDC56).Apermanentlypipedmonitoringsystemisprovidedsuchthatallpenetzationsmaybecheckedforleaktightintegrityatanytimethroughouttheoperatinglifeoftheplant.Penetzationsaredesignedwithdoublesealssoastopermitpressurizationoftheinteriorofthepenetrationwheneveraleaktestisrequired.Thelargeaccessopeningssuchastheequipmenthatchandpersonnelairlocksareequippedwithdoublesealswiththespacebetweenthesealsconnectedtothepressurizingsystem,Thesystemutilizesasupplyofclean,dry,compressedairwhichplacesallthepenetrationsunderaninternalpressureasrequiredforthetest.Leakagefromthesystemischeckedbymeasurementoftheintegratedmakeupairfloworchangeininternalpressure.lntheeventexcessiveleakageisdiscovered,eachpenetrationcanthenbecheckedseparately.3.1.1.7.21ProvisionsforTestinofXsolationValvesCRITERION:CAPABILITYSHALLBEPROVIDEDToTHEEXTENTPRACT1CALFORTESTINGFUNCTIONALOPERABILITYOFVALVESANDASSOCIATEDAPPARATUSESSENTIALToTHECONTAINMENTFUNCTIONFORESTABLISHINGTHATNOFAILUREHASOCCURREDANDFORDFTERM1NZNGTHATVALVELEAKAGEDOESNOTEXCEEDACCEPTABLELZMITS(AIF-GDC57).Capabilityisprovidedtotheextentpracticalfortestingthefunctionaloperabilityofvalvesandassociatedapparatusduringperiodsofreactorshutdown.ThetypeCtestsforcontainmentisolationvalvesareperformedinaccordancewith10CFR50,AppendixJ.TheresultsaredocumentedintheContainmentIntegratedLeakRateTestReportwhichissubmittedfollowingtheperformanceofeachtypeAtest.ContainmentleakagetestingisdiscussedinSection6.2.6.3.1-45REV.1312/96 GINNA/UFSAR3.1.1.7.22TnsectionofContainmentPressure-ReducinSstemsCRITERION:DESIGNPROVISIONSSHALLBEMADEToTHEEXTENTPRACTICALToFACILITATETHEPERIODICPHYSICALINSPECTIONOFALLIMPORTANTCOMPONENTSOFTHECONTAINMENTPRESSURE-REDUczNGsYsTEMsgsUGHAsPUMPsgYALYEsgsPRAYNozzLEsgTQRUsgANDsUMPs(AZF-GDC58).Designprovisionsaremadetotheextentpracticaltofacilitateaccessforperiodicvisualinspectionofallimportantcomponentsofthecontainmentairrecirculationandfiltrationandcontainmentspraysystems.3.1.1.7.23TestinofContainmentPressure-ReducinSstemsComonentsCRITERION:THECONTAZNMENTPRESSURE-REDUCINGSYSTEMSSHALLBEDESZGNEDToTHEEXTENTPRACTICALSOTHATCCMPOiVENTSgSUCHASPUMPSANDVALVESsCANBETESTEDPERIODICALLYFOROPERABILITYANDREQUIREDFUNCTIONALPERFORMANCE(A1F-GDC59).Thecontainmentpressure-reducingsystemsaredesignedtotheextentpracticalsothatthespraypumps,sprayinjectionvalves,spraynozzlesandadditiveinjectionvalvescanbetestedperiodicallyandafteranycomponentmaintenanceactionforoperabilityandfunctionalperformance.Theairrecirculatingandcoolingunits,andtheservicewater(SW)pumpsthatsupplythecoolingunitsareinoperationonarelativelycontinuousscheduleduringplantoperation,andnoadditionalperiodictestsarerequired.3.1.1.7.24TestinofContainmentSraSstemsCRITERION:ACAPABILITYSHALLBEPROVIDEDToTHEEXTENTPRACTICALToTESTPERIODICALLYTHEOPERABILITYOFTHECONTAINMENTSPRAYSYSTEMUPToAPOSZTIONASCLOSETOTHESPRAYNOZZLESASISPRACTICAL(AXF-GDC60)~Permanenttestlinesforthecontainmentsprayloopsarelocatedsothatallcomponentsuptotheisolationvalveatthespraynozzlesmaybetested.Theseisolationvalvesarecheckedseparately.Thespraynozzlesarecheckedbyblowinghotair(approximately200F)throughthenozzlesandobservingtheflowbyuseofthermography.3.1.1.7.25Testinof0erationalSeuenceofContainmentPressure-Reducin~sstemsCRITERION:ACAPABILITYSHALLBEPROVIDEDTOTESTZNZTIALLYUNDERCONDITIONSASCLOSEASPRACTICALToTHEDESIGNANDTHEFULLOPERATIONALSEQUENCETHATWOULDBRINGTHECONTAINMENTPRESSUREREDUCINGSYSTEMSZNTOACTZONINCLUDINGTHETRANSFERToALTERNATEPowERsoURGEs(AIF-GDC61).3.1-46REV.1312/96 GINNA/UIiSARCapabilityisprovidedtotestinitiallytotheextentpracticaltheoperationalstartupsequencebeginningwithtransfertoalternatepowersourcesandendingwithneardesignconditionsforthecontainmentsprayandcontainmentrecirculationfancooler(CRFC)andfiltrationsystems.3.1.1.7.26InsectionofAirCleanuSstemsCRZTERION:DESIGNPROVISIONSSHALLBEMADETOTHEEXTENTPRACTICALTOFACILITATEPHYSICALINSPECTIONOFALLCRITICALPARTSOFCONTAINMENTAIRCLEANUPSYSTEMS@SUCHASIDUCTSIFILTERS'ANS~ANDDAMPERS(AIF-GDC62)~Accessisavailableforvisualinspectionofthecontainmentfancoolerandrecirculationfiltrationcomponents.3.1.1.7.27TestinofAirCleanuSstemsComonentsCRITERION:DESIGNPROVZSZONSSHALLBEMADETOTHEEXTENTPRACTICALSOTHATACTIVECOMPONENTSOFTHEAIRCLEANUPSYSTEMSSUCHASFANSANDDAMPERSCANBETESTEDPERIODICALLYFOROPERABILITYANDREQUIREDFUNCTZONALPERFORMANCE(AZF-GDC63).Periodictestsofthedampersassociatedwiththecharcoalfilterunitsofthecontainmentaircleanupsystemareconducted.Eachdamperisstrokedanditsoperation(includingstroketime)ischeckedbypersonnelinthecontainment.Anindicatinglightinthecontrolroomprovidesindicationofdampermovement.Periodictestsalsoverifythatthedampersfailinasafepositionuponlossofair,andthatairflowandorientationforaccidentoperationisacceptable.3.1.1.7.28TestinAirCleanuSstemCRITERION:ACAPABILITYSHALLBEPROVIDEDTOTHEEXTENTPRACTZCALFORONSITEPERIODICTESTINGANDSURVEILLANCEOFTHEAIRCLEANUPSYSTEMSTOENSURE(A)FILTERBYPASSPATHSHAVENOTDEVELOPEDAND(8)FILTERANDTRAPPZNGMATERZALSHAVENOTDETERIORATEDBEYONDACCEPTABLELIMITS(AEF-GDC64).Eachcontainmentrecirculationfanunitischeckedperiodicallyforwaterinthefiltrationarea.Also,charcoalfiltersaretestedforbypassflowandpressuredrop,andarevisuallyinspectedfordamageandlossofcharcoal.Further,arepresentativesampleframeisremovedduringshutdownandtestedperiodicallytoverifyitscontinuedefficiency.Afterreinstallationthefilterunitsaretestedinplacebyaerosolinjectiontodetermineintegrityoftheflowpath.3.1-47REV.1312/96 GINNA/UFSAR3.1.1.7.29Testinof0erationalSeuenceofAirCleanuSstemsCRITERION:~CAPABILITYSHALLB"PROVIDEDToTESTINITIALLYUNDERCONDITIONSASCLOSEToDESIGNASPRACTICAL'HEFULLOPERATIONALSEQUENCETHATWOULDBRINGTHEAIRCLEANUPSYSTEMSINTOACTIONSINCLUDINGTHETRANSFERToALTERNATEPOWERSOURCESANDTHEDESIGNAIRFLOWDELIVERYCAPABILITY(AIF-GDC65)~Meansareprovidedtotestinitiallyunderconditionsasclosetodesignandasnearasispracticalthefulloperationalsequencethatwouldbringthecontainmentrecirculationfancooler(CRFC)andfiltrationsystemintoaction,includingtransfertotheemergencydiesel-generatorpowersource.3.1-48REV.1312/96 GINNA/UFSARFuelandWasteStorageSystemsPreventionofFuelStozaeCriticalitCRITERION:CRITICALITYINNEWANDSPENTFUELSTORAGESHALLBEPREVENTEDBYPHYSICALSYSTEMSORPROCESSES~SUCHMEANSASGEOMETRICALLYSAFECONFIGURATZONSSHALLBEEMPHASIZEDOVERPROCEDURALCONTROLS(AIF-GDC66)~Duringreactorvesselheadremovalandwhileloadingandunloadingfuelfromthereactor,theboronconcentrationismaintainedatnotlessthanthatrequiredtoshutdownthecoretoakEpp=0.95.Thisshutdownmarginmaintainsthecoreatkppplessthan0.99,evenifallcontrolrodsarewithdrawnfromthecore.Weeklychecksofrefuelingwaterboronconcentrationensurethepropershutdownmargin.Thenewandspentfuelstorageracksaredesignedsothatitishighlyunlikelythatassemblieswouldbeinsertedinotherthantheprescribedlocations.BoratedwaterisusedtofillthespentfuelstoragepoolataconcentrationtomatchthatusedinthereactorcavityandrefuelingcanalduringMODE6(Refueling)operations.Thefuelisstoredverticallyinanarraywithsufficientcenter-to-centerdistancebetweenassembliestoensurekEpplessthanorequalto0.95evenifunboratedwaterwereusedtofillthepool.Detailedinstructionsazeavailableforusebytrainedrefuelingpersonnel.Furthermore,interlocksareprovidedtolimitthetravelofheavyloadsinareaswherefailurecouldresultinunacceptableconsequences.3.1.1.8.2FuelandWasteStozaeDecaHeatCRITERION:RELIABLEDECAYHEATREMOVALSYSTEMSSHALLBEDESIGNEDTOPREVENTDAMAGETOTHEFUELZNSTORAGEFACZLITZESANDToWASTESTORAGETANKSTHATCOULDRESULTINRADZOACTIVITYRELEASEWHICHWOULDRESULTZNUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLIC(AIF-GDC67)~Therefuelingwaterprovidesareliableandadequatecoolingmediumforspentfueltransfer,Heatremovalisprovidedbyauxiliarycoolingsystems,suchasthespentfuelpool(SFP)coolingsystem(Section9.1.2)andtheservicewater(SW)system(Section9.2.1).3.1<9REV.1312/96 .-GINNA/UFSAR3.1.1.8'FuelandWasteStoraeRadiationShieldinCRITERION:ADEQUATESHIELDINGfORRADIATIONPROTECTIONSHALLBEPROVIDEDINTHEDESIGNOFSPENTFUELANDWASTESTORAGEFACILITIES(AXF-GDC68)~AdequateshieldingforradiationprotectionisprovidedduringreactorMODE6(Refueling)byconductingallspentfueltransferandstorageoperationsunderwater.Thispermitsvisualcontroloftheoperationatalltimeswhilemaintaininglowradiationlevels.Shieldingisprovidedforwastehandlingandstoragefacilitiestopermitoperationwithinregulatoryguidelines.Gammaradiationiscontinuouslymonitoredintheauxiliarybuilding.Ahighlevelsignalisalarmedlocallyandisannunciatedinthecontrolroom.Shieldingforthewastedisposalsystemanditsstoragecomponentsisdesignedtolimitthedoseratesasrequiredbypersonnelaccess,testing,operation,andmai,ntenancerequirements.3.1.1.8.4ProtectionAainstRadioactivitReleaseFromSentFuelandWasteStoracteCRITERZON:PROVISIONSSHALLBEMADEZNTHEDESIGNOFFUELANDWASTESTORAGEFACILITIESSUCHTHATNOUNDUERISKTOTHEHEALTHANDSAFETYOFTHEPUBLICCOULDRESULTFROMANACCIDENTALRELEASEOFRADIOACTIVITY(AIF-GDC69).Thereactorcavity,refuelingcanalandspentfuelstoragepoolarereinforcedconcretestructureswithaseam-weldedstainlesssteelplateliner.ThesestructuresaredesignedtowithstandtheanticipatedearthquakeloadingsasSeismicCategory1structuressothatthelinershouldpreventleakageevenintheeventthereinforcedconcretedevelopscracks.AccidentanalysesdescribedinChapter15demonstratethatthepostulatedaccidentsresultinexposureswellwithinregulatoryguidelines.3.1-50REV.1312/96 GINNA/0FSARControlofReleases'ofRadioactivitytotheEnvironmentCRITERION:THEFACILITYDESIGNSHALLINCLUDETHOSEMEANSNECESSARYToMAINTAINCONTROLOVERTHEPLANTRADXOACTIVITYEFFLUENTSNHETHERGASEOUSLIQUID,ORSOLID.APPROPRXATEHOLDVPCAPACITYSHALLBEPROViDEDFORRETENTIONOfGASEOUSLIQUIDORSOLZDEFFLVENTS<PARTICULARLYWHEREUNFAVORABLEENVIRONMENTALCONDITIONSCANBEEXPECTEDToREQUXREOPERATIONALLIMITATIONSUPONTHERELEASEOFRADIOACTIVEEFFLUENTSTOTHEENVIRONMENT.INALLCASES'HEDESIGNFORRADIOACTIVITYCONTROLMUSTBEJUSTIFIED(A)ONTHEBASISOF10CFR20REQUIREMENTS@FORNORMALOPERATZONSANDfORANYTRANSIENTSITVATIONTHATMIGHTREASONABLYBEANTICIPATEDTOOCCURAND(B)ONTHEBASXSOf10CFR100DOSAGELFVELGUIDELINESfORPOTENTIALREACTORACCXDENTSOFEXCEEDINGLYL(NPROBABILITYOfOCCURRENCE(AIF-GDC70).Liquid,gaseous,andsolidwastedisposalfacilitiesaredesignedsothatdischargeofeffluentsandoffsiteshipmentsareinaccordancewithapplicableNRCregulationsandguidelines.Radioactivefluidsenteringthewastedisposalsystemarecollectedinsumpsandtanksuntildeterminationofsubsequenttreatmentcanbemade.Theyaresampledandanalyzedtodeterminethequantityofradioactivity,withanisotopicbreakdownifnecessary.Beforeanyattemptismadetodischarge,theyareprocessedasrequiredandthenreleasedundercontrolledconditions.Thesystemdesignandoperationarecharacteristicallydirectedtowardminimizingreleasestounrestrictedareas.Dischargestreamsareappropriatelymonitoredandsafetyfeaturesazeincorporatedtoprecludeexcessivereleases,inaccordancewiththeOffsiteDoseCalculationManual(ODCM).Thebulkoftheradioactiveliquidsdischargedfromthereactorcoolantsystemareprocessedandretainedinsidetheplantbythechemicalandvolumecontrolsystemrecycletrain.Thisminimizesliquidinputtothewastedisposalsyst:emwhichprocessesrelativelysmallquantitiesofgenerallylow-activitylevelwastes.Theprocessedwaterfromwastedisposal,fromwhichmostoftheradioactivematerialhasbeenremoved,isdischargedthroughamonitoredlineintothecirculatingwaterdischarge.Radioactivegasesarepumpedbycompressorsthroughamanifoldtooneofthegasdecaytankswheretheyareheldasuitableperiodoftimefordecay.Covergasesinthenitrogenblanketingsystemarereusedtominimizegaseouswastes.DuringMODES1and2,gasesazedischargedintermittentlyata3.1-51REV.1312/96 GINNA/UFSARcontrolledratefromthesetanksthroughthemonitozedplantvent.Thesystemisprovidedwithdischargecontrolssothatenvironmentalconditionsdonotrestrictthereleaseofradioactiveeffluentstotheatmosphere.Liquidwastesareprocessedtoremovemostoftheradioactivematerials.Thespentresinsfromthedemineralizers,thefiltercaztridges,andtheconcentratesfromtheevaporatorsarepackagedandstoredonsiteuntilshipmentoffsitefordisposal.Suitablecontainersareusedtopackagethesesolidsatthehighestpracticalconcentrationstominimizethenumberofcontainersshippedforburial.Allsolidwasteisplacedinsuitablecontainersandstoredonsiteuntilshipmentoffsiteismadefordisposal.3.1-52REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.1-53REV.1312/96 GINNA/UIiSAR3.1.2GENERALDESIGNCRITERIAGeneralDesignCriteria(GDC)aresetforthinAppendixAof10CFR50.TheGinnaStationconformancetothe1972versionoftheGDCisdescribedinthefollowingsections.3.1-54REV.1312/96 GINNA/UFSAR3.1.2.1OverallRequirementsThesecriteriaareintendedtoensurethatthequalitycontrolandqualityassuranceprogramsareidentified,recorded,andjustifiedintermsoftheiradequacy.Thefivecriteriaofthisgroupazeintendedtoapplytothedesign,fabrication,erection,andperformancerequirementsofthefacility'sessentialcomponentsandsystemstoensurethatthereispfotectionagainstnaturalphenomenaandenvironmentalconditions.Znaddition,thesecriteriaarealsointendedtoprovidefireandexplosionprotectionforallequipmentimportanttosafety.3.1.2.1.1GeneralDesinCriterion1-QualitStandardsandRecordsCRITERION:STRUCTURES~SYSTEMSIANDCOMPONENTSIMPORTANTToSAFETYSHALLBEDESIGNED/FABRICATED~ERECTED~ANDTESTEDTOQUALITYSTANDARDSCOMMENSURATEWITHTHEIMPORTANCEOFTHESAFETYFUNCTIONSTOBEPERFORMED.WHEREGENERALLYRECOGNIZEDCODESANDSTANDARDSAREUSEDTHEYSHALLBEIDENTIFIEDANDEVALUATEDToDTERMZNETHEIRAPPLICABILITYADEQUACYANDSUFFICIENCYANDSHALLBESUPPLEMENTEDORMODIFIEDASNECESSARYTOASSUREAQUALITYPRODUCTINKEEPINGWITHTHEREQUIREDSAFETYFUNCTZON~AQVALITYASSURANCEPROGRAMSHALLBEESTABLISHEDANDIMPLEMENTEDINORDERTOPROVIDEADEQUATEASSURANCETHATTHESESTRUCTURES/SYSTEMS'NDCOMPONENTSWILLSATISFACTORILYPERFORMTHEIRSAFETYFUNCTIONS'PPROPRIATERECORDSOFTHEDESIGNIFABRICATIoiVIERECTION~ANDTESTINGOFSTRUCTURESSYSTEMSANDCOMPONENTSIMPORTANTTOSAFETYSHALLBEMAINTAINEDBYORUNDERTHECONTROLOFTHENUCLEARPOWERUNITLICENSEETHROUGHOUTTHELIFEOFTHEUNIT(GDC1).Allsystemsandcomponentsofthefacilitywereclassifiedaccordingtotheirimportance.Thoseitemsvitaltosafeshutdownandisolationofthereactororwhosefailuremightcauseorincreasetheseverityofaloss-of-coolantaccidentorresultinanuncontrolledreleaseofexcessiveamountsofradioactivityweredesignatedClassZ.ThoseitemsimportanttoreactoroperationbutnotessentialtosafeshutdownandisolationofthereactororcontrolofthereleaseofsubstantialamountsofradioactivityweredesignatedClassZZ.Thoseitemsnotrelatedtoreactoroper8tionozsafetyweredesignatedClassZZZ.NotethatRG&Enolongerusesthisclassificationscheme.TheclassificationofstructuresandequipmentisdiscussedinSection3.2.Safety-relatedstructures,systems,andcomponentsareessentialtotheprotectionofthehealthandsafetyofthepublic.Consequently,theywere3.1-55REV.1312/96 GINNA/UFSARdesigned,fabricated,inspectedanderected,andthematerialsselectedtotheapplicableprovisionsofthethenrecognizedcodes,goodnuclearpractice,andtoqualitystandardsthatreflectedtheirimportance.Discussionsofapplicablecodesandstandards,qualityassuranceprograms,testprovisionsgetc.,thatwereusedaregiveninthesectiondescribingeachsystem.Acompletesetofas-builtfacilityplantandsystemdiagramsaremaintainedthroughoutthelifeofthereactor.Recordsofmodificationstothegeneralarrangementandstructuralplansarealsomaintainedthroughoutthelifeofthereactor.AsetofcompletedtestproceduresforallinitialplanttestingismaintainedasoutlinedinChapter14.Asetofallthequalityassurancedatageneratedduringfabricationanderectionoftheessentialcomponentsoftheplant,asdefinedbytheGinnaStationconstzuctionqualityassuranceprogram,isretained.ThequalitycontrolandqualityassuranceprogramforGinnaStationconstzuctionisdescribedinSection17.1.ThecurrentqualityassuranceprogramforGinnaStationisreferencedinSection17.2.3.1.2.1.2GeneralDesinCriterion2-DesinBasesforProtectionAainstNaturalPhenomena.CRITERION:STRUCTURESISYSTEMS~ANDCOMPONENTSIMPORTANTToSAFETYSHALLBEDESZGNEDTOWITHSTANDTHEEFFECTSOFNATURALPHENOMENASUCHASEARTHQUAKESTORNADOES,HURRICANES,FLOODSTSUNAMIANDSEICHESWITHOUTLOSSOFCAPABILITYToPERFORMTHEIRSAFETYFUNCTIONS.THEDESIGNBASESFORTHESESTRUCTURES'YSTEMS'NDCOMPONENTSSHALLREFLECT-(1)APPROPRIATECONSZDERATZONOFTHEMOSTSEVEREOFTHENATURALPHENOMENATHATHAVEBEENHISTORICALLYREPORTEDFORTHESITEANDSURROUNDZNGAREAR'ITHSUFFICIENTMARGINFORTHELIMITEDACCURACY~QUANTITY,ANDPERIODOFTIMEZNWHICHTHEHISTORICALDATAHAVEBEENACCUMULATED,(2)APPROPRIATECOMBINATIONSOFTHEEFFECTSOFNORMALANDACCIDENTCONDITIONSWITHTHEEFFECTSOFTHENATURALPHENOMENAAND(3)THEIMPORTANCEOFTHESAFETYFUNCTIONSToBEPERFORMED(GDC2).AllsystemsandcomponentsdesignatedSeismicCategoryIazedesignedsothatthereisnolossoffunctionintheeventofthesafeshutdownearthquake.Measureswerealsotakenintheplantdesigntoprotectagainsthighwinds,suddenbarometricpressurechanges,seiches,andothernaturalphenomena.TornadoandfloodprotectionmeasuresarediscussedinSections3.3and3.4.Procedureshavebeenwrittenthatwillbefollowedintheeventofsuch3.1-56REV.1312/96 GINNA/UFSARnaturalphenomena.TheoccurrenceofsuchphenomenaisdiscussedinChapterOnMay22,1992,GenericLetter87-02,Supplement1,transmittedSupplementalSafetyEvaluationReportNo.2(SSERNo.2)ontheSeismicQualificationUtilityGroup(SQUG)GenericImplementationProcedure,Revision2,datedFebruary14,1992(GIP-2).SupplementalSafetyEvaluationReportNo.2approvedthemethodologyintheGenericImplementationProcedureforuseinverificationofequipmentseismicadequacyincludingequipmentinvolvedinfuturemodificationsandreplacementequipment.InlettersdatedNovember30,1992,andJune8,1993,theNRCacceptedRG&E'sresponsetoGenericLetter87-02,Supplement1.3.1.2.1.3GeneralDesinCriterion3-FireProtectionCRITERION:STRUCTURESISYSTEMSIANDCOMPONENTSIMPORTANTTOSAFETYSHALLBEDESIGNEDANDLOCATEDTOMINIMZZEgCONSISTENTNITHOTHERSAFETYREQUIREMENTSgTHEPROBABILITYANDEFFEcToFFIREsANDExPLoszoNs~NDNcoHBUsTIBLEANDHEATREszsTANTHATERIALsSHALLBEUSEDNHEREVERPRACTICALTHROUGHOUTTHEUNIT@PARTICULARLYZNLOCATIONSSUCHASTHECONTAINMENTANDCONTROLROOM~FIREDETECTIONANDFIGHTINGSYSTEMSOFAPPROPRIATECAPACITYANDCAPABILITYSHALLBEPROVIDEDANDDESIGNEDTOMINIMIZETHEADVERSEEFFECTSOFFIRESONSTRUCTURESSYSTEHSANDCOMPONENTSIMPORTANTTOSAFE,Y.FIRE-FIGHTINGSYSTEMSSHALLBEDESIGNEDTOASSURETHATTHEIRRUPTUREORINADVERTENTOPERATIONDOESNOTSZGNZFZCANTLYZHPAIRTHESAFETYCAPABILITYOFTHESESTRUCTURESgSYSTEMSgANDCOMPONENTS(GDC3)~Firedetectionandfightingsystemsofappropriatecapacityandcapabilityareprovidedtominimizetheadverseeffectsoffixeonstructures,systems,andcomponentsimportanttosafety.Sensingdevicesincludebothionizationchambers(smokedetectors)andtemperaturedetectors.Fire-fightingequipmentincludesautomaticwatersuppressioninappropriateareas.AutomaticallyinitiatedHalon1301totalfloodingsystemsareprovidedintherelayroomandAcomputerroom.Appropriatehosesandportablefire-fightingequipmentareplacedthroughouttheplant.Thefireprotectionsystemandcompliancewith10CFR50,AppendixR,arediscussedinSection9.5.1.3.1-57REV.1312/96 GINNA/UIiSAR3.1.2.1.4GeneralDesinCriterion4-EnvironmentalandMissileDesinBasesCRITERION:STRUCTURESiSYSTEMS'NDCOMPONENTSIMPORTANTTOSAFETYSHALLBEDESIGNEDTOACCQYAODATETHEEFFECTSOFANDTOBECOMPATIBLEWITHTHEENVIRONMENTALCONDITIONSASSOCIATEDWITHMODES1AND2IMAINTENANCE'ESTINGSANDPOSTULATEDACCIDENTSfINCLUDINGLOSSOFCCOLANTACCZDENTSTHESESTRVCTURESiSYSTEMSiANDCOMPONENTSSHALLBEAPPROPRIATELYPROTECTEDAGAINSTDYNAMICEFFECTSINCLUDINGTHEEFFECTSOFMISSILESPIPEWHIPPINGANDDZSCHARGINGFLUZDS,THATMAYRESULTFROMEQUIPMENTFAILURESANDFROMEVENTSANDCONDZTIONSOVTSZDETHENUCLEARPOWERUNZT(GDC4).Acomprehensivereviewhasbeenperformedtoensureproperenvironmentalqualificationofsafety-relatedelectricalequipment,inaccordancewith10CFR50.49.ThisisdiscussedindetailinSection3.11.Also,areviewofpostulatedpipebreaksinsideandoutsidecontainmentwasconductedaspartoftheSystematicEvaluationProgram(SEP)includingdynamiceffectssuchaspiŽewhipandjetimpingement.ThisisdiscussedinSection3.6.Finally,internallygeneratedmissiles,tornadomissiles,andsiteproximitymissiles,includingaircraft,werereviewedaspartoftheSEPandarediscussedinSection3.5.3.1.2.1.5GeneralDesinCriterion5-SharinofStructures,Sstems,andComonentsCRITERION:STRUCTURESISYSTEMSiANDCOMPONENTSIMPORTANTTOSAFETYSHALLNOTBESHAREDAMONGNUCLEARPOWERVNZTSUNLESSZTCANBESHOWNTHATSUCHSHARINGWILLNOTSIGNIFICANTLYIMPAIRTHEIRABILITYToPERFORMTHEIRSAFETYFUNCTIONSINCLUDINGINTHEEVENTOFANACCIDENTINONEUNZTIANORDERLYSHUTDOWNANDCOOLDOWNOFTHEREMAININGUNITS(GDC5)~TheR.E.GinnaNuclearPowerPlantisasingleunitinstallation.3.1-58REV.1312/96 GINNA/0FSAR3.1.2.2ProtectionbyMultipleFissionProductBarriersThesecriteriaareintendedtoensurethatdesignsprovidethereactorunitwithmultiplebarrierswhichremainintactduringMODES1and2andallanticipatedtransientsandthatadequatebarriersareavailablefordesign-basisaccidents.Inaddition,thesecriteriaareintendedtoidentifyanddefinetheinstrumentationandcontrolsystems,electricalpowersystems,andcontrolzoomrequirementsrequiredforMODES1and2,anticipatedoperationaloccurrences,andforaccidentcondition.3.1.2.2.1GeneralDesinCriterion10-ReactorDesinCRITERION:THEREACTORCOREANDASSOCIATEDCOOLANT~CONTROL~ANDPROTECTIONSYSTEMSSHALLBEDESIGNEDWITHAPPROPRIATEMARGINTOASSURETHATSPECIE'IEDACCEPTABLEFUELDESIGNLIMITSARENOTEXCEEDEDDURINGANYCONDITIONOFMODES1AND2,INCLUDINGTHEEFFECTSOE'NTICIPATEDOPERATIONALOCCURRENCES(GDC10)~'IThereactorcoredesign,incombinationwithcoolant,control,andprotectionsystems,providesmarginstoensurethatfuelisnotdamagedduringMODES1and2ozasaresultofanticipatedoperationaltransients.TheDNBcorrelationshavebeenusedtopredicttheDNBfluxandlocationofDNBforaxiallyuniformandnonuniformheatfluxdistributions.ForoperationwithintheTechnicalSpecificationlimits,theDNBRduringsteady-stateoperationandanticipatedtransientsislimitedtospecificsafetyvalues.ThereactorcontrolandprotectivesystemalsopreventsthepowerlevelorsystemtemperatuzeorpressurefromexceedinglimitsthatwouldresultinaDNBRoflessthanthelimitingvaluesforanticipatedtransients(seeChapter3.1.2'.2GeneralDesinCriterion11-.ReactorInherentProtectionCRITERION:THEREACTORCOREANDASSOCIATEDCOOLANTSYSTEMSSHALLBEDESIGNEDSOTHATINTHEPONEROPERATZNGRANGETHENETEFFECTOFTHEPROMPTINHERENTNUCLEARFEEDBACKcHARAGTERIsTIcsTENDsTocoMPENsATEFoRARAPIDINcREAsEINREAOTIvITY(GDC11)~Thereactorcozeandassociatedcoolantsystemshavebeendesignedsothatinthepoweroperatingrangetheneteffectofthepromptnuclearfeedbackcharacteristicstendstocompensateforarapidincreaseinreactivity.3.1-59REV.1312/96 GINNA/UFSARThemoderatortemperaturecoefficientisusually,thoughnotalways,negative.Themoderatorpressureanddensitycoefficientsarenotusuallynegative;however,theoverallpowercoefficient(duetothedopplercoefficient)isnegativeandsoprovidesanuclearfeedbackcharacteristictolimitarapidincreaseinreactivity.3.1.2.2.3GeneralDesinCriterion12-SuressionofReactorPowerOscillationsCRITERION:THEREACTORCOREANDASSOCIATEDCOOLANTiCONTROLSANDPROTECTIONSYSTEMSSHALLBEDESIGNEDTOASSURETHATPOWEROSCILLATIONSWHICHCANRESULTINCONDITIONSEXCEEDINGSPECIFIEDACCEPTABLEFUELDESZGNLIMITSARENOTPOSSIBLEORCANB-RELIABLYANDREADILYDETECTEDANDSUPPRESSED(GDC12)~Thereactorcozeandtheassociatedcoolant,control,andprotectionsystems,andoperatingstrategieshavebeendesignedtopreventoreasilysuppresspoweroscillationsthatcouldresultinexceedingfueldesignlimits.3.1.2.2.4GeneralDesinCriterion13-instrumentationandControlCRITERION:INSTRUMENTATIONSHALLBEPROVIDDToMONZTORVARIABLESANDSYSTEMSOVERTHEIRANTICIPATEDRANGESFORMODES1AND2gFORANTICIPATEDOPERATIONALOCCURRENCES/ANDFORACCIDENTCONDITIONSASAPPROPRIATEToASSUREADEQUATESAFETYZNCLUDINGTHOSEVARIABLESANDSYSTEMSTHATCANAFFECTTHEFISSIONPROCESSTHEINTEGRITYOFTHEREACTORCOREiTHEREACTORCOOLANTPRESSUREBOUNDARYiANDTHECONTAINMENTANDZTSASSOCIATEDSYSTEMS.APPROPRIATECONTROLSSHALLBEPROVIDEDToMAINTAINTHESEVARIABLESANDSYSTEMSWITHINPRESCRIBEDOPERATINGRANGES(GDC13)~Instrumentationandcontrolsessentialtoavoidunduerisktothehealthandsafetyofthepublicareprovidedtomonitorandmaintaincontainmentpressure,neutronflux,primarycoolantpressure,flowrate,temperature,andcontrolrodpositionswithinprescribedoperatingranges.Thefissionprocessismonitoredandcontrolledforallconditionsfromthesourcerangethroughthepowerrange.TheneutronmonitoringsystemdetectscoreconditionsthatcouldpotentiallythreatentheoverallintegrityofthefuelbarrierduetoexcesspowergenerationandprovidesacorrespondingsignaltotheReactorTripSystem(RTS).Inadditiontotheex-cozeneutronmonitoringsystem,movablein-coreinstrumentationprovidesthecapabilityofmappingthecore.Thenonnuclearregulating,process,andcontainmentinstrumentationmeasurestemperatures,pressure,flow,andlevelsinthereactorcoolantsystem,steam3.1-60REV.1312/96 GINNA/UFSARsystems,containmentandotherauxiliarysystems.Processvariablesrequiredonacontinuousbasisforthestartup,operation,andshutdownoftheplantareindicated,recorded,andcontrolledfromthecontrolroom.Thequantityandtypesofpzocessinstrumentationprovidedensuressafeandorderlyoperationofallsystemsandprocessesoverthefulloperatingrangeoftheplant.TheinstrumentationandcontrolsystemsarediscussedinChapter7.3.1.2.2.5GeneralDesinCriterion14-ReactorCoolantPressureBoundarCRITERION:THEREACTORCOOLANTPRESSUREBOUNDARYSHALLBEDESIGNEDIFABRICATED'RECTED/ANDTESTEDSOASTOHAVEANEXTREMELYLOWPROBABZLITYOFABNORMALLEAKAGEIOFRAPIDLYPROPAGATINGFAILURE>ANDOFGROSSRUPTURE(GDC14)~Allpipingcomponentsandsupportingstructuresofthereactorcoolantsystemweredesi'gnedasClassIandlaterreevaluatedasSeismicCategoryIequipmentasdefinedinSection3.7.Allpressurecontainingcomponentsofthereactorcoolantsystemweredesigned,fabricated,inspected,andtestedinconformancewiththecoderequirementslistedinTable5.2-1.Therefore,theprobabilityofabnormalleakage,ofrapidlypropagatingfailureandofgrossruptureisverylow.3.1.2.2.6GeneralDesinCriterion15-ReactorCoolantSstemDesinCRITERIA:THEREACTORCOOLANTSYSTEMANDASSOCIATEDAUXILIARY'ONTROLSANDPROTECTIONSYSTEMSSHALLBEDESIGNEDWITHSUFFICIENTMARGINToASSURETHATTHEDESIGNCONDITIONSOFTHEREACTORCOOLANTPRESSUREBOUNDARYARENOTEXCEEDEDDURZNGANYCONDITIONOFMODES1AND2IINCLUDINGANTICIPATEDOPERATIONALOCCURRENCES(GDC15)~Thereactorcoolantsystemandassociatedauxiliary,control,andprotectionsystemsweredesignedwithsufficientmarginssothatdesignconditionsarenotexceededduringMODES1and2includinganticipatedoperationaloccurrences.Thenormaloperatingpressureis2235psigwithdesignpressurebeing2485psig.Thisprovidesareasonablerangeformaneuveringduringoperationwithallowanceforpressuretransientswithoutactuationofthesafetyvalves.TheanalysispresentedinChapter15demonstratestheabilityoftheplanttosafelyundergoallanticipatedtransientswithpressurepeaksbelow2485psig.3.1-61REV.1312/96 GINNA/UIiSAROverpressurizationispreventedbyacombinationofautomaticcontrolandpressurereliefdevices.Inadditiontothesafetyvalves,LowTemperatureOverpressureProtection(LTOP)Systemaresetfor2335psig.3.1.2.2.7GeneralDesinCriterion16-ContainmentDesinCRITERION:REACTORCONTAINMENTANDASSOCIATEDSYSTEMSSHALLBEPROVIDEDTOESTABLISHANESSENTIALLYLEAKTIGHTBARRIERAGAINSTTHEUNCONTROLLEDRELEASEOfRADIOACTIVITYToTHEENVIRONMENTANDTOASSURETHATTHECONTAINMENTDESIGNCONDZTZONSZMPORTANTToSAFETYARENOTEXCEEDEDfORASLONGASPOSTULATEDACCIDENTCONDITIONSREQUIRE(GDC16).Thebuildingcontainingthereactor,andprimarysystemisazeinforced-concretestructureprestressedintheverticaldirection,withaweldedsteellinerontheinside.Thestructurecontainsafreevolumeofapproximately997,000ftandisdesignedforaninternalpressureof60psig.Priortoinitialoperation,thecontainmentwasstrengthtestedat69psigandthenwasleaktested.Theacceptancecriterionfozthepreoperationalleakagetestwasestablishedas0.1%per24hoursat60psigReportsontheStructuralintegrityTestofReactorContainmentStructureandPre-operationalIntegratedLeakRateTestoftheReactorContainmentBuildingweresubmittedtotheAEC.Theleakagerateat60psigwasdeterminedtobe0.02192.0168%per24hours.PeriodicleakratemeasurementsasdefinedintheTechnicalSpecificationsensurethatthecontainmentstructureprovidesanessentiallyleaktightbarrieragainsttheuncontrolledreleaseofzadioactivitytotheenvironment.Periodicinspectionof.prestressedtendonsaswellasperiodicintegratedleakratetests,asdefinedintheTechnicalSpecifications,ensurethecontinuedstructuralintegrityofthecontainmentstructure.Acontainmentspraysystemandfancoolersazeprovidedtomitigatetheconsequencesofaloss-of-coolantaccident.MoredetailsonthecontainmentsystemcanbefoundinSections6.2and3.8.3.1-62REV.1312/96 GINNA/UFSAR3.1.2.2.8GeneralDesinCriterion17-ElectricalPowerSstems~~~CRITERION:ANONSITEELECTRICPOWERSYSTEMANDANOFFSZTEELECTRICPOWERSYSTEMSHALLBEPROVIDDTOP-RMXTFUNCTIONiNGOFSTRUCTURES'YSTEMS'NDCOMPONENTSIMPORTANTTOSAFFTY~THESAFETYFUNCTIONFOREACHSYSTEM(ASSUMINGTHEOTHERSYSTEMISNOTFUNCTIONING)SHALLBETOPROVIDESUFFICIENTCAPACITYANDCAPABILITYTOASSURETHAT(1)SPECIFIEDACCEPTABLEFUELDESIGNLIMITSANDDESZGNCONDITIONSOFTHEREACTORCOOLANTPRESSUREBOUNDARYARENOTEXCEEDEDASARESULTOFANTICIPATEDOPERATIONALOCCURRENCESAND(2)THECOREISCOOLEDANDCONTAINMENTINTEGRITYANDOTHERVITALFUNCTIONSAREMAINTAINEDINTHEEVENTOFPOSTULATEDACCIDENTS'HEONSZTEELECTRZCPOWERSUPPLIES~INCLUDINGTHEBATTERZESIANDTHEONSITEELECTRICDISTRZBUTZONSYSTEMSHALLHAVESUFFICZENTINDEPENDENCEREDUNDANCYANDTESTABILITYTOPERFORMTHEIRSAFETYFUNCTIONSASSUMINGASINGLEFAILURE~ELECTRICPOWERFROMTHETRANSMISSIONNETWORKTOTHEONSITEELECTRICDISTRIBUTIONSYSTEMSHALLBESUPPLIEDBYTWOPHYSICALLYINDEPENDENTCIRCUITS(NOTNECESSARILYONSEPARATERIGHTSOFWAY)DESIGNEDANDLOCATEDSOASTOMINIMIZETOTHEEXTENTPRACTICALTHELXKELIHOODOFTHEIRSIMULTANEOUSFAILUREUNDEROPERATINGANDPOSTULATEDACCIDENTANDENVIRONMENTALCONDITIONS~ASWITCHYARDCOMMONTOBOTHCZRCUZTSISACCEPTABLE.EACHOFTHESECIRCUITSSHALLBEDESIGNEDTOBEAVAILABLEZNSUFFICIENTTIMEFOLLOWINGALOSSOFALLONSITEALTERNATINGCURRENTPOWERSUPPLIESANDTHEOTHEROFFSXTEELECTRXCPOWERCZRCUXTITOASSURETHATSPECIFIEDACCEPTABLEFUELDESIGNLIMITSANDDESIGNCONDXTIONSOFTHEREACTORCOOLANTPRESSUREBOUNDARYARENOTEXCEEDED.ONEOFTHESECIRCUITSSHALLBEDESIGNEDTOBEAVAILABLEW1THZNAFEWSECONDSFOLLOWINGALOSS-OF-COOLANTACCIDENTTOASSURETHATCORECOOLZNGgCONTAINMENTINTEGRITYIANDOTHERVITALSAFETYFUNCTIONSAREMAINTAINED.PROVISIONSSHALLBEINCLUDEDTOMINIMIZETHEPROBABILXTYOFLOSINGELECTRICPOWERFROMANYOFTHEREMAXNINGSUPPLIESASARESULTOFgORCOINCIDENTWITHETHELOSSOFPOWERGENERATEDBYTHENUCLEARPOWERUNITgTHELOSSOFPOWERFROMTHETRANSMISSIONNETWORKSORTHELOSSOFPOWERFROMTHEONSITEELECTRICPOWERSUPPLXES(GDC17).Onsiteandoffsiteelectricalpowersystemsareprovidedtopermitfunctioningofstructures,systems,andcomponentsimportanttosafety.Eachsyst:emprovidessufficientcapacityandcapabilitytoensurethat(1)specifiedacceptablefueldesignlimitsanddesignconditionsofthereactorcoolantpressureboundaryarenotexceededasaresultofanticipatedoperationaloccurrences,and(2)thecoreiscooledandcontainmentintegrityandothervitalfunctionsaremaintainedintheeventofpostulatedaccidents.Twocompletelyindependentandredundantemergencydiesel-generatorsystemsareprovidedaswellastwocompletelyseparateandindependentstationbatterysystems.3.1-63REV.1312/96 GINNA/UFSAROffsitepowerissuppliedbytwoseparatesources.OnesourcecomesdirectlyfromtheRG&E34.5-kVsystemthroughstationauxiliary(startup)transformer12Aandthesecondfromthe115-kVsystemthrougha115-kVto34.5-kVstep-downtransformerandstationauxiliary(startup)transformer12B.Thestationauxiliarytransformers(12Aand12B)arethenormaloffsitepowersourcestothesafeguardsbuses.1ntheeventofafailureofbothstationauxiliarytransformers,theunitauxiliarytransformer(11)canbeusedasabackupsupply.Thistransformercanbeusedbydisconnectingaflexibleconnectionontheisolatedphasebusatthegeneratorterminalsandbackfeedingfromthe115-kVsystemthroughthemaintransformer.DieselsandbatteriesaretestedaccordingtotherequirementsoftheTechnicalSpecifications.Boththeonsiteandoffsitepowersystemswouldbeavailablefollowingaloss-of-coolantaccidentintimetoensurethatcorecooling,containmentintegrity,andothervitalsafetyfunctionsaremaintained.MoredetailedinformationontheelectricalsystemscanbefoundinChapter8.3.1-64REV.1312/96 GINNA/UISAR(INTENTIONALLYLEFTBLANK)3.1-65REV.1312/96 GINNA/UFSAR3.1.2.2.9GeneralDesinCriterion18-XnsectionandTestinofElectricalPowerSstemsCRITERION:ELECTRICPOWERSYSTEMSXMPORTANTTOSAFETYSHALLBEDESIGNEDToPERMITAPPROPRIATEPERXODICINSPECTIONANDTESTINGOFXMPORTANTAREASANDFEATURESISUCHASWXRINGIINSULATION'ONNECTIONS'NDSWITCHBOARDS'oASSESSTHECONTINUITYOFTHESYSTEMSANDTHECONDITIONOFTHEIRCOMPONENTS~THESYSTEMSSHALLBEDESIGNEDWITHACAPABILITYTOTESTPERIODXCALLY(1)THEOPERABILITYANDFUNCTIONALPERFORMANCEOFTHECOMPONENTSOFTHESYSTEMS,SUCHASONSZTEPOWERSOURCESRELAYSSWXTCHESANDBUSESAND(2)THEOPERABILITYOFTHESYSTEMSASAWHOLEANDUNDERCONDITIONSASCLOSETODESIGNASPRACTICAL,THEFULLOPERATIONSEQUENCETHATBRINGSTHESYSTEMSZNTOOPERATION@ZNCLUDZNGOPERATZONOFAPPLICABLEPORTIONSOFTHEPROTECTXONSYSTEMSANDTHETRANSFEROFPOWERAMONGTHENUCLEARPOWERUNITgTHEOFFSITEPOWERSYSTEM@ANDTHEONSZTEPOWERSYSTEM(GDC18)Theelectricalpowersystemsaredesignedwiththecapabilityofperiodictestingforoperability.Componentsofthesystems,i.e.,onsitepowersources,relays,andswitches,aresimilarlycapableofbeingperiodicallytested.Passivecomponentssuchaswiring,connections,switchboards,andbusesarecapableofperiodicinspection.Verificationofoperabilityofthesystemsasawhole,includingtransferofpower,isdescribedinChapter8.OperabilityofthesystemsinaccordancewithdesignconditionswasverifiedbypreopezationaltestingandperiodictestingofthesystemsisrequiredbytheTechnicalSpecifications.3.1.2.2.10GeneralDesinCriterion19-ControlRoomCRITERION.:ACONTROLROOMSHALLBEPROVZDEDFROMWHICHACTIONSCANBETAKENToOPERATETHENUCLEARPOWERUNITSAFELYUNDERNORMALCONDITIONSANDToMAINTAINITINASAFECONDITIONUNDERACCIDENTCONDITIONSINCLUDINGLOSS-OF-COOLANTACCIDENTS~ADEQUATERADIATIONPROTECTIONSHALLBEPROVIDEDTOPERMITACCESSANDOCCUPANCYOFTHECONTROLROOMUNDERACCIDENTCONDITIONSWITHOUTPERSONNELRECEIVINGRADIATIONEXPOSVRESINEXCESSOF5REMWHOLEBODY,ORZTSEQUIVALENTToANYPARTOFTHEBODY'ORTHEDURATIONOFTHEACCXDENT~EQUIPMENTATAPPROPRIATELOCATIONSOUTSIDETHECONTROLROOMSHALLBEPROVIDED(1)WITHADESIGNCAPABILITYFORPROMPTMODE3(HOTSHUTIXYAN)OFTHEREACTORIINCLUDINGNECESSARYZNSTRUMENTATZONANDCONTROLSTOMAINTAXNTHEUNITZNASAFECONDITZONDURINGMODE3(HOTSHUTDOWN)IAND(2)WITHAPOTENTIALCAPABZLITYFORSUBSEQUENTMODE5(CoLDSHUTDowN)oFTHEREAGToRTHRoUGHTHEUsEoFsUITABLEPRocEDUREs(GDC19)~Thestationisequippedwithacontrolroomwhichcontainscontrolsandinstrumentationasnecessaryforoperationofthereactorandturbinegeneratorundernormalandaccidentconditions.3.1-66REV.1312/96 GINNA/UFSARThecontrolroomiscapableofcontinuousoccupancybytheoperatingpersonnelunderalloperatingandaccidentconditions,withinspecifieddoselimits.SeeSection6.4.Althoughthelikelihoodofconditionswhichcouldrenderthemaincontrolroominaccessibleevenforashorttimeisextremelysmall,provisionshavebeenmadesothatplantoperatorscanshutdownandmaintaintheplantinasafeconditionbymeansofcontrolslocatedoutsidethecontrolroom.Duringsuchaperiodofcontrolroominaccessibility,thereactorwillbetrippedandtheplantmaintainedinasafeshutdowncondition.ThisisdescribedinSection7.4.3.3.1-67REV.1312/96 GINNA/UIiSAR3.1.2.3ProtectionandReactivity-ControlSystemsThesecriteriaareintendedtoidentifyandestablishrequirementsfozfunctionalreliability,inservicetestability,redundancy,physicalandelectricalindependenceandseparation,andfail-safedesignofthesystemsthatareessentialtothereactorprotectionfunctions.Inaddition,thesecriteriaareintendedtoestablish(1)thereactorcorereactivityinsertionratelimitand(2)themeansofcontrolofthereactorwithintheselimits.3.1.2.3.1GeneralDesinCriterion20-ProtectionSstemsFunctionsCRITERION:THEPROTECTIONSYSTEMSHALLBEDESIGNED(1)TOINITZATEAUTOL&TICALLYTHEOPERATIONOFAPPROPRIATESYSTEMSINCLUDiNGTHEREACTIVITYCONTROLSYSTEMS'OASSURETHATSPECIFIEDACCEPTABLEFUELDESIGNLIMITSARENOTEXCEEDEDASARESULTOFANTICIPATEDOPERATIONALOCCURRENCESAND(2)TOSENSEACCIDENTCONDITIONSANDTOINITIATETHEOPERATIONOFSYSTEMSANDCOMPONENTSIMPORTANTTOSAFETY(GDC20).Aplantprotectionsystem,asdescribedinSection7.2isprovidedtoautomaticallyinitiateappropriateactionwheneverspecificplantconditionsreachpreestablishedlimits.Theselimitsensurethatspecifiedfueldesignlimitsazenotexceededwhenanticipated.operationaloccurrenceshappen.Inaddition,otherprotectiveinstrumentationisprovidedtoinitiateactionswhichmitigatetheconsequencesofanaccident.TheGinnaStationinstallationmeetstherequirementsofCriterion20.3.1.2.3.2GeneralDesinCriterion21-ProtectionSstemReliabilitandTestabilitCRITERION:THEPROTECTZONSYSTEMSHALLBEDESIGNEDFORHIGHFUNCTIONALRELIABILITYANDZNSERVZCETESTABZLITYCCMMENSVRATEWITHTHESAFETYFUNCTIONSToBEPERFORMED.REDUNDANCYANDZNDEPENDENCEDESIGNEDINTOTHEPROTECTZONSYSTEMSHALLBESUFFICIENTTOASSURETHAT(1)NOSiNGLEFAILURERESULTSINLOSSOFTHEPROTECTIONFUNCTIONAND(2)REMOVALFROMSERVICEOFANYCOMPONENTORCHANNELDOESNOTRESULTZNLOSSOFTHEREQUIREDMINIMUMREDUNDANCYUNLESSTHEACCEPTABLERELIABILITYOFOPERATIONOFTHEPROTECTIONSYSTEMCANBEOTHERWISEDEMONSTRATED.THEPROTECTIONSYSTEMSHALLBEDESIGNEDTOPERMITPERIODICTESTINGOFZTSFUNCTIONINGWHENTHEREACTORISINOPERATIONSINCLUDINGACAPABILITYTOTESTCHANNELSINCLUDINGACAPABILITYTOTESTCHANNELSINDEPENDENTLYToDFTERMINEFAILURESANDLOSSESOFREDVNDANCYTHATMAYHAVEOCCURRED(GDC21)~SufficientredundancyandindependencearedesignedintotheReactorTripSystem(RTS)toensurethatnosinglefailureresultsinlossofprotection3.1-68REV.1312/96 GONNA/UFSARfunction.Thesystemisdesignedsuchthatitwillaccommodateanysinglecomponentfailureandstillperformitspzotectivefunction.Reliabilityandindependenceisobtainedbyredundancywithineachtrippingfunction.Inatwo-out-of-threecircuit,forexample,thethreechannelsareequippedwithseparateprimarysensors.Eachchanneliscontinuouslyfedfromitsownindependentelectricalsources.Failuretodeenergizeachannelwhenrequiredwouldbeamodeofmalfunctionthatwouldaffectonlythatchannel.Thetripsignalfurnishedbythetworemainingchannelswouldbeunimpairedinthisevent.Allreactorprotectionchannelsaresuppliedwithsufficientredundancytoprovidethecapabilityforchannelcalibrationandtestatpower.Bypassremovalofonetripcircuitisaccomplishedbyplacingthatcircuitinahalf-trippedmode;i.e.,atwo-out-of-threecircuitbecomesaone-out-of-twocircuit.Testingdoesnottripthesystemunlessatripconditionexistsinaconcurrentchannel.DetailedinformationverifyingcompliancewiththiscriterionisinSection7.2andintheTechnicalSpecifications.3.1.2.3.3GeneralDesinCriterion22-ProtectionSstemIndeendenceCRITERIONTHEPROTECTIONSYSTEMSHALLBEDESIGNEDTOASSURETHATTHEEFFECTSOFNATURALPHENOMENA@ANDOFNORMALOPERATING@MAINTENANCE'ESTING@ANDPOSTULATEDACCIDENTCONDITIONSONREDUNDANTCHANNELSDONOTRESULTZNLOSSOFTHEPROTECTIONFUNCTIONSORSHALLBDEMONSTRATEDTOBEACCEPTABLEONSOMEOTHERDEFINEDBASIS~DESIGNTECHNIQUES'UCHASFUNCTIONALDIVERSITYORDIVERSZTYXNCCMPONENTDESZGNANDPRZNCIPLESOFOPERATIONSSHALLBEUSEDTOTHEEXTENTPRACTICALTOPREVENTLOSSQFTHEPRDTEGTIoNFUNGTxoN(GDC22)~-TheGinnaStationprotectionsystemwasdesignedsothattheeffectsofnaturalphenomenaandofnormaloperating,maintenance,testing,andpostulatedaccidentconditionsdonotresultinthelossoftheprotectivefunction.Thedesignincludesthetechniquesoffunctionaldiversityordiversityincomponentsdesignandprinciplesofoperationtotheextentpracticalinpreventingthelossoftheprotectionfunctions.SpecificinformationaboutsystemindependenceiscoveredinSection7.2.2.3.1-69REV.1312/96 GINNA/UIiSAR3.1.2.3.4GeneralDesinCriterion23-ProtectionSstemFailureModesCRITERzoN:THEPROTECTZONSYSTEMSHALLBEDESIGNEDToFALLINTOASAFESTATEORINTOASTATEDEMONSTRATEDToB"ACCEPTABLEONSOMEOTHERDEFINEDBASISIFCONDITIONSSUCHASDISCONNECTIONOFTHESYSTEMSLOSSOFENERGY(EDG.iELECTRICPONERgINSTRUMENTAZR)iORPOSTULATEDADVERSEENVIRONMENTS(E~G~sEXTREMEHEATORCOLDiFIREiPRESSUREISTEAMiWATERqANDRADZATZON)sAREEXPERIENCED(GDC23)~TheReactorTripSystem(RTS)isdesignedtofail-safeuponlossofpower.Eachreactortripcircuitisdesignedsothattripoccurswhenthecircuitisdeenergized;anopencircuitorlossofchannelpower,therefore,causesthesystemtogointoitstripmode.Inatwo-out-of-threecircuit,thethreechannelsareequippedwithseparateprimarysensorsandeachchannelisenergizedfromindependentelectricalbuses.Failuretodeenergizewhenrequiredisamodeofmalfunctionthataffectsonlyonechannel.Thetripsignalfurnishedbythetworemainingchannelsisunimpairedinthisevent.Reactortripisimplementedbyinterruptingpowertothemagnetic.latchmechanismsoneachdrive,allowingtherodclusterstoinsertbygravity.Theprotectionsystemisthusinherentlysafeintheeventofalossofpower.Automaticstartingofeitheremergencydieselgeneratorisinitiatedbyredundantundervoltagerelaysonthe480-Vsafeguardsbuswithwhichthedieselgeneratorisassociated,ozbythesafetyinjectionsignal.Enginecrankingisaccomplishedbyastoredenergysystemsuppliedsolelyfortheassociateddieselgenerator.Theundezvoltagerelayschemeisdesignedsothatlossof480-Vpowerdoesnotpreventtherelayschemefromfunctioningproperly.Environmentalandseismicqualificationrequirementsaremetasrequiredforspecifiedprotectionsystemequipment.Chapters7and8discusscompliancewiththiscriterion.3.1.2.3.5GeneralDesinCriterion24-SearationofProtectionandControl~SstemsCRITERION:THEPROTECTIONSYSTEMSHALLBESEPARATEDFROMCONTROLSYSTEMSToTHEEXTENTTHATFAILUREOFANYSINGLECONTROLSYSTEMCOMPONENTORCHANNELORFAILUREORREMOVALFROMSERVICEOFANYSINGLEPROTECTIONSYSTEMCOMPONENTORCHANNELWHICHISCOMMONTOTHECONTROLANDPROTECTIONSYSTEMSLEAVESINTACTASYSTEMSATISFYINGALLRELIABILITYiREDUNDANCYiANDINDEPENDENCEREQUIREMENTSOFTHEPROTECTIONSYSTEM~INTERCONNECTIONOFTHEPROTECTIONANDCONTROLSYSTEMSSHALLBELIMITEDSoASTOASSURETHATSAFETYISNOTSZGNZFZCANTLYIMPAIRED(GDC24)~3.1-70REV.1312/96 GINNA/UFSARTheReactorTripSystem(RTS)isphysicallyandelectricallyseparatefromthecontrolsystemssuchthatfailureofanysinglecontxolcomponentorchannel,orremovalfromservice,leavesthesystemsatisfyingthereliability,redundancy,andindependencerequirementsoftheReactorTripSystem(RTS).informationsupportingcompliancewiththiscriterionisinSection7.2.5.3.1.2.3.6GeneralDesinCriterion25-ProtectionSstemReuirementsforReactivitControlMalfunctionsCRITERION:THEPROTECTZOVSYSTEMSHALLBEDESIGNEDTOASSURETHATSPECIFIEDACCEPTABLEFUELDESIGNLIMITSARENOTEXCEEDEDFORANYSINGLEMALFUNCTIONOFTHEREACTIVITYCONTROLSYSTEMSSUCHASACCIDENTALWITHDRAWAL(NOTEJECTIONORDROPOUT)OFcoNTRoLR0Ds(GDC25)~TheReactorTripSystem(RTS)isdesignedtoensurethatthespecifiedfueldesignlimitsarenotexceededforanysinglemalfunctionofthereactivitycontrolsystems.Reactorshutdownwithrodsiscompletelyindependentofthenormalcontrolfunctions.Thetripbreakersinterruptthepowertothezodmechanismstotripthereactorregardlessofexistingcontrolsignals.DetailsoftheeffectsofcontinuouswithdrawalofacontrolrodassemblyandofcontinuousdeborationarediscussedinSections15.4.1and15.4.4.3.1.2.3.7GeneralDesinCriterion26-ReactivitControlSstemRedundancandCaabilitCRZTERION:TNOINDEPENDENTREACTIVITYCONTROLSYSTEMSOFDIFFERENTDESIGNPRINCIPLESSHALLBEPROVIDED.ONEOFTHESYSTEMSSHALLUSECONTROLRODSPREFERABLYINCLUDINGAPOSITIVEMEANSFORiNSERTINGTHERODSIANDSHALLBECAPABLEOFRELIABLYcoNTRDLLINGREAcTIYITYcHANGEsToAssURETHATUNDERcoNDITzoNsOFMODES1AND2,INCLUDINGANTICIPATEDOPERATIONALOCCURRENCESIANDNZTHAPPROPRIATEMARGINFORMALFUNCTIONSSUCHASSTUCKRODSISPECIFIEDACCEPTABLEFUELDESIGNLIMZTSARENOTEXCEEDED.THESECONDREACTIVITYCONTROLSYSTEMSHALLBECAPABLEOFRELIABLYCONTROLLINGTHERATEOFREACTIVITYCHANGESRESULTINGFROMPLANNEDINORMALPONERCHANGES(INCLUDINGXENONBURNOUT)TOASSUREACCEPTABLEFUELDESIGNLIMITSARENOTEXCEEDED.ONEOFTHESYSTEMSSHALLBECAPABLEOFHOLDINGTHEREACTORCORESUBCRZTICALUNDERCOLDCONDITIONS(GDC26).Oneofthetworeactivitycontrolsystemsemployscontrolroddrivemechanismstoregulatethepositionofsilver-indium-cadmiumneutronabsorberswithinthereactorcore.Thecontrolrodsaredesignedtoshutdownthereactorwithadequatemarginforallanticipatedoccurrencessothatfueldesignlimitsarenotexceeded.Theotherreactivitycontrolsystememploysthechemicalandvolumecontrolsystemtoregulatetheconcentrationofboricacidneutron3.1-71REV.1312/96 GINNA/UFSARabsorberinthereactorcoolantsystem.Thechemicalandvolumecontrolsystemiscapableofcontrollingthereactivitychangeresultingfromplannednormalpowerchanges.ReactivitycontrolsystemredundancyandcapabilityarediscussedindetailinSections4.3and9.3.4.3.1.2.3.8GeneralDesinCriterion27-CombinedReactivitControlSstemCaabilitCRITERION:THEREACTIVITYCONTROLSYSTEMSSHALLBEDESIGNEDTOHAVEACOMBINEDCAPABILXTYIINcoNJUNOTIoNHITHPoIsoNADDITIQNBYTHEEMERGENcYCQRECooLINGSYsTEM(ECCS)iOFRELIABLYCONTROLLINGREACTIVITYCHANGESTOASSURETHATUNDERPOSTULATEDACCIDENTCONDITIONSANDWITHAPPROPRIATEMARGINFORSTUCKRODSTHECAPABILXTYTOCOOLTHECOREISMAINTAINED(GDC27)~ThereactivitycontrolsystemsinconjunctionwithboronadditionthroughtheEmergencyCoreCoolingSystem(ECCS)hasthecapabilityofcontrollingreactivitychangesundezpostulatedaccidentconditionswithappropriatemarginsforstuckrods.GinnaStationisprovidedwiththemeansofmakingandholdingthecoresubcriticalunderanyanticipatedconditionsandwithappropriatemarginforcontingencies.Combineduseoftherodclustercontrolsystemandthechemicalshimcontrolsystempermitthenecessaryshutdownmargintobemaintainedduringlong-termxenondecayandplantcooldown,evenwiththesinglehighestworthcontrolrodstuckout.Xnaloss-of-coolantaccidentthesafetyinjectionsystemisactuatedandconcentratedboricacidisinjectedintothecoldlegsofthereactorcoolantsystem.Thisisinadditiontotheboricacidcontentoftheaccumulatorswhichispassivelyinjectedonadecreaseinsystempressure.SeeSection6.3andSection4.2.1forfurtherdetails.3.1.2.3.9GeneralDesinCriterion28-ReactivitLimitsCRITERzoN:THEREAGTIYITYcoNTRoLsYsTEMssHALLBEDEsIGNEDNITHAPPRoPRxATELIMzTsoNTHEPOTENTIALAMOUNTANDRATEOFREACTIVITYINCREASETOASSURETHATTHEEFFECTSOFPOSTULATEDREACTIViTYACCIDENTSCANNEITHER(1)RESULTINDAMAGETOTHEREACTORCOOLANTPRESSUREBOUNDARYGREATERTHANLIMITEDLOCALYZELDZNGNOR(2)SUFFICIENTLYDISTURBTHECOREITSSUPPORTSTRUCTURESOROTHERREACTORPRESSUREVESSELINTERNALSTOIMPAIRSZGNZFICANTLYTHECAPABILITYTOCOOLTHECORES'HESEPOSTULATEDREACTIVITYACCIDENTSSHALLXNCLUDECONSIDERATIONOFRODEJECTZON(UNLESSPREVENTEDBYPOSITIVEMEANS)gRODDROPOUTSSTEAMLINERUPTUREgCHANGESINREAGTQRcooLANTTEMPERATUREANDPREssUREIANDcoLDMATERADDITzoN(GDC28)~3.1-72REV.1312/96 GINNA/UFSARThemaximumreactivityworthofcontrolrodsandthemaximumratesofreactivityinsertionemployingcontrolrodsazelimitedbythedesignofthefacilitytovalueswhichpreventfailureofthecoolantpressureboundaryozdisruptionsofthe'oreorvesselinternalstoadegreewhichcouldimpairtheeffectivenessofemergencycozecooling.Section4.2.1discussesthedesignbasisinmeetingthiscriterion,andChapter15discussestheaccident'nalysesandtherelationshipofthereactivityinsertionratestoplantsafety.ThecoreoperatingIimitsReport(coLR)includesappropriategraphsshowingthemaximumpermissibleinsertionlimitsandoverlapofrodclustercontrolassemblybanksasafunctionofpower.3.1.2.3.10GeneralDesinCriterion29-ProtectionAainstAnticiated0erationalOccurrencesCRITERION:THEPROTECTIONANDREACTIVITYCONTROLSYSTEMSSHALLBEDESZGNEDToASSUREANEXTREMELYHIGHPROBABILITYOFACCOMPLISHZNGTHEIRSAFETYFUNCTIONSZNTHEEVENTOFANTICIPATEDOPERATIONALOCCURRENCES(GDC29)~Theprotectionandreactivitycontrolsystemsaredesignedtoensureextremelyhighreliabilityinregardtotheirrequiredsafetyfunctionsinanyanticipatedoperationaloccurrences.Anticipatedfailuremodesofsystemcomponentsaredesignedtobesafemodes.Equipmentusedinthesesystemsisdesigned,constructed,operated,andmaintainedwithahighlevelofreliability.Lossofpowertotheprotectionsystemwillresultinareactortrip.3.1-73REV.1312/96 GINNA/UFSAR3.1.2.4FluidSystemsThesecriteriaareintendedto(1)identifythosenuclearsafetysystems-withinthegeneralcategoryoffluidsystems,(2)examineeachoneforcapability,redundancy,testability,andinspectability,and(3)ensurethateachsafetyfeaturecapabilityencompassesalltheanticipatedandcrediblephenomenaassociatedwiththeoperationaltransientsordesign-basisaccidents.Inaddition,thesecriteriaareintendedtoestablishthedesignrequirementsforthereactorcoolantpressureboundaryandtoidentifythemeansforsatisfyingthesedesignrequirements.3.1.2.4.1GeneralDesinCriterion30-QualitofReactorCoolantPressure~BoundarCRITERION:COMPONENTSWHICHAREPARTOFTHEREACTORCOOLANTPRESSUREBOUNDARYSHALLBEDESIGNED'ABRICATED'RECTED'NDTESTEDTOTHEHIGHESTQUALITYSTANDARDSPRACTICAL'EANSSHALLBEPROVIDEDFORDETECTZNGAND@TOTHEEXTENTPRACTICAL@IDENTIFYINGTHELOCATIONOFTHESOURCEOFREACTORCOOLANTL~GE(GDC30)~Qualitystandardsofmaterialselection,design,fabrication,andinspectionfortheGinnareactorcoolantsystemconformedtotheapplicableprovisionsofrecognizedcodesandgoodnuclearpracticeofthatperiod.Detailsofthequalityassuranceprograms,testprocedures,andinspectionacceptancelevelsaregiveninSection17.1.Particularemphasiswasplacedontheassuranceofqualityofthereactorvesseltoobtainmaterialwhosepropertiesareuniformlywithintolerancesappropriatetotheapplicationofthedesignmethodsofthecodeused.Table3.2-1givesthecoderequirementsusedforthereactorcoolantsystem.LeakagedetectionsystemsaredescribedinSection5.2.5.3.1-74REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.1-75REV.1312/96 GINNA/UFSAR3.1.2.4.2GeneralDesinCriterion31-FracturePreventionofReactorCoolantPressureBoundazCRITERIOH-THEREAGToRcooLANTPREssUREBQUNDARYsHALLBEDEsxGNEDNZTHsvFFzciENTMARGINToASSURETHATNHEHSTRESSEDUNDEROPERATING'AINTENANCE'ESTINGSANDPOSTULATEDACCIDENTCOHDZTXONS(1)THEBOUNDARYBEHAVESINANONBRITTLEMANNERAND(2)THEPROBABZLITYOFRAPIDLYPROPAGATIHGFRACTUREISMINIMIZED.THEDESZGNSHALLREFLECTCONSIDERATIONOFSERVICETEMPERATURESANDOTHERCONDITIONSOFTHEBOUNDARYMATERIALUNDEROPERATING@MAINTENANCE'ESTINGSANDPOSTULATEDACCIDENTCONDZTIOHSANDTHEUNCERTAIHTZESZHDETERMZNZNG(1)MATERIALPROPERTIES~(2)THEEFFECTSOFIRRADIATIONONMATERIALPROPERTIES/(3)RESIDUAL@STEADYSTATEANDTRANSIENTSTRESSES@AND(4)SIZEOFFLAHS(GDC31)~Thereactorcoolantpressureboundarywasfabricated,inspectedandtestedinaccordancewithcodes(i.e.,ASMEBoilerandPressureVesselCodeandtheASACodefozPressurePiping)thatwereapplicableatthetimeoffabricationandinstallation.AnevaluationoftheGinnareactorvesselconcludedthattheGinnavesselmettheASME,SectionIII,fracturetoughnessrequirements(seeSection5.3.1.2).AmaximuminitialNDTTforthevesselshellmaterialwasestablishedas40'F.CurvesforheatupandcooldownlimitationsareinthePressureandTemperatureLimitsReport(PTLR)andarebaseduponaninitialNDTTof40'F.Thesecurvesareperiodicallyupdatedtoensureoperationwithintherequiredstresslimits.Specimensofthevessel,weldmaterial,andheataffectedzoneazelocatedwithinthecoreregiontopermitperiodicmonitoringofexposureandmaterialpropertiesrelativetocontrolsamples,asdefinedinthePressureandTemperatureLimitsReport(PTLR).Preserviceultrasonicinspectionofthereactorvesselandprimarysystempipingweldswaspezformedandaninserviceinspectionprogram,asdefinedintheTechnicalSpecifications,ismaintained.TheheatupandcooldownratesduringplantlifearepredictedusingconservativevaluesfozthechangeinNDTTduetoirradiation.OperatinglimitationsduringstartupandshutdownofthereactorcoolantsystemswereevaluatedusingAppendixG,ProtectionAgainstNon-DuctileFailure,oftheASMECode,SectionIII,fracturetoughnessrules(CodeCase1514).HeatupandcooldowncurvesinaccordancewiththemethodofAppendixGofSectionIIIASMECodeshowedthatthePressureandTemperatureLimitsReport(PTLR)limitswereveryconservative.3.1-76REV.1312/96 GINNA/UFSARReactorvesselintegrityhasbeenevaluatedaspartoftheSEPTopicV-6,ReactorVesselIntegrity(NUREG0569),andunresolvedsafetyissuesA-49,PressurizedThermalShock,andA-ll,ReactorVesselMaterialsToughness.InformationontheseevaluationsisprovidedinSection5.3.3Steady-stateandtransientanalysesarepresentedinChapter15.Theseanalysesdemonstratethatthedesignofthevesselmeetsthenecessaryrequire-ments.inspectionsensurethattheprobabilityofundetectedandrapidlypropagatingfzactuzeofthereactorcoolantsystemisminimized.3.1.2.4.3GeneralDesinCriterion32-insectionofReactorCoolantPressureBoundarCRITERION:COMPONENTSWHICHAREPARTOFTHEREACTORCOOLANTPRESSUREBOVNDARYSHALLBEDESIGNEDToPERMIT(1)PERIODICINSPECTIONANDTESTZNGOFIMPORTANTAREASANDFEATURESTOASSESSTHEIRSTRUCTURALANDLEAKTIGHTINTEGRITYIAND(2)ANAPPROPRIATEMATERIALSURVEILLANCEPROGRAMFORTHEREACTORPRESSUREVESSEL(GDC32).lnserviceinspectionsofthereactorcoolantpressureboundaryandmethodsandfrequenciesforperformingtheseinspectionshavebeendeveloped.Theinspectionpzogzamdevelopedincludesinterpretationandanalysisoftheresultsemployingthelatesttechniquesavailableatthetimeofinspection.ThisprogramisdescribedintheTechnicalSpecificationsandinSection5.2.4.3.1.2.4.4GenezalDesinCriterion33-ReactorCoolantMakeuCRITERION-ASYSTEMToSUPPLYREACTORCOOLANTMAKEUPFORPROTECTIONAGAINSTSMALLBREAKSZNTHEREACTORCOOLANTPRESSUREBOUNDARYSHALLBEPROVIDED.THESYSTEMSAFETYFUNCTIONSHALLBETOASSURETHATSPECIFZEDACCEPTABLEFUELDESIGNLIMITSARENOTEXCEEDEDASARESULTOFREACTORCOOLANTLOSSDVETOLEAKAGEFROMTHEREACTORCOOLANTPRESSUREBOUNDARYANDRUPTUREOFSMALLPIPINGOROTHERSMALLCOMPONENTSWHICHAREPARTOFTHEBOUNDARY.THESYSTEMSHALLBEDESIGNEDToASSURETHATFORONSITEELECTRICPOWERSYSTEMOPERATION(ASSUMZNGOFFSITEPOWERISNOTAVAILABLE)ANDFOROFFSITEELECTRICPOWERSYSTEMOPERATION(ASSUMINGONSZTEPOWERZSNOTAVAILABLE)THESYSTEMSAFETYFUNCTIONCANBEACCOMPLISHEDUSINGTHEPIPING,PUMPSIANDVALVESUSEDToMAINTAINCOOLANTINVENTORYDURINGNORMALREACTORoPERATIoN(GDC33).Thechemicalandvolumecontrolsystemprovidesameansofreactorcoolantmakeupandadjustmentoftheboricacidconcentration.Normally,makeupisaddedautomaticallyfromtheboricacidblendsystemtothesuctionofthepositivedisplacementchargingpumpswhenthevolumecontroltankfallsbelow3.1-77REV.1312/96 GINNA/UFSARapresetlevelsFurtherdecreaseinthelevelofthevolumecontroltankrequiresavalvealignmenttotherefuelingwaterstoragetank(RWST).Thechargingpumps,ofwhichtherearethree,arecapableofinjectingcoolantintothereactorcoolantsystematarateof60gpmeachwhenpoweredfromeithertheonsiteoroffsiteelectricpowersystems.Protectionagainstsmallbreaksinthereactorcoolantsystemisaffordedbylowlevelinthepressurizerwhichinitiatesisolationofthenormalletdownpurificationpathofthechemicalandvolumecontrolsystem.Chargingflowshouldthenbesufficienttocompensateforbreakflow.Forlargerbreaks,theresultantlossofpressurewillcausereactortripandinitiationofsafetyinjection.Thesecountermeasureswilllimittheconsequencesoftheaccidentintwoways:1.Reactortripandboratedwaterinjectionwillsupplementvoidformationincausingrapidreductionofthenuclearpowertoaresiduallevelcorrespondingtodelayedfissionsandfissionproductdecay.2.injectionofboratedwaterensuressufficientfloodingofthecoretopreventexcessivetemperatures.3.1.2.4.5GeneralDesinCriterion34-ResidualHeatRemovalCRITERIONASYSTEMToREMOVERESZDUALHEATSHALLBEPROVIDED~THESYSTEMSAFETYFUNCTIONSHALLBETOTRANSFERFISSIONPRODUCTDECAYHEATANDOTHERRESIDUALHEATFROMTHEREACTORCOREATARATESUCHTHATSPECIFIEDACCEPTABLEFUELDESIGNLIMITSANDTHEDESIGNCONDITZONSOFTHEREACTORCOOLANTPRESSUREBOUNDARYARENOTEXCEEDED.SUITABLEREDUNDANCYZNCOMPONENTSANDFEATURESANDSUITABLEINTERCONNECTIONSLEAKDETECTION'NDISOLATIONCAPABILITIESSHALLBEPROVIDEDToASSURETHATFORONSITEELECTRICPOWERSYSTEMOPERATZON(ASSUMINGOFFSZTEPONERZSNOTAVAILABLE)ANDFOROFFSZTEELECTRICPONERSYSTEMOPERATZON(ASSUMINGONSITEPOWERZSNOTAVAILABLE)THESYSTEMSAFETYFUNCTIONCANBEACCOMPLISHED'SSUMINGASINGLEFAILURE(GDC34).Theresidualheatremovalsystem,inconjunctionwiththesteampowerconversionsystem,isdesignedtotransferthefissionproductdecayheatandotherresidualheatfromthereactorcoreataratesuchthatdesignlimitsofthefuelandtheprimarysystemcoolantboundaryazenotexceeded.Suitableredundancyispzovidedwithtworesidualheatremovalpumpsandtwoheatexchangers.Theresidualheatremovalsystemisabletooperateoneither3.1-78REV.1312/96 GINNA/UFSARonsiteoroffsitepowersystems.DetailsofthesystemdesignaregiveninSection5.4.5.3.1.2.4.6GeneralDesinCriterion35-EmerencCoreCoolinCRITERION:ASYSTEMTOPROVIDEABUNDANTEMERGENCYCORECOOLINGSHALLBEPROVIDED~THESYSTEMSAFETYFUNCTIONSHALLBETOTRANSFERHEATFROMTHEREACTORCOREFOLLOWZNGANYLOSSOFREACTORCOOLANTATARATESUCHTHAT(1)FUELANDCLADDAMAGETHATCOULDZNTERFEREWITHCONTINUEDEFFECTIVECORECOOLINGXSPREVENTEDAND(2)CLADMETAL-WATERREACTIONXSLIMITEDTONEGLIGIBLEAMOUNTS'UITABLEREDUNDANCYINCOMPONENTSANDFEATURES'NDSUITABLEINT"RCONNECTIONSgLDVCDETECTIONISOLATIONANDCONTAINMENTCAPABXLITZESSHALLBEPROVIDEDTOASSURETHATFORONSITEELECTRICPOWERSYSTEMOPERATION(ASSUMINGOFFSZTEPOWERISNOTAVAILABLE)ANDFOROFFSZTEELECTRICPOWERSYSTEMOPERATION(ASSUMINGONSITEPOWERXSNOTAVAILABLE)THESYSTEMSAFETYFUNCTIONCANBEACCOMPLISHEDASSUMINGASINGLEFAILURE(GDC35)./qiTheEmergencyCoreCoolingSystem(ECCS)areprovidedtocopewithanyloss-of-coolantaccidentduetoapiperupture.Coolingwaterwouldbeavailableinanemergencytotransferheatfromthecoreataratesufficienttomaintainthecoreinaeoolablegeometryandtoensurethatthecladmetal-waterreactionislimited.TheEmergencyCoreCoolingSystem(ECCS)arecapableofmeetingtherequirementsof10CFR50.46and10CFR50,AppendixK.Adequatedesignprovisionsaremadetoensureperformanceoftherequiredsafetyfunctionsevenwithasinglefailure,assumingthatelectricalpowerisavailablefromeithertheoffsiteortheonsiteelectricalpowersystem.EmergencycorecoolingisdiscussedinSection6.3.3.1.2.4.7GeneralDesinCriterion36-InsectionofEmerencCoreCoolinSstem(ECCS)CRITERIQN:THEEMERGENCYCORECOOLINGSYSTEM(ECCS)'HALLBEDESIGNEDTOPERMITAPPROPRIATEPERIODICZNSPECTXONOFIMPORTANTCOMPONENTS'UCHASSPRAYRINGSZNTHEREACTORPRESSUREVESSEL@WATERINJECTIONNOZZLESgANDPIPING'OASSURETHEINTEGRITYANDCAPABILITYOFTHESYSTEM(GDC36)~1mpoztantcomponentsoftheEmergencyCoreCoolingSystem(ECCS)areexaminedonaperiodicbasisasdefinedintheInserviceInspectionProgram.Exceptforthelow-headsafetyinjectionnozzlesonthereactorvessel,allotherconnectionsareeitherdirectlyorindirectlytotheprimarysystempiping,thusbeingmoreaccessibleforexamination.Periodicultrasonicandvisualinspectionusingremoteequipmentisperformedonthelow-headsafetyinjectionnozzles.3.1-79REV.1312/96 GINNA/UFSARValvesandpipingazeperiodicallyinspectedvisuallywithnondestructiveinspectionsbeingperformedwhezeappropriate.Thecomponentslocatedoutsidecontainmentareaccessibleforleaktightnessinspectionduringoperation.3.1.2.4.8GeneralDesinCriterion37-TestinofEmerencCoreCoolinSstems(ECCS)CRITERION:THEEMERGENCYCORECOOLINGSYSTEM(ECCS)SHALLBEDESIGNEDToPERMITAPPROPRIATEPERIODICPRESSUREANDFUNCTIONALTESTINGTOASSURE(1)THESTRUCTURALANDLEAKTIGHTXNTEGRZTYOFZTSCCHPONENTSi(2)THEOPERABILITYANDPERFORMANCEOFTHEACTIVECOHPONENTSOFTHESYSTEMiAND(3)THEOPERABILITYOFTHESYSTEMASAWHOLEAND@UNDERCONDZTZONSASCLOSETODESIGNASPRACTICAL'HEPERFORMANCEOFTHEFULLOPERATIONALSEQUENCETHATBRINGSTHESYSTEMINTOOPERATZON1INCLUDINGOPERATIONOFAPPLICABLEPORTIONSOFTHEPROTECTIONSYSTEMTHETRANSFERBETWEENNORMALANDEMERGENCYPOWERSOURCESiANDTHEOPERATIONOFTHEASSOCIATEDCOOLINGWATERSYSTEH(GDC37).ComponentsofEmergencyCoreCoolingSystem(ECCS)locatedoutsidethecontainmentareaccessibleforleaktightnessinspectionduringperiodictests.AllofthepumpsoftheEmergencyCoreCoolingSystem(ECCS)arestartedatintervalsasspecifiedintheInserviceTestingProgram.ValveoperabilityaswellassystemoperabilitytestsazeperformedduringtheMODE6(Refueling)shutdownstodemonstrateproperautomaticoperationoftheEmergencyCoreCoolingSystem(ECCS).TherequiredsurveillancetestsaredescribedintheTechnicalSpecifications.3.1.2.4.9GeneralDesinCriterion38-ContainmentHeatRemovalCRITERION:ASYSTEMTOREMOVEHEATFROHTHEREACTORCONTAINHENTSHALLBEPROVIDED.THESYSTEMSAFETYFUNCTIONSHALLBETOREDUCERAPIDLYCONSXSTENTWITHTHEFUNCTIONINGOFOTHERASSOCIATEDSYSTEMS'HECONTAINMENTPRESSUREANDTEMPERATUREFOLLOWINGANYLOSS-OF-COOLANTACCZDENTANDMAXNTAINTHEMATACCEPTABLYLOWLEVELS'UITABLEREDUNDANCYZNCCHPONENTSANDFEATURESiANDSUITABLEZNTERCONNECTZONSiLEAKDETECTIONiISOLATIONiANDCONTAINMENTCAPABILITIESSHALLBEPROVIDDToASSURETHATFORONSZT.ELECTRICPONERSYSTEMOPERATION(ASSUMINGOFFSZTEPONERZSNOTAVAILABLE)ANDFOROFFSZTEELECTRICPOWERSYSTEMOPERATXON(ASSUMINGONSITEPOWERZSNOTAVAILABLE)THESYSTEMSAFETYFUNCTIONCANBEACCOMPLISHED@ASSUMINGASINGLEFAILURE(GDC38).Twosystemsbasedondifferentprinciplesareprovidedtoremoveheatfromthecontainmentfollowinganaccidentinordertomaintainthepressurebelowthecontainmentdesignpressure.Containmentsprayissuppliedfromtwopumpseachbeingfedfromaseparateelectricalbus.Twofancoolersarefedfromone3.1-80REV.1312/96 GINNA/UFSARsafeguardsbuswiththeothertwobeingfedfromanothersafeguardsbus.Powerissuppliedfromeitherthenormalsupplyorfromtheassociatedemergencydiesel.ThesesystemsarediscussedinSection6.2'.3.1.2.4.10GeneralDesinCriterion39-lnsectionofContainmentHeatRemovalSstemCRZTERzoN:THECONTAXNMENTHEATREMOVALSYSTEMSHALLBEDESIGNEDTOPERMITAPPROPRIATEPERIODICINSPECTIONOFIMPORTANTCO!PONENTSgSUCHASTHETORUSISUMPSgSPRAYNOZZLESgANDPIPINGTOASSURETHEZNTEGRZTYANDCAPABZLXTYOFTHESYSTEM(GDC39).Thetwocontainmentheatremovalsystemscanreceiveappropriateperiodicinspectionofimportantcomponents'ontainmentspraynozzlesaretestedbyblowingairorsmokeintothesprayringsandcheckingeachnozzleforflow.Periodictestingofthepumpsisalsodone.Besidestheirsafeguardsrole,thecontainmentfancoolersareroutinelyusedduringoperationtomaintainambienttemperatureinsidethecontainmentatacceptablelevels.TheperiodictestingisdescribedintheTechnicalSpecifications.3.1.2.4.11GeneralDesinCriterion40-TestinofContainmentHeatRemoval~SstemCRZTERZ(N:THECONTAINMENTHEATREMOVALSYSTEMSHALLBEDESIGNEDTOPERMITAPPROPRIATEPERIODZCPRESSUREANDFUNCTIONALTESTINGTOASSURE(1)THESTRUCTURALANDLEAKTIGHTINTEGRITYOFITSCOMPONENTS'2)THEOPERABILZTYANDPERFORMANCEOFTHEACTXVECOMPONENTSOFTHESYSTEMSAND(3)THEOPERABILXTYOFTHESYSTEMASAWHOLEANDUNDERCONDITIONSASCLOSEToTHEDESIGNASPRACTICALTHEPERFORMANCEOFTHEFUILOPERATIONALSEQUENCETHATBRINGSTHESYSTEMINTOOPERATIONSINCLUDINGOPERATIONOFAPPLZCABLEPORTIONSOFTHEPROTECTIONSYSTEMTHETRANSFERBETWEENNORMALANDEMERGENCYPOWERSOURCES,ANDTHEOPERATIONOFTHEASSOCIATEDCOOLINGWATERSYSTEM(GDC40).Thecontainmentheatremovalsystemshavethecapabilityofbeingperiodicallytestedasfollows:1.Containmentfancoolersstem.a~Thecontainmentfan-coolerunitsareusedduringMODES1and2andbythosemeansarecontinuouslymonitored.b.Theservicewater(SW)pumpsoperatewhenthereactorisinoperationandthereforearecontinuouslymonitored.3.1-81REV.1312/96 GINNA/UFSARcePeriodicsystemtestsdemonstrateproperautomaticoperationofthesafetyinjectionsystem.Atestsignalisappliedtoinitiateautomaticactionandverifythatthecomponentsreceivethesafetyinjectionsignalinthepropersequence.Thetestdemonstratestheoperabilityofthevalves,circuitbreakers,andautomaticcircuitry.i2.Containmentsrasstem.aDesignprovisionsaremadetotheextentpracticaltofacilitateaccessforperiodicvisualinspectionofallimportantcomponentsofthecontainmentspraysystem.b.Permanenttestlinesforthecontainmentsprayloopsarelocatedsothatallcomponentsuptotheisolationvalvesatthespraynozzlesmaybetested.Theseisolationvalvesarecheckedseparately.C~Thecontainmentspraynozzlesaretestedbyblowingairorsmoke(throughthenozzlesandobservingtheflow.TherequiredperiodictestsaredescribedintheTechnicalSpecifications.3.1.2.4.12GeneralDesinCriterion41-ContainmentAtmoshereCleanuCRITERION:SYsTEMsTocoNTRoLFIsszoNPRQDUGTs,HYDRoGEN,oxYGEN,ANDoTHERsUBsTANGEsWHICHMAYBERELEASEDINTOTHEREACTORCONTAINMENTSHALLBEPROVIDEDASNECESSARYTOREDVCEICONSISTENTWZTHTHEFUNCTIONINGOFOTHERASSOCIATEDSYSTEMSITHECONCENTRATIONANDQUALITYOFFZSSZONPRODUCTSRELEASEDTOTHEENVZRONMENTFOLLOWINGPOSTULATEDACCIDENTS'NDTOCONTROLTHECONCENTRATIONOFHYDROGENOROXYGENANDOTHERSUBSTANCESINTHECONTAINMENTATMOSPHEREFOLLOWINGPOSTVLATEDACCIDENTSToASSURETHATCONTAINMENTINTEGRITYISMAINTAINED.EACHSYSTEMSHALLHAVESUITABLEREDUNDANCYINCOMPONENTSANDFEATURESIANDSUZTABLEINTERCONNECTIONS@LEAKDETECTIONIISOLATIONIANDCONTAINMENTCAPABILITIESTOASSURETHATFORONSITEELECTRICALPOWERSYSTEMOPERATION(ASSUMINGOFFSITEPOWERISNOTAVAILABLE)ANDFOROFFSZTEELECTRICPOWERSYSTEMOPERATION(ASSUMINGONSITEPOWERISNOTAVAILABLE)ZTSSAFETYFUNCTIONCANBEACCOMPLISHEDASSUMINGASINGLEFAILURE(GDC41)~Therearetwosystemswhicharedesignedtocleanupthecontainmentatmosphereafterapostulatedloss-of-coolantaccident:1.Thecontainmentspraysystemincludestheinjectionofsodiumhydroxidesolutionintothesprayintothecontainmenttoremoveelementaliodine.Thesystemconsistsofredundantactivecomponentseachsuppliedfromseparateelectricalbuses.Nosingleactivefailurewillcausebothsubsystemstofailtooperate.ThisportionofthesystemisdescribedinSection6.5.3.1-82REV.1312/96 GINNA/UFSAR2.Charcoalfiltersareplacedintotheairstreamflowoftwoofthefourfancoolerstoremoveiodine.Eachofthefancoolersisprovidedwithahighefficiencyparticulateairfilterbank.ThesearedescribedinSection6.5.Inaddition,tworecombinerunitsareinstalledinthecontainment.Thepurposeoftheseunitsistopreventtheuncontrolledpostaccidentbuildupofhydrogenconcentrationsinthecontainment.ThesearedescribedinSection6.2'.3.1.2.4.13GeneralDesinCriterion42-InsectionofContainmentAtmoshereCleanuSstemsCRITERION:THECONTAINMENTATMOSPHERECLEANUPSYSTEMSSHALLBEDESIGNEDTOPERMITAPPROPRIATEPERIODICZNSPECTIONOF'MPORTANTCOMPONENTSSUCHASFILTERFRAMESDUCTSANDPIPINGTOASSURETHEINTEGRITYANDCAPABILITYOFTHESYSTEMS(GDC42).Thecontainmentatmospherecleanupsystems,withtheexceptionofthesprayheadersandnozzles,aredesignedandlocatedsuchthattheycanbeinspectedperiodicallyasrequired.ThesprayheadersandnozzlescanbetestedasdescribedintheresponseofCriterion39(Section3.1.2.4.10).ThesystemsaredescribedinSection6.2.5andthesurveillancerequirementsaregivenintheTechnicalSpecifications.3~1.2.4~14GeneralDesinCriterion43-TestinofContainmentAtmoshereCleanuSstemsCRITERI0N-THECONTAINMENTATMOSPHERECLEANUPSYSTEMSSHALLBEDESIGNEDToPERMZTAPPROPRIATEPERIODICPRESSUREANDFUNCTIONALTESTINGToASSURE(1)THESTRUCTURALANDLEAKTIGHTZNTEGRZTYOFZTSCOMPONENTS'2)THEOPERABILITYANDPERFORMANCEOFTHEACTIVECOMPONENTSOFTHESYSTEMSSUCHASFANSFILTERSDAMPERSPUMPSANDVALVESAND(3)THEOPERABILITYOFTHESYSTEMSASANHOLEANDUNDERCONDITIONSASCLOSETODESIGNASPRACTICALTHEPERFORMANCEOFTHEFULLOPERATIONALSEQUENCETHATBRINGSTHESYSTEMSINTOOPERATIONSINCLUDINGOPERATIONOFAPPLICABLEPORTZONSOFTHEPROTECTIONSYSTEM@THETRANSFERBETNEENNORMALANDEMERGENCYPONERSOURCESANDTHEOPERATIONOFASSOCIATEDSYSTEMS(GDC43)~ThecontainmentatmospherecleanupsystemsaretestedasdescribedinCriterion40(Section3.1.2.4.11).Inaddition,theefficiencyofthehighefficiencyparticulateairandcharcoalfiltersischeckedperiodicallyasrequiredbytheTechnicalSpecifications.3.1-83REV.1312/96 GINNA/UFSAR3.1.2.4.15GeneralDesinCriterion44-CoolinWaterCRITERION:ASYSTEMToTRANSFERHEATFROMSTRUCTURES'YSTEMSiANDCOMPONENTSIMPORTANTTOSAFETYTOANULTIMATEHEATSINKSHALLBEPROVIDED.THESYSTEMSAFETYFUNCTIONSHALLBETOTRANSFERTHECOMBINEDHEATLOADOFTHESESTRUCTURESiSYSTEMSiANDCOMPONENTSUNDERNORMALOPERATZNGANDACCIDENTCONDITIONS~SUITABLEREDUNDANCYINCOMPONENTSANDFEATURES'NDSUITABLEZNTERCONNECTZONSiLEAKDETECTION'NDISOLATIONCAPABILITIESSHALLBEPROVIDEDToASSURETHATFORONSITEELECTRICPOWERSYSTEMOPERATION(ASSUMINGOFE'SITEPOW-RISNOTAVAILABLE)ANDE'OROFFSZTEELECTRICPOWERSYSTEMOPERATION(ASSUMINGONSITEPOWERISNOTAVAILABLE)THESYSTEMSAFETYFUNCTIONCANBEACCOMPLISHED'SSUMINGASINGLEE'AZLURE(GDC44).Thesystemsprovidedtotransferheatfromsafety-relatedcomponentstotheultimateheatsinkofLakeOntarioconsistoftheservicewater(SW)andthecomponentcoolingwater(CCW)systemsdescribedinSections9'.1and9.2.2,respectively.Componentcoolingwaterissuppliedbytworedundantpumps(oneoperating,onestandby)whicharesuppliedwithpowerfromseparatebuses.Theservicewater(SW)issuppliedbyfourpumps,twobeingfe'dpowerfromonesafeguazdsbus,theothertwofromanothersafeguardsbus.Onlyonepumpisneededduringsafeshutdownoperationorduringtheinjectionphaseofapostulatedloss-of-coolantaccident,andtwoarerequiredduringtherecirculationphaseoftheaccident.Thesystemsareoperableeitherfromoffsitepower,fromnormalonsitepower,orfromonsitedieselgenerators.No'singleactivefailureresultsinsystemlossoffunction.3.1-84REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.1-85REV.1312/96 GINNA/UFSAR3.1.2.4.16GeneralDesinCriterion45-InsectionofCoolinWaterSstemCRZTERXON:THECOOLINGWATERSYSTEMSHALLBEDESZGNEDTOPERMITAPPROPRIATEPERXODZCINSPECTIONOFIMPORTANTCOMPONENTSiSUCHASHEATEXCHANGERSANDPIPING'OASSURETHEZNTEGRXTYANDCAPABILZTYOFTHESYSTEM(GDC45)~Importantcomponentsofthecomponentcoolingwater(CCW)systemarelocatedinareaswhichareaccessibleforperiodicinspection.Mostoftheservicewater(SW)systempipingisburiedreinforcedconcretepipewhichisnotreadilyinspectable;however,therearetworedundantservicewater(SW)supplyheadersandfailureofonewouldnotbeexpectedtoaffecttheoperabilityoftheother.3.1.2.4.17GeneralDesinCriterion46-TestinofCoolinWaterSstemCRITERION:THECOOLINGWATERSYSTEMSHALLBEDESIGNEDToPERMXTAPPROPRIATEPERIODICPRESSUREANDFVNCTIONALTESTINGTOASSVRE(1)THESTRUCTURALANDLEAKTIGHTINTEGRITYOFZTSCOMPONENTSi(2)THEOPERABILITYANDTHEPERFORMANCEOFTHEACTIVECOMPONENTSOFTHESYSTEMAND(3)THEOPERABILITYOFTHESYSTEMASAWHOLEANDUNDERCONDITIONSASCLOSETODESZGNASPRACTICALiTHEPERFORMANCEOFTHEFVLLOPERATIONALSEQUENCETHATBRINGSTHESYSTEMZNTOOPERATIONFORREACTORSHUTDOWNANDFORLOSS-OF-COOLANTACCIDENTS'NCLUDINGOPERATIONOFAPPLICABLEPORTIONSOFTHEPROTECTIONSYSTEMANDTHETRANSFERBETWEENNORMALANDEMERGENCYPOWERSOURCES(GDC46).Redundancyandisolationazeprovidedtoallowperiodicpressureandfunctionaltestingofthesystemasawhole,includingthefunctionalsequencethatinitiatessystemoperation,andthetransferbetweenthenormalanddieselpowersources.Oneoftheredundan'tpumpsinthecomponentcoolingwater(CCW)systemisinserviceduringMODES1and2.Duringroutineplantoperationthreeservicewater(SW)pumpsareinoperation.3.1-86REV.1312/96 GINNA/UFSAR3.1.2.5ReactorContainmentThesecriteriaareintendedtoestablishthedesignrequirementsfortheprimarycontainmentandtoidentifythemeansforsatisfyingtheserequirements,includingfracturepreventionleakagetesting,containmenttesting,inspection,andisolation.3.1.2.5.1GeneralDesinCriterion50-ContainmentDesinBasisCRITERIQN:THEREACTORCONTAINMENTSTRUCTUREiINCLUDINGACCESSOPENINGSIPENETRATZONSgANDTHECONTAINMENTHEATREMOVALSYSTEMSHALLBEDESIGNEDSOTHATTHECONTAINMENTSTRUCTUREANDXTSINTERNALCOMPARTMENTSCANACCOiVMODATEINITHOUTEXCEEDINGTHEDESIGNLEAKAGERATEANDWITHSUFFiCIENTMARGINTHECALCULATEDPRESSUREANDTEMPERATURECoiVDZTIONSRESULTXNGFROMANYLOSS-OF-COOLANTACCIDENT.THXSMARGINSHALLREFLECTCONSIDERATIONOF(1)THEEFFECTSOFPOTENTZALENERGYSOURCESNHZCHHAVENOTBEENINCLUDEDINTHEDETERMINATIONOFTHEPEAKCONDITZONSiSUCHASENERGYZNSTEAMGENERATORSANDENERGYFROMMETAL-WATERANDOTHERCHEMICALREACTIONSTHATMAYRESULTFROMDEGRADEDEMERGENCYCORECOOLINGFUNCTZONINGi(2)THELXMITEDEXPERIENCEANDEXPERXMENTALDATAAVAILABLEFORDEFININGACCIDENTPHENOMENAANDCONTAINMENTRESPONSESIAND(3)THECONSERVATISMOFTHECALCULATIONALMODELANDxNPUTPARAMETERs(GDC50).Thereactorcontainmentstructure,penetrations,valves,accessopenings,andthecontainmentspraysystemaredesignedwithmargintoaccommodatethetemperatureandpressureconditionsassociatedwiththeloss-of-coolantaccidentandmainsteamlinebreak,withoutlossoffunction.Thedesignofthecontainmentisbasedonapostulatedmainsteamlinebreakoradouble-endedruptureofareactorcoolantpipe,coupledwithpartiallossoftheredundantengineeredsafetyfeaturessystems(minimumengineeredsafetyfeatures).ThecontainmentintegrityevaluationisprovidedinSection6.2.1.2.3.1-87REV.1312/96 GINNA/UFSAR3.1.2.5.2GeneralDesinCriterion51-FracturePreventionofContainmentPressureBoundarCRITERIoN:THEREAGToRcoNTAINMENTBQUNDARYsHALLBEDEszGNEDNITHsvFFzczENTMARGINToASSURETHATUNDEROPERATINGIMAINTENANCEITESTING,ANDPOSTULATEDACCIDENTCONDITIONS(1)ZTSFERRZTZCMATERIALSBEHAVEZNANONBRITTLEMANNERAND(2)THEPROBABiLITYOFRAPIDLYPROPAGATINGFRACTUREZSMINXMZZED.THEDESIGNSHALLREFLECTCONSIDERATIONOFSERVZCETEMPERATURESANDOTHERCONDITIONSOFTHECONTAINMENTBOUNDARYMATERIALDURINGOPERATIONiMAINTENANCE'ESTINGiANDPOSTULATEDACCIDENTCONDITZONSIANDTHEVNCERTAZNTIESINDETERMINXNG(1)MATERIALPRoPERTIEsI(2)REsIDUALgsTEADY-sTATEIANDTRANsIENTsTREssEsIAND(3)sIZEoFFLANS(GDC51).Theconcretecontainmentisnotsusceptibletoalow-temperaturebrittlefracture.Thecontainmentlinerisenclosedwithinthecontainmentandthusisnotexposedtothetemperatureextremesoftheenvirons.Thecontainmentambienttemperatureduringoperationisbetween50'Fand120'F.TheminimumservicemetaltemperatureofthecontainmentlineriswellabovetheNDTT+30'Fforthelinermaterial.ContainmentpenetrationswhichcanbeexposedtotheenvironmentarealsodesignedtotheNDTT+30'Fcriterion.3.1.2.5.3GeneralDesinCriterion52-CaabilitforContainmentLeakaeRateTestinCRITERION:THEREACTORCONTAINMENTANDOTHEREQUIPMENTNHICHMAYBESUBJECTEDToCONTAINMENTTESTCONDITIONSSHALLBEDESIGNEDSOTHATPERIODICZNTEGRATEDLEAKAGEJVlTETESTZNGCANBECONDUCTEDATCONTAINMENTDESIGNPRESSURE(GDC52)~Thecontainmentsystemisdesignedandconstructedandthenecessaryequipmentisprovidedtopermitperiodicintegratedleakageratetestsduringplantlifetime.Mostoftheseperiodicintegratedleakageratetestsofthecontainmentsystemwereconductedat58%ofthereactorbuildingdesignpressure(35psig).However,periodicintegratedleakageratetestswillbeconductedatdesignpressureatintervalsasdescribedintheContainmentLeakageRateTestingProgram.3.1-88REV.1312/96 GINNA/UFSAR3.1.2.5.4GeneralDesinCriterion53-ProvisionsforContainmentTestinandInsectionCRITERION:THEREACTORCONTAINMENTSHALLBEDESZGNEDToPERMIT(l)APPRO-PRIATEPERIODICINSPECTIONOFALLZMPORTANTAREAS~SUCHASPENETRATZONS~(2)ANAPPROPRIATESURVEILLANCEPROGRAMSAND(3)PERIODICTESTINGATCONTAINMENTDESIGNPRESSUREOFTHELEAKTIGHTNESSOFPENETRATZONSWHICHHAVERESILIENTSEALSANDEXPANSiONBELLOWS(GDC53).Therearespecialprovisionsforconductingindividualleakageratetestsonapplicablepenetrations.Penetrationswillbevisuallyinspectedandpressuretestedforleaktightnessatperiodicintervals.Provisionshavebeenmadeforaninservicetendonsurveillanceprogramthroughout'helifeoftheplantintendedtoprovidesufficientinservicehistoricevidencetomaintainconfidencethattheintegrityofthecontainmentisbeingpreserved.3.1.2.5.5GeneralDesinCriterion54-PiinSstemsPenetratinContainmentCRITERION:PIPXNGSYSTEMSPENETRATINGPRIMARYREACTORCONTAZNMENTSHALLBEPROVIDEDWITHLEAKDETECTION@ISOLATION@ANDCONTAINMENTCAPABILITIESHAVINGREDUNDANCY@RELIABILITY'NDPERFORMANCECAPABILITIESWHICHREFLECTTHEIMPORTANCETOSAFETYOFISOLAT1NGTHESEPIPINGSYSTEMS~SUCHPIPINGSYSTEMSSHALLBEDESIGNEDWITHACAPABZLITYTOTESTPERIODICALLYTHEOPERABILITYOFTHEZSOLATIONVALVESANDASSOCIATEDAPPARATUSANDToDETERMINEZFVALVELEAKAGEXSWITHINACCEPTABLELIMITS(GDC54).Pipingsystemspenetratingcontainmentaredesignedtoprovidetherequiredisolationandtestingcapabilities.Thesepipingsystemsareprovidedwithtestconnectionsasnecessarytoallowperiodicleakdetectiontobeperformed.TheEngineeredSafetyFeaturesActuationSystem(ESFAS)testcircuitryprovidesthemeansfortestingisolationvalveoperability.DetailsofthecontainmentisolationcapabilityareprovidedinSection6.2.4.3.1.2.5.6GeneralDesinCriterion55-ReactorCoolantPressureBoundarPenetratinContainmentCRITERIoiV:EACHLXNETHATZSPARTOFTHEREACTORCOOLANTPRESSUREBOUNDARYANDTHATPENETRATESPRlMARYREACTORCONTAINMENTSHALLBEPROVXDEDWITHCONTAINMENTISOLATIONVALVESASFOLLOWS'NLESSZTCANBEDEMONSTRATEDTHATTHECONTAINMENTISOLATIONPROVISIONSFORASPECXFZCCLASSOFLINES'UCHASINSTRUMENTLINES@AREACCEPTABLEONSOMEOTHERDEFINEDBASIS:(1)ONELOCKEDCLOSEDISOLATIONVALVEZNSZDEANDONELOCKEDCLOSEDISOLATIONVALVEOUTSIDECONTAINMENTIOR3.1-89REV.1312/96 GINNA/UFSAR(2)ONEAUTOMATICISOLATIONVALVEINSIDEANDONELOCKEDCLOSEDISOLATIONVALVEOUTSIDECONTAXNMENTXOR(3)ONELOCKEDCLOSEDXSOLATIONVALVEINSIDEANDONEAUTOMATICISOLATIONVALVEOUTSiDECONTAINMENT.ASIMPLECHECKVALVEMAYNOTBEUSEDASTHEAUTOMATZCISOLATIONVALVEOUTSZDECONTAINMENT'R(4)ONEAUTOMATICISOLATIONVALVEZNSZDEANDONEAUTOMATZCISOLATIONVALVEOUTSIDECONTAXNMENT~ASIMPLECHECKVALVEMAYNOTBEUSEDASTHEAUTOMATICISOLATIONVALVEOUTSZDECONTAINMENT.ISOLATXOiVVALVESOUTSIDECONTAINMENTSHALLBELOCATEDASCLOSETOCONTAINMENTASPRACTICALANDUPONLOSSOFACTUATINGPOWERSAUTOMATICISOLATIONVALVESSHALLBEDESIGNEDTOTAKETHEPOSITIONTHATPROVIDESGREATERSAFETY~OTHERAPPROPRIATEREQUIREMENTSTOMINIMIZETHEPROBABILITYORCONSEQUENCESOFANACCIDENTALRUPTUREOFTHESELZNESOROFLINESCONNECTEDToTHEMSHALLBEPROVIDEDASNECESSARYTOASSUREADEQUATESAFETY'ETERMINATIONOFTHEAPPROPRIATENESSOFTHESEREQUIREMENTS@SUCHASHIGHERQUALITYINDESIGNSFABRICATIONSANDTESTINGiADDITIONALPROVISIONSfORZNSERVZCEZNSPECTIONiPROTECTIONAGAINSTMORESEVERENATURALPHENOMENAiANDADDITIONALZSOLATZONVALVESANDCONTAINMENTiSHALLINCLUDECONSIDERATIONOFTHEPOPULATIONDENSITYUSECHARACTERISTICSANDPHYSICALCHARACTERISTICSOFTHESITEENVIRONS(GDC55).DuringthedesignphaseofGinnaStation,containmentisolationvalveswerecoveredbyaproposedcriterionthatexistedatthattime(AIF-GDC53):"Penetrationsthatrequireclosureforthecontainmentfunctionshallbeprotectedbyredundantvalvingandassociatedapparatus."ThedesignresponsetothiscriterionisinSection3.1.1.7.17.Thecriterionineffectduringthedesignphasewasmet.ThecompliancewithCriterion55wasreviewedduringtheSystematicEvaluationProgram(TopicVI-4)andisdiscussedinSection6.2.4.4.3.1.2.5.7GeneralDesinCriterion56-PzimarContainmentIsolationCRITERION:EACHLINETHATCONNECTSDIRECTLYTOTHECONTAINMENTATMOSPHEREANDPENETRATESPRIMARYREACTORCONTAINMENTSHALLBEPROVIDEDWITHCONTAINMENTISOLATIONVALVESASFOLLOWSiUNLESSITCANBEDEMONSTRATEDTHATTHECONTAINMENTISOLATIONPROVZSIONSFORASPECIFICCLASSOFLINESiSUCHASINSTRUMENTLINESiAREACCEPTABLEONSOM.OTHERDEFINEDBASIS:(1)ONELOCKEDCLOSEDZSOLATZONVALVEINSIDEANDONELOCKEDCLOSEDZSOLATZONVALVEOUTSIDECONTAINMENTXOR(2)ONEAUTOMATICISOLATXONVALVEXNSXDEANDONELOCKEDCLOSEDISOLATIONVALVEOUTSIDECoiNTAINMENTXOR3.1-90REV.1312/96 GINNA/UFSAR(3)ONELOCKEDCLOSEDISOLATIONVALVEINSIDEANDONEAUTOMATICISOLATIONVALVEOUTSIDECONTAiNMENT~ASIMPLECHECKVALVEMAYNOTBEUSEDASTHEAUTOMATICISOLATIONVALVEOUTSXDECONTAINMENT'R(4)ONEAUTOMATICISOLATIONVALVEINSIDEANDONEAUTOMATICISOLATZONVALVEOUTSIDECONTAZNMENT.ASIMPLECHECKVALVEMAYNOTBEUSEDASTHEAUTOMATICZSOLATZONVALVEOUTSIDECONTAINMFNT.ISOLATIONVALVESOUTSIDECONTAINMENTSHALLBELOCATEDASCLOSEToTHECONTAINMENTASPRACTICALANDUPONLOSSOFACTUATINGPOWERSAUTOMATICISOLATIONVALVESSHALLBEDESIGNEDTOTAKETHEPOSITIONTHATPROVIDESGREATERSAFETY(GDC56)~ThereviewoftheGinnaStationcontainmentisolationvalveprovisionsrelativetoGDC56wasperformedduringtheSystematicEvaluationProgram(TopicVI-4)andisdiscussedinSection6.2.4.4.3.1.2.5.8GeneralDesinCriterion57-ClosedSstemIsolationValvesCRITERIONEACHLZNETHATPENETRATESPRIMARYREACTORCONTAINMENTANDISNEITHERPARTOFTHEREACTORCOOLANTPRESSUREBOUNDARYNORCONNECTEDDIRECTLYTOTHECONTAXNMENTATMOSPHERESHALLHAVEATLEASTONECONTAINMENTISOLATIONVALVENHICHSHALLBEEITHERAUTCMATXCORLOCKEDCLOSEDORCAPABLEOFREMOTEMANUALOPERATION~THZSVALVESHALLBEOUTSIDECONTAINMENTANDLOCATEDASCLOSEToTHECONTAINMENTASPRACTICAL.ASIMPLECHECKVALVEMAYNOTBEUSEDASTHEAUTOMATICXSOLATXONVALVE(GDC57).Theinstallationofvalveswasdoneinaccordancewithcriteriawhichwereapplicableatthetime(AIF-GDC53).AreviewrelativetoGDC57wasperformedintheSystematicEvaluationProgram(TopicVI-4).CompliancewithGDC57isdiscussedinSection6.2.4.4.3.1-91REV.1312/96 3.1.2.6FuelandRadioactivityControlThesecriteriaazeintended(1)toestablishstationeffluentreleaselimitsandtoidentifythemeansofcontrollingreleaseswithintheselimits,(2)todefinetheradiationshielding,monitoring,andfissionprocesscontrolsnecessarytoeffectivelysenseabnormalconditionsandinitiaterequiredsafetysystems,and(3)toestablishrequirementsforsafefuelandwastestoragesystemsandtoidentifythemeanstosatisfytheserequirements.3.1.2~6~1GeneralDesinCriterion60-ControlofReleasesofRadioactiveMaterialstotheEnvironmentCRITERION:THENUCLEARPOWERUNITDESIGNSHALLINCLUDEMEANSTOCONTROLSUITABLYTHERELEASEOFRADIOACTIVEMATERIALSINGASEOUSANDLIQUIDEFFLVENTSANDToHANDLERADIOACTZVESOLIDWASTESPRODUCEDDURINGNORMALREACTOROPERATIONSINCLUDINGANTICIPATEDOPERATIONALOCCURRENCES'UFFICIENTHOLDUPCAPACITYSHALLBEPROVIDEDFORRETENTIONOFGASEOUSANDLIQUZDEFFLUENTSCONTAININGRADIOACTIVEMATERIALS,PARTICULARLYWHEREUNFAVORABLESITEENVZRONMENTALCONDITIONSCANBEEXPECTEDToIMPOSEUNUSUALOPERATIONALLIMITATIONSUPONTHERELEASEOFSVCHEFFLUENTSToTHEENVIRONMENT(GDC60).Thehandling,control,andreleaseofradioactivematerialsduringMODES1and2isincompliancewith10CFRSO,AppendixI,andisdescribedintheOffsiteDoseCalculationManual.AdditionalinformationconcerningtheliquidandgaseousradwastesystemsisprovidedinSections11.2and11.3,respectively.3.1.2.6'GeneralDesinCriterion61-FuelStoraeandHandlinandRadioactivitControlCRITERZON:THEFUELSTORAGEANDHANDLING'ADIOACTIVEWASTE~ANDOTHERSYSTEMSWHICHMAYCONTAINRADXOACTIVZTYSHALLBEDESIGNEDTOASSUREADEQUATESAFETYUNDERNORMALANDPOSTULATEDACCIDENTCONDITIONS~THESESYSTEMSSHALLBEDESIGNED(1)WITHACAPABILITYToPERMITAPPROPRIATEPERIODICZNSPECTIONANDTESTXNGOFCOMPOiNENTSIMPORTANTTOSAFETY'2)WITHSUITABLESHIELDINGFORRADIATIONPROTECTIONS(3)WITHAPPROPRIATECONTAINMENT'ONFINEMENTgANDFILTERINGSYSTEMSI(4)WITHARESIDUALHEATREMOVALCAPABILXTYHAVINGRELIABILITYANDTESTABILITYTHATREFLECTSTHEIMPORTANCETOSAFETYOFDECAYHEATANDOTHERRESZDUALHEATREMOVALAND(5)ToPREVENTSZGNIFICANTREDUCTIONZNFUELSTORAGECOOLANTZNVENTORYUNDERACCIDENTcoNDITIoNs(GDC61).Thespentfuelpool(SFP)andcoolingsystem,fuelhandlingsystem,radioactivewasteprocessingsystems,andothersystemsthatcontainradioactivityaredesignedtoensureadequatesafetyundernormaland3.1-92REV.1312/96 GINNA/UFSARpostulatedaccidentconditionsandazediscussedinSection9.1,andChapters11and15.A.Componentsaredesignedandlocatedsuchthatappropriateperiodicinspectionandtestingmaybeperformed.B.AllareasoftheplantaredesignedwithsuitableshieldingforradiationprotectionbasedonanticipatedradiationdoseratesandoccupancyasdiscussedinChapter12.C.Individualcomponentswhichcontainsignificantradioactivityarelocatedinconfinedareaswhichareadequatelyventilatedthroughappropriatefilteringsystems.D.Thespentfuelpool(SFP)coolingsystemprovidescoolingtoremoveresidualheatfromthefuelstoredinthespentfuelpool(SFP).Thesystemisdesignedsuchthat,inadditiontopermanentlyinstalledequipment,temporaryconnectionsandequipmentcanalsobeutilized.E.Thespentfuelpool(SFP)isdesignedsuchthatnopostulatedaccidentcouldcausesignificantlossofcoolantinventory.3.1.2.6.3GeneralDesinCriterion62-PreventionofCriticalitinFuelStozaeandHandlinCRITFRZONCRITICALITYZNTHEFUEISTORAGEANDHANDLINGSYSTEMSHALLBEPREVENTEDBYPHYSICALSYSTEMSORPROCESSES@PREFERABLYBYUSEOFGEOMETRICALLYSAFECONFIGURATIONS(GDC62).Criticalityinnewandspentfuelstorageareasispreventedbothbyphysicalseparationoffuelassembliesandbythepresenceofboratedwaterinthespentfuelstoragepool.CriticalitypreventionisdiscussedindetailinSection9.1.2.3.1.2.6.4GeneralDesinCriterion63-MonitorinFuelandWasteStoraeCRITERION:APPROPRIATESYSTEMSSHALLBEPROVIDEDINFUELSTORAGEANDRADIOACTIVEWASTESYSTEMSANDASSOCIATEHANDLINGAREAS(1)ToDETECTCONDITIONSTHATMAYRESULTZNLOSSOFRESIDUALHEATREMOVALCAPABILITYANDEXCESSIVERADIATIONLEVELSAND(2)ToZNITZATEAPPROPRIATESAFETYACTIONS(GDC63).Monitoringsystemsazeprovidedtoalarmonexcessivetemperatureorlowwaterlevelinthespentfuelpool(SFP).Appropriatesafetyactionswillbeinitiatedbyoperatoraction.3.1-93REV.1312/96 GINNA/UFSARRadiationmonitorsandalarmsareprovidedasrequiredtowarnpersonnelofimpendingexcessivelevelsofradiationorairborneactivity.TheradiationmonitoringsystemisdescribedinSection12.3.3.1.2.6.5GeneralDesinCriterion64-MonitorinRadioactivitReleasesCRITERION:MEANSSKGLBEPROVZDEDFORMONITORINGTHEREACTORCONTAINMENTATMOSPHERESSPACESCONTAININGCOMPONENTSFORRECIRCULATIONOFLOSS-OF-COOLANTACCIDENTFLUIDSEFFLUENTDISCHARGEPATHSIANDTHEPLANTENVIRONSFORRADIOACTIVITYTHATMAYBERELEASEDFROMMODES1AND2iINCLUDINGANTICIPATEDOPERATIONALOCCURRENCES'NDFROMPOSTULATEDACCIDENTS(GDC64).Thecontainmentatmosphereiscontinuallymonitoredduringnormalandtransientstationoperationsusingthecontainmentparticulateandgasmonitors.Zntheeventofaccidentconditions,samplesofthecontainmentatmospherewillprovidedataofexistingairborneradioactiveconcentrationswithinthecontainment.RadioactivitylevelscontainedinthefacilityeffluentdischargepathsandintheenvironsarecontinuallymonitoredduringnormalandaccidentconditionsbythestationradiationmonitoringsystemandbytheRadiationProtectionProgramforGinnaStationasdescribedinSections11.5and12.5~3.1-94REV.1312/96 GINNA/UFSAR3.2CLASSIFICATIONOFSTRUCTURES,COMPONENTSiANDSYSTEMS3.

2.1INTRODUCTION

AspartoftheSystematicEvaluationProgram(SEP),TopicIII-1,theoriginalcodesandstandardsusedinthedesignofstructures,systems,andcomponentsatGinnaStationwerecomparedwithlaterlicensingcriteriabasedonRegulatoryGuide1.26(Reference2)and10CFR50.55a.TheobjectivewastoassessthecapabilityofGinnaStationstructures,systems,andcomponentstoperformtheirsafetyfunctionsasjudgedbythelaterstandards.Severalareaswereidentifiedwhererequirementshadchanged;however,allareasweresatisfactorilyresolvedasdocumentedinReferences2through6.TheNRChasconcludedthatSEPTopicIII-1regardingclassificationofstructures,systems,andcomponentsisresolved(Reference6).Section3.2.2summarizestheresultsofthereview.Table3.2-1listssystemsandcomponentsatGinnaStation,thecoderequiredtosatisfylicensingcriteriaeffectiveatthetimeoftheSEPreview,thecodesandstandardsusedwhenthesystemsandcomponentswereoriginallyproduced,theseismicclassificationinaccordancewithRegulatoryGuide1.29(Reference7),andtheseismicclassificationusedintheplantdesign.ItshouldbenotedthattheoriginalGinnaStationseismicdesignincludedthreeseismicclasses,buttheRegulatoryGuide1.29comparisonincludesonlytwo(SeismicCategoryIandnonseismic).DefinitionsoftheoriginalseismicclassesareincludedinSection3.7.1.1.ThefollowingsystemsandtheirrespectivecomponentsareaddressedinTable3.2-1:3.2-1REV.1312/96 GINNA/UISARReactorcoolantsystem.Safetyinjectionsystem.Samplingsystem.Containmentspraysystem.Chemicalandvolumecontrolsystem.Residualheatremovalsystem.Componentcoolingwater(CCW)system.Servicewater(SW)system.Feedwatersystem.PreferredAuxiliaryfeedwatersystem.Standbyauxiliaryfeedwatersystem.Containmentisolationsystem.3.2.2SYSTEMATICEVALUATIONPROGRAMEVALUATIONAftercomparingtheoriginalcodeswiththosecurrentlyusedforlicensingnewfacilities,thefollowingareaswereidentifiedwheretherequirementshadchanged:l.Fracturetoughness.2.Qualitygroupclassification.3.Codestresslimits.4.Radiographyrequirements.5.Fatigueanalysisofpipingsystems.Itwasdeterminedthatchangesintheareasofqualitygroupclassification,codestresslimits,andfatigueanalysisofpipingsystemshavenotaffectedthesafetyfunctionsoftheGinnasystemsandcomponentsreviewed.Intheremainingtwoareas(e.g.,fracturetoughnessandradiographyrequirements),althoughnosignificantdeviationswereidentified,theevaluationwasincompleteduetoinsufficientinformationavailableatthetimeoftheevaluation.AdditionalspecificinformationwasrequestedbytheNRCinthesetwoareasandalsoonthedesignofcertainvalves,pumps,andstoragetanks.Thatinformationisprovidedinthefollowingsections.Theinformationwas3.2-2BEV.1312/96 GINNA/UFSARsubmittedtotheNRCbyReference5.TheNRCstaffreviewedtheinformationandconcludedinReference6itwasadequatetofullyresolvetheopenissuesinSEPTopicIII-1regardingclassificationofstructures,components,andsystems.3.2.2.1FractureToughnessForcomponentsnotexemptfromcurrentfracturetoughnessrequirements,thefollowingevaluationsweresubmittedtojustifythatfracturetoughnessissufficienttoensurecomponentintegrity.3.2.2.1.1PressurizerThepressurizerevaluationisbasedonaconservativeadaptationofASMESectionNC-2311(a)(8).Inordertomaketheevaluation,thelowestservicetemperature(LST)isdefined.ThisistheminimumtemperatureofthefluidretainedbythecomponentozthecalculatedminimummetaltemperatureexpectedduringMODES1and2wheneverthepressurewithinthecomponentexceeds20%ofthepreopezationalsystemhydrostatictestpzessuze.Thehydrostatictestpressurewas3125psia.Thus,20%ofthispressureis625psia.TheGinnaTechnicalSpecificationsandPressureandTemperatureLimitsReport(PTLR)require,forLowTemperatureOverpressureProtection(LTOP)Systempurposes,thatreactorcoolantsystempressurereliefsetpointmustbelowerthan430psig(setpointset5411psigtoaccountforinstrumentuncertainty)wheneverreactorcoolantsystemtemperatureislowerthan328.0F.Thus,thelowesttemperatureat625psiawouldbe328F.Thelowestservicetemperatureisthustakenas328'F.ThepressurizerheadmaterialisSA-215WCC,whichhasaT~qof30F.Thus,thedifferencebetweenthelowestservicetemperatureandTxDyis2984F,'hichismuchgreaterthantheacceptancecriteriaof90F.Thus,itcanbeconcludedthatthepressurizerheadmaterialisexemptfromimpacttesting.302-3REV.1312/96 GINNA/UFSARThepressurizershellmaterialisSA-302gradeBmaterial,thesamematerialasthereactorvessel.ThismaterialhasbeenshowntohaveadequatefracturetoughnessasconcludedinSEPTopicV-6,ReactorVesselIntegrity.3.2.2.1.2AccumulatorsTheaccumulatorsareconstructedofSA-516,grade70material.TheTNTofthismaterialisO'.Thelowestservicetemperatureoftheaccumulatorwouldbetheminimumexpectednormalcontainmenttemperature,approximately60'FduringMODE6(Refueling)operations.(Itshouldbenotedthattheaccumulatorsareisolatedfromthereactorcoolantsystemduringcooldown,whenreactorcoolantsystempressureisabout700psig.Whentheaccumulatorsareinserviceandconnectedtothereactorcoolantsystem,containmenttemperatureisgenerallymaintainedatabout120F.)Forpurposesofthisevaluation,thelowerfigurewasused.Theallowable(LST-TNT)formaterialupto2.50-in.thickis30'F.Theactual(LST-TNDY)is60F.Therefore,thefracturetoughnessoftheaccumulatorsisconsideredadequate.3.2.2.1.3ComonentCoolinWater(CCW)PumsThecomponentcoolingwater(CCW)pumpcasingiscastiron.Thepotentialforcompletefailureofbothcomponentcoolingwater(CCW)pumpsduetobrittlefractureisconsideredminimal.Onecomponentcoolingwater(CCW)pumpprovidesallrequiredservices;thesecondpumpisastandbypumponly.Thus,itisnotexpectedthatbothpumpswouldfail.Inaddition,in1983RG&Epurchasedasparecomponentcoolingwater(CCW)pumptobestoredonsitewhichcouldbemanuallyplacedinservice,ifneeded.Thus,basedonthenumberofbackupcomponentcoolingwater(CCW)pumpsavailable,itwasnotconsideredthatimpacttestingwasrequiredofthecomponentcoolingwater(CCW)pumpmaterial.AnevaluationbyRG&Elaterdeterminedthatduetothethicknessofthepiping,connectedtothecomponentcoolingwater(CCW)pumps,impacttestingwasnotrequiredbytheASMECodeforthepumpcasingmaterial.Thisevaluationeliminatedtheneedtomaintain3.2-4REV.1312/96 GINNA/UFSARasparepumpforthepurposeofresolvingbrittlefractureconcerns.(Seealsosection9.2.2.4.3.)3.2.2.1.4ServiceWaterPumsTheservicewater(SW)pumpsareverticalshaftpumps,constructedofcastiron(dischargehead)andcarbonsteel(intakecolumnpipe).Itisnotconsideredthatbrittlefractureisasignificantconsiderationforthesepumps.Thistypeofpumphasbeenusedinsimilarcommercialapplicationsformanyyears.Itisnotknownthattherehavebeenanyproblemswithbrittlefzactureofthepumpmaterial.Sinceonlyoneofthefourservicewat'er(SW)pumpsisneededtoperformsafeshutdowncoolingfunctions,itisveryunlikelythatallfourpumpswouldexperiencesimultaneousbrittlefracture.RochesterGasandElectrichasalsomademodificationsduringthecourseoftheSEPtominimizethesafetyrequirementsforoperationoftheservicewater(SW)pumps.Firehoseconnectionshavebeenprovidedfozthedieselgeneratorsandforthestandbyauxiliaryfeedwatersystem(SAFW)toallowsafeshutdownoperation,evenintheeventofalossoftheservicewater(SW)pumps'hus,itisnotconsideredthatimpacttestingisrequiredfortheservicewater(SW)pumpmaterial.3.2.2.l.5MainSteamPiinandValvesThemainsteampipinggreaterthan20in.isASTMA155-65,gradeC55,ClassI.Mainsteampiping20in.andsmallerisASTMA106-65,gradeB.Thenormalservicetemperatureforthemainsteamlineis514Fto547Fatpower.AlthoughtheTNDTofthemainsteampipingmaterialisnotavailable,thefactthatthelowestservicetemperatureduringthegreatmajorityoftheoperatingtimeofthissystemisgreaterthan500Fwouldindicatethatafracturemechanicsevaluationisnotrequired.3.2.2.1.6FeedwaterPiinandValvesThefeedwaterpipingmaterialisASTMA106-64,gradeC.ThenormalservicetemperatureofthefeedwaterpipingduringMODES1and2isabout417F.3.2-5REV.1312/96 GINNA/UFSARAlthoughtheT~ofthesematerialsisnotavailable,thefactthatthelowestservicetemperatureduringthegreatmajorityoftheoperatingtimeofthesystemisgreaterthan400Fwouldindicatethatafracturemechanicsevaluationisnotrequired.3.2.2.2RadiographyRequirementsInformationonthezadiographyrequirementsfor(1)certainClass2pressurevesselsand(2)Class1and2weldedjointswasrequested.3.2.2.2.1Class2PressureVesselsThevesselsinquestionincludetheaccumulators,volumecontroltank,reactorcoolantfilter,seal-waterinjectionfilter,andchargingpumpaccumulator.AllmainseamsoftheaccumulatorswererequiredtobefullyzadiographedperASMECode,Section8,ParagraphUW-51byWestinghouseEquipmentSpecification676448,datedMarch15,1967.Thechargingpumpaccumulator(orthechargingpumpfilter)compositerecordindicatesthatallbuttweldswereradiographed.TheabovepressurevesselswereincludedintheGinnaStationInserviceInspectionProgramforQualityGroupsA,B,andCcomponents.AlthoughthesepressurevesselsareClass2components,theirfailurewouldnotresultinthereleaseofsignificantamountsofradiation.ThefailureofthevolumecontroltankwasanalyzedinSection15.7.1.2asadesign-basisaccident.Theradiologicalconsequencesofthisfailurewerewellwithintheguidelinesof10CFR100.Itwasthereforeconcludedthat,basedon.theoriginalradiographyperformedonsomeofthepressurevessels,theinclusionofthesepressurevesselsintheinserviceinspectionprogramandtheminorconsequencesassociatedwithanypotentialequipmentfailures,noadditionalradiographyrequirementswerewarranted.3.2-6REV.1312/96 GINNA/UFSAR~~~~I3.2.2.2.2Class1and2WeldedJointsItwasdeterminedthatiftheconfirmationofCodeCaseN-7(B31.1)wasappliedtoallClass1and2piping,theradiographyrequirementsforClass1and2weldedjointswouldnotbeanissue.RochesterGasandElectrichasconfirmedthatCodeCaseN-7wasusedspecificallyforcertainClass1andClass2pipingsystems,suchastheprimaryloopandthesafetyinjectionsystem.InthespecificationsforotherWestinghousesuppliedsystems,thestatementismadethatASAB31.1andallapplicablenuclearcodecaseswouldbeused.NospecificmentionofCodeCaseN-7ismadeforthesesystems.However,WestinghouseEquipmentSpecification676262,datedApril29,1966,providestheweldinspectionscheduleforWestinghouse-suppliedpipingsystems.AllpipingfromClass2501toClass601Rwas100'8radiographed.Randomradiographywasrequiredfor10$to208ofthebalanceofthewelds,withevidenceofunacceptablequalitycorrespondingtorandomradiographybeingacausetorequire100%radiographicinspection.Theremainingclassesofpiping(601non-radioactive,602,301,302,and151)areprimarilyeither(a)pipingsystemsatorneartherangeofatmospherictemperaturesupto212F(towhichprovision2ofCodeCaseN-7doesnotapply)oz(b)Class3systems.ForGilbertAssociatessuppliedpipingsystems,GAISpecificationSP-5291,datedDecember23,1966,providesthefollowingradiographyrequirements.Radiographyinspectionistobemadeofallfieldbuttweldsandallfieldnozzlewelds4in.andlarger,forthefollowingsystems(onlythoseofClass2arediscussedbelow):A.Mainsteamsystemuptomainsteamstopvalvesandconnectedpipingformainsteamsafetyvalves(MSSV)andsteamadmissiontotheauxiliaryfeedwaterpumpturbine.B.Feedwaterpipingtothefirstcheckvalvesoutsidecontainment(3992and3993).C.Steampipingtotheauxiliaryfeedwaterpumpturbine.D.Preferredauxiliaryfeedwaterpiping.E.Steamgeneratorblowdownpipingtothecontainmentisolationvalve.3027REV.1312/96 GINNA/UFSARF.Servicewater(SW)piping,includinginsidecontainment.Also,allshopbuttweldsandall4in.andlargernozzleweldsarerequiredtoberadiographedfortheabovesystems.Basedontheaboveevaluation,itisconcludedthattheradiographyrequirementsimposedontheoriginalpipingandvalvesforGinnaStationcomparefavorablywithcurrentcriteria.3.2.2.2.3MainSteamandFeedwaterPiinThemainsteamandfeedwaterpipingsystemsintheintermediatebuildingandportionsoftheturbinebuildingareincludedintheaugmentedinserviceinspectionprogram,whichrequiredanewbaselineradiographinspectionof100%ofweldsinthesubjecthigh-energypiping.ThisprogramhasbeenreviewedandapprovedbytheNRC,inthereviewofSEPTopicIII-5.B,PipeBreakOutsideContainment,SERdatedSeptember4,1981(Reference8).3.2.2.3ValveDesignItwasrequestedthatinformationbeprovided,onasamplebasis,regardingthedesignofvalvesinordertodetermineif(1)Class2and3valvesmeetcurrentpressure-temperatureratingsand(2)Class1valvesmeetcurrentbodyshaperequirements.RochesterGasandElectrichasmadeanextensivesamplingcomparisonanddeterminedthat,inalmostallcases,theoriginalpressure-temperatureratingsweremorerestrictivethanthosedefinedinANSIB16.34-1977.ThevalvespecificationsdesignatethatthevalvebodymaterialsbeA312type304,A358,type304,A376type304(allgroup2.1materials),A312type316orA358type316(group2.2materials),A105,A216WCB(group1.1materials)andA216WCC(group1.2materials).Inonlyoneinstanceevaluated,forASA150lbClass,didtheGinnaspecificationsallowahigherworkingpressureforthedesignatedtemperature,andthedifferencewasonly5lb(210lbversus205lbat300'F,and240lbversus235lbat200'F).Thisisaminordifferencesincehydrostatictestingofthesystemswasoriginallyperformedat125'hofdesignpressure.3.2-8REV.1312/96 GINNA/UFSARItisthusconsideredthatthepressure-temperatureratingsfortheGinnaClass2and3valvescomparefavorablywithcurrentcriteria.ItwasalsorequestedthatvalvebodyshapesforClass1valvesbecomparedtocurrentcriteriadesignatedintheASMECode,NB-3544.AdrawingreviewofasampleofClass1valveswasconductedtodetermineifthereappearedtobeanysignificantdifferencesfromthevalvebodyshaperequirementsofNB-3544.Fromthedrawings,itappearedthat(1)therewerenosharpfilletsattheintersectionsofthesurfacesofthepressureretainingboundaryatthenecktobodyjunction(withrq20.3tm),(2)bodyinternalcontoursweregenerallysmoothincuzvatuze,(3)flatsectionswereminimized,and(4)bodycontoursatweldendsweresmoothandgradual.ThissamplingindicatesthatClass1valvesinstalledatGinnaStationhavebodyshapeswhichazenotsignificantlydifferentfrompresentcoderequirements.Further,duringtheyearssinceGinnaStationbeganoperation,periodictesting,andinserviceinspection,noapparentfailuresduetoseverestressconcentrationsresultingfromunacceptablevalvebodyshapecontourshaveoccurredorhavebeenobserved.ItisthusconsideredthatvalvebodyshaperequirementsforClass1valvesatGinnaStationarenotofconcern.3.2.2.4PumpDesignItwasrequestedthatinformationbeprovidedwithrespecttothecodesandrequirementstowhichthegasstripperpumps,servicewater(SH)pumps,andlube-oilpumpsfortheturbine-drivenauxiliaryfeedwaterpump(TDAFW)bearingsweredesigned.Thegasstripperpumpsazenotsafetyrelatedandtheturbine-drivenauxiliaryfeedwaterpump(TDAFH)anditsauxiliariesperformsafetyfunctionswhichcanbeperformedbyothersafety-relatedpumps.Theservicewater(SW)pumpswereanalyzedaspaztoftheseismicreview(SEPTopicIII-6)andmodificationsresultingfromthatanalysiswereperformedbasedoncurrentcoderequirementsasdiscussedinSection3.9.2.2.4.1.3.2-9REV.1312/96 GINNA/UFSAR3.2.2.5StorageTankDesignItwasrequestedthatinformationbeprovidedrelativetothedesignoftherefuelingwaterstoragetank(RWST),boricacidstoragetanks,chemicalandvolumecontrolsystemholduptanks,componentcoolingwater(CCW)surgetank,preferredauxiliaryfeedwatercondensatestoragetank(CST),andtuzbine-dzivenauxiliaryfeedwaterpump(TDAFW)lube-oiltank.Inadditiontogeneralcoderequirements,specificinformationincludedcompressivestressrequirements,andtensileallowablesfozbiaxialstressfieldconditions.Anevaluationwasnotperformedforthecondensatestoragetank(CST),thechemicalandvolumecontrolsystemholduptanks,andthetuzbine-drivenauxiliaryfeedwaterpump(TDAFW)lube-oiltank,sincetheyarenotrequiredtoperformasafetyfunction.Boththecondensatestoragetank(CST),whichprovidessuctiontothepreferredauxiliaryfeedwatersystem,andtheturbine-drivenauxiliaryfeedwaterpump(TDAFW),havefunctionswhichcanbeperformedbyothersafety-relatedsystems(theservicewater(SW)systemandthestandbyauxiliaryfeedwatersystem,(SAFW)respectively).Thefailureofthechemicalandvolumecontrolsystemholduptankswouldnotreleasesignificantactivity(failurewouldbeboundedbyavolumecontroltankrupture,whichisanalyzedinSection15.7.1.2,andfoundacceptable).Itshouldfurtherbenotedthatthecomponentcoolingwater(CCW)surgetankhasa150-psigdesignpressureanditisreviewedasapressurevessel.Sincefracturetoughnessexemption(nominalthickness5/8in.orless)appliesfozthistankandthestresslimitsbetweencurrentandpresentcodesarecomparableforClass3vessels,noadditionalanalysiswasrequired.Therefuelingwaterstoragetank(RWST),chemicalandvolumecontrolsystemholduptanks,wasteanalyzedaspartofrequirements.EachTherefuelingwaterdiscussedindetailholduptank,andtheboricacidstoragetanksweretheseismicreview(SEPTopicIII-6)basedoncurrentcodetankhasbeenshowntomeetrequiredSEPseismiccriteria.storagetank(RWST)andboricacidstoragetanksareinSections3.9.2.2.4.6and3.9.2.2.4.5,respectively.3.2-10REV.1312/96 GINNA/UFSARREFERENCESFORSECTiON3.21.U.S.NuclearRegulatoryCommission,QualityGroupClassificationandStandardsforWater,Steam,andRadioactiveWasteContainingComponentsofNuclearPowerPlants,RegulatoryGuide1.26,Revision3,February1,1976'.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicZii-l,QualityGroupClassificationofComponentsandSystems,datedDecember30,1981(includesFranklinResearchCenterTechnicalEvaluationReportC5257-429).3.U.S.NucleazRegulatoryCommission,IntegratedPlantSafetyAssessment,SystematicEvaluationProgram,R.E.GinnaNuclearPowerPlant,NUREG0821,December1983.4.LetterfromJ.E.Maiez,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIIZ-l,QualityGroupClassificationofComponentsandSystems,datedJune25,1982.5.LetterfromJ.EDMaier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIii-l,QualityGroupClassificationofComponentsandSystems,datedJanuary24,1983.6.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport(IPSAR)Section4.7,ClassificationofStructures,Systems,andComponents,datedJune28,1983.7.U.S.NuclearRegulatoryCommission,SeismicDesignClassification,RegulatoryGuide1.29,Revision3,September1,1978.8.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicIII-SB,PipeBreakOutsideContainment,datedSeptember4,1981'.2-11REV.1312/96

GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESISYSTEMS~ANDCOMPONENTSgualiClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandCodesandStandardsStandardsZG1.26UsedinPlantDesiRG1.29UsedinREACTORCOOLANTSYSTEMReactorvesselReactorvesselsupportsSteamgenerators,tubeside(Note1)Steamgenerators,shellside(Note1)PressurizerReactorcoolantpumpsReactorcoolantpiping,valves,andfittingsPressurizerrelieftankASMEIIIClass1ASME111SubsectionNFASME111Class1ASME111Class2ASMEIIIClass1ASMEIIIClass1ASME111ClassIASMEIIIASME111(1965)ClassAASMEIII(1965)ClassAASMEIII(1965)ClassCASMEIII(1965)ClassAASMEIII(1965)ClassAASAB31.1(1955)ASAB16.5(1961)ASMEIII(1965)CategoryICategoryICategoryICategoryICategoryICategoryICategoryINonseismicClassIClassIClassIClassIClassIClassIClassIClassIIShcct1REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESISYSTEMSiANDCOMPONENTSgualiClassificationSeismicClassificationStzucturesSstems,andCoonentsCodesandStandardsBG1.26Class3CodesandStandardsUsedinPlantDesiClassCZG1.29UsedinSAFETYZNJECTZONSYSTEHRefuelingwaterstoragetank(RWST)HighpressuresafetyinjectionpumpsAccumulatorswithpipingandvalvestoreactorcoolantsystemandfromN2supplyAccumulatorcheckvalvesInterconnectingpipingandvalvesrequiredtoperformsafetyinjectionfunctionASMEIIIClass2ASMEIIIClass2ASMEIIIClass2ASMEIIIClass1ASMEIIIClass2API-650(1964)AECTID-7024(B/63)MSSSP-66(1964)WestinghouseequipmentSpec676370(7/29/66)ASMEIII(1965)ClassC;ASAB31.1(1955);ASAB16.5(1961);Westinghouseequipmentspec676448(3/15/67)MSSSP-66(1964)CategoryICategoryICategoryICategoryIASAB31.1(1955);CodeCaseCategoryIN-7;USASB36.10(1959);USASB36.19(1965)ClassIClassIClassIClassIClassISheet2 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESiSYSTEMSiANDCOMPONENTSQualiClassificationSeismicClassificationStxuctures,Sstems,andCoonentsCodesandCodesandStandardsStandardsBGX.26UsedinPlantDesiUSASB16.5(1961);MSSSP-66(1964)BG1.29UsedinSAMPLINGSYSTEMPipingandvalvesfromreactorcoolantsystemto951,953,955,998Pipingandvalvesfrom951,953,998,to966A,B,CASMEIIIClass1ASMEIIIClass2ASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)CategoryICategoryIClassIClassICONTAINMENTSPRAYSYSTEMContainmentspraypumpsPipingandvalvestocontainmentspraysystempumpsfromrefuelingivaterstoragetank(RWST)andsprayadditivetankASMEIIIClass2ASMEIIIClass2ASAB31.1(1955)ASAB16.5(1961).CategoryIWestinghouseequipmentSpecCategoryI676370'7/29/66)ClassIClassISprayadditivetankASAMEIIIASMEIII(1965)CategoryIClassISheet3REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESgSYSTEMS~ANDCOMPONENTSQualitClassificationSeismicClassificationStructuresstemsandCoonentsCodesandStandardsRG1.26CodesandStandardsRG1.29tTsedinPlantDesirrsedinClass3ClassCInterconnectingpipingandvalvesfromcontainmentspraysystempumpdischargetocontainmentspraysystemspraynozzlesASMEIIIClass2ASAB31.1(1955)ASAB16.5(1961)CategoryIClassICHEMICALANDVOLUMECONTROLSYSTEMRegenerativeheatexchangerNonregenerativeheatexchanger-tubesideNonregenerativeheatexchanger-shellsideReactorcoolantfilterVolumecontroltankASMEIIIClass1ASMEIIIClass2ASME111Class3ASMEIIIClass2ASMEIIIClass2ASME111(1965)ClassAASMEIII(1965)ClassCASMEVIII(1965)ASME111(1965)ClassCASME111(1965)ClassCCategoryICategoryICategoryICategoryICategoryIClassIClassIClassIClassIClassII GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESiSYSTEMS~ANDCOMPONENTSQualitClassificationSeismicClassificationStznctnzesSstemsandCoonentsCodesandCodesandStandazdsStandazdsBGX.26VsedinPlantDesi.BG1.29UsedinChargingpumpsASMEIIIClass2WestinghouseequipmentSpecCategoryI676370(7/29/66)ClassIChargingpumpsaccumulatorExcessletdownheatexchanger-tubesideExcessletdownheatexchanger-shellsideSealwaterinjectionfilterSealwaterheatexchanger-tubesideSealwaterheatexchanger-shellsidePiping(loopB)letdownviaregenerativeheatexchangerandletdownvalvestoandincludingASMEIIIClass2ASME111Class1ASMEIIIClass3ASMEIIIClass2ASMEIIIClass2ASMEIIIClass3ASMEIIIANSIB31.7(1968)ASMEIII(1965)CxlassAASMEVIII(1965)ASME111(1965)ClassCASMEIII(1965)ClassCASMEVIII(1965)ASAB31.1(1955)CategoryICategoryICategoryICategoryICategoryICategoryICategoryIClassIClassIClassIClassIClassIClassIClassISheet5REV.1312/96 GINNA/UIiSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURES,SYSTEMS,ANDCOMPONENTSQualitClassificationSeismicClassificationStructures,Sstems,andCoonentsletdownorificesHolduptanksBoricacidstoragetankBoricacidfilterGasstripperpackageeDeboratingdemineralizerPiping(loopA)letdownlineviaexcessletdownheatexchangertoandincludingHCV123PipingandvalvesfrompumpdischargetocontainmentisolationvalveCodesandStandardsRG1.26Class1ASMEIIIClass3ASMEIIIClass2ASME111Class3ASMEIIIClass3ASMEIIIClass3ASMEIIIClass1ASMEIIIClass2CodesandStandardsUsedinPlantDesiASAB16.5(1961)ASME111(1965)ClassCASMEIII(1965)ClassCASMEIII(1965)ClassCASMEIII(1965)ClassCASAB31.1(1955)ASMEIIIClassCASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASA816.5(1961)ZG1.29CategoryICategoryICategoryINonseismicNonseismicCategoryICategoryIrrsedinPlantDesiClassIClassIClassIClassIIIClassIClassISheet6 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURES~SYSTEMSIANDCOMPONENTSgualitClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandStandardsZG1.26'odesandStandardsUsedinPlantDesiBG1.29Used.inMixedbeddemineralizerCationbeddemineralizerPipingfrompumpdischargeviareactorcoolantpumpandfromHCV123tosealwaterheatexchangerRemainderofinterconnectingpipingandvalveswithexceptionsfollowingPipingandvalvesofTCV145viademineralizertovalves1106and1107BaseremovalionexchangerCationionexchangerIonexchangefilterASME111Class3ASME111Class3ASMEIIIClass2ASME111Class2ASME111Class3ASMEIIIClass3ASME111Class3ASMEIIIClass3ASME111(1965)ClassCASMEIII(1965)ClassCASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)ASME111(1965)ClassCASMEIII(1965)ClassCASMEIII(1965)ClassCNonseismicNonseismicCategoryICategoryINonseismicNonseismicNonseismicNonseismicClassIClassIClassIClassIClassIClassIClassIShcct7REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFICATZONOFSTRUCTURES~SYSTEMSIANDCOMPONENTSQualitClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandCodesandStandardsStandardsRG1.26UsedinPlantDesiRG1.29UsedinPipingandvalvesfromboricacidstoragetankviaboricacidtransferpumpandfilterASMEIIIClass3ASAB31.1(1955)ASAB16.5(1961)bCategoryIClassIRESIDUALHEATREMOVALSYSTEMResidualheatremovalpumpsHeatexchanger-tubesideHeatexchanger-shellsideInterconnectingpipingandvalvesrequiredtoperformresidualheatremovalfunctionASMEIIIClass2ASMEIIIClass2ASMEIIIClass3ASMEIIIClass2ASMEIII(1965)ClassCASMEVIII(1965)CategoryICategoryIASAB31.1(1955)ASAB16.5(1961)CategoryIWestinghouseequipmentSpecCategoryI676370(7/29/66)ClassIClassIClassIClassISheet8 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESiSYSTEMS/ANDCOMPONENTSgualitClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandCodesandStandardsStandardsZG1.26'sedinPlantDesi.RG1.29UsedinCOMPONENTCOOLINGWATER(CCW)SYSTEMPumpsHeatexchangerSurgetankInterconnectingpipingandvalvesASMEIIIClass3ASMEIIIClass3ASME111Class3ASMEIIIClass3ASMEVIII(1965)CategoryIASMEVIII(1965)CategoryIASAB31.1(1955)ASAB16.5(1961)CategoryIWestinghouseequipmentSpecCategoryI676370'7/29/66)ClassIClassIClassIClassISERVICEWATER(SW)SYSTEMPumpsASME111GAISpecificationRo-2204CategoryIClassISheet9REV.1312/9G GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESISYSTEMS~ANDCOMPONENTSgualitClassificationSeismicCIassificationStzuchxzes,SstemsandCoonentsPipingandvalvesrequiredforcontainmentcoolingRemainderofpipingandvalvesexcludingthoseinsidetheturbinebuildingMAINSTEAMSYSTEMAtmosphericreliefvalves(tsvo)Safetyvalves(eight)PipingandvalvescomprisingmainsteamlinesextendingfromthesecondarysideofthesteamgeneratorsuptoandincludingtheoutermostcontainmcntisolationvalveineachmainsteamlineandconnectingpipinguptoandincludingthefirstvalvethatisnormallyclosedorcapableofautomaticclosureduringallmodesofnormalreactoroperationPipingandvalvesfrommainsteamlinetoCodesandStandardsRGX.26'lass3ASMEIIIClass2ASMEIIIClass3ASMEIIIClass2ASMEIIIClass2ASMEIIIClass2ASMEIIICodesandStandardsUsedinP2.antDesi(1966)ASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)ASMEIII(1977)Class2ASAB31.1(1955)ASA831.1(1955)ASAB16.5(1961)ASAB31.1(1955)RG1.29CategoryICategoryICategoryICategoryICategoryICategoryIUsedinClassIClassIClassIClassIClassIClassIShcct10 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESgSYSTEMSiANDCOMPONENTSgualitClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandStandardsRGX.26CodesandStandardsUsedinPlantDesiBG1.29VsedinauxiliaryfeedpumpturbineInterconnectingpipingandvalvescomprisingfeedhvaterlinesextendingfromsecondarysideofsteamgeneratorsuptoandincludingthenonreturnvalves4003,4004,4000C,4000D,3992,and3993PREFERREDAUZILXARYFEEDWATERSYSTEM(AFW)Pumps-motordrivenPump-turbinedrivenCondensatestoragetank(CST)Pipingandvalvesfrommotordrivenpumpdischargetovalves4000C,D,andincludingvalves4304and4310Pipingandvalvesfromturbinedrivenpumpdischargetovalves4003,4004,andincludingClass2ASMEIIIClass2ASMEIIIClass3ASMEIIIClass3ASMEIIIClass3ASMEIIIClass3ASMEIIIClass3ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)ASMEVIII(1965)ASMEVIII(1965)AWWAD100(1965)ASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)ASAB16.5(1961)CategoryICategoryICategoryICategoryICategoryICategoryIClassIClassIClassIClassIIClassIClassISheet11REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFECATZONOFSTRUCTURESISYSTEMSIANDCOMPONENTSgualitClassificationSeismicClassificationStructnres,SstemsandCoonentsCodesandCodesandStandardsStandardsRG1.26UsedinPlantDesiRG1.29Usedin4291PipingtosuctionofPreferredauxiliaryfeedwatersystem(AFW)pumpsfromcondensatestoragetanks(CST)tovalves4014,4017,4016,andfromservicewater(SW)systemTurbinedrivenpumplubeoiltank,pumps,andpipingASMEIIIClass3ASMEIIIClass3ASAB31.1(1955)ASAB16.5(1961)ASAB31.1(1955)WestinghouseequipmentSpec676428CategoryICategoryIClassIClassISTANDBYAUXILIARYFEEDWATERSYSTEM(SAFH)PumpsStandbyauxiliaryfeedwatersystem(SAFW)pipingandvalvesfromandincludingvalves9706AandBtosteamgeneratorsPipingandvalvestopumpsuctionsfromservicewater(SW)systemtoandincludingvalves9707A,B;9720A,B;and9709A,BASMEIIIClass3ASMEIIIClass2ASMEIIIClass3ASMEIII(1974)Class3ASMEIII(1974)Class2ASMEIII(1974)Class3CategoryICategoryICategoryIClassIClassIClassISheet12 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURES/SYSTEMS~ANDCOMPONENTSQualiClassificationSeismicClassificationStructures,Sstems,andCoonentsCodesandStandardsRG1.26CodesandStandardsUsedinPlantDesiRG1.29UsedinPipingandvalvestopumpdischargeuptovalves9704A,Bandincludingvalves9710A,BASMEIIIClass3ASMEIII(1974)Class3CategoryIClassICONTAINMENTISOLATIONSYSTEMInterconnectingpipingandvalvesofthereactorcoolantpressureboundarythatpenetratethecontainmentuptoandincludingtheoutermostcontainmentisolationvalveSTRUCTURESASMEIIIClass2ASAB31.1(1955)ASAB16.5(1961)CategoryIClassIContainment,includingaccesshatches,airlocks,liner,penetrationassemblies,fueltransfertubepenetration,andcranesupportsAuxiliarybuildingControlbuildingSpentfuelpoolIntermediatebuildingDieselgeneratorbuildingStandbyauxiliaryfeedwatersystem(SAFW)NANANANANACategoryICategoryICategoryICategoryICategoryICategoryICategoryIClassIClassIClassIClassIClassIClassIClassISheet13REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESiSYSTEMSIANDCOMPONENTSQualitClassificationSeismicClassificationStructuresstems,andCoonentsauxiliarybuildingadditionScreenhouse(serviceivater(SW)portion)TurbinebuildingCodesandCodesandStandardsStandardsZG1.26UsedinPlantDesiNABG1.29CategoryINonseismicUsedinClassIClassIIISheet14REV.1312/96 GINNA/UFSARTABLE3.2-1CLASSIFICATIONOFSTRUCTURESiSYSTEMSiANDCOMPONENTSFootnotes:ASMEIIIstandsfortheBoilerandPressureVesselCode,SectionIII,DivisionI,publishedbyASME,1977Edition,withaddendathroughSummer1978.InformationregardingcodeeditionassumedbecauseitwasnotavailableduringSEPreview.WestinghouseEquipmentSpecification676370referstoASMECode,SectionsIII,VIII,andXI,1965;ASAB16.5,1961;andStandardsoftheHydraulicInstitute,1965.WestinghouseEquipmentSpecification676448requiresthatallmainseamsoftheaccumulatorsarefullyradiographedperASMECode,Section8,ParagraphUW-51.Consistsofpreheater,strippercolumnwithreficxcondenser,andassociatedpumps,piping,andinstrumentation.WestinghouseEquipmentSpecification676428alsoappliestopumps.Inthiscase,WestinghouseEquipmentSpecification676428appliesonlytothepumps.TheturbinebuildingwasanalyzedduringtheSEPanditwasdeterminedthatthebuildingcouldmeetSeismicCategoryIrequirementswithoutfailure.ThoseportionsofthebuildingrequiredtomaintainitsoverallstructuralintegrityarenowconsideredSeismicCategoryI.Note1:ReplacementsteamgeneratorpressureboundaryandintegralattachmentsaredesignedinaccordancewithASMESectionIII,SubsectionNB,Class1requirements,1986,withNoAddenda.Sheet15REV.1312/96 i GINNA/UFSAR3.3WINDANDTORNADOLOADINGS3.

3.1INTRODUCTION

AspartoftheSystematicEvaluationProgram(SEP),theNRCstaffreviewedthedesignandconstructionofcertainstru'cturestodeterminetheirabilitytoresisttheforcesdevelopedbystraightwindsandtornadoes.TheSEPreviewidentifiedcertainlimitingstructuralelements(Reference1),whichwerethenaddressedbyRG&EaspartoftheGinnaStructuralUpgradeProgram.TheStructuralUpgradeProgramconsistsofatwo-phasestructuralreanalysisprogramfollowedbyinstallationofrequiredmodificationsidentifiedasaresultoftheanalysis.(SeealsoSection3'.)Thestructuralreanalysisprogramandtheresultingmodificationsarediscussedinthefollowingsections.3.3.2STRUCTURALUPGRADEPROGRAMEVALUATION3.3.2.1StructuralEvaluationApproach3.3.2.1.1ReuirementsTheStructuralUpgradeProgramfortornadoesincludedtheresolutionoffour'nterrelatedSEPTopics:II"2.ASevereWeatherPhenomena.III-2WindandTornadoLoadings.III-4.ATornadoMissiles.III-7.BDesignCodes,DesignCriteria,andLoadCombinations.TheStandardReviewPlan(SRP)Sections3.3.1and3.3.2andRegulatoryGuides1.76and1.117includeguidancerelativetotheneedfornuclearpowerplantstowithstandtheeffectsofnaturalphenomenasuchaswindandtornadoes.AtthetimeofdesignandconstructionofGinnaStation,thedesigncriteriafornuclearpowerplantsdidnot'includetornadoesandotherphenomena,suchasextremesnowandtornadomissiles,totheextentcurrentlyrequired.Consequently,theexistingdesignandconstructionofsomestructuresimportanttosafetymaynotmeetcurrentlicensingcriteriabutare,3.3-1REV.1312/96 GINNA/UFSARnonetheless,capableofresistingloadstosomelevelbetween.thecurrentcriteriaandthosespecifiedintheoriginalFSAR.3.3.2.1.2StructuralEvaluationProcessThepurposeoftheStructuralUpgradeProgramevaluationwastodeterminethelevelofprotection(tornadowindspeedcharacteristics)thatshouldbeusedasanappropriatebackfittingbasisforGinna.lnordertomakethisjudgment,RG&Eusedathree-stepprocess:A.DeterminethecapabilityofthepresentGinnastructures,systems,andcomponentstowithstandtornadoeffects.B.Determinethecostsassociatedwithbackfittingtornadoprotectionatseveralwindspeedsuptothatspecifiedincurrentcriteria.C.Defineareasonableleveloftornadoprotection,basedbothonthecostsassociatedwitharangeoftornadowindspeedprotectionlevelsandontherangeofprobabilitiesofthesetornadowindspeeds.ThefollowingprocesswasemployedfortheinitialStructuralUpgradeProgramevaluation:AA.Defineloads,loadcombinations,andinitialacceptancecriteria.BB.Defineassumptions.CC.Evaluatetheeffectsonthestructure.DDTComparetheseeffectstotheoriginalassumptions.EE.Assesstheseeffectsastheypertaintoplantshutdown.FF.Estimatethecostsassociatedwiththerepairs.GG.Basedonthecostandeffects,recommendfinalinputandacceptancecriteriaandtherecommendeddegreeofrepair.Theevaluationwasperformedintwoparts.First,astructuralevaluationwasperformedtodeterminethecapabilitiesofallplantstructurestoresistwind,snow,andtornadowindandpressures.Second,adeterminationwasmadeoftheminimumsetofplantequipmentrequiredtobringtheplanttoasafeshutdownconditionandtheimpactofpostulatedtornadomissilesonthatcapability.Backfitcostswereestimatedinbothevaluationsandwerethen313-2REV.1312/96 GINNA/UFSARcombinedinaconsistentfashiontoprovideauniformlevelofprotectionforallphenomena.3.3.2.1.3StructuralEvaluationComuterProramInordertoperformastructuralevaluationofthiscomplexity,acompleteevaluationofthemainplantstructureswasmade.Thisevaluationexaminedtheinteractionsofthestructuresintheauxiliary,intermediate,turbine,dieselgenerator,andcontrolbuildingsandthefacadestructureinordertodistributetheloadsthroughouttheentirestructureinamannerthatbestsimulatestheactualfieldconditions.Aseparateevaluationwasperformedforthescreenhouse.ThecomputerprogramGTSTRUDLwasusedforthestructuralevaluation.GTSTRUDLisacomputer-aidedstructuralengineeringsoftwaresystemdeveloped,maintained,andcontinuouslyresearchedattheGTICESSystemsLaboratory,SchoolofCivilEngineering,GeorgiaInstituteofTechnology.3.3.2.1.4InutLoadCriteriatBeforetheactualevaluationcouldbemade,structurallayoutandloaddatawerecompi.led.'Planandelevationdrawingsofonlytheprimarymembersandcross-bracingweremade.Thesedrawingswerereviewedinthefieldandcheckedtoconfirmthatthemember'configurationandlocationonthedrawingsagreedwiththefieldconditions.Membersizeswerecheckedrandomlytoverifythatthemembersizesinthefieldconformtothedrawings.Theplantdrawingswerereviewedtodeterminetheserviceandliveloadsoneachfloor.Afieldverificationwasdoneforthewholeplant,wherebytypicalfloorbayswereexamined,theequipmentonthesefloorbayswerelocated,andanestimatedserviceloadcalculated.Theestimatedserviceloadsalsoincludedtheweightsofpipes,cabletrays,andconduitswhichareattachedtothefloors.Deadloadswereassumedtobetheweightsofthestructure,fixedequipment,anallowanceforpermanentlyattachedsystemcomponents(e.g.pipe,duct,andcabletrays),andanallowanceforthermaleffectsandpipereactions.Liveloadswereassumedtobeasshowninspecificationsanddrawings,minuswhateverwasallowedforpermanentlyattachedsystemcomponents.Dead,live,3033REV,1312/96 GINNA/VFSARthermaleffects,andpipereactionloadswereappliedasequivalentuniformloadswhereapplicablethroughtheslabsordeckingintothemainframing.A75mphwindspeedand40psfgroundsnowloadwereusedasthe"severeenvironmentalloading"condition.An"extremesnowload"of100psfwasusedasabasisfortheevaluation.TheeffectsofthetwoNRCdesign-basistornadomissilesonequipmentrequiredforsafeshutdownwerealsoexamined.Themissiles,a35-ftutilitypoleanda1-in.diametersteelrod,wereexaminedtodeterminetheeffectamissilestrikewouldhaveontheequipmentrequiredtosafelyshutdowntheplant.Thetwomissiles(poleandrod)wereassumedtotravelataspeedof0.4and0.6timesthetornadowindspeed,respectively.Aspectrumoftornadowindspeedswerechosenfromthe"TornadoandStraightWindHazardProbability"reportpreparedbyTexasTechUniversity(Reference2).Windspeedsof250mph,188mph,and132mphwereused.ThesewindspeedscoincidewiththeTexasTechestimatesforaprobabilityofrecurrenceof1x10,1.x10,and1x10peryear;respectively,atanupper95%confidencelevel.ThewindspeedswereconvertedintodesignpressuresbyutilizingtheANSI58.1-1982equation:p=qGhCpwhere3.3-4REV.1312/96 GINNA/UIiSAR0~00256Kz(IV)Kz=velocitypressurecoefficientimportancefactorfastest-milewindspeedGh=gustresponsefactorCp=externalpressurecoefficientDifferentialpressureswerecalculatedbyusingq=0.00512VwhereV2representsthetranslationalwindspeed.Windloadswereapplieduniformlytotheplantstructures.3.3.2.1.5GeneralAssumtionsOncethethreetornadowindspeedswereconvertedtodesignpressures,thefollowingassumptionsweremadepriortoapplyingthesepressurestothestructures:A.Metalsidingandroofdeckingremainintactandattachedtothemainsteelframeforallloadconditions.B.Allexternalblockwallsremainintactforallloadconditions.C.Plantwindows,louvers,anddoorsremainintactforallloadconditions.Theseassumptionsmaximizetheloadstransferredintothestructures.Fromtheseassumptions,thewindandsnowloadcombinationswerethenappliedtothestructuresasuniformloads.Theirinfluencewastransferredtothemainsteelframingthroughthesidingordecking.Intheevaluation,thecolumnswereinputwiththeirorientationcorrespondingwiththefieldcondition.Thecolumnswereassumedtobebracedagainstlateralbucklingbyfloorbeamsorstrutswhichazeframedintothecolumncenterlines.Columnsonthebuildingperimeterthathavegirtsattachedtotheirflangeswereassumednottobelaterallybracedbythegirtsagainstbucklingonthecolumnssubjectedtoaxialloads.Theeffectivelengthswereusuallyconsideredtobethedistancebetweenfloorsintheplantforboththestrongandweakaxisundercolumnbucklingandlateralbucklingduetobeam3.3-5REV.1312/96 GINNA/UISARaction.Columnbasesweretypicallymodeledaspinnedconnections(non-moment-resisting).Floorbeamswereassumedtobelaterallybracedforbendingbythefloorslabsandbeamtocolumnconnectionsweregenerallymodeledassimplepintypeconnections.Girtsandpurlinswereconsideredtobesecondarymembersinthisevaluation.Forpositivewindpressure,theoutsideflangeofthegirtisincompression.Underthiscondition,thesidingwasassumedtoprovidefulllateralsupportalongthecompressionflange.However,negativewindordifferentialpressuresreversethecompressionflangetotheinsideofthegirtorpurlin.Forthistypeofloading,theunbracedlengthofthecompressionflangewasassumedtobethedistancebetweensupports.ThetypicalconnectionatGinnaStationisaboltedconnection.Beamtocolumnconnections,ingeneral,consistofanglesweldedtothebeamandboltedtothecolumn.Connectionsinthetrussesorcross-bracingconsistofmembersboltedtogussetplates.TheconnectionevaluationwasdoneinaccordancewiththeguidelinesoftheAmericanInstituteofSteelConstruction(AISC)andusingbasicstaticsandengineering.mechanics.Columnanchorageswereevaluatedforbasicshearand/ortensionloadswithintheguidelinesofACI349AppendixB.3.3.2.1.6LoadCombinationsandAccetanceCriteriaLoadcombinationsforsevere,extremeand,tornadoloadingswereevaluated,consistentwiththeNRCStandardReviewPlan.Thefollowingloadcombinationswereconsideredinthisevaluation:(1)D+L+Sg+W(2)D+L+S'g(3)D+L+WTwhere3.3-6REV.1312/96 GINNA/UFSARDDeadloadLiveloadSn100-yearrecurrencesnow=34psfroofloadforthepowerblock,and27psfforthescreenhouseS'n=100-yearrecurrencewind=75mphforallstructuresExtremesnow=100psfTornadowindloadsasdefinedbelow,andcorrespondingto250-mph,188-mphand132-mphtornadowindspeeds.Wt=Wwor,'t=Wpor,Wt=Ww+0.5WpWw=tornadowindloadWp=tornadodifferentialpressureloadTheseloadcombinationshavebeenbrokenintothreecategories.Loadcombination1isreferredtoassevere,loadcombination2isreferredtoasextreme,andloadcombination3isreferredtoastornado;Sinceaprobabilityofoccurrenceforalltheseloadcombinationsisconsideredtobeverylow,a1.6S(1.6multipliedbytheallowablestresslimitofthesteel)acceptance,criteriawasusedfortheinitialanalysis.Adetaileddiscussionofloads,loadcombinations,andstructuralcodecomparisonsweremadeaspartofSEPTopic111-7.B.DetailsofthemethodsandresultsofthatanalysisareprovidedinSection3.8'.1.3137REV.1312/96 GINNA/UFSAR3.3.2.2StructuralEvaluationThestructuralevaluationcombinedtheuseofGTSTRUDLwithhandcalculationsinordertoaccuratelyanalyzethestructuralcapacitiesoftheprimarymembers,secondarymembers,connectionsandanchorages,andbuildingshell.ThemainstructuralframeworkwasanalyzedusingtheGTSTRUDLcomputerprograminordertodeterminetheforcesandmomentsinthemembersforeachloadcombination.GTSTRUDLwasalsousedtocalculatethestructuraladequacyofthesecondarymembersunderthesameloadingconditionsusedintheprimarymemberevaluation,onlyonarepresentativesamplingbasis.Theendreactionsfoundintheprimarymemberevaluationswereusedtoevaluatetheconnectionsandanchoragesintheplantusingastatisticalsamplingtechnique.3.3.2.2.1PrimarMemberEvaluationTheanalysiswasperformedusingthecomputerprogramGTSTRUDL.Twothree-dimensionalstructuralcomputermodelsoftheplantweredeveloped.Onemodeladdressedonlythescreenhouse,whichisseparatefromthemainplant,whiletheothermodelconsistedoftheauxiliary,turbine,dieselgenerator,intermediate,andcontrol,andthefacadestructure.Themodelsweredevelopedbyestablishingaglobalcoordinatesystemwherebyonlythemainsteelstructuresweredescribed.Themodelsconsistofcolumns,beams,cross-bracing,rooftrusses,andotherframingcomponentsofthestructurethatcontributetothehorizontalstrengthoftheplant.Maininter'iorfloorframing,ad)acentbuildings,andsecondarycomponentshadtheirloadinfluenceinput,butwerenotdiscretelyaddressed.Concretefloorandroofslabs(ordecking)wereassumedtobeplateelementsinthehorizontalplaneandwerenotdevelopedindetail.TheplantstructuzeswerethenanalyzedfortheloadcasesdiscussedinSection3.3.2.1.6.AsoftwarefeatureoftheGTSTRUDLprogramisameansbywhichtheresultantloadscanbechangedintostressesandcheckedtotheAISCcode.Thisprocedureisdonebyassigninganumbertoeachmemberinthecomputermodelandinputtingtheirrespectiveproperties(area,sectionmodulus,radiusofgyration,etc.).Intheanalysis,eachprimarymemberwascheckedin3.3-8REV.1312/96 GINNA/UIiSARaccordancewiththeEighthEditionoftheAISCcode.Thememberswhichpassedorfailedthecodecheckwerelisted,aswellasalistingoftheloadcombinationwhichresultedintheoverstressedcondition.3.3.2.2.2SecondarMemberEvaluationSecondarymembersarethosememberswhosepurposeistotransfertheloadfromtheintermediateareasoftheroofandwallstotheprimaryframing.Thesemembersconsistofroofpurlinsandgirts.TheanalysiswasperformedusingGTSTRUDLinasimilarmannerasdoneintheprimarymembersevaluation;however,arepresentativesampleofthegirtsandpurlinswasinvestigatedinsteadofinputtingeachindividualmember.Asamplesizeof70purlinsandgirtswerecheckedwiththeAISCcode.Thisrepresentativesampleaddresses95%ofalltheroofpurlinsandgirtsintheplant.Thepercentageof-failuresdiscoveredinthisevaluationwasextrapolatedtoprovidethenumberoffailuresexpectedforthe1100actualpurlinsandgirts.3.3.2.2.3ConnectionsandAnchoraesEvaluationTheresultsoftheprimary'andsecondarymemberanalyseswereusedtochecktheadequacyofthebeamtobeam,columntobeam,columntobaseplate,'andanchorbolttobaseplateconnectors,orsimply,connectionsandanchorages.Sincetheplantcontainsapproximately6000connectionsand220anchorages,'astatisticalapproachwaschoseninthereviewoftheseelements.Astatisticalsampleof60differentconnectionswaschosenandtheirassociatedaxialand/orhorizontalloadswereappliedandanalyzed.Handcalculationsandcomputerprogramswereusedtocheckthestrengthofthebolts,welds,andclipanglesfortheappliedloads.TheresultantstresseswerecheckedwiththeallowablestressesspecifiedintheEighthEditionoftheAISCcode.Forthoseloadconditionsnotaddressedinthecode(horizontalandaxialloadsoccurringsimultaneously),engineeringmechanicswereusedtodeterminetheadequacyoftheconnections.Theresultsofthisevaluationprovidedapercentageofoverstressedconnectionswhichcouldbeexpectedata95%confidencelevel.Bymultiplyingthispercentagebytheactualnumberofconnectionsintheplant,anexpectednumberoftheconnectionsthatwouldnotsatisfytheacceptancecriteriawasdetermined.3.3-9REV.1312/96 GINNA/UFSARAstatisticalsampleof53anchoragesintheplantwasalsochosenandevaluatedusingtheirassociatedloadings.Apercentageofexpectedoverstressedanchorageswasfoundandmultipliedbythetotalnumberofanchoragesintheplanttodeterminetheexpectednumberofoverstressedanchorages.3.3.2.2.4ExteriorShellEvaluation3.3.2.2.4.1SIDING.Throughoutthereanalysisprogramitwasassumedthatthesidingwouldremainintactforallwindspeeds.Bymakingsuchanassumption,theloaddistributionwastransferredevenlyacrossallthesteelframework,thusmaximizingtheloadontheframework,whileremovingtheeffectsofthewindpressuredirectlyontheinternalwallsandequipment.Toverifythisassumption,PittsburghTestingLaboratoryperformedpressuretestsonthreetypesofsidingatGinnaStation.Thesethreetypesofsiding,asmanufacturedbyElwinG.SmithCorporation,are:a.Ribwallb.Shadowallc."B"panelsystemTheribwallpanelsystemislocatedonthemiddleportionofthefoursidesofthefacadestructurewhilethecornersofthefacadeconsistoftheshadowallpanels.Therestoftheplantiscoveredbythe"B"panelsystem.Atotalofsixtestswereperformedoneachpanelsystem.Thesixtestsconsistedofthreepositiveandthreenegativepressureloadings.Thepositivetestsrepresentedawindloadfromtheoutsideofthestructurewhilethenegativetestsrepresentedpressurefromtheinsideofthestructureorasuctionfromtheoutside.Thetestscheckedthefailureloadofthepanelsandthefasteners.Failurewasdefinedasalossoffunctionresultingfromtearingofthesidingorfailureofanyorallofthepanelconnectors.Oncethesidingpressurecapacitiesweredetermined,calculationsweredonetodeterminethecorrespondingwindspeedforvariousareasofthebuildings.3.3-10REV.1312/96 GINNA/UFSARTheresultsofthetestsarediscussedinSection3.3.2.3andareexplainedinmoredetailinthePittsburghTestingLaboratoryreporttransmittedtotheNRCbyReference3.3.3.2.2.4.2CoNGRETEMAsoNRYBLQGKNALLsTheauxiliary,intermediate,control,andturbinebuildingscontainconcretemasonryblockwalls.Theinteriorblockwalls(buildingpartitions)wereassumedtocontributeonlytheirdeadweighttothestructureintheevaluation.Nostructuralstiffnesswasconsidered.Forthepurposesofthisanalysis,theexteriorblockwallswereassumedtoremainintact,contributingonlytheirdeadload,andwereassumedtotransferthetornadowindloadsintothesteelstructure.However,nocreditforshieldingorstructuralcapacitytoresisttornadoforceswasassumedfortheblockwalls.3.3.2~2~4~3ARCHITECTURALITEMS~Architecturalitemsincludedoors,windows,andlouvers.TheseitemsarenotrequiredtomaintaintheirintegrityintheStructuralUpgradeProgram.3,3-11REV.1312/96 GINNA/VFSAR(INTENTIONALLYLEFTBLANK)3.3-12REV.1312/96 GINNA/UFSAR3.3.2.3ResultsoftheStructuralEvaluationThissectionpresentsasummaryoftheresultsoftheanalysisanddiscussesoverstressesandfailuresintermsofnumberofmembers,generalfailuremode,andfailurelocationforthevariouscomponentsofthestructures.Failuredoesnotmeancollapseofamemberoramechanismbutinsteadmeanstheinabilityofsuchacomponenttomeettherecommendedacceptancecriteria.TheresultsarepresentedbasedonthefiveloadcombinationslistedbelowascomparedtotheacceptancecriteriadiscussedinSection3.3.2.1.6.A.Severeenvironmental(D+L+Sn+W).B.Extremesnow(D+L+S'n).C.Tornadowindsof132mph(D+L+W132).D.Tornadowindsof188mph(D+L+W188).E.Tornadowindsof.250mph(D+L+W250).3.3.2.3.1PrimazMembers3.3.2:3.1.1Gcwcam,Theevaluationoftheresultsofthevariousloadingconditionsonprimarymemberswasbaseduponthenumberofcomputermembersrathezthanactualstructuralmembers.Thenumberoffailuresshownaregenerallyhigherthantheactualnumberofmemberfailures.Thisisespeciallytrueforcolumnswhereonestructuralmembermayberepresentedbyseveralcomputermembers,dependingonthelocationofthebracingandstruts.Model1(mainplantstructure)contained3500computermembersandmodel2(screenhouse)contained766computermembers(seeSection3.3.2.2.1).Inthediscussionbelow,theturbinebuildingalsoincludesthecontrolbuildingandthedieselgeneratorrooms.Table3.3-1providesasummaryoftheprimarymemberfailuresforeachbuildingaswellasadescriptionofthefailures.Thenumbersshownareaccumulativeandindicatethetotalnumberoffailuresforallloadcasesconsideredratherthananincrementalamountoffailuresforeachspecificloadcase.3.3-13REV.1312/96 GINNA/UFSAR3~3.2.3.l.2SBvcREENYIRoNMENTALCDNDITIDNs.Forsevereenvironmentalconditions,168primarymembersfailedtheacceptancecriteria.Approximately508ofallthefailureswereintheturbinebuilding.Themajorityoftherestwereaboutequallyspreadbetweentheintermediate/facadebuildingandtheauxiliarybuildingwithonlyabout5%inthescreenhouse.Forthisloadingcaseaboutonequarterofthefailuresarebeamsoverstressedinbendingfromsnowloadscombinedwithaxialwindloads.Theremainingfailuresareaboutequallyspreadbetweencolumnandbracingelements.Manyofthesefailures,particularlyforbracing,arenotduetooverstressbutduetoexcessivekl/rvaluesforcompressionmembersasallowedbycodes.3.3.2.3.1.3EKTREHESNowLQADCDNDITIoN.Onehundredandforty-onemembersfailedtheextremesnowloadcondition.Ninety-eightofthesealsofailedsevereloads,resultinginanadditional43ozatotalof211failedmembers.About50%oftheadditionalfailuresoccurredintheturbinebuildingandabout25%eachintheauxiliaryandintermediate/facadearea.Most,ofthe,additionalfailureswereroofbracingmembersandrooftrussmembers.3.3.2.3.1.4132-MPHTDRNADo.Atotalof258membersfailedtheacceptancecriteriafora132-mphtornadoincludingdifferentialpressureeffects.Onehundred.andseventyofthesemembershadfailedthesevereand/orextremeenvironmentaleffects.Anadditional88failedmemberswereduetotornadowindonly.Seventypercentoftheadditionalmemberswereintheturbinebuildingandconsistedprimarilyofczoss-bracingelementsandvariouschordmembersoftherooftrusses.Minorfailures(about15%)occurredinthebeamsandbracingofthescreenhouseat132mph.Theremaining15%weremiscellaneousadditionalmembersintheauxiliaryandintermediate/facadebuilding.Approximately36%ofthe88membersfailedwerethedirectresultofthedifferentialpressureloadings.Ofthe299membersthatfailedloadcombinations1through3,slightlymorethan548areintheturbinebuilding,about21%areintheauxiliary3,3-14REV.1312/96 GINNA/UFSARbuilding,18Kareintheintermediatebuilding/facade,and7%areinthescreenhouse.3.3.2.3.1.5188-MPHTQRNADo.Atotalof332membersfailedtheacceptancecriteriafora188mphtornado.Thisnumberincludeddifferentialpressurefailureswhichwereprojectedusingthe132mphresults.Similartothe132-mphtornado,177ofthesemembersfailedthesevereand/orextremeenvironmentaleffectsresultinginanadditional155failedmemberscausedbythe188-mphtornadoalone.Thepercentageofthe155failedmemberswasdistributedasfollows:20%forthecombinedauxiliary,intermediate,andfacadestructure;55'hfortheturbinebuildingand258forthescreenhouse.Differentiatingbetweena132-mphtornadoanda188mphtornado(67additionalmembersfailfrom132-mphto188-mph)theincreasedfailuresintheturbinebuildingwere60%bracing,40'6columns;andinthescreenhouse,75%rooftrussesand25'hbracing.The20%ofmemberfailureslocatedinallotherbuildingswerefounddistributedevenlyasbeamsandtrusses.Approximately38%ofthe155membersfailedwerethedirectresultofthedifferentialpressureloadings.Ofthe366totalmembersthatfailedthe.loadcombinations1through4,~slightlylessthan52$wereintheturbinebuilding,about18%wereintheauxiliarybuilding,18%wereintheintermediatebuilding/facade,and12%wereinthescreenhouse.3.3.2.3.1.6250-HPHTQRNADo.AAtotalof658primarymembersfailedtheacceptancecriteria,includingdifferentialpressurefailures,forthe250-mphtornado.Asinthetwoprevioustornadowindconditions,178ofthesemembersfailedthesevereand/orextremeenvironmentaleffects.Thus,forthe250-mphtornadowind,480failureswereduetotornadowindalone.Ofthese480failures,325failuresoccurredasaresultofthe250-mphtornadoloadingoverandabovethosefoundduetothe188-mphtornadoresults.Ofthe325additionalfailures,22Kwereintheturbinebuilding,38%inthescreenhouse,16%inthefacadestructure,15%intheauxiliary,and8%intheintermediatebuilding.Themajorityoffailureswerebracingmembers,3283.3-15REV.1312/96 GINNA/UFSARofthe325,with28%ofthetotalbeingcolumns.Thescreenhouserooftrusssystemcontributed25'hofthetotalbyitselfandtheremaining15%werecomposedofbeamsandothertrussmembers.Approximately21%ofthe480membersfailedwerethedirectresultofthedifferentialpressureloadings.Ofthe691totalmembersthatfailedtheloadcombinations1through5,38%wereintheturbinebuilding,17%wereintheauxiliazybuilding,about218wereintheintermediatebuilding/facade,and24'bwereinthescreenhouse.Atabularbreakdownbybuildingandmembertypeforfailurescausedbyloadcombinations1through5isshowninTable3.3-1.3.3.2.3.2SecondarMembersFortheextremesnowloadof100psf,afew(21)isolatedroofpurlinsbecameoverstressed.Ata132-mphtornadoloading,approximately60%ofthetotalgirtsandpurlinsdidnotmeettheacceptancecriteria,Thesememberswerenotconsideredtodetachthemselvesfromthemainframebutexperiencedhighstresslevelsandpossiblepermanentdeformations.Theproblemsexperiencedbythesemembersareduetotornadoloadsthatcreatesuctioneffects,andloadsduetothedifferent'ialpressure,Fortheseloadconditions,thebendingstressallowablesarelowbecauseofthelargeunbracedlengthofthecompressionflange.Whensubjectedtoa188-mphtornado,77%ofallsecondarymembersexperiencedoverload.Ata250-mphtornadoloading,94%ofthesecondarymembersareoverloadedandtheywouldfailbybendingorbyfailureoftheirconnectionstothemainframe.3.3.2.3.3ConnectionsandAnchoraesAsdescribedinSection3.3.2.2,theconnectionsandanchorageswerestatisticallysampledandthenevaluatedfozthevariousloadcombinations.Theresultsfortheconnectionanalysisshowedthat11%to13%oftheconnectionsfailedtheacceptancecriteriaforthesevereenvironmental,3.3-16REV.1312/96 GINNA/UFSARextremesnow,andthe132-mphtornadoloadingconditions.As.thetornadowindspeedsincreasedthetotalpercentagesoffailedconnectionswentto23%forthe188-mphandto39'hforthe250-mphtornadoloadings.Noanchoragesfailedundertheextremesnowloadingbasedonthedownwardloadingdirection.Foranchoragesunderthesevezeenvironmentalloadingandthe132-mphtornadoloading,,18$failedinoneofthethreeconditionscheckedforanchoragecapacity:anchorbolts,weldstobaseplates,orconcretecapacity.Thisnumberincreasedto50%and75Kfortheincreasedtornadoloadingsof188mphand250mph,respectively.3.3.2.3.4ExteriorShell3.3.2.3.4.1METALSZDLNG.Theresultsofthesidingtestsdeterminedtheultimatefailureloadings.TheseresultswerethencorrelatedtolocationsonthevariousbuildingsatGinnaStation.Itwasdeterminedthatwithminormodificationsalltheexteriorsidingwouldperformitsfunctionundera'32-mphtornadoloading.Asthetornadoloadingincreasedto188mphallofthescreenhousesidingfailed,28%ofthetotalsidingintheauxiliarybuildingandtheintermediatebuildingfailed,23%oftheturbinebuildingsidingfailed,andapproximately50'hoffacade.sidingfailed.Whenthe250-mphtornadoloadingresultswerecalculated,100%ofthesidingfailed.3.3.2.3.4.2Roof'EGKING.Theroofdeckingisacceptablefortheextremesnowconditionexceptforafewisolatedspans.Fora132-mphtornadothetheoreticalcalculationsshowthattheroofdeckingitself,iscapableofsupportingloadsassociatedwiththistornado.However,thedeckingtopurlinconnectionmightnotbeabletoresisttheupliftloads.Asthetornadowindspeedsareincreasedto188mphand250mphtheportionsofroofdeckingpredictedtofailare41%and100%,respectively.3.3.2.3'.3BLOCKWALLS.Itwasassumedthatexteriorblockwallscouldnotmeetthestructuralrequirementofthestructuralupgradeprogram.3.3-17REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBL2~)3.3-18REV.1312/96 GINNA/VIiSAR3.3.3TORNADOMISSILESANDSAFESHUTDOWNAPPROACH3,3'.1BackgroundIntheNRCApril16,1982,SafetyEvaluationReport,relativetoSEPTopicIII-4.A(Reference4),itwasdeterminedthatthemajorityofplantstructures,systems,andcomponentsrequiredtoensuretheintegrityofthereactorcoolantpressureboundary;thecapabilitytoshutdownthereactorandmaintainitinasafeshutdowncondition;andthecapabilitytopreventaccidentswhichcouldresultinunacceptableoffsiteexposuresweresuitablyprotectedfrompostulatedtornado-generatedmissiles.Severalitemswereidentified,however,whichrequiredadditionalevaluationwithrespecttotornadomissileprotection.Anevaluationoftheseissues,asidentifiedintheGinnaIntegratedPlantSafetyAssessmentReport,NUREG0821,May1982(draft)andDecember1982(final),aswellasanumberofotheritemsidentifiedduringtheRG&Esubsequentreviews,areprovidedinSection3.3.3.3.ThetwomissilesrequiredintheSafetyEvaluationReport(Ref'erence4)tobeevaluatedwereasteelrod,1-in.diameterand3-ftlong,weighing8lb,andawoodenutilitypole,13.5-in.diameterand35-ftlong,weighing1490lb.Thevelocityofthesteelrodwasassumedtobe60%ofthetornadowindspeed;thevelocityofthewoodenutilitypole,40%.3.3.3.2ShutdownMethodologyRochesterGasandElectrichasdevelopedmethodstoachieveandmaintainsafeshutdownconditionsfollowingthepostulatedtornadostrike.Certainassumptionsofplantstatusandsystemunavailabilityweremade.3.3.3.2.1AssumtionsA.Offsiteacpowerislost.B.AllequipmentnotprotectedfromtornadoeffectsisconsideredinoperableunlessexplainedotherwiseinSection3.3.3.3.Also,ifprotectionisnotspecificallyprovided,itisassumedthatinadvertentoperationduetogroundorphasefaultscouldoccur.3.3-19REV.1312/96 GINNA/UFSARC.Architecturaldetails,suchasthebuildingshellcomponentsandsecondarymembers,azenotconsideredcapableofwithstandingtornadowindspeeds;however,thefailuremodeoftheseitemsissuchthattheywillnotbecomedamagingmissiles.3.3.3.2.2ShutdownDetailsOnetrainofsafeguardsequipment,whichwillservetoprovideandmaintainsafeMODE3(HotShutdown),willbeprotected.Duetothenatureandmethodologyoftheshutdownsystemsbeingprotected,MODE5(ColdShutdown)canalsobeachieved.Thesafeshutdownfunctionwillbeperformedasfollows:A.Thereactorwillautomaticallytripasaresultofthelossoftheunprotected4-kVbusesorothertripsignal.B.Theturbinewouldtrip,withresultantclosureoftheturbinestopvalves.Theoperatorwouldalsoclosethemainsteamisolationvalvesfromthecontrolroom,iftheydidnotautomaticallyclose.C.Thedieselgeneratorswouldautomati;callystartandpickuptherequiredloads'orpurposesofthisshutdownmethod,itisassumedthatdieselgenerator1Bwillbetornadoprotected.Thiswouldallowoperationofallsafeguazdsequipment,associatedwithbus16(trainB).Sinceservicewater(SW)isnotprotected,thedieselmightnothavethissourceofcoolingwater.Modificationshavebeenmadetothedieselcoolingsystemtopermitalternatewatersuppliestobeused.SeveralsourcesofwateraslistedinSection3.3.3.3canprovidethiscoolingwater.DEThestandbyauxiliaryfeedwatersystemwouldprovidecoolingtothesteamgenerator(s).Byusingoneofthemainsteamsafetyvalvesforventingtotheatmosphere,asafeMODE3(HotShutdown)conditionwouldbeestablished.A10,000-galloncondensatetesttankisavailableinthestandbyauxiliaryfeedwaterbuildingwhichisusedforstandbyauxiliaryfeedwaterpump(SAFW)testing.Thetanknormallyismaintainednearlyfullofwater.Followinguseofthecontentsofthat"tank,additionalauxiliaryfeedwatercouldbeprovidedfromtheyardfireloop.E.Chargingflowforinventorymakeupofprimarycoolantwouldbeavailableviathechargingsystem.Thisfunctionispresentlytornadoprotected.3.3-20REV.1312/96 GINNA/UFSARF.Inordertocooldown,useoftheatmosphericdumpvalvesonthemainsteamheaderwouldberequired.Iftheairorthebackupnitrogensystemsthatcontrolthesevalvescouldnotbemadeoperablebecausetheyarenottornadoprotected,thesevalvescouldbelocallycontrolled.G.ToeffectfinalMODE5(ColdShutdown),thesteamgeneratorswouldbeusedaswater-to-waterheatexchangers.Usingestablishedprocedures,theoperatorswouldfillupthesteamgeneratorsand,inanorderlymanner,achieveaMODE5(ColdShutdown)conditiontolessthan200'F.Itiscontemplatedthatthiscooldownwouldoccuroverseveraldays.3.3-21REV.1312/96 GINNAIUFSAR3.3.3.3RequiredComponentsThestructures,systems,andcomponentsrequiredtobetornado-missileprotectedarethoserequiredtoachieveandmaintainsafeshutdownconditions.Othersystemsconsideredforprotectionincludethesurfaceofthespentfuelpool(SFP),sothatmissilesandotherlargeitemswouldnotcauseunacceptabledamagetothefuelassemblies;thereactorcoolantpressureboundaryandmainsteamandfeedwaterlines,topreventmajorprimaryandsecondarysystembreaks;anditemswhosefailurecouldcauseunacceptableinadvertentoperationorfailureofsafety-relatedequipment.TheRG&Eproposedresolution.oftheseitemsisasfollows:3.3.3.3.1RefuelinWaterStoraeTank(RWST)Ananalysisofmissileeffects(utilitypoleandsteelrod)andwindpressureeffectsduetoa188-mph'tornado,wasperformedfortherefuelingwaterstoragetank(RWST).Itwasdeterminedthataminimumsafetyfactorforanyoftheseloadcombinationsis1.18.Fortherefuelingwaterstoragetank(RWST)perforationanalysis,theperforationformulacontainedinEPRIreportNP-769,whichaccountsfortheenergyabsorptionduetodeformationoftherelativelysoftutilitypolemissile,wasused.Forthesteelrod,theOhteFormulafromtheStrengthofSteelPlatesSubjectedtoMissileImpactwasused(ReZerence5).3.3.3.3.2ElectricalBuses14,17,and18Bus14islocatedontheoperatingflooroftheauxiliarybuildingandcouldbesubjecttodamagefromtornadomissiles.However,safety-relatedbus16,locatedontheintermediateleveloftheauxiliarybuilding,isprotectedfromtornadomissiles,andwouldbeavailableintheeventofatornado.Buses17and18arelocatedinthescreenhouse.Theoperatingfloorofthescreenhouseisnotprotectedfromtheeffectsoftornadoesincludingmissiles.However,RG&Ehasmademodificationswhichwilleliminatedependenceontheservicewater(SW)systemtoachieveandmaintainsafeplantshutdown.Thus,noprotectionforbuses17and18isrequired.3.3-22REV.1312/96 GINNA/UFSARRochesterGasandElectrichasalsoinvestigatedthepotentialfordamagetobuses17and18causingfailureofrequiredelectricalequipment,suchasadieselgenerator.Inordertoeliminatethepotentialdamagefromfaultcurrents,RG&Einstalledanewfeederbreakerbetweendieselgenerator1Bandbus17locatedindieselgeneratorzoom1B.3.3.3.3.3MainSteamLinesAandB,andMainFeedwaterLinesAandBAnanalysisoftheeffectsofthetornadomissilesonthesteamlines,feedwaterlines,supports,andattachedpipingandvalvesatboth132mphand188mphhasbeencompleted.3.3.3.3.3.1REsULTs-STEELRoo.Themainsteamline,mainfeedwaterline,aswellasattachedpipingandvalves,areallthick-walleditemsandwouldnotbeperforatedbythesteelrodimpact.Damagetovalveoperatorscouldpreventsubsequentoperation;however,nolossofpressureintegritywouldresult.Thus,secondarysystemintegritywouldbemaintained.Theeffectofdamagetopipingsupportswasalsoinvestigated.Itwasdetermined.thatdamagecouldoccurcausingpossiblelossofsupport.However,damagetoonesupportmemberwouldnotresultinalossofoverallsupporttothepipingsystem.Thus,themainsteamandfeedwaterlineswouldnotbeexpectedtolosesupportfunctiontothepointoffailure.Inordertomaintainsafeshutdown,decayheatremovalviaonesafetyozreliefvalvewouldberequired.Althoughnoguaranteeisavailablethatthesafetyorreliefvalveswouldbeoperablefollowingasteelrodstrike,RG&Edoesnotbelieveitwouldbecredibletopostulatesimultaneousfailureofall10safetyandreliefvalves.Thus,RG&Eisconfidentthatdecayheatremovalcapabilityviaonesafetyorreliefvalvewouldexistfollowingatornado.3.3.3.3.3.2REsULTs-UTILITYPQLE.Basedontheresultsoftheanalysisforthe188-mphtornado,theGinnaStationmainsteamlinesandmainfeedwaterlineswillnotbeperforatedbytheutilitypole.3.3-23REV.1312/96 GINNA/UFSARTheresultsconfirmedbothpipingsystemswillwithstandtheeffectsoftornadowindandmissileloadscombinedwithnormaloperatingloadswithintheacceptancecriteriaofServiceLevelDofASMENC3600for.Class2piping.Inperformingthisanalysis,itwasconservativelyassumedthatsnubberrestraintswereineffectiveinresistingthetornadowind.Itwasalsoconservativelyassumedthatanysnubberrestraintimpactedbytheutilitypolemissilewouldfail.Itwasdeterminedthattherewouldbesomepermanent,butnotunacceptable,deformationofbothpipingsystemsifimpactedbytheutilitypolemissile.3.3.3.3.3.3FAILUREoFBLocKWALLs.RG&Ehasalsocommittedtoevaluatethepossibledamagingeffectsonthesteamandfeedwaterlines,duetofailureofblockwalls.Theblockwallsarelocatedattheentirelevelintheintermediatebuildingwherethesteamandfeedwaterlinesarelocated.Basedonthetornadomissileevaluation,RG&Edeterminedthatlocalprotectionforthemainsteamisolationvalveoperatorsandsolenoidvalvesandthepreferredauxiliaryfeedwatersystemcheckvalveswererequired.Protectivestructureswereinstalledtoprotectthesecomponents(seeSection3.8.4.5.8),andthemainsteamisolationvalvecontrolcableswerereroutedsoasnottobesusceptibletodamagefromfailedwalls.~3.3.3.3.4SurfaceoftheSentFuelPoolAnanalysishasbeenperformedforRG&EbyPickard,Lowe,andGarrick,Inc.,entitled"CriticalityAnalysisfortheSpentFuelStorageRacks."Ithasbeencalculatedthat,eveniftheutilitypolecauseddisplacementofafuelEstoragebox,suchthatseveralfuelstorageboxeswereadjacent,aK,gofsignificantlylessthan0.8894wouldresult,withboratedwaterof2000ppminthepool(suchisthecase).RochesterGasandElectrichasalsoperformedananalysistodeterminetheeffectsofautilitypolemissileonthespentfuelassemblies.AsprovidedintheRG&EproposedamendmenttotheGinnaTechnicalSpecificationssubmittedbyletterdatedJanuary18,1984(Reference6),ithasbeendeterminedthattheworstcaseutilitypolestrikewouldnotresultinoffsiteradiologicalconsequencesgreaterthantheguidelineexposuresof10CFRPart100.3.3-24REV.1312/96 GINNA/UIiSARRochesterGasandElectrichasmodifiedtheblockwallonthenorthsideofthespentfuelpool(SFP)topreventdamagetothespentfuelduetofailureoftheblockwall.Calculationsindicatethatfailureoftheotherblockwallinthevicinityofthespentfuelpool(SFP)(westside)wouldnotadverselyeffecttheintegrityofthefuelsuchthatoffsiteradiologicalconsequenceswouldexceed10CFR100guidelines.DetailedcalculationswerecompletedaspartoftheStructuralUpgradeProgram.3.3.3.3.5DieselGeneratorsandTheirFuelSu1RochesterGasandElectricdeterminedthatadditionalprotectionwasrequiredforthedoorsandroofofadieselgeneratorroom.Basedonthatanalysis,thedieselgeneratorbuildingwasmodifiedtowithstandseismicandextremesnowloadsandtoprotectthebuildingfromexternalfloodingandtornadowindsandmissiles.Themodificationsincludedconstructionofanewnorthfacemissilewallandanewroofstructure.Thenorthfacemissilewallincludedpressurized,missile-resistant,andwatertightequipmentandpersonneldoorsandisconstructedofreinforcedconcrete4ftnorthoftheexistingnorthwallofthedieselgeneratorbuilding.Theexistingeastandwestwallswereextendedinreinforcedconcretetomeetthenewnorthwall.Thenewreinforced-concreteslabroofcoverstheentirebuildingincludingthenewnorthfacemissilewall.Theexistingnorthwallandportionsoftheroofwereleft'inplace.Thedieselgeneratorbuildingwasmodifiedtobecapableofwithstandingwindpressure,differentialpressure,andmissileloadsassociatedwitha132-mphtornadoandtoremainstableatawindspeedof188mph."Capableofwithstanding"meanswithnosignificantdamageand"remainstable"meansthatthebuildingwillremainfunctional.3.3.3.3.6RelaRoom,tTheeastwalloftherelayroomislightgaugemetalsiding.Sincetheroomcontainsvitalsafety-relatedequipment,RG&Ecommittedtoprovideprotectionofthiszoomfromtornadowindsandmissiles,extremesnow,anddesign-basisflooding.Thisprotectionhasbeenaccomplished'bybuildingareinforced-concretestructureontheeastendoftherelayroom.Thisstructureisanenclosed3.3-25REV.1312/96 GINNA/UFSARspaceadjoiningtheeastwalloftherelayroomthatisapproximately14ftwideby40ftlong,extendsfromgradeuptothecontrolroomfloor,andisenclosedbyaconcreteroofslab.Thisstructurehasbeendesignedfortheaboveloadsandtheoperating-basisearthquakeandsafeshutdownearthquake.3.3.3.3.7ServiceWaterSstemRochesterGasandElectrichasperformedanevaluationofalternativeshutdownmethods,whichdonotrequireuseoftheservicewater(SW)system,toachieveandmaintainsafeshutdown.Themethodsincludeuseoffirehoseconnectionstothedieselgeneratorandstandbyauxiliaryfeedwatersystemfromtheyardloop,onsiteportablepumps,'orafiretruckpumperwhichcouldbecalledontothesite.Thus,RG&Edoesnotintendtoprovidetornadoprotectionfortheservicewater(SW)system.3.3.3.3.8StandbAuxiliarFeedwaterSstemAlthoughthestandbyauxiliaryfeedwatersystemisprotectedbythestandbyauxiliaryfeedwaterbuilding,thedischargepipingis,routedthroughtheauxiliarybuilding.AllofthedischargepipingfortheCpumpislocatedontheintermediateleveloftheauxiliarybuilding,andthusprotectedfromtornadomissiles,exceptforasmallelbowsection.Thissmallsectionofpipingisprotectedbyconcretewallsonthesouthandeastsidesandbythereactormakeupwatertankonthenorthandwest.TheCpumpandvalvesazeassociatedwiththepower'upplyanddistributionequipment(bus'14)thatarenottornado-protected.Theportionofthedischargepipingfort;heDpumpthatislocatedintheauxiliarybuildingoperatinglevelisnottornado-protected.Powersupplyanddistributionequipment(bus16)fortheDpumpandvalvesareprotected.Necessarychangesweremadetothestandbyauxiliaryfeedwatersystemtoprovideprotectionagainsttornadomissiles.SystemisolationwasprovidedfozapostulatedbreakintheDpumpdischargepiping,sothatthesteamgeneratorAcanbefedviathestandbyauxiliaryfeedwatercross-connectpiping.Amotor-operatedvalve(MOV-9746)wasaddedtothedischargelineofDpumpdownstreamofvalve9701Bandthecrosstiecontainingvalves9702CandD.ThisprovidesameansofisolatingtheunprotectedsectionoftheDpumpdischargeheaderintheauxiliarybuildingsothattheDpumpcanfeedtrainCthroughtheexistingcrosstie.Useoftheprotectedbus16powersupplyfor3.3-26REV.1312/96 GINNA/UFSARtheDpumpandactivecomponentscanbeutilizedintheeventofdamagetobus14.SeeSection3.3.3.3.2.Thealternativewatersupplyfromtheyardfirehydrantlooptothestandbyauxiliaryfeedwatersystemisprotectedfromtornadoandmissiledamage.Thelinefromthefirelooprunsundergroundandterminatesinthestandbyauxiliaryfeedwaterbuildingatafirehoseconnection.Thealternativewatersupplycanbeusedbyconnectinganavailablelengthoffirehosebetweenthefirehoseconnectionandtheconnectionpointinthestandbyauxiliaryfeedwatersystem(seeSection10.5.2.3)3.3.3.3.9InstrumentationRochesterGasandElectricanticipatesthatsomeprimaryandsecondaryinstrumentationmayrequirereroutingfromunprotectedareasintheintermediatebuildingtotheintermediateflooroftheauxiliarybuilding.Sufficientinstrumentationwillbeprovidedfortheoperatortomonitorsafeshutdownconditions.3.3.3.3.10CableTunnelAnoeninexistsbetweepgnthecabletunnelandtheoperatingleveloftheintermediatebuilding.Thisopening,whichis7ftx7ft,begins6ft~abovefloorlevel,andextendstojustbelowtheceiling.Theopeningisshieldedfromtornadomissilesonthesouth,east,andwestdirectionsbyvirtue'fbeingbelowgrade.Fromthenorth,majorequipmentintheturbinebuilding,suchasthecondenser,willblockvirtuallyanymissile.Basedonthesizeofthecabletunnelopening,andtheshieldingnowinplace,RG&Edoesnotbelieveanyadditionalprotectioniswarranted.3.3-27REV.1312/96 GINNANFSAR(INTENTIONALLYLEFTBLANK)3,3-28REV.1312/96 GINNA/UFSAR3.3'DESIGNTORNADO3.3.4.1IntroductionBasedontheanalyses,RG&Eattemptedtodeteiminewhatleveloftornadoprotectionshouldbeconsideredtobeappropriateforuseasadesign-basistornadofortheGinnafacility.Thedesignwindspeedwaschosen,consideringmanyfactors,includingthecostofprovidingprotectionforincreasinglyseveretornadowindspeedsandmissileeffects,andthepotentialsafetybenefitderivedfromtheincreasingcapacities.Thecostofmodificationsincreasessubstantiallyasthetornadowindspeedisincreasedfromapzobabilitylevelof10to10to10.Thisisnotunexpected,sincetheforcesincreaseasthesquareofthewindspeed.RochesterGasandElectrichasalsoattemptedtoconsidertheaddedsafetybenefitwhichwouldbederivedbydesigningprotectiontoincreasinglyseverewindspeeds.Someadditionalsafetybenefitwouldexistasspecificprotectionmeasureswereincreased;however,becauseofthesubstantialsafetyprotectionavailableforthemostimportantplantstructuresandsystems,suchasthecontainment,controlcomplex,andpreferredauxiliaryfeedwater,theincrementalsafetybenefit,althoughnotquantified,isexpectedtoincreaseonlyslightlywithprotectionforincreasingwindspeeds.Thisisespeciallytruewhenconsideringtheadditionalmaterialscapacityavailableintheplantstructuresnotaccountedforintheanalysis,thelackofcredittakenfozsafetysystemseparation,andinherentwindandmissiledamageresistance.Basedonthefollowingjustifications,expectedmodificationcosts,andthesafetylevelprovidedbythemodificationstobeimplemented,RG&Erecommendedthatprotectionbeprovidedforatornadoof10(132mph)(Reference3).3.3.4.2SafetyAssessmentRochesterGasandElectricbelievesthatthesafetyaffordedbyprotectiontoawindspeedassociatedwithaprobabilityof10peryearisadequate,Thepzobabilitylevelselectedisconsideredcongruentwiththeprotectionlevelsassociatedwithotherseverenaturalphenomena,suchasearthquakesand3.3-29REV.1312/96 GINNA/UIiSARflooding,andwithpostulatedevents,suchaspipebreaks.ThislevelofprotectionisalsocompatiblewiththedraftNRCsecondarysafetygoalofaprobabilityof10peryearofcoremelt.RochesterGasandElectricbelievesthatthetornadoriskwillbeonlyasmallfractionofthetotalcoremeltrisk.Itisimportanttonotethatthereisconservatismeveninthe10valueselectedasthebackfittingdesignbasisfortornadoprotectionatGinna.First,the10windspeedisassociatedwiththeupper958confidencelevel,ratherthanthemedian.Atamedianlevel,theselectedwindspeedwouldhaveaprobabilityontheorderof10peryear.Secondly,manyofthestructures,systems,andcomponentsrequiredforsafeshutdown,suchasthecontainment,controlbuilding,andpreferredauxiliaryfeedwatersystem,willwithstandwindspeedssignificantlyhigherthanthoseassociatedwiththe10level.Finally,themethodofanalysistodeterminecurrentprotection,andanysubsequentmodifications,isconservative.Tornadoesarepostulatedtostriketheplantfromalldirections,andthusnocreditforshadowing,orphysicalseparation,isclaimed.Tornadoesarepostulatedtostrikewithequalintensitythroughouttheplant,thusseeminglyaffectingallstructures,systems,andcomponentswithequalintensityconcurrently..Actually,.only.afractionoftheplantwouldseethemostintensecharacteristicsofthetornado,andresidualstrengthisexpectedintheGinnastructuralandequipmentelementsbeyondthatassumedintheanalysis.TheseconservatismsaredescribedinmoredetailinSection3.3.3;2.RochesterGasandElectrichasdeterminedthatbackfittingtoatornadolevelassociatedwitha10tornadowindspeed,attheupper958confidencelevel,willprovideasignificantlevelofplantprotection.FurtherconservatismsinherentintheselectionoftornadocharacteristicsandtheanalysisprocessprovideconfidencethattheriskassociatedwithatornadostrikeofthismagnitudewouldbeonlyasmallfractionoftheoverallriskassociatedwiththeoperationofGinnaStation.3.3.4.3ReservePlantCapacityAnexaminationoftheresultsofthestandardevaluationwasmadeinordertoestablishanapproximatevalueofthereservecapacityoftheplantframingaftercompletionofthestructuralupgrade.3.3-30REV.1312/96 GINNA/UIiSARA.Theoreticalphysicalpropertiesofthematerialsthatexistinthestructureandthosethatareusedforanalysisazetypicallylowerthantheactualvalues.Forexample,A36steelhasaminimumyieldstrengthof36ksibuttypicallytheactualyieldvaluesarehigher.B.Thestructuralupgradewouldbedonetoensurethattherearenoactualfailuresintheprimarystructuralframing.Thismeansthatthebuildingsgenerallywouldbeupgradedbasedonelasticbehavior,i.e.,strainsbelowtheyieldstress.Inrealitysteelstructuresarecapableofabsorbingalargeamountofenergyabovetheyieldstrainofthematerial.Formildsteel,theratioofstrainatrupturetostrainatfirstyieldisasmuchas100timestheyieldstrainvalue.Thisductilityfeatureofsteelimpliesthatgrossandsuddenfailureswillnotoccuratdesignlevelsalthoughpermanentdeformationsmayresult.C.Theapplicationofloadsforanalysispurposesisconservative.Theliveloadsusedintheanalysisarethosethataredefinedfordesignconsiderations.Inreality,thefullliveloadonallfloorswillnotoccursimultaneously.However,fortheanalysisandevaluation,thefullliveloadswereapplied.Theseloadsareverticalandcontributetothetotalstateofstressinthebeamsandcolumns.D.Theevaluationexaminedtheplantfortornadowindsappliedinfourdirections(north,east,south,andwest).Thenumberofoverstressedmemberswhichwerefoundasaresultofthe132-mphwindspeedisthetotalofallfailuresfoundinallfourdirections.Therecommendedupgradewillmodifyalltheseprimarymembersregardlessofthewinddirection.Theactualoccurrenceofatornadowouldaffecttheplantfromonlyonedirection.Therefore,theupgradedplantwillhaveinherentconservatismbecausetheactualnumberofmembersexperiencinghighloadsforasingledirectiontornadowillbelessthanthetotalnumberthatwillbeupgraded.E.Theanalysesthatwereperformedassumethatthebuildingresponseiscompletelyelastic.Inmoststeelstructures,localplasticdeformationswilloccurinconjunctionwiththeelasticresponseofthemainframesystem.ForboltedsteelstructuressuchasthoseatGinnaStation,somedegreeofslippingwilloccurintheconnectionswhentheyareloadedwiththeseextremeloads.Thecombinationoflocaldeformationsandslippingintheconnectionswillabsorbsomeofthetotalloadthatisappliedtothestructureandlessenthetotalstressespredictedbytheelasticanalysis.3.3-31REV.1312/96 GINNA/UISARF.Theresultsoftheevaluationhaveshownthatofall.thetornadowindspeedcomponents,thedifferentialpressurehadthemostsignificantimpactonthesecondarymembersandexteriorshell.Atthedesigntornadowindspeedof132mph,certainareasoftheplantsidingandsecondarymembersexperiencelargedeflectionsandminorfailures,primarilyalongtheedgesandcornersoftheroof.RochesterGasandElectrichasproposedtoallowthesecondarymembersandsidingtofail,sincetheywillhavenoconsequenceontheoverallplantintegrity.However,thefailuresoftheseareasoftheexteriorshellwilltendtorelievethedifferentialpressureby'providingadditionalventingofthestructurealongwiththeexistingventareainallthebuildings.Theventareawillreduce,ifnoteliminate,theloadscreatedbythedifferentialpressure.Theresultwillbeanimmediatestressreliefforalltheplantstructures.3.3.4.4SystemReserveCapacityInadditiontothestructuralreservecapacityexpectedtobeavailable,duetomaterialspecificationsandanalyticalmethods,substantialconservatismswereincorporatedintothesafetysystemanalysisassumptions.Intermsoftornadowindandmissileprotection,RG&Ehasassumedthat,unlessspecificallyanalyzedforordenotedotherwise,failureofanunprotectedsystemorstructurewouldoccur.Generally,nocredithasbeentakenfortheprotectioninherentintheequipmentitselftoresisttornadowinds.Infact,themajorityofitemswouldnotexperiencethepeakwindcharacteristicsofthedesign-basistornado.Thus,realistically,separationofcomponentsandtheequipmentcapabilitywouldlessenthenumberoffailures.Fortornadomissiles,RG&Ehasassumedthatallequipmentnottornado-missileprotectedcouldbedamaged.Actually,forthedesign-basiswindspeedsexpected,onlythelightestobjectswouldbecapableofexperiencingtheaerodynamicforcestoactuallybecomemissiles.Theselighterobjectswouldnotbeexpectedtocausesubstantialdamage.Also,shadowingofcomponentswouldbeexpectedtobehighlyeffectiveinamelioratingmissiledamage.Further,fortornadomissiles,itisassumedthatthereisanequalprobabilityofdamagetoallunprotectedequipment.Onaprobabilisticbasis,thiswouldnotbeexpectedtooccur.Theprobabilityofatornadomissilestrikingsmallobjectswouldbeexpectedtobesignificantlylowerthantheprobabilityofthetornadoitself,whichisalreadyconsidereda10to103.3-32REV.1312/96 GINNA/UI'SARper.yearevent.Therefore,onarealisticbasis,.additionalsafetymargins~~existfortornadomissileprotection.3I333REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.3-34REV.1312/96 GINNA/IJFSAR3.3.5STRUCTURALUPGRADEPROGRAM3.3.5.1IntroductionThegeneralapproachproposedbyRG&Ewasfoundacceptable,asnotedintheNRCSERofAugust22,1983(Reference7),withcertainoutstandingitemsyettoberesolved.Also,concurrencewiththegeneralapproach,designinputsandevaluationcriteriawasissuedasaresultoftherecommendationsof.theAdvisoryCommitteeforReactorSafeguazds(ACRS)inanApril9,1984,lettertotheHonorableNunzioJ.Palladino,ChairmanoftheUSNRC(Reference8).Certaintechnicalissueswereresolvedandcertainchangesmadeininputassumptions,acceptancecriteria,andanalyticalmethodologyinthefollowingareas:A.Changesweremadetothecriteriaasdeemedappropriateduringthecourseofthemore,detailedengineeringanalysisconductedfortheRG&Erecommendeddesigntornado.B.ThecriteriaandjudgmentsthatwereusedtoassessthecapabilityoftheupgradedstructuretoremainstableattornadospeedsabovetheRG&Erecommendedtoznado(up.toapproximately200mph).C.Open,itemsdiscussedintheTechnicalEvaluationReportdatedAugust2,1983(Reference9).D.OutstandingissuesrelatedtoSEPTopic111-7.B.EDACRSconcernondieselgeneratoroperabilityduetodifferentialpressureeffects.Theaboveitemsazediscussedinmoredetailinthefollowingsections.3.3.5.2CriteriaChangesAdditionalreviewsoftheresultsoftheinitialevaluationswereperformed.Thepurposeoftheseadditionalreviewswastoprovideamoreexactestimateofthe,typeandlocationoftheoverstressedcomponents.Atwo-stageapproachwasusedforthesereviewstobetterpredicttheactualcomponentsrequiringmodificationsandtheextentofoverstress.3,3-35REV.1312/96 GINNA/UFSAR3.3.5.2.1FirstStaeReviewThefirstapproachwastoprovideamoredetailedengineeringreviewoftheresultsoftheinitialanalysis.Primarymemberswerereviewedonanindividualbasistodetermineifthecomputer-predictedstressesfortheoverstressedmemberswerecorrectorifthesememberscouldbeshowntobeacceptableusingamoredetailedengineeringanalysis.Connectionsandanchorageswerereviewedforthepurposeofdefiningspecificallywheretheoverstressesoccurred.Thenumberofoverstressedconnectionsandanchoragesinitiallyreportedwerebasedonstatisticalsampleswhichwerefound,basedonthisreevaluation,tobeoverlyconservative.Thefollowinglistsummarizesthebasesusedinthefirstapproachtoreducethequantitiesofoverstressedcomponents:A.Thescreenhousewasdeletedfromthescopesincethisstructureisnotrequired,toachieveplantshutdown.B.Thecomputermodelwasreviewedforcompatibilitywiththeactualstructuresincethecomputermodeltendedtoidealizetheactualstzucture(bytheuseofsimplifyingconservativeassumptions).C.Theturbinebuildingoperatingfloormaintenanceliveloadwasreducedfrom1000psfto100.psfsincethelargerloadisonlypresentduzingturbine/generatormaintenancewhentheplantis'lreadyintheshutdownmode.D.Thememberswithexcessivekl/rratioswereevaluatedtodeterminetheactualloadcarryingcapabilityofthemembers.E.Modificationsforthosememberswhosefailurewouldnotdamagerequiredsafetyequipmentweredeleted.F.Individualozgroupsofactualanchorageswereevaluatedinsteadofusingastatisticalprojection.G.Individualoxgroupsofactualconnectionswereevaluatedinsteadofusingastatisticalpxojection.3.3.5.2.2SecondStaeReviewThesecondapproachmodifiedtheoriginalevaluationcriteria.Anycomponentsfoundoverstressedafterthefirstevaluationwerereevaluatedconsideringthreecriteriachanges.3.3-36REV.1312/96 GINNA/UFSARA.Liveloadreductions.Thecriteriaforallfloors,otherthantheturbinebuildingoperatingfloor,reducedthe1'iveloadsto25%oftheloadsshownontheconstructiondrawings.Thiscriteriachangeisconsistentwithliveloadreductionsusedfozotherextremeloadingconditionsandalsoisconsistentwithcurrentindustrypractice.B.Increasedyieldstress.Theoriginalevaluationcriteriaspecifiedthattheminimumspecifiedyieldstress(FY)ofthesteelbeused.ThestructuralsteelspecificationsfortheGinnaplantrequiretheuseofA36steel(Fq=36ksi).Thiscriteriachangewilltakeadvantageofnormallyhigheryieldstressesinthesteel,andalsoaccountfortheplasticversuselasticshapefactors.Thenewcriteriaappliedafactorof1.2toFy.C.Reductionoreliminationoftornadodifferentialpressure.Theoriginalevaluationcriteriaspecifiedatornado-induceddifferentialpressureof0.4psi.Thisdifferentialpressurewouldexistonlyforacompletelysealedstructure.Thepreviousevaluation.tooknocreditforexistingopenings(doors,windows,heating,ventilating,andairconditioningvents,etc.)whichwouldprovideventingofthebuildingsandtherebyreduceoreliminatetheeffectivedifferentialpressure.Thenewcriteriawillaccountfortheexistingareas.Wherepossible,additionalventareawillbeaddedtoeitherreduceoreliminatethedifferentialpressureloads.3.3-37REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBL2QTK)3.3-38REV.1312/96 GINNA/UFSAR3.3.5.3StabilityEvaluationInordertodemonstratethattheultimateplantcapacitywasactuallygreaterthantheleveloftherecommendeddesigntornado,astabilityevaluationwasperformed.Thisevaluationassumedthatthestructureswereupgradedtowithstandthetornadowindspeedof132mphandtheotherextremeloadspreviouslymentioned.Theassessmentwasperformedusingthecomponentmaximumstrengthandemployingthefollowingcriteria:3.3.5.3.1PrimarMembersPrimarymemberswereevaluatedforstabilitybyassessingthemembersfortheactualloadsassociatedwiththe188-mphtornadowindspeedandusingthemaximumstrengththatthosememberscoulddevelop.Theallowablecompressiveloadforcolumnmemberswasassumedtobeequaltothetheoreticalbucklingload.Forbendingelements,theallowableloadwasbasedonthetheoreticallateralbucklingstress.Allowabletension.stress"onthemembers'asassumedtobeequaltotheminimumspecifiedyieldstrengthontheirgrossareaor80%oftheultimatestre'ngthontheeffectivenetarea.Allotherallowablestressesnotcoveredabovewereevaluatedtoa1.6Sx1.2acceptancecriteriawhereSisasdefinedinAISC.Thefollowingcriteriawerealsousedintheoverallstabilityassessment:A.ColumnResearchCouncilplasticdesignformulaswereusedtoevaluatecolumns'.Adiagonalbrace(incompression)inacross-bracedbaywasconsideredtosupportitsbuckledloadbecausethecomplimentarytensionbracepreventsexcessivedeflection.C.Compressionmemberlengthswereevaluatedusinganeffectivelengthfactorthatwasmorerepresentativeoftheactualdetails.3.3.5.3.2ConnectionsandAnchoraesConnectionsandanchoragesfortheprimarymembersevaluatedforstabilitywhichdidnotmeetthe1.6Sx1.2criteriaspecifiedintheSRP,wereevaluatedusingthefollowingcriteria.3,3-39REV.1312/96 GINNA/UFSARForconnections:A.Theplasticbendingcapacityofdoubleclipangleswasused.B.Higherboltshearstressesforthreadsoutofshearplanewereused.C.Acompressiondiagonalbraceisconsideredtosupportitsbuckledloadbecausethecomplementarytensionbracepreventsexcessivedeflectiontherebyreducingtheloadonthetensionbraceconnection.D.Forsomebracingmemberscontainingnumerousbolts,thefixityofthatbracewasassumedtobebetweenafixedendconditionandapinnedendcondition.Aneffectivelengthfactorof0.65wasusedwhichincreasedthecompressioncapacityofthemember,therebyreducingtheloadonthecomplementarytensionmemberanditsconnections.Foranchoraes:A.Theultimateshearandtensilestrengthsforanchorboltswereused.B.Theplasticbendingcapacityofdoubleclipangleswasused.C.Thebeampockets.inthecontrolbuildingwereconsideredtobecapableofrestrainingthebeamafteranchorboltfailure.3.340REV.1312/96 GINNA/UFSAR3.3.5.4NRCTechnicalEvaluationReport(SEPTopicIII-2)OpenItemsThefollowingwereresponsestotheissuesraisedintheNRCTechnicalEvaluationReportdatedAugust2,1983(Reference9).3.3.5.4.1EffectiveTornadoLoadinsAtmoshericressurechane"RG&Emadeacommitmenttoreexaminethecalculationforatmosphericpressurechangesandwillapplytheappropriatevalueinthestructuralloadings."TheatmosphericpressuredropusedbyRG&Eintheevaluationfora132-mphtornadowas0.4psi.FranklinResearchCentercalculatedapressuredropof0.46psiusingtheminimumtranslationalspeedof5mphnotedinRegulatoryGuide1.76.Thetranslationalspeedcorrespondingtoa0'psipressuredropis12.8mph.Theregulatoryguideonlyprovidesguidancethattheminimumtranslationalspeedbeusedinregardtotheultimate.heatsinkcalculationsfortheplant.UseoftheminimumspeedforstructuraldesignconsiderationsisnotspecifiedbyRegulatoryGuide1.76.The12.8mphtranslationalspeedwasoriginallyjudgedreasonableanditisthusconsideredthat,the0.4psipressuredropisacceptable.Windboznemissiles"RG&Ehasmadeacommitmenttoreexaminetheeffectsoftornado-inducedmissileimpactsontheprimarystructuralmembersthroughouttheGinnafacilityinitsfinalanalysis."RochesterGasandElectriccommissionedastudy,"UtilityPoleTornadoMissileTrajectoryAnalysis,"byDr.LarryTwisdaleofAppliedResearchAssociates.Inthatstudyitwasconcludedthatwindspeedslowerthanapproximately150mphcouldnotprovidethenecessaryaerodynamicliftrequiredforautilitypoletobecomeanairbornemissile.Thus,atawindspeedof132mph,itwasdeterminedthattherewouldbenoadver'seeffectontheprimaryframingofGinnastructuresduetoautilitypolemissile.Athighezwindspeedsapproaching200mph,itwasconsideredcrediblethatautilitypolemissilecouldbecomeairborneforshortdistances.However,theprobabilityofa3.3-41REV.1312/96 GINNA/UFSARutilitypolemis'siledamagingtheprimaryGinnastructuresathighwindspeedsbecomesincreasinglysmall,sincetheprobabilityofahighwindspeed(10at132to10at188mph)mustbecoupledwiththeprobabilityofactuallyhittingaprimarystructuralelement(thiswasestimatedtobeabout25%inthestudy,basedonanarearatiotoeffectivemissilelengthdistributionfunction).Thus,itisestimatedthattheprobabilityofactuallyhittinganddamagingaprimarymemberislessthan10,andthusisnotofconcernwithrespecttotornadoprotectiondesignefforts.3.3.5.4.2StructuralLoadinsEffectivestructuralressures"RG&Ehasmadeacommitmenttoexaminethelocaleffectsofpeakpressuresonprimarymembersinthefinalanalysis."RochesterGasandElectrichascommittedtoupgradethestructuretowithstandtheeffectsofa132-mphtornadoonastzessbasis.Inaddition,acommitmenthasbeenmadetoassurestabilityofthestructuretothe188-mphwindspeed.Sincethe"averagepressureassociatedwiththe188-mphtornadoisapproximatelythesameasthepeakpressureassociatedwiththe132-mphtornado,ensuringstability(andthus,ensuringthatallsafetyfunctionsaremet)attheaveragepressureforthe188-mphtornadoisineffectthesameasdesigningforthepeakpressureassociatedwiththe132-mphtornado.3.3.5.4.3StzuctuzalAccetanceCriteriaRoofdeck"RG&Estatedthattheroofdeckswillbereexaminedforpotentialbucklingunderextremeenvironmentalloadings.Thecapacitiesoftheroofdeckswillbemodifiedaccordingly."TheevaluationoftheroofdeckingdoneintheStructuralUpgradeProgramconsideredthattheallowablestressesassociatedwiththesteelroofdeckingfoundatGinnaStationwouldbeincreasedby1.6inaccordancewiththeStandardReviewPlanforextremeloadcases.BasedoninformationfoundintheAmericanIronandSteelInstitute(AISI),"SpecificationsfortheDesignofCold-FormedSteelStructuralMembers,"atheoreticalbucklingstressfor3.342REV.1312/96 GINNANFSARtheroofdeckinghasbeenestimatedtobegreaterthantheactualyieldstressofthematerial.Stresslevelsfoundintheroofdeckingasaresultoftheextremesnowloadare,innearlyallcases,lessthantheallowablestressofthesteeldeckingmultipliedbythe1.6allowableoverstress.FortheremainingareaswherethestresslevelswerefoundtobegreaterthantheStandardReviewPlanallowablestresses,theactualstresswasstillfoundtobelessthantheyieldstressofthematerial.ItisRG&E'sconclusionthatsinceallofthestressesassociatedwiththeextremesnowloadwerefoundtobelessthantheyieldstressofthematerial(andconcurrentlylessthanthetheoreticalyieldstressofthematerial),localbucklingofcompressionareasofthedeckingwillnotoccur.3.3.5.4.4StructuralSstemsControlbuildin"RG&Ehasmadeacommitmenttoreexaminethecontrolbuildingeastwallforthestructuralupgrade."Theeastwalloftherelayroom(partofthecontrolbuilding)hasbeenmodifiedtowithstandwindandtornadoloadings,includingmissiles.Theeastwallofthecontrolroomwasfoundcapableofresistingtheseloads(Reference10).Dieseleneratorbuildin"RG&Ehasmadeacommitmenttoreexaminethereinforcedconcretestructuresofthedieselgeneratorbuildinginthefinalanalysis."Thedieselgeneratorbuildinghasbeenmodifiedtowithstandwind,tornado,includingmissiles,andseismicloadings.3.3.5.5SEPTopic111-7.B,Loads,LoadCombinations,andDesignCriteriaTheRG&Einitialsubmittal,datedMay27,1983(Reference11),definedallapplicableloadsandloadcombinationsconsideredlimitingfortheconcreteandsteelsafety-relatedstructuresatGinnaStation.IntheNRCSafetyEvaluationReportofAugust22,1983(Reference7),itwasdeterminedthatthe3.343REV.1312/96 GINNA/UFSARproperloadcombinationshadbeenusedinthestructuralreevaluationofGinnastructures.Theapplicationofthewindandtornadoloadswasappliedasaconstantuniformloadovertheheightofeachstructure,insteadofsteppingthewindpressureasstatedinANSIA58.1-1982.Theseloadswereappliedtothewindward,leeward,sides,androofsofallbuildings,usingtheappropriatepressurecoefficients.Itwasdeterminedthatthevariationsinthetotalloadtransferredintothestructurebythisassumptionwassmallandwouldnotaffecttheresultsoftheoverallanalysis.ArelatedissuewasacomparisonofthesteelandconcretecodesusedintheoriginalGinnadesignversuscurrentcodes.Thefollowingcomparisonsweremade:AISC1980(Reference12)versusAISC1963(Reference13).ACI349-80(Reference14)versusACI318-63(Reference15).ASMESectionIII,Division2,1983(Reference16)versusACI318-63(Reference15).ThesecomparisonsweredocumentedintheNRCSERofJanuary4,1983(FranklinResearchCenterReportTERC5257-322)(Reference17).RochesterGasandElectricrespondedtothisreportinlettersdatedApril22,1983(steelstructures)(Reference3)andMay27,1983(concretestructures).(Reference11).Thecomparisonshowedthat,fortornado-relatedloadings,allrequiredsafety-relatedstructureseitherwereabletomeetcurrentlyrequiredfactorsofsafety,wereshowntomeetmargin-to-failurecriteriathroughdetailedcalculations,orweretobeprovidedwithadditionalreinforcementaspartoftheStructuralUpgradeProgram.Forseismicloadings,itwasdeterminedthatallconcretecodechangeswereacceptable,exceptfortheshearwallsinthedieselgeneratorbuildings.Thesewallswere:tobefurtherevaluatedinconjunctionwiththeStructuralUpgradeProgram(seeSection3.8.2.1).SeismicloadingsforsteelstructureswerenotspecificallyanalyzedbyRG&E.RochesterGasandElectricconsidersthatthemainstructuralelementsweredeterminedtobesuitablebyvirtueoftheoverallLawrenceLivermoreLaboratoryanalysis,documentedinNUREGCR-1821(Reference18),whichwasapprovedbytheNRC(Reference19).Thesteelcodechangesconcerningcoped3.3A4REV.1312/96 GINNA/UIiSARbeams,momentconnections,andsteelembedmentswillbeevaluatedrelativetotheextremeseismicloadsandloadcombinations,inconjunctionwiththeoverallStructuralUpgradeProgram.ScupperswereinstalledinaccordancewiththeRG&EMay27,1983,submittaltheNRC(Reference11).3.3.5.6DieselGeneratorComponentOperabilityDuringtheACRSpresentation,questionswereraisedconcerningoperabilityofdieselgeneratorcomponents(suchasthedaytank)duetothetornadodifferentialpressureof0.4psi.RG&Econductedanevaluationandconcludedthatnooperabilityrestrictionsexistduetotheexpected0.4psidifferentialpressure.3.3-45REV.1312/96 GINNA/UFSAR3.3.5.7ConclusionsBasedonareview,audit,andplantinspection,theNRCconcludedthattheevaluationandresolutionofSEPTopicsIIZ-2,WindandTornadoLoadings;III-4.A,TornadoMissiles;III-6,SeismicDesignConsiderations;andIIZ-7.B,LoadCombinations,wereacceptable.TheNRGalsoconcludedthattheRG&EanalysisandimplementationoftheStructuralUpgradeProgramwereacceptable(Reference20).ThefollowingmodificationsandanalysesazetheprincipalonesaccomplishedaspartoftheStructuralUpgradeProgram.A.Allprimarystructuralsteelframing,includingtheirconnectionsandanchorages,foundtobeoverstressedwhensubjectedtothefollowingdesignloadshavebeenmodifiedtoresisttheseloads:132mphtornadowindspeedsand100psfextremesnowload.Theyhavealsobeenmodifiedasnecessarytomaintaihintegrityfor188-mphtornadowindspeeds.Thesemodificationswereincludedintheauxiliarybuilding,turbinebuilding,intermediatebuilding,controlbuilding,andfacadestructure.Theacceptancecriteriaforthesteelcomponentsthathavebeenupgraded'forthe132-mphtornadoloads,theseveresnowandwindloads,andtheextremesnowloadis1.6S,whereSistherequiredsectionstrengthbasedonelasticdesignmethodsandallowablestressesdefinedinAISC1980.Thisappliestoprimarymembers,primaryconnections,andsteelportionsofprimaryanchorages(excludingtheanchorbolts).Theacceptancecriteriaforanchorboltsandtheconcrete,portionoftheanchoragesthathavebeenupgradedforthe132-mph.tornadoloads,theseveresnowandwindloads,andtheextremesnowloadareinaccordancewithACI349AppendixB.Theacceptancecriteriaforloadsassociatedwiththe188-mphtornadoarethatthereisnolossofultimatesafetyfunction.Thefollowingmodificationshavebeencompletedintheintermediatebuildingrestrictedareaside:(1)Lowroofsupports.(2)Structuralmembersonalllevels.3.346REV.1312/96 GINNA/UIiSARB.Backdraftdampersweredesignedandinstalledinthe.auxiliarybuildingnorthwallinordertoeliminatetheeffectsofdifferentialpressuresassociatedwiththedesign-basistornado.Thesedamperswereonlyrequiredintheauxiliarybuilding.Thebackdraftdampersrelievethedifferentialpressurecausedbythetornadobymeansofautomaticlouversthatzemainclosedduringnormaloperations.ThelouversareseismicallyattachedtotheSeismicCategoryIauxiliarybuildingstructure;however,thelouversthemselvesarenonseismic.Thelouversaredesignedtorelieveadifferentialpressureof0.4psiatapressuredroprateof0.1psipersec.Thelouverswillopenwhenairpressureoutsidethebuildingis0.4psilessthanthepressureinside.Thelouversconsistofsix3ftx6ftpanelsforatotalsurfaceof108ft.2C.Noexteriorshellorsecondarymembermodificationswererequiredonthebasisthattheirfailurewouldnotdamagerequiredsafetyequipment(Reference21).D.Therequiredsafeshutdownequipmentisprotectedfromtornadomissiles.EDAspartofthereviewofSEPTopicIII-7.B,theshearwallsinthedieselgeneratorbuildingwerereevaluatedrelativetoseismicforces.ThedieselgeneratorbuildingwasmodifiedaspartoftheStructuralUpgradeProgramtowithstandwindandtornadoloads,includingmissiles,severeweather,designflooding,andseismicloads.F.Certainmodificationsorprotectionfrompotentialdamageduetoblockwallfailurewereprovidedforthemainsteamandfeedwaterpipingandassociatedvalves,mainsteamisolationvalvecontrolcables,andthespentfuelassemblies'.Operabilityrestrictionsofdieselgeneratorcomponents.duetodifferentialpressureeffectswasevaluatedandfoundtobenegligible.H.Theeastwalloftherelayroom(partofthecontrolbuilding)hasbeenprotectedaspartoftheStructuralUpgradeProgrambyastructurethatwillwithstandwindandtornadoloadings,includingmissiles,extremesnowloads,design-basisflooding,andoperatingbasisearthquakeandsafeshutdownearthquakeloads.Theeastwallofthecontrolroomiscapableofresistingtheseloads(Reference22).I.AspartofSEPTopicIII-7.BandasnotedinanRG&EletterofAugust19,1983(Reference23),certaincodechangesconcerningcopedbeams,momentconnections,andsteelembedmentsinallbuildingshavebeenevaluatedrelativetoseismicloadings.3.347REV.1312/96 GINNA/UIiSARREFERENCESFORSECTION3.32.3.5.7.8.9.U.S.NuclearRegulatoryCommission,IntegratedPlantSafetyAssessment,SystematicEvaluationProgram,R.E.GinnaNuclearPowerPlant,NUREG0821,December1982.UPS.NuclearRegulatoryCommission,FinalEvaluationofSEPTopicII-2,WindandTornadoLoadings,April21,1982.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

StructuralReanalysisProgram,datedApril22,1983,LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIII-4.A,TornadoMissiles,R.E.GinnaNuclearPowerPlant,datedApril16,1982.ElectricPowerResearchInstitute,StrengthofSteelPlatesSubjectedtoMissileImpact,SixthSmirtConference,NP-769,1981.LetterfromJ.E.Maier,RG&E,toHER.Denton,NRC,

Subject:

ApplicationforAmendmenttotheOperatingLicense,AttachmentB,datedJanuary18,1984.LetterfromD.M,Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport,Sections4.8,4.11,and4.17.1,datedAugust22,1983.LetterfromJ.Ebersole,ACRS,toN.J.Palladino,NRC,

Subject:

RecommendationsoftheAdvisoryCommitteeRegardingtheGinnaStructuralReanalysisProgram,datedApril9,1984.10.11.V.S.NuclearRegulatory'ommission,Docket50-244,August2,1983.LetterfromR.C.Mecredy,RG&E,'oStructuralUpgradeSER,R.E.Ginna25,1989.TechnicalEvaluationReport,NRCC.Stahle,NRC,

Subject:

NuclearPowerPlant,datedJanuary12.LetterfromJ.E.Maier,RG&E,to,D.M.Crutchfield,NRC,

Subject:

SEPTopicIII-7.B,DesignCodes,Criteria,andLoadCombinations,datedMay27,1983.13.AmericanInstituteofSteelConstruction(AISC),ManualofSteelConstruction,EighthEdition,1980.14.AmericanInstituteofSteelConstruction(AISC),ManualofSteelConstruction,SixthEdition,1963.15.AmericanConcreteInstitute(ACI),CodeRequirementsforNuclearSafety-RelatedStructures,ACI349-80.16.AmericanConcreteInstitute(ACI),BuildingCodeRequirementsforReinforcedConcrete,AIC318-63.17.AmericanSocietyofMechanicalEngineers,SectionIII,Division2,1983.18.'ranklinResearchCenter,TechnicalEvaluationReport,HindandTornadoLoading,TER-C5257-400,December2,1981.3.3-48REV.1312/96 GINNA/UFSAR19.LawrenceLivermoreLaboratory,SeismicReviewoftheR.E.GinnaNuclearPowerPlantasPartoftheSystematicEvaluationProgram,NUREG/CR-1821.20.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPSeismicDesign,Construction,andComponentIntegrity,datedJanuary7,1981.21.LetterfromA.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

SupplementalSafetyEvaluation-SystematicEvaluationProgram/StructuralUpgradeProgramatR.E.Ginna,datedNovember15,1989.22.LetterfromC.Stahle,NRC,toR.W.Kober,RG&E,

Subject:

SafetyEvaluationReportontheStructuralUpgradeProgram,datedMarch24,1987.23.LetterfromR.W.Kober,RG&E,toC.Stahle,NRC,

Subject:

StructuralUpgradeSER,R.E.GinnaNuclearPowerPlant,datedMay26,1987,.24.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIII-7.B,DesignCodes;DesignCriteria,andLoadCombinations,datedAugust19,1983.3.3-49REV.1312/96

GFSARTABLE3.3-1PRIMARYMEMBERFAILURESPERLOADINGCOMBINATION2~2ildinSevereSevezaLoadingCombinationSevere+Sn~Severe+Sn'Severe+Sn'uxiliaryColumnsBeamsBracingTrussTotal2021047fSn'32214059fPf:(132)252414063fry:(188)252615066fPt:(250)39360113Inter/FacadeColumnsBeamsBracingTrussTotal171033~1912551913121054201812156560223725144Shcct1REV.1312/96 GINNA/UISARTABLE-3.3-1PRIMARYMEMBERFAILURESPERLOADINGCOMBINATIONSevereSevereLoadingCombinationSevere+Sn'evere+Sn'evere+Sn'urbine,Control,DieselColumnsBeamsBracingTnlSSTotal165780+Sn'77299+Ft(132)348734161+Ft(188)4410435189+Ft(250)5115452264ScreenHouseColumnsBeamsBracingTrussTotal04021122846311020109170Totals168211299366691SeeSection3.3.2.1.6fordefinitionofloadingcombinations.Sheet2 GINNA/UIlSAR3.4WATERLEVEL(FLOOD)DESIGN3.4.1FLOODPROTECTION3.4.1.1FloodProtectionMeasuresforSeismicCategoryIStructures3.4.1.1.1IntroductionThegeneralplantgradeatGinnaStationisabout270ftmsl,withtheexceptionoftheareabetweenLakeOntarioandtheturbinebuildingwherethegradelevelisatelevation253ft.Theplantisprotectedfzomlakefloodingbyabreakwaterwithatopelevationof261ft,whichpreventssitefloodingduetohighwaterlevelsinthelakeandlakestormsfrombeingasignificantconcern.TheprobablemaximumfloodoriginallyconsideredinthedesignofGinnaStationwascausedbyLakeOntariowaterandresultedinafloodlevelof250ft,later(1973)revisedto253'ft.DuringtheSystematicEvaluationProgram(SEP),floodprotectionfromDeerCreekfloodingwasevaluatedandadesignfloodlevelbasedonaDeerCreekdischargeof26,000cfswasestablished(Section2.4).TheNRCstaffconsideredthisanacceptablelevelofprotection,inconjunctionwiththeStructuralUpgradeProgram(Section3.8)andemergencyproceduresforinstallationoffloodprotectiondevices(Reference2).3.4.1.1.2LakeOntarioFloodProtectionThe261-ftmslbreakwaterwhichprotectstheplantfromlakefloodingisastonerevetmentconstructedintworeaches.Theyareanapproximately420-ftlongwestreachandanapproximately400-ftlongeastreach.Theeastandwestreachesareseparatedbythe20-ftwidecirculatingwaterdischargecanal.Thestonerevetmentwasinitiallyconstructedwithtwolayersof5-tonminimumarmorstoneslaidupona1.0verticaltoa1.5horizontalsideslopetoaminimumelevationof257.0ftmsl.BecauseofthehighlakelevelsthatwerepredictedforLakeOntarioduringtheearly1970s,thecrestelevationoftherevetmentwasraisedtoaminimumof261.0ftmslbyplacementofcapstonealongthetopoftherevetment.AspartofSEPTopicIII-3.C,theNRCstaffreviewedthedesignoftherevetmentandconcludedthattheoriginalrevetmentdesignwasadequate'.4-1REV.1312/96 GINNA/0FSARAlso,theArmyCorpsofEngineerswasrequestedbytheNRCtoprovideatechnicalopinionoftheadequacyoftheexistingrevetment.TheBuffaloDistrictCorpsofEngineersreviewedthedesignoftherevetment.Aftervisitingthesitetoinspecttherevetmenttheyconcludedthatitappearedtobestructurallysoundandstablewithnoevidenceofanymajorstructurestabilityprogram;andbasedonitsperformancetodate,theanticipateddurabilityandsurvivabilityoftherevetmentasconstructedshouldexceedthelifeoftheplant(Reference2).TheCorpsrecommendedthatRG&Eimplementamonitozingprograminordertodetectfuturemovementofthearmorstone.RG&EimplementedaninspectionprogramwhichwasreportedtotheNRCbyReference3.3.4.1.1.3DeerCreekFloodProtectionADeerCreekdischargeof26,000cfscorrespondstoanelevationof273.8ftmslonthewestandsouthsideoftheauxiliarybuilding(westchannelflow)and272.0ftonthenorthandeastside(eastchannelflow).RochesterGasandElectricCorporationagreedtoprovideprotectiontothislevel(Section2.4.3.3).-PRESRAYportablefloodbarriershavebeeninstalledinthe.auxiliarybuildingforuseintheeventoffloodingfromDeerCreek.ThefloodbarriersconsistofapanelwithapairofPneuma-sealinflatablegasketsonthesidesandacrossthebottom.Thepanelsslideintoframesinstalledaroundtheauxiliarybuildingpersonnelaccessdoorsandthe'rollupvehicleaccessdoor.Airflaskslocatedintheauxiliarybuildingareusedtoinflatethegaskets.Whenthefloodbarriersarenotinusetheyaremountedonbracketsonthewallnexttothedoorstheyserveexcepttherollupdoorbarrier,whichismountednexttothe1Gfan.Emergencyproceduresprovideforinstallationofthefloodbarriersandforconnectionofthealternativecoolingwatersupplytothedieselgenerator(Section9.5.5),assumingservicewaterwillbelostasaresultoffloodingofthescreenhouse.TheemergencyproceduresaretobeinstitutedwhentheDeerCreekdischargeflowreaches10,000cfswhichcorrespondstothebridgelevelontheaccessroadcrossingDeerCreektothestation.Thiswouldallowapproximately3hourstoinstallthefloodprotectionmea'sures"whichareestimatedtorequireonly45minutesforinstallation.3.4-2REV.1312/96 GINNA/UFSARThedieselgeneratorbuildingisprotectedfromfloodingfromDeerCreekatafloodflowof26,000cfsbywatertightdoorsinthebuildingnorthwall.3.4.1.2PermanentDewateringSystemGinnaStationdoesnothaveapermanentdewateringsystem.Thedesign-basisgroundwaterlevelusedintheoriginaldesignofGinnaStationwas250ftmsl,whichisapproximately20ftbelowgradeattheupperportionofthestation.Agroundwatermonitoringprogramwasimplementedfrom1983through1987toverifythedesign-basisgroundwaterleveland,asaresult,thedesign-basisground-waterlevelwasrevisedto265.0ftmsl.Itwasdeterminedthatbelowgradesafety-relatedstructuresweredesignedtowithstandground-waterlevelsatgrade(270.0ftmsl).SeeSection2.4.10.1.TheGinnadesignprovidesfornobackfillagainstthecontainmentwall.Theexcavationaroundthemajorportionofthevesselisgradedtoensureslopestabilityofthein-placematerialunderallconditions.Atalimitedportionofthecircumferencewheregradelevelismaintainedadjacenttothecontainment,thereexists.aretainingwallspaced2ftto6ftclearofthecontainmentwalldesignedspecificallytoresistallearthpressureduetob'ackfill.Noprovisionismadetopreventgroundwaterfrompenetratingthevoidcreatedbetweentheretainingwallorearthandthecontainmentwall.Theopeningbetweentheretainingwallandthecontainmentwalliscoveredwithaconcreteslabtoensurethatthevoidisnotfilledwithdebris.Wheretheexteriorwallsofthecontainmentareexposedtogroundwater,thewallsfromtheedgeoftheringgirderuptoelevation235ftarewaterproofedwithabitumasticmembranesystemreinforcedwithglassfibers.Inaddition,priortotheapplicationofthemembranecourses,theangleattheintersectionofthewallandringgirderwasfurtherreinforcedwithglassfabric.3~4~2FLOODINGDUETOFAILUREOFTANKSIntheSEPIntegratedPlantSafetyAssessmentReport(NUREG0821),TopicIX-3,Section4.25.3,theNRCstaffexpressedaconcernthatfailureoftanksintheauxiliarybuildingcouldfloodoutsafety-relatedequipmentinthelowerlevelsofthebuilding.AnRG&Eevaluationdeterminedthatthetotalvolumeofallnonseismictanksintheauxiliarybuildingwas208,703gal.The3.4-3REV.1312/96 GINNA/UFSARevaluationshowedthat,basedonthe70,000-galcapacityoftheresidualheatremovalpit(i.e.,thelowestpointinthebuilding),andthenetfreesurfaceareaoftheauxiliarybuildingbasementof4813ft,thefailureof2nonqualifiedtanksinaseismiceventwouldresultinawaterlevelof3ft10in.LossofbothresidualheatremovalpumpshadbeenpreviouslyevaluatedinconjunctionwiththefireprotectionreviewanditwasdeterminedthattheplantcouldachieveandmaintainMODE5(ColdShutdown)conditionsutilizingalternatemethods(Reference4).Howevez,thewaterlevelresultingfromafailureofallnon-qualified'tankswouldbegreaterthantheheightofrequiredsafeshutdownequipment.Asaresult,RG&EqualifiedthethreechemicalandvolumecontrolsystemholduptanksandthewasteholduptanktoSeismicCategoryI.Therefore,theresultingmaximumwatervolumewhichcouldbedischargedontotheauxiliarybuildingfloorintheeventoffailureoftheremainingnonqualifiedtanksis93,803.gal.Thiswouldresultin.amaximumwaterlevelofonly8in.,whichisbelowtheelevationofthebottomofthesafetyinjectionpumpmotorof20in.Withthequalificationofthesetanks,theNRCstaffdeterminedthattheissueofinternalfloodingduetoseismicqualificationoftankswasadequatelyresolvedfortheGinnaplant(Reference5).Thevendorsupplieddemineralizationsystemintheauxiliarybuilding(Section11.2.2.13)wasevaluatedforitspotentialeffectsonplantflooding.Forthepurposesoftheauxiliarybuildingfloodinganalysis,thissystemresultedinamaximumwatervolumeincreaseof0.2in.,whichwouldresultinamaximumwaterlevelof8.2in.Sincethisnewcalculatedmaximumwaterlevelisbelowthe20-in.elevationofthebottomofthesafetyinjectionpumpmotor,thebasisfortheacceptanceofthefloodinganalysishasnotbeenchanged.3.4.3ROOFDRAINAGEThelowroofsectionsoftheintermediateandauxiliarybuildings;thecontrolbuilding,dieselgeneratorbuilding,andscreenhouseroofs;andtheturbinebuildingparapetshavebeenprovidedwithscuppersdesignedtoensurethatanyrainwater,resultingfromadesign-basisstorm,wouldnotaccumulateontheroofsandcausedamage.Thescuppersarelocatedsothattheiroutflowwill3.4-4REV.1312/96 GINNA/UFSARnotdamageanysurroundingplantstructuresorequipment.TheflowfromthescupperswillnotdischargeOnequipmentorstructuresrequiredforsafeshutdown.Thedesign-basisstormisa24-hourrainfalltotaling19.17in.ofrain,witha1-hourmaximumof6.11in.Thecombinedflowofallthes'cuppersoneachroofisdesignedtohandleatleastthisflow.Thedesignmaximumleveltherainfallisallowedbythescupperstoaccumulateontheroofsis1.6ft.Thisdepthofrainfallwouldproducealoadofapproximately100lb/ft,whichisequaltothemaximumwinterprecipitation2forastormwithaprobabilityof1x10recurrenceinterval(SEPTopicII-2A).A100lb/ftloadwasfoundinthestructuralupgradeprogramtobethemaximumloadtheroofscouldsupportwithouteffectingthemarginsofsafetyofthestructures.3.4-5REV.1312/96 GINNA/UIiSARREFERENCESFORSECTION3.41.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport,Section4.5,PlantFloodingbyDeerCreek,R.E.GinnaNuclearPowerPlant,datedAugust19,1983.2.LetterfromG.P.Johnson,CorpsofEngineers,toProjectOfficer,NRC,

Subject:

R.E.GinnaNuclearGeneratingPlant,TownofOntario,NY,datedDecember10,1981.3.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

DraftNUREG0821,R.E.GinnaNuclearPowerPlant,datedAugust25,1982.4.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

FireProtectionRule,datedApril11,1983.5.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyASsessmentReport(IPSAR)Section4.25.3,FloodingDuetoFailureofTanks,R.E.GinnaNuclearPowerPlant,datedJuly8,1983.3.44REV.1312/96 GINNA/UFSAR3.5MISSILEPROTECTION3.5.1INTERNALLYGENERATEDMISSILESIntroduction3.5.1.1.1DesinCriteriaSystemscontaininghotpressurizedfluidsarecarefullycheckedforpotentialsourcesofmissileswheresuchmissilescouldbedirectedtowardengineeredsafetyfeatures.Suitableengineeringandqualitycontrolareappliedtothedesign,manufacture,andinstallationofcomponentstopreventthegenerationofmissileswheresuchmissilescouldadverselyaffecttheintendedfunctioningofengineeredsafetyfeatures.Thus,adesigncritezionisthatcomponentsofthepressurizedsystemsdefinedabovearenotmissilesources.Preventionofmissilesisaccomplishedbyidentifyingallpotentialsources,investigatingtoensuredesignadequacyinpreventingmissilegeneration,redesigningwheretheinvestigationdisclosesinadequatesafetymarginsformissileprevention,andprovidingasuitablequalityassuranceprogramtoavoidunanticipateddeficienciesandensurethatdesignmarginsarepre'served.3.5.1.1.2SstematicEvaluationProramAspartoftheSystematicEvaluationProgram(SEPTopicIII-4.C);adetailedreviewofinternallygeneratedmissileeffectswasconducted.Missileswhicharegeneratedinternallytothereactorfacility(insideoroutsidecontainment)maycausedamage'tostructures,systems,andcomponentsthatarenecessaryforthesafeshutdownofthereactorozforaccidentmitigationormaycausedamagetothestructures,systems,andcomponentswhosefailurecouldresultinasignificantreleaseofradioactivity.Thepotentialsourcesofsuchmissilesarevalvebonnetsandhardwareretainingbolts,reliefvalveparts,instrumentwells,pressurecontainingequipment(suchasaccumulatorsandhigh-pressurebottles),highspeedrotatingmachinery,androtatingsegments(i.e.,impellersandfanblades).TurbinemissilesareaddressedinSection3.5.1.2.3.5-1REV.1312/96 GINNA/UFSARTheacceptabilityofthedesignofstructures,systems,andcomponentsforprotectionagainstinternallygeneratedmissilesisbasedonmeetingGeneralDesignCriterion4.AdditionalguidanceiscontainedinRegulatoryGuide1.13,SpentFuelStorageFacilityDesignBasis,Revision1,December1975,andRegulatoryGuide1.27,UltimateHeatSinkforNuclearPowerPlants,Revision2,January1976,Systemsandcomponentsneededtoperformsafetyfunctions(safeshutdownoraccidentmitigation)arelistedbelowanddiscussedinSection3.5.1.3.Reactorcoolantsystem.EmergencyCoreCoolingSystem(ECCS).Containmentheatremovalandatmospherecleanupsystems.Chemicalandvolumecontrolsystem(someportions).Residualheatremovalsys'em.Componentcoolingwater(CCW)system.Servicewater(SW)system.Diesel-generatorauxiliarysystems.Mainsteamsystem(someportions)/Feedwaterandcondensatesystems(someportions).Auxiliaryfeedwatersystems.Standbyauxili'aryfeedwatersystem.Ventilationsystemsforvitalareas.Combustiblegascontrolsystem.Refuelingwaterstoragetank.(RWST)Systemswhosefailuremayresultinreleaseofunacceptableamountsofradioactivityareasfollows:3,5-2REV.1312/96 GINNA/UFSARSpentfuelpoolcoolingandcleanupsystem.Samplingsystem.Wastedisposalsystem.Containmentpurgesystem.Instrumentandserviceairsystems.Additionally,"electricalsystemsthatarenecessarytosupportthosefluidsystemsneededtoperformsafetyfunctionsarenotedinthefollowinglist.Dieselgenerators.Stationbatteries.480-Vswitchgearandrelayrooms.Controlroom.Cablespreadingroom.BasedonasafetyreviewpursuanttoSEPTopicIII-4.C(ReferenceI),theNRCstaffhasconcludedthatthedesignofGinnaStationforprotectionfrominternallygeneratedmissilesmeetstheintentofGeneralDesignCriterion4andtheguidancefromRegulatoryGuides1.13and1.27.3.5-3REV.1312/96 GINNA/UFSAR3.5.1.2TurbineMissiles3.5.1.2.1IntroductionFailureofturbinedisksandrotorscanresultinhigh-energymissilesthathavethepotentialforresultingindamagetoplantsafetyfeatures.Therearetwoareasofconcern:Desinoverseedfailures.Thesearerelatedtothematerialqualityoftheturbinedisksandrotors,inserviceinspectionforflaws,andchemistryconditionsthatcouldleadtostress-corrosioncracking.Destructiveoverseedfailures.Thesearerelatedtothereliabilityoftheelectricaloverspeedprotectionsystem,thereliabilityofandthetestingprogramforturbinestopvalvesandturbinecontrolvalves,andtheinserviceinspectionofthesevalves.Thepurposeofevaluatingthepotentialforturbinemissilesistoensurethatallstructures,systems,andcomponentsimportanttosafetyeitherhaveadequateprotectionbymeansofstructuralbarriersozhaveanacceptablylowprobabilityofdamage.CriteriaforevaluatingmissileprotectionarecontainedinGeneralDesignCriterion4.AdditionalguidanceiscontainedinRegulatoryGuide1.115,ProtectionAgainstLowTrajectoryTurbineMissiles,Revision1,July1977;andRegulatoryGuide1.117,TornadoDesignClassification,Revision1,April1978.3.5.1.2.2TurbineInsectionPzoramLow-pressureturbinediskcrackinginWestinghouseturbines.hasbeenexperiencedatseveraloperatingplants.Asaresult,anRG&Eturbineinspectionprogram(References2and3)wasdevelopedtoprovideanacceptablyhighdegreeofassurancethatturbinediskswillbeinspectedbeforecrackscangrowtoone-halfthesizethatcouldcausediskfailureatspeedsuptothedesignspeed(seeSection10.2.3.4).RochestezGasandElectricperformstestingoftheturbineovezspeedprotectionsystemtoprovideassurancethatthesystemwillremainoperableandtherebylimitthelikelihoodofoverspeed3.5-4REV.1312/96 GINNA/UFSARbeyonddesignconditions.Thefollowingtestsareperformedonaroutinebasis:A.AnoverspeedprotectiontestisperformedateveryturbineoverhaulandateachMODE6(Refueling)outage.Forthistest,theturbineoverspeedstothetripsetpointtoclosethestopandgoverningvalves.Thistestisperformedonlyduringpowerde'scentunlessproblemsareencountered,inwhichcaseitisrepeatedduringpowerescalation.B.AftereachturbineoverhaulorMODE6(Refueling)outagethestopandgoverningvalvesaretestedaspartofnormalstartupastheturbineisbroughtuptospeed.Theturbinesupervisoryinstrumentationmonitorsturbinevibration,eccentricity,anddifferentialthermalexpansionandalarmsabnormalconditions(Section10.2.1.4).3.5.1.2.3SstematicEvaluationProramToicIII-4Allthesystemsneededforthesafeshutdownoftheplantareeitherinsideorshadowedbytheconcretecontainmentbuilding,locatedbelowtheturbinepedestal,orareoutoftheturbinelowtrajectorymissilestrikezones.Inaddition,manyofthesystemshavephysicallyseparatedredundantcomponents.Onthisbasis,theNRCstaff,intheSafetyEvaluation.Report(SER)forSEP.TopicIII-4.Bconsideredthattheprobabilityofalowtrajectorymissilestrikinganyofthesafety-relatedsystemsisacceptablylow.Theprobabilityofturbinehightrajectorymissilesstrikingthesafetyrelatedsystemsisobtainedbymultiplyingtheconservativelyestimatedturbinefailure"andmissileejectionrate,'0peryear,bythestrikeprobabilitydensityperturbinefailure,10perft,andbythehorizontalareaoccupiedbythesystems.Aconservativeestimateoftheareaoccupiedbythesesystemsis12,000ft.Theturbinefailurerateof10isalsoconservativebecauseoftheuseofahistoricallyobservedturbinefailuredataset.Someofthereportedfailuresinvolvedoldturbinedesignsandfabricationtechniqueswhichhavebeenimprovedincurrentlyproducedturbines(anewturbinerotorwasinstalledattheGinnaplantduringthe1979MODE6(Refueling)outage).Theresultingprobabilityofhightrajectorymissilestrikesisfoundtobeontheorderof10peryear,andthetotalstrike3,5-5REV.1312/96 GINNA/UIiSARprobabilityfromlowandhightrajectorymissilesisconservativelyestimatedtobelessthan10peryear.Basedontheabovefigures,intheSERforSEPTopic111-4.B,theNRCstaffconsideredthattheoverallprobabilityofturbinemissilesdamagingGinnaStationandleadingtoconsequencesinexcessof10CFR100exposureguidelinesisacceptablylow(Ref'erence4).3.5-6REV.1312/96 GINNA/UFSAR3.5.1.3EffectsofInternallyGeneratedMissilesonSystemsandEquipment3.5.1.3.1SstemsNeededtoPerformSafetFunctions3.5.1.3.1.1REACTORCOOLANTSYSTEMThereactorcoolantsystemservesasthepressureretainingboundaryforthereactorcoolantandiscomprisedofareactorpressurevesselandtwoparallelheattransferloops.Eachloopcontainsonesteamgeneratorandonepump,connectingpiping,andinstrumentation.Thepressurizerandassociatedsafetyandreliefvalvesareconnectedtooneofthereactorhotlegsviathesurgeline.Pressurizerspraylinesandassociatedvalvesareconnectedtothetopofthepressurizerfromoneofthereactorcoolantcoldlegs.Thepurposeofthepressurizeristomaintainprimarycoolantpressureandcompensateforcoolantvolumechangesastheheatloadchanges.Allcomponentsoftheprimarycoolantsystemarelocatedwithinthecontainmentbuilding.Overpressureprotectionisprovidedtoensurethecoolantsystempressuredoesnotexceeddesignlimits.Thereactorclosureheadandthereactorvesselflangearejoinedbyforty.-eight6-in.diameterstuds.Itisunlikelythatanyofthestudswouldbecomeamissilesincetheyarenotsubjectedtodirectreactorpressureand,therefore,arenotexposedtosufficientpressuretocreateanacceleratingforcesufficienttocausethemtobecomemiss'iles.Thepressurizersafetyandreliefvalves,whicharemountedatopthepressurizer,havethepotentialforbecomingmissiles.However,thepositionofthepressurizerwithinaconcretecompartmentissuchthatanymissilesgeneratedbecauseofafailureofthesevalveswouldnotbelikelytodamageothercomponentsorpipingofthereactorcoolantsystem.Allvalvesonthepressurizerspraylinearelocatedwithinthelooporpressurizercompartments,andthuswouldnotbeexpectedtodamageanysafety-relatedequipmentintheeventofavalvefailure.In1995,thethreemissileshieldblocksontopoftheprerssurizercompartmentwerereconfiguredfromtheoriginaldesigntoallowairflowthroughthecompartment.Thismodificationwassupportedbyanevaluationwhichdeterminedthattherepositionedblockswouldstillprotectvital3.5-7REV.1312/96 GINNA/UFSARequipmentinthecontainmentfromtheeffectsofinternallygeneratedmissilesandreleasedhighenergyfluidorsteamshouldapipingfailureoccurinthepressurizercompartment.Controlroddriveassembliesaremountedonthetopofthereactorvesselan/areconsideredanextensionofthereactorvesselhead.A1.25-in.thicksteelmissileshieldisplacedoverthecontrolrodsduringoperationasprotectionagainstmissiledamagetosafetysystemscausedbyimpactingcontrolroddrivesorreactorvesselheadstuds.Instrumentationrequiressomepenetrationintothereactorcoolantsyst:em.Thesepenetrationsaresmallandgenerallytaketheformofweldedwells.Becauseoftheirsizeandorientation,seriousdamagetothereactorcoolantsystemishighlyunlikely.Thepossibilitythatmissilesmayresultfromdestructiveoverspeedingofoneoftheprimarycoolantpumpsintheeventof.apipebreakinthepumpsuctionordischargewasalsoreviewed.Potentiallydamagingimpellermissileejectionfromthebrokenpipeisminimizedbyamassivesteelpumpcasing.Generationofmissilesfromoverspeedofthe'motor,flywheel,andimpellerofthereactorcoolantpumpisaddressedinSection5.4.1.Thetwosteamgeneratorshavemanwaysheldi.npositionbystudsontheprimaryandsecondarysidesoftheshell.Thesesmalldiameterstudsaresubjectonlytostoredelasticenergyandthusarenot,consideredtobecrediblemissiles.Insummary,relativetothereactorcoolantsystem,thelikelihoodofmissilegenerationandresultantdamageisminimizedbyequipmentdesignfeatures,componentarrangement,andcompartmentalization.3.5.1.3,1.2EMERGENCYCORECOOLINGSYSTEM(ECCS)TheEmergencyCoreCoolingSystem(ECCS)servesasthemeansofinjectingwaterforcoreprotectionintheeventofreactorcoolantsystemwaterloss.TheEmergencyCoreCoolingSystem(ECCS)iscomprisedofthehigh-pressuresafetyinjectionsystem,theresidualheatremovalsystem(forlow-pressuresafetyinjection),andaccumulatortanks.High-pressuresafetyinjectionflowandaccumulatorflowaredirectedtothereactor3.5-8REV.1312/96 GINNA/UFSARcoolantsystemthroughthetwocold-legreactorinletpipes.Thehigh-headsystemconsistsofthreepumps,eachratedat300gpm.Twopassiveaccumulatortankscontainingboratedwater,pressurizedwithnitrogento700psig,areprovidedinsidethecontainmentbuilding.Theresidualheatremovalsysteminjectsdirectlyintothereactorvesselupperplenumviatwonozzlesonoppositesidesofthevessel.Thelow-headresidualheatremovalsystemconsistsoftwopumps,eachratedat1560gpm.Thesuctionsourceofwaterforthehigh-headpumpsistherefuelingwaterstoragetank(RWST).Therefuelingwaterstoragetank(RWST)isnotmissileprotected;however,theonlyinternallygeneratedmissilesthatcouldpotentiallyaffectthetankwouldoriginateatcomponentcoolingwater(CCW)systemandservicewater(SW)systemvalvelocations.Bothofthesesystemsarelow-pressure,coldwatersystemswithinsufficientinternalenergytogenerateanymissilesofconsequence.Thehigh-pressureand'ow-pressurepipingsystemsareseparatedfromeachotheroutsidecontainment,takingsuctionfromoppositesidesoftherefuelingwaterstoragetank(RWST).Onetrainofeachofthesesystemsisroutedtogetherintheauxiliarybuilding.Theredundanttrainsofthesesystemsareroutedseparately.Onceinsidethecontainment,separationoftheindividualinjectionlinesisprovided.Eachtrainoftheresidualheatremovalandhigh-pressuresafetyinjectionpipingisroutedinoppositedirectionsinsidethecontainment.Injectionheadersarelocatedoutsidethemissilebarriers.Individualinjectionlinesconnectedtotheinjectionheaderspassthroughthemissilebarriersandthenconnecttothereactorcoolantsystem.ThemostlikelysourcesofmissilesintheEmergencyCozeCoolingSystem(ECCS)aretheresidualheatremovalandhigh-pressuresafetyinjectionpumps.Thehighpressuresafetyinjectionpumpsaze350-hphorizontalmultistagecentrifugalpumpsoperatingat3550rpm.Theresidualheatremovalpumpsare200-hphorizontalsingle-stagecentrifugalpumpsoperatingat1770zpm.Thesepumpshaveathicksteelcasing,makingithighlyimprobablethatasourceofmissiles,suchasabrokenimpeller,wouldpenetratethecasingtocauseanydamage.3,5-9REV.1312/96 GINNA/UFSARTheresidualheatremovalpumpsarelocatedintheresidualheatremovalpit,separatedfromothersafety-relatedequipment.DuringMODES1and2,theportionsofthesystemupstreamoftheisolationvalvesareisolatedfromthehigh-pressurereactorcoolantsystem,andarethereforenotsubjectedtoforceswhichmightcauseamissiletobegenerated.Xfamissileweregen-cratedasaresultofpumpfailureduringnormalreactorshutdown,itwouldaffectonlytheresidualheatremovalsystem.Theresidualheatremovalsystemcouldbeisolatedandthereactormaintainedinastableshutdowncondition,usingthesteamgenerators,untilrepairscouldbemade.Thehigh-pressuresafetyinjectionsystemisalsonormallynotathighpressure.Thus,itisnotexpectedthatmissileswouldbegenerated.Pressureboundaryvalves,whicharesubjecttohighpressure,havebackseatswhichshouldpreventmissilegeneration.Twoaccumulators,locatedonseparatesidesofthecontainmentaresituatedbehindthesteamgeneratormissileshielding.Accumulatormissilesourcesarenotorientedtowardsanyothersafety-relatedequipment.'ecauseofthefunctionaldesignfeatures,separation,andcomponentdesignprovisionsoftheEmergencyCoreCoolingSystem(ECCS),thesystemwillbecapableofperformingitsintendedfunctionsconsideringinternallygeneratedmissilesourcesasdiscussedabove.3.5.1.3.1.3CONTAINMENTHEATREMovALANDATMosPHERECLEANUPSYsTEMsThecontainmentheatremovalandatmospherecleanupsystemsconsistoftwoindependentsystems:thecontainmentairrecirculationsystem,andthecontainmentspraysystem.Thecontainmentairrecirculationsystemconsistsoffourfansandheatexchangers,aswellastwocharcoalfilterunits.Thecontainmentspraysystemconsistsoftwospraypumps,withassociatedpiping,ringheaders,andnozzles.Thesourceofwaterforthecontainmentspraysystemisthezefuelingwaterstoragetank(RWST).Thefourcontainmentfancoolerunitsarepositionedinpairsonoppositesidesofthecontainment.Becauseofthisseparation,itisunlikelythat3.5-10REV.1312/96 GINNA/UFSARasinglemissilecouldcausefailureofmorethanonepairoftheseunits.Thespraysystemheadersandnozzlesaresplitintoredundanttrains.Thespraynozzlesarelocatedhighinsidecontainment.Therefore,itisnotlikelythatanymissileswouldreachthesecomponents.Shouldanumberofthenozzlesbedamaged,containmentcoolingwouldstillbeprovidedusingnozzlesintheredundanttrainandbythefancoolerunits.Thespraysystempumpsarelocatedintheauxiliarybuilding,nearthehigh-pressuresafetyinjectionpumps.However,theorientationofthehighpressuresafetyinjectionpumpstothespraypumpsissuchthatdamagetothespraypumpsishighlyimprobableintheunlikelyeventofmissilegenerationfromanyofthehigh-pressuresafetyinjectionpumps.Therearenohighenergylinesinthisvicinitythatcouldbeasourceofinternallygeneratedmissiles.Further,thespraysystemitselfisnotunderpressureduringMODESland2~Itisthereforeconcludedthatnofailureduetointernallygeneratedmissilesisexpectedforthecontainmentspraysystem.Thecontainmentheat"removalandatmospherecleanupsystems,consideringtheirredundantfeaturesandseparation,willbecapableofperformingtheirdesignfunctionfromthestandpointofinternallygeneratedmissiles.3.5.I.3.I.4CHENIGALANDVoLUMECoNTRoLSYSTEMThechemicalandvolumecontrolsystemcontrolsandmaintainsreactorcoolantsysteminventoryandpuritythroughtheprocessofmakeupandletdown,andprovidessealinjectionflowtothereactorcoolantpumpseals.Theletdownportionofthesystemconsistsofaregenerativeheatexchangerandanonregenerativeheatexchangertocoolthereactorcoolantletdownandthreeparallelorificevalvestoreducethepressure.Thecoolantispassedthroughpurificationanddeboratingdemineralizers,asnecessary,wherecorrosionandfissionproductsareremoved.Thecoolantisthenroutedtothevolumecontroltank,Sealreturnflowpassesfromthereactorcoolantpumpseals,throughacontainmentisolationvalveandtheseal-waterheatexchanger,beforereturningtothevolumecontroltank.3.5-11REV.1312/96 GINNA/UIiSARThesealreturnlineisatlowpressureandtemperature.Thechargingpumpsdrawfromthevolumecontroltankandinjectintothereactorcoolantsystem,boththroughthenormalmakeuppathandviathezeactorcoolantpumpseals.Boratedwaterfromtheboricacidstoragetankscanbeaddedtothereactorcoolantsystembyinjectionfromthechargingpumps.Theboricacidstorage'tanksareprotectedfrominternallygeneratedmissilesbyvirtueoftheirlocationwithinconcretecubicles.Themostlikelysourceofmissilesinthechemicalandvolumecontrolsystemwouldbegeneratedintheletdownlineandcharginglineonthereactorcoolantsystemsideoftheregenerativeheatexchanger,inportionsofthechemicalandvolumecontrolsystemconnecteddirectlytothereactorcoolantsystem,andinthechemicalandvolumecontrolsystemletdownpipinguptothenonregenerativeheatexchanger.Theonlyequipmentthatneedstobeconsideredwithrespecttopotentialmissilesfromthechemicalandvolumecontrolsystemletdownlineisselectedcabletrays;however,potentialmissilesourcesarelocatedremotelyfromsafety-relatedcabletrays.Valvestemsaretheonlypotentialmissilesourcesassociatedwiththecharginglineinsidecontainmentandtheletdownlineoutsidecontainment.However,thevalvesallhavebackseatsandwouldnotbeexpectedtobea-sourceofmissiles.Therearenootherpotentialmissilesourcesinthevicinityoftheseportionsofthechemicalandvolumecontrolsystem.Thechemicalandvolumecontrolsystemisadequatelyprotectedfromtheeffectsofinternallygeneratedmissiles.3.5.1.3.1.5Rsszovar.HEATRmovm.SvsTEHThissystemisdiscussedaspartofthelow-pressuresafetyinjectionportionoftheEmergencyCoreCoolingSystem(ECCS)inSection3.5.1.3.1.2.3.5-12REV.1312/96 GINNA/UFSAR(ZNTENT1ONALLYLEFTBLANK)3.5-13REV.1312/96 GINNANFSAR3.5.1.3.1.6CoMPQNENTCooLINGWATERSYsTEMThecomponentcoolingwater(CCW)systemisaclosedsystemwithtwomotor-drivenpumpsratedat150hpand2980gpm,andtwoshellandstraighttubeheatexchangers.Heattransferredtothecomponentcoolingwater(CCW)systemisremovedbytheservicewater(SW)systemandreleasedintoLakeOntario.Thecomponentcoolingwater(CCW)systemremovesheatfromtheresidualheatremovalheatexchangers,engineeredsafetyfeaturespumpsealsandjackets,chemicalandvolumecontrolsystemandsamplingheatexchangers,reactorcoolantpumpseals,bearingsandmotors,reactorsupportcoolingpads,wastegascompressors,andtheitemsinthewasteandboricacidsystems.Thissystemwouldbeanunlikelysourceofmissilesduetoitslowoperatingtemperatureandpressure.Otherpotentialmissilesourcesnearthe'componentcoolingwater(CCW)systemhavenotbeenidentified.However,ifamissileweretocauseafailureofthecomponentcoolingwater(CCW)system,residualheatremovalcouldbeaccomplishedviathepreferredauxiliaryfeedwatersystemandsteamgeneratorsuntilrepairs.tothecomponentcoolingwater(CCW)system'couldbe-made.Thecomponentcoolingwater(CCW)systemisadequatelyprotectedfrominternallygeneratedmissiles.3.5.1.3.1.7SERvIGEWATERSYETEMTheservicewater(SW)systemconsistsoffour5300-gpmcapacityverticalmotor-drivenpumpslocatedinthescreenhouse.Themotorsforservicewater(SW)pumpsBandCareratedat300-hpwhichistheoriginaldesign.Themotorforservicewater(SW)pumpDwasreplacedin1995witha350-hpmotor.Themotorforservicewater(SW)pumpAwasreplacedin1996witha350-hpmotor.Thesystemisdesignedsuchthatthereazetworedundantsafety-relatedtrains,eachcapableofsupplyingonesetofrequiredsafety-relatedequipment.Onlyoneprovidethenecessarysafeshutdownpumpfromeithertrainisrequiredtoandpostaccidentsafetyfunctions,althoughtwopumpsaredesirableinthelong-termpost,-loss-of-coolant3,5-14REV.1312/96 GINNA/UISARaccidentrecirculationphase.Thesepumps,locatedapproximately7ftapart,takesuctionfromanddischargetotheultimateheatsink(LakeOntario).Thesystempipingisroutedundergroundfromthescreenhousetotheotherstructures.Thetwoservicewater(SW)headerscanbetiedtogethervianormallyclosedredundantmanualvalves.Separationofsafetyandnonsafetyloadsisprovidedviaredundantisolationvalves.Theservicewater(SW)pumpsarenot'consideredlikelysourcesofmissilesduetotheirenclosure(casing)andsubmergenceintheservicewater(SW)pumpbay,andtheirlowoperatingspeedandpressure.Alsolocatedinthescreenhouseisonediesel-drivenandonemotor-drivenfirepump.Thesepumpsarenotnormallyinoperationandthereforeareconsideredunlikelysourcesofinternallygeneratedmissiles.Therearenopotentialsourcesofmissilesinthevicinityoftheservicewater(SW)systemasthepipingentersthevariousbuildings,withtheexceptionofthatportionwhichenterstheintermediatebuilding.Inthisbuilding,theonlyhigh-pressuresysteminthevicinityoftheservicewater(SW)systemisthesteamgeneratorblowdownsystem.Bothvalveoperatorsinthesteamgeneratorblowdownsystemhavebeenrestrainedtopreventthemfrombecomingamissilesource.Theservicewater(SW)systemmeetstherequizementsforprotectionfrominternallygeneratedmissiles.3.5.1~3~1.8DIESEL-GENERATQRAuxILIARYSYsTEMsThetwodieselgeneratorsarelocatedinseparatediesel-generatorrooms,locatedoffthenorthsideoftheturbinebuilding.Thesearelowspeedengineswithnohigh-pressurehydraulicsystems.Duetoseparationofredundantportionsofthesystem,andthesegregationofthesystemasawhole,thesystemmeetsthedesignrequirementswithrespecttointernallygeneratedmissiles.3.5-15REV.1312/96 GINNA/UFSAR3.5.1.3.1.9MAINSTEAMSYSTEMThemainsteamsystemconsistsoftwosteamgeneratorswithtwosteamlineswhichconnectintheintermediatebuildingpriortoenteringtheturbinebuilding.Eachsteamlinehasfourmainsteamsafetyvalves,anatmosphericdumpvalve,asteamadmissionvalvetotheturbine-drivenauxiliaryfeedwaterpump(TDAFN),amainsteamisolationvalve,andanonreturnvalve,alllocatedintheintermediatebuilding,upstreamofthejunctionofthetwolines.Themainsteamlinesareofheavywalledconstruction,andareunlikelytobedamagedbyinternallygeneratedmissiles.Themainsteamcomponentsareroutedinafashionsoastoutilizeplantstructuresfozmissileprotection.Shouldamissilecausedamagetothemainsteamsystemdownstreamoftheisolationvalve,thevalvewouldcloseandtheplantwouldshutdown.Xfdamageoccurseithertotheisolationvalveozupstreamofthevalve,safeshutdowncanbeaccomplished.AsteamlinebreakaccidenthasbeenevaluatedinSection15.1.5.Themainsteamsystemwillbecapableofperformingitsdesignfunction,consideringinternallygeneratedmissiles.3.5.1.3.1.10FEEDWATERANDCONDENSATESYSTEMSThemainfeedwatersystemconsistsoftwomotor-drivenfeedwaterpumpswhichdeliverwatertothesteamgenerators.Condensatefromthehotwell~ispumpedbythree508capacitymotor-drivencondensatepumps,throughthehydrogencoolers,airejectozs,glandsteamcondenser,andthenthroughseveralstagesofpreheating.Thefeedwaterthenpassesintothecontainmentandintothesteamgeneratozs.Theonlyareaofconcernforthissystemisthatportionbetweenthemainfeedwaterisolationvalvesandthesteamgenerators.Duetotheprotectionaffordedbysurroundingequipment,missiledamagetothisportionofthefeedwatersystemisunlikely.However,ifdamagetothisareaweretooccur,thepreferredauxiliaryfeedwatersystemorthestandbyauxiliaryfeedwatersystem(SAFW)couldprovidethenecessaryfeedwaterflowtothesecondsteamgeneratorinordertoeffectsafeshutdown.3.5-16REV.1312/96 GINNA/UFSARNoadditionalprotectionisneededforthefeedwaterandcondensatesystemstoprotectthemfromtheeffectsofinternallygeneratedmissiles.3.5.1.3.1.11PREFERREDAUXILIARYFEEDNATERSYSTEHThepreferredauxiliaryfeedwatersystemconsistsoftwo100'5capacitymotor-drivenauxiliaryfeedwaterpumps(MDAFW),eachdirectingflowtoonesteamgenerator,anda200(tcapacityturbine-drivenauxiliaryfeedwaterpump(TDAFW),whichdirectsflowtobothsteamgenerators.Thedesignflowofthemotor-drivenpumpsis200gpm;theturbine-drivenpumpis400gpm.Theprimarysuctionsourceofthepumpsisfromthecondensatestoragetanks.Ifnecessary,theservicewater(SW)systemwillprovideanunlimitedwatersupplytothesepumps.Themostlikelysourceofmissileswouldbefromthepumps.Theturbine-drivenpumpisseparatedfromthemotor-drivenpumpsbyaconcreteenclosure/barrier.Separationisprovidedsuchthatapostulatedmissilewillnotdamagebothtrainsassociatedwiththemotor-drivenpumps.Therefore,intheunlikelyeventthatamissileisgenerated,eachtrainofthesystemissufficientlyseparatedtoensure'systemperformance;However,intheeventthatthepreferredauxiliaryfeedwatersystem.becomesunavailableduetoamissilestrike,thestandbyauxiliaryfeedwatersystem(SAFW)iscapableofdeliveringtherequiredfeedwaterflowtothesteamgeneratorstosafelyshutdowntheplant.Noadditionalmissileprotectionisneededforthepreferredauxiliaryfeedwatersystem.Thepreferredauxiliaryfeedwatersystem,throughredundancyandseparation,meetsthedesignrequirementswithrespecttointernallygeneratedmissiles.3.5.1.3~1.12STANDBYAUxILIARYFEEDNATERSYSTEH(SAFW)Thestandbyauxiliaryfeedwatersystem(SAFW)consistsoftwo100%capacitypumpsandpipingwhichdirectstheflowfromonepumptoonesteamgenerator.steamgenerator.ofthepreferredfeedwatezsystemAcross-connectwouldalloweachpumptofeedeitherThesystemwouldbeusedonlyintheeventofafailureauxiliaryfeedwatersystem.Thestandbyauxiliary(SAFW)isremotelylocatedfromthepreferredauxiliary3.5-17REV.1312/96 GINNA/UFSARfeedwatersystemsuchthatafailureinthepreferredauxiliaryfeedwatersystemwouldnotaffecttheabilityofthestandbyauxiliaryfeedwatersystem(SAFW)tosafelyshutdowntheplant.Thestandbyauxiliaryfeedwatersystem(SAFW)needsnoadditionalprotectionagainsttheeffectsofinternallygeneratedmissiles.3.5.1.3.1.13VENTILATIoNSYsTEHSFQRVITALAREASAspartoftheoriginaldesign,safety-relatedpumpmotorcoolersprovideductedair,cooledbyservicewater(SW),totheroomswhichcontainthesafetyinjectionandcontainmentspraypumpmotors,andtotheresidualheatremovalpumpandchargingpumprooms.In1992,servicewater(SW)totheroomcoolersforthesafetyinjectionandcontainmentspraypumpmotorswasblankedoff(seeSection9.4.9.1).Thecontrolroomisairconditionedbyitsownventilationsystem.Freshoutsideairisfilteredanddischargedtothecontrolroomataslightlypositivepressure.Intheeventofhighradiation,thesystemdampersprovidecompleteinternalrecirculation.Ventilationforthetwobatteryroomsisprovidedbyanindependentairconditioningsystem.ThissystemtakessuctionfromtheairhandlingroomanddischargesfromthebatteryroomsthroughtheturbinebuildingtotheoutsiderTheventilationsystemsarelow-pressuresystems,andthereforearenotconsideredtobesourcesofpotentialmissiles.Therearenosourcesofmissilesinthevicinityofthecontrolroom,batteryroom,orpumproomventilationsystems.Thoughductworkcanbepenetratedbymissiles,thetotalcoolingcapabilityisnotlostforanyareaandtimeisavailableforactiontorestoreadequateventilation.Theventilationsystemsforvitalareaswillbecapableofperformingtheirdesignfunction,consideringinternallygeneratedmissiles.3.5-18REV.1312/96 GINNA/UFSAR3.5.1.3.1.14CoNBUsTIBLEGASCoNTR0LSYSTENRedundanthydrogenrecombinerslocatedonoppositesidesinsidethecontainmenthavebeenprovided.Sincethehydrogenrecombinerisnotnormallyinoperation,itisnotconsideredtobeasourceofmissiles.Thesystemisnotneededtoshuttheplantdown.Shouldamissilestrikethesystem,itsrepaircouldbescheduledinatimelymannersoasnottointerferewithplantoperation.3.5.1.3.2SstemsWhoseFailureMaResultinActivitRelease3.5.1.3.2.1SPENTFUELPQQLCQQLINGSYSTENThespentfuelpool(SFP)coolingsystemisdesignedtoremoveheatfromthespentfuelpool(SFP),whichisgeneratedbystoredspentfuel.Thesystemisasingletrainsystem,consistingofapump,demineralizer,filter,andheatexchanger.Heatisremovedfromthesystembytheservicewater(SW)system.Thespentfuelpool(SFP)coolingsystemisalow-pressuresystemandisunlikelytogeneratemissiles.Thesystemarrangementissuchthatthespentfuelpool(SFP)itselfcouldnotbedamaged.Ifthespentfuelpool(SFP)coolingsystemwasdamaged,thelargethermalcapacityofthepoolwouldmaintaintemperaturesbelowdesign(180'F)formanyhours.Asameansofalternatecooling,aportableskid-mountedsystemcanbeactivatedbeforeanyexcessiveheatupoccurs.Thespentfuelpool(SFP)coolingsystemiscapableofperformingitsfunction,consideringinternallygeneratedmissiles.3.5.1.3.2.2SAPLINGSYSTEMThesamplingsystemprovidessamplesforlaboratoryanalysistoevaluatereactorcoolant,feedwatersteamsystem,andotherreactorauxiliarysystemsduringMODES1and2.Samplesareroutedinanareaawayfromotherrequiredsafety-relatedequipmentandintoaseparateroom.Shieldingisprovidedforthesamplinglines.Thelikelihoodofmissilescausingdamagetothesamplinglinesisverysmall.Thesamplingsystemmeetsthedesignrequirementswithrespecttointernallygeneratedmissiles.3.5-19REV.1312/96 GINNA/0FSAR3.5.1.3~2~3WAsTEDzsposALSYsTEMTheentirewastedisposalsystemisalow-pressuresystem,andisthusanunlikelysourceofmissiles.Themostlikelysources,thegasdecaytanks,areseparatedfromothersafety-relatedsystems.Thefailureofagasdecaytankisadesign-basiseventwhichhasbeenanalyzed.Resultantdosesarewithinallowablelimits.Inaddition,missiledamagetootherportionsofthesystemwillnotaffectthesafeshutdownofthefacility.Thissystemisadequatelyprotectedfromtheeffectsofinternallygeneratedmissiles.3.5.1~3.2.4CDNTAINMENTSHUTDDHNPURGESYsTEMThecontainmentshutdownpurgesystemisprovidedtopurgethecontainmentduringcoldorMODE6(Refueling)shutdown;Thesystemconsistsofductwork;dampers,fans,andfilters.Thenormaloperatingpressureofthissystemislow,andtherefozethissystemisconsideredanunlikelysourceofmissiles.Ductwor'kandcomponentsareroutedawayfrompotentialmissilesources.Ifmissiledamageweretooccur,ampletimetoperformrepairswouldbeavailable.Themissileprotectionprovidedforthesystemi.s,therefore,acceptable.3.5.1.3.2.5INsTRUMENTANDSERYIGEAIRSYsTEMsTheinstrumentandserviceairsystemsconsistoffouraircompressors(threeinstrumentair,oneserviceair),fouraftercoolers,fourairreceiversaswellasairdryers,prefilters,andfilters.Twoinstrumentaircompressorsandtheserviceaizcompressorareoftheverticaltype,withtheuseofoil-freecylinderconstructionfortheinstrumentaircompressors.Thethirdinstrumentaircompressorisatwostageoilfreerotaryscrewaircompressor.Theairsystemsazecooledbytheservicewater(SW)system.Theairsystemsazenotsafetyrelated.Allequipmentcontrolledbytheairsystemsiseithernotrequiredtooperatefozsafeshutdownoraccidentmitigation,orfailsinthesafepositionuponlossofair.3.5-20REV.1312/96 GINNA/UFSARTheairsystemsarelow-pressuresystemswhichoperatebetween115psigand125psig.Thegreatestpotentialmissilegeneratorsaretheaircompressorsandairreceivers.However,thesecomponentsarelocatedintheturbinebuildingawayfromsafety-relatedequipment.Theinstrumentandserviceairsystemsarenotrequiredtoperformsafety-relatedfunctions,andthedesign,withrespecttointernallygeneratedmissiles,willnotpreventsafety-relatedsystemsfromperformingtheirdesignfunctions.3.5.1.3.3ElectricalSstemsTheeffectsofmissilegenerationoncabling,cabletrays,instrumentation,andcontrolpanelsassociatedwithsystemsneededtoperformsafetyfunctionswerealsoevaluatedduringreviewofthesystemsdiscussedabove.3.5~1~3~3~1DIEsELGENERAToRsSeeSection3.5.1.3.1.8.3..5.1.3.3.2STATIQNBATTERIEsThetwostationbatteriesareinseparaterooms,bothofwhicharelocatedawayfrompotentialmissilesources.Shouldamissileoriginatefromthebatteriest'hemselves,thewallsthatseparatethetworoomswillpreventmissilepenetration.Theseparateroomsforthetwostationbatteriesprovideadequateprotectionfrominternallygeneratedmissiles.3.5.1.3.3.3480-VoLTSwrTcNGEARTwo480-Vloadcenterscomprisetheengineeredsafetyfeatureselectricalsystem.Theloadcentersarelocatedinseparaterooms,ondifferentfloorswithintheauxiliarybuilding.Therearenopipingorpressurizedsourcesneartheseroomswhichcouldposeapotentialmissilesource.Therefore,adequateprotectionfrominternallygeneratedmissileshasbeenprovided.3.5-21REV.1312/96 GINNA/UFSAR3.5.1.3.3.4CONTRDLRooMPiping,pressurizedsources,orrotatingmachineryarenotlocatedwithinthecontrolroom.Ventilationductworkisroutedintothecontrolroom.Damagingmissilesfromtheventilationsystemareconsideredunlikely.Therearenomissilesourceswhichcouldaffecttheproperfunctioningofthecontrolroom.3.5.l.3.3.5CABLESPREADING/RELAYRooMThecablespreadingroom(orrelayroom)doesnotcontainanypipingorotherpressurizedsources,orrotatingequipmentwhichmightproducemissiles.ThefireprotectS.onsysteminthisroomislowpressureandthusisnotcapableofgeneratingdamagingmissiles.Therearenopotentialmissilesourcesinthisareathatcouldaffectsafetyfunctions.3.5-22REV.1312/96 GINNA/UFSAR3.5.2EXTERNALLYGENERATEDMISSILES3.5.2.1TornadoMissilesGinnaStationhasbeenassessed(SEPTopicIII-4.A)todeterminetheabilityoftheplanttowithstandtheimpactoftornadomissiles.Thepurposeoftheassessmentwastoverifythatstructures,systems,andcomponentsnecessarytoensure(1)theintegrityofthereactorcoolantpressureboundary,(2)thecapabilitytoshutdownthereactorandmaintainitinasafeshutdowncondition,and(3)thecapabilitytopreventaccidentsthatcouldresultinunacceptableoffsiteconsequences,canwithstandtheimpactofaspectrumoftornadomissiles.CriteriaforevaluatingmissileprotectionareinGeneralDesignCriterion4.AdditionalguidanceontornadomissilesiscontainedinRegulatoryGuide1.117,TornadoDesignClassification,April1978,andRegulatoryGuide1.78,AssumptionsforEvaluatingtheHabitabilityofaNuclearPowerPlantControlRoomDuringaPostulatedHazardousChemicalRelease,June1974.AsnotedinSection3.3,thedesign-basistornadoatGinnaStationhasamaximumwindspeedof132mph.Forthiswindspeed,thedesign-basismissilesare:A.Steelrod,1-in.diameter,3-ftlength,8-lbweight,116ft/secvelocity;strikesatallelevations.B.Woodenutilitypole,13.5in.diameter,35-ftlength,1490-lbweight,77ft/secvelocity;strikesonlyinzoneslessthan30ftabovegrade.AsaresultoftheanalysisinresponsetoSEPTopicIII-4.A,RG&Ehasproposed,aspartoftheStructuralUpgradeProgramdiscussedinSection3.3,toprovideadequatetornadoprotectionforthosesystemsrequiredtoperformthesafetyfunctionsdiscussedabove.ThespecificmodificationstoprovideprotectionfromtornadomissilesarediscussedinSection3.3.3,5-23REV.1312/96 GINNA/UISAR3.5.2.2SiteProximityMissiles3.5.2.2.1DesinCriteriaThepotentialforsiteproximitymissiles,includingaircraft,wasevaluatedtoverifythatsafety-relatedstructures,systems,andcomponentswillnotbejeopardized.TheacceptabilityofthedesignofthefacilityforprotectionagainstsiteproximitymissileswasbasedonmeetingtherequirementsofGeneralDesignCriterion4.3.5.2.2.2NearbHazardousActivitiesThepotentialforhazardousactivitiesinthevicinityofGinnaStationisaddressedinSection2.2.Asindicatedthere,littleindustrialactivityissituatedneartheplant.Thedistancestothenearestlandtransportationroutes(about1700fttothenearesthighway,and3.5milestothenearestrailroad)arefarenoughtoresultinlowriskfrompotentialmissilescausedbytransportationaccidents.Similarly,thenearestlargegaspipelines(about6milesaway)donotposeamissilethreattotheplant.MajorLakeOntarioshippingroutes(about23milesfromtheplant)arenotcloseenoughtopresentacrediblemissilehazardfromlaketraffic.Therearenomilitaryfacilitiesoractivitiesnearenoughtotheplanttocreateamissilehazard.3.5.2.2.3AircraftHazardsThepotentialforaircraftbecomingmissilehazardshasalsobeenevaluated.OperationoftheWilliamsonFlyingClubairportandcommercialairtrafficinandoutofRochester,NewYork,viatwofederalairways,2.5and10milesfromtheplantsite,wereconsidered.FlightactivityinanAirForcerestrictedareainthevicinityoftheplantsitewasalsoevaluated.TheWilliamsonFlyingClubairportisasmall,privatelyownedgeneralaviationfacilitylocatedapproximately10mileseastsoutheastfromtheplant.Theairportisusedforactivitiessuchasbusinessandpleasureflyingandforagriculturalsprayingoperations.Thereareabout5,000operationsperyearatthefacility.ThenuqherofoperationsissufficientlysmallthatintheSERforSEPTopicII-1.C(Reference5)theNRCstaffdeterminedthattheseoperationsarenotapotentialhazard.3,5-24REV.1312/96 GINNA/UFSARMonroeCountyAirportinRochester,NewYork,islocatedabout25milessouth-westoftheplantandisthenearestairportwithscheduledcommercialairservice.LowaltitudefedezalairwaysV2andV2Npassabout10milessouthand2.5milessouthwestoftheplant,respectively.Thelowaltitudefederalairways,V2andV2N,serveabout10flightsperday.AlmostallflightsuseV2,withV2Nbeingusedonlyoccasionally.TheprobabilitiesforanairlinecrashatGinnafromtheseairwaysare5.1x10forairwayV2and1.4x10forairwayV2N.Sincebothairwayprobabilitiesarelessthanthe1x10acceptancecriteria,theprobabilityofacommercialairtrafficcrashatGinnaStationisacceptablylow.AirForceRestrictedAreaR-5203islocatedabout8milesnorthoftheplantsite.WheneverflightactivityisconductedbytheAi.rForcewithinareaR-5203,radarsurveillanceismaintainedbythe21stNORADRegion,the108thTacticalControlGroup,orpossiblytheClevelandAirRouteTrafficContxolCenter.Pilotsrelyuponon-boardnavigationalequipmenttomaintaintheirpresencewithinthespecifiedlimitsoftherestrictedarea.Pilotscanalsorbeadvisediftheiraircraftstraybeyondtheirlimitsbytheradarsurveillanceunitcoveringtheareaatthetime.Therestrictedareaisuseddailyformilitaryflighttrainingwhichincludeshigh-speedinterceptortrainingmaneuvers,operationalflightchecks,andair-to-airfueling.Thereisalsoaslow-speedlowaltitudemilitarytrainingroute(SR-826)whichpassesabout6mileswestoftheplant.AcceptancecriterionII.2ofSRP3.5.1.6statesthat,formilitaryairspace,aminimumdistanceof5milesisadequateforlowleveltrainingroutes,exceptthoseassociatedwithunusualactivities,suchaspracticebombing.AirForceRestrictedAreaR-5203isabout8milesfromthesiteatitsclosestboundary,andnounusualactivitiessuchaspracticebombingtakeplace.Theslow-speedlowaltitudemilitarytrainingrouteSR-826isabout6milesfromtheplant.Therefore,thiscriterionismet.3.5-25REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.51.LetterfromD.M.Crutchfield,NRC,toJ~E.Maier,RG&E,

Subject:

SystematicEvaluationProgramTopicIII-4.C,InternallyGeneratedMissiles,datedFebruary17,1982.2.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

TurbineDiscCracking(SafetyEvaluation),datedAugust28,1981.3.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,Subject;TurbineDiscCracking,datedSeptember16,1981.4.LetterfromD.L.Ziemann,NRC,toL.D.White,Jr.,RG&E,

Subject:

SEPTopicIII-4.B,TurbineMissiles,datedApril18,1979.5.LetterfromD.M.Crutchfield,NRC,toJ~E.Maier,RG&E,

Subject:

SEPTopicII-1.C,PotentialHazardsDuetoNearbyTransportation,Institutional,andMilitaryFacilities-R.E.Ginna,datedSeptember29,1981.3.5-26REV.1312/96 GINNA/UIiSAR3.6PROTECTIONAGAINSTTHEDYNAMICEFFECTSASSOCIATEDWITHTHEPOSTULATEDRUPTUREOFPIPINGThissectiondescribesthedesignfeaturesofGinnaStationthatprotectessentialequipmentfromtheconsequencesofpostulatedpipingfailuresbothinsideandoutsidecontainment.AnalyseswereconductedinaccordancewithguidanceandcriteriasetforthintheDecember18,1972,AECletter(Reference1)concerninghigh-energypipebreaksoutsidecontainmentandtheSystematicEvaluationProgramReviewforTopicsIII-S.AandIII-5.Brelatedtopipebreaksinsideandoutsidecontainment,respectively.Theanalysesshowedthat,withcertainmodifications'proposedbyRG&E,10CFR50,AppendixA,GeneralDesignCriterion4wasmet,inthatallstructures,systems,andcomponentsaredesignedtoaccommodatetheeffectsofandarecompatiblewiththeenvironmentalconditionsassociatedwithMODES1and2,maintenance,testing,andpostulatedaccidents,includingloss-of-coolantaccidents.Thesestructures,systems,andcomponentsareprotectedagainstdynamiceffects(includingtheeffectsofmissiles,pipewhipping,anddis-chargingfluids)thatmayresultinequipmentfailuresandfromeventsandnditionsinsideandoutsidethenuclearpowerunit.PiperuptureswerepostulatedatarbitraryintermediatelocationsinadditiontoterminalendsandhighstressandhighusagefactorlocationsasrequiredatthetimebyBranchTechnicalPosition(BTP)MEB3-1ofStandardReviewPlanSection3.6.2inNUREG0800.Pipewhiprestraintsandjetimpingementshieldswereinstalledasnecessarytomitigatetheeffectsofthesearbitraryintermediatepiperuptures.,GenericLetter87-11(Reference2)datedJune19,1987,revisedBTPMEB3-1toRevision2toeliminatetherequirementtopostulatearbitraryint'ermediatepiperupturesandpermittedtheeliminationofpipewhiprestraintsandjetimpingementshieldsinstalledtomitigatetheeffectsofarbitraryinteimediatepiperuptures.3,6-1REV.1312/96 GINNA/UFSAR3.6.1POSTULATEDPIPINGFAILURESINFLUIDSYSTEMSINSIDECONTAINMENT3.6.1.1EvaluationProcedure3.6.1.1.1PieSelectionAlistofpipinglinesinsidecontainmentwhichnormallyoroccasionallyexperiencehigh-energyserviceconditionsarepresentedinTables3.6-1and3.6-2.Theselineswereevaluatedfortheeffectsofpotentialpipebreaks(Reference3).Thetablesexcludethoselineswhichhavebeenrecognizednottopresentasignificantsafetyhazard.Theseexclusionsareasfollows:A.Lineswhichareofa1-in.diameterorlessaccordingtoRegulatoryGuide1.46andguidancefromReference4.B.LineswhichmeetBranchTechnicalPositionASB3-1,StandardReviewPlan3.6.1,forprotectionagainstpostulatedpipingfailures.C.LineswhichareatreducedpressureandtemperatureduringMODES1and2.3.6.1.1.2Effects-OrientedEvaluationAneffects-orientedapproachwasutilizedformostpotentialhigh-energylinebreaks.Thisenergypipebreakinsidecontainmentanywherecapabilityoftheremainingsystemstosafelyfollowingassumptionsweremade:evaluatingtheconsequencesofapproachpostulatesahigh-alongthelineandanalyzestheshutdownthereactor.TheA.Pipewhipcanoccuronlyinthesectionofpipewhichisattachedtoasustainedhigh-energysource.Creditistakenforallclosedorautomaticallyclosedvalvesinthepipingsectionwhichcouldterminateflowtothebreak.Forexample,onlythesegmentofsafetyinjectionpipingbetweenthereactorcoolantsystemandthecheckvalveclosesttothereactorcoolantsystemisanalyzedforwhip.Safetyinjectionpipingupstreamofthecheckvalvewillnotwhip,eventhoughpressurized,becauseofthelackofasustainedenergysource.B.Itisacceptableforabreak,whichresultsinalossofcoolantfromoneoftheloops,todamagemitigationequipmentforthebrokenloopbecausetheunbrokenloopisavailableforEmergencyCoreCoolingSystem(ECCS)functions.High-energypipingisdefinedaspipingwithoperatingtemperatures200'Fandhigheroroperatingpressures275psigandgreater.3.6-2REV.1312/96 GINNA/UFSARC.Pipeofagivensectionmoduluswillnotcausealossoffunctioninpipeofequalorlargersectionmodulus,asaresultofpipewhiporjetimpingement.Acceptancecriteriafortheeffects-orientedevaluationsazeasfollows:AA.Thereactorcanbeshutdownandcooledusingequipmentavailablefollowingthepipebreak.BB.Analysisoftheevent,oramorelimitingevent,demonstratesthattheeffectsofthebreakyielddoseslessthan10CFRPart100values.Aspectrumofloss-of-coolantaccidentsandamainsteamlinebreakhavebeenanalyzedandshowntohaveacceptableconsequences(Chapter15).Thoseanalysesremainvalidfollowinghigh-energylinebreaksinsidecontainmentaslongastheminimumequipmentassumedintheanalysesremainsoperable.3'.1.1.3MechanisticEvaluationOtherevaluationtechniqueswereconsideredtoevaluatebreaksthatcouldnotbeshowntohaveacceptableconsequencesusingtheeffects-orientedapproachalone.Forexample,amechanisticapproachbaseduponbreaksatlocationsofhigheststressinthepipingsegmentmayresultinacceptableconsequencesbecausethesebreaksareremotefromrequiredequipmentorbecausethebrokenpipesarecontained.Thisapproachalsoanalyzedfailuremechanismstodemonstratethattheconsequenceswereacceptable.Forexample,abrokenpipeassumedtowhipinaneffects-orientedanalysismaybeshowntohavesufficientstrengthtoresistwhippingusingmechanisticmethods.3.6.1.2RequiredEquipmentSystems,components,andequipmentrequiredforsafeshutdownandtomitigatetheconsequencesofpostulatedpipingfailureswerereviewedtodeterminetheircapabilityinperformingthesefunctionswhenexposedtotheeffectsofpostulatedhigh-energypipingfailures.Thesesystemsarelistedbelow.High-energylinebreaksinsidecontainmentresultin,orhavethesameeffectas,loss-of-coolantaccidentsorsteamorfeedwaterlinebreaksofvarioussizes.Theengineeredsafetyfeatures,includingthesafetyinjectionsystem,arerequiredto.mitigatetheeffectsoftheseevents.3.6-3REV.1312/96 GINNA/UFSARThisequipmentincludesthefollowing:High-pressuresafetyinjection.Low-pressuresafetyinjection.Containmentspray.Containmentfancoolersandservicewater.Essentialinstrumentation.Auxiliaryfeedwater.Containmentsumprecirculation.Otheritemstonoteconcerningmitigationequipmentareasfollows:A.Somebreaksintheaccumulatorpipingproduceneitherloss-of-coolantaccidentnorsteamorfeedwaterlinebreakeffects.Theseaccumu-latorlinebreaksrequireonlynormalsystemstomaintainastableplantsafeshutdowncondition.B.Thelow-pressuresafetyinjectionsystemistheportionoftheresidualheatremovalsystemusedtopumpwatertotheinjectionnozzlesinthereactorvessel.C.Allofthepumpsforrequiredsystemsarelocatedoutsidethecontainment.Theentireauxiliaryfeedwatersystemisoutsidecontainment.D.Mostlinesconnectedtothereactorcoolantsystemhaveatleastonenormallyclosedorautomaticallyclosedvalve'insidealoopcompartmentorareroutedsothatthecompartmentspreventbreaksinoneloopfromaffectingtheotherloop.Mitigationequipmenttotheunbrokenloopis,inmostcases,unaffected.3.6.1.3SafetyAnal'ysis3'.1.3.1Sinle-FailureConsiderations3.6.1~3.1.1INTR0DUGTIoNTheonlyactivecomponentsinengineeredsafetyfeaturesystemsinsidecontainmentwhicharerequiredtooperateorchangepositionarethecontainmentfancoolersandthemotor-operatedisolationvalvesinthelow-pressuresafetyinjectionsystem.Thus,thesearetheonlycomponentsREV.1312/96 GINNA/UFSARwhichmustbeconsideredaspotentiallybeingaffectedbyhigh-energypipebreaksandwhichmustalsomeetthesingle-active-failurecriterion.Singleactivefailuresofengineeredsafetyfeaturepumps,valves,ozpowersuppliesoutsidecontainmenthavebeenshownpreviouslyinEmergencyCoreCoolingSystem(ECCS)analyses(Section6.3)tohaveacceptableresults.Passivefailuresofengineeredsafetyfeatureequipment,includingthemaximumpumpsealleakageorfailureofacheckvalve,willbelesslimitingthanthecompletelossofapumporpowersupply.Thesystemshavebeendesignedtoaccommodatesuchpassivefailures.3.6.1.3.1.2CQNTAINHENTFANC00LERsTwoofthecontainmentfancoolersarelocatedremotelyfromallpostulatedhigh-energypipebreaksandwillnotbedamagedbyabreak.Theothertwofancoolersazenearonlythe2-in.steamgeneratorblowdownlinesbutwillnotbedamagedasexplainedinSection3.6.1.3..2.3.6.1.3.1.3Low-PREssuRESAFETYINJEGTIQNIsoLATIoNVALYEsThetwolowpressuresafetyinjectionisolationvalvesarelocatedonoppositesidesofthereactorcavityshieldwall,outsidetheloopcompartments,andcouldbedamagedonlybyalimitednumberofotherhigh-energylines.Theonlysustainedhigh-energysouzcelinesnearthelow-pressuresafetyinjectionlinesazetheaccumulatorlines.Forallbreaksinlinesotherthantheaccumulatorsorinthelow-pressuresafety/injectionlinesthemselves,neitheroftheisolationvalveswillbeaffectedandnosinglefailurewillreducethefunctioningofrequiredequipmenttolessthantherequiredminimum.Anaccumulatorlinebreakoutsideeitheroftheloops(postulatedusinganeffects-orientedapproach)whichcouldrupturealow-pressuresafetyinjectionline,oralow-pressuresafetyinjectionlinebreakastheinitiatingevent,willeffectivelyresultina4-in.hot-legloss-of-coolantaccident.Theaccumulatorlinebreakwillnotbemoreseverebecauseacheckvalveinsidetheloopcompartmentpreventsreactorcoolantsystemblowdownthroughtheaccumulatorline.Analysisofa4-in.loss-of-coolantaccidentshowsthatreactorcoolantsystempressureremainswellabovetheshutoffheadofthelow-pressuresafetyinjectionpumpsandthusthe3.6-5REV.1312/96 GINNA/UIiSARtransientisterminatedwithouttheuseofthelow-pressuresafetyinjectionsystem.Failureofonelow-pressuresafetyinjectionisolationvalvefollowingdamagetotheotherwillhaveaninconsequentialeffectsinceonehigh-pressuresafetyinjectionpumpdeliverssufficientflowtomitigatetheevent.3.6.1.3.2Hih-EnerLineBreakEffects3.6.1.3.2.1INTRQDUGTIoNThediscussionoftheeffectsofhigh-energylinebreaksinthissectionisrestrictedtothedynamiceffectsonmechanicalandelectricalequipment.TheenvironmentaleffectsonelectricalequipmentisdiscussedinSection3.11concerningtheenvironmentalqualificationofelectricalequipmentper10CFR50.49.Theanalysesofthehigh-energylinespresentedinTables3.6-1and3.6-2aresummarizedbelow.TheresultshavebeenreportedinReSerences3and5through8.3.6~1~3~2.2ALTERNATECHARGINGThelinesegmentofinterestisapproximately2ftof2-in.pipeintheloopAcompartmentbetweenthereactorcoolantsystemcoldlegandthecheckvalve.Alternatecharging(identifiedasauxiliarycharging)isnotnormallyusedsoisolationvalvesinsideandoutsidecontainmentarenormallyclosed.In.addition,allthreechargingpumpsarepositivedisplacementpumps.Forthisreason,.and'ecausethedesignflowofachargingpumpisonly60gpm,nosustainedhigh-energysourceexistsupstreamofthecheckvalveandthus,thepipeupstreamofthevalvewillnotwhip,AbreakbetweenthereactorcoolantsystemandthecheckvalvewillbeconfinedtotheloopAcompartmentandwillresultinasmallloss-of-coolantaccident.MitigationequipmentinsidecontainmentthatmaybeusedtomitigateloopAloss-of-coolantaccidentsissafetyinjectiontoloopB,low-pressuresafetyinjectiontoeithervesselnozzle,containmentfancoolers,andcontainmentspray.Allofthisequipmentisremotefromthebreakandisisolatedbycompartmentwalls.Nounacceptableconsequenceswillresultfromthepipebreak,assumingcheckvalveoperability.IfitisassumedthatthecheckvalvesinsideloopAwereinoperable,sinceRG&Edoesnot3.64REV.1312/96 GINNA/UFSARconductperiodictestingofthesevalves,thecablingforoneofthetwolow-pressuresafetyinjectionvalvescouldbeaffectedbypipewhipupstreamofthecheckvalve.Asingleactivefailureoftheotherlow-pressuresafetyinjectionvalvewouldresultinalossoflow-pressuresafetyinjection.However,high-pressuresafetyinjectionwouldstillbeavailabletomitigatethesmallbreakloss-ofcoolantaccident.TheNRC,intheSafetyEvaluation'ReportofJune28,1983,foundthisissuetobeacceptablyresolved(Reference9).3.6.1.3.2~3REsIDUM.HEATREMQYALPUMPSUGTIQNBreaksinthislineareconsideredonlybetweenthereactorcoolantsystemandtheloopAinnermostisolationvalveinsidecontainment(MOV700)inaccordancewithStandardReviewPlan3.6-1.ThislinesegmentiswithintheloopAcompartment.Pipingdownstreamoftheisolationvalvewillnotwhipbecausethispipingisisolatedfromthereactorcoolantsystemandthereisnosustained"high-energysourceconnectedtothepipingduringpoweroperationandmostshutdownoperations.Breaksinthepipingupstreamoftheisolationvalvewillresultinaloss-of-coolantaccidentwiththepotentialforthepipingthatisattachedtothereactorcoolantsystemtowhip.ThatpipewillnotimpactanyreactorcoolantsystemcomponentsupportsandnodamagewillbedonetoequipmentotherthanauxiliarysystemswithintheloopAcompartment.MitigationequipmentrequiredinsidecontainmentissafetyinjectiontoloopB,low-pressuresafetyinjectiontoeithervesselnozzle,containmentfancoolersandcontainmentspray.Allofthisequipmentisremotefromthebreakandisisolatedbycompartmentwalls.Nounacceptableconsequenceswillresultfromthepipebreak.3.6.1.3.2.4REAGTQRCooLANTPUMPSEAL-WATERToSEALSTheseal-wat;erinletlinestobothxeactorcoolantpumpsarepressurizedtonominaloperatingpressurefromthecontainmentw'alltothereactorcoolantpumps.Bothlinesarefedbypositivedisplacementchargingpumpsandarethrottledoutsideofcontainmenttoan8-gpmflow.Checkvalvesnearthereactorcoolantpumpsinsidetheloopcompartmentspreventbackflowintheseal-waterinletlines.Bx'eaksinthelinesbetweenthecontainmentwallandthecheckvalveswillnotresultinpipewhipbecause3.6-7REV.1312/96 GINNA/UFSARthereisnosustainedhigh-energysourcefromthepositive.displacementchargingpumpbecauseoflimitedflow.Breaksinthelinesbetween.thereactorcoolantpumpsandthecheckvalveswillbecontainedwithintheloopcompartment.Mitigationofthebreakeffectsmaybeaccom-plishedbytheadjustmentofchargingandletdownfloworEmergencyCoreCoolingSystem(ECCS)actuation.Alloftherequiredpipingofthemitigationsystemsisatleastaslargeastheseal-waterinletlinesand,particularlyintheabsenceofanypipewhip,willnotbedisabledbythebreak.Nounacceptableconsequenceswillresultfromthepipebreak.3.6.1.3.2.5LBTDoÃHLINELetdownfromthereactorcoolantsystemisfromloopBthroughtheregenerativeheatexchangerandletdownorificesinsidecontainment.Theletdownisahigh-energylineoveritsentirelengthinsidecontainmentalthoughthetemperatureisreduceddownstreamoftheregenerativeheatexchangerandthepressureisreduceddownstreamoftheorifices.Abreakinthe2-in.letdownlinewillresultinasmallloss-of-coolantaccidentfromloopB.MitigationequipmentinsidecontainmentwhichmaybeusedtomitigateloopBloss-of-coolantaccidentsissafetyinjectiontoloopA,low-pressuresafetyinjectiontoeithervesselnozzle,containmentfancoolers,andcontainmentspray.Low-pressuresafetyinjection,safetyinjection,andcontainmentspraylinesareinthevicinityoftheletdownlines.Thelow-pressuresafetyinjectionandcontainmentspraylineseachhaveasectionmodulusmuchgreaterthantheletdownlineandthereforewillnotbeaffectedbyabrokenletdownline.LetdownpipingbetweenthereactorcoolantsystemandtheoutermostisolationvalvesinsidecontainmenthasasectionmodulusgreaterthanthatofloopBsafetyinjectionpipinginthevicinityandthereforecouldcausedamagetoloopBsafetyinjectionpiping.ThisportionofthesafetyinjectionsystemisnotrequiredtomitigatetheeffectsoftheloopBloss-of-coolantaccident,however.LetdownpipingdownstreamoftheorificesandoutermostisolationvalvesinsidecontainmentisroutednearsafetyinjectionpipingtoloopA.Theselineshaveagreatersectionmodulusthentheletdownpiping;thus,alltherequiredmitigatingequipmentwillremaineffectivefollowingthebreak.3.6-8REV.1312/96 GINNA/UFSARTheletdownlineislocatedinthebasementofcontainmentandisroutedinthevicinityofsafety-relatedcabletraysandconduit.Anevaluationofthepossibleeffectsofapostulatedfailureoftheletdownlinewasperformedanditwasconcludedthatadditionalprotectionofcertaininstrumentationwasrequired.Inordertoensurethatsafetyinjectionisinitiatedandreactorcoolantsystempressurecanbemonitored,certaininstrumentationcablesforpressurizerpressure,pressurizerlevel,andreactorcoolantwide-rangepressurewerereroutedfromthebasementleveltotheintermediatefloorelevationofcontainment.Thismodificationwascoordinatedwiththe10CFR50,AppendixR,fireprotectionreview.3.6.1.3.2.6CHARGINGLINE',The2-in.charginglineisfedfrompositivedisplacementpumpsandisahigh-energylineoveritsentirelengthinsidecontainment.Thenormalchargingpathisthroughtheregenerativeheatexchangerflowcontrolvalveandcheckvalvenearcold-legB.Analternativepathisthroughtheregenerativeheatexchanger,flowcontrolvalve,andcheckvalvenearhot-legB.Breaksinthelinesbetweenthecheckvalvesandthecontainmentwallwouldproducenopipewhiporsignificantimpingementbecauseofthelackofasustainedhigh-energysourcefromeitherendoftherupture,assumingcreditistakenforcheckvalveoperability.Lossofchargingflowwillresultinaminorlossofreactorcoolantsysteminventorythroughthereactorcoolantpumpseals.ThislosscanbecompensatedforbyalternatechargingortheconsequencescanbemitigatedbytheEmergencyCoreCoolingSystem(ECCS).TheEmergencyCozeCoolingSystem(ECCS)equipmentwouldnotbeaffectedbecauseofthelackofasustainedhigh-energysourcesupplyingthebreaktocausepipewhiporsignificantimpingement.Thealternatecharginglineisremotefromthebreak.Theeffectsofbreaksbetween"thereactorcoolantsystemandthecheckvalveswillbeasmallloss-of-coolantaccidentwithallwhippingpipesconfinedtotheloopBcompartment.ThemitigationequipmentinsidethecontainmentwhichmaybeusedtomitigateloopBloss-of-coolantaccidentsishigh-pressuresafetyinjectiontoloopA,low-pressuresafetyinjectiontoeithervesselnozzle,containmentspray,andcontainmentfancoolers.Allofthisequipmentisremotefromthebreak,outsidetheloopB3.6-9REV.1312/96 GINNA/UFSARcompartmentwalls.Nounacceptableconsequenceswillresultfromthebreak.Inordertotakecreditfortheoperabilityofthecharginglinecheckvalves,theNRCrequiredthatRG&Econductacheckvalveoperabilitytestingprogram.Inlieuofsuchacommitment,RG&Echosetoprovidesufficientanalysisorcompensatingmeasuressuchthatnocreditforthecheckvalveswasnecessary.AsnotedintheNRCSafetyEvaluationReportforIntegratedPlantSafetyAssessmentReport(IPSAR),Section4.13(Reference9),theeffectsofafailureofthecharginglinecheckvalvesresultinconsequencesidenticaltothoseofaletdownlinebreak.Modifications(instrumentrerouting)forthepostulatedletdownlinebreakwillthusalsoamelioratetheeffectsofthepostulatedcharginglinebreakswithfai.lureofthecheckvalvestooperate.3.6-10REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLAK<)3.6-11REV.1312/96 GINNA/UFSAR3.6.1.3.2.7STEANGENERAToRBLDNDQNNLINEs.The2-in.steamgeneratorblowdownlinesexitfromthesteamgeneratorsatelevation255ft,abovethelowersupportstructurefozthesteamgenerators.Thelinesexitfromtheloopcompartmentsandareroutedabovetheintermediatefloortothecontainmentpenetrations.Abreakineitheroftheblowdownlineswillresultinasmallfeedwaterlinebreakaccident.Auxiliaryfeedwaterisentirelyoutsidecontainment.Otherengineeredsafetyfeatureequipmentwhichmaybeneededtomitigatetheaccident,exceptservicewater(SW)andtwoofthefancoolers,isonthebasementelevationandisseparatedfromtheblowdownlinesbylargereactorcoolantsystemcomponentsteelsupportstructuresandaconcretefloor.Thefancoolersazeonthesameelevationastheblowdownlines.InReference26,apipingstressanalysiswasperformed,whichverifiedthatthehighestpipestressesintheblowdownlinesareinlocationsawayfromthefancoolersandservicewater(SW)lines.Therefore,.byusingtherelaxedcriteriapresentedinGenericLetter87-11anditsattachedBTPMEB3-1(Revision2),considerationofblowdownpipingbreaksinthevicinityofthesecomponentsisnotrequired.Thesteamgeneratorblowdownlinesw'erealsoevaluatedforeffectsonsafety-relatedcabletraysandcondui(:.TheBblowdownlinepassesnearthissafety-relatedcabletrayandconduit.CalculationswereperformedtoevaluatethestressesintheBlineaspartofthepipingSeismicUpgradeProgram.Thestressesinthelinearelowerthan0.8(1.2Sb+SA);thus,breaksneedonlybepostulatedattheterminalendsandthetwointermediatehigheststresslocations.Neitherbreaksattheterminalendsnorattheintermediatehigh-stresslocations,whicharelocatedinsidetheloopcompartments,willdamagerequiredsafety-relatedinstrumentation.Nounacceptableconsequenceswillresultfromasteamgeneratorblowdownlinebreak.3.6.1.3.2.8MAINSTEANANDFEEDNATERLINESThemainsteamandfeedwaterlinesareabovetheoperatingfloorandseparatedbyatleastoneconcretefloorfromallengineeredsafetyfeatureequipmentandpipinginsidecontainment,exceptthecontainment3.6-12REV.1312/96 GINNA/UFSARsprayheadersandsprayrings.Thecontainmentsprayheaders,risingalongthecontainmentwalls,areremoteenoughfromthemainsteamandfeedwaterlinessoasnottobestruckbybrokenlines.Thesprayringsareattachedtothecontainmentdomeandarehighenoughabovethemainsteamandfeedwaterlinesthattheywillnotbestruck.Thetwosteamgeneratorsareonoppositesidesofthecontainment,farenoughapartsothatabrokenpipeononesteamgeneratorwillnotaffecttheother.Thefeedwaterlineshaveasmallersectionmodulusthanthemainsteamlines.Aruptureofafeedwaterlinewillnotcausethemainsteamlinetorupture.Themainsteamandfeedwaterlinesaregenerallyseparatedverticallyby20ftormore.Rupturesinamainsteamlinewhichcouldproducepipewhipwillcausemotionintheplaneofthepipethatwillnotcarryitintothefeedwaterline.Nevertheless,ifamainsteamlineruptureisalsopostulatedtocauseafeedwaterlinebreak,itisnotexpectedthattheconsequenceswouldbeunacceptableorevenmoreseverethanthoseresultingfromjustamainsteamlinerupture.Thetotalmassandenergyreleasewillbesmallerthanforamainsteambreakalonebecausetherewillbenoauxiliaryfeedwaterflowtothebrokenloopandbecausetheaverageenthalpyoftheescapingfluidwillbeless,duetoreducedheattransferduringthetransient.Secondaryfluidwillescapebothassteamandasliquidfeedwaterandwillremovelessheat,thanthemainsteamlinebreakalone.Becauseaneffects-orientedevaluationofthemainsteamandfeedwaterlinescouldnotruleoutthepotentialforarupturedlinestrikingthecontainmentwall,amechanisticevaluationofthemainsteamlinewasperformed.Theanalysismethodsusedmadeevaluationofthemainsteamlineaconservativeenvelopeforbothmainsteamandfeedwaterlineruptureeffectsuponthecontainmentwall.Thethrustforceappliedbytheescapingfluidtothepipewascalculatedbymultiplyingtheinitialpressurebythepipecross-sectionalarea.Thesteamlineforcecalculationthusenvelopedthefeedwaterforcecalculation.TheevaluationofpipewhipeffectoncontainmentwallintegritywasperformedforbothmainsteamlinesAandB.Thepipingstressanalysisresults3.6-13REV.1312/96 GINNA/UFSARfzomtheRG&Eseismicupgradeprogramwereusedintheevaluation.Thepipingbreaklocationswerepostulatedatthefollowinglocations:Terminalendsofpipingrun.b.SectionswhereSp1+SEJ>0.8(1.2Sh+SA),wheretheoccasionalloadsareduetonormalandupset(operating-basisearthquake)conditions.c.Aminimumoftwointermediatelocationsofmaximumstress.SincenoneofthecombinationsSp1+SEexceededthestresslimit,circumferentialbreakswereassumedatthetwointermediatepointsofmaximumstress.Theinstantaneousthrustforcegeneratedbytheflashingsteam-watermixturewascalculatedaccordingtothemethodsdescribedin"StructuralAnalysisandDesignofNuclearPlantFacilities,"J.D.Stevensonetal.,ASCE,1980(Reference10).Thisthrustforceresultsinpipingmomentsthatmayexceedtheultimateplasticmomentatalocalcrosssection.Aplastichingemaybeformedandthekineticmomentofthethrustforcemayacceleratethepipetowardthecontainmentwall,Thedynamiccharacteristicsofthepiperequiredtoevaluateitspenetrationinthecontainmentwallforthoselocationswherethewallisstruckare:1.Thestrikingvelocityofthepipevo.2.Theeffectivepipediameter(i=J4A~/zrwhereACisthecontactarea.3,6-14REV.1312/96 GINNA/UFSAR3.ThepipeweightW.4.ThepipeshapefactorN.Thesevariableswereevaluatedforthepostulatedbreakcases.Intheevaluation,theeffectoftheexistingpipesupportsandthecranestructurewereneglectedtomaximizetheimpactuponthewall.Thisisconservativesincetheserestraintstendtodeceleratethepipemotionand,therefore,decreasethestrikingvelocityvo.Theanalysesevaluatedthestructuralintegrityofthewallconsideringoverallwallresponseandevaluatedthetotalpipepenetrationdepthinthewall.Thecontainmentlinerplatewasnotconsideredintheevaluationofthecontainmentshellintegrity.CharacteristicsofthewallwerebaseduponprestressedconcretedetaileddrawingsfortheR.E.GinnaNuclearPowerPlant.ThemodifiedNationalDefenseResearchCommittee(NDRC)formulawasusedforpenetrationdepthcalculations.Inaddition,theevaluationconsideredtheresponseofthereinforced-concretewallsystemto.resistpenetrationfromadeformablemissile.Thecharacteristicsofthemissilewereusedtodevelopanappliedfore'etime-history'andananalysisfortheoverallresponsetotheforcewascariZedoutasforanimpulsiveload.TheanalyticalmethodsusedareoutlinedinReferenceIO.Theanalysisresultsforpenetrationdepth(Xininches)usingtheNDRCformulawereasfollows:a.ForbreaklocationinmainsteamlineA:X=13.96in.b,ForbreaklocationinmainsteamlineB:X=3.48in.TheanalysisformissilepenetrationintothewallconsideringoverallwallresponseresultedinXm/Xc=1.352.Thisisconsiderablylessthantheallowableductilityratioforimpulseloadsforflexureinstructures.Therectangularimpulseloadconsideredaa.Collapseloadofslab=29,649K.bb.Plastichingemoment=2360inK/in.3.6-15REV.1312/96 GINNA/IJFSARcc.Durationofimpulseload=0:00098sec.Theconclusionoftheanalysiswasthat,evenneglectingthe3/8-in.steellinerplate,structuralintegrityofthecontainmentshellisensured.Mainsteamorfeedwaterlinerupturescouldresultinapipewhipwhichstrikesthecontainmentcranesupportstructure.Thecraneissupportedbyeightverticalcolumnsandhorizontalbracing.supportcolumnwillnotcausethecranetofall.AcompletelossofoneAspartofthemechanisticevaluationdiscussedabove,itwasdeterminedthatthetwohigheststresslocationsbetweentheterminalendsoftheBmainsteamlinewhichwerepostulatedtobreakarenotlocatedalongthepipewhereitpassesbetweenthecranesupports.Breaksattheterminalendsalsowillnotimpactthecranesupports;therefoxe,itwasconcludedthatthedynamiceffectsofamainsteamlinebreakwillnotcausecranefailure.3~6~1~3~2~9REsIDUALHEATREMovALPUMPDIscHARGELINEBreaksinthislineareconsideredonlybetweenthereactorcoolantsystemandtheloopBinnermostisolationvalve(MOV721)insidecontainmentinaccordancewithStandardReviewPlan3.6.1.ThislinesegmentiswithintheloopBcompartment.Pipingupstreamoftheisolationvalvewillnotwhipbecausenosustainedhighenergysourceisconnectedtothepipingduringpoweroperationandmostshutdownoperations.Breaksinthepipingdownstreamoftheisolationvalvewillresultinaloss-of-coolantaccidentwiththepotentialforpipingthatisattachedtothereactorcoolantsystemtowhip.Theisolationvalveandthepipingattachedtoitwillnotwhip.Ifthepipeattachedtothereactorcoolantsystemdoeswhip,itsplaneofmotionwillnotcarryitintoanyreactorcoolantsystemcomponentsupportsandnodamagewillbedonetoequipmentotherthanauxiliarysystemswithintheloopBcompartment.Mitigationequipmentrequiredinsidecontainmentishigh-pressuresafetyinjectiontoloopA,low-pressuresafetyinjectiontoeithervesselnozzle,containmentfancoolers,andcontainmentspray.Allthisequipmentisremotefromthebreakandisisolatedbycompartmentwalls.Nounacceptableconsequenceswillresultfromthepipebreak.3.6-16REV.1312/96 GINNA/UFSAR3.6.1.3.2.10STANDBYAUXILIARYFEEDNATERLINESBreaksareconsideredinthislinebetweenthesteamgeneratorsandthecheckvalvesinsidecontainment.These3-in.linesegmentsazeattachedtothefeedwaterlinesnearthesteamgeneratorsandareabovetheoperatingfloor.Abreakintheselineswillresultinasmallfeedwaterlinebreak.AuxiliaryfeedwaterflowtotheunbrokensteamgeneratorIfeedwaterlinewillnotbeaffected.Alloftheengineeredsafetyfeatureequipmentisremotefromtheselines.Nounac-ceptableconsequenceswill,resultfromabreakintheselines.3.6.1.3.2.11AccUNULATORLINEsANDBRANGHLINEsTheaccumulatorbranchlinesgreaterthan1-in.diameteraretwo2-in.levelinstrumenttaps,one2-in.linetothereactorcoolantdraintank,andone2-in.high-pressuresafetyinjectiondischargelineconnectedtoeachaccumulatorlineinjectingtothereactorcoolantsystem.Duringcooperation,whentheaccumulatorsarepressurized,thelinestothereactorcoolantdraintankareisolatedapproximately5ftfromtheaccumulatortanks.Theinstrumenttaplinesrunverticallyalongthesideoftheaccumulatortanks.Thesafetyinjectionlinesdischargeintotheaccumulatorlinesneartheshieldwalloutsideeachcompartmentwithacheckvalveintheline10ftorlessfromthepointofintersectionwiththeaccumulatorline.Breachoftheaccumulatorlineduetoasafetyinjectionlinepipebreakwillnotresultinaloss-of-coolantaccidentbecauseofthecheckvalvesinsidethecompartment.Thesafetyinjec'tionlines,ifbroken,couldimpactorimpingeuponthe4-in.low-pressuresafetyinjectionlines;however,thesectionmodulusofthelow-pressuresafetyinjectionlines,shownonTable3.6-3,islargerthanthatofthesafetyinjectionlines.Thelow-pressuresafetyinjectionlineswillnotbedamagedtotheextentthatlossoffunctionoccursandcheckvalvesinthelineswillmaintainthereactorcoolantsystempressureboundary.Operationandshutdownoftheplantcanbeaccomplishedusingthenormalchargingandletdownpaths,whichareremotefromthesebreaklocations,orbychargingandletdownthroughthereactorcoolantpumpseals.SealinjectiontothereactorcoolantpumpApassesthroughtheareacontainingthesafetyinjection3.6-17REV.1312/96 GINNA/UFSARbranchlinetoloopA;however,thesealinjectionlinehasachargersectionmodulusthanthesafetyinjectionlineandwillnotincurdamagethatwillcauselossoffunctionasaresultofthebreak.Breaksinthe10-in.accumulatorlinesinsidethe'loopcompartmentsbetweenthereactorcoolantsystemandtheaccumulatorlinecheckvalveswillresultina1'oss-of-coolantaccident.Theeffectsofpipewhiporimpingementwillbeconfinedtoasingleloopcompartment.Allofthemitigationequipment,includingsafetyinjectiontotheunbrokenloop,low-pressuresafetyinjectiontothevesselnozzles,containmentfancoolers,andcontainmentspray,isoutsidethecompartmentsandremotefromthebreaks.BreaksintheAaccumulatorlinebetweentheaccumulatortankskirtandtheloopcompartmentwallswillnot,bythemselves,resultinalossofprimarycoolant.ThecheckvalvelocatedinsidetheloopBcompartment.willpreventlossofprimarycoolant.Onlyaccumulatorfluidwillbelostasaresultofthebreak.Interactionwithotherequipmentisacceptable,pzovidedtheinteractiondoesnotcauselossofprimaryinventoryorinterferewithmaintainingtheplanti.nasafeshutdowncondition;therefore,equipmentrequiredonlyformitigationofloss-of-coolantaccidentsorlargesecondarysystembreaksneednotremainfunctionalfortheaccumulatorbreak.Thefollowingequipmentwaseliminatedfromconsideration:Containmentsprayline.High-pressuresafetyinjectionline.Low-pressuresafetyinjectionvalvecontrolcircuits.Fancoolers.However,thefollowingequipment.requiredfurtherevaluationandisdiscussedbelow.3.6-18REV.1312/96 GINNA/UFSARLow-pressuresafetyinjectionline.Residualheatremovaloutletline.Instrumentationcircuits.TheAaccumulatorlinestresseshavebeendeterminedintheSeismicPipingUpgradeprogram(Section3.9.2.1.8).Stressesinthelinearelowand,generally,areonly10%to25%ofallowable.Thus,breaksneedonlybedefinedattheterminalendsandatthetwohigheststressintermediatelocations.Thetwoterminalbreaklocationsareatthereactorcoolantloopandinsidetheaccumulatorskirt.Asdiscussedearlier,breaksinsidetheloopcompartmentwillnotaffecttherequiredmitigationequipment.Theterminalendbreakinsidetheaccumulatorskirtwillnotdamageanyequipmentorcircuitsrequiredforsafeshutdown.Twointermediatebreaklocationshavebeenexaminedbaseduponthehigheststresslocations.OneoftheselocationsisinsidetheloopBcompartmentwherenointeractions.withsurroundingequipmentwillresultinadverseeffects.Thesecondintermediatelocationisnearthemotor-operatedaccumulatorisolationvalve.Thestressatthislocationislessthan4000psi.Theallowablestressisgreaterthan27,000psi.'hestressatthispointissolowthatabreakatthislocationshouldnotbepostulated.However,toensurethatnocrackwoulddevelopinthislinethatcouldpropagateinanunstablemannerintoalargebreak,RG&Eperformedafracturemechanicsevaluationforthisportionoftheline.ThereportoftheevaluationwassubmittedtotheNRCbyReference7;IntheNRCStaffSafetyEvaluationReportdatedJune28,1983(Reference9),theNRCagreedthattheRG&Eanalysisdemonstrated,usingconservativeassumptionsaboutmaterialproperties,thatadequatemarginexistsbetweenthesizeofcracksthatresultina1-gpmleakandthesizeofcracksthatcouldresultinapipebreak.TheNRCalsodeterminedthattheGinnaStationleakdetectioncapabilitiesfordetectingthesecracksizeswereadequateandthattheselineswereincludedinanacceptableinserviceinspectionprograminterval.Thus,nopipebreakwaspostulatedforthisline.Theeffectofabreakintheaccumulatorlevel,measurementtapsonnearbyinstrumentcircuitshasbeenevaluated.IthadbeendeterminedthattheA3.6-19REV.1312/96 GINNA/UIiSARaccumulatorleveltapisinthevicinityofsafety-related.cabletraysandconduit.Abreakinthis2-in.linewasevaluated,and,asaresult,safeshutdowninstrumentationwasreroutedawayfromthedynamiceffectsofthepostulatedbreak.3.6.1.3.2~12AuxILIARYSPRAYLINEThe2-in.auxiliaryspzaylineisnotnormallyusedforpressurecontrolandtheisolationvalveisnormallyclosed.Thereisacheckvalveinsidethepressurizercompartment.Breaksinthelinebetweenthereactorcoolantsystemandthecheckvalvewillresultinasmallloss-of-coolantaccident.Theeffectsofthebreakwillbelimitedtothepzessurizercompartment.Noneoftheengineeredsafetyfeatureequipment,includingsafetyin)ectiontoloopB,willbeaffectedbythebreak.Breaksinthelineupstreamofthecheckvalvewillhaveminimaleffect.Reactorcoolantsystemblowdownispreventedbythecheckvalveandthepositivedisplacementchargingpumpswill.notprovideasustainedhigh-energysourcetocausepipewhipor'significantimpingement.Thelossofchargingflowandmitigationoftheaccidenteffectsas'resultofthebreak.arediscussedinthecharginglineitemabove.Further,afailureinthecheckvalvetooperatewillhaveresultswhichareboundedbytheeffectsofthepostulatedletdownlinebreak.3.6.1.3.2.13REACTQRCooLANTSYsTEMAsymmetricblowdownloadsresultingfromdouble-endedpipebreaksinthemaincoolantlooppipingarenotconsideredasadesignbasisforGinnaStation.Reference22providedtheNRCsafetyevaluationofinformationsubmittedbyWestinghouseforagroupofplantsthatincludedGinnaStationtoresolveUnresolvedSafetyIssueA-2,asymmetricloss-of-coolantaccidentloads.Theevaluationconcludedthattheasymmetricloss-of-coolantaccidentloadsneednotbeconsideredasadesignbasisprovidedcertainconditionsweremet.ByReference22RG&Esubmittedinformationregardingthecapabilityofinstalledleakagedetectionsystemstodetect,'1-gpmleakwithin4hours.ByReference13theNRCconcludedthattheleakagedetectionsystemsatGinnaStationmetthecriteriaspecifiedinReferenceIl.SeeSection5.4.11.1.2.3.6-20REV.1312/96 GINNA/UFSAR(j.NTENTZONALLYLEFTBLANK)3,6-21REV.1312/96 GINNA/UIiSAR3.6.1.3.2.14PREssURIzERSURGELINE~The10-in.pressurizersurgelineconnectshot-legBtothebottomofthepressurizer.ThelineisrunalongtheloopBcompartmentwallandanexteriorverticalwalloftherefueli.ngcanalbeforeturningupwardtoconnecttothebottomofthepressurizer,Ruptureofthelinemayrequireoperationofthenearbylow-pressuresafetyinjection,high-pressuresafetyinjection,andcontainmentspraytomitigatetheloss-of-coolantaccident.Theselines,althoughnearby,aremostlyroutedontheundersideoftherefuelingcanalwhichisabovethebasementfloor.Thesurgelineandmitigatingequipmentpipesareonwallswhicharenormaltoeachotheratanexteriorcornerovermostofthepiperun.Mostjets,althoughnot,alljets,fromthesurgelinewillnotimpingeuponthemitigatingequipmentlines.Thepressurizersurgelinewasthereforeanalyzedusingfracturemechanics.ThereportoftheanalysiswassubmittedtotheNRCbyReference8.Thecrackopeningareascorrespondingtoleakrateswhichareeasilydetectable'(approximately10gpm)are0.010in.orless.Thetotaljetforcefromanopeningthissizeinthereactorcoolantsystem,whichoperatesatapproximately2235psig,islessthan25lb.Thisforcecanbeeasilywithstoodbythepipingsystemsrequiredtomitigatesmallloss-of-coolantaccidents.LeakagewillbedetectedbycontainmentsumpAlevel(LT-2039,LT-2044,andsumppumpactuation),containmentairparticulatemonitor(R-11),andcontainmentradiogasmonitor(R-12),andbyotherinstalledsystemsincludinghumiditymonitorsandcondensatecollectionfromthecontainmentrecirculationfancoolers(CRFC).Leakageratesof10gpmormorewillalsobeeasilydetectedbymonitoringpressurizerlevelandchargingpumpspeed.Therefore,ithasbeenconcludedthatleakagefromcracksinthesesystemscanbedetectedusingpresentlyinstalledleakdetectionsystems,andthatcracksizesresultingin.thesedetectableleakswillremainstable.3~6~1~3.2.15PREssURIzERSPRAYLINESThepressurizerspraynozzleisfed.with3-in.linesfromeachloopthroughisolationvalvesinsidethepressurizercompartment.Theline3.6-22REV.1312/96 GINNA/UFSARfromloopBisroutedentirelywithintheloopBcompartmentandthepressurizercompartment.ThelinefromloopApassesoutsidetheloopAcompartmentneartheaccumulatorandhigh-pressuresafetyinjectionlinestoloopAandnearalow-pressuresafetyinjectionandcontain-mentspraylinebeforeenteringthepressurizercompartment.Aruptureineitherofthepressurizerspraylineswillresultinasmallloss-of-coolantaccident.Alloftheselines,withtheexceptionofthe2-in.portionofthehigh-pressuresafetyinjectionline,haveasectionmodulusgreaterthanthatofthepressurizerspraylineandwillnotincurdamagethatwillcauselossoffunction.Forabreakineitherofthespraylines,themitigatingequipmentinsidecontainmentwhichmayberequiredissafetyinjectiontotheunbrokenloop,containmentfancoolers,andcontainmentspray,SafetyinjectiontotheunbrokenloopandthecontainmentfancoolersareremotefromallbreaklocationsinbothloopAandloopBspraylines.ThecontainmentspraylinesareremotefrombreaksintheloopBlinebutcouldbeaffectedbytheloopAline.'hecontainmentspraylinehasalargersectionmodulusthanthepressurizerspraylineandwillnotincurdamagethatwillcauselossoffunction.Reachrodsforthecontainmentsumpvalvestothelow-pressuresafetyinjectionpumpsuctionlinesarealsointheareawhichmaybeaffectedbytheloopAsprayline.Thesevalvesareopenandareinactiveintheaccidentsequence.Ifbreaksoccurwhere'amagecanbedonetothesumpvalvereachrods,flowmayberestricted.AmechanisticevaluationofthepressurizerspraylinefromloopA,whichpassesnearthereachrods,wasperformedandshowedthatbreaksneednotbepostulatednearthereachrods~3.6.1.3.2.16PREssURIzERSAFETYANDRELIEFLINESCThehigh-energyportionsofthepressurizersafetyandreliefpipingaxethelinesfromthetopofthepressurizertothesafetyandreliefvalves.Theselinesarealllessthan10ftinlengthandarecontainedentirelywithinthepressurizercompartment.Rupturesinanyofthelineswillresultinasmallhot-legloss-of-coolantaccident.Alloftheengineeredsafetyfeatureequipmentrequiredtomitigatetheeffectsofthebreakis3.6-23REV.1312/96 GINNA/UFSARoutsidethecompartmentandwillnotbeaffected.Nounacceptableconsequenceswillresultfromthepipebreak.3.6-24REV.1312/96 GINNA/UFSAR3.6.2POSTULATEDPIPINGFAILURESINFLUIDSYSTEMSOUTSIDECONTAINMENT3.6.2.1IntroductionandSummary3.6'.1.1InitialEvaluationInDecember1972,theNRCstaffsentletterstoallpowerreactorlicenseesrequestingananalysisoftheeffectsofpostulatedfailuresofhigh-energylinesoutsideofcontainment(Reference1).Inresponsetothatletter,RG&Esubmittedanevaluationoftheeffectsofpostulatedhigh-energylinebreaksoutsideofcontainmentonNovember1,1973.(Reference14).Asaresultofthatevaluationandsubsequentfollowupevaluations,RG&Ecommittedtoperformstationmodificationsandtoimplementanaugmentedinserviceinspectionprogramtomitigatetheeffectsofpostulatedpipebreaks(Reference15).TheaugmentedinserviceinspectionprogramwasapprovedbytheNRCinAmendment7totheGinnaoperatinglicense(DPR-18)byletterdatedMay14,1975(Reference16).Thestationmodificationswereasfollows:1.Anaugmentedinserviceinspectionprogramwasinitiatedtofurtherreducetheprobabilityofamainfeedwaterorsteamlinerupture.2.Astandbyauxiliaryfeedwatersystemwas(SAFN)addedtofurtherimprovesteamgeneratorfeedwaterreliabilityandspecificallytosubstituteforthepreferredauxiliaryfeedwaterinthelowprobabilitythatpreftrredauxiliaryfeedwaterpumpsaredamagedduetonearbyhigh-energypipebreakswithintheintermediatebuilding.3.,CheckvalveswereaddedtoexistingpreferredauxiliaryfeedwaterlinesneartheconnectionstothemainfeedwaterlinestominimizethepreferredauxiliaryfeedwaterpipingthatispressurizedduringMODES1and2.4.Twoparallelremotelyoperatedvalveswereaddedtoacrossoverlinebetweenthemotor-drivenpumpdischargestoprovideadditionalauxiliaryfeedwatermakeupcapability.5.Alargemetalplatejetshieldwasinstalledunderneaththemainsteamheaderintheintermediatebuildingtoprotecttheservicewater(SW)pipingfromapostulatedcrackinthemainsteamline.Jetimpingementshieldswereaddedtoprotectvitalequipmentincludingcontainmentisolationvalves,motorgenerators,transferswitches,cabletrays,terminalboxesandwiring,pressuretransmitters,andreactortripbreakers.Also,jetshieldswereaddedtoprotectmainsteambypassvalvesandpiping,andatotherlocations.3.6-25REV.1312/96 GINNA/UFSARInstrumentcablingwasrelocatedtoareasthatwillnotbeaffectedbypostulatedhigh-energypipebreaks.7.'heheatingandventilationsystemwasmodifiedtowithstandpostulatedhigh-energypipebreakswithoutfurtherendangeringthecapabilitytosafelyshutdowntheplant.Theeastendofthecabletunnelthatconnectstheintermediatebuildingandtherelay'roomofthecontrolbuildingwassealedtopreventdamagethatcouldresultfromapostulatedhigh-energylinebreak.9.10.12.13.Openingsaroundpipesandcabletraysthatpassthroughtheareasrequiredforsafeshutdownoftheplantweresealedtopreventsteamleakageintotheseareasintheunlikelyeventofsteamorfeedwaterlinebreaksintheturbinebuilding.Steamgeneratorblowdownlineswerereroutedthroughthesubbasementtominimizethepotentiallydetrimentaleffectsofbreaksintheselineswithintheintermediatebuilding.Sufficientfloorgratingwasinstalledatmanholestoguardagainstfloodingofsafety-relatedequipmentintheintermediatebuildingresultingfromanassumedfeedwaterlinebreak.Steamlinepressureandfeedwaterflowtransmitterswererelocatedawayfromthelocationsthatcouldbeaffectedbypostulatedhigh-enezgylinebreaks.Pressure-shieldingsteeldiaphragmwallswereinstalledatthecontrolbuilding-turbinebuildingwallandatthedieselbuilding-turbinebuildingwalltoensurecontinuedoperabilityofsafety-relatedequipmentfollowingapostulatedhigh-energypipebreakintheturbinebuilding.3.6.2.1.2SstematicEvaluationProramReevaluationInaddition,certainmodificationsweremadeasaresultoftheSystematicEvaluationProgramreevaluationoftheeffectsofpipebreaksoutsidecontainment.Thesearesummarizedbelow:Hoseconnectionsfromthefirewatersystemhavebeeninstalledtoprovideanalternatesourceofcoolingwaterforthedieselgener-atorsthatisindependentoftheservicewater(SW)system.Thisrespondedtothepossibledamagetothepowersuppliestoallservicewater(SW)pumpsfromhigh-ormoderate-energylinebreaksinthescreenhouse.Thedoorwaybetweenthemechanicalequipmentroomandthebatteryroomswasreplacedwithawatertightwall.Awaterreliefvalvewasprovidedbetweenthemechanicalequipmentroomandtheturbinebuilding.Theevaluationhadshownthatamoderate-energylinecrackintheservicewater(SW)pipinglocatedinthemechanicalequipmentroomcouldresultinthefloodingofbothbattery.rooms.3.6-26REV.1312/96 GINNA/UFSAR3.Pipewhipandjetimpingementprotectionisbeingprovidedforthe6-in.heatingsteamlineriserlocatedontheintermediateflooroftheauxiliarybuildingtoprotectsafety-relatedelectricalequipmentinthevicinityoftheriser.4.Heatingsteamlineshavebeenremovedfromtherelayroomandairhandlingroominordertomaintainamildenvironmentforthepurposeofenvironmentalqualificationofelectricalequipmentintherooms.5.Asparechargingpumpbreakerandfeederbreakerforbus16,storedinanareanotsubjecttoaheatingorprocesssteamlinebreak,andsparepowercablewhichcanberoutedfrombus16tothechargingpumphavebeenprovidedinordertorestorepowertothechargingpumpintheeventthateitherthebreakersorpowerfeedsfailasaresultofapostulatedbreakin,thesteamheatinglineintheauxiliarybuilding.SeeSection3.6.2.5.1.8fordetailsofthesemodifications.3.6-27REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.6-28REV.1312/96 GINNA/UFSAR3.6.2.2EvaluationProcedure3.6.2.2.1InitialEvaluationTheinitialevaluationinresponsetotheNRCDecember1972letter(Referencej)wasaccomplishedasdiscussedinthefollowingparagraphs.Pipinglinesweredividedintothreecategories:highenergy,moderateenergy,andlowenergy.High-energylineswerethosethatexceeded200'Fand275psig,moderate-energylineswerethosethatexceeded200'For275psig,andlow-energylineswerethosethatdidnotexceed200'For275psig.Onlythoselinesthatwereinthesamebuildingozintheproximityofsafety-relatedequipmentrequiredfozsafeshutdownwereconsideredinthereview.Thelinesreviewedarelistedasfollows:LinesConsideredMainsteamFeedwaterPreferredauxiliaryfeedwaterSteamsupplytopreferredauxiliaryfeedwaterpumpturbineSteamgeneratorblowdownCharginglinePlantsteamResidualheatremovalLocationIntermediateandturbinebuildingsIntermediateandturbinebuildingsIntermediatebuildingIntermediatebuildingIntermediateandturbinebuildingsAuxiliarybuildingAuxiliary,intermediate,andturbinebuildingsAuxiliarybuildingEnergyLevelHighHighLowLowHighModerateModerateLowThelinesconsideredhighenergywereevaluatedfortheeffectsoflongitudinalandcircumferential(full-diameter)breaks.Thelinesconsideredmoderateenergywereevaluatedfortheeffectsofcrackbreaks.Thelinesconsideredlowenergywerenotpostulatedtobreak.Theeffectsoffull-diameterbreaksconsideredwerewhip,jetimpingement,pressurization,environmental,andflooding.Theeffectsofcrackbreaksconsideredwere)etimpingementandenvironmental.3.6-29REV.1312/96 GINNA/UFSARMain.steamandfeedwaterlinepostulatedbreakswerereviewedtodeterminetheequipmentrequiredtobringtheplanttoasafeshutdown.Shouldamajormainsteamlinebreakoccur,reactortrip,preferredauxiliaryfeedwatersystemoperation,andisolationofmainsteamandmainfeedwaterwouldbeinitiated.Followingamajorfeedwaterlinebreak,reactortripandpreferredauxiliaryfeedwatersystemoperationwouldbeinitiated.Forthesepostulatedbreaks,coolingwouldbeaccomplishedbyfeedwateradditionthroughthepreferredauxiliaryfeedwatersystem.Theequipmentrequiredtobringtheplanttoasafeshutdownfollowingmainsteamozfeedwaterpiperuptureswaslisted.3'.2.2.2SstematicEvaluationProramReevaluationThereevaluationsoftheeffectsofpipebreaksoutsidecontainment,inresponsetoSEPTopicIII-5.B,involvedthecomparisonofGinnaStation.withthethencurrentNRCcriteriaforpipebreaksoutsidecontainmentassetforthinStandardReviewPlans3.6.1and3.6.2andBranchTechnicalPositionsASB3-1andMEB3-1.Currentcriteriadefinesahigh-energyfluidsystemasonewherethemaximumoperatingtemperatureisgreaterthanorequalto200'Forthemaximumoperatingpressureisgreaterthanozequalto275psig.Intheinitial(1972)zeview,ahigh-energysystemwasoneinwhichbothtemperature'ndpressureexceed200'Fand275psig,respectively.Allotherpipingisconsideredmoderate-energypipinginaccordancewithcurrentcriteria.Aneffects-orientedapproachtodeterminetheacceptabilityofplantresponsetopipebreaks,i.e.,eachstructure,system,component,andpowersupplywhichmustfunctiontomitigatetheeffectsofthepipebreakandtosafelyshutdowntheplantwasexaminedtodetermineitssusceptibilitytotheeffectsofthepostulatedbreak.Breakeffectsconsideredwerecompartmentpressurization,pipewhip,jetimpingement,spray,flooding,andenvironmentalconditionsoftemperature,pressure,andhumidity.TheSEPreevaluationofpipebreaksoutsidecontainmentconsideredthezoneswithintheplantwhichcontainsystemsrequiredforsafeshutdownand/orsystemsrequiredtomitigatetheeffectsofpostulatedpipebreaks.Thesezoneswerethescreenhouse,diesel-generatorrooms,intermediatebuilding(elevation293,278,and253ft),turbinebuilding(elevation289,271,and253ft),controlroom,relayroom,batteryrooms,mechanicalequipmentroom,andauxiliarybuilding(elevation271,253,and235ft).3.6-30REV.1312/96 GINNA/UFSARThesafeshutdownsystemswhichwereexaminedfromthestandpointofprotectionfrompipebreakeffectswereidentifiedintheNRCstaff'sSEPSafeShutdownReviewforGinna.Thesesystemsincludedthefollowing:ReactorTripSystem(RTS).Auxiliaryfeedwatersystem.Mainsteamsafety,isolation,andatmosphericdumpvalves.Servicewater(SW)system.Chemicalandvolumecontrolsystem.Componentcoolingwater(CCW)system.Residualheatremovalsystem.Instrumentationforshutdownandcooldown.Emergencypower(acanddc)andcontrolpowerfortheabovesystemsandcomponents.TheevaluationswereconductedasdescribedinSections3.6.2'and3'.2.4todeterminethepossiblebreaklocationsandeffectsassociatedwiththepostulatedfailureofthepiping.3,6-31REV.1312/96 GINNA/UFSAR3.6.2.3AnalysisCriteria3.6.2.3.1December18,1972,AECLetterEvaluationCriteriaForthoselinesoutsidecontainmentamechanisticanalysistodeterminebreaklocationswasperformedinresponsetotheAECletterofDecember18,1972(Reference1),requestinggeneralinformationrelatedtotheconsiderationoftheeffectsofpipingsystembreaksoutsidecontainment.Thecriteriausedinthatevaluationispresentedbelow.Themechanisticevaluationwasasfollows.Design-basisbreaksinstraightorcurvedpipesofa4-in.diameterorgreaterwereassumedtobeeitherlongitu-dinalorcircumferential,withthebreakareaequaltotheflowareaofthepipe.Design-basisbreaksatbranchpointswereassumedtobecircumferentialinthebranchandlongitudinalinthezunwiththebreakareaequaltotheflowareaofthebranch.Thecriteziausedtoselectdesign-basisbreaklocationswereasfollows:A.Postulatedbreaksatterminalpoints(anchored,rigidattachmentto~equipment,oranchorextensions).B.Postulatedbreaksatbranchpoints.C.Postulatedintermediatebreaksbetweenterminalpointswhenevertheprimarystress(pressure,weight,operating-basisearthquake)plussecondarystress(thermal)exceeds808of(Sh+SA),orwheresecondarystressaloneexceeds80%ofSA.D.Asaminimum,twointermediatebreaksbetweenterminalpointswereselectedatlocationsofhigheststress.Crackbreakswerepostulatedatadverselocationsinmoderateandhigh-energypipingandwereassumedtobeone-halfthepipediameterinlengthandone-halfthepipewallthicknessinwidth.3.6.2.3.2SstematicEvaluationPzoramCriteriaInresponsetotheNRCSEPreview,aneffects-orientedapproachwasusedtoreevaluatetheanalysesanditsconformancewithcurrentcriteria.ThecriteriautilizedinthisapproachwasselectedfromthatusedintheNRCStandardReviewPlans3.6.1and3.6.2andassociatedBranchTechnical3,G-32REV.1312/96 GINNA/UFSARPositionsASB3-1andMEB3-1(Revision1).Excerptsfromthatcriteriaareeasfollows:3.6.2~3.2~1HIGH-ENERGYFLUIDSYSTEHSPIPING1.BreaksandcracksneednotbepostulatedinthosepoztionsofpipingfromcontainmentwalltoandincludingtheinboardoroutboardisolationvalvesprovidedtheymeettherequirementsoftheASMECode,SectionIII,SubarticleNE-1120andtheadditionaldesignrequirementsspecifiedinMEB3-1.2.BreaksinClass1piping(ASMECode,SectionIII)shouldbeAtterminalends.b.AtintermediatelocationswherethemaximumstressrangeascalculatedbyEquation10andeitherEquations12or13ofparagraphNB-3653,ASMEIII,exceeds2.4Sm.ceAtintermediatelocationswherethecumulativeusagefactorexceeds0.1.d.Iftwointermediatelocationscannotbedeterminedbyb.andc.above,twohigheststresslocationsbasedonEquation10shouldbeselected.Ifthepipingrunhas,onlyonechangeornochange'f,direction,onlyoneintermediatelocationshouldbepostulated.Asaresultofpipingreanalysis,thehigheststresslocationsmaybeshifted;however,theinitiallydeterminedintermediatebreaklocationsneednotbechangedunlessoneofthefollowingconditionsexist.(Note:ThisrequirementwaschangedbyGenericLetter87-11,whicheliminatedarbitrarypipebreaklocations.)Maximumstressrangesorcumulativeusagefactorsexceedthethresholdlevelsinb.orc.above(2)Achangeisrequiredinpipeparameterssuchasmajordifferencesinpipesize,wallthickness,androuting.(3)Breaksatthenewhigheststresslocationsaresignificantlyapartfromtheoriginallocationsandresultinconsequencestosafety-relatedsystemsrequiringadditionalsafetypzotection.Insuchconditions,thenewlydeterminedhigheststresslocationsshouldbetheintermediatebreaklocations.3,6-33REV.1312/96 GINNA/UFSAR3.Withtheexceptionsofthoseportionsofpipingidentifiedinitem1above,breaksinClass2and3piping(ASMECode,SectionIII)shouldbepostulatedatthefollowinglocationsinthoseportionsofeachpipingandbranchrun.a.Atterminalends.Atintermediatelocationsselectedbyoneofthefollowingcriteria:(1)Ateachpipefitting(e.g.,elbow,tee,cross,flange,andnonstandardfitting),weldedattachment,andvalve.Wherethepipingcontainsnofittings,weldedattachments,orvalves,atonelocationateachextremeofthepipingrunadjacenttotheprotectivestructure.(2)Ateachlocationwherethestressesexceed0.8(1.2Sh+SA)butatnotlessthantwoseparatedlocationschosenonthebasisofhigheststress.Wherethepipingconsistsofastraightrunwithoutfittings,weldedattachments,orvalves,andallstressesarebelow0.8(1.2Sh+SA),aminimumofonelocationchosenonthebasisofhigheststress.Asaresultofpipingreanalysis,thehigheststresslocationsmaybeshiftedfromoriginalcalculations.(Note:ThisrequirementwaschangedbyGenericLetter87-11,whichelimi.natedarbitrarypipebreaklocations.)4.Breaksinnonnuclearclasspipingshouldbepostulatedatthefollowinglocationsineachpipingorbranchrun.(Note:ThisrequirementwaschangedbyGeneri.cLetter87-11,whicheliminatedarbitrarypipebreaklocations.)a~Atterminalendsofthe'uniflocatedadjacenttotheprotectivestructure.Ateachintermediatepipefitting,weldedattachment,andvalve.3.6-34REV.1312/96 GINNA/VIiSAR5.Ifastructureseparatesahigh-energylinefromanessentialcomponent,thatseparatingstructureshouldbedesignedtowithstand,theconsequencesofthepipebreakinthehigh-energylinewhichproducesthegreatesteffectatthestructureirrespectiveofthefactthattheabovecriteriamightnotrequiresuchabreaklocationtobepostulated.6.LeakagecracksshouldbepostulatedinASMECode,SectionIII,Class1pipingwherethestressrangebyEquation10ofParagraphNB-3653exceeds1.2Sm,andinClass2and3ornonsafetyclasspipingwherethestressbythesumofEquations9and10ofParagraphNC/ND3652exceeds0.4(1.2Sh+SA).Non-safetyclasspipingwhichhasnotbeenevaluatedtoobtainsimilarstressinformationshallhavecrackspostulatedatlocationsthatresultinthemostsevereenvironmentalconsequence.(Note:ThisrequirementwaschangedbyGenericLetter87-11,whicheliminatedarbitrarypipebreaklocations.)3.6.2.3.2.2MQDERATE-ENERGYFLUIDSYSTEMPIPING1.FluidSystemsSeparatedfromEssentialSystemsandComponents.Areviewofthepipinglayoutandplantarrangementdrawingsshouldclearlyshowthattheeffectsofthrough-wallleakagecracksatanylocationinpipingdesignedtoseismicandnonseismicstandardsareisolatedorphysicallyremotefromessentialsystemsandcomponents.2.FluidSystemPipinginContainmentPenetrationAreas.Leakagecracksneednotbepostulatedinthoseportionsofpipingfromcontainmentwalltoandincludingtheinboardoroutboardisolationvalves,providedtheymeettherequirementsoftheASMECode,SectionIII,SubarticleNE-1120,andazedesignedsuchthatthemaximumstressrangedoesnotexceed0.4(1.2Sh+SA)forASMECode,SectionIII,Class2piping.3.FluidSystemsinAreasOtherThanContainmentPenetration.Through-wallleakagecracksshouldbepostulatedinfluidsystempipinglocatedadjacenttostructures,systems,orcomponentsimportanttosafety,exceptwhereexemptedbySection3.6.2.3.2.1,item1aboveanditem4beloworwherethemaximumstressrangeintheseportionsofClass1piping(ASMECode,Section1II)islessthan1.2Sm,andClass2or3ornonsafetyclasspipingislessthan0.4(1.2Sh+SA).Thecracksshouldbepostulatedtooccurindividuallyatlocationsthatresultinthemaximumeffectsfromfluidsprayingandflooding,withtheconsequenthazardsorenvironmentalconditionsdeveloped.3.6-35REV.1312/96 GINNA/UFSARb.Through-wallleakagecracksshouldbepostulatedinfluidsystempipingdesignedtononseismicstandardsasnecessarytosatisfythatthefunctionalcapabilityofessentialsystemsandcomponentswillbemaintainedafterthepipingfailure,assumingaconcurzentsingleactivefailure.4.Moderate-EnergyFluidSystemsinProximitytoHigh-EnergyFluidSystems.Cracksneednotbepostulatedinmoderate-energyfluidsystempipinglocatedinanareainwhichabreakinhigh-energyfluidsystempipingispostulated,providedsuchcrackswouldnotresultinmorelimitingenvironmentalconditionsthanthehigh-energypipingbreak.5.FluidSystemsQualifyingasHigh-EnergyorModerate-EnergySystems.'hrough-wallleakagecracksinsteadofbreaksmaybepostulatedinthepipingofthosefluidsystemsthatqualifyashigh-energyfluidsystemsforonlyshortoperationalperiodsbutqualifyasmoderate-energyfluidsystemsforthemajoropezationalperiod.3.6.2.3.2.3TYPEoFBREAKSANDLEAKAGE'RAGKsINFLUIDSYsTEMPIPING1.CircumferentialPipeBreaks.Thefollowingcircumferentialbreaksshouldbepostulatedindividually.inhigh-energyfluidsystempipingatthelocationsspecifiedabove.aeCircumferentialbreaksshouldbepostulatedinfluidsystempipingandbranchrunsexceedinganominalpipesizeof1in.,exceptwherethemaximumstressrangeexceedsthelimitsspecifiedinSection3'.2.3.2.1,items2and3,butthecircumferentialstressrangeisatleast1.5timestheaxialstressrange.Instrumentlines,1-in.andlessnominalpipeortubingsizeshouldmeettheprovisionsofRegulatoryGuide1.11.b.Wherebreaklocationsareselectedwithoutthebenefitofstresscalculations,breaksshouldbepostulatedatthepipingweldstoeachfitting,valve,orweldedattachment.Alternatively,asinglebreaklocationatthesectionofmaximumstressrangemaybeselectedasdeterminedbydetailedstressanalyses(e.g.,finiteelementanalyses)ortestsonapipefitting.c~Circumferentialbreaksshouldbeassumedtoresultinpipeseveranceandseparationamountingtoatleastaone-diameterlateraldisplacementoftherupturedpipingsectionsunlessphysicallylimitedbypipingrestraints,structuralmembers,orpipingstiffnessasmaybedemonstratedbyinelasticlimitanalysis(e.g.,aplastichingeinthepipingisnotdevelopedunderloading).3,6-36REV.1312/96 GINNAIUFSARd.Thedynamicforceofthejetdischargeatthebreaklocationshouldbebasedontheeffectivecross-sectionalflowareaofthepipeandon.acalculatedfluidpressureasmodifiedbyananalyticallyorexperimentallydeterminedthrustcoefficient.Limitedpipedisplacementatthebreaklocation,linerestrictions,flowlimiters,positivepumpcontrolledflow,andtheabsenceofenergyreservoirsmaybetakenintoaccount,asapplicable,inthereductionofjetdischarge.e.Pipewhippingshouldbeassumedtooccurintheplanedefinedbythepipinggeometryandconfiguration,andtoinitiatepipemovementinthedirectionofthejetreaction.2.LongitudinalPipeBreaks.Thefollowinglongitudinalbreaksshouldbepostulatedinhigh-energyfluidsystempipingatthelocationsofthecircumferentialbreaksspecifiedinitem1above.a~Longitudinalbreaksinfluidsystempipingandbranchrunsshouldbepostulatedinnominalpipesizes4-in.andlarger,exceptwherethemaximumstressrangeexceedsthelimitsspecifiedinSection3.6.2.3'.1,items1and2,buttheaxialstressrangeisatleast1,5timesthecircumferentialstressrange.b.LongitudinalbreaksneednotbepostulatedatTerminalends.(2)Atintermediatelocationswherethecriterionforaminimumnumberofbreaklocationsmustbesatisfied.(3)Longitudinalbreaksshouldbeassumedtoresultinanaxialsplitwithoutpipeseverance.Splitsshouldbeoriented(butnotconcurrently)attwodiametricallyopposedpointsonthepipingcircumferencesuchthatthejetreactionscauseout-of-planeblendingofthepipingconfiguration.Alternatively,asinglesplitmaybeassumedatthesectionofhighesttensilestressasdeterminedbydetailedstressanalysis(e.g.,finiteelementanalysis)~(4)Thedynamicforceofthefluidjetdischargeshouldbebasedonacircularorelliptical(2Dx1/2D)breakareaequaltotheeffectivecross-sectionalflowareaofthepipeatthebreaklocationandonacalculatedfluidpressuremodifiedbyananalyticallyorexperimentallydeterminedthrustcoefficientasdeterminedforacircumferentialbreakatthesamelocation.Linerestrictions,flowlimiters,positivepump-controlledflow,andtheabsenceofenergyreservoirsmaybetakenintoaccount,asapplicable,inthereductionofjetdischarge.3.6-37REV.1312/96 GINNA/UIiSAR(5)Pipingmovementsshouldbeassumedtooccurinthedirectionofthejetreactionunlesslimitedbystzucturalmembers,pipingrestraints,orpipingstiffnessasdemonstratedbyinelasticlimitanalysis.3.Through-WallLeakageCracks.Thefollowingthrough-wallleakagecracksshouldbepostulatedinmoderate-energyfluidsystempipingatthelocationsspecifiedinSection3.6.2.3.2.2above.(Note:ThisrequirementwaschangedbyGenericLetter87-11'a~Cracksshouldbepostulatedinmoderate-enezgyfluidsystempipingandbranchrunsexceedinganominalpipesizeof1in.Thesecracksshouldbepostulatedindividuallyatlocationsthatresultinthemostsevereenvironmentalconsequences.b.Fluidflowfromacrackshouldbebasedonacircularopeningofareaequaltothatofarectangleone-halfpipediameterinlengthandone-halfpipewallthicknessinwidth.cTheflowfromthecrackshouldbeassumedtoresultinanenvironmentthatwetsallunprotectedcomponentswithinthecompartment,withconsequentfloodingin.thecompartmentandcommunicatingcompartments.Floodingeffectsshouldbedeterminedonthebasisofaconservativelyestimatedtimeperiodrequiredtoeffectcorrectiveactions.'.6.2.3.2.4AssUHpTIQNSInanalyzingtheeffectsofpostulatedpipingfailures,thefollowingassumptionsshouldbemadewithregardtotheoperabilityofsystemsandcomponents:1.Offsitepowershouldbeassumedtobeunavailableifatripoftheturbine-generatorsystemorReactorTripSystem(RTS)isadirectconsequenceofapostulatedpipingfailure.2.Asingleactivecomponentfailureshouldbeassumedinsystemsusedto.mitigateconsequencesofthepostulatedpipingfailureandtoshutdownthereactor,exceptasnotedinitem3below.Thesingleactivecomponentfailureisassumedtooccurinadditiontothepostulatedpipingfailureandanydirectconsequencesofthepipingfailure,suchasunittripandlossofoffsitepower.3.Wherethepostulatedpipingfailureisassumedtooccurinone,two,ormoreredundanttrainsofadual-purposemoderate-energyessentialsystem(i.e.,onerequiredtooperateduringnormalplantconditionsaswellastoshutdownthereactorandmitigatetheconsequencesofthepipingfailure),singlefailuresofcomponentsintheothertrainortrainsofthatsystemneednotbeassumed,providedthefollowing:3.6-38REV.1312/96 GINNA/UFSARThesystemisdesignedtoSeismicCategoryIstandards,ispoweredfrombothoffsiteandonsitesources,andisconstructed,operated,andinspectedtoqualityassurance,testing,andinserviceinspectionstandardsappropriatefornuclearsafetysystems.Examplesofsystemsthatmay,'insomeplantdesigns,qualifyasdual-purposeessentialsystemsareservicewater(SW)systems,componentcoolingsystems,andresidualheatremovalsystems.4.Allavailablesystems,includingthoseactuatedbyoperatoractions,maybeemployedtomitigatetheconsequencesofapostulatedpipingfailure.Injudgingtheavailabilityofsystems,accountshouldbetakenofthepostulatedfailureanditsdirectconsequencessuchasunittripandlossofoffsitepower,andoftheassumedsingleactivecomponentfailureanditsdirectconsequences.Thefeasibilityofcarryingoutoperatoractionsshouldbejudgedonthebasisofampletimeandadequateaccesstoequipmentbeingavailablefortheproposedactions.3.6.2.3.2.5EPEECTsoiPIPINGFAILUREl.Theeffectsofapostulatedpipingfailure,includingenvironmentalconditionsresultingfromtheescapeofcontainedfluids,shouldnotprecludehabitabilityofthecontrolroomoraccesstosurroundingareasimportanttothesafecontrolofreactoroperationsneededtocopewiththeconsequencesofthepipingfailure.2.ThefunctionalcapabilityofessentialsystemsandcomponentsshouldbemaintainedafterafailureofpipingnotdesignedtoSeismicCategoryIstandards,assumingaconcurrentsingleactivefailure.3.6-39REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.640REV.1312/96 GINNA/UFSAR3.6.2.4AnalysisinResponsetoDecember18,1972,AECLetter3.6.2.4.1RutureLoadAnalsisZnresponsetotheDecember18,1972,AECletter,theruptureloadsforthemainsteamandfeedwatezpipingsystemsoutsidecontainmentweregeneratedforeachpostulatedpipebreaklocationconsideringcircumferentialandlongitudinalpiperuptures.Analyticalconsiderationsincludedthenumericalsolutionofthecontinuity,momentum,andenergy,andstateequationsforeveryvolumeassociatedwiththebreakusingthecomputercodedsolutionPRTHRUST.Furthermore,theeffectsofbothwaveandblowdownthrustcomponentswereconsideredandcreditwastakenforflowlimiters,pipefriction,andrestrictionsintheline.lnthedevelopmentofthethrust-timecurves,itwasalsopostulatedthatthebreakoccurredinstantaneouslyandthatthefluidconditioninsidethepipewastakenasthemaximumpressurizationconditions.Theruptureloadswerecalculateduptoamaximumtimeof0.5secaftertherupture.Thrustforcesonbranchlineswereassumedas1.26PAforsteamand2.0PAforfluidwherePistheinitialpipestagnationpressureandAisthepipeflowareawhennoblowdowncalculationisused.3'.2.4.2MainSteamSstemLoadAnalsisThetransientsweredevelopedforthethrustforcesduringthefirst0.5secafterthelongitudinalandcircumferentialbreaksinthemainsteampipingsystem.TheseresultsweregeneratedassumingthatthestopandMainSteamnon-returncheckvalveinthesteamlinesremaininactiveduringthefirst0.5sec,Theresultsindicatedthatthemaximumthrustforceisdevelopedwithinthefirst0.0005secafterthebreak.Thispeakistheresultofrapidaccelerationofthesteamatthebreaklocationbeforethelimitingconditionimposedbyhydrodynamicandthermodynamicaspectsoftheflowfieldare-achieved.Asthedepressurizationwavemovesupstreamtheflowratedecreasesandconsequentlytheforcesdecreaserapidlyreachingastatewhereitbecomesrelativelyconstant.Thesedatawereusedasforcingfunctionsininvestigatingthedynamicresponseoftherupturedpipe.3.6<1REV.1312/96 GINNA/UFSAR3.6.2.4.3FeedwaterSstemLoadAnalsisThethrustforcesonthefeedwaterpipingduetocircumferentialandlongitudinalbreakswerecalculatedforthefirst0.5secafterthepiperupture.Certainbreakswereevaluatedbasedontwofluidconditionsinsidethefeedwaterpiping,i.e.,MODE3(HotShutdown)andfullload,becauseoftheuncertaintyastowhichconditionrepresentsthemostseverecase.Themostsevereloadingprofilewasusedinfurtherdevelopmentsoftheinvestigation.3.6.2.4.4JetEminementLoadAnalsisCircumferentialandlongitudinalbreaksinthemainsteamandfeedwatezpipingresult.intheformationofjetswhichmightimpingeonsafety-relatedstructures,systems,orcomponents.Theconfigurationofthejetarisingfromlongitudinalandcrackbreaksissuchthatthejetaxisisperpendiculartotheaxisofthepipeandtheorientationisaboutanypointalongthecircumferenceofthepipe.Forjetsgeneratedbycircumferentialbreaks,thejet,axisisparalleltothepipeaxisandtheorientationisalwaysinthedirectionoftheaxisoftherupturedpipe.Forjetimpingementeffectsonknowntargets,thefollowingfactorswereconsidered:~Breaktype,geometry,andorientationofjetaxis.~Jetexpansionof25degrees.~Targetgeometryanddistancefromjet.~Fluidconditions.3.6.2.4.5PieWhiAnalsisforMainSteamandFeedwaterPiin3.6.2~4.5~1AHALYTzcALMETHQDSThepipingdynamicresponseanalyseswereperformedusingthePZPERUPcomputerprogram.Thisprogramperformsnonlinearelastic-plasticpipewhipanalysesofthree-dimensionalpipingsystemssubjectedtodynamictime-historyforanyfunctions.Thepipingismodeledasanassemblageofstraightandcurved-beamfiniteelements.Theanalysisisconductedbyintegratingthesystemequationsofmotionwithtime.3.6-42REV.1312/96 GINNA/6FSAREachpipeelementisinitiallyrepresentedintheprogramasacombinationofthreesubelements,whosesumstiffnessequalstheelasticstiffnessofthepipe.Duringtheanalysis,ifcomputedloadsatapointaredetectedtoexceedtheyieldcapacityofthepipe,oneofthethreesubelementsishinged;thus,thestiffnessoftheremainingtwosubelementscorrespondstothestrainhardeningmodulusofthematerial.Theanalysisisthencontinued:ifthecomputedloadsarelaterdetectedtoexceedtheultimatecapacityofthepipe,thesecondsubelementishinged,leavingasinglesubelementwithaverysmallstiffness.Predictionofaplasticcollapsemechanism,orpipewhip,isbasedondetectionofexcessivedeflections.ThematerialpropertiesusedintheanalysisweretakenfromASMECode,Section1II,forthepipingmaterialsatoperatingtemperatures.Lowerboundmaterialpropertyvalueswereusedtopredictpipingresponse.ThePIPERUPprogramhasthecapabilitytorepresentawithaninitialgapbetweenthepipeanditssupport.usedtomodelconditionsofpipeimpactonstructuralwalls,floors,pipesleeves,andcolumns.EvaluationflexiblesupportThisfeaturewascomponentssuchasofstructuralfailureofsuchcomponentswasbasedonreactionloadscomputedbytheprogram.Incaseswherepipewhipwouldimpactothersafety-relatedequipment,suchascablingandinstrumentation,failureofthatequipmentwasautomaticallyassumedtooccur.Forcircumferential(guillotine)breaks,responseofpipingonbothsidesofthebreakwasconsidered.Forlongitudinalbreaks,loadingatanycriticalorientationaboutthecircumferenceofthepipewasconsidered.ThethermalhydraulicblowdownthrustloadsinputtothepipingdynamicresponseanalyseswereobtainedusingthePRTHRUSTprogram,asdescribedinSection3.6'.4.6.3.6.2.4.5~2RESULTSOFANALYSISTheintermediatebuildingstructurewasshowntobegenerallyincapableofresistingthepipewhipeffectsofmostpostulatedmainsteamandfeedwaterpipebreakswithinthebuilding.Also,analysesofthemain3.643REV.1312/96 GINNA/UFSARsteamandfeedwatexanchorassembliesshowedthattheseelementswouldbeoverstressedduetothebreaks,andreactionsfromtheanchorloadingwereshowntobeexcessiveforthebasicstructuralsteelframingoftheintermediatebuilding.Althoughthecontxolbuildingissomewhatremotefromhigh-energypiping,itwasdeterminedtobepossiblydamagedbyamainsteamlinepipewhipbecausethefacadecolumnswouldnotbeeffectiveinrestrainingthepipewhip.Becauseofthesepotentialeffectsofthepostulatedmainsteamlineandfeedwaterlinebreaks,anaugmentedinserviceinspectionprogramwasproposedbyRG&Eandimplementedtoprotectagainstpotentialdamage.Thisprogramconsistedofradiographicexaminationofallweldsatthedesign-basisbreaklocationsinthemainsteamandfeedwaterlinesandatotherlocationswhereafailurewouldresultinunacceptableconsequences.Presently,volumetrictechniquesareemployed.Theexaminationtechniques,procedures,andinspectionintervalsarebasedontherequirementsofClass2componentsofSectionXIoftheASMECode.Theprogramisbasedon10-yearinspectionintervalswiththecurrentintervalrunningfrom1990to1999.Theextensiveinserviceinspectionprogramisdesignedtoprecludedesignbasesorconsequentialmainsteamorfeedwatezpipebreaks.Certainconsequentialmainsteamandfeedwaterlinebreaksintheturbinebuildingwerealsocalculatedtopossiblyproducepipewhipdamagetotheintermediatebuilding.Thus,thesebreaklocationswereincludedintheaugmentedinserviceinspectionprogram.Modificationstosystems,components,andstructurestoprecludedamagetosafety-relatedequipmentrequiredforsafeshutdownarediscussedinSection3.6.2.1.3.6.2.4.6BlowdownAnalsis36~2~4~6~1MAINSTEAMBLowDowNANALYsIsThethermal-hydraulicanalysisofthemainsteamblowdownwasperformedCutilizingthePRTHRUSTcomputercode.Amodelofthemainsteamanalysiswasconstructedtorepresentthemajorpiecesofequipmentinthemainsteamsystemwiththeirinterconnectingpipingandadjoiningsystems3.6A4REV.1312/96 GINNA/UFSAR(condensateandfeedwater).Themodelincludesinventoriesofsteamandwater,pipingflows,andheatsourcesappliedonacontrolvolumebasis.Mainsteamlinevolumeswereselectedtoaccountforsegmentsbetweentheelbowsoneithersideofthepostulatedbreakpoint.Themainsteamsystemblowdownanalysiswasconductedforboththeshort-termeffects(i.e.,pipethrust)andthefulldurationtransient(compartmentdifferentialpressuresandbuildingenvironment).Theshort-termtransientblowdown(0.5sec)isunaffectedbytheinitiationoftripdevicestomitigatetheconsequencesoftheaccidentduetotheirreactiontime.Theanalysiswasperformedforbreaklocationswheredouble-ended(circumferential)guillotineruptureswerepostulated,aswellasforlongitudinalbreaksequaltothepipecross-sectionalflowarea.Inallcases,abreakflowdischargecoefficientof1.0wasusedformaximumblowdownflowrates.Thelong-termblowdownisacontinuationoftheshoxt-termanalysisconsideringtheeffectoftripdeviceactivation.Thelong-termtransientwascarriedoutassumingtheworst-casesingleactivecomponentfailure.Theresultsofthisanalysiswereusedtodeterminestructuralloadings.3~6.2~4~6.2FEEDwATERBLowDowNANALYsIsThePRTHRUSTdigitalcomputercodewasusedinanalyzingthefeedwaterblowdowntransients.Thesystemwasrepresentedbyanassemblageofcontrolvolumesconnectedbyflowpathsorjunctions.Theeffectsofvalves,pumps,heatexchangers,andcheckvalvesareincludedinthecode.Inaddition,theprogramallowstheoperationofactivedevicestobetriggeredbytimeorbyphysicalsignalsuchaspressuze.Thefeedwaterlinesweredividedsothatvolumesizeandjunctionlocationwouldprovideoptimumsystemrepresentationfortheparticularcasebeinganalyzed.Itwasassumedthatfozthedurationoftheseanalyses,thefeedwaterpumpswouldcontinuetooperateandthatflowwouldbeafunctionofhead(untilautomatictripswereinitiated).Itwasfurtherassumedthatforthedurationoftheseanalyses,anunlimitedsupplyofwateratconstantpressurewasavailableatthefeedwaterpumpsuction.Bothmainfeedwater3.645REV.1312/96 GINNA/UIiSARpumpswerecombinedandmodeledasasinglepump.Theresultsofthisanalysiswereusedtodeterminestructuralloadings.3.6.2.4.7ComartmentPressurizationAnalsis3.6.2.4.7.1MAINSTEANLINERUPTURESThepressure-temperaturetransientsresultingfromaruptureofamainsteamlineintheintermediateandturbinebuildingswereinvestigated.Thesetransientswerecalculatedbyusingthemainsteamblowdownmodeltoprovidemassandenergyflowintocontrolvolumesrepresentingtheintermediatebuildingandturbinebuildingwithassociatedventareas.ThepressuretransientswereusedinthestructuralevaluationdescribedinSubsection3'.2.5.1.3~6~2~4~7~2BUILDINGPREssURIEATIQNFQRABRANGHLINERUPTURESmallbranchconnectionsnotincludedintheinserviceinspectionprogramhadtobeconsideredfromabuildingpressurizationstandpoint.Theworst-casebranchrupturewouldbea6-in.line(0.181ft)leadingfrom2themainsteamheader.Thesteady-statesteamflowthatwouldissuefromthepostulatedbreak(277ibm/sec)isconsideredtotransferallofitslatentheatofcondensationtothesurroundingairwithintheintermediatebuilding.Theresultantincreaseofairpressurewoulddrivereliefflowoutofthebuildingventareasonanincrementalsteady-statebasis.Whilethismethodofanalysisisextremelyconservative(becauserelativehumidityisnottakenintoaccount),itprovidesanupperboundforintermediatebuildingpressure.Withanintermediatebuildingventareaof155ft,thismethodofanalysisgives0.08psimaximumintermediate2buildingpressure,whichisbelowtheallowablelimit.Buildingpressurizationwithintheturbinebuildingduetoabranchlineruptureisnegligiblysmall;therefore,nodamageispredictedfortheadjacentcontrolbuildingorintermediatebuildingfromabranchruptureorcrackbreakwithintheturbinebuilding.SeeSection3.6.2.5.1.4forresultsofthestructuralanalysisforpressurizationoftheturbinebuilding.3.6-46REV.1312/96 GINNA/UFSAR3.6.2.4.8FloodinAnalsis3.6.2~4.8.1INTERMEDIATEBUILDINGFLooDINGAn'intermediatebuildingfloodinganalysisduetoapostulatedfeedsystemrupturewasperformed.Withslightmodifications(newdrainageprovided)thereisnodangerofdamagetonuclearsafety-relatedequipmentduetofloodingcausedbyafeedwaterline.rupture(4.2-in.maximumlevelontheoperatingfloor).TheNRCwasalsoconcernedaboutpossiblefloodingintheintermediatebuildingsubbasementduetoapostulatedhigh-ormoderate-energylinefailure.RochesterGasandElectricconsideredthisnottobeofconcernbecausepresentroutinewalk-throughinspectionsoftheintermediatebuildingwoulddetectapipeleaklongbeforetherewasanydangeroffloodingsafety-relatedequipment.Ifthepostulatedleakoccurredatalevelabovethesubbasement,leakageintothesubbasementviathefloordrainswouldbeobviousduringtheroutineonce-per-shiftwalk-throughs.Evenalargesecondary-sidebreakwouldresultinonlya2-ftdepthofwaterinthesubbasement.Iftheleakwereintheservicewater(SW)pipinglocatedinthesubbasementoftheintermediatebuilding,therewouldbeasignificanttimeintervalbetweentheinitiationofthecrackandthefloodingofsafety-relatedequipment.Theintermediatebuildingsubbasementhasavolumeofapproximately50,000ft.Witha3servicewater(SW)leakrateofabout585gpm,itwouldtakeover10.5hourstobeginfloodingthebasementlevel.Itwasconsideredthatasizableleakratesuchasthiswouldbedetectedvisiblyoraudiblybypersonnelduringthewalkthzoughs,orbypersonnelmonitoringthecontrolboard(the585-gpmleakwouldbeasignificantfraction(10%)ofthesezvicewater(SW)pumpflow).Thereazetwosumppumpsinthesubbasement.Sumphighwaterlevelalarmssoundinthewatertreatmentroom.Evenifthebasementelevationwasflooded,safeshutdownwouldnotbeprevented.Basedonthisandtheotherinformationprovidedabove,theNRCstaffconcludedthatthereareadequatemeanstowarnoffloodingconditionsinthesubbasementand,therefore,nomodificationsazerequired.3.6A7REV.1312/96 3.6.2~4.8.2SCREENHOUSEANDTURBZNEBUZLDZNGFLOODZNGProtectionisprovidedtoprotectsafety-relatedequipmentinthescreenhouseandtheturbinebuildingfromfloodingbecauseofleaksinthecirculatingwatersystem.Theprotectionconsistsoffloatswitchesinthecirculatingwaterpumppitinthescreenhouseandinthecondenserpitintheturbinehallwithredundanttwo-out-of-threelogicfortrippingthecirculatingwaterpumpsandpermanentlyinstalledSeismicCategoryIdikesinthescreenhouseandturbinebuildingtocontainthewaterthathasescapedfromthecirculatingwatersystem.ThedesignoftheseprotectivefeaturesisdescribedinSection10.6.2.9.3.6-48REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.6-49REV.1312/96 GINNA/UFSAR3.6.2.5SystematicEvaluationProgramAnalysis3.6.2.5.1ZoneReevaluationPerformedasPartoftheSstematicEvaluationProramReviewTheSystematicEvaluationProgramincludedareviewofthefacilitywithrespecttocurrentStandardReviewPlancriteriaaswellasareevaluationoftheoriginalcriteriaandresolutions.3.6.2.5.1.1SGREENHQUSEServicewater(SW)systemorfiresystemmoderateenergylinecracksandheatingsteamlinebreakscouldresultinthelossoftheservicewater(SW)systembydamaging480-Velectricalbuses17and18ortheirassociatedelectricalmotorcontrolcentersandcabling.Lossoftheservicewater(SW)systemwouldresultinaplanttripbecauseofthelossofseveralcomponentscooledbytheservicewater(SW)systemsuchasthereactorfeedpumplube-oilsystems,circulatingwaterpumps,andthecomponentcoolingwater(CCW)system.Inaccordancewithcurrentcriteria,apipebreakthatresultsinareactororturbinetripresults,inturn,inalossofoffsitepower.Tosupplyacpowerfollowingalossofoffsitepower,redundantemergencydieselgeneratorsareavailable;however,thedieselgeneratorsaresuppliedwithcoolingwaterbytheservicewater(SW)system.Therefore,thepostulatedpipebreakcouldcausethetotallossofacpowerattheplant,andreactorcoredecayheatremovalwouldbedependentontheturbine-drivenauxiliaryfeedwaterpump.Toconductaplantcooldownfollowingafirethatcausesalossoftheservicewater(SW)systemwithnooffsitepoweravailable,RG&Ehasdevelopedaprocedure,whichrequirestheinstallationoffirehosesfromtheyardhydrantsystemtoprovidethedieselgeneratorswithcoolingwaterandtoprovideadditionalwatertothepreferredauxiliaryandstandbyauxiliaryfeedwaterpumpsforsteamgeneratormakeupwater.Whilethefirehosesarebeinginstalled,theturbine-drivenauxiliaryfeedwaterpump(TDAFW)canbeusedtoaddwaterfromthecondensatestoragetank(CST)tothesteamgeneratorsfordecayheatremoval.Afteradieselgeneratorisoperable,additionalpreferredauxiliaryfeedwaterpumpsandthereactorcoolantsystemchargingpumpscanbeoperatedasrequired.3.6-50REV.1312/96 GINNA/UFSARTheprocedurecanbeusedforthepipebreakcaseevenifthetuzbine-drivenauxiliaryfeedpumpisassumedtofail.Withoutfeedwateraddition,thesteamgeneratorscanremovedecayheatfozapproximately50minutesbeforetheyareboileddry.Thistimecouldbeusedtomakeupthetemporarydiesel-generatorcoolingconnectionstostartadieselgeneratorandamotor-drivenauxiliaryfeedpump.TheNRCconcludedthatanyfurthermodificationofthescreenhousetoprovideadditionalprotectionfrompipebreakeffectsforservicewater(SW)systemcomponentsorforbuses17and18isnotrequired(Reference17)(SEPTopicIII-5.B).3.6.2.5.1.2INTERMEDIATEBUILDINGFloodingfrompipebreaksintheintermediatebuildingwouldflowviaopenstairwaysandhatchgratingstothesubbasementoftheintermediatebuilding.Sufficientdrainageareaisavailablesothatnoappreciablebuildupofwaterwouldoccuronanyflooroftheintermediatebuildingexceptforthesubbasement.Noequipmentnecessaryforsafeshutdownorfloodmitigationislocatedonthislevel,butifthefloodingconditionwentunchecked,theintermediatebuilding253-ftelevationcouldbeaffected.Equipmentonthiselevationincludesthepreferredauxiliaryfeedwaterpumpsandthereactortripbreakers.Ifthisequipmentwereflooded,areactortripwouldoccurandthepreferredauxiliaryfeedwatersystemwouldbeinoperable.Thestandbyauxiliaryfeedwatersystem,whichisnotlocatedintheintermediatebuilding,wouldstillbeoperableevenifalossofoffsitepoweroccuzred.Postulatedrupturesofthemainsteamorfeedwaterlinesintheintermediatebuildingwouldcausepressurizationwithinthebuilding.Theintermediatebuildingisasteelframestructurewithwallsconstructedofconcreteblocksandfloorslabsof5-in.-thickreinforcedconcrete.ThepeakpressurefollowingthepipebreakwasdeterminedbyusingthePRTHRUSTcomputerprogram.Consideringtheexistingventareaofapproximately140ft,thepressureinsidetheintermediatebuildingreachesamaximumof15.6psigat1.5secafterthe36-in.mainsteamheaderbreaks.3.6-51REV.1312/96 GINNA/VFSARlnanalyzingthereinforced-concreteslabssubjecttopressurization,yieldlinetheorywasemployedincalculatingtheirmaximumloadcarryingcapacity.Thistheorytakesintoconsiderationtheinelasticbehaviorofthereinforced-concreteelements.Thelimitloadcapacitiesofthesteelbeamsandgirdersweredeterminedbyplasticanalysis.Theconcreteblockwallswereanalyzedasplateswithanultimatenetcompressivestrengthofmasonry(f'm)of528psi,perASTMC90andatensilestrengthof(Ux6x~f'm)equalto207psi.Thelateraluniformpressurerequiredtofailthewallinbendingwithtensioncontrollingwasdeterminedfortheblockwalls.Thecriticalshearwasalsochecked.Theroofoftheintermediatebuildingisconstructedofgalvanizedsteeldecking.Localbucklinggovernsthepressurecapacityofthesepanels.Allstructuralcomponentsintheintermediatebuilding,withthefollowingexceptions,arecapableofwithstandingtheinternalpressuresinthebuildingcausedbythepostulatedbreaks.Theexceptionsaretheconcreteblockwallsandthebeamsanddeckingofthehighroofoftheintermediatebuilding.Thepressurecapacitiesofthesecomponentsare1.0psiand0.85psi,respectively,ascomparedtothepredictedpressuredifferentialsof15.6psiand15.47psi.Becauseofthesevereconsequencesofpostulatedmainsteamandmainfeedlinebreaksintheintermediatebuildingandbecauseplantmodificationstopreventtheseconsequenceswerenotpractical,atwo-partprogramtoreducethevulnerabilityoftheplanttoahigh-energylinebreakintheintermediatebuildingwasundertaken.Thefirstpartoftheprogramwastheaugmentedradiographicinspectionprogramtoprovideaddedassurancethatpostulatedlargemainsteamandmainfeedwaterlinebreakswouldnotoccur.ThesecondpartoftheRG&Eprogramwastomoveessentialequipmentfromtheintermediatebuildingintolocationsunaffectedbya3.6-52REV.1312/96 GINNA/UIiSARhigh-energylinebreakintheintermediatebuilding,shieldequipmentfromtheeffectsofthehigh-energylinebreaks,orprovideadditionalequipment.Theintentofthisprogramistoprecludethelarge(greaterthantheequivalentof6-in.diameter)breaksandacceptablymitigatethesmallbreaks.AsummaryofplantmodificationsinstalledandequipmentrelocatedisprovidedinSection3.6.2.1.3.6.2.5.1.3TvREINEBUILDINGMAINSTEAMANDMAINFEEDwATERLINEBREAKsPostulatedmainsteamandmainfeedwatersystemhigh-energylinebreaksintheturbinebuildingcouldresultinthe24-in.mainsteamlineswhippingintotheintermediatebuildingatanelevationwhichcouldresultindamagetotheBmainsteamlinesafetyvalves,theatmosphericdumpvalves,andtheturbine-.drivenauxiliaryfeedwaterpump(TDAFN)steamsupplyline.Also,breaksinthemainsteamlineormainfeedwaterlinescouldresultinpressurizationoftheturbinebuildingitself.ThepressurizationoftheturbinebuildingcouldadverselyaffectthoseareasadjacenttotheturbinebuildinginwhichsafeshutdownorpipebreakmitigatingequipmentislocatedEnordertoreducetheprobabilityofpostulatedmainsteamandmainfeedwaterlinebreaksintheturbinebuildingatwo-partprogramsimilartothatdescribedfortheintermediatebuildingwasundertaken.TheNRC-approvedaugmentedinspectionprogramwasappliedintheturbinebuildingtomainsteamlineslargerthana12-in.diameterandseverallocationsonthe20-in.-diametermainfeedwaterheader.Theinspectionprogramlimitsthebreakswhichmustbeconsideredtobea12-in.mainsteamor20-in.mainfeedwaterlinebreak,whicharethelargestpotentialdouble-endedbreaksinlocationswhichazenotinspected.Ofthese,the20-in.mainfeedwaterlineismorelimiting.Toprotecttheareasadjacenttotheturbinebuildingfromtheeffectsofhigh-energylinebreaks,pressurediaphragmwallsbetweentheturbinebuildingandthecontrolroom,relayroom,batteryrooms,mechanicalequipmentroom,anddiesel-generatorroomswereinstalled.Thedesigndifferentialpressurefozthesewallsis0.7psifozthecontrolroomand1.14psifortheotherspaces.3.6-53REV.1312/96 GINNA/UFSARThepressureresultingfroma20-in.mainfeedwateror12-in.mainsteamlinebreakintheturbinebuildingissufficient,tocausefailureoftheturbinebuilding/intermediatebuildingconcreteblockwalls(designpressure0.13psid).Ifthesewallsfailed,thefollowingsystemsandcomponentscouldbedamagedbyfallingcinderblocksoradverseenvironmentalconditions:onecontainmentpurgeexhaustfanontheintermediatebuilding298-ftelevation,thepreferredauxiliaryfeedwatezsystemsteamsupplyvalvesontheintermediatebuilding278-ftelevation,andthepreferredauxiliaryfeedwatersystemturbine-drivenpump,reactortripbreakers,andreactorrodcontrolmotor-generatorsetsontheintermediatebuilding253-ftelevation.Thepurgeexhaustfanisnotrequiredtofunctiontomitigateahigh-energylinebreakoutsidecontainment.Therodcontrolmotorgeneratorsandreactortripbreakersfailsafeifdamagedandwouldnotpreventareactortrip(coreshutdown).Thepreferredauxiliaryfeedwatersystemfunctionisrequiredfozasafeshutdown;however,thestandbyauxiliaryfeedwatersystemhasbeeninstalledtoaccomplishthisfunctionifahigh-energylinebreakdisablesthepreferredauxiliaryfeedwatersystem.Theturbine-drivenauxiliaryfeedwatersystempumpisnotspecificallyrequiredtooperatefollowingapostulatedhigh-energylinebreaksince,evenifoffsitepowerwereassumedtobelost,theredundantemergencydieselgeneratorswouldbeavailabletopowerthetwostandbyauxiliaryfeedwatersystempumpsortheremainingtwopreferredauxiliaryfeedwatersystempumps,allofwhicharedrivenbyelectricmotors.Onlyoneofthesefourmotordrivenpumpsisrequiredforaplantshutdownandcooldown.3.6.2.5.1.4STRUcTURALANALYSIsQFTHETURBINEBUILDINGFQRPRESSURIEATIoNTheturbinebuildingisasteelframestructurewithwallsconstructedofgirtsandgalvanizedsheetsteel.Floorslabsaremadeofreinforcedconcrete.Thetwolargesthigh-energylineswithintheturbinebuildingarethe36-in.andthe24-in.mainsteamlines.However,thesepipesarecoveredbytheaugmentedinserviceinspectionprogramwhichprecludesallbreaks3.6-54REV.1312/96 G1NNA/UFSARexceptthecrackbreak.Thisprogramreducesthemaximumbreakareaforthesepipestounder0.10ft.2Thetwolargesthigh-energylinessubjecttoadouble-endedrupturearethe20-in.feedwaterlineandthe12-in.mainsteamline,bothonthemezzanineleveloftheturbinebuilding.Thesetwolineswereanalyzedindetailtodeterminetheirmassandenergyreleasefollowingapostulatedpiperupture(Reference18).Theworst-casebreakofthe20-in.feedwaterlineisadouble-endedrupture('l.755ft)whiletheplantisoperatingatfullpowerconditions.2Tomaximizemassandenergyrelease,thebreaklocationchosenwasinthe20-in.linejustdownstream'oftheNo.5feedwaterheaters.Thislocationmaximizestheavailableenergyandinventoryfortheshort-tennreleasefromthefeedwatersystem.DeterminationofthismassandenergyreleasewasmadeusingtheFLASH(References19and20)computercodeseriesassuminga1-msecbreakopeningtimeandMoodyflowwitha1.0multiplier.Sincetheturbinebuildingpressurizationisashort-termphenomena(lessthan1.0sec),onlyshort-termmassandenergyreleasefromthefeedwaterbreakisrequired.Therefore,noprovisionwasmadeforfeedwaterpumptripozMainFeedwaterRegulatingValve(MFRV)closure.Tofurtherensuremaximizingthemassandenergyrelease,asinglefailureofonedownstreamcheckvalve,3992or3993,wasassumedandnocreditwastakenfortheflowlimiterjustupstreamofthesecheckvalves.Adouble-endedrupture(0.71ft)ofthe12-in.mainsteamdumptothecondenserwhiletheplantisintheMODE3(HotShutdown)conditionwasanalyzedastheworstmainsteamlinebreak.Thebreakthe36-in.header.MassandenergyreleasefromthisbreakwasalsodeterminedusingtheFLASHcomputercodeseriesassuminga1-msecbreakopeningtimeandMoodyflowwitha1.0multipliez.Sinceonlyshort-termmassandenergyreleasedataisrequired,noprovisionforsafetyvalveclosureswas.made.Tomaximizetheavailableinventoryfromthecondensersideofthebreak,checkvalveRN12Awasassumedtofail.3.6-55REV.1312/96 GINNA/UFSARTheturbinebuildingresponsetoapiperupturewithinthebuildingitselfwasanalyzedusingathree-nodemodelandtheCOMPARE(Reference2Z)computercode.Boththefeedwaterandthemainsteambreaksoccurinthewesternhalfofthemezzanineleveloftheturbinebuilding.Nodeoneofthemodelrepresentedboththemezzanineandthebasementlevelsoftheturbinebuilding,sinceflowareabetweenthetwolevelsislarge.Theoperatingleveloftheturbinebuildingwasrepresentedbynodetwo.Theoutsideenvironmentcorrespondedtonodethree.Resultsoftheanalysisshowedthatthe20-in.feedwaterbreakscausethemostseverepressuretransientswithintheturbinebuilding.Calculatedpressuredifferentialsweredeterminedtobe0.46psidfortheoperatingleveland0.85psidforthemezzanine/basementlevel.Pressuredifferentialsusedforstructuraldesignoftheturbinebuildingsteeldiaphragmwallsare0.70psidfortheoperatingleveland1.14psidfor.themezzanine/basementlevels(seeitem13inSection3'.2.1).Thesteeldiaphragmwallsareatnearlyoppositeendsoftheturbinebuildingfromthehigh-energypipingandthereforenotsubjecttodamagefrompipewhiporjetimpingementthatcouldaccompanythehigh-energypipebreak.TheNRCconcludedasaresultoftheirsafetyevaluationofthestructuraladequacyoftheturbinebuildingsteeldiaphragmwallsandoftheresultsoftheanalysisreported.inReference18thatthestructuralcriteriaanddesignmethodsforthesteeldiaphragmwallsareadequatetoensuresafeshutdownofthereactorfollowingahigh-energypipebreakintheturbinebuilding(Reference22).Inadditiontoinstallationofthesteeldiaphragmwallsatthecontxolbuilding-turbinebuildingwallandthedieselgeneratorbuilding-turbinebuildingwall,theturbinebuildingstructurewasreinforcedtowithstandthepressurizationresultingfromthe20-in.feedwaterand12-in.mainsteamdumplinebreaks.3.6-56REV.1312/96 GINNA/VFSAR(INTENTIONALLYLEFTBLANK)3.6-57REV.1312/96 GINNA/UFSAR3.6.2.5.1.5BATTERYROOM/MECHANICALEQUIPMENTROOMFLOODING.Aservicewater(SN)systemorfiremainsystempostulatedfailureinthemechanicalequipmentroomwasconsideredcapableoffloodingbothbatteryroomsandresultinalossofallemergencydcpower.Nosumplevelorfloodalaxmsareinstalledinthisspaceorinthebatteryrooms,whichwereoriginallyconnectedtothemechanicalequipmentroomvianormallyclosednonwatertightdoors.Thenon-watertightdoorbetweentheairhandlingroomandtheBbatteryroomhasbeenreplacedbyawalltoprecludefloodingthebatteryroomsandawaterreliefvalvehasbeeninstalledbetweenthemechanicalequipmentroomandtheturbinebuilding.3.6~2~5~1.6AUXILIARYFEEDNATERLZNEBREAKSONTHE253-FTELEVATIONOETHEXNTERMEDZATEBUILDINGThepreferredauxiliaryfeedwatersystemdischargelinesfromthepumpsintheintermediatebuilding(253-ftelevation)totheBmainfeedwaterheaderrunalongthenorthwalloftheintermediatebuildingatapproximatelythe270-ftelevation.Abreakinthisline,whichisahigh-energyline,couldresultinpipewhipox'etimpingementoncabletraysandcontainmentelectx'icalpenetrationsinthataiea.(Thesteamlinesfoztheturbine-drivenauxiliaryfeedwatersystempumparealsointhisareabutarenotconsideredhigh-energylinessincetheyarenotpressurizedduringnormalplantconditions.)However,sincethestandbyauxiliaryfeedwatersystemisroutedcompletelyseparatefromthepreferredauxiliaryfeedwatersystem,safeshutdowncouldbeaccomplishedfollowingpostulatedauxiliaryfeedwaterlinebreaks'.6.2.5.1.7RELAYROOMANDAIRHANDLINGROOMCrackbreaksintheplantheatingsteamlinescouldcausehightemperaturesandhighhumidityintheserooms.Theeffectsofthesecrackbreakswerefoundtobeacceptablebecauseoftheexistenceoftemperaturemonitorsforthedetectionofthefailure.However,RG&Edecidedthatitwouldbenecessarytomaintaintheroomasamildenvironmentforthepurposeoftheenvironmentalqualificationofelectricalequipmentasrequiredby10CFR50.49.Therefore,theheatingsteamlineswerecutandcappedorweldedshutoutsidethecontrolbuildingthusremovingthe3.6-58REV.i312/96 GINNA/UFSARsourceofhighenergyfromtherooms.Thesteamheatersintheairhandlingroomwerereplacedwithelectricresistanceheaters.3.6.2.5.1.8AvxTLIARYBUzLD?NGPostulatedbreaksinsteamheatingorprocesssteamlinesintheauxiliarybuildinginthevicinityofsafety-relatedequipment,suchasanelectricalbus,motorcontrolcenter,orcabletraysandconduit,couldaffecttheoperabilityofrequiredsafeshutdownequipmentduetodynamiceffects(jetimpingementandpipewhip).Also,thegeneralsteamenvironment,althoughnotexpectedtobeseverethroughouttheentireauxiliarybuilding,couldpossiblyaffectadditionalequipmentrequiredforsafeplantshutdown.Inordertomaintainasafeplantshutdown,theturbine-drivenauxiliaryfeedwatersystem,whichwouldnotbeaffectedbyahigh-energylinebreakintheauxiliarybuilding,wouldbeavailabletomaintainpreferredauxiliaryfeedwaterflowtothesteamgenerators,andthusmaintainasafeshutdowncondition.Thecondensatestoragetanks(CST)havesufficientcapacitytomaintainauxiliaryfeedwaterflowfozatleast2hours.TheothersourcesofauxiliaryfeedwaterdescribedinSection3.6.2.5.1.1wouldalsobeavailable,sincetheyarelocatedawayfromtheauxiliarybuilding.Thus,auxiliaryfeedwaterandcoolingwaterwouldbeavailableindefinitely.Inadditiontoauxiliaryfeedwateraddition,asourceofchargingflowwouldberequiredwithinapproximately24hourstomaintaininventory.Forthispurpose,thechargingpumpswouldbeused.Thechargingpumpsazelocatedinthebasementoftheauxiliarybuilding,inaseparateconcretezoom,andthusareprotectedfromthedirecteffectsofasteamlinebreak.Fireprotectionmodificationsforthechargingroomsealoffmajoropeningsinthedoors,windows,andventilationpenetrations.Thesebar'riersaredesignedforthepostulatedenvironmentaleffectsofasteamlinebreak(150'F,0.1psig).Thus,nosignificantsteamenvironmentwouldaffectthechargingpumps.Furthermore,thechargingpumpcomponentsrequiredtowithstandtheadverseenvironment,per10CFR50.49,havemarginfozoperationevenfollowingexposuretotheseeffects.Anyvalvesrequiredtoinjectflowcouldbemanipulatedmanually.The3.6-59REV.1312/96 GINNA/UFSARonlyequipmentthatmightbeaffectedbydirecteffectsofthesteamlinebreakscouldbethechargingpumpandpowersupplybreakersatbus16(intermediateflooroftheauxiliarybuilding),andpowerandcontrolcablinginthebasementoftheauxiliarybuilding.Inordertoresolvetheseissues,RG&Eprovidedpipewhipandjetimpingementpzotectionfoxthesteamlinerisers,locatedontheintermediateflooroftheauxiliarybuilding.RochesterGasandElectricCorporationhasprovided:1.Asparechargingpumpbreakerandapowersupplybreakerforbus16,whicharestoredoutsidetheauxiliarybuildinginanareanotsubjecttoaheatingozprocesssteamlinebreak.2.Sparepowercable,whichcouldbezouted'frombus16tothechargingpump3.Thenecessaryprocedurestoimplement1.and2.above.Thecontrolwiringandthedcpowersourceforthebreakersarenotrequiredbecauseeachbreakercanbeclosedmanually.Itisestimatedthattheauxiliarybuildingcouldberestoredtoambientconditionsandthebreakerandpowercablingforthechargingpumpcouldbeinstalledinlessthan8hours.Sincechargingflowisnotrequiredforapproximately24hours,sufficientmarginexists.TheNRChasfoundtheproposedmethodofachievingsafeshutdownandtheproposedactionstocountertheeffectsofthepostulatedpipebreaksintheauxiliarybuildingtobeacceptable(Reference27).Pursuanttotheenvironmentalqualificationprogramforelectricalequipmentinresponseto10CFR50.49,thechargingpumpbreakershavebeenevaluatedandfoundtobequalifiedtowithstandthehigh-energylinebreakeffectsfromafailureofasteamheatinglineintheauxiliarybuilding.Thepossibilityofdamagetothechargingpump1Bpowerfeedfrombus16existsfromdirectimpingementintheeventofruptureofoneofthe2-1/2-in.steamheatinglinesintheauxiliarybuildingbasement.Thesparepowerfeedfrombus16tochargingpump1Bcanbeusedtomitigatetheconsequencesofthisevent.3.6-60REV.1312/96 3.6.2.5.2MainSteamSafetandRelicfValves3.6.2.5~2.lPIPEFAILURESINTHEINTERMEDIATEBUILDINGPostulatedmainfeedwaterlinebreaksintheintermediatebuildingcouldresultinjetimpingementonthemainsteamsafetyandreliefvalves.ThejetfromacrackintheBmainfeedwaterline(upstreamofthecheckvalve)couldimpingeontheAmainsteamsafetyvalvesandatmosphericreliefvalvessuchthatthevalvesinadvertentlyopen.Theopeningofthesevalveswouldberoughlyequivalenttoa1-ftsteamlinebreaksize,whichismuchsmallerthanthedesign-basisbreak.TheAmainfeedwaterlinewouldbeisolatedtolimittheblowdownandthestandbyauxiliaryfeedwatersystemwouldbeactuatedtoprovidefeedwatertotheBsteamgenerator.Thecheckvalvewouldpreventtheflowfrombeingdivertedoutthecrackedportionofthefeedwaterline.Allnecessaryequipmenttomitigatetheeventandreachsafeshutdownisoutsidetheintermediatebuildingandthuswouldbeunaffectedbyeitherthefeedwaterlinefailureorthesteamblowdown.Thecooldowncouldbecontrolledbyoperationofthesteamsafetyorreliefvalvesonthe(unaffected)Bmainsteamline.AnotherconsiderationwasapostulatedcrackintheAmainfeedwaterline(upstreamofthecheckvalve).Itispossible,butnotlikely,fortheresultingjettoimpingeonsafetyand/orreliefvalvesforboththeAandBsteamlines.TheAsteamlineisclosertotheAfeedwaterlinethanistheBsteamlineandthusmayprovidesomeshielding.Theneareststeamreliefcomponentsare60ftfromthefeedwaterline.If,asaboundingcase,allvalvesonbothsteamlinesareassumedtofailopen,thebreakarea(2ft)andblowdownareenvelopedbythedesign-basissteamline2breakarea(4.37ft).Inthiscase,decayheatremovalwouldhavetobe2controlledbytherateofauxiliaryfeedwateradditionsincevalvesonbothsteamgeneratorscouldbeopen.ThecapabilityoftheGinnafacilitytocopewithanintermediate-sizedblowdownfrombothsteamgeneratorsisaddressedinSection3.6.2.5.2.3.3~6~2~5.2.2PIPEFAILURESINTHETURBINEBUILDINGRuptureofamainsteamormainfeedwaterlineintheturbinebuildingcouldleadtobuildingpressurizationinexcessofthecapacityofthe3.6-61REV.1312/96 GINNA/UFSARblockwallbetweentheturbineandintermediatebuildings.Failureofthewallcouldresultinblocksfallingonnearbyequipmentandpipingintheintermediatebuilding.Theblockscouldpotentiallycausealossofintegrityofthemainsteamsafetyandreliefvalves.Damagetothemainsteamsafetyandreliefvalveswouldnotpreventsafeshutdown,aslongasthemainsteamisolationvalvesremainedoperable,andauxiliaryfeedwaterflowcouldbemaintainedtothesteamgenerators.Insuchanevent,thetotalbreakareawouldbeapproximately2ft,whichissubstantially2smallerthanthedesign-basissteamlinebreakareaof4.37ft.Thus,reactorcoolantsystempressure,temperature,andreactivityresponseswouldbeenveloped.Auxiliaryfeedwaterwouldbeprovidedbythestandbyauxiliaryfeedwatersystem(operatoractiontimeof10minutesisassumed).Otheremergencyfunctions,suchassafetyinjectionsystemactuation,wouldbeunaffectedbydamagetotheintermediatebuilding.Auxiliaryfeedwaterinjection,withreliefthroughtheopeningsinthesteamlines,wouldcontinueuntiltheresidualheatremovalsystemcouldbeplacedintooperation,atwhichtimenormalcooldowntoMODE5(ColdShutdown)couldcommence.Inozdertoensuzesafeshutdowncapabilityintheeventfailureintheintermediatebuilding,RG&EhascommittednecessaryanalysesandmodificationsinconjunctionwithStructuralUpgradeProgramto:oftheblockwalltoperformthetheGinnaStationEnsurethatthemainsteamlinesandfeedwaterlineswouldnotlosetheirstructuralintegrity.b.Protectthemainsteamisolationvalvesandaccessories,asneeded,toensureoperation.CeProtectthenormalmotor-drivenandturbine-drivenauxiliaryfeedwaterconnectionstothemainfeedwaterlines,uptoandincludingthecheckvalves.Thiswillensurethatstandbyauxiliaryfeedwater,whichconnectstothefeedwaterlinesinsidecontainment,wouldberoutedtothesteamgenerators.3~6~2~5~2~3DEGAYHEATREMQYALFoLLowINGBLowoowNFR0MB0THSTEAMGENERATQRsAsdiscussedabove,postulatedbreaksintheturbineorintermediatebuildingscould,intheworstcase,resultinopeningsteamsafetyandreliefvalvesonbothmainsteamlines.Therateofemptyingofthesteam3.6-62REV.1312/96 GINNA/UFSARgeneratorwoulddependonhowmanyvalvesopen,plantinitialconditions,andavailabilityofthepreferredauxiliaryfeedwatersystem.Itispossiblethatthesteamgeneratorscouldbeemptiedinthisevent.Inordertodepressurizeandcooltheprimarysystemsufficientlytopermit,operationoftheresidualheatremovalsystem,decayheatremovalthroughthesteamgeneratorsmustbereestablished.Theeffectofaddingauxiliaryfeedwatertoahot,drysteamgeneratorhasbeenconsidered.RochesterGasandElectricpresentedresultsthatshowedthatwith40cyclesofsuchfeedwateraddition,theusagefactoronthetubesisstillverylow(Reference23).Thisanalysisprovidesassurancethattheprimary-secondaryboundarywillbemaintained.Shouldthepreferredauxiliaryfeedwatersystembeunavailableduetothebreakeffects(steamenvironmentintheintermediatebuilding),thestandbyauxiliaryfeedwatersystemwouldbemanuallyactuated.Shouldthesteamgeneratorbecomeineffectiveasaheatsink,thecapabilityexiststoestablishfeedandbleedthroughthereactorcoolantsystemfordecayheatremoval.TheWestinghouseOwner'sGroupEmergencyResponseGuidelines,approvedbytheNRCinReference24,provideforsuchacontingency.AspartoftheThreeMileIslandActionPlan,NUREG0737,TaskI.C.1,theGinnaStationemergencyproceduresweremodifiedinaccordancewiththeseguidelines3.6.2.5.2.4Cower.vszowsTheNRChasconcludedthatRG&Ehasdemonstratedthatgivenapostulatedpipefailureintheintermediateorturbinebuildingthatdamagesmainsteamreliefand/orsafetyvalves,theconsequencescanbemitigatedandasafeshutdownconditioncanbeattainedandthatjetimpingementshieldingor.protectionfromtheeffectsofblockwallfailureforthesecomponentsisnotrequired(Reference25)(SEPTopicIII-S.B).3.6-63REV.1312/96 GXNNA/UFSARREFERENCESFORSECTION3.62.3.4.6.7.8.10.12.13.15.LetterfromA.Giambusso,AEC,toE.J.Nelson,RG&E,

Subject:

PostulatedPipeRuptureOutsideContainment,datedDecember18,1972.LetterfromF.V.Miraglia,Jr.,NRC,toAllOperatingLicensees,ConstructionPermitHolders,andApplicantsforConstructionPermits,

Subject:

RelaxationinArbitraryIntermediatePipeRuptureRequirements(GenericLetter87-11),datedJune19,1987.LetterfromL.D.White,.Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

SEPTopicZZI-S.A,datedSeptember12,1979.LetterfromD.G.Eisenhut,NRC,L.D.White,Jr.,RG&E,

Subject:

PipeBreaksInsideContainment,datedSeptember7,1978.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

SEPTopicIII-S.A,HighEnergyLineBreaksInsideContainment,datedFebruary9,1979.LetterfromL.D.White,Jr.,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicZII-S.A,EffectsofPipeBreakonStructures,Systems,andComponentsInsideContainment,datedOctober1,1981.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIZI-S.A,HighEnergyLineBreaksInsideContainment,datedMarch16,1983.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIII-5.A,High-EnergyLineBreaksInsideContainment,datedApril22,1983.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

ZPSARSection4.13,EffectsofPipeBreakonStructures,Systems,andComponents'InsideContainmentfortheR.E.GinnaNuclearPowerPlant,datedJune28,1983.J.D.Stevenson,etal.,StructuralAnalysisandDesignofNuclearPlantFacilities,ASCE,1980,Sections4.7and6.4.1.LetterfromD.G.Eisenhut,NRC,.toR.W.Kober,RG&E,

Subject:

SafetyEvaluationofWestinghouseTopicalReportsDealingwithEliminationofPostulatedPipeBreaksinPWRPrimaryMainLoops(GenericLetter84-04),datedFebruary1,1984.LetterfromR.W.Kobez,RG&E,toW.A.Paulson,NRC,

Subject:

GenericIssueA-2,EliminationofPostulatedPipeBreaks,R.E.GinnaNuclearPowerPlant,datedOctober17,1984.LetterfromD.DiZanni,NRC,ToR.W.Kober,RG&E,

Subject:

AsymmetricBlowdownLoads,datedSeptember9,1986.LetterfromK.W.Amish,RG&E,toA.Giambusso,AEC,

Subject:

EffectsofPostulatedPipeBreaksOutsideofContainmentBuilding,datedNovember1,1973'etterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

HighEnergyLineBreaksOutsideContainment,datedJune27,1979'.6<4REV.1312/96 GINNA/UFSAR16.LetterfromR.A.Purple,NRC,toL.D.White,Jr.,RG&E,

Subject:

AmendmentNo.7toProvisionalOperatingLicenseNo.DPR-18fortheR.E.GinnaNuclearPowerPlant,datedMay14,1975.17.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

.IntegratedPlantSafetyAssessmentReportSection4.14,PipeBreakOutsideContainment,R.E.GinnaNuclearPowerPlant,datedApril21,1983.18.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

PressureShieldingSteelDiaphragm,R.E.Ginna,datedMay17,1979.19.J.A.Redfield,J.H.Murphy,andV.C.Davis,FLASH-2:AFortranIVProgramfortheDigitalSimulationofaMultinodeReactorPlantDuringLossofCoolant,WAPDTM-666,April1967.20.T.A.Porsching,J.H.Murphy,J.A.Redfield,andV.C.Davis,FLASH-4:AFullImplicitFortranIVProgramfortheDigitalSimulationofTransientsinaReactorPlant,WAPDTM-840,March1969.21.R.G.Gido,C.I.Grimes,R.G.Lawton,andJ.A.Kudrick,COMPARE:A'omputerProgramfortheTransientCalculationofaSystemofVolumesConnectedbyFlowingVents,LA-NUREG6488-MS,September1976.22.LetterfromD.L.Ziemann,NRC,toL.D.White,Jr.,RG&E,

Subject:

AmendmentNo.29toLicenseNo.DRP-18,datedAugust24,1979.23.LetterfromJ.E.Maier,RG&E,toD.M.Czutchfield,NRC,

Subject:

SteamGeneratorSleeving,datedMay24,1983.24.LetterfromD.G.Eisenhut,NRC,toAllOperatingReactorLicensees,ApplicantsforanOperatingLicense,andHoldersofConstructionPermitsforWestinghousePressurizedWaterReactors,

Subject:

SafetyEvaluationofEmergencyResponseGuidelines(GenericLetter83-22),datedJune3,.1983.25.LetterfromD.M.Czutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport,Section3.3.1.1,PipeBreakOutsideContainment,R.E.GinnaNuclearPowerPlant,August16,1983.26.W.A.MassieandM.J.Harper,PipingStressAnalysisReport,SDTAR-80-05-12,Revision1,SteamGeneratorBlowdownSystem,Section200,WestinghouseElectricCorporation,NuclearTechnologyDivision,March1981.3.6-65REV.1312/96

GINNA/UFSARTABLE3.6-1LINESPENETRATINGCONTAINMENTWHICHNORMALLYOROCCASIONALLYEXPERIENCEHIGH-ENERGYSERVICECONDITIONSNormalMaximumeratinConditionsPenetrationNumberLineSize(i.n.)~(si)(F)Remarks1201021AccumulatorN22Charging(alternate)7002250(a)(a)Ventedduringnormaloperation.Nojetorwhipupstreamofcheckvalve3S3A;consideronlylinebetween~reactorcoolantpressureboundaryandvalve383A.14010810Residualheatremoval,out3603Reactorcoolantpump<100sealwater,out350200Consideronlyreactorcoolantpressureboundarytovalve700;seeSRP3.6-1.Normallyoperated<200'F,alarmedat190'F.1061101101121003/4Le~downb2ChargingReactorcoolantpumpsealwater,inReactorcoolantpumpsealwater,inAccumulatortest2250225015006002250(a)(a)(a)380(a)Normallydepressurizedduringtest.Higherpressureandtemperatureupstreamoforificesandregenerativeheatexchanger.Highertemperaturedownstreamofregenerativeheatexchanger.Sheet1REV,1312/96 GINNA/UFSARTABLE3.6-1LINESPENETRATINGCONTAINMENTWHICHNORMALLYOROCCASIONALLYEXPERIENCEHIGH-ENERGYSERVICECONDITIONSNorma1MmciznumeratinConditionsPenetrationNeer206206205207207301303LineSize(in.)3/83/83/83/83/8DesiationSample,pressurizerliquidSample,steamgeneratorSample,reactorcoolanthotlegsystemSample,pressurizersteamSample,steamgeneratorUnitheatersteamUnitheatersteam~(si)22501000225022501000150150650550650650550340340RemarksEliminatebecauseofsize.EliminatebecauseofsizeEliminatebecauseofsizeEliminatebecauseofsize.Eliminatebecauseofsize.Decommissionedandweldedshutin1995.Decommissionedandweldedshutin1995.3222SteamgeneratorMowdown100055032140130SteamgeneratorblowdownMainsteam1000100055055040240340430Mainsteam14Feedwater14Feedwater100010001000550430430Sheet2REV.1312/96 GINNA/UFSARTABLE3.6-1LINESPENETRATINGCONTAINMENTWHICHNORMALLYOROCCASIONALLYEXPERIENCEHIGH-ENERGYSERVICECONDITIONSNozma1MaximumzatinConditionsPenetzationNMb82LineSize(ia.)Desiation~(si)Bemazks119and12010Residualheatremoval,inI'Standbyauxiliaryfeed3601000350430Consideronlyreactorcoolantpressureboundarytovalve721;seeSRP3.6-1.Consideronlymainfeedwaterlinetocheckvalves9705AandB.'ndicatesnormalmaximumtemperatureislessthan200'F.IndicatesthoselinestobeconsideredforpotentialhighwnergylineShcct3REV.1312/96 GINNA/UFSARTABLE3.6-2LINESINSIDECONTAINMENTBUTNOTPENETRATINGCONTAINMENTWHICHNORMALLYOROCCASIONALLYEXPERIENCEHIGH-ENERGYSERVICECONDITIONSNoxma2.2dmcinnnuConditi.ons~(si)(F)RemazksPrimarysystem-Reactorcoolant'250600Considersafetyinjectionbranchlinesbetweenreactorcoolantpressureboundaryandthefirstcheckvalves.AccumulatorandbranchlinesAuxiliarysprayPressurizersurgePressurizersprayPressurizerdeadweightTestertubeflangeleakoffExcessletdownReactoroverpressureprotectionNzlinesSafetyinjection2Chemicalvolumeandcontrol10Reactorcoolant3Reactorcoolant1/8Reactorcoolant3/8-Reactor3/4coolant3/4Reactorcoolant1Reactorover-pessurization700225022502250225022502250800(a)350650650650600600(a)Consider2-in.branchlinestoreactorcoolantdraintankonlyuptovalves844AandB.Eliminatebecauseofsize.Eliminatebecauseofsize.Eliminatebecauseofsize.Eliminatebecauseofsize.Shcct1REV.1312/96 GINNA/UFSARTABLE3.6-2LINESINSIDECONTAINMENTBUTNOTPENETRATINGCONTAINMENTWHICHNORMALLYOROCCASIONALLYEXPERIENCEHIGH-ENERGYSERVICECONDITIONSNormalZaxuuumConditionsLineDesiationPressurizersafetySize(in.)ReactorcoolantPressure~(sx)2250eratnre600RemarksConsideronlylinesfrompressurizertovalves433and434Pressurizerrelief3Reactorcoolant2250600Consideronlylinesfrompressurizertovalves430and431C.'ndicatesnormalmaximumtemperatureislessthan200'F.Indicatesthoselinestobeconsideredforpotentialhighwnergylinebreaks.'eactorcoolantsystempipingbreaksarebeingevaluatedunderNRCTaskActionPlanA-2.Sheet2REV.1312/96 GINNA/UFSARTABLE3.6-3CONTAINMENTPIPEDATAP~ieIiaeSizeSclxedalaSection(in.)MedulaaAffectedPortionofSafetyinjection804.27PenetrationtoTfeedinghotandcoldlegs.Safetyinjection800.73Ttomotor-operatedvalves878A,B,C,andD.Safetyinjection1600.98Motor-operatedvalves878A,B,C,andDtoreactorcoolantsystemoraccumulatorlines.Low-pressuresafetyinjection104029.90Penetrationtonozzlebranchlines.Low-pressuresafetyinjection408.50Branchlinestomotor-operatedvalves852AandB.Low-pressuresafetyinjection16020.03Motor-operatedvalves852AandBtoreducer.Low-pressuresafetyinjection1605.90Reducertonozzle.Containmentspray408.50Allpipingexceptsprayrings.Containmentspray403.21Sprayrings.Containment3spray401.72Sprayrings.Sealwater4016.81Allpipingexceptconnectionstocoolers.Sheet1REV.1312/96 GINNA/UPSARTABLE3.6-3CONTAINMENTPIPEDATAprieZizeSizeSehedeleSeeeiezQn.)2&chx1uaAffectedPortionof1600.9SReactorcoolantsystemtovalves200AandBand202.Letdown800.73Downstreamfromvalves200AandBand202.Steamgeneratorblowdown800.73All.3080700All.FeedwaterReactorcoolant1410016011SAll.2.88All.Sheet2REV.1312/96

GINNA/UIiSAR3.7SEISMICDESIGN3.7.1SEISMICjNPUT3.7.1.1Introduction3.7.1.1.1OriinalSeismicClassificationStructures,systems,equipment,andcomponentsrelatedtoplantsafetyarerequiredtowithstandthedesign-basisearthquake.Thesestructures,systems,andcomponentsareplacedintheapplicableseismiccategorydependingontheirfunction.Theoriginalclassificationsofallcomponents,systems,andstructuresofGinnaStationforthepurposeofseismicdesignwereClassI,Class1I,orClassIIIasrecommendedin(1)TID7024iNUCLEARREACTORSANDEARTHQUAKESIAUGUST1963~(2)G.W.HOUSNERI"DESIGNOFNUCLEARPO'tKRREACTORSAGAINSTEARTHQUAKESi"PROCEEDINGSOFTHESECONDWORLDCONFERENCEONEARTHQUAKEENGINEERINGi,VoLUNEIiJAPAN@1960iPAGEs133i134gAND137~ClassIThosestructuresandcomponentsincludinginstrumentsandcontrolswhosefailuremightcauseorincreasetheseverityofaloss-of-coolantaccidentorresultinanuncontrolledreleaseofexcessiveamountsofradioactivity.Also,thosestructuresandcomponentsvitaltosafeshutdownandisolationofthereactor.ClassIIThosestructuresandcomponentswhichareimportanttoreactoroperationbutnotessentialtosafeshutdownandisolationofthereactorandwhosefailurecouldnotresultinthereleaseofsubstantialamountsofradioactivity.ClassIIIThosestructuresandcomponentswhicharenotrelatedtoreactoroperationorcontainment.3.7-1REV.1312/96 GINNA/UFSARAllcomponents,systems,andstructuresclassifiedasClassIweredesignedinaccordancewiththefollowingcriteria:A.Primarysteady-statestresses,whencombinedwiththeseismicstressresultingfromtheresponsetoagroundaccelerationof0.08gactingintheverticalandhorizontalplanessimultaneously,aremaintainedwithintheallowableworkingstresslimitsacceptedasgoodpracticeand,whereapplicable,setforthintheappropriatedesignstandards,e.g.,ASMEBoilerandPressureVesselCode,USASB31.1CodeforPressurePiping,ACI318BuildingCodeRequirementsforReinforcedConcrete,andAISCSpecificationsfortheDesignandErectionofStructuralSteelforBuildings.B.Primarysteady-statestresseswhencombinedwiththeseismicstressresultingfromtheresponsetoagroundaccelerationof0.20gactingintheverticalandhorizontalplanessimultaneously,arelimitedsothatthefunctionofthecomponent,system,orstructureshallnotbeimpairedastopreventasafeandorderlyshutdownoftheplant.AllClassIIcomponentsweredesignedonthebasisofastaticanalysisfozagroundaccelerationof0'8gactingintheverticalandhorizontaldirectionssimultaneously.ForGinnaSkation,therewerenoClassIIstructures.ThestructuraldesignofallClassIIIstxuctuzesmettherequirementsoftheapplicablebuildingcodewhichwastheStateBuildingConstructionCodeoftheStateofNewYork,1961.ThiscodedidnotreferencetheUniformBuildingCode.3.7.1.1.2SeismicReevaluation3.7.l.1.2.1ScoPEoFREEvALUATzoN.TheNRCconductedaseismicreevaluationofGinnaStationcommencingin1979aspartoftheSystematicEvaluationProgram(SEP).ThereevaluationwasconductedbytheLawrenceLivermozeNationalLaboratoryfoztheNRC.Thescopeofthereevaluationwaslimitedtoidentifyingsafetyissuesandtoprovidinganintegxated,balancedapproachtobackfitconsiderationsinaccordancewith10CFR50.109,whichspecifiesthatbackfittingwillberequiredonlyifsub-stantialadditionalprotectioncanbedemonstratedforthepublichealthandsafety.Theseismicreevaluationcenteredonthefollowing:317-2REV.1312/96 GINNA/UFSARAnassessmentoftheintegrityofthereactorcoolantpressureboundazy;i.e.,majorcomponentsthatcontaincoolantforthecoreandpipingoranycomponentnotisolable(usuallybyadoublevalve)fromthecore.Ageneralevaluationofthecapabilityofessentialstructures,systems,andcomponentstoshutdownthereactorsafelyandmaintainitinasafeshutdowncondition,includingremovalofresidualheat,duringandafterapostulatedsafeshutdownearthquake.Theassessmentofthissubgroupofequipmentcanbeusedtoinferthecapabilityofsuchothersafety-relatedsystemsastheEmergencyCoreCoolingSystem(ECCS).3.7.l.1.2.2REEVALUATIONCRITERIA.RochesterGasandElectricCorporation(RG6E)suppliedalistofmechanicalandelectricalequipmentnecessarytoensuretheintegrityof1thereactorcoolantpressureboundaryandtosafelyshutdownthereactorandmaintainitinasafeshutdownconditionduringandafterapostulatedseismicevent.RochesterGasandElectricCorporationalsolistedthecriteriathatitconsideredappropriateforevaluatingtheseismicclassificationofGinnaStationstructures,systems,andcomponents(Ref'ezence1).Thecriteriareflectedplant-specificrequirements,notthemoregenerallight-waterreactorstandardscurrentlyineffect.Theywereasfollows:a~Seismicclassificationwillberestrictedtothosestructures,systems,andcomponentsrequiredforsafeshutdown,andtomaintainreactorcoolantpressureboundaryintegrity,andtopreventotherdesign-basisaccidentswhichcouldpotentiallyresultinoffsiteexposurescomparabletotheguidelineexposuresof10CFR100.Theselattersystemsandcomponentsinclude,forexample,thesteam,feed-water,andblowdownpipinguptothefirstisolationvalve,andthespentfuelpool(SFP),includingfuelracks.Alsoincludedareallstructures,systems,andcomponentsnotrequiredtofunction,butwhosefailurecouldirzeversiblypreventthefunctioningofrequiredsafeshutdownequipmentorcauseadesign-basisaccident.Seismicdesignoftheseitemswillensureaverylowprobabilityoffailureintheeventofasafeshutdownearthquake.Systemboundaries,forpurposesofseismicreevaluationwillbeconsideredtoterminateatthefirstnormallyclosed,auto-close,orremote-manualvalveinconnectedpiping.3173REV.1312/96 GINNA/UFSARb.Safeshutdownisdefinedasthecapabilitytocontrolresidualheatremovalunderallplantconditionsresultingfromaseismicevent(withtheconsequentiallossoffunctionofnonseismicequipment)and'lossofoffsitepower.SafeshutdownmaybethemaintenanceofanextendedMODE3(HotShutdown)condition,oragradualcooldowntoMODE5(ColdShutdown)conditions.ForGinnaStation,safeshutdownassumesgradualcooldownanddepressurizationintheeventofasafeshut-downearthquake.Thesafeshutdownearthquakewastheonlyearthquakelevelconsideredinthereevaluationbecauseitrepresentsthelimitingseismicloadingtowhichtheplantmustrespondsafely.Becauseaplantdesignedtoshutdownsafely,followingasafeshutdownearthquakewillbesafeforalesserearthquake,investigationoftheeffectsoftheoperating-basisearthquakewasdeemedunnecessary.In1979,RG&EcommencedaseismicpipingupgradeprogramforGinnaStationtoupgradetheseismicdesignofcertainpipingsystemstocurrentindustrystandardsforSeismicCategoryI.3.7.1.2DesignResponseSpectraTheGinnaStationwasoriginallydesignedforanoperating-basisearthquakecharacterizedbyapeakhorizontalgroundaccelerationof0.08gandforasafeshutdownearthquakewithapeakhorizontalgroundmotionof0.2g.Peakhorizontalandverticalaccelerationswereassumedtobethesame.TheresponsespectrausedwerethosedevelopedbyHousner(Reference2)andareshowninFigures3.7-1and3.7-2.ThesiteseismologyisdescribedinSection2.5.2.FortheSEPreevaluationasafeshutdownearthquakewithapeakhorizontalgroundmotionof0.2gwasused.Two-thirdsofthatvaluewasusedfortheverticalcomponent.TheresponsespectrausedwasthatgiveninRegulatoryGuide1.60.Itisnotedthatthesitespecificgroundresponsespectra(Figure3.7-3),recommendedbytheNRC(Ref'erence3)forSEPevaluationoftheseismicdesignadequacyofGinnaStation,indicatesapeakhorizontalgroundmotionaccelerationof0.17g,lessthanthe0.2gvalueused.3.7-4REV.1312/96 GONNA/UFSAR3.7.1.3DesignTime-HistoryInthedesignofGinnaStationtheseismicaccelerationswerecomputedasoutlinedinTID7024(Reference4)andthePortlandCementpublication(Reference5).ResponsespectradevelopedbyHousner(Reference2)wereusedasdescribedinSection3.7.1.2.DuringtheSEPreevaluation,atime-historymethodwasusedtogeneratein-structureresponsespectrafortheinteriozstructures.Onlyhorizontalexcitationswereincludedintheanalysis.Theinputbaseexcitationwasasynthetictime-historyaccelerationrecordforwhichthecorrespondingresponsespectrawerecompatiblewiththe0.2gRegulatoryGuide1.60spectra.Responsespectraassociatedwithtwoorthogonalhorizontalbaseexcitationsweregeneratedindependentlyatequipmentlocationsandthencombinedbythesquarerootofthesumofthesquaresmethod.Peaksofthespectrawerebroadened1158inaccordancewithcurrentpractice.3~7.1.4CriticalDampingValuesTable3.7-1liststhedampingvaluesusedfortheoriginalGinnaStationseismicdesigntogetherwiththosefromRegulatoryGuide1.61forthesafeshutdownearthquakeandthosevaluesrecommendedinNUREG/CR-0098(Reference6)forstructuresatorbelowtheyieldpoint.ThedampingvaluesusedintheoriginaldesignofGinnaStationarelowerthancurrentdesignlevels.Onereasonisthatthedesigndampingvalueswereusedfortheoperating-basisearthquake,andthedesignloadswereincreasedforthesafeshutdownearthquakeevaluationindirectproportiontotheratioofthetwovaluesof(0.08gand0.2g).Becausehigherresponseand,consequently,increaseddampingareexpectedforthesafeshutdownearthquake,asignificantdegreeofconservatismwastypicallyintroducedovercurrentpractice.AcomparisonoftheresponsespectrumdevelopedbyHousnerfor2$dampingwiththe7SspectrumfromRegulatoryGuide1.60indicatestherelativemagnitudesoftheresponseofboltedsteelstructuresandequipmentdesignedtoGinnaversuscurrentcriteria.Similarly,the0.58spectrumfortheoriginaldesignandthe3'5spectrumfromRegulatoryGuide1.60maybeusedtocompareexpectedlevelsofresponseforbase-level-mountedlargepipingforthetwocriteria.Figure3.7-4showsthesecomparisons.Similarly,expectedlevelsofresponse3.7-5REV.1312/96 GINNA/UFSARforbase-level-mountedlargepipingforthetwocriteriacanbemadebycomparingthe0.5%Housnerspectrumandthe3%RegulatoryGuide1.60spectrum.TheNUREG/CR-0098dampingvaluesarethoserecommendedfortheSEPreevaluation.ThereasonforpermittinghigherdampingvaluesisdiscussedinReference6.Althoughtherearelimiteddataonwhichtobasedampingvalues,itisknownthattheRegulatoryGuide1.61valuesareconservativetoensurethatadequatedynamicresponsevaluesareobtainedfordesignpurposes.ThelowervaluesintheNUREG/CR-0098columnofvaluesinTable3.7-1inmostcasesareclosetotheRegulatoryGuide1.61values.TheuppervaluesintheNUREG/CR-0098columnarebest-estimatevaluesbelievedtobeaverageorslightlyaboveaveragevalues;thesevaluesarerecommendedforuseindesignorevaluationforstressesatornearyield,andwhenmoderatelyconservativeestimatesaremadeoftheotherparametersenteringintothedesignorevaluation.3.7.1.5SupportingMediaforSeismicCategoryIStructuresAllGinnaStationSeismicCategoryIbuildingsexceptthecontrolbuildinganddieselgeneratorbuildingarefoundedonsolidbedrock.Thefoundationsofthecontrolanddieselgeneratorbuildingswereexcavatedtothesurfaceofbedrock.Leanconcreteozcompactedbackfillwasplacedontherocksurfacetoadepthwherebytheelevationofthetopofthefillmaterialwascoincidentwiththeelevationofthebottomoftheconcretefoundationofthatparticularbuilding..Thus,allSeismicCategoryIbuildingshaverigidfoundations.Theturbinebuildingfoundationisaconcretematsupportedbycompactedfillmaterial.SeeSection3.8.5.3.7WREV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLAKE)3177REV.1312/96 GINNA/UFSAR3.7.2SEISMICSYSTEMANALYSIS3.7.2.1SeismicAnalysisMethods3.7.2.1.1OziinalSeismicAnalsisThefollowingmethodofanalysiswasappliedtotheoriginalseismicClassIstructuresandcomponents,includinginstrumentationintheoriginalGinnaStationdesign:A.Thenaturalperiodsofvibrationofthestructureorcomponentweredetermined.B.Theresponseaccelerationofthecomponenttotheseismicmotionwastakenfromtheresponsespectrumcurveattheappropriateperiod.C.Stressesanddeflectionsresultingfromthecombinedinfluenceofnormalloadsandtheseismicloadduetothe0.08gearthquakewerecalculatedandcheckedagainst,thelimitsimposedbythedesignstandard.DEStressesanddeflectionsresultingfromthecombinedinfluenceofnormalloadsandtheseismicloadsduetothe0.2gearthquakewerecalculatedandcheckedtoverifythatdeflectionsdidnotcauselossoffunctionandthatstressesdidnotproducerupture.Themaximumresponseaccelerationofastzuctureorequipmentitemwasreadfromtheresponsespectrumforselectedvaluesofdampingandafundamentalnaturalfrequency.ThefrequencywaseitherCalculatedfromamathematicalmodel,Measuredfromaplasticmodel(thecaseofthereactorcoolantsystem),Estimatedbyexperience,orSelectedtobeconservative(thepeakofthespectrumwasused).Fromthemassofthestructureorequipmentandthemaximumresponseacceleration,theequivalentstaticforcewasobtained.Theequivalentstaticforce,whichrepresentsthetotaldynamiceffect,wasthendistributedalongthesystemaccordingtoaselectedshape(aninvertedtriangleforthecontainment)oraccordingtothemassdistribution.Thestaticresponseto3.7-8REV.1312/96 GINNA/VFSARthisequivalentstaticforcewastakentobetheseismicresponseofthesystem.Responsestohorizontalandverticalgroundaccelerationswerecalculatedseparately,thencombinedbydirectadditioninmostcases.Thecontainmentandtheresidualheatremovalsystempipelinefromthereactorcoolantsystemlooptocontainmentwereanalyzedbyboththeequivalentstaticandtheresponsespectrummethods.TheseismicClass1pipingsystemswereanalyzedbyalumpedmassapproach.Thenumberofmasseslumpedbetweenanytwosupportswasbaseduponthespacingintervalandincreaseswiththelengthofthespacinginterval.Everymasswasgivenanaccelerationequaltothemaximumresponsefromtheresponsecurvewith0.5%ofcriticaldamping,i.e.,0.8gfor0.2ggroundacceleration.Eachpipingsystemwithitssupportswasmodeledasathree-dimensionalframeandtheloadsgivenbythemasstimestheaccelerationwereappliedateachlumpedmassalongthreedirections,twohorizontalandonevertical,separately.Themomentsandtorqueforeachofthethreeloadingdirectionswerethenobtainedbystiffnessanalysis.Thestresseswerecalculatedatcriticalpointsinthepipinganditssupportsforeachloadingdirection.ThestressesinthepipingwerefoundbyusingtheUSASB31.1formula(3.7-1)wherestressMg,My,Mz=momentsaboutthetwohorizontaldirectionsandtheverticaldirectionsectionmodulusAteachpointthestressesobtainedforthetwohorizontalloadingswereconservativelycombinedbythesquarerootofthesumofthesquares.Thisvaluewasthenconservativelycombinedwiththestressobtainedfortheverticalloadingbydirectaddition.3.7-9REV.1312/96 GINNA/UFSAR3.7.2.1.2SeismicReevaluationTheseismicanalysismethodschangedgreatlyfromthetimeofthedesignofGinnaStationtotheSEPreevaluation.Theoriginalseismicanalysiswasprimarilybytheequivalentstaticmethodbasedonanestimatedfundamentalfrequencyofthestructure.Responsespectrawereusedprimarilytopredictthepeakaccelerationofthefundamentalmode.Thecheckofthestaticdesignanalysisofthecontainmentbuildingwastheonlyanalysisthatinvolvedamulti-modesystem.CurrentanalyticaltechniquesandcomputermodelsatthetimeoftheSEPreevaluationhadincreasedconsiderablythesophisticationandlevelofdetailthatcouldbetreated.Acompletedynamicanalysisofcomplicatedstructuralsystemssuchastheinterconnectedbuildingcomplexcouldbedoneconvenientlyandinexpensively.FortheSEPreevaluation,seismicanalysisofthebuildingcomplexwas,performedbythefiniteelementmethodusingthecomputerprogramSAP4.7Athree-dimensionalmathematicalmodelofthebuildingcomplexwasdeveloped.Thefrequenciesandmodeshapesofthestructuralsystemwereobtainedfromthecomputeranalysis'fterthefrequenciesandmodeshapeswereobtained,thestructuralresponseswerecomputedbytheresponsespectrummethod.TheseismicinputwasdefinedbythehorizontalspectralcurveofthesafeshutdownearthquakespecifiedinRegulatoryGuide1.60for10'hstructuraldampingand0.2gpeakgroundacceleration.Twostructuralmodelswereanalyzed,onewithhalfthebracingarea(half-areamodel),onewiththefullbracingarea(full-areamodel).Foreachmodel,twoanalyseswereperformed,onewiththeinputexcitationinthenorth-southdirection,theotherintheeast-westdirection.ThecurrentlicensingrequirementswouldtypicallyrequireloadcombinationsdifferentfromthoseconsideredwhenGinnaStationwasdesigned.Theseismicreevaluationconcentratedontheoriginaldesigncombinationswithprimary'Iattentiondevotedtotheseismicmazgins.OthercurrentassumptionsandcriteriaarediscussedinthefollowingsectionsincomparisonwiththoseusedinthedesignandanalysisofGinnaStation.3.7-10REV.1312/96 GINNA/UFSAR3.7.2.2NaturalFrequenciesandResponseLoadsThefrequenciesandthetenlargestmodalparticipationfactorsofthefull-azeaandhalf-areamodelsazelistedinTable3.7-2.Themodeswithlowfrequencieswerethosedominatedbysteelpartsofthestructuralsystem(i.e.,theframingsystem)andthehigh-frequencymodesweredominatedbytheconcretestructures(i.e.,thecontrolbuildingandthebasementstructuresoftheauxiliarybuilding).Sinceseveralhighfrequencymodeshadsignificantmodalparticipationfactors,theywereincludedinthedynamicanalysisespeciallyincomputingthein-structureresponsespectra.3.7.2.3ProcedureUsedforMathematicalModelingAthree-dimensionalmathematicalmodelforthebuildingcomplexwaspreparedforthecomputerprogramSAP4(Reference7).Allsteelframesweremodeledbybeamelements.Themodel'srigiddiaphragmsforallroofsandfloorswererepresentedbytherigidrestraint.Thetwo-storyconcretesubstructureoftheauxiliarybuildingandthecontrolbuildingweremodeledbyequivalentbeams.Thefourshearwallsofthediesel-generatorbuildingwererepresentedbyfourelasticspringsattachedtothenorthframeoftheturbinebuildingatthediesel-generatorbuildingroof.Themassesoftheservicebuildingroofwerelumpedtotheturbineandintermediatebuildings.AllothermasseswerelumpedtothecentersofgraOityoffloorsorroofs.3.7.2.4Soil-StructureInteractionSoil-structureinteractionwasnotconsideredinthedesignofGinnaStation.Sophisticatedmethodsoftreatingsoil-.structureinteractionexist;however,forstructuresthatarefoundedoncompetentrock,asisGinnaStation,theeffectsofsoil-structureinteractionareconsideredrelativelysmall.Thereislittleradiationdamping,andconsiderationofrockfoundationcomplianceresultsinonlyslightincreasesintheperiodsofresponseofastructurewhencomparedwiththefixed-basecase.Ztwasexpectedthatanyvariationinloadthatresultsfromneglectingsoil-structureinteractionwouldbewellwithintheaccuracyofthecalculations'hiswouldbeespeciallytrueforthecontainmentstructure,inwhichthewallsareattachedtothefoundationrockbyrockanchors.Therefore,soil-structureinteractionwasnottakenintoaccountintheseismicreevaluation.3.7-11REV.1312/96 3.7.2.5DevelopmentofFloorResponseSpectraAdirectmethodwasappliedtogenerateseismicinputspectrafozequipmentatvariouslocationsinthestzucture(References8and9).Themethodtreatedtheearthquakeinputmotionsandtheresponsemotionsasrandomprocesses.Theresponsespectrumatanylocationinthestructurewasderivedfromthefrequencyresponsefunctionofanoscillatoz,thefrequencyresponsefunctionofthestructureat,thatlocation,andtheinputgroundresponsespectrum.Thismethodavoidedthetzoublesometaskinthetime-hi.storyapproachofselectingthepropercorrespondingtime-historyinputforthespecifiedspectrum.Thein-structurespectrageneratedfromthehalf-areaandfull-areamodelswereenvelopedtogivethefinalspectra(Figure3.7-5).Zfpeaksweresti.llobviousatstructuralfrequencies,spectrum-wideningtechniquesinaccordancewithcurrentpracticewerethenappliedtoensurei15%broadeningtoaccountformodelingandmaterialuncertainties.3.7.2.6CombinationofEarthquakeDirectionalComponentsTheoriginaldesignofGinnaStationstructuresinvolvedthecombinationofaverticalandhorizontalload,usuallyonanabsolutebasis.Currentrecom-mendedpracticeistocombinetheresponsesforthethreeprincipalsimultaneousearthquakedirectionsbythesquarerootofthesumofthesquaresasdescribedinRegulatoryGuide1.92.Thereisonlyasmalldifferencebetweenthetwocombinationmethodsforcircularplantstructureslikethecontainmentbuilding,whichistheonlystructureforwhichadynamicanalysiswasoriginallyperformed..3CombinationofModalResponsesFortheSEPevaluationadetaileddynamicanalysisusingtheresponsespectrummethodwasperformed.Zneachanalysis(east-westandnorth-southdirection),44responsemodeswereusedandtheindividualmodalresponseswerecombinedbythesquarerootofthesumofthesquaresmethod.3.7-12REV.1312/96 GINNA/UFSAR3.7.2.8InteractionofNonseismicStructureswithSeismicCategoryIStructuresAcomplexofinterconnectedbuildingssurroundsthecontainmentbuilding.Thoughcontiguous,thesebuildingsazeindependentofthecontainmentbuilding.Theauxiliary,intermediate,control,anddiesel-generatorbuildingsareSeismicCategoryIstructures,andtheturbineandservicebuildingsarenonseismicstructures(seeFigure3.7-6).Intheoriginalanalysis,eachClassIstructurewastreatedindependently.FortheSEPreevaluationtheinterconnectednatureofthebuildingswasconsideredanimportantfeature,especiallyinviewofthelackofdetailedoriginalseismicdesignin'formation.Therefore,bothClassIandClassIIIbuildingswereincludedinthereanalysismodel.GilbertAssociates,Inc.,developedseparatemodelsfortheauxiliaryandcontrolbuildingsin1979.Thebasicassumptionsandmodelpropertiesforthesetwobuildingswereadoptedandincorporatedintothereanalysis.Theauxiliary,intermediate,turbine,control,diesel-generator,andservicebuildingsformaninterconnectedU-shapedbuildingcomplexthatismainlyasteelframestructuralsystemsupportedbyconcretefoundationsorconcretebasementstructures.Atypicalsteelframeismadeofverticalcontinuoussteelcolumnswithhorizontalbeamsandcrossbracing.Theconnectionsaretypicallybolted.Thebracedframesserveasthemajorlateralload-resistingsystem.Severalsuchsteelframesconnectvariouspartsofdifferentbuildings,whichmakesthebuildingcomplexacomplicatedthree-dimensionalstructuralsystem.ThecompositionsandinterrelationshipsofthebuildingsinthecomplexazedescribedinSection3.8.4.Theprincipallateralforce-resistingsystemsoftheinterconnectedbuildingcomplexarethebracedframes.Severalsuchsystemstieallbuildingstogethertoactasonethree-dimensionalstructuralsystem.Itwas,therefore,necessarytomodelthesebuildingsinasinglethree-dimensionalmodeltoproperlysimulateinteractioneffects.TheresultsofthereevaluationarediscussedinSection3.8.4~31713REV.1312/96 GINNAfUFSAR3.7.2.9UseofConstantVerticalStaticFactorsVerticalresponsesintheSEPevaluationwereobtainedbytaking138(0.2gx2/3)ofthedeadloadresponses.3.7-14REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLMlK)3.7-15REV.1312/96 GINNA/UFSAR3.7.3SEISMICSUBSYSTEMANALYSES3'.3.1SeismicAnalysisMethods3.7.3.1.1OriinalDesin3.7.3.1.1.1PZPZNGANDTANKS~IMostoftheoriginalpipingsystemswereanalyzedbystaticmethods,primarilytheequivalentstaticmethod.SeismicinputfortheseanalyseswerebasedontheHousnezgroundresponsespectza(Figures3.7-1and3.7-2)~Peakspectralaccelerationsweretakenfromthecurvesforthosecomponentsforwhichthenaturalfrequencywas,estimated.Ifnaturalfrequencieswereunknown,themaximaofthecurveswereused.Exceptionstothestaticanalysisapproachincludedtheanalysisof'a~TheresidualheatremovalsystemlinefromthereactorcoolantsystemloopAtothecontainmentpenetration.ThemainsteamlinefromsteamgeneratorBtothecontainment,penetration.c.Thereactorcoolantsystem.Tworesponsespectrumanalysesoftheresidualheatremovalsystemlinewereperformed.OneanalysisusedtheresponsespectrainFigures3.7-1and3.7-2asinput;theotherusedaresponsespectrumthatwasamodificationofthe0.5%dampingspectruminthesefigurestoaccountforbuildingeffectsatthesteam-lineelevation.BothstaticanddynamicanalysiswereperformedonthemainsteamlineofloopBinsidethecontainment.Themodifiedresponsespectrumusedfortheresidualheatremovalsystemlineanalysiswasalsousedforthisdynamicanalysis.Thereactorcoolantsystemwasqualifiedbytestsusingaplasticmodel.Inputwasasinusoidalwaveforthe'erticaldirectionandeachofthetwohorizontaldirections,independently.Theplasticmodeloutput(modeshapesandfrequencies)wasthenusedasinput,alongwiththeHousner3.7-16REV.1312/96 GINNA/UFSARspectrum,toathree-dimensionalmathematicalmodeloftheprimarycoolantloop.Thepipinglinesofthesafetyinjectionsystemwereanalyzedbyselectingthepeakofthe0.5%criticaldampingresponsespectracorrespondingtothe0.2gmaximumpotentialearthquake.Concentratedforcesatselectedlocationsonthepipelinewereappliedwiththeforceequaltotheproductoftheconcentratedlumpedmassandthemaximumaccelerationfromtheresponsespectra.Combinationofbendingstress,Sb,andtorsionalstress,St,ismadeaccordingtotheUSASB31.1formula,S=(Sb+4St)221/2TheanalysisoftankswasperformedinthemannersetforthinTID7024,takingintoaccountthepossibledynamiceffectsresultingfromthesloshingofthewater.ThetechniquesaresetforthinChapters5and6ofTID7024.ShellstressesandsupportstresseswerelimitedtothosepermittedinthepressurevesselcodesandthestructuralsteelstandardsofAISC.Selectedtanksweresubsequentlyreanalyzedaspart'ftheSEP(seeSection3.9.2.2.4).SeismicClassIcomponentswerequalifiedonanindividualandoftengenericbasis.Qualificationofthemajorequipmentitems(ReferenceI),suchasthesteamgenerator,controlroddrivemechanism,reactorinternals,reactorvessel,andpressurizer,aresummarizedinthefollowing.3.7.3.1.1.2STENCHGENERATOR.Theseries44steamgeneratorswereevaluatedtoasetofgenericloadsincludingseismic.Theseismicloadswerebasedonenvelopehorizontalresponsespectrafor1%equipmentdampingshownonFigure3.7-7fortheoperating-basisandsafeshutdownearthquakes.ThegenericcurveswerebasedonanenvelopeoffloorresponsespectraofelevenplantswithWestinghousenuclearsteamsupplysystems.Thedynamicanalysesarebytheresponsespectrummethodwiththesteamgeneratoridealizedbylumpedmassesinter-connectedbythree-dimensionalbeamelements(Figure3.7-8).3.7-17REV.1312/96 3.7.3.1.1.3CoNTRQLRooDRivEMECNANTsNs.Thereare29modelL-106controlroddrivemechanismsattachedtothereactorvesselheadadaptersfortheplant.Theseismicanalysisofthemechanismsconsistedoftwophases.ThefirstphaseinvolvedcomparingtheresultsofacomputeranalysisofthemechanismforinternalpressureandthermalloadswiththeASMESectionIZIstressallowances.Theresultsofthecomparisonwereusedtoderivetheallowableseismicbendingmomentforthemechanism.Inthesecondpartoftheanalysis,alumpedmassbeammodelofthecontrolroddrivemechanismsystemwasusedtocalculatethe"bendingmomentsatvariouslocationsontheassemblyresultingfromseismicloading.Thesecalculatedbendingmomentswerecomparedwiththeallowableseismicbendingmomentforthemechanism.Theseismicdesignbasisusedforthedrivemechanismswas0.8ginboththehorizontalandverticaldirections.Fortheseloadsthebendingmomentsthroughoutthemechanismwerebelowtheallowablebendingmoments.Theresultsofthesecondphaseoftheanalysiswereusedinthedesignandanalysisofthecontrolroddrivemechanismseismicsupportmechanism.3.7.3.1.1.4REAGToRINTERNALS.TheGinnareactorinternalsassemblyisastandard12-ft,two-loopassembly(Figure3.9-7)thatwasqualifiedonagenericbasis.ThequalificationanalysisusedalinearresponsespectraanalysiswithalumpedmassbeamfiniteelementmodelasshownonFigure3.7-9.TheinputfoztheanalysiswastheresponsespectrafoztheKansaiplantasshownonFigure3.7-10.Twocaseswereconsideredintheanalysis:first,wherethemodalcontributionswerecombinedbythesquarerootofthesumofthesquaresand;second,wherethemodalcontributionsweresummedbytheabsolutemethod.Twomodelswereevaluated,onewithhorizontalandrotationalstiffnessrepresentingthesoilasshownonFigure3.7-9andthesecondmodelwhezeafixedbasewasassumed.Znbothcases,5Sdampingwasusedfortheconcreteand1$fortheinternals.Zntheverticaldizection,asingledegree'offreedommodel,uncoupledfromthehorizontaldirection,wasused.Stresseswereobtainedbyaddinghorizontalandverticalresponsesabsolutely.3.7-18REV.1312/96 GINNA/UFSAR3.7.3.1.1.5REACTORVESSEL.Seismicanalysisofthereactorvesselwasperformedbyapplyingasteady-stateaccelerationtothepipingandcalculatingtheresultingnozzlereactions.Stresscalculationsforthefollowingthreecaseswereperformed:a.Designseismicplusthermalloads.b.Nolossoffunctionseismicplusthermalloads.c.Designseismicplusthermalplusinteractionloads.Accelerationsof0.08gand0'gwereusedfordesign(operating-basis)andno-loss-of-function(safeshutdown)earthquakes,respectively.3.7.3.1.1.6PREssUREzER.Astressreportforthepressurizerwascompletedandissuedin1969.Thereportcontainedaseismicanalysisofthepressurizershell,thesupportskirt,thesupportskirtflangeandthepressurizersupportbolts.Loadsfortheseevaluationsweredevelopedbycombiningtheinternalpressure,thermalloads,weight,upperheadnozzleloads(i.e.,spray,safety,andreliefnozzles),andstaticseismicloads.TheseismicanalysiswasconductedgenericallyfortheheaviestWestinghousepressurizermodel.Twocaseswereanalyzed:anoperating-basisearthquakeandasafeshutdownearthquake.However,forbothcasesthesafeshutdownearthquakeaccelerationof0.48ghorizontaland0.32gverticalwereusedforevaluation.Theaccelerationswereappliedstaticallyatthecenterofgravityofthepressurizer.In1973,amoredetailedevaluationwasperformedofthepressurizerskirtandshell(ReferenceIO).Forthatevaluationtheloadsappliedtotheskirtweretheequivalentof10timestheoperating-basisearthquakeloadsand14timesthesafeshutdownearthquakeloadsoutlinedabove.Theresultscontainedonlytheprimarymembraneandbendingstresses.The4-in.nozzlesofthepressurizerwerealsoevaluated.ForthenozzleevaluationsinternalpressurestresseswerecombinedwiththestressesresultingfromthepipeloadsincludingseismicloadsandtheresultswerecomparedwithASMECodeallowables.Designconditionallowableswereused3.7-19REV.1312/96 GINNA/UFSARforanalysisinvolvingoperating-basisearthquakeandemergencyconditionallowableswereusedforthesafeshutdownearthquake.Theheatersforthepressurizerwerequalifiedonagenericbasis(Reference10).Thequalificationprocedureusedanequivalentloadof37.5gforthesafeshutdownearthquakeand30gfortheoperating-basisearthquake.Thefundamentalfrequencyoftheheaterrodswasgreaterthan33Hz.3.7.3.1.2SeismicReevaluationFortheSEPreevaluation,theseismicinputwasdefinedbymeansofin-structureorfloorresponsespectrawhichweregeneratedeitherbythedirectmethodorbymeansofatime-historyanalysis.Thespectrawerenormallysmoothedandthepeaksbroadenedtoaccountformodelingandmaterialuncertainties.In-structureresponsespectraweregeneratedforboththeinterconnectedbuildingcomplexandthecontainmentbuilding.Inbothcases,in-structurespectzalcurvesweresmoothed,andthepeakswerewidenedi15%inaccordancewithcurrentpractice.AsdescribedinSection3.7.2.1,twomathematicalmodelsoftheinterconnectedbuildingcomplexwereanalyzedtobracketthebehaviorofthebracedframes:ahalf-areamodelthatsimulatedbuckledbracing;andafull-areamodelthatsimulatedunbuckledbracing.Envelopesofspectrageneratedfromthetwomodelsbythedirectmethodwereusedforreanalysisofequipment.In-structureresponsespectraforthecontainmentinteriorstructuresweregeneratedfromtime-historyanalysesofthemathematicalmodel.ResponsespectraweregeneratedattheequipmentlocationsandfloorcentersofgravityindicatedinTable3.7-3andshowninFigure3.7-11.Ateachlocation,twoorthogonalhorizontalspectralcomponentswerecomputedatthreedifferentequipmentdampingratios(3%,58,and78).Sincetheverticaldynamicamplificationwasjudgedtobenegligible,allverticalfloorspectrawereconsideredtobethesameasthegroundinputspectrawith0.13gpeakacceleration.Thein-structureresponsespectrageneratedforequipmentanalysisareshowninFigures3.7-12through3.7-28.Thehorizontalin-structurespectraoftheII3.7-20REV.1312/96 GINNA/UFSARcontainmentinteriorstructureareorientedinthedirectionsofS62EandN28E.Spectraoutsidethecontainmentbuildingareinthenorth-southandeast-westdirections.Formechanicalandelectricalequipment,acomposite7Sequipmentdampingwasusedintheevaluationforthe0.2gsafeshutdownearthquake.Forpipingevaluation,theequipmentdampingassociatedwiththesafeshutdownearthquakewaslimitedto3$.FortheSEPreevaluation,componentsweregroupedasactiveorpassiveandrigidorflexible.Then,arepresentativesampleofeachgroupwasevaluatedtoestablishtheseismicdesignfactorofsafetyordegreeofadequacyforthatgroup.Inthisway,seismicdesignfactorswithingroupsofsimilarcomponentswereestablishedwithoutthedetailedreevaluationofhundredsofindividualcomponentswithineachgroup.Arepresentativesampleofcomponentswasselectedforreviewbyoneoftwomethods:A.Selectionbasedonawalk-throughinspectionoftheGinnafacilitybytheNRCSEPseismicreviewteamwhichselectedcomponentsastothepotentialdegreeofseismicfragilityforcomponentsofthatcategory.B.Categorizationofthesafeshutdowncomponentsintogenericgroupssuchashorizontaltanks,heatexchangers,andpumps;verticaltanks,heatexchangers,andpumps;motorcontrolcentersandmotors.Basedonthedetailedreviewoftheseismicdesignadequacyoftherepresentativecomponentsdiscussedabove,conclusionsweredevelopedastotheoverallseismicdesignadequacyofSeismicCategoryIequipmentinstalledinGinnaStation.TheseismicanalysisofthecomponentsselectedfortheSEPreview,aswellasthecomponentsthatarerepresentativeofthegenericgroupsofsafety-relatedcomponentsisdescribedinSections3.9.2.2.4formechanicalcomponentsandSection3.10.2.1forelectricalcomponents'ables3.9-12and3.10-2containthelistofthesecomponentsandthereasonfoztheirselection.3.7-21REV.1312/96 GINNA/UFSAR'3.7.3.2BasisforSelectionofFrequenciesThecomponentsanddistributionsystemsweredesignatedasflexibleorrigidindevelopingthemagnitudeoftheseismicinputforcomponentevaluation.DesignationofzigidorflexiblecomponentsforGinnawascomplicatedbythefactthatmanycomponentsweresupportedintheauxiliaryandreactorbuildingsbyconcretestructures,whichhadhighfundamentalfrequenciesbetween15and25Hz,whileothercomponents'eresupportedbysteelsuperstructures,whichhadfundamentalfrequenciesbetween6and11Hz.Equipmentsupportedatorneargradewassubject,tonearlythegroundresponse,withapeakresponseaccelerationinthe2to9Hzrange.Therefore,componentsthathadfundamentalfrequenciesgreaterthan20Hzandwerelocatedongradeozsupportedbystructuralsteelcouldbeconsideredzigidsincetherewaslittleamplificationinthisregionoftheapplicableresponsespectra.Similarcomponentssupportedbyconcretestructureswouldbeatoznearbuildingresonanceandwereconsideredflexible.For.flexiblecomponentswhosefundamentalfrequencieswerelessthantwicethedominantbuildingfrequencies,theseismicinertialaccelerationsweretypically5to15timesthe'afeshutdownearthquakepeakgroundacceleration,dependingon:Potentialresonancewiththesupportingbuildingstructure.Structureandequipmentdampinglevels.Equipmentsupportelevations.3.7.3.3UseofEquivalentStaticAnalysisEquivalentstaticanalysiswasusedfortheseismicanalysisofseveralcomponents.Forthosecomponentsthatwereclassifiedasrigid,withafundamentalfrequencyof33Hzormore,peakflooraccelerationswereused.Forflexiblecomponentspeakresponseaccelerationfromtheappropriatein-structureresponsespectrawereused.3.7.3.4ThreeComponentsofEarthquakeMotionResponsespectraweregeneratedattheequipmentlocationsandfloorcentersofgravity.Ateachlocation,twoorthogonalhorizontalspectralcomponentswerecomputed.Sincethevexticaldynamicamplificationwasjudgedtobe3.7-22REV.1312/96 GINNA/UFSARnegligible,allverticalfloorspectrawereconsideredtobethesameasthegroundinputspect,'rawith0.13gpeakacceleration.3.7.3.5CombinationofModalResponsesThevariousSeismicCategoryZmechanicalequipmentsandcomponentswereseismicallyqualifiedbyanalysesinwhichstaticloadsequivalenttotheaccelerationsintheresponsespectrawereapplied.Assuch,thequestionofcombiningmodalresponsesdidnotexist.Thesameconclusionistrueforthosepipingsystemswhichwereanalyzedeitherusingmodeltechniquesorbyusingequivalentstaticloads.Thethreepipingsystemsthatwereanalyzedusingresponsespectrumarethe(1)residualheatremovalsystem,(2)mainsteamline,and(3)chargingsystem.Theoriginalanalysesusedthesquarerootofthesumofthesquaresofmodalcomponents.However,inresponsetoNRCZEBulletinNo.79-07,whenareanalysiswasperformed,theabsolutesumofthemodalcomponentswasused.Severaladditionalseismicanalysesofpipingsystemswereperformedsubsequently.Eitherthesquarerootofthesumofthesquaresortheabsolutesummethodwereusedforcombiningthemodalresponses.Bothareacceptable.3.7.3.6AnalyticalProceduresforPipingTheoriginalGinnaStationdesigndidnotutilizedynamiccomputeranalysesforseismicqualificationofSeismicCategoryZpiping.Thereactorcoolantsystempipingwasseismicallyqualifiedusingacombinationofmodeltestingandanalysis.SeismicCategoryZpiping2-1/2in.nominalpipesizeandlargerwasseismicallyqualifiedusingequivalentstaticanalyses.SeismicCategoryZpiping2-in.nominalpipe'izeandsmallerwasseismicallyqualifiedusingsupportspacingtables.DynamicanalysisofsectionsoftheAresidualheatremovalandBmainsteampipingwereperformedsolelytoverifytheequivalentstaticanalysismethod.However,modificationsoradditionstopipingsystemsatGinnaStationsinceinitialoperationwereseismicallyqualifiedusingdynamicanalyses.Somesmallpipingwasseismically'ualifiedusingequivalentstaticanalysisorspacingtabletechniques'.7-23REV.1312/96 GINNA/UFSARAsaresultofXEBulletinNo.79-07,newdynamicanalyseswereperformedforsectionsoftheAresidualheatremoval,Bmainsteam,andchargingsystempiping.Thereanalyseswerebasedonas-builtpipingsystemisometricsandsupportinformation.ThedetailsoftheseanalysesaredescribedbelowandinSection3.9.2.1.2.Additionalanalyseswerealsoperformedforthepressurizersafetyandrelieflines.DetailsoftheanalyticalmethodsandanalysisareprovidedbelowandinSection3.9.2.1.4.Reanalysisofcriticalsafety-relatedpiping2-1/2in.andlazgerwasperformedundertheSeismicPipingUpgradeProgramdiscussedinSection3.7.3.7~3.7.3.6.1ResidualHeatRemovalSstemLinefromReactorCoolantSstemLooAtoContainmentAsketchofthisrunisshowninFigure3.7-29.Idealizedlumpedmassmodelsweredevelopedandanalyzeddynamically.Theanalysiswasmadebyassigningthreetranslationalandthreerotationaldegreesoffreedomtoeachlumpedmasspointwitheachmasspointrepresentingageometricallyproportionalamountofthetotalsystemmass.Elasticcharacteristicsofthesystemincludethetranslationalandrotationalstiffnesses;therotationalelasticcharacteristicsarecarriedintothereducedstiffnessmatrixthatisinvertedandforms,withthemassmatrix,thedynamicmatrix.Followingnormalmodetheorythenaturalfrequencies,modeshapes,andparticipationfactorsarecomputedtoyieldthedynamicsystemcharacteristics.ThesecharacteristicsarethencombinedwiththeappropriateshockspectratoyieldtheD'Alembertreverseeffectiveforcesonthesystemforeachmode.Themodalforcesarethenusedtocomputethestressespermode.Thestressesaresummedonarootmeansquarebasisforfinalcomparisontocodeallowablestresses.Morethan70modeshavebeenanalyzedfortheirresponsetoearthquakeexcitation.TheHousner0.5%criticaldampinggroundresponsespectrumnormalizedto0.2gwasused.Thisspectrumwasconsideredadequatebecauseofthelocationofthispiperun,lowinthecontainment.Forthelocationofmaximumstress,thestressvalueswerecalculatedat,threepointsonthepipecrosssection,thebottom,oneside90degreesaway,and3.7-24REV.1312/96 GINNA/UFSARhalfwaybetweenthesetwo.Firstthestressesduetothetwobendingmomentsandonetorsionalmomentonthepipewerecalculated.Thenforeachofthethreepoints,therootmeansquareofthestressesactingatthepointforthesignificantmodes(firstthree)wascalculated.Tothiswasaddedthedeadweightedstress,andthentheresultmultipliedbythestressintensificationfactor,asthelocationofmaximumstresswastheendofanelbow.Thepressurestresswasaddedtothisresultinordertoobtainthetotaladditivelongitudinalstress.Thetotalmaximumstresswascalculated,consideringthetorsionalshearstressandusingtheformulaformaximumprincipalstresses.3.7.3.6.2SteamLinefromSteamGeneratorBtoContainmentAdynamicmodalanalysiswasrunonthesteamlineofloopBonlinessimilartothatjustdescribed.Thelumpedmassmodelofthepiping,supports,andsnubbersareshowninFigure3.7-30.3.7.3.6.3PressurizerSafetandReliefLines3.7.3.6.3.1ANAIYTIcALMETHoDs.Theanalyticalmethodsusedtoobtainapipingdeflectionsolutionconsistedofthetransfermatrixmethodandstiffnessmatrixformulation.Thepipingsystemmodels,constructedfortheWESTDYNcomputerprogram,wererepresentedbyanorderedsetofdatawhichnumericallydescribesthephysicalsystem.Thespatialgeometricdescriptionofthepipingmodelwasbasedupontheisometricpipingdrawingsandequipmentdrawings.Nodepointcoordinatesandincrementallengthsofthemembersweredeterminedfromthesedrawings.Nodepointcoordinatesareputonnetworkcards.Incrementalmemberlengthswereputonelementcards.Thegeometricalpropertiesalongwiththemodulusofelasticity(E),thecoefficientofthermalexpansion(a),theaveragetemperaturechangefromtheambienttemperature(deltaT),andtheweightperunitlength(w)werespecifiedforeachelement.Thesupportswererepresentedbystiffnessmatriceswhichdefinerestraintcharacteristicsofthesupports.PlottedmodelsforvariouspartsofthesafetyandreliefvalvedischargepipingareshowninFigure3.7-31,Sheets1through5.3.7-25REV.1312/96 GINNA/UI'SAR3.7.3.6.3.2TRANSFERMATRIXMETHOD.ThestaticsolutionsfozdeadweightandthermalloadingconditionswereobtainedbyusingtheWESTDYNcomputerprogram.Thefundamentaltransfermatrixforanelementisdeterminedfromitsgeometricandelasticproperties.Ifthermaleffectsandboundaryforcesazeincluded,amodifiedtransferrelationshipisdefinedasfollows:Tii~i2~P+T12T22FPfjFj(3.7-2)orTyBo+Rl=BI,wheretheTmatrixisthefundamentaltransfermatrixasdescribedabove,andtheRvectorincludesthermaleffectsandbodyforces.ThisBvectorfortheelementisafunctionofgeometry,temperature,coefficientofthermalexpansion,weightperunitlength,lumpedmasses,andexternallyappliedloads.Theoveralltransferrelationshipforaseriesofelements(asection)canbewrittenasfollows:BI=TyBo+RyB2=T2BI.+R2=T2TlBo+T2Ry+R2B3=T3B2+R3=T3T2TyBo+T3T2R1.+T3R2+R3orI2n~T.~,,+~1'3.7-3)3.7-26REV.1312/96 GINNA/UFSAR3.7.3.6.3.3SvxvmsssKnatxFoamuecow.Anetworkmodelwasmadeupofanumberofsections,eachhavinganoveralltransferrelationshipformedfromitsgroupofelements.Thelinearelasticpropertiesofasectionwereusedtodefinethecharacteristicstiffnessmatrixforthesection.Usingthetransferrelationshipforasection,the,loadsrequiredtosuppressalldeflectionsattheendsofthesectionarisingfromthethermalandboundaryforcesforthesectionwereobtained.Theseloadswereincorporatedintheoverallloadvector.Afterallthesectionsweredefinedinthismanner,theoverallstiffnessmatrix,K,andassociatedloadvectorneededtosuppressthedeflectionofallthenetworkpointswasdetermined.Byinvertingthestiffnessmatrix,theflexibilitymatrixwasdetermined.Theflexibilitymatrixwasmultipliedbythenegativeoftheloadvectortodeterminethenetworkpointdeflectionsduetothethermalandboundaryforceeffects.Usingthegeneraltransferrelationship,thedeflectionsandinternalforceswerethendeterminedatallnodepointsinthesystem.Thesupportloads,F,werealsocomputedbymultiplyingthestiffnessmatrix,K,bythedisplacementvector,,atthesupportpoint.Thelumpingofthedistributedmassofthepipingsystemswasaccomplishedbylocatingthetotalmassatpointsinthesystemwhichappropriatelyrepresentedtheresponseofthedistributedsystem.Effectsofthepressurizemotiononthepipingsystemwereobtainedbymodelingthemassandthestiffnesscharacteristicsoftheequipmentintheoverallsystemmodel.Thesupportswereagainrepresentedbystiffnessmatricesinthesystemmodelforthedynamicanalysis.Mechanicalshocksuppressorswhichresistrapidmotionswereconsideredintheanalysis.Thesolutionfortheseismicdisturbanceemployedtheresponsespectramethod.Fromthemathematicaldescriptionofthesystem,anoverallstiffnessmatrix,K,wasdevelopedfromtheindividualelementstiffnessmatricesusingthetransfermatrix,KR,associatedwithmassdegreesoffreedomonly.Fromthemassmatrixandthereducedstiffnessmatrix,thenatural3.7-27REV.1312/96 GINNA/UFSARfrequenciesandthenormalmodesweredetermined.Themodalparticipationfactormatrixwascomputedandcombinedwiththeappropriateresponsespectravaluetogivethemodalamplitudeforeachmode.Sincethemodalamplitudewasshockdirectiondependent,thetotalmodalamplitudewasobtainedconservativelybytheabsolutesumofthecontributionsforeachdirectionofshock.Themodalamplitudeswerethenconvertedtodisplacementsintheglobalcoordinatesystemandappliedtothecorrespondingmasspoint.Fromthesedatatheforces,moments',deflections,rotation,supportreactions,andpipingstresseswerecalculatedforallsignificantmodes.Theseismicresponsefromeachearthquakecomponentwascomputedbycombiningthecontributionsofthesignificantmodes.3.7-28REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLDG%)3.7-29REV.1312/96 GINNA/UFSAR3.7.3.7SeismicPipingUpgradeProgram3.7.3.7.1ProramScoeCommencingin1979,areanalysisofselectedClass1pipingsystemswasperformedfortheseismicpipingupgradepxogram,whichresultedfromSEPTopicIII-6.ThepurposeofthisprogramwastoupgradecertainSeismicCategoryIPipingsystemsatGinnaStationtomorecurrentrequirementsandtoprovideaseismicdatabaseforusewithmodifications,,theinsezviceinspectionprogram,andNRCrequestsforinformation.Portionsofthefollowingpipingsystemswereincludedinthisprogram:~Reactorcoolantsystem~Mainsteam~Mainfeedwater~Auxiliaryfeedwater~Safetyinjection~Residualheatremoval~Containmentspray~Steamgeneratorblowdown~Servicewater(SW)~Componentcooling~Standbyauxiliaryfeedwater~Chemicalandvolumecontrol(1)Auxiliaryspray(2)Letdown(3)Seal-water(4)Charging3.7.3.7.2Piin'electionCriteriaThecriteriafortheselectionoflinestobeincludedintheprogramwereasfollows:3.7-30REV.1312/96 GINNA/UFSARA.OnlypipingthatisconsideredSeismicCategoryIasidentifiedbythesafetyclassandseismicboundariesshownontheGinnaStationP&IDs.B.Mainrunsofpipingincludedshallbebasedonthefollowingcriteria:(1)Mainrunsofpipingwhichare2-1/2in.andlargerandcritical2-in.piping.(2)Mainrunsthatprovidethefluidflowpathto/orfromequipmentrequiredforsafeshutdownandloss-of-coolant-accidentmitigationbasedontheSystematicEvaluationProgram.Equipmentdoesnotincludeinstrumentation.(3)Selectedadditionalmainruns,whichareaprimarypartofthesystemsincludedintheupgradeprogram.C.Branchlinesincludedshallbebasedonthefollowingcriteria:(2)(3)Branchlinesshallbeincludedintheanalysesasnecessarytodeterminethelocaleffectsofthebranchlinesonthemainrunsandtoensureadequateflexibilityexistsinthebranchlinetopreventlocaloverstressinthebranchduetomainzundisplacements.Branchlineswhosesectionmodulusisgreaterthat15%ofthemainrunsectionmodulusshallbeincludedintheanalysisfozanappropriatedistanceand/ornumberofsupportsBranchlineswhosesectionmodulusislessthan15%ofthemainzunsectionmodulusdonotneedtobeexplicitlyincludedintheanalysis.3.7.3.7.3SelectedLinesThelinesselectedtobeanalyzedandmodifiedasnecessarywereasfollows:3.7.3.7.3.1REAcT0RCooLANTSYsTEM.b.c~Primaryloop.Surgeline.Pressurizerspraylinesfromthecoldlegstothepressurizer.3.7.3.7.3.2MAZNSTEAM.a~The30-in.linesfrombothsteamgeneratorsthroughthepenetrationsanduptothemainsteamisolationvalves.b.Inletpipinguptosafetyandreliefvalves'07-31REV.1312/96 GINNA/UFSAR3.7.3.7.3.31euWFEEDwATER.The14-in.linesfromthesteamgeneratorsthroughthepenetrationsanduptocheckvalves3992and3993.3.7.3.7.3.4AUXZLTARYFEEDWATER.a~Thedischargelinesfromthetwomotor-drivenpumpsandtheturbine-drivenpumpuptothemainfeedwaterconnections.Thecondensateandservicewater(SW)suctionlinesfromthepumpstocheckvalves4014,4017,4018andtovalves4013,4027,and4028.3.7.3.7.3.5SAE'ETYXHJECTION.aThe10-in.safetyinjectionaccumulatordischargelinestothecoldlegs.b.Safetyinjectionpumpsuctionlinesfromtherefuelingwaterstoragetank(RWST)throughvalves896AandBand825AandBtothethreepumps.CeThesafetyinjectionpumpdischargelinesfromthethreepumpstothesafetyinjectionaccumulatordischargelinesandtothetwohotlegconnections.Theboricacidlinesfromtheboricacidstoragetankstothesafetyinjectionpumpsuctionline.(Thisisnotanactiveflowpath,sincevalves826A,B,C,andDarelockedclosedwithacpowerremovedinaccordancewiththeTechnicalSpecifications.)e.The4-in.alternatesafetyinjectionsuctionlinefromvalves1816AandBtothepump.The10-in.low-headsafetyinjectionsuctionfromtherefuelingwaterstoragetank(RWST)tovalve854.The6-in./8-in.headerfromtherefuelingwaterstoragetank(RWST)tovalves857A,B,andC.The8-in.suctionlinesfromcontainmentsumpBtovalves850AandBandthe6-in.branchlinestovalves1810AandB.Thelowheadsafetyinjectionlinesfromvalves852AandBtothereactorcoolantsyst:em.3.7.3.7.3.6REszDUM,HERTRwovAL.The10-in.suctionlinesfromtheloopAhotlegtothetworesidualheatremovalpumps.3.7-32REV.1312/96 b.Fromvalves850AandBtotheresidualheatremovalpumps.Fromvalve854tothesuctionheader.Thetwopumpdischargelinesthroughheatexchangersandtothecommon10-in.return.The10-in.returnthroughpenetrationPillandtotheBcoldleg.gThedischargecross-connectincludingvalves709CandD.Theheatexchangerbypasslineincludingvalves712AandB.Thetwolinesfromtheresidualheatremovalheatexchangeroutletstovalves857AandBand1816'herecirculationlinefromtheresidualheatremovalreturnthroughvalve822Btotheresidualheatremovalsuctionline.3~Thetwolinesfromtheresidualheatremovalreturntovalves852AandB.3.7.3.7.3.7CoNTAINMENTSPRAY'a~Thetwosuctionlinesfromtherefuelingwaterstoragetank~(RWST)headertothesprayrings.b.Thetwocontainmentspraypumpdischargelinesandsprayrings.Thetwoeductorlinesfromthecontainmentspraypumpdischargestothepumpsuctions.d.Thesprayadditivelinesfromthetankthroughvalves836AandBandtothetwoeductors.3.7.3.7.3.8CHEMIcALANDVOLuMEC0NTRQLSYSTEM~'a~Theauxiliarypressurizerspraylinefromtheconnectionattheregenerativeheatexchangeroutletlinetothepressurizersprayline.Theletdownlinefromthereactorcoolantsystemthroughtheregenerativeheatexchanger,throughthenonregenerativeheatexchanger,throughvalveTCV145tothevolumecontroltank.The4-in.headerfromthevolumecontroltankandthe3-in.suctionlinestothethreechargingpumps.d.Thethreechargingpumpdischargelinestotheacousticfilter.30733REV.1312/96 GINNA/UFSARThe2-in.charginglinesfromtheacousticfilterthroughtheregenerativeheatexchangertoboththehotandcoldlegconnections.The3-in.sealwaterheaderfromtheacousticfilterandthe2-in.linestothereactorcoolantpumpseals.gThe2-in.seal-waterreturnlinesfromthereactorcoolantpumpsealsandthe3-in.returnheaderthroughthesealwaterheatexchangertothevolumecontroltank.Thisincludes3/4-in.pipingthroughflowtransmitters175,176,177,and178.h.The4-in.linefromtherefuelingwaterstoragetank(RWST)throughvalvesLCV112Band358tothechargingpumpsuctionheader.3.7.3.7.3.9STEANGENERAToRBLowDoNN.The2-in.linesfromthesteamgeneratorsthroughthepenetrationstotheisolationvalves.3.7~3~7~3~10SERvzcEWATERSYSTEM.aTheinletpipingtobothdieselgeneratorsincludingthecross-connectionbetweenthediesels,the16-,14-,and10-in.supplytotheturbinebuildinguptovalve4613.b.Theoutletpipingfrombothdieselgeneratorstoananchorpointoutsidethedieselgeneratorroom.ceThe20-in.supplylinesandheaderinsidetheauxiliarybuilding.The18-,14-,and6-in.supplylinesfromthe20-in.headertothetwocomponentcoolingwaterheatexchangezsandthespentfuelpool(SFP)heatexchanger.Thenormaldischargelinesfromthecomponentcoolingwaterheatexchangersandthespentfuelpool(SFP)heatexchangersincludingthe20-in.dischargelineinsidetheauxiliarybuilding.The3-in.supplyandnormaldischargeheaderstoandfromthesafetyinjectionsystempumpsandequipmentcoolersintheauxiliarybuilding(includespipingthroughvalves4738,4739,and4739A).The16-in.and14-in.supplyheadersinsidetheintermediatebuilding.Includingpipingthroughvalves4040,4623,4639,and4756.h.The10-in.supplytotheturbinebuildinguptovalve4614.3.7-34REV.1312/96 The4-in.supplylinestotheauxiliaryfeedwater.The2-1/2in.and8-in.supplyanddischargelinestoandfromthe1A,1B,1C,and1Dcontainmentventilationcoolingcoilsandfanmotors'he2-1/2in.supplyanddischargelinesforthereactorcompartmentcoolers,includingpipingthroughvalves4625,4626,and4624.The4-in.supplytotheairconditioningwaterchillersuptotheisolationvalves4663and4733.m.Thecommondischargeheaderfortheventilationcoolersuptoananchorpointoutsidetheintermediatebuilding.n.Theservicewater(SW)pumpdischargepipinginsidethescreenhouseincludingthe4-in.crosstie.0The4-in.suppliesfromthelooptotheCandDstandbyauxiliaryfeedwaterpumps(SAFW)includingthe4-in.crosstie.The4-in.testsuctionlinethroughvalves9707AandBandthe1-1/2-in.branchlinethroughvalves9720AandB.q.The1-1/2-in.supplytostandbyauxiliaryfeedwaterroomcoolingunitsAandB.Thedischargefromthestandbyauxiliaryfeedwaterroomcoolingunitstothe14-in.normalreturnlineandtothe20-in.alternativedischargeline.3~7.3.7.3~11C0MPoNENTCooLINGWATER.a~The14-in.suctionheaderand10-in.suctionlinestothecomponentcoolingwaterpumps.Thecomponentcoolingwaterpumpdischargelinestothecomponentcoolingwaterheatexchangers.b.The4-in.and6-in.componentcoolingwatersurgetankline.ceThe10-in.and14-in.supplyheadersoutofthecomponentcoolingwaterheatexchangers.d.The10-inand14-in.supplylinestobothresidualheatexchangers.e.The10-in.and14-in.returnlinesfromtheresidualheatexchangerstothecomponentcoolingwaterpumpssuctionheader.The2-in.supplyandreturnlinestotheresidualheatremovalpumpcoolers.3.7-35REV.1312/96 GINNA/UFSARgThe14-in.and8-in.supplyandreturnheadersservicingthereactorcoolantpumpsandreactorsupports.The3-in.and4-in.supplyandreturnlinestobothreactorcoolantpumpmotors.The6-in.supplyandreturnlinesforthereactorsupportsfromthe2-in.headerstopenetrations130and131.The2-in.supplyandreturnlinesfortheexcessletdownheatexchangerfromthe8-in.headertopenetrations124and126.k.The6-,4-,and2-in.supplyandreturnlinesfozthenonregenerativeheatexchangerandtheseal-waterheatexchanger.The2-in.supplyandreturnlinesforboththecontainmentsprayandsafetyinjectionpumps'.7.3.7.3.12STANDBYAUXILIARYFEEDNATER.The3-in.dischargefromstandbyauxiliaryfeedwaterpumps(SAFN)CandDthroughthepenetrationstotheAandBmainfeedwatezlines,includingthe3-in.crosstieandthe1-1/2-in.linestobothminimumflowozifices.Theloadcombinations,associatedstresslimits,andconclusionsarediscussedinSection3.9.2.1.8.PipesupportsazediscussedinSection3.9.3.3~3.7.3.7.4CodesandStandards.TheoriginaldesignofSeismicCategoryZpipingatGinnawasdonetoUSASB31.1.Thepipingcode,USASB31.1,wasupdatedonJune30,1973,revisingthepipingstressanalysisformulasandstressintensificationfactors.TheprimarystressequationsaresimilartothosegivenintheASMESectionZZZCodeofthattime.Thestressintensificationfactozsgiveninthe1973versionofthecodewereexpandedtoincludemorefittingsthaninthepreviousediti'on,aswellashighervaluesforcertainexistingfittings.ZnthepipingsystemSeismicUpgradeProgram,theANSZB31.1Code,Summer1973Addenda,wasusedprimarily,withthefollowingexception.The.pipingcriteriadidnotconsidertheB31.1Summer1973Addendastressintensificationfactorsforbuttandsocketwelds,sincetheyareconstrictivelyhigherthantheoriginaldesignbasis1967B31.1stressintensificationfactors.3.7-36REV.1312/96 GINNA/UFSARThedesign,materials,fabrication,installation,andexaminationofpipingmodificationsrequiredasaresultofthisreanalysisaredoneinaccordancewithANSXB31.1.3.7-37REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLOK%)3.7-38REV.1312/96 GINNA/UFSAR3.7.3.7.5AnalticalProceduresTheanalyticalprocedureusedforthepipinganalysisisdescribedinthefollowing.3.7.3.7.5.lGENERAL.Thepiping/supportsystemsareevaluatedincorporatingthree-dimensionalstaticanddynamicmodelswhichincludetheeffectsofthesupports,valvesandequipment.Thestaticanddynamicanalysisemploysthedisplacementmethod,lumpedparameters,stiffnessmatrixformulation,andassumesthatallcomponentsandpipingbehaveinalinearelasticmanner.Theresponsespectramodelanalysistechniqueisusedtoanalyzepiping.SeismicanalysesincorporatetheGilbertAssociates,Inc.,developedresponsespectraforboththeoperating-basisandsafeshutdownearthquakecases.'pectraarederivedfrombuildingsandelevationsapplicabletotheindividualanalysislines.Theseismicanalysesarebasedontheoperating-basisearthquakeandsafeshutdownearthquakebeinginitiatedwhiletheplantisatthenormalfullpowercondition.3.7.3.7.5.2DAMPINGVALUES.Theseismicpipestressesaredeterminedusingseismicloadsgeneratedconsideringthepipingsystemstohavethefollowingdampingvalues.3.7-39REV.1312/96 GINNA/UFSARSmalldiameteriinsstems,diameterlessthan12-in.Foroperating-basisearthquakethedampingvalueis1%.Forsafeshutdownearthquakethedampingvalueis2S.Lazediameteriinsstems,diametereualtoorreaterthan12in.Fozoperating-basisearthquakethedampingvalueis2%.Forsafeshutdownearthquakethedampingvalueis4$.Fozacoupledsystemwithdifferentdampinganddifferentstructuralelements,suchaswouldbethecaseinanalysiswithcouplingbetweenconcretestructuresandweldedsteelcomponents,themethodusedfordampingiseitherto(1)usethedampingthatresultsinthehighestload,(2)inspectthemodeshapestodeterminewhichmodescorrespondwithaparticularstructuralelement,andthenusethedampingassociatedwiththatelementhavingpredominantmotion,or(3)usecompositemodaldampingvalueforeachmode,whichiscalculatedbyweightingthedampingineachsubsystembytheamountofstrainenergyineachsubsystem.3.7.3.7.5.3CQHBIHATIoNQFMotuu.RsspoHSES.Forpipingsystemsinterconnectedbetweenfloorsofastructureand/orbuilding,theenvelopeoftherespectivefloorresponsespectraisusedintheseismicanalysis.Thepipingwasanalyzedforthesimultaneousoccurrenceoftwohorizontalcomponentsandoneverticalearthquakeinputcomponent.Theresponsespectraassociatedwitheachearthquakecomponentareappliedineachdirectionseparately.Thecombinedmodalresponseforeachitemofinterest(e.g.,force,displacement,stress)resultingfromeachcomponentanalysiswillbecombinedbythesquarerootofthesumofthesquaresmethod.Foreachseismicanalysis,thetotalseismicresponseisobtainedbycombiningtheindividualmodalresponse(ineachdirection)utilizingthesquarerootofthesumofthesquaresmethod.Thecombinationofmodalresponsesisinaccordancewithoneofthefollowing:3.7<0REV.1312/96 GINNA/UFSARa.RegulatoryGuide1.92.b.Subsection3.7.3.4ofWestinghouseRESAR-41,asdescribedbelow.c.NUREG1061Volume4,Section2,asdescribedbelow.Forsystemshavingmodeswithcloselyspacedfrequencies,theabovemethodismodifiedtoincludethepossibleeffectofthesemodes.Thegroupsofcloselyspacedmodesarechosensuchthatthedifferencebetweenthefrequenciesofthefirstmodeandthelastmodeinthegroupdoesnotexceed10%ofthelowerfrequency.CombinedtotalresponseforsystemswhichhavesuchcloselyspacedmodalfrequenciesareobtainedinaccordancewithRegulatoryGuide1.92or,asanacceptablealternative,thefollowingmethod.Frequencygroupsareformedstartingfromthelowestfrequencyandworkingtowardsuccessivelyhigherfrequencies.Nofrequencyshouldbeincludedinmorethanonegroup.Theresultantunidirectionalresponseforsystemshavingsuchcloselyspacedmodalf'requenciesisobtainedbythesquarerootof(a)thesumofthesquaresofallmodes,and(b)theproductoftheresponsesofthemodesinvariousgroupsofcloselyspacedmodesandassociatedcouplingfactors,.ThemathematicalexpressionforthismethodwithRastheitemofinterestis:(3.7P)where3.7<1REV.1312/96 GINNA/UFSARRi=resultantunidirectionalresponsefordirectionZ;i=1,2,3Rij=absolutevalueofresponseofdirectioni,modejNtotalnumberofmodesconsideredSnumberofgroupsofcloselyspacedmodeslowestmodalnumberassociatedwithgroupjofcloselyspacedmodeshighestmodalnumberassociatedwithgroupjofcloselyspacedmodesK=couplingfactorwith<xi=-1+x1+Px<x+8i<a(3.7-5)and(3.7W)2xd(3.7-7)mK=frequencyofcloselyspacedmodeK(rad/sec)fractionofcriticaldampingincloselyspacedmodeKtd=durationoftheearthquake(seconds)Totalresponse,RTisR,=gR,'/2(3.7-8)For"MultipleSupportingPipingSystems"utilizingtheindependentsupportmotionsresponsespectrummethodofanalysis,thetotalresponseforthe3.7-42REV.1312/96 GINNA/UIiSARsystemisobtainedinaccordancewithNUREG1061Volume4,Section2,assummarizedinthefollowing:aa.Forinertialordnamiccomonents.Theinertialordynamiccomponentgroupresponsesforeachdirectionarecombinedbytheabsolutesummethod.Modalanddirectionalresponsesforthesecomponentgroupsarecombinedbythesquarerootsumofthesquaresmethodwithoutconsideringcloselyspacedfrequencies.bb.Forseudostaticcomonents(e.,anchormotion).Calculatethemaximumabsoluteresponseforeachsupportgroupandthencombinetheireffectsbytheabsolutesummethodforeachinputdirection.Directionalresponsesarethencombinedbythesquarerootsumofthesquaresmethod.cc.Forthetotalresonse.Determinethetotalresponsebycombiningthedynamicandpseudostaticresponsesbythesquarerootsumofthesquaresmethod.Sinceconsiderationofcloselyspacedfrequenciesneednotbeconsideredwhenapplyingthisanalysismethod,eitherdirectionalormodalcomponentsmaybecombinedfirst.dd.Hihfreuencmodes.Highfrequencymodes(>33Hz)arecombinedalgebraicallyasdescribedinNUREG1061Volume4,SectionB.2ofAppendixB.Theeffectsofthehighfrequencymodesazecombinedwiththeeffectsofthelowfrequencymodes(533Hz)bythesquarerootofthesumofthesquaresmethod.3.7.3.7~5.4SAFESHUTDowEARTHQUAKESTREssES.,Theanalysesperformedforpipingandsupportsdonotincludestressesresultingfromsafeshutdownearthquakeinduceddifferentialmotion.Thesestressesaresecondaryinnature,basedonASMEcoderulesforpiping(NB-3652,NB-3656,'-1360)andcomponentsuppozts(NF-3231).Thesafeshutdownearthquake,beingaverylowprobabilitysingleoccurzenceevent,istreatedasafaultedcondition.Therefore,consistentwithpresentASMEphilosophy,thesecondarystressesassociatedwiththesafeshutdownearthquakeinduceddifferentialmotionarenotevaluatedwhenperformingseismicanalysispertheresponsespectrummethod.Thebasiccharacteristicofthesestressesisthattheyareself-limiting.Localyieldingandminordistortionswillsatisfytheinitialconditionsthat3.7A3REV.1312/96 GINNA/UFSARcausedthestresstooccur.Operating-basisearthquakeinduceddifferentialmotionisconsidered.3~7~3~7~5~5SMALLPIPINGANMYSIS~Forsmallpiping(2in.andsmaller)asanoptiontodynamicanalysis,eithertheequivalentdynamicorstaticrigidrangeapproachcanbeused.Ifthesmallpipingsystemhasalowoperatingtemperature,thenthepipelinescanbeanalyzedusingequivalentstaticloadsbasedonspacingtabletechniques.Thestaticrigidrangeapproachisusedforrigidpipingsystems,whicharedefinedashavingnaturalfrequenciesgreaterthan33Hz.Inthiscase,thepipingsystemisanalyzedwithstaticequivalent1'oadscorrespondingtoaccelerationintherigidrangeoftheapplicableresponsespectrumcurves.Bothhorizontalandverticalstaticequivalentloadsareappliedtorigidpipingsystems.Theresponseofthepipingsystemfortwoorthogonalhorizontaldirectionsandoneverticaldirectionarecombinedonasquarerootofthesumofthesquaresbasis.Foranypipingthatcanbeshowntoberigid(lowestnaturalfrequencygreaterthan33Hz),asanoptiontoperformingadynamicanalysis,thestaticrigidrangeapproachmaybeused.3.7.3.7.5.6BRANCHLINEANALYSIS.Thefollowingbranchlineanalyticalprocedureandcriteriaareused.a~Thebranchlineisnotincludedintherunmodelifitssectionmodulusis15%orlessof'therunsectionmodulus.Forbranchlineswhichhavesectionmoduligreaterthan15()oftherunsectionmodulus,thebranchlineismodeledinitiallyforadistanceof15ft0in.Ifitislaterdeterminedbythepipinganalystthatadditionalmodelinginformationisrequired,itisprovidedandincludedwithintheanalysismodel.c~Intherunanalysiswherethebranchlinehasnotbeenincluded,thebranchallowablebendingmomentsaxeincluded.UsingB31.1Summer1973Addenda,Formula12,thebranchallowablemomentisexpressedasfollows:zMBp=BranchAllowableMomentB0.75iPDoxs--'i(3.7-9)3.7-44REV.1312/96 GINNA/UFSARForbranchlinesthatazenotincludedinthemodel,supportswithin10ftoftherunarenotedsinceasupportneartherunpipecouldaffectthebranchlineflexibility.3~7~37,57PIPINGBEYoHDScoPEoFUPGRADEPRQGRAMPipingwhichextendsbeyondthescopeoftheseismicupgradingprogrameffortisincludedwithintheanalysisonlyasitaffectsfluidlineswithinscope.Ingeneral,pipingismodeledforadistancewhichcoversaminimumofonerigidsupportineachofthethreeglobaldirections.Case-by-casejudgmentsaremadewhentheaboveisinsufficientorinfeasible.Out-of-scopepipingisanalyzedtothesamegeneralguidelinesandcriteriaasthein-scopepiping,onceitsinclusionhasbeendeemednecessary.Analysisofnonseismicportionsoftheout-of-scopepipingmaybedonetoallowablestressesequivalenttotheASMECodeServiceLevelDallowables,providingthein-scopepipingmeetsallseismicupgrade~criteriarequirements.Pipingorsupportmodificationsarerecommendedfortheout-ofscopesegmentswhenthequalificationand/orsafeoperationoftheupgradedpipingmandates.Supportloadevaluationscomplywiththeaboveguidelinesandcriteriaestablishedforthepipingbeingsupported.3.7A5REV.1312/96 GINNA/UFSAR3.7.3.7.6PiinSstemModelsPiinModelinTechniuesforStaticAnalsisThepipingsystemmodelsarerepresentedbyanorderedsetofdata,whichnumericallydescribesthephysicalsystem.Thespatialgeometricdescriptionofthepipingmodelisbasedupontheas-builtisometricpipingdrawingsandequipmentdrawings'odepointcoordinatesandincrementallengthsofthemembersaredeterminedfromthesedrawings.Nodepointcoordinatesareinputonnetworkcards.Incrementalmemberlengthsareinputonelementcards.Thegeometricalpropertiesalongwiththemodulusofelasticity,E,thecoefficientofthermalexpansion,a,theaveragetemperaturechangefromambient,deltaT,andtheweightperunitlength,w,arespecifiedforeachelement.Thesupportsarerepresentedbystiffnessmatrices,whichdefinerestraintcharacteristicsofthesuppozts.Anetworkmodelismadeupofanumberofsections,eachhavinganoveralltransferrelationshipformedfromitsgroupofelements.Thelinearelasticpropertiesofthesectionareusedtodefinethecharacteristicstiffnessmatrixforthesection.Usingthetransferrelationshipforasection,theloadsrequiredtosuppressalldeflectionsattheendsofthesectionarisingfromthethermalandboundaryforcesforthesectionareobtained.Theseloadsazeincorporatedintotheoverallloadvector.Afterallthesectionshavebeendefinedinthismanner,theoverallstiffnessmatrix,K,andassociatedloadvector,tosuppressthedeflectionofallthenetworkpoints,isdetermined.Byinvertingthestiffnessmatrix,theflexibilitymatrixisdetermined.Theflexibilitymatrixismultipliedbythenegativeoftheloadvectortodeterminethenetworkpointdeflectionsduetothethermalandboundaryforceeffects.Usingthegeneraltransferrelationship,thedeflectionsandinternalforcesarethendeterminedatallnodepointsinthesystem.Thesupportloads,F,arealsocomputedbymultiplyingthestiffnessmatrix,K,bythedisplacementvector,5,atthesupportpoint.Themodelsusedinthestaticanalysisaremodifiedforuseinthedynamicanalysesbyincludingthemasscharacteristicsofthepipingandequipment.3.7A6REV.1312/96 GINNA/UFSARThelumpingofthedistributedmassofthepipingsystemsisaccomplishedbylocatingthetotalmassatpointsinthesystemwhichwillappropriatelyrepresenttheresponseofthedistributedsystem.Effectsoftheequipmentmotionareobtainedbymodelingthemassandthestiffnesscharacteristicsoftheequipmentintheoverallsystemmodelwhenrequired.Thesupportsareagainrepresentedbystiffnessmatricesinthesystemmodelforthedynamicanalysis.Hydraulicshocksuppressorsthatresistzapidmotionsareconsideredintheanalysis.Fromthemathematicaldescriptionofthesystem,theoverallstiffnessmatrix,K,isdevelopedfromtheindividualelementstiffnessmatricesusingthetransfermatrix,KR,associatedwithmassdegrees-of-freedomonly.Fromthemassmatrixandthereducedstiffnessmatrix,thenaturalfrequenciesandthenormalmodesaredetermined.'ITheeffectofeccentricmasses,suchasvalvesandextendedstructures,areconsideredintheseismicpipinganalyses.Theseeccentricmassesaremodeledinthesystemanalysisandthetorsionaleffectscausedbythemareevaluatedandincludedinthetotalsystemresponse.Thetotalresponsemustmeetthelimitsofthecriteriaapplicabletothesafetyclassofthepiping.3.7.3.7.7ValveModelValvesareincludedinthepipingsystemmodel.Themodelemployedreflectsnon-rigidbehavioraswellasrigidbehavior.Forrigidvalves,themodelusedconsistsofarigidbeamelementfromthecenteroftherunpipetothecenterofgravityofthevalve.Themassofthevalveshouldbelocatedatthevalvecenterofgravity.Fornon-rigidvalves,themodelshouldhavetwomasses.3.7.3.7.8EuimentModelWherethestiffnessandmassoftheequipmentattachedtothepipingwillinfluencethepipingsystembeinganalyzed,thepipingmodelmustincludetheequipmenteffect.Thisisaccomplishedbyincludinginthepipingmodelamodeloftheequipmenttothedetailnecessary.3.7-47REV.1312/96 GINNA/UFSAR3.7.3.7.9interactionEffectsInteractionofotherpipingsystemsisconsideredwhentheirresponsewillaffecttheresponseofthelinebeinganalyzed.Thereactorcoolantloopisincludedinthepipingsystemmodeltotheextentofdetailrequired.Xfthelinesbeinganalyzedarerelativelysmalldiameterand/orlowtemperature,thereactorcoolantloopneednotbeincludedinthemodel.Thisisbecausetheselinesaresoflexiblethatthereactorcoolantloopdeflectionwillnotincludesignificantstressesinthelines,orthatthereactorcoolantloopresponsecharacteristicswillnotcauseexcitingforcesdifferentfromthoseassociatedwiththeinnercontainmentbuilding.Wherebranchpipingisattachedtothepipingbeinganalyzed,itseffectonthepipingofinterestisaccountedforbymodelinginaccordancewiththecriteriaforbranchlinesgivenearlier.3.7.3.7.10SuortSupportsaremodeledasequivalentstiffnessmatriceswithinthe-pipinganalysismodels(Section3.7.3.7.6).3.7.3.7.10.1Dzvzanows.Deviationsfromtheanalyzedsupportdesignparametersarepermissiblefromananalysisstandpointprovidedthefollowingacceptabilityguidelinesaremaintained.3.7-48REV.1312/96 GINNA/UFSARa.Supportstiffnesses.(1)Encreasingthestiffnessofapreviouslyrigidsupportisacceptable.RigidisdefinedinSection3.9.3.3.3.3.(2)Revisionswhenoriginalstiffnessisbelowrigidareacceptablewhenrevisedvaluesare215%oforiginalstiffness.b.Supportlocations.AcceptableDeviations:~PieSizeTolerance54in.66in.Greaterofnominalpipediameteror3in.Nominaldiameterofpipec.Supportdirectionality.Acceptabledeviation:i5degrees.Anynoncomplianceswiththeseguidelineswillbeassessedonacase-by-casebasistodeterminetheeffectontheanalysisresults.3~7.3.7.10.2SUPPORT-WELDEDATTACHMENTS~Weldedlugsarepermissibleforuseonsupportsthatdonotactperpendiculartothepipecenterlineandwhereslippagemustbeprevented.Thedesignofacceptableweldedattachmentsorlugsmustbeinaccordancewiththefollowinggeometricrestrictions.a.Theattachmentmaterial,weldmaterial,andpipematerialhaveessentiallythesamemoduliofelasticityandcoefficientsofthermalexpansion.-S0.5,L2r'0075r2(3.7-10)whereL1isthewidth,L2isthelengthoftheweldedattachmentmeasuredalongthesurfaceoftherunpipe,andristhemeanpiperadius.Twicethesetolerancespermittedforspringhangers,constantforcesupports,andaxialsupports.3.7A9REV.1312/96 GINNA/UFSARcTheattachmentismadeonstraightpipe,withthenearestedgeoftheattachmentweldlocatedataminimumdistanceofrtfromanyotherweldordiscontinuity.Themeanpiperadiusiszandtisthenominalpipewallthickness.Dolt5100whereDoandtaretheoutsidediameterandnominalpipewallthicknessesofthezunpiperespectively.Theuseoffilletweldsforpipeattachmentsisnormallyacceptable.Fullpenetrationweldswillbespecifiedincertainhightemperature,highloadsituations.Stanchionsaresmallpipesegmentsweldedtotherunpipeandusedforsupport.Thesupportmustbeweldedtotherunpipewithafullpenetrationweld.The"branch"portionwillhaveazeropressurestress.Theratioofstanchionmeanradiustopipemeanradiuswillgovernthechoiceofapplicablestressintensificationfactorsusedwithinthepipingqualification.Ifthisratioisgreaterthan0.5,weldingteefactorswillbeused;ifitislessthanorequalto0.5,thelargerofweldingteeorbranchfactorswillbeused.Supportsrequiringlugsorstanchionswillbedesignedsuchthatstressamplificationisminimized.Exceptionstothiscriteriawillbeinvestigatedonanindividualbasis.AnexceptiontothecomponentstandardsupportsstiffnesscapabilitiesismadeinthecaseofU-bolttypesupports,foztheSeismicUpgradeProgrameffort.FiniteelementanalysisevaluationsprovidedthebasisforU-boltsupportstiffnessvaluesandloadcapabilities.Rodhangersaregenerallysingleactingverticalsupports;intheupwarddirection,theyaresusceptibletoan'arlybucklingcondition.Stiffnesses,therefore,intheupwarddirectionareminimal.Considerationofthisconditionwillbemadewithintheapplicableanalysisofpipingsystemswithrodhangersincluded,suchthattheupwardmotionofapipingsectionatthelocationofthesesupportswillcausesupportinaction.Ifstressacceptabilityisverifiedwithsupportinactivityintheupwarddirection,thecontinueduseofsingleactingzodhangersissatisfactory.Ifitisfoundthatdouble-actingsupportisrequiredforpipingqualification,thereplacementofrodhangerswithstrutswillberecommended.3.7-50REV.1312/96 GINNA/UFSAR3.7.4SEISMICINSTRUMENTATIONAKinemetrics.modelSSA-2accelerographisinstalledinthesubbasementoftheintermediatebuildingatelevation237ft.Thislocationwaschosenratherthanthebasementofthecontainmentsinceitmoreeasilyfacilitatesperiodicsurveillanceoftheinstrument(thiswouldbedifficultshouldtheinstrumentbelocatedinthebasementofthecontainment)andtheretrievaloftheshockrecordcanmorereadilybemade.Theresponseoftheaccelerographlocatedinthebasementoftheintermediatebuildingwillbevirtuallythesameasonelocatedinthebasementofthecontainment.Theelevationsofthebasementfloorsofboththecontainmentandintermediatebuildingazewithin2ftofoneanotherandbothbasementmatsaresupportedupontheunderlyingQueenstonfozmation.3.7-51REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.71.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

.SystematicEvaluationProgram,SeismicReview,R.E.Ginna,datedApril3,1979.2.G.W.Housner,"DesignofNuclearPowerReactorsAgainstEarthquakes,"Proceedingsof2ndWorldConferenceonEarthquakeEngineering,VolumeI,Japan,1960.3.LetterfromD.M.Crutchfield,NRC,toSEPOwners,

Subject:

SiteSpecific"GroundResponseSpectraforSEPPlantsLocatedintheEasternU.S.,datedJune17,1981.4.UnitedStatesAtomicEnergyCommission,NuclearReactorsandEarthquakes,TID7024,1963.5.J.Blume,N.Newark,andL.Corning,DesignofMultistoryReinforcedConcreteBuildingsforEarthquakeMotions,PortlandCementAssociation.6.N.'W.NewmarkandW.J.Hall,DevelopmentofCriteriafozSeismicReviewofSelectedNuclearPowerPlants,U.S.NRC,NUREG/CR-0098,1978.7.S.J.Sackette,UserManualforSAP4,AModifiedandExtendedVersionoftheU.C.BerkeleySAPIVCode,LawrenceLivermoreNationalLaboratory,UCID18226,1979.8.M.P.Singh,"GenerationofSeismicFloorSpectra,"Journalof'ngineeringMechanicsDivision,ASCE,EMS,October,1975.9.M.P.Singh,"SeismicDesignInputforSecondarySystems,"ASCEMini-ConferenceonCivilEngineeringandNuclearPower,Session11,Boston,Massachusetts,VolumeII,April1979.10.P.P.DeRosa,etal.,PressurizerGenericStressReport,Sections3.1,3.2,3.4,3.7,WestinghouseElectricCorporation,TampaDivision,1973.3.7-52REV.1312/96 GINNAIUFSARTABLE3.7-1ORIGINALANDCURRENTRECOMMENDEDDAMPINGVALUESCri,thecalDxn(8)StructureoxCoonent'innal.6X(SafeShutdown(l'ieldLevelsPrestressedconcrete5to7Reinforcedconcrete7to10Steelframe1or2.54or710to15Weldedassemblies5to7Boltedandrivetedassemblies2.510to15Vitalpiping0.52or32to3SeeReference6.REV.1312/96 GINNA/UIiSARTABLE3.7-2MODALFREQUENCIESOFTHEINTERCONNECTEDBUILDINGMODELFreenc(Zz)Zal&2LreaModelZuLl-21reaMadel123456789101112131415161718192021222324252627282930311.8(3.4,12.9)2.0(10.2,0.2)2.12.4.2.62.82.93.33.43.64.04.24.2444.75.66.16.5(6.4,4.5)6.66.7(8.4,8.5)6.9(10.3,7.2)7.07.89.39.5(5.4,8.4)10.410.811.111.212.213.52.3(7.4,12.6)2.4(8.5,4.7)2.83.13.2(7.4,0.6)3.43.43.63.94.0(6.3,1.4)4.34.34.64.65.46.76.9(12.7,6.4)7.07.37.47.58.09.7(5.1,8.3)10.410.610.911.111.712.112.814.0Sheet1REV.1312/96 GINNA/UFSARTABLE3.7-2MODALFREQUENCIESOFTHEINTERCONNECTEDBUILDINGMODELZxeen(Zz)32333435363738394041424344ZaIS-2LreaModeZ13.816.417.8(2.4,6.6)18.519.3.21.1(0.1,27.1)22.9(26.9,0.1)27.033.541.245.157.860.4(6.7,0.0)ZuII-AreaModeL16.416.717.8(2.3,6.5)18.619.521.2(0.1,27.1)22.9(26.9,0.1)27.233.641.245.757.860.4(6.7,0.0)Note:Numbersinparenthesesarethe10largestmodalparticipationfactorsintheeast-westandnorth-southdirections,respectively.Sheet2REV.1312/96 GINNA/UFSARTABLE3.7-3EQUIPMENTANDLOCATIONSWHEREIN-STRUCTURESPECTRAWEREGENERATEDFORTHESYSTEMATICEVALUATIONPROGRAMZ~x~ientElevation(ft)ContainmentinteriorstructuresPressurizerPR-1ControlroddriveSteamgeneratorSG-1ASteamgeneratorSG-1BCoolantpumpRP-1ACoolantpumpRP-1B253253and278250and278250and278247247AuxiliarybuildingPlatformcenterofgravityHeatexchanger(35)Surgetank(34)Boricacidstoragetank(40B)Operatingfloorcenterofgravity281.5281.5281.5271271ControlbuildingBasementfloorcenterofgravity250Relayroomfloorcenterofgravity269.75Controlroomfloorcenterofgravity289.75REV.1312/96 GINNA/UFSAR3.8DESIGNOFSEISMICCATEGORYI'TRUCTURES3.8.1CONTAINMENTGeneralDescription3.8.1.1.1ContainmentStructureThecontainmentstructureisareinforced-concreteverticalrightcylinderwithaflatbaseandahemisphericaldome.Aweldedsteellinerisattachedtotheinsidefaceoftheconcreteshelltoensureahighdegreeofleaktightness.Ontheinsideofthelinereveryweldseamhasaleaktestchannelweldedoverit.Thechannelscanbepressurizedtodesignpressureforlinerleaktestingwheneverthecontainmentvesselisopen.Exceptionsweretakenduringthe1996SteamGeneratorReplacementwheretwoconstructionopeningswerecreatedinthedome.Theperimeterclosureweldsforbothlinerplateopeningrepairshaveleaktestchannelsontheoutsideofthelinerplate.Thethicknessofthelinerinthecylinderanddomeis3/8in.andinthebaseis1/4in.Thecontainmentstructureis99fthightothespringlineofthedomeandhasaninsidediameterof105ft.Thecontainmentprovidesafreevolumeofapproximately997,000ft.Anelevationanddetails3ofthecontainmentstructureareshowninFigures3.8-1through3,8-5.Thecylindricalreinforcedconcretewallsaze3ft6in.thickandtheconcretehemisphericaldomeis2ft6in.thick.Theseshellthicknessesareestablishedtosatisfytherequirementsofthestructuralcriteriaaswellastheshieldingrequirements.Theconcretebaseslabis2ftthickwithanadditionalthicknessofconcretefillof2ftoverthebottomlinerplate.Thecontainmentcylinderisfoundedonrock(sandstone)bymeansofpost-tensionedrockanchorswhichensurethattherockthenactsasanintegralpartofthecontainmentstructure.Thehemisphericaldomeisreinforcedconcretedesignedforallmoments,axialloads,andshearsresultingfromtheloadingconditionsdescribedinthissection.Thecylinderwallisprestressedverticallyandreinforcedcircumferentiallywithmildsteeldeformedbars.Thebaseisareinforced-concreteslab.Therockanchorsareusedforallverticalaxialloadsinthecylinderwallsandtherebyavoidthe3.8-1REV.1312/96 GINNA/UFSARtransferofanimposedsheartothebaseslab.Thestructuralsystemsforthecontainmentstructurearesummarizedasfollows:~Hemisphericaldome-mildsteel-reinforcedconcrete.~Cylindricalwalls.(1)Verticaldirection-prestressedconcrete.(2)Circumferentialdirection-mildsteelreinforcedconcrete.~Rockanchors-prestressed.Thedesignensuresthatthestructurehasanelasticresponsetoallloadsandthatitstrainswithinsuchlimitsthattheintegrityofthelinerisnotpre)udiced.Thelinerparticipateswiththeshellasitreactstotheseloadsandisdesignedtoensurethevesselvaportightness.ThedesignofthestructuralelementsaremorefullydescribedinSections3.8.1.2and3.8.1.3.3.8.1.1.2WaterroofinNodrainagesystemwasprovidedunderthecontainment,structure.ThemaximumgroundwaterelevationconsideredduringthedesignofGinnaStationinthevicinityofthecontainmentstructurewas252ft.Thedesign-basiswaterlevelhassincebeenrevisedto265ftmsl(seeSection2.4.10.1).Thiscompareswithanelevationattheundersideofthebaseslabof231ft8,in.Xtisunlikelythattensilestresseswillproducecracksintheoutsideconcretefacebecausesignificantconstraintisaffordedbytheirregularsurfaceofthefoundingrockmaterial.ThisrockhassignificantstructuralcharacteristicsasdescribedinSection2.5.However,theconcreteisnottotallyimpermeable.Forthisreason,thedesignoftheliner,testchannels,backupbars(structuraltees),anchorsontestchannels(refertoFiguze3.8-6)andtheconcretecoverwerebaseduponaccommodatingthefullhydrostaticheadofwater.Asignificantcorrosionpotentialforembeddedsteeldoesnotexistduetotheclosecontactbetweenthealkalineconcreteandsteelwhichprovidesahighlycorrosive-resistantenvironmentfortheliner.Thebasementfloorelevationofthecontainmentvesselis235ft8in.Theexteriorofthecylinderwallsarecoveredfromtheedgeoftheringgirdertoelevation253ft0in.withamembranewaterproofing.Nowaterproofingwasplacedbetweenthefoundationmaterial(rock)andthebaseslab.Theliner3.8-2REV.1312/96 GINNA/UFSARandlineranchorageatthebaseofthevesselweredesignedtowithstandatheoreticalporepressureequaltothehydrostaticheadofwater,7.7psi.Thesiteisnotsubjecttosignificantfluctuationsinthegroundwaterelevations.Consequently,ifthebaselinerissubjecttotheassumedwaterpressure,thispressureshouldremainessentiallyconstant.Thenetbuoyantforceduetothehydrostaticpressureactingonthecontainmentbaseistransmittedbythebaseslabtothecylinderwalls.3.8.1.1.3RockAnchorsThesidewallsofthecontainmentareanchoredtothefoundationrockwithprestressedrockanchors.Theanchorsplaceapreloadbetweenthefoundationrockandazingbeamatthebaseofthesidewall.Thetendonsinthesidewallsazecoupledtotherockanchorsandextendtoalocation12ft6in.IIabovethespringlinetoprovideaccessibilitytotheupperanchorageandtopermittensioningfollowingthecompletionofthedomeconcretework.Aremovablecoverisplacedoverthetopanchorageheadforprotectionandtoprovideanexpansionreservoirforthetendonprotectionsystem.RefertoFigure3.8-7fordetailsofthisenclosure.Theoutersurfaceofthecontainmentcanbeinspected,exceptinthoselimitedareaswhereroofs,floors,andwallsofadjacentbuildingsprecludeaccess.3.8.1.1~4ConstructionSeuenceThesequencefortheconstructionoftheshellofthecontainmentstructurewasasfollows:A.Excavationwascompletedandtheexposedrockexaminedbyasoilsengineertoensureitscompetence.B.Theconcretefortheportionoftheringgirderatthebaseofthecylindricalwallwasplaced.Sleevesandbearingplacesfortherockanchorswereembeddedinthisconcretepour.C.Theholesforrockanchorsweredrilledthroughtheembeddedsleevesandintotherock.Theanchor,whichwascompletelyfabricatedintheshop,wasinsertedandthefirststagegroutplaced.Followingtherequiredcuringperiodtheanchorwastensionedandthesecondstagegroutinsertedunderpressure.3.8-3REV.1312/96 GINNA/UFSARD.Theconcreteforthebasematwasplacedwithembeddedbarsforthebackupoflinerwelds.Theouterconcretepourcontainsthetensionbars(dowelatbaseofcylindricalwalls).Thebaseslabsforthesumpsandpitalsowereinstalledwithembeddedbarsforbackupoflinerwelds.Thelinerforthewallsofthesumpswasthenerectedandusedasaninnerformfortheplacementofconcrete.E.Thelinerwaserectedstartingonthebaseandcontinuingtotheknuckle,thecylindricalwall,andthedome.Allelectricalandmechanicalpenetrations(i.e.,sleevesforpenetrations)wereinstalledaslinererectionprogressed.Essentiallyallelectricalandmechanicalpenetrationswereshopassembledinthecylindricalwallplates.Provisionwasmadetoinstalltheequipmentaccesshatchandpersonnelairlocksatalaterstageofconstruction.Temporaryopeningswereprovidedinthelinercylindricalwallforconstructionaccessrequirements.Theclosureprocedurefortemporaryopeningsinthelinerwassimilartothatforsteeltankconstruction.Initially,specialreinforcementwasprovidedaroundtheperipheryofthetemporaryopenings.Asufficientwidthofplateextendedbeyondthelimitsoftheconcreteplacementtoprecludedetrimentalheatupoftheconcreteduetotheweldingoftheclosureplate.Theweldingprocedureswereidenticaltothatusedforalllinerweldseams.ThepreparationofconstructionjointsandplacementofconcreteintemporaryopeningsisasdescribedinAppendix3BAttachmentl.F.Thetendonconduitwasembeddedinthesecondringgirderpourwithprovisionmadeforinstallingthetendonandcompletingthecouplingofrockanchortothesidewalltendon.Theenclosureaboutthecouplingwasweldedtotheanchorplateandawindowremovedtopermitmaking-upthecoupling.Anexpansionbellowswasprovidedwheredifferentialmotionwilloccurattheleveloftheelastomerpads~G.Theelastomerpadswereinstalledandtendonconduitplusmildsteelreinforcingplaced.Themildsteelreinforcingwastemporarilysupportedfromthetendonconduitandthestiffenersontheliner.Concreteplacementattemporaryopeningswasdelayedandprovisionmadetostaggerreinforcementsplicesattheselocationsaswellaselsewhereonthestructure.Forthecylindricalwallanddome,thelinerwasusedasaninnerform.H.Wheregradeisadjacenttothestructure,aretainingwallwaserectedtoensurenoearthwasplacedagainstthecylindricalwall.3.8AREV.1312/96 GINNA/UFSARTheconcretecylindricalwallwascompletedandtemporaryopeningsclosedaftertheynolongerwererequiredfozconstruction.Thereinforcementringsabouttheequipmentaccesshatchandpersonnelairlockswereinstalled.Thereinforcementabouttheequipmentaccesshatchwasnotplaceduntilaftermajorcomponentswereinstalled.Thecylinderwallswereplacedwithhorizontaljointsspacedatapproximately11-ftcenters.Verticaljointswerespacedatapproximately42.5-ftcenters(i.e.,thecylinderwasdividedintoapproximatelyeightequalpours).Thefinalsixliftswerepouredwiththespacingofverticaljointsincreasedtoapproximately57ft(i.e.,sixapproximatelyequalpours).Formtiesconsistingof0.5-in.diameterthreadedstudsspacedatapproximately2-ftcenterswereweldedtotheliner(bothplateandchannelanchors)forattachingthelinertotheouterform.Theouterformwassupportedbycantileverconstructionfromthelowerpour.Noattemptwasmadetostaggerverticalorhorizontaljoints.Aminimumdelayof3dayswasmaintainedbeforeplacingnewconcreteagainstabuttingpours.InitialandfinalconcretecuringwerebythewetmethodasspecifiedinACI301-66.Thedomeconcrete(i.e.,allconcreteabovetheledgeatelevation343ft2in.)wasplacedascontinuousringswithachordwidthofapproximately4.2ft.Thefinalpour(center"dollar"section)consistedofanapproximately8-ftdiametersection.Allconcretewasplacedinonepourforthefullthicknessoftheconcreteshell.Agalvanizedexpandedmetalmeshlocated1in.inboardoftheexposedfacewasusedasanouterformonthegreaterslopedportionofthedome(i.e.,uptoanangleofapproximately55degreesfromthespringline).Formtiesintheformof0.5-in.diameterstudswezeweldedtothelinerplateandattachedtothecageofreinforcingbars.Aminimumdelayof'dayswasmaintainedbeforeplacingnewconcreteagainstthepreviousconcretering.Duringthe1996SteamGeneratorReplacementoutagetwoconstructionopeningswerecreatedinthecontainmentdome.Theremoved,linerplatesectionswerereused.Stiffeneranglesweldedtothelinerplatesectionsforriggingremovalreplacedtheoriginal0.5in.diameterstuds.Thereinforcingbarsweresupportedoffthestiffeneranglesandsupportchairs.Thedomeopeningswerethenboardedandpouredmonolithically.BoardEormbox-outswereusedtoplaceandconsolidateconcrete.Thetendonswereinstalledintheembeddedconduitsandthesidewalltendonandtherockanchorwerecoupled.Theremainingconcretepourintheringgirderswascompletedandthewaxinsertedintotheconduit.Theconcretedomewascompletedandthesidewalltendonstensioned.3.8-5REV.1312/96 GINNA/UFSARL.Followingthetensioningofthetendons,theequipmentaccesshatchwithinset,personnelairlockplusthesecondpersonnelairlockwereinstalled.Thecontainmentwasthenreadyforstructuralandleakagetesting.3.8.1.1.5SteelReinforcementTheprincipaldomereinforcementiscontinuousexceptfortheanchorageatelevation366ft8in.whichisprovidedintheformofamechanicalconnectiontoacontinuouscircumferentialplate.Additionalsteeltocontrolspallingontheouterfaceoftheshellisprovidedintheformofweldedwirefabric.Atthedometocylinderdiscontinuityadditionalreinforcementisprovidedonbothfaceswith180-degreehookswithtotalanchorageprovidedtosatisfytherequirementsofACI318-63.DetailsareshownonFigure3.8-5.Intheanchoragezoneoftheprestressingsteel,themajorsteelprovidedtowithstandburstingforcesconsistsofcontinuousspirals.Radialreinforcementisprovidedwith180-degreehooksaroundtheverticalflexuralsteelforanchorage.Vertical(meridional)reinforcementusedforflexuralandtemperatureresistanceislapsplicedinaccozdancewithACI318-63zequirementsonthebasisofsplicerequirementsatpointsofmaximumtensilestress.DetailsarealsoshownonFigure3.8-5.Allprincipalcircumferentialreinforcementiscontinuousexceptatthesmallpenetrationswheremechanicalanchorsazeprovided,asshowntypicallyonFigure3.8-4,andforalimitednumberofbarsatthelargeopenings,asdescribedinAppendix3B.Vertical(meridional)reinforcementislapspliced(exceptforspeciallargesizebarswhichareCadweldspliced)inaccordancewithACI318-63requirementsonthebasisofsplicesatpointsofmaximumtensilestress.Atthebaseofthewallallvertical(meridional)reinforcementisprovidedwith90-degreehooksforanchorage.DetailsareshownonFigure3.8-4.3.8-6REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-7REV.1312/96 GINNA/UFSAR3.8.1.2MechanicalDesignBases3.8.1.2.1GeneralThecontainmentsafetydesignbasisandprincipaldesigncriteriaarecontainedinSection6.2.1.1.Thecontainmentvesselisasteel-linedconcreteshelldesignedtoensurethatitzespondselasticallytoallloadsandstrainswithinsuchlimitsthattheintegrityofthelinerisnotprejudiced.Thelinerisanchoredsoastoensurecompositeactionwiththeconcreteshell.'IThecontainmentstructureisdesignedbaseduponlimitingloadfactorswhichareusedastheratiobywhichaccidentandearthquakeloadsaremultipliedfordesignpuzposestoensurethattheload/deformationbehaviorofthestructureisoneofelastic,low-strainbehavior.Thisapproachplacesminimumemphasisonfixedgravityloadsandmaximumemphasisonaccidentandearthquakeloads.Becauseoftherefinementoftheanalysisandtherestrictionsonconstructionprocedures,theloadfactorsprimarilyprovideforasafetymarginontheloadassumptions.Loadcombinationsandloadfactorsutilizedinthedesignwhichprovideanestimateofthemarginwithrespecttoallloadsaretabulatedinthissection.3.8.1.2.2DesinLoadsThefollowingloadswereconsideredinthestzucturaldesign:Internalpressure.TestpressureLiveloadsExternalpressureWindload.Internaltemperature.69psig.Roofloadspluspipereactions.2.5psig.(1)Accident.(2)Operating-120'F.3.8-8REV.1312/96 GINNA/UFSAR~Seismicgroundaccelerations.~Deadloads.~Prestressingloads.ThethermalloadsonthecontainmentvesselandtheirvariationwithtimearedevelopedonthebasisofthetransientsdiscussedinSection6.2.1.2.TheseismicloadswereevaluatedasoutlinedinSection3.8.1.3.ThewindandsnowloadsusedforthedesignofstructureswerethosespecifiedinStateBuildingCodefortheStateofNewYork.Thewindloadsgiveninthiscodeareasfollows:ZeihtAboveGround(ft)PressureLoad(sf)0-1516"2526-4041-6061-100101-200121518212428Thesnowloadspecifiedinthecodefortheplantlocationis40psfforaflatroof.Thisvaluealsowasusedinthedesignofthecontainment.3.8.1.2.3DesinStressCriteria3~8.1~2~3~1LIMITIHGLQADs~Thedesignwasbaseduponlimitingloadfactorswhichwereusedastheratiobywhichaccident,earthquake,andwindloadsweremultipliedfordesignpurposestoensurethattheloaddeformationbehaviorofthestructureisoneofelastic,low-strainresponse.Theloadsutilizedtodeterminetherequiredlimitingcapacityofanystructuralelementonthecontainmentwerecomputedasfollows:C=0.95D+1.5P+1.0TC=0.95D+1.25P+1.0T'1.25EC=0.95D+1.0P+1.0T+1.0E'ymbolsusedintheaboveequationsweredefinedasfollows:3.8-9REV.1312/96 Requiredloadcapacityofsection.D=Deadloadofstructure.P=Accidentpressureload-60psig.Thermalloadsbasedupontemperaturetransientassociatedwith'1.5timesaccidentpressure.T'Thermalloadsbasedupontemperaturetransientassociatedwith1.25accidentpressure.Thermalloadsbasedupontemperaturetransientassociatedwithaccidentpressure.E'Seismicloadbasedon0.08ggroundacceleration.E'Seismicloadbasedon0.20ggroundacceleration.Iftherequiredresistingcapacityonanystructuralcomponentresultingfromthewindloadonanyportionofthestructureexceededthatresultingfromthedesignearthquake,thewindload,W,wasusedinlieuofEinthesecondequation,Thefactorof1.05timesdeadloadwasusedwhenitcontrolledindeterminingtherequiredloadcapacity.Allstructuralcomponentsweredesignedtohaveacapacityrequiredbythemostsevereloadingcombination.3.8.1.2.3.2LottoFAcToas.TheloadfactorsusedintheseequationsmakeprovisionforsafetyofthecontainmentstructureinthesamemannerasdoestheultimatestrengthdesignprocedureinACI318.Becauseoftherefinementoftheanalysisandtherestrictionsonconstructionprocedures,theloadfactorsinthedesignprimarilyprovidefozasafetymarginontheloadassumptions.TheloadfactorsutilizedinthecriteriawerebasedupontheloadfactorconceptemployedinPartIV-B,StructuralAnalysisandProportioningofMembers-UltimateStrengthDesign,ofACI318-63.Theloadfactorof0.95appliedtothedeadloadrepresentstheaccuracyofdeadloadcalculations(i.e.,i5'h)consideringthegreaterseverityofreduceddeadloadsfortensionmembers.TheloadfactorappliedtoaccidentpressureloadswasconsistentwiththatsuggestedbyWatersandBarrett(References1and2)asthelimitoflow-strainbehavioronprestressedconcretepressurevesselsfornuclearreactors.Thisfactorwasalsoconsistent3.8-10REV.1312/96 GINNA/UFSARwiththeproposedsetof"FrenchRegulationsConcerningConcreteReactorPressureVessels"whereinitwasstatedthat:Thedesignpressuzeshallnotexceed2/5ofthepressurecalculatedtobringaboutdestructionofthestructurebyruptureofthecables.'heloadfactorconsideringatendonstressof0.60fuatfactoredloadwouldthereforeequal0.6dividedby2/5or1.5~Theloadfactorof1.25appliedtothedesignearthquakeloadisconsistentwiththatutilizedinACI318PartIV-B,Chapter15.Thecontainmentdesignincludestheconsiderationofbothprimaryandsecondarystresses.Whenastructureexperiencesonlyelasticstrainsthereisonlyaminimalreliefofrestraintscausingsecondarystresses'fastructureexperiencesincreasedstrainsbeyondtheelasticrange,therestraintsatanypointwillceasetobeassignificantduetolocalyieldingintheseregionsand,ifincreasedloadswereapplieduntilcollapseofthestructurewasimminent,allrestraintswouldbeeffectivelyremovedandonlymembraneforces(primarystresses)shouldbeexperien'ced,unlessprematureshearfailureweretooccur.Thedesignlimitforthecontainmentstructurewasconservativelyestablishedtoensureelastic,low-strainbehavioratdesignloadstherebyrequiringdesignconsiderationofallsecondarystresseffects.3.8.1.2.3.3MAxxMUMTHERM%.LQAD~ThemaximumexpectedvaluesofT(thermalload)atanysectionarebaseduponthefollowingconditions:a0Themaximumoperatingtemperatureinsidethecontainmentis120'Fandtheminimumambienttemperatureoutsidethecontainmentis-10'F.b.Themaximumtemperatureoftheinnersurfaceoftheliner(innerfaceofinsulationwherethelinerisinsulated)willbethattemperatureassociatedwiththefactoredload,1.5timesaccidentpressure.Thistemperat'ureisapproximately312'F.Thedesignoftheshellwherethelinerisinsulatedisbaseduponamaximumtemperatureriseof10'Finthelinercoincidentwithmaximumpressure.3.8-11REV.1312/96 GINNA/UFSARThemaximumoperatingtemperatureatthebasementfloorelevationis120'Fand5ftbelowthefloorelevationitis50'F~Theupper2ftofthebasementslabweredesignedfozatransientthermalgradientequalto30'F.Thermalexpansionofthebasementslabapproximatelybalancesdryingshrinkage.Thesteady-stateoperatingthermaltransientconsideredinthedesignforwinterconditions(externalambienttemperatureequals-10'F)isshownonFigure3.8-8.Thesteadyoperatingthermaltransientforsummerconditionswasnotdevelopedindetailinthatitwasconcludedthatsuchaconditionwouldnotaffectthereinforcementrequirementsbecausealessergradientwouldexist.Thetransientthermalgradientsthroughthecontainmentshellfortheinsulatedlinerduetothedesign-basisaccident(factoredloads)wasassumedforpurposesofanalysistobethesuperpositionofalinerincreaseof10'Fontotheoperatingthermalgradientdescribedabove.ThisisconservativeascomparedtotheexpectedresultsdescribedinAppendix3E.Themaximumconcretefibertemperaturewherethelinerisuninsulated(dome)is220'Fintheregionimmediatelyincontactwiththeliner.Thecalculatedshellelongationduetothepressureloadexceedstheconcretefiberelongationsduetothethermalloadindicatingthatnorestraintofconcretethermalgrowthoccurs.3.8-12REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLOK)3.S-13REV.1312/96 GINNA/UFSAR3.8.1.2.4LoadCaacit3.8.1.2.4~1REINFoRGEDCQNGRETE.ThevalueofYoung'smodulus(Ec)fozunczackedconcretewasassumedtobe4,1x10psicalculatedonthebasisoftheequationinTable1002(a)ofACZ318-63.TheEcandPoisson'sratio(vc)forcrackedconcretewereassumedtobezero.Thislatterassumptionisconsideredtobesubstantiatedbytestdata(References9through5)forreinforcementexperiencingstressesinexcessofthe20,000to30,000psi.(RefertoAppendix3Bregardingsimilarassumptionsregardingtheanalysisoflargeopenings.)Thisstructureisprestressedverticallyonlyandthelinerisinsulatedintheprestressedportion.Thelinerstresses(meridionaldirection)werecalculatedtobe4500psicompressionbaseduponaprestressforceof0.70fs.Theconcretestrainduetocreepandshrinkagewasestablishedasbeing320x10in./in.Thisincreasesthelinerstressto14,100psicompressionattheendofplantlife.ConcretereinforcementisintermediategradebilletsteelconformingtoASTMA15-64andA408-62Twithaguaranteedminimumyieldstrengthof40,000psi.ReplacementreinforcementusedfortheSteamGeneratorReplacementdomeopeningrepairsisASTMA615Grade60.Thisreinforcementexceedstheminimumyieldstrengthrequirementsoftheoriginalreinforcement.Thedesignlimitfoztensionmembers(i.e.,thecapacityrequiredforthefactoredloads)isbasedupontheyieldstressofthereinforcingsteel.Nomildsteelreinforcementwillexperienceaveragestrainsbeyondtheyieldpointatthefactoredload.Theloadcapacitysodeterminedisreducedbyacapacityreductionfactor,),whichprovidesforthepossibilitythatsmalladverse.variationsinmaterialstrength,workmanship,dimensions,andcontrol,whileindividuallywithinrequiredtolerancesandthelimitsofgoodpractice,occasionallymaycombinetoresultinanyundercapacity.Thecoefficient)is0.95fortension,0.90fozflexure,and0.85fordiagonaltension,bond,andanchorage.Thecoefficient$of0.95foztensionmemberscompareswitha3.8-14REV.1312/96 GINNA/UFSARcoefficientof0.90utilizedinACI318forultimatestrengthdesignofflexuredmembers.However,inatensionmember,unlikethecaseofaflexuralmember,onlythevariationofsteelstrengthandnotconcretestrengthisofconcern.Also,theeffectofreinforcementmisplacementisnotascriticalasitisforaflexuralmember.Therefore,thecapacityreductionfactorof0'5isconsideredtobeconsezvative.Thetwoequationsdevelopedpreviouslyfortheloss-of-coolantaccidentandtheloss-of-coolantaccidentcombinedwiththedesign(operating-basis)earthquakecouldbewrittenasfollowsforthemildsteelreinforcedsections:C=0.95Y.P.=0.95D+1.0T+.1.5PC=0.95Y.P.=0.95D+1.25P+1.0T'1.25ETocomparetheseequationswithaworkingstrengthdesignthefollowingequationsaredeveloped:(D+P+T)0.9S(0.95~D+1.5~P+1.0~T)(3.8-1)(D+P+T+E)0.95(0.95D+1.25P+1.0V+1.25E)(3.8-2)Thenewsymbolintheaboveequationisdefinedasfollows:f=Ratiooftheworkingstresstoyieldstzess."3.8~1-2.4~2PREsTREssEDCQNGRETE.Thedesignforthecontainmentprovidesforprestressingtheconcreteinthecylinderwallsinthelongitudinal(vertical)directionwithasufficientcompressiveforcetoensurethatuponapplicationofthedesignloadcombinationstherewillbenotensilestressesintheconcreteduetomembraneforces.Inadditiontothemembranestresses,therearealsoflexuralandshearstresseswhichresultfromdiscontinuityeffects.Onthebasisofthedesigncriteria,theconcretestressesandthestressesonthemildsteelreinforcinguponapplicationofthecombinedloadswillthenbeproducedbycombinedflexureandshearand/orcompression.The3.8-15REV.1312/96 GINNA/UFSARstructuralelementsarethenactingiinamannersimilartothosetestedasabasisforACI318-63Chapter17,ShearandDiagonalTension-UltimateStrengthDesign,andthereisabasisfordesigningshearreinforcement.Thesteeltendonsforpzestressingconsistofhightensile,bright,colddrawnandstress-relievedsteelwiresconformingtoASTMA421-59T,TypeBA,SpecificationsforUncoatedStress-RelievedWireforPrestressedConcrete,withaminimumtensilestressof240,000psi.Theprestressedconcreteisassumedtodevelopnotensilecapacityinadirectionnormaltoahorizontalplane.ThedesignloadcapacityoftensionelementsisbaseduponaresultantconditionofzeroconcretestressduetothemaximumcombinationofprimaryandsecondarymembraneIforces.Anynominalsecondarytensilestressesduetobendingwillbeassumedtocausepartialcracking.Mildsteelreinforcingwillbeprovidedtocontxolthiscrackingbylimitingcrackwidth,spacing,anddepth.Theloadcapacitysodeterminedwillbereducedbyacapacityreductionfactor,$,whichwillbeconservativelyestablishedas0.95whichcompareswithacoefficientof0.90utilizedinACI318fozultimatedesignofflexuralmembers.Inaprestressedtensionmemberonlyvariationsinthefield-appliedtensioningloadsareofanyconcern.Tendonlocationandconcretestrengthvariationsazenotcriticalastheyareforflexuralmembers.Generally,ifnotensionstressescanbedevelopedintheconcrete,prestressedconcretetensionmembershavearelativelylowreservestrengthabovethepointofzerostress.Ifcrackingisinitiatedastheverylowtensilestressesaredevelopedintheconcrete,alladditionalloadswillbecarriedbythesteelalone.Sincetheprestzessingsteelhasarelativelysmallareaofcross-section,thestrainatanysectionincreasesmarkedlyafterczackingbegins.Foxthisreason,thecontainmentdesignwasconservativelybaseduponnocompletecrackingofanyprestressedwallsection.Tensilestressesintheconcreteresultingfromdiagonaltensionwillbepermitted.ThenominalshearstzessesasameasureofthisdiagonaltensionwillbelessthanthemaximumvaluestipulatedinChapter17ofACI318.3.8-16REV.1312/96 GINNA/UFSARThesteeltendonsarestressedduringthepost-tensioningoperationtoamaximumof80$ofultimatestrengthandlocked-offforaninitialstressof708oftheultimatestrength.Themaximumeffectivepzestressisdetermined,takingintoconsiderationallowancesfozthefollowinglosseswhicharededucedfromthetransferprestress:Elasticshorteningofconcrete.Creepingofconcrete.Shrinkageofconcrete.Relaxationofsteelstress.Frictionallossduetointendedorunintendedcurvatureofthetendons.1nnoeventdoestheeffectiveprestzessexceed60%oftheultimatestrengthoftheprestressingsteelor80%ofthenominalyieldpointstressofthepzestressingsteel,whicheverissmaller.Thedesignofallprestressedconcreteelementsforshear,bond,andotherdesignconsiderationsisinaccordancewithACI318-63Chapter26,PrestressedConcrete.Theprestzessingforceappliedinthefieldwasdeterminedbymeasuringtendonelongationandalsobycheckingjackpressureonacalibratedgaugeorbytheuseofanaccuratelycalibrateddynamometer.Thecauseofanydiscrepancywhichexceeded58wasascertainedandcorrected.Elongationrequirementsweretakenfromload-elongationcurvesforthesteelused.Withtheexceptionofthelargeopenings(refertoAppendix3B)reinforcingbarsarenotdrapedaroundopenings.Consequently,theminimumradiusistheradiusofthecylinder.ThereinforcementaboutsmallopeningsisshowntypicallyonFigure3.8-4.Thehorizontalreinforcementisconcentratedneartheholetoaccommodatestressconcentrations.Thetendonsaredrapedonlyifrequiredforclearances.ThemagnitudeofprestressunderconstructionandoperatingconditionsiswellwithinacceptedlimitsbasedonACE318requirements.Theinitialaveragemembranestressis640psi.Evenastressconcentrationfactorof3resultsinacceptablestresses.TherequirementsforanchoringreinforcingbarsarediscussedinSection3'.1.4.5.4,AnchorageStresses.3.8-17REV.1312/96 GINNA/UFSAR3.8.1.2~4.3LINER.ThelineriscarbonsteelplateconformingtoASTMA442-60TGrade60withaminimumyieldof32,000psi.Thelinerplatethicknessis1/4in.forthebaseand3/8in.forthecylinderanddome.Originallinerweldsingeneralweremadefrombothsidesoftheplateandthereforebackupstripswerenotused.Inthebasewherethelinerwasweldedtostructuraltees,theteeswerecontinuousat,allplateintersections.Duringthe1996SteamGeneratorReplacementoutage,constructionopeningswerecreatedinthedome.Linerplatesectionswereremovedduringthereplacement,preppedontheground,thenliftedandweldedbackinplace.Asrequired,ASTMA516Grade60platewithaminimumyieldof32,000psiwasusedinthelinerrepair.Allseamweldsforremovedlinersectionsweremadefromtheexterioronlywiththeuseofbackingbars.Thebackingbarswereleftinplace.Theloadcapacityisbasedupontheyieldstressofthelinerasreducedbythecapacityreductionfactor,$,previouslydescribed.Sufficientanchorageisprovidedtoensureelasticstabilityoftheliner.Anchoragesareintheformofstaggerweldedchannelsonthecylinderandstudsonthedome.'inerplatestiffenerangleswereusedinlieuofstudsatthelocationswheredomeopeningswererepairedfollowingtheSteamGeneratorReplacementin1996.Insulationisprovidedforthesidewallstoapoint15ft0in.abovethespringlinesoastolimitthemaximumlinertemperaturedueto'heloss-of-coolantaccidentandtherebyavoidexcessivecompressivestressesinthesteelplate.Allweldseamsinthelinerplatearecoveredwithatestchanneltopermittestingofleaktightness.Exceptfortheequipmentaccesshatch,allpenetrationsprovideadoublebarrieragainstleakageandcanbepressurizedtopermittestingofleaktightness.Theequipmentaccesshatchcontainsweldseamswithnotestchannels.Thelinerplateonthebaseofthecontainmentisweldedtobackupbars.Thesebarsarecontinuous,asshowninFigure3.8-6.3.8-18REV.1312/96 GINNA/UFSAR3.8.1.2.4.4Rocx.Thecontainmentisfoundedonrock(sandstone)forwhichthesoilsconsultantrecommendedanallowablebearingpressureof35tonspersquarefoot.Themaximumbearingpressureoccursundertheringgizderwherethemaximumbearingpressurewaslimitedto30tonspersquarefoot.Thisbearingpressureoccursunderoperatingconditionsandisreducedunderincidentconditions.Thesoilsconsultantalsorecommendedalimitonthelateralresistanceoftherockof25,000psf.Themaximumlateralpressure,occurringattheringgirderunderthecombinationofoperatingandincidentloadsis24,000psf.AdetaileddescriptionofsubsurfaceconditionsisfoundinSection2.5.3.8-19REV.1312/96 3.8.1.2.5CodesandStandardsThedesign,materials,fabrication,inspection,andprooftestingofthecontainmentcompliedwiththeapplicablepartsofthefollowing:(2)(3)(4)(5)(6)(7)(8)(9)(10)(12)(13)(14)(15)(16)(17)(18)(19)ASMEBoilerandPressureVesselCode,SectionIII-NuclearVessels,SectionVIII-UnfiredPressureVessels,SectionIX-WeldingQualifications.BuildingCodeRequirementsforReinforcedConcrete(ACI318-63).AmericanInstituteofSteelConstructionSpecifications:a.SpecificationsfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings,adoptedApril17,1963.b.CodeofStandardPracticeforSteelBuildingsandBridges,revisedFebruary20,1963.USASN6.2-1965,SafetyStandardforDesign,Fabrication,andMaintenanceofSteelContainmentStructuresforStationaryNuclearPowerReactors.ACI306-66,SpecificationsforStructuralConcreteforBuildings.ASTMC150-64,SpecificationsforPortlandCement.StateofNewYorkDepartmentofPublicWorksSpecification.ASTMC260-63T,SpecificationsforAir-EntrainedAdmixturesforConcrete.ASTMA15-64T,SpecificationsforBillet-SteelBarsforConcreteReinforcement.ASTMA305-56T,SpecificationsforMinimumRequirementsfozDeformationofDeformedBarsforConcreteReinforcement.ASTMA408-64T,SpecificationsforSpecialLargeSizeDeformedBillet-SteelBarsforConcreteReinforcement.ASTMC94-65,RecommendedPracticeforWinterConcreting.ACI306-66,RecommendedPracticeforWinterConcreting.ACI605-59,RecommendedPracticeforHotWeatherConcreting.ASTMA421-65,SpecificationsforUncoatedStress-RelievedWireforPrestressedConcrete.ASTMC29-60,Methodof'TestforUnitWeightofAggregate.ASTMC40-66,MethodofTestforOrganicImpuritiesinSandsforConcrete.ASTMC127-59,MethodofTestforSpecificGravityandAbsorptionofCoarseAggregate.ASTMC128-59,MethodofTestforSpecificGravityandAbsorptionofFineAggregate.3.8-20RKV.1312/96 GINNA/UPSAR(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)ASTMC136-63,MethodofTestforSieveorScreenAnalysisofFineandCoarseAggregate.ASTMC39-64,MethodofTestforCompressiveStrengthofMoldedConcreteCylinders.ASTMC192-66,MethodofMakingandCuringConcreteCompressionandFlexureTestSpecimensintheLaboratory.ASTMA15-62T,SpecificationsforBillet-SteelBarsfozConcreteReinforcement.ASTMA408-64,SpecificationsforSpecialLargeSizedDeformedBillet-SteelBarsforConcreteReinforcement.ASTMA432-64,SpecificationforDeformedBillet-SteelBarsforConcreteReinforcementwith60,000psiMinimumYieldStrength.ASTMC31-65,MethodofMakingandCuringConcreteCompressionandFlexureTestSpecimensintheField.ASTMC33-64,SpecificationsforConcreteAggregates.ASTMC42-64,MethodsofSecuring,Preparing,andTestingSpecimensfromHardenedConcreteforCompressiveandFlexuralStrengths.ASTMC131-64T,MethodofTestforAbrasionofCoarseAggregatebyUseoftheLosAngelesMachine.ASTMC138-63,MethodofTestforWeightperCubicFood,Yield,andAirContent(Gravimetric)ofConcrete.ASTMC143-58,MethodofTestforSlumpofPortlandCementConcrete.ASTMC150-65,SpecificationsforPortlandCement.ASTMC172-54,MethodofSamplingFreshConcrete.ASTMC231-62,MethodofTestforAirContentofFreshlyMixedConcretebythePressureMethod.ASTMC260-65T,SpecificationsforAiz-EntrainedAdmixtures.ASTMC494-62T,SpecificationsforChemicalAdmixturesforConcrete.ASTMC173-58,MethodofTestforAirContentofFreshlyMixedConcretebytheVolumetricMethod.ACI214-57,RecommendedPracticeforEvaluationofl;ompressionTestResultsofFieldConcrete.ACI315-65,ManualofStandardPracticefozDetailingReinforcedConcreteStructures.ACI347-63,RecommendedPracticeforConcreteFormwork.ASTMD287-64,MethodofTestforAPIGravityofCrudePetroleumandPetroleumProducts(HydrometerMethod).ASTMD97-66,MethodofTestfozPourPoints.ASTMD92-66,MethodofTestforFlashPointbyClevelandOpenCups3.8-21REV.1312/96 GINNA/UFSAR(44)(45)(46)(47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66)(67)(68)ASTMD88-56,MethodofTestforSayboltViscosity.ASTMD937-58,MethodofTestforConePenetrationsofPetroleum.ASTMD512-62T,MethodsofTestforChlorideZoninIndustrialWaterandIndustrialWasteWater.4ASTMD1255-65T,MethodofTestforSulfidesinIndustrialWaterandIndustrialWasteWater.ASTMD992-52,MethodofTestforNitrateIoninIndustrialWater.ASTMA442-60T,TentativeSpecificationsforCarbonSteelPlateswithImprovedTransitionProperties.ASTMA300-63T,SpecificationsforSteelPlatesforPressureVesselsforServiceatLowTemperature.ASTMA36-63T,SpecificationsforStructuralSteel.SSPC-SP6-63,CommercialBlastCleaning.SSPC-SP8-63,Pickling.SSPC-PA1-64,Shop,Field,andMaintenancePainting.ASTMA322-64A,SpecificationforHot-RolledAlloySteelBars.ASTMA29-64,SpecificationforGeneralRequirementsforHot-RolledandCold-FinishedCarbonandAlloySteelBars.ASTMD624-54,MethodsofTestforTearResistanceofVulcanizedRubber.ASTMD676-59T,MethodofTestforIndentationofRubberbyMeansofaDurometer.ASTMB412-66T,MethodofTensionTestingofVulcanizedRubber.ASTMD573-53,MethodofTestforAcceleratedAgingofVulcanizedRubberbytheOvenMethod.ASTMD395-61,MethodofTestforCompressionSetofVulcanizedRubber.ASTMD746-64T,MethodofTestforBrittlenessTemperatureofPlasticsandElastomersbyImpact.ASTMD1149-64,MethodofTestforAcceleratedOzoneCrackingofVulcanizedRubber.ASTMD471-66,MethodofTestforChangeinPropertiesofElastometricVulcanizatesResultingfromImmersioninLiquids.ASTMA514-65,SpecificationforHigh-YieldStrength,QuenchedandTemperedAlloySteelPlate,SuitableforWelding.ASTMA441-66T,SpecificationforHigh-StrengthLowAlloyStructuralManganeseVanadiumSteel.ASTMA53-65,SpecificationforWeldedandSeamlessSteelPipe.ASTMA435-65,MethodandSpecificationforUltrasonicTestingandInspectionofSteelPlatesofFireboxandHigherQuality.3.8-22REV.1312/96 (69)(70)(71)ASTMC177-63,MethodofTestforThermalConductivityofMaterialsbyMeansoftheGuardedHotPlate.ASTMC165-54,MethodofTestforCompressiveStrengthofPerformedBlock-TypeThermalInsulation.ASTMC355-64,MethodsofTestforWaterVaporTransmissionofThickMaterials.(72)ASTMC273-61,MethodofShearTestinFlatwisePlaneofFlatSandwichConstructionsorSandwichCores.(73)ASTMD1622-63,MethodofTestofApparentDensityofRigidCellularPlastics.ThestructuraldesignalsomettherequirementsestablishedbytheStateBuildingConstructionCode,StateofNewYork,1961.3.8-23REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-?AREV.1312/96 3.8.1.2.6CodeandStandardsSteamGenezatorRelacement(DomeeninR~aaira)Thedesign,materials,fabrication,inspection,andtestingaftheSteamGeneratarReplacementdomeapeningrepairscompliedwiththeapplicablepartsofthefollowing.(Thelatestrevisionafthecodeineffectatthetimeofconstructionisapplicable.)(1)ACZ211.1,StandazdPracticeforSelectingProportionsofNozmal,Heavyweight,andMassConcrete.(2)ACI301,SpecificationforStructuralConcreteforBuildings.(3)ACZ304,GuidefarMeasuring,Mixing,TransportingandPlacingConcrete.(4)ACZ305R,HotWeatherConcreting.(5)ACZ306R,CodeWeatherConcreting.(6)ACI318,BuildingCodeRecpxizementsforReinfarcedConcrete.(7)ASTMC33,StandardSpecificatianfarConcreteAggregates.(8)ASTMC39,CompressiveStrengthofCylindricalConcreteSpecimens.(9)ASTMC40,StandardTestMethodsforOrganicImpuritiesinFineAggregateforConcrete.(10)ASTMC88IStandardTestMethodforSoundnessofAggregatesbyUseofSadiumSulfateorMagnesiumSulfate.(11)ASTMC94,StandardSpecificatianfazReady-MixedConcxete.(12)ASTMC109,StandardTestMethodforCompressiveStrengthofHydzaulicCementMortars(Using2-in.or50-mmCubeSpecimens).(13)ASTMC117,StandardTestMethodforMaterialsFinerthan75mmNo.200SieveinMineralAggregatesbyWashing.(14)ASTMC123,StandardTestMethodfarLightweightPiecesinAggregates.(15)ASTMC127,StandardMethodofTestforSpecificGravityandAbsozptionofCoarseAggregate.(16)ASTMC128,StandardMethodofTestforSpecificGravityandAbsorptionofFineAggregate.(17)ASTMC131,StandardTestMethadfozResistancetoDegradationofSmall-SizeAggregatebyAbrasionandImpactintheLosAngelesMachine.(18)ASTMC136,StandardMethodfarSieveAnalysisafFineandCoarseAggregates.3.8-25REV.1312/96 GINNA/UFSAR(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(3l)ASTMC138,StandardMethodofTestforUnitWeight,Yield,andAirContent(Gravimetric)ofConcrete.ASTMC142,StandardTestMethodforClayLumpsandFriablePazticlesinAggregates.ASTMC143,StandardTestMethodfozSlumpofHydraulicCementConcrete.ASTMC150,StandardSpecificationforPortlandCement.ASTMC151,TestMethod.forAutoclaveExpansionofPortlandCement.ASTMC172,StandardPracticefozSamplingFreshlyMixedConcrete.ASTMC173,StandardTestMethodforAirContentofFreshlyMixedConcretebytheVolumetricMethod.ASTMC191,TestMethodforTimeofSettingofHydraulicCementbyVicatNeedle.ASTMC192,StandardMethodofMakingandCuringConcreteTestSpecimensintheLaboratory.ASTMC231,StandardTestMethodfozAirContentofFreshlyMixedConcretebythePressureMethod.ASTMC260,StandardSpecificationfozAir-EntrainingAdmixturesforConcrete.ASTMC289,StandardTestMethodforPotentialReactivityofAggregates(ChemicalMethod).ASKSC295,RecommendedPracticeforPetrographicExaminationofAggregatesforConcrete.(32)ASTMC311,StandardTestMethodsforSamplingandTestingFlyAshorNaturalPozzolanforUseasaMineralAdmixtureinPortlandCementConcrete.(33)(34)(35)(36)(37)(38)ASTMC494,StandardSpecificationforChemicalAdmixturesforConcrete.ASTMC535,StandardTestMethodforResistancetoDegradationofLarge-SizeAggregatebyAbrasionandImpactintheLosAngelesMachine.ASTMC566,StandardMethodofTestforTotalMoistureContentofAggregatebyDrying.ASTMC586,TestMethodforPotentialAlkaliReactivityofCarbonateRocksforConcreteAggregates(RockCylinderMethod).ASGKC617,StandardMethodofCappingCylindricalConcreteSpecimens.~ASTMC618,StandardSpecificationforCoralFlyAshandRaworCalcinedNaturalPozzolanforUseasaMineralAdmixtureinPortlandCementConcrete.3,8-26REV.1312/96 GINNA/UFSAR(39)ASTME4,StandardMethodsofVerificationofTestingMachines.(40)ASTME70,StandardTestMethodforpHofAqueousSolutionsWiththeGlassElectrod.(41)CorpsofEngineers-U.S.Army(CRD):CRDC119,MethodofTestforFlatandElongatedParticlesinCoarseAggregates.(42)NationalReady-MixedConcreteAssociation(NRMCA):CheckListforReadyMixedConcreteProductionFacilities.(43)OccupationalSafetyandHealthAdministration(OSHA):SafetyandHealthRegulationsforConstruction.(44)AmericanAssociationofStateHighwayTransportationOfficials(AASHTO):T-26,StandardMethodofTestforQualityofWatertobeUsedinConcrete.(45)NewYorkStateDepartmentofTransportation(NYSDOT):StandardSpecifications,Construction'andMaterials.3,8-27REV.1312/96 GINNA/UFSAR3.8.1.3SeismicDesign3.8.1.3'InitialSeismicDesinThecontainmentisaSeismicCategoryIstructure.Itwasoriginallyanalyzedasasinglelumpedmasscantileverbeamsystemtodetermineitsnaturalfrequency.Forthecontainmentstructure,thedampingfactorasapercentofcriticaldampingwasassumedtobe2.0%.Theresultantloaddevelopedfromthemaximumhorizontal'esponseisdistributedinatriangularmannerwiththebaseofthetriangleatthetopofthestructure.ThestresscriteriaforthecontainmentandallreinforcedconcretemembersintensionwereasdescribedinSection3.8.1.2.3basedontheresponsetoagroundmotionof0'8gactingintheverticalandhorizontalplanessimultaneously.Designofthecontainmentwascheckedtoensurethatthecombinedstressesresultingfromgravity,incident,andseismicloadingsbasedontheresponsetoagroundmotionof0.20gactingintheverticalandhorizontalplanessimultaneouslyarewithinthestresslimitsdescribedinSection3.8.1.2.3.Thenaturalperiodofthefirstharmonicwasdeterminedusingananalysisconsisting(forhorizontalmotion)ofacantileverfixedatthebasewiththemasslumpedatthecentroidofthestructure.BendingstiffnesswasestablishedbasedonaYoung'smodulusof4.1x10psiandshearstiffnesswasestablishedbasedonashearmodulusof1.8x10psi.Norotationofthefoundationmaterialwasconsidered.Thenaturalperiodofthefirstharmonicwascalculatedtobe0.22secforhorizontalmotionand0.07secforverticalmotion.Theresultantbaseshearwasestablishedonthebasisofthemaximumresponseacceleration(0.46g)forthemaximumhypotheticaldesignearthquakeconsidering28ofcriticaldamping.Theresultantloadwasconservativelyassumedtobedistributedintheformofaninvertedtriangleextendingthefullheightofthestructure.TheresultingmaximummeridionalforcesareasshowninFigure3.8-9.3.8.1.3~2SeismicRegnalsisAsacheckontheinitialseismicdesignofthecontainmentitwasreanalyzedusingnormalmodetheorywithanumberoflumpedmasses.Acheckwasalso3.8-28REV.1312/96 madeonthecontainmentconsideringtherockfoundationasanelasticmediumwithrotationandtranslationofthecontainmentconsidered.Thisflexiblefoundationmodelingofthecontainmentchangedthetotalshearandoverturningmomentonthestructurebylessthan5%ascomparedtotherigidfoundationmodel.Thebaseshearfozthemodalanalysisonarigidfoundationresultedinanequivalentcontainmentresponseaccelerationof0.26gascomparedtothe0.46gusedindesign.Comparableresultswereobtainedwithrespecttooverturningmoments.Asaresultofthesomewhatmorerigorousmodalanalysis,thecontainmentdesigncanbeshowntobehighlyconservative.Adetaileddescriptionofthemodalanalysisfollows:A.Thecontainmentstructureismodeledasacantileverconsistingoflumpedmassesconnectedbyweightlesssprings.ThismodelisshowninFigure3.8-10.B.Thenormalmodesare.calculatedusingthecomputerprogramSAND.ThisprogramisamodifiedversionofaprogramdevelopedbytheJetPropulsionLaboratoryforthedynamicanalysisoflumpedmasssystems.SheardeformationsandrotationalinertiaareincludedintheprogramSANDC.TheinputrequiredfozSANDconsistedofthemodalcoordinates,memberproperties,andmaterialproperties.TheseazeshowninFigure3.8-10andTable3.8-1.Themassesarecalculatedbytheprogramusingadensityof160lb/ft.Thisisrepresentativeof3heavilyreinforcedconcrete.D.Theresponseineachmodeisreadfromtheresponsecurvesdeterminedforthesite,asgiveninSection3.7~Thedeflections,accelerations,andmemberforcesarecomputedineachmodeandazethensummedonasquarerootofthesumofthesquaresbasis.ThiscomputationisexecutedbythecomputerprogramSPECTA.E.ThenaturalfrequenciesandresponsearesummarizedinTable3.8-1.ThemodeshapesareplottedinFigure3.8-11andtheshearforcesandbendingmomentsinFigure3.8-12.F.Theeffectsofgroundmotionwereinvestigatedbyconsideringtherockasanelasticmediumwithcoefficientssimilartoconcrete:3.8-29REV.1312/96 GINNA/UFSARE=3.0x10psi6r=0.2Thefundamentalfrequencywasreducedfrom6.95Hzto6.28Hz.Thealterationstothedeflections,accelerations,shearforces,andmomentswereinsignificant,beinglessthan5%.3.8-30REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-31REV.1312/96 GINNA/UFSAR3.8.1.4ContainmentDetailedDesign3.8.1.4.1StressAnalsis3.8.1.4.1.1ANALYSISMETHODS.Theanalysisofthecontainmentstructureforoperatingplusincidentloadwasbaseduponshelltheoryanalogy.Thecontainmentstructurewasanalyzedforseismicloadsasacantileveredbeamwithallmassassumedconcentratedatthecenterofgravity.Bothshearaswellasbendingstiffnesswereconsideredindeterminingthefundamentalfrequency.ThetotalhorizontalinertialloadwasdeterminedfromtheresponsecurvesgiveninFigures3.7-1and3.7-2for2'6dampingforthefundamentalfrequencyofthecantileveredbeam.Thistotalhorizontalloadwasdistributedovertheheightofthecontainmentstructureintheformofaninvertedtriangletodeterminetheinertialoverturningmoment.Theverticalseismiccomponentwasassumedtobeunamplifiedduetothehighaxialstiffnessofthecontainment.Stressesinducedbythehorizontalandverticalcomponentsofseismicmotionwerecombinedalgebraically.Theseismicsheardistributionassumedwasthatgivenforahollowthin-walledcylinderwithshearflowperpendiculartothecontainmentradiusandthemaximumshearflowequaltotwicetheaveragevalue.3.8.1.4.1.2ANM.YszsRssur,TS.TheresultsofthisanalysisforthefollowingloadingcombinationsareshowninFigures3.8-13through3.8-15.a.Operatingplusincidentload.b.Operatingplusincidentplusdesignearthquakeloads.c..Operatingplusincidentplusmaximumpotentialearthquake.Thedisplacementresultingfromtheseismicexcitationwillproduceabaseshearwhichistransferredviathebasemattothesidewallsofthestructurebytheradialreinforcement.Duringanincidentthesebars3.8-32REV.1312/96 GINNA/UIiSARshouldbeintension.Asthelateralload(i.e.,earthquakeshear)isimposed,thesebarswillreactsimilartoawheelwithprestressedspokeswithaloadappliedtothehubandtherimrestrainedfrommoving.Inthisdesignthesemembersareassumedtohavenoshearresistance.Theloadtransferfromtheradialbars,whichestablishedlongitudinalshearstressesinthewall,willoccurbymeansofvaryingcircumferentialmembraneforcesinthelowezportionofthewall.Thesidewall,atloadsresultingfromthefactoredpressure(1.5P),willbeuncrackedinahorizontalplaneduetomembraneprestressforces.Theonlycrackingthatoccurswillbepartialcrackingduetosecondaryflexure.Thedepthofthesecrackswillbelimitedbythemildsteelreinforcement.AtthedesignpressuretherewillthenbesufficientuncrackedsectionofconcretetolimitradialshearstressestolessthanthemaximumallowablevaluestipulatedinACI318-63.DetailsoftheradialshearanalysisareprovidedinSection3.8.1.4.5.1.TheamountofpzestzessingforceprovidedinthemeridionaldirectionofthecylinderisdeterminedtoensurenoresultanttensilestressduetothefactoredloadcombinationsdescribedinSection3.8.1.2.Consequently,radialcrackingispredictedtobeonlyaresultofflexurewhichissimilartothebasisforthederivationofconcreteshearcapacityandshearreinforcementrequirementsstipulatedinACI318-63forflexuralmembers.ThederivationofshearreinforcementrequirementsatthebasetocylinderdiscontinuityisdescribedinSection3.8.1.4.4.Thecapacitytoresistmembraneshearsisaffectedbytheconcretecracking.RefertoAppendix3Bforthediscussionofmembraneshearsinthevicinityofthelargeopenings.Forthecylindricalportionofthevesselresistancetotheverticalshearsresultingfromtheearthquake,loadingwillbedevelopedinthecircumferentialreinforcementbydowelaction(ReSerence6).Theresultingprincipalstressinthereinforcementwillnotexceed0.95xyieldstressasprovidedinthedesigncriteria.Thisdesignfurtherensuresnofailureoftheadjacentconcreteinbearing.DetailsofthelongitudinalshearanalysisazeprovidedmorefullyinSection3.8.1.4.5.2.3.8-33REV.1312/96 GINNA/UFSARZnthedome,allmembraneandshearstressesresultingfromtheearthquakeloadingwillbedevelopedinthemildsteelreinforcing.Theloadingontheconcreteshellofthecontainmentfollowinganaccidentmustbetransmittedtoitthroughtheliner.Thelinerattemptstoexpandunderthecombinedinfluenceofthetemperatureandpressure.Sincethecontainmentstructuremaybeclassedasathinshell,(thediametertothicknessratiois30),itisconsideredthatitwouldhavebeenvalidtotreatthetemperatureriseinthelinerasanequivalentpressureincrease.lTheanalysisasperformedconsideredanequivalentlinerforceoccurringatthelocationoftheliner.Suchequivalentlinerforceswereestablishedbasedonnothermalstrainreliefatpointswhereconcreteisuncracked.Wherethelinerisinsulated,thelinertemperatureincreasewasassumedtobe10'Fduetoaccidentconditions.Baseduponnoreliefofthermalstrainsandunczackedconcrete,theeffectofthistemperaturerisewasconvertedtoanaxialforceplusamomentaboutthecentroidofthisinsulatedsection.Asadesignconservatism,theelasticexpansionoftheconcreteshellunderpressureandtemperatureloadswasnotusedtoreducethetemperatureinducedstresses.3.8.1.4.1.3ANALTsIsPGRsTEAMGENERAToRREPIACEMENTDoMEoPEHINGsZnordertosupport,the1996SteamGeneratorReplacement,significantstructuralanalyseswereperformedtosupportthecreationandrestorationofcontainmentdomeopenings.Afiniteelementapproachwasusedforthestructuralanalysestodeterminethecontainmentshellstructure'scapabilitiestosupportapplicableloadsduringandafterthedomeopeningconstructionandrestoration.ThestructuralevaluationoftheconcreteshellofthedomewasbasedonACZ318-63CodePartZV-B,UltimateStrengthDesign.Thestructuralevaluationofthelinersystemofthedomewasbasedonthe1965ASMEBoilerandPressureVesselCode,SectionZZZ.ThesecodesareconsistentwithoriginaldesignandareshowninSection3.8.1.2.3.3andthetableinSection3.8.2.1.1.2.3.8-34REV.1312/96 GINNA/ASAR3.8.1.4.2RockAnchors3~8.1.4.2.1ROCKANCHORDESIGN.Thebasiccriterionforthedeterminationofanchorlengthwasthatthepulloftheanchorisresistedonlybythesubmergedweightofrockandthattherockoffersnotensilestrength.Thiscriterionfurtherassumesthattherockbreaksoutatanangleof45degreestothebonddevelopmentlengthofthetendon.Thiscriterionalsoallowedforanyadditionalloadsontherockimposedfromtheinsideofthecontainmentvessel.Thehold-downcapabilityoftherockintherockanchordesigntookintoconsiderationthecirculargeometryofthevessel.Thedesignoftherockanchorswasbaseduponthesimplifiedassumptionthattherockbreaksoutatanangleof45degreestotheaxisofthetendonwiththeapexoftheangleatmid-heightofthefirststagegrout.Thisimpliesthattherockfailuremodeisoneofdiagonaltension.Thisassumptionofahalf-angleof45degreesfozrockissupportedbyRef'erences7,8,and9.FurtherverificationoftheconservativenatureofthisassumptionwasdemonstratedbytherockanchortestsdescribedinSection3.8'.7.Thesocketsfortherockanchorsarepercussiondrilledintotherockthroughsteelpipesleeveswhichareweldedintotheundersideofthebearingplatesfortherockanchorsandextendedthroughtheringgirder.Thesocketsintherockplusthepipesleevesarefilledwithaneatcementgroutintwostagesaftertherockanchorsareinstalled.Protectivesteelcovers,asshownonFigure3.8-1,azeweldedtothebearingplatesfortherockanchorstoenclosethesidewalltendontorockanchorcouplings.Thetendonconduitextendingabovethisenclosureis6-in.diameterschedule40pipewiththreadedcouplings.Thistendonconduitisthreadedintoahalfcouplingthatisweldedtothetopoftheprotectivesteelcover.Znordertopermittherequiredconduitmovement,stainlesssteelbellowsareprovided.Thetendonconduit,includingtheprotectivesteelcover,isbulkfilledwiththecorrosionprotectionsystemdescribedinSection3.8.1.4.3.4.Thisfillermaterialisinjectedthroughaconnectionintheprotectivesteelcover.Theexteriorsurface3.8-35REV.1312/96 ofthecontainmentstructurewaswaterproofedfromtheedgeoftheringgirdertoelevation'253ft0in.toprovidecorrosionprotection.3.8~1~4~2~2PREINsTALLATIQNGRQUTzNGTEsT~Priortoinstallinganyrockanchors,atestwasperformedbygroutingarockanchorinawaterfilled,clear,6-in.diametertube.Thisrockanchorcontainedninety1/4-in.diameterwireswiththegrouttubeandbottomhardwareallidenticaltothatproposedforthepermanentinstallation.Thistestdemonstratedthatthegroutdidflowsoastocompletelyencasethetendon.However,italsoindicatedthattheuseofbleederholesnearthebottomofthegroutpipe,aswellasthegroutpipeterminatingabovethebottomofthehole,tendedtoproduceanunacceptabledispersionofthegrout.Thisconditionwasremediedbydeletingthebleederholesandextendingthegroutpipewiththeadditionofabeveltothebottomofthehole.Notestscouldbemadeonthecompletenessofgroutingofpermanentrockanchors.However,proceduresusedforgroutingdidcomplywiththosefoundtobesatisfactoryinthetest.Thesidewalltendonsazecoupleddirectlytotherockanchors.Lift-offreadingsweremadeonthesidewalltendonsthatprovideameasureoftheprestzessforceatthefixedend(i.e.,upperanchorheadfortherockanchors).However,inthebondedtendon,itwasnotpossibletomeasuretheprestressinthefullrockanchortendon.ThesecriteriaareidenticalwiththoseusedfordamsintheUnitedStatesandEurope.ConfirminginformationwasalsoobtainedfromTheCementationCompanyLimitedofGreatBritain,aspecialtyfirmwhoseactivityinrecentyearshasbeendevoted,inlargemeasure,totheprestressingofbothexistingandnewdams,especiallyinSouthAfricaandAustralia.3~8~1~4~2~3PREvzoUsAPPLzcATzoNs~Largecapacity,post-tensionedanchorsdesignedonthisbasishavepreviouslybeenusedinanumberofdamsinEurope,Africa,Australia,andtheUnitedStatestoprovidestabilityfozthestructures.OneoftheearlyapplicationswastheanchoringoftheCheurfasDaminFrance1935.3.8-36REV.1312/96 GINNA/UFSARSimilarly,prestressedrockanchorshavebeenusedfortiebacksonretainingwallsonapermanentaswellastemporarybasisandforsuspensionbridgeanchorages.MajorstructuresforwhichprestressedrockanchorswereusedazelistedinTable3.8-2.AlistofsomemajorapplicationsoftheBBRVninety1/4-in.diameterwireprestressedrockanchorassembliesisgivenbelow.WanaumDam,Washinton;MafieldDam,Washinton:Rockanchorsandtrunnionanchors;rockanchorsforpenstockslopestabilization.BoundarDam,California:Rockanchorsforrockstabilization.JohnHollisBankheadDam,Alabama:Rockanchorsfordamstabilization.IceHarborDam,Washinton:Rockanchors.ManlaDam,WestPakistan:Trunniongirderanchorage,mainspillway.ThedesignisbasedupontheuseoftheBBRVsystemdevelopedoriginallyinSwitzerlandandusedextensivelyforrockanchorapplications.3~8.1.4~2~4ROCKHOLD-DOWNCAPACITY.Laboratorytestsoncorerepresentativeofrockintheapproximateareaanddepthoftherockanchorinstallationindicateabulkspecificgravityoftherockof2.54.Sincetherockparticipatingwiththerockanchorsisbelowthegroundwatertable,thesubmergedweightofrockof96lb/ft3(2.54-1.0)x62'5)isusedindeterminingthehold-downcapability.Thebonddevelopmentlength(firststagegrout)fortheninety1/4-in.diameterwiretendonsiscomputedasfollows:For0.60fu=635kips8060x635000P=-22.0ft.mx6x170x12(3.8-3)Eachrockanchorwasinitiallytensionedto80%ofultimatestrengthandthejackingforcewasthenreducedatlock-offto70%ofultimate.The3.8-37REV.1312/96 GINNA/UFSARbondstressassumedbetweenrockandgroutis170psi.ThisvaluewasdeterminedtobeconservativeasdemonstratedduringthetestperformedonreducedscalerockanchorsandalsoasreportedbytheSwissFederalLaboratoryfortheTestingofMaterial(Reference20)andasdocumentedinGrolversuchemitSpannankeznanTalsperranderAsterreichenBunderbahnenunddieAnwendungderVorspannbouweiseaufdenTalsperrenban,VonA.Ruttner,Wien,AustrianEngineeringJournal,1964.TestdataobtainedfortheJohnHollisBankheadDam,WarriorRiver,Alabama,alsoconfirmtheconservatismofabonddevelopmentlengthdevelopedonthebasisoftheaveragebondstressof170psibetweengroutandrock.Thediameterofthedrilledholeforeachrockanchoris6in.Theassumedbreakoutangleof45degreestotheverticalismostconservativeasdemonstratedduringthereducedscalerockanchortestandinReference7.Weightofrockinkips/ftcircumference=0~096d20.072pd(2r-d)Internalpressureinkips/Acircumference=(3.8-4)Thedepth,d=26.5ft,wasestablishedbasedonpreliminarydesign.Nosurchargebeyondtheinternalpressureofthecontainmentvesselwasconsideredtobeeffectiveindeterminingtherockanchorshold-downcapability.Therefore,forvaryinginternalpressurestherockhold-downcapacityuniformaroundthecircumferenceofthevessel,wasasfollows:RockHold-DownCaacigCiserStcircmuference)InternalPressure(si)60759067.4240.4266.4283.7327'3.8~1.4.2.5HoLD-DoNNFAGToRoFSAE'ETY~Forthecombinationofoperatingplusincidentloads(i.e.,loadcombinationa)inSection3.8.1.2.3,theupliftpezfootcircumferenceisconstantat259.0kips/ftwhichislessthantheassumedrockanchor3.8-38REV.1312/96 GINNA/UFSARcapacityof327.0kips/ft.Therefore,thefactorofsafetyonpull-outagainstthefactoredloadis1.26.Forthestructuralprooftest,upliftperfootcircumferencewasconstantat182.0kips/ftwhichwaslessthantherockanchorcapacityof266.4kips/ftfozafactorofsafetyof1.47.Fozthecombinationofoperatingplusincidentplusdesignearthquakeloads(i.e.,loadcombinationb),themaximumupliftperfootcircumferenceis274.1kips/ftandtheminimumis150.5kips/ft.Thisconsidershorizontalandverticalcomponentsofgroundmotionoccurringsimultaneouslyandtheireffectsaddedalgebraically.Duetothegroupactionofanchors,theovercapacityoftherockagainstlateralloadscanberepresentedbythefactorofsafetyagainstoverturning.Thisfactor,usingtherockhold-downcapacitybasedonthepressureloadof75psig,is2.38'orthecombinationofoperatingplusincidentplusmaximumpotentialearthquakeloads(i.e.,loadcombinationc),themaximumupliftperfootcircumferenceis289.2kips/ftandtheminimumis25.4kips/ft.Thefactorofsafetyagainstoverturning,usingthesameconsideration,isConsiderationwasalsogivenforseismicloadingwithoutinternalpressure.Forthe0.lggroundmotion(verticalandhorizontalcomponentsconsideredtooccursimultaneouslyandtheeffectsaddedalgebraically)thereisnouplift.Minimumdownwardcomponentis0.9kips/ft.Thefactorofsafetyagainstoverturningis4.62.Fozthe0.2ggroundmotion(verticalandhorizontalcomponentsconsideredtooccursimultaneouslyandtheeffectsaddedalgebraically)themaximumupliftis69.2kips/ft.Thefactorofsafetyagainstoverturningis2.31.3.8.1.4.2.6ZNsTALIATIoH~Thetendonsareanchoredintotherocksocketwithanexpandinggrout.Thegroutcontainedanadditivedesignedtoreducethewaterrequirementofthecement,tohaveaslightlyexpandingaction,andtoretardtheinitialset.Theexpansionbaseduponoriginalgroutvolumeis8$i2$.3.8-39REV.1312/96 GINNA/UFSARThisexpansionisaccomplishedbythereactionofaluminumpowderwiththealkaliesofthecements.Thisreactionresultsinliberationofhydrogengasintheformofsmallbubbleswhichhaveanexpandingeffect.Testshaveverifiedthatthemolecularformofthehydrogeninthealkalinemediumwillnotadverselyaffectthesteel.Thetop(movable)anchorheadfortherockanchoriscoupledtothebottom(fixed)anchorheadofthesidewalltendon,asshowninthefullyengagedpositioninFigure3.8-16.Dimensionsandmaterialareasshown.Thebushingprovidesforcouplingthesmallerdiameterfixedheadtothelargermovable(i.e.,tensioning)head.Thecouplinghasright-handthreadsoneachend.Duringconstruction,aftertherockanchorsweretensioned,thecouplingwassetinplaceonthetopheadoftherockanchor.Whenthesidewalltendonwasinsertedintheconduit,thecouplingwasthreadedontothebottomheadofthesidewalltendontotheendofthread.ThecouplingwasthenturneddownontothetopheadoftherockanchorresultinginallthreadsonbothanchorheadsbeingfullyengagedasshowninFigure3.8-16.Thedesignofthetendonhardwareensuresthatthehardwareremainselasticuptotheultimatecapacityofthewires.Therefore,attheeffectiveprestressforceof60$oftheultimatestrengthofthetendon,averagestrainsinthecouplingaredesignedtobenogreaterthan608oftheyieldstrainofthecouplingmaterial.3.840REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8<1REV.1312/96 GINNA/UFSAR3.8.1.4.3Tendons3.8.1.4.3.1Gama,DEszo~.Thedesignforthecontainmentprovidesforprestressingtheconcreteinthecylinderwallsinthelongitudinal(vertical)directionwithasufficientcompressiveforcetoensurethatuponapplicationofthedesignloadcombinationstherewillbenotensilestressesintheconcreteduetomembraneforces.Inadditiontothemembranestressestherearealsoflexuralandshearstresseswhichresultfromdiscontinuityeffects.Onthebasisofthedesigncriteria,theconcretestressesandthestressesonthemildsteelreinforcinguponapplicationofthecombinedloadswillthenbeproducedbycombinedflexureandshearand/orcompression.ThestructuralelementsarethenactinginamannersimilartothosetestedasabasisforACI318-63Chapter17,ShearandDiagonalTension-UltimateStrengthDesign,,andthereisabasisfordesigningshearreinforcing.Thedesignalsoprovidesforanchoringthecylindricalwallstorock'withanchorswhichwillbepost-tensionedtendonsanchoredintogroutedsocketsintherock.Theanchorsaredesignedtoresistallmembranestressesinthecylindricalwall.Asufficientphysicalseparationisprovidedbetweenwallandbaseslabtoensurethatthereisnotransferofverticalreactiontothebaseslab.Inordertoproduceminimumpracticalbaserestraintandtomosteffectivelyusetherockanchors(i.e.,nomomentappliedtotheringgirder),thedesignprovidesforthedevelopmentofahingeatthecylindertobasetransitionusinganelastomerpad.Theelastomerpadpermitsapredictablerotationofthehingewiththeonlyrestrainttorotationbeingaminimalresistanceduetocompressiononthepad.Theelastomer(neoprene)padwasselectedforthehingebecauseofitspredictabilityofbehavior,maintenance-freeproperties,andabilitytowithstandenvironmentalconditionsfarmoreseverethanthatassociatedwiththeGinnadesign.DetailedbackgrounddataontheuseofneoprenebearingpadsisincludedinSection3.8.1.4.4.3.Underthedeadloadofthecontainmentandtheapplicationoftheprestzessforce,theelastomerpadwillcompressverticallyapproximately3.8<2REV.1312/96 GINNA/UFSAR0.08in.Uponbeingsubj'ectedtothemostsevereloadingcombination,thetendonelongatesandthepadrevertsbacktoessentiallyitsoriginalthickness(i.e.,pze-stressforceequalsorisslightlygreaterthanmembraneforcesduetothisloadingcombination).Thiselongationmustextendoverasufficientlengthoftendontoensurenoyieldingofthesteel.Znanefforttominimizetheincreaseinwirestressesunderload,thetendonisunbondedfortheentirelengthfromcouplingbetweenrockanchorandanchorageoftendonatthetopofthesidewall.Alargeamountofverticalreinforcementisprovidedneartheoutersurfaceofthewallatthelowerelevations.Thissteelisprovidedtoresistbendingmomentswhichoccurinthewallduetothebaserestraint.MildsteelreinforcementprovidedforflexureisshowninFigures3.8-4and3.8-5.Sincethewallhasasteellinerontheinside,theminimummildsteelreinforcementrequiredforcrackcontzolhasbeenprovidedontheoutsideonly,intheamountof0.198oftheconcretecross-sectionalarea.Thepzestressingtendonispositionedatthecenterofthewallsection,thuscausingtheparticipationoftheprestzessforcetobeminimalinresistingbendingmoments.Thedesignrequiresallbendingorshearstressestoberesistedbymildsteelreinforcement,thusmakingthedesignquiteconventionalintheregionofbendingandshear.Duetotheinitialtendonforce(0.6f's)themaximumaverageconcretemembrane(meridional)stressis640psicompressionandtheliner'(meridional)stressis4500psicompression.Consideringaconcretecreepandshrinkageof320x10in./in.,thefinalaverageconcretemembrane(meridional)stressis550psicompressionandtheliner(meridional)stressis14,100psicompression.Thisimpliesthatalineartemperaturegradientof39'Fthroughtheconcreteshell(i.e.,atemperatureonthelinerside39'Fbelowtheexteriorfibertemperature)wouldresultinazerostressontheinnerfiber.Thissituationisnotconsideredcredible.DuringMODE6(Refueling),therefuelingandpurgesystemwhichhasnocoolingcoils,couldnotreducetheinteriortemperaturebelowtheexternalambienttemperature.Thecontainmentrecirculationfancoolers(CRFC)couldpossiblyreducetheinternalambienttemperaturebutnottotheextentrequiredtoexceedtheforegoinggradient.Thereforeareversalofstressesisnotpossibleandnoconcernexistsregardingcrack3.8-43REV.1312/96 GINNA/UFSARcontrolontheinnerface.Asnotedabove,aminimummildsteelreinforcementhasbeenprovidedontheoutsidefaceintheamountof0.19%oftheconcretecross-sectionalarea.Thisamountexceedsthefrequentlyusedminimumamountofsteelforcrackcontrolof0.158.Thestructurehaslinerinsulation(exceptforaregionofthedome)andwillconsequentlynotbesubjecttorapidtemperaturechangesduetofluctuationsintheinteriorambienttemperature.ThesolepurposeofprestressistobalanceverticaltensilemembraneforcesinthewallthusallowingconfidenceintheuseoftheprovisionsofACZ318,Section1701and1702,forshearreinforcementdesign.Therefore,thepzestressingrequirementswouldbethoseofatensionmemberratherthanofabendingmember.Allsidewalltendons,canberemovedozretensioned.Twotendonsarepermanentlyaccessibleforeitheroperation,whiletheremaindercanbereachedbyremovingconcreteatapproximatelyelevation228ft(seeFigure3.8-2)toobtainaccesstothecouplingenclosure.Anytendoncanbeuncoupledfromtherockanchorforremovalbyopeningawindowinthecouplingenclosure.Thetwopermanentlyaccessibletendonsazelocatedonthesouthsideofthecontainmentvessel,andhavethecouplingenclosureexposedintheauxiliarybuildingsump(Figure3.8-2).Abolteddooronthecouplingenclosurepermitsremovalandinspectionofthetendonswithoutremovingconcrete.Afailureofanunbondedtendonortendonsintheupperportionofthewallwouldresultinalossofpzestressinthesectionofthewallsubjectedtobendingandshear;howeverextensivefailuresofthistypewouldcauseatensilefailureinthewall,thusmakingasecondaryshearfailureatthebaseoflittleconsequence.3.8.1.4.3.2SEIsMIcCoNsIDERATIONs~Znevaluatingtherelativesafetyofatendonforaprestressedconcretestructuresubjecttoseismicloads,consider-ationwasgiventothe3.8Q4REV.1312/96 GINNA/UFSARstressesinthetendon(theninety1/4-in.diameterwires)andtothetendonanchorage.ThedesignforGinnaisbaseduponadynamicanalysisusingabasicgroundaccelerationof0.2g.Thedesigndoesnotconsidertheultimatestrengthandplasticdeformationofthestzucturebutconsidersonlyanelasticresponsewithdampingselectedonthebasisofsucharesponse.Otherconsiderationsthataregenerallyrecommendedforseismicdesignandareincorporatedinthedesignare(l)toprovideasymmetricalstructuretherebyavoidingthetorsionaleffectproducedbystructurerigidityand(2)includesufficientrattlespacebetweenthecontainmentshellandadjacentstructures,includingthestructureswithinthecontainment,toavoidanypossiblephysicalinteractionasthestructuresdeflectindependentlyundeztheseismicload.Byusingunbondedtendons,highlocalstrainsorelongationscanbedistributedoverthelengthofthetendons.Anotherproblemisthecontrolofcrackingintheconcrete.InReference1,T.C.WatersandN.T.Barrettstatethatanadequateamountofbondedreinforcementorthebondingofaportionoftheprestressingtendonswillensurethatcrackingoftheconcreteisuniformlydistributedandthatconcentrationsoflargelocaltensilestrainsatparticularpointswillbeavoided.IntheGinnadesignwherecrackingmightoccurduetoflexureproducedbydiscontinuities,bondedmildsteelreinforcementisusedtocontrolcrackspacingandwidth.Whereflexuralstressesareminimal,bondedmildsteelreinforcementisalsoprovidedtocontrolthespacingandwidthofcracks,therebyservingtoincreasetheultimatecapacityofthestructure.Theconcretecontainmentisnotsusceptibletoalowtemperaturebrittlefracture.ThisconclusionisconsistentwithinformationprovidedintheFirstSupplementtothePSAR.Foraflexuralmember,theremaybemeritinlocalizingawirefailureinthatthelossofprestressforcemightnotextendoveraregionwheremaximumflexuralcapacityisrequired.Thiswouldbeespeciallytrueforafailureatornearananchorage.However,thedesignprovidesforprestressingtension,notflexural,membersandthereisnosimilaradvantageinlocalizingthefailureofatendoninatensionmember.3.845REV.1312/96 GINNA/UFSARThebehavioroftheanchoragehardwareisofprimeimportancewhentheelementissubjectedtoreversalofloadingproducedbythedynamicloadsfromanearthquake.Theanchoragesystemforthisdesign,theBBRV(buttonhead)system,waschosenbecauseofitspositiveanchorageandexcellentpropertieswhensubjectedtocyclicloadings.TheBBRVsystemusedparallelwireswithcoldformedbuttonheadsattheendswhichbearuponaperforatedsteelanchorhead,thusprovidingapositivemechanicalmeansfortransferringtheprestressforce.Thebuttonheadsonthewireareformedbycoldupsettingtoanominaldiameterof3/8in.onthe1/4in.diameterwire.ProfessorFritzLeonhardt(Reference21)reportsthat"ExtensivetestsshowthatthisBBRV'buttonhead'rovidesareliableanchorage,evenunderdynamicloadingconditions,ifananchorofsoftersteel(ST52toST90),providedwithanappropriatebore(openingforwire)isemployed."TheanchorheadsfortheGinnadesignarefabricatedfromC1141steel,whichisasoftersteelthanthewireheadsapproximatelyequivalenttoST70coveredundertheGermanSpecificationDZN17100'atiguetestswereconductedbytheSwissFederal'TestingStation(EMPA)in1960onindividual7-mmwireswithupsetheadsandontendonsconsistingofeighteen7-mmwireseach.Theanchorageheadsforthetendonswerefor22-wireunitsbutthenumberofwireswaslimitedbythecapacityofthetestingapparatus.Thetestsonindividualwiresindicatethat7-mmwirewithupsetheadsiscapableofsustaining2,000,000stressapplicationcycleswithanupperlimitofabout1301kg/mm(180ksi)whenthelowerlimitis95kg/mm(135ksi).Severaltestswereconductedonthe18-wiretendons.Theresultsoftheonetestwithstresslimitsmostsimilartothatusedfordesignofprestressedconcretearesummarizedbelow.Withalowerlimitof95kg/mm(135ksi),thetendonwithstoodover22,040,000stressapplicationcyclestoanupperlimitof111kg/mm(158ksi)withoutanyofthewiresfracturing.Onlyaftertheupperlimitwasraisedto113kg/mm(160ksi),didoneofthewiresbreakafteranadditional113,000stressapplicationcycles.Therateofstressapplicationswas350cyclesperminute.3.8A6REV.1312/96 GINNA/UFSARCuttingtoleranceforthetesttendonwasplusorminus0.5mm.Theratiooftolerancetototalwirelengthforthetesttendonis1/2377,whichcompareswith1/3210fortherockanchorsand1/4800foxthesidewalltendons.Theultimatestrengthofthewirebeingtestedwas160kg/mm(225ksi)~Therefore,itisconcluded.thatdynamicloads,consideringespeciallypulsatingloadsresultingfromanearthquake,donotjeopardizethebuttonheadanchorage.Thetendonbearingplatesare18.5in.indiameterwitha5.5in.centerhole.Consideringuniformbearing,theconcretebearingpressureduetotheinitialtendonforce(742kips)is3040psi.Thiscompareswithanallowablestress(ACI318-63,Equation26-1)of3720psi.Themaximumsplittingforce(Redexence11)duetotheinitialtendonforceconsideringnoconcretetensionis58.0kips,basedupontensionextendingfrom6in.to30in.belowthebearingplate.Therequiredreinforcingis1.45in./ftcomparedwiththefurnished5/8-in.diameterspiralat2-in.pitch2withanareaof1.86in./ft.Thecalculatedspallingforce(ReSerence~212)is22.2kips/tendonforwhichNo.7reinforcingbarswereprovidedat12.75-in.centers.Bonddevelopmentofthespiralreinforcementisnotconsideredrelevant.ThereinforcementforspallingisanchoredinexcessofACI318-63requirements.Experienceindicatesthatlong-termloadingswillnotdegradetheintegrityoftheanchoragezone.ASeismicCommitteewasestablishedbythePrestressedConcreteInstitutetodevelopguidelinesforthedesignofprestressedconcretestructuresforseismicloads.Intheirreport(Reference13),thePrestressedConcreteInstituteprovidesdetailedguidelinesforthedesignofprestressedconcretestructuresforseismicloads.Theseguidelinesapplytobondedandunbondedtendons.TheGinnadesignhasbeenreviewedinlightofthisreportandhasbeenfoundtocomplywithallguidelines.3.8-47REV.1312/96 3~8~1~4~3~3STRESSIHGPRocEDURE.Stressingoftendonsisaccomplishedbyhydraulicjacksandpumpingunitswhichareequippedwithdialgaugesthatindicatethepressureinthesystemwithinplusorminus2%.Thestressingprocedureisasfollows:'a~Stressbypumpinguntiltherequiredoverstressingforceisreachedwithbackupprovidedbydirectmeasurementofdifferentialdisplacementofthetendonheadandbearingplatemadetothenearest1/32ofaninch.b.Insertshims,fillingthespaceascompletelyaspossible.c.Reducepressuretoseattheanchorheadontheshims.d.Takelift-offreadingandrecord.e.Adjustshimsasnecessary.Thepatternandsequenceofpost-tensioningwasestablishedsoastoprovidebasicallyforinitiallytensioningevery40thtendonofthetotal160tendonsandtheninasystematicmannertotensionthetendonsapproximatelymidwaybetweenpreviouslytensionedtendons.Thisapproachminimizesthelossduetoelasticshortening.Theelongationofthesidewalltendonsduringthestressingoperationwasapproximately8in.Thephilosophybehindthissequenceofpost-tensioningwasasfollows:aa.Toprovideineachstageofstressinganessentialsymmetricloadingonthecontainmentcylindricalwallandneoprenepadatthebase.bb.Theprestressloadwastobeappliedasfaraspracticalsyaunetricallywithrespecttothetwolargeaccessopenings.cc.Thecurvedtendonsaroundthelargeaccessopeningsweretoberetensionedafter1000hoursinordertocounteractthetimedependentlossesduetoshrinkage,creepandsteelrelaxation.Theretensiohingwasrequiredinordertofulfillminimumprestressrequirementsuptotheendofplantlife,whichis40years.Thehighesttendonstressesoccurduringthejackingoperationwhich,ineffect,preteststhetendonincludingallhardwarepriortotheapplicationofapressureload.Theeffectiveprestressconsideringalllosses(i.e.,60$ofultimatestress)is144,000psi.Uponsubjectinga3.8-48REV.1312/96 GINNA/UFSARtendontothemostsevereloadingcombination(design-basisaccidentplusmaximumearthquake),thetendonstressincreasesby4.6'h,i.e.,6,600psi.Theeffectiveprestressforcesweredevelopedinalltendonsinaccordancewithnormalindustrypractice.Alltendonswereinitiallytensionedto80%ofultimatestressandthenlocked-offat70%ofultimatestress.Basicallyalltendonsarestraight.Alimitednumberhaveaminorcurvaturewheretheyaredrapedaroundsmallpenetrations.Thetendonsinallcasesarelocatedinarelativelylarge(6-in.diameter)rigidconduitwhichwassizedtopermitthebottomanchorheadtopassthrough.Anywobbleandfrictionlosseswillbelessthan24,000psior10%oftheultimatestress.Theremaininglossesconsistofelasticshortening,concreteshrinkageandcreep,creepoftheelastomerpads,andsteelrelaxation.Anchoragelossesarenegligibleforthelengthoftendonbeingused.Thetendonsazeprotectedtoensurethattherearenolossofwiresduetocorrosion.ThetendontemperatureneversufficientlyexceedsthatresultingfromplantoperationandhighambienttemperaturesexternaltothecontainmentiTheaveragedailytemperatureofthetendonwill,therefore,neverexceedapproximately90F.Theprestressingsequencefortherockanchorswasgenerallyasfollows:Initially,everyfourthanchorwastensioned.Horizontalspacingofanchors,asshowninFigure3.8-2is2ft19/16in.ii)Secondly,everysecondtendonnotincludedinitem1wastensioned.iii)Finally,allremaininganchorsweretensioned.Thetensioningofsidewalltendonswasdoneusingaminimumoffourjacksspacedgenerallyaboutthecircumferenceofthestructure.Stressingpositionswerealternatedtopreventconcentrationsofmultiplestressedtendonsadjacenttomultipleunstressedtendons.Thiswasaccomplishedbytensioningtendonsinasequencewhereinthetensionedtendonwasapproximatelyequidistantbetweenpreviouslytensionedtendons.Thefourf$jackswereusedsothattheresultantoftheprestressforceremainsapproximatelysymmetricalaroundthecircumferenceofthestructure.3.8-49REV.1312/96 GINNA/UFSAR3~8.1~4.3.4CoRRoszoNPRQTECTIoN.Asteelconduit(6-in.diameterSchedule40pipe)isembeddedinthesidewallconcretetopermitinsertionoftheprestressingsteeltendonandinadditionprovideelectricalshieldingagainststraygroundcurrents.Theconduitisspeciallydesignedwhereitpassesthroughtheelastomerpadssoasnottojeopardizetheactionofthehingebyusingabellows-typeexpansionjoint.The6-in.)threadedpipeisscrewedontoa6-in.$halfcoupling.ThisconnectionmeetsthecriteriaspecifiedinthestandardcodeforPowerPiping,USASB31.1.0-1967,andassuchprovidesaleak-proofjoint.Thewirewasprotectedpriortofabricationtoensurethatthesurfacewasfreefromanyimperfectionsotherthanalightoxidefilm.Priortoshipment,thetendonwasprotectedwithacoatingofNO-OX-ID"490,"manufacturedbytheDeabornChemicalDivisionofW.R.GraceandCompany.TheNO-OX-ID"490"providesalightcoatingsatisfactoryfoztemporazyprotection.Followinginsertionofthetendonsintheconduit,theconduitwasfilledwithNO-OX-ID"CM"soastoprovidebulkfillingofthevoidintheconduit.AnexpansionreservoirisprovidedatthetopanchorageasshownonFigure3.8-7.AccesstothisreservoirisprovidedasshownonFigure3.8-17'hetendonconduitisfilledbypumpingtheNO-OX-ID"CM"inatthelevelofthetendoncouplingandventingfromthetopanchorage.Thewatertableisapproximately16ftabovethebottomofthetendons.Thetendonanditsconduitareapproximately110fthigh.Thisleavesahydraulicheadoffillermaterialof94ftwhichisequivalenttoabout36psiabovethehighestpointofthewatertable.Thisensuresthatthereisnowaterseepageintotheconduit.Thisisanunderestimationofthepressurerequiredtodisplacethefillermaterialinthatitisbaseduponthematerialhavingtheviscosityofwaterwithnofrictionlossandaspecificgravityof0.9.Duringtheactualplacementofthefillermaterial,apressureof42to45psiwasrequiredtopumpthematerialafteritwasagitated.3.8-50REV.1312/96 GINNA/UFSARTheradialtensionbars,asshownonFigure3.8-2,areprotectedagainstcorrosionasfollows:a~Inthecylinderwallthebarsarecoatedwithgrease.(Thegreaseensuresthereisnobonddevelopment).b.Inthebaseslab,thebarsareinsertedinapipesleeveforalengthof2ft10in.Theannularspacebetweenbarandpipesleeveisfilledwiththecorrosionprotectionsystemdescribedabovefozthesidewalltendons.CeTheremaininglengthofthebarsinthebaseslabareinintimatecontactwiththeconcrete.Thebuttonheadsattherockanchorheadsareencasedingrouttoprovidecontinuityofenvironmentalongthefulllengthofthewire.Themovable(top)anchorheadsfozthesidewalltendonsazeprotectedbycoveringtheheadwiththeNO-OX-ID"CM"madetopreventrainwaterfromenteringtheconduitbytheexpansionreservoir.ThetopanchorheadscanbeinspectedforcorrosionbyunboltingthecoverontheexpansionreservoirshownonFigure3.8-7andremovingthewaxcoveringtheheads.Thewaxcanalsobesampledbythismethod.NO-OX-ID"CM"casingfilleriscomposedessentiallyofaselectedparaffin-baserefinedmineraloil,blendedwithamicrocrystallinepetroleum-derivedbase(petrolatum)ofdefinitemeltingpointandpenetrationrange.Additivesconsistingoflanolin,andsodiumpetroleumsulphonatesareincorporatedaswater-displacingsurface-activeagentsandcorrosioninhibitors.Theproportionofoiltomicrocrystallinewaxintheformulationisadjustedtogiveapourorgellingpointwithintherangeof110to120'F.Theoilandwaxarehighlyrefinedlong-chainsaturatedparaffinicpetroleumderivatives,resistanttooxidationandchemicalorphysicaldegradation,withinthetemperaturerangestowhichtheywillbeexposedinthisservice.ThelanolinS.sapolarsubstancewhichenhancesinhibitorperformanceandwettingofthemetalsurfacebythemicrowaxblend.Thepetroleumsulphonateisasurface-active,waterdisplacingcorrosioninhibitoroflongtestedmerit.(SeeTable3.8-3.)3.8-51REV.1312/96 GINNA/UFSARQualitControlTestsQualitycontroldeterminationsonrequiredrawmaterialsandonthefinishedNO-OX-ID"CM"protectivecoatingincludedthosetestsalreadybeingdoneinthestandardrawmaterialinspectionpzoceduzes,plusadditionalcontrolsrequestedonchloride,sulfide,andnitratecontent.Thelattertestsincludedthefollowing:aa.Chlorides-TheinitialscreeningtestonbothrawmaterialsandfinishedproducewasthesensitiveBeilsteinTest.Thisisaflamedeterminationusinganoxidizedcoppercarrier.Agreenorblue-greencolorappearsintheflameifchlorides(halides)azepresent.Thistestdetectsaslittleas0.5ppmhalide.IfapositiveBeilsteinindicationisobtained,aconfirmingtestismadeonwaterextractsoftheproduct,usingstandardtitrationorcolorimetricproceduresdescribedinASTMD-512-62T.(Note:ApositiveBeilsteintestmaybeobtainedwhenhalidesarenotpresent,becauseofinterferencesfromtracesofpyridines,thiourea,thiocyanate,etc.Thisisthereasonforaconfirmingtitrationonwaterextracts,followingapositiveBeilsteinindication).bb.Sulfides-Themethodusedwasawaterextractionfollowedbyatotalsulfidedetermination.Zincacetatewasaddedtotheextractionwatertoprecipitatesulfides.SulfidespresentwerethenmeasuredinaccordancewithParagraph8ofASTMD-1255.Thismethoddetectsaslittleas0.1ppmsulfide.Analternatecolori-metricprocedurealsowasavailableinwhichsulfidesarevolatilizedfromanacidifiedextractionsolution,tocreateacoloredspotonzincacetatepaper.Spotintensityismeasuredtodeterminesulfide.TheextractionprocedureisdescribedinASTMD-1255.cc.Nitrates-Themethodusedwasawaterextractionfollowedbycolorimetricmeasurement,basedonASTMD-992-52.EithertheBzucineorphenoldisulfonicacidprocedureswereused.Eithercandetectaslittleas0.01mg/1nitrate.3.8-52REV.1312/96 GINNA/UFSARdd.CathodicProtection-Allofthetendonsareconnectedtothelinerofthecontainmentandthentothecoppergroundingsystem.Also,electricallyconnectedtothegroundingsystemisthemildsteelreinforcementbelowthehighgroundwaterlevel.Permanentandstablepotentialreferencecellsareinstalledatsignificantlocationstomeasurethecorrosionpotential.Atthetimeofcontainmentconstruction,Duzichlozanodeswereinstalledaroundtheperimeterofthevessel.Protectivecurrentcanbeappliedfromtheseanodesandregulatedasneededtomaintainaprotectivepotentialifcathodicprotectionisfoundnecessarybymeasurementsfromthereferencecells.Inaddition,sacrificialsteelcablehasbeeninstallednexttoallbarecoppercables.Also,fourpotentialbridgepipeteststationswereinstalledontherockanchorsystemtomeasurethemagnitudeoftheearthpotentialcurrentgradientcausedbycurrentflowintooroutoftherockanchorsandtoprovideabasisforregulatinganyappliedcurrentfromtheanodes.ABritishstudyoftheproblemindicatesthatcolddrawnpezliticwireofthetypeemployedintheGinnacontainmentisnotsusceptibletostresscorrosioncrackingfailure(ReSerence14).3.8-53REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-54REV.1312/96 GINNA/UFSAR3.8.1.4.4HineDesin3.8.1.4.4.1TEwszoNBraes.Ahingewasdevelopedatthebaseofthecylinderwallbysupportingthewallverticallyonaseriesofelastomerbearingpadsandanchoringthewallhorizontallyintothebasematwithradiallypositioned,high-strengthsteelbars.Thebarsareapproximately20ftlongand1-3/8in.indiameterwithtwoanchorplatesandwithaminimumultimatetensilestrengthof145,000psiandayieldstrengthof130,000psi.ThebarsconformtoASTMA322-64aandASTMA29-64andarespacedapproximatelyI1ft-1in.oncentersatthecenterlineofthesidewall.TheanchorplatesconformtoAISIC-1040andcandevelop100%ofthebars'ltimatestrength.Thebarsareunbondedoverapredeterminedlengthtoprovideforanelongationofthebarunderloadconsistentwiththatrequiredfortherotationofthewallwiththeelastomerpadactingasahinge.Theonlyrotationalrestraintonthebaseofthewallisthatproducedbytheresistanceoftheelastomerpadstodeformation.Actualtensionbarstressesresultingfromthefactoredloadsareasfollows:~a~crCambiahi.on13014987.5100.077c170114.388Theeffectofthebasetocylinderdiscontinuityisbaseduponequationsdevelopedfoztheanalogyofasemi-infinitebeamonanelasticfoundation(References25and16)inwhichthespringconstantforthecircumferentialbarsandlineristakenasthefoundationmodulus.Assuch,thehoopstiffnessisgeneratedindependentlyoftheconcrete.Theelasticmodulusoftheunczackedconczeteisassumedtobeequalto4.1x10psi(E=N'33f',fromACI31843).(3.8-5)Theassumptiononasingleelasticmodulus,whichisconsideredtobeareasonableupperlimit,isconservativeinthatitresultsinthehighestdiscontinuitystresses.3.8-55REV.1312/96 GINNA/UFSARExceptforparticipationinanchoringtheradialtensionbarsatthebaseofthecylinder,thebaseslabisnotanintegralpartofthecontainmentshellfozthisdesign.Theloadsonthisslab,whichismoreproperlydescribedasacapontherock,arethosefromtheinteriorstructures.Asimplecheckwasmade,basedonanassumed45-degreebearingdistribution,toensurethatrockbearingpressuresdonotexceedthelimitslistedinAppendix2C.ThemeansfortransferringtheradialreactionatthebaseofthecylinderintothefoundationrockisshowninSection1-1ofFigure3.8-2.Thebasereactionistransferredfromtheradialdowelsintotheringgirderandthickenedportionofthebaseslabandthence,asalateralload,ontherockoutboardoftheringgirder.Theconcretefortheringisplaceddirectlyagainsttherock.Theloadistransferredtotherockontheinterfacefromelevation231ft8in.toelevation224ft8in.Themaximumallowedlateralpressureis25,000poundspersquarefoot,asstipulatedinAppendix2C.Wherenolateralrocksupportisavailableattheauxiliarybuildingsump,aspecialbeamandstrutsarerequiredtospanthisareaasshowninSections2-2and3-3ofFigure3.8-2.ThedetailsoftheexpansionjointinthetendonconduitatthehingeareshowninFigure3.8-18.Thisisastainlesssteelbellowsasconventionallyusedonprocesspipingforexpansionjoints.Thebellowsare6-in.diameter,stainlesssteelpipebellowscomplyingwithrequirementsoftheASAB31.1CodeforPressurePiping.Theyprovidemovementcapabilityfortherigidtendonconduitatthehingedjointtoensureasealedtendonenclosurewhichretainsthegreasecorrosionprotectionaroundthetendonandalsosealsagainstcontaminantsgainingaccesstothetendons.Thebellowsalsoprovideessentiallynoresistanceacrossthehingedjointtothemovements.Theinsidediameterofthebellowsisapproximately5.6in.andthediameterofthetendonbundleisapproximately3in.With1.3in.clearanceandmaximumpredictedhorizontalmovementatdesignloadsof0.2in.,marginisavailabletoprecludecontact.3.8-56REV.1312/96 GINNA/UFSAR3.8.1.4~4.2LZNERKNUCKLE.Thelinerdesignatthehingeprovidesforabasetocylindertransitionintheformofaknucklewitha10-in.radius.Thisdetailprovidessufficientflexibilityasthesidewallmoveswithrespecttothebaseduringthetensioningofthesidewalltendonsandundertheapplicationofthedesignloads.Thestressesinthelinerbasetosidewalltransitionknucklehavebeendeterminedforthefollowingcases.TheanalysiswasbasedonthemethoddescribedinReference17.aUndertheapplicationoftheprestzessforceplusthedeadweightofthevessel,thesidewallmovesverticallydownward0.08in.withrespecttothebase.Themaximumbendingstressintheknuckleduetothismotionis25ksi.b.Underloadingcombinationa,thesidewallmovesverticallyupward0.08in.withrespecttothebase,andradiallyoutward0.08in.Themaximumbendingstressintheknucklefollowingthemovementis10ksiandmembranestressis1.2ksi.Thisloadingcombinationrepresentsthemostsevereloadingontheknuckle.ThecalculatedstressforthetensionbarsatthebaseofthecylinderlistedinSection3.8.1.4.4.1werebasedupontheassumptionthatthestiffnessofthebaseisafunctiononlyofthetensionbars'studywasmadetovalidatethisassumption.Itwasfoundthatthelinerknuckleoffersnegligiblerestrainttoradialmotionsbutdoesofferverysignificantrestrainttolateral(horizontalearthquake)motions.ThedimensionsofthelinerknuckleareshownonFigure3~8-19.ThemethodofsolutioninvolvedtheuseofashellcomputerprogrambasedonthesolutiondescribedinReference17,whereinstressesweredeterminedonthebasisofalateraltranslationofPointA(RefertoFigure3.8-19).Itwasconservativelyassumedthatthesupportlinesfortheknuckleremaincircular.Forthelateralmotionthecalculatedspringconstantoftheknuckleis785,000k/in.Baseduponamaximumearthquakeshearforceatthebaseofthecylinderof12,080kitisdeterminedthatthemaximumshearstressintheknuckleis16.4ksi.Bendingstressesaresmall.3.8-57REV.1312/96 GINNA/UFSAR3.8.1.4.4.3ELAsToMERBEARINGPADs.Eachbearingpadisaflatpad1.628-in.thick,madeoftwolayersof55durometerhardnessneoprenebetweenthreesteelshims.Theoutershimsare16gaugeandthemiddleshimis10gaugecarbonsteel.Thepadsareplacedbetweenthecylinderwallsandtheringbeam.Becauseoftheabilityofneoprenetodeform,itprovidesaneffectivemediumofloadtransfer.Byconformingtosurfaceirregularitiesuniformbearingisprovided.Nolubricationorcleaningisnecessaryforthebearing.Thepaddimensionsare9in.x42in.andtwopadswereplacedbetweeneachpairofpre-stressingtendons.Eachpairofpadswillcarryamaximumloadof371tonsresultinginabearingpressureof980psi.Thispressureisreducedto840psiafterprestresslossesoccur.Bothpressuresarewellwithinallowablevalues.Apadunderloadshouldnotexceedaverticaldeflectiongreaterthan15$ofthethickness'hesteelshimsbeingusedreducethecalculatedstrainto5.2,asfurtherverifiedbythetestsreportedinSection3.8.1.7.1.Thecreepofneoprenepadsisdependentonthehar'dnessoftheneoprenewhichwasthereasonforusinglowhardness(55duzometer)pads.Creepasverifiedbytestsisestimatedtobe13'hofinitialdeflection.Onmostofthecircumferenceofthecontainment,theelastomerpadsazeaccessibleorcouldbemadeaccessiblebyremovinginsulationtoviewfromoneside.SpecificationsfortheelastomerpadsaresummarizedinSection3.8.1.6.6.Neoprenepadshavebeeninusesince1932sothatthepracticeatthetimeoftheGinnacontainmentdesignwasbasedonover30yearsofexperienceandresearch.ThesepadswerefirstusedinFranceinthelate1940sastheloadtransferbearingsbetweenpiersandbeams.IntheUnitedStatesandCanada,developmentmoreorlessparalleledtheuseofprecast,prestressedconcretebeamsbecauseoftheproblemofseatingsuchbeams.By1957,concretebridgeshadbeenbuiltwithneoprenebearingsinTexas,NewHampshire,RhodeIsland,andOntario.AtthetimeoftheGinnacontainmentdesign,thousandsofbridgesandbuildingsthroughouttheworldhavebeenbuiltusingneoprenebearingpads.3.8-58REV.1312/96 GINNA/UFSARTheneoprenepadswillhavealocaleffectonseismicshearsatthebase.ThiseffecthoweveriscomparabletoSaint-Venanteffectswhicharepresentlocallyatanydiscontinuity.Theseismicdesignofcontainmentforshearandmomentloadsasacantileverbeamisnotaffectedbytheneoprenepadssincethecylindricalshellistiedtothebasebymeansoftheverticalpze-stressing.Theeffectofverticalcrackingofthecontainmentshellunderpressureloadingwilltendtoreducethestiffnessofthecontainmentwhichinturn,forthemodalanalysisdiscussedinSection3.8.1.3,willincreasetheperiodandresponseofthestructure.Howeverthissamecrackingwilltendalsotoincreasestructuraldampingandtherebyreducethestructuralresponse.ConsideringthelargedesignmargincontainedintheactualseismicdesignofthecontainmentascomparedtothatdictatedbythemorerigorousmodalanalysispresentedinSection3.8.1.3,thelocalperturbationscausedbyuseofneoprenepadsazenotsufficienttoaffectdesignadequacy.Atypicalpropertiesspecificationforbridgebearingpads(thehardnessShoreA50approximatelyapplyingtothepadstobeusedforthecontainment)isgivenbytheAmericanAssociationofStateHighwayOfficialsasfollows:OrialPhicalProertiesHardnessShoreATensile,minimumpsiElongationatbreak,minimumS(ASTMD-412)5025250040060i5250035070i52500300Ozone,1ppminaizbyvolume,208strain,10022'F,100hoursCompressionset22hoursat158'F,maximum%2525NocracksNocracksNocracks25OvenAged70hoursat212'FHardnesspts.changemaximumTensile,8changemaximumElongation,8changemaximum0to%15215-400toi15i15-400to%15%15-40LowTemperatureStiffnessat-40'F3.8-59REV.1312/96 GINNA/6FSARYoungModulus,maximumpsiTear.DieClb/inminimum10,000.22510,00022510,0002253.8-60REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-61REV.1312/96 GINNA/UPSAR3.8.1.4.5Concrete3.8~1~4.5.1RADIALSHEAR.Themaximumvalueofradialshearis253psiandthisoccurs3ftabovethehigheststressedradialtensionbarunderthecombinationofoperatingincidentandmaximumcredibleearthquakeloads(loadcombinationc).Thecriticalsectionforshearistaken3ftabovetheradialtensionbarleveltoconformwiththerequirementsofACI318,Section1701.TheultimateshearcapacityofthereinforcedwallwithoutshearreinforcementasdefinedinACI3181701is126psi.ShearreinforcementisrequiredandisprovidedaccordingtotherequirementsofSection1702asNo.7barsat11-in.centers.Thus,undertheconditionsof60psiinternalpressureand0.2gsimultaneousearthquake(loadcombinationc),theshearcapacityofthecontainmentwallissufficienttoresistthemaximumshearstresswhichoccursatonlyonepositiononthecircumference.Underthecombinationofoperatingandincidentloads(loadcombinationa)themaximumshearstresswhichoccursuniformlyaroundthewallis183psi,whichis788oftheACIdesigncodecapacityof253psi.Underthecombinationofoperating,incident,anddesignearthquakeloads(loadcombinationb),themaximumshearstressoccurringatonepointinthecontainmentwallis222psi,whichis88$ofthedesigncapacity.Thedetailedanalysisforsheardesignunderloadcombination3isasfollows:Theultimateshearcapacityofthewallisvc=$1.9f'c+2500(PwVd/M)=126psiTheactualmaximumshearstressisv=109000/(12x36)=253psiwhencetheshearcarriedbystirrupsis127psi.Placingstirrupsat11-in.centers,therequiredcross-sectionalareaofbarusing0.85yieldstressis:3.842REV.1312/96 ,GINNA/IJFSARV'S127x36x12x11IPf~d0.85x40,000x36(3.84)No.7barshavinganareaof0.60in.perbararethereforeplacedat211-in.centers'.8.1.4.5.2LONGITUDZNALSHEARS.Underthecombinationofloadsresultingfromthesimultaneousoccurrenceofmaximumearthquakeandloss-of-coolantaccident,theinternalpressureof60psiwillproduceverticalcracksinthecylindricalwall(maximumconcretetensilestresswouldbe970psi).Thecapacityofthewalltoresistlongitudinalshearsacrossthesecracksduetotheseismicloadswithinternalpressuresisdevelopedbythedowelactionofthecircumferentialreinforcement.Indeterminingthecapacityofthecircumferentialreinforcingbarsasdowels,firstthecapacityoftheconcreteinbearingischeckedandthenthecapacityofthebarsincombinedtensionandshearischecked.Theconcretestrengthiscalculatedtolimitthecapacitytotransfersheartoadowelcapacityof38.7kipsperbaroranaverageshearstressof9.7ksiinthereinforcingbar(Reference6).Inconsideringthestrengthofthereinforcingtoresistshearstressesduetothedowelactionandtoresisttensilestressesduetothepressureload,theMohrcirclemethodisusedtocombinestresses.Itisrecognizedthatthefailuremodeofmildsteelisoneofshear.The,strengthenvelopeontheMohrcircleisastraightlineparalleltothenormalstressesaxisatashearstressmagnitudeof19.0psi(1/2x0.95yieldstress).ThetabulationinTable3.8-4,brokendownastofactoredloadcombinations,showstheallowableshearstressforagiventensilestress(duetopressureload)andtheallowabletensilestressforagivenlongitudinalshearstress(duetolateral-seismicload).AsindicatedinTable3.8-4,ineverycasewherethereisdowelactionthereisamarginofsafetyontheshearcapacityofthereinforcingsteel.Inallcases,however,thecapacityofthebarinshearislimited3.8-63REV.1312/96 GINNA/UFSARbytheconcreteinbearingandnotbythesteelincombinedshearandtension.Itshouldalsobenotedthatthisanalysisconsidersonlytheouterringofcircumferentialreinforcementforwhichthetensilestressismaximum.Thisentireanalysisisdevelopedonthecapabilityofthecircumferentialreinforcementtoresistlongitudinalshearswithnorelianceplaceduponthelinercapabilityoraggregateinterlock.Itisrecognizedthatthelongitudinalshearwillberesistedbytheinteractionofdowelsandlinerbutthatthecompositeactionwillnotjeopardizetheintegrityoftheliner.3.8.1.4.5.3HORZZONTALSHEAR.Thehorizontalshearduetolateralseismicloadistransferredtothecylindricalwallofthecontainmentthroughthehorizontalradialtensionbarsprovidedatthebase.Thebarsactinamanneranalogoustospokesofawheelintransferringshear.Theforcesinthebarshavebeenanalyzedbyassumingthewalltobeastiffring.Thisanalysisgivesanoverestimateofbarforceandleadstoaconservative-radialbardesign.However,awallsectionactingasahorizontalringatthebaseofthevesselmustalsobecheckedasaringforbendingandshearstressesthatresultfromdifferentialradialtensionbarforces.Theworstconditionforthiseffectwilloccurwith0.2gearthquakeresultinginamaximumdifferentialforcebetweenanyonebarandtheadjacentoneof1.55kips.Thisforcedifferentialproducesamomentandshearinthewallsection(consideringaonefootheightofring)of1.66kips-ftand1.55kipsrespectively.Fromthecircumferentialbarlayoutintheregionofthewalladjacenttotheradialbarsthismomentandshearwillberesistedbyaminimumoffour18Sbars.Assumingatotallycrackedwallsectioninthisregion(whichisnotthecaseascircumferentialhooptensionsareverysmallinthisregion)thecapacityofthesefour18Sbarsinshearis155kipscomparedtothecalculatedshearof1.55kipsandinbendingis303kips-ftcomparedtoacomputedmomentof1.66kips-ft.Thusthewallhasmorethanadequate3.8-64REV.1312/96 GINNA/UFSARcapacitytoresistthesmallmomentsandshearsproducedbyanyradialforcedifferentialsintensionbars.Therearetwogeneraltypesofbondfailure.ACI318-63addressesthemostcommontypeofbondfailureproducedbyasplittingtypefailure(i.e.,concretecrackinglongitudinallyalongthebar).Thesecondtypeisthatproducedbyshearingtheconcretebythebardeformationsorbyshearingoffthebardeformations.Itisrecognizedthatcracksnormaltothebarwillreducethebondcapacity.Thisconductionisanalogoustothatoccurringinaflexuralmemberwherereinforcementissubjectedtotensilestresses.Thecodeadvisesthatsplicingatpointsofmaximumtensilestressshouldbeavoidedwhereverpossiblebutprovidesforusingareducedallowablebondstresswheresuchaspliceisunavoidable(refertoACI318-63,Section805).Suchaconditionisnotuncommon,asevidencedbycommonpractice4forsplicingbarsinnegativemomentregionsofrigidframes.Crackingparalleltoareinforcing,althoughundesirable,iscontrolledbythestrengthacrossthecrackprovidedbyreinforcementusuallyassociatedwithanorthogonalarrangementofbars'hisconditionisthebasisforconcernforsplicesoccurringclosetogetherforaseriesofbarswherespiralsorcloselyspacedstirrupsazesuggestedforuse.Itshouldbenotedthatthedevelopmentofrebarbondinaprestressedstructureislessseverethaninconventionalreinforcedconcretestructuressuchasbuildings,chimneys,andtanks.Onthisstructurethereinforcementforwhichbonddevelopmentisrequiredtoeffecttheanchorageconsistsonlyofthesteelrequiredtoaccommodaterotationalstrainsortocontrolcracking.Theinterruptedreinforcementwherebondisreliedupondoesnotserveasp'zimarymembranereinforcement.AlthoughtemperaturechangesmayaffectthecrackwidthonthecontainmentduringMODE5(ColdShutdown),itisnotconsideredtosignificantlychangeduringplantoperation.Becauseofthetimelapsebetweenconstructionandplantoperation,thechangeinstrainsduetoconcreteshrinkageisextremelysmall.Becauseoftheconservativedesignlimits3,8-65REV.1312/96 GINNA/VFSARestablishedtoensureanelasticresponsetotransientloads,thecrackwidthsshouldnotchangeduetothedesignearthquakeloads.3~8.1.4~5.4ANCHORAGESTRESSES.ThestressesfortheanchorageofthetendonsandthedomereinforcementinthevicinityofthedometocylindertransitionwereanalyzedandcomparedwithReference11.,Themaximumburstingstresscausedbythetendonanchorageis180psi,comparedwithanallowablestressof300psi.Themaximumspallingstressis465psiwhichrequiredtheadditionofreinforcement.Themaximumconcretecompressionundermaximumloadatthezonebetweentheanchoragesofthetendonandthedomereinforcementis650psi,comparedwithanallowablestressof1250psi.Theanchoragesfortendonandreinforcementareseparatedsoastominimizeoverloadsofanchoragestresses.Thedesignprovidesfozafactorofsafetyof2.2timesthefactoredloadagainstshearfailureatthislocation.DetailsoftheanchoragezoneinthedometocylindertransitionareshowninFigure3.8-5.3.8.1.4~5~5SHELLSTRESSANALYTICALPROCEDURES~Theanalyticalproceduzesusedforthestressanalysisoftheshellaresummarizedinthefollowingparagraphs.BasetoClinderDiscontinuitTheanalysisconsidereda.stiffnesscircumfezentiallyof116.5lb/in.(k=(As)(Es/2)=116.5lb/in)Basedupontheanalogyofasemi-infinitebeamonanelasticfoundation(References15and16)itcanbeshownforthemodeldescribedinFigure3.8-20that:e~Defleefles;y=s[P,cospX-pM(cospX,-sinpX)]2P'~z(3.8-7)3.846REV.1312/96 GINNA/UFSARe/Rotation:tt=,[P-,sinPX+cosPX+2PM,cosPXJ2PElz(3.8-8)e~Moment:M=[-P,sinpX-pM,(sinpX+cospX)](3.8-9)sttear:v=em[P(cosPX-sinPX)+2PM,sinPXJ(3.8-10)SymbolsthatarenotdefinedonFigure3.8-20areasfollows:Young'smodulusforbeammaterialIz=Momentofinertiaofbeamp=4-Elz(3.8-11)k=FoundationmodulusZtcanalsobeshownthat:HoopForce:Fe=r(p-ky)2ElBasereaction:P,=PM,(3.8-12)Symbolsnotpreviouslydefinedareasfollows:averageradiusofshellp=internalpressureAllstressresultants,shears,andmomentswerecalculatedonthebasisoftheforegoingequations.Becauseoftheuseofthehinge,themomentatthebaseofthecylinder(Mo)consistsonlyoftherestrainingmomentproducedbytheelastometerbearingpadsandpseudo-momentappliedtoascertaintheeffectofthermalstresses.3.8-67REV.1312/96 GINNA/UIiSARNoinclinedbars(i.e.,bentshearbars)areusedonthecontainmentstructure.AsshownonFigure3.8-4,stirrupsareusedatthebaseofthecylindertoanelevation10ft5in.abovethebase.Thisstructureisprestressedverticallyand,withthehingedesignatthebase,issubjectonlytobendingstzessesandnottotensilemembranestressesinthelongitudinaldirection.Therefore,thestirrupsareanchoredinconcretesubjecttoonlyverticalcracksduetomembraneloads.AsshownonFigure3.8-4,Section9-9,thestirrupsarecontinuousaroundthestructure.Consequently,anchorageisprovidedbothbybondandbythemechanicalattachmenttotheverticalbarsontheinsideface.Ingeneral,therearetwotypesofbondfailure(References28and19).Inonetypeofbondfailuretheconcretesurroundingthebarsplitsalongthereinforcingsteel.Intheother,thesplittingdoesnotoccurbuttheconcretebetweenthedefozmationsinthereinforcementisshearedoff,thusleavingaroundholeinsolidconcrete.Forthesplittingfailures,thetensilestrengthofconcrete,distancebetweenbars,andthemagnitudeanddistributionoflateralstressactingonthebarsareimportantvariablesaffectingthebondstrength.Thebondlimits,includinglappedsplicerequirementsinACI-318,arebasedupontestsinwhichthefailuresweresplittingtypefailures.Sincethebondtestsweremadeonbeams,therewasanabsenceoflateralconfiningstresses.Thebondstrengthforsplittingfailureswouldmostcertainlybelowerthanthebondstrengthwherethefailureistheshearingoffoftheconcretebetweenthereinforcingsteeldefozmations.Confinementcausedbylateralpressurecanchangethefailurefrom"splitting"to"shearing"andincreasethebondstrengthconsiderably(Reference19).Theexactincreaseduetolateralpressureisnotknownbecausethetestswererunonsmallsizespecimensthatwouldhavelittletodowithanyactualbondstresssituationoccurringinpractice.Itisknownthatinsimplebeamtests,theeffectoftheconfinementatthesupportincreasesthebondstrength.Whereconfinementisincludedinthedesign,theactualbondstrengthwouldappeartobehigherthanthedesignvaluespermittedbyACI-318.Consequently,fortheconfigurationofstirrupsusedinthecylindertobasejunctureitisconsideredthatACI-318designlimitsonanchoragepzovideaconservativebasisforthedesign.3.8-68REV.1312/96 GINNA/UFSARDometoClinderDiscontinuitTheanalysiswasbasedupongeneralshelltheory(Reference20)usingthemodelshowninFigure3.8-21.Atadistancesufficientlyremovedfromthediscontinuityitcanbeshownbaseduponmembranetheorythat:(3.8-13)Symbolsnotpreviouslydefinedareasfollows:NormaldisplacementofcylinderNormaldisplacementofdomevc=Poisson'sratioforcylindervd=Poisson'sratiofordomeEc=Young'smodulusforcylinderEd=Young'smodulusfordometc=Shellthicknessofcylindertd=ShellthicknessofdomeIncalculatingthequantitiesQoandMoitisassumedthatthebendingisofalocalcharacterand,therefore,'thatthebendingisofimportanceonlyinthezoneofthesphericalshellclosetothejointandthatthiszonecanbetreatedasaportionofalongcylindricalshell.ItcanthereforebeshownthatQo=Mo=1/Z(5c-5d)1/Y(5,-5d)whereZandYarefunctionsofdomeandcylinderstiffnesses.3.8-69REV.1312/96 GINNA/UIiSARBase,Clinder,andDomeThecalculatedstressresultants(N$,Ne),stresscouples(M),Me),meridionalshears(V$),andradialdisplacements(5R)fordeadload,finalprestress,operatingtemperature(winterandsummer),internalpressure,accidenttemperature,andearthquakeareaslistedinTable3.8-5.TheseloadswerecombinedasshowninTable3.8-6.TheresultsfortheloadcombinationsareasshowninAppendix3C.Thephysicalconstantsusedintheanalysisdescribedabovewereasfollows:UncrackedconcreteE=4.1x10psiG=1.8x10psi6v=0~15CrackedconcreteE=0G=0v=0Rebar/linerE=29x10Shrinkageandcreepfortheprestressedconcretewereassumedtobe320x10in./in.Forthedatatabulated,theanalyticalmodelconsideredwasalwaysthecrackedmodelassociatedwiththeaccidentcondition.Onthebasisoftheforegoingdatathelinerstressesatselectedloadcombinations(refertoTable3~8-6forloadcombinations)areasfollows:3.8-70REV.1312/96 GINNA/UIiSARlinder(X=60ft)LoadCombination29-14.3ksi-10'ksi-2.9ksi-2.6ksi+0.1ksi+27.0ksiDo~2Oex-2.4ksi-0.2ksiThediscontinuitystressesbetweenthedomeandcylinderweredeterminedbyconsideringthefollowing:'a~Thatthedomeconcretecracksintensionandthecylinderconcretecracksverticallyintension.Theradialdeformationsofthecylinderandthedomeareconservativelyassumedtobeafunctionofthereinforcingsteelalone.Thesteelareasacrossthediscontinuityareestablishedsoastodevelopacompatibilityofstressesandthereforealsoofdeflections.b.Thatneithertheupperpartofthecylindernorthelowerportionofthedomeconcretecracksandthatthedifferenceindeflectionofthecylinderandthedomesomedistancefromthediscontinuityisafunctiononlyoftheconcreteproperties.Thesolution,asdevelopedinTheoryofElasticity,byTimoshenkoandGoodier(Reference2l),assumesthatthelowerportionofthedomebehavesinamannersimilartothatofacylinder(i.e.,thediscontinuitymomentsandshearsarerapidlydissipatedandbecomeminimalatalimiteddistancefromthediscontinuity).Forthisconditiononlyanominalshearandmoment(4k/ftand18kft/ft)wouldbedevelopedduetothemostseverefactoredloads.c~Thattheradialdeformationofthecylindersomedistancefromthediscontinuityisafunctionofthecrackedconcretesection,andtheradialdeformationofthedomeisafunctionoftheuncrackedsection.Theprobabilityofverticalcracksinthecylinderpropagatingintothedomeisremote.Thediscontinuityshearsandmomentsresultingfromtheconditionareexcessiveandrequiretheassurancebydevelopmentofplanesofweaknessintheconcretethatcrackingwilloccuruniformlyacrossthediscontinuity.Thediscontinuitystressescanbecalculatedwithgreaterconfidencebaseduponamodelofcrackedconcreteaboveandbelowthetransition.Toensurethataconditiondoesnotexistwhereeitherthepressureloadproducessignificantcrackingofconcreteinthedomeatthediscontinuityorverticallyinthecylinder,crackinitiatorsareusedtopermitauniformpropagationoftensioncracksintheconcreteatthediscontinuity.3.8-71REV.1312/96 GINNA/UFSARThesafetyagainstshear(ortension)failureatthedome-cylinderintersectionwasinvestigatedbythefollowingtwoapproaches:aa.AnultimatestrengthsolutionbasedontheMohr-Coulombfailurecriteriaforconcreteandplanefailuresurfaces.bb.AnelasticsolutioninwhichthestresseswerecalculatedatthepointofmaximumsplittingtensilestressgivenbyLeonhardt(Reference11).Theprincipalstressesatthepointwereobtainedandthestabilityofthesectionverifiedbyassumingadirectrelationshipbetweentensileandcompressivestrengthswhichwasobtainedfromseveralinvestigators.Thefirstapproachindicatedacollapseload2.16timeslargerthanthefactoredloadof(0.95D+1.5P)whilethesecondsolutionledtoasafetyfactorof2.12referredtothesameload.Onthebasisofthisanalysis,itisconcludedthatthefactorofsafetyagainstshear(ortension)failureatthedome-cylinderintersectionisgreaterthantheoverallsafetyfactorofthecontainmentstructure.ThesectionbetweenanchorageplatesforthetendonsandthedomereinforcementwasalsocheckedusingtheanalogyofacorbelandreinforcementprovidedasrecommendedbyKrizandRaths(Reference22).Thedomereinforcingbarsaremechanicallyanchoredintheprecompressedzonebelowthetopanchorsofthetendons.ThismechanicalanchorageisintheformofCadweldconnectionsarcweldedtoacontinuousmildsteelplate.Nobonddevelopmentisrequiredtofulfillthedesignrequirements.AC1318-63limitsonsplicingaredevelopeduponbondrequirementsbasedonasplittingtypeoffailure(References28and19).Theserequirementsarenotrelevanttothedesignofthecontainmentanchorage.Ztwasnotnecessarytostaggerthedomeanchorplatefromanengineeringstandpoint.Commonpracticeinregularreinforcedconcretestructuresistostaggersplicesand,ifpossible,theanchorageofreinforcingsteel.'owever,inthisinstance,anchorageisdevelopedbymechanicalmeansinaregionofmembranecompression.Thisconservativeanchorageenvironmentnegatestheneedforthestaggeringofspliceplates.3.8-72REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-73REV.1312/96 3'.1.4.6InsulationThelinerinsulationisVinylcelasmanufacturedbyJohns-Manville.Thismaterialisaclosed-cellpolyvinylchloridefoaminsulationwithlowconductivity,lowwaterabsorption,andhighstrength.Theinsulationis1.25-in.thickwithadensityof4pcf.Thefunctionofthelinerinsulationistolimitthemeantemperatureriseofthelinerto10'Fatthetimeassociatedwiththemaximumpressureasshownonthetransientforthefactoredpressure(90psig).Forthisdeterminationthecontainmentvesselinternalambienttemperatureisassumedtobe120'Fand1008relativehumidityandtheexternalambienttemperatureisassumedtobeminus10'F.Theinsulationiscoveredwithametalsheeting.Theinsulationiscapableofwithstandingperiodiccompressionof60psigwithinatemperaturerangeof40'Fto120'Fandasinglecompressionto69psigwithinthesametemperaturerange,bothwithoutanydetrimentorchangetotheinsulationproperties.TheresultsofaseriesoftestswhichhavebeenperformedareincludedinSection3.8.1.7.1.Alsoincludedinthatsectionazetheresultsofananalogstudyoftheinsulationwhensubjectedtothepressureandtemperaturetransientsassociatedwithaninternalpressureof90psig.HotheticalLocalInsulationFailureIfalocalfailureofinsulationishypothesizedatatypicalpipingpenetration,thecircumferentiallinerstressatthepointoffailureiscalculatedasacompressionstressof6.3ksiatdesignpressureandtemperature.Thisstresscompareswithatensilestressfortheinsulatedlinerof18.5ksi.Duetothissecondaryeffect,thetensilestressofthemildsteelreinforcementwouldbelocallyincreasedbutthatwouldnotaltertheultimatecapacityofthesection.TheverticallinerstresswouldincreaseloCallyatthepointofinsulationfailureuntiltheplateyieldedincompression.Theconsequentiallossofprestresswouldbedistributedoverthefullheightofthewall.Consideringa2-ftdimensionfoztheareawithoutinsulation,thelossofprestressofthe3.8-74REV.1312/96 GINNA/UFSARaffectedtendonwouldbeapproximately1%.Thelossofpzestressfortheentirevesselwouldconsequentlybeminimal.Theeffectofinsulationfailureatapenetrationwouldbetoproduceyieldingofthesleevecircumferentiallyincompressionandlongitudinallyinbending.3.8.1.4.7Liner3.8.1.4.7.1VIBRATIONS.Themainsourcesoflinervibrationsarevibratingpipeswhichpassthroughtheliner.Thevibrationsfromthesepipesaretransferredtothelinerfromthepenetrationsleeves.Thepipingsystemsexpectedtovibratearethefollowing:~PieMainsteamlineFeedwaterlineCharginglineCoolingpumpsealwaterlineZreenofVibration13Hz13Hz1.8to18Hz1.8to18HzDuringaplantdesignlifeof40yearssuchpenetrationsmaybesubjecttofullstressreversalsunderoperatingconditionswhichareinexcessof2,000,000cycles.TheinnerendplateandsleeveofthesepenetrationsweredesignedfozthisconditionusingthestresslimitationsoftheASMENuclearVesselCode.Regardingcyclicloadsduetoearthquakes,theanticipatednumberofcycles(50to2SO)willnotrequirereductioninthestresslimits.However,asthesevibrationsarecarriedintotheconcreteshellthroughthesleeve,whichisanextremelystiffmemberrelativetotheliner,thedegreeofparticipationofthelinerinabsorbingthesevibrationsissmall,beingafunctionofthesleevemovementsatthesleevelinerweldconnection.Duetotherigidityofthepenetrationanditsmethodoffixturetotheconcretesleeve,movementsatthisweldinterfaceazenegligible.3.8-75REV.1312/96 GINNA/UIiSAR3.8.1.4~7.2ANCHORAGEFATIGUEANALYSIS.Thesidewalllinerisanchoredtotheconcretewithsteelchannelsof3-in.depthonapproximately4-ft3-incenters.Thechannelsareintermittentlyweldedtotheliner.Thechannelsensureelasticstabilityofthelinerunderpotentialcompressionloadsandalsoprovidetherequiredcapacitytoresistinstabilityduetovacuumloads.Thesteelchannelshadtheaddedfunctionofstiffeningthelinerduringerection.3.8.l.4-7.3BASESLABLINER.Backupbarsintheformofstructuralteeswereembeddedandanchoredintothe2-ft0-in.thickbaseslabasshownonFigure3.8-6.Thesebackupbars,allofwhicharecontinuous,wereplacedflushwiththetopconcretesurface.ThelinerplatewasplacedontheconcretesurfaceandthebuttjointmadeasshownonthetypicaljointdetailonFigure3.8-6.Toleranceonheightis%3/8in.andout-of-flatnessis1/4in.in10ft.Afternondestructivetestingofthisweld(liquidpenetrantexamination),thetestchannelswereinstalledandleaktested.Thenominal24-in.concretecoverwasthenplacedandthetestchannelswereagainpneumaticallytested.Thelinerseamsandthechanneltolinerweldswerefoundtobeleaktight.Nogroutwasplacedbetweenthebaseslabandtheliner.Anominal24-in.concretecoverwasplacedovertheliner.Therefore,thelinerislocatedatmid-thicknessoftheconcrete.Thewallsofthereactorcavityareassumedtoactasashearkeywiththerequiredcapacitytotransferearthquakeloads.Consequently,thetestchannelsshouldnot,besubjecttoasignificantshearload.Theconcretecoverplacedontopofthelinerdoesnotnecessarilyensureintimatecontactbetweenthelinerplateandthebaseslabovertheentireplanarea,butdoesensurethatsufficientbearingexiststoadequatelydistributeverticalloadsfromcolumnsandwallstothebaseslab.Allshearloadsareassumedtransferredbymeansofthewallsofthereactorcavity,whichactsasashearkey.RefertoFigure3.8-3forreactorcavitywalldetails.3.8-76REV.1312/96 GINNA/UIiSAR3.8.1.4.7~4LINERSTREssEs~Themaximumnominallinerstress(meridionaldirection),consideringshrinkageandcreepofconcrete,is14,100psicompression.ThelinerwasreinforcedaboutallopeningsinaccordancewiththeASMEUnfiredPressureVesselsCode(i.e.,byreplacingthecut-outareaof3/8-in.linerplate).Normallythisinvolvedtheuseofacommon3/4-in.platefozagroupofpenetrations.MinimumspacingofpenetrationsconformstoASAN6.2-1965,SafetyStandardfozDesign,Fabrication,andMaintenanceofSteelContainmentStructuresforStationaryNuclearPowerReactors.ThelinerstressconcentrationattheholeisdeterminedbaseduponelasticitysolutionsfozaflatplateofconstantthicknesssubjectedItoabiaxialstressfield.The'combinationofstressesfromalleffectsiscombinedinaccordancewiththeASMENuclearVesselsCode,Article4,andevaluatedonthebasisoftheallowablepeakstressintensity,whichfozthelinermaterialis60,000psi.ThedataprovidedinTable3.8-4andthedescriptioncontainedinSection3.8.1.4.5.2donotconsiderthelinerasresistingearthquakeshears.Itcanbeshownthattheprincipalstressresultantisorientednearlyhorizontalinthattheshearcomponentissmallrelativetotheaxialcomponents.Nevertheless,thesamemodelpreviouslyusedwheredowelactionwasconsideredwasreanalyzedtodeterminetheinteractionbetweenconcrete,reinforcingbars,andliner.Thisanalysisconservativelyassumedthatthelinerandconcreteshellactedcompositely.Themaximumlongitudinalshearatthebaseofthecylinder(i.e.,onanaxisnormaltothedirectionofgroundmotion)duetothe0.2ggroundaccelerationis67,2k/ft.TheshearmodulusofthelinerGL[E/2(1+V)]equals11,200ksi.Theeffectiveshearmodulusoftheconcretewallisbasedonpureshearontheuncrackedconcreteplusthedowelactionofthehorizontalreinforcementacrossthehypothesizedverticalcrack.Theconservativeassumptionwasmadethattheshearstiffnessacrossthecrackisnotincreasedbyaggregateinterlock.3.8-77REV.1312/96 GINNA/UFSARThedowelstiffnessisestablishedonthebasisofaload-sliprelationshipof3000kips/in.whichisalinearrelationshipforthemotionscalculatedinthisstudy.Theshearmodulusofthecrackedwallsection~equalsGccGc3000L(3.8-14)wheretermsareasdefinedonFigure3.8-22'heresultsofthisstudyaresummarizedasfollows:CrackinacinL(is.)2512Gr(ksi)18895LinearSheartL~(si)520077009000ConcreteShearrC~(si)876553Asacheckontheallowablelinershearstress,aMohr'scirclewasusedbaseduponacriticalshearstressofX6ksi(1/2czy)asshownonFigure3.8-23.Itisthusshownthattheallowableshearstressexceedsthecalculatedshearstressbasedupontheseconservativeanalyticalmodels.Itshouldbereiteratedthatthesecalculatedstressesinnowayrepresentexpectedresponsetotheloadingbeingconsidered,butinsteadrepresentanupperboundbaseduponasimplifiedmodel.3.8.1.4.7.5LINERBUGKLZNG.Thelineranchorsinthecylinderare3-in.deepchannelsspacedhorizontallyatapproximately4ft4in.oncenters.Thelinerisanalyzedasaflatplate,whichisaconservativeassumptioninthatthelinerwillhavetobuckleagainstitsowncurvature.Foranalysisitisassumedthatthelinerisfixedattheanglesandthattherewillnotbeanydifferentialradialmomentsoftheboundaries.Thelineranchorsaredesignedandspacedsothatthecriticalbucklingstresswillbegreater3.8-78REV.1312/96 GINNA/UFSARthanthelinerstressunderoperatingorincident,conditions'nthecaseofacylinder,consideringconservativelyauniaxialstressfield,thecriticalbucklingstressis99,000psi,whichcompareswithamaximumstressofapproximately4000psi.DetailsonthechannelsattachedtothelinerasanchorsareshowninFigure3.8-24.Thecontainmentstructurewasdesignedtousereinforcingbarswithaminimumyieldstressof40,000psi,asthisbasisleadstostresslevelsinthelinerwhichensuresthatitdoesnotyieldwhenthecontainmentisattestpressure.Thecalculatedmaximumtangentiallinerstressinthecylinderduetothetestpressureloadis26,500psi(tension).Thiscompareswithacalculatedlinerstressduetothefactoredaccidentloads(1.5P=90.psig)of28,700psi(tension).Thethermalgradientisconsideredindevelopingthesestressesforaccidentconditions,butnotfortestconditions.Inneithercaseisthecalculatedstressequaltonorgreaterthantheyieldstress.Themeridionallinerstzessinthecylinderunderbothtestandaccidentconditionsiscompressive;thisandthemeridionalorcircumferentialstressesinthedomearelowerthanthoselistedabove.ClinderLinerInviewofthelargeshellradiustolinerthickness(630/0.375=1680)andshellradiustosupportspacing(630/52=26)ratios,aflatplateidealizationisconsideredtobefullyjustified.Thesteellineristhereforeconsideredtobeaflat,thin,isotropicplatesupportedwithlinesupportsagainstarigidwallasshownonFigure3.8-25.Thebucklingpatternofthepanelplateisawavesurface.Therefore,theequationsderivedforawavesurfaceareusedwherethedeformationpatternofthepanelplateisasshownonFigure3.8-25.Fromthelargedeflectionanalysisofclampedplatesunderbiaxialcompressionitcanbeshownthat:3.8-79REV.1312/96 GINNA/UFSAR<o'2t3+,(]+u)(z,+a,)a19669106623a4'+-0--U4004400(3.8-15)SinceWpequalszeroattheonsetofbuckling-+-,(]+ux8,+h,)=02t33a4n'3.8-16)Therefore,underoperatingconditions,whens2=-vs1(s1)cp,=-9.65(t/a)(a1)cg=Es1=-9.65s(t/a)2Forthisstructurewhereinplatethicknessis3/8in.andspacingbetweenverticalanchorsis49.5in.(a1)Ca=-9.65x30x10(0.375/49.5)=16.6ksiThisappliesforoperatingconditionsonly.Asimilaranalysisisalsoperformedforaccidentconditionswhereins1iscompressionands2istension.Usingthenotationf=N1/N2=P1/P2andwheres1/s2=(P2-vP1)/(P2-vP2),itcanbeshownthat1-fo(I-u)(i+f)(3.8-17)Therefore,iffisnegative,aswouldbethecaseforthisstructure,thecriticalbucklingstress(a1)cgcontinuestoincreaseascr2increasesintension.Xnsummary~<1cR-16.6ksi3.8-80REV.1312/96 GINNA/UFSAR-0.125-0.25-0.375-0.50~<>CR-19.6-23.8-29'-38.1+2.4+6.0+11.2+19.0Forthisstructurewiththeinsulatedlinertheoperatingconditionrepresentsthemostsevereconditionforthestabilityanalysis.FromReference23itisshownthatforaninitialdisplacementYoandtheinitialdeflectioncurve,definedas:Y=Yo/2[1-cos2n(X/L))thattheequivalentlinerstrainequalssL=1/4(mp/L)ForthisstructureitcanthenbeshownthatforvaryingamountsofYotheresultinglinerstrains(s2)areasfollows:Yo0.1in.Yo/L2.02x10s21.01x10~a2)~si303N~2lb/in.11.40.2in.0.3in.4.04x104.00x10120045.06.06x109.09x102727102Theweldedconnectionbetweentheanchorandthelinerconsistsofastaggered3/16in.filletweldonbothsidesoftheflange;of1.5in.lengthin4in.Thisweldhasashearcapacityofapproximately2.5k/in.,whichobviouslyissufficientcapacityfozpossiblelinerdimensionalimperfections.Theliner.anchorconnectionisdesignedforthedifferentialshearload,causedbyabuckledlinerpanel,whichisequaltotheloadintheadjacentpanelundernormaloperatingoftheplant.Underinternalpressureloading,thelinerwillbeintensioninthehoopdirection.Deviationinlineranchorspacingwithinnormalerectionpracticeforpressurevesselswillnotaffectlinerstabilityorlineranchordesign.3.8-81REV.1312/96 GINNA/UFSARLinerhoopcompressivestressesazenegligibleduringwinteroperationoftheplant.Thelinerisinsulatedandthermalstressesareinsignificant.Therefore,alocalpoororinadequateweldbetweenlinerandanchorwillnotcauseanydangerwithrespecttolinerstability.Theeffectofalinerpanelerectedoutofroundnessbetweentwoadjacentanchorpointscanbedefinedasfollows:a~Underoperationoftheplant,thelinerhoopcompressiveforceintheneighboringpanelcanbetransferreddirectlyinsheartothenearestlinezanchor.(Seeabove.)b.Underinternalpressureloading,thelinerhooptensileforcewillberedistributedtootherpartsoftheliner,andpossiblyalsotothehoopreinforcingsteeluntilthelinerisbeingengagedtoresistadditionalhoopstressesasthepressureloadincreases.Variationsinlinermaterialyieldstrengtharenotsignificantinthatpredictedoperating/accidentloadsarealwayssignificantlylessthanminimumyield.ThecalculatedlinerstressesaretabulatedinAppendix3C.Theinteriorofthelinerbelowelevation346ft(15ftabovethedomespringline)inthedomeareaandthecylindercanbeinspectedaftertheinsulationhasbeenremoved.Thelinerinthedomeabovethiselevationcanbedirectlyinspected.DomeLinerSeeSection3.8.2.3foradiscussionofthedomelinerstressanalysis.3.8~1.4~7.6LINERCoRRosIoNALLowANGE~Nocorrosionallowancehasbeenincludedinthedesignoftheliner,whichhasaminimumthicknessof0.25in.Theexposedsurfaceofthelinerhasbeengivenaprotectivecoatingofpaint.Thecylindricalportionisprotectedbyinsulation.Theoutersurfaceofthesteelisindirectcontactwiththeconcrete,whichprovidesadequatecorrosionprotectionduetothealkalinepropertiesofconcrete.Theexternalundergroundsurfaceoftheconcrete3.8-82REV.1312/96 GINNA/UFSARshellhasamembranewaterproofingsystemtoactasasealforprotectionagainstundergroundwater.3,8-83REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)'I3.8-84REV.1312/96 GINNA/UFSAR3.8.1.5Penetzations3.8.1.5.1GeneralAllpenetrationsthxoughthecontainmentreinforcedconcretepressurebarrierfozpipe,electricalconductors,ducts,andaccesshatchesareofthedoublebarriertype.TypicalelectricalandpipepenetrationsareshownonFigure3.8-26.Ingeneral,apenetrationconsistsofasleeveembeddedinthereinforcedconcretewallandweldedtothecontainmentliner.Theweldtothelinerisshroudedbyatestchannelwhichisusedtodemonstratetheintegrityofthejoint.Thepipe,duct,oraccesshatchpassesthroughtheembeddedsleeveandtheendsoftheresultingannulusareclosedoff,generallybyweldedendplates.Pipingpenetzationshaveabellowstypeexpansionjointmountedontheexteriorendoftheembeddedsleevewhererequiredtocompensatefordifferentialmotions.TheonlyexceptionstoprovidinganannulusaboutpipingoccursforthethreedrainlinesfromsumpB.DetailsofthesepenetrationsazeshownonFigure3.8-27.Allweldedjointsforthepenetrationsincludingthereinforcementabouttheopenings(i.e.,sleevetoreinforcingplateseam)arefullyzadiographedinaccordancewiththerequizementsoftheASMENuclearVesselsCodefozClassBVessels,exceptthatnonradiographablejointdetailsazeexaminedbytheliquidpenetrantmethod.Forfullyradiogzaphedwelds,acceptancestandardsforporosityareasshowninAppendixIVoftheNuclearVesselsCode.Theremaininglinerweldseamsareexaminedbyspotradiography.(TheASMEUnfixedPressureVesselsCodestatesthatporosityisnotafactorintheacceptabilityofweldsnotrequiredtobefullyradiographed.)Verificationofleaktightnessisbymeansofpressurizingtestchannels.Penetrationsaredesignedwithdoublesealssoastopermitindividualtestingatdesignpressure.Inthiscase,anadulterantgasmethodisused.Anaizdistributionsystemisprovidedforperiodictesting.Allpenetrations'areprovidedwithtestcanopiesoverthelinertopenetrationsleevewelds.Eachcanopy,exceptthosenotedbelow,isconnectedto,andpressurizedsimultaneouslywith,theannulusbetweentothepenetrationpipe3,8N5REV.1312/96 GINNAfUIiSARandsleevewhenundertest.Theexceptionsarethecanopyforthefueltransferpenetration,whichmustbepressurizedindependentlyoftheannulusbecauseoftheseparationposedbythetransfezcanalliner;andthethreepipepenetrationsinsumpB,inwhichonlythecanopiesazepressurizedastherearenoannuli.Fordetailsofsmallpenetzationsanalysis,refertoSection3.8.1.5.6.3'.1.5.2ElectricalPenetrationsTherearegenerallyfourtypesofelectricalcablepenetrationsrequired,dependingonthetypeofcableinvolved:Type1Highvoltagepower,4160V.Type2Power,controlandinstrumentation:600Vandlower.Type3Thermocoupleleads.Type4Coaxialandtriaxialcircuits.Allfourtypesofpenetrationdesignsazeacartridgetype,basicallyasshownonFigure3.8-28.Thecartridgelengthandthesupportofcablesimmediatelyoutsidecontainmentaredesignedtoeliminateanycantileverstressesonthecartridgeflange.Type1penetrationsusearubberinsulationcopperrod.Thisinsulatedzodpassesthroughtwoleaktightglandfittingsthatarethreadedintoanall-weldedsteelpressurecartridge.Highaluminainsulatingbushingsareusedasanalternativetoprovidethedoublebarrier.Type2penetrationsusesingleormulti-conductormineralinsulatedcablewithametallicsheath.Thecablepassesthroughtwoleaktightglandfittingsthatazethreadedintoanall-weldedsteelpressurecartridge.Theendsofthemineralinsulatedcablearepottedwithanepoxyresincompound.Type3penetrationsaresimilartoType2exceptthattheconductorsazethermocouplematerial.ThesealingandtezminationsareidenticaltoType2penetrations.Type4penetrationsareusedprincipallyforcoaxialandtriaxialcircuits.Eachcablepassesthroughtwoleaktightglandfittingsthatarethreadedinto3.8-86REV.1312/96 GINNA/UFSARanall-weldedsteelpressurecartridgesimilartothatemployedintheotherpenetrationtypes.Insidethecartridge,betweenthedoublebarrier,aplugandreceptacleconnectionisprovidedtoblockleakagethroughthecableitself.Thesepenetrationsaredesignedtopermitasmuchshopfabricationandtestingaspossibleandminimizeon-the-jobfabrication.Atthesametime,doublebarrierprotectionandaccessibilityforin-placetestingismaintained.Ingeneral,shopfabricationandqualitycontrolareusedinallpenetrationdesignswherepractical.Forexample,penetrationsleevesareshopweldedtocertainlinerplatesinspecifiedlocations,andtransitionweldsbetweencarbonandstainlesssteelareshopweld'.8.1.5.3PiinPenetrationsPipin'gpenetrationsareprovidedforfluid-carryingpipesandforairpurgeventilatingpiping.Mostpipespenetratingthecontainmentconnecttoequipmentinsideandoutsideofthecontainment,andareforeitherhightemperatureormoderate-tolow-temperatureservice.Otherpipes,suchasforpurgeair,connectthecontainmentvolumetotheoutsideatmosphere.Inallcases,apipingpenetrationconsistsofanembeddedsleevewiththeendsweldedtothepenetratingpipe.Provisionismadeforexpansionwithbellowstypejointsformingatestablecompartmentinthecaseofhotlines.Further,inthecaseofthehigh-temperaturepipelines,thepenetzationsaredesignedsothatthetemperatureoftheconcretearoundthepenetrationdoesnotexceedASMEIII,Division2,SubsectionCC-3340,Item(a)limits.Fornormaloranyotherlong-termperiodconcretetemperaturesshallnotexceed150'Fexceptforlocalareasaroundthepenetration,whichareallowedtohaveincreasedtemperaturesnottoexceed200'F.Foraccidentsoranyothershorttermperiodthetemperaturesshallnotexceed350'Ffortheinnersurfacesincontainmentexceptlocalareasazeallowedtoreach650'Ffromsteamorwaterjetsintheeventofapipefailure.Thehigh-temperaturepipelinesuseaforcedaizcoolingsystem,connectedtocoolingcoilsintegratedwiththepenetrationsleeves.ThecoolingcoilsareintheformofanembossingweldeddirectlytotheinnersurfaceofthepenetrationsleeveasshownonFigure3.8-29.Thecoolingairexittemperatureismonitoredandcanberelatedto3.8%7REV.1312/96 GINNA/UPSARtheconcrete-to-sleeveinterfacetemperature.Aprototypetestwasperformedundersimulatedoperatingconditionstoverifyassumptionsmadeforhydraulicandthermalcalculations.Xnaddition,provisionsazemadetoinsertandmonitorthermocouplesatapproximatelymid-thicknessoftheconcretewallattheconcretetosleeveinterfaceinmostoftheaircooledpenetrations(12of15),andtheseenableexhaustaiztemperatureandmaximumconcretetemperaturetobecorrelated.Themodesofisolatingthesepipesduringahigh-pressurecontainmentincidentarecoveredinSection6.2.4.3.8.1.5.4AccessHatchandPersonnelLocksAnequipmenthatch,constructedofweldedsteelandhavingadouble-gasketedflangeandbolteddisheddoor,islocatedneargrade.Theequipmentaccessopeninghasadiameterof14ft.Allmajorcomponentsweremovedintothecontainmentpriortoinstallationofthehatch.Thehatchbarrelisembeddedinthecontainmentwall.Allweldseamsatthejointbetweenthebarrelandthelinerhavetestchannelsforpeziodicleaktesting.Forcomponentsofthehatch,includingbarrelanddoor,testchannelsarenotprovided.DetailsoftheequipmenthatchareshowninFigure3.8-30.AnequipmenthatchclosureplateisprovidedfozusewhenintheMODE5(ColdShutdown)orMODE6(Refueling)modeswhentheequipmenthatchisremoved.Theplateisboltedtocontainmentinplaceoftheequipmenthatch.Theclosureplatehasahatchdoorthatprovidesanemergencymeansofcontainmentegressandprovisionfortemporaryservices-neededduringanoutagetobebroughtintocontainmentwithoutcompromisingcontainmentintegrity.Theclosureplateisdesignedtomaintaincontainmentclosureduringafuel-handlingaccident,prohibitingexcessiveradiologicalreleases.Ztisdesignedtowithstandapressureloadof+0.5psito-0.5psi.Plantoperatingproceduresrestrictthecontainmentpressuredifferentialto0.5psigwhentheclosureplateisinplace.Theplatehasagasketsystemthatwhenbolteddownprovidesanairtightmechanicalfit.Noleaktestingisrequired.TheclosureplateanditsstoragesupportsareSeismicCategoryI.3.8-88REV.1312/96 GINNA/UFSARTwopersonnelaccessesareprovided.Onepersonnelhatchpenetratesthedisheddooroftheequipmenthatch.Theotherislocateddiametricallyoppositetheequipmenthatch.Eachpersonalhatchisahydraulically-latcheddoubledoor,weldedsteelassembly.Anequalizingvalveconnectseachpersonnelhatchwith.theinteriorofthecontainmentvesselforthepurposeofequalizingpressureinthepersonnelhatchwiththatinthecontainment.Hatchclosuresareofthedouble-tongue,singlegaskettype.Theaccesslocksareproperlyinterlockedtoensuredoorclosureatalltimes,asdefinedinSection12.3.2.2.7,withzemoteindicatinglightsandannunciatorsinthecontrolroom.DetailsofthepersonnelhatchareshownonFigure3.8-31.FozdetailsoftheanalyticalapproachforlargeopeningreinforcementdesignrefertoAppendix3B.3.8.1.5.5FuelTransferPenetrationAfueltransferpenetrationisprovidedforfuelmovementbetweentherefuelingtransfercanalinthereactorcontainmentandthespentfuelpool(SFP).Thepenetration,asindicatedbyFigure3.8-32,consistsofastainlesssteelpipeinstalledinsidealargerpipe.Theinnerpipeactsasthetransfertubeandconnectsthereactorrefuelingcanalwiththespentfuelpool(SFP).Thetubeisfittedwithastandardstainlesssteelflangeintherefuelingcanalandastainlesssteelsluicegatevalveinthespentfuelpool(SFP).Theouterpipeisweldedtothecontainmentlinerandprovisionismade,byuseofaspecialsealring,forfreongasleaktestingofallweldsessentialtotheintegrityofthepenetration.Thefueltransferpenetration,likeallotherpenetrations,isanchoredinthecontainmentshell.Becausethisanchorpointmoveswhenthecontainment,vesselissubjectedtoload,expansionjointsareprovidedwherethepenetrationisconnectedtostructuresinsideandoutsideofthecontainmentvessel.Sincethepenetrationislocatedonaskewedangle,notnormaltothecontainmentshell,theexpansionjointsazesubjectedtobothradialandtangential(lateral)motions.Theexpansionbellowsinsidethecontainmentvesselprovideawatersealfortherefuelingcanalandaccommodatethermalgrowthofthepenetrationfromtheanchor,aswellasthepressureandearthquakeproducedmotionoftheanchor(thecontainmentshell).Thegasketedexpansionjointaccommodatesmotionofthesleevewithinthecontainmentshellrelative.3.8-89REV.1312/96 GINNA/UFSARtotheportionofthesleeveanchoredinthewalloftherefuelingcanalintheauxiliarybuilding.SectionA-AonFigure3.8-32indicatesapipetodetectleakageofgroundwaterintothepenetrationthroughthegasketedjoint.Theexpansionbellowsinsidetheauxiliarybuildingperformsthesamefunctionasdescribedforthatwithinthecontainment.3.8.1.5.6TicalPenetrationAnalsis3~8~1~5.6~1Loss-QFCooLANTAGCIDENT.Theconcretetemperatureadjacenttopipingpenetrationsislimitedto200'F(seeSection3.8.1.5.3).Thepenetrationsfozhigh-temperaturepipelinesemployaiz-cooledcoilsintegratedwiththepenetrationsleeves.Thetestofaprototypepenetrationindicatedthatsufficientmarginexistedinthedesigntopermitan80-minperiodofnocoolantflowbeforethetemperatureattheinterfacewiththeconcretereached150'F.Backupfansareprovidedfortheaircoolantwithacapacityof100%ofthedesignrequirement.Theconcreteshellisnotdesignedforthetwo-dimensionalthermalgradientsintheareaofthepipingpenetrations.Thetypicalone-dimensionalthermalgradientsusedinthedesignareshowninFigure3.8-8.Theradialdeformationofaholeinaplatesubjectedtoastressfieldisdeterminedbyperforminganintegrationofthetangentialstrainsaroundtheperipheryofthehole(Reference22).Theincreaseinthediameterofahole(BD)duetoabiaxialstressfield(SandS')atalocationinthedirectionofthisstressfield(S)isasfollows:So=-f(S-2Scos28-[S'-2$'cos(28-rr)]jrsinNs0(3.8-18)5D=(2/3)(r/E)(5S-S')Thiscorrespondingelongationoftheplatewhichwouldoccuriftheholewerenotpresentoveralength,r,is3.8-90REV.1312/96 GINNA/UFSAR5=[2(S+vS')/E)rTheabovederivationneglectsthestiffeningeffectofthepenetrationsleeveandthusoverestimatestheholedistortion.Theaveragelinerstress(horizontally)duetoaloss-of-coolantaccident,definedasS,isatensilestressof14.1ksi.(Thelineristhickenedfrom3/8in.to3/4in.aroundthepenetration.)Theaveragelinerstress(vertically),definedasS,isacompressionstressof10ksi.Themaximumincreaseindiameterofthehole,whichisinthehorizontaldirectionforthis10-in.diameterpenetration,isthen:x5.5x141-103-0.006710ln.30/10'3.8-19)Tosimplifytheanalysisandtoprovideaconservativeresult,itisassumedthatthisdeformationisuniformaroundthecircumferenceofthepenetrationsleeve.Baseduponthisassumption:Maximummomentsleeve=f/4Xperinch.Radialdeformationduetoconstantlineload,r=frX/2EtMaximumhoopstressinsleeve=fr1/2tXntheaboveequations:lineloadatthelinersleeveinterfaceradiusofsleeve3(1-v)/R2tPoisson'sratioR2=meanradiusofsleevewallthicknessThematerialusedforthepenetrationsleevesisSA-106,gradeB,withaminimumyieldstrengthof31,000psiat300'Fandanallowablestress3.8-91REV.1312/96 GINNA/UFSARintensity(S'm),pertheASMENuclearVesselsCodeof20,000psiat300'F.Thestzessesproducedattheliner-penetrationsleeveinterfaceazedefinedintheASMENucleaiVesselsCodeassecondarystressesandazethereforelimitedtoamaximumvalue(3S'm).bendingandmembraneof60,000psiForthe10-in.diameterpenetrationsleeveusingSchedule80pipe0.00671fxSx0.74622x30x10x0.594(3.8-21)6400lb/in.circumferenceMaximumbendingstressfb=6400x6/(4x0.746x0.594)=36,500psiMaximumhoopstressft=6400x5x0.746/(2x0.594)=20,200psiTherefore,boththemaximumbendingandhoopstressesarelessthantheallowablestressof60,000psi.Thus,theuseofSchedule80(10-in.nominaldiameterpipeofSA-106,gradeB)materialwassatisfactoryforthispenetrationsleeve.ThematerialusedfortheendplatesisSA-201,gradeB,withaminimumyieldstrengthof28,350psiat300'Fandanallowablestressintensity(S'm)peztheNuclearVesselsCodeof18,000psiat300'F.Fozatypical6-in.diameterpipepenetratingthelinerthrough'a10-in.diametersleeve,theresultingmomentandaxialforceattheanchoronthepipe,whichistheendplate,fromathermalflexibilityanalysisbasedonnormaloperatingconditionsare1500lb-ftand200lb.Usinganendplatethicknessof3/4in.,themaximumbendingstressduetotheappliedmomentis6840psiandduetotheaxialloadis4800psi.Thesumofthestresses(11,640psi)islessthantheallowablevalue.3.8.1.5.6.2Loss-oe-CooueTAcczDzmPLUsEmTHgvsacs.Atypical6-in.diameterpipelineisanalyzedforthecombinationof0.2ggroundmotionandtheloss-of-coolantaccident(60psig).Theonepipe3.8-92REV.1312/96 GINNA/UFSARlinegeneratesanequivalentstaticforceof1500lbduetotheexcitationbythe0.2ggroundmotion.Thisforceisresistedattheanchoragebyacombinationofshearandcompressiononthesleeve.Forthisgivenload,twoextremeconditionswereanalyzed,onewiththeresultingloadappliedparalleltotheaxisofthesleeveandtheotherwiththeloadappliednormaltotheaxisofthesleeve.ForthecasewiththeloadappliednormaltothepenetrationaxisandthesleeveofSchedule80-10-in.diameterpipe,themaximumshearstressis1530psiandthemaximumbendingstressis2470psi.Duetointernalpressureof60psig,theaxialloadonthepenetrationis4710lb.Theresultingstressesinthesleeveareamaximumcompressionof2775psiandaminimumcompressionof2165psi.Fozthecasewiththegroundmotionparalleltotheaxisofthepenetrationsleeve,theresultingstressesinthesleeveareamaximumcompressionof374psiandaminimumcompressionof305psi.Fromthisanalysis,theseismicloadsona10-in.diameterpenetrationsleevearisingfromapproximately100ftof6-in.diameterpipeproducesmallstressesinthepenetzationelements.Thedeformationofthepenetrationaspreviouslydeterminedisthenappliedtothelinersleeveandbendingandhoopstressesarecalculated.Thisapproachismostconservativeincalculatingtensilestressessincetheholedeformationsarecalculatedneglectingtherestrainingeffectofthesleeveandthesleevestressesazeconsideredtobeafunctionofthetotalholedeformation.Foratypicalpipingpenetrationthestressescalculatedonthisbasisareasfollows:3.8-93REV.1312/96 GINNA/UFSARLeakRateTestLoss-o&CoolantAccidentAveragemembranestressinlineradjacenttosleeve+18.8ksi+14.1ksiMaximumcircumferentialstressinsleeve+28.0+20.2Maximumbendingstressinsleeve+50.6+36.5Thereviewofpenetrationsindicatesthatthemaximumtensilestressesinthepenetrationelementsoccurduringtheleakratetestandnotduringthesimultaneousoccurrenceoftheloss-of-coolantaccidentplustheearthquake.Bydefiningleaktightness(i.e.,theareaofholesintheliner)asafunctionoftensilestressinthepenetiationelements,itcanbeshownthattheleakagewouldbegreatestduringthetest.3.8.1.5.7PenetrationReinforcementAnalzedforPieRutureThepenetrationsforthemainsteam,feedwater,blowdown,andsamplelinesaredesignedsothatthepenetrationisstrongerthanthepipingsystemandthatthecontainmentisnotbreachedduetoahypothesizedpiperupturecombined,forthecaseofthesteamline,withthecoincidentinternalpressure.Thesepenetrationswereanalyzedforthebendingmoments,torques,shears,andaxialloadstransmittedbythepipes.Thepenetrationsleeveswereanalyzedbaseduponelasticitytheorywi.ththemaximumprincipalstressnotexceedingyieldstress.Thepipingconnecteddirectlytotheprimarycoolantsystem,notincludingthesamplelines,areanchoredintheshieldwallsaroundthesteamgenerators.Oneisolationvalveislocatedoneithersideoftheanchor(shieldwall).Thepenetrationsthroughtheshieldwallsaredesignedasanchorstoensurethatonehypothesizedpiperupturewillnotjeopardizebothvalves.Themajorcomponents(i.e.,thereactorvessel,steamgenerators,reactorcoolantpumps,andpressurizer)aresupportedsoastoensurethattheseveranceofaprimarycoolantpipedoesnotproducecoincidentseveranceofthesteamsystempiping(Section3.6).Therefore,thecontainmentmechanicalpenetrationsdesignedforthepiperuptureconditiondonotconsidercoincidentloadsfromtheloss-of-coolantaccident.Thepipecapacityinflexurei.sassumedtobelimitedtotheplasticmomentcapacitybasedupontheultimatestrengthofthepipematerial.Forthemainsteamandfeedwater3.8-94REV.1312/96 GINNA/UFSARpenetrationsspecialreinforcementisrequired,asshownonFigures3.8-29and3.8-33.Thisreinforcementprovidesfortransferringshears,torque,andmomentsintotheconcretewallthroughtheliner.Steelelementsofthecontainmentandpenetrationsaredesignedonthebasisofstressesnotexceedingyieldstressbasedonusingaloadfactorof1.0.ConcreteelementsaredesignedbasedupontheultimatestrengthdesignprovisionsofACZ318-63.ThepipingwasdesignedbasedontheCodeforPressurePipingASAB31.1-1955,whichwasthecurrentstandardwhenthepipingwasdesigned.Thecodewasalsousedtodesignallpipingsystemsrequiredforsafeshutdownundertheloss-of-coolantaccidentconditions.3.8-95REV.1312/96 GINNA/UFSAR(1NTENTIONALLYLEFTBLANK)3.8-96REV.1312/96 GINNA/UFSAR3.8.1.6QualityControlandMaterialSpecifications3.8.1.6.1Concrete3.8.1.6.1.1ULTIMATECGMPREssIYESTRENGTH~Theminimumultimatecompzessivestrengthforastandardcylinderofconcreteusedinthedesignwasasfollows:ContainmentshellOther5000psiin28days.3000psiin28days.3.8.1.6.1.2QUALITYCQNTRQLMEASURES~ThespecificationsfortheoriginalstructuralconcreteforGinnaStationrequiredthefollowingqualitycontrolmeasures:Adiscussionforthereplacementconcreteplacedduringthe1996SteamGeneratorReplacementisprovidedinSection3.8.1.6.1.6.PreliminarTestsTheWestinghouseAtomicPowerDivisionobtainedtheservicesofaTestingLaboratorywhich,priortothecontractorcommencingconcretework,madepreliminarydeterminationsofcontrolledmixes,usingthematerialsproposedandconsistenciessuitableforthework,inordertodeterminethemixproportionsnecessarytoproduceconcreteconformingtothetypeandstrengthrequirementscalledforhereinoronthedrawings.AggregatesweretestedinaccordancewiththelatesteditionsofthefollowingASTMSpecifications:C29,C40,C12,C128,andC136.CompressiontestsconformedtoASTMSpecificationsC39-64andC192-65.ThecontractorsubmittedtotheTestingLaboratory,asufficienttimebeforeconcreteworkcommenced,allconcreteingredientsrequiredbytheTestingLaboratoryforthepreliminarytests.TheproportionsfortheconcretemixesweredeterminedbyMethod2ofSection309ofProposedACT301andaspreviouslyspecified.3.8-97REV.1312/96 GINNA/UFSARTheengineerhadtherighttomakeadjustmentsinconcreteproportionsifnecessarytomeettherequirementsofthe"specifications.Intheeventthecontractorfurnishedreliabletestrecordsofconcretemadewithmaterialsfromthesamesourcesandofthesamequalityinconnectionwithcurrentwork,thenallorapartofthestrengthtestspecifiedpreviouslycouldhavebeenwaivedbytheengineer,subject,however,toanyprovisionstothecontraryofbuildingcodesorordinancesofthegoverningauthority.FieldTestsDuringconcreteoperations,theTestingLaboratoryhadaninspectoratthebatchplantwhocertifiedthemixedproportionsofeachbatchdeliveredtothesiteandsampledandtestedperiodicallyallconcreteingredients.Anotherinspectorattheconstructionsiteinspectedreinforcingandformplacements,tookslumptests,madetestcylinders,checkedaircontent,andrecordedweatherconditions.Exceptasnoted,testcylindersweremolded,cured,capped,andtestedinaccordancewithProposedACI301exceptthatoneofthethreecylinderswastestedat3daysandtheremainingtwoat28days.Fozthecontainmentshell,asetoffourcylinderswasmadeforeach50cubicyardsorfractionthereofplacedinanyoneday.Onecylinderwastestedat3days,anothercylinderat7days,andtheremainingtwocylindersat28days.Slumptestsweremadeatrandomwithaminimumofonetestforeach10cubicyardsofconcreteplaced.Also,slumptestsweremadeontheconcretebatchusedfortestcylinders.Intheeventthatconcretewaspouredduringfreezingweatherorwhenafreezewasexpectedduringthecuringperiod,anadditionalcylinderwasmadeforeachsetandwascuredunderthesameconditionsasthepartofthestructurethatitrepresented.3.8-98REV.1312/96 GINNA/UFSARTestEvaluationTheevaluationoftestresultswereinaccordancewithChapter17ofProposedACI301.Sufficienttestswereconductedtop'rovideanevaluationofconcretestrengthinaccordancewiththespecification.Deficient,ConcreteWheneveritappearedthattestsofthelaboratorycuredcylindersfailedtomeettherequirementssetforthinthespecification,theengineerand/orTestingLaboratoryhadtherightto:a~Orderchangestotheproportionsofthemixtoincreasethestrength.b.Requireadditionaltestsofspecimenscuredentirelyunderfieldconditions.C~Orderchangestoimproveproceduresforprotectingandcuringtheconcrete.d.Requireadditionaltestsinaccordancewith"MethodsofObtainingandTestingDrilledCoresandSawedBeamsofConcrete,"ASTMC42-64.Ifthesetestsfailedtoprovethatthequestionableconcretewasofthespecifiedquality,thecontractorreplacedtheconcreteworkasdirected.3.8.1.6.1.3CONCRETESUPPLIERS.Initially,concreteforGinnaStationwassuppliedfromthePenfieldPlantoftheManitouConstructionCompany.Thisplantwasarelativelynew"Rex"plantmadebyRexChainBeltInc.ofMilwaukee.Itscapacitywasabout100cubicyardspezhour.Operationwaspartiallyautomatedandcontrolledfromacentralconsole.Punchedcardswerepreparedforthevariousmixestobesupplied.Theoperatorinsertedthepropercardforthemixrequired,setadialforthequantityofconcretedesired,andthemachinemeasuredouttheingredientsautomatically.Measurementscouldbeobservedon2-ftdiameterindicatingdialsinthecontrolroomasfollows:3.8-99REV.1312/96 GINNA/UPSARCement:Sandandgravel:Water:0-6000lbinS-lbgraduations.0-30,000lbin30-lbgraduations.0-3000lbin3-lbgraduations.Theingredientsforthemixcouldeasilybemeasuredandrecordedtowithin18ofthetruevalues.TheStateofNewYorkpurchasedconcretefromthisplant.Theirinspectorsmadeperiodicchecksandrequiredaggregatemeasurementswithin2$andcementmeasurementswithin1%.AllprovisionsforstorageprecisionofmeasurementcompliedwithASTMC94-64,StandardSpecificationsforReady-MixedConcrete.ThebulkoftheconcreteforthecontainmentwassuppliedfromtheWalworthPlantoftheManitouConstructionCompany.Technicaldetailsofthisplantwereasfollows:~RextypeADdrybatchplant.~100yards/hr-maximum150yards/hr.~Six-compartmentaggregatebin.~Eight-compartmentbatcherwithdialscale.~Two-compartment600bbl.cementsilo.~Eight-yardcementbatcherwithdialscale.~640-gallonwaterweightbatcherwithdialscale.Theplantprovidedfullyautomaticbatchingusingapunchcardsystem.Allweightsaswellastimeofbatchwererecordedonthecard.AccuracyofthescalewasRO.SS.Zna1-dayrun,theaccumulatedweightsreconciledtowithin5lbasanaverage.Allrecordingscaleshadvisualdialswhichcouldbeobservedbytheinspector.Moistureprobeswereembeddedinthebinstodeterminemoistureandautomaticcompensationsweremadetomaintaintheproperwater-cementratio.Temperatureoftheconcretewascontrolledbyheatingwithclosedsteampipeslocatedinthebinsorcoolingbycontrolofaggregatetemperature.OnlyTypeIZcement,wasbeingstoredandusedattheWalworthPlant.3.8-100REV.1312/96 GINNA/UFSAR3~8~1~6~1.4CoNGRETBSpEcxFzcATI0Ns~TheGinnaspecificationforstructuralconcreteincludedtheProposedACIStandardSpecificationsforStructuralConcreteforBuildings,aspreparedbyACICommittee301andpresentedintheJournaloftheACI,February1966,Proceedings,.Volume63,No.2.Atthetimethespecificationwasissued,ACI301-66wasnotyetformallyreleased.Nevertheless,ACI301-66containednosignificantchangesfromtheproposedstandardusedfortheGinnaspecifications.TheproposedACIstandardwaseitherequaledorexceededinallcases.SignificantrequirementsthatsupplementordifferfromthoseintheproposedACIstandardincludethefollowingwhichhasbeenextractedfromtheGinnaspecification:Thestructuralconcreteforthecontainmentshellincludingtheringgirder,cylindricalwalls,anddomeshallhaveaminimumultimatecompressivestrengthof5000psiin28days.Thedeterminationofthewater-cementratiotoattaintherequiredstrengthshallbeinaccordancewithMethod2,Section308(b)ofProposedACI301.AllcementshallbePortlandCementconformingto'SpecificationforPortlandCement,'STMC150-64,TypeII...thecementshallbeconfinedtoasinglebrandwithanestablishedreputationforbeinguniform-incharacterandshallbeacceptabletotheengineer.Allstructuralconcreteshallbeconsideredsubjecttopotentiallydestructiveexpos'ureandshallcontainairinamountsconformingwithTable304(b)ofProposedACI301.Awater-reducingdensifiezshallbeaddedtoallstructuralconcretewitharequiredultimatecompressivestrengthequaltoorgreaterthan3000psiat28days.Admixturescontainingcalciumchlorideshallnotbeused.1Maximumwater-cementratioforvariousstrengthsofconcreteshallbeasfollows:3.8-101REV.1312/96 GINNA/UFSARCoressiveStrenth(siat28das)GaIlonsoSWater/SackoSCement50003000Ready-mixedconcreteshallbemixedandtransportedinaccordancewithSpecificationsforReady-MixedConcrete,ASTMC94-65.Theminimumamountofmixingintruckmixersloadedtomaximumcapacityshallbe70revolutionsofthedrumorbladesafteralloftheingredients,includingwaterareinthemixer.Themaximumnumberofrevolutionsatmixingspeedshallbe100;anyadditionalmixingshallbeatagitatingspeed.Theconcreteshallbedeliveredtothesiteanddischargeshallbecompletedwithin1.50hoursorbeforetheturnhasbeenrevolved300revolutions,whichevercomesfirst,aftertheintroductionofthemixingwatertothecementandaggregatesortheintroductionofthecementtotheaggregates.Inhotweatherthe1.50hourtimelimitshallbereducedTheproportionofwaterineachstrengthmixshallbeadjustedatleasteveryweekasrequiredbythecontentofsurfacemoistureontheaggregates.Exceptforthisadjustment,nochangesinquantityofmixingshallbemadewithouttheapprovaloftheengineer.Eachbatchofconcreteshallberecordedonaticketwhichprovidesthedate,actualproportions,concretedesignstrength,destinationastoportionofstructureandidentificationoftransitmixer.IEConcreteshallbeprotectedagainstadverseweatherconditionsinaccordancewithRecommendedPracticeforWinterConcreting,newACI306-66,andRecommendedPracticeforHotWeatherConcreting,ACI605-59,exceptthatacceleratorssuchascalciumchlorideandantifreezecompoundsshallnotbeused.CuringmethodsdetailedinproposedACI301shallbeusedexceptthatamethodotherthanacuringcompoundshallbeusedforinitialandfinalcuringofconcreteinthecontainmentshell.Forthecontainmentshell,asetoffourcylinderswillbemadeforeach50cubicyardsoffractionthereofplacedinanyoneday.3.8-102REV.1312/96 'INNA/UFSARSlumptestswillbemadeatrandomwithaminimumofonetestforeach10cubicyardsofconcreteplaced...Constructionjointsurfacesshallbepreparedfortheplacementofconcretethereonbycleaningthoroughlywithwirebrushes,waterunderpressure,orothermeanstoremoveallcoatings,stains,debris,orotherforeignmaterial.Thechloridecontentofmixingwatershallnotexceed100ppmandturbidityshallnotexceed2000ppm.Onconstructionjointsurfacesinthecontainmentvessel,includingallverticaljointsinthecylindricalshellandalljointsinthedome,anepoxy-resincompoundshallbeusedtobondthenewconcretewiththeabuttingpour.ThelimitationinProposedACZ301foramaximumslumpof2in.wasnotenforced.EnforcedslumplimitationswereaslistedinTable305(a)ofProposedAC1301.AlistingofallcodesandstandardsreferencedinspecificationsforthecontainmentconstructionisincludedinSection3.8.1.2.5.ACX301-66referencedabove,providesthat:Thehardenedconcreteofjointsintheexposedwork,jointsinthemiddleofbeams,girders,joints,andslabsandjointsinworkdesignedtocontainliquidsshallbedampenedbutnotsaturated,thenthoroughlycoveredwithacoatofneatcement.Themortarshallbeasthickaspossibleonverticalsurfacesandatleast1/2-in.thickonhorizontalsurfaces.Thefreshconcreteshallbeplacedbeforethemortarhasattaineditsinitialset.3.8.1.6.1.5ArmzxTvREs.Theingredientsofthestructuralconcreteforthecontainmentincludethefollowingadmixtures:aAiz-entrainingadmixture-ThisadmixtureisDarexAREAasmanufacturedbyGraceConstructionMaterialsandisasulfonatedhydrocarbontypewithacementcatalystconformingtoASTMC260.3.8-103REV.1312/96 GINNA/UFSARb.Water-reducingretarder-ThisadmixtureisPlastimentasmanufacturedbySekaChemicalCorporationandisanon-air-entraining,water-reducingretarderwithanactiveingredientwhichisametallicsaltofhydroxylatedcarboxylicacid.ThisadmixtureconformstoASTMC-494,TypeD.Nousertestingofadmixtureswasperformed.3.8.1.6.1.6REPLAGEMERiTcoNGRETEFoRTHE1996sTEAMGENERATGRREPLAcEMENTRepairofthedomeopeningsfollowingthe1996SteamGeneratorReplacementwasaccomplishedusingtheexistinglinerplatesections,newreinforcingbarsandnewconcrete.Thereplacementconcrete,itsconstituents,batching,placement,andtestingactivitieswereconsideredsafetyrelated.Designspecificationsfor"MaterialTestingServices","PurchaseofSafetyRelatedReady-MixedConcrete"and"Forming,Placing,FinishingandCuringofSafetyRelatedConcrete"(BechtelDocuments22225-C-101(Q),22225-C-311(Q)and22225-C-302(Q))controlledthework.Concretemixdesignsweredevelopedandtestedtocomplywiththedesignspecificationof5000psiminimumcompressivestrength87days,slump3"to6"andairentrainmentof68i1.58.Allmixdesignconstituentsweretestedtomeetdesignspecifications.Independentverificationtestingwasperformedinadditiontoconcretesuppliertestingrequiredformixdesignqualification.B.R.DewittInc.suppliedthereadymixedconcrete.Provisionsforstorageofspecificmixdesignquantitiesofaggregateandcementweremadepriortothepourdate.Thefinaldesignmixislistedbelow:ConstituentN'eiht(ercu..)CementFlyAshFineAggregate1CoarseAggregate',2Rheobuild1000MB-VR3Rater850lb130lb915lb1680lb113oz19oz315lb3.8-104REV.1312/96 GINNA/UFSARNotes:l.Weightisbasedonsaturated,surfacedzycondition.2.A1:1blend,ofAS'33I5andI7stonemaybeusedtoprovideagradationconformingtoI57stone.3.Admixturedosagemaybeadjustedwithinmanufacturer'slimitstomeetfieldconditions.Theamountof"supezplastizer"orhighrangewaterreducingadmixturewhichwasrequiredforworkableconcretewasdeterminedthroughmock-uptesting.Acontainmentdomemock-upstructurerepresentingthefullsizeactualdomeopeningwithsurroundingportionsofdomewasconstructedforopeningconstructionandrepairactivities.Themixdesignconcretewasplaced,curedandtestedinthemock-upbythesamemethodologyusedontheactualcontainmentpriortothe1996SteamGeneratorReplacementoutage.Themock-upprovedvaluableinadjustingadmixturesforworkability,maintainingtruckmixingrevolutionswithinacceptablelimits,accessingformingandconsolidationtechniques,andverifyingthemixdesignparameters.Themock-upalsoprovedvaluableindetezmininglogisticalsupportsuchas:numberofinspectors,technicalsupportfromadmixtureandready-mixconcretesuppliers,pumpingcontrollers,laborsupportandbatchplantcommunications.Znmid-Mayof1996concretewasplacedinbothcontainmentdomeopeningsusingaPutzmeisterBSS44seriesconcretepumper.Thedomeopeningswereboardedwithreusableforms.Blockoutsforconcreteplacementandvibrationwereprovidedatapproximately4ftoncenters.Afterinitialsettheformswerestrippedandtheconcretewasrubbedoutandcuringcompoundwasapplied.Thedesignstrengthoftheplacedconcretewasverifiedwithallcompressivecylinderbreaksexceeding5000psiat7days~3.8-105REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBIZ~)3.8-106REV.1312/96 GINNA/UFSAR3.8.1.6.2MildSteelReinforcementTheconcretereinforcementusedwasdeformedbarofintermediategradebillet-steelconformingtotherequirementsofASTMA15-64,SpecificationsforBillet-SteelBarsforConcreteReinforcement,withdeformationsconformingtoASTMA305-56T,DeformedBarsforConcreteReinforcement.Speciallargesizeconcretereinforcingbarsweredeformedbarsofintermediategradebillet-steelconformingtoASTM-A408-64,SpecificationsforSpecialLargeSizeDeformedBillet-SteelBarsforConcreteReinforcement.Reinforcingsteelconformingtothesespecificationshasatensilestrengthof70,000psito90,000psiandaminimumyieldpointof40,000psi.Thelargediameterreinforcingbaxusedinthe1996SteamGeneratorReplacementdomeopeningrepairwasASTMA615whichisanequivalentoftheoriginalreinforcement.Thereinforcingwasproducedsafetyrelated.AllsplicingandanchoringoftheconcretereinforcementwasinaccordancewithACZ318-63.ThespeciallargesizebarsweresplicedbytheCadweldprocesswithsplicesstaggeredasdescribedbelow.Exceptionstothissplicingprocessweremadeintherepairofthe1996domeopeningsinlimitedlocations.Wherephysicalconstraintsprohibitedtheuseofcadwelds(mostlyinthehexagonopeningcorners),N18Sreinforcingbarswereweldedtogetherusingapxequalifiedweldprocedure.Theintermediategradereinforcingsteelisthehighestductilitysteelcommonlyusedforconstruction.Certifiedmillreportsofchemicalandphysicaltestsweresubmittedtotheengineer,GilbertAssociates,Inc.,forreviewandapproval.Eachbarwasbrandedinthedeformingprocesstocarryidentificationastothemanufacturer,size,type,andyieldstrength,asshowninthefollowingexamples:3.8-107REV.1312/96 GONNA/UFSARB-Bethlehem.18-Size18S.N-Newbilletsteel.Blank-A-15andA-408steel.6-A-43260,000psiyield.7-A43175,000psiyield.Becauseoftheidentificationsystemandbecauseofthelargequantity,thematerialwaskeptseparatedinthefabricator'syard.Inaddition,whenloadedf'rmillshipment,allbarswereproperlyseparatedandtaggedwiththemanufacturer'sidentificationnumber.Visualinspectionofthebarswasmadeinthefieldforinclusions.Thespecificationsstipulatedthat"Arcweldingconcretezeinforcementforanypurposeincludingtheachievementofelectricalcontinuityshallnotbepermittedunlessnotedotherwiseonthedrawings,"TheconcretecoverrequiredforreinforcingsteelistabulatedinTable3.8-7.AcomparisonismadebetweenvaluesforthisplantandACIrequirements.3.8.1.6.3CadwellSlicesTensionsplicesfozbarsizeslargerthanNo.11weremadewithCadweldsplice.ToensuretheintegrityoftheCadweldsplice'thequalitycontrolproceduresprovidedforarandomsamplingofsplicesinthefield.Theselectedspliceswereremovedandtestedtodestruction.FordetailsofthedestructivetestingofCadweldsplices,refertoSection3.8.1.7.1.Wherethespeciallargesizebars(i.e.,14Sand18S)werespliced,theCadweldprocesswasusedsothattheconnectioncoulddeveloptherequiredminimumultimatebazstrength.WheretheCadweldsplicewasused,includingthecylinderanddome,thespliceswerestaggeredaminimumof3ft.Anexceptiontothispracticewasinthevicinityofthelargeopenings.Wherereinforcingbarswereanchoredtoplatesorshapes,suchasisthecaseforthedomebarsanchoredintothecylinderandtheinterruptedhoopbarsatpenetrations,theCadweldsplicesalloccurinoneplane.Inadditionto3.8-108REV.1312/96 GINNA/UIiSARthis,thecadweldsplicesmadein1996fortheSteamGeneratorReplacementdomeopeningrepairwerenotstaggered.Thisistypicalaroundtheperimetersidesofbothdomeopenings.Thedomeopeningswerelaidoutsuchthatateachsideorfaceoftheopening,twooutofthreelayersoftheN18Sreinforcingbarsprojectintothehole.LappedsplicesaredetailedinaccordancewithACI318-63.WhereCadweldspliceswereusedtoanchorreinforcingbarstoastructuralsteelmember,asshowntypicallyonFigure3.8-4,aprocedureoftestingcouponswasusedtodemonstratethattheweldingprocesswasundercontrol.Thisprocedurerequiredeachweldertoinitiallymakecoupons,asshownonFigure3.8-34,asaqualificationprocedure.Theprocedurewasrepeatedatafrequencyofonecouponforeach100productionunits.EachcouponrequiredtestingoftwoCadweldconnections.lnaddition,theweldingprocedurecompliedwiththespecificationsoftheAmericanWeldingSocietyandprovidedfor100%visualinspectionofwelds.Asamplingof20spliceswasinitiallytestedtodestructiontodevelopanaverage(7)andstandarddeviation(cz).Thereaftersufficientsamplesweretestedtoprovide99%confidencethat95%ofthesplicesmetthespecificationrequirements.Asadditionaldatabecameavailable,theaverage(K)andstandarddeviation(cz)wereupdatedandthequantityofsamplesrevisedaccordingly,Thedistributionestablishedonthisbasispermittedthedevelopmentofthelowerlimitbelowwhichnotestdatashouldfall.Iftheresultofanytestfellbelowthislimit,thesubsequentorprevioussplicewassampled.Ifthisresultwasabovethelowerlimit,theprocesswasconsideredtobeincontrol.Ifthisresultwasagainbelowthelowerlimit,theprocessaveragehadchangedandanengineeringinvestigationwasrequiredtodeterminethecauseoftheexcessvariationandreestablishcontrol.3.8.1.6.4RadialTensionBars.BarswerereceivedbyStressteelCorporationfromBethlehemorU.STSteelalongwithcertifiedmillreportsofchemicalandphysicaltests.Thehigh-strengthalloysteelbarswereproofstressedtotheminimumspecified3.8-109REV.1312/96 GINNA/UFSARyieldstressof130,000psiandthenstressrelievedinanovenat700'Ffoz5to6hours.Chemicaltestzeportsoneachmillheatofsteelusedforbarsandload-straincurvescertifyingphysicalpropertiesofthestressrelievedbarswereprovided.OtherbarsteelfabricatedintheStressteelplantwasofequalorhigherstrength.Furthermore,thephysicalappearanceofthebarsteel,includingsmoothsurfacesandthreadedend,completelyeliminatedpossiblesubstitutionwithotherconstructionmaterialsinthefield.3.8.1~6.5ContainmentLiner3.8.1.6.5~1FABRIOATIoNANDWQRKMANsHIP.Thedetailsofthefabricationandworkmanship,withcertainexceptions,conformedtotherequirementsoftheASMENuclearVesselsCodeforClassBVessels.Theseexceptionsincludedthefollowing:'a~Materials-Thesteelplateforthemainshellincludingthehemisphericaldome,cylindricalwalls,andbaseconformedtoASTMA442,Grade60,andmettheimpacttestrequirementsofASTMA-300,exceptthattheCharpyV-specimensweretestedatatemperatureofatleast30'Flowerthanthelowestservicemetaltemperature.Forthemainlinershell,thelowestservicemetaltemperaturewascalculatedtobe48'F.RolledsectionsincludingtestchannelsandstiffenersconformedtoASTMA36.b.WeldInspection-Longitudinalandcircumferentialweldedjointswithinthemainshell,theweldedjointconnectingthehemisphericaldometothecylinder,andanyweldedjointswithinthehemisphericaldomewereinspectedbytheliquidpenetrantmethodandspotradiographyallinaccordancewiththeASMEUnfiredPressureVesselsCode.ceOpeningReinforcement-ThelinerisreinforcedaboutallopeningsinaccordancewithASMEUnfiredPressureVesselsCode.TheASTMA442,Grade60,materialhasaspecifiedminimumelongationin8in.of20%andin2in.of23'h.Qualitycontrolmeasuresrequiredbythesestandardspecificationsincludedthefollowing:ASTMA442Onetensiontestandonebendtestshallbemadefromeachplateasrolled.Inaddition,milltestreportswillbeobtainedforheat.3.8-110REV.1312/96 GINNA/UFSARASTMA300Eachimpacttestvalueshallconstitutetheaveragevalueofthreespecimenstakenfromeachplateasrolled(Note3)withnotmorethanonevaluebelowthespecifiedminimumvalueof15ft-lb,butinnocasebelow10ft-lb.Becauseofthematerialthickness,subsizespecimensareusedtherebyalteringtheabove-mentionedimpactvaluesto12.5and8.5ft-lb,respectively.ASTMA131Twotensionand,exceptasspecifiedinParagraph(b),twobendtestsshallbemadefromeachheatofstructuralsteelandsteelfozcoldflanging,unlessthefinishedmaterialfromaheatislessthan25shorttonswhenonetensionandonebendtestwillbesufficient.If,however,materialfromoneheatdiffers0.15in.ormoreinthickness,onetensiontestandonebendtestshallbemadefromboththethickest,andthethinnestmaterialrolled,regardlessoftheweightpresented.Whensospecifiedintheorder,abendtestmaybetakenfromeachplateofstructuralsteelasrolled.Twotensionandtwobendtestsshallbemadefromeachheatofrivetsteel.Whenmaterialisorderedforcoldflangingandissubjecttotestandinspectionbyashipclassificationsociety,onebendtestshallberequiredfromeachplateasrolled.3.8~1~6o5.2PENETRATIONS~Thespecificationsforthecontainmentlinerfurtherrequiredthat"Thematerialsforpenetrationsincludingthepersonnelandequipmentaccesshatches,aswellasthemechanicalandelectricalpenetrations,shallconformwiththerequirementsoftheASMENuclearVesselsCodeforClassBvessels.AllmaterialsforpenetrationsshallexhibitimpactpropertiesasrequiredforClassBVessels."ThematerialforthepenetrationsconformedtoASTMA201-61T,Grade,BFirebox,TentativeSpecificationforCarbon-SiliconSteelPlatesofIntermediateTensileRangesforFusion-WeldedBoilersandOtherPressure3.8-111REV.1312/96 GINNA/UFSARVessels,whichwasmodifiedtoASTMA300-58,StandardSpecificationforSteelPlatesforPressureVesselsforServiceatLowTempezatuze.QualitycontrolmeasuresrequiredforASTMA201includedthefollowing:Twotensiontests,onebendtest,andonehomogeneitytestshallbemadefromeachfireboxsteelplateasrolled.Onetensiontestandonebendtestshallbemadefromeachflangesteelplateasrolled.3.8.1.6.5.3WELDING.Thespecificationsforthecontainmentlinerfurtherrequiredthefollowingqualitycontrolmeasuresfozwelding:ThequalificationofweldingproceduresandweldersshallbeinaccordancewithSectionIX"WeldingQualifications"oftheASMEBoilerandPressureVesselCode.Contractorshallsubmitweldingprocedurestotheengineerforreview.ThequalificationtestsdescribedinSectionIX,PartA,includeguidedbendteststodemonstrateweldductility.AllpenetrationsshallbeexaminedinaccordancewiththerequirementsoftheASMENuclearVesselsCodeforClassBVessels.Othershop-fabricatedcomponents,includingthereinforcementaboutopenings,shallbefullyradiographed.Allnonzadiographablejointdetailsshallbeexaminedbytheliquidpenetrantmethod.FullradiographyshallbeinaccordancewiththeproceduresandgovernedbytheacceptabilitystandardsofParagraphN-624oftheASMENuclearVesselsCode.MethodsforliquidpenetrantexaminationshallbeinaccordancewithAppendixVIIIoftheASMEUnfiredPressureVesselsCode.Inordertoensurethatthejointsinthelinerplateandpenetrationsaswellasallweldconnectionsoftestchannelswereleaktight,thespecificationsforthecontainmentlinerrequiredthatallwelds"shallbeexaminedbydetectingleaksat69psigtestpressureusingasoapbubbletestoramixtureofairandfreonand100%ofdetectableleaksarrested."3.8-112REV.1312/96 GINNA/UFSARThesetestswerepreliminarytotheperformanceoftheinitialintegratedleakratetestwhichensuredthatthecontainmentleakratewasnogreaterthan0.1'hofthecontainedvolumein24hoursat60psig.3.8~1~6~5~4EREGTIoNTQLERANGES~Erectiontolerancesofthecontainmentlinerwere:Overallout-of-roundnessDeviationfromroundin10ftOveralldeviationfromtheplumblineDeviationfromlinebetweentangentpointsatcylindertodometransitionandbasetocylindertransitioni3inc1-1/2in.exceptatseams.k3inc%3/4in.Shellplateedgestobuttforaminimumof758ofwallthicknessThelocationsofpenetzationswithregardtoazimuthlocationtobewithinil/2in.measured'nthecirculatesection.Thehorizontalandverticaldimensionsassociatedwiththeradialdimensionshallbeil/2in.Duringerection,internalwindstiffnesstemporarybraceswereaddedtothelinertomaintainroundnesstolerances.Thisbracingwasremovedafterpouringofthewallconcrete.Thelinererector'sadherencetothetolerancesspecifiedforthelinerwerecheckedbymeansofacontrolsurvey.3.8.1.6.5.5PAINTING~Thecontainmentlinerwaspaintedasfollows:a~Allinteriorsurfacesofthecylinderanddome(i.e.,allexposedsurfacesincludingthewallbehindtheinstructionpanels)hadaminimumofa2.5-milcoatofCarbozinc511Gray,asmanufacturedbytheCarbolineCompany.b.Allothersurfacesexcepttheundersideofthebaselinerhadaminimumofa1'-milcoatofpaintconformingwithFederalSpecificationTT-P-645A,Primer,ZincChromateAlkyd.3.8.1.6.6ElastomerPadsTheelastomerpadsusedforthecontainmentnumber320andweremanufacturedtothefollowingdimensions:3.8-113REV.1312/96 GINNA/UFSARA.Planarea:42in.by9in.B.~Neocene:twolayeteofneopteneeach11/16-in.thick.C.Steelshims:anoutershimoneachfacewithaminimumthicknessof16gaugeandoneshimbetweenthetwoneoprenelayersof10gauge.Theneoprenehasanominaldurameterhardnessof55.PhysicalrequirementsoftheneopzeneareshowninTable3.8-8.3'.1.6.7Tendons3.8.1.6~7.1MATERIALs~TheprestressingsystemusedforthecontainmentistheBBRVsystemutilizingninety0.25-in.diameterwires.Thewiresarehightensilesteel,thatis,bright,cold-drawn,andstress-relievedconformingtoASTMA421-59T,TypeBA,SpecificationsforUncoatedStress-RelievedWireforPrestressedConcrete,withaminimumguaranteedultimatestrengthof240,000psi.TheBBRVsystemusesparallelwireswithcoldformedbuttonheadsattheendswhichbearuponaperforatedsteelanchorhead,thusprovidingamechanicalmeansfortransferringtheprestzessforce.Thebuttonheadsareformedbycoldupsettingtoanominaldiameterof3/8in.onthe1/4-in.diameterwire.Thematerialsusedforanchoragecomponentswereasfollows:ZtemMovableanchorheadFixedanchorheadSize7-7/8in.O.D.x3-1/2in.5-1/8in.O.DEx3-3/4in.Materia1C1141heattreatedC1141heattreatedBushing(adaptorforcouplers)CouplersBearingplateSplitshimsTheC1141material7-7/8in.O.D.x5-1/8in.I.D.C104510-1/2in.O.D.x7-1/8in.I.D.C101818-1/2in.O.D.x2-1/2in.A368-1/2in.O.DEx1-1/2in.wallHFSMTubeC1026isheattreatedtoRockwellC30toC33.ThematerialusedfortheexposedbearingplatesattheupperendoftheverticaltendonsconformedtoASTMA36,SpecificationforStructuralSteel,includingtheoptionalrequirementofthisspecificationofsilicon3.8-114REV.1312/96 GINNA/UFSARkilledfinegrainpracticeforsteelusedattemperatureswhereimprovednotchtoughnessisimportant.3~8~1~6.7.2TEsTsMDINsPEGTIoH~Allanchoragehardwarewas1008visuallyinspectedtoensurethatnosurfaceflaws,notches,andsimilarstressraisersexisted.Hardnesstestswereperformedoneachanchorheadtoverifyadequateheattreatmentandstrength.Thetendonfabricatorcutcouponsfromeachendofeachreelofwire,formedbuttonheads,andtestedthespecimens.ThesetestsweretoensurethatthewirewouldrupturebeforefailuzeofthebuttonheadandthatthewirewouldmeetthephysicalrequirementsofASTMA421.Couponsandthecoilstheyrepresentednotmeetingtherequirementswererejected.Recordsweremaintainedforeachcoupontestandforthetendonsinwhicheachcoilofwirewasused.Anchoragecomponentswerefabricatedfrommaterialsspecifiedonthemanufacturer'spartsdrawings.Requirementsformachining,tolerances,andheattreatingwereasspecifiedonthepartsdrawings'llbuttonheadswerevisuallyinspectedandaminimumof10'hofthebuttonheadswererandomlycheckedforsizeverification.Dimensionsofthebuttonheadswereasfollows:'a~Diameterequaltoozgreaterthan0.372in.andequaltoozlessthan0.388in.b.Lengthequaltoorgreaterthan0.252in.andequaltoorlessthan2.272in.c.Abearingsurfaceonallsides.Limitationsonsplits(cracks)inbuttonheadswereasfollows:aa.Splitsarenottobeinclinedmorethan45degreestotheaxisofthewire.bb.Sumofthewidthsofallsplitsarelessthan0.06in.withinclinationslessthan20degreestotheaxisofthewire.cc.Nomorethantwosplitsoccurinbuttonheadswhichhavesplitsinclinedmorethan20degreesbutlessthan45degreestotheaxisofthewire.Innoeventdothetwocracksoccurinthesameplace.3.8-115REV.1312/96 GINNA/UFSAR3.8.1.6.8LinerZnsulationTheinsidesurfaceofthelinermaybeinspectedinthewallanddomearea.However,thewallsarecoveredbypanelsofthermalinsulationtoprotectthelinerintheeventofanaccident.Corrosionofthelinerisnotexpectedbecausetheoutsidesurfaceisincontactwithconcrete;thelowerportionoftheinsidesurfaceisprotectedfromsweatingbytheinsulation;andtheentirelineristiedintotheoverallcathodicprotectionsystem.Ztispossible,however,toremoveasectionofinsulationperiodicallytoexaminethelinerifrequired.Thelinerinsulationis1.25-in.thickVinylcel,whichisarigidcross-linkedpolyvinylchloride(PVC)foamplasticmanufacturedbyJohns-Manville.Dimensionsforfullsizesheetsare44in.x84in.Sheetfacesarefinishedwith0.019-in.thicksheetsoftype304stainlesssteel.Thesheetsareattachedtothesteellinerwithstainlesssteelstuds(KSM¹304stainless¹10-24).Thefullsizesheetshavesixstudseach.A1.125-in.diameterneoprenebackedstainlesssteelcombinationwasherisplacedoutsidethesheetoverthestudandheldinplacebyaself-lockingstainlesssteelhexagonalheadnut.Backsofthesheetsareroutedtofitoverthetestchannelsontheliner.Sheetsareerectedwiththe44-in.dimensionverticalandverticaljoS.ntsarestaggered.Thejointsatthebaseoftheroutededgesaretapedwith3/8-in.widetapeandtheroutedareaisfilledwithDowCorningSealant¹780siliconerubberbasesealantorequivalenttomakeaflushfinishedjoint.Atpenetrationsorotherirregularsurfaces,thesheetsarecuttofitandtheedgesarebeveledandcaulkedwiththesealant.Asimilarcaulkedjointisprovidedattheextremitiesoftheinsulatedarea.ZfforanyreasonapanelorsectS.onmustberemoved,itispossibletodosobycuttingalongthejointsandremovingthefasteningnuts.ReplacementwouldonlyinvolvereapplS.cationofnutsandnewsealant.ThePVCmaterialischemicallycompatiblewithsteelandnodegradationofeithermaterialbecauseofcontactand/orenvironmentresults.Thesealantisanacid-freeinorganictype;again,nochemicalreactionresults.Thesealantiswaterproofandremainspliantdownto-80'Fanddoesnotsoftenupto350'F.3.8-116REV.1312/96 GINNA/UFSARThereportsoftestsperformedtoensuremeetingthefunctionalrequirementsareincludedinSection3.8.1.7andAppendix3E.3.8-117REV.1312/96 (INTENTIONALLYLEFTBLM~)3.8-118REV.1312/96 GINNA/UFSAR3.8.1.7TestingandInserviceInspectionRequirements3.8.1.7.1ConstructionPhaseTestinPreoperationalinspectionsandtestswereperformedinseveralstageswhichfinallyledtothestructuralproofandintegratedleakratetests.Inspectionsandtestsofthestructuralelementsofthecontainmentvesselincludedtheliner,tendons,concreteandconcretereinforcement,elastomerpads,androckanchors.3.8.1.7.1.1LINER.Longitudinalandcizcumferentialweldedjointswithinthemainshell,theweldedjointconnectingthedometothecylinder,andalljointswithinthedomewereinspectedbytheliquidpenetrantmethodandspotradiography.AllpenetrationsincludingtheequipmentaccessdoorandthepersonnellockswereexaminedinaccordancewiththerequirementsoftheASMENuclearVesselsCodeforClassBVessels.Allothershop-fabricatedcomponentsincludingthereinforcementaboutopeningswerefullyradiographed.Allotherjointdetailswereexaminedbytheliquidpenetrantmethod.FullradiographywasperformedinaccordancewiththeIproceduresandgovernedbytheacceptabilitystandardsofParagraphN-624oftheASMENuclearVesselsCode.SpotradiographywasperformedinaccordancewiththeproceduresandgovernedbythestandardsofParagraphUW-52oftheASMEUnfiredPressureVesselsCode.MethodsofliquidpenetrantexaminationwereinaccordancewithAppendixVIIIoftheASMEUnfiredPressureVesselsCode.Allpipingpenetrationsandpersonnellockswerepressuretestedinthefabricator'sshoptodemonstrateleaktightnessandstructuralintegrity.Aprototypeoftheair-cooledpenetrationswastestedtoverifythermalandhydraulicdesigncalculations.Allaccessibleweldseamsonthelinerwerespotradiographed,exceptforpenetrationswhichwerefullyradiographed.SpotradiographywasperformedinaccordancewithSectionUW-52oftheASMEUnfiredPressureVesselsCode,whichrequiredthat3.8-119REV.1312/96 GINNA/UFSAROnespotshallbeexaminedinthefirst50ftofweldingineachvesselandonespotshallbeexaminedforeachadditional50ftofweldingorfractionthereof.Suchadditionalspotsasmayberequiredshallbeselectedsothatanyexaminationismadeoftheweldingofeachweldingoperatororwelder.Theminimumlengthofspotradiographshallbe6in.Thelinerweldseamswerealsoexaminedbypressurizingthetestchannelstodesignpressure(60psig)withamixtureofairandfreon,andcheckingallseamswithahalogenleakd'etector.Alldetectableleakswerecorrectedbyrepairingtheweldandzetesting.3.8.1.7.l.2PREsTREssINGTEND0Ns.Therockanchorsandwalltendonsforthecontainmentwereinspectedbyboththesupplier,JosephT.RyersonandSon,Inc.,andtheprimecontractor,WestinghouseAtomicPowerDivision.RyersonperformedalltestsenumeratedinSection3.8.1.6,andreportsareretainedintheQualityControlfile.Westinghousedidthefollowing:a~Submittedcertifiedmilltestreportstothedesigner,GilbertAssociates,Inc.,fortheirreviewandcomment.b.MonitoredtheshopproceduresandinspectionbyRyerson.CoInspectedeachtendonattheRyezsonshopbeforeshipmenttoensureconformancetospecificationsandproperpreparationforshipment.Inadditiontotheforegoing,atestwasperformedoneachitemofanchoragehazdwaretoconfirmthatitwascapableofdevelopingtheultimatecapacityofthetendon.ReportsofthesetestsazeincludedinAppendix3D.3.8.1.7.1.3CQNGRETERETNFQRcEMENT.TensionsplicesfozbarsizeslargerthanNo.11weremadewiththeCadweldsplicedesignedtodeveloptheultimatestrengthofthebar,orwiththeuseofdeformedbarsconformingtoASTMA408-64,IntermediateGrade(minimumtensilestressof70,000psi).Asamplingof20splices3.8-120REV.1312/96 GINNA/UFSARwasinitiallytestedtodestructiontodevelopanaverage(F)andstandarddeviation(<r).Sufficientsamplesweretestedtoprovidea99'hconfidencelevelthat95$ofthespliceswouldmeetthespecificationrequirements.Theaverageofalltestsalsowasrequiredtoremainabovetheminimumtensilestrength.,Asadditionaldatabecameavailable,theaverageandstandarddeviationswereupdated.Theactualfrequencyoftestingcarriedoutwasonespecimenfozeach25splicesmadefozeachcrewforthefirst250splicesmadebythatcrewandonetestfozeach100splicesthereafter.Inaddition,wheredeformedbarswereattachedtostructuralsteelmembers,specimensweremadeandtestedtoensurethattheweldofthesplicetothememberdidnotfailbeforetherebarorthesplice.Thefrequencyoftestingthesespecimenswasthesameasthatforthenormalsplices.AplotoftheresultsofalltestsoveraperiodoftimeisshowninFigure3.8-35.NoarcweldingwaspermittedontheClassIstructuresforsplicingreinforcingbarsduringtheoriginalconstruction.Allrebarsplicesofthemajorreinforcementinthecontainmentstructure(i.e.,speciallargesizebars)wexemadewiththeCadweldprocess.TherewerenospecialrequirementsforchemicalcompositionofreinforcingbarsbeyondtherequizementsofASTMA15andA408.Generally,notackweldingofreinforcingbarswaspermitted.Theonlyexceptioninvolvedthoselocationsspecificallyshownonthedrawings(refertoFigure3.8-4)whichwerelocatedwhererebazstrengthwasnotrequiredandbarswereprovidedsolelytoprovideelectricalcontinuitybelowgroundwaterlevel.InsamplingtheCadweldsplicesatestwasconcurrentlyperformedonthexebar.Wheretherebarfailedpriortothesplice,acheckwasprovidedontheultimatestrengthoftherebar,thusprovidingacheckonconformancewiththemanufacturer'scertificationsandtheASTMstandards.Inaddition,certifiedmilltestreportswerereceivedfromtherebarsupplierandcheckedforconformancewithspecificationrequirements.ThespliceandmilltestreportsareretainedintheQualityContxolfile.Replacementreinforcementforthedomeopeningsconstructedinthe1996SteamGeneratorReplacementwas$18SASTMA615Grade60'hereinforcingbarswereconnectedprimarilywithT-seriesGrade60Cadweldsplicesas3.8-121REV.1312/96 GINNA/UFSARmanufacturedbyEricoProducts.Priortostartingproductionsplicing,amemberofeachsplicingcrewwascpxalifiedforperformingcadweldsineachofthreepositions;horizontal,verticalanddiagonal.Duringproduction,aspecifiednumberofsistersplicesweremadein-placenexttoproductionsplices,underthesameconditions,andbythesamecrew.Foreachcrewthefollowingtensiletestsonthesistersplicesweremade:A.Testonesisterspliceforthefirst10productionsplices.B.Testfoursistersplicesforthenext90productionsplices.C.Testthreesistersplicesforthenextandsubsecxuentunitsof100splices.Thecadweldsistersplicesweretestedtofailure.Allsplicesweredeterminedtobecapableofdevelopingcadwelddesigncriteriaof1.25timestheminimumyieldstrengthofthereplacementreinforcementwhichwas60,000psi.ThelimitednumberofweldedspliceswereperformedusingapzecpxalifiedarcweldingprocedureandvisuallyinspectedinaccordancewithAHSD.1.4.3.8~1~7~1.4C0NGRETE~Theprimecontractorobtainedtheservicesofatestingagencywhichmadepreliminarydeterminationsofcontrolledmixes,usingthematerialsproposedandconsistenciessuitableforthework,inordertodeterminethemixproportionsnecessarytoproduceconformancetothetypeandstrengthrequirements.Duringconcreteoperations,thetestingagencymaintainedaninspectoratthebatchplantwhocertifiedthemixedproportionsofeachbatchdeliveredtothesiteandsampledandtestedperiodicallyallconcreteingredientsandmonitoredaggregatesurfacemoisture.Oneormoreinspectorswereretainedattheconstructionsitetotakeslumptests,maketestcylinders,checkaircontent,andrecordweatherconditions.Forthereactorcontainment,asetofnolessthanfourcylinderswasmadeforeach50cubicyardsorfractionthereofplacedinanyday.Twocylinderseachweretestedin7daysandin28days.Slumptestsweremadeatrandom,withaminimumofonetestforeach10cubicyardsofconcreteplaced.Also,slumptestsweremadeonthe3.8-122REV.1312/96 GINNA/UFSARconcretebatchusedfortestcylinders.ArunningaverageoftestresultsthroughSeptember26,1967,for5000psiconcreteisshowninFigure3.8-36.AcceptancestandardsforcompressivestrengthwerebaseduponACI301,Section1703whichstatedthat:"Strengthsofultimatestrengthtypeconcreteandprestressedconcreteshallbeconsideredsatisfactoryiftheaverageofanythreeconsecutivestrengthtestsofthelaboratorycuredspecimensrepresentingeachspecifiedstrengthofconcreteisequaltoorgreaterthanthespecifiedstrength,andifnotmorethan108ofthestrengthtestshavevalueslessthanthespecifiedstrength."AcceptancestandardsforslumpwerebaseduponthoselimitsstatedinACI301,Table304(a)whichestablishedamaximumslumpof3in.forreinforcedandplainfootings,caissons,.andsubstructurewalls;4in.forslabs,beams,reinforcedwalls,andbuildingcolumns;andalsoestablishedaminimumslumpof1in.Figure3.8-36providesamovingaverageofcompressivestrengthfor5000psiconcreteonfiveprevioustestgroups.Thereweretwoperiodsoftimewhentheseaveragesfellbelowthespecified5000psi,28-daycompressivestrength.Theoccasionswhenthisoccurredinvolvedtheuseofthefirstmixinareasrequiringbydesignonly3000psiconcrete,namelythecontainmentbaseslabandtheturbinepedestal.Themixwasthenmodifiedtoproducethemoresatisfactoryresultsthereafterreflectedonthechartoftherunningaverage.Atnotimedidin-placeconcretefailtomeetthespecificationrequirements.TypeIIcement,modifiedforlowheatofhydration,wasusedtominimizeshrinkage.Grabsamplesweretakenperiodicallyatthebatchplant,upondeliveryofcement.EachsamplewastestedbythetestinglaboratoryforconformancetoASTMC150,andtheresultswerealsocomparedwiththecertificatesuppliedwitheachdeliveryofcement.3.8-123REV.1312/96 GINNA/UFSAR3.8.1.7.1.5ELASTOMERBEARZNGPADS.Testswereperformedonelastomerspecimenstoensurecompliancewithrequirementsfor:(1)originalphysicalpropertiesincludingtearresistance,hardness,tensilestrength,andultimateelongation;(2)changeinphysicalpropertiesduetoovezaging;(3)extremetemperaturecharacteristics;(4)ozonecrackingresistance;(5)oilswell,and(6)shearmodulus.Inaddition,twofullsizepadsweretested,oneforcreepandoneforultimateload.SpecimenNo.1wasinitiallyplacedunderessentiallyaconstantcompressiveloadof1000psi(thedesignpressure)for4daystomeasurecreep.Thispadwasthenloadedupto2000kips(5.3timesdesignload)whenthetest,wasterminatedwithoutfailure.SpecimenNo.2wassimilarlyloadedupto2000kipswithoutfailure.Thereboundofthepadsafterthe2000-kipsloadwasremovedwasessentiallycomplete.AsummaryofthetestresultsisshowninFigures3.8-37and3.8-38.3.8.1.7.1.6ROCKANCHORTESTS.Threescaled-downtestrockanchorswereinstalledtodemonstratetheholddowncapacityoftherockandthecapacityofthebondbetweenrockandgrout.TwotestsweremadeonrockanchorA,whichwasinstalledatthecenteroftheproposedcontainment.Thefirsttest,calledtestA-1,wastodeterminerockhold-downcapacity.Theset-upfortestA-1isillustratedinFigure3.8-39.Thebeamsupportpierswerelocatedbeyondtheassumedinfluencecircleofrockhavingadiameterof23ft6in.Anindependentframewaserectedtoobtaindeflectionmeasurementsontheconcretepierattheanchor.Thisplacedallsupportsforliftingaswellasmeasuringdevicesoutsidetheinfluencecircleofrock.Dialgaugeswereusedtomeasurethemovementoftheconcretepierandtheanchorhead.Thetestloadwasappliedwitha150-tonjackmountedonthebeamsspanningthetestanchor.Measurementsofthejackingforceweremadewithadynamometer,calibratedimmediatelybeforethe'test.ThesecondtestonrockanchorA(testA-2)andthetestsonrockanchorsBandC,alsoinstallednearthecenteroftheproposedcontainment,weremadetodemonstratebondcapacity.Theset-upfortestA-2andforrockanchorsB3.8-124REV.1312/96 GINNA/UFSARandCwasanarrangementwherebythejackwassupporteddirectlybytheconcretepieradjacenttothetestanchor.RockanchorAconsistedoftwenty-eight0.25-in.diameterwiresgroutedforalengthof4ft5.5in.ina3.5-in.diameterhole.Alltestzockanchorswereoversizedsothatthetestloadof100kips'woulddeveloponlyabout308oftheultimatecapacityoftendonwireswhiledevelopingabondstressof170psi,whichisthedesignstressforthecontainmentrockanchors.Thispermittedtestingbondstresseswellinexcessofdesign(170psi)withoutexceedingultimatewirestresses.ThetestprocedurefortestA-1isdescribedinthefollowingparagraph.Theanchorwasloadedin20,000-lbincrementsto100,000lb.Theloadwasmaintainedateachincrementfor15minpriortotakingmeasurementsforelongationofthetendonandelevationsoftheconcretepedestalandadjacentrocksurface.Becausetheanchorheadappearedfromvisualobservationnottohaveliftedoffatthe100,000-lbload,theloadwasincreasedto110,000lb,atwhichpointlift-offwasapparent.Subsequentreviewofmeasurementsonthemovementoftheanchorheadindicatethatactuallift-offoccurredbetween80,000lband100,000lb,aswouldbeexpected.IntestA-2andthetestsonrockanchorsBandC,thetendonwasjackedfromtheconcretepierimmediatelyadjacenttothetendon.Table3.8-9listsmeasurementstakenduringtestA-1.Figures3.8-40through3'-42showplotsofloadversuselongationdeflectionforalltests.Theapplicationofatestloadof110kipstorockanchorA(asindicatedbytheresultsoftestA-1shownonFigure3.8-40)isequivalentto137.5%ofthecalculatedhold-downcapacityassumptionusedinthedesign.TheplotofloadversuselongationdeflectionforrockanchorAtestsA-2(seeFigure3.8-40)andBandC(seeFigures3.8-41and3.8-42)indicateafactorofsafetyagainstslippagebythegroutandrockofatleast2.0(200-kipsloadversus100-kipsdesignload)forrockanchorB.Ifslippageoccurredwithinthegrout,thefactorofsafetyagainstfailureisevengreater.TheplotofloadversuselongationforrockanchorA3.8-125REV.1312/96 GINNA/UISARshowsanapparentdiscontinuitywhichisindicatedbyadashedlineonFigure3.8-40.ThisrepresentssettlementoftheconcretepieradjacenttotherockanchorwhentheloadwastransferredfromtheliftingframeusedintestA-1tothelocknutthatboreontheconcretepier.3.8.1.7.l.7LRRGEOPENINGREINFORGEHENTS.TestingoflargeopeningreinforcementsisdiscussedinAppendix3B.3.8~1~7.l.8LINERINsULATION.TestswereconductedontheVinylcelforconfirmationofthefollowingmaterialproperties:Conductivityfactor(Btu/hrft/'F/in.),perASTMC177-63,at75Fg100F~150FCompressiveyieldstrength(psi),perASTMC165.Moisturevaporpermeability(perinch)bydrycup,perASTMC355-64.Shearstrength(psi).Shearmodulus(psi),perASTMC273-61.Compressivemodulus(psi),perASTMC165-54.Density(lb/ft),perASTMD1622-63.Averagecoefficientoflinearexpansion(in./in./'F)fortemperaturerange.ResultsofthesetestsareincludedinAppendix3E.Alsoincludedaretheresultsofatesttodetermineresistancetoflameexposure,plustheresultsofananalogsimulationoftheinsulationsystemduetothepressureandtemperaturetransientsassociatedwiththe50%overpressurecondition.3.8-126REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-127REV.1312/96 GINNA/UFSAR3.8.1.7.2GeneralDescritionoftheStructuralInteritTest3.8.1.7.2.1PRESSURIZATION.Aftercompletionoftheentirecontainment,astructuralintegrityairpressuretestat1158ofdesignpressurewasmaintainedfor1hour.Thepressurizationofthecontainmentwasdoneat5psiincrements.Readingsandmeasurementsweretakenat35psig,50psig,60psig,andthefinaltestpressureof69psig.Exceptfozthefinalpressurelevel,thevesselpressurewasalwaysincreased1psiabovethelevelatwhichmeasurementsweremade.Thepressurewasthenreducedtothespecifiedvalueandobservationsmadeafteradelayofatleast10mintopermitanadjustmentofstrainswithinthestructure.Becausethestructureissolarge,displacementmeasurements(absoluteorrelative)couldbemadewithprecisionandcouldbeusedasconfirmationofthepreviouslycalculatedresponse.Thetestprogramfurtherincludedavisualexaminationofthecontainmentduringpressure.zationtoobservedeformationsandtodemonstratethatnodistortionsoccurredofasignificantlygreatermagnitudethanthosecalculatedinadvancebaseduponthesameanalyticalmodelsusedforthedesignofallstructuralelementsfortheloadingcombinationsdescribedinSection3.8.1.2.Priortothetest,atableofpredictedstrain,deflection,androtationvalueswasdevelopedforaninternalpressureof69psig,whichwasthepressureofthestructuralprooftest,aswellasthoselowerpressurelevelsusedtotakemeasurements.Strain,displacement,androtationpredictedfromtheanalyticalmodelforaninternalpressureof69psigwereusedasabasisforverifyingsatisfactorystructuralresponse.Althoughstraingaugeswereinstalledondesignatedareasoftheliner,concretereinforcement,andtendonshims,theanalyticallyderivedstrainswerenotusedasacceptancefiguresfortheactualvalues.Theobtainedvalueswereanalyzedandevaluatedtodeterminemagnitudeanddirectionofprincipalstrains.Zfthetestdataincludedanydisplacementswhichwereinexcessofthepredictedextremes,suchdiscrepanciesrequiredresolutionincludingreviewofthedesign,evaluationofmeasurementerrorsandmaterialvariabilityand,conceivably,explorationofthe3.8-128REV.1312/96 GINNA/UFSARstructure.Priortothetest,maximumanticipatedcrackwidthswerepredicted.Xfanycrackwidthsoccurringduringthetestwereinexcessofpredictedvalues,suchdiscrepancieswererequiredtobesatisfactorilyresolvedinasimilarmanneras'ordisplacements.Theanticipatedvaluesforcrackwidthsandacompletereportonotheranticipatedmeasurementswereprovidedbeforethetest.3.8.l.7.2.2MEASUREMENTS.Duringthetestateachspecifiedpressurelevel,aseriesofmeasurementsandobservationsweremadeasfollows:a~Radialdisplacementsofthecylinderat,threeelevationsandatthreeazimuthsinordertoascertainiftheresponsewassymmetricalandtoverifytheestimatedresponseduetoaveragecircumferentialmembranestresses.Onthesamethreeazimuths,horizontaldisplacementsweremeasuredimmediatelyaboveandbelowthedometocylindertransition.b.Verticaldisplacementofthecylinderatthetoprelativetothebaseringgirderatthreeazimuthstodeterminetheverticalelongationofthesidewallandaveragetendonstrains.c~Cylinderbaserotationanddisplacementatthreeazimuthstoverifyhingeactionandsymmetricalresponse.d.Horizontalandverticaldisplacementsofthereinforcingringaroundtheequipmentaccesshatchopening.e.Strainofreinforcingbarsneartheconcretesurfacearoundtheequipmentaccessopening.Smallaccessportstoselectedreinforcingbarswereleftintheconcretetomountstraingaugesjustpriortothestructuraltest.Thesegaugeswereprovidedonlyinthoseplaceswherethislimitedexposureofthesteelreinforcementwouldnotbeinjurioustothebehaviorofthestructureundertest.Followingcompletionofthestructuraltesttheaccessportsweresealed.Thelinerwasinstrumentedwithelectricalresistancestraingaugesintheregionofseveraltypicalpenetrationsaswellasaregionunaffectedbygeometricdiscontinuities.Redundancyinstrainreadingswereaccomplishedbyplacingstraingaugerosettesatseveralpointsaboutthepenetrationopeningsandbyinstrumentingfourpenetrationswhichweresubjectedtosimilarloadingsandrestraints.3.8-129REV.1312/96 GINNA/UFSARgoTodetermineprincipalstresses,inmagnitudeanddirection,thegaugesemployedwereintheformof120-degreerosettes.Associatedwiththegaugeswastheapplicationofastrain-indicatingbrittlelacquertoqualitativelyaugmentthelocalvaluesindicatedbythegaugesandtoshowtheexistenceofasymmetrical,orotherwise,overallstresspattern.h.Horizontaldisplacementsweremeasuredimmediatelyaboveandbelowthedometothecylinderdiscontinuity.Straingaugeswereinstalledonreinforcingbarsneartheexposedconcretesurfaceaboveandbelowthediscontinuity.Detailedconcretecrackobservationsweremadeintheimmediatevicinityofthediscontinuity.Loadcellswereusedonfourtendonsatthetopanchoragestoverifythestressvariationovertherangeoftestpressures.Also,strainmeasurementsweremadeonalimitednumberofbearingplatesatthetopanchorages.Inadditiontodisplacementandstraindata,observationforcracksintheconcretewasmadeinthefollowingmanner:aa.Thecontainmentwasvisuallyinspectedforcracksandcrackpatterns.bb.Atselectedlocations,thesurfacewaswhite-washedfozdetailedmeasurementsofspacingandwidthofcrackstoverifythatlocalstrainswerenotexcessive.Theseselectedlocationsincluded:(1)Quadrantofreinforcingringforlargeopening.(2)Cylindertodometransition.(3)Thecylinder,wherecircumferentialmembranestressesaremaximumandwhereflexuralstressesaremaximum.Themovable(top)anchorheadsofthesidewalltendonswereinspectedforwireswhichhadfailed.Arupturedwirewouldbereadilyevidentbecausetheenergyreleaseuponrupturecausesthewiretonoticeablyriseandremainloose.Themaximumcalculatedradialdisplacementduetothetestpressureofthecylinderwas0.62in.,andaminimumradialdisplacementcalculatedatthehinge(baseofcylinder)was0.06in.Localvariationingeometryofthestructuremadeitextremelydoubtfulthatuniformandpredictablestrainmeasurementswouldbeachievedfromthestraingaugesinstalledondesignatedareasoftheliner,concretereinforcement,andtendonshims.Therefore,specificstrainmeasurementscouldnotbereasonablyestablishedasacceptancestandards.3.8-130REV.1312/96 GINNA/UFSARTheprogramforinstrumentationofthecontainmentstructurewasestablishedtopermitinstallingtheinstrumentsimmediatelybeforethetest,therebyprecludingthenecessityofprovidingunusualprotectionagainstconstructionabuseandweather.Shieldingenclosureswereprovidedonthoseexternalsurfacesofthecontainmentvesselwherestraingaugesweretobelocated.1nstrumentationformakingdisplacementmeasurementsincludeddialgauges,scales,andtheodolitesusedtoreadprepositionedtargets.Allgaugesandtargetswereinstalledimmediatelypriortothetest.Allmeasuringdevices,includingtheodolitesanddialgauges,producedmeasurementsofsufficientprecisiontoascertainsatisfactorystructuralresponse.Foratheodolitelocatedapproximately150ftfromthetargets,itwaspossibletomeasurewithin0.01in.Foramaximumexpectedmeasurementofradialdeflectionof0.62in.,aprecisionof0.02in.(twicetheexpectedmeasuringaccuracy)shouldbesatisfactory.Dialgaugesusedatthehingedetailcouldmeasuretothenearest0.001in.whichwassufficienttodefinethedisplacementandrotationofthehinge.Whereitwaspracticaltousedialgaugesforgreateraccuracy,theywereusedtomakedisplacementmeasurements.3.8.1.7.2.3TEsTPREssUREJvsTzFzcATIoN.The115%designpressureusedinthestructuralprooftestwasjustifiedforthefollowingreasons:aTheprincipaltensilestressinthelinerduringasimultaneousloss-of-coolantaccident(60psigpressure)and0.08gearthquakeamountsto'9.9ksiassumingthelinerparticipatesfullyintakingearthquakeshears.Thetensilestressinthelinerunderthe69psigtestforstructuralintegrityis26.5ksi.Thismeansthatbeforetheleakratetestat60psigthelinerhasbeensubjectedtotensilestressesinexcessofthosewhichwouldoccurduringasimultaneousloss-of-coolantaccidentand0.08gearthquake.Duringtheleakratetestthetensilestressinthelineris23ksi.Duringaloss-of-coolantaccident,withoutearthquake,thetensilestressis19.2ksi.3.8-131REV.1312/96 GINNA/UFSARb.Theprincipaltensilestressintheoutercircumferentialreinforcementbandduringaloss-of-coolantaccidentandsimultaneous0.08gearthquakeis26.4ksi.Theprincipaltensilestressinthisreinforcementduringtestforstructuralintegrityis26.5ksi.Theaveragestressinatendonduringaloss-of-coolantaccidentis145.2ksi,theaveragestressinatendonduringtestsforstructuralintegrityis145.5ksi.d0ThetestpressureconformswiththerecommendationsofOakRidgeNationalLaboratoryregardingtestingofconcretevessels(

Reference:

ORNL-NSIC-5,VolumeZZU.S.ReactorContainmentTechnology,page10.8).3.8~1.7~2~4TEsTREsULTs.SeeSection14.6.1.6.10fortheresultsofthepreoperationalstructuralintegritytestofthecontainment.3.8~1~7~2.5coNTAINMENTRETURNTosERVICETEsTINGPosT1996STEAMGENERAT0RREPLACEMENTAfterplacement,curingandacceptanceofthe1996SteamGeneratorReplacementdomeopeningrepairconcrete,thestructureunderwentafull,pressureIntegratedLeakRateTest(ZLRT)andapartialStructuralIntegrityTest(SIT).Thesetestswerecombinedtosatisfytherequirementsof10CFR50AppendixJ,"PrimaryReactorContainmentLeakageTestingforHater-CooledPowerReactors,"andtodemonstratethatthecontainmentdesignand.domeopeningrepairsareadequatetowithstandpostulatedpressureloads.Thecontainmentinteriorandexteriorwerestructurallyinspectedfoxcracksandanomaliespriortopressurizationandafterdepressurization.Embeddedstraingageswereinstalledonthereplacementrebarandmonitored,throughoutthetesting.TheILRTtestpressurewas60psig.ThisincreasingthepressurefortestwasperformedandacceptedpriortotheSIT.TheoriginalSZTpressurewas69psigwhichrepresented1158ofthedesignpressure.Atestpressureof72psigwasusedin1996whichsupportsapotentialincreaseinthedesignpressureto62psig.3.8-132REV.1312/96 GINNA/UFSARTherepaireddomeopeningsandadjacentareasweremonitoredduringtheSIT.Crackmappingwasperformedintheseareaspriorto,atpressurization,andafterdepressurization.Verticalgrowthofthestructurewasmonitoredatthespringlineandthedomeapex.Radialgrowthmeasurementsweretakenatdefinedelevationsatthreeazimuthlocations.Predictedrebarstrains,designverticalandradialdisplacements,andcracksizeandlengthcriteriawereusedasthetestacceptancecriteria.3.8.1.7.3PostoerationalSurveillance3.8~1~7.3~1LEAKAGEMoNIToRIHG.PostoperationalleakageratetestingisdiscussedinSection6.2.6andinSection14.6.1.6.9.3.8.l.7.3.2INITIALTEHDoNSURVEILLAHcEPRoGRAM.Meansareprovidedtoallowsurveillanceofalluppertendonterminations.Theinitialtendonsurveillanceprogramincorporatedthefollowing:'a~Visualinspectionofalltendontezminationswasmadeafterthestructuralintegzitytest.Arecordwaskeptofallbrokenwires.b.Anumberoftendonsequallyspacedaroundthecontainmentweret:obeinspected6months,1year,3years,and10yearsafterthestructuraltest.Ifmorethan1%ofadditionalwireswerefoundbroken,additionalequallyspacedtendonsweretobeinspecteduntilitwasestablishedthatlessthan1%ofallwiresinspectedwerebroken.C~Aprestressconfirmationlift-offtestismadeonthetendonsreferredtoinitem2above,tocomparerelaxationoftendonswithapredictedcurve.Testsweretobeconducted6months,1year,3years,and10yearsaftertensioning.Thisphaseoftheprogramprovidesforobtainingalift-offreadingbyusingahydraulicjacktojustlifttheupperanchorheadofftheshim.Thisprocedureprovidesadeterminationofthestresslevelinthetendonsandalsoisusedtoconfirmpreviouslypredicat:edstresslossesincludingsteelrelaxationandconcretecreep.Beforereseatingthetendon,thehydraulicjackisusedtolifttheterminationsufficientlytoapplyanadditionalstressinthewiresequaltothatappliedduringpressurizationoftheshell(68)toverifyitsabilitytowithstandadditionalstressesappliedduringaccidentcondit:ions.3,8-133REV.1312/96 GINNA/UFSARd.Eachof40tendonsincludesanextraunstressed0,25-in.diameterwirespecimen,obtainedfromareelrepresentedinthetendon.Thespecimenextendsfromthetopanchorheaddowntoapproximatelyelevation240ft.Onewireisremovedonanannualbasisfozexamination.Thisprovidesaperiodiccheckontendoncorrosion.Theinitialstructuralintegritytestofthecontainmentwasconductedat69psi.Displacementmeasurementswererecordedduringthistestfozpressuresof35,50,60,and69psig.Thecontinuingstructuralintegrityofthecontainmentisverifiedbythetendonsurveillanceprogramanddisplacementmeasurementstakenduringsubsequentleakratetests.Generalagreementwithinitialmeasurementsindicatesastructuralresponsesimilartotheinitialtests.This,plusthetendonsurveillanceprogram,establishesahighdegreeofassurancethattheintegrityofcontainmenthasbeenmaintained.Theinitial10-yeartendonsurveillanceprogramhasbeencompletedasfollows:PrestressingofrockanchorsPzestressingoftendonsStructuralintegritytest6-monthinserviceinspection1-yearinserviceinspection3-yearinserviceinspection8-yearinserviceinspection10-yearinserviceinspectionRetensioningoftendons-newtimezeroFall1966'March-April1969April1969October1969May1970May1972June1977October1979June1980lnJune1980,zetensioningof137outofthetotalof160tendonswasdone.The23tendonsthatwerenotincludedintheretensioningprogramhadbeenretensionedinMay1969,approximately1000hoursaftertheiroriginalstressing.3~8~1.7~3~3CURRENTTENDoNSURYEILLANcEPRoGRAM.Thecurrenttendonsurveillanceprogramincludesthefollowing:3.8-134REV.1312/96 GINNA/UFSARCommencingwiththenewtimezero,June1980,aninspectionforthepresenceofbrokenwiresandprestresslift-offtestsaretobeconductedafter1year,3years,and5yearsandevery5yearsthereafter.The1-yearinspectionwasconductedinJuly1981,the3-yearinspectionwasconductedduringJulyandNovember1983,andthe5-yearinspectionwasconductedinAugust1985.b.Fourteentendons,equallyspacedaroundthecontainmentazetobeinspectedforthepresenceofbrokenwires.Theacceptancecriteriafortheinspectionarethatnomorethanatotalof38wiresin14tendonsarebrokenandthatnotmorethansixbrokenwiresexistinanyonetendon.Ifmorethan38brokenwiresarefound,alltendonsaretobeinspected.However,ifmorethan20wiresin14tendonshavebeenbrokensincethelastinspection,alltendonsaretobeinspected.Ifinspectionrevealsmorethan5%ofthetotalwiresbroken,thereactorwillbeshutdownanddepressurized.Ifasmanyassixbrokenwiresarefoundinanyonetendon,fourimmediatelyadjacenttendons(twooneachsideofthetendoncontainingsixbrokenwires)aretobeinspected.Theacceptancecriterionthenwillbenomorethanfourbrokenwiresinanyoftheadditionalfourtendons.Ifthiscriterionisnotsatisfied,allofthetendonsaretobeinspectedandifmorethan5%ofthetotalwiresarebroken,thereactorwillbeshutdownanddepressurized.cePrestressconfirmationlift-offtestsaretobeperformedonthe14tendonsidentifiedinitem2.above.Thelift-offreadingsareobtainedinthesamemannerasdescribedabovefortheinitialtendonsurveillanceprogram.Beforereseatingatendon,additionalstress(68)willbeimposedtoverifytheabilityofthetendontosustaintheaddedstressappliedduringaccidentconditions.Iftheaveragestressinthe14tendonsislessthan144,000psi(60$ofultimatestress)'equivalentto636kips,alltendonsazetobetestedforprestressandretensioned,ifnecessary,toastressof144,000psi(636kips).d.Oneunstressedwirespecimenisremovedduringeachsurveillanceforexaminationforcorrosionasintheinitialtendonsurveillanceprogram.3.8.1.7~3~4CURRENTTENDONSURVEILLANCEPROGRAMRESULTS~The3-yearsurveillanceofthecontainmentvesseltendonsperformedafterretensioningwasduringJulyandNovember1983.Arepresentativesampleof18tendonswasselected.TheresultsfollowingthesurveillancearedocumentedinthecontainmentvesseltendonsurveillancereportsubmittedtotheNRCbyReference24andtheconclusionsaresummarizedasfollows:3.8-135REV.1312/96 GINNA/UIiSARa~Theresultsofthecompletedtendonsurveillance,inwhich18sampletendonswerelift-offtested,indicatedthattheforcesinthetendonsaremaintainedatthelevelsexpected,andthatnoabnormalforcelosseshaveoccurred.Theagreementbetweentheactualandpredictedtendonforcesisbetterthanthatwhichisgenerallyexperiencedonothercontainments.b.Basedontheforcesmeasuredinthesampletendons,theaverageforcelevelofthetendonsinthecontainmentis711kips,whichexceedstheminimumrequiredvalueof636kipsappearingintheTendonSurveillanceProgramby11.8'b.c~Basedontheresultsofthe1983surveillance,arecommendationwasmadeforfuturesurveillancesthatthepredictedtendonforcecalculationsbebasedona40-yearwirerelaxationof16%,applicabletoalltendons,andmultipliedbyfactorstoaccountfoztheretensioningeffect.d.Fromtheresultsofthesurveillanceandacomparisonofactualstressrelaxationwiththatpredicted,nofutureretensioningoftendonsshouldberequiredfortheremainderoftheexpectedplantlife.Inthesafetyevaluationreportbasedontheresultsofthe1981and1983lift-offtests,theNRCconcludedthatitappearsthatthetendonforcesarestableandthattherearenoabnormaltendonforcelosses;andthattheadequacyandintegrityofthecontainmentisensured.(Reference52).The5-yearsurveillanceofthecontainmentvesseltendonswasperformedinAugust1985andtheresultsdocumentedinareportsubmittedtotheNRCbyReference53.Itwasconcludedthatthesurveillanceprogrammethodologyprovidesaneffectivemeansofmonitoringtendonforcesandthattheresultsofthesurveillanceconfirmedthestructuraladequacyofthecontainmentvessel.Futuresurveillanceswillbeconductedat5-yearintervalsinaccordancewiththeTendonSurveillanceProgram.The1990and1995surveillancetestsshowedthattherequiredtendonprestresscontinuestomeetalldesignrequirements.Aspartofthetestprogram,asacrificialtendonwirewasextracted,examined,andtested.Thewireshowednoevidenceofcorrosionandtestedouttoitsspecifiedyieldandultimatestrengths'hegreasethatsurroundsthetendonwasanalyzedusingmethodsconsistentwithRegulatoryGuide1.35,Revision2,andshowednoevidence.ofwaterorunacceptablelevelsofchlorides,nitrates,ozsulfides.3.8-136REV.1312/96 3.8.1.7.3.5TEsToNRocKANGHQRs.IntheJune1980retensioning,137ofthe160tendonswerestressedtoatleast0.735ultimatestress.Thisforcehadtoberesistedbytherockanchors.Consequently,thetendonretensioningalsoconstitutesatestoftherockanchor.Theelongationsofthewalltendon,measuredatitsupperanchorhead,areacombinationof(1)the.walltendonstrainstimesthetendonlength,plus(2)themovement,ifany,oftheupperanchorheadoftherockanchor.Themeasuredelongationsagreedcloselywiththosepredictedbasedsolelyonthewalltendonstrains.Theseresultsindicatethattherockanchorsdevelopedaforceof0.735ultimatestresswithnoperceptibleslippageormovementoftheirupperanchorhead.3.8-137REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-138REV.1312/96 GINNA/UFSAR3.8.2STRUCTURALREANALYSISPROGRAM3.8.2.1DesignCodes,Criteria,andLoadCombinations-SEPTopicIII-7.B3.8.2.1.1IntroductionTheFranklinResearchCenter,undercontracttotheNRC,comparedthestructuraldesigncodesandloadingcriteriausedintheR.E.GinnaNuclearPowerPlant'designagainstthecorrespondingcodesandcriteriacurrentlyusedforlicensingofnewplantsatthetimeoftheSystematicEvaluationProgram(Reference25).Theobjectiveofthecodecomparisonreviewwastoidentifydeviationsindesigncriteriafromcurrentcriteriaandtoassesstheeffect.ofthesedeviationsonmarginsofsafety.3~8.2~1.1.1SEIsMIcCATEG0RYISTRucTURES~FranklinResearchCenter,forpurposesofthereview,consideredthefollowingtobeSeismicCategoryIstructures.Containment.Cylindricalwall,dome,andslab.Liner(nocreditforstructuralstrengthundermechanicalloads).Equipmenthatch.Personnellocks.Internalstructures.Steamgenerator/reactorcoolantpumpcompartments(reviewedinGenericTaskA-2).Biologicalshield(reviewedinGeneri.cTaskA-2).Fueltransfercanal.Externalstructures.a.Auxiliarybuilding.3.8-139REV.1312/96 GINNA/UFSAR~Spentfuelstoragepool.~Newfuelstoragearea.~Portionsofthefueltransfertube.~SeismicCategoryIequipment.Safetyinjectionpumpsandresidualheatremovalpumps(inpitbeneathbasementfloor).ii)Refuelingwaterstoragetank(RWST).iii)Boricacidstoragetanks.iv)Containmentspraypumps.v)Wasteholduptanks.vi)480-Vswitchgear.b.Controlbuilding.~Controlroom.~Batteryroom.~Relayroom.C~Portionsoftheintermediatebuilding(whichhouseauxiliaryfeedwaterpumps).d.Cabletunnel.e.Intake/dischargestructureandscreenhouse(servicewater(SW))portiononly.f.Diesel-generatorannex.MajorstructuresnotclassifiedasSeismicCategoryIaretheturbinebuildingandtheservicebuilding.3.8-140REV.1312/96 GINNA/UFSAR3.8.2.1.1.2STRvcTURM.CODEs.ThestructuralcodesgoverningdesignofthemajorSeismicCategoryIstructuresfortheGinnaNuclearPowerPlantwereasfollows:StnxctureCONTAINMENTDesiCriteriaCurrentCriteriaConcrete(includingshell,dome,andslab)LinerPersonnellocksandequipmenthatchesACI318-63ACI301-63(specificationsforconcrete)ASMEB&PVSectionZII,1965(ProvisionsofArticle4)ASMEB&PVSectionVIIZ(undated),(FabricationPracticesforWeldedVesselsOnly)ASMEB&PVSectionIX(undated),(weldingprocedureandweldersqualificationsonly)ACI318-63forconcreteASMEB&PVSectionIZI,1965,forsteelASMEB&PVCode,SectionIIZ,Division2,1980(subtitledACZ359-80)ACI301-72(Revision1975)ASMEB&PVCode,SectionIZI,Division2,1980(SubtitledACI359-80)ASMEB&PVCodeSectionZII,Division2,1980(subtitledACZ359-80)Thetwosignificantapplicationsforthisarticleare(1)determinationofthermalstressesinthelinerand(2)analysisofpipepenetrationattachedtoliner.3,8-141REV.1312/96 GINNA/UPSARStructureAUXILIARYBUILDINGCONTROLROOMBUILDINGPORTIONSOFTHEINTERMEDIATEBUILDINGCABLETUNNELINTAKE/DISCHARGESTRUCTUREANDSCREENHOUSEDesiCziteriaAISC-1963ACI318-63AISC-1963ACI318-63AISC-1963ACI318-63ACI318-63AISC-1963ACI318-63CurrentCriteriaAISC-1980ACZ349-80AISC-1980ACI349-80AISC-1980ACI349-80ACI349-80AISC-1980ACI349-80DIESEL-GENERATORANNEXAISC-1963ACI318-63AISC-1980ACI349-803.8.2~1.1.3CoDECoHPARl'soN.Thecurrentandolder(Ginnadesign)codeswere6/501comparedparagraphbyparagraphtodeterminewhateffectsthecodechangescouldhaveontheloadcarryingcapacityofindividualstructuralmembers.Appendix3Fisasummaryofthecodecomparisonfindings.ThosecodechangesjudgedbyFranklinResearchCentertohavethepotentialtosignificantlydegrademarginsofsafetyarelistedinTables3.8-10through3.8-14.Table3.8-15liststhestructuralelementsforwhichapotentialexistedformarginsofsafetytobelessthanthatoriginallycomputedbecauseofloadcriteriachangessinceplantdesignandconstruction.RochesterGasandElectricwasrequestedbytheNRCtoreviewallSeismicCategoryIstructuresatGinnaStationtodetermineifthestructuralelementslistedinTable3'-15occurinthedesigns,andforthosethatoccur,toassesstheactualimpactoftheassociatedcodechangesonmarginsofsafety.(Reference26)TheresultsofthisassessmentwerereportedinReferences27and28andaresummarizedinSection3.8.2.1.2.3.8-142REV.1312/96 GINNA/UFSAR3.8.2.1~2AssessmentofDesinCodesandLoadChanesforConcreteStructuresTheconcretestructuralelementsidentifiedbyFranklinResearchCenterasbeingpotentiallyaffectedbyconcretedesigncodechangesandbyanyassociatedloadorloadcombinationchangeswereevaluatedandtheresultswereasfollows(References26and28).3.8~2~1~2~1CQLUHNSWITHSPLIGEDREINFoRGING~ACI349-76,Section7.10.3,specifiesrequirementsforcolumnswithsplicedreinforcingwhichdidnotexistintheACI318-63Code.TheACI349-76Coderequiresthatsplicesineachfaceofacolumn,wherethedesignloadstressinthelongitudinalbarsvariesfromfyincompressionto1/2fyintension,bedevelopedtoprovideatleasttwicethecalculatedtensioninthatfaceofthecolumn(splicesincombinationwithunsplicedbarscanprovidethisifapplicable).Thiscodechangerequiresthataminimumof1/4oftheyieldcapacityofthebarsineachfaceofthecolumnbedevelopedbybothsplicedandunsplicedbarsinthatfaceofthecolumn.ToassesstheimpactofthischangeonGinnaStation,concreteoutlinedrawings,reinforcingfabricationdrawings,andavailableoriginalcalculationswerereviewedtodeterminetowhatextentcolumnswithsplicedreinforcingexist.Asaresultofthesereviews,atotalof57columnswithsplicedreinforcingwasfound.Theyoccurintheauxiliarybuilding(14),controlbuilding(1),diesel-generatorbuilding(6),intermediatebuilding(20),andscreenhouse(16).Allofthecolumnsfounduselapspliceswhichoccuratthebottomofthecolumns.Toevaluatethecolumnsintheauxiliarybuilding,controlbuilding,diesel-generatorbuilding,andintermediatebuilding,theyweredividedintogroupsaccordingtotheirreinforcingdetailsandsize.Thisgroupingresultedintheformationofninegroupsofsimilarcolumns.Thecolumnwithineachgroupjudgedtohavethemostsevereloadfromtheapplicableloadsandloadcombinationswaschosenforevaluation.Additionally,onecolumnfromthescreenhousewaschosenforevaluation.ThesecolumnswereevaluatedforcompliancewithACI349-76provisions.3.8-143REV.1312/96 GINNA/UFSARThecapacityofthesplicedreinforcingwascalculatedinaccordancewiththecodeandthiscapacitywasusedwiththeworst-caseloadcombinationtodetermineifthecode-requiredfactorofsafetywasmet.IfthesplicesdidnothavetheminimumrequiredsplicelengthtofullydevelopthebazinaccordancewithACI349-76,thesplicecapacitieswerereducedbyafactorofLp/Ld(whereLpisthesplicelengthprovidedandLdistheACI349-76requiredsplicelength).Theresultsoftheevaluationfoundthatallconcretecolumnsevaluatedmeetand/orexceedthecode-requiredfactorofsafety.3.8~2.1.2.2BRAGKETsANDCoRBELS(NQToNTHECQNTAINMENTSHELL).ACI318-63didnothaveanyspecificrequirementsforbracketsandcorbels.ProvisionsforthesecomponentsareincludedinACI349-76,Section11.13.Theseprovisionsapplytobracketsandcorbelshavingashear-span-to-depthratioofunityozless.Theprovisionsspecifyminimumandmaximumlimitsfortensionandshearreinforcing,limitsonshearstresses,andconstraintsonthemembergeometryandplacementofreinforcingwithinthemember.ConcreteoutlinedrawingsandavailableoriginalcalculationswerereviewedtodetermineifbracketsandcorbelswereusedatGinna.Atotalof12corbelswasfoundduringthesereviews.Theyoccurintheauxiliarybuilding(4),intermediatebuilding(3),andcontainmentinteriorstructures(5).Sevenofthesecozbelssupportprimarystructuralelements(e.g.,beams,slabs).Theremainingfivecorbelssupportsecondaryelements(e.g.,acorbelontheauxiliarybuildingexteriorwallswhichsupportsa4-in.architecturalbrickfacing)whichgenerallycausenosignificantloadonthecorbel.Cozbelshavingsimilargeometryandreinforcingdetailsweregroupedtogether,andthecorbelfromeachgroupjudgedtohavetheworstloadwasevaluated.Ifthiscozbelwasacceptable,thentheothersinthegroupwerejudgedacceptable.TheselectedcorbelswerefirstevaluatedforcompliancewithACI349-76requirementsforminimumandmaximumreinforcing,geometryconstraints,andplacementofreinforcing.Ifalloftheserequirementsweremet,thecapacityofthecorbelwascalculated3.8-144REV.1312/96 GINNA/UIiSARinaccordancewithACI349-76.Thiscapacitywasused,alongwiththeloadfromtheworst-caseloadcombination,todetermineifthecode-requiredfactorofsafetywasmet.Ifacorbeldidnotconformtotheaboverequirements,thentheshearstressesintheconcreteimpartedbytheloadsonthecorbelwerecomparedtothecodepermissibleshearstressforunreinforcedconcrete(eventhoughthereactuallywassomereinforcinginthecorbel).Iftheactualstresswaslessthanthatpermitted,thecorbelwasjudgedacceptable.Theresultsoftheevaluationofthetwelvecorbelswere:a~Sixofthesevencorbelssupportingprimarystructuralelementsmeetthecoderequirementsforreinforcing,geometry,andfactorofsafety.Theremainingcorbeldoesnotconformtothecoderequirementsforminimumreinforcing,.butthestressesinthiscorbelaresmallandthecorbelwasjudgedtohaveanacceptablemarginofsafety.b.Thefivecozbelswhichsupportsecondaryelementsdonotcomplywiththecoderequirementsforreinforcing.However,allofthesecorbelshaveloadswhichproduceinsignificantstressesinthecorbelsandarethereforejudgedtohaveanacceptablemarginofsafety.3.8.2~1.2.3ELEHENTSLQADEDzNSHEARWzTHNoDIAGDNALTENszoN(SHEARFRzcTzoN)~TheprovisionsforshearfrictiongiveninACI349-76didnotexistinACI318-63.Theseprovisionsspecifyreinforcingandstressrequirementsforsituationswhereitisinappropriatetoconsidershearasameasureofdiagonaltension.ConcreteoutlinedrawingsandavailableoriginalcalculationswerereviewedtodetermineifconditionsrequiringevaluationforshearfrictionexistatGinna.Asaresultofthisreview,atotalof203shear-frictionconditionswasfound.Theyoccurintheauxiliarybuilding(12),containmentinteriorstructures(133),andscreenhouse(58).Theseconditionsexistforembeddedplatessupportingsteelbeams,concreteledges,removableconcreteslabs,beampockets,andseveralmiscellaneoussituations.Toevaluatetheseconditionsfoundintheauxiliarybuildingandcontainmentinteriorstructures,theyweredividedintoanumberofgroups3.8-145REV.1312/96 GINNA/UFSARbysimilarity,consideringtheirgeometryandreinforcingdetails.Thisapproachresultedintheformationof15groups.Theconditionineachgroupjudgedtohavethemostsevereloadfromtheapplicableloadsandloadcombinationswasevaluatedfozcompliancewiththecodeprovisions.Twoconditionsinthescreenhousewerealsoevaluatedforcompliancewiththecodeprovisions.Thecontrollingconditionswerefirstevaluatedbydeterminingtheirshearfrictioncapacityutilizingonlythosedetailsstrictlyconformingtothecode.NocreditwastakenforotherreinforcinginstalledwhichdidnotmeetAC1349-76provisions.Thiscapacitywasthencomparedtothecontrollingfactoredloadcombinationtoseeifthecode-requiredfactorofsafetywasmet.Efthefactorofsafetywasnotsatisfied,severalalternativeevaluationapproacheswereusedtoassesssafety,andthesearedescribedbelowalongwithasummaryofallresults.Theresultsoftheevaluationsforthiscodechangeindicatethefollowingforthe15groupsintheauxiliarybuildingandcontainmentinteriorstructuresevaluated:aeSixgroupsrepresenting26conditionshavesafetyfactorsthatareequaltoorgreaterthanthecode-requiredfactorofsafety,consideringonlycode-satisfyingreinforcing.b.Fivegroupsrepresenting108conditionshavesafetyfactorsthatareequaltoorgreaterthanthecode-requiredfactorofsafety,consideringcode-satisfyingreinfoxcingplustakingcreditforanyadditionalwell-anchoredreinforcinginstalled.ceTwogroupsrepresentingthreeconditionshavefactorsofsafetythatareequaltoorgreaterthanthecode-requiredfactorofsafetyforshearstressesinunxeinforcedconcrete.Theseelementshadsmallloadsandthecapacitieswerecheckedignoringanyreinforcingpresentinthedesign.d.Onegrouprepresentingsixconditions(beampocketsforbeamssupportingtheintermediatebuildingflooratcolumnlineN)haveanactualfactorofsafetylessthanthecode-requiredfactorofsafety(consideringappropriateloadfactors)but,greaterthanunityagainstultimatefailuxe(withallloadfactorsreducedto1.0).3.8-146REV.1312/96 GINNA/UFSARe.Onegrouprepresentingtwoconditions(thrustblocksatthebaseofeachreactorcoolantpump)meetsthecode-requiredfactorofsafetyassuminganin-situconcretestrength(f'c)of3300psi,asopposedtothe28-daystrengthof3000psi.Thisin-situstrengthisjudgedtobereasonablebasedupontypicalconcretecompressivestrengthincreasesoverlongtimeperiods.Theresultsoftheevaluationforthiscodechangeinthescreenhouseshowthesafetyfactorsaregreaterthanthoserequiredbythecodeconsideringonlycode-satisfyingreinforcing.3.8.2.1.2.4STRUCTURALWALLS-PRIHARYLOADCARRYING.Shearwalls.ACl349-76,Sections11.15.1through11.15.6,specifiesrequirementsforreinforcingandpermissibleshearstressesforin-planeshearloadsonwalls.TheACI318-63Codehadnospecificrequirementsforin-planeshearonshearwalls.ConcreteoutlinedrawingsandavailableoriginalcalculationswerereviewedtodetermineifshearwallsexistatGinna.Allwallswhichconnectarooforfloortoalowerfloorwereconsideredtoactasshearwalls.Asaresultofthedrawingandcalculationreview,atotalof187shearwallswasidentified.Theywerefoundintheauxiliarybuilding(87),intermediatebuilding(1),controlbuilding(3),diesel-generatorbuilding(16),containmentinteriorstructures(59),andscreenhouse(21).Toevaluatetheshearwallsintheauxiliarybuilding,controlbuilding,intermediatebuilding,diesel-generatorbuilding,andcontainmentinteriorstructures,thewallsineachbuildingwereconsideredasaseparategroup.Eachgroupofwallswasfurtherbrokendownbyclassifyingeachwallaseitheraninteriororexteriorwall.Onewalljudgedtoberepresentativeofeachclassificationwithinthegroupwasthenevaluated.Zftheserepresentativewallswerefoundtobeacceptable,thentheotherwallswithintheirclassificationwerejudgedacceptable.Awallwasevaluatedbyfirstdeterminingthecontrollingloadcombinationforthewall,andthendeterminingthein-planevertical,in-planehorizontal,and3.8-147REV.1312/96 GINNA/UFSARlateralloadsonthewall.Usingtheseloads,thewallswereevaluatedusingthecodeprovisions.Verticalandlateralloadsonthewallswereevaluatedinadditiontoin-planehorizontalloadsbecausetheydirectlyinfluencetherequirementsforreinforcinginthewalls.Theshearwallsinthescreenhousewerequalitativelyevaluatedbycomparisontotheauxiliarybuilding.Theresultsofthisevaluationareasfollows:a~Theshearwallsintheauxiliarybuilding,intermediatebuilding,controlbuilding,containmentinteriorstructures,andscreenhousemeetthecoderequirements.b.Theshearwallsinthediesel-generatorbuildingdonotmeetthecurrentcoderequirementsforin-planeloadsorflexuralbendingfromlateralloads.(ThiswaszeevaluatedandisbeingupgradedaspartoftheGinnaStationStructuralUpgradeProgram.)Punchinshear.ACT349-76,Section11.15.7,specifiespermissiblepunchingshearstressesforwalls.ACI318-63hadnospecificprovisionsforwallsforthesestresses.Punchingloadsarecausedbyrelativelyconcentratedlateralloadsonthewalls.Theseloadsmaybefrompipesupports,equipmentsupports,ductsupports,conduitsupports,ozanyothercomponentproducingalateralloadonawall.Concreteoutlinedrawings,availableoriginalcalculations,andpipesupportdrawingsandloadsheetsfromtheGinnaPipingSeismicUpgradeProgramwerereviewedtodeterminewherepunchingloadsoccurandwhatthemagnitudeoftheseloadsare.Asaresultofthisreview,bothpipeandequipmentsupportloadswerejudgedtocausethemostseverepunchingloads.Toevaluatethewallsforequipmentpunchingloads,theloadsfoundfromtheabovereviewwereappliedtothewallsconsideringthespecificdetailsofeachdesign.Toevaluatetheloadsfrompipesupports,sincetherearesomanysupports,themostsevereloadsfoundwereappliedtothethinnestwallfound,conservativelyusinga6-in.areaof2application.Theseloadswereused,alongwiththecapacityofthewall3.8-148REV.1312/96 GINNA/UFSARcalculatedinaccordancewiththeACI349-76provisions,todetermineifthecode-requiredfactorofsafetywasmet.Asaresultoftheaboveevaluations,itwasfoundthatthewalls,inallcases,meetthecode-requiredfactorofsafetyforpunchingshear.3.8.2.1.2.5ELEMENTSSUBJECTToTEMPERATUREVARIATIONs.ACZ349-76,AppendixA,specifiesrequirementsforconsiderationoftemperaturevariationsinconcretewhichwerenotcontainedinACl318-63.ThesenewprovisionsrequirethattheeffectsofthegradienttemperaturedistributionandthedifferencebetweenmeantemperaturedistributionandbasetemperatureduringMODES1and2oraccidentconditionsbeconsidered.Thenewprovisionsalsorequirethatthermalstressesbeevaluatedconsideringthestiffnessandrigidityofmembersandthedegreeofrestraintofthestructure.Concreteoutline.drawingsandpertinentcalculations(inbuildingswhereapossiblethermaldifferentialconditionofanyconsequencecouldoccur)werereviewedtodeterminetheextentofpossiblethermaldifferentialconditionsinrestrainedconcreteelements.Atotalofsixpossibleconditions/elementswasfoundduringthisreview.Theseconditionsoccurredinthecontainmentinteriorstructures(5)andinthecabletunnel(1).Basedonrestraintanddegreeofthermaldifferential,thecabletunnelconditionwasjudgedtobetheworstcaseandwasthereforeevaluatedtodeterminetheeffectonthefactorofsafety.Theconditionsforthecontainmentinteriorstructuresarelessseverebecausethetemperaturedifferentialislessandthetemperaturewouldtendtodissipateandequalize.Theevaluationdeterminedthemomentsinthecabletunnel,usingtheworstloadingcombination.Theactualfactorofsafetywasdeterminedbydividingthetheoreticalmomentcapacityoftheconcretesectionbytheappliedmomentsduetotheloadsimposed.ThisactualfactorofsafetywasthencomparedtotheACZ349-76requiredfactorofsafety.Theactualfactorofsafetyforthecabletunnelwasgreaterthanthecode-requiredfactorofsafety.Becausethecabletunnelwasconsidered3.8-149REV.1312/96 GINNA/UFSARthe"worst-case"conditionforthethermaldifferentialrequirement,theremainingfiveelementswerejudgedtomeet.thecurrentcoderequirementsof'ACI349-76,AppendixA,forthermalloads.3.8.2.1.2.6AREABoFCQHTAIHHEHTSHELLSUBJEGTToPERIPHERALSHEAR~ConcretecontainmentdesigniscurrentlygovernedbytheASMEBoilerandPressureVesselCode(B&PVCode),SectionIII,Division2,1980.Theprovisionsforperipheral(punching)shearappearincodeSectionCC-3421.6.TheseprovisionsaresimilartotheACI318-63Codeprovisionsforslabsandfootings,exceptthattheallowablepunchingshearstressinCC-3421.6includestheeffectofshellmembranestresses.Formembranetension,theallowableconcretepunchingshearstressintheASMEcodeislessthanthatallowedbyACI318-63.Significantshellpunchingshearloadscanoccuratshellpenetrations.Toevaluatetheimpactofthecodechange,allpenetrationsfoundfromareviewofthecontainmentshellconcretedrawingsweredocumented.Asaresultofthisreview,126penetrations,includingtwolargeaccessopenings,wereidentified.Sincethepunchingshearcapacityoftheshellatpenetrationswasexpectedtobecloselyrelatedtopenetrationsize,thepenetrationsweregroupedbypenetrationsleevediameter.Thenominalpenetrationsleevediametersrangefrom6in.toS4in.andthetwolargeaccessopeningsare9ft6in.and14ft0in.Atotalof10groupsofpenetrationswasdefinedinthismannez.Allpenetzationswerefoundtobeprovidedwithacircumferentialringarrangementtoallowtransferofthepunchingshearloaddirectlytotheconcrete.Theeffectoftheperipheralshearcodechangewasevaluatedbyexaminingtheshellcapacityofthepenetrationsforcurrentcodeadequacy.Wheresimplecalculationsorjudgmentshowedthatapenetrationgroupisclearlyadequate,theneedforassessmentwaseliminated.Forthosegroupsthatwereassessed,a"worst-case"penetrationfromeachgroupwaschosenandtheshellcapacityfozthosepenetzationswasevaluated.Actualfactorsofsafetywerecalculatedandcompaxedtothefactorofsafetyrequiredbythecode.Whentheshellcapacityforthe"worst-case"penetrationinagroupwasfoundadequate,thecapacityoftheotherpenetrationsinthegroupwasjudgedadequate.3.8-150REV.1312/96 GINNA/UFSARTheresultsoftheevaluationsareasfollows:a~Forpenetrationgroupswith6-in.,12.50-in.,'nd14.25-in.diametersleeves,shellcapacitywasfoundadequatebycalculations.Forthesepenetzations,thecode-specifiedpunchingshearcapacityoftheconcreteexceedstheultimateaxialloadofthepipepenetration.Thisaxialloadisthemaximumthattheprocesspipeiscapableofdevelopingbasedonitstensilestrength.b.Forpenetrationgroupswith24-in.and54-in.diametersleeves,theshellcapacitywasjudgedtobeadequate.Nosignificantpunchingshearloadswereidentified,andanevaluationwasnotconsiderednecessary.CoAtthelargeaccess(equipmentandpersonnel)openings(onegroup),significantpunchingshearloadsoccurduetocontainmentinternalpressureonly.Adequacyagainstpunchingfailurelocaltothepenetrationundertheabnormalloadingcondition(90psiginternalpressure,whichis1.5Pa)wasdemonstratedbycalculations.d.Forthegroupswith10-in.and24.25-in.diametersleeves,theshellcapacitywasshownadequate.Thecalculatedpunchingshearloadsfozthe"worstcase"penetrationsarewellbelowthecode-specifiedpunchingshearcapacityoftheconcrete.Pipebreakloadswereusedfortheevaluationandwereobtainedbyconservativelyusingafactorof2.0timesthepipeoperatingpressuretimesthepipearea.Thismethodisconsistentwithcurrentindustrypractice.e.Forthe29-in.and45.25-in.diametersleevegroups(feedwaterandmainsteampenetzations),theshellwasfoundnottomeetthecurrentcode-requiredfactorofsafetywhenusingpiperuptureloadsfromtheoriginalplantdesigncalculations.However,theactualfactorofsafetyisgreaterthan1~0,therebyprovidingamarginofsafetyagainstultimatefailure.3.8~2~1~2~7AREAsoFCoNTAINMENTSHELLSUBJEGTToToRBIoN~ConcretecontainmentdesigniscurrentlygovernedbytheASMEB&PVCode,SectionIII,Division2,1980.SectionCC-3421.7ofthecodecontainsprovisionsfortheallowabletorsionalshearstressintheconcrete.SuchprovisionswerenotcontainedintheACI318-63Code.Thepresentallowabletorsionalshearstressincludestheeffectsofthemembranestressesinthecontainmentshellandisbasedonacriterionthatlimitstheprincipalmembranetensionstressintheconcrete.3.8-151REV.1312/96 GINNA/UISAROnlytwotypesofpenetrations,themainsteamandfeedwater,areprovidedwithtorsionresistingelementswhichrelyupontheconcretecapacity.lnbothcases,redundantelementsareprovided.Thepenetrationsleeveshavelugsweldedtothem,whichcouldresisttorsionalloadsandimparttorsionalshearstressestotheconcrete.However,thefinaldesignnotedintheoriginalcalculationsshowsthatthetierodsincorporatedintothepenetrationdetailswereadequatelydesignedtoresisttorsion.Thesetierodsdonotrelyuponthetorsionalshearcapacityoftheconcrete,and,therefore,atorsionalshearstresscheckwasnotrequired.3.8.2~1.2.8BRAGKETsANDCQRBELs(ONTHECoNTAINMENTSHELL).TheACI318-63Codedidnotspecifyrequirementsforbracketsandcorbels.ProvisionsforthesecomponentsareincludedintheASMEB&PVCode,SectionIII,Division2,SectionCC-3421'.Theseprovisionsapplytobracketsandcozbelshavingashear-span-to-depthratioofunityorless.Theprovisionsspecifyminimumandmaximumlimitsfortensionandshearreinforcing,limitsonshearstresses,andconstraintsonthemembergeometryandplacementofreinforcingwithinthemember.Concreteoutlinedrawingsandoriginalcalculationsforthecontainmentshellwerereviewedtodetermineifbracketsandcorbelswereusedinitsdesign.Asaresultofthereview,nobracketsorcorbelswerefoundonthecontainmentshell.Therefore,nofurtherevaluationwasrequired.3.8.2~1.2.9AREASOECONTAINMENTSHELLSUBJECTTOBIAXIALTENSION~Increasedtensiledevelopmentlengthsarerequiredforreinforcingsteelbarsterminatedinbiaxialtensileareasofreinforced-concretecontainmentstructuresinaccordancewithSectionCC-3532.1.2oftheASMEB&PVCode,SectionIII,Division2,1980.Forbiaxialtensionloading,bardevelopmentlengths,includingbothstraightembedmentlengthsandequivalentstraightlengthsforstandardhooks,arerequiredtobeincreasedby25%overthestandarddevelopmentlengthsrequiredfozuniaxialloading.Nominaltemperatuzereinforcementisexcludedfromthesespecialprovisions.ACI318-63hadnorequirementsrelatedtothisincreaseindevelopmentlength.3.8-152REV.1312/96 GINNA/UFSARContainmentshellconcreteoutlinedrawingswereexaminedtoidentifytheareaswhezethemainreinforcingbarsareterminatedwitheitherstraightdevelopmentlengthsorstandardhooks.Specialattentionwaspaidtosuchareasaspenetrations,wherebarsarelikelytobeterminated.Thedrawingreviewrevealednineareaswherethemainreinforcingbarsinthewallanddomeareterminated.Thesecasesinvolveverticalreinforcementinthewallandmeridionalbarsinthedomeabovethezinggirder.Mainhorizontalwallbarswerefoundtobeterminatedusingpositivemechanicalanchoragedevices(suchasCadweldsandstructuralsteelshapes)thatazecapableoftransferringforcestootherreinforcement.Typically,mainhorizontalandverticalbarsterminatedatpenetrationsazeanchoredusingthesepositivemechanicalanchorages.However,thedrawingreviewrevealedsevenadditionalareaswheresupplementarybarsareterminatedatpenetrations.Thirteenofthe16areaswereevaluatedindividuallybyfirstdeterminingthelocationofthecriticalsectiontobeevaluatedandthencomparingthetensiledevelopmentlengthsrequiredforthecontrollingloadcombinationtothedevelopmentlengthsprovided.Theremainingthreeareasazesimilartothreeoftheareasevaluated,andindividualevaluationwasnotconsideredwarranted.Inallofthe13areasevaluated,theprovidedtensiledevelopmentlengthsexceededASMECoderequirements.Inseveraloftheareasinvestigated,barswereactuallyterminatedoutsideofthebiaxialtensilestressarea(i.e.,incompressiveareaswhichazeexcludedfromthesespecialrequirements).Asaresultofthisevaluation,itisconcludedthatthecodechangedidnotreducethecontainmentshellmarginofsafety.3.8~2.1~2.10STEELEMBEDNENTSTRANsNITTINGLoADsToCoNCRETE~AppendixBtoACI349-76isanewappendixwhichspecifiesnewrequirementsfozstressanalysisofsteelembedmentsusedtotransmitloadsfromattachmentsintothereinforced-concretestructure.Theonlyareaofconcernofthischangewastheintegrityofthecontainmentdomelinerandstudsunderpressureandtemperatureloadsthatazecausedbytheloss-of-coolantaccidentandsteamlinebreakloadingconditions.Anevaluationoftheintegrityofthelinerandstudswasconductedby3.8-153REV.1312/96 GINNA/UFSARGilbertCommonwealthforRGEEandsubmittedtotheNRCbyRef'erence29.Theconclusionswerethatalthoughsomefailuresofstudscouldpossiblyoccur,thesewouldbeattheshankofthestudsandthus,notearingofthelinerwouldoccur.DetailsofthisanalysisareprovidedinSection3.8.2.3.3.8-154REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLPZGC)\3.8-155REV.1312/96 GINNA/UFSAR3.8.2.1.3AssessmentofDesinCodesandLoadChanesforSteelStructuresRochesterGasandElectricreportedontheresultsoftheevaluationofsteelcodeandloadchangesbyReference28.SeismicloadingsforsteelstructureswerenotspecificallyanalyzedbecauseRGaEconsideredthatthemainstructuralsteelelementsweredeterminedsuitablebytheLawrenceLivermoreLaboratoryAnalysisdocumentedinNUREG/CR-1821,SeismicReviewoftheRobertE.GinnaNuclearPowerPlant,whichwasapprovedbytheNRCbyReference30.Thesteelcodechangesconcerningcopedbeams,momentconnections,andsteelembedmentswereevaluatedrelativetotheseismicloadsandloadcombinationsinconjunctionwiththeStructuralUpgradeProgram.TheevaluationofcodechangesandnewloadchangeswasperformedforalleightmajorfindingsoftheAISC1963versusAZSC1980CodecomparisonandtheonemajorfindingofACZ318-63versusACI349-80Codecomparison..Theevaluationswereforloadsandloadcombinationsinvolvingnormalandoperating-basisearthquakeloads.SafeshutdownearthquakeloadsweregenerallyaddressedinNUREG/CR-1821withexceptionsnotedabove.TornadoloadswereaddressedintheGinnaStructuralUpgradeProgram.Theresultswereasfollows:3.8.2.1.3.1SHEARCQNNEGToRszNCCMPoszTEBEAMs.ThecodechangethatrequiredthisevaluationinvolvednewrequirementsaddedintheAZSC1980Code,Subsection1.11.4,ascomparedwithAISC1963Code,Subsection1.11.4.Thecodechangeaffectsthedistribution,diameter,andspacingofshearconnectorsincompositebeams.Theapproachusedforthisevaluationwastoreviewthecalculationsandtheconstructiondrawingsfortheuseofshearconnectorsforcompositebeams.Theresultsoftheabovereviewshowednouseofshearconnectorsforcompositedesignontheplantstructuresreviewed,andtherefore,nochangetothemarginofsafety.3.8-156REV.1312/96 GINNA/UPSAR3.8.2.1.3.2COMPosITEBEAMsWITHSTEELDEGK~ThisevaluationisrequiredduetotheadditionofanewSubsection1.11.5totheAISC1980Code.Thecodeadditiondefinesrequirementsforcompositebeamswhereaformedsteeldeckisusedforsupportoftheconcreteslab.Theapproachusedforthisevaluationwastoreviewthecalculationsandtheconstructiondrawingsforcompositebeamswithsteeldecking.Theresultsofthereviewdeterminedthatthemainbeamsandgirdersontheturbinebuildingoperatingfloorelevation289ft6in.andlocatedbetweenallcolumns,hadshearconnectorsattachedtothetopflange.Theconcreteslabwassupportedbysteeldecking.Selectedbeamswereanalyzedfortheloadsshownonthedrawings.Theresultsoftheanalysisshowedthatcompositedesignwasnotrequiredforthesebeamsanditissurmisedthattheshearconnectorswereaddedtoprovidelateralsupportforthetopflange.Therefore,thecodechangehasnoeffectonthemarginofsafety.3.8.2~1.3~3HYBRIDGIRDERs~ThisevaluationwasrequiredduetotheadditionofanewrequirementbytheAISC1980CodetoSubsection1.10.6whichdidnotappearintheAISC1963Code.Thisnewrequirementlimitsthemaximumstressintheflangeofahybridgirder.Theapproachusedforthisevaluationwastoreviewtheconstructiondrawingsandspecificationsfortheexistenceofhybridgirders.Theresultsofthereviewshowednouseofhybridgirdersontheplantstructures.Therefore,thiscodechangedoesnotaffectthemarginofsafety.3.8.2.1.3.4CcMPREssIQNELEMENTs.ThisevaluationisbasedonarevisiontoSubsection1.9.1oftheAISC1963CodebynewprovisionsinSubsection1.9.1.2andAppendixCoftheAISC1980Code.3.8-157REV.1312/96 GINNA/UFSARThesenewprovisionsrevisetheapproachfordesigningcertainunstiffenedcompressionelementswhichexceedthewidthtothicknessratiosprescribedinthecodes'romtheresultsofcasestudy10intheFranklinResearchCenterreport(Reference25),itwasconcludedthatonlyT-sectionsincompressionneedtobereviewedastheAISC1963Codeismoreconservativeforothermembersincompression.TheapproachusedforthisevaluationwastoreviewthemembersinthestructuralmodeloftheplanttodeterminewhereT-sectionswereusedandiftheyweresubjecttocompression,underthenormaloperatingloadcombinationsevaluatedinthisreport.TheresultsofthecomputeroutputreviewshowednoneoftheT-sectionsfailingthecodecheckfornormalloadcombinationswiththememberincompression.Itwasthereforeconcludedthatfornormalloadcombinationsthemarginofsafetyfozmembersaffectedbythiscodechangeisstillacceptable.3.8~2~l.3.5TEHSIOlfMEMBERS.ThisevaluationwasnecessarybecauseofanewrequirementintheAISC1980CodeaddedinSubsection1.14.2.2.Thiscodeadditiondefinestherequirementsforthedesignofaxiallyloadedtensionmemberswheretheloadistransmittedbyboltsorrivetsthroughsomebutnotallofthecrosssectionofthemember.Agenericreviewofthetwocodeswasperformedtocompareadesignexampleusingtheformulasandallowablesforeach.TheresultsshowedthattheAISC1963Codeprovidedamoreconservativedesign.Itwasthereforeconcludedthatthiscodechangedoesnotdecreasethemarginofsafety.3.8-158REV.1312/96 GINNA/UFSAR3.8.2.1~3.6COPEDBEAMS.AnewrequirementwasaddedintheAISC1980Coderequiringthatbeamendconnections,wherethetopflangeiscoped,becheckedforatearingfailure,"blockshearcapacity",alongaplanethroughthefasteners.Themethodusedtoevaluatethiscodechangewastocompletelyreviewallsteelfabricationdrawingsformajormemberswithboltedconnectionsandcopedtopflanges.Girts,platformsteel,stairstringers,andmiscellaneoussteelwerenotincludedasthesemembersarelightlyloadedandshearisnotaconcern.Thedrawingreviewturnedup452copedbeamswith335differenterectionmarks.Fromthistotalarandomselectionof55beamswasstatisticallychosenforevaluationofthecodechangeeffects.Theevaluationconsistedofcalculatingtheblockshearcapacityofeachofthebeamsselectedandcomparingthiscapacityagainsteithertheloadsshownontheconstructiondrawings,theshearcapacityoftheconnectionbolts,orthereactionbasedonthemaximumallowableloadforthebeamspan.Inallcasestheblockshearcapacitywashigherthantheseothercontrollingreactions.Itwasthereforeconcludedthat,usingastatisticalapproachata95%confidencelevel,nomorethan5'hofthepopulationofcopedbeamsmayhavecapacitiescontrolledbythiscodechange.(SafeshutdownearthquakecheckswereconductedaspartoftheGinnaStationStructuralUpgradeProgram.)3.8.2.1.3.7MDHENTCDNNECTIoNs.AnewrequirementwasaddedintheAISC1980CodeinSubsections1.15.5.2,1.15.5.3,and1.15'.4.Thesesubsectionsdefinetherequirementsforcolumnwebstiffenerswheremomentconnectedmembersframeintocolumns.Theconstructionandfabricationdrawingswerethoroughlyreviewedfortheuseofmomenttypeconnections.Thissurveyfoundthatonlysomeroof3.8-159REV.1312/96 GINNA/UFSARbeamsinthescreenhouseweredesignedanddetailed'asmomentconnections.TheseconnectionswerethencheckedagainsttheAISC1980Codeanditwasdeterminedthat,basedonthemembersizes,details,andoriginalappliedloads,nocolumnwebstiffenersarerequired.Itwasthereforeconcludedthatfortheloadcombinationreviewedthecodechangedoesnotaffectthemarginofsafetyforthestructuresreviewed.(SafeshutdownearthquakecheckswereconductedaspartoftheGinnaStationStructuralUpgradeProgram.)3~8~2~1.3.8LATERALBRACING.TheAISC1963Code,Section2.8,hasbeenrevisedbyAISC1980Code,Section2.9.Thiscodechangerevisestheformulasfordeterminingthemaximumspacingforlateralsupportsofmembersdesignedusingplasticdesignmethods.ThiscodechangewasevaluatedbyareviewoftheexistingavailablecalculationsandtheoriginalFSAR.Noevidencewasfoundofplasticdesignmethodsbeingused.Itwasthereforeconcludedthatthiscodechangedoesnotaffectthemarginofsafetyforthestructuresreviewed.3.8~2~1.3~9STEEEEHBEDHENTS.ThiscodechangeinvolvestheuseoftheACI349-80Code,AppendixB,forthe'esignofsteelembedmentsinconcretestructures.TheACI318-63Codeusedintheoriginaldesigndidnotspecificallyaddressthedesignofsteelembedments.Itwasuptotheindividualdesignertoprovideanembedmentwhichsatisfiedtheallowablestressesinthecode.Workingstressdesignwasthemethodusedfordeterminingloadsandstresses.ThelatestACICoderequirestheuseofultimatestrengthdesignwhichincludestheuseoffactoredloadsandlargerallowablestresses.Thisdifferencealonewouldmakedirectcomparisonofthemarginsofsafetydifficult.3.8-160REV.1312/96 GINNA/UFSARTherearemanyotherdifferencesinthemethodsanddetailsthatthedesignerwoulduseforagivenembedmentandagivencode,butthemaindifferenceistherequirementofACI349-80Code,AppendixB,thattheanchoragedesignbecontrolledbytheultimatestrengthoftheembedmentsteel.Concretestrengthoftheanchoragemustnotcontrolnomatterwhatactualloadsazeappliedtotheanchorage.UnlessthedesignerswerefullycognizantoftherequirementsofACI349duringtheactualdesignitisunlikelythatallanchorageswouldsatisfythiscoderequirement,sinceitallowsonlyaductile(steel)failureoftheanchorageirrespectiveofthecalculatedoractualappliedloads.DuetothesedifficultiesindirectcomparisonofthetwocodesitwasdecidedtostatisticallyselectarandomnumberofanchoragesforevaluationagainsttheACI349-80Code.Fromatotalpopulationof194columns,51columnswereselectedforevaluation.Ofthe51columnsselected(Reference46)hadanchorageintoconcrete.Theapproachtakenforthisevaluationwastoanalyzethecolumnanchoragetodetermineifitmettheductilefailureandotherrequirements,includingminimumedgedistances,embedmentdepth,anchorsize,etc.oftheACI349-80Code.Ifthecoderequirementsweremet,itwasconcludedthatthemarginofsafetyfoztheanchorageisacceptable.Iftherequirementswerenotmetthentheultimateconcretecapacityoftheanchorageortheallowablesteelcapacitywhicheverwasless,usingtheACI349-80Codeasthebasis,wascomparedtotheappliedfactoredloads.Onlynormaldesignloadsusingcurrentloadcombinationswereusedinthecomparison.Iftheconcreteozsteelcapacity,whichevercontrols,wasstillgreaterthantheappliedloadstheanchoragewasdeemedtohaveanacceptablemarginofsafety.Theresultsoftheevaluationforthiscodechangeareasfollows:Ofthe46columnanchoragesevaluated,atotalof22didnotmeettheACI349-80Code.b.Ofthe22thatdidnotmeetthecode,atotaloffiveanchorageswasunacceptablefortheappliedloads.3.8-161REV.1312/96 GINNA/UFSARTheresultofthisdesigncodeevaluation,usingastatisticalprojection,isthatata958confidencelevel,nomorethan21$ofthepopulationof194columnanchorageswouldhaveunacceptablemarginsofsafetyfornormalloadcombinations.(Theissueofanchoragesfornozmal,safeshutdownearthquake,andtornadoloadswasreviewedundertheGinnaStationStructuralUpgradeProgram.)3.8.2.1.4SummarRG&Edefinedallapplicableloadsandloadcombinationsconsideredlimitingfortheconcreteandsteelsafety-relatedstructuresatGinnaStation(Reference27).TheNRCstaffconcludedthattheseloadsandloadcombinationswereacceptableinReference31.TheevaluationofGinnastructuresfordesigncodeandloadchangesshowedthatfoztornado-relatedloadings,allrequiredsafety-relatedstructureswereeitherabletomeetcurrentlyrequiredfactorsofsafety,wereshowntomeetmargin-to-failurecriteriathroughdetailedcalculationsorwereprovidedwithadditionalreinforcementaspartoftheStructuralUpgradeProgram.Forseismicloadings,itwasdeterminedthatallconcretecodechangeswereacceptable,exceptfortheshearwallsinthediesel-generatorbuildings,copedbeams,momentconnections,andsteelembedments.ThesewerefurtherevaluatedandresolvedasnecessaryinconjunctionwiththeStructuralUpgradeProgram.3.8-162REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.S-163REV.1312/96 GINNA/UFSAR3.8.2.2StructuralReevaluationofContainment3.8.2.2.1IntroductionThecontainmentstructurewasreviewedaspartoftheSEP.TheLawrenceLivexmoreNationalLaboratoryperformedaseismicreviewofGinnaStationfortheNRC.ThisreviewincludedthecontainmentandotherstructuresandtheresultswerereportedinReference30.TheLawrenceLivermoreNationalLaboratoryperformedafurtherevaluation(structuralreview)ofthecapacityofthecontainmenttowithstandcombinedloss-of-coolantandsafe-shutdownearthquakeloads.TheresultsofthisevaluationwerereportedinReference32.Forthislatterevaluation,seismicloadsweredevelopedbyscalingtheloadsdevelopedpreviouslyintheSEPprogramforthe0.2gpeakgroundaccelerationsafeshutdownearthquaketo0.17g,whichisconsistentwiththesitespecificgroundresponsespectradevelopedbyLawrenceLivermoreNationalLaboratory(Section2.5.2.2).ThermalandpressureloadsweredevelopedfrompressureandtemperaturetransientsdevelopedbyLawrenceLivezmoreNationalIaboratoryfortheloss-of-coolantaccidentconditions.Anaxisymmetric,multilayershellofrevolutionanalyticalmodelwasdevelopedforthecontainment.Themodelincludedtheconcreteverticalwallanddomeandthesteellinex.Appropriateboundaryconditionsrepresentingtheshell-to-base-slabinterfacethroughneoprenepadswereincluded.Sincethebaseslabisfoundedonrockandthepresenceoftheneoprenepadsessentiallyisolatesthebaseslabfromthecontainmentvessel,thebaseslabwasnotincludedinthemodel.Nodetails,suchashatchesorotherpenetrations,wereevaluated.Newseismic,thermal,andpressureloadsweredevelopedfortheGinnacontainmentstructureaspartoftheSEP.NewseismicloadsandtheadequacyofthestructuretowithstandtheseismicloadsalonewerereportedinReference30.Newtemperatureandpressuretime-historiesweredevelopedbyLawrenceLivermoreNationalLaboratory.(Reference33)Thenormaloperatingloads,peakpressureloads,andthethermalloadscorrespondingtothepeakpressureconditions,peakthermalloadsandthepzessuxeloadscorrespondingtopeakthermalconditions,andseismicloadswerecombined.Thisimpliesthatthesafeshutdownearthquakeoccursapproximately2minutesafteraloss-3.8-164REV.1312/96 GINNA/UPSARof-coolantaccident.Thisisconsideredextremelyunlikelyand,therefore,theassumedloadcombinationisconsideredveryconservative.3.8.2.2.2ContainmentTemeratureThenormaloperatingtemperaturesassumedfortheGinnaevaluationcorrespondtoatypical"coldday."Ambienttemperatureinsidethecontainmentis110'Fandtheoutsidetemperatureis2'F.Thisconditionwasselectedastheoperatingconditioninthatthermalgradientsandthermalstresseswereexpectedtobemostsevereforacoldday.TheassumedoperatingconditionswerealsotheinitialconditionsforcalculatingthethermalgradientsthroughthesheilaFigure3.8-43showsthetransienttime-historyofthecontainmenttemperatureusedintheanalysis.Thistemperaturetransienthasbeenshowntobemuchmoreseverethanthepredictedactualpostaccidenttemperaturesthatmayoccur(seeSection6.2~1)~Amaximumtemperatureofapproximately421'isindicatedapproximately34secafterthestart.ofthetransient.However,theinternaltemperaturedecreasestolessthan300'Fatapproximately91secwhichisthetimethepeakpressureoccurs.Therateofchangeoftemperaturecomparedtotheresonantfrequenciesofthecontainmentwassuchthatthetemperatureloadscouldbeconsideredasequivalentstaticloads.3.8.2.2.3ContainmentPressureContainmentpressurecorrespondingtotheaccidentconditionwasdevelopedbyLawrenceLivermoreNationalLaboratory(Ref'erence33).Thetime-historypressurevariationwithinthecontainmentisshowninFigure3.8-44.Thispressuretransientismuchmoreseverethanthepredictedworst-caseconditionsinsidethecontainmentfollowingaloss-of-coolantaccidentorasteamlinebreak(seeSection6.2.1).Amaximumpressureofapproximately86psiaoccurredatapproximately91secafterthestartofthetransient.A14.7psiaambientpressurewasassumedandthisresultedinapressuredifferenceof71.5psig,comparedwiththe60psigdesignpressure.Thetimeofmaximumpressuredidnotcorrespondwith'thetimeofmaximumtemperature.Therefore,aseparateloadcasecorrespondingtothetimeofmaximumthermaleffectsonthelinertogetherwiththeinternalpressureatthattimewasincluded.Also,theevaluationwasconductedfoztheconditionsat94secratherthan91sec.Thesamepeakpressurewasusedbutacomputerprintoutforthelinertemperaturewhichcontrolledthethermalstressresultswas3.8-165REV.1312/96 availableat94sec.3.8.2.2.4SeismicLoadsDynamicseismicloadsactingontheGinnacontainmentstructurewerereplacedbyasetofequivalentstaticloads.TheequivalentstaticseismicloadswerecomputedfromapreviousanalysisofthecontainmentstructureconductedbyLawrenceLivermoreNationalLaboratory.(Reference30)InthepreviousLawrenceLivermoreNationalLaboratoryanalysis,thecontainmentshellwasmodeledasafixedbasesystemoflumpedmassesconnectedbyweightlesssprings(Figure3.8-10).Table3.8-16liststhevaluesofmassesandcharacteristicsoftheconnectingbeamsforthemodel.Aresponsespectrumapproachwasusedtodeterminethedynamicresponseofthemodel,i.e.,thefirst10modalresponsesofthemodelwerecombinedusingthesquarerootofthesumofthesquaresapproach.TheRegulatoryGuide1.60spectrumat0.2gand7ScriticaldampingwasusedfortheanalysisreportedinReference32.Forthestructuralreview,theresponseswerescaledtoapeakgroundaccelerationof0.17ginthehorizontaldirectionand0.11gintheverticaldirection.The0.17gaccelerationlevelisconsistentwiththesitespecificsafeshutdownearthquakeforGinna.Table3.8-17listsmodalfrequenciesofthemodel,andTable3.8-18showsmoment,shear,andaxialloadsinducedineachconnectingbeamelementscaledto0.17g.Forthecombinedpressure,thermal,andseismicanalysis,thecontainmentshellwasmodeledasanaxisymmetricshellofrevolutionandseismicloadsactingontheshellwereinputinaccordancewiththefirstharmonicmodeshape.ThecircumferentialstiffnessoftheGinnacontainmentshellwasmuchhigherthanitsradialstiffnessand,therefore,onlyatangentialloadwasappliedtomodelthelateralseismicloads.HarmonicloadamplitudesfortheGinnacontainmentarelistedinTable3.8-19.3.8.2.2.5DesinandAnalsisProcedures3.8.2.2.5.1CoNTAINMENTM0DEL.FortheSEPreevaluationofGinnaStation,severalnewanalyseswereperformedtoevaluatethestructuralacceptabilityoftheplantforthecurrentloadingconditionsthatwerenotconsideredintheoriginalGinnadesign(Reference30).3.8-166REV.1312/96 GINNA/UFSAREventhoughthecontainmentbuildingissurroundedbytheauxiliary,intermediate,andturbinebuildings(Figure3.8-45)therearenostructuralconnectionsbetweenthecontainmentbuildingandtheotherbuildings.Thecontainmentbuildingwasthereforemodeledandanalyzedindependently.Themodelforthecontainmentshellwassimilartothefixed-basecantileverbeammodelwith12lumpedmassesshowninFigure3.8-10.Massandsectionpropertiesareuniformuptoelevation232.66ft.Theremainingshellwallandthedomearemodeledbyfourequivalentbeamelements,eachwithadifferentuniformsection.Thefollpwingassumptionsweremadeinmodelingthecontainmentbuildinganditsinteriorstructures:aeThecontainmenthasarigidfoundationatthebasementfloor~(elevation235.66ft)andhasnolateralsupportfromthesurroundingsoilabovethatelevation.b.Sincetheconcretecontainmentshellismuchstifferthanthesteelcranestructure,theconstraintsfromthecranestructurecanbeneglectedinmodelingthecontainmentshell.Thismodel,showninFigure3.8-10,wasanalyzedbytheresponsespectrummethodinthehorizontalandverticaldirections.ThespectralcurvesofRegulatoryGuide1.60werescaledto0.2gpeakaccelerationforthehorizontalcomponentand0.13gfortheverticalcomponentandinputasthebaseexcitations.Modalresponsesandresponsestohorizontalandverticalexcitationswerebothcombinedbythesquarezootofthesumofthesquaresmethod.3.8.2.2.5.2SExsMICANDLoss-QF-CooLANTAccIDENTL0ADs~Theanalysisforcombinedseismicandloss-of-coolantaccidentloadcombinationwasperformedbyLawrenceLivermoreNationalLaboratory(Reference32).Forthisanalysisanaxisymmetric,multilayershellofrevolutionanalyticalmodelwasdevelopedfortheGinnacontainment.Themodelincludedtheconcreteverticalwallanddomeandincludedthe3/8-in.steelliner.Appropriateboundaryconditionsrepresentingtheshelltobaseslabinterfacethroughneoprenepadswereincluded.Sincethebaseslabisfoundedonrockandthepresenceoftheneoprenepads3.8-167REV.1312/96 GINNA/UFSARessentiallyisolatesthebaseslabfromthecontainment,thebaseslabwasnotincludedinthemodel.Sincethescopeofthisevaluationwastoconcentrateonlyontheoverallabilityofthecontainmentbuildingtowithstandthecombinedseismicandloss-of-coolantaccidentpressureandthermalloads,numerousdetailssuchaspersonnelandequipmenthatchesaswellaspipingandelectricalpenetzationswerenotincluded.Thecontainmentshellwasassumedtobeadequatelyreinforcedaroundtheequipmenthatchandotheropeningssothattheeffectsoftheseopeningsontheoverallshellresponsewereassumedtobesmall.NeitherwereanyjetimpingementorpipewhipforcesconsideredduringthisphaseoftheSEP.Theloss-of-coolantaccidentincludedboththeprimarylooploss-of-coolantaccidentaswellasthesecondaryloopsteamlinebreak.Twodifferentcomputercodeswereusedtocarryouttheanalysis.ThecomputerprogramANSYS(ReSerence34)wasusedtodeterminethetemperaturegradientthroughtheshellforsteady-state(normaloperating)temperatureandthetransienttemperatureconditions.Oncethetemperaturesintheshellweredetermined,thecomputerprogramFASOR,FieldAnalysisofShellsofRevolution(References35and36)wasusedtocalculatedisplacements,stresses,andstressresultantsundervariousloadingconditions.FASORemploysanumericalintegrationmethodcalledthe"fieldmethod"tosolvethedifferentialequationsofashell.AshellinFASORmaybemodeledasamultilayershellofrevolution,wherethethicknessmaterialproperties,andtemperaturesforeachlayerazespecifiedseparately.Theshapeofashellmaybedescribedasageneralarcsothatthereisnoneedtodividetheshellintosmallelements.Theprogramdefinesintegrationpointsalongtheshellfromanerrortolerancespecifiedbytheuser.3.8.2.2.5.3PRESSUREISEzsMzcgANDOPERATINGTEMPERATURELOADs.Forpressure,seismicloads,andoperatingtemperatureloads,theshellwasmodeledastwo-layers,i.e.,a0.375-in.-thicklayerofsteelconnectedtoalayerofconcrete.Theconcretethicknesschangesfrom42in.inthecylinderto30in.inthedome.ConcreteandsteelmaterialpropertiesusedintheanalysisazelistedinTable3.8-20.Foraccident3.8-168REV.1312/96 GINNAIUPSmtemperatureloads,theshellwasmodeledasthreelayers,i.e.,thesteellinerandtwolaersofYconcrete.Thetemperaturegradientthrougheachlayerwasassumedtobelinear.Theboundaryconditionatthebasewasassumedtobefixedinthetangentialdirection.Radialstiffnessatthebasewascomputedtobe46.9kips/in./in.asdiscussedabove.Itwasdeterminedfromapreliminazyanalysisthattheinsulationwaseffectiveinlimitingtheheatflowthroughthecylindricalportionofthestructureandmaintainingtheinsulatedlineratasignificantlylowertemperaturethanthatintheuninsulatedlinerinthedome.ThiswasverifiedbyaLawrenceLivermoreNationalLaboratoryanalysiswherethetemperatureoftheinsidesurfaceoflinerandeffectivefilmcoefficientswerecomputedthroughoutthecontainmentforthetransientthermalloads.Thistemperatureincludedthetemperaturedropthroughthefilmcoefficientatthelinerinsidesurface.Inordertodevelopthethermalgradientsthroughtheshell,atransientthermalanalysiswasperformedusingANSYS(Reference34)withtheinsidelinersurfacetemperaturedevelopedbyLawrenceLivermoreNationalLaboratoryspecifiedasaboundarycondition.Itwasfoundthattheinsulatedpartofthecontainmentshellremainedclosetoitssteady-stateconditionthroughoutthetransienttimeperiod.Ontheotherhand,temperaturesoftheuninsulatedlineraswellasaverythinlayeroftheconcretecontainmentnexttothelinerincreasedsignificantlyasaresultofinternaltransientaiztemperature.Figures3.8-46and3.8-47showthetemperaturegradientthroughthelinerandadjacentconcrete94secand380secafterthestartoftheaccidentFigure3.8-46correspondstothetimeofpeakpressureandFigure3.8-47correspondstothepeaklinertemperatureduringtheaccident.Althoughthispartoftheconcretehasonlyasmalleffectontheoverallshellresponse,itwasincludedasaseparatelayerintheanalysis.Thecontainmentshellwasthereforemodeledasathree-layershellconsistingofthesteellinerandtwolayersofconcrete.Thetemperaturegradientwasassumedtobelinearineachofthelayers.Fortheinsulatedliner,thelinertemperatureremainedapproximatelyat69'Fthrouhoutgtheaccident.Theouterconcretesurfacetemperaturefor3,8-169REV.1312/96 GINNA/UFSARbothinsulatedanduninsulatedpartsofthecontainmentwascalculatedtobeapproximately10'F.3.8.2.2.6StructuralAccetanceCriteriaFortheSEPreevaluation,theseismiccapabilityofcriticalstructureswasevaluatedusingloadsdevelopedinthereanalysis.Astructurewasgenerallyjudgedtobeadequatewithouttheneedforadditionalevaluationforthefollowingtwocases:A.Whereloadsresultingfromthereanalysiswerelessthanthoseusedintheoriginaldesign.B.Whereloadsresultingfromthereanalysisexceededtheoriginalloads(orwheretherewasinsufficientinformationabouttheoriginalseismicanalysisforacomparison)buttheresultingstresseswerelowcomparedtotheyieldstressofsteelorthecompressivestrengthofconcrete.Forcasesinwhichtheseismicloadsfromthereanalysiswerenotlowandexceededthesteelyieldstressortheconcretecompressivestrength,conclusionswerereachedonthebasisoftheestimatedreservecapacity(orductility)ofthestructures;thatis,thecapabilityofstructurestodeforminelasticallywithoutfailure.3.8.2.2.7StructuralEvaluationofContainmentThestructuralacceptabilityofthecontainmentbasedontheSEPreevaluationisdescribedinthefollowing.3.8.2.2.7.1SEIsMICANALYsIs.Therewassufficientinformationavailableforthecontainmentbuildingoriginalseismicdesignandanalysistomakeacomparisontocurrentcriteria.'llTheoriginalanalysiswasanequivalentstaticanalysis,whichwascheckedbyaresponsespectrumanalysisusingHousnerspectra.Theseismicdesignloadswerebasedontheequivalentstaticanalysis.ThereanalysisgaveseismicloadshigherthanthoseoftheoriginalHousnerresponsespectrumanalysisbutlowerthantheseismicdesignloadsfromtheequivalentstaticanalysis(Figure3.8-10).Thecontainmentbuildingistherefoxe3.8-170REV.1312/96 GINNA/UFSARconsideredtobeacceptableinlightofcurrentcriteriaifthestructuremeetstheoriginaldesigncriteria.3.8.2.2.7.2L0ADCDMBINATIoNS~Itwasfoundthattheeffectofaccidenttemperaturewasmainlyintheuninsulatedpartofthedome.Themeridionalmomentincreasedfrom290kips-ft/ftfortheoperatingtemperaturetoapeakvalueof551kips-ft/ftafter380secbasedontheveryconservativeaccidentcurvesused(seeSections3.8.2.2'and3.8.2.2.3).Themomentinthecylinderremainedatapproximately400kips-ft/ftthroughoutthetransient.Containmentaxialresponsetodead-weightandpzestressloadswerecomputedtobe74kips/ftand299kips/ft,respectively.Sinceitisunlikelythatpeakhorizontalandpeakverticalseismicloadshappenatthesametime,theywerecombinedusingthesquarerootofthesumofthesquaresmethod.Sincethepressureloadandseismicloadswereactingupwards,therewasverylittleadditionalmarginofsafetyavailabletoresistcontainmentupliftinthecaseofacombinedseismiceventandloss-of-coolantaccident.However,eveniftheprestzessanddeadweightloadswereovercomeoverasmallsegmentoftheshell,theverticaltendonswouldremainintactandthelinerknuckleflexibilitywouldprovideforsomeupliftbeforelinerfailurecouldbeexpected.Theseismicresponseofthestructureforthiscasewasbasedontheassumed7%dampingasdiscussedinReference30.Todeterminetherequiredlimitingcapacityoftheshell,twoloadcombinationswereconsidered.FortheloadcombinationD+P+Eloads,radialshear,moment,andhooptensionweredominatedbythepeakpressureload(86psia),whiletangentialshearwasmainlyduetotheseismiclateralloads.FortheD+P+E+Taloadcombinationthedisplacementandmeridionalmomentintheshellwereverymuchaffectedbythetransientaccidenttemperature.Thepeakresponseparameters,especiallyhooptensionandmeridionalmomentinthedome,werehigherthantheiroriginaldesignvalues.Itshouldbenotedthatthehighmeridionalmomentinthedomewasmainlyduetothethermalgradientthroughtheshellwhichhasaself-limitingeffectduetoshellcracking.3.8-171REV.1312/96 GINNA/UFSARlnordertocheckthestressesinconcreteandreinforcingsteelinthedome,acrackedsectionanalysisbasedonsimpleelasticbendingtheorywascarriedout.Theanalysiswasfozthetemperatureloadwhichcorrespondedtoapressureloadof69psia.Theresultsshowedthatthemaximumstressinthemainreinforcingsteelinthedomewas12.8ksiwhichwasmuchlowerthantheASMEcodeallowableof0.9ay=36ksi.Also,thepeakstressintheweldedwirefabricwhichwasplacedtowardstheoutersurfaceofthecontainmentshellwasbelowthesteelyieldstress.Maximumconcretecompressivestresseswerecomputedtobe3700psiwhichwaslessthanthecodeallowableof0.85f'c=4250psi.Radialrestrainttowithstandthetemperatureandpressureloadsatthebaseslab-containmentvesselinterfacewasprovidedbyradialbars.Themaximumtensilestressinthesebarsunderthecombinedloadswasapproximately54ksi.The130ksiminimumyieldstrengthofthesebarsprovidedasubstantialmarginofsafety.Theseismicoverturningmomentincombinationwithinternalpressurewasresistedbythedeadweightofthevesselandtherockanchors.Afactorofsafetyofapproximately1.0existedforseparationofthecylinderandbaseslabassuming7%ofcriticaldampingintheseismicresponseofthestructure.However,thelinerknucklewasfoundtohaveadequateflexibilitytoresistsomeupliftwithoutfailure.3.8.2.2.8StructuralEvaluationofLare0eninsPrincipalstress-resultantsandstress-coupleswerecomputedandfoundtobeco-linearoressentiallysoforallpanelswhichweresignificantinthedesigncheck.Likewisetheorientationofstress-resultantsandstress-coupleswasfoundtoessentiallycoincidewiththemildsteelreinforcementforallsignificantpanels.XntezactiondiagramswerepreparedbaseduponproceduresforultimatestrengthdesignofACX318-63.Theinteractiondiagramsshowedthatsufficientreinforcementwasprovidedtocarryallloads,includingthefullthermalstress-resultantsandstress-couples.3.8-172REV.1312/96 GINNA/UFSAR3.8.2.2.9StructuralEvaluationofTensionRodsTheradialloadsazeresistedbytheradialtensionrodsintheoutwarddirection,whiletheradialloadsintheinwarddirectionareresistedbytheconcretebaseslabinbearing.Thethermalandpressureloss-of-coolantaccidentloadsresultinradialexpansionandtensionintherods.Thestiffnessofthelinerknuckleintheradialdirectionisverylowcomparedtotherodsandvirtuallynoradialloadsaretransmittedthroughtheliner.Themaximumtensilestresscomputedintherodforthecombinedloadcasewasapproximately54,000psi.Noshearstresswasdevelopedintherodsduetotheclearancebetweentherodandsleeveinthebaseslab.Theminimumtensileyieldstrengthintherodsis130,000psisothatafactorofsafetyofapproximately2.6existsforthisdetail.3.8-173REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-174REV.1312/96 GINNA/UFSAR3.8.2.3DomeLinerReevaluationGilbertAssociatesperformedananalysistoevaluatethebehaviorofthecontainmentdomelinerandstudsunderthepressureandtemperatureloadsthatarecausedbytheloss-of-coolantaccidentandsteamlinebreakloadingconditions(Reference29).3.8.2'.1DomeLinerStudsThestudschemewereusedinsupportingthedomelinerisshowninFigure3.8-48.Theschemestartsatthespringlinebetweenthedomeandcylinder,andextendstotheapex.Inthisregionthestudsare5/8-in.diameterNelsonS6Lstuds,andtheyarespacedat2ft-0in.asshowninFigure3.8-48.TheS6Lstudshaveinternalthreadstoaccept1/2-in.diameterthreadedfasteners.One-halfin.diameterrodswerethreadedintothestudsandtheotherendoftherodwasbentaroundthethreelayersof518reinforcementinthedome.Thiswasdonetosupportthelinerduringconcreteplacement.3.8.2.3.2Loads3.8.2.3.2.1Loss-oE-CooLANTAcczoEm.Thedomelinerandstudswereevaluatedbasedontheloss-of-coolantaccidentpressureandtemperaturetransientsinFigures6.2-1and6.2-2.3.8.2.3.2.2STEANLINEBREAK.Thepeakaiztemperaturesforthesteamlinebreakexceedtheloss-of-coolantaccidentpeaktemperature.However,forthelinerevaluationitisthepeaklinertemperatureratherthanthepeakairtemperaturewhichisimportant.Thepeaklinertemperaturesarenotverydifferentfoztheloss-of-coolantaccidentandsteamlinebreakbecauseeventhoughthepeakloss-of-coolantaccidentairtemperatureislessthanthesteamlinebreakairtemperatures,theloss-of-coolantaccidenttemperatureremainsnearitsmaximumconsiderablylongerthanthetemperaturesforthesteamlinebreak,thusallowingmoretimeforthelinertemperaturetoincrease.3.8-175REV.1312/96 GINNA/VFSARBasedonthis,thetemperatureofthelinerisnotexpectedtobesignificantlydifferentfromtheloss-of-coolantvalueof250'F.Alinertemperatureof250'Fcoincidentwithapressureof57.8psigwasusedforthesteamlinebreakconditionintheevaluationofthedomelinerandstuds.3.8.2.3.3ModelDefinition3.8.2.3.3.1GEwEluu.DmsMoDEL.Inthegeneraldomearea,Figure3.8-49,thelinerpanelsbetweenstudsarestressedequallyunderthepressureandtemperatureloadscorrespondingtotheloss-of-coolantaccidentorsteamlinebreakconditions.Foralinerwithoutimperfections,allofthelinerpanelsbetweenthestudswouldreachtheirlimitingstresscapacitiessimultaneously.Underthiscondition,therewouldbenoresultantshearforceonthestuds.However,ifonepanelisassumedtobucklepriortoothers,shearforceswouldbeexperiencedbytheadjacent:studs.Withtheonepanelbuckled,theadjacentpanelsandstudsdisplacetowardsthebuckledpanel.Asaresultofthisdisplacement,thebuckledpaneldisplaceslaterallyfurtherawayfromtheconcreteandexhibitsafall-offinitsmembranestressasdescribedinReference37.Theextentofstressfall-offdependsonthefinaldisplacement,5,ofthestudsoneithersideofthebuckledpanel.Thedifferencebetweenthefall-offstressinthebuckledpanelandthefinalstressintheadjacentpanelproducesashearonthestud.Thelargestshearforceanddisplacementoccurforstud51.ThelinerplatematerialfortheGinnalinerisASTMA442grade60carbonsteel,whichhasaminimumspecifiedyieldstrengthof32ksi.Itisexpectedthatthelinerwouldhaveanactualmeanyieldstrengthof48ksibasedontheinformationinReference38.Inthegeneraldomeforthelinerpanelsbetweenthe3/4-in.diameterheadedstudsspacedat4ft-3in.,thecalculatedbucklingstzessis5.8ksi.Forthelinerpanelsbetweenthe5/8-in.diameterSGLstudsspacedat2ft-0in.,thecalculatedbucklingstressismuchlessthanthe32ksior48ksiyieldstrength,thecalculatedbucklingstressisusedasthevalueoflimitingstressforallpanelsinthemodeladjacenttopanel1-1.Thelimiting3.8-176REV.1312/96 GINNA/UFSARcompressivestressesinthesepanelsof26ksi(or5.8ksi)combineanddisplacethecriticalstud(¹1)inthedirectionofthebuckledpanelinthemodelforthegeneraldome.3.8.2.3.3.2INsULATIQNTERHINATIoNREGIoNMQDEL.Intheinsulationterminationregion,thestressesinthelinerbehindtheinsulationaresmallrelativetothelargecompressivestressesproducedi'ntheuninsulatedportionoftheliner.Inthelinerpanelimmediatelyoutsidetheinsulation,thelargestcompressivestressthatiscapableofbeingdevelopedwillproducethelargestdisplacementofthestuds.Thisisthelimitingstresscorrespondingtothecalculatedbucklingstressof26ksi.Withthepanelstressedtothisvalue,allofthestudsbehindtheinsulationwilldisplaceasindicatedinFigure3.8-49.Thestudwhichexperiencesthegreatestdisplacementisstud¹1.3.8-177REV.1312/96 GINNA/UFSAR3.8.2.3.4Analsis3.8.2.3.4.1CQNTRQLLIHGLQADs.Thecontrollingloss-of-coolantaccidentloadsonthedomelinerarealinertemperatureof250'Fcoincidentwithaninternalpressureof42psig.Forthecontrollingsteamlinebreakconditionthelinertemperatureis250'Fwithaninternalpressureof57.8psig.The250'temperatureappliesintheuninsulatedportionofthedomeliner.BehindtheinsulationthelinertemperaturedecreasesasindicatedinFigure3.8-50.Thelinerstresseswereobtainedusingtheelastic,shellanalysiscomputerprogramKSHEL1(Ref'erence39)forthecontrollingloss-of-coolantaccidentandsteamlinebreakloads.Theresultsoftheseanalysesindicatedthatthestressesintheuninsulatedportionofthelinerweregenerallyintheneighborhoodof45ksicompression.Thisvalueexceedsthelimitingstressesof26ksiand"5:8ksidiscussedpreviously.Therefore,theselimitingstressescontrolandwereusedintheliner-studinteractionanalyses.Asadditionalcases,theliner-studinteractionanalysesalsoreviewedsomewhathighervaluesoflimitingstressesinordertodeterminethesensitivityofthestuddisplacementstovariationsinthestresslimits.Thisaccountsfortherealpossibilitythatsomelinerpanelsmaybuckleatastressgreaterthantheirtheoreticalvalue.Forthispurpose,the='imitingstressof26ksiforthe2ft0in.panelswasincreasedonly10%,resultingin29ksiasanadditionalcasefoztheanalysisofthe5/8-in.diameterS6Lstudsinthegeneraldomeandintheinsulationterminationregion.Consideringtheusualscatterinbucklingtestresults,itisnotunreasonabletoexpectthattherewouldbelinerpanelswhichcoulddevelopmembranecompressivestresses10%abovethetheoreticalbucklingvalueof26ksi.Forthelinerpanelsinthegeneraldomewherethe3/4-in.headedstudsat4ft3in.spacingexist(sincethe5.8ksistresslimitwasrelativelylow)itwaspracticallydoubledto12ksi.Thisvaluewasusedasaconservativelyhighstresslimit.3.8-178REV.1312/96 GINNA/UFSAR3.8.2.3.4.2LINER-STUDINTERACTION.Forthegeneraldome,theanalysiswasbasedonthemethoddevelopedinReference37usingthemodelinFigure3.8-49.Theappropriateequationsinthisreferenceweremodifiedtoincludetheeffectoftheinternalpressureonthestressfall-offcurveforthebuckledpanell-l.Fortheinsulationterminationregion,asomewhatdifferentliner-studinteractionanalysiswasperformedusingthemodelinFigure3.8-49.Themaindifferenceisthatthestressinthebuckledpanel(26ksior29ksi)isgivenandthestressfall-offconceptdoesnotapply.lntheseanalyses,theforce-displacementcurvesoftheembeddedstudsazerequiredforthe3/4-in.diameterheadedstudsandforthe5/8-in.diameterS6Lstuds.Thedeterminationofthesecurvesisdiscussedbelow.3/4-InchDiameterStudsThecurveusedforthe3/4-in.headedstudsisshowninFigure3.8-51.ThiscurveisbasedbothonthetestresultsandrecommendationsfromReference40andfromtestdatareportedinReference41.FromReference40theshapeoftheforce-displacementrelationshipisprovidedbyEquation(4)inReference40asQ=Qu(1-e).Intheequation,5isthestuddisplacement,Qisthecorrespondingstudforce,andQuistheultimatestudcapacity.TheultimatestudcapacitywasobtainedfromEquation(3)ofReference40as31.1kips.TestdatafromReference41for3/4-in.diameterstudsinshear(TableIX)supportthisvalueforQu.Theultimateshearforcevaluesreportedherefromfourstudtestsallexceed31.1kips.AlsofromReference41,adisplacementof0.341in.atfailure(TableX)isreportedforthe3/4-in.studs,andthisvalueisusedastheultimatedisplacementinFigure3.8-51.5/8-InchDiameterStudsUnlikethe3/4-in.headedstuds,force-displacementpropertydataforthe5/8-in.S6LstudswasnotfoundintheNelsonliterature.Therefore,thecurveforthesestudswasconstructedindirectlyfromtestsonothertypesofanchors.InReference42,directsheartestson3/8-in.diameterand1/2-in.diameterNelsonD2Ldeformedreinforcingbaranchorsarereported.3.8-179REV.1312/96 GINNA/UFSARTheembedmentlengthsofthesebarsvariedover3in.,6in.,12in.,and18in.Thetestresultsforthe18-in.longbarsindicatethatthesebarsfailedinshearatorslightlyabovetheminimumspecifiedtensilestrengthofthebarmaterial,whichwas80ksi..Theresultsfromthetestsonthe18-in.longbarsarebelievedtobeapplicabletothe5/8-in.S6Lstudsinstalledonthedomelinersincethesestudswereactuallyextendedinlengthbythe1/2-in.diameterthreadedrodsthatbendaroundthe3layersof¹18domereinforcement.Thestudswiththerodshadstraightembedmentdistancesof9-1/2in.,14in.,and18-1/2in.Thisconfigurationwilladequatelydevelopthesestudstoallowthemtoachievetheirminimumspecifiedtensilecapacityinshearbasedonthetestresultsforthe18-in.longstraightdeformedbars.Thecapacityforthe5/8-in.diameterS6LstudthenbecomesFu=Asfs=(x/4)(0.437)(60ksi)=90kipswheretheminimumdiameterofthestud(0.437in.atthebase)wasused.Foruseintheevaluationasalowerboundstudycapacity,8.3kipswasused.Thisrepresentsapproximatelya10%reductionofthe9.0kipsvalue.Actuallythe9.0kipsvalueitselfwouldappeartobeaconservativelylowvaluefortheS6Lstudsduetotheirlowerspecifiedtensilestrengthof60ksicomparedwiththecorrespondingvalueof80ksiforthedeformedbarstestedinReference42.ThiswouldbethecasebecausetheactualtensilestrengthsoftheSGLstudmaterialareexpectedtoconsistentlyexceedtheir60ksiminimumspecifiedvaluebygreatermarginsthanwouldoccurforthe80ksistrengthmaterialforthedeformedbars.Anexampleoftheincreasefor60ksigradestudsisseeninthetestsonthe3/4-in.diameterheadedstudsdiscussedpreviously.Thesteelforthesestuds(A108)hasaminimumspecifiedtensilestrengthof60ksi,whichwhenmultipliedbythestudarea(0.442in.)givesacapacityof26.5kips.However,thesestudsconsistentlyfailedabove30kipsinthetestsreportedinReferences40and41.Therefore,useofthevalueQu=8.3kipsinthelowerboundstuds.Theliner-studinteractionanalysesisregardedasaconservativeontheexpectedactualcapacityofthe5/8-in.diameterSGLdeterminationofamorerealisticvalueisdiscussedbelow.3.8-180REV.1312/96 GINNA/UFSARTheresultsandrecommendationsofReference40wereusedtoestablishwhatisregardedasanexpectedvalueforQuforthe5/8-in.diameterS6Lstuds.Reference40isapplicablebecausetheheadedstudstestedinthisreferencehaveaminimumspecifiedtensilestrengthof60ksiwhichisthesameasthespecifiedtensilestrengthof5/8-in.S6Lstudmaterial.Also,theembedmentaffordedtheS6Lstudsonthedomebythebent1/2-in.threadedrodsisbelievedtobeatleastaseffectiveastheheadonthestudstestedinReference40.UsingEquation(3)fromReference40gives:Ou=A~jf-~'Eu=0.5-0.437'(5)(4000)=106kip.s(3.8-22)CurvescorrespondingtoQu=8.3kips(lowerbound)andQu=10.6kips(bestestimate)azeshowninFigure3.8-52.Theultimatedisplacementof0.167in.isthelimitchosenforthe5/8-in.diameterS6Lstuds.IntheabsenceofanyspecificobtainedfromthetestsReference41(TableX).deformedbartestsfromdiameterby18-in.longapproximately0.160in.dataonthesestuds,the0.167-in.valuewason1/2-in.diameterheadedstudsreportedinThevalueisinreasonableagreementwiththeIReference42.Inthesetestsonthe1/2-in.deformedbars,anultimatedisplacementofwasreported.Insummary,theliner-studinteractionanalyseswerebasedontheforcedisplacementcurveforthe3/4-in.diameterheadedstudsshowninFigure3.8-51'hiscurveisbasedonactualtestresultsasreportedinReferences40and41.Thecurvesforthe5/8-in.diameterS6LstudsazeshowninFigure3.8-52.IntheabsenceofspecifictestdataontheS6Lstuds,lowerboundandbestestimatecurveswereconstructedbasedontestsreportedinReferences40and42.3.8.2.3.4.3EFFECTOFINTERNALPRESSUREONLINERBUCKLING.TheinternalpressurepotentiallyaffectsthelinerbucklingstressandstudevaluationinallthreeregionsofthedomelinershowninFigure3.8-48.Therefoxe,anevaluationofallstudswasperformedconsideringtheinternalpressureeffectasaseparatecaseinadditiontotheliner-studinteractionanalysesdescribedpreviously.3.8-181REV.1312/96 GINNA/UI'SARInordertospecificallyaddresstheeffectofinternalpressure,itwasnecessarytosolvethefundamentalbucklingproblemofastraightstrut,clampedatitsends,underthecombinedloadsofauniformtemperatureincreaseoverthelengthofthestrutplusauniformlateralpressure.Inadditionthestrutiscontinuouslysupportedonthesideoppositethepressure,whichpermitsbucklingtooccuronlyinthedirectionopposedbythepressure.TheresultingmodelisshowninFigure3.8-53.Thelengthofthestrut,L,correspondstothestudspacingofeither2ft0in.(24in.)or4ft3in.(51in.).Thetemperatureincreaseofthestrut,IT,correspondstothetemperatureincrease(aboveastressfreestateat70'F)whichthelinerexperiencesunderaloss-of-coolantaccidentozsteamlinebreakcondition.Likewise,thepressureonthestrut,P,correspondstotheinternalpressureinthecontainment(aboveatmospheric)occurringsimultaneouslywiththelinertemperature.Thebucklingproblem-wassolvedusinganenergymethod.Inthisapproach,expressionswerederivedfozthestrainenergyinthestrutbothbefore(straight)andafter(deflected)buckling.IntheunbuckledpositionthestrainenergyisthatdueonlytothemembranecompressivestressinthestrutproducedbythefullrestrainttohT.Inthedeflectedposition,bothbendingandmembranestrainenergyarepresent.Alsointhedeflectedposition,onlylateraldisplacementswhichsatisfytheequilibriumconditionsonthestrutareadmissible.Thebucklingproblemissolvedbydeterminingthevalueoftemperatureincrease,hT,inthepresenceofthepressure,P,requiredtomakethestrainenergyofthestraight.strutequaltothesumof(1)thestrainenergyofthedeflectedstrutand(2)theworkdoneasPdisplacesfromthestraighttothedeflectedpositionofthestrut.Thisvalueoftemperatureisthetemperatureincreaserequiredtobucklethestrut(thelinerpanel)asitisconcurrentlyacteduponbythespecificpressure.Theresultingbucklingcurvesforthelinerpanelscorrespondingtostudspacingsof24in.and51in.azeshowninFigure3.8-54.ThevaluesatP=0arehT=27.4'FforL=51in.andhT=123.6'FforL=24in.,bothofwhichproducecorrespondinglinerstressesequaltotheEulerbucklingvalues.FromthecurvesinFigure3.8-54,theincreaseinlinertemperaturerequiredtocausebucklingasthepressureincreasesis3.8-182REV.1312/96 GINNA/UFSARevident.Forexample,aninternalpressureof10psig(24.7psia)increasesthebucklingtemperature(andstress)byfactorsof6.0(L=51in.)and1.7(L=24in.)~Superimposedonthebucklingcurvesarevaluesoflinertemperatureandinternalpressurewhicharebasedontheloss-of-coolantaccidentcurvesofFigures6.2-2and6.2-1.TheseazediscussedinSection3.8.2.3.2.3.8.2.3.5ResultsandConclusionsTheresultsoftheliner-studinteractionanalysesazepresentedfirstforlimitingstressesof26ksiand29ksiforthe5/8-in.diameterS6Lstudsspacedat24in,andforlimitingstressesof5.8ksiand12ksifozthe3/4-in.diameterheadedstudsspacedat51in.Followingthis,theeffectthattheinternalpressurehasontheresultsarediscussed.3.8.2~3.5.1INsvLATIoNTERMINATIoNREGIoN.Theresultsfromfourseparateliner-studinteractionanalysesarepresentedinTable3.8-21forthestudsintheinsulationterminationregionofthedomeliner.Thesestudsarethe5/8-in.diameterS6Lstuds.Column(1)identifiesthestudcapacity,Qu,whichisbasedontheforce-displacementcurvefromFigure3.8-52usedintheparticularanalysis.Column(2)identifiesthestressinthelinerjustoutsidetheinsulation.Theacceptancecriteriaforthestudsisbasedonstuddisplacement,andthemaximumdisplacementoccursforthe()1studinFigure3.8-49.Thesevaluesareshownincolumn(3)andtheyaretobecomparedwiththeultimatestuddisplacementof0.167in.incolumn(4).Thepercentageofthemaximumdisplacementrelativetotheultimatevalueisindicatedincolumn(5).Thesevaluesrangefrom84%to998.Theresultsassociatedwiththe10.6kipsstudcapacityazemoreapplicablethanthevaluesassociatedwiththe8.3kipslowerboundstudcapacityforthereasonsdiscussedinSection3.8.2.3.4.2.Therefore,themaximumstuddisplacementisestimatedtobeeither84$oz95'hofitsultimatevalue,dependingonthemaximumstresswhichwillbedevelopedintheliner.Theseresultsarelessthanthe100%valueindicatingstudfailure.However,~consideringthemagnitudeofthedisplacementsandtheirsensitivitytothe10%increaseinthetheoreticallimitinglinerstressof26ksi,someofthestudslocatedjustoutsidetheinsulationcouldpossiblyfail.3.8-183REV.1312/96 GINNA/UFSARAnystudfailureswhichmightoccurwouldnotbeexpectedtoteartheliner,basedontestresultsreportedinReference43.Thisreferencedescribestestsconductedon1/2in.,5/8in.,and3/4in.diameterheadedstudsattachedtosteelflangesofvariousthicknesses,rangingfrom0.128-in.thickto0.389-in.thick.Atotalof41specimensweretestedinall.Theprimaryobjectiveofthetestswastodeterminethemodeoffailureofthestudsandunderwhatconditionsfailurewouldoccurbytearingoftheflangesratherthaninthestuditself.Themainconclusionreachedfromthetestsisthatiftheratioofstuddiametertoflangethicknessislessthan2.7thenthestudswillfailintheirshankandflangetearingorpull-outwillnotoccur.Forthe5/8-in.diameterS6Lstuds,thediameter-to-thicknessratiois0.437/0.375or1.17.Thisvalueismuchlessthanthe2.7limitingvalue;therefore,anyfailureoftheS6Ldomelinerstudswouldnotresultinatearingoftheliner.3.8.2.3.5.2GENERALDOHETheresultsoftheliner-studinteractionanalysisforbothregionsofthegeneraldomearepresentedinTable3.8-22.Theresultsincolumns(1)through(5)wereidentifiedearlier.Forthebuckledpanelinthegeneraldomemodel(Figure3.8-49),thedisplacementsandstrainsarealsoofinterestandthesevaluesareindicatedincolumns(6)through(9).Theresultsforthe5/8-in.diameterS6Lstudsand3/4-in.diameterheadedstudsarediscussedseparatelybelow.5/8-InchDiameterS6LStudsAsindicatedinthepreviousdiscussionoftheinsulationterminationregion,theresultswhicharebasedonthestudcapacityof10.6kips,ratherthan8'kips,azeconsideredtorepresentthebestestimatefortheS6Lstuds.Theresultsincolumn(5)ofTable3.8-22indicateamaximumstuddisplacementofeither68%oz102%oftheultimatevalue,dependingonwhetherthelimitingstressinalltheunbuckledpanelsis26ksior29ksi.Thus,thestuddisplacementsareverysensitivetothestresslimitdevelopedintheadjacentpanels.TheseresultscanbeinterpretedasfollowsreferringtothemodelinFigure3.8-49.Forthestudsadjacenttothebuckledpanel(1-1)toactuallydisplace102%oftheirultimatevalue,thestressinall19adjacentpanelswouldhaveto3.8-184REV.1312/96 GINNA/UIiSARreach29ksi.Thisconditionwouldoccuronlyiftherewerenoinitial'Iimp'erfectionsinthesepanelstocausethemtobuckleatastresslessthan29ksi.Ifonlyonepanelwithinthe19-panelgroupweretobuckleatlessthan29ksi,thedisplacementofthe¹1studinthemodelwouldprobablybereducedtobelow100%.Consideringtheresults,itispossiblethatsomeoftheS6Lstudsinthegeneraldomeregioncouldfail.However,basedonthetestresultsinReference43discussedpreviously,anystudfailureswouldnottearthelinerintheprocess.Therelativelylargelateraldisplacementsincolumn(6)ofTable3.8-22forthe24-in.buckledpanel(1-1)deservesomeattentionbecauseofthelargeassociatedstrains.Duetotheselateraldisplacementsofthebuckledpanels,plastichingingiscalculatedtooccur.Thestrainswhichazeproducedacrossthelinersectioninthehingeregionaregivenincolumns(7),(8),and(9).Thelargestmembranestrainfromcolumn(7)ofTable3.8-22foraQuof10.6kipsis0.0096in./in.compression.Thisvalueissixtimestheyieldstrainbasedona48ksilineryieldstress.However,thisstrain,beingcompression,isnotsignificantasfazaslinerintegrityisconcerned.Theextremefiberstrains(bendingplusmembrane)indicatedincolumns(8)and(9)ofTable3.8-22arelargebyconventionalmeasuresastheresultsincolumn(10)indicate.Here,fortheworstcase,theextremefiberstrainis39timestheyieldstrainofthelinermaterial.Toputthismagnitudeofstraininperspective,anextremefiberstrainequalto39timesyieldwouldbeproducedina-bendtestifthelinerwerebentaroundacircularpinhavingadiameterof5.6in.Theliner,beingalowcarbonsteel,isductileenoughtobebenttothisdiameterwithouttearing.TheversionoftheASTMspecification,A442,usedfortheGinnacontainmentlinermaterialrequiredthatlinerspecimensbecoldbentthrough180degreesaroundapindiameterequaltothelinerthicknessof0.375in.withoutcrackingthespecimen.Iti'sindicatedinSection3.8.1.6.5thatthesetestswereperformedforeachas-rolledlinerplatesupplied.Thistestproducesanextremefiberstraininthelinerwhichiscalculatedtobe313timestheyieldstrain.Thesetestsdemonstratedthatthelineriscapableofundergoingbendingstrainswhicharemuchlargerthanthose3.8-185REV.1312/96 GINNAIUFSARcalculatedforthebuckledpanels.Therefore,thestructuralintegrityofthelinerwillnotbeimpairedunderthestrainconditionscalculatedtoexist.3/4-inchDiameterHeadedStudsThemaximumstuddisplacementscorrespondingtolimitingstressesintheunbuckledpanelsof5.8ksiand12ksiareshownincolumn(3)ofTable3.8-22.Inbothcasesthemaximumstuddisplacementsaresmall,beingonly11%oftheultimatevalueatworst.Thecorrespondingstrainsinthebuckledpanel(1-1)duetothelateraldisplacementofthepanelarealsosmall;thelargestvalueisonly1.5timestheyieldstrain.Thus,eventhoughthelinerissupportedbyarelativelylargestudspacingof51in.,whichresultsinalowbuckingcapacity,thedisplacementofthelinerdoesnotproducestrainswhichwouldimpairitsstructuralintegrity.Basedontheseresults,itcanbeconcludedthatfailureofthe3/4-in.diameterheadedstudsisextremelyunlikely.Anystudfailuresthatmightunexpectedlyoccurwouldnotteartheliner,evenforstudsaslargeasthese.RecallingtheconclusionsfromReSerence49,thestuddiameter-to-linerthicknessratiois0.75/0.375or2;andthisiswellwithinthe2.7limitbelowwhichstudfailuredoesnottearthelinerintheprocess.3.8~2.3.5.3EFFEOToFINTERNALPREssUREoNLINERBUGKLINGANDSTUDINTEGRITY.ThebucklingcapacityofthelinerunderthecombinedeffectsofatemperatureincreaseandcoincidentpressureispresentedinFigure3.8-54.Thecurvesinthefiguredefinethebucklingcapacityinthetworegionsofthelinerwherethestudspacingsof24in.and51in.exist.Forcomparison,valuesofthelinertemperatureandinternalpressureareindicated.Theseresultfromtheloss-of-coolantaccidentconditionsinFigures6.2-1and6.2-2.Thelinertemperatureswereobtainedfromaheattransferanalysisoftheloss-of-coolantaccidenttemperaturetransientinFigure6.2-2.Thetimeintotheloss-of-coolantaccidenttransientisindicatedforseveralofthepressureandtemperaturevalues.Forexample,at100secintothetransientthelinertemperaturehasincreased3.8-186REV.1312/96 GINNA/UFSAR173'F(above70'F)andthesimultaneouspressureonthelineris53psig(67.7psia).ThecomparisoninFigure3.8-54indicatesthatforthefirst2.15hours(7740sec)intothetransient,theinternalpressurepreventsthelinerfrombucklinginallregionsofthedome.Duringthistime,thelinerreachesamaximumtemperatureofapproximately260'F(190'Fincreaseabove70'F),whichisconsiderablyabovethetemperaturerequiredtobuckleitevenintheregionwherethestudsazespacedat24in.However,bucklingdoesnotoccurbecauseatthistemperaturethecoincident,containmentpressureis42.7psia(28psig).After2.15hoursintothetransient,whentheinternalpressurehasdecreasedto24.7psia(10psig),theresultsindicatethattheregionofthelinerwherethestudsazespacedat51in.(3/4-in.headedstuds)issusceptibletobuckling.Bythattime,thelinertemperaturehasreducedtoapproximately250'F.Theregionofthelinerwherethestudsarespacedat24in.(5/8-in.S6L'tuds)remainsunbuckled.Theeffectoftheseresultsonthelinerandstudevaluationisdiscussedbelow.Foztheinsulationterminationregionandthegeneraldomeregion,theconclusionsregardingthepotentialfozstudfailurewerethatfailureofsomeofthe5/8-in.diameterS6Lstudslocatedintheinsulationterminationregionandinthegeneraldomeregionmightoccur,dependingonwhetherornotthelimitingstressof26ksiisactuallyexceeded.Forthe5/8-in.diameterS6Lstudsinthegeneraldome,thisconclusionwasbasedonaninitialassumptionthatonepanelhasbuckled.However,thecomparisoninFigure3.8-54indicatesthatthelinerpanelsassociatedwiththesestudsarenotlikelytobucklebecauseoftheeffectoftheinternalpressure.Theassumptionthatabuckledpanelexistswiththeresultthatshearforcesazeproducedinthestudsisnotconsideredtoberealisticinlightoftheseresults.Therefore,studfailureisnotexpectedtoactuallyoccur.Fortheremaining5/8-in.diameterS6Lstudsintheregionofthelinerwheretheinsulationterminates,thefactthatthelinerpanelremainsunbuckledincreasesthestressthatiscapableofdevelopingwellabovethe26ksiand29ksilimitsusedinthepreviousintezactionanalyses.Thestressincreasestoamaximumvalueofapproximately47ksi,whichcorrespondstothemaximumlinertemperature3.8-187REV.1312/96 GINNA/UFSAR-of260'F.The47ksicompressivestressexceedsthespecifiedminimumyieldstrengthof32ksi,butitisconsideredtobeachievablesincetheactualaverageyieldstrengthofthelinerplatesisexpectedtobeintheneighborhoodof48ksi.Theeffectofa47ksistressoccurringinthelinerregionoutsidetheinsulationwouldbetocausefailureofthestudsintheinsulationterminationregionofthedome.However,basedonthetestresultsinReference43discussedpreviously,failureofthesestudswouldnotaffecttheintegrityoftheliner.Theremainingstudsarethe3/4-in.diameterheadedanchorsintheregionofthegeneraldomewhichextendsfromthe55-degreemeridiantotheapex.Theconclusionsregardingthegeneraldomeareawerethatbecauseoftherelativelylowbucklingcapacityofthelinerinthisregion,thelimitingstressesweresmall.Thecorrespondingcalculatedstuddisplacementswereconsiderablylessthantheirultimatevaluesandstudfailurewasconsideredtobeveryunlikely.Whenthepressureeffectistakenintoaccount,itisalsoconcludedthatthesestudswillnotfailduringatleastthefirst2.15hoursoftheloss-of-coolantaccidenttransientbecausethelinerpanelswouldnotbuckleand,consequently,nounbalancedpanelforceswouldexisttoproduceshearonthestuds.Beyondthistime,fromFigure3.8-54,theloss-of-coolantaccidentpressuresandtemperaturesfallsomewhatbelowthebucklingcurveforthe51-in.studspacingandbucklingofsomelinerpanelscouldoccur.Ifonepanelbucklesbutadjacentpanelsdonot,the250'Flinertemperaturewouldproducea45ksicompressivestressintheunbuckledpanels.Thiswouldresultinanunbalancedshearforceinthestudsthatislargeenoughtocausetheirfailure.However,thisconditionwouldnotaffectlinerintegritybecausetheratioofstuddiameter-to-linerthicknessbeing2.0issignificantlylessthanthelimitingvalueof2.7requiredtoteartheliner.After2.15hoursintotheloss-of-coolantaccidenttransient,theinternalpressureisdowntoapproximately10psigwhichisfarbelowthemaximumvalueof60psigthatthecontainmentstructurehasbeendesignedtoresistandthestressesinthereinforced-concretestructurearerelativelylow.3.8-188REV.1312/96 GINNA/UFSAR3.8.2.3.6OverallConclusionsOftheresultsandconclusionspresentedabove,thosebasedonaconsiderationoftheinternalpressureareconsideredtobemorerealisticsincepressurewouldactuallybepresentinaloss-of-coolantaccidenttransientloadingconditiononth'eliner.Intheregionofthedomewheretheinsulationterminates,thelinerisexpectedtoremaininanunbuckledcondition.Asaresult,unbalancedcompressionstressesinthelinerareproducedwhicharelargeenoughtoresultinfailureofthe5/8-in.diameterS6Lstudslocatedinthisregionbasedontheresultsoftheliner-studinteractionanalysesdescribedherein.However,failureofthesestudswouldbelimitedtotheshankofthestudsandnotintheliner.Therefore,theleaktightintegrityofthelinerwillbemaintained.Abovetheinsulationandextendingtothe55-degreemeridionalcoordinateaxisonthedome,adistanceofapproximately35ft,thelinerisexpectedtoremaininanunbuckledcondition,andnounbalancedcompressivestressesexistintheliner.Becauseofthis,noshearforcesareproducedinthe5/8-in.diameterS6Lstudsinthisregionand,consequently,studfailurewouldnotbeexpectedtooccur.Abovethe55-degzeemeridionalcoordinateaxisandextendingtotheapexofthedome,thelinerpanelsaresusceptibletobucklinglateintheloss-of-coolantaccidenttransientafterthecontainmentpressurehasreducedtoapproximately17%ofthedesignpressureofthecontainmentstructure.Intheeventthatapanelbucklesbutadjacentpanelsremainunbuckled,unbalancedcompressivestressesareproducedwhicharelargeenoughtofailsomeofthe3/4-in.diameterstudsinthisregion.However,failureofthesestudsispredictedtooccurintheshankofthestudsandnotintheliner.Inaddition,thelinerplatematerialhasdemonstratedthecapacitytoaccommodatestrainswhicharemuchgreaterthanthestrainswhichthebuckledlinerpanelsareexpectedtoundergo.Therefore,theleaktightnessofthelinerwillbemaintained.TheNRCStaffreviewedtheanalysesandconcludedthatitisunlikelythatanystudfailurewillresultintearingofthecontainmentlinerand,therefore,3.8-189REV.1312/96 GINNA/UFSARthelinerwillretainitsleaktightintegrityduringthepostulatedloadingconditions(Reference44).3.8-190REV.1312/96 GINNA/UIiSAR(INTENTIONALLYLEFTBLANK)3.8-191REV.1312/96 GINNA/UFSAR3.8.3CONTAINMENTINTERNALSTRUCTURES3.8.3.1DescriptionoftheInternalStructuresThecontainmentinteriorstructuresincludetheconcretereactorvesselsupport,concretefloors(atelevations245ft,253.25ft,and278'3ft),conczeteshieldwalls,thesteeloverheadcranesupportstructures,thenuclearsteamsupplysystem,andotherauxiliaryequipment(seeFigure3.8-55)~Theconcreteinternalstructureissupportedentirelyonthebaseslab.Nostructuralconnectionsexistbetweentheconcreteinternalstructureandthecontainmentshellandradialgapspermitunrestrainedrelativemotionbetweenthetwostructures.Theonlyconnectionbetweenthecontainmentshellanditsinteriorstructuresisatthetopofthecranerail,wheretherailtopmaybearontheconcreteshellatfourlocationsofneoprenepads.Figure3.8-55showstheoverallconfigurationofthereactorbuildingincludingtheinternalsandmajornuclearsteamsupplysystemequipmentitems.3.8.3.2ApplicableCodes,Standards,andSpecificationsTheSEPreevaluationofthecont'ainmentinternalstructureswasperformedusingACI349-80.3.8.3.3LoadsandLoadCombinations3.8.3.3.1LoadCombinationsConsideredTheloads(definedinTable3.8-23)andloadcombinationstobeconsideredonagenericbasisaccordingtocurrentrequirements(ACI349-80)azeasfollows:(1)1.4D+1.4H+1.7L+1.7Ro(2)1~4D+14H+17L+17Eo+17Ro(3)14D+14H+17L+1~7W+17Ro(4)D+H+L+To+Ro+Ess(5)D+H+L+To+Ro+Wt3.8-192REV.1312/96 GINNA/UFSAR(~)D+H+L+Ta+Ra+125Pa(7)D+H+L+Ta+Ra+1.15Pa+1.0(Yr+Y>+Ym)+1.15Eo(8)D+H+L+Ta+Ra+1~0Pa+10(Yr+Yj+Ym)+1.0Ess(9)105D+1~05H+13L+1~05To+1~3Ro(10)1~05D+1-05H+1~3L+13Eo+1~05To+1~3Ro(11)1~05D+1~05H+1~3L+1~3W+105To+1~3RoAnyearthpressureloadsazeincludedinliveload(L).3.8.3.3.2AlicableLoadCombinationsAdditionalreviewofeachofthecodechangeelementswasconductedtodetermineiftheremainingloads,genericallyapplicabletothestructure,hadanypotentialimpact.Asaresultofthisadditionalreview,loadsH,To,W,andWtwereconsiderednottohaveanysignificanteffect.TheHloadswerenotconsideredbecausethereisnosignificanthydrostaticheadonthecontainmentinteriorstructures.TheToloadswerenotconsideredbecausetheytendtoequalizethroughoutthecontainmentinterior,thusresultinginnosignificanttemperaturedifferentials.TheWandWtloadswerenotconsideredbecausecontainmentinteriorconcreteisenclosedbythecontainmentshell,whichwithstandswindandtornadoloads.Consideringtheresultsofbothreviews,thegenericloadcombinationsarereducedtothefollowingapplicablecombinations:(1)14D+1-7L+17Ro(2)14D+17L+1~7Eo+17Ro(3)14D+1~7L+17Ro(4)D+L+Ro+Ess(5)D+L+Ro(6)D+L+Ra(7)D+L+Ra+1e15Eo(8)D+L+Ra+Ess(9)1.05D+1~3L+1.33.8-193REV.1312/96 (10)1~05D+1~3L+1~3Eo+1.3Ro(11)1.05D+1.3L+1.3Ro3.8'.4DesignandAnalysisProcedures3.8.3.4.1OriinalDesinIntheoriginaldesignofGinnaStationreinforced-concretestructuresinsidethecontainmentweremodeledassimplecantileverbeamswithallmasslumpedatthecenterofgravity.Analysiswasbytheequivalentstaticmethodasfollows:A.Thefundamentalperiodwascalculatedbasedontheassumptionthatthestructureisasimpleharmonicoscillator.B.Theresponseaccelerationwastakenfromtheappropriateresponsespectrum(Figures3.7-1and3.7-2).IC.Thisaccelerationtimesthetotalmassactingatthecenterofgravitygavetheshearforceandoverturningmomentatthebase.D.Theshearsandmomentsweredistributedthroughoutthemodelinproportiontostructuralstiffness,whichwasbasedontheflexuralpropertiesofthewallsystems.E.Structuralelementdesigncapacitywasevaluated.Wallsandfloorslabsweredesignedfortheconcentratedseismicreactionsoftheattachedmajorcomponents.Overheadcranesupportstructureswithinthecontainmentbuildingwerereportedlyevaluatedfornaturalperiodsofsimpleharmonicmotioninthetwohorizontaldirections.Equivalenthorizontalseismicforceswerethenobtainedbyapplyingthecozzespondingaccelerationfromtheseismicresponsespectratothemassofthecrane.Verticalresponseofthecraneandcranesupportstructurewastakenasthepeakoftheresponsespectra.Verticalforceswereobtainedbyapplyingthepeakaccelerationtothemassofthecrane,cranesupportstructure,andliftedload.3.8.3.4.2SstematicEvaluationProramReevaluationDuringtheSystematicEvaluationProgramseismicreevaluation(Ref'erence90)LawrenceLivermozeNationalLaboratorydevelopedamathematicalmodelthat3.8-194REV.1312/96 GINNA/UFSARincludedtheinteriorstructures,thenuclearsteamsupplysystem,andthecranestructureandwasbasedonamodeldevelopedforRG&EbyGilbertAssociates,Inc.,in1979(Reference45).Thefollowingassumptionsweremadeinmodelingtheinteriorstructures:A.Themodelfortheinteriorstructuresandcranesupportsincludedtheconstrainteffectfromthecontainmentshellatthecranetop.B.Theinteriorstructureswereassumedtohaverigiddiaphragmsatelevations245,253.25,267.25,and278.33ft.Massesofallconcretefloorsandwallswerelumpedtothecentersofgravityofthediaphragms.Majornuclearsteamsupplysystemequipmentitems,includingsteamgenerators,coolantpumps,andthereactorvessel,weremodeledaslumped-masssystems.C.Thecranestructurewasassumedtohavetwolumpedmasseslocatedatthecenterofthecranestructureatelevations329.66ftand311ft.D.BasedontherecommendationinNUREG/CR-0098,dampingwasassumedtobe7'hofcriticaldampingforthesteel-and-prestressed-concretepartofthestructuresand10$fortheconcretepart.Theinteriorstructuresmodel,whichwaspreparedforthecomputerprogramSTARDYNE,includedplateelementsfortheconcreteshieldwallsandrigidbeamsfortherigidfloors(Figure3.8-56).Theconcrete-and-steelcolumnswererepresentedbyelasticbeamelements.Thenuclearsteamsupplysystemandtheneoprenepadsatthecranetopwereincludedasequivalentstiffnessmatrices.Acantileverbeammodelthathadsevenlumpedmassesrepresentedthecontainmentshell.Thetotalmassofeachfloorwaslumpedtothecenterofgravityofthefloor,androtationalinertiawasaccountedfor.Equipmentmasseswererepresentedbylumpedmassesatthecorrespondingnodes.Therewere99nonzero-massdegreesoffreedominthemodel.UseoftheGuyanreductiontechniquereducedthe99tothe45associatedwiththeinteriorstructurefloorcentersofgravityandcontainmentshellnodes.3.8.3.5MethodofAnalysisThemodelwasanalyzedbytheresponsespectrummethodinthehorizontalandverticaldirections.ThespectralcurvesofRegulatoryGuide1.60werescaledto0.2gpeakaccelerationforthehorizontalcomponentand0.13gfortheverticalcomponentandinputasthebaseexcitations.Modalresponsesand3.8-195REV.1312/96 GINNA/UFSARresponsestohorizontalandverticalexcitationswerebothcombinedbythesquarerootofthesumofthesquaresmethod.Atime-historymethodwasusedtogeneratein-structureresponsespectrafortheinteriorstructures.Onlyhorizontalexcitationswereincludedintheanalysis.Theinputbaseexcitationwasasynthetictime-historyaccelerationrecordforwhichthecorzespondingresponsespectrawerecompatiblewiththe0.2gRegulatoryGuide1.60spectra.Responsespectraassociatedwithtwoorthogonalhorizontalbaseexcitationsweregeneratedindependentlyatequipmentlocationsand.thencombinedbythesquaxezootofthesumofthesquaresmethod.Peaksofthespectrawerebroadenedi15%inaccordancewithcurrentpractice.3.8.3'StructuralAcceptanceCriteriaAllSeismicCategozyIcomponents,systems,andstructuresintheoriginaldesignofGinnaStationweredesignedtomeetthefollowingcriteria:A.Primarysteady-statestresses,whencombinedwiththeseismicstressfromsimultaneous0.08gpeakhorizontalandverticalgroundaccelerations,aremaintainedwithintheallowableworkingstresslimitsacceptedasgoodpracticeand,whereapplicable,setforthintheappropxiatedesignstandards(ASMEBoilerandPressureVesselCode,USASB31.1CodeforPressurePiping,ACI318BuildingCodeRequirementsforReinforcedConcrete,andAISCSpecificationsfortheDesignandErectionofStructuralSteelforBuildings).B.Primarysteady-statestresses,whencombinedwiththeseismicstressfromsimultaneous0.2gpeakhorizontalandverticalgroundaccelerations,azelimitedinsuchawaythatthesafe-shutdownfunctionofthecomponent,system,oxstructureisunimpaired.FortheSEPreevaluationthestructuralacceptancecriteriawasasstatedinSection3.8.2.2.6.3.8.3.7StructuralEvaluationResultsfromthereevaluationshowedthattheestimatedseismicstressesofinteriorstructures,includingconcreteshieldwalls,steelandconcretecolumns,andcranesupportstructures,arelow.Nofurtherevaluationwasnecessary.3.8-196REV.1312/96 GINNA/UIiSAR(INTENTIONALLYLEFTBLANK)3.8-197REV.1312/96 GINNA/UIiSAR3.8.4OTHERSEISMICCATEGORYISTRUCTURES3.8.4.1DescriptionoftheStructuresSeismicCategoryIstructures,otherthanthecontainmentandinternalstructures,arethefollowing:Auxiliarybuilding.Controlbuilding.Diesel-generatorbuilding.Intermediatebuilding.Standbyauxiliaryfeedwaterbuilding.Screenhouse(servicewater(SW)portion).Acomplexofinterconnectedbuildingssurroundsthecontainmentbuilding(Figure3.8-57).Thoughcontiguous,thesebuildingsazestructurallyindependentofthecontainmentbuilding(Figure3.8-45).However,severalSeismicCategoryIstructuresareconnectedtononseismicstructures.TheSeismicCategoryIauxiliarybuildingiscontiguouswiththenonseismicservicebuildingonthewestside.TheSeismicCategoryIintermediatebuildingadjoinsthenonseismicturbinebuildingtothenorth,andtheauxiliarybuildingtothesouth.TheturbinebuildingadjoinstheSeismicCategoryIdiesel-generatorbuildingtothenorthandtheSeismicCategoryIcontrolbuildingtothesouth.Thefacade,acosmeticrectangularstructurethatenclosesthecontainmentbuilding,hasallfoursidespartlyortotallyin'ommonwiththeauxiliaryandintermediatebuildings.3.8.4.1.1AuxiliarBuildinTheauxiliarybuildingisathree-storyrectangularstructure,70ft9in.by214ft5in.Itislocatedsouthofthecontainmentandintermediatebuildingsandadjacenttotheservicebuilding.Thestructurehasaconcretebasementfloorthatrestsonasandstonefoundationatelevation235ft8in.,andtwoconcretefloors--anintermediateflooratelevation253ftandanoperatingflooratelevation271ft.Thefloorshaveaminimumthicknessof1.5ft,andaresupportedby2.5-ftthickconcretewallsatthesouth,east,3.8-198REV.1312/96 GINNA/UFSARandpartofthenorthsidesofthebuilding.Thenorthwestcornerofthebuildingisadjacenttothecircularwallofthecontainmentbuilding.Thewestconcretewall,whichseparatestheauxiliarybuildingandthespentfuelstoragepool,is6ftthick.Thespentfuelstoragepoolisarectangularswimming-pool-typeconcretestructure.Itsbottomisatelevation236ft8in.Hallsare6-ftthickatthenorthandwestsidesand3-ftthickattheeastandsouthsides,whicharebelowthegroundsurfaceandalsoserveasretainingwalls.Theauxiliarybuildinghastworoofsconstructedofsteeltrussandbracingsystemsandsupportedbyframebracingsystems.Thehighroof(elevation328ft)coversthewestpartoftheoperatingfloorandthespentfuelstoragepool.Thelowroof(elevation312ft)coverstheeastpartoftheoperatingfloor.Insulatedsidingisusedforthewallabovetheoperatingfloor.Aplatformthatsu'pportsacomponentcoolingsurgetankandaheatexchangerrisesfromtheoperatingfloortoelevation281.5ft.Theplatformissupportedbycolumnsandbracings.Therearealsoanumberof2.5-ftto3.5-ftthickconcreteshieldwallsonthefloors.Thebottomelevationofthefoundationmatis233ft8in.,withthedeepestfoundationforthedecayheat.removalareaatelevation217ft0in.withasumpat,elevation214ft0in.Rockelevationinthisareaisatapproximatelyelevation236ft,0in.Thewestendofthesuperstructureoftheauxiliarybuildingisconnectedwithaportionoftheservicebuildingandonthenorthwestwiththeintermediatebuilding.However,thefoundationoftheauxiliarybuildingisindependentofthesebuildingfoundations.3.8.4.1.2ControlBuildinThecontrolbuildingislocatedadjacenttothesouthsideoftheturbinebuildingandisa41-ft11-3/4in.by54-ft1-3/4-in.three-storystructurewithconcretefoundationmatatelevation253ft.Thefoundationofthecontrolbuildingissupportedonleanconcreteorcompactedbackfill.Therockelevationinthisareaisatapproximatelyelevation240ft0in.Thefoundationofthecontrolbuildingwasexcavatedtothesurfaceofthebedrock.Thefillmaterialwasplacedontherocksurfacetoadepthcoincidentwiththecontrolbuildingfoundation.Thebottomelevationofthe3.8-199REV.1312/96 GINNA/UFSARdeepestportionofthefoundationmatisatelevation245ft4in.,withastructuralslabsupportedatelevation250ft6in.withathickenedslabforcolumnfootings.Thecommonwallisreinforcedwith1/4-in.armorplate,stiffenezs,andsidingtoformapressurizationwallor"superwall."Thesouthandwestsideshavereinforced-concretewalls,andtheroofisalsoreinforcedconcrete.Thecontrolzoomflooratelevation289.75ftandtherelayroomflooratelevation271ftare6-in.thickreinforced-concreteslabssupportedbysteelgirdersthat.aretiedtoturbinebuildingfloorsattherespectiveelevations.Thebasementisthebatteryzoom.Theeastwallofthecontrolroomhas1/4-in.armorplatecoveredbyinsulatedsiding.Therelayroomeastwallisprimarilyinsulatedsidingandsomeconcreteblock.TheeastwallhasbeenmodifiedduringtheStructuralUpgradeProgramtowithstandtheeffectsoftornadowind,tornadodi.fferentialpressure,tornadomissiles,andfloodingofDeerCreek.Themodificationconsistsofareinforced-concreteSeismicCategory1structureadjoiningtheeastwalloftherelayzoom(seeSection3.3.3.6).Thebatteryroomisbelowgrade.3.8.4.1.3DieselGeneratorBuildinThedieselgeneratorbuildingisaone-storyreinforced-concretestructurethathastwocablevaultsunderneaththefloor.Thesouthwall,whichiscommonwiththeturbinebuilding,isreinforcedtobeapressurizationwallliketheonedescribedaboveinSection3.8.4.1.2.Thebuildingroofhasabuilt-uproofsupportedbyfourshearwallsthatsitonconcretespreadfootings.ThedieselgeneratorbuildingwasmodifiedaspartoftheStructuralUpgradeProgramtowithstandtornadowindsandmissiles,externalflooding,seismicloads,andextremesnowloads.Anewreinforced-concretenorthwallwasconstructed4ftnorthoftheexistingnorthwall.Reinforced-concretewingwallswereconstructedthat,extendedtheeastandwestwallstomeetthenewnorthwall,enclosingthespacebetweentheexistingandnewnorthwall.Thenewwallincludesmissile-resistantwatertightequipmentandpersonneldoors.Anewreinforced-concreteslabzoofwithareinforced-concreteparapetwasconstructedcoveringtheentiredieselgeneratorbuilding.Theexistingnorthwallandportionsoftheexistingroofwereleftinplace.Thebuildingasmodifiedwasdesignedtoremainundamagedduringandafteranoperatingbasisearthquakeandremainfunctionalduringandafterasafeshutdownearthquake.3.8-200REV.1312/96 GINNA/UFSAR3.8.4.1.4IntermediateBuildinTheintermediatebuildingislocatedonthenorthandwestsidesofthecontainmentbuilding,andisfoundedonrock.Thewestendhasaretainingwallwheretheflooratelevation253ft6in.issupported.Thebottomoftheretainingwallfootingisatelevation233ft6in.Rockelevationinthisareaisatapproximatelyelevation239ft0in.Foundationsforinteriorcolumnsareonindividualcolumnfootingsandembeddedaminimumof2ftinsolidrock.Thebuilding,whichalsoenclosesthecylindricalcontainmentbuilding,isnorthoftheauxiliarybuildingandisconnectedtothepartoftheauxiliarybuildingthatisunderthehighroof.Thebuildingisa136-ft7-in.by140-ft11-in.steelframestructurewithfacadestructuresoneachside.Thefacadestructuresaresteelframebracingsystemscoveredwithshadowallaluminumsidings.Theconcretebasementfloorslab(elevation253.5ft)issupportedbyasetof2-ft10-in.squareconcretecolumnsandaconcreteretainingwallonthewestside.Thecolumnshaveindividualconcretefootingsembeddedintherockfoundation.Thetopelevationsofthefootingsvaryfrom238ftto236.5ft.Inthenorthpartofthebuilding,therearethreefloorsatelevations278.33ft,298.33ft,and315.33ft,andahighroofatelevation335'ft.Inthesouthpartofthebuildingtherearetwofloorsatelevations271ftand293ft,andthelowroofatelevation318ft.Allfloorsaremadeofcompositesteelgirdersand5-in.thickconcreteslabs.Builtaroundthecircularcontainmentbuilding,thefloorsextendcompletelythroughthewestsideoftheintermediatebuilding,amajorportionofthenorthsideandasmallportionofthesouthside.Therearenofloorsontheeastside.Theroofsaresupportedbysteelroofgirders.Thefloorsandroofsarealsosupportedverticallyonasetofinteriozsteelcolumnswhicharecontinuousfromthebasementfloortotheroof.Concreteblockwallssurroundallthefloorspacebetweenthebasementfloorandtheroofs.Thetopofthefourfacadestructuresisatelevation387ft.Thereisnoroofatthetop,onlyahorizontaltrussconnectingthefoursidestoprovideout-of-planestrength.Onespecialcharacteristicofthewestfacadeisthatthehorizontalfloororroofgirdersareconnectednottothebracingjoints3.8-201REV.1312/96 GINNA/UFSARbutsomewherebetweenjoints.Insuchadesign,thecolumnsmusttransformsignificantshearsandmomentswhenthestructureissubjecttolateralloads.3.8.4.1.5StandbAuxiliarFeedwaterBuildinThestandbyauxiliaryfeedwaterbuildingisareinforced-concreteSeismicCategoryIstructurewithreinforced-concretewalls,roof,andbasemat.Thebuildingissupportedby12caissonswhicharesocketedintocompetentrock.Thebuildingwasanalyzedtoobtaintheseismicresponsetothreesimultaneous,independent,mutuallyperpendicularaccelerationtime-historieswhichenvelopedtheresponsespectrumofRegulatoryGuide1.60.Theanalysisconsideredsoil/caissoninteractionandsoilliquefactionpotentials.Equivalentseismicforcesobtainedfromtheanalysisweredistributedthroughthereinforced-concretestructureinproportiontothestiffnessofthestzucturalelements.3.8.4.1.6ScreenHouseThescreenhouse-servicewater(SW)buildingiscomprisedoftwosuperstructures,onefortheservicewater(SW)systemandoneforthecirculatingwatersystem(thescreenhouseportion).Theservicewater(SW)portionofthebuilding(bothbelowandabovegrade)isaSeismicCategoryIstructure.Theservicewater(SW)portionhousesfourSeismicCategoryIservicewater(SW)pumpsandSeismicCategoryIelectricswitchgear.Thescreenhouseportionhousesthetravelingwaterscreensandcirculatingwaterpumps.Theentirescreenhouse-servicewater(SW)buildingisfoundedinoronbedrockwiththeexceptionofthebasementoftheelectricswitchgearportionwhichisfoundedapproximately4ftabovebedrock.Sincethebuildingisfoundedinbedrockthebasementwillnotrealizeanyspectralaccelerationandtheseismicloadingisequivalenttothegroundmotionof0.08gand0.20g.Thebasementisdesignedtobedewatered.Thefullheightofthewallisdesignedforanexternalhydrostaticpressureplusaseismicloadequaltoapercentageofthedeadloadofthewallandthehydrostaticpressure.Fortheportionofthewallbelowgradeandabovebedrockanactiveearthpressurebasedonasaturatedsoilweightisapplied.3.8-202REV.1312/96 GINNA/UFSARinternalwalls,suchaspumpbafflesandthewingwallsbetweenthetravelingscreens,weredesignedforafullheight.hydrostaticpressureoneithersideplusaseismicloadduetothewatermovementduringaseismicevent.Theservicewater(SW)portionofthescreenhouseconsistsoffourrigidframebentsintheeast-westdirectionwithbracingforwindandseismicloadsinthenorth-southdirection.Theroofsystemisdesignedasahorizontaltrusstotransmithorizontalseismicloadstotheframecolumnsandthroughthebracingtothefoundation.3.8.4.1.7TurbineBuildinEventhoughtheturbinebuildingwasnotdesignedtobeSeismicCategory1,itisincludedinthissectionbecauseofitsconnectiontoSeismicCategoryIstructures.Theturbinebuildingisa257.5-ftby124.5-ftrectangularbuildingonthenorthsideofthebuildingcomplex.Xthasaconcretebasementatelevation253'ft,twoconcretefloors(amezzanineflooratelevation271ftandanoperatingflooratelevation289.5ft).Theroofincludesarooftrussstructurefromelevation342.66fttoelevation357ftcomposedoftopandbottomchordsconnectedbyverticalbracing.Theroofandfloorsaresupportedbysteelframingandbracingsystemsonallfoursidesofthebuilding.Thefloorsarealsosupportedbyadditionalinteriorframingatvariouslocationsunderthefloozs.Partofthesouthwallframealsoservesasthenorthwalloftheintermediatebuilding.Thenorthfacadestructure(fromelevation357fttoelevation387ft)isactuallyonthetopofthesouthframeoftheturbinebuilding.Thewestframeisthecontinuationofthewestfacadestructureoftheintermediatebuilding.Thiswestframeisalsopartoftheservicebuilding.Exceptbetweenbuildings,thewallsoftheturbinebuildinghaveinsulatedaluminumsiding.Znsidethebuildingandparalleltothesouthandnorthfzames,thereisaninteriorframesystemsupportingthecranefromthebasementelevationtoelevation330ft.Thecranefzameisdesignedliketheexteriorfzamesystemwithverticalcolumns,horizontalbeams,andcrossbracingboltedtocolumns.3.8-203REV.1312/96 GINNA/UFSAREachinteriorcolumnisweldedtothecorrespondingexteriorcolumnatthejointsandmid-pointsofcolumnsbyaseriesofgirderconnections.Thesouthframeoftheturbinebuildingisdesignedlikethewestfacadestructureoftheintermediatebuilding;thatis,horizontalfloorgirdersareconnectedtocolumnssomewherebetweenjoints.3.8.4~1.8ServiceBuildinTheservicebuildingisanonseismicstructure.ItisincludedinthissectionbecauseitiscontiguouswithSeismicCategoryIstructures.Theservicebuildingislocatedonthewestsideofthebuildingcomplex.Itextendsfromthesouthendoftheauxiliarybuilding,throughtheintermediatebuilding,andendsalittlebeforethenorthendoftheturbinebuilding.Thebuildingisatwo-storysteelstructurewithspreadfootings,steelcolumns,andconcrete-steelframingfloorsandroof.Thebasementisatelevation253.66ft,thefloorisat,elevation271ft,andtheroofisatelevation287.33ft.Thewallsbetweentheservicebuildingandtheotherbuildingsaswellasthepartitionsinthebuildingaremadeofconcreteblocks.3.8.4.1.9InterconnectedBuildinComlexTheauxiliary,intermediate,control,screenhouse,standbyauxiliaryfeed-water,anddiesel-generatorbuildingsareSeismicCategoryIstructures,andtheturbineandservicebuildingsarenonseismiccategorystructures(seeFigure3.8-57).Intheoriginalanalysis,eachSeismicCategoryIstructurewastreatedindependently.FortheSEPreevaluationitwasfoundthattheinterconnectednatureofthebuildingswasanimportantfeature,especiallyinviewofthelackofdetailedoriginalseismicdesigninformation.Therefore,bothSeismicCategoryIandnonseismiccategorybuildingswereincludedinthezeanalysismodel.Theauxiliary,intermediate,turbine,control,diesel-generator,andservicebuildingsformaninterconnectedU-shapedbuildingcomplex(Figure3.8-58)thatismainlyasteelframestructuralsystemsupportedbyconcretefoundationsorconcretebasementstructures.Atypicalsteelframeismadeofverticalcontinuoussteelcolumnswithhorizontalbeamsandcrossbracing.Theconnectionsaretypicallybolted.Thebracedframesserveasthemajor3.8-204REV.1312/96 GINNA/UFSARlateralload-resistingsystem.Severalsuchsteelframesconnectvariouspartsofdifferentbuildings,whichmakethebuildingcomplexacomplicatedthree-dimensionalstructuralsystem.3.8.4.2ApplicableCodes,Standards,andSpecificationsThestructuralcodesgoverningtheoriginaldesignofmajorSeismicCategoryIstructuresforGinnaStationandthecorrespondingcurrentlyapplicablecodesarelistedinSection3.8.2.1.TheimpactofthecodechangeswasevaluatedinRef'erence25(seeSection3.8.2.1).SeveralelementsandregionswereidentifiedintheSeismicCategory1structuresthatneededreevaluation.Additionalanalyseswereperformed(Reference30)todeterminetheacceptabilityofthestructures.ThesummaryoftheseresultsispresentedinSection3.8.2.1.2.3.8.4.3LoadsandLoadCombinationsTheloadsandloadcombinationsusedintheoriginaldesignofGinnaStation,thecurrentlyapplicableloadsandloadcombinations,andacomparativeevaluationofthesetwosetswerestudiedbytheFranklinResearchCenter(Ref25).TheloadsandloadcombinationsthatwerenotconsideredintheoriginaldesignbuthadapotentialeffectonthestructuralacceptabilitywereidentifiedandadditionalanalyseswereperformedtoevaluatethesechangesandtheresultswerereportedinReferences27and29(seealsoSection3.8.2.1.2).3.8-205REV.1312/96 GINNA/UIiSAR(INTENTIONALLYLEFTBLEAK)3.8-206REV.1312/96 GINNA/UFSAR3.8.4.4DesignandAnalysisProcedures3.8.4.4.1OriinalDesinandAnalsisProceduresAbriefdescriptionofthedynamicanalysisperformedfortheoriginaldesignofGinnaStationisinthefollowing.AuxiliarBuildinThesteelsuperstructureaboveelevation271ftoftheauxiliarybuildingwasevaluatedforequivalenthorizontalseismicloadsbaseduponeitherthemaximumspectralresponseorthespectrumvaluecorrespondingtothefirstharmonicfrequencyofthestructure.Thissuperstructurewasdesigned(Reference46)originallytowithstandawindloadingof18lb/ft.2ControlBuildinTheoriginalseismicdesignofthecontrolbuildingwasbasedontheoperating-basisearthquakeasfollows:Structuralsteelcolumnsweredesignedforflexuralmomentsresultingfromahorizontalloadequivalentto10%oftheaxialloadappliedatthemid-spanofthecolumn.Concretewallsabovegradeweresubjectedtoahorizontalreactionnormaltothewallandappliedatmid-span.Thewallwastreatedasafixed-basecantileveredbeam.Theequivalentseismicloadwas10%ofthewallweight.intermediateBuildinThebracingsystemoftheintermediatebuildingiscommontotheturbine,service,andauxiliarybuildingsandthefacadestructure.Thebracingwascheckedtodemonstratethatitcouldresistequivalentseismicloadcomponentsfromtheabovestructures.Diesel-GeneratorBuildinThediesel-generatorbuildinghasconcreteshearwallsandsteel-framedroofstructures.Theseismicdesignoftheconcreteshearwallsconsideredboth3.8-207REV.1312/96 GINNA/UFSARin-planeandnormalequivalentstaticloads.Seismicaccelerationsweretakenasthepeakoftheseismicresponsespectrafor5$ofcriticaldamping.Thesteelroofframingwasdesignedfozahorizontalequivalentsafeshutdownearthquakeseismicload,takenasthemassoftheroofstructureandsuperimposedloadstimesthepeakseismicresponsefor2.5'bdamping.Columnfoundationsweredesignedfozanadditional20'hofaxialloadtoaccountforseismiceffects.TurbineBuildinandServiceBuildinTheturbineandservicebuildingsarenonseismicstructuresthatareconnected\toSeismicCategoryIstructures.Forpurposesoftheoriginalseismicdesign,couplingbetweenthetwoclassesofstructureswasnotconsidered.3.8.4.4.2SEPReevaluationDesinandAnalsisProceduresTheseismicdesigninputfortheSEPreevaluationoftheSeismicCategoryIstructuresaredescribedinSection3.7.TheseismicanalysesofthesestructuresperformedbyLawrenceLivezmozeNationalLaboratoryforSEPreevaluationwereasfollows:3.8.4.4.2.1MATHEMATZCALMODEL.Intheoriginalanalysis,eachSeismicCategoryIstructurewastreatedindependently.BecauseoftheinterconnectednatureofthebuildingstheSEPreevaluationincludedtheentirebuildingcomplexinthereanalysismodel.Theauxiliary,intermediate,turbine,control,diesel-generator,andservicebuildingsformaninterconnectedU-shapedbuildingcomplex(Figure3.8-58)thatismainlyasteelframestructuralsystemsupportedbyconcretefoundationsozconcretebasementstructures.Atypicalsteelframeismadeofverticalcontinuoussteelcolumnswithhorizontalbeamsandcrossbracing.Theconnectionsaretypicallybolted.Thebracedframesserveasthemajorlateralload-resistingsystem.Severalsuchsteelframesconnectvariouspartsofdifferentbuildings,whichmakesthebuildingcomplexacomplicatedthree-di,mensionalstructuralsystem.ThecompositionsandinterrelationshipsofthebuildingsinthecomplexaredescribedinAppendixCtoReference30.3.8-208REV.1312/96 GONNA/UFSARTheprincipallateralforce-resistingsystemsoftheinterconnectedbuildingcomplexarethebracedframes.Severalsuchsystemstieallbuildingstogethertoactasonethree-dimensionalstructuralsystem.Itwas,therefore,necessarytomodelthesebuildingsinasinglethree-dimensionalmodeltoproperlysimulateinteractioneffects.Themodelwasdevelopedbasedonthefollowingassumptions.Riidfoundation.Allbuildingsarefoundedonsolidsandstonerockoronleanconcreteorcompactedbackfilloverrockandareassumedtohaverigidfoundations;thus,nosoil-structureinteractioneffectsareconsidered.Uncouledhorizontalandverticalresonses.Thereisnocouplingbetweenhorizontalandverticalresponses(i.e.,onlyhorizontalresponsesresultfromhorizontalloadingsandonlyverticalresponsesfromverticalloadings).Thisisareasonableassumptionforthistypeofmedium-heightbuildingthathasregularframesanddoors.Onlhorizontalroundmotioninthednamicanalsis.Forthedynamicanalysis,themathematicalmodelwasdesignedtohaveonlyhorizontalresponsesbecausethemajorconcernisthecapacityofthelateralforce-resistingsystem.Verticalresponsewascalculatedassumingnodynamicamplification.Becausethestructureswereoriginallydesignedforverticalloads,suchasdeadandliveloads,theyarerelativelystiffintheverticaldirectionandinmostcases,arenotconsideredtohavesignificantdynamicamplificationduringverticalexcitation.Itisnotnecessarytosimulatebothverticalandhorizontalbehaviorsimultaneously.Riidfloorsandroofs.Allfloorsandroofswereassumedtoberigidin-planebecauseofthehighstiffnessfor.horizontalloadsofthein-planesteelgirdersandconcreteslabs.Eachfloororroofhasthreedegzeesoffreedom:twoinhorizontaltranslationandoneinvertical(torsional)rotation.All3.8-209REV.1312/96 pointsonafloororroofwereassumedtomoveasarigidbody.Thecenterofgravityofeachrigidfloororroofwasselectedastherepresentativenode.Lumedmasses.Allstzucturalandequipmentmasseswereassumedtobelumpedatthefloororroofelevations,thentransformedtothecentersofgravityofeachrigidfloororroof.Hineconnections.Mostboltedjointsthatconnectbracingandbeamstocolumns(andcolumnstobasesupports)weretreatedaspinorhingeconnectionsbasedonreviewsofpertinentdrawings.Thefewexceptionsaredescribedinthediscussionofthemodelforeachbuilding.Buckledandunbuckledbracinsstems.Cross-bracingmembers,whicharetheprimaryelementsofthelateralload-resistingsystem,areexpectedtobuckleduringcompressioncyclesbecauseoftheirlargeslendernessratios.Afteramemberbuckles,ithaszeroorverysmallstiffness,butregainsitscapacityundertension.Suchnonlinearbehaviorwasapproximatelyaccountedforbyconsideringtwolinearmodels:ahalf-areamodelthatsimulatesbuckledbracingandafull-areamodelthatsimulatesunbuckledbracing.Inthehalf-areamodel,itwasassumedthatbothcross-bracingmembershaveonlyhalftheactualmembercross-sectionalareaandcantakebothcompressionandtensionduringearthquakeexcitation.Thefull-areamodelwasbasedontheassumptionthatbracingswiththefullcross-sectionalareaareeffectiveinbothcompressionandtension.Stickmodelforconcretewallstructures.Thecontrolbuilding,whichhasconcretewallsandroofthataremuchstifferthantheotherstructures,wasmodeledasanequivalentbeam.Thetwo-storyconcretesubstructureinthebasementoftheauxiliarybuildingwastreatedsimilarly.3.8-210REV.1312/96 GINNA/UI'SARStiffnessandmasseffectsofthediesel-enezatorandservicebuildins.Theone-storydiesel-generatorbuildinghasfourshearwallsthathavesignificantstiffnessbutminimalmass(onlytheroofmassneedstobeconsidered;theothermassesareontherigidfoundation).Therefore,thefourshearwallsweremodeledasfourelasticspringshavingtheequivalentstiffnessoftheshearwalls.Theservicebuildingisarelativelyflexiblesteelframestructure,andonlyitsmasswasincluded.~DaminAuniformdampingof108ofcriticalwasassumedforthe"wholestructuralsystembasedonthesuggestionofNUREG/CR-0098forbolt-connectedsteelstructuresundersafe-shutdownearthquakeloading.Thethree-dimensionalmathematicalmodelforthebuildingcomplexwaspreparedforthecomputerprogramSAP4(Reference47).Allsteelframesweremodeledbybeamelements.ThemodelrigiddiaphragmsforallroofsandfloorswererepresentedbytherigidrestraintoptionofSAP4.Thereare17suchrigiddiaphragmsinthemodelthatweretreatedthisway.Thetwo-storyconcretesubstructureoftheauxiliarybuildingandthecontrolbuildingweremodeledbyequivalentbeams.Thefourshearwallsofthediesel-generatorbuildingwererepresentedbyfourelasticspringsattachedtothenorthframeoftheturbinebuildingatthediesel-generatorbuildingroof.Themassesoftheservicebuildingroofwerelumpedtotheturbineandintermediatebuildings'llothermasseswerelumpedtothecentersofgravityoffloororroofs.Thecompletemodelhad686nodalpoints,44dynamicdegreesoffreedom,1213beamelements,and10elasticsprings.3.8.4~4.2~2METH0DoFANALYsIs~Figure3.8-59isaflowchartoftheanalyticalprocedure.ThefrequenciesandmodeshapesofthestructuralsystemwereobtainedbythesubspaceiterationmethodprovidedinSAPIV.3.8-211REV.1312/96 GINNA/UFSARAfterthefrequenciesandmodeshapeswereobtained,thestructuralresponseswerecomputedbytheresponsespectrummethod.TheseismicinputwasdefinedbythehorizontalspectralcurveofthesafeshutdownearthquakespecifiedinRegulatoryGuide1.60for10%structuraldampingand0.2gpeakgroundacceleration.Twostructuralmodelswereanalyzed,onewithhalfthebracingarea(half-areamodel)andonewiththefullbracingarea(full-areamodel).Foreachmodel,twoanalyseswereperformed,onewiththeinputexcitationinthenorth-southdirection,theotherintheeast-westdirection.Eneachanalysisandforeachdirectionthemodalresponseswerecombinedbythesquarerootofthesumofthesquaresmethod.Responsestothenorth-southandeast-westexcitationswerealsocombinedbythesquarerootofthesumofthesquaresmethod.Verticalresponseswezeobtainedbytaking138(0.2gx2/3)ofthedeadloadresponses.3.8.4.4~2~3STRUCTURALEVALUATION.AuxiliarBuildinBasedonthestressescalculatedinthereanalysis,theconcretestructurehasadequateloadmarginstowithstandseismicloads.However,thebracedsteelframesofthesuperstzuctureazemorecritical.Thebracingsintheeast-westdirectionhavestressesbelowyield,butthenorth-southbracingsazenearorexceedyield.Thebracingatthenortheastcornerofthelowroofhasasafetyfactor(definedasfy/f)ofabout0.8.Alonethismaybeconsideredmarginal,butthisbracingisoneofonlytwolateralload-resistingsystemsfortheauxiliarybuildingsuperstructureinthenorth-southdirection.Theotheroneisthebracingbetweenthehighandlowroofs,anditsstressisclosetoyield.Consequently,RG&EupgradedthisbracingontheauxiliarybuildingeastwallaspaztoftheStructuralUpgradeProgram.IntermediateBuildinandFacadeStructuresThebracedframesinthelowportionoftheeastandwestfacadesaretherelativelyweakareasoftheintermediatebuildingandfacadestructures.Thestressesinthecrossbracingsareatoralittleoveryield(safety3.8-212REV.1312/96 GINNA/0FSARfactorof0.9).Thelateralload-resistingsystemshavemorereservecapacitythandothebracedsteelframesoftheauxiliarybuildingdiscussedabove.Theverticalcolumnsofthefloorsandnonstructuralmembers,suchasstairwaystructuresbetweenfloorsandsidings,provideadditionallateralsupporttothestructure.Thereanalysisindicatedthatthecolumnssupportingintermediatefloorsmayyieldlocallyatlocationswherefloorsatdifferentelevationsmeetatmid-pointsbetweenjoints.However,thosecolumnsstillhavesufficientmoment-resistingcapacity,andthecolumnsystemscanbeconsideredacceptable.TurbineBuildinTheLawrenceLivermoreNationalLaboratoryevaluationconcludedthatthelateralload-resistingsystemforturbinebuildingfloorshadstressesbelowyield.Thecross-bzacingsabovetheoperatingfloorinthesouth,north,andwestwallshadstressesthatexceedyield.Thebzacingszightabovethecontrolbuildingsuperwallhadthelowestsafetyfactor(0.7).Thesebracingssustainhighloadsbecauseoftherelativelyhighstiffnessofthesuperwallandthecontrolbuildingcomparedtotheturbinebuildingframes.Consequently,RG&EupgradedthisbracingontheturbinebuildingsouthwallaspartoftheStructuralUpgradeProgram.ControlBuildinExcludingstressconcentrationeffects,themaximumshearstressinthereinforced-concretewallsofthecontrolbuildingisapproximately200psi.BecausethewallshaveNo.5reinforcingsteelbars(5/8-in.diameter)at12-in.spacing(inbothhorizontalandverticaldirections),thestructureisconsideredtobeadequateforresistingshear.3.8-213REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.8-214REV.1312/96 GINNA/UFSAR3.8.4.5MasonryWallsAsaresultofIEBulletin80-11,MasonryWallDesign,RG&EidentifiedthemasonrywallsatGinnaStationthatwereconsideredtobesafetyrelated.Throughaseriesofanalysesanumberofmasonrywallsweredeterminedtobeabletowithstandallapplicableloadsandloadcombinations.Othermasonrywallswerequalifiedbasedonprovidingrestrainingmodificationsorsafety-relatedequipmentprotection.3.8.4.5.1licableWallsThemasonrywallsinthestructuresconsideredunderthissectionweresurveyedtodetermineiftheirfailurecoulddamageanysafety-relatedsystems,equipment,andattachments.Figures3.8-60through3.8-62illustratethelocationofthe37masonrywallsthatareconsideredsafetyrelated,i.e.,whosepotentialfailuremustnotendangersafeshutdowncapability.Thepresenceofasafety-relatedsystemorcomponentwithinonewallheightofthesewallsissufficienttoqualifythewallassafetyrelated.The37wallscontain56panels,apanelbeingawalldivisionisolatedforengineeringanalysis.Twelveofthe37safety-relatedwallsarereinforcedvertically.Ofthistotal,sevenarereinforcedwithone53baron32-in.centers.Theremainingfivearereinforcedwithtwo53barson16-in.centers.ThejointreinforcementisDUR-0-WALLstandardtrusstypeon8-in.centersorDUR-0-WALL"extraheavy"trusstypeon16-in.centers.Allexceptonesafety-relatedmasonryblockwallsarerunningbondmasonrywalls.Oneofthewallsiscomposedofinterlockingleadbricks.3.8.4.5.2LoadsandLoadCombinationsThewallswerereevaluatedforthefollowingloadsandloadcombinations.3.8-215REV.1312/96 GINNA/UFSARLoads~Windload.~Seismicaccelerations.~Deadloads.~Ambienttemperaturedifferentials.LoadCombinations~D+(1.5P+1.0T)~D+(1.25P+1.0T')+1.25W~D+(1~0P+1.0T)+1.0E'ymbolsusedintheaboveequationsaredefinedasfollows:D=Deadloadofstructure(avalueofDi0.05shallbeusedwhereitproducesmaximumstress)AccidentpressureloadThermalloadsbasedupontemperaturetransientassociatedwith1.5timesaccidentpressuzeThermalloadsbasedupontemperaturetransient,associatedwith1.25timesaccidentpressureThermalloadsbasedupontemperaturetransientassociatedwithaccidentpressureE'afeshutdownearthquakeloadWindloadAccidentpressureandtemperatureloadswillbeconsideredonlyinsidecontainmentwhenwallconfigurationsmakedifferentialsapossibility.Nosafety-relatedmasonrywallssatisfythiscondition.3.8-216REV.1312/96 GINNA/UIiSARMndLoadsHeiht2LboveGround(ft)PressureLoad(sf)0-15126-251526-4041-6061-100101-2001821283.8.4.5.3StressAnalsis3.8.4.5~3.1COMPUTERPROGRAM.ThecomputerprogramSAP4wasusedtocalculatestresses.Wallgeometry,boundarysupportconditions,materialandphysicalproperties,attachmentloads,andresponsespectrainformationwereinputintotheSAP4program.The'zogxamthenperformedstaticanddynamicanalysestodeterminestressesinthewallsforthevariousloadcombinations.ThestressesdeterminedbytheSAP4programwerethencomparedtoallowablestressesusingaspecialpurposepost-processorprogramdesignedtocombinestressesobtainedfromthestaticanddynamicanalysisoftheSAP4programandcomparetheresultantstressesagainstallowablevalues.Theanalysisuseslinearworkingstressprinciples.Theuncrackedmomentofinertiaisbasedontheunreinforcedsection.Thecrackedmomentofinertiaiscalculatedbyequatingthemomentofthetransformedtensilesteelareaaboutthecentroidaxisofthecross-sectiontothemomentofthemasonrycompressivearea.SectionstiffnessiscalculatedusingBranson'sequation.Boundaryconditionsusedintheanalysisareappliedtoeachwallsoastoreasonablyresembletheactualphysicalconditions.3,8-217REV.1312/96 GINNA/UFSAR3.8.4.5i3~2SEISMIcANALYsIs.SeismicanalysisoftheSafety-relatedmasonrywallswasperformedforthefollowingthreelevels.Level1SafeShutdownEarthuake(0.2SSE)WithAppendixAtoStandardReviewPlan3.8.4acceptancecriteria.Level2SafeShutdownEarthuake(0.17SSE)(Site-specificSEPearthquake)WithAppendixAtoSRP3.8.4acceptancecriteria.Level3Level2analysiswiththeexceptionthata1.5overstressfactorfortensionnormaltothebedjointisusedinsteadoftheSRPvalueof1.3asacceptancecriteria.Seismicanalysiswasperformedusingtheresponsespectrummethod.Responsespectrafortheanalyseswerebasedonaveragingthefloorresponsespectraforthetopandbottomelevationsifthewallissupportedatbothlocations.Otherwise,thefloorresponsespectrumatthebaseofthewallisused.Responsespectrawerebroadenedby15%toaccountforuncertaintiesintheanalyticalmodelcomparedwiththephysicalstructure.Theassumeddampingvalueof7%isconsistentwithAppendixAtoSRP3.8.4.Theanalysistakesintoaccountthecombinedeffectsofallmodesofvibrationupto33Hz,whichcorrespondstotherigidrangeofthefloorresponse'pectra.Forwallswhosefrequenciesazegreaterthan33Hz,thefloorresponseaccelerationsat33Hzwereusedfortheanalysis.Threedirectionsofearthquakewereconsideredintheanalysisbyevaluatingwallsforbothverticalplusout-of-planeandverticalplusin-planeloadcombinations.Theverticalplusout-of-planeloadcombinationwasfoundtobethelimitingloadcaseintheanalysis.3.8-218REV.1312/96 GINNA/UFSAR3.8.4.5.4IntezstozDriftIn-planestraincriteriausedtoverifytheadequacyofthewallsisdiscussedin"RecommendedGuidelinesfortheReassessmentofSafety-RelatedConcreteMasonryWalls,"preparedbytheOwnersandEngineeringInformalGrouponConcreteMasonryWalls,October6,1980.Theacceptancecriteriaarebaseduponanuncoupledsystem(separatetreatmentofin-planeandout-of-planeloads).Evaluationsindicatethatthein-planestrainsinducedonthewallsduetointerstorydriftarelessthantheallowablespermittedinthemajorityofinstances,regardlessofwhetheramechanismexiststoinducethedriftintothewalls.Intheremaininginstances,theimpliedstrainswouldexceedtheacceptancecriteriaifapositivetransfermechanismexisted.Fortheselaterinstances,aspecificcase-by-casereviewwasconductedofthewallconfigu-rationwithrespecttothesurroundingstructure,displacements,anddriftinducementmechanics.Fromthisreview,itwasjudgedthatasufficientmechanismdoesnotexisttoinducesignificantinterstoryin-planedrift.MasonrywallsatGinnaarenotreliedupontoprovidehorizontalshearloadresistance(i.e.,shearwalls).Out-of-planeinterstozydrifthasnosignifi-canteffectonthewallssincetheycanbeconsideredsimplysupportedbetweenstories.3.8.4.5.5Multi-WtheWallsTherearenosafety-relatedmulti-wytheorbrickmasonrywalls.3.8.4.5.6BlockPulloutTheattachmentstothewallsaretypicallymadewith3/8-in.drilledanchors.Calculationsoftheforcesonan8-in.nominalblock,whichwouldresultfromtwosuchanchorslocatedsymmetricallyandnonsymmetrically,weremade.Treatingtheblockasarigidbody,forcesnecessarytoprovideequilibriumwerecalculated.Theappliedforcesresultedinbearingandshearstressesattheperimetersoftheloadedblock,whichwerenotsufficienttopulltheblockfromtheremainderofthewall.3.8-219REV.1312/96 GINNA/UFSAR3.8.4.5.7StructuralAccetanceCriteria-AllowableStresses3.8.4.5.7.1N0RMALOPERATXNGCoNDITzoNS.Fornormaloperatingconditions,allowablemasonryworkingstressvaluesareasspecifiedinACI531-79.Theallowablestressesarebasedoncompressivestrengthof700psionthegrossareaoftheblock.Thevalueofmo,thespecified28-daycompressivestrengthofthemortarperASTMC-270,is750psi.3.8.4.5.7.2SAFESHUTDoNNEARTHQUAKE.TheincreasefactorspermittedbySRP3.8.4forloadcombinationscontainingSSEloadswereusedforevaluationwithoneexception.Fortensionnormaltothebedjoint,anincreasefactorof1.5versus1.3wasusedtoqualifytwowalls.The1.3factorisexceededby108forwall3-17A-5and78forwall2-2I.Thiscorrespondstoincreasefactorsof1.43and1.38,basedontheactualwallstresses,ratherthan1.5.TheallowablestressesidentifiedinACI531includeasafetyfactorof3.There-fore,.theuseof1.43and1.38asincreasefactorsstillprovidesmarginsofsafetyof2.10and2.17forthetwowallsandisjudgedtobeacceptablefortheselimitedcases'.8.4.5.8EvaluationResults3.8.4.5.8.1GENERAL.AllmasonryblockwallsatGinnaStationwereinspectedandfoundtobebuiltinaccordancewiththeoriginalspecificationsandwithappropriateinspectionandconstructiontechniquesapplicableatthetimeofconstruction.SeeSection3.8.4.5'.Ofthe56safety-relatedpanels,themodificationsinstalledaftertheoriginalIEBulletin80-11evaluationresultedin29panelsmeetingcurrentstresscriteria.Intheanalysisnocreditwastakenforeitherhorizontalorverticalreinforcing.Ofthe27panelsthatrequiredmodificationorfurtheranalysis,twelvecontainverticalreinforcingandhorizontalDUR-0-WALLjointreinforcement.3.8-220REV.1312/96 GINNA/UFSARAsnotedinSection3'.4.5.1,onesafety-relatedwall,971-2M,iscomposedof4-in.interlockingleadbricks.Thewall,2ft3in.wideatthebaseand5ft4in.high,wasanalyzedtakingnocreditfortheinterlockingeffectofthebrick.Thesteelframingnetworksurroundingthewallcanadequatelyrestrainthewallinonedirection"duringanearthquake,andwallfailureintheotherdirectionwillnotaffectanysafety-relatedequipment.Wall971-2Misthereforeseismicallyacceptable.Thus,26panelsremainedforfurtheranalysisormodification.Acrackedsectionanalysiswasperformedononewallpanel.Duetotheminimumreinforcingavailableintheevaluatedpanel,nosignificantbenefitwasgainedfromthecrackedsectionanalysis.Nowallshavebeenqualifiedusingcrackedsectionanalysis.Aseismicanalysisofthe12safety-relatedreinforcedmasonryblockwallpanelsinthecontrolbuildingwasconductedasdocumentedinReference48.ThemethodologyusedtoevaluatethewallsintheinelasticrangewaspreviouslyusedonthemasonrywallsattheSanOnofreNuclearGeneratingStationUnit1(SONGS1).CorrelationofthismethodologytoGinnaStationwasconfirmedbyReference49.Fromtheelasticanalysis,thesevenspanningwallshadstressesintheverticalrebarexceedingthecriterialimitof36ksibyratiosrangingfrom1.25to2.18.Therefore,allwallsrequiredqualificationbytheinelasticanalysismethodologyasdiscussedbelow.3.8.4.5.8~21NELAsTIcANALYsIsSpanningwalls971-1Cand971-6Candcantileverwall973-4Cwereanalyzedindetail.Spanningwall971-1Cisa16ft10in.highwall38ft1in.longbetweenelevations253ft8in.and271ft0in.inthecontrolbuilding.Ztisreinforcedwithf13barsat32-in.centersandhorizontallywithDUR-0-WALLjointreinforcing.Spanningwall971-6Cissimilarinconstructionandatthesameelevation.Cantileverwall973-4Chastwolayersofverticalrebarsratherthanbeingcentrallyreinforcedasforthespanningwalls.3.8-221REV.1312/96 GINNA/UFSARThetwowallswerechosenbecausetheyrepresentthehighestandlowestlevelsofoverstress,thusenablingresultsfortheotherwallstobeobtainedbyinterpolation.TheresultsofthetwochosenwallsindicatedstrainswellwithinthecriterialimitsofmasonrystrainEm=0.003andverticalsteelstrainratioofEs/Ey=45.Withtheinterpolationoftheresultoftheinelasticanalysisofwalls971-1Cand971-6C,itwasconcludedthattheremainingspanningwallswillhavesimilarlylowmaterial-strainratios.BasedonthisitisconsideredthatallspanningwallswillperformsatisfactorilyunderSSEloadingwithdegreesofnonlinearitywellwithinthecapabilityofreinforcedmasonry.Thedetailedmodelofthecantileverwall973-4Cwasusedfozthenonlinearanalysis.Theresultsofthetimehistoriesshowedthatthemasonryandsteelstrainratioswerewellwithinthecriterialimits.BasedontheseanalysesitisconcludedthatthereinforcedmasonrywallshaveampleductilitytoresistthedesignSSEinputmotions.3.8.4.5.8.3WALLMQDIFzcATIONS.Fortheremaining14wallpanels,RG&Eusedthefollowingmethodstoensurewallqualifications:a~Awallwasconsideredsafetyrelatedifequipmentwaslocatedwithinonefullwallheightofthebaseofthewall.RochesterGasandElectricCorporationinvestigatedthejustificationofusinglessthanonefullwallheight,ifapplicable,onawall-by-wallbasis.Ifitwereconcludedthatthecollapsemechanismissuchthattheequipmentisnothit,nofurtherevaluationwouldbeperformed.b.Ifawallfailurecouldimpactsafety-relatedequipment,additionalanalysiswouldbeperformedtodetermineiftheequipmentwouldactuallybedamagedandinoperable.Iftheequipmentcouldwithstandthewallimpactandremainoperable,nomodificationwouldbeperformed.c~Modificationstoprotectsafety-relatedequipmentpotentiallyimpactedbywallfailurewouldbedesignedandinstalledsothatwallfailurehasnosafetyconsequences.d.Wallmodificationswouldbedesignedandinstalledsuchthatthewallwouldmeet,theevaluationcriteria.3,8-222REV.1312/96 GKNNA/UFSARTheNRCevaluatedRG&E'sresponsetoIEBulletin80-11,regardingmasonrywalldesignadequacyandthecommitmentsforthe14wallpanelsrequiringadditionalanalysisormodification,anddeterminedthatRG&EhasadequatelyaddressedtheconcernsofIEBulletin80-11(Reference50).The14wallpanelshavebeenqualifiedeitherbystructuralmodificationstothepaneltomeettheevaluationcriteriaorbyprotectionofthesafety-relatedequipmentsubjecttoimpact.ProtectivestructureshavebeeninstalledtoprotecttheAandBmainsteamisolationvalveoperatorsandsolenoidvalvesandtheauxi.liaryfeedwatercheckvalvesthatweresubjecttoimpactbywallfailure.Themainsteamisolationvalvecontrolcableshavebeenreroutedsoasnottobesusceptibletodamagefromfailedwalls.3.8.4.5.9Materials,QualitControl,andSecialConstructionTechniuesTheoriginalGinnaStationprojectspecificationsidentifiedthematerialstobeusedfortheconstructionofmasonrywallsasfollows.A.Concrete:ACI318-63.B.Steel:ASMESectionIII,ArticleCC-2000.C.Brick:FacingbrickshallconfomatotheregnirementsofASTMSpecificationsC216-66,GradeSWandTypeFBS.D.Concretemasonzunits:Hollow,load-bearingunitsshallconformtoASTMC90-665,GradeG-11.Interiornon-load-bearingpartitionsshallbeHayditeblock.E.Concretemasonrbedreinfozcin:ReinforcingshallbeDur-0-Wallstandard,trussdesign,ozHohmann&Barnard,Inc.,Turs-Mesh,withawidth2in.lessthanthenominalthicknessofthewall.ReinforcinginexteriorwallsshallbegalvanizedinaccordancewithASTMA116-65,Class1,specifications.Installationshallbeinstrictaccordancewiththemanufacturer'srecommendations.F.Partitionties:1-1/4in.x1/4in.x8in.with2-in.right-anglebendsateitherend,primepaintedwith13-Y-5zincchromateprimerasmadebyMobilChemicalCompany,Metuchen,NewJersey,orapprovedequivalent.G.Anchorsatcolumns:Anchorswillbeprovidedbyothersat24-in.centers.3,8-223REV.1312/96 GINNA/UFSARH.Controlpints:Dur-O-Wall,wideflange,RapidControlJoint.I.Mortar:a~MortarandmortarmaterialsshallconformtotherequirementsofthepropertyspecificationsofASTMSpecificationsforMortarforUnitMasonryC270-64T,TypeN.b.(1)Portlandcement:ASTMC150-66,Type1orII.(2)Hydratedlime:ASTMC207-49,TypeS,orMiracleLimeasmadebyG.&W.H.Corson,PlymouthMeeting,Pennsylvania.(3)Sand:ASTMC144-66T.(4)Water:Watershallbecleanandfreeofdeleteriousamountsofacids,alkali,ororganicmaterials.(5)Mixing:Mixingshallbedoneinamechanicalbatchmixer.Nomoremortarshallbemixedatonetimethancanbeusedwithin1.5hours.(6)Admixtures:Saltsandantifreezecompoundstolowerthefreezingpointofmortarwillnotbepermitted.Atthesubcontractor'soption,apreparedmortarmaybeusedconformingtoASTMSpecificationC91-66,TypeII.3.8-224REV.1312/96 GINNA/UFSAR3.8.5FOUNDATIONSThefoundationsoftheinteriorcontainmentstructures,theauxiliarybuilding,thescreenhouse,andtheintermediatebuildingarefoundedonthebedrockoftheQueenstonformation,whichisexhibitedtobestrongandfreshlayersofshale,sandstone,andsiltstoneintheboringlogs.Theturbinebuilding,controlbuilding,andthedieselgeneratorbuildingfoundationswereexcavatedandprovidedwithleanconcreteoncompactedbackfilltoadepthwherebytheelevationofthetopofthefillmaterialwascoincidentwiththeelevationofthebottomoftheconcretefoundationofthatparticularbuilding.Thestandbyauxiliaryfeedwaterbuildingisonpilingstothebedrock.Thetechnicalsupportcenterisonthesecondflooroftheall-volatile-treatmentbuilding,whichisfoundedonaconcretemat.ThemajorstructuresofGinnaStationhaveexperiencednovisibleevidenceofsettlementsincetheconstructionofthestation.DuringtheSEPandevaluationofTopicII-4',theNRCconcluded(Ref'erence51)thatthesettlementoffoundationsandburiedequipmentisnotasafetyconcernforGinnaStation.3.8-225REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.82.3.5.6.7.8.9.T.C.Waters,N.T.Barrett,"PrestressedConcretePressureVesselsforNuclearReactors,"JournaloftheBritishNuclearEnergySociety,Vol.2,1963.M.Bender,"AStatusReportonPrestressedConcreteReactorPressureVesselTechnology,"NuclearStructuralEngineering,1965.Bengt,B.Broms,"CrackWidthandCrackSpacinginReinforcedConcreteMembers,"ACIJournal,October1965.Bengt,B.BromsandLeroyA.Lutz,"EffectsofArrangementofReinforcementonCrackWidthandSpacingofReinforcedConcreteMembers,"ACIJournal,November1965.PeterGergeleyandLeroyA.Lutz,"MaximumCrackWidthinReinforcedConcreteFlexuralMembers,"presentedatACISymposiumonCrackingofConcrete,March7-10,1966.SuggestedDesignofJointsandConnectionsinPrecastStructuralConcrete,ReportoftheJointACI-ASCECommittee5-12(712)oftheTaskCommitteeonPrecastStructuralConcreteDesignandConstructionoftheCommitteeonMasonryandReinforcedConcrete.S.S.MorrisandW.S.Garrett,"TheRaisingandStrengtheningofSteenbrarDam,"Proceedings,I.C.E.,Vol.1,Part1,No.1;Discussion,Vol.1,Part1,No.4,1956.O.C.ZienkiewicaandR.W.Gerstner,"StressAnalysisandSpecialProblemsofPrestressedDams,"JournalofthePowerDivision,ASCE,January1961.A.EberhardtandJ.A.Voltrop,"1300-TonCapacityPrestressedAnchorsStabilizeDam,"JournalofthePrestressedConcreteInstitute,Vol.10,No.4,August1965.10.VSLPrestressedRockandAluviumAnchors,LosinerandCompany,SA,March1965.F.S.Leonhardt,PrestressedConcreteDesignandConstruction,WilhelmErnstandSons,Munich,1964,Figure9.4,page271.12.13.Y.Guyon,PrestressedConcrete,JohnWileyandSons,1960."ProblemsoftheDesignandConstructionofEarthquakeResistantPrestressedConcreteStructures,"PCIJournal,June1966.14.J.D.Gilchrist,"TheStressCorrosionCrackingofHighTensileSteelWire,"JournalofMetallurgicalClub,1960-61.15.S.Timoshenko,StrengthofMaterials,PartII,SecondEdition,D.BanNostrandCompany,Inc.,1952.16.M.Hetenye,BeamsonElasticFoundations,UniversityofMichiganPress,1961.17.A.Kalnins,"AnalysisofShellsofRevolutionSubjectedtoSymmetricalandNonsymmetricalLoads,"JournalofAppliedMechanics,September1964.3.8-226REV.1312/96 GINNA/VFSAR18.ACICommittee408,"BondStress-TheStateoftheArt,"ACZJournalProceedings,Vol.63,No.11,November1966.19.R.E.UntrauerandR.L.Henry,"InfluenceofNormalPressureonBondStrength,"ACIJournalProceedings,Vol.62,No.5,May1965.20.S.TimoshenkoandWoinowsky-Kzieger,TheoryofPlatesandShells,McGrawHillBookCompany,1959'1.22.S.TimoshenkoandJ.N.Goodier,TheoryofElasticity,McGrawHillCompany,Inc.,1951.L.D.KrizandC.HERaths,"ConnectioninPrecastConcreteStructures-StrengthofCorbels,"JournalofthePrestressedConcreteInstitute,Vol.10,No.1,February1965.23.A.G.Young,"DesignofLinersforReactorVessels,"GroupJ.,Paper57,PrestressedConcretePressureVessels,London,1967.24.25.26.27.28.29~30.31.32.33.LetterfromR.W.Kober,RG&E,toD.M.Cxutchfield,NRC,

Subject:

ContainmentVesselTendonEvaluationProgram,R.E.GinnaNuclearPowerPlant,datedMarch26,1984.FranklinResearchCenterTechnicalEvaluationReport,DesignCodes,'DesignCriteriaandLoadCombinations,TERC5257-322,May27,1982.(EnclosuretoletterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

DesignCodes,DesignCriteria,andLoadCombinations,datedJanuary4,1983.)LetterfromDEM.Crutchfield,NRC,toJ.E.Maiez,RG&E,

Subject:

SEPTopicIZI-7.B,DesignCodes,DesignCriteriaandLoadCombinations,R.E.GinnaNuclearPowerPlant,datedApril21,1982.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicZXI-7.B,DesignCodes,DesignCriteria,andLoadCombinations,datedMay27,1983.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicsZI-2.A,IXI-2,ZXI-4.A,andIZZ-7.B,datedApril22,1983.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicXXI-7.B,LoadCombinations(ContainmentLinerAnalysis),datedApril28,1983.U.S.NuclearRegulatoryCommission,SeismicReviewoftheRobertE.GinnaNuclearPowerPlantasPartoftheSystematicEvaluationProgram,NUREG/CR-1821,November15,1980.(EnclosuretoletterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPSeismicDesign,ConstructionandComponentIntegrity,datedJanuary7,1981.)LetterfromD.M.Cxutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport,Section4.8,Section4.11,andSection4.17.1,datedAugust22,1983.U.S.NuclearRegulatoryCommission,StructuralReviewoftheRobertE.GinnaNuclearPowerPlantUnderCombinedLoadsfortheSystematicEvaluationPxogram,NUREG/CR-2580,December1981.DraftReport,SafetyEvaluationReportonContainmentPressureandHeatRemovalCapability,SEPTopicVX-3,andMassandEnergyReleaseforPossiblePipeBreakInsideContainment,SEPTopicVZ-2.D,fortheR.E.GinnaNuclearPowerPlant,USNRCDocketNo.50-244,1981.3,8-227REV.1312/96 GINNA/UFSAR34.35.36.37.38.SwansonAnalysisSystems,Inc.,ANSYS,Revision3,Houston,Pennsylvania..StructuresResearchAssociates,FASOR-FieldAnalysisofShellsofRevolution,LagunaBeach,California.G.A.Cohen,FASOR-APxogramforStress,Buckling,andVibrationofShellsofRevolution,StructuresResearchAssociates,LagunaBeach,California.T.L.Windstead,E.G.Burdette,andD.R.Armentrout,"LinerAnchorageAnalysisforNuclearContainments,"JournalofStructuralDivisionASCE,Vol.101,No.ST10,Proc.Paper11635,October1975,P.2103.U.S.NuclearRegulatoryCommission,ResponseoftheZionandIndianPointContainmentBuildingstoSevereAccidentPressures,NUREG/CR2569,May1982.39.A.Kalnins,ComputerPzogramfortheStressAnalysisofAxisymmetricThin,ElasticShells,1976.40.41.42.43.44.45.46.47.48.49.J.G~Ollgaard,R.G.Slutter,andJ.W.Fisher,"ShearStrengthofStudConnections'inLightweightandNormalWeightConcrete,"AISCEngineeringJournal,pp.55-64,April1971'RWReport,DesignData-NelsonConcreteAnchoz.D.R.Baxna,ShearStrengthofDeformedBarAnchors,NelsonStudWelding,April1972.C.G.Goble,"ShearStrengthofThinFlangeCompositeSpecimens",AISCEngineeringJournal,pp.62-65,April1968.LetterfromD.M.Crutchfield,NRC,toJ.E.Maiez,RG&E,

Subject:

IntegratedPlantSafetyAssessmentReport,Section4.17.1,ContainmentLinerInsulation,datedAugust1,1983.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

SystematicEvaluation-NRCUseoftheContainmentandInternalsStructuralModel,datedNovember30,1979.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

SystematicEvaluationPxogramSeismicReview,datedMay22,1979.S.J.Sackett,UsersManualforSAP4,AModifiedandExtendedVersion.oftheU.S.BerkeleySAPIVCode,UCID18226,LawrenceLivermoxeNationalLaboratory,Livermore,CA,1979.ComputechEngineeringServices,ReinforcedMasonryWallEvaluation-EvaluationofControlBuildingReinforcedWalls,ReportNo.R562-N4,December16,1985.(EnclosuretoletterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

SeismicMasonryWallAnalysis,R.E.GinnaNuclearPowerPlant,datedDecember19,1985.)ComputechEngineeringServices,ReinforcedMasonryWallEvaluation-CorrelationofSONGS-1TestData,ReportNo.R562-N3,December15,1985.(EnclosuretoletterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

MasonryWallDesign,R.E.GinnaNuclearPowerPlant,datedJanuary14,1986.)3.8-228REV.1312/96 GINNAfUFSAR50.LetterfromD.C.DiIanni,NRC,toR.W.Kober,RG&E,

Subject:

ResolutionofMasonryWallDesignIntegrityIEBulletin80-11forR.E.Ginna,datedDecember12,1986.51.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicsII-4.D,StabilityofSlopes,andII-4.F,SettlementofFoundationsandBuriedEquipment,datedFebruary19,1982.52.LetterfromJ.A.Zwolinski,NRC;toR.W.Kober,RG&E,

Subject:

SafetyEvaluationContainmentVesselTendonSurveillanceProgram,datedAugust19,1985.53.LetterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

ContainmentVesselTendonInvestigation,datedDecember20,1985.3.8-229REV.1312/96

GINNA/UFSARTABLE3.8-1COMPUTERPROGRAMSANDINPUTFORCONTAINMENTSEISMICANALYSISMEMBERDIMENSIONSEachmemberisassumedtohaveuniformareawithcrosssectionasatthemid-pointofthememberRadius=j(R1'h')FormulaT-3.8-1Ry=660=435,600R2=630=396,900aemberSal*-SsSaa-2PZxaezzaaZaaezzIaSusiekaessRadszsRadues13-1212-1111-1010-99-88-76-54-33-22-157540523577330,600105,000164,000271,60055,230380,3705,93066,300324.0232,900521.2341,670616.6391,000672672672672672672672672672257.5482.6584.6625.366.538.632.046.742.042.042.042.042.042.042.042.0Sheet1REV.13'12/96 GINNA/UFSARTABLE3.8-1COMPUTERPROGRAMSANDINPUTFORCONTAINMENTSEISMICANALYSISBeonseAccelerations~eceu~enPezied(See)Moda2,Zffeeeicce)(eee(cc20)O.OScr0.20cp6.9519.1934.4438.0154.6364.820.1440.0520.0290.0260.0180.01518.464.780.300.920.510.050.140.090.080.080.080.080.360.220.200.200.200.20Total25.02x10lbs'eeFigure3.8-10.Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-2MAJORSTRUCTURESFORWHICHPRESTRESSEDROCKANCHORSWEREUSEDDAMSLittleGooseLock&DamSnakeRiver,Oregon,WashingtonandIdahoDesignedOctober1963byU.S.ArmyEngineersDistrictWallaWalla,WashingtonWanapumHydroStation-Washington,1962EnestinaDam,Brazil-1951-1954Alit-Wa-LairigeDam,Scotland-1954-1956TourtemegneDam,Switzerland-1957-1958SwallowFalls,SouthAfrica-1956-1958CatagunyaDam,Tasmania-1959-1961MeadowbanksDam,Tasmania-1964BRIDGESFeatherRiverSuspensionBridgeOroville,CaliforniaDesignedbyCaliforniaDepartmentofWaterResourcesTIEBACKSMontrealSubwayDesignedbyBealieu-TrudeauandAssociates,MontrealNewYorkState'sUniversityTeachingHospitalinSyracuse,NewYorkDesignedbyDiStasionandVanBurenWashingtonHiltonHotelDesignedbyWaymanC.WingUniversityofCaliforniaSanFranciscoMedicalCenterDesignedbyReidandTaricsNewYorkLifeInsuranceCompanyNewYorkCityDesignedbyEdwardsandHjorthSPECIAL-STRUCTURESTestFacilityforSaturnRocketEnginesatEdwardsAirForceBaseDesignedbyCorpsofEngineers,LosAngelesResearchbyAero-JetGeneralCorporation1REV.1312/96 GINNA/UFSARTABLE3.8-3PROPERTIESANDTESTSFORCONTAINMENTANCHORANDTENDONCORROSIONINHIBITORPhicalProertiesItemMethodSpecificgravity0.88-0.90ASTMD-287Weight/gal7.35-7.50lbPourpoint110'F-120'FASTMD-97Flashpoint(COC)400'F,MinimumASTMD-92Viscosityat130'F575-635SSUASTMD-88Viscosityat150'F135-145SSUASTMD-88Viscosityat210'F65-75SSUASTMD-88Penetration(cone)at77'F328-367SecASTMD-937Thermalconductivity0.12Btu/hr/fi'/'Fe,Thickness(approximate)Specificheat(heatcapacity)0.51Btu/Ib/V(approximate)Shrinkagefactorfrom150'Fto75'.5%-4.5%FSheet1REV.1312/96 GINNA/UI'SARTABLE3.8-3PROPERTIESANDTESTSFORCONTAINMENTANCHORANDTENDONCORROSIONINHIBITOR2LcceleratedCorrosionTestResultsHumiditycabinet(JAN-H-792)Saltspraycabinet300hr75hrASTMD-1748-62TASTMB-117-62(SaltFogTest)Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-4ALLOWABLESTRESSESLoadCombznation2ctaalKRpcxxltlaaZ'ensi1eStress(ksi)StressCaabili.(ksi)ilctlIBJStress(ksi)UltimateTensileStress(ksi)38.038.031.610.54437.025.414.18.733.8'oad(a)C=0.95D+1.5P+1.0TLoad(b)C=0.95D+1.25P+1.0T'+1.25ELoad(c)C=0.95D+1.0P+1.0T+1.0E'orthegiventensilestress.'orthegivenshearstress.REV.1312/96 GINNAIUFSARTABLE3.8-5CONTAINMENTSTRUCTURES'gRESSESLoadin¹I:DeadLoadStressResultantsStressCoulesLocationinFeetMeridionalpgElementNo.Meridional~boaSr8MeridionalShearRadialDislacementBase03610152030406075859095Springline99102105DomeAnchor108-70.9-69.4-67.8-65.2-63.3-60.5-55.7-50.5-40.3-32.7-27.6-25.0-22.5-20.4-19.4-18.5-17.50000000000000+20.4+18.3+16.2+14.100.0000000000.0+20.0+27.8+31.0+32.3+31.0000000.00000000000Sheet1REV.1312/96 GINNA/UISARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLoadin¹l:DeadLoadStressResultantsStressCoulesLocationinFeetMeridionala-*'+ElementNo.~MooMeridional~rooM02feridioaalShearRadial~vbR-111ill+111114117123130Apex-16.8-16.8-16.8-16.1-15.4-14.3-13.2-10.2+12.2+12.2+12.2+10.5+8.7+5.5+2.2-10.2+26.5+28.0-1.50.00.00.00.00.000000000.000000000.000000000.0Sheet2 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUED160x636299klin-1085m'oadin¹2FinalPrestressStressResultantsStressColesLocationinFeetMeridional~chooFromBaseMeridionalM~chooMeridionalShearRadialDislacementElementNo.Base03610152030406075859095Springline99102105QN-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0-299.0MOSheet3REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridionalFromBaseElementNo.~HooN0MeridionalM~ZooMeridionalShearRadialDislaccaaaLDomeAnchor10S-111111+111114117123130Apex-299.0-299.0-299.0000000000000000Sheet4 GINNA/UIiSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLoading3eratinterature-fainter1Y9=kry=116.$(651)12yl1000=912y'cklftbr=-0.143StressResuItantsStressCoulesLocationinFeetMeridionalFromBaseElementNo.~ZooN0MeridionalM~HooMeridionalShearRadialBase03610152030406075859095Springline99102105DomeAnchor108-1110.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0+130.2+95.6+65.0+27.30.0-14.6-19.2+11.80.00.00.0+20.0+34.6+48.3-24.8-12.1-3.70.00.0-9.7-3.6+19.8+59.7+100.2+160.4+188.0+192.3+185.6+186.0+149.1+157.3+173.8+28.1+31.9+31.8+28.299.599.599.599.599.599.599.599.599.599.599.599.599.5+99.528.228.228.228.2-6.6-0.34.07.28.47.64.31.5-0.40.00.0+0.8+3.1+5.9-1.0+1.0+1.20.00.000.038-.075-.113-.143-.159-.164-.156-.144-.142-.143-.121-.105-.090-.093-.072-.058-.052Sheet5REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridional~ZooFromBaseElementNo.MeridionalMMeridionalShearRadialDislacement111+ill114117123130Apex0.00.00.00.00.00.00.00.00.00.00.00.00.00.0+28.2+28.2+28.2+28.2+2S.2+28.2+28.228.228.228.228.228.228.228.20.00.00.00.00.00.00.0-.052-.052-.052-.052-.052-.052-.052Sheet6REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLoading4:eratinterature-SummerStressResultantsStressColesLocationinFeetMeridional~HooFromBaseMeridionalMMeridionalShearRadialDislacementElementNo.Base03610152030406075859095Springline99102105DomeAnchor108-111F~0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0-130.2-38.3-30.1-19.1-15.5-2.7+2.7+2.70.00.00.00.00.00.00.00.00.00.00.0+16.1+25.9+31.6+30.9+25.7+12.5+3.3-1.40.00.00.00.00.00.00.00.00.0MO0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0+6.6+4.2+2.4+0.6-0.7-1.3-1.2-0.60.00.00.00.00.00.00.00.00.00.00.000+.101+.110+.122+.126+.140+.146+.146+.143+.143+.143+.143+.143+.143+.143+.143+.143+.143Shcct7REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDl~l'.00.00.00.00.00.00.0ill+111114117123130ApexLocationinFeetMeridionalElement:No.~Zoo0.00.00.00.00.00.00.0MeridionalM0.00.00.00.00.00.00.0Z~oo0.00.00.00.00.00.00.0MeridionalShear0.00.00.00.00.00.00.0RadialDislacement+.143+.143+.143+.143+.143+.143+.143Sheet8 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDp=60psig5RD=0.383in5R=0.492in.Loadin//5:internalPressureStressResultantsStressCoulesLocationinFeetMeridional~chooFromBaseMeridionalM~HooMeridionalShearRadialDislaccaaa8ElementNo.Base03610152030406075859095Springline99102227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0227.0N0+79.6+127.4+199.4+282.2+363.1+418.8+469.0+473.2+454.2+454.0+438.0+428.0+354.0+322.0+210.0-30.0+106.0+190.6+243.0+243.6+205.7+102.8+28.9+10.8-7.1-3.9+34.7+7.7-60.5-126.70.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0+55.3+36.2+20.9+6.2-4.8-9.7-9.5-5.20.00.00.0-0.4-12.8-21.6-18.2.009.149.226.314.401.460.514.518.498.492.480.470.388.353.346Sheet9REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridiona1~HooFromBaseMeridionalM~EIooMeridionaIShearRadiaIDisIacementEIementNo.105DomeAnchor108-111ill+111114117123130Apex0.00.00.0227.0227.0227.0227.0227.0227.0227.0N8+182.0+229.0+243.0+243.0+243.0+243.0+238.0+230.0227.0227.0-199.119.8+10.3+10.3+10.3+4.3+0.20.00.00.00.00.00.00.00.00.00.00.00.00.0-25.0+3.1+3.3+3.3+3.3+2.00.80.00.00.0.301.368.402.402.402402.393388.383.383Sheet10 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDp=60psigT&86'FLoadin¹6AccidentTeratureStressResultantsStressCoulesZ2.ementNo.Base03610152030406075859095Springline99102105DomeAnchor108-111P~8.08.08.08.08.08.08.08.08.08.08.08.08.08.08.08.08.0111.0LocationinFeetMeridionalFromBase~ZooR8-1.5-0.6+1.2+3.0+5.0+6.0+6.7+6.7+6.7+6.7+25.8+54.1+102.4+120.7+54.0+84.4+103.7111.0Meridional0.02.54.35.55.54.62.30.6-0.20.0-80.0-85.7-66.8-28.4-0.3+8.7+8.2+5.0~chooM00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0MeridionalShearV1.2-0.80.50.1-0.1-0.2-0.2-0.10.00.00.0+0.9+6.8+13.7-5.6-1.0+0.9+1.1RadialDislacement0.000.001.003.005.007.008.009.009.009.009.030.061.114.134.179.229.261.273Shcct11REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridional~chooFromBaseMeridional~ZooMeridianalRadialDislacementElementNo.111+111114117123130ApexN~111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0ShearV0.00.00.00.00.00.00.0.273.273.273.273.273.273.273Sheet12 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDp=90psig,T=312'FLoadin¹7:AccidentTeratureStressResultantsStressColesLocationinFeetMeridionalFromBaseElementNo.Meridional~HooMeridionalShearVRadialDislacementBase00.0003610152030406075859095Springline99102105DomeAnchor1088.08.08.08.08.08.08.08.08.08.08.08.08.08.08.08.08.0-1.5-0.6+1.2+3.0+5.0+6.0+6.7+6.7+6.7+6.7+35.0+61.4+97.9+134.5+59.8+95.6+119.90.02.54.35.55.54.62.30.6-0.20.0-90.0-97.6-76.1-32.3-0.3+10.0+9.80.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.01.20.80.50.1-0.1-0.2-0.2-0.10.00.00.01.07.7+15.6-6.4-1.1+1.00.000.001.003.005.007.008.009.009.009.009.040.069.109.149.200.259.299Sheet13REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridionalFromBaseElementPo.~ZooMeridional~HooMeridionalShearVRadialDislacement-111111+ill114117123130Apex+126.0+126.0+126.0+126.0+126.0+126.0+126.0+126.0+126.0+126.0126.0+126.0+126.0+126.0+126.0+126.0+5.70.00.00.00.00.00.00.00.00.00.00.00.00.00.00.01.30.00.00.00.00.00.00.0.309.309.309.309.309.309.309.309Sheet14 GINNA/UFSARTABLE3.&-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLoading8O.XOEarthake-Horizontal+VerticalCoonentStressResultantsStressColesavocationinFeetMeridional~HooFromBaseMeridional~KooMeridionalRadiaLDigLacacanaElementNo.Base03610152030406075859095Springline99102105DomeAnchor108-111111+N70.3+68.3+66.3+63.6+60.2+56.9+50.3+46.7+31.6+23.3+18.4+16.1+14.0+12.3+11.2+10.0+9.1+8.2+8.2N'0000000000000000000=0000000000000000000ShearV0.002.003.005.007.010.016.021.034.044.050.053.055.058.059.062.062.063.063Sheet15REV.1312/96 GINNA/UFSARTABLE3.8-5CONTAINMENTSTRUCTURESTRESSESCONTINUEDLocationinFeetMeridionalFromBaseElementNo.~HooMeri.dional~HooMeridionalShearVRadialDislacement+111114117123130Apex+8.2+7.4+6.5+4.9+3.50000000.063.064.064.063.0590Sheet16REV.1312/96 GINNA/UFSARTABLE3.8-6CONTAINMENTSTRUCTURELOADINGCOMBINATIONSLoadCombinationsLoadDLNo.OWOTsIPATgpATgpEP=60a=0.1gNormalOperation(MODES1and2)11.021.031.041.051.061.071.081.091.0101.01110121.01.01.171.01.171.01.171.01.171.01.171.01.171.01.01.01.01.01.01.01.01.01.01.01.02.02.02.02.0-2.0-2.0-2.0-2.0Test131.0141.0151.0161.01.01.171.01.171.01.01.151.151.01.151.01.15AccidentPressureCondition"d"171.0181.0191.0201.021-10221.0231.0241.0251.0261.0271.0281.01.01.171.01.171.01.171.01.171.01.171.01.171.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.00.80.80.80.8-0.8-0.8-0.8-0.8Sheet1REV.1312/96 TABLE3.8-6CONTAINMENTSTRUCTURELOADINGCOMBINATIONSLoadCombinationsLoadNo.DLVPOTpOTSIPAT6pAT9pEP=60a=0.1gCondition"a"291.01.01.01.5301.01.171.01.53110101.01.5321.01.171.01.51.01.01.01.0Condition"b"331.01.01.0341.01.171.0351010361.01.17371.01.01.0381.01.171.0391.01.0401.01.171.251.251.01.251.01.251.251.251.01.251.01.251.01.01.01.01.01.01.01.01.0-1.01.0-1.01.0-1.01.0-1.0Condition"c"411.01.01.0421.01.171.0431.01.0441.01.17451.01.01.0461.01.171.0471.01.0481.01.171.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.02.02.02.02.0-2.0-2.0-2.0-2.0Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-6CONTAINMENTSTRUCTURELOADINGCOMBINATIONSLoadingNumberSymbolMeaningFundamentalLoadNo.1DLDeadLoadNo.2VerticalPrestressNo.3OTwOperatingTemperature-WinterNo.4OTsOperatingTemperature-SummerNo.5IPInternalPressure(P=60psig)No.6ATgpAccidentPressure+Temperature(P=60psig;T=286'F)No.7AT9oAccidentPressure+Temperature(P=90psig;T=312'F)No.8DesignEarthquake(horizontalacceleration0.10g)Sheet3REV.1312/96 GINNA/UFSARTABLE3.8-7CONCRETECOVERREQUIREDFORREINFORCINGSTEELKixxinnnnCoverLocationeoSSteel2LCZ3XSDomePrincipal(1SS)Crackcontrol11-1/2in21112-1/4in.1-1/2in.CylinderHoop(1SS)Vertical(14SAother)2-3/Sin4-5/Sin2-1/4in1-3/4Ec11/2-inBaseringBottomreinforcingTopreinforcingl-l/2in1-1/2in.BaseslabBottomreinforcingTopreinforcingl-l/2in.1-1/2in.REV.1312/96 GINNA/UFSARTABLE3.8-8ELASTOMERPADSPROPERTIESOriinalPhsicalProertiesTearresistance,ASTMD625D6CC,psiofthickness,minimum180180Hardness,ASTMD676,points55+3Tensilestrength,ASTMD412,minimumpsi2500Ultimateelongation,minimum%400ChaneinPhsicalProertiesOvenAin70hrat212FinaccordancewithHardness,pointschange0to+15Tensilestrength,%change+15Ultimateelongation,maximum%-40ExtremeTemeratureCharacteristicsCompressionsetunderconstantdeflection,(22hrat158'F)ASTMD395(MethodB),maximum,%25Lowtemperaturebrittleness,ASTMD745,nobreaksabove-20'F0oneCrachinResistanceExposureto100partsper100millionofozoneinairbyvolumeatastrainof10020%andatemperatureof100'F+2'natestotherwiseconformingtoASTMD1149.(Samplesshallbesolvent-wipedbeforetesttoremoveanytracesofsurFaceimpurities).Timewithinwhichnocracksdevelop,minimumhoursShcct1REV.13 GINNA/UIiSARTABLE3.8-8ELASTOMERPADSPROPERTIESOilSellASTMOilNo.370Hoursat212'F,ASTMD471,volumechange,maximum,%+80Shearmodulus,psi138+0%Sheet2REV.13 GINNA/UIiSARTABLE3.8-9IROCKANCHORAUPLIFTTESTWITHJACKINGFRAMEIMAY19I1966Load~KisPierDialsNECornerSFCornerHeadDial(in).(in.)(in)AveraeDeformationToofPier(in.)North(in.)BockSuzfacePepsIntermediate(in.)Snntlx(in.)0840.3000.7007-1/47-5/89-3/4095520.304.005.705.0045101040.308.009.709.0085102560.311.012.714.0115104080.318.019.723.018510551105100110.354.380.031.039.752.767.04257-1/4LIFTOFFAPPARENT.05957-9/169-5/880.349.025739.03760.334.016.724.02540.326010.715.01820.318.003.706.0105.312-.002.699.0057-1/47-9/169-5/8Sheet1REV.1312/96 GINNANFSARTABLE3.8-10DESIGNCODECOMPARlSONReferencedSubsectionSummaofCodeChaneswiththePotentialtoSinificantlDeradePerceivedMarinofSafet(AISC1963VersusAISC1980)AISC1980AZSC1969StrnctnralElementsPotentiallAffectedComments1.5.1.2.2BeamendconnectionwherethetopflangeiscopedandsubjecttoScecasestudy1fordetails.shear,orfailurebyshearalongaplanethroughfastenersorbyacombinationofshearalongaplanethroughfastenersplustensionalongaperpendicular'lane.1.9.1.2and1.9.1AppendixCSlendercompressionunstiffenedelementssubjecttoaxialNewprovisionsaddedinthe1980Code,compressionorcompressionduetobendingwhenactualwidth-to-AppendixC.Seecasestudy10fordetails.thicknessratioexceedsthevaluesspecifiedinsubsection1.9.1.2.1.10.61.10.6Hybridgirder-reductioninflangestress.Newrequirementsaddedinthe1980CodeHybridgirderswerenotcoveredinthe1963Code.Seecasestudy9fordetails.1.11.41.11.4Shearconnectorsincompositebeams.Newrequirementsaddedinthe1980Coderegardingthedistributionofshearconnectors.(Equation1.11-7).Thediameterandspacingoftheshearconnectorsarealsosubjecttonewcontrols.Sheet1REV.1312/96 GINNA/UFSARTABLE3.8-10DESIGNCODECOMPARISONReferencedSubsectionSummaofCodeChaneswiththePotentialtoSinificantlDeradePerceivedMarinofSafet(AISC1963VersusAISC1980)AZSC1980AZSC2983StrnchxralElementsPotentiallAffectedComments1.11.5Compositebeamsorgirderswithformedsteeldeck.Newrequirementaddedinthe1980Code.1.14.2.2AxiallyloadedtensionmemberswheretheloadistransmittedbyNewrequirementaddedinthe1980Codeboltsorrivetsthroughsomebutnotallofthecross-sectionalelementsofthemembers.1.15.5.2,1.15.5.3,1.15.5.4Restrainedmemberswhenflangeormomentconnectionplatesfor.Newrequirementaddedinthe1980CodeendconnectionsofbeamsandgirdersareweldedtotheflangeofIorHshapedcolumns2.92.8LateralbracingofmemberstoresistlateralandtorsionaldisplacementScaleA0.0M/Mp(1.0;C0.0M/Mp)-1.0Seecasestudy7fordetails.Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-11ACI318-63VERSUSACI349-76CODECOMPARISONSReferenceSubsectionACI349-76ACI318-63ShruchxzalElementsPot:entia11AffectedCommences7.10.3805ColumnsdesignedforstressreversalswithvariationSplicesofthemainreinforcementinsuchcolumnsmustofstressfromf>incompressionto1/2f>intensionbereasonablylimitedtoprovideforadequateductilityunderallloadingconditions.11.13Shortbracketsandcorbelswhichareprimaryload-Asthisprovisionisnew,anyexistingcorbelsorbracketscarryingmembersmaynotmeetthesecriteriaandfailureofsuchelementscouldbenonductiletypefailure.Structuralintegritymaybeseriouslyendangeredifthedesignfailstofulfilltheserequirements.11.15AppliestoanyelementsloadedinshearwhereitisStructuralintegritymaybeseriouslyendangerediftheinappropriatetoconsidershearasameasureofdesignfailstofulfilltheserequirements.diagonaltensionandtheloadingcouldinducedirectsheartypecracks11.16Allstructuralwalls-thosewhichareprimaryloadcarrying,e:g.,shearwallsandthosewhichservetoprovideprotectionfromimpactsofmissile-typeobjects.Guidelinesforthesekindsofwallloadswerenotprovidedbyoldercodes;therefore,structuralintegritymaybeseriouslyendangeredifthedesignfailstofulfilltheserequirements.AppendixAAllelementssubjecttotime-dependentandposition-Forstructuressubjecttoeffectsofpipebreak,especiallydependenttemperaturevariationsandrestrainedsojetimpingement,thermalstressesmaybesignificant.Sheet1REV.1312/96 GINNA/UFSARTABLE3.8-11ACI318-63VERSUSACI349-76CODECOMPARISONSReferenceSubsectionACZ349-76ACZ318-63StructuralElementsPotentiallAffected'hatthermalstrainswillresultinthermalstressesCommentsScaleAforareasofjetimpingementorwheretheconditionscoulddevelopcausingconcretetemperaturetoexceedlimitationofA.4.2.AppendixBAllsteelembedmentsusedtotransmitloadsfromattachmentsintothereinforced-concretestructureNewappendix;therefore,considerablereviewofolderdesignsiswarranted.Sincestressanalysisassociatedwiththeseconditionsishighlydependentondefinitionoffailureplanesandallowablestressforthesespecialconditions,pastpracticevariedwithdesigners'pinions.Stressesmayvarysignificantlyfromthosethoughttoexistunderpreviousdesignprocedures.AppendixCAllelementswhosefailureunderimpulsiveandimpactiveloadsmustbeprecludedNewappendix;therefore,considerationandreviewofolderdesignsisconsideredimportant.Sincestressanalysisassociatedwiththeseconditionsishighlydependentondefinitionoffailureplanesandallowablestressforthesespecialconditions,pastpracticevariedwithdesigners'pinions.Stressesmayvarysignificantlyfromthosethoughttoexistunderpreviousdesignprocedures.Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-12ACI301-63VERSUSACI301-72(REVISED1975)COMPARISONNosignificantchangeswerefoundintheACl301Codecomparison.REV.1312/96 GINNA/UFSARTABLE3.8-13ACI31863VERSUSASMEBGPVCODEISECTIONIIIiDIVISION2~1980CODECOMPARISONBefezencedSubsectionSec.ZZZ19BOACZ31B-63StzuctuzalElementsPotentiallAffectedCozmuentsCC-3421.5Containmentandothereleinentstransmittingin-planeshear.Newconcept.ThereisnocomparablesectioninACI318-63,i.e.nospecificsectionaddressingin-planeshear.Thegeneralconceptusedhere(thattheconcrete,undercertaincondition,canresistsomeshear,andtheremaindermustbecarriedbyreinforcement)isthesameasinACI318-63.Conceptsofin-planeshearandshearfrictionwerenotaddressedintheoldcodesandtherefore,acheckoftheolddesignscouldshowsomesignificantdecreaseinoverallpredictionofstructuralintegrity.CC-3421.61707Regionssubjecttoperipheralshearintheregionofconcentratedforcesnormaltotheshellsurface.TheseequationsreducetoVc=4~f',whenmembranestressesarezero,whichcomparestoACI318-63(Sections1707(c)and(d))whichaddress"punching"shearinslabsandfootingswiththe$factortakencareofinthebasicshearequation(SectionCC-3521.2.1,Equation10)REV.1312/96 GINNA/UFSARTABLE3.8-14ASMEBGPVCODEpSECTIONIIIpDIVISION2I1980(ACI35980)VERSUSACI31863CODECOMPARISIONSec.ElX1980AXC328-63Stzuctura1ElementsPatenH.all2LffectedCommentsCC-3421.6Previouscodelogicdidnotaddresstheproblemofpunchingshearasrelatedtodiagonaltension,butcontrolwasontheaverageuniformshearstressonacriticalsection.Seecasestudy13fordetails.CC-3421.7921Regionssubjecttotorsion.Newdefinedlimitonshearstressduetopuretorsion.Theequationrelatesshearstressfromabiaxialstresscondition(planestress)totheresultingprincipaltensilestressandsetsthcprincipaltensilestressequalto6Jf',.Previouscodesuperimposedonlytorsionandtransverseshearstresses.CC-3421.8BracketandcorbelsNewprovisions.NocomparablesectioninACI318-63;therefore,anyexistingcorbelsorbracketsmaynotmeetthesecriteria,andfailureofsuchelementscouldbenonductiletypefailure.Structuralintegritymaybeseriouslyendangeredifthedesignfailstofulfilltheserequirements.CC-3440(b),(c)AllconcreteelementswhichcouldNewlimitationsareimposedonshort-termthermalloading.Nopossiblybeexposedtoshort-termhighcomparableprovisionsexistedintheACI318-63.thermalloading.CC-3532.1.2WherebiaxialtensionexistsACI318-63didnotconsidertheproblemofdevelopmentlengthinbiaxialtensionfields.REV.1312/96 GINNA/UFSARTABLE3.8-15LISTOFSTRUCTURALELEMENTSTOBEEXAMINEDCodechanes2$$fectinTheseElementsStzucturaIElementsToBe2MminedFewCodeOldCodeBeamsAISC1980AISC1963Comositebeams1.Shearconnectorsincompositebeams1.11.41.11.42.Compositebeamsorgirderswithformedsteeldeck1.11.5HbridrdersStressinflange1.10.6CompressionElementsAISC1980AISC1963Withwidth-to-thicknessratio1.9.1.2andAppendixChigherthanspecifledin1.9.1.21.9.1TensionMembersAISC1980AISC1963Whenloadistransmittedby1.14.2.2boltsorrivetsConnectionsAISC1980AISC1963Beamendswithtopflangecoped,ifsubjecttoshear1.5.1.2.2Shcct1REV.1312/96 GINNA/UI'SARTABLE3.8-15LISTOFSTRUCTURALELEMENTSTOBEEXAMINEDCodec2xanes2fectin22xeseZlementsStructuzalZlementsToBeZxanunedNewCodeOldCodeConnectionscarryingmoment1.15.5.2,1.15.5.3,1.15.5.4orrestrainedmemberconnectionMembersdesignedtooperateAISC1980inaninelasticregimeAISC1963Spacingoflateralbracing2.92.8ShortbracketsandcorbelsACI349-76,11.13havingashearspan-to-depthratioofunityorlessACI318-63ShearwallsusedasaprimaryACI349-76,11.16load-canyingmemberACI318-63PrecastconcretestructuralACI349-76,11.15elements,whereshearisnotameasureofdiagonaltensionACI318-63ConcreteregionssubjecttoACI349-76hightemperaturesACI318-63Time-dependentandposition-AppendixAdependenttemperaturevariationsColumnswithsplicedreinforcementsubjecttostressreversals;f>incompressionto1/2fvintensionACI349-767.10.3ACI318-63,805SteelembedmentsusedtoACI349-76AppendixBACI318-63Sheet2REV.1312/96 GINNA/UFSARTABLE3.8-15LISTOFSTRUCTURALELEMENTSTOBEEXAMINEDCodechanes2LCSectinTheseElementsS~cturalElementsToBeZMnunedtransmitloadtoconcreteNewCodeOldCodeElementssubjecttoimpulsiveACI349-76,AppendixCandimpactiveloadswhosefailuremustbeprecludedACI318-63ContainmentandotherB&PVCodeSectionHI,elements,transmittingin-planeDivision2,1980,CC-3421.5shearACI318-63Regionofshellcarryingconcentratedforcesnormaltotheshellsurface(Seecasestudy13fordetails)B&PVCode,SectionHI,Division2,1980,CC-3421.6ACI318-63,1707RegionofshellundertorsionB&PVCodeSectionHI,Divisio'n2,1980,CC-3421.7ACI318-63,921Elementssubjecttoshort-termB&PVCodeSectionHI,hightemperatureloadingDivision2,1980,CC-3440(b),(c)ACI318-63ElementssubjecttobiaxialB&PVCode,SectionHIACI318-63tensionDivision2,1980,CC-3532.1.2BracketsandcorbelsB&PVCode,SectionIH,Division2,1980,CC-3421.8ACI318-63Sheet3REV.1312/96 GINNA/UPSARTABLE3.8-15LISTOFSTRUCTURALELEMENTSTOBEEXAMINEDExtremeenvironmentalsnowloadsareprovidedbySEPTopicII-2.A.RegulatoryGuide1.102(Position3)providesguidancetoprecludeadverseconsequencesfrompondingonparapetroofs.Failureofroofsnotdesignedforsuchcircumstancescouldgenerateimpulsiveloadingsandwaterdamage,possiblyextendingtoSeismicCategoryIcomponentsofallfloorlevels.Dash(-)indicatesthatnoprovisionswereprovidedintheoldercode.Notshownintabularsummaryofcodecomparisons.Sheet4REV.1312/96 GINNA/UFSARTABLE3.8-16MASSESiMOMENTOFINERTIA(I)IFLEXURALAREA(A)IANDSHEARAREA(As)FORTHELLNLMODEL13ZIeaea'CMassZb-1,1X!.aea/aa.(x102480.42kin.(x10)Ag)in(x10)121012104952.84952.87007.26491.065972.05972.05972.05972.05972.05972.05972.05972.05.20215.3521.8040.0936.4436.4436.4436.4436.4436.4436.4436.4412.1512.1712.0819.0317.1817.1817.1817.1817.1817.1817.1817.186.0746.0866.0389.5168.5908.5908.5908.5908.5908.5908.5908.590REV.1312/96 GINNA/UFSARTABLE3.8-17MODALFREQUENCIESFORTHELAWRENCELIVERMORENATIONALLABORATORYCONTAINMENTSHELLMODEL~ecpencnr123456789106.9718.8721.4737.7553.9154.6070.2380.8984.7092.38REV.1312/96 GINNA/UFSARTABLE3.8-18RESPONSEVALUESFORREGULATORYGUIDE1.60HORIZONTAL(0.17G)ANDVERTICAL(0.11G)SPECTRA,INPUTZorizontalVerticalElementMcaaeae(2b-in.x10)Sbeae2bx10)aaIaI(2bx10)120.1020.600.2040.3911.700.603100.8422.680.985l.'413.891.502.124.901.942.955.712.323.SS6.402.654.906.972.945.977.423.187.097.763.378.247.983.489.428.083.55REV.1312/96 GINNA/VFSARTABLE3.8-19PEAKHARMONICAMPLITUDESOFTHESEISMICLOADONCYLINDERANDDOMEOFTHECONTAINMENTSHELLZIevati.on(in.)Loadlihxde(si)0732193655116578039491095118800.3340.7361.1381.5081.9082.3102.7125.310(z'ad)Load1itude(si)1.571.802.202.623.143.9442.0742.9074.602'levationmeasuredfrommid-surfaceofbaseslab.REV.1312/96 GINNA/UFSARTABLE3.8-20MATERIALPROPERTIESFORSTEEL~CONCRETE~ANDFOAMINSULATIONSteeZLinerConcreteInsulationZeinSorcementSlee1Young'smodulus(psi)29x104.3x1029x10Poisson'sratio0.30.25Coefficientofthermal6.3x10expansionof(in./in.)P5.5x10Density(lb/R)490150Coefficientofthermal26conductivity,btu/hr4F0440.022Specificheatbtu/lbP0.110.1600.30Thickness(in.)0.37543.301.25aq(psi)Steelandf'c32,000(psi)Concrete5,00040,000REV.1312/96 GINNA/UFSARTABLE3.8-21MAXIMUMDISPLACEMENTSOF5/8-INCHS6LSTUDSINTHEINSULATIONTERMINATIONREGIONShzdBuckled¹xumnuStudVltimateStudDilacement(in.)(4)Max/tT1timateDilacement4(5)10.68.310.68.3262629290.1410.1480.1590.1660.1670.1670.1670.16784899599REV.1312/96 GINNA/UFSARTABLE3.8-22MAXIMUMDISPLACEMENTOFSTUDSINGENERALDOMEMembranelinerStrains(in./in.)StudCapacityQu(kips)StressLimitinUnbuckledPanels(ksi)(>)MaximumUltimateStudStudDisplacementDisplacement(in,)6(in.)(>)(4)Max/UltimateLinerLateralDisplaccmcntDisplacement(in,)MembraneCompressionMcmbrancandBendingCompression(8)MembraneandBendingTension(9)Column(8)/cy(10)10.6260.1130.1675/8-In.Diameter$6L$tudsat24In.681.670.00960.05580.0366358.3260.1500.167901.920.00970.06260.04333910.68.329290.170>0.3000.1670.1671022.03>>100NA0.0088NA0.0597NA0.0422NA373/4-In.DiameterHeaded$tudsat51In.31.131.15.8120.003430.03880.3410.34110.42111.410.000200.00240.00191.50.0001770.0007670.0004130.5c>=48/30000=0.0016in./in.REV.1312/96 GINNA/UFSARTABLE3.8-23LOADDEFINITIONSDEorEoE'orE>>HHaPaPoorPvpsRsorRrTaToTsWW'rWt.YiYmYrDeadloadsortheirrelatedinternalmomentsandforces(suchaspermanentequipmentloads).Loadsgeneratedbytheoperating-basisearthquake.Loadsgeneratedbythesafeshutdownearthquake.Loadsresultingfromtheapplicationofprestress.Hydrostaticloadsunderoperatingconditions.Hydrostaticloadsgeneratedunderaccidentconditions,suchaspostaccidentinternalflooding.(Fz,issometimesusedtodesignatethepost-LOCAinternalflooding).Liveloadsortheirrelatedinternalmomentsandforces(suchasmovableequipmentloads).Pressureloadgeneratedbyaccidentconditions(suchasthosegeneratedbythepostulatedpipebreakaccident).Loadsresulting&ompressureduetonormaloperatingconditions.Allpressureloadswhicharecausedbytheactuationofsafetyreliefvalvedischargeincludingpoolswellandsubsequenthydrodynamicloads.Pipereactionsunderaccidentconditions(suchasthosegeneratedbythermaltransientsassociatedwithanaccident).Pipereactionsduringstartup,normaloperating,orshutdownconditions,basedonthecriticaltransientorsteady-statecondition.Allpipereactionloadswhicharegeneratedbythedischargeofsafetyreliefvalves.Thermalloadsunderaccidentconditions(suchasthosegeneratedbyapostulatedpipebreakaccident).Thermaleffectsandloadsduringstartup,normaloperating,orshutdownconditions,basedonthemostcriticaltransientorsteady-statecondition.All'thermalloadswhicharegeneratedbythedischargeofsafetyreliefvalvesLoadsgeneratedbythedesignwindspecifiedfortheplant.Loadsgeneratedbythedesigntornadospecifiedfortheplant.Tornadoloadsincludeloadsduetotornadowindpressure,tornad~reateddifferentialpressure,andtornado-generatedmissiles.Equivalentstaticloadonthestructuregeneratedbytheimpingementofthefluidjetfromthebrokenpipeduringthedesign-basisaccident.Missileimpactequivalentstaticloadonthestructuregeneratedbyorduringthedesign-basisaccident,suchaspipewhippingEquivalentstaticloadonthestructuregeneratedbythereactiononthebrokenpipeduringthedesign-basisaccident.REV.1312/96 CONCRETESTEELLINER5/8"QSGLNELSONINTERNALTHREADEDSTUDSFORI/2"fTHREADEDRODREBARSUPPORTTIESQa2'-0"ONCENTER1.25in.~yUPSPRINGLINEPVCINSULATION3in.-L94ft-lgin.42in.+-R=630in.DROCHESTERGASANDELECTRICCORPORATIONR.E.GINNANUCLEARPOWERPLANTUPDATEDFINALSAFETYANALYSISREPORTFigure3.8-48GinnaContainmentStructureREV.1312/96

GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTitIePacCeCONFORMANCEWXTHNRCGENERALDESXGNCRXTERXA3.1-13.1.13.1.1.13.1.1.1.13.1.1.1.23.1.1.1.33.1.1.1.43.1.1.1.53.1.1.23.1.1.2.13.1.1.2.23.1.1.2.33.1.1.2.43.1.1.2.53.1.1.33.1.1.3.13.1.1.3.23.1.1.3.33.1.1.3.43.1.1.3.53.1.1.3.63.1.1.3.73.1.1.3.83.1.1.43.1.1.4.13.1.1.4.23.1.1.4.2.13.1.1.4.2.23.1.1.4.33.1.1.4.43.1.1.4.53.1.1.4.63.1.1.4.73.1.1.4.83.1.1.53.1.1.5.13.1.1.5.23.1.1.5.33.1.1.5.43.1.1.5.53.1.1.5.6nSystemsSystemsnSystemsAtomicIndustrialForumDesignCriteriaOverallPlantRequirementsQualityStandardsPerformanceStandardsFireProtectionSharingofSystemsRecordsRequirementsProtectionbyMultipleFissionProductBarriersReactorCoreDesignSuppressionofPowerOscillationsOverallPowerCocAicicntReactorCoolantPrcssureBoundaryReactorContainmentNuclearandRadiationControlsControlRoomInstrumentationandControlsSystemsFissionProcessMonitorsandControlsCoreProtectionSystemsEngineeredSafetyFeaturesProtectionSystemsMonitoringReactorCoolantLeakageMonitoringRadioactivityRelcascsMonitoringFuelandWasteStorageReliabilityandTcstabilityofProtectionSystemsProtectionSystemsReliabilityProtectionSystemsRedundancyandIndependenceReactorTripCircuitsEngineeredSafetyFeaturesInitiationCircuitsSingle-FailureDefinition(CategoryB)SeparationofProtectionandControlInstrumentatioProtectionAgainstMultipleDisabilityforProtectionEmergencyPowerforProtectionSystemsDemonstrationofFunctionalOperabilityofProtcctioProtectionSystemsFailureAnalysisDesignReactivityControlRedundancyofReactivityControlReactivityMODE3(HotShutdown)CapabilityReactivityShutdownCapabilityReactivityHold-DownCapabilityReactivityControlSystemsMalfunctionMaximumReactivityWorthofControlRods3.1-13.1-23.1-23.1-33.143.143.1-53.143.1<3.143.1-73.1-73.1-83.1-113.1-113.1-113.1-123.1-133.1-133.1-153.1-153.1-163.1-173.1-173.1-183.1-183.1-193.1-193.1-203.1-203.1-203.1-203.1-213.1-243.1-243.1-243.1-253.1-253.1-263.1-26REV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSect'ion3.1.1.63.1.1.6.13.1.1.6.23.1.1.6.33.1.1.6.43.1.1.73.1.1.7.13.1.1.7.23.1.1.7.33.1.1.7.43.1.1.7.53.1.1.7.63.1.1.7.73.1.1.7.83.1.1.7.93.1.1.7.103.1.1.7.113.1.1.7.123.1.1.7:133.1.1.7.143.1.1.7.153.1.1.7.163.1.1.7.173.1.1.7.183.1.1.7.193.1.1.7.203.1.1.7.213.1.1.7.223.1:1.7.233.1.1.7.243.1.1.7.253.1.1.7.263.1.1.7.273.1.1.7.283.1.1.7.293.1.1.83.1.1.8.13.1.1.8.2ReactorCoolantPressureBoundaryReactorCoolantPressureBoundaryCapabilityReactorCoolantPressureBoundaryRapidPropagationFailurePreventionReactorCoolantPrcssureBoundaryBrittleFracturePreventionReactorCoolantPrcssureBoundarySurveillanceEngineeredSafetyFeaturesEngineeredSafetyFeaturesBasisforDesignReliabilityandTcstabilityofEngineeredSafetyFeaturesEmergencyPowerMissileProtectionEngineeredSafetyFeaturesPerformanceCapabilityEngineeredSafetyFeaturesComponentsCapabilityAccidentAggravationPrcvcntionEmergencyCoreCoolingSystem(ECCS)CapabilityInspectionofEmergencyCoreCoolingSystem(ECCS)TestingofEmergencyCoreCoolingSystem(ECCS)ComponentsTestingofEmergencyCoreCoolingSystem(ECCS)TestingofOperationalScquenccofEmergencyCoreCoolingSystem(ECCS)ContainmentDesignBasisNilDuctilityTransitionTemperatureRequirementforContainmentMaterialReactorCoolantPrcssureBoundaryOutsideContainmentContainmcntHeatRemovalSystemsContainmcntIsolationValvesInitialLeakageRateTestingofContainmentPeriodicContainmcntLeakageRateTestingProvisionsforTestingofPenctrationsProvisionsforTestingofIsolationValvesInspectionofContainmentPrcssure-ReducingSystemsTestingofContainmentPrcssure-ReducingSystemsComponentsTestingofContainmentSpraySystemsTestingofOperationalSequenceofContainmentPrcssure-RcducingSystemsInspectionofAirCleanupSystemsTestingofAirCleanupSystemsComponentsTestingAirCleanupSystemTestingofOperationalSequenceofAirCleanupSystemsFuelandWasteStorageSystemsPreventionofFuelStorageCriticalityFuelandWasteStorageDecayHeat3.1-283.1-283.1-293.1-303.1-303.1-323.1-323.1-333.1-353.1-363.1-373.1-373.1-383.1-383.1-393.1-393.1<03.1-403.1-403.1-413.1<13.1-413.1<23.1-423.1433.1-453.1-453.1-463.1<63.1-463.1-463.1-473.1-473.1<73.1-483.1493.1<93.1-493-11REV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionFx11e'acCe3.1.1.8.33.1.1.8.43.1.1.93.1.23.1.2.13.1.2.1.13.1.2.1.23.1.2.1.33.1.2.1.43.1.2.1.53.1.2.23.1.2.2.13.1.2.2.23.1.2.2.33.1.2.2.43.1.2.2.53.1.2.2.63.1.2.2.73.1.2.2.83.1.2.2.93.1.2.2.103.1.2.33.1.2.3:13.1.2.3.23.1.2.3.33.1.2.3.43.1.2.3.53.1.2.3.63.1.2.3.73.1.2.3.83.1.2.3.9FuelandWasteStorageRadiationShieldingProtectionAgainstRadioactivityReleaseFromSpentFuelandWasteStorageControlofReleasesofRadioactivitytothcEnvironmentGeneralDesignCriteriaOverallRequirementsGeneralDesignCriterion1-QualityStandardsandRecordsGeneralDesignCriterion2-DesignBasesforProtectionAgainstNaturalPhenomenaGeneralDesignCriterion3-FireProtectionGeneralDesignCriterion4-EnvironmentalandMissileDesignBasesGeneralDesignCriterion5-SharingofStructures,Systems,andComponentsProtectionbyMultipleFissionProductBarriersGeneralDesignCriterion10-ReactorDesignGeneralDesignCriterion11-ReactorInherentProtectionGeneralDesignCriterion12-SuppressionofReactorPowerOscillationsGeneralDesignCriterion13-InstrumentationandControlGeneralDesignCriterion14-ReactorCoolantPrcssureBoundaryGeneralDesignCriterion15-ReactorCoolantSystemDesignGeneralDesignCriterion16-ContainmentDesignGeneralDesignCriterion17-ElectricalPowerSystemsGeneralDesignCriterion18-InspectionandTestingofElectricalPowerSystemsGeneralDesignCriterion19-ControlRoomProtectionandReactivityControlSystemsGeneralDesignCriterion20-ProtectionSystemsFunctionsGeneralDesignCriterion21-ProtectionSystemReliabilityandTcstabilityGeneralDesignCriterion22-ProtectionSystemIndependenceGeneralDesignCriterion23-ProtectionSystemFailureModesGeneralDesignCriterion24-SeparationofProtectionandControlSystemsGeneralDesignCriterion25-ProtectionSystemRequirementsforReactivityControlMalfunctionsGeneralDesignCriterion26-ReactivityControlSystemRedundancyandCapabilityGeneralDesignCriterion27-CombinedReactivityControlSystemCapabilityGeneralDesignCriterion28-ReactivityLimits3.1-503.1-503.1-513.1-543.1-553.1-553.1-563.1-573.1-583.1-583.1-593.1-593.1-593.1-603.1403.1413.1-613.1-623.1-633.1<63.1-663.1483.1-683.1483.1493.1-703.1-703.1-713.1-713.1-723.1-723illREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES/COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTitIeP~cCe3.1.2.3.103.1.2.43.1.2.4.13.1.2.4.23.1.2.4.33.1.2.4.43.1.2.4.53.1.2.4.63.1.2.4.73.1.2.4.83.1.2.4.93.1.2.4.103.1.2.4.113.1.2.4.123.1.2.4.133.1.2.4.143.1.2.4.153.1.2.4.163.1.2.4.173.1.2.53.1.2.5.13.1.2.5.23.1.2.5.33.1.2.5.43.1.2.5.53.1.2.5.63.1.2.5.7GeneralDesignCriterion29-ProtectionAgainstAnticipatedOperationalOccurrencesFluidSystemsGeneralDesignCriterion30-QualityofReactorCoolantPrcssureBoundaryGeneralDesignCriterion31-FracturePreventionofReactorCoolantPressureBoundaryGeneralDesignCriterion32-InspectionofReactorCoolantPressureBoundaryGeneralDesignCriterion33-ReactorCoolantMakeupGeneralDesignCriterion34-ResidualHeatRemovalGeneralDesignCriterion35-EmergencyCoreCoolingGeneralDesignCriterion36-InspectionofEmergencyCoreCoolingSystem(ECCS)GeneralDesignCriterion37-TestingofEmergencyCoreCoolingSystem(ECCS)GcncralDesignCriterion38-ContainmcntHeatRemovalGeneralDesignCriterion39-InspectionofContainmentHeatRemovalSystemGeneralDesignCriterion40-TestingofContainmcntHeatRemovalSystemGeneralDesignCriterion41-ContainmcntAtmosphereCleanupGeneralDesignCriterion42-InspectionofContainmcntAtmosphereCleanupSystemsGeneralDesignCriterion43-TestingofContainmentAtmosphereCleanupSystemsGeneralDesignCriterion44-CoolingWaterGeneralDesignCriterion45-InspectionofCoolingWaterSystemGeneralDesignCriterion46-TestingofCoolingWaterSystemReactorContainmentGeneralDesignCriterion50-ContainmcntDesignBasisGeneralDesignCriterion51-FracturePreventionofContainmentPrcssureBoundary,GeneralDesignCriterion52-CapabilityforContainmentLeakageRateTestingGeneralDesignCriterion53-ProvisionsforContainmentTestingandInspectionGeneralDesignCriterion54-PipingSystemsPenetratingContainmentGeneralDesignCriterion55-ReactorCoolantPrcssureBoundaryPenetratingContainmentGeneralDesignCriterion56-PrimatyContainmentIsolation3.1-733.1-743.1-743.1-763.1-773.1-73.1-783.1-793.1-793.1-803.1-803.1-813.1813.1-823.1-833.1-833.1-843.1-863.1-863.1-873.1-873.1-883.1-883.1-893.1-89.3.1-93.1-903-IvREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionTitlePacae3.1.2.5.83.1.2.63.1.2.6.13.1.2.6.23.1.2.6.33.1'.2.6.43.1.2.6.5GeneralDesignCriterion57-ClosedSystemIsolationValvesFuelandRadioactivityControlGeneralDesignCriterion60-ControlofReleasesofRadioactiveMaterialstothcEnvironmentGeneralDesignCriterion61-FuelStorageandHandlingandRadioactivityControGeneralDesignCriterion62-PreventionofCriticalityinFuelStorageandHandlingGeneralDesignCriterion63-MonitoringFuelandWasteStorageGeneralDesignCriterion64-MonitoringRadioactivityReleases3.1-913.1-923.1-923.1-923.1-933.1-933.1-943.23.2.2.13.2.2.1.13.2.2.1.23.2.2.1.33.2.2.1.43.2.2.1.53.2.2.1.63.2.2.23.2.2.2.13.2.2.2.23.2.2.2.33.2.2.33.2.2.43.2.2.5CLASSIFICATIONOFSTRUCTURES,COMPONENTS/ANDSYSTEMSIntroductionSystematicEvaluationProgramEvaluationFractureToughnessPressurizerAccumulatorsComponentCoolingWaterPumpsServiceWaterPumpsMainSteamPipingandValvesFeedwaterPipingandValvesRadiographyRequirementsClass2PrcssureVesselsClass1and2WeldedJointsMainSteamandFeedwatcrPipingValveDesignPumpDesignStorageTankDesign3.2-13.2-13.2-23.2-33.2-33.2A3.2A3.2-53.2-53.2-53.243.2-63.2-73.2-S3.2S3.2-93.2-10ReferencesforSection3.23.2-113.33.3.13.3.23.3.2.13.3.2.1.13.3.2.1.2HINDANDTORNADOLOADZNGSIntroductionStructuralUpgradeProgramEvaluationStructuralEvaluationApproachRcquiremcntsStructuralEvaluationProcess3.3-13.3-13.3-13.3-13.3-13.3-23-vREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES/COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSechionamitiePacCe3.3.2.1.33.3.2.1.43.3.2.1.53.3.2.1.63.3.2.23.3.2.2.13.3.2.2.23.3.2.2.33.3.2.2.43.3.2.2.4.13.3.2.2.4.23.3.2.2.4.33.3.2.33.3.2.3.13.3.2.3.1.13.3.2.3.1.23.3.2.3.1.33.3.2.3.1.4,3.3.2.3.1.53.3.2.3.1.63.3.2.3.23.3.2.3.33.3.2.3.43.3.2.3.4.13.3.2.3.4.23.3.2.3.4.33.3.33.3.3.13.3.3.23.3.3.2.13.3.3.2.23.3.3.33.3.3.3.13.3.3.3.23.3.3.3.33.3.3.3.3.13.3.3.3.3.23.3.3.3.3.33.3.3.3.43.3.3.3.53.3.3.3.63.3.3.3.7StructuralEvaluationComputerProgramInputLoadCriteriaGeneralAssumptionsLoadCombinationsandAcceptanceCriteriaStructuralEvaluationPrimaryMemberEvaluationSecondaryMemberEvaluationConnectionsandAnchoragesEvaluationExteriorShellEvaluationSidingConcreteMasonryBlockWallsArchitecturalItemsResultsoftheStructuralEvaluationPrimaryMembersGeneralSevereEnvironmentalConditionsExtrcmeSnowLoadCondition132-mphTornado188-mphTornado250-mphTornado,SecondaryMembersConnectionsandAnchoragesExteriorShellMetalSidingRoofDeckingBlockWallsTornadoMissilesandSafeShutdownApproachBackgroundShutdownMethodologyAssumptionsShutdownDetailsRequiredComponentsRefuelingWaterStorageTankElectricalBuses14,17,and18MainSteamLinesAandB,andMainFeedwaterLinesAandBResults-SteelRodResults-UtilityPoleFailureofBlockWallsSurfaceoftheSpentFuelPoolDieselGeneratorsandTheirFuelSupplyRelayRoomServiceWaterSystem3.3-33.3-33.3-53.3-63.3-83.3-83.3-93.3-93:3-103.3-103.3-113.3-113.3-133.3-133.3-133.3-143.3-143.3-143.3-153.3-153.3-163.3-163.3-17.3.3-173.3-173.3-173.3-193.3-193.3-193.3-193.3-203.3-223.3-223.3-223.3-233.3-233.3-233.3-243.3-243.3-253.3-253.3-263-viREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionxtI'aPacCe3.3.3.3.83.3.3.3.93.3.3.3.103.3.43.3.4.13.3.4.23.3.4.33.3.4.43.3.53.3.5.13.3.5.23.3.5.2.13.3.5.2.23.3.5.33.3.5.3.13.3.5.3.23.3.5.43.3.5.4.13.3.5.4.23.3.5.4.33.3.5.4.43.3.5.53.3.5.63.3.5.7StandbyAuxiliaryFeedwatcrSystemInstrumentationCableTunnelDesignTornadoIntroductionSafetyAssessmentReservePlantCapacitySystemReserveCapacityStructuralUpgradeProgramIntroductionCriteriaChangesFirstStageReviewSecondStageReviewStabilityEvaluationPrimaryMembersConnectionsandAnchoragesNRCTcchnicalEvaluationReport(SEPTopic111-2)OpenItemsEffcctivcTornadoLoadingsStructuralLoadingsStructuralAcceptanceCriteriaStructuralSystemsSEPTopic111-7.B,Loads,LoadCombinations,andDesignCriteriaDieselGeneratorComponentOperabilityConclusions3.3-263.3-273.3-273.3-293.3-293.3-293.3-303.3-323.3-353.3-353.3-353.3-363.3-363.3-393.3-393.3-393.3413.3<13.3-423.3-423.3433.3-433.3-453.3-46ReferencesforSection3.33.3-483.43.4.13.4.1.13.4.1.1.13.4.1.1.23.4.1.1.33.4.1.23.4.23.4.3WATERLEVEL(FLOOD)DESIGNFloodProtectionFloodProtectionMeasuresforSeismicCategoryIStructuresIntroductionLakeOntarioFloodProtectionDeerCreekFloodProtectionPermanentDewatcringSystemFloodingDuetoFailureofTanksRoofDrainage3.4-13.4-13.4-13.4-13.4-13.4-23.4-33.4-33.4-4ReferencesforSection3.43.4W3vnREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSIEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTit1e3.53.5.13.5.1.13.5.1.1.13.5.1.1.23.5.1.23.5.1.2.13.5.1.2.23.5.1.2.33.5.1.33.5.1.3.13.5.1.3.1.13.5.1.3.1.23.5.1.3.1.33.5.1.3.1.43.5.1.3.1.53.5.1.3.1.63.5.1.3.1.73.5.1.3.1.83.5.1.3.1.93.5.1.3.1.103.5.1.3.1.113.5.1.3.1.123.5.1.3.1.133.5.1.3.1.143.5.1.3.23.5.1.3.2.13.5.1.3.2.23.5.1.3.2.33.5.1.3.2.43.5.1.3.2.53.5.1.3.33.5.1.3.3.13.5.1.3.3.23.5.1.3.3.33.5.1.3.3.43.5.1.3.3.53.5.23.5.2.13.5.2.23.5.2.2.13.5.2.2.2MZSSZLEPROTECTZONInternallyGeneratedMissilesIntroductionDesignCriteriaSystematicEvaluationProgramTurbineMissilesIntroductionTurbineInspectionProgramSystematicEvaluationProgramTopicIII-4.BEffectsofInternallyGeneratedMissilesonSystemsandEquipmcntSystemsNeededtoPerformSafetyFunctionsReactorCoolantSystemEmergencyCoreCoolingSystem(ECCS)ContainmcntHeatRemovalandAtmosphereCleanupSystemsChemicalandVolumeControlSystemResidualHeatRemovalSystemrComponentCoolingWaterSystemServiceWaterSystemDiesel-GeneratorAuxiliarySystemsMainSteamSystemFcedwatcrandCondensateSystemsAuxiliaryFeedwaterSystemStandbyAuxiliaryFcedwatcrSystemVentilationSystemsforVitalAreasCombustibleGasControlSystemSystemsWhoseFailureMayResultinActivityReleaseSpentFuelPoolCoolingSystemSamplingSystemWasteDisposalSystemContainmentShutdownPurgeSystemInstrumentandServiceAirSystemsElectricalSystemsDieselGeneratorsStationBatteries480-VoltSwitchgear.ControlRoomCableSpreading/RelayRoomExternallyGeneratedMissilesTornadoMissilesSiteProximityMissilesDesignCriteriaNearbyHazardousActivities3.5-13.5-13.5-13.5-13.5-13.543.543.5-43.5-53.5-73.5-73.5-73.5-83.5-103.5-113.5-123.5-143.5-143.5-153.5-163.5-163.5-173.5-173.5-183.5-193.5-193.5-193.5-193.5-203.5-203.5-203.5-213.5-213.5-213.5-213.5-223.5-223.5-233.5-233.5-243.5-243.5-243VIIIREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSection2'itieP~ae3.5.2.2.3AircraftHazards3.5-24ReferencesforSection3.53.5-263.6.13.6.1.13.6.1.1.13.6.1.1.23.6.1.1.33.6.1.23.6.1.33.6.1.3.13.6.1.3.1.13.6.1.3.1.23.6.1.3.1.33.6.1.3.2-3.6.1.3.2.13.6.1.3.2.23.6.1.3.2.33.6.1.3.2.43.6.1.3.2.53.6.1.3.2.63.6.1.3.2.73.6.1.3.2.83.6.1.3.2.93.6.1.3.2.103.6.1.3.2.113.6.1.3.2.123.6.1.3.2.133.6.1.3.2.143.6.1.3.2.153.6.1.3.2.163.6.23.6.2.13.6.2.1.13.6.2.1.23.6.2.2PostulatedPipingFailuresinFluidSystemsInsideContainEvaluationProcedurePipeSelectionEffects-OrientedEvaluationMechanisticEvaluationRequiredEquipmcntSafetyAnalysisSingle-FailureConsiderationsIntroductionContainmcntFanCoolersLow-PrcssureSafetyInjectionIsolationValvesHigh-EnergyLineBrcakEffectsIntroductionAlternateChargingResidualHeatRemovalPumpSuctionReactorCoolantPumpSeal-WatertoSealsLetdownLineChargingLineStcam-GeneratorBlowdownLinesMainSteamandFecdwaterLinesResidualHeatRemovalPumpDischargeLineStandbyAuxiliaryFeedwaterLinesAccumulatorLinesandBranchLinesAuxiliarySprayLineReactorCoolantSystemPressurizerSurgeLincPressurizerSprayLinesPressurizerSafetyandReliefLinesPostulatedPipingFailuresinFluidSystemsOutsideContainIntroductionandSummaryInitialEvaluationSystematicEvaluationProgramReevaluationEvaluationProcedurementmentPROTECTIONAGAINSTTHEDYNAMICEFFECTSASSOCIATEDWITHTHEPOSTULATEDRUPTUREOFPIPING3.6-13.6-23.6-23.6-23.6-23.6-33.6-33.6A3.6-43.643.6-53.6-53.6-63.643.643.6-73.6-73.6-83.6-93.6-123.6-123.6-163.6-173.6-173.6-203.6-203.6-223.6-223.6-233.6-253.6-253.6-253.6-263.6-293-IxREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSIEQUIPMENTiANDSYSTEMSTABLEOFCONTENTSSectiont'iticP~cCe3.6.2.2.13.6.2.2.23.6.2.33.6.2.3.13.6.2.3.23.6.2.3.2.13.6.2.3.2.23.6.2.3.2.33.6.2.3.2.43.6.2.3.2.53.6.2.43.6.2.4.13.6.2.4.23.6.2.4.33.6.2.4.43.6.2.4.53.6.2.4.5.13.6.2.4.5.23.6.2.4.63.6.2.4.6.13.6.2.4.6.23.6.2.4.73.6.2.4.7.13.6.2.4.7.23.6.2.4.83.6.2.4.8.13.6.2.4.8.23.6.2.53.6.2.5.13.6.2.5.1.13.6.2.5.1.23.6.2.5.1.33.6.2.5.1.43.6.2.5.1.53.6.2.5.1.63.6.2.5.1.73.6.2.5.1.83.6.2.5.23.6.2.5.2.1InitialEvaluationSystematicEvaluationProgramReevaluationAnalysisCriteriaDecember18,1972,AECLetterEvaluationCriteriaSystematicEvaluationProgramCriteriaHigh-EnergyFluidSystemsPipingModcratc-EnergyFluidSystemPipingTypeofBreaksandLeakageCracksinFluidSystemPipingAssumptionsEffectsofPipingFailureAnalysisinResponsetoDecember18,1972,AECLetterRuptureLoadAnalysisMainSteamSystemLoadAnalysisFcedwaterSystemLoadAnalysisJctImpingementLoadAnalysisPipeWhipAnalysisforMainSteamandFeedwaterPipingAnalyticalMethodsResultsofAnalysisBlowdownAnalysisMainStcamBlowdownAnalysisFeedwaterBlowdownAnalysisCompartmentPressurizationAnalysisMainSteamLineRupturesBuildingPressurizationforaBranchLineRuptureFloodingAnalysisIntermediateBuildingFloodingScreenHouseandTurbineBuildingFloodingSystematicEvaluationProgramAnalysisZoneReevaluationPerformedasPartoftheSystematicEvaluationProgramReviewScreenHouseIntermediateBuildingTurbineBuildingMainStcamandMainFeedwatcrLincBreaksStructuralAnalysisoftheTurbineBuildingforPressurizationBatteryRoom/MechanicalEquipmentRoomFloodingAuxiliaryFeedwaterLineBreaksonthe253-FtElevationoftheIntermediateBuildingRelayRoomandAirHandlingRoomAuxiliaryBuildingMainSteamSafetyandReliefValvesPipeFailuresinthcIntermediateBuilding3.6-293.6-303.6-323.6-323.6-323.G-333.6-353.6-3G3.6-383.6-383.641"3.6413.6-413.6423.6423.642.3.6-423.6-433.6-443.6-443.6-453.6-463.6463.6463.6473.6-473.6483.6-503.6-503.6-503.6-513.6-533.6-543.6-583.6-583.6-583.6-593.6413.6413-xREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES,COMPONENTS,EQUIPMENT,ANDSYSTEMSTABLEOFCONTENTSSection2'xf:IePacae3.6.2.5.2.23.6.2.5.2.33.6.2.5.2.4PipeFailuresintheTurbineBuildingDecayHeatRemovalFollowingBlowdownfromBothStcamGeneratorsConclusions3.6413.6-623.643ReferencesforSection3.63.6-643.73.7.13.7.1.13.7.1.1.13.7.1.1.23.7.1.1.2.13.7.1.1.2.23.7.1.23.7.1.33.7.1.43.7.1.53.7.23.7.2.13.7.2.1.13.7.2.1.23.7.2.23.7.2.33.7.2.43.7.2.53.7.2.63.7.2.73.7.2.83.7.2.93.7.33.7.3.13.7.3.1.13.7.3.1.1.13.7.3.1.1.23.7.3.1.1.33.7.3.1.1.43.7.3.1.1.53.7.3.1.1.6SEISMICDESIGNSeismicInputIntroductionOriginalSeismicClassificationSeismicReevaluationScopeofRccvaluationReevaluationCriteriaDesignResponseSpectraDesignTime-HistoryCriticalDampingValuesSupportingMediaforSeismicCategoryIStructuresSeismicSystemAnalysisSeismicAnalysisMethodsOriginalSeismicAnalysisSeismicReevaluationNaturalFrequenciesandResponseLoadsProcedureUsedforMathematicalModelingSoil-StructureInteractionDevelopmentofFloorResponseSpectraCombinationofEarthquakeDirectionalComponentsCombinationofModalResponsesInteractionofNonseismicStructureswithSeismicCategoryIStructuresUscofConstantVerticalStaticFactorsSeismicSubsystemAnalysisSeismicAnalysisMethodsOriginalDesignPipingandTanksStcamGeneratorControlRodDriveMechanismsReactorInternalsReactorVesselPressurizer3.7-13.7-13.7-13.7-13.7-23.7-23.7-33.7-43.7-53.7-53.743.7-83.7-83.7-83.7-103.7-113.7-103.7-113.7-123.7-123.7-123.7-133.7-143.7-163.7-163.7-163.7-163.7-173.7-183.7-18.3.7-193.7-193-XlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES/COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSection2'@SabaPacae3.7.3.1.23.7;3.23.7.3.33.7.3.43.7.3.53.7.3.63.7.3.6.13.7.3.6.23.7.3.6.33.7.3.6.3.13.7.3.6.3.23.7.3.6.3.33.7.3.73.7.3.7.13.7.3.7.23.7.3.7.33.7.3.7.3.13.7.3.7.3.23.7.3.7.3.33.7.3.7.3.43.7.3.7.3.53.7.3.7.3.63.7.3.7.3.73.7.3.7.3.83.7.3.7.3.93.7.3.7.3.103.7.3.7.3.113.7.3.7.3.123.7.3.7.43.7.3.7.53.7.3.7.5.13.7.3.7.5.23.7.3.7.5.33.7.3.7.5.43.7.3.7.5.53.7.3.7.5.63.7.3.7.5.73.7.3.7.63.7.3.7.73.7.3.7.83.7.3.7.9SeismicReevaluationBasisforSelectionofFrequenciesUseofEquivalentStaticAnalysisThreeComponentsofEarthquakeMotionCombinationofModalResponsesAnalyticalProceduresforPipingResidualHeatRemovalSystemLincfromReactorCoolantSystemLoopAtoContainmentSteamLinefromStcamGeneratorBtoContainmcntPressurizerSafetyandReliefLinesAnalyticalMethodsTransferMatrixMethodStiQ'nessMatrixFormulationSeismicPipingUpgradeProgramProgramScopePipingSelectionCriteriaSelectedLinesReactorCoolantSystemMainSteamMainFccdwaterAuxiliaryFccdwatcrSafetyInjectionResidualHeatRemovalContainmentSprayChemicalandVolumeControlSystemStcamGeneratorBlowdownServiceWaterSystemComponentCoolingWaterStandbyAuxiliaryFeedwaterCodesandStandardsAnalyticalProceduresGeneralDampingValuesCombinationofModalResponsesSafeShutdownEarthquakeStressesSmallPipingAnalysisBranchLincAnalysisPipingBeyondScopeofUpgradeProgramPipingSystemModelsValveModelEquipmcntModelInteractionEQ'ccts3.7-203.7-223.7-223.7-203.7-23.3.7-233.7-243.7-253.7-253.7-253.7-263.7-273.7-303.7-303.7-303.7-313.7-313.7-313.7-323.7-323.7-323.7-323.7-333.7-333.7-343.7-343.7-353.7-363.7-363.7-393.7-393.7-393.7<03.7-433.7443.7443.7<53.7463.7-473.7-473.7483rdlREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTSIEQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionP~ae3.7.3.7.10SupportModels3.7.3.7.10.1Deviations3.7.3.7.10.2Support-WcldcdAttaclunents3.7.4SeismicInstrumentation3.7-483.7-483.7-493.7-51ReferencesforSection3.73.7-523.83.8.13.8.1.13.8.1.1.13.8.1.1.23.8.1.1.33.8.1.1.43.8.1.1.53.8.1.23.8.1.2.13.8.1.2.23.8.1.2.33.8.1.2.3.13.8.1.2.3.23.8.1.2.3.33.8.1.2.43.8.1.2.4.13.8.1.2.4.23.8.1.2.4.33.8.1.2.4.43.8.1.2.53.8.1.2.63.8.1.33.8.1.3.13.8.1.3.23.8.1.43.8.1.4.13.8.1.4.1.13.8.1.4.1.23,8.1.4.1.33.8.1.4.23.8.1.4.2.1DESZGNOFSEZSMZCCATEGORYZSTRUCTURESContainmentGeneralDescriptionContainmentStructureWaterproofingRockAnchorsConstructionSequenceSteelReinforcementMechanicalDesignBasesGeneralDesignLoadsDesignStressCriteriaLimitingLoadsLoadFactorsMaximumThermalLoadLoadCapacityReinforcedConcretePrestressedConcreteLinerRockCodesandStandardsCodeandStandardsStcamGeneratorRcplaccmcnt(DomeOpeningRepairs)SeismicDesignInitialSeismicDesignSeismicReanalysisContainmentDetailedDesignStressAnalysisAnalysisMethodsAnalysisResultsAnalysisforstcamgeneratorRcplaccmcntDomeopeningsRockAnchorsRockAnchorDesign3.8-13.8-13.8-13.8-13.8-23.8-33.8-33.843.8-83.8-83.8-83.8-93.8-93.8-103.8-113.8-143.8-143.8-153.8-183.8-193.8-203,8-253.8-283.8-283.8-283.8-323.8-323.8-323.8323.8-343.8-353.8-353XiiiREV.1312/96 GINNA/VFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTS~EQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectioaTitleP~cCe3.8.1.4.2.23.8.1.4.2.33.8.1.4.2.43.8.1.4.2.53.8.1.4.2.63.8.1.4.33.8.1.4.3.13.8.1.4.3.23.8.1.4.3.33.8.1.4.3.43.8.1.4.43.8.1.4.4.13.8.1.4.4.23.8.1.4.4.33.8.1.4.53.8.1.4.5.13.8.1.4.5.23.8.1.4.5.33.8.1.4.5.43.8.1.4.5.53.8.1.4.63.8.1.4.73.8.1.4.7.13.8.1.4.7.23.8.1.4.7.33.8.1.4.7.43.8.1.4.7.53.8.1.4.7.63.8.1.53.8.1.5.13.8.1.5.23.8.1.5.33.8.1.5.43.8.1.5.53.8.1.5.63.8.1.5.6.13.8.1.5.6.23.8.1.5.73.8.1.63.8.1.6.13.8.1.6.1.13.8.1.6.1.2PreinstallationGroutingTestPreviousApplicationsRockHold-DownCapacityHold-DownFactorofSafetyInstallationTendonsGeneralDesignSeismicConsiderationsStressingProcedureCorrosionProtectionHingeDesignTensionBarsLinerKnuckleElastomerBearingPadsConcreteRadialShearLongitudinalShearsHorizontalShearAnchorageStressesShellStressAnalyticalProceduresInsulationLinerVibrationsAnchorageFatigueAnalysisBaseSlabLinerLinerStressesLinerBucklingLinerCorrosionAllowancePcnetrationsGeneralElectricalPenetrationsPipingPenetrationsAccessHatchandPersonnelLocksFuelTransferPenetrationTypicalPenetrationAnalysisLosswf-CoolantAccidentLoss'-CoolantAccidentPlusEarthquakePenetrationReinforcementAnalyzedforPipeRuptureQualityControlandMaterialSpecificationsConcreteUltimateCompressiveStrengthQualityControlMeasures3.8-363.8-363.8-373.8-383.8-393.8-423.8-423.8-443.8483.8-503.8-553.8-553.8-573.8-583.8423.8-623.8433.8-643.8-663.8-663.8-743.8-753.8-753.8-763.8-763.8-773.S-783.8-823.8-853.8-853.8-863.8-873.8-883.8-893.8-903.8-903.8-923.8-943.8-973.8-973.8-973.8-973-xivREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES/COMPONENTSgEQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionPit1e.'acCe3.8.1.6.1.33.8.1.6.1.43.8.1.6.1.53.6.1.6.1.63.8.1.6.23.8.1.6.33.8.1.6.43.8.1.6.53.8.1.6.5.13.8.1.6.5.23.8.1.6.5.33.8.1.6.5.43.8.1.6.5.53.8.1.6.63.8.1.6.73.8.1.6.7.13.8.1.6.7.23.8.1.6.83.8.1.73.8.1.7.13.8.1.7.1.13.8.1.7.1.23.8.1.7.1.33.8.1.7.1.43.8.1.7.1.53.8.1.7.1.63.8.1.7.1.73.8.1.7.1.83.8.1.7.23.8.1.7.2.13.8.1.7.2.23.8.1.7.2.33.8.1.7.2.43.8.1.7.2,53.8.1.7.33.8.1.7.3.13.8.1.7.3.23.8.1.7.3.33.8.1.7.3.43.8.1.7.3.5ConcreteSuppliersConcreteSpecificationsAdmixturesRcplacemcntConcreteforthc1996StcamGeneratorRcplaccmentMildSteelReinforcementCadwcldSplicesRadialTensionBarsContainmentLinerFabricationandWorkmanshipPenetrationsWeldingErectionTolerancesPaintingElastomerPadsTendonsMaterialsTestsandInspectionLinerInsulationTestingandInscrviceInspectionRequirementsConstructionPhaseTestingLiner'restressingTendonsConcreteReinforcementConcreteElastomerBearingPadsRockAnchorTestsLargeOpeningReinforcementsLinerInsulationGeneralDescriptionofthcStructuralIntegrityTestPressurizationMeasurementsTestPrcssureJustificationTestResultsContainmcntReturntoScrviccTestingPost1996StcamGcncratorRcplaccmcntPostopcrationalSurveillanceLeakageMonitoringInitialTendonSurveillanceProgramCurrentTendonSurveillanceProgramCurrentTendonSurveillanceProgramResultsTestonRockAnchors3.8-993.8-1013.8-1033.8-1043.8-1073.8-1083.8-1093.8-1103.8-1103.8-1113.8-1123.8-1133.8-1133.8-1133.8-1143.8-1143.8-1153.8-1163.8-1193.8-1193.8-1193.8-1203.8-1203.8-1223.8-1243.8-1243.8-1263.8-1263.8-1283.8-1283.8-1293.8-1313.8-1323.8-1323.8-1333.8-133.8-1333.8-1343.8-1353.8-1373-xvREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESiCOMPONENTSiEQUIPMENTiANDSYSTEMSTABLEOFCONTENTSSechi.onPa(ac3.8.23.8.2.13.8.2.1.13.8.2.1.1.13.8.2.1.1.23.8.2.1.1.33.8.2.1.23.8.2.1.2.13.8.2.1.2.23.8.2.1.2.33.8.2.1.2.43.8.2.1.2.53.8.2.1.2.63.8.2.1.2.73.8.2.1.2.83.8.2.1.2.93.8.2.1.2.103.8.2.1.33.8.2.1.3.13.8.2.1.3.23.8.2.1.3.33.8.2.1.3.43.8.2.1.3.53.8.2.1.3.63.8.2.1.3.73.8.2.1.3.83.8.2.1.3.93.8.2.1.43.8.2.23.8.2.2.13.8.2.2.23.8.2.2.33.8.2.2.43.8.2.2.53.8.2.2.5.13.8.2.2.5.23.8.2.2.5.33.8.2.2.6StructuralReanalysisProgramDesignCodes,Criteria,andLoadCombinationsSEPTopicIII-7.BIntroductionSeismicCategoryIStructuresStructuralCodesCodeComparisonAssessmentofDesignCodesandLoadChangesforConcreteStructuresColumnsWithSplicedReinforcingBracketsandCorbels(NotonthcContainmcntShell)ElementsLoadedinShearWithNoDiagonalTension(ShearFrictionStructuralWalls-PrimaryLoadCarryingElementsSubjecttoTemperatureVariationsAreasofContainmentShellSubjecttoPcriphcralShearAreasofContainmentShellSubjecttoTorsionBracketsandCorbels(OntheContainmentShell)AreasofContainmcntShellSubjecttoBiaxialTensionSteelEmbedmentsTransmittingLoadstoConcreteAssessmentofDesignCodesandLoadChangesforSteelStructuresShearConnectorsinCompositeBeamsCompositeBeamsWithSteelDeckHybridGirdersCompressionElementsTensionMembersCopedBeamsMomentConnectionsLateralBracingSteelEmbcdmcntsSummaryStructuralReevaluationofContainmentIntroductionContainmcntTemperatureContainmentPressureSeismicLoadsDesignandAnalysisProceduresContainmentModelSeismicandLoss'-CoolantAccidentLoadsPressure,Seismic,andOperatingTemperatureLoadsStructuralAcceptanceCriteria3.8-1393.8-1393.8-1393.8-1393.8-1413.8-1423.8-1433.8-1433.8-1443.8-1453.8-1473.8-1493.8-1503.8-1513.8-1523.8-1523.8-1533.8-1563.8-1563.8-1573.8-1573.8-1573.8-1583.8-1593.8-1593.8-1603.8-1603.8-1623.8-1643.8-1643.8-1653.8-1653.8-1663.8-1663.8-1663.8-1673.8-1683.8-1703-xviREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSection2'i.hIePacCe3.8.2.2.73.8.2.2.7.13.8.2.2.7.23.8.2.2.83.8.2.2.93.8.2.33.8.2.3.13.8.2.3.23.8.2.3.2.13.8.2.3.2.23.8.2.3.33.8.2.3.3.13.8.2.3.3.23.8.2.3.43.8.2.3.4.13.8.2.3.4.23.8.2.3.4.33.8.2.3.53.8.2.3.5.13.8.2.3.5.23.8.2.3.5.33.8.2.3.63.8.33.8.3.13.8.3.23.8.3.33.8.3.3.13.8.3.3.23.8.3.43.8.3.4.13.8.3.4.23.8.3.53.8.3.63.8.3.73.8.43.8.4.13.8.4.1.13.8.4.1.23.8.4.1.33.8.4.1.43.8.4.1.5StructuralEvaluationofContainmentSeismicAnalysisLoadCombinationsStructuralEvaluationofLargeOpeningsStructuralEvaluationofTensionRodsDomeLinerReevaluationDomeLinerStudsLoadsLoss'-CoolantAccidentSteamLineBreakModelDefinitionGcncralDomeModelInsulationTerminationRegionModelAnalysisControllingLoadsLiner-StudInteractionEffectofInternalPrcssureonLinerBucklingResultsandConclusionsInsulationTerminationRegionGeneralDomeEffectofInternalPressureonLinerBucklingandStudIntegrityOverallConclusionsContainmentInternalStructuresDescriptionoftheInternalStructuresApplicableCodes,Standards,andSpecificationsLoadsandLoadCombinationsLoadCombinationsConsideredApplicableLoadCombinationsDesignandAnalysisProccdurcsOriginalDesignSystematicEvaluationProgramRccvaluationMethodofAnalysisStructuralAcceptanceCriteriaStructuralEvaluationOtherSeismicCategoryIStructuresDescriptionoftheStructuresAuxiliaryBuildingControlBuildingDiesel-GeneratorBuildingIntermediateBuildingStandbyAuxiliaryFccdhvaterBuilding3.8-1703.8-1703.8-1713.8-1723.8-1733.8-1753.8-1753.8-1753.8-1753.8-1753.8-1763.8-1763.8-1773.8-1783.8-1783.8-1793.8-1813.8-1833.8-1833.8-1843.8-1863.8-1893.8-1923.8-1923.8-1923.8-1923.8-1923.8-1933.8-1943.8-1943.8-1943.8-1953.8-1963.8-1963.8-1983.8-1983.8-1983.8-1993.8-2003.8-2013.8-2023-xviiREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESICOMPONENTS~EQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionziezeP~ae3.8.4.1.63.8.4.1.73.8.4.1.83.8.4.1.93.8.4.23.8.4.33.8.4.43.8.4.4.13.8.4.4.23.8.4.4.2.13.8.4.4.2.23.8.4.4.2.33.8.4.53.8.4.5.13.8.4.5.23.8.4.5.33.8.4.5.3.13.8.4.5.3.23.8.4.5.43.8.4.5.53.8.4.5.63.8.4.5.73.8.4.5.7.13.8.4.5.7.23.8.4.5.83.8.4.5.8.13.8.4.5.8.23.8.4.5.8.33.8.4.5.93.8.5ScreenHouseTurbineBuildingServiceBuildingInterconnectedBuildingComplexApplicableCodes,Standards,andSpecificationsLoadsandLoadCombinationsDesignandAnalysisProceduresOriginalDesignandAnalysisProceduresSEPReevaluationDesignandAnalysisProceduresMathematicalModelMethodofAnalysisStructuralEvaluationMasonryWallsApplicablcWallsLoadandLoadCombinationsStressAnalysisComputerProgramSeismicAnalysisInterstoryDriftMulti-WythcWallsBlockPulloutStructuralAcceptanceCriteria-AllowableStressesNormalOperatingConditionsSafeShutdownEarthquakeEvaluationResultsGeneralInelasticAnalysisWallModificationsMaterials,QualityControl,andSpecialConstructionFoundationsTechniques3.8-2023.8-2033.8-2043.8-2043.8-2053.8-2053.8-2073.8-2073.8-2083.8-2083.8-2113.8-2123.8-2153.8-2153.8-2153.8-2173.8-2173.8-2183.8-2193.8-2193.8-2193.8-220:."-2203.8-2203.8-2203.8-2203.8-2213.8-2223.8-2233.8-225ReferencesforSection3.83.8-2263.93.9.13.9.1.13.9.1.1.13.9.1.1.23.9.1.1.2.13.9.1.1.2.2MECHANICALSYSTEMSANDCOMPONENTSSpecialTopicsforMechanicalComponentsDesignTransientsLoadCombinationsCyclicLoadsThermalandPrcssureCyclicLoadsPressurizerSurgeLinc3.9-13.9-13.9-13.9-13.9-13.9-13.9-13-XVIIIREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionr~tzeP~cCe3.9.1.1.2.33.9.1.1.33.9.1.1.43.9.1.1.53.9.1.1.63.9.1.1.73.9.1.23.9.1.33.9.1.3.13.9.1.3.23.9.1.3.33.9.23.9.2.13.9.2.1.13.9.2.1.23.9.2.1.2.13.9.2.1.2.23.9.2.1.2:33.9.2.1.2.43.9.2.1.2.53.9.2.1.33.9.2.1.43.9.2.1.4.13.9.2.1.4.23.9.2.1.53.9.2.1.63.9.2.1.6.13.9.2.1.6.23.9.2.1.6.33.9.2.1.73.9.2.1.83.9.2.23.9.2.2.13.9.2.2.23.9.2.2.33.9.2.2.43.9.2.2.4.13.9.2.2.4.23.9.2.2.4.3UnisolableConnectionstotheReactorCoolantSystemTransientHydraulicLoadsOperating-BasisEarthquakeSafeShutdownEarthquakeSecondarySystemFluidFlowInstability(WaterHammer)Loss'-CoolantAccidentComputerProgramsUsedinAnalysisExperimentalStressAnalysisPlasticModelAnalysisPlasticModelDetailsPlasticModelTestArrangementDynamicTestingandAnalysisPipingSystemsGcncralSeismicCategoryIPiping,2-1/2InchNominalSizeandIurgerStaticAnalysisDynamicAnalysisResidualHeatRemovalSystemLincFromReactorCoolantSystemLoopAtoContainmcntSteamLineFromSteamGeneratorBtoContainmentChargingLineSeismicCategoryIPiping,2-InchNominalSizeandUnder,OriginalDesignPressurizerSafetyandReliefValveDischargePiping1972AnalysisNUREG0737,ItemII.D.1AnalysisMainStcamHeaderDynamicLoadFactorAnalysisSecondarySystemWaterHammerAnalysisEvaluationResultsCorrectiveActionsVclanSwingCheckValvesSeismicPipingUpgradeProgramSafety-RelatedMechanicalEquipmentOriginalSeismicInputandBehaviorCriteriaCurrentSeismicInputSystematicEvaluationProgramSystematicEvaluationProgramReevaluationofSelectedMechanicalComponentsforDesignAdequacyEssentialServiceWaterPumpComponentCoolingHeatExchangerComponentCoolingSurgeTank3.9-23.9A3.9A3.9A3.9A3.9-53.9-53.9W3.943.9-73.9-83.9-113.9-113.9-113.9-123.9-23.9-133.9-143.9-153.9-163.9-173.9-183.9-183.9-193.9-223.9-233.9-233.9-243.9-243.9-263.9-273.9-303.9-303.9-313.9-313.9-333.9-333.9-343.9-353-xlzREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURES/COMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionTi.SIe3.9.2.2.4.43.9.2.2.4.53.9.2.2.4.63.9.2.2.4.73.9.2.2.4.83.9.2.2.4.93.9.2.2.4.103.9.2.2.4.113.9.2.33.9.2.3.13.9.2.3.1.13.9.2.3.1.23.9.2.3.1.33.9.2.3.23.9.2.3.2.13.9.2.3.2.23.9.2.3.2.33.9.2.3.2.43.9.2.3.33.9.2.3.3.13.9.2.3.3.23.9.2.3.3.33.9.2.3.3.4'3.9.2.3.43.9.2.3.4.13.9.'2.3.4.23.9.2.3.4.33.9.2.3.4.43.9.2.3.4.53.9.2.3.4.63.9.2.3.53.9.2.3.5.13.9.2.3.5.23.9.2.3.5.33.9.2.43.9.2.53.9.2.5.13.9.2.5.23.9.33.9.3.13.9.3.2Diesel-GeneratorAirTanksBoricAcidStorageTankRefuelingWaterStorageTankMotor-OperatedValvesStcamGeneratorsReactorCoolantPumpsPressurizerControlRodDriveMechanismDynamicResponseAnalysisofReactorInternalsUnderOperationalFlowTransientsandSteady-StateConditionsDesignCriteriaGeneralCriticalInternalsAllowableStressCriteriaBlowdownandForceAnalysisComputerProgramBlowdownModelComparisonWithExperimentalData'orceModelVerticalExcitationofReactorInternalsbyBlowdownForcesStructuralModelandMethodofAnalysisResultsUpperPackageandGuideTubesFuelAssemblyThimblesTransverseBarrelExcitationbyBlowdownForcesGeneralHot-LcgBreakCold-LegBrcakInitialResponseSecondaryBarrelResponseConclusionsTransverseGuideTubeExcitationbyBlowdownForcesGeneralResponseofGuideTubeDescriptionofStressLocationAsymmetricLoss'-CoolantAccidentLoadingAnalysisSeismicEvaluationofReactorVesselInternalsAnalysisProcedureAnalysisResultsComponentSupportsandCoreSupportStructuresLoadingCombinations,DesignTransients,andStressLimitsComponentSupports3.9-353.9-363.9-363.9-373.9-383.9-383.9-393.9403.9423.9-423.9423.9-423.9433.9443.9443.9<53.9-463.9-473.9-473.9473.9483.9-503.9-503.9-523.9-523.9-523.9-543.9-553.9-553.9-563.9-563.9-563.9-573.9-583.9-613.9413.9-613.9423.9453.9453.9453xxREV.1312/96 GINNA/UFSARCHAPTER3'ESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENTIANDSYSTEMSTABLEOFCONTENTSSectionFifea.P~ae3.9.3.2.13.9.3.2.23.9.3.2.33.9.3.2.43.9.3.2.53.9.3.33.9.3.3.13.9.3.3.23.9.3.3.33.9.3.3.3.13.9.3.3.3.23.9.3.3.3.33.9.3.3.43.9.3.3.53.9.3.3.5.13.9.3.3.5.2-3.9.4'.9.4.13.9.4.1.13.9.4.1.23.9.4.1.33.9.4.1.43.9.4.1.53.9.4.1.63.9.4.23.9.4.33.9.4.3.13.9.4.3.23.9.4.3.33.9.4.3.43.9.53.9.5.13.9.5.1.13.9.5.1.1.13.9.5.1.1.23.9.5.1.1.33.9.5.1.1.43.9.5.1.1.53.9.5.1.23.9.5.1.33.9.5.2ReactorVesselSteamGeneratorsReactorCoolantPumpsPressurizerReactorCoolantPipingPipeSupportsOriginalAnalysisIEBulletinReanalysisSeismicPipingUpgradeProgramApplicableSupportsLoadCombinationsandStressLimitsStructuralRequirementsBasePlateFlexibilitySnubbcrsDesignLoadsSurveillanceProgramControlRodDriveSystemsDescriptionGeneralLatchAssemblyPressureVcssclOperatingCoilStackDriveShaftAssemblyPositionIndicatorCoilStackDesignLoads,StressLimits,andAllowableDeformationControlRodDriveMechanismHousingMechanicalFailureEvaluationHousingDescriptionEffectsofRodTravelHousingLongitudinalFailuresEffectofRodTravelHousingCircumferentialFailuresSummaryReactorPressureVesselInternalsDesignArrangementsLowerCoreSupportStructureSupportStructureAssemblyLowerCorePlateThermalShieldCoolantFlowPassagesSupportandAlignmentArrangemcntsUpperCoreSupportAssemblyIn-CoreInstrumentationSupportStructuresLoadingConditions3.9453.9463.9473.9-673.9W73.9-683.9-683.9483.9-693.9493.9-693.9-693.9-723.9-733.9-733.9-743.9-763.9-763.9-763.9-773.9-773.9-783.9-783.9-783.9-783.9-793.9-793.9-793.9-803.9-803.9-813.9-813.9-813.9-813.9-813.9-823.9-833.9-843.9-843.9-863.9-87REV.1312/96 GINNAJUFSAR'HAPTER3DESIGNOFSTRUCTURES~COMPONENTS~EQUIPMENTgANDSYSTEMSTABLEOFCONTENTSSeationTitle3.9.5.33.9.63.9.6.13.9.6.23.9.6.3DesignBasesInserviceInspectionofPumpsandValvesGeneralInserviceTestingofPumpsInserviceTestingofValvesReferencesforSection3.9.3.9-873.9-903.9-903.9-913.9-913.9-933.103.10.13.10.1.13.10.1.23.10.23.10.2.13.10.2.23.10.2.33.10.2.43.10.2.53.10.2.63.10.2.73.10.33.10.3.13.10.3.23.10.3.2.13.10.3.2.23.10.3.2.33.10.3.2.4~3.10.3.2.53.10.3.33.10.3.43.10.43.10.53.10.5.13.10.5.1.13.10.5.1.23.10.5.23.10.5.2.13.10.5.2.2SEISMICQVALIFZCATZONOFSEISMICCATEGORYIZNSTRVMENTATZONANDELECTRICALEQVIPMENTSeismicQualificationCriteriaOriginalCriteriaCurrentCriteriaSeismicQualificationofElectricalEquipmentandInstrumentationIntroductionBatteryRacksMotorControlCenters1Land1MSwitchgcarControlRoomElectricalPanelsElectricalCableRacewaysConstantVoltageTransformersSeismicQualificationofSupportsofElectricalEquipmentandInstrumentationEquipmentAddressedRacewayAnchoragesTestProgramTestLoadsExpansionAnchorTestResultsFunctionalAnchorTestResultsEmbeddedAnchorTestResultsClass1EEquipmentAnchorageQualificationProgramConclusionsFunctionalCapabilityofComponentsSeismicCategoryITubingCodesandStandardsTubingDesignRequirementsTubingSupportsDesignRequirementsLoadConditionsTubingTubingSupports3.10-13.10-13.10-13.10-23.10-33.10-33.1043.1043.10-53.1043.10-73.10-83.10-103.10-103.10-113.10-113.10-123.10-133.10-133.10-143.10-143.10-153.10-173.10-173.10-173.10-183.10-183.10-193.10-193.10-193-xxliREV.1312/96 GINNA/UFSARCHAPTER3DESIGNOFSTRUCTURESgCOMPONENTS~EQUIPMENT~ANDSYSTEMSTABLEOFCONTENTSSectionPadre3.10.5.3RoutingRequirementsReferencesforSection3.103.10-203.10-223.113.11.13.11.1.13.11.1.23.11.23.11.33.11.3.13.11.3.1.13.11.3.1.23.11.3.23.11.3.2.13.11.3.2.23.11.3.2.33.11.3.2.43.11.3.33.11.3.43.11.3.53.11.3.63.11.3.73.11.3.83.11.3.93.11.43.11.5ENVIRONMENTALDESIGNOFMECHANICALANDELECTRICALEQUIPMENTBackgroundInitialDesignConsiderationsReviewofEnvironmentalQualificationofSafety-RelatedElectricalEquipmentEquipmentIdentificationIdentificationofLimitingEnvironmentalConditionsInsideContainmcntPostLoss'-CoolantAccidentEnjvironmcntPostMainSteamLineBrcakEnvironmentAukiliaryBuildingHeating,Ventilation,andAirConditioningLossofVentilationRadiationLevelsFloodingIntermediateBuildingCableTunnelControlBuildingDiesel-GeneratorRoomsTurbineBuildingAuxiliaryBuildingAnnexScrccnHouseEquipmentQualificationInformationEnvironmentalQualificationProgramReferencesforSection3.113.11-13.11-13.11-13.11-13.11-23.11-43.11<3.1143.1143.11-83.11-83.11-93.11-103.11-103.11-123.11-143.11-143.11-153.11-163.11-163.11-173.11-183.11-183.11-193XXlllREV.1312/96 GINNA/UFSARLISTOFAPPENDICESAPPENDIX3AINITIALEVALUATIONOFCAPABILITYTOWITHSTAND3A-1TORNADOESAPPENDIX3BDESIGNOFLARGEOPENINGREINFORCEMENTSFORCONTAINMENTVESSEL3B-1APPENDIX3CCONTAINMENTSHELLSTRESSCALCULATIONRESULTS3C-1APPENDIX3DCONTAINMENTTENDONANCHORAGEHARDWARECAPACITY3D-1TESTSAPPENDIX3ECONTAINMENTLINERINSULATIONPREOPERATZONALTESTS3E-13xxlvREV.1312/96 GINNA/UFSARLISTOFTABLESTabIeTitIe3.2-13.3-1ClassificationofStructures,Systems,andComponentsPrimaryMcmbcrFailuresPerLoadingCombination3.6-1LinesPenetratingContainmentWhichNormallyorOccasionallyExpcricnceHigh-EnergyServiceConditions3.6-2LinesInsideContainmentButNotPenetratingContainmentWhichNormallyorOccasionallyExperienceHigh-EnergyServiceConditions3.6-33.7-13.7-2ContainmentPipeDataOriginalandCurrentRecommendedDampingValuesModalFrequenciesoftheInterconnectedBuildingModel3.7-3EquipmentandLocationsWhereIn-StructureSpectraWereGeneratedForTheSystematicEvaluationProgram3.8-13.8-23.8-33.8-4,3.8-53.8-63.8-7ComputerProgramSANDInputforContainmentSeismicAnalysisMajorStructuresforWhichPrestressedRockAnchorsWercUsedPropertiesandTestsforContainmentAnchorandTendonCorrosionInhibitorAllowableStressesContainmentStructureStressesContainmentStructureLoadingCombinationsConcreteCoverRequiredforReinforcingSteel3.8-83.8-93.8-103.8-113.8-123.8-13ElastomerPadsPropertiesRockAnchorA-UpliftTestWithJackingFrame,May19,1966DesignCodeComparisonACI31843VersusACI349-76CodeComparisonACI301<3VersusACI301-72(Revised1975)ComparisonACI318-63VersusASMEBAPVCode,SectionIII,Division2,1980CodeComparison3-xxvREV.1312/96 GINNA/UFSARLISTOFTABLESit'leASMEB&PVCode,SectionIII,Division2,1980(ACI359-80)VersusACI318-63CodeComparisonListofStructuralElementstobeExaminedMasses,MomentofInertia(I),FlexuralArea(A),andShearArea(A~)fortheLLNLModel.ModalFrcquencicsfortheLawrenceLivermoreNationalLaboratoryContainmentShellModelRcsponscValuesforRegulatoryGuide1.60Horizontal(0.17g)andVertical(O.1lg)'SpectraInputPeakHarmonicAmplitudes'oftheSeismicLoadonCylinderandDomeoftheContainmentShellMaterialPropertiesforSteel,Concrete,andFoamInsulationMaximumDisplacementsof5/8-InchS6LStudsintheInsulationTerminationRegionMaximumDisplacemcntsofStudsinGeneralDomeLoadDefinitionsOriginalDesignLoadingCombinationsandStressLimitsResidualHeatRemovalLoopAStressSummaryMainSteamLine-LoopBStressSummaryChargingLineStressSummaryLoadCombinationsandAcceptanceCriteriaforPressurizerSafetyandReliefValvePipingandSupports-UpstreamofValvesLoadCombinationsandAcceptanceCriteriaforPrcssurizcrSafetyandReliefValvePipingandSupports-SeismicallyDesignedDownstreamPortionDefinitionsofLoadAbbreviationsLoadingCombinationsandStressLimitsforPipingforSeismicUpgradeProgramsAllowableSteamGeneratorNozzleLoadsReactorCoolantPumpAuxiliaryNozzleUmbrellaLoadsSystematicEvaluationProgramStructuralBehaviorCriteriaforDeterminingSeismicDesignAdequacy3xxvlREV.1312/96 GINNA/UFSARLISTOFTABLESTableTitle3.9-123.9-133.9-143.9-153.9-163.9-173.9-18MechanicalComponentsSelectedforSEPSeismicReviewMaximumStressHot-LegBreakMaximumStressCold-LcgBrcakMaximumCoreBarrelStressandDeflectionUnderHot-LegBlowdownMaximumStressIntensitiesandDeflectioCold-LegBlowdownCoreBarrelStressesCoreBarrelStresses3.9-19CoreBarrelStresses3.9-20CoreBarrelStresses3.9-21CoreBarrelStresses3.9-22CoreBarrelStresses3.9-233.9-24LoadCombinationsandAllowableStressLimitsforPrimaryEquipmcntSupportsEvaluationResidualHeatRemovalLoopASupportLoadsCalculatedforIEBulletin79W73.9-253.9-26MainStcamLineLoopBSupportLoadsCalculatedforIEBulletin79-07ChargingLincSupportLoadsCalculatedforIEBulletin79-073.9-273.9-283.9-293.10-13.10-23.10-33.1043.10-53.104LoadingCombinationsandStressLimitsforSuppportsonPipingSystemsAnalysisofTypicalPipeSupportBasePlatesCalculatedforIEBulletin7942InternalsDefiectionsUnderAbnormalOperationMajorClass1EComponentsandtheBasisforSeismicQualificationElectricalComponentsSelectedforSeismicReviewShellAnchorTestSummaryFrictionBoltTestResultSummaryCategory3AnchorsTestSummaryStressLimitsforTubing3-xxvliREV.1312/96 GINNA/UFSARLISTOFTABLESTableTitle3.11-1EnvironmentalServiceConditionsforEquipmentDcsigncdtoMitigateDesign-BasisEvents3.11-2EstimatesforTotalAirborneGammaDoseContributorsinContainmenttoaPointintheContainmcntCenter-GinnaStation3.11-3EstimatesforTotalAirborneBetaDoseContributorsinContainmcnttoaPointinthcContainmcntCenter-GinnaStation3.11-4EstimatesforTotalAirborneGammaDoseContributorsinContainmenttoaPointintheContainmcntCcntcr,RegulatoryGuide1.89,Revision13.11-5EstimatesforTotalAirborneBetaDoseContributorsinContainmenttoaPointinthcContainmcntCenter,RegulatoryGuide1.89,Revision13.11-6GinnaStation/RegulatoryGuide1.89ComparisonofPostaccidentRadiationEnvironmentAssumptions3-xxvlllREV.1312/96 GINNA/UFSARLISTOFFIGURES~Fixemimic3.7-13.7-23.7-3SeismicResponseSpectra,8%gHousnerModelSeismicResponseSpectra,20%gHousnerModelNRCSystematicEvaluationProgramSiteSpecificSpectrum,GinnaSite(5%Damping)3.7-4ComparisonofthcHousnerResponseSpectrumfor2%ofCriticalDampingwiththe7%RegulatoryGuide1.60Spectrum3.7-5In-StructureResponseSpectraforInterconnectedBuilding,Half-AreaandFull-AreaModels3.7-6ContainmentBuildingandComplexofInterconnectedSeismicCategoryIandNonscismicStructures,PlanView3.7-73.7-83.7-93.7-10HorizontalResponseSpectra-SystematicEvaluationProgramStcamGeneratorMathematicalModelMathematicalModelofReactorVesselSeismicAverageAccclcrationSpectrumDesignEarthquake,1%Damping3.7-11LocationsWhereIn-StructureResponseSpectraWereGeneratedinInterconnectedBuildingComplex3.7-12SEPResponseSpectraforPrcssurizcrPR-1(ContainmcntBuildingElevation253A)for3%,5%,and7%Damping3.7-13SEPResponseSpectraforControlRodDrive(ContainmentBuildingElevation253II)for3%,5%,and7%Damping3.7-14SEPResponseSpectraforControlRodDrive(ContainmcntBuildingElevation278ft)for3%,5%,and7%Damping3.7-15SEPResponseSpectraforStcamGeneratorSG-IA(ContainmcntBuildingElevation250ft)for3%,5%,and7%Damping3.7-16SEPResponseSpectraforSteamGeneratorSG-1A(ContainmcntBuildingElevation278ft)for3%,5%,and7%Damping3.7-17SEPResponseSpectraforSteamGeneratorSG-1B(ContainmentBuildingElevation250ft)for3%,5%,and7%Damping3.7-18SEPResponseSpectraforStcamGeneratorSG-1B(ContainmentBuildingElevation278II)for3%,5%,and7%Damping3-xxlxREV.1312/96 GINNAJUFSARLISTOFFIGURES~FiuzeTif;1e3.7-193.7-20SEPResponseSpectraforReactorCoolantPumpRP-1A(ContainmentBuildingElevation247Il)for3%,5%,and7%DampingSEPResponseSpectraforReactorCoolantPumpRP-1B(ContainmentBuildingElevation247A)for3%,5%,and7%Damping3.7-21SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingPlatform3.7-22SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingHeatExchanger353.7-23SEPEquipmcntRcsponscSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingSurgeTank343.7-24SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingBoricAcidStorageTank343.7-25SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatAuxiliaryBuildingOperatingFloor3.7-26SEPEquipmentResponseSpectrafor3%,5%,and7%DampingatControlBuildingBascmcntFloor3.7-27SEPEquipmcntResponseSpectrafor3%,5%,and7%DampingatControlBuildingRelayRoomFloor3.7-283.7-293.7-303.7-313.8-13.8-23.8-33.8<3.8-53.84SEPEquipmcntResponseSpectrafor3%,5%,and7%DampingatControlRoomFloorResidualHeatRemovalLineInsideContainmentLumpedMassModel-StcamLineBStructuralModel,PressurizerSafetyandReliefLine(Sheets1through5)ContainmentCrossSection'andDetailsContainmentMatFoundationandRingGirderContainmcntMatFoundation,ReinforcementandDetailsContainmcntWallReinforcementandDetailsContainmcntDomeReinforcementandDetailsContainmentMiscellaneousEmbeddedBack-UpSteel3-xxxREV.1312/96 GINNA/UFSARLISTOFFIGURES~FiureZitia3.8-73.8-83.8-93.8-103.8-113.8-12TendonVentCansandGreaseFillConnectionsTemperatureGradients-OperatingConditionsEarthquakeMeridionalForcesContainmentDynamicAnalysisModelGinnaContainmentModeShapesGinnaContainment-EarthquakeResponse3.8-13Moments,Shears,Dcflcction,TensileForce,andHoopTensionDiagramsLoadCombinationA3.8-14Moments,Shears,Deflectio,TensileForce,andHoopTensionDiagramsLoadCombinationB3.8-15Moments,Shears,Deflectio,TensileForce,andHoopTensionDiagramsLoadCombinationC3.8-163.8-173.8-183.8-193.8-203.8-213.8-223.8-233.8-243.8-253.8-263.8-273.8-283.8-29TendontoRockCouplingContainment-TopTendonAccessContainmcntMiscellaneousSteelTendonConduit-HingeDetailLinerKnuckleDimensionsContainmcntBasetoCylinderModelContainmentDometoCylinderDiscontinuityModelCrackedWallShearModulusAnalysisLinerShearStressAnalysisWindgirder,ShearChannels,andShearStudsCylinderLinerPlateSupportModelContainmcntPenetrationDetailsContainmcntPenetrationDetails(Typical)CompositeDrasvingElectricalPenetrationContainmentPcnetrationsSectionandDetails3-XXXlREV.1312/96 GINNA/UFSARLISTOFFIGURES~iciu.eZitie3.8-303.8-313.8-323.8-333.8-343.8-353.8-363.8-373.8-383.8-393.8403.8-413.8-42ContainmcntEquipmcntHatchContainmentPersonnelHatchContainment-FuelTransferTubePenetrationContainmcntPcnetrationsArrangcmcntsandLocationTestCoupon-ContainmentConcreteShellCadwellSpliceTestResultsQualityControlChartfor5000PSIConcreteNcoprencBaseHingeLoadDeformationSpecimen1NcoprcneBaseHingeLoadDeformationSpecimen2RockAnchorTestA-1'Containmcnt-RockAnchorATestContainmcnt-RockAnchorBTestContainment-RockAnchorCTest3.8-433.8443.8-453.846AccidentTemperatureTransientInsidetheContainmentUsedforLinerAnalysisAccidentPressureTransientInsidethcContainmcntUsedforLinerAnalysisPlanViewoftheFacadeStructureandContainmentAccidentTemperatureGradientThroughtheUninsulatedContainmentShellAAer94Seconds3.847AccidentTemperatureGradientThroughtheUninsulatedContainmentShellAfter380Seconds3.8-483.8493.8-503.8-513.8-52Gin'naContainmentStructureLinerStudInteractionModelsAccidentTemperatureDistributionintheSteelLinerForceDisplaccmcntCurvefor3/4In.HcadcdStudsForceDisplacementCurvefor5/8In.S6LStuds3-xxxllREV.1312/96 GINNA/UFSARLISTOFFIGURESZi.t1e3.8-533.8-543.8-553.8-563.8-573.8-583.8-593.8403.8-613.8423.9-13.9-23.9-33.9-4StrutBucklingUnderPandDeltaTPressureEifectonLinerBucklingComparisonwithLoss-of-CoolantAccidentReactorContainmentInternalStructuresContainmentInteriorStructuresModelforSTARDYNESchematicPlanViewofMajorGinnaStructuresThree-DimensionalViewofInterconnectedBuildingComplex,FlowChartoftheAnalysisofthcIntcrconnectcdBuildingComplexMasonryWallReevaluation,WallLocationPlan,LowerLevelsMasonryWallReevaluation,WallLocationPlan,IntermediateLevelsMasonryWallReevaluation,WallLocationPlan,OperatingLevelsSteam-GeneratorWaterHammerPreliminaryForcingFunctionPlasticModelofReactorCoolantSystem-PlanViewLumpedMassDynamicModelofPCV434LumpedMassDynamicModelofPCV4353.9-5ComparisonofWHAMResultsWithLOFTSemi-ScaleBlowdownExperiments,TestNo.5193.94ComparisonofWHAMResultsWithLOFTSemi-ScaleBlowdownExperiments,TestNo.5603.9%a3.9-73.9-83.9-93.9-103.10-13.10-2SteamGeneratorUpperSupportSystemsControlRodDriveMechanismAssemblyControlRodDriveMechanismSchematicReactorVesselInternalsDetailedViewofReactorVesselInternalsQ-DeckDetailUnistrutDetail3-xxxlI1REV.1312/96 GINNA/UFSARLISTOFFIGURESI'itieThreadedInsertDetailPouredinPlaceAnchorTraySupportTypesforFrictionBoltTestingContainmentVolumeandReactorPowerLOCADoseCorrections3-xxxlvREV.1312/96 GINNA/UFSAR3.9MECHANICALSYSTEMSANDCOMPONENTS3.9.1SPECIALTOPICSFORMECHANICALCOMPONENTS3.9.1.1DesignTransients3.9.1.1.1LoadCombinationsTheloadcombinationsconsideredintheoriginaldesignofGinnaStationwere(1)normal+designearthquake,(2)normal+maximumpotentialearthquake,and(3)normal+piperuptureloads."Normal,""Upset,""Emergency,"and"Faulted"terminologywasnotusedintheoriginalsafetyevaluationofGinnaStation.3.9.1.1.2CclicLoads3.9.1~1.2.1THERMALANDPREssURECYcLIcLoADs.Thevariouscomponentsinthereactorcoolantsystemweredesignedtowithstandtheeffectsofcyclicloadsduetoreactorsystemtemperatureandpressurechanges.Thesecyclicloadsareintroducedbynormalunitloadtransients,reactortrip,andstartupandshutdownoperation(seeSection5.1.5).ThenumberofthermalandloadingcyclesusedfordesignpurposesisshowninTable5.1-4.3.9.1.1~2.2PRESSURIZERSURGELINE.NRCBulletin88-11requestedlicenseestotakecertainactionstomonitorthermalstratificationinthepressurizersurgelinebecauserecentmeasurementsindicatethattop-to-bottomtemperatureinthesurgelinecanreach250'Fto300'Fincertainmodesofoperation,particularlyduringheatupandcooldown.Surgelinetemperaturestratificationcausesbendingofthepipeandpossiblereductionoffatiguelife.RG&EjoinedtheWestinghouseOwnersGroupinaprogramtoperformagenericevaluationofsurgelinestratificationin'WestinghousePWRs.Temporarythermocoupleswereinstalledonthepressurizersurgelineandfourtemporarydisplacementtransducezswereinstalledonthesurgelinetomonitormovementduringheatup,cooldown,andothertemperaturestratificationconditions.Thedatawascontinuouslymonitoredbyadatalogging3.9-1REV.1312/96 GINNA/UFSARcomputerinstalledintheMUXzoomforthedurationofthetest,whichcommencedinJune1989andwascompletedduringthe1990MODE6(Refueling)outagewhentheinstrumentationwasremoved.ThegenezicevaluationofsurgelinestratificationinWestinghousePWRswasreportedinWestinghouseOwnersGroupreport,WCAP12639,submittedtotheNRCinJune1990.WestinghouseperformedaplantspecificanalysisoftheGinnapressurizersurgelinetodemonstratecompliancewithNRCBulletin88-11,andtheresultswerereportedinWCAP12928(Reference1).Theresultsindicatedthatthesurgelinemeetsthestresslimitsandusagefactorrequirements,andthepressurizersurgenozzlemeetsthecodestressallowablesunderthermalstratificationloadingandfatigueusagerequirementsofASMESectionXII,1986edition.ByReference20,theNRCfoundtheRG&EresponsetoBulletin88-11tobeacceptable.3~9-1.1.2.3UHIsoLABLECQHHECTIQHsToTHEREAGTQRCooLANTSYsTEM.NRCBulletin88-08requestedlicenseestoreviewsystemsconnectedtothereactorcoolantsystempipingtodeterminewhetherunisolablesectionsofpipingconnectedtothereactorcoolantsystemcanbesubjectedtostressesfromtemperaturestratificationortemperatureoscillationsthatcouldbeinducedbyleakingvalvesandthatwerenotevaluatedinthedesignanalysisofthepiping.TheBulletinrequestedthata~Foranyunisolablesectionsofpipingconnectedtothereactorcoolantsystemthatmayhavebeensubjectedtoexcessivethermalstresses,licenseesnondestructivelyexaminethewelds,heat-affectedzones,andhighstresslocations,includinggeometricdiscontinuitiesinthatpiping,toprovideassurancethattherearenoexistingflaws.b.Licenseesplanandimplementaprogramtoprovidecontinuingassurancethatunisolablesectionsofallpipingconnectedtothereactorcoolantsystemwillnotbesubjectedtocombinedcyclicandstaticthermalandotherstressesthatcouldcausefatigueduringtheremaininglifeoftheunit.Thisassurancemaybeprovidedby3.9-2REV.1312/96 GINNA/UFSAR(1)Redesigningandmodifyingthesesectionsofpipingtowithstandcombinedstressescausedbyvariousloadsincludingtemporalandspatialdistributionsoftemperatureresultingfromleakageacrossvalveseats.(2)Instrumentingthispipingtodetectadversetemperaturedistributionsandestablishingappropriatelimitsontemperaturedistributions.(3)Meansforensuringthatpressureupstreamfromblockvalvesthatmightleakismonitoredanddoesnotexceedreactorcoolantsystempressure.RG&Edeterminedthattherewerethreeunisolablesectionsofpipingconnectedtothereactorcoolantsystemthathadthepotentialforthermalcycling.Thesesectionsazeasfollows:aa.ChargingsystemtoloopBhotlegbetweencheckvalve393andthereactorcoolantsystemnozzle.bb.AlternatechazgingsystemtoloopAcoldlegbetweencheckvalve383Aandthereactorcoolantsystemnozzle.cc.Auxiliarypressurizerspraysystembetweencheckvalve297andthe3-in.tee,whichconnectstheauxiliarypressurizerspraytothemainpressurizersprayline.Examinationswereperformedatthemostsusceptiblelocations,asrecommendedbyWestinghouse,oneachofthethreeunisolablepipesections.Allexaminationresultswereacceptable.Aprogramtoprovideassurancethattheidentifiedunisolablesectionsofpipingattachedtothereactorcoolantsystemdonotfail,duetothermallyinitiatedoradvancedfatigue,wasinitiated.Thisassurancewasprovided,inpart,byinstrumentingtheaffectedpipingtodetectadversetemperatureconditionsandbynondestructiveexaminationsduringMODE6(Refueling)outages.Temporarythermocoupleswereinstalledontheaffectedpipingduringthe1989MODE6(Refueling)outage.ThedatawasmonitoredbyadataloggingcomputerinstalledintheMUXzoomforthatpurpose.Thetemperaturemonitoringwascontinueduntilthe1991refuelingoutagewhentheinstrumentationwasremoved.Thedatawasanalyzedanditwasdeterminedthatadversetemperatureconditionsdidnotexist.Basedontheresultsofthetemperaturemonitoring,nondestructiveexaminations,andengineeringanalysis,theprogramwasrestructuredtoprovide3.9-3REV.1312/96 GINNA/UFSARcontinuedassurancebasedonperiodicnondestructiveexaminationsduringMODE6(Refueling)outages.ByReference21,theNRCreportedthatthestaffhaddeterminedthattheRG&EresponsetoBulletin88-08mettherequirements.3.9.1.1.3TransientHdraulicLoadsTransienthydraulicloadswereconsideredinthedynamicanalysisofthepressurizersafetyandreliefvalvedischargelines(References2and22)(seeSection3.9.2.1.43.9.1.1.40ezatin-BasisEarthuakeThemechanicalsystemsandcomponentsintheoriginaldesignofGinnaStationwezedesignedfortheoperating-basisearthquakeusing.theresponsespectradevelopedbyHousnerandcharacterizedbyapeakgroundaccelerationof0.08gat0.5%damping.Theoperating-basisearthquakewasnotconsideredduringtheSystematicEvaluationPxogram(SEP)reevaluation(seeSection3.7)~3.9.1.1.5SafeShutdownEarthuakeThe.mechanicalsystemsandcomponentsintheoriginalGinnadesignwerereviewedforasafeshutdownearthquakeof0'gpeakgroundacceleration.TheresponsespectradevelopedbyHousnexwereusedforthispurpose.FoztheSEPreview,theseismicinputmotionwastypicallydefinedbymeansoffloorresponsespectrageneratedbydirectmethodorbymeansofatime-histozyanalysis.SeeSection3.7fordetailsofhowthefloorresponsespectraweredeveloped.3.9~1.1.6SecondarSstemFluidFlowInstabilit(WaterHammer)Secondarysystemflowinstability(waterhammer)wasconsideredinthedynamicanalysisofthemainandauxiliaryfeedwaterpiping(Ref'exence3)presentedinSection3.9.2.1.5.Itwasdeterminedthattheprimarycauseforwaterhammerwastherecoveryofthefeedringwhilefeedwaterflowswereaboveathresholdflow.Thisthresholdflowwasdeterminedtobeapproximately200gpm.Designofthefeedringpiping,installationofJ-tubesinthefeedringandoperatingproceduresminimizethepossibilityofwaterhammer.3.9-4REV.1312/96 GINNA/UFSAR3.9.1.1.7Loss-of-CoolantAccident~~Theforcesexertedonreactorinternalsandcoze,followingaloss-of-coolantaccident,wereoriginallycomputedbyemployingtheBLODWN-1digitalcomputerprogramdevelopedforthespace-time-dependentanalysisofmultiloopPWRplants(seeSection3.9.2.3).AdditionalanalysisoftheblowdowneffectswasperformedduringtheresolutionoftheunresolvedsafetyissueA-2,AsymmetricBlowdownLoads,discussedinSection3.9.2.4.3.9.1.2ComputerProgramsUsedinAnalysisThefollowingcomputerprogramswereusedinthedynamicandstaticanalysesoftheSeismicCategoryIsystemsandcomponents:3.9-5REV.1312/96 GINNA/UFSARITCHVALVEFORFUNWESTDYNFIXFMandFIXFM3WESTDYN-2andWESTDYN2ADLPIPEM003PIPDYNIIDYNAFLEXPIPESDNUPIPEPIPSANUsedtoperformthetransienthydraulicanalysisofthepressurizersafetyandrelieflineanalysis.Usedtocalculateunbalancedforcesforeachstraightsegmentofpipefromthepressurizertotherelieftank.Aspecialpurposeprogramdesignedforthestaticanddynamicsolutionofredundantpipingsystemswitharbitraryloadsandboundaryconditions.Computerprogramswhichdeterminethetime-historyresponseofthree-dimensionalstructuresexcitedbyaninternalforcingfunction.AslightlymodifiedversionofWESTDYNprogram,thisprogramacceptsthetime-historydisplacementsfromFIXFM(orFIXFM3)andcalculatesthetime-historyinternalforcesinthepipeelements.WasusedintheoriginalpipestressanalysisofGinnaStation.TheverificationofthispipinganalysisprogramdevelopedbyArthurD.Little,Inc.,wasprovidedtotheNRCinamemorandumdatedApril19,1979.AGilbert/Commonwealthcomputerprogramforpipingstressanalysis.ItconsistsoftheSouthernServiceCompanythermalstressprogramandtheIBMscientificsubroutineforeigenvalueproblems.M003hasbeenverifiedagainstPIPDYNII.(Gilbert/Commonwealthversion)-ApipinganalysiscomputerprogramdevelopedbyFranklinInstituteResearchLaboratory.IthasbeenverifiedagainstASMESampleProblemNo.1intheASMEpublication,PressureVesselandPiping:1972ComputerProgramsVerification,andANSYSandPIPESD.ApipinganalysiscomputerprogramdevelopedbyAutonComputingCorporation.IthasbeenverifiedagainstADLPIPEandPIPESD.ApipinganalysiscomputerprogramdevelopedbyURS/JohnA.BloomandAssociates.IthasbeenverifiedagainstANSYS,ADLPIPE,PIPDYN,andSAPIV.ApipinganalysiscomputerprogramdevelopedbyNuclearServicesCorporation.IthasbeenverifiedagainstADLPIPEandASMEBenchmarkProblemNo.5intheASMEpublication,PressureVesselandPiping:1972ComputerProgramsVerification.AWestinghousepipingsupportanalysiscode.3.9.1.3ExperimentalStressAnalysis3.9.1.3.1PlasticModelAnalsisDuringtheoriginaldesignofGinnaStationthemodeshapesandfrequenciesoftheprimarycoolantlooppipingsystemweredeterminedexperimentallyusingmodelanalysis(Reference4).3.9WREV.1312/96 GINNA/UI'SARAplasticmodelwasemployedtoperformthisanalysis.Sincethereactorpressurevessel,thesteamgenerator,thereactorcoolantpump,andtheirsupportsareintegraltotheanalysisoftheprimaryloop,theywereincludedinboththeplasticmodelandthemathematicalmodel.TheplasticmodeloutputofmodeshapesandfrequencieswascoupledwiththeHousner0.2gresponsespectraandusedasinputtoathree-dimensionalmathematicalmodeloftheprimarycoolantloop.Acomputersolutiontoyieldstresses,deflections,supportreactions,andequipmentnozzlereactionswasobtained.3.9.1.3.2PlasticModelDetailsThemodel,showninFigure3.9-2,wasbuiltwithageometricratioof0.25in.equals1ft.TheplasticmodelmaterialusedwasABSplasticextrusiongradeforpipingandplexiglasforsupportstzucturesandequipment.Thereactorpressurevessel,steamgenerator,andreactorcoolantpumpwererepresentedbyhollowcircularplasticcylindersfilledwithleadshotpositionedwithcottonspacerstoproperlyrepresentthemassandcenterofgravitylocationsofthesethreepiecesofequipment.Theyweresupportedbymodeledplasticsupports.Forasteelbeamofidenticalgeometrythenaturalfrequencyofthecantileveris114Hz.Therefore,f(steel)/f(plastic)=2.78TheratioofthenaturalfrequencyofthemodeltotheprototypewasdeterminedbymodelPMPI(3.9-1)whereLp/Lm=geometricfactorandEMs-~-=materialfactor.Epm(3.9-2)Therefore3.9-7REV.1312/96 GINNA/UFSARm(model)/m(prototype=48/2.78=17.23.9.1.3.3PlasticModelTestArranementThreeseparatetestswereconductedinordertoexaminetheresponseofthemodeltoasinusoidalinputatvariouslevels.Averticaltestandhorizontaltestsintwoperpendiculardirectionswereconducted.Xnthehorizontaltests,themodelwasflexiblysuspendedfromaframedsupportingstructure.OneendofthebaseplateofthemodelwasthensecuredtotheMBvibrator.Thearrangementwassuchthattherigidbodyrockingmodesfrequenciesweremuchlowerthanthefrequenciesofinterestinthepipingsystem.Thesizablemomentintroducedbynotdrivingthroughthedynamiccenterofgravityofthesystemwasthereforenotaproblem.Xtwaspossibletoconductthetestsintheintendedlineardirectionwithoutverymuchcrosstalkorrockingmotion.Therewasaslightdistortioninthegeometricscalingoftheconnectingpipingbecauseofavailablemodelmaterials.Thisgeometricrelationshipisasfollows:LocationColdlegCrossoverHotleg27.531.029.032.336.834.0ActualPipeSize1.D.O.D.AssumedPipeSizeZ.D.O.D~303630363036ModelPipeSizeI.D.0~D.5/83/45/83/45/83/4Alldimensionsareininches.Todeterminethepropertiesoftheplastic,arectangularsamplewasseparatelymeasuredanddynamicallytested.Thesamplewasclampedasacantileverbeamtothevibratorandthefrequencynoted.Thedynamicmodulusofelasticitywasthencalculated.Physicalcharacteristicsareasfollows:3.9-8REV.1312/96 GINNA/UFSARSamplesize=0.25x10x1in.Volume=2.5in.~3Weight=0.1lbDensity=0.04lb/in.3Foracantileverbeam8.5in.long,thetestnaturalfrequencywas41Hz.Usingtheequation0.56EI'EIf=-'Hz=0.56--I'1'(3.9-3)ThenthedynamicmodulusisE(plastic)=547,000psiTheverticaltestwasconductedwiththemodelmounteddirectlytotheexciterplateofthevibrator.Sincethegeometryofthemodelpermitteddrivingthroughthecenterofgravityofthesystem,rockingexcitationwasagainminimized.Resonantfrequenciesandmodeshapeswerenotedbysweepingthemodelfrequencyspanof17to172Hzandnotingthemodalresponseofthemodelbyuseofastrobotaclight.3.9-9REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.9-10REV.1312/96 GINNA/UFSAR3.9.2DYNAMICTESTINGANDANALYSIS3.9.2.1PipingSystems3.9.2.1.1GeneralAllsafety-relatedandnon-safety-relatedpipingsystemswereoriginallydesignedandfabricatedtotherequirementsofUSASB31.1,PowerPipingCode.Sincetheoriginalconstruction,repairsand/ormodificationshavebeenmadethathavebeendesignedandfabricatedtolatercodes,includingASMESectionIII.Reanalysisofcriticalsafety-relatedpiping2-1/2in.andlargerwasperformedundertheSeismicUpgradeProgram,whichwasreviewedbytheNRCunderSEPTopicIII-6(seeSection3.9.2.1.8).ThisprogramupdatedthepipinganalysisbasistocriteriaconsistentwiththeANSIB31.1Code,includingSummer1973Addenda,withsomeamendments.Thiscodeeditionremainsasthecurrentanalysisbasisformodificationsperformedonsafety-relatedpiping.Non-safety-relatedpipingisdesignedandfabricatedinaccordancewiththeappropriatecurrenteditionofANSIB31.1.TheloadsandloadcombinationsconsideredintheoriginaldesignofGinnaStationaregiveninTable3.9-1.TheoriginalGinnaStationdesigndidnotutilizedynamiccomputeranalysesforseismicqualificationofSeismicCategoryIpiping.SeismicCategoryIpipingwasdividedintothreegroups,reactorcoolantsystempiping,piping2-1/2in.nominalsizeandlargerandpiping2-in.nominalsizeandsmaller.Thereactorcoolantsystempipingwasseismicallyqualifiedusingacombinationofmodeltestingandanalysis.SeismicCategoryIpiping,2-1/2in.nominalpipesizeandlarger,wasseismicallyqualifiedusingequivalentstaticanalyses.SeismicCategoryIpiping,2-in.nominalpipesizeandsmaller,wasseismicallyqualifiedusingsupportspacingtables.DynamicanalysisofsectionsoftheAresidualheatremovalandBmainsteampipingwereperformedsolelytoverifytheequivalentstaticanalysismethod.Inaddition,anonsiteinspectionofSeismicCategoryIpipingwasperformedwhichresultedintheinstallationofadditionalsupports.Ingeneral,modificationsoradditionstopipingsystemsatGinnaStationsinceinitialoperationhavebeenseismicallyqualifiedusingdynamic3.9-11REV.1312/96 GINNA/UIiSARanalyses.Somesmallpipinghasbeenseismicallyqualifiedutilizingequivalentstaticanalysisorspacingtabletechniques.3.9.2.1.2SeismicCateorIPiin,2-1/2InchNominalSizeandLarer3.9.2.1.2.1STATIcANALYsIs.ThisgroupofSeismicCategoryIpipes.wasoriginallyanalyzed(Reference4)bydividingeachpiperunintolumpedmasses.Thenumberofmasseslumpedbetweenanytwosupportswasbaseduponthespacingintervalandincreasedwiththelengthofthespacinginterval.Everymasswasgivenanaccelerationequaltothemaximumresponsefromtheresponsecurvewith0.5$ofcriticaldamping,i.e.,0.8gfor0.2ggroundacceleration.Eachpipingsystem,withitssupports,wasmodeledasathree-dimensionalframeandtheloadsgivenbythemasstimestheaccelerationwereappliedateachlumpedmassalongthreedirections,twohorizontalandonevertical,separately.Themomentsandtorqueforeachofthethreeloadingdirectionswerethenobtainedbystiffnessanalysis.Thestresseswerecalculatedatcriticalpointsinthepipinganditssupportsforeachloadingdirection.ThestressesinthepipingwerefoundbyusingtheUSASB31.1formula1/2Mxz+.~Jz+~zzz'3.9P)wherestressMx,My,Mz=momentsaboutthetwohorizontaldirectionsandtheverticaldirectionsectionmodulusAteachpointthestressesobtainedforthetwohorizontalearthquakeswerecomparedandtheonegivingthelargervaluewasthencombinedwiththestressobtainedfortheverticalloadingbydirectaddition.Themaximumstressesimposedbythenormalloadsplustheloadsassociatedwiththelargerofthetwoearthquakes(0.8g)werebelow1.2S,whereSistakenfromthepowerpipingcode,USASB31.1.1.0-1967,Paragraph119.6.4.3.9-12REV.1312/96 GINNA/UFSARIfthecombinationofnormalloadsandno-loss-of-functionearthquakeloadsisconsideredasafaultedcondition,theallowablemembraneandbendingstressescouldbechosentobethestressescorrespondingto20%and40%ofthematerialuniformstrainattemperature,respectively.Thiswouldgivemorethanafactorof2marginbetweentheallowableandthemaximumactualstresses.3.9.2.l.2.2DYNAMICANALYSZS.InordertoincreasetheconfidenceintheadequacyoftheseismicdesignofthisgroupofSeismicCategoryIpiping,twopiperunswereselectedandanalyzedemployingmodalandresponsespectramethods.Thesepiperunswere(l)theresidualheatremoval,systemlinefromthereactorcoolantsystemloopAtothecontainmentpenetration,and(2)themainsteamlinefromsteamgeneratorBtothecontainmentpenetration.DynamicanalyseswerealsoperformedforsectionsoftheabovepiperunsandthecharginglineasaresultofIEBulletin79-07.Theseanalyseswerebasedontheas-builtpipingsystemisometricsandsupportinformation.Thedefinedpiping/supportsystemswhichwereanalyzedwereevaluatedincorporatingthree-dimensionalstaticanddynamicmodelswhichincludedtheeffectsofthesupports,valves,andequipment.Thestaticanddynamicanalysisemployedthedisplacementmethod,lumpedparameters,andstiffnessmatrixformulationandassumedthatallcomponentsandpipingbehavedinalinearelasticmanner.Theresponsespectramodalanalysistechniquewasusedtoanalyzethepiping.The0.58Housnergroundresponsespectrumwasemployedwithzeroperiodaccelerationvaluesof0.08gand0.2gfortheoperating-basisearthquakeandsafeshutdownearthquake,respectively.Thestressintensificationfactorsduetoweldswereincludedinthereanalysis.3.9-13REV.1312/96 GINNA/UFSAR3~9~2~1.2.3REsIDUALHEATREMovALSYsTEMLINEFRQMREAGToRCooLANTSYSTEMLooPATo~CONTAINMENT~OriinaldnamicanalsisIntheoriginaldynamicanalysistheresidualheatremovalsystemlinewas"mathematically"locatedattheelevationofthesteamlineonthecontainment.Thereasonforthiswastoinvestigatetheeffectofresponsespectrumdistortion,asafunctionoflocationandelevation,onthepipeloadingandassociatedstresses.Thispiperunwitha10-in.nominaldiameterwasselectedbecauseitwasjudgedtypicalofalargeportionofSeismicCategoryIpipingwithadiameterrangingfrom6in.to14in.Idealizedlumpedmassmodelsweredevelopedandanalyzeddynamically.Theanalysiswasmadebyassigningthreetranslationalandthreerotationaldegreesoffreedomtoeachlumpedmasspointwitheachmasspointrepresentingageometricallyproportionalamountofthetotalsystemmass.Elasticchazacteristicsofthesystemincludedthetranslationalandrotationalstiffnesses.Therotationalelasticcharacteristicswerecarriedintothereducedstiffnessmatrixthatwasinvertedandformedwiththemassmatrix,thedynamicmatrix.Followingnormalmodetheozy,thenaturalfrequencies,modeshapes,andparticipationfactorswerecomputedtoyieldthedynamicsystemcharacteristics.ThesecharacteristicswerethencombinedwiththeappropriateshockspectratoyieldtheD'Alembertreverseeffectiveforcesonthesystemforeachmode.Themodalforceswerethenusedtocomputethestressespermode.Thestressesweresummedonarootmeansquarebasisforfinalcomparisontocodeallowablestresses.Morethan70modeswereanalyzedfortheirresponsetoearthquakeexcitation.TheHousner0.58criticaldampinggroundresponsespectrumnormalizedto0.2gwasused.Thisspectrumwasconsideredadequatebecauseofthelocationofthispipezunlowinthecontainment.Fozthelocationofmaximumstress,thestressvalueswerecalculatedatthreepointsonthepipecross-section:thebottom,oneside90degreesaway,andhalfwaybetweenthesetwo.Firstthestressesduetothetwo3.9-14REV.1312/96 GINNA/UIiSARbendingmomentsandonetorsionalmomentonthepipewerecalculated.)Thenforeachofthethreepoints,therootmeansquareofthestressesactingatthepointforthesignificantmodes(firstthree)wascalculated.Tothiswasaddedthedeadweightstress,andthentheresultwasmultipliedbythestressintensificationfactor,asthelocationofmaximumstresswastheendofanelbow.Thepressurestresswasaddedtothisresultinordertoobtainthetotaladditivelongitudinalstress.Thetotalmaximumstresswascalculated,consideringthetorsionalshearstressandusingtheformulaformaximumprincipalstresses.Themaximumprincipalstresseswereclosetothe1.2Svalues.Theywerewellbelowthevaluescorrespondingto20%or40%ofuniformstrain.Itwasconcludedthattheresidualheatremovalsystemlinelocatedinthecontainmentatthesteamlineelevationisnotover-stressed.IEBulletin79-07RegnalsisFortheIEBulletin79-07reanalysis,thelineanalyzedwastheresidualheatremovalsystemlinefromtheanchornearreactorcoolantloopAtothecontainmentpenetration.Table3.9-2isacomparisonofstressresultsfortheoriginalmodel,andthemodelreflectingas-builtconditions.Thereanalysisconsideredbothas-builtconditionsandsupportstiffness.ThestressresultsreportedwereobtainedusingB31.1-1973SummerAddenda,Formula12.StressallowablesgivenarebasedonthestresslimitsgiveninTable3.9-1.Thelinewasfoundtobeseismicallyqualified.3.9.2.1.2.4STEAMLINEFR0MSTEAMGENERATQRBToC0NTAINMENT.OriinalDnamicAnalsisAdynamicmodalanalysiswasoriginallyrunonthesteamlineofloopB.Thegroundresponsespectrumwasmodifiedtofactorinbuildingeffects.Itwasfoundthatthepreviousstaticanalysisofthesteamlinethatusedthepeakoftheresponsecurvefor0.5%criticaldampinggaveaveryconservativeestimateofinertiallyinducedstresses.Inordertoaccountfortherelativesupportmovements,aseparatestressanalysiswasrunon3.9-15REV.1312/96 GINNA/UFSARthepipingsystem.Thisanalysisindicatedastressof8500psi,whichwascombinedwiththemaximumthermalstressinthesteamlineof11,000psi.Thesecombinedsecondarystressesarebelowtheallowablestressof20,600psi~IEBulletin79-07RegnalsisFortheIEBulletin79-07reanalysis,thelineanalyzedextendedfromsteamgenerator1Btothecontainmentpenetration.SeismicresultswereoriginallyreportedinReference4.AseismicreanalysisofthislinewasperformedusingtheWestinghouseproprietarycomputercodeWESTDYN.TheWESTDYNdynamicmodelreflectedthe,as-builtconditionsaswellastheactualsupportstiffness.ThemainsteamlineanalyzedwascoupledtoareactorcoolantloopBmodel.InTable3.9-3isacomparisonofstressresultsfromthereanalysisreflectingas-builtconditions,supportstiffness,andtheallowablestresses.ThestressresultsreportedwereobtainedusingB31.1-1973SummerAddenda,Formula12.StressallowablesgivenarebasedonthestresslimitsgiveninTable3.9-1.Thelinewasfoundtobequalifiedseismically.3.9.2.1~2.5CHARGzNGLINE.IEBulletin79-07RegnalsisFortheIEBulletin79-07reanalysis,thelinesanalyzedextendedfromchargingpumps1,2,and3tothechargingpumpdischargefilter;andincludedthe2-and3-in.dischargelinesfromthefilterandthe3-in.bypass.AseismicanalysiswasoriginallyperformedofthislinebytheN.W.KelloggCompany.AseismicreanalysisofthislinewasperformedusingtheWestinghouseproprietarycomputercodeWESTDYN.TheWESTDYNdynamicmodelreflectedtheas-builtconditionsaswellastheactualsupportstiffness.Table3.9-4isacomparisonofstzessresultsfromthereanalysisreflectingas-builtconditions,supportstiffness,andtheallowablestresses.ThestressresultsreportedwereobtainedusingB31.1-1973SummerAddenda,Formula12.Stressallowablesgivenwerebased3.9-16REV.1312/96 GINNA/0FSARonthestresslimitsgiveninTable3.9-1.Thelinewasfoundtobeseismicallyqualified.3.9.2.1.3SeismicCateor1Piin,2-InchNominalSizeandUnder,Oriinal~DesinThepipesfallinginthiscategorywerefielderected.4ThelargemajorityofthesepipeshaslateralandverticalsupportspacingselectedinaccordancewiththatsuggestedbyUSAS831.1forverticalsupports.Thepipingsosupportedcanbeconsideredrigidwithrespecttothebuildingsinwhichtheyarehoused.Thepipesaresubjectedtothebuildingaccelerationonlyatthepointsofsupportwithoutanyfurtherappreciableamplification.Conservativecalculationsshowthatthelargestbuildingamplificationofgroundaccelerationisabout4.Thisgivesinertialloadsof0.8g.Simplebeamcalculationsperformedforthethreepipesizesfallinginthiscategory(i.e.,2in.,1in.,and3/4in.)andforthetypicalschedulesadoptedforthesepipes(i.e.,Schedules10,40,80,and160forstainlesssteelpipesandSchedules40,80,and160forcarbonsteelpipes)indicatedthatthestresslevelsweresignificantlylowerthantheallowablevalues.3.9-17REV.1312/96 GINNA/UFSAR3.9.2.1.4PressurizerSafetandReliefValveDischaxePiin3.9.2.1.4.11972AwMzszs.InresponsetoarequestfromtheNRCforadditionalinformationin1972(Reference5),dynamicanalyseswereperformedforthepressurizersafetyvalvedischargepiping.Thepressurizersafetyvalvepipingsystemisaclosedsystemandnosustainedreactionforcefromafreedischargingjetoffluidexists.Transienthydraulicloadscanbeimposedatvariouspointsofthepipingsystemfromthetimeasafetyrelieflinebeginstoopenuntilsteadyflowiscompletelydeveloped.Calculationswereperformed(Reference22)toprovideatime-historyofsuchloadsactingoneachstraightlegofpipefromthesafetyvalvedownstreamtotherelieftankheader.TheFLASHIVdigitalcomputerprogramwasemployedinperformingthesecalculations.Frictionallosseswereincludedforthepipingandtheassociatedelbows.Thetime-historyhydraulicforcesweredeterminedbasedonseveralloopsealtemperatures.ThenaturalfrequenciesandmodeshapesofthesystemweresolvedusingprogramWESTDYN.ThecalculatedloopsealtemperatureforGinnaStationwitha3-in.-thickinsulatedwaterloopwas330'F.Thehydraulicforcesassuminga300'Fwatertemperaturewereappliedtothestructuraldynamicmodelateachchangeinflowdirectionthroughout,thesystem.Thisconstitutedatrulyimpulsivedynamicanalysiswithsimultaneouscontributionsfromallthedynamicmodesofthesystem.ThepipingsystemsforPCV434andPCV435,wererepresentedbylumpedmassmodelsasshowninFigures3.9-3and3.9-4.Thetime-historyanalysiswasperformedbythemodesuperpositionmethodusingcomputerprogramsNESTDYN,FIXFM,andWESTDYN-2.Thestressesfromthedeadweight,pressure,seismic,andtransienthydraulicloadanalyseswerecalculatedseparately.Itwasconser-vativelyassumedthatthemaximumstressaroundthepipecircumferenceoccursatthesamepointforallloadcasesconsidered.Thesestresseswereaddedabsolutelyandcomparedwiththecodeallowablestresslimitof1.2xSa,whereSa=stressallowable.Areviewoftheanalysisshowedthatthestresslevelsinthepressurizer3.9-18REV.1312/96 GINNA/UFSARsafetyvalveClass1andClass2pipingsystemswerewithintheallowabledesignrequirementsofUSASB31.1.3.9.2.1.4~2NUREG0737,ITEMII.D.1AHALYszs.UnderNUREG0737,ItemII.D.1,itwasrequestedthatthefunctionabilityandstructuralintegrityoftheas-builtpressurizersafetyandreliefvalvedischargepipingsystembedemonstratedonaplant-specificbasis.InresponsetotheNRCrequestWestinghouseperformed(Ref'erence2)ananalysisofthepressurizersafetyandreliefvalvedischargepipingsystem.AdditionalinformationwassuppliedinReferences23,24,and25.Awatersealismaintainedupstreamofthepressurizersafetyvalves.Thewaterslug,drivenbyhighpressuresteamuponactuationofthevalves,generatesseverehydraulicshockloadsonthepipingandsupports.ThepressurizersafetyvalvesandPressurizerPowerOperatedReliefValves(PORV)areprovidedwithareflectiveinsulationsystemthataddspressurizerradiantheattotheloopsealpiping.Thismaintainsthesafetyvalvewatersealsatelevatedtemperaturessuchthattheloopsealcontentsexitingthevalvenozzlesareconvertedtosteam,whichreducestheloadsonthepipingandsupports.NUREG0737,ItemII.D.1,requiredtestingtoqualifythereactorcoolantsystemandsafetyvalvesundereffectedoperatingconditionsandtransients.Whenthepressurizerpressurereachesthesafetyvalvesetpressureof2500psiaandthevalveopens,thehigh-pressuresteaminthepressurizerforcesthewaterinthewaterloopsealthroughthevalveanddownthepipingsystemtothepressurizerrelieftank.Additionally,whenthereliefvalvesetpressureof2350psiaisreachedandthevalveopens,high-pressuresteamisdischargedtothedownstreampiping.ThecomputercodeITCHVALVEwasusedtoperformthetransienthydraulicanalysisforthesystem(Reference2).One-dimensionalfluidflowcalculationsapplyingboththeimplicitandexplicitcharacteristicmethodswereperformed.Thepipingnetworkwasinputasaseriesofsinglepipes,generallyjoinedtogetheratoneormoreplacesbytwo-orthree-wayjunctions.Eachofthesinglepipesincludedassociatedfrictionfactors,anglesofelevation,andflowareas.3.9-19REV.1312/96 GINNA/UFSARUnbalancedforceswerecalculatedforeachstraightsegmentofpipefromthepressurizertotherelieftankusingprogramFORFUN~Thetime-historiesoftheseforceswereusedforthesubsequentstructuralanalysisofthepressurizersafetyandrelieflines.Thesafetyandrelieflinesweremodeledstaticallyanddynamically.Themathematicalmodelusedfordynamicanalyseswasmodifiedforthevalvethrustanalysistorepresentthesafetyandreliefvalvedischarge.Thetime-historyhydraulicforcesdeterminedbyFORFUNwereappliedtothepipingsystemlumpmasspoints.Thedynamicsolutionforthevalvethrustwasobtainedbyusingamodifiedpredictor-cozrector-integrationtechniqueandnormalmodetheory.ThepipingbetweenthepressurizernozzlesandthepressurizerrelieftankwasanalyzedaccordingtotherequirementsoftheappropriateequationsoftheANSIB31.1-1973Codethroughthe1973addenda.TheallowablestressesforusewiththeequationsweredeterminedinaccordancewiththerequirementsoftheANSICode.TheloadcombinationsandacceptancecriteriadefinedinTables3.9-5,3.9-6,and3.9-7wereusedintheanalysis.Thepipingstressanalysisconsideredallpertinentloadingsthatresultfromthermalexpansion,pressure,weight,earthquake,andtransienthydrauliceffects.Thetransfermatrixmethodandstiffnessmatrixmethodwereusedtoobtainapipingdeflectionsolution.Allstaticanddynamicanalyseswereperformedusingthe'FlESTDYNcomputerprogram.Itwasdeterminedthattheoperabilityandstructuralintegrityofthesystemwereensuredforallapplicableloadingsandloadcombinationsincludingallpertinentsafetyandreliefvalvedischargecases.3.9-20REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.9-21REV.1312/96 GINNA/UFSAR3.9.2.1.5MainSteamHeaderDnamicLoadFactorAnalsisInresponsetoarequestfromtheNRCforadditionalinformationin1972(Reference5),dynamicanalysiswasperformedforthemainsteamheader.IntheoriginaldesignofGinnaStation,themainsteamheader(case2)wasanalyzedfortheinternalloadsgeneratedbythesafetyvalveduringtherelievingprocessbymodelingthesystemasasingledegreeoffreedomsystemandusingaconservativedynamicloadfactorof2.0toaccountfortheimpacteffectsofthesafetyreliefvalvereaction.Themagnitudeofthethrustwasbasedonthecombinedeffectsofstaticpressureatthesafetyvalvedischargesystemandthemomentumoftheflowingsteam.Thisanalysisindicatedthat,foztheGinnaStationmainsteamheader,themaximumupperboundloadfactorswere1.15and1.50forasingleandmultiplevalvedischarge,respectively.Incalculatingthedynamicloadfactor,theanalysisaccountedforthecontri-butionstothepipingresponsegivenbyallthesignificantvibrationalmodesofthestructurefozasinglevalveandmultiplevalvedischarge.Thereportconcludedthatthevalve/headerdesignwasconservativebasedonacalculationoftheactualdynamicupperboundvaluesofthedynamicloadfactor.Theeffectsofmultiplesafetyvalvedischargesshouldbeconsideredsincetheanalysisshowedapossible308increaseinloadfactorduetoactuationofasecondvalve.Theactualloadfactorachievedinthesystemwasexpectedtobesignificantlylowerthantheupperboundvaluespredictedsincedampingreducedthemaximumcontributionfromeachmode;andformultiplevalvedischargethetimebetweenvalvedischargeshadtobeexactlyequaltoaperiodofoneoftheprimarymodesfozthemaximumresponsetooccur.3.9-22REV.1312/96 GINNA/UFSAR3.9.2.1.6SecondarSstemWaterHammer3.9.2.1.6.1Awmvsrs.InresponsetoanNRCrequestregardingsecondarysystemfluidflowinstabilities(waterhammer),RG&EperformedananalysisofthepotentialfozoccurrenceandpotentialconsequencesofwaterhammeratGinnaStation(Reference3).Analysesofthemainfeedwaterpipingwereperformedforpostulatedwaterhammerutilizingadynamicforcingfunction.Theseanalysesassumedthatasteam-watersluggingprocesswasinitiatedatthesteamgenerators,thatthesteamgeneratorlevelwasbeingrecoveredutilizingauxiliaryfeedwater,andthatthemainfeedwatercheckvalveswereclosed.TheanalyseswerebasedonthepipingconfigurationandsupportsinstalledatGinnaStationatthetimeofanalyses.Anexaminationwasmadeofthenormal,abnormal,andaccidenttransientswhichcouldresultinasteamgeneratorwaterlevelbelowthefeedringlongenoughforittodrain;andwhichwouldresultinfeedwaterflowbeinginitiatedinozdertorecoverlevel.Itwasdeterminedthatthefollowingoperatingoccurrencescouldcausetheseconditions:a~Loadchangeswhenthesteamgeneratorlevelwasundermanualcontrol.IntermittentmanualoperationofauxiliaryfeedwaterpumpstomaintainsteamgenezatorlevelduringMODE3(HotShutdown).c.Lossofmainfeedwater.ThemainfeedwaterpipingatGinnaStationconsistsoftwolines,AandB,whichrunfromthecontrolvalvestationintheturbinebuildingtothesteamgenerators.TheauxiliaryfeedwaterpipingatGinnaStationconsistsofsixlines:twofromthemotor-drivenauxiliaryfeedwaterpumps(MDAFW)1Aand1B,twofromtheturbine-drivenauxiliaryfeedwaterpump(TDAFW),andtwofromthestandbyauxiliaryfeedwaterpumps(SAFW).TheforcingfunctionusedfortheanalysesisshowninFigure3.9-1.Theforcingfunctionisatime-dependentmathematicalquantityrepresentativeoftheenergyreleasedbywaterhammerinthefeedwaterpipingconnected3.9-23REV.1312/96 GINNA/UFSARtoPWRsteamgenerators.Theforcingfunctionprovidesatime-historyofthepressureinthepipingsystemwhichresultsfromtheacousticshockwavegeneratedbyasteam-waterslug.TheforcingfunctionshowninFigure3.9-1wasmodifiedforthespecificpipingconfigurationatGinna.ThisforcingfunctionwasderivedbyWestinghousefrommeasurementsofpressureanddisplacementobservedduringawaterhammertestattheTihangesiteinBelgium.CalculationsperfozmedbyWestinghouseemployingthisforcingfunctionfortheTihangefeedwaterpipingresultedindisplacementsinfairagreement,withthoseobserved.Westinghouseconsideredtheforcingfunctionaspreliminaryanditwasstillunderdevelopmentatthetimetheanalyseswereperformed.Theloadingcombinationsandstresscriteriausedinevaluatingtheresultsoftheanalyseswerebasedontheoriginalconstructioncode,ANSIB31.1,PowerPiping.Thesecriteriawerethatthesumofthelongitudinalstressesduetopressure,weight,andwaterhammerwouldnotexceed1.2timestheallowablestressinthehotcondition,Sh.3.9.2.1~6.2EYALUATIoNREsULTs.EvaluationofthestressesobtainedintheanalysesshowedthatinsidethecontainmenttherewereseverallocationsontheAmainfeedwaterpipingandseverallocationsontheBmainfeedwaterpipingwhichexceededthestresscriteria.OutsidethecontainmentthezewerenolocationsontheAmainfeedwaterpipingandseverallocationsontheBmainfeedwatezpipingwhichexceededthestresscriteria.Analyseswerenotperformedfortheauxiliaryfeedwaterpipingsystemsforapostulatedwaterhammerfromthesteamgenerators.3.9.2~1.6.3CoRRECTIYEACTIQNs.Variousadministrativecontrols,steamgeneratormechanicalmodifications,andpipingsupportmodificationswereevaluatedtodeterminetheireffectivenessineitherpreventingtheoccurrenceofwaterhammer,orreducingitsconsequencesshoulditoccur.Inevaluatingthesechanges,theeffectofotherchangesthatwerebeingmadetotheplantandthe3.9-24REV.1312/96 GINNAfUFSARoverallreliabilityandintegrityofthesteamgeneratorswerealsoconsidered.ItwasdeterminedthatthebestalternativeavailableforprecludingwaterhammerwasinstallationofJ-shapeddischargetubesontopofthefeedringsandpluggingofthebottomholesintheringstoprovidefortopdischargeofwaterratherthanbottomdischarge.SeeSection10.3.2.2.In1996,GinnaStationreplacedthesteamgenerators.ThereplacementsteamgeneratorsincorporatedmanyoftheguidelinesfromNRCBranchTechnicalPositionASB-10-2,"DesignGuidelinesforAvoidingWaterHammersinSteamGenerators,"tominimizethepotentialandconsequenceofwaterhammerinthefeedwatersystem.Specifically,theBWIreplacementsteamgeneratorsaredesignedtominimizethepotentialforasteampocketfoxminginthefeedheaderusingtopdischarge8-tubesinthefeedring,internalswhichmacimizesecondarywaterinventoryabovethefeedring/andanall-weldedthermalsleeve/internalfeedheaderassemblythateliminatesthepossibilityofsteamleakageintothefeedringthroughsleeve/headermechanicaljoints.TheBWIdesignisalsolesspronetoseriousconseqeuncesfromasteampocketformingbecauseofthefeedheadergooseneckwhichtendstoretardrapidcondensationandwater-slugaccelerationbetterthanahorizontalheaderrunwould.3.9-25REV.1312/96 GINNA/UFSAR3.9.2.1.7VelanSwinCheckValvesInresponsetoIEBulletin79-04,RG&EanalyzedtheeffectofchangesinweightspreviouslyassumedforswingcheckvalvesmanufacturedbyVelanEngineeringCorporation.Thereisone6-in.Velanswingcheckvalveinstalledinbothlowheadsafetyinjectionsystemlinesandfour3-in.valvesinstalledinthehighheadsafetyinjectionsystemlines.Theinitialinstallationassumedaweightof225lbforthe6-in.valvesand60lbforthe3-in.valves.Thecorrectweightswere450and95lb,respectively.Inordertoinvestigatetheeffectofvalveweightdifferences,Westinghouseperformedseismicanalysesonsomerepresentativeconfigurationsofthesafetyinjectionsystemandstudiedtheeffectofincreasingvalveweightby100%onthepipestressesandsupportloadsoftheline.Anoperating-basisearthquakeseismicanalysiswasperformedforeachcase.Itwasatwo-dimensionalresponsespectrumanalysisconsideringeachhorizontaldirectionseparately,combinedwiththeverticaldirection.Itwasdeterminedfromtheanalysisthattheincreaseinvalveweightdidnotresultinunaccept-ablepipestressforthelinesinvestigated.3.9-26REV.1312/96 GINNAfUFSAR3.9.2.1.8SeismicPiinUradeProramAsaresultofSEPpreliminaryseismicreviewofGinna(SEPTopicIII-6),theNRCIEBulletin79-14,andotherNRCseismicrequirements,RG&EinitiatedaseismicpipingupgradeprogramdescribedinSection3.7.3.7.InordertoconservativelyrespondtotheSEPseismicreviewandpossiblefutureNRCseismicrequirements,asetofanalysisproceduresandcriteriathatconformwithcurrentNRCreviewcriteriawereusedforthepipinganalysis.ThesearediscussedinSection3.7.3.7.TheloadingcombinationsandassociatedstresslimitsusedforthepipingsystemsthatarepartoftheseismicupgradingprogramaregiveninTable3.9-8.Piperuptureloadswerenotconsidered;assuch,thestresslimitsusedforthesafeshutdownearthquakeconditiondidnotcorrespondtothefaultedcondition,astheycouldbeforthesafeshutdownearthquakeevaluation,buttotheemergencyconditionstresslimits.ThepipingstresseswerecalculatedusingtheformulasgiveninANSIB31.1-1973,1973SummerAddenda.ThermalstresseswereevaluatedpezANSIB31.1-1973,Summer1973Addendarequirements.ThemaximumloadsthatthemainfeedwaterpipingandsteamlinepipingwerepermittedtotransmittothesteamgeneratornozzlesaregiveninTable3.9-9.TheallowableloadsforthesealinjectionandcomponentcoolingsystemnozzlesonthereactorcoolantpumpandmotorarelistedinTable3.9-10.TwopipelinesfromtheupgradedpipingsystemswereselectedandanalyzedindependentlybytheNRCtoverifytheadequacyoftheas-builtdesignandconfirmtheupgradeanalysisresults.Thepipelinesselectedwereportionsofresidualheatremovalandsafetyinjectionsystempiping.Auditanalyses,whichincorporatedcurrentASMECodeandRegulatoryGuidecriteriaandusedthefloorresponsespectraasinputmotion,wereperformedforeachportionofthepipingsystemselected.TheresultsfromtheseanalyseswerecomparedtoASMECoderequirementsfozClass2pipingsystemsattheappropriateserviceconditions.Thiscomparisonprovidedthebasesforassessingthestructuraladequacyofthepipingunderthepostulatedseismicloadingcondition.Assumptionsmadefortheanalysis,methodologyemployedandanalysisresultsarefoundinReference6.Theresultsfromtheconfirmatoryanalysisshowedthatthesampledpipingsystemsazecapableofwithstandingthepostulatedsafeshutdownearthquakeseismicinput.3.9-27REV.1312/96 GINNA/UFSARStructuralmemberswithinthevariousbuildingsatGinnaStationwereanalyzedandweremodifiedasrequiredtoacceptneworrecalculatedpipesupportloadsfromtheseismicpipingupgradeprogramandtotransfertheseloadsintothemainstructuralframing.PipesupportswereanalyzedasdiscussedinSection3.9.3.3.3.9-28REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLEAK)3.9-29REV.1312/96 GINNA/UFSAR3.9.2.2Safety-RelatedMechanicalEquipmentMechanicalequipmentwasoriginallyseismicallyqualifiedbyacombinationoftestandanalysis'hemethodsofanalysisusedintheoriginalanalysesandduringtheSEPreevaluationaredescribedbrieflyinSection3.7.3~Theresultsoftheanalysisarepresentedinthissection.3.9.2.2.1OriinalSeismicInutandBehaviorCriteriaForSeismicCategoryImechanicalequipment,allcomponentsandsystemsoriginallyclassifiedasClassIweredesignedinaccordancewiththecriteriadescribedinSection3.7.1.1.AllcomponentsofthereactorcoolantsystemandassociatedsystemsweredesignedtothestandardsoftheapplicableASMEorSASCodes.TheloadingcombinationsandbehaviorcriterianototherwisedefinedbytheUSASandASMECodesinuseatthetimeoftheoriginaldesign,whichwereemployedbyWestinghouseinthedesignofthecomponentsofthesesystems,i.e.,vessels,piping,supports,vesselinternalsandotherapplicablecomponents,aregiveninTable3.9-1.Table3.9-1alsoindicatesthestresslimitswhichwereusedinthedesignoftheequipmentforthevariousloadingcombinations.Inaddition,thesupportsforthereactorcoolantsystemweredesignedtolimitthestressesinthepipesandvesselstothestresslimitsgiveninTable3.9-1.HeatexchangersweredesignedinaccordancewiththecriteriasetforthinSection3.7.1.1.ThepeakoftheO.SScriticaldampingresponsespectracorrespondingtothe0.2gmaximumpotentialearthquakewasselectedastheseismicdesignload.StresslimitsweresetequivalenttothoseofthepressurevesselcodesandthestructuralsteelstandardsofAISC.Thedesignofpumps(casingandshafting)wasbasednotonstresscriteria,butondeflectionlimits.Forthecasewhereefficiencywasofminimumimportance,deflectionatthestuffingboxcontrolledthedesign.Forthecasewhereefficiencywasofimportance,deflectionoftheshaftattheimpellerwearringscontrolledthedesign.Ineithercase,thenaturalfrequency(identicaltocriticalspeed)wasapproximately20Hzand30Hzfor1800rpmand3600rpmmachines,respectively,forflexibleshafting.Inreality,thestuffingboxesservedasanadditionalbearingandthenaturalfrequencywasabovethat,correspondingtotheoperatingspeed.Forstiff3.9-30REV.1312/96 GINNA/UFSARshafting,thefundamentalfrequencywasabovethatcorrespondingtotheoperatingspeed(30Hzand60Hz).Boththepumpcasingsandthemotorcasingswereextremelystiffwhenevaluatedassimplysupportedbeamswithuniformloaddistribution.Atypicalnaturalfrequencyforacasingwithalength-to-diameterratioof3andadiameterof36in.was100Hz.Thecombinedpump-motorunitismountedonacommonbedplatewhichisgroutedintothefoundation.Thestiffnessofthefoundationmassandtherigidboltingeliminatedpossiblerelativemovementbetweenthepumpandmotorunderoperatingloadsasthecoupingbetweenthemotorandpumpwasdesignedonlytoaccommodategeometricmisalignment.TheanalysisoftankswasperformedinthemannersetforthinTID7024,takingintoaccountthepossibledynamiceffectsresultingfromthesloshingofthewater.ThetechniquesaresetforthinChapters5and6ofTID7024.ShellstressesandsupportstressesarelimitedtothosepermittedinthepressurevesselcodesandthestructuralsteelstandardsofAISC.Electricmotor-operatedvalveswereverifiedtobecapableofsustaininga1gshockloadwithoutinterruptionofcircuitryorlossoffunction.Thiswasverifiedupto20Hz.3.9.2.2.2CurrentSeismicInutCurrentseismicinputrequirementsfordeterminingtheseismicdesignadequacyofmechanicalequipmentarenormallybasedonin-structure(floor)responsespectrafortheelevationsatwhichtheequipmentissupported.ThefloorspectrausedintheSEPreassessment,whicharebasedonRegulatoryGuide1.60spectra,areshowninFigures3.7-12through3.7-28.Formechanicalequipment,acomposite7Sequipmentdampingwasusedintheevaluationforthe0.2gsafeshutdownearthquake.3.9.2.2.3SstematicEvaluationPzozamSeismicCategoryIcomponentsthataredesignedtoremainleaktightorretainstructuralintegrityintheeventofasafeshutdownearthquakearetypicallydesignedtotheASMESectionIIICode(ASMEIII),Class1,2,or3stresslimitsforServiceConditionD.ThestresslimitsforsupportsforASME3.9-31REV.1312/96 GINNA/UFSARleaktightcomponentsarelimitedasshowninAppendixForAppendixXVIItoASMEXII(1977).Whenqualifiedbyanalysis,activeASMEIIZcomponentsthatmustperformamechanicalmotiontoaccomplishtheirsafetyfunctionstypicallymustmeetASMEIXZClass1,2,or3stresslimitsforServiceConditionB.SupportsforthesecomponentsarealsotypicallyrestrictedtoServiceConditionBlimitstoensuzeelasticlowdeformationbehavior.Forotherpassiveandactiveequipment,whicharenotdesignedtoASMEIIZrequirements,andforwhichthedesign,material,fabrication,andexaminationrequirementsaretypicallylessrigorousthanASMEXIIrequirements,theallowablestressesforpassivecomponentsarelimitedtoyieldvaluesandtonormalworkingstress(typically0.5to0.67yield)foractivecomponents.ThecurrentbehaviorcriteriausedinvariousequipmentanddistributionsystemsforGinnapassivecomponentsaregiveninTable3.9-11.Experienceinthedesignofsuchpressureretainingcomponentsasvessels,pumps,andvalvestotheASMEIIIrequirements,at0.2gzeroperiodgroundacceleration,indicatesthatstressesinducedbyearthquakesseldomexceed108ofthedeadweightandpressure-inducedstressesinthecomponentbody(Reference7).Therefore,designadequacyofsuchequipment,isseldomdictatedbyseismicdesignconsiderations.Seismicallyinducedstressesinnonpressurizedmechanicalequipmentandcomponentsupportsmaybesignificantindeterminingdesignadequacy.3.9-32REV.1312/96 GINNA/UFSAR3.9.2.2.4SstematicEvaluationPzozamReevaluationofSelectedMechanicalComonentsforDesinAdeuacTheSystematicEvaluationProgram(SEP)SeismicReviewTeamselectedmechanicalandelectricalcomponentsrepresentativeofitemsinstalledinthereactorcoolantsystemandsafeshutdownsystemsforreviewinozdertodevelopconclusionsastotheoverallseismicdesignadequacyofSeismicCategory1equipmentinstalledatGinnaStation.TheelectricalequipmentislistedinTable3.10-2anddiscussedinSection3.10.2.1.ThemechanicalequipmentislistedinTable3.9-12andtheseismicanalysisofthesecomponentsisdescribedinthefollowingsections.3~9~2~2~4~1ESSENTIALSERVICEWATERPUMP.Theessentialservicewaterpumpandmotorunitisorientedverticallyinthescreenhouseandsupportedatelevation253.5ft.Theintakeportionofthepumpextendsdownfromthedischaigeheadandpumpbaseadistanceof36.5ft.Thepreviousseismicanalysiswasperformedforequivalentstaticloadsof0.32gactingsimultaneouslyinonehorizontalandtheverticaldirection,Thepump-motorunitislocatedatgrade;therefore,theseismicinputusedinSEPreevaluationwasessentiallytheRegulatoryGuide1.60groundresponsespectrumfor78ofcriticaldamping.Thepumpwasevaluatedforaninertialaccelerationvalueconsideringpeakresponseof0.52ghorizontalaccelerationand0.35gverticalacceleration.Overturningtensileandshearstressesinthepumpbaseanchorboltsweredeterminedaswerestressesattheattachmentoftheintakecolumnpipetothedischargehead.Becausetheintakeportionofthepumpisorientedverticallyasacantileverbeam,thedynamiccharacteristicoftheintakesuctionpipewasdetermined.Theintakesuctionpipewasfoundtohaveafundamentalfrequencyof1.6Hzbasedonaweightdistributionthatincludeswaterintheshaft.Becauseofthisnaturalfrequency,thespectralaccelerationusedwasthepeakofFigure3.7-4,0.52g.3,9-33REV.1312/96 GONNA/UFSARItwasdeterminedthatabraceneededtobeinstalledontheintakecolumnpipe.Withthebrace,thestressesattheboltswouldbe15,700psiintensionand7000psiinshear,whichwouldyieldaminimumfactorofsafetyinshearof2.29forASMEConditionDstresslimitsforanassumedA307boltmaterial.Also,thestressescalculatedattheflangeconnectingthedischargeheadtotheintakecolumnpipewerewellwithinallowablestresses.Thismodificationwasperformedin1984.3.9.2.2.4.2CoMPoNENTCooLINGHEATExcHANGER.Thecomponentcoolingheatexchangerisahorizontalheatexchangerlocatedintheauxiliarybuildingandsupportedbytwosaddlesatelevation281.5ft.Onesaddleisslottedinthelongitudinaldirectiontopermitthermalexpansion.DuringtheSEPreevaluationthepreviousanalysiswasreviewedandindependentevaluationofthedynamicresponsecharacteristicsoftheheatexchangeranditssaddlesupportsystemusingtheresponsespectrafor7SdampingshowninFigure3.7-21wasperformed.Thereviewindicatedthatthesystemwasrelativelyrigidandhadnoresponsefrequenciesbelow33Hz.Thus,safeshutdownearthquakeinputhorizontalsei'smicaccelerationsintheorthogonaldirectionsusedwere0.36gand0'0g.Theseismicstressesinducedinthetubesandshellweredetermined,combinedwithotherapplicableloads,andcomparedtocodeallowables.Thesafetyfactordeterminedfortheheatexchangertubeis33.9andthatfortheshellis11.0.Boththecomponentcoolingheatexchangerandthecomponentcoolingsurgetankaresupportedbyacomplexstructuralsteelframework.Evaluationofthefundamentalfrequenciesofboththeheatexchangerandthesurgetankdidnotconsideranyflexibilityofthestructuralsteelsupport.framing.Itwasassumedthatthedynamiccharacteristicsofthisstructuralsteelframingwereincludedintheresponsespectra.Theanchorboltstresseswerealsodetermined.TheanalysisestablishedafactorofsafetywithrespecttoASMECode-allowablestresslimitsof1.41fortheanchorbolts.Therefore,itwasconcludedthatthecomponentcoolingheatexchangerwillwithstanda0.2gsafeshutdownearthquakewithoutlossofstructuralintegrity.3.9-34REV.1312/96 3~9.2.2.4.3COMPONENTCOOLINGSURGETANK.Thecomponentcoolingsurgetankisahorizontalcomponentlocatedintheauxiliarybuildingandsupportedbytwosaddlesatelevation281.5ft.FortheSEPreevaluationthepreviousanalysiswasreviewed.Inaddition,independentevaluationofthestructuralcharacteristicsofthesurgetankanditssupportsystemusingtheresponsespectrafor78dampingshowninFigure3.7-23wasperformed.Inthetransverse(east-west)direction,thetank-supportsystemwasfoundtoberigid.However,itwasdeterminedthatitwasnotpositivelyanchoredagainstsliding.Asaresult,thetanksaddlesupportsweremodifiedtoprovidepositivelateralrestraintinthelongitudinaldirectioninonesaddleandthermalexpansionmovementontheothersaddle.Theseismicforcesinthetransverse(east-west)directiondevelopedfroma0.75gin-structuralspectralaccelerationwereappliedtothesurgetankandtheresultingtank,saddle,andanchorboltstressesweredetermined.Factorsofsafetyforthetank,saddle,andanchorbolts--loadedseismicallyinthetransverseandverticaldirections--were125.5,57.7,and5.08,respectively.3~9~2~2~4~4DIESEL-GENRATORAIRTANKS~Thediesel-generatorairtanksareorientedverticallyinthediesel-generatorbuildingandsupportedatgradeelevationinarock-supportedstructure.TheseismicinputusedfoztheSEPreevaluationwastheRegulatoryGuide1.60groundresponsespectrumfor7%ofcriticaldamping(Figure3.7-4).Thepreviousanalysistoseismicallyqualifythetanksuseda0.2gsafeshutdownearthquakegroundresponsespectrum.Thetanksaresupportedbyaskirtstructureandthecombinedtank-supportsystemwasfoundto'aveafundamentalfrequencyof33Hz.Therefore,theinputaccelerationusedwas0.2g.Themaximumcalculatedstressintheanchorboltswasapproximately0.28ksiinshear,whichyieldsasafetyfactorof61.3forA307boltmaterial.Theminimumsafetyfactorsinthetankbodyandskirtsupportwere4.43and3968,respectively.3.9-35REV.1312/96 GINNA/UFSAR3.9.2.2.4.5BoRIcAOIDSTQRAGETANK.Theboricacidstoragetankisacolumn-supportedtank.Thetank,itssupportlegs,anditsanchorswerereviewedtodetermineseismicdesignadequacy.Thetank,whichissupportedatelevation271ft,wasevaluatedusingthein-structureresponsespectrashowninFigure3'-24.Thedynamicanalysisconsideredtheeffectiveimpulsiveandconvectiveresponseofthecontainedfluid.Thefundamentalresponsefrequenciesforthetankwerecalculatedtobe17.2Hzfortank-supportsystembendingandsheardeformationunderimpulsiveloading(7%damping)and0.56Hzunderconvectiveloading(0.5$damping).Theanalysisestablishedminimumfactorsofsafetyofapproximately41.7formembranestressinthetank,6.20forcompressivestressesinthetanklegs,and4.65forcompressivestressesintheanchorbolts.3.9.2.2.4.6REFUELINGWATERSToRAGETANK(RWST).Therefuelingwaterstoragetank(RWST)isaverticalvesselthatis81fthightothetopofthecylindricalportionand26.5ftindiameter.Theanchorageconsistsofthirty,2.5-in.diameterA36bolts.ThetankwasoriginallyqualifiedaccordingtoTID7024assumingasafeshutdownearthquakegroundaccelerationof0.2g.Thetank,whichissupportedatthegroundfloor(elevation236ft)oftheauxiliarybuilding,wasreevaluatedforRegulatoryGuide1.60responsespectranormalizedto0.2g.Thedynamicanalysisconsideredtheeffectiveconvectiveandimpulsiveresponseofthecontainedfluidanddeterminedfundamentalresponsefrequenciesforthetank(0.34Hzunderconvectiveloadingwith0.5%damping),and2.3Hzfortankbendingandsheardeformationunderimpulsiveloadingwith7%damping.Thetankwasconsideredtobeflexiblefortheimpulsivemomenteffect.RG&Einvestigatedtheabilityoftherefuelingwaterstoragetank(RWST)towithstanddeadweightandseismicforces(Reference8).Analysisloadsconsistedofthedeadweightofthetankandcontents,andseismicloadsintwohorizontalandtheverticaldirections.TheseismicloadsweredefinedbythesitespecificgroundresponsespectrumforR.E.GinnaasspecifiedbyRegulatoryGuide1.60.Thefullspectrumwasusedforthe3.9-36REV.1312/96 GINNA/UFSARhorizontalanalysis.Twothirdsofthefullspectrumwasusedfortheverticalanalysis.ThedynamicresponseanalysisfollowedtherequirementsofNUREG/CR-1161.Analysisoftheconvective(sloshing)horizontalresponsewasperformedusingtheconventional"rigidtank"assumptions.Tankflexibilityandfluid-structureinteractionwasincorporatedintheanalysisoftheimpulsive(non-sloshing)horizontalresponse.Tankflexibilitywasincorporatedintheverticalresponseanalysis.Adampinglevelof0.5$wasusedfortheconvectivehorizontalresponseanalysis.A78dampingwasusedfoztheimpulsivehorizontalandverticalresponseanalysis.Theacceptancecriteriaconsideredthefollowingprincipalpoints:AnchoraeStresses:Theseincludethestressesinthebolts,brackets,andbracketwelds.AllowableswerecalculatedperASMESectionZIZ,SubarticleNF3300.b.TankWallMaterialStress:Theaxial,hoop,andshearstressesdevelopedinthetankwallwerecomparedtomaterialallowablesperASMESectionZZI,SubarticleNC3800.coTankWallBucklin:Theaxial,hoop,andshearstressesdevelopedinthetankwallwerecomparedtoexperimentallyderivedbucklingcriteria.Theresultsoftheanalysisshowedthatthe'efuelingwaterstoragetank(RWST)isadequatelydesignedtowithstanddeadweightloadsincombinationwiththepostulatedseismicevent.3.9.2.2.4.7Moro'-OpwmaoVM,vEs.lDuringtheSEPreevaluation,calculationsperformedonrandomlyselectedmotor-operatedvalves(2-in.,3-in.,and4-in.diameter)intheGinnaplantdemonstratedthatstresslevelswereinexcessoftheguidelinevalueof10'hstresslevelsofASMEIZI,Class2,ConditionBforactivevalvesandConditionDwhenpressureboundaryintegritywasrequired.ItwasrecommendedthatRG&Eevaluatetheseismicstressesinducedbymotoroperatedvalvesinsupportingpipethatis4in.indiameterandsmallezandshowthatstressesresultingfrommotoroperatoreccentricityarelessthan10%oftheserviceConditionBcode-allowablestresses.3.9-37REV.1312/96 GINNA/UFSARRochesterGasandElectricexplicitlymodeledmotor-operatedvalvesintheas-builtinstallationaspartoftheSeismicPipingUpgradeProgramandeitherfoundthestressestobeacceptableormodifiedthesupports.TheSeismicPipingUpgradeProgramisdiscussedinSections3.7.3.7and3.9.2.1.8.3.9.2.2.4.8STEAMGENERAToRs.Zn1975,agenericstressreportwaswrittenwhichcontainedupdatedanalysesofmostareasofthesteamgeneratorthataresubjecttoexternalloads,i.e.,primarynozzles,feedwaternozzle,steamnozzle,andlowersupportpads.Theupdatedstressreportalsocontainedananalysisofthetubes,swirlvanes,andfeedwaterring.CalculatedstressintensitieswerecomparedwiththeASME1ZXdesignconditionallowablelevelsforanoperating-basisearthquakeandtheemergencyconditionallowablelevelsforasafeshutdownearthquake.AdetailedseismicanalysiswasnotperformedduringtheSEPreevaluation,butacomparisonoftheseismicinputusedintheoriginaldesignofGinnaStationwiththatdeterminedfromthein-structureresponsespectrawasusedasacriterionforqualification.Sincethefundamentalfrequencyofthesteamgeneratorwasfoundtobebelow10Hz,thepeakaccelerationinboththenorth-southandeast-westdirectionsis0.60g(seeFigures3.7-15through3.7-18)andthesquarerootofthesumofthesquaresvaluefortwohorizontalcomponentsis0.85g.Sincetheoriginalhorizontalresponsespectrausedforthedesignofthesteamgeneratorhadaminimumspectralaccelerationof2.0gforthesafeshutdownearthquakecondition,theseismicstressesresultingfromuseoftheGinnareassessmentresponsespectrawouldbelessthanthestressvaluesfromtheoriginalanalysis.Thesteamgeneratorcomponentsweredeterminedadequatebythe1975analysis.3.9.2.2.4~9REAGT0RCooLANTPUMPs~1ntheoriginaldesignofGinnaStation,astaticseismicloadstressanalysiswasperformedforthepumps.Thesafeshutdownearthquakeanalysisused0.8ghorizontallyand0.54gvertically.Thestressesand3.9-38REV.1312/96 GINNA/UFSARdeformationsresultingfromtheseloadswerethencombinedwiththedeadweightandothernormaloperatingloadstodeterminethetotalstressesinthemotor,supportstandcylinder,flangewelds,supportstandbolts,andmainflangebolts.Thisanalysisalsocontainedevaluationsofthepumpsupportfeet,primarynozzles,andcasingforseismicplusnormaloperatingloads.ThestressescalculatedintheseanalyseswerecomparedwithASMEIIIallowables.Adetailedseismicanalysiswasnotp'erformedfortheSEPreevaluation.Instead,acomparisonoftheinputaccelerationwiththatusedintheearlieranalysiswasusedtochecktheadequacyofthereactorcoolantpumpFortheSEPreevaluation,in-structureresponsespectraforthereactorcoolantpumpgiveninFigures3.7-19and3.7-20wereused.Forthepeakspectralaccelerationof0'5gforboththenorth-southandeast-westdirections,thesquarerootofthesumofthesquaresvaluewas0.78g,andtheratioofthisvaluetotheoriginaldesignvalueof0.8gwas0.97'hepumpinputaccelerationwaslessthanthatconsideredinthe1968analysisandthereforethepumpswasconsideredadequatebasedontheoriginalgeneric.analysis.3~9~2.2.4.10PRESSURzzER~Thepressurizerisaverticalcylindricalvesselwithaskirttypesupportattachedtothelowerhead.Thelowerpartoftheskirtterminatesinaboltingflangewhere241.5-in.boltssecurethevesseltoitsfoundation.In1969,agenericseismicanalysisofthepressurizershell,supportskirt,supportskirtflange,andpressurizersupportboltswasperformed.Theweightofthelargestpressurizer(1800ft)wasusedinsteadofthe3actualoperatingweightoftheGinnapressurizer(800ft).Inthesafe3shutdownearthquakeevaluation,accelerationswereappliedstaticallyatthecenterofgravityofthe1800ftmodel:0.48ginthehorizontaldirectionand0.32gintheverticaldirection.ASMEIIIupsetconditionallowablelevelswereusedforsafeshutdownearthquakeloadcases.In1973,amoredetailedevaluationwasperformedofthepressurizerskirtandshell(Ref'erence9).Forthatevaluationtheloadsappliedtothe3.9-39REV.1312/96 GINNA/UFSARskirtwereequivalentto10timestheoperating-basisearthquakeloadsand14timesthesafeshutdownearthquakeloadsusedinthe1969evaluation.Theresultscontainedtheprimarymembraneandbendingstresses.Thepressurizerheaterswerequalifiedgenericallyforthe51SeriesPressurizer(Reference9).Theheatersinthe800-ftpressurizerare3shorterthanthosequalifiedbutareotherwiseidentical.Thequalificationprocedureusedanequivalentstaticloadof37.5gforthesafeshutdownearthquakecondition.Thefundamentalfrequencyoftheheaterrodswasfoundtobegreaterthan33Hz.Thein-structureresponsespectrawereusedintheSEPreevaluationofthepressurizerasshowninFigure3.7-12.Sincethefundamentalfrequencyofthepressurizermaybeaslowas3Hz,peakspectralaccelerationswereused:.O.SSgforthenorth-southdirectionand0.60gfortheeast-westdirection.Thesquarerootofthesumofthesquaresvalueis0.81g,andtheratioofthisvaluetotheoriginaldesignvalueof0.48gis1.7.Basedontheprimarystressresultantsofthe1973analysis,theseismicinputof0.81giswellwithinthedesignlimitspresentedinReference9.3.9.2.2.4.11CoNTROLRQDDRIYEMEcHANIsM.TheresponsespectrafortheSEPreevaluationofthecontrolroddrivemechanismsaregiveninFigures3.7-13and3.7-14.Assumingthefundamentalfrequencyofthedrivemechanismaslessthan12.5Hz,thepeakspectralaccelerationinboththenorth-southandeast-westdirectionswas0.60gandthesquarerootofthesumofthesquaresvaluewas0.85gandthissquarerootofthesumofthesquaresvalueisgreaterthanthedesignvalueof0.8gusedintheoriginalanalysis'snotedintheNRCsafetyevaluationreportonSEPTopicIlI-6(Reference20)theWestinghouseanalysiswasfoundtohaveutilizedcorrectloadingsandthatthestressesarewellwithinacceptablelevels.3.9-40REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBT~~)3.9<1REV.1312/96 GINNA/UFSAR3.9.2.3DynamicResponseAnalysisofReactorInternalsUnderOperationalFlowTransientsandSteady-StateConditions3.9.2.3.1DesinCriteria3.9.2.3.1.1GENIAL.Thecriteriaforacceptabilityisthatthecoreshouldbeeoolableandintactfollowingapiperuptureuptoandincludingadouble-endedruptureofthereactorcoolantsystem.Thisimpliesthatcozecoolingandadequatecozeshutdownmustbeensured.Consequently,thelimitationsestablishedontheinternalsareconcernedprincipallywiththemaximumallowabledeflectionsand/orstabilityoftheparts.3.9.2.3.1.2CRITICALINTERNALS~UerBarrelTheupperbarreldeformationhasthefollowinglimits.Toensurereactortripandtoavoiddisturbingthezodclustercontrolassemblyguidestructure,thebarrelshouldnotinterferewithanyguidetubes.Thisconditionrequiresastabilitychecktoassurethatthebarrelwillnotbuckleundertheaccidentloads.Theminimumdistancebetweenguidetubeandbarrelis10in.Thisfigureisadoptedasthelimitbeyondwhichproperfunctioncannolongerbeguaranteed.Anallowabledeflectionof5in.hasbeenselected.RodClusterControlAssemblGuideTubesTherodclustercontrolassemblyguidetubesintheuppercozesupportpackagehasthefollowingallowablelimits.Themaximumhorizontaltransientdeflectionasabeamshallnotexceed1in.overthelengthoftheguidetube.Thenolossoffunctionlimitis1.5in.Testsonguidetubesshowthatwhenthetransversedeflectionoftheguidetubebecomessignificant,thecrosssectionoftherodclustercontrolassemblyguidetubechanges.Amaximumallowabletransienttransversedeflectionof1.0in.hasbeenestablishedfortheblow-downaccident.Beamdeflectionsabovetheselimitsproducecrosssectionchangeswithincreasingdelayin3.9-42REV.1312/96 GINNA/UFSARscramtimeuntilthecontrolrodwillnotscramduetointerferencebetweentherodsandtheguide.Withamaximumtransienttransversedeflectionof1.5in.,thecrosssectiondistortionwillnotexceed0.072in.afterloadremoval.Thiscrosssectiondistortionallowscontrolrodinsertion.Foramaximumtransienttransversedeflectionof1.0in.,acrosssectiondistortionnotinexcessof0.035in.isanticipated.FuelAssembliesThelimitationsfozthiscasearerelatedtothestabilityofthethimblesattheupperend.Duringtheaccident,thefuelassemblywillhaveaverticaldisplacementandcouldimpacttheupperandlowerpackagessubjectingthecomponentstodynamicstresses.Theupperendofthethimblesshallnotexperiencestressesabovethebucklingcompressivestressesbecauseanybucklingoftheupperendofthethimbleswilldistorttheguidelinesandcouldaffectthefallofthecontrolrod.UerPackaeThemaximumallowablelocaldeformationoftheuppercoreplatewhereaguidetubeislocatedis0.100in.Thisdeformationwillcausetheplatetocontacttheguidetubesincetheclearancebetweenplateandguidetubeis0.100in.Thislimitwillpreventtheguidetubesfrombeingputincompression.Inordertomaintainthestraightnessoftheguidetubeamaximumallowabletotaldeflectionof1in.fortheuppersupportplateanddeepbeamhasbeenestablished.Thecorrespondingnolossoffunctiondeflectionisabove2in.3.9.2~3.1.3ALLowABLESTREssCRzTERIA.Theallowablestresscriteriafallintotwocategoriesdependentuponthenatureofthestressstate:membraneorbending.Adirectstateof~stress(membrane)hasauniformstressdistributionoverthecrosssection.Theallowable(maximum)membraneordirectstressistakentobeequaltothestresscorrespondingto0.2oftheuniformmaterialstrainoitheyieldstrength,whicheverishigher.Forunizzadiated304stainless3.9A3REV.1312/96 GINNA/UI'SARsteelatoperatingtemperaturethestresscorrespondingto20Koftheuniformstrainis:(Sm)allowable=39,500psiForirradiatedmaterials,thelimitstressishigher.Forabendingstateofstress,thestrainislinearlydistributedoveracross-section.Theaveragestrainvalueis,therefore,onehalf'oftheouterfiberstrainwherethestressisamaximum.Thus,byrequiringtheaveragestraintosatisfyanallowablecriterionsimilartothatforthedirectstateofstress,theouterfiberstrainmaybe0.4timestheuniformstrain.Themaximumallowableouterfiberbendingstressisthentakentobeequaltothestresscorrespondingto40'hoftheuniformstrainortheyieldstrength,whicheverishigher.Forunirradiated304stainlesssteelatoperatingtemperature,weobtainfromthestressstraincurve:(Sb)allowable=50,000psiForcombinationsofmembraneandbendingstresses,themaximumallowablestressistakentobeequaltothestresscorrespondingtothemaximumouterfiberstrainnotinexcessof40'buniformstrainandaveragestrainnotinexcessof20%uniformstrain.3.9.2.3.2BlowdownandForceAnalsis3.9.2.3.2~1COMPUTERPROGRAM.BLODWN-1isadigitalcomputerprogramthatwasoriginallyusedforcalculationofpressure,velocity,andforcetransientsinreactorprimarycoolantsystemsduringthesubcooledportionofblowdowncausedbyaloss-of-coolantaccident.Duringthisphaseoftheaccident,largeamplituderarefactionwavesarepropagatedthroughthesystemwiththevelocityofsoundcausinglargedifferencesinlocalpressures.Aslocalpressuresdropbelowsaturation,causingformationofsteam,theamplitudesandvelocitiesofthesewavesdrasticallydecrease.Therefore,thelargestforcesacrossthereactor3.944REV.1312/96 GINNA/UPSARinternalsduetowavepropagationoccurduringthesubcooledportionofblowdown.3.9.2.3.2.2BLowDoNNMoDEL.TheanalyticmodelusedinBLODWN-1isthesameasthatoftheWHAMcomputerprogramdevelopedbyKaiserEngineersfortheLOFTprogram(Reference11).Theprogramutilizestheexactsolutionstothetimedependent,onedimensional,compressiblefluidflowequationsinwhichthevelocityofpropagationofacousticwavesgreatlyexceedsthefluidvelocity.Analyticsolutionsfortheinteriorpointsofconduitsofuniformflow-passageareaarewellknown(Ref'erences12and13).Theypredicttheexistenceofcompressionandrarefactionwaveswhichtravelthroughthefluidwiththevelocityofsound.Fluidpressuresandvelocitiesatanygivenpointinspaceareproportionaltothelocalsumsanddifferences,respectively,ofthemagnitudeofthewaveswhichtravelinoppositedirections.Solutionsattheboundariesoftheseuniformflowareaconduits(whichforconveniencewillbereferredtoas"legs")areobtainedthroughapplicationofthemassandenergyconservationlaws.Thelatter,inthecaseofozifices,bends,andsuddenchangesofflowarea,accountsforhydrauliclosses.Hydrauliclossesduetofrictionazerepresentedbyequivalentorifices.Theboundaryconditionatthelocationofthesystemruptureisintheformofadischargeflowequation.Thedischargeflowequationincorporatesthebestavailablefittoknowndata(References14and15)onmetastableflowofthatfluidthroughshortpipesand/ororifices,dependingonthepostulatedrupturetype.Atime-dependentruptureflowareaisspecifiedandapproximatedbyasequenceofstepwisechanges.Eachstepincreaseintheexitflowareageneratesararefactionwaveasthecompressedfluidescapesthroughtherupture.Atrainofwavesisthussequentiallygeneratedandsentupstream.Whenthewavesencouterabruptchangesofflowpassageareaor3.9-45REV.1312/96 GINNA/UFSARbranchestoother"legs,"theyarebothtransmittedthroughandreflectedfrom,suchjunctionswithmodifiedamplitudes.Whenreflectedcompressionwavesreachtherupturelocationtheyaffectthedischargeflowandgeneratenewwavesbecauseofthechangeinthelocalpressurejustupstreamoftherupture.Apaztfromcalculationsinvolvingboundaryconditions,BLODWN-1assignsexactsolutionstolocalfluidpressuresandvelocitiesthroughoutthesystem.Therefore,itdoesnotsufferfromthepropagationoftruncationerrorsandfromnumericalinstabilitiesassociatedwiththemethodsofanalysisinwhichthetimedependentdifferentialequationsrepresentingtheconservationlawsaresolvedsimultaneouslybyfinitedifferenceapproximations.BLODWN-1utilizesthetechniqueofbranchingonaone-dimensionalflowsystemtoapproximatelytheactualthree-dimensionalconditions.Thisisaccomplishedbyusingfictitiousteesatalljunctionsoftheone-dimensionalnetworkoflegs.Forexample,iflocalhistoriesoffluidpressureonbothsidesofthethermalshieldandthecorebarrel,asfunctionsofdistancefromtheinletnozzleinboththeaxialandthecircumferentialdirectionaredesired,ahydraulicnetworkofcircumferentialandverticallegsisusedtorepresentthisannularflowregion.3.9.2.3~2~3CoMPARIsoNWITHExPERIMENTALDATA.BLODWN-1isanevolutionoftheprogramWHAMtReferenceZl).Theonlychangesmadetoprovidegraphicaloutputandstorageofresultsandincorporateadetailedtreatmentofadouble-endedpiperupture.ThecomparisonofWHAMresultswithtestsobtainedbyPhillipsPetroleumCompanyduringtheirsemi-scaleblowdownexperimentsisshowninFigures3.9-5and3.9-6whicharereproducedfromReference16.Sincenochangeshavebeenmadeintheanalysis,thiscomparisonisequallyvalidforBLODWN-1.3.9<6REV.1312/96 GINNA/UFSAR3.9.2.3.2.4FoRcEMoDEL.BLODWN-1evaluatesthepressureandvelocitytransientsforamaximumof4000locationsthroughoutthesystem.ThesepressureandvelocitytransientsarestoredasapermanenttapefileandaremadeavailabletotheprogramFORCEwhichutilizesadetailedgeometricdescriptioninevaluatingtheloadingsonthereactorinternals.3.9.2.3.3VerticalExcitationofReactor1nternalsbBlowdownForces3.9.2.3~3.1STRUGTURALMoDELANDMETHoDoiANALYsIs.Theresponseofreactorinternalscomponentsduetoanexcitationproducedbycompleteseveranceofaprimarylooppipewasanalyzed.Itwasassumedthatadouble-endedpipebreakoccurredinaveryshortperiodoftimeandtherapiddropofpressureatthebreakproducedadisturbancewhichpropagatedalongtheprimaryloopandexcitedtheinternalstzucture.Theinternalstructurewassimulatedbyamulti-masssystemconnectedwithspringsanddashpotsrepresentingtheviscousdampingduetostructuralandimpactlosses.Thegapsbetweenvariouscomponents,aswellascoulombtypeoffriction,wasalsoincorporatedintotheoverallmodel.Sincethefuelelementsinthefuelassembliesarekeptinpositionbyfrictionforcesoriginatingfromthepzeloadedfuelassemblygridfingers,anyslidingthatoccursbetweenthefuelrodsandassemblywasconsideredascoulombtypeoffriction.Aseriesofmechanicalmodelsoflocalstructureswasdevelopedandanalyzedsothatcertainbasicnonlinearphenomenapreviouslymentionedcouldbeunderstood.Usingtheresultsofthesemodels,afinaleleven-massmodelwasadoptedtorepresenttheinternalsstructureunderverticalexcitation.Themodelingwasconductedinsuchawaythatuniformmasseswerelumpedintoeasilyidentifiablediscretemasseswhileelasticelementswererepresentedbysprings.Withinthefuelassemblies,thefuelelementsareheldinplacebyfrictionalcontactwiththegridspringfingers.Coulombdampingwasprovidedintheanalysistorepresentthisfrictionalrestraint.Theanalyticalmodelwasalsoprovidedwithviscoustermstorepresentthestructuraldampingoftheelasticelements.3.9<7REV.1312/96 Restrictionswereplacedonthedisplacementamplitudesbyspecifyingthefreetravelavailabletothedynamicmasses.Thedisplacementsweretestedduringthesolutionoftheproblemtoseeiftheavailabletravelhadbeenachieved.Whenthelimitoftravelhadbeenattained,stopswereengagedtoarrestfurthermotionofthedynamicmasses.Contactwiththesnubbersresultsinsomedampingofthemotionofthemodel.Duringtheassemblyofthereactor,bolt-upoftheclosureheadpzesetthespringloadingofthecorebarrelandthespringloadingonthefuelassemblies.Sincethefuelassembliesinthemodelweresegregatedintotwogroups,twopreloadvalueswereprovidedintheanalysis.Theformulationofthetransientmotionresponseproblemanddigitalcomputerprogrammingwereperformed.Theeffectsofanearthquakeverticalexcitationarealsoincorporatedintotheprogram.Inordertoprogramthemulti-masssystem,theappropriatespringrates,weights,andforcingfunctionsforthevariousmassesweredetermined.Thespringratesandweightsofthereactorcomponentswerecalculatedseparatelyforeachplant.TheforcingfunctionsforthemasseswereobtainedfromtheFORCEprogramwhichcalculatesthetransientforcesonreactorinternalsduringblowdownusingtransientpressuresandfluidvelocities,Fortheblowdownanalysistheforcingfunctionswereapplieddirectlytothevariousinternalmasses.Fortheearthquakeanalysisofthereactorinternals,theforcingfunction,whichwassimulatedearthquakeresponse,wasappliedtothemulti-masssystematthegroundconnections(thereactorvessel).Therefore,theexternalexcitationwastransmittedtotheinternalsthroughthespringsatthegroundconnections.3.9.2.3.3.2Rssvr.vs.Analysiswasperformedforlmsec,5msec,and20msecruptureopeningtimesandforhot-legandcold-legbreaks.Theresponseofthestructuretothistypeofexcitationindicatedthattheverticalmotionwasirregularwithpeaksofveryshortduration.Thedeflectionsandmotion3.9-48REV.1312/96 GINNA/UFSARofsomeofthereactorcomponentswerelimitedbythesolidheightofspringsaswas'hecaseofthehold-downspringlocatedabovethebarrelflange.Theinternalsbehavedasanonlinearsystemduringtheverticaloscillationsproducedbytheblowdownforces.Thenonlinearitieswereduetothecoulombfrictionalforcesbetweengridsandrods,andtogapsbetweencomponentscausingdiscontinuitiesinfozcetransmission.Thefrequencyresponsewasconsequentlyafunctionnotonlyoftheexcitingfrequenciesinthesystem,butalsototheamplitude.Differentbreakconditionsexciteddifferentfrequenciesinthesystem.Thissituationcouldbeseenclearlywhentheresponseunderblowdownforceswascomparedwiththeoneduetoverticalseismicacceleration.Underseismicexcitation,thesystembehavedpracticallylinearlybecausethecomponentmotionwasnotsufficienttocauseclosingofthevariousgapsinthestructureorslippageinthefuelrods.Undercertainblowdownexcitationconditions,thecoremovedupward,touchedthecoreplate,andfelldownonthelowerstructurecausingoscillationsinallthecomponents.Duringthetimethattheoscillationsoccurredanddependingonitsinitialposition,thefuelrodsslidonthefuelassembly.Theresponseshowedthatthecasecouldberepresentedastwolargevibratingmasses(thecoreandthebarrel)andtherestofthesystemoscillatingwithrespecttothebarrelandthecore.Thelowerstructureisoscillatingatanaveragefrequencyof110Hzwithrespecttothebarrelandthecore.Theupperflange,withrespecttothebarrel,oscillatesatafrequencyof65Hz.Thesamestructureunderseismicexcitationshowedanaturalfrequencyofapproximately25Hz;inthiscase,thedifferencecanbeexplainedbecauseafterahot-legbreaktheupperplenumofthereactorcompressestheflangedownwardincreasingthestiffnessofthestructure.Thelowerstructureshowsnaturalfrequenciesofapproximately110Hz.Theeffectofdampingwasalsoconsideredanditcouldbeseenthatthehigherfrequenciesdisappearrapidlyaftereachimpactorslippage.3.9-49REV.1312/96 GINNA/UFSARTheresultsofthecomputerprogramgavenotonlythefrequencyresponseofthecomponents,butalsothemaximumimpactforceanddeflections.Fromtheseresults,thestresseswezecomputedusingthestandardstrengthofmaterialformulas.Theimpactstresseswereobtainedinananalogousmannerusingthemaximumforcesseenbythevariousstructuresduringimpact.ThemaximumstressesforvariouscomponentsaregiveninTables3.9-13and3.9-14.3.9~2.3~3.3UPPERPAGKAGEANDGUIDETUBEsThemostseverecase,representedbyahot-legbreak,showedthecozeliftingandcontactingtheuppercozeplateafterdisplacing0.36in.Thelocaldeformationoftheuppercoreplatebetweenthesupportcolumnswasoftheorderof0.009in.andwascausedbycontactbetweenfuelassembliesandtheuppercoreplatestructure.Thedeflectionoftheuppersupportcolumnswas0.053in.Therefore,thetotalrelativedeflectionbetweenuppercoreplateandguidetubewas0.062in.Thisdeflectionisinsufficienttocausetheplatetocontacttheguidetubes,sincetheclearancebetweenplateandguidetubeis0.100in.3.9.2.3.3.4FUELASSEMBLYTHIMBLES~Whenthecoremovedverticallytouchingtheupperandlowerstructures,thethimblesweresubjectedtoimpactstresses.Thesestresseswereobtainedfromthemaximumdynamicimpactforcesonthefuelassemblies.Themaximumdynamicloadappliedtothethimblesbythefuelelementswas1340lbperthimble,correspondingtoanaxialstressof40,400psi.Thebucklingstresswascalculatedforthefirstandsecondgridspansfromthetop.Sincethefirstgridspanlengthwasveryshort,thebucklingstressinthatsectionwasverylargeandthereforethebucklingstressusedwasthatforthesecondspan.Thecriticalbucklingstress(secondspan)was54,300psiandtheallowablestresswas45,000psi(type304stainlesssteelcold-workedwiththeyieldstressof63,000psiatoperatingtemperature),thecross.-sectionaldistortionwillnotexceedtheallowablelimits.Thereforeitwasfoundthatthecapabilityofcontrolrodinsertionwasnotjeopardized.3.9-50REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLAIR%)3.9-51REV.1312/96 GINNA/UFSAR3.9.2.3.4TransverseBarrelExcitationbBlowdownForces3.9.2.3'.1GENERAL.Followingaloss-of-coolantaccident,thereactorcozebarrelissubjectedtohydraulicpressuretransientsthatloadthecorebarreltransversely.Ingeneral,themagnitudeandtime-dependenceofthehydraulicpressuretransientsarefunctionsofthenatureoftheblowdownaccident.Thesemaybeclassifiedaccordingtobreaklocation:(1)hotlegand(2)coldleg.Threepipeopeningtimeshavebeenconsideredintheanalysis:1msec,5msec,and20msec.Foragivenblowdownaccident(i.e.,givenbreaklocationandpipeopeningtime)thefluidstatecanbesubcooledortwo-phase.Thepressuretransientsduringsubcooledblowdownaremuchlargerthanthoseduringtwo-phaseblowdownsincethepressurewavesaredampedalmostentirelyduringthetwo-phasestateofblowdown.ThepressuretransientswerecomputedusingacombinationofBLODNNandFORCEcomputerprogramsneglectingtheeffectoftheboundarystructuralflexibilityoftheflowregimes.Thisrepresentedconservativepredictionsofpressuretransientmagnitudessincewallflexibilityledtoreducedpressures.3~9~2.3.4.2HOT-LEGBREAK.Hot-legblowdownproducesararefactionwavewhichpropagatesthroughthereactorexitnozzleintotheintezioroftheupperbarrel.Thiscauseslowerpressureinsidetheuppercorebarrelthanintheouterannulus,'esultinginimpulsivecompressiveloadingoftheuppercorebarrel.Consequently,dynamicinstability(buckling)oftheuppercorebarrelisthecriticalresponseresultingfromthehot-legblowdown.Thecompressionoftheuppercorebarrelwascalculatedtobe450psi.Thiscompressionwasassumedtobedistributeduniformlybothcircumferentiallyandaxially.Themaximumcompressiveforceswerelessfozthe5msecand20msecbreakopeningtimes.3.9-52REV.1312/96 GINNA/UIiSARIngeneral,dynamicbucklingofcylindricalshellsmayoccurinoneofthreeresponsemodesdependentuponthepulsetimeoftheloading,T,andtheelasticpropertiesoftheshell.Thethreepossiblemodesareimpulsive,quasi-impulsive,andquasi-staticbuckling.AdescriptionofeachphenomenonplusthecriteriafordeterminingwhichbucklingmodemayoccurisgiveninReference17.Forthe1msecbreakopeningtimethepulsetimewasfoundtobe43msec(T=.043sec).Thepulsetime,T,wassufficientlylongrelativetothestructuralresponsetimeoftheupperbarreltoconcludethatthebucklingmodeisquasi-static.Thus,thecriticalcompressivepressurewaveisgivenbyPczit=0.92E(r/L)(h/r)=2612psi5/2whereristhemeanradiusoftheupperbarrel,Lthelength,andhthethickness.Comparingthepeakcompressivewaveof450psitothecriticalquasi-staticbucklingpressureof2612psi,itwasfoundthatbucklingoftheuppercorewillnotoccur.Asummaryofthecompressivepressures,thecompressivehoopstresses,andcriticalpressureisshowninTable3.9-15.Twoconservativeassumptionswereutilizedinperformingtheanalysisofinstabilityoftheuppercozebarrel.Thestiffeningeffectofthefluidenvironmentwasneglectedandthebarrelwastreatedassimplysupported,givingrisetolowercriticalpressuresbyvirtueoftheinstabilityproblembeinganeigenvalueproblemwheretheeigenvaluesweredirectlyproportionaltothecriticalpressurewave.Thus,anyadditionalconstraintintheformofmorerestrictiveboundaryconditionswouldgiverisetogreatereigenvaluesand,consequently,largerbucklingpressures.Thedynamicresponseoftheuppercorebarrelwasdeterminedbycomparingthepulsetime(T=43msec)tothepeziodofaxisymmetricnaturalvibrationoftheuppercorebarrel.Sincethedecaylengthoftheuppercorebarrelis3.9-53REV.1312/96 GINNA/UFSAR(3.9-5)thatis,abouthalfthelengthoftheupperbarrel,43.88in.Theuppercorebarrelwastreatedasaninfinitelylongcylindricalshell.Thusthenaturalfrequencywasf=(1/2nR)xE/p=535Hzandtheperiodwasv=1/535=1.86msec.Foratriangularpulseload,theamplificationfactorapproachedunityasT/v-+oo'hustheresponsewasstatic.Themaximumcorebarreldeflectionandcompressivestresswerefoundtobemgax=PR/Eh=0~031in.2ajax=-Pr/h=14,110psiAsshowninTable3.9-15,thesevaluesarewellwithintheallowablelimits.3.9~2.3.4.3COLD-LEGBREAK.Cold-legruptureischaracterizedbyararefactionwavepropagatingintothereactorvesselfromtherupturedinletnozzle.Thiscausesaninitialinternalpressureloadingonthecorebarrelwhichwastakentobeuniformlydistributedaxiallyanddistributedasthecoscircumferentiallyoveronehalfthebarrelsurfacewhere0=0isattherupturednozzle.Theinitialbarrelresponseconsistedofaxisymmetric,beamandringmodesoftheshellduetotheFouriercomponentsq=0,1,2ofthepressuredistribution.Oncetherarefactionwaveenvelopedthebarrel,thebarrelresponsewasduetoaxisymmetricloadinginvolvingonlymembranestressesinthebarrel.Thefollowingassumptionshavebeenmadeinordertoconservativelypredictthemaximumstressesanddeflectionsofthecorebarrel.3.9-54REV.1312/96 GINNA/UFSARa~Theupperbarrelistreatedassimplysupportedbetweentheupperflangeandlowercorebarrelweldmentinordertoconservativelypredictcorebarreldeflections.b.Thestiffeningeffectofthefluidenvironmentisneglected.ceThepressuretransientshavebeencomputedbytzeatingtheflowboundariesasrigid.Thisleadstocalculatedpressuresinexcessofactualpressures.d.Thestressesintheupperflangesectionandreducedweldsectionsofthebarrelhavebeencompiledbasedonthemaximumcalculatedendslopesandthesimplysupportedendsanddeterminingtheaxiallysymmetricmomentrequiredtoreturntheslopestozero.3.9.2.3.4.4INITIALREsPoNsE.TheinitialtransientresponseoftheuppercorebarrelwasfoundbyintegratingVlasov'sequationsforcylindricalshellsyieldingthesolutionintheformofaneigenfunctionexpansionfozthemoments,shears,deflections,andmembranefocus.Numericalresultswereobtainedbytruncatingtheseriesandsummingthetermsusingacomputerprogram.ThemaximumstressesanddeflectionsaresummarizedinTable3.9-16.Thetimedependenceofthepressureloadingistakenasarampimpulseofrisetime,t.ThepeakpressuresandrisetimesarealsoshowninTable3.9-16.3~9~2~3~4~5SEcoNDARYBARRELREsPoNsE~Foreachoftherupturetimes,thepressureloadingwasfoundtobeaxisymmetric10msecfollowingtheinitialimpulse.Inspectionofthepressureoscillationsonthecorebarrelduringthesecondaryresponsetimeshowedthattherewerenofrequenciessufficientlyclosetothenaturalfrequenciesof535Hztoproducedynamicamplification.ThustheresponsewasstaticandthemaximumstressandradialdeflectionwereQNax=PR/Eh=0.069in.2cHoop<ax=PR/h=31,357Psiforanaxisymmetricpressureof1000psiforthe1msecblowdowntime.3.9-55REV.1312/96 GINNA/UIiSAR3.9.2.3.4.6CoNcLvszoNs.Theresultsofbothhot-andcold-legblowdownaccidentsareshowninTables3.9-15and3.9-16.Ztwasconcludedthatunderhot-legblowdown,thecorebarrelundergoesaninwardradialdeflectionof31milsmaximumanddoesnotbuckle.Theradialdeflectionwassufficientlysmallastoprecludeanypossibilityofinterferencewiththeguidetubes.Alsothestressesweresmallenoughsuchthatthebarreliswithintheallowablestresscriteria.Cold-legblowdownledtononaxisymmetricdistortionofthebarrelwithamaximumvalueof69milsattherupturedinletnozzle.Theradialdeflectionsatthesafetynozzleswereoutwardatbothnozzlelocationsclosinganyremaininggapbetweenthenozzlesandvesselandthusensuredfunctionofthesafetycoolantinjectionsystem.Tangentialandaxialdeflectionsofthebarrelwerenegligiblesincetheywereanorderofmagnitudelessthantheradialdeflections.Thestressesinthecorebarrelandtheupperflangeandlowerweldsectionswerewithintheallowablelimits.3.9.2.3.5TransverseGuideTubeExcitationbBlowdownForces3.9.2.3.5.1GENERAL.Sincethedynamicloadsontheguidetubesaremoresevereforaloss-of-coolantaccidentcausedbyahot-legrupturethanforacold-legrupture,onlythehot-legblowdownaccidentwasanalyzed.Theguidetubesclosesttotherupturedoutletlegaresubjecttothegreatestblowdownforces,withtheforcesdecreasingonguidetubeslocatedatgreaterdistancesfromtherupturednozzle.FromahydraulicanalysisofthefluidforcesactingontheguidetubesnearesttheoutletnozzlesduringMODES1and2,thenetforceduetoalinearlydistributeddragforcewasfoundtobeF=1/2CDAV=357lb.TheoutletflowvelocityduringMODES1and2wasVnormal=48fps.3.9-56REV.1312/96 GINNA/UFSARAsaresultofthe1msechot-legrupture,theoutletmassflux(m=7V)wasfoundtoincreasefrom2060lb/ft-secforMODES1and2to8060lb/ft-sec.ThedragforceontheguidetubenearesttherupturednozzlewasfoundbyaratiooftheblowdownoutletvelocitySLOWDOWN=8060/42.7=188.8fpstothenormaloutletvelocityof48fpswhensquaringthisratiotodeterminetheblowdownforceSLOWDOWN=(188.8/48)x357=5523lb=W3.9.2.3.5.2REsPoHSEOFGUIDETUBE.Adetailedstructuralanalysisoftheguidetubeswasperformedinordertoestablishtheequivalentcross-sectionpropertiesandelasticendsupportconditions.Themodelwasverifiedbyanexperimentaltestusingaconcentratedforceappliedatthetransitionplate.Theexperimentalresultsalsoproducedaloaddeflectioncurveintotheplasticrangefortheguidetubesaswellasdeterminingdeflectioncriteriatoensurerodclustercontrolinsertion.Theanalyticalmodelwasusedtoestablishacorrelationbetweenthenethydraulicloadingforthelinearlydistributeddragforceandaconcentratedforceappliedatthetransitionplaterequiringthedeflectionofthetransitionplatetobethesameforbothloadings.XtwasfoundFc=0.59W=3259lbThenaturalfrequencyoftheguidetubewasdeterminedexperimentallytorbe43HzwhichcorrespondstoaperiodofT=23.3msec.Whilethehydraulicdragforcesontheguidetubewereappliedoverafinitetimeinterval,itwasconservativelyassumedthatthedynamicamplificationfactoris2.0resultingfromanimpulseloadingintheformofastepfunction.Thevalueof2.0wasconservativealsobyvirtueofthefactthatifyieldingoccurredtheamplificationfactorwaslessthan'2.0which3.9-57REV.1312/96 GINNA/UFSARisvalidforelasticdeflections.ThusthemaximumdynamicequivalentconcentratedforcewasFlax=2~0(3259)=6520lbFromtheexperimentalloaddeflectioncurve,themaximumpermanentguidetubedeflectionwascalculatedtobe0.31in.,whichcorrespondstoamaximumdeflectionof0.75in.duringthetransient.ConclusionsFromtheexperimentalstudyofrodclustercontrolinsertionasafunctionofguidetubedeflectionitwasconcludedthat,underthemostseverepostulatedblowdownaccident,rodclustercontrolinsertionwasensuzedandtherewouldbenolossoffunctionoftherodclustercontrolguidetubes.3.9.2.3.5.3DEscRIPTIQNoFSTREssLocATIoN.ThestressvaluesgiveninTables3.9-15and3.9-16azebaseduponthemaximumforceexperiencedduringtheblowdownexcitation.Themaximumstressesforvariouscomponentsingeneraldonotoccursimultaneously.Adescriptionofthelocationofthevariousstressesareasfollows:a~Uercorelate-Bendingstressescausedbylocaldeformationofuppercoreplatebetweenuppersupportcolumns.b.Uersuortcolumn-Directstressincolumnsduetoaxialload.Stresscalculatedforminimumcross-sectionalarea.c>>Fuelassembltonozzle-Bendingstressintheligamentsoftheadaptorplatemaximumstressoccursinthesectionadjacenttothesideplateofthetopnozzle.d.regionbetweenthebarrelflangeandtheuppercorebarrel.Thestressesarebothaxialandbending.Lowersuortstructure-Maximumbendingstressatthecenterhole.Radiusequal8in.Corebarrel-Axial(direct)stresseslocatedinthereducedcross-sectionalareabetweenupperandlowercozebarrel.3.9-58REV.1312/96 GINNA/UFSARLowercorelate-Bendingstressescausedbylocaldeformationoflowercoreplatebetweenshroudtubes.Fuelassemblbottomnozzle-Maximumbendingstressoccursinthebarsofthebottomnozzleinthesectionadjacenttothesideplates.3,9-59REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.940REV.1312/96 GINNA/UFSAR3.9.2'AsymmetricLoss-of-CoolantAccidentLoadingAnalysisThecapabilityofthereactorvesselinternalstructurestomaintaintheirfunctionalintegrityintheeventofamajorloss-of-coolantaccidentwasevaluatedduringtheresolutionoftheUnresolvedSafetyIssueA-2,AsymmetricLoading.AnalysisperformedforlimitedsizebreaksreportedinWCAP9748(Reference18),showedthattheappropriatesystemsandcomponentswillmaintaintheirfunctionalcapabilitytoensureasafeplantshutdownwithaeoolablecoregeometry.Thesystemsandcomponentsexaminedwerethereactorvesselassemblyincludinginternals,fuel,controlroddrivemechanisms,vesselandcomponentsupports,reactorcoolantlooppiping,andattachedemergencycorecoolingpiping.3.9.2.5SeismicEvaluationofReactorVesselInternals3.9.2.5.1AnalsisProcedureThesestructureswereanalyzedassumingthattheoperatingbasisearthquakeandthesafeshutdownearthquake(0.20g)haveequalhorizontalandverticalcomponents.Dynamicmethodsofanalysiswereusedaccordingtothefollowing,withthecoreandthereactorinternalsbeinganalyzedaspartofacomplexreactorstructurebecauseoftheinterconnectionoftheirmassesandstiffness.Thegeneralprocedureforthedynamicanalysiscanbesummarizedasfollows:A.Thereactorstructurefromthegroundtothecorewasreducedtoacontinuousstructuralnetworkconsistingofelementswithvariablestiffness,massdistribution,andcrosssection;concentratedmasses,intermediatesupports,andlocalreleases(i.e.,connections,asbetweenfuelassembliesandcoreplatesthatareassumedtobehinges).3.941REV.1312/96 GINNA/UFSARB.Thecanlessfuelassemblymechanicaldesignusedinthecoreiscomposedoffuelrodsarrangedinasquarearray,withspring-clipgridslocatingandholdingthefuelrodsintheprecisearrayrequired.Effectivestiffnessandnaturalfrequencyvaluesweredeterminedtoestablishthezesponseofafuelassemblytoadynamicexcitation.Animportantcharacteristicofthesestructuresisthattheypresentaveryhighinternaldampingproducedbytheslippageoftherodsonthefingergrids.Thefactthattheirownfrequencyisrelativelylowwithrespecttothesupportingstructureensuredthataresonancephenomenonwiththesupportwillnotoccur.Thisconditionwasconfirmedbythedynamicanalysis.C.Thelowernaturaltransversefrequenciesandnormalmodeswereobtainedforthiscomplexstructuretakingintoaccountsheardeformationsandusingnumericalmethods.D.Themaximumresponseofthestructureunderhorizontalearthquakeexcitationwasobtainedfromthesuperpositionofthenormalmodesresponses(withtheconservativeassumptionthatallthemodeswereinphaseandthatallthepeaksoccursimultaneously)andusingresponsecurvesnormalizedfor0.08gand0.20gmaximumgroundaccelerationsusing1%damping.E.Afterobtainingthemaximumpossibleresponseunderearthquakeexcitation,thestzessvaluesatthecriticalstructurepointswerecomputed.F.Fortheverticalearthquakesthesamegeneralmethodwasemployedbutusinganequivalentonedegreeoffreedomsystem.3.9.2.5.2AnalsisResultsStressesanddeflectionsofreactorinternalsandcoreweredeterminedusingthemethodexplainedabove.Theverticalandhorizontalcomponentsofthegroundaccelerationswereconsideredseparately.Thestressdistributionforeachcasewascalculatedafterobtainingthemaximumresponseofthestructure.Thesestresseswerethencombinedwithstressesofotherorigin(pressurestresses,thermalstresses,etc.)toobtainmaximumstresseswhichmustbewithinthelimitsgivenbytheallowablestresscriteria.Themaximumstzesseswere,therefore,conservativelydeterminedonwhichevercombinationofsimultaneousconditionsyieldthehigheststresscondition.Themaximumdeflectionsunderseismicaccelerationswerecomputedandcombinedwithdeflectionsfromotherloadings.Thesedeflectionsweresufficientlysmalltopermit,normaloperationanddonotnecessarilycoincideintimewithmaximumstresses.3.9-62REV.1312/96 Stressesofearthquakeoriginwereconsideredasprimarystresses.Forthereactorinternalstheprimarymembranestressesinducedbyearthquakeloadings(0.08gand0.20gmaximumgroundaccelerations)combinedwithinducedprimarymembranestressesfromotherloadingconditions,asdescribedabove,remainedwithinthedesignstressintensityvaluesestablishedbytheASMEBoilerandPressureVesselCode,SectionIII.PrimarybendingandsecondarystresseswhichincludedthermalstresseswerealsolimitedfollowingthecriteriaandmethodsprescribedbytheASMECode,SectionIII.Forthefuelassemblies,stresslevelsaresuchthatthefuelassemblyfunctionalintegrityismaintainedundertheactionoftheimposedloadsincludingseismiceffects.Tables3.9-17through3.9-19summarizetheprimaryprincipalstressresultsatvariouselevationsinthereactor.Table3.9-20presentsthemaximumprimarystressintensities.Thesevaluesareseentobeconsiderablybelowtheallowablevalueof24,000ps'able3.9-21summarizestheprimaryplussecondaryprincipalstressresultsatvariouselevationsinthereactor.Table3.9-22presentsthemaximumprimaryplussecondarystressintensities.Thesevaluesareseentobeconsiderablybelowtheallowablevalueof48,000psia3.943REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.9-64REV.1312/96 GINNA/UFSAR3.9.3COMPONENTSUPPORTSANDCORESUPPORTSTRUCTURES3.9.3.1LoadingCombinations,DesignTransients,andStressLimitsTheloadingsanddesigntransientsusedarethesameasthoseusedforthepiping,equipment,andcomponentanalysesgiveninSection3.9.1.ThebasesfortheoriginaldesignofGinnaStationareasfollows:Allpiping,components,andsupportingstructuresofthereactorcoolantsystemweredesignedasSeismicCategoryIequipment,i.e.,theyarecapableofwithstanding:(1)Withincodeallowable,workingstressesforthedesignseismicgroundacceleration.(2)Themaximumpotentialseismicgroundaccelerationactinginthehorizontalandverticaldirectionsimultaneouslywithnolossfunction.Theloadings,loadcombinations,andstzesslimitsusedintheoriginaldesignandduringtheSystematicEvaluationProgram(SEP)reevaluationaregiveninTable3.9-1andTable3.9-11,respectively.3.9.3.2ComponentSupportsThereactorcoolantsystemcomponentsandsupportsweredesignedasSeismicCategoryI.3.9.3.2.1ReactorVesselThevesselissupportedonsixindividualpedestals.Eachpedestalrestsuponplateswhichareinturnsupporteduponthecircularconcreteprimaryshieldwall.Thereactorvesselhassixsupportscomprisingfoursupportpadslocatedoneonthebottomofeachoftheprimarynozzlesandtwogussetsupportpads,onecentered1.5degreescounterclockwisefromthe90-degreeaxisandtheothercentered1.5degreescounterclockwisefromthe270-degreeaxis.Eachsupportbearsonasupportshoe,whichisfastenedtothesupportstructure.Thesupportshoeisastructuralmemberthattransmitsthesupportloadstothesupportingstructure.Thesupportshoeisdesignedtorestrain3.9-65REV.1312/96 GINNA/UFSARvertical,lateral,androtationalmovementofthereactorvessel,butallowsforthermalgrowthbypermittingradialslidingateachsupport,onbearingplates.3.9.3.2.2SteamGeneratorsEachsteamgeneratorissupportedonastructuralsystemconsistingoffourverticalsupportcolumnsandtwo(upperandlower)supportsystems.Theverticalcolumns,whichazepin-connectedtothesteamgeneratorsupportfeet,serveasverticalrestraintforoperatingweights,piperupture,andseismicconsiderationswhilepermittingmovementinthehorizontalplane.Thesupportsystems,byusingacombinationofstops,guides,andsnubbers,preventrotationandexcessivemovementofthesteamgeneratorinanyhorizontalplane.Thelowersuppoztsystemconsistsofanarrangementofstructuralsteelshapesincombinationwithsteelplatesthatareinahorizontalplane.Thesystemisdesignedtorestrainexcessivehorizontalmovementofthesteamgeneratorandalsotoaccommodatethermalgrowth.Theuppersupportsystemconsistsofthreesetsofrigidstrutsandonesetofhydraulicsnubbezs(seeFigure3.9-6a).Thesnubbersfunctionundertensionorcompressionloadswhilethestrutsarecompressiononlyelements.Thestrutswereinstalledsothatthereazeminimalgapsbetweenthestrutandthecorrespondingsupportelementonthesteamgenerator.Thesteamgeneratorsupportstructureswereoriginallydesignedforloadsresultingfromrupturesofthemainsteampipingandprimarycoolantpiping.Theseloadsexceededtheseismicloads.Theuppersupportringswereconstrainedbyeighthydraulicsnubbers,apairineachofthefourlateraldirections.GenericLetter87-11eliminatedtherequirementtoconsiderthedynamiceffectsofarbitraryintermediatepiperupturesandremovedthepostulatedmainsteamlineruptureinthefirsthorizontalrunofmainsteamlineasthecontrollingdesignloadforthesteamgeneratorupperlateralsupportsystem.RG&Eappliedtheleak-before-breaktheorytoremovetheprimarycoolantlineruptureasthenexthighestdesignloadforthesupportsystem.Theremovalofthesetwocontrollingloadspermittedthereplacementofsixofthehydraulicsnubbersforeachsteamgeneratorwiththerigidbumpersinthe3.9-66REV.1312/96 GINNA/UFSARuppersupportsystem.ThenewsupportsystemwasevaluatedfortheloadcombinationsandallowablestresslimitsdefinedinTable3.9-23.3.9.3.2.3ReactorCoolantPumsEachreactorcoolantpumpissupportedbyastructuralsystemconsistingofthreeverticalcolumnsandasystemofstops.Theverticalcolumnsareboltedtothepumpsupportfeetandpermitmovementinthehorizontalplanetoaccommodatereactorcoolantpipeexpansion.Horizontalrestraintisaccomplishedbyacombinationoftierodsandstopswhichlimithorizontalmovementforpiperuptureandseismiceffects.Supportstructuresofthesteamgeneratorsandreactorcoolantpumpcomponentsweredesignedforloadsresultingfromrupturesoftheprimarycoolantpipingandmainsteampiping.Equivalentstaticseismicforcesequaltothecomponentweight,acceleratedbythepeakresponseoftheapplicableseismicresponsespectra,appliedthroughthecomponentcenterofgravity,wereevaluatedagainst,thecorrespondingpiperuptureloads.Forboththesteamgeneratorsandreactorcoolantpumps,theresultingseismicforcesweresmallerthanthepiperuptureloads;therefore,supportsweredesignedforpiperuptureloads.3.9.3.2.4PressurizerThepressurizerissupportedonaheavyconcreteslabspanningbetweentheconcreteshieldwallsforthesteamgeneratorcompartment.Thepressurizerisabottomskirtsupportedvessel.3.9.3.2.5ReactorCoolantPiinThereactorcoolantpipinglayoutisdesignedonthebasisofprovidingfloatingsupportsforthesteamgeneratorandreactorcoolantpumpinordertopermitthethermalexpansionfromthefixedoranchoredreactorvessel.Acomprehensivethermalanalysiswasperformedtoensurethatstressesinducedbylinearthermalexpansionarewithincodelimits.3.9<7REV.1312/96 GINNA/UFSAR3.9.3.3PipeSupports3.9.3.3.1OriinalAnalsisThepipestressanalysisperformedduringtheoriginaldesignofGinnaStationalsogavethepipesupportreactions.Theresultsoftheanalysisindicatedthatthemarginbetweentheultimatesupportcapacityandthesupportreactionsfor0.2ggroundaccelerationwassufficienttohandlebuildingamplification.FortheSeismicCategoryIpiping2in.nominalsizeandunder,thesupportreactionswerewellbelowthecapacityofthesupports(Reference4).Fozpipesfallinginthiscategory,theminimumhangerroddiameterwasfoundtobe1/2in.foroutdoorinstallationsand3/8in.forindoorinstallations.The3/8-in.rodshadanultimatecapacityoftheorderof3700lb.Thehorizontalsupportshadanultimatecapacity,inshear,oftheorderof1100lb.Fortheheaviestpipeinthiscategory,thesupportreactionswereoftheorderof100lb,i.e.,wellbelowtheultimatecapacityofthesupports.AfewpiperunshadlateralsupportspacingtwotothreetimesthatsuggestedbyUSASB31.1forverticalsupports.Thesupportreactionsfortheheaviestpipeofthiscategorywereoftheorderof200lbandwellwithintheultimatecapacityofthesuppozts.3.9.3'.2IEBulletinRegnalsisSubsequenttotheoriginaldesignoftheGinnaStationpiping,severaldynamicanalysesofthepipingsystemwereperformedthatincludedthelaterdevelopedloadingrequirementsandregulatorychanges.Theanalysesperformedfortheresidualheatremovalloop,themainsteamlineloop,safetyinjectionsystempiping,andcharginglineinresponsetoIEBulletin79-07aredescribedinSection3.9.2.1.Thepipesupportreactionscalculatedfromtheseanalysesusingas-builtconditionsandthedesignloadsfoztheresidualheatremovalloop,mainsteamlineloop,andcharginglineazegiveninTable3.9-24throughTable3.9-26.Resultsindicatetheadequacyofthesepipesupports.3.9-68REV.1312/96 GINNA/UFSAR3.9.3.3.3SeismicPiinUradePzoram3.9.3.3.3.1APPLICABLESUPPORTS.SupportsforSeismicCategoryIpipingsystemslistedinSection3.7.3.7.1wereincludedintheSeismicPipingUpgradeProgram.3.9.3.3~3.2LOADCOMBINATIONSANDSTRESSLIMITS.Thepipingsystemsuppoztswereevaluatedforthefollowingpipingsystemimposedloadsandsupportinertialeffects:a.Normalcondition:deadweightandmaximumoperatingthermal.b.Desincondition:deadweight,maximumoperatingthermal,andoperating-basisearthquake.ceSafeshutdownearthuakecondition:deadweight,normaloperatingthermal,andsafeshutdownearthquake.TheloadingcombinationsandassociatedstresslimitsaregiveninTable3.9-27.TheallowablestresscriteriawereinaccordancewithSubsectionNFoftheASMESectionIIICode,1974.FaultedconditionstressallowablesfromAppendixFoftheASMESectionIIICodeandRegulatoryGuide1.124wereusedtoanalyzethesupportsforthesafeshutdownearthquakecondition.Thevarianceinallowablecriteziabetweenthepipingandsupportswillnot,causeover-orunder-designstooccur,asthesatisfactionoftheoperating-basisearthquakeconditiontotheworkingstresslimitswillinallcasesbemoststringent.Thecomponentsupportembedmentswereevaluatedusingcurrentanalyticaltechniquesinaccordancewiththeanchorboltmanufacturer'sTechnicalInformationandACI-349,AppendixB.TheexpansionanchoragesmustmeettherequirementssetforthinIEBulletin79-02.3.9.3.3.3.3STRUCTURALREQUIREMENTS.ForanchorsthatseparateSeismicCategoryIpipingsystemsfromnonseismicpiping,theloadsfromtheSeismicCategoryIsideweredoubled.Theeffectsoffrictiononsupportswasconsidezedforpipeshavingthermalmovementsgreaterthan0.1in.Thevalueofwas0.35andwasusedconservativelytoincreasesupportloadsbutnotreduceloads.3.9-69REV.1312/96 GINNA/UFSARThestiffnessofthesupportswasconsideredinthepipingsystemmodels.Thelocalsubsystemstiffnessofallpipingandequipmentsupportswasdeterminedconsideringthepipeozequipmentsupportsalongwiththestructuralsteeland/orconcreteeffect.Thelocalizedsubsystemstiffnessofallpipingandequipmentsupportedbyreinforced-concretemembers(includingconcretepedestals)wasconsideredwhensignificant.Thestiffnesswasbasedonthefaceofconcreteinterface.Rigidsupportsweremodeledinaccordancewiththefollowingcriteria:NominalPipeSize(in.)2-1/2to4KminEU.gid(lb/in)1x105x101x10KminRigid(in.-1b/xad)1x105x101x10Useoftheaboveguidelineseliminatesexcessivesupportstiffnesscalculationeffort,whileyieldingsatisfactorysupportdisplacementresults(i.e.,thermaldeflections<0.02in.,rotations<0.0002radians)."Commonpipesupports"refertothosesupportstowhichtwoormorepipesareattachedinsuchawaythatsignificantcouplingoccursbetweenthepipes.Whenallattachedpipesarethesamesizeandthedistancestoadjacentsupportsaresimilar,thelocalsubsystemstiffnessisbasedonthedeflectionsresultingfromanequalloadactingatallsupportpoints.Whendifferentsizepipesareattached,orifthedistancestoadjacentsupportsarenotsimilar,astiffnessmatrixrelatingtheforcesanddisplacementsatthepointsofattachmentstooneanotherwasprovidedtothepipinganalystfozuseinuncouplingthepipingsystems.Hydraulicseismicsupports(snubbers)generallylockupatanexcitationfrequencyofapproximately1Hz,withapipingdisplacementof0.05in.Mechanicalsnubbersactivateinafrequencyrangeof1to6Hzwithasimilarpipingdisplacementof0.05in.Aspipingsystemfrequenciesseldomexistbelowthisrange,seismicsupportsweremodeledasactiveduringallseismicevents.Supportswereconsideredactivestaticallyinanygivendirectionprovidedthesupportgapinthatdirectiondoesnotexceed0.125in.This0.125in.toleranceisessentiallyconstructionvariance,whichdoesnotalter3.9-70REV.1312/96 GINNA/UFSARthedesignedfunctionofthesupport.Supportswithgapsgreaterthan0.125in.wereincorporatedasfollows.Systemanalysisfirstassumedthatthesupportwasnotactive;pipingdisplacementsresultingfromthisrunwerethenusedtoascertainthevalidityofthisassumption.Zfincorrect,reanalysisincorporatedanactivesupportstatically.Theinertialeffectsofthesupportsownmasswasconsidered.Theadditionalinertialloadsweredeterminedbasedonareviewofthesupportflexibility,supportmass,andapplicableresponsespectra.AllsupportswereanalyzedandmodifiedifnecessarytobeincompliancewithIEBulletin79-02criteria.Anyexistingsupportwithanchorboltssubjecttotensionloadsandwhichwerepreviouslyonlysubjecttocompressionorshearloadswereinspectedortestedtoconfirminstallationadequacy.Theeffectsofnewsupportloadsgeneratedbythepipingreanalysisupontheexistingstructureswereevaluated.PipingsupportsweremodeledasdescribedinSection3.7.3.7.10.3.9-71REV.1312/96 GINNAfUIiSAR3.9.3.3.4BasePlateFlexibilitIngeneral,calculationofanchorboltloadsforpipesupportsatGinnaStationassumedrigidbaseplates.Thisincludedboththeshelltypeconcreteexpansionanchorboltsusedintheoriginalplantdesignandthewedgetypewhichweregenerallyusedforplantmodifications.Inordertoassessthesignificanceofrigidversusflexibleplateassumptions,arepresentativesampleoftypicalpipesupportbaseplateswerereanalyzed.Thereanalysiswasperformedassumingboththebaseplateandboltsaselasticandusingseparateproceduresformomentandaxialloadings.Itwasnotpossibletoreanalyze,usingflexibleplateassumptions,thebaseplatesonallpipesupportsinthetestingandreplacementprogrampriortoinitiation.Therefore,arepresentativesampleof10typicalpipesupportbaseplateshasbeenanalyzed,usingrigidplateassumptions,forbothexistingandreplacementdesigns.TheresultsoftheseanalysesareshowninTable3.9-28.Inallcases,boltcapacityhasbeenincreasedinthereplacementdesigns.Intwocases,additionalanalyses,usingflexibleplateassumptions,wereperformed.Theseanalysesshowedminimumfactorsofsafetyof5.00and5.35,xespectively,foxthereplacementdesigns.Thedesignfactorofsafetyforthewedgetypeanchorboltsusedinthereplacementdesignswas4.00.Therefore,itwasdeterminedthatthedesignboltcapacitiesprovidesufficientmarginsofsafetytoaccountforanyloadincreasesduetoflexibility.Ingeneral,pipesupportsatGinnaStationwithbaseplatesusingconcreteexpansionanchorboltsareofsimilardesign,TheyaretypicalofthetypeusedinSeismicCategoryIsystemsthroughouttheplant.Thecapacityofconcreteexpansionanchorboltstowithstandcyclicloads(seismicaswellashighcyclicoperatingloads)wereevaluatedinfastfluxtestfacilitytests.ThetestresultsindicatedthatA.Theexpansionanchorssuccessfullywithstoodtwomillioncyclesoflong-termfatigueloadingatamaximumintensityof0.2ofthestaticultimatecapacity.Whenthemaximumloadintensitywassteadilyincreasedbeyondthatvalueandcycledfor2000timesateachloadstep,theobservedfailureloadwasaboutthesameasthestaticultimatecapacity.3.9-72REV.1312/96 GINNA/UFSARB.Thedynamicloadcapacitiesoftheexpansionanchorsundersimulatedseismicloadingwereaboutthesameasthecorrespondingstaticultimatecapacities,Basedontheabovedata,itcouldbeconcludedthatthedesignrequirementsforpreloadedconcreteexpansionanchorboltsundercyclicloadsarethesameasforthestaticloads.3.9.3.3.5Snubbers3.9.3.3.5.1DEsIGNLoADs.Themechanicalandhydraulicsuppressors(snubbers)installedonSeismicCategoryIpipingsystemsandthesteamgeneratorsatGinnaStationweredesignedtorestrainseismicloads.Hydraulicsnubbersinstalledonpressurizersafetyvalvedischargepipingweredesignedtorestrainhydraulicloadsresultingfromsafetyvalvedischarges.Theloadswhichthesnubbershadtomeetwerecalculatedbyseismicorthermalhydraulicanalysis,asappropriate.Standardavailablesnubberswerepurchasedwithratedloadsgreaterthanorequaltothecalculatedloads.Areviewofthevarioussnubbersinstalledonthesesystemsandcomponentsshowedthattheywerecapableoffunctioningwithloadsatleast1.33timestheirratedloadsandwerestructurallydesignedforloadsatleast2.0timestheirratedloads.Thehydraulicsnubbersweredesignedtooperatewithaninternalfluidpressureof3000psiandtolimitfluidpressureto4000psibymeansofaspring-loadedreliefvalve.(Reference4)Whenthecompressiveloadexceeded14.7kipsand28kipsforthe11kipsand21kipssnubbers,respectively,thespring-loadedreliefvalvesopened.Ifthisloadwassustained,thesnubberwouldeventuallygetsolid.Themechanicalultimatecapabilitywasaboutfourtimesthedesigncapacity,i.e.,84kipsand44kipsfor21kipsand11kipssnubbezs,respectively.Therefore,theseismicloadsassociatedwith0.2ggroundaccelerationwerefoundnottocausemechanicalfailureofthesesnubbers.Theonlypotentialeffectcouldbesomemovementofthesnubberzodbecauseoftemporarylossoffluid.However,becauseofthedynamicnatureoftheseismicloadsandtheinherentflexibilityofthesupportedpipes,the3.9-73REV.1312/96 GINNA/UFSARpotentiallimitedsnubbermovementwouldnotinducestressesinthefeedwaterandsteamlinesabovetolerablelimits.Areviewwasmadeofthecapabilityofthevarioussnubberstolockupuponapplicationoftheirdesignloads.SincethebasicseismicanalysismethodutilizedatthetimeGinnaStationwasdesignedwasastatic,lumpedmassapproach,specificdynamicrequirementswerenotestablishedbytheseismicanalysis.However,aconservativeanalysisoftheminimumvelocitiesthatcouldbeexperiencedduringaseismicevent,basedonafrequencyof33Hzandagroundaccelerationof0.08g,givesaresultofapproximately60in./minute.HydraulicsnubbersinstalledatGinnaStationarecapableoflockingupwithvelocitiesnogreaterthan10in./minute.3.9.3.3.5.2SvRvEzLuecsPRQGRAM.AsurveillanceprogramandaninserviceinspectionprogramforsnubbershavebeeninstitutedatGinnaStation.ThecurrentrequirementsforinspectionandfunctionaltestingofsnubbersareincludedintheXnserviceInspectionProgram.3.9-74REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLEBBY%.)3.9-75REV.1312/96 GINNA/UFSAR3.9.4CONTROLRODDR1VESYSTEMS3.9.4.1Description3.9.4.1.1GeneralThecontrolroddrivemechanismsareusedforwithdrawalandinsertionofthecontrolrodsintothereactoxcoreandtoprovidesufficientholdingpowerforstationarysupport.Fasttotalinsertion(reactortrip)isobtainedbysimplyremovingtheelectricalpowerallowingtherodstofallbygravity.Thecompletedrivemechanism,showninFigures3.9-7and3.9-8,consistsoftheinternal(latch)assembly,thepressurevessel,theoperatingcoilstack,thedriveshaftassembly,andthepositionindicatorcoilstack.Eachassemblyisanindependentunitwhichcanbedismantledozassembledseparately.Eachdriveisthreadedintoanadaptorontopofthereactorpressurevesselandisconnectedtothecontrolrod(directlybelow)bymeansofagrooveddriveshaft.Theuppexsectionofthedriveshaftissuspendedfromtheworkingcomponentsofthedrivemechanism.Thedriveshaftandcontrolrodremainconnectedduringreactoroperation,includingtrippingoftherods.Maincoolantfillsthepressurecontainingpartsofthedrivemechanism.Allworkingcomponentsandtheshaftareimmersedinthemaincoolant.Threemagneticcoils,whichformaremovableelectricalunitandsurroundthezoddrivepressurehousing,inducemagneticfluxthroughthehousingwalltooperatetheworkingcomponents.Theymovetwosetsoflatcheswhichliftorlowerthegrooveddriveshaft.Thethreeoperatingcoilsaresequencedbysolid-stateswitchesforthecontrolroddriveassemblies.Thesequencingofthemagnetsproducesstepmotionoverthe144in.ofnormalcontrolrodtravel.Themechanismdevelopsaliftingforceappzoximatelytwotimesthestaticliftingload.Therefore,extraliftcapacityisavailablefozovercomingmechanicalfrictionbetweenthemovingandthestationaryparts.Gzavity3.9-76REV.1312/96 GINNA/UIiSARprovidesthedriveforceforrodinsertionandtheweightofthewholerodassemblyisavailabletoovercomeanyresistance.Amulticonductorcableconnectsthemechanismoperatingcoilstothe125-Vdcpowersupply.Thepowersupplyincludesthenecessaryswitchgeartoprovidepowertoeachcoilinthepropersequence.In1996,theNRCissuedNRCBulletin96-01(Beference26)toalertlicenseestoproblemsencounteredduringeventsinwhichcontrolrodsfailedtocompletelyinsertuponthescramsignalandtohavelicenseesassesscontrolrodoperabilityattheirfacilities.RG&E'sresponsetoIEB96-01references27through30)addressedtrainingperformed'inrelationtotheissues,operabilitydeterminationsmade,justificationfornotperformingroddroptestingandgatheringrecoildataattheendofCycle25,andfutureplans,andtransmittedcoremapinfozmationandcontrolroddragtestingresults.Inaddition,RG&Estatedthatbasedonareviewofthezoddragtestingdata,bothwestinghouseandRG&EconcludedthattherewasnoconcernforrodclustercontrolassemblyinsertionanomaliesatburnupstestedforGinna.3.9.4.1.2LatchAssemblThelatchassemblycontainstheworkingcomponentswhichwithdrawandinsertthedriveshaftandattachedcontrolrod.Itislocatedwithinthepressurehousingandconsistsofthepolepiecesforthreeelectromagnets.Theyactuatetwosetsoflatcheswhichengagethegroovedsectionofthedriveshaft.Theuppersetoflatchesmoveupordowntoraiseoflowerthedriverodby5/8in.Thelowersetoflatcheshave1/32-in.axialmovementtoshifttheweightofthecontrolrodfromtheuppertothelowerlatches.3.9.4.1.3PressureVesselThepressurevesselconsistsofthepressurehousingandrodtravelhousing.Thepressurehousingisthelowerportionofthevesselandcontainsthelatchassembly.Thezodtravelhousingistheupperportionofthevessel.Itprovidesspaceforthedriveshaftduringitsupwardmovementasthecontrolrodiswithdrawnfromthecore.3.9-77REV.1312/96 GINNA/UFSAR3.9.4.l.40eratinCoilStackTheoperatingcoilstackisanindependentunitwhichisinstalledonthedrivemechanismbyslidingitovertheoutsideofthepressurehousing.Itrestsonapressurehousingflangewithoutanymechanicalattachmentandisremovedandinstalledwhilethereactorispressurized.Theoperatingcoils(A,B,andC)aremadeofroundcopperwirewhichisinsulatedwithadoublelayeroffilament-typeglassyarn.3'.4.1.5DriveShaftAssemblThemainfunctionofthedriveshaftistoconnectthecontrolrodtothemechanismlatches.Groovesfozengagementandliftingbythelatchesazelocatedthroughoutthe144in.ofcontxolrodtravel.Thegroovesarespaced5/8in.aparttocoincidewiththemechanismsteplengthandhave45degreeanglesides.Thedriveshaftisattachedtothecontrolrodbythecoupling.Thecouplinghastwoflexiblearmswhichengagethegroovesinthespiderassembly.A1/4-in.diameterdisconnectrodrunsdowntheinsideofthedriveshaft.ItutilizesalockingbuttonatitslowerendtolockthecouplingandcontrolrodeDuringplantoperation,thedriveshaftassemblyremainsconnectedtothecontrolrodatalltimes.Itcanbeattachedandremovedfromthecontrolrodonlywhenthereactorvesselheadisremoved.3.9.4.1.6PositionIndicatorCoilStackThepositionindicatorcoilstackslidesovertherodtravelhousingsectionofthepressurevessel.Itdetectsdrivezodpositionbymeansofdiscretecylindricallywoundcoilsthataxespacedat7.5in.(12step)intervalsalongthezodtravel(144in.).3.9.4.2DesignLoads,StressLimits,andAllowableDeformationThemechanismsazedesignedtoopezateinwaterat650'Fand2485psig.Thetemperatureatthemechanismheadadaptorwillbemuchlessthan650'Fbecauseitislocatedinaregionwherethereislimitedflowofwater3.9-78REV.1312/96 GINNA/UFSARfromthereactorcoze,whilethepressureisthesameasinthereactorpressurevesselsThedesignoperatingtemperatureofthecoilsis232'C.Coiltemperaturecanbedeterminedbyresistancemeasurement.Forcedaircoolingalongtheoutsideofthecoilstackmaintainsacoiltemperatureofapproximately200'C.3.9.4.3ControlRodDriveMechanismHousingMechanicalFailureEvaluationAnevaluationofthepossibilityofdamagetoadjacentcontrolroddrivemechanismhousingsintheeventofacircumferentialorlongitudinalfailureofarodhousinglocatedonthevesselheadispresented.3.9.4.3.1HousinDescritionThecontrolroddrivemechanismschematicisshowninFigure3.9-8.Theoperatingcoilstackassemblyofthismechanismhasa10.8in.by10.8in.crosssectionanda39.875in.length.Thepositionindicatorcoilstackassembly(notshowninthefigure)islocatedabovetheoperatingcoilstackassembly.ltsurroundstherodtravelhousingovernearlyitsentirelength.Thezodtravelhousingoutsidediameteris3.8in.andthepositionindicatorcoilstackassemblyinsideandoutsidediametersare4.0in.and7.0in.,respectively.Thisassemblyconsistsofa1/8-in.thickstainlesssteeltubesurroundedbyacontinuousstackofcopperwirecoils.Thisassemblyisheldtogetherbytwoendplates(thetopendplateissquare),anoutersleeve,andfouraxialtierods.3.9.4.3.2EffectsofRodTravelHousinLonitudinalFailuresShouldalongitudinalfailureoftherodtravelhousingoccur,theregionofthestainlesssteeltubeoppositethebreakwouldbestressedbythereactorcoolantpressureof2250psia.Themostprobableleakagepathwouldbeprovidedbytheradialdeformationofthepositionindicatorcoilassembly,resultinginthegrowthoftheaxialflowpassagesbetweentherodtravelhousingandthestainlesssteeltube.Aradialfreewaterjetisnotexpectedtooccurbecauseofthesmallclearancebetweenthestainlesssteeltubeandtherodtravelhousing,andtheconsiderableresistanceofthecombinationofthestainlesssteeltubeandthepositionindicatorcoilstointernal3.9-79REV.1312/96 GINNA/UFSARpressure.Calculationsbasedonthemechanicalpropertiesofstainlesssteelandcopperatreactoroperatingtemperatureshowthataninternalpressureofatleast4000psiawouldbenecessaryforthecombinationofthestainlesssteeltubeandthecoilstorupture.Therefore,thecombinationofstainlesssteeltubeandcoppercoilsstackismorethanadequatetopreventformationofaradialjetfollowingacontrolrodhousingsplitwhichensurestheintegrityoftheadjacentrodhousings.3.9.4.3.3EffectofRodTravelHousinCircumferentialFailuresIfcircumferentialfailureofarodtravelhousingshouldoccur,thebroken-offsectionofthehousingwouldbeejectedverticallybecausethedrivingforceisverticalandthepositionindicatorcoilstackassemblyandthedriveshaftwouldtendtoguidethebroken-offpieceupwardsduringitstravel.Travelislimitedtolessthan2ftbythemissileshield,therebylimitingtheprojectileacceleration.Whentheprojectilereachesthemissileshield,itwouldpartiallypenetratetheshieldanddissipateitskineticenergy.Thewaterjetfromthebreakwouldpushthebroken-offpieceagainstthemissileshield.Ifthebroken-offpiecewereshortenoughtoclearthebreakwhenfullyejected,itcouldreboundafterimpactwiththemissileshield.Thetopendplatesofthepositionindicatorcoilstackassemblieswouldpreventthebrokenpiecefromdirectlyhittingtherodtravelhousingofaseconddrivemechanism.Evenifadirecthitbythereboundingpieceweretooccur,thelowkineticenergyofthereboundingprojectilewouldnotbeexpectedtocausesignificantdamage.3'.4'.4SummarTheconsiderationsgivenaboveleadtotheconclusionthatfailureofacontrolrodhousingduetoeitherlongitudinalorcircumferentialcrackingwouldnotcausedamagetoadjacenthousingsthatwouldincreasetheseverityoftheinitialaccident.3.9-80REV.1312/96 3.9.5REACTORPRESSUREVESSELINTERNALS3.9.5.1DesignArrangementsThereactorpressurevesselinternalsazeshowninFigures3.9-9and3.9-10.Theinternals,consistingoftheupperandlowercoresupportstructure,aredesignedtosupport,align,andguidethecorecomponents,directthecoolantflowtoandfromthecorecomponents,andtosupportandguidethein-coreinstrumentation.Thecomponentsofthereactorinternalsaredividedintothreepartsconsistingofthelowercoresupportstructure(includingtheentirecorebarrelandthermalshield),theuppercoresupportstructure,andthein-coreinstrumentationsupportstructure.3.9.5.1.1LowerCoreSuortStructure3.9.5.1.1.1SUPPQRTSTRUOTUREAssEMBLY~Themajorcontainmentandsupportmemberofthereactorinternalsisthelowercoresupportstructure.Thissupportstructureassemblyconsistsofthecorebarrel,thecozebaffle,thelowercoreplateandsupportcolumns,thethermalshield,theintermediatediffuserplate,andthebottomsupportplatewhichisweldedtothecozebarrel.Allthemajormaterialforthisstructureistype304stainlesssteel.Thecozesupportstructureissupportedatitsupperflangefromaledgeinthezeactorvesselheadflangeanditslowerendisrestrainedinitstransversemovementbyaradialsupportsystemattachedtothevesselwall.Withinthecorebarrelazeaxialbaffleandformerplateswhichareattachedtothecorebarrelwallandformtheenclosureperipheryoftheassembledcore.Thelowercoreplateispositionedatthebottomlevelofthecozebelowthebaffleplatesandprovidessupportandorientationforthefuelassemblies.3~9.5~1~1.2LoNERCoREPLATE.Thelowercoreplateisa1.5-in.-thickmemberthroughwhichthenecessaryflowdistributorholesfozeachfuelassemblyaremachined.Fuelassembly3.9-81REV.1312/96 GINNA/UFSARlocatingpins(twofozeachassembly)arealsoinsertedintothisplate.Columnsareplacedbetweenthisplateandthebottomsupportplateofthecorebarrelinordertoprovidestiffnesstothisplateandtransmitthecozeloadtothebottomsupportplate.Intermediatebetweenthesupportplateandlowercoresupportplateispositionedaperforatedplatetodiffuseuniformlythecoolantflowingintothecore.3.9,5.1.1.3THERMO,SHIELD.Thethermalshieldisasolid,relativelythick(3.56in.)cylinderthat,issupportedfromthecorebarrelatboththetopandbottomend.Theupperendoftheshieldisr'igidlyconnectedtothecorebarrelatsixequallyspacedpointsthroughmountingpadsprojectingfromthecorebarrel.Thisconnectionisdesignedtopreventrelativemotionbetweentheshieldandbarrelinboththeradialandaxialdirection.Toprovideforadifferenceinaxialelongationbetweentheshieldandcorebarrelresultingfromthetemperaturedistributionatoperationconditions,thelowerconnectionisdesignedtoallowaxialmovementbetweenthetwomembersbutrestricttheradialmovement.Thisisaccomplishedbymeansofsixflexiblestrapconnectionsbetweentheshieldandbarrel.Theserelativelythinstrapsazesufficientlyflexibletowithstandtheaxialdisplacementbetweentheshieldatcorebarrelbuthavesufficientwidthandcross-sectionareatorestricttheradialmotion.Arigidconnectionisusedattheupperendoftheshieldtoobtaintheinherentstabilityofsuspendingaheavymassfromthetopandalsobecausefieldandmodeltestshaveindicatedthatthemaximumdisturbingforcesoccurattheupperend.Responseofthethermalshieldtothedesigndynamicloadingwasdeterminedforbothringandbeammodevibration.Theresultingforceandmomentreactionswereusedindeterminingthedesignrequirementsoftheupperandlowerconnections.Thedesigndynamicloadingusedwasconsiderablygreaterthananyexpectedloading,basedonmeasurementsofactualpressurefluctuationsduringhot3.9-82REV.1312/96 GINNA/UFSARfunctionaltestsandalsofrommodeltests.Thetotalstresswasobtainedbycombiningthethermalstresses,resultingfromaxialandradialelongation,withtheanticipateddynamicstresses.Irradiationbasketsinwhichmaterialssamplescanbeinsertedandirradiatedduringreactoroperationareattachedtothethermalshield.Theirradiationcapsulebasketsupportsareweldedtothethermalshield.Thereisnoextensionofthissupportabovethethermalshieldaswasdoneintheolderdesigns.Thus,thebaskethasbeenremovedfromthehighflowdisturbancezone.Theweldedattachmenttotheshieldextendsthefulllengthofthesupportexceptforsmallinterruptionsabout1in.long.Thistypeofattachmenthasanextremelyhighnaturalfrequency.Thespecimensareheldinpositionwithinthebasketsbyastopatthe~bottomandaslottedcylindricalspringatthetopwhichfitsagainstareliefinthe-basket.Thespecimendoesnotextendthroughthetopofthebasketandthusisprotectedbythebasketfromtheflow.3~9~5.1.1~4CooLANTFLowPAssAGEs.Thelowercozesupportstructureandthecorebarrelservetoprovidepassagewaysandcontrolforthecoolantflow.Inletcoolantflowfromthevesselinletnozzlesproceedsdowntheannulusbetweenthecorebarrelandthevesselwall,flowsonbothsidesofthethermalshield,andthenintoaplenumatthebottomofthevessel.Itthenturnsandflowsupthroughthelowersupportplate,passesthroughtheintermediatediffuserplateandthenthroughthelowercoreplate.Theflowholesinthediffuserplateandthelowercoreplatearearrangedtogiveaveryuniformentranceflowdistributiontothecore.Afterpassingthroughthecore,thecoolantenterstheareaoftheuppersupportstructureandthenflows,generallyradially,tothecorebarreloutletnozzlesanddirectlythroughthevesseloutletnozzles.Asmallamountofwateralsoflowsbetweenthebaffleplatesandcorebarreltoprovideadditionalcoolingofthebarrel.Similarly,asmallamountoftheenteringflowisdirectedintothevesselheadplenumandexitsthroughthevesseloutputnozzles.3.9-83REV.1312/96 GINNA/UFSAR3~9.5.1.1.5SUPPORTANDALIGNMENTARRANGEMENTS.Verticaldownwardloadsfromweight,fuelassemblypreload,controlroddynamicloading,andearthquakeaccelerationarecarriedbythelowercozeplate,paztiallyintothelowercoreplatesupportflangeonthebarrelshellandpartiallythroughthelowersupportcolumnstothebottomsupportplate.Fromtheretheloadsarecarriedthroughthecorebarrelshelltothecorebarrelflangesupportedbythevesselheadflange.Transverseloadsfromearthquakeacceleration,coolantcrossflow,andvibrationazecarriedbythecorebarrelshelltobesharedbythelowerradialsupporttothevesselheadflange.Transverseaccelerationofthefuelassembliesistransmittedtothecorebarrelshellbydirectconnectionofthelowercoresupportplatetothebarrelshell,bydirectconnectionofthelowercoresupportplatetothebarrelwall,andbyaradialsupporttypeconnectionoftheuppercoreplatetoslab-sidedpinspressedintothecorebarrel.Themainradialsupportsystemofthecorebarrelisaccomplishedbykeyandkeywayjointstothereactorvesselwall.Atequallyspacedpointsaroundthecircumference,anInconelblockisweldedtothevesselI.D.AnotherInconelblockisboltedtoeachoftheseblocks,andhasakeywaygeometry.Oppositeeachoftheseisakeywhichisattachedtotheinternals.Atassembly,astheinternalsareloweredintothevessel,thekeysengagethekeywaysintheaxialdirection.Withthisdesign,theinternalsazeprovidedwithasupportatthefurthestextremityandmaybeviewedasabeamfixedatthetopandsimplysupportedatthebottom.Radialandaxialexpansionsofthecorebarrelareaccommodatedbuttransversemovementofthecorebarreliszestrictedbythisdesign.Withthissystem,cyclestressesintheinternalstructuresarewithintheASMESectionIIIlimits.Thiseliminatesanypossibilityoffailureofthecozesupport.3.9.5.1'UerCozeSuortAssemblTheuppercoresupportassemblyconsistsofthetopsupportplate,deepbeamsections,anduppercoreplatebetweenwhicharecontainedsupportcolumnsand'guidetubeassemblies.Thesupportcolumnsestablishthespacingbetweenthetopsupportplate,deepbeamsections,andtheuppercoreplateandare3.9-84REV.1312/96 GINNA/UFSARfastenedattopandbottomtotheseplatesandbeams.Thesupportcolumnstransmitthemechanicalloadingsbetweenthetwoplatesandservethesupplementaryfunctionofsupportingthermocoupleguidetubes.Theguidetubeassembliessheathandguidethecontrolzoddriveshaftsandcontrolrods,butprovidenoothermechanicalfunction.Theyarefastenedtothetopsupportplateandareguidedbypinsintheuppercozeplatefozproperorientationandsupport.Additionalguidanceforthecontrolroddriveshaftsisprovidedbythecontrolrodshroudtubewhichisattachedtotheuppersupportplateandguidetube.Theuppercoresupportassembly,whichisremovedasaunitduringtheMODE6(Refueling)operation,ispositionedinitsproperorientationwithrespecttothelowersupportstructurebyflat-sidedpinspressedintothecorebarrelwhichinturnengageinslotsintheuppercoreplate.Atanelevationinthecozebarrelwheretheuppercoreplateispositioned,theflat-sidedpinsarelocatedatequalangularpositions.Slotsaremilledintothecoreplateatthesamepositions.Astheuppersupportstructureisloweredintothemaininternals,theslotsintheplateengagetheflat-sidedpinsintheaxialdirection.Lateraldisplacementoftheplateandoftheuppersupportassemblyisrestrictedbythisdesign.Fuelassemblylocatingpinsprotrudefromthebottomoftheuppercoreplateandengagethefuelassembliesastheupperassemblyisloweredintoplace.Properalignmentofthelowercoresupportstructure,theuppercoresupportassembly,thefuelassemblies,andcontrolrodsisensuredbythissystemoflocatingpinsandguidancearrangement.Theuppercoresupportassemblyisrestrainedfromanyaxialmovementsbyalargecircumferentialspringwhichrestsbetweentheupperbarrelflangeandtheuppercozesupportassemblyandiscompressedbythereactorvesselheadflange.Verticalloadsfromweightandfuelassemblypreloadaretransmittedthroughtheuppercoreplateviathesupportcolumnstothedeepbeamsandtopsupportplateandthenthroughthecircumferentialspringtothereactorvesselhead.Transverseloadsfromcoolantcrossflow,earthquakeacceleration,andpossiblevibrationsaredistributedbythesupportcolumnstothetopsupportplateanduppercoreplate.Thetopsupportplateisparticularlystifftominimizedeflection.3.9-85REV.1312/96 GINNA/UFSAR3.9.5.1.3In-CoreInstrumentationSuortStructuresThein-cozeinstrumentationsupportstructuresconsistofanuppersystemtoconveyandsupportthermocouplespenetratingthevesselthroughtheheadandalowersystemtoconveyandsupportfluxthimblespenetratingthevesselthroughthebottom.Theuppersystemutilizesthereactorvesselheadpenetrations.Instrumentationportcolumnsareslip-connectedtoin-linecolumnsthatareinturnfastenedtotheuppersupportplate.Theseportcolumnsprotrudethroughtheheadpenetrations.Thethermocouplesarecarriedthroughtheseportcolumnsandtheuppersupportplateatpositionsabovetheirreadoutlocations.Thethermocoupleconduitsaresupportedfromthecolumnsoftheuppercoresupportsystem.Thethermocoupleconduitsaresealedstainlesssteeltubes.Inadditiontotheupperi.n-coreinstrumentation,therearereactorvesselbottomportcolumnswhichcarrytheretractable,cold-workedstainlesssteelfluxthimblesthatazepushedupwardintothereactorcore.Conduitsextendfromthebottomofthereactorvesseldownthroughtheconcreteshieldareaanduptoathimblesealline.Theminimumbendradiiareabout90in.andthetrailingendsofthethimbles(atthesealline)areextractedapproximately13ftduringMODE6(Refueli.ng)ofthereactorinordertoavoidinterferencewithinthecore.Thethimblesareclosedattheleadingendsandserveasthepressurebarrierbetweenthereactorpressurizedwaterandthecontainmentatmosphere.Mechanicalsealsbetweentheretractablethimblesandtheconduitsareprovidedatthesealline.DuringMODES1and2,theretractablethimblesarestationaryandmoveonlyduringMODE6(Refueling)orformaintenance,atwhichtimeaspaceofapproximately13ftabovetheseallineisclearedfortheretractionoperation.Thein-coreinstrumentationsupportstructureisdesignedforadequatesupportofinstrumentationduringreactoroperationandisruggedenoughtoresistdamageordistortionundertheconditionsimposedbyhandlingduringtheMODE6(Refueling)sequence.3.96REV.1312/96 GINNAIUFSARThefluxmappingsystemincludesadriveandcontrolsystemforinsertingthein-coredetectors.Aportionofthedrivesystem,whichincludestheten-pathrotarytransferdevicesandtheisolationvalves,ismountedonthemovablesealcart,whichisnormallylocatedabovethesealtable(seeSection7.7.4.2.3)~Thesealcartismountedonarailstructureusedtomovethesealcartoutofthewayduringrefueling.Thesealcartisdesignedandrestrainedtopreventthefluxmappingsystemfromcollapsingontothesealtableduringaseismiceventandjeopardizingthesealtablereactorcoolantsystempressureboundary.Thereactorbottom-mountedinstrumentationsystemisSeismicCategoryI'.3.9.5.2LoadingConditionsTheinternalsaredesignedtowithstandtheforcesduetoweight,reloadoffuelassemblies,controlzoddynamicloading,vibration,andearthquakeacceleration.Undertheloadingconditions,includingconservativeeffectsofdesignearthquakeloading,thestructuresatisfiesstressvaluesprescribedinASMESectionIII.Thereactorinternalcomponentsaredesignedtowithstandthestressesresultingfromstaztup,steady-stateoperationwithanynumberofpumpsrunning,andshutdownconditions.Theabnormaldesignconditionsassumeblowdowneffectsduetoareactorcoolantpipedouble-endedbreak.3.9.5.3DesignBasesThecriteriaforacceptabilityisthatthecoreshouldbeeoolableandintactfollowingapiperuptureuptoandincludingadouble-endedruptureofthereactorcoolantsystem.Thisimpliesthatcozecoolingandadequatecoreshutdownmustbeensured.Consequently,thelimitationsestablishedontheinternalsareconcernedprincipallywiththemaximumallowabledeflectionsand/orstabilityoftheparts.TheallowablestresscriteriaisdiscussedinSection3.9.2.3.1.3.Forabnormaloperationthecriteriaforacceptabilityarethatthereactorbecapableofsafeshutdownandthattheengineeredsafetyfeaturesareabletooperateasdesigned.Thelimitationestablishedontheinternalsforthesetypesofloadsarealsoconcernedprincipallywiththemaximumallowable3.9-87REV.1312/96 GINNA/UFSARdeflections.ThedeflectioncriteriaforcriticalstructuresunderabnormaloperationarepresentedinTable3.9-29.3.9-88REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLEAK)3.9W9REV.1312/96 GINNA/UFSAR3.9.6INSERVICEINSPECTIONOFPUMPSANDVALVES3.9.6.1GeneralThefollowinginformationdefinestheInservicePumpandValveTestingProgramfortheperiodstartingJanuary1,1990,throughDecember31,1999.IncludedinthisprogramazethequalitygroupsA,B,andCpumpswhichazeprovidedwithanemergencypowersourceandthosequalitygroupsA,B,andCvalveswhicharerequiredtoshutdownthereactoroztomitigatetheconsequencesofanaccidentandmaintainthereactorinasafeshutdowncondition.QualitygroupsA,B,andCcomponentscorrespondtothosedefinedinRegulatoryGuide1.26.ThisprogramhasbeendevelopedasrequiredbySection50.55a(g)of10CFR50followingtheguidanceoftheASMEBoilerandPressureVesselCodeSectionXI,RulesfozInserviceInspectionofNuclearPowerPlantComponents.TheprogramfollowstheguidanceofGenericLetter89-04withpossibleexceptionsapprovedbytheNRC.TheInservicePumpandValveTestingProgx'amiscontrolledbytheGinnaStationQualityAssurancePxogramforStationOperation.TheProgramwassubmittedtotheNRC.TheNRChasreviewedandapprovedtheprogramandactedonprogramreliefrequests(Reference19).FurtheraddendaandeditionsofSectionXIofthecodewillbeusedforclarificationoftestrequirementsandperformance.TheInservicePumpandValveTestingProgramsubstantiallyaugmentsbutdoesnotaffectthepumpandvalvesurveillanceprogramrequiredbytheTechnicalSpecifications.TechnicalSpecificationsrequirementsassociatedwithpumpandvalvesurveillancewillcontinuetobeimplementedasspecified.WhenchangestoTechnicalSpecificationscreateconflictswiththeprogram,therevisedTechnicalSpecificationswillprovideguidanceuntiltheprogramisrevisedtoincorporatethechanges.Themotor-operatedvalveanalysisandtestsystem(MOVATS)programdescribedinSection5.4.9.3isnotpartoftheInservicePumpandValveTestingPxogram.3.9-90REV.1312/96 GINNA/UFSARWhenavalve,pump,ozitsundergonemaintenancethatcontrolsyst:emhasbeenreplacedorrepairedorhascouldaffectitsperformanceandpriortothetimeitisreturnedtoservice,itwillbetestedasnecessarytodemonstratethattheperformanceparameterswhichcouldhavebeenaffectedbythereplacement,repair,ormaintenanceazewithinacceptablelimits.CodeEditionandTestinIntervalTheInservicePumpandValveTestingProgramfortheperiodJanuary1,1990,throughDecember31,1999,wasdevelopedusingthe1986EditionofSectionXIoftheASMEBoilerandPressureVesselCode.3.9.6.2InsezviceTestingofPumpsTheinservicepumptestingprogramwasdevelopedinaccordancewiththerequirementsofArticleIWPofSectionXIoftheASMECode.ThisprogramincludesallqualitygroupA,B,andCpumps,whichareprovidedwithanemergencypowersourceandarerequiredtoperformaspecificfunctioninshuttingdownthereactororinmitigatingtheconsequencesofanaccidentandmaintainthereactorinasafeshutdowncondition.Thepumpstobetestedandthetestparametersandfrequenciesarespecifiedintheinsezvicepumpandvalvetestingprogram.Testingofapumpneednotbeperformedifthatpumpisdeclaredinoperablewithoutthetesting,ConsistentwiththeTechnicalSpecifications,specifiedintervalsmaybeextendedby25$toaccommodatenormaltestschedules.RecordsfortheinsezvicepumptestingprogramaredevelopedandmaintainedinaccordancewithArticleIWP-6000ofSectionXIoftheASMECode.3.9.6.3InserviceTestingofValvesTheinservicevalvetestingprogramwasdevelopedinaccordancewiththerequirementsofArticleIWVofSectionXIoftheASMECode.AllthosevalvesthatarerequiredtoperformaspecificfunctioneithertoshutdownthereactortotheMODE5(ColdShutdown)conditionorinmitigatingthe3.9-91REV.1312/96 GINNA/UFSARconsequencesofanaccidentandmaintainthereactorinasafeshutdownconditionareincludedintheprogram.TheinservicevalvetestingprogramrequirementsforcategoryA,B,andCvalvesareincludedinthePumpandValveTestingProgram.CategoryDvalvesarenotincludedinthistestingprogrambecausetherearenoneincludedinGinnaStationdesign.SomeexceptionsandexemptionstothetestingrequirementsofArticleIWVhavebeentakenbasedonoperationalinterference,placingtheplantinanunsafecondition,andTechnicalSpecificationsrequirements.AllexceptionsandexemptionsarelistedandexplainedinthePumpandValveTestingProgram.TheexercisingprogramforcategoryAandBvalves,withtheexceptionofcheckvalves,requiresacompletestrokingofeachvalveperthevalvetestingtables.Exceptwhereoperationalconstraintsprevailandexceptionshavebeenauthorized,allcheckvalves,includingcategoryCvalves,willbeexercisedtothepositionrequiredtofulfilltheirfunction.Thesefunctionaltestswillbeverifiedbytheoperationoftherequiredsystem.RecordsfortheinservicevalvetestingprogramazedevelopedandmaintainedinaccordancewithArticleIWV-6000ofSectionXIoftheASMECode.3.9-92REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.92.3~5.6.7.8.9.10.12'estinghouseElectricCorporation,StructuralEvaluationoftheRobertE.GinnaPressurizerSurgeLine,ConsideringtheEffectsofThermalStratification,WCAP12928(Proprietary),WCAP12929(Non-Proprietary),May1991.SubmittedbyletterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ResponsetoNRCBulletin88-11,datedOctober29,1991.L.C.SmithandK.F.Acconexo,PressureSafetyandReliefLineEvaluationSummaryReport,RochesterGasandElectricCorporationGinnaStation,WestinghouseReport,February1983.LetterfromL.D.White,Jr.,RG&E,toRobertA.Purple,NRC,

Subject:

SecondarySystemFluidFlowInstability,R.E.GinnaNuclearPowerPlantUnitNo.1,DocketNo.50-244,datedOctober31,1975.RochesterGasandElectricCorporation,RobertEmmettGinnaNuclearPowerPlantUnitNo.1,AdditionalInformationofSeismicDesignofClassIPiping,June9,1969.LetterfromD.J.Skovholt,AEC,toR.R.Koprowski,RG&E,

Subject:

MainSteamSafetyValveSupportModification,RequestforAdditionalInformation,datedSeptember12,1972.SummaryoftheR.E.GinnaPipingCalculationsPerformedfortheSystematicEvaluationProgram,EGG-EA-5513Report,July1981.J.D.Stevenson,EvaluationoftheCostEffectsonNuclearPowerPlantConstructionResultingfromtheIncreaseinSeismicDesignLevel,PreparedforOfficeofNuclearRegulatozyResearch,U.S.NuclearRegulatoryCommission,Draft,May1977.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicZZZ-6,SeismicQualificationofTanks,datedSeptember13,1983.P.P.DeRosa,etal.,PressurizerGenericStressReport,Sections3.1,3.2,3',3.7,WestinghouseElectricCorporation,TampaDivision,1973.LetterfromD.M.Crutchfield,NRC,toJ.E.Maiex,RG&E,

Subject:

SEPTopicIII-6,SeismicDesignConsiderationsandSEPTopicIZZ-11,ComponentIntegrity,datedJanuary29,1982.STFabic,"ComputerProgramWHAMforCalculationofPressureVelocity,andForceTransientsinLiquidFilledPipingNetworks,"KaiserEngineersReportNo.67-49-R,November1967.J.Parmakian,"Water-HammerAnalysis,"PrentissHall,1955.13.14.15.V.L.StreeterandE.B.Wylie,"HydraulicTransients,"p.19,1967.F.R.Zaloudek,"TheCriticalFluxofHotWaterThroughHW77594,May1968'.K.Fauske,"TheDischargeofSaturatedWaterThroughEng.ProgressSymp.SeriesHeat.Transfer-Cleveland,No.1965.McGraw-Hill,ShortTubes,"Tubes,"Chem.59,Vol.61,3.9-93REV.1312/96 GINNA/VFSARS.Fabic,"EarlyBlowdown(WaterHammer)AnalysisforLossofFluidTestFacility,"KaiserEngineersReportNo.65-28-RA,April1967.D.L.AndersonandH.E.Lindberg,"DynamicPulseBucklingofCylindricalShellsUnderTransientLateralPressures,"AIAAJ.Vol.6,No.4,April1968.18.WestinghouseElectricCorporation,WestinghouseOwner'sGroupAsymmetricLOCALoadEvaluation-PhaseC,WCAP9748(Proprietary),WCAP9749(Non-Proprietary),June1980.19.20.21.22.23.24.25.LetterfromA.Johnson,NRC,toR.C.Meczedy,RG&E,

Subject:

R.E.GinnaNuclearPowerPlantInserviceTesting(IST)ProgramforPumpsandValves,1990-1999Third10-yearInterval,datedApril15,1991.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

PressurizerSurgeLineThermalStratification,Bulletin88-11,GinnaNuclearPowerPlant,datedApril21,1992.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

NRCBulletin88-08,ThermalStressesinPipingConnectedtoReactorCoolantSystems,datedAugust6,1992.RochesterGasandElectricCorporation,PressurizerSafetyValveDischargePipingTime-HistoryDynamicAnalysis,March15,1973.LetterfromR.W.Kober,RG&E,toJ.A.Zwolinski,NRC,

Subject:

NUREG0737,ItemII.D.1,PerformanceTestingofReliefandSafetyValves,datedMay24,1985.LetterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

NUREG0737ItemIIELD.l,PerformanceTestingofReliefandSafetyValves,datedFebruary13,1987.LetterfromR.W.Kober,RG&E,toC.Stahle,NRC,

Subject:

NUREG0737,ItemII.D.1,PerformanceTestingofReliefandSafetyValves,datedJune2,1987.26.NRCBulletin96-01,ControlRodInsertionProblems,datedMarch8,1996.27.28.29.30.LatterfromR.C.Mecredy,RG&E(toA.R.Johnson,NRC,

Subject:

ResponsetoNRCBulletin96-01,datedMarch28I1996'etterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ResponsetoNRCBulletin96-01,datedMarch29)1996.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson)NRCI

Subject:

30-DayResponsetoNRCBulletin96-01,datedApril8I1996.LetterfromR.C.Mecredy,RG&E,toG.S.Vissing,NRC,

Subject:

SubmittalofContxolRodDragTestingResults-NRCBulletin96-01,datedMay11,1996.3.9-94REV.1312/96 GINNA/UFSARTABLE3.9-1ORIGINALDESIGNLOADINGCOMBINATIONSANDSTRESSLIMITSXoadinCombinationsVesselsandReactorInternals~Pii~n~SuoxtsNormal+designearthquakeloadsP<SPg+Pn<1.5SP51.2SPg+P<1.2SWorkingstressesNormal+maximumpotentialearthquakeloadsP<1.2SPt.+Pa<1.2(1.5SQP<1.2SPt,=Pn51.2(1.5S)WithinyieldafterloadredistributionNormal+piperuptureloadsP<1.2SPg+Pn<1.2(1.5S)P51.2SPg+Pn<1.2(1.5S)WithinyieldaAerloadredistributionWhere:P=primarygeneralmembranestressorstressintensity.Pr,=primarylocalmembranestressorstressintensity.P>=primarybendingstressorstressintensity.S=stressintensityvaluefromASMEB&PVCode,SectionIll.S=allowablestressfromUSASB31.1CodeforPressurePiping.REV.1312/96 GINNA/UFSARTABLE3.9-2RESIDUALHEATREMOVALLOOPASTRESSSUMMARYSEISMICSTRESSESOperating-basisearthquakeVertical+Z-horizontalVertical+X-horizontal~Ori.uaIDesi(si)As-BuiItCondition(si)3,3563,900AIlowabIeStress~(si)SafeshutdownearthquakeVertical+Z-horizontalVertical+X-horizontal10,564.5,6748,2849,716COMBINEDSTRESSESOperating-basisearthquake+pressure+deadweight9,43619,080Safeshutdownearthquake+pressure+deadweight16,71515,25228,620ResultsobtainedusingWESTDYNand1969modelwhichconsidersthesupportsrigid.ResultsobtainedusingWESTDYNandas-builtconditionsconsideringsupportstifResses.REV.1312/96 GINNA/UFSARTABLE3.9-3MAINSTEAMLINE-LOOPBSTRESSSUMMARY2Ls-BuiltConditionSEISMICSTRESSESOperating-basisearthquakeVertical+Z-horizontalVertical+X-horizontalamicResults~(SX)9659632LllowableStress(si)SafeshutdownearthquakeVertical+Z-horizontalVertical+X-horizontal23732,238COMBINEDSTRESSESOperating-basisearthquake+pressure+deadweightSafeshutdownearthquake+pressure+deadweight7,2788,68616,44024,660StressesgivenareobtainedusingB31.1-1973SummerAddenda,formula12.REV.1312/96 GINNA/UFSARTABLE3.9-4CHARGINGLINESTRESSSUMMARYSEZSMZCSTRESSESOperating-basisearthquakeVertical+Z-horizontalVertical+X-horizontalmls-Builtamic2lnaZsisCondition(si)1502452QlovableStress~(si)SafeshutdownearthquakeVertical+Z-horizontalVertical+X-horizontal436638COHBZNEDSTRESSESOperating-basisearthquake+pressure+deadweightSafeshutdown.earthquake+pressure+deadweight6,9417,33420,58030,870StressesgivenareobtainedusingB31.1-1973SummerAddenda,formula12.REV.1312/96 GINNA/UFSARTABLE3.9-5LOADCOMBINATIONSANDACCEPTANCECRITERIAFORPRESSURIZERSAFETYANDRELIEFVALVEPIPINGANDSUPPORTS-UPSTREAMOFVALVESCombination/eratinConditionLoadCombinationNormalN1.0SgUpsetN+OBE+SOTv1.2Sh3EmergencyN+SOTE1.8SgFaultedN+MS/FWPBorDBPB+SSE+SOTF2.4Sh5FaultedN+LOCA+SSE+SOTF2.4SgDefinitionsofloadabbreviationsareinTable3.9-7.REV.1312/96 GINNA/UFSARTABLE3.9-6LOADCOMBINATIONSANDACCEPTANCECRITERIAFORPRESSURIZERSAFETYANDRELIEFVALVEPIPINGANDSUPPORTS-SEISMICALLYDESIGNEDDOWNSTREAMPORTIONCombinationeratinConditionLoadCombinationPiinAllowableNormalN1.0ShUpsetN+SOTu1.2SgUpsetN+OBE+SOT@1.8SgEmergencyN+SOTE1.SSgFaultedN+MS/FWPBorDBPB+SSE+SOTp2.4SgFaultedN+LOCA+SSE+SOTF2.4SgDefinitionsofloadabbreviationsareinTABLE3.9-7.REV.1312/96 GINNA/UFSARTABLE3.9-7DEFINITIONSOFLOADABBREVIATIONSNSustainedloadsduringnormalplantoperationSOTSystemoperatingtransientSOTuReliefvalvedischargetransientSOTKSafetyvalvedischargetransitSOTFMaximumofSOTuandSOTa,ortransitionflowOBEOperating-basisearthquakeSSESafeshutdownearthquakeMS/FWPB.MainsteamorfeedwaterpipebreakDBPBDesign-basispipebreakLOCALoss-of-coolantaccidentS)Basicmaterialallowablestressatmaximum(hot)temperatureAbbreviationsusedinTABLES3.9-5and3.9-6.REV.1312/96 GINNA/UFSARTABLE3.9-8LOADINGCOMBINATIONSANDSTRESSLIMITSFORPIPINGFORSEISMICUPGRADEPROGRAMSLoadinCombinationsStressLimitsDesignPressure+DeadweightPm<Sh,'t.+Pe<ShDesignPressure+DeadweightDesign+EarthquakeLoads(OBE)Pm51.2SlPL+PB51.2Sl,SSEOperatingPressure+Deadweight+MaximumPotentialEarthquakeLoads(SSE)Pm51.3Sh,'L+Pnd1.SShMaximumOperatingThermal+OBEDisplacementsDesignPressure+Deadweight+MaximumOperatingThermal+OBEDisplacementsSEPz,+Pn5(Sh+SgWhere:OBE=operating-basisearthquakeP=primarygeneralmembranestress;orstressintensityPt.=primarylocalmembranestress;orstressintensityPa=primarybendingstress;orstressintensityS~,Sh=allowablestressfromUSASB31.1CodeforpressurepipingSF=thermalexpansionstressfromUSASB31.1codeforpressurepipingSSE=safeshutdownearthquakeREV.1312/96 GINNA/UIiSARTABLE3.9-9ALLOWABLESTEAM-GENERATORNOZZLELOADSConditionFEEDWATERNOZZLEThermalWeightSeismicoperating-basisearthquakeSeismicdesign-basisearthquakeSTEAMNOZZLEThermalWeightSeismicoperating-basisearthquakeSeismicdesign-basisearthquake1575100100201502004015751005010150200Fz7510050101502001000250150020006000500500075001500500200030005000500500075001500500200030005000750500075001.Allloadsare+unlessindicated.2.Unitsarekipsandin.-kips.3.Coordinatesystem.x(ZbyRHR)x-yPlaneisVerticaly(InDirectionofFeedwaterNozzle)FeedwaterNozzleSteamNozzleREV.1312/96 GINNA/UIlSARTABLE3.9-10REACTORCOOLANTPUMPAUXILIARYNOZZLEUMBRELLALOADSTTozzIeConddeion/IozdZn(ib)Z~(Jb)Fz(Jb)Mz(in.)-b)SealinjectionThermalDeadweightSeismicOBESeismicSSE35010010-8025050800250300102253503500300160032002800250450015000200040020004000No.1sealbypassThermalDeadweightSeismicOBESeismicSSE755016070-25501704045170300759001650315501200255015253509002000No.1sealleakoffThermalDeadweightSeismicOBESeismicSSE40010500800200-80400500300500600200030010002000200025050008000200040020003500Shcct1REV.1312/96 GINNA/UFSARTABLE3.9-10REACTORCOOLANTPUMPAUXILIARYNOZZLEUMBRELLALOADSFozzIeCoadi)don/IpadEa(lb)P~(1b)a'a(lb)Mx(aa.-18)No.2sealleakoffThermalDeadweightSeismicOBESeismicSSE7550160100-251001701001001703007590016503507515002500160040012002000No.3sealinjectionThermalDeadweightSeismicOBESeismicSSE9015901804535150300451015030029090480960290455601120180180480960No.3sealleakoffThermalDeadweightSeismicOBESeismicSSE9015901804535150300451015030029090480960290455601120180180480960Sheet2REV.1312/96 GINNA/UFSARTABLE3.9-10REACTORCOOLANTPUMPAUXILIARYNOZZLEUMBRELLALOADSNozzIeThermalbarriercomponentcoolingwaterinandoutCozdzhxoz/ZozdPz(Zb)E~(1b)Pz(Jb)ZZz(dz-2.2>)Thermal75200150320013002500UpperbearingoilcoolerandaircoolercomponentcoolingwaterinandoutDeadweightSeismicOBESeismicSSEThermalDeadweightSeismicOBESeismicSSE20100200100100200-75250700100-80300600100200100530060010004500300100500100012003000300506001200150120036002002005001000LowerbearingoilcoolercomponentcoolingwaterinandoutThermalDeadweightSeismicOBESeismicSSE95109090340-359090305109090470100290290480125290290525125180180 GINNA/UIiSARTABLE3.9-10REACTORCOOLANTPUMPAUXILIARYNOZZLEUMBRELLALOADSNotes:1.Valuesat2unlessotherwisespecified.2.LoadsontheNo.3sealconnectionsapplyonlyifaNo.3"DoubleDam"sealissupplied.3.Loadsonpumpnozzlesaretobeappliedatthenozzletoshelljuncture.4.Loadsonmotornozzlesaretobeappliedattheflangeend.5Coordinatesystem.6.OBE=operating-basisearthquake.7SSE=safeshutdownearthquake.Z-ByRight-ftand-RuleSheet4REV.1312/96 GINNA/UFSARTABLE3.9-11SYSTEMATICEVALUATIONPROGRAMSTRUCTURALBEHAVIORCRITERIAFORDETERMININGSEISMICDESIGNADEQUACY~ComonenlsSstemalicEvalualionProramCriteriaSaeShurrlo)vnEarthuakeVessels,pumps,andvalvesPipingTanksElectricequipmentCabletraysASMEsupportsOthersupportsBoltingS~t~u50.7Sand1.6SS~(.u)50.67Sand1.33Sra~t,io~0.5Sand1.25SGgg(aa)50.5Sand1.25SS~<,u>51.0Sand2.0SSq60.6Sand1.5SNoASMEIIIClassI(Tgg(gu)50.5Sand1.25SS(,u)S1.0SS<goK1.0SrS(eo~1.2Sand0.7SS(,u)S1.6SS(,u)51.4SASMEIIIClass1(TableF1322.2.1)ASMEIIIClass2(NC3217)ASMEIIIClass2(NC3321)ASMEIIIClass3(ND3321)ASMEIIIClass1(TableF1322.2.I)ASMEIIIClass2andClass3(NC3611.2)ASMEIIIClass2andClass3(NC3821)ASMEIIIAppendicesXVII,FforClass1,2and3NormalAISCSallowableincreasedby1.6consistentwithNRCStandardReviewPlan,Sec.3.8ASMESectionIIIAppendixXVIIforboltingwhereSistheallowablestressfordesignloadsNOTES<,~o=StressAllowable. GINNA/UFSARTABLE3.9-12MECHANICALCOMPONENTSSELECTEDFORSEPSEISMICREVIEWZtemMechanicaICoonentReasonSorSelectionEssentialservicewaterpump2Componentcoolingheatexchanger3Componentcoolingsurgetank4Diesel-generatorairtanksBoricacidstoragetankRefuelingwaterstoragetank(RWST)Motorwperatedvalves8Steamgenerators9Reactorcoolantpumps10Pressurizer11Controlroddrivemechanism12ReactorcoolantsystemsupportsThisitemhasalongverticalunsupportedintakesectionwhichwasoriginallystaticallyanalyzedforseismiceffects.Thisitemissupportedonwhatappearstobearelativelyflexiblestructuralsteelframingandbytwosaddles.SameasItem2Thisitemisaskirt-supportedverticaltank.Thisitemisacolumn-supportedverticaltank.Evaluateanchor-boltsystemsforin-structureflat-bottomtanksthatareflexible.Ageneralconcernwithrespecttomotorwperatedvalves,particularlyforlines4in.orlessindiameter,isthattherelativelylargeeccentricmassofthemotorwillcauseexcessivestressesintheattachedpipingifthevalvesarenotexternallysupported.Itemsareparticularlycriticaltoensurereactorcoolantsystemintegrity.SameasItem8.SameasItem8.SameasItem8.SameasItem8.REV.1312/96 GINNA/UIiSARTABLE3.9-13MAXIMUMSTRESSHOT-LEGBREAK(ORIGINALANALYSIS)StressesAllowab2.eCooneutsCoreplateUppersupportcolumnsTopnozzle(minor)Topnozzle(major)FlangebarrelLouversupportstructureBarrelFuelassemblythimblesDiaect15,00004,0003,20040,400B~eadIJI17,80024,80020,60031,8007,670Dctai17,80015,00024,80020,60035,8007;6703,20040,400Direct39,50039,50039,50039,50039,50039,50039,50045,000TotaI50,00050,00050,00050,00050,00050,00050,000REV.1312/96 GINNA/UFSARTABLE3.9-14MAXIMUMSTRESSCOLD-LEGBREAK(ORIGINALANALYSIS)StressesAllowableUppercoreplateUppersupportcolumnBottomnozzle(minorassembly)Bottomnozzle(majorassembly)FlangebarrelLowersupportstructureBarrelLowercoreplateFuelassemblythimblesDirect8,70004,000011,500040,4004,80045,20047,80031,80021,4008,400Total4,8008,70045,200Detect39,50039,50039,50021,40011,5008,40039,50039,50039,50040,40045,00047,80039,50035,80039,500Total50,00050,00050,00050,00050,00050,00050,00050,000REV.1312/96 GINNA/UFSARTABLE3.9-15MAXIMUMCOREBARRELSTRESSANDDEFLECTIONUNDERHOT-LEGBLOWDOWN(ORIGINALANALYSIS)DeflectionDeflectionStressStressTFaveCriticalPressure(xaeec)(in).(in.)~(si)~(si)~(si)~(si)0.03114,11039,5004502,612REV.1312/96 GINNA/UFSARTABLE3.9-16MAXIMUMSTRESSINTENSITIESANDDEFLECTIONCOLD-LEGBLOWDOWN(ORIGINALANALYSIS)ZNTHEUPPERBARRELTime(msec)Stress1atensitarStressTate~itZMucinnnn2lllowableMembraneStress(si)A12,owableMembraneStress(si)MarinnzmDeflection(mils)20~(si)44,50034,50034,500~(si)50,00050,00050,00036,75026,75026,75039,50039,50039,5001509595ATTHEUPPERBARRELENDSTime(casse)(casse)RuptureRiseTimePeakPressure~(si)B~~c[Stress(si)Ben~crStress(si)Allowable~(>>)204.54.575065065049,80040,37040,37026,85021,75521,75550,00050,00050,000REV.1312/96 GINNA/UFSARTABLE3.9-17COREBARRELSTRESSES(ORIGINALANALYSIS)BarrelFlangeWeldSz(psi)(Tangential)PrimaryPrincipalStressesSz(psi)(Longitudinal)S3(psi)(Radial)OUTSIDESURFACENormaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquake0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquake2159002159215927971419030282351503413-1655-1655-1655INSIDESURFACENormaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquake0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquake337833783378-18251490-1594235150-1209-1618-1618-1618REV.1312/96 GINNA/UIiSARTABLE3.9-18COREBARRELSTRESSES(ORIGINALANALYSIS)PrimaryPrincipalStressesBarrelMiddleGirthWeldOUTSZDESURFACESx(psi)Tangential)S2(psi)(Longitudinal)S3(psi)(Radial)Normaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquakeI0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquake-5686-5686-5686-9347307235-8805512392-7901-2250-2250-2250XNSIDESURFACENormaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquake0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquake-5414-5414-5414-8295307235-7753512392-6849-2200-22002200REV.1312/96 GINNA/UFSARTABLE3.9-19COREBARRELSTRESSES(ORIGINALANALYSIS)PrimaryPrincipleStressesBarrelLowerGirth%eldOUTSIDESURFACENormaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquake0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquakeS1(psi)(Tangential)-4059-4059-4059S2(psi)(Longitudinal)-660816535-640827558-6075S3(psi)(Radial)-6090-609INSIDESURFACENormaloperating0.08gverticalearthquake0.08ghorizontalearthquakeNormaloperating+0.08gearthquake0.20gverticalearthquake0.20ghorizontalearthquakeNormaloperating+0.20gearthquake1103110311037962165358162275588495916916916REV.1312/96 GINNA/UFSARTABLE3.9-20COREBARRELSTRESSES(ORIGINALANALYSIS)BarrelFlangeWeldOUTSIDESURFACEMucimumPrStressZntensi(siNormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake46835068INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake49964996BarrelMiddleGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake65555651INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake55534649BarrelLowerGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake57995466INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake72467579REV.1312/96 GINNA/UFSARTABLE3.9-21COREBARRELSTRESSES(ORIGINALANALYSIS)PrimaryPlusSecondaryPrincipalStressesBarrelFlangeWeldOUTSIDESURFACES1(Psi)S2(Psi)(Tangential)(Longitudinal)S3(Psi)(Radial)Normaloperating+0.08gearthquakeNormaloperating+0.20gearthquake10,28910,28920,13520,520-1,640-1,640INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake6,2986,298-4,963P,578-1,603-1,603BarrelMiddleGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake2,7682,7684,0714,975-2,261'-2,261INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake-17,206-17,206-20,666-19,762-2,211-2,211BarrelLowerGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake-4,059-4,059-6,408-6,075-609-609INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake1,1031,1038,1628,459916916REV.1312/96 GINNA/UFSARTABLE3.9-22COREBARRELSTRESSES(ORIGINALANALYSIS)Ma~numPr'lusSeconZntensL(sr)StressBarrelFlangeWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake21,77522,160INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake11,26110,876BarrelMiddleGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake6,3327,263INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake18,45517,551BarrelLowerGirthWeldOUTSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake5,7995,466INSIDESURFACENormaloperating+0.08gearthquakeNormaloperating+0.20gearthquake7,2467,579REV.1312/96 GINNA/UFSARTABLE3.9-23LOADCOMBINATIONSANDALLOWABLESTRESSLIMITSFORPRIMARYEQUIPMENTSUPPORTSEVALUATIONPlantZventNormaloperation(MODES1and2)Plant/systemoperatingtransients(SOT)+OBEDBPB4.SSE5.DBPB(orMS/FWPB)+SSEN~NormalSustainedloadsUpsetEmergencySustainedloads+SOT+OBESustainedloads+DBPBFaultedSustainedloads+SSEFaultedSustainedloads+(DBPBorMS/FWPB+SSE)PlantServiceLoadin~era~tinCombinationsConditionsServiceLeveIStressLimitsbDDDefinitionoSLoadinConditionsSorPr'rtsZvaluation1.Sustainedloads2.3.4.5.,6.TransientsOvertemperaturetransientOperating-basisearthquakeSafeshutdownearthquakeDesignbasispipebreak/designbasisaccidentResidualheatremovallineAccumulatorlinePressurizersurgelineMainsteam,linebreakFeedwaterpipebreakDW,deadweight+P,operatingpressure+TN,normaloperatingthermalSOT,systemoperatingtransientTAOBESSEDBPB/DBAACCSURGMSFWThepipebreakloadsandSSEloadsarecombinedbythesquarerootsumofthesquaresmethod.StresslevelsaredefinedbyASMECode,SectionIII,SubsectionNF,1974edition.REV.1312/96 GINNA/UFSARTABLE3.9-24RESIDUALHEATREMOVALLOOPASUPPORTLOADSCALCULATEDFORIEBUL'LETIN79-07S~oztsAs-Bui1tConditionsRH-34verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal282027203600SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal337031105400RH-8verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal111012601680SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal134016802520RH-7verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal108010902160SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal120012203240RH-6horizontalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal9908605640SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal239020308460RH-5verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal7407402160SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal9309303240Shcct1REV.1312/96 TABLE3.9-24RESIDUALHEATREMOVALLOOPASUPPORTLOADSCALCULATEDFORIEBULLETIN79-07SupportsDescritionAa-Bui1tConditionsRH-4horizontalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal6007803720SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal139018505580RH-3verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal191018802160SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal225021803240RH-2verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal160016002160SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal192019303240RH-1verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal178018702160SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal220024203240RH-1horizontalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal3248803720SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal78021505580Supportloadcombinationisseismicplusdeadweight.Sheet2REV.1312/96 GINNA/UFSARTABLE3.9-25MAINSTEAMLINELOOPBSUPPORTLOADSCALCULATEDFORIEBULLETIN79-07SeismicSu~ortsDescrition2Ls-BuiItConditionsDesiLoad(2b)(Ib)MS-7Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal3,0406,93021,00021,000MS-8SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-HorizontalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-HorizontalSafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal6,20014,0606,140~5,26015,35013,24021,00021,00021,00021,00021,00021,000NOZZLELOADSHZSTDZNLocaICoozdinateternOBEinducedload300209514SeismicOBEallowableloads150150150500050005000SSEinducedloads156492791160SeismicSSEallowable200loads200200750075007500Supportloadcombinationisseismicplusdeadweight.REV.1312/96 GINNA/UFSARTABLE3.9-26CHARGINGLINESUPPORTLOADSCALCULATEDFORIEBULLETIN79-07Serg~ortsDescritionAs-Bui1tConditionsDesiLoad(1b)S-35verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal5705801,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal6206002,250S-60verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal20201,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal30302,250S-135verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal40408,850SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal404012,750S-135axialOperating-basisearthquakeVertical+ZHorizontalVertical+X-Horizontal65658,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal656512,750S-145verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal10101,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal20202,250Sheet1REV.1312/96 GINNA/UFSARTABLE3.9-26CHARGINGLINESUPPORTLOADSCALCULATEDFORIEBULLETIN79-07Supports2Ls-Bui1tConditions(lb)DesiLoad(lb)S-210verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal50508,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal505012,750S-210axialOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal65658,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal656512,750S-225verticalOperating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal10101,500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal20102,250N404horizontal(2in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal010375SafeshutdownearthquakeVertical+ZHorizontalVertical+X-Horizontal1010562N404horizontal(3in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal4040375SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal5060562Sheet2REV.1312/96 GINNA/UFSARTABLE3.9-26CHARGINGLINESUPPORTLOADSCALCULATEDFORIEBULLETIN79-07SupportsDescritionAs-BuiltConditions(lb)Desi.Load(lb)N405vertical(2in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal9090500SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal100100750N405horizontal(2in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal2020150SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal3030225N405horizontal(3in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal2102101,150SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal2302301,725N405horizontal(3in.)Operating-basisearthquakeVertical+Z-HorizontalVertical+X-Horizontal7070400SafeshutdownearthquakeVertical+Z-HorizontalVertical+X-Horizontal8080600Supportloadcombinationisseismicplusdeadweight.Sheet3REV.1312/96 GINNA/UFSARTABLE3.9-27LOADINGCOMBINATIONSANDSTRESSLIMITSFORSUPPORTSONPIPINGSYSTEMSNormalLoadinCombinationStressLimitsDor(D+F+T')UpsetD+Eor(D+F+T+E')FaultedD+E'r(D+F+To+E")<WorkingStress5WorkingStress"5FaultedStress'eadweightandthermalarecombinedalgebraicallyD=DeadweightT=MaximumoperatingthermalconditionforsystemF=FrictionloadE=OBE(inertiaload+seismicdifferentialsupportmovement)E'SSE(inertiaload+seismicdifferentialsupportmovement)To=Thermal-operatingtemperatureForeachloadingcondition,thegreaterofthetwoloadcombinationsshallbeused.WorkingstressallowableperAppendixXVIIofASMECode,SectionIII.FaultedstressallowableperAppendixXVII,SubsectionNF,andAppendixFofASMECodeSectionIII,andRegulatoryGuide1.124.SafetyClass1supportswillbeevaluatedanddesignedinaccordancewithRegulatoryGuide1.124.Wheneverthethermalmovementofthepipecausesthepipetoslideoveranymemberofasupport,frictionshallbeconsidered.Theappliedfrictionforceappliedtothesupportisthelesserofp,,W,ortheforcegeneratedbydisplacingthesupportanamountequaltothepipedisplacement.p.=0.35W=Normalload(excludingseismic)appliedtothememberonwhichthepipeslides.REV.1312/96 GINNA/UIiSARTABLE3.9-28ANALYSISOFTYPICALPIPESUPPORTBASEPLATESCALCULATEDFORIEBULLETIN79-02ZxistinDesiRelacementDesiBoltLoadBoltLoadBoltCaaci~SnoatNo.TensionShearSeneionShearsartorof~SaSetfenaionShearTensionShearFactorofsafetyACH-10675ACH-118241SWAH-193161SWAH-232963SWAH-241972SWCH-636SWCH-7318SWCH-7414ACH-100262SWAH-374991345,895220268802688026880268807285576072855760728557607285576072855760072855760293728557601435268802688097.011.95.86.29.41121.0399.0520.027.89.475241145212578371914340455293975897597~012625014100151951410015195141001519514100151951410015195188.027.56.06.810.11155015195608.01155015195825.01410015195141001519530.920.511550151951650.0REV.1312/96 GINNA/UFSARTABLE3.9-29INTERNALSDEFLECTIONSUNDERABNORMALOPERATIONCalculatedDeflection(in.)AIlovableFolossofLimit(in.)ExactionLimit(in.)UPPERBARRELexpansion/compression(toensuresuKcientinletflowarealandtopreventthebarrelfromtouchinganyguidetubetoavoiddisturbingtherodclustercontrolguidestructure)0.15010UPPERPACKAGEaxialdeflection(tomaintainthecontrolrodguidestructuregeometry)0.005RODCLUSTERCONTROLGUIDETUBEdeflectionasabeam(tobeconsistentwithconditionsunderwhichabilitytotriphasbeentested)0.751.01.5FUELASSEMBLYTHIMBLEScross-sectiondistortion(toavoidinterferencebetweenthecontrolrodsandtheguides)0.0350.072REV.1312/96

GINNA/UFSAR3.10SEXSMICQUALXFXCATXONOFSEISMICCATEGORYIINSTRUMENTATIONANDELECTRICALEQUIPMENTSEISMICQUALIFICATIONCRITERIA3.10.1.1OriginalCriteriaAtthetimethatGinnaStationwasdesignedandconstructed,criticalelectricalequipmentwasrequiredbyspecificationtobecapableofwithstandingthemaximumseismicloadspostulatedfortheplantsite.MostcomponentsintheClass1Eelectricpowerdistributionsystemweredesignedtowithstandforcesduetoelectricalfaults,whichweremuchlargerthantheinertialforcesduetoasevereseismicevent.XntheoriginaldesignofGinnaStation,noin-structureresponsespectraweredevelopedfortheanalysisofequipment.Xnstead,SeismicCategoryIitemswerequalifiedonanindividualandoftengenericbasis.Table3.10-1providesalistofitemsandthebasisofseismicqualificationforGinnaelectricalequipment.SeismicdesignrequirementsforSeismicCategoryIinstrumentationandcontrolswereoriginallyspecifiedinequipmentspecificationsasfollows:A.Controlroom-Therackswereassembledandthemountingandwiringofallcomponentsweredesignedsuchthatthefunctionsofthecircuitsorequipmentwouldbeperformedinaccordancewithprescribedlimitswhensubjectedtoseismicaccelerationsof0.21ginthehorizontaldirectionandintheverticaldirectionsimultaneously.Xnaddition,themountingandwiringofallcomponentsweredonesuchthatsimultaneousaccelerationsof0.52ginthehorizontalandverticalplaneswouldnotdislodge,causerelativemovement,orresultinanylossorchangeoffunctionofcircuitsofequipment.B.Containmentandauxiliarybuilding-Themountingandwiringofallcomponentsweredesignedsuchthatsimultaneousaccelerationsof0.52ginthehorizontalandverticalplaneswouldnotdislodge,causerelativemovement,orresultinanylossorchangeoffunctionofcircuitsorequipment.3.10-1REV.1312/96 GINNA/UFSAR3.10.1.2CurrentCriteriaWhenmakingmodificationsatGinnaStation,RG&Erequiresseismicqualificationinaccordancewiththecurrentstandazdwhenpossible.WhenmajorClass1EcomponentsthatareindependentlyanchoredtoSeismicCategoryZstructuresaredesignedandprocured,itisdoneinaccordancewiththecurrentseismicstandard.ThishasresultedinanevaluationofseismicqualificationinGinnaelectricalequipmenttoincreasinglyseverestandardsincludingZEEE344-1975.TheSystematicEvaluationProgram(SEP)seismicinputfordeterminingtheseismicdesignadequacyofmechanicalandelectricalequipmentanddistributionsystemswerebasedonin-structure(floor)responsespectrafortheelevationsatwhichtheequipmentissupported.Thefloorspectrausedinthisreasses-sment,whicharebasedonRegulatoryGuide1.60spectra,aregiveninSection3.7(Ref'erence7).Forelectricalequipment,acomposite7%equipmentdampingwasusedintheevaluationforthe0.2gsafeshutdownearthquake.Fozcabletrays,thedampinglevelstobeusedindesigndependgreatlyonthetrayandsupportconstructionandthemannerinwhichthecablesareplacedinthetrays.Dampingcouldbeashighas20%ofcriticaldamping.Forstructuralevaluation,thestresscriterionusedwasthatthetotalstressmustbelessthanorequaltotheyieldstress.Fozthereviewofanchorageandsupportofsafety-relatedelectricalequipmentinaccordancewithZEBulletin80-21,RG&Edevelopedaprogramofinspection,analysis,testing,andmodification,ifnecessary.Fortheanchoragesystemoftheelectricalequipment,the'requiredanchorloadcapacityasdeterminedbytheanalysisphase,wouldbecomparedwiththeverifiedanchorloadcapacityfortheanchorboltsassociatedwiththatcomponentorassembly,asdeterminedbythetestandmodificationphase.Zftheverifiedanchorloadcapacityisfoundtobeequaltoozgreaterthantherequiredanchorloadcapacity,thennomodificationwouldberequired.However,iftheverifiedanchorloadcapacityisfoundtobelessthantherequiredanchorloadcapacityforanelectricalassembly,additionalanchorswouldbeadded.3.10-2REV.1312/96 GINNA/UFSARTheanalysisofeachanchoringsystemtodeterminetheminimumanchoringrequirementtosafelysecuretheequipmentduringaseismiceventwastobeperformedusingthefollowingcriteriaandassumptions.ThestaticanalysisdescribedinSection5.3ofIEEE344-1975wasthebasisfozestablishingshearandtensilestressesexpectedintheelectricalequipmentanchorsbeingevaluated.Specifically,theseismicresponseofallfloor-mountedequipmentwouldbeassumedtobethepeakoftherequiredresponsespectrafortheequipmentfloorlocation,usingdampingvaluesinaccordancewithRegulatoryGuide1.61,multipliedbyastaticcoefficientof1.5toaccountformultifrequencyandmultimoderesponses.Theinertialforcesactingontheequipmentcenterofmasswouldthenbeevaluated.Amultianchorcomputermodelwouldthenbeusedtodeterminetheshearandtensilestressesforallfloor-mountedequipment.Thestressesthusdeterminedwouldestablishtherequiredanchorloadcapacitywhichwouldbecomparedtotheverifiedanchorloadcapacitytoestablishanchoradequacy.Wall-mountedelectricalequipmentwouldbeassumedtoberigidandthezeroperiodaccelerationvalueswouldbeusedtodeterminetheseismicforces.Thetensileandshearstresseswouldbecalculatedusingthemultianchormodel.3.10.2SEISMICQUALIFICATIONOFELECTRICALEQUIPMENTANDINSTRUMENTATION3.10.2.1IntroductionTheSEPSeismicReviewTeamselectedelectricalequipmentrepresentativeofitemsinstalledinthereactorcoolantsystemandsafeshutdownsystemsatGinnaStationandevaluatedthemforstructuralintegrityandelectricalandmechanicalfunctionaloperability.Electricalcomponentsthatpotentiallyhaveahighdegreeofseismicfragilitywereidentifiedforreviewduringasitevisitbymembersoftheteam.Arepresentativesampleofcomponentswasselectedforreviewbyoneoftwomethods:A.Selectionbasedonawalk-throughinspectionofGinnaStationbytheSEPSeismicReviewTeam.Basedontheirexperience,teammembersselectedcomponentsastothepotentialdegreeofseismicfragilityforthecomponent'scategory.Particularattentionwaspaidtothecomponent'ssupportstructure.B.Categorizationofthesafeshutdowncomponentsintogenericgroupssuchasmotorcontrolcentersandmotors.3.10-3REV.1312/96 GINNA/UFSARRochesterGasandElectricprovidedseismicqualificationdataontheselectedcomponentsfromeachgroup.Table3.10-2listsfivecomponentsselectedforreviewandincludesthereasonsfortheirselection.ThedetailsoftheanalysesandconclusionsreachedregardingtheadequacyofthesecomponentsisdescribedinSections3.10.2.2through3.10.2.6.3.10.2.2BatteryRacksTheseracksweremanufacturedbyGould-NationalBatteryZnc.Theirdesignwasofnearlythesamedesignasthe125-VracksinstalledatDresden2.TheresponsespectrausedforthequalificationoftheDresden2rackswerefoundtoenvelopthein-structureresponsespectrageneratedatthebatteryracklocationinGinnaStation.(Reference1)BasedontheDresden2design,itwasrecommendedthatthewoodenbattenswhichrestrainthebatterieslaterallybestrengthenedorreplacedsothatfrictionbetweenthebatteriesandtheirsupportrailneednotbereliedontocarrytheseismicloads.Therackswerestiffenedbyanexternalstructuralsteelbracingsystemwhichisindependentlyanchoredtothefloor.Foamblockmaterialisusedtopreventcelldisplacementintherackandimpactloading.ThemodifiedrackswerereviewedandfoundacceptablebytheNRC(Reference2).3.10.2.3MotorControlCenters1Land1MApreviouscomputeranalysiswasmadeofaWestinghousetypeWacmotorcontrolcenterwhichwasoriginallytestedatWyleLaboratoriesinOctober1972tomeettheseismicrequirementsrecommendedbyXEEEStandard344-1971.Thecalculationsdeterminedtheaccelerationlevelsandtypeofmotionresponsethatwereexcitedintheequipmentbyasimultaneoushorizontalandverticalsinebeattypeofmotioninput(5cycles/beat).Subsequently,asimilardynamicanalysiswasmadeoftheequipmentasmodifiedforGinna,withattentionfocusedonthenewpanelboardanddistributiontransformers.TheoriginalGinnaresponsespectza,asspecifiedfozthesafeshutdownearthquakecondition,gaveatotalrmsvectorinputaccelerationof0.79gcalculatedas0.56timesthesquarerootofthesumofthesquaresvalueofthefollowingthreecomponents:3.10<REV.1312/96 GINNA/UFSARx-direction(fronttorear)=0'07x0.56g=0.4gy-direction(sidetoside)=0.707x0.56g=0.4gz-direction(vertical)1.0x0.56g=0.56gThevalueof0.56gwasspecifiedfortheGinnatest.TheWyleLaboratoriesresponsespectra,ontheotherhand,gaveatotalrmsvectorinputaccelerationof1.49g.TheresponsespectraattheauxiliarybuildingplatformandoperatingfloorcentersofgravitywerecomparedtotheWyleLaboratoriesspectrum.Above5Hz,theaccelerationlevelsthroughouttheequipmentweregreaterwhencalculatedforthe5cycles/beattestatthe8.5Hzfundamentalnaturalfrequency,comparedtoanenvelopeoftheGinnain-structureresponsespectra.Basedonreviewofthetestresultsandcomparisonofinputresponsespectra,aswell's,correspondingaccelerationlevelssustainedintheequipment,itwasconcludedthattheexistingfragilityleveltestsperformedatWyleLaboratoriescouldbeusedtoqualifytheGinnamotorcontrolcenters,whichhavefundamentalfrequenciesabove5Hz.3.10.2.4SwitchgearThepreviousseismicqualificationofWestinghousetypeDB-50reactortripswitchgeazforGinnawasperformedattheWestinghouseAstzonuclearLaboratory.Thereportspresentresultsofseismicsimulationtestingforthe"lowseismic"(safeshutdownearthquakepeakaccelerationnotexceeding0,2g)and"highseismic"(safeshutdownearthquakebetween0.2gand0.4g)classesofplantsoverthefrequencyrange1to35Hz.Thesimulatedseismictestsconsistedofthreeelements:A.Inputingasinebeattypeaccelerationtothebaseoftheequipmentbeingtested.B.Monitoringtheresultingaccelezationsatvariouslocationsintheequipment.C.Monitoringtheelectricalfunctionsoftheequipmentbothduringandaftertheteststocheckforanylossoffunction.3.10-5REV.1312/96 GINNA/UFSAREachsinebeatofthevibrationinputconsistedof10cyclesofthetestfrequencywiththeamplitudeofthebeat(i.e.,theaccelerationofthevibration)increasingfromasmallvaluetothespecifiedmaximumvalueandreturningtotheinitialvalueinsinewavefashion.Themaximumrequiredverticalinputaccelerationofthesinebeat,asafunctionoftestfrequencyforthe"lowseismic"plantclassification,was0.5gupto10Hzandreducedtoaminimumvalueof0.2gat25Hz.Forhorizontalexcitation,themaximumrequiredaccelerationlevelofthesinebeatwas0.8gupto10Hzandreducedtoaminimumvalueof0.2gat25Hz.Correspondingvaluesforthe"highseismic"plantclassificationwere0.93gupto10Hz,reducingto0.32gat25Hzforverticalexcitationand1.4gupto10Hz,reducingto0.5gat25Hzforhorizontalexcitation.TheapplicableSEPreassessmentresponsespectrafortheswitchgearwerehigherthanboththe"lowseismic"and"highseismic"horizontalaccelerationinputcurvesforfrequenciesbetween15and30Hz.BasedonthereviewofthetestsperformedattheWestinghouseAstronuclearLaboratory,itwasconcludedthattheWestinghousetypeDB-50reactortripswitchgeazwouldmaintainitselectricalfunctionduringasafeshutdownearthquakeevent.Thisconclusionwasbasedontheassumptionthattherewerenoresonantfrequenciesinthe15to30Hzrange,or,ifsuchresonancesexisted,thattheresponsespectradevelopedfromthesinebeattestattheresonantfrequencyfor7%ofcriticaldampingenvelopedtheGinnaspectra(Ref'ezence1).3.10.2.5ControlRoomElectricalPanelsThestructuralintegrityofthemaincontrolboardwasevaluatedfozseismicloadsforthesafeshutdownearthquakeaspartoftheSEPreview(Ref'erence3).Theseismicstresseswerecalculatedusingthemodalresponsepropertiesofthemaincontrolboarddeterminedbyin-situmodaltesting.Aresponsespectrumanalysiswasusedtocalculatetheseismicinertialloadineachsignificantmodeforthreemutuallyperpendiculardirectionsofeathquakemotion.Theinertialloadswerethenusedinastaticanalysistodetermine/forces,moments,andstressesincriticalelementsoftheseismicloadpathofthemaincontrolboard.Theresultsoftheanalysisindicatedthatthemaincontxolboardwouldsurvivethesafeshutdownearthquake.However,RG&Edecidedtoprovidesomeadditionalstiffenersandsupportsinordertoenhance3.10-6REV.1312/96 GINNA/UPSARthestructuralintegrityofthecontrolboard.Thesemodificationswereimplementedin1984.3.10.2.6ElectricalCableRacewaysThecabletrayandconduitsupportanchorswereinstalledusingthemanufacturersrecommendedprocedures.AsaresultofSEPseismicreview,acomprehensivetestingandanalysisprogramtodemonstratetheseismicadequacyofelectricalcabletraysandconduitracewaysofthetypeusedinSEPplantswasinitiatedbytheSEPOwnersGroup.ByletterofOctober15,1984,fzomR.M.Kacich,ChairmanoftheSEPOwnersGroup,toC.I.GrimesoftheNRC(Reference4),theSEPOwnersGrouprespondedtoconcernsrelativetotheseismiccapabilityofcabletraysasfollows:TheoverallconclusionoftheSEPcabletraytestandevaluationprogramindicatesthatitishighlyunlikelythatanyofthecabletraysystemsusedinSEPplantswillsufferstructuralcollapseduringasafeshutdownearthquakeofthemagnitudespecifiedforeasternSEPplants.Thisconclusionisbasedonthefactthatnosystemfailuresoccurredinanyofover200full-scaleshaketabletestsofcabletrayconfigurationsselected,basedondetailedplantwalk-downs,asbeingtypicalofthoseinSEPplants.Thisconclusionisalsosupportedbyactualearthquakeexperiencedatafrompowerplantsandindustrialfacilitiesthathaveexperiencedstrongmotionearthquakes.BasedontheresultsoftheOwnersGroupeffortstodate,itisconcludedthattheexistingracewaysystemsinSEPplantspossesssubstantialinherentseismicresistanceandthattheseismicqualificationofracewaysystemsisnotasignificantsafetyissue.Therefore,nofurtherworkonthisissuebytheSEPownersisplanned.Asnotedabove,world-wideexperienceinpowerplantswhichhaveundergonesignificantearthquakesstronglysupportstheconclusionofthetestandevaluationprogram.TheseexperiencedataareexpectedtobedocumentedaspartoftheongoingeffortsoftheSeismicQualificationUtilitiesGroup.3.10-7REV.1312/96 GINNA/UFSAR3.10.2.7ConstantVoltageTransformersTheconstantvoltagetransformersarelocatedinthebatteryzoomsofthecontrolbuildingatelevation253.7ft.TheseismicqualificationoftheconstantvoltagetransformerswasbaseduponaseismictestoftransformersthatweredesignedbyBattelleColumbusLaboratoriesfortheSNUPPSNuclearPowerPlantProject.TheSNUPPStransformersareidenticaltothoseinstalledinGinna.ThehorizontalresponsespectrafortheGinnacontrolbuildingarelessthanthetestresponsespectra.ThepeakaccelerationoftheSNUPPStestresponsespectraforthesafeshutdownearthquakeexcitationinthehorizontaldirectionwas13g,andtheminimumresponseaccelerationwas2.4g.Therefore,itwasconcludedthattheconstantvoltagetransformerswillmaintaintheirfunctionalperformanceandstructuralintegrityduringa0.2gsafeshutdownearthquake(Reference1).3.104REV.1312/96 GINNA/UFSAR(ZNTENTZONALLYLEFTBLARGZ)3.10-9REV.1312/96 GINNA/UFSAR3.10.3SEISMICQUALIFICATIONOFSUPPORTSOFELECTRICALEQUIPMENTANDZNSTRUMENTATZONTheSEPSeismicReviewTeamrecommendedthatallsafety-relatedequipmentatGinnaStationbecheckedfozadequatelyengineeredanchorage;thatis,theanchorageshouldbefoundtobeadequateonthebasisofanalysisortestsemployingdesignprocedures(loadstressanddeformationlimits,materialsfabricationprocedures,andqualityacceptance)inaccordancewitharecognizedstructuraldesigncode.RochesterGasandElectricCorporationinitiatedathree-phaseSeismicActionPlan(Reference5)toprovideassurancethattheelectricalequpmentanchoragesystemswillperformtheirdesignfunctionduringthesafeshutdownearthquake.PhaseIconsistedofinspectionandpreparationofas-builtsketchesforallsafety-relatedelectricalequipmentaslistedbelow.Anchorboltsusedonthisequipmentwerefieldinspected.As-builtsketcheswerepreparedshowingallnecessaryinformationtoperformPhaseII.PhaseIZconsistedofananalysisofeachelectricalequipmentanchoringsystem,theresultsofwhichwerecomparedtothetestinformation.PhaseIIIconsistedoftestingtheanchorboltsandperforminganyresultingmodificationsrequiredtoupgradetheexistinganchoringsystemtothecriteriadescribedintheanalysissectionofPhaseIZ.3.10.3.1EquipmentAddressedTheactionplanincludedallClass1Eelectricalsystemsandcomponents.CertainClass1EequipmentinstalledduringrecentmodificationsinaccordancewithZEEE344-1975requirementswasknowntobeseismicallyanchoredandwasnotconsideredinthestudy.Thefollowingelectricalassembliesand/orcomponentswereevaluatedbytheSeismicActionPlan:3.10-10REV.1312/96 GINNA/UIiSAR~Relayrackassemblies.~480-V1Ebuses.~480-V(ac)1Emotorcontrolcenter.~125-V(dc)1Estarters.~Powerpanels.~lEbatteryracks.~lEbatterychargers.~Xnstrumentracks.~Controlpanels.~Diesel-generatorpanels.~Non-1Eitems(ancillaryitems).Allinternallymountedcomponentsanddevicesweighingmorethan25lbwereanalyzedasseparateassemblies.TheresultsoftheseismicevaluationprogramaredescribedinReferences6and7.ThedetailsaresummarizedinSection3.10.3.2~3.10.3.2RacewayAnchorages3.10.3.2.1TestProramAlltraysandconduitrunsinthesafety-relatedbuildingshadtheiranchoragesystemsinspected,tested,and,ifrequired,reworked.NoattemptwasmadetodistinguishbetweenClass1Eandnon-1EracewaysinanyoftheSeismicCategoryIstructures.Testcriteriawereestablishedincludingtheinformationnecessarytotesttheanchorageofthesupportsmakinguptheracewaysystem.Specifictestprocedureswereprepared,consistentwiththetestcriteria,foreachcategoryofanchorageincludedintheprogram.ThecategoriesofanchorageswereA.Expansionanchorsforbothconduitandtraysupportsinceilingand/orwalllocations.B.Clipsandunistruthardwareth'atrelyonfrictionalresistance.C.,EmbeddedhardwaresuchaskeystoneQdecknuts,embeddedunistrut,andpoured-in-placeanchors.3.10-11REV.1312/96 GINNAfUFSARDetailedsketchesofeachoftheembeddedhardwaretypeanchorsareshowninFigures3.10-1,3.10-2,and3.10-3.Thetestprogramincludedallthehardwarecomprisingtheloadpathforeachspecifictypeofsupport.Theboltssuspendingthestrutmemberstotheceilingorwallsectionweretestedonagenericbasisiftheyweretheembeddedhardwaretypeandsampletestediftheywereshellanchors.Thehardwareusedtoattachthestrutmemberstotheanchozboltsandwhichrelyonfrictionwasalsotested.Figure3.10-4showsthevariousgenericstrutsupportconfigurationsinuseatGinnaStationthatwerepartofthefrictionbolttestingprogram.3.10.3.2.2TestLoadsInordertoestablishtestloadperboltrequirementsfortheshellanchorsandembeddedanchors,theoriginalplantspecificationforcabletrayswasconsulted.Section4ofSpecificationSP-5375,(Reference8),specifiesthedesignloadfozthecab'letraytypeas100lb/ft.Thisload,appliedtoanyofthespecifiedcabletraywidths,shouldproducenomorethan0.25in.deflectionatmidspanwhencalculatedonasimplebeambasis.Inadditiontothetrayloads,thesupports'weredesignedtocarrya200-lbmanstandingatanypositioninthetray.Thedesignspanlengthswereassumedtobe8ft.The8-ftspanlengthscarryatotalloadof800lbbetweensupportsor4000lbforastackoffivetrays.Assumingtwoverticalmemberspersupport,aloadof800lbforeachoffivetraysplus200lbforthemanresultsina1000-lbloadpezverticalsupportmember.Forconservatism,a2000-lbtestloadwasusedoneachverticalsupportmembertested.Thetestloadforthefrictionalanchorswasbasedonthemanufacturer'sdesignmanual,UnistrutGeneralEngineeringCatalogNo.9(Reference9).Thedesigntorquevaluesforvariousboltsizesneededtomaintainaresistancetoslippageofatleast1500lbfora1/2-in.boltusedonP1000strutweredeterminedtobeasfollows:Bo1tSizeTorque(ft-lb)1/4in.5/16in.3/8in.191/2in.503.10-12REV.1312/96 GINNA/UFSARThetorquevaluesshownabovewereusedinthetestproceduresforqualifyingtheunistrutstud/nuthardwareassembliesandincludesaminimumsafetyfactorof3.3.10.3.2.3ExansionAnchorTestResultsExpansionanchorswereselectedfortestingbyinspectingandtesting258ofthecabletrayverticalsupportmembersusingshelltypeanchorsandlOSoftherigidconduitsupportsusingshellanchors.ThelowersamplingrateforconduitwasusedsinceallClass1Econduitisrigidandhasaverylowdesignload.However,the2000-lbtestloadwasusedonconduitanchors'llexpansionanchorsweretestedoneachofthesamplesupports.Theselectedanchorswereinspectedandloadtestedto2000lbinaccordancewithRG&EGinnaStationProcedures.Theacceptancecriteriaisthattheshellanchorsholdtherequiredloadwithoutexcessivemovement.TheresultsoftheshellanchortestingprogramaresummarizedinTable3.10-3.3.10.3.2.4FrictionalAnchorTestResultsTheunistrutstud/nuttestingcriteria(frictionalanchors)usedwereasfollows:A.Allaccessibleunistrutstudnutsusedforcabletraysupportsweretested.ThetotalnumberofClass1EsupportsisshowninTable3.10-4.B.Theunistrutnuts/boltsthatweretestedwerethoseusedtoattachthestrutmemberstotheceilingQdeckboltsorangleclips.Theseattachmentsrelyon'frictionandmustbetozquedtoatleastaminimumvaluewhichwasestablishedtoensureasafetyfactorofatleast3.Figure3.10-4showsthevariousconfigurationsofstrutsupportsusedthroughoutGinnaStation.Theunistrutjointsaffectedbytheproceduresaremarkedbyanarrow.C.The"as-found"torqueofalltheunistrutstudnutsonaparticularsupportwasrecorded.Allinaccessibleboltswereidentifiedandrecorded.Torquewrenchadapters(i.e.,crow'sfoot)wereusedtoreducethenumberofinaccessiblenutsorbolts.Thoseboltsstillinaccessiblewerewrench-tightenedwherepossible.D.Thedesigntorquevaluesforthevariousboltsizeswerederivedfromthefollowingmanufacturer'sdata:3.10-13REV.1312/96 GINNA/UFSARBoltSizeTorque(ft-lb)1/4in.5/16in.3/8in.191/2in.50Ifthe."asfound"torquevalueswerelessthantheminimumvaluesspecifiedbythemanufacturerthenthepropeztorquevalueswereappliedtoeachbolt.Boththeas-foundandfinaltorquevalueswererecorded.Allaccessiblesupportsweretested.TheresultsofthefrictionbolttestingprogramaresummarizedinTable3.10-4.3.10.3.2.5EmbeddedAnchorTestResultsThekeystonesteeldeckingtestcriteria(embeddedhardwareanchorsincludingembeddedunistzutandpoured-in-placeanchors)weredevelopedandthefollowinggenerictestwasperformedtoensurethattheloadcapacityoftheQdeckwassufficienttosustaintherequiredloads.Fourteenin-situtestswereperformedatdifferentplantlocations.Theselocationswereinconvenientopenareasandnotinanactualsupportlocation.Tenin-situunistrutand12poured-in-placeanchortestswezealsocompleted.TheresultsoftheembeddedanchorprogramsaresummarizedinTable3.10-5.3.10.3.3ClasslEEquipmentAnchorageQualificationProgramAs-builtdrawingswerepreparedfor115electricalassemblies.ThesedrawingsrepresentallClasslEandnon-1Eequipmentwhicharefloor-mounted,mountedonstructuralsteel,pouredwallmountedorblockwallmounted.Eachdrawingliststhesize,shape,number,andtypeofexistinganchorboltsfozaparticularassembly.Thisinformationwasobtainedfromfieldmeasurements.Theweightswereassessedbasedonthearea,gaugesizeoftheenclosuresteel,andtheweightsofalltheinternallymountedcomponents,includingwireandterminalblocks.Thetotalequipmentweightswerethendeterminedincluding25$oftheenclosureweightforconservatism.Theminimumloadingthattheexistinganchoragemustbecapableofcarryingduringaseismicevent(safeshutdownearthquake)atGinnaStationwasdeterminedduringthisprogram.Thecalculatedloads(tensileandshear)werecomparedtothepublishedloadcapabilitiesforthespecificanchorsusedon3.10-14REV.1312/96 GINNA/UFSAReachassembly.Ifthecalculatedloadvalueswerewithinthepublishedcapabilityoftheboltsusedonaparticularassembly,thenthecalculatedloadswereusedasthetestloadsforthatassembly,providedtheboltswereaccessible.Forwall-mountedequipmentthathadsafetyfactorsinexcessof10,nomodificationortestingwasperformed.Ifitwasdeterminedthattheexistinganchorageswereinadequate,thenthoseassembliesweremodifiedtakingnocreditfortheexistinganchors.Thehorizontalandverticalforcesweredeterminedbyusingone-and-a-halftimesthepeakaccelerationshownonthefloorresponsespectrumforeachassemblylocation.Allproposedexpansionanchorboltsusedaminimumsafetyfactorof5.7intensionand4inshear.Thefinalphaseoftheprograminvolvedtheinstallationofgenericmodificationsusingspecificconstructiondrawingsforeachassemblytobemodified.Atypicalgenericmodificati'onincludedtheweldingofstructuralplatesoranglestotheoutsideoftheenclosureframe,theinstallationofhiltiboltsorthroughboltsdependingonlocation,andthestitchweldingoftheenclosurecabinetstotheframes.Non-class1EevaluationswereconductedforthoseassembliespermanentlymountedinSeismicCategoryIbuildingsthatarenotsafetyrelated.TheanchorageacceptancecriteriaforthoseassemblieswerethesameasfortheClasslEassemblies.Internallymountedcomponentswerecategorizedandagenericdesignanalysiswasdevelopedtoevaluatethemethodsofattachingthesecomponentstothecabinets.IfanyonecomponentisclassifiedClass1Einanenclosure,thenallcomponentswereassumedtobeClass1E.Non-class1Eenclosureswerenotsurveyed.Itwasassumedthattheenclosurewillretainanyloosecomponentduringasafeshutdownearthquake.3.10.3.4ConclusionsTheNRChasreviewedtheRG&Ereportoftheupgradingofanchorageandsupportofsafety-relatedelectricalequipment(Reference6)andconcludedthattheelectricalequipmentanchoragedesignandinteznalmounteddevicesand3.10-15REV.1312/96 GINNA/UFSARcomponentevaluationsandmodificationswereadequate(Ref'erence2).Therequiredmodificationshavebeencompletedasdesigned.3.10-16REV.1312/96 GINNA/UFSAR3.10.4FUNCTIONALCAPABILITYOFCOMPONENTSTheNRChasinitiatedagenericprogramtodevelopcriteriafortheseismicqualificationofequipmentinoperatingplantsasanUnresolvedSafetyIssue(USIA-46).Underthisprogram,anexplicitsetofguidelines(orcriteria)thatshouldbeusedtojudgetheadequacyoftheseismicqualifications(bothfunctionalcapabilityandstructuralintegrity)ofsafety-relatedmechanicalandelectricalequipmentatalloperatingplantsaretobedeveloped.TheNRCStaffasaresultoftheseismicreviewoftheR.E.GinnaNuclearPowerPlanthasconcludedthat,sincethegroundresponsespectrum(0.2gRegulatoryGuide1.60spectrum)usedforGinnaseismicreevaluationenvelopstheGinnasite-specificgroundresponsespectrum,additionalsafetymazginsinthestructures,systems,andcomponentsdoexistforresistingseismicloadings.ThestaffalsoconcludedthatGinnaStationhasanadequateseismiccapacitytoresistapostulatedsafeshutdownearthquake,andthereisreasonableassurancethattheoperationofthefacilitywillnotendangerthehealthandsafetyofthepublic.Ifadditionalrequirementsareimposed,asaresultofUSIA-46,regardingfunctionalcapabilityofsafety-relatedelectricalequipment,theGinnafacilitywillberequiredtoaddressthesenewrequirements(Reference2).3.10.5SEISMICCATEGORYITUBING3.10.5.1CodesandStandardsTheoriginaldesignofSeismicCategoryItubingandtubingsupportsatGinnaStationwasperformedtothencurrent(1967)standardindustrypractice,whichwasbasedontheexperienceofthejourneymaninstrumentinstalleranddidnotrequireconformancetospecificindustrycodesorstandards.Current(1988)designrequirementsforSeismicCategoryItubingandsupportsincludethefollowing:3.10-17REV.1312/96 GINNA/UFSAR3.10.5.1.1TubinDesinReuirementsInstrumentStandardofAmericaStandardISA-S67.02andRegulatoryGuide1.151(References10and11)areusedasguidancefor.thedesign,fabrication,installation,andtestingoftubing.TubingisdesignedusingthestressevaluationequationscontainedinANSIB31.1(1973)withallowablestresslimitsasincludedinTable3.10-6exceptthatthestressintensificationfactor,I,applicabletobendingmomentsistakenequalto1.3foralljointandfittingconfigurationsbecauseoftherelativelylowallowablestresspermittedbyTable3.10-6comparedtoASMESectionIIIallowables.Welderqualifications,welding,andexaminationproceduresareinaccordancewithASMESectionV,NondestructiveExamination,1986edition,orAmericanWeldingSociety,ANSI/AWSD1.1-1987,StructuralWelding,codes.Theloadsandloadcausingphenomenatobeconsideredinthequalificationanddesignoftubingshallincludethefollowing.~Deadweight.~.Pressure.~Temperature.~Seismicinertia.~Supportmotionsdueto(1)Thermal.(2)Seismic.3.10.5.1.2TubinSuortsDesinReuirementsTubingsupportsarestandardmanufacturedtubingsupports(clipsorclamps)plusanyauxiliarysteelusedtoprotecttubing(channels)andprovideasupportpathtothebuildingstructure.Tubingsupportsthatattachthetubingtoauxiliaryorbuildingsteelshallbestandardmanufacturedtubingsupportsqualifiedfortheirintendedusebyloadratingusing.theprocedurecontainedinASMECodeSectionIII-NF-3380,DesignbyLoadRating,1986edition.3.10-18REV.1312/96 GINNA/UFSARChannelsorotherstructuralsteelusedtoprotectandsupporttubingandotherauxiliarysteelusedinthetubingsupportpathtothebuildingstructureshallbedesignedtotheAISCspecificationgiveninReference12forthelimitingloadsdevelopedfromthespacingtablesandchartsozasotherwisecalculatedforindividualtubingrunsevaluatedbyanalysis.Theparticularloadsandload-causingphenomenausedtodesignsupportsarethesameasgivenabovefortubing,exceptforpressure.AllowablestressesfortheloadcombinationsidentifiedaregiveninRef'erence12.Tubingspansinspace,inthoseareasadjacenttonormalpersonnelaccess(i.e.,within7ft0in.heightofplatforms,floorwalkwayareas,etc.),over3ft0in.inlength,shallbecontainedinchannelsorsimilarlysupportedorprotectedagainstpotentialdamage.3.10.5.2LoadConditions3.10.5.2.1TubinThetubingshallbeanalyzedforthefollowingloadingconditions:A.Desincondition-deadweightplusdesignpressure.BESevereenvironmentalcondition(1)-deadweightplusoperatingpressureplusOBE(inertia).C.Severeenvironmentalcondition(2)-deadweightplusoperatingpressureplusOBE(inertia)plusOBE(SAM)displacementsplusmaximumoperatingthermaleffectsincludingthermalsupportmotions.D.Extremeenvironmentalcondition-deadweightplusoperatingpressureplusSSE(inertia).E.Abnormalcondition-deadweightplusoperatingpressureplusloss-of-coolant-accidentinducedthermaleffects(applicationlimitedtoinsidecontainment).3.10.5.2.2TubinSuortsThetubingsystemsupportswillbeevaluatedtothefollowingcombinationsoftubingsystemimposedloads:3.10-19REV.1312/96 GINNA/UFSARA.Severeenvironmentalcondition(1)(Equation4ofTableQ1.5.7.1ofReference12):DeadweightplusOBE(inertia).B.Severeenvironmentalcondition(2)(Equation6ofTableQ1.5.7.1ofReference12):DeadweightplusmaximumoperatingthermalincludingrestraintoffreeenddisplacementandthermalsupportmotionsplusOBE(inertia)and(seismicanchormotion)effects.C.Extremeenvironmentalcondition(stresslimitcoefficientfromTableQ1.5.7.1is1.6,Equation8ofReference12):DeadweightplusSSE(inertia).D.Abnormal(stresslimitcoefficientfromTableQ1.5.7.1is1.7,Equation11ofReference12)(applicationlimitedtoinsidecontainment):Deadweightplusmaximumaccidentthermalincludingrestraintoffreeenddisplacementandthermalsupportmotions.Includedinthedesignofhorizontallyrunchannelsprovidedtoprotectorsupporttubingrunsdefinedasdeadweightshallbearequirementtosupportanexternalverticalloadof50lb,toprotectthetubingduringconstructionandnormalplantmaintenance,placedtocausethehighestbendingandshearstressesinthechannel.3.10.5.3RoutingRequirementsInstrumentsensinglinesshallberoutedtopreventviolatingrequiredseparationbetweenredundantinstrumentchannels.Separationbetweenredundantinstrumentsensinglinesshallbeprovidedbyfreeairspaceorbarriers,orboth,suchthatnosinglefailurecancausethefailureofmorethanoneredundantsensingline.Theminimumseparationbetweenredundantinstrumentsensinglinesshallbeatleast18in.inair,innonmissile,non-high-energyjetstream,non-pipe-whipornonhostileareas.Asanalternative,asuitablebarriershallbeused,whichextendssensinglinesrequirements.atleast1in.beyondthelineofsightbetweenredundantandshallbedesignedandmountedtoSeismicCategoryIInhostileareaspotentiallysubjecttohigh-energyjetstzeam,3.10-20REV.1312/96 missiles,andpipewhip,theseparationshallbeprovidedbyspaceinair,steelorconcretebarriers,orboth,anddocumentedwithanalysesorcalculationsasnecessarytoprovethattheseparationprotectstheredundantsensinglinesfromfailureduetoacommoncause.AllbarriersshallbedesignedandmountedtoSeismicCategoryZrequirements.Xnstrumentsensinglinesshallberunalongwalls,columns,orceilingswheneverpractical,avoidingpersonssupportingthemselvesonthelinesordamageofthesensinglinesbypipewhip,missiles,jetforces,orfallingobjects.Supports,brackets,clips,orhangersshallnotbefastenedtotheinstrumentsensinglinesforthepurposesofsupportingcabletraysoranyotherequipment.Routingofthenuclear-safety-relatedinstrumentsensinglinesshallensurethatthefunctionofthelinesisnotaffectedbyvibration,abnormalheat,orstress.3.10-21REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.101.R.C.Murray,etal.,SeismicReviewoftheRobertE.GinnaNuclearPowerPlantasPartoftheSystematicEvaluationProgram,NUREG/CR-1821,November15,1980.2.LetterfromD.M.Czutchfield,NRC,toJ.E.Maiez,RG&E,

Subject:

SEPSafetyTopicsIII-6,SeismicDesignConsiderationandZZZ-11,ComponentIntegrity,datedJanuary29,1982.3.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicII-6,SeismicConsiderations(SeismicStructuralEvaluationoftheMainControlBoard),datedJanuary9,1984.4.LetterfromR.M.Kacich,SEPOwnersGroup,toC.I.Grimes,NRC,

Subject:

SEPTopicIZI-6,SeismicDesignConsiderations,SEPOwnersGroupCableTray/ConduitTestProgram,datedOctober15,1984.5.LetterfromL.D.White,Jz.,toD.L.Ziemann,NRC,

Subject:

TheSeismicActionPlan,AnchorageandSupportofSafety-RelatedElectricalEquipment,datedFebruary11,1980.6.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

AnchorageandSeismicSupportofSafety-RelatedElectricalEquipment,FinalReport,datedDecember22,1980.7.LetterfromJ.E.Maier,RG&E,toD.M.Czutchfield,NRC,

Subject:

AnchorageandSupportofSafety-RelatedElectricalEquipment,FinalReport,datedFebruary27,1981.8.GilbertAssociates,Inc.,CableTraysandElectricalCircuitsPower,ControlandXnstrumentation,GinnaStationUnitNo.1,TechnicalSpecificationSP-5375,datedMarch17,1967.9.UnistrutGeneralEngineeringCatalogNo.9,UnistzutCorporation,Wayne,Michigan.10.InstrumentSocietyofAmerica,NuclearSafety-RelatedInstrumentSensingLinePipingandTubingStandard-1980fozUseinNuclearPowerPlants,ZSA-S67.02,1983.11.UPS.NuclearRegulatoryCommission,InstrumentationSensingLines,RegulatoryGuide1.151,July1983.12.AmericanInstituteofSteelConstruction,NuclearFacilities-SteelSafety-RelatedStructuresfozDesign,Fabrication,andErection,SpecificationANSX/AXSCN690,1984.3.10-22REV.1312/96 GINNA/UFSARTABLE3.10-1MAJORCLASS1ECOMPONENTSANDTHEBASISFORSEISMICQUALIFICATIONSstem/CoonentBasisforSeismicQualificationZ.EMERGENCYPOWERSYSTEMC.DF.Motor-operatedvalveoperators(ac/dc)Vital120-VacDistributionpanels1Aand1CInverters(SolidstateControls,Inc.)Constantvoltagetransformers125-Vdcpowersystem125-V,60-cellbatteries(Gould)andracksBatterychargersDieselgenerators(Alco/Westinghouse)G.Reactorbuildingcablepenetrations(Crouse-Hinds)H.ConduitsupportsandtraysupportsI.ElectricalequipmentanchorsA.Lowvoltage(600-V)switchgear(excludingunittransformer)(WestinghouseDB15,25,50,and75breakers)B.Motorcontrolcenters(WestinghousetypeW)Post-constructiontesting.PostconstructiontestingandanalysisinaccordancewithIEEE344-1971.UpgradedbyanalysistoIEEE344-1975.Post-constructiontesting.Postconstructiontesting.Installedin1978qualifiedbytestinaccordancewithIEEE344-1975.Designspecification;0.52gsimultaneoushorizontalandvertical.ModificationstobatteryracksDesignspecifiction;0.47gsimultaneoushorizontalandverticalacceleration.Postconstructiontesting.SEPOwnersGroup.Modificationprogram.Shcct1REV.1312/96 GINNA/UFSARTABLE3.10-1MAJORCLASS1ECOMPONENTSANDTHEBASISFORSEISMICQUALIFICATIONSstem/CoonentIZ.SAFEGUARDSINSTRUMENTATIONANDCONTROLBasisforSeismicQualificationATransmitters(Barton,Foxboro)B.Reactortripswitchgear(DB50)C.Maincontrolboard(WolfandMann)D.Reactortripsystemracks(A/Dconversion)E.Protectiverelayracks(safetyinjectionandreactortriplogic)F.Safeguardsracks(engineeredsafetyfeaturesactuation(ESFAS)output)G.Controlswitches(WestinghousetypeW2andOT2)Post-constructiontesting.Post-constructiontesting.Designspecification;0.52gsimultaneoushorizontalandverticalacceleration.Designspecification;0.52gsimultaneoushorizontalandverticalacceleration.Modificationtoracks.Designspecification;0.52gsimultaneoushorizontalandverticalacceleration.Designspecification;0.52gsimultaneoushorizontalandverticalacceleration.Post-constructiontesting.Sheet2 GINNA/UFSARTABLE3.10-2ELECTRICALCOMPONENTSSELECTEDFORSEISMICREVIEWZtemDescritionReasonSorSe1ectionBatteryracksEvaluatecapacityofthebracingtodeveloplateralloadcapacity.MotorcontrolcentersTypicalseismicallyqualifiedelectricalequipment.Functionaldesignadequacymaynothavebeendemonstrated.Checkanchoragetofloorstructure.SwitchgearSameasmotorcontrolcenters.ControlroomelectricalpanelsThecontrolpanelsappeartobeadequatelyanchoredatthebase.However,thereisaneedtocheckcomponentswhicharecantileveredoffofthefrontpanelandtocheckfrontpanelstifKness.ElectricalcableracewaysThecabletraysupportsystemsdidnothaveanyspecificseismicqualificationtesting.REV.1312/96 TABLE3.10-3SHELLANCHORTESTSUMMARYLocationTotal.NumberofNumberofanchorsNumberof'bxchorsThatInaccessibleAnchorsThatHeldBidNotZoldAuxiliarybuildingbasementfloorAuxiliarybuildingintermediatefloorScreenhousebasementfloorCabletunnelceilingContainmentbuildingbasementRelayroomBatteryroomsDiesel-generatorpits165222Load1621LoadTotal7573REV.1312/96 GINNA/UFSARTABLE3.10-4FRICTIONBOLTTESTRESULTSUMMARYLocationAuxiliarybuildingbasementfioorTotalNumberreccetableBoltsWrenchBoltsNotofBolts~i'czxe~icrMenedaccessible22721719AuxiliarybuildingintermediatefloorIntermediatebuilding,elevation271ft4in.Intermediatebuilding,elevation27Sft4inScreenhousebasementfloorCabletunnelRelayroomBatteryroomsDiesel-generatorpitsContainmentbasementfloorContainmentintermediatefloor2022832014464936121584112338133143051425323152131123371715521210245Total2680240449227REV.1312/96 GINNA/UFSARTABLE3.10-5CATEGORY3ANCHORSTESTSUMMARYLocationPoured-Xn-PlaceTestedTestsNumberofUnistrutQD-eckTestsTotalTestsZeldLoadDidNotHoldLoadAuxiliarybuildingbasementfloorAuxiliarybuildingintermediatefioorIntermediatebuilding,elevation271ft4inScreenhousebasementfloorContainmentbasementfloorContainmentintermediatefloorRelayroomBatteryrooms'012Total1210142424REV.1312/96 GINNA/UFSARTABLE3.10-6STRESSLIMITSFORTUBINGConditionStressLimitsDesignSevereenvironmentalySevereenvironmental2Ex~erneenvironmentalAbnormal'herePm+Pb~ShPm+Pb<1.2ShPm+Pb+Pe+Ps~<(Sh+SQPm+Pb<1.8ShPm+Pb+Pe+P~5thestresslimitforsystemoperabilityPm=Primarygeneralmembranestress;PDo/4tPb=Primarybendingstress;Mi/ZandMT/ZS~,Sh,Se=AllowablestressfromANSIB31.1CodeformaterialatdesigntemperaturePe=Restraintoffreeenddisplacement(thermalanddifferentialsupportmotionstress)Ps~=StressesduetodifferentialOBEseismicsupportmotionsP~=Stressduetoaccident-inducedsupportmotionsMT=TorsionalmomentonpipeMi=BendingmomentonpipeApplicationlimitedtoinsidecontainment.REV.1312/96

GINNA/UFSAR3.11ENVIRONMENTALDESIGNOFMECHANICALANDELECTRICALEQUIPMENT3.11.1BACKGROUND3.11.1.1InitialDesignConsiderationsSection6.1.2.1discussesenvironmentalconsiderationsintheselectionofengineeredsafetyfeaturesmaterials.Sections6.2.2.1,6.3.2.1,and6.5.1.2discussenvironmentalprotectiondesignfeaturesforcomponentsofthecontain-mentventilation,emergencycorecooling,andcontainmentairfiltrationsystemslocatedinsidecontainment.3.11.1.2ReviewofEnvironmentalQualificationofSafety-RelatedElectricalEquipmentThereviewoftheenvironmentalqualificationofsafety-relatedelectricalequipmentforGinnaStationwasinitiatedin1977underTopicIII-12oftheSystematicEvaluationProgram(SEP).InFebruary1980,theNRCzedirectedthereviewprogramforSEPplantsandprovidedDivisionofOperatingReactors(DOR)guidelinesforevaluatingenvironmentalqualificationandforidentifyingsafety-relatedequipmentforwhichenvironmentalqualificationwastobeaddressed(Reference1).OnJune25,1982,theNRCissuedaninterimregulation(Reference2),whichsuspendedtheJune30,1982,deadlineforqualificationofelectricalequipmentpursuanttotheDORGuidelinesandNUREG0588.Subsequently,10CFR50.49wasissued(February22,1983).RochesterGasandElectricCorporationsubmittedtheinitialreportconcerningtheenvironmentalqualificationofelectricalequipmentbyletter,datedFebruary24,1978(Reference3).ThissubmittalwasreformattedandresubmittedonDecember1,1978(Reference4).ItwasrevisedandresubmittedagainonApril2S,1980(Reference5),andonOctober31,1980(Reference6).OnJune1,1981,theNRCissueditsSafetyEvaluationReport(SER)fortheEnvironmentalQualificationsofSafety-RelatedElectricalEquipmentattheR.EDGinnaNuclearPowerPlant(Reference7).TheletterincludedtheSERbytheOfficeofNuclearReactorRegulation(NRR),theDraftInterimTechnicalEvaluationReport(TERC52S7-178)bytheNRCConsultant,FranklinResearchCenter,andarequestthatRG&Eprovideadditionalinformation.RochesterGas3.11-1REV.1312/96 andElectricCorporationrespondedtotheJune6,1981SERbylettersdatedSeptember4,1981(Reference8),November6,1981(Reference9),andFebruary18,1982(Reference10).TheNRCtransmittedanSERbytheNRR,andaTechnicalEvaluationReportbyFranklinResearchCenter,TERC5257-454,onDecember13,1982(Reference11),basedonRG&EresponsesinReferences8,9,and10.RochesterGasandElectricCorporationprovidedadditionalinformationinReferences12,13,14,and15.Intheresponses(Reference16)toNRCGenericLetter84-24,RG&Ecertifiedprogramcompliancewith10CFR50.49.ItwasalsonotedthattheEnvironmentalQualificationProgramisnotadverselyimpactedbytheIEbulletinsandnoticeslistedinGenericLetter84-24.1nReference17,theNRCconcludedthattheEnvironmentalQualificationProgramcomplieswiththe10CFR50.49andthattheissuesraisedinReference11aresatisfactorilyresolved.BasedontheDORguidelines,theRG&EEnvironmentalQualificationProgramaddressesthesafety-relatedelectricalequipmentwhichmustfunctiontomitigatetheconsequencesofloss-of-coolantaccidents(LOCA)orhigh-energylinebreaksinsideoroutsidecontainmentandwhoseenvironmentwouldbeadverselyaffectedbytheaccident.3.11.2EQUIPMENTIDENTIFICATIONInaccordancewiththeDORguidelines,RG&EwasdirectedtoestablishalistofsystemsanddisplayinstrumentationneededtomitigatetheconsequencesofaLOCAorhigh-energylinebreakinsideoroutsidecontainmentandtoreachasafeshutdown.Thedisplayinstrumentationselectedincludesparameterstomonitoroverallplantperformanceaswellastomonitorthesystemsonthelist.ThelistofsystemswasestablishedonthebasisofthefunctionsthatmustbeperformedformitigationoftheconsequencesofaLOCAorhigh-energylinebreakandtoeffectsafeshutdownwithoutregardtothelocationoftheequipmentrelativetoapotentiallyhostileenvironment.Thesystemsconsideredwerethoserequiredtoachieveorsupport(1)emergencyreactorshutdown,(2)containmentisolation,(3)reactorcorecooling,(4)containmentheatremoval,(5)cozeresidualheatremoval,and(6)preventionofsignificantreleasesofradioactivematerialtotheenvironment.ThelistofequipmentrequiringenvironmentalqualificationisincludedintheRG&EOctober31,1980,report(Reference6),assupplementedinReferences83.I1-2REV.1312/96 GINNA/UFSARthrough20and12through14.Thecurrent"MasterList"relativeto10CFR50.49iscontainedintheNuclearPolicyManualandintheEnvironmentalQualificationDataFiles.3.11-3REV.1312/96 GINNA/UFSAR3.11.3IDENTIFICATIONOFLIMITINGENVIRONMENTALCONDITIONSThissectiondefinesthebasesforandreferencestotheenvironmentalconditionsencounteredthroughouttheplant.AtabularsummaryisprovidedinTable3.11-1.3.11.3.1InsideContainment3.11.3.1.1PostLoss-of-CoolantAccidentEnvironmentPostaccidentenvironmentalconditionsinsidecontainmentarediscussedinSection6.1.2.1.ThelimitingconditionsresultedfromLOCAanalyses.ThetemperatureandpressureprofilesaregiveninFigures6.1-1and6.1-2withpeakvaluesbeing286'Fand60psig,respectively.TheradiationenvironmentforGinnaStationispresentedinFigures6.1-4and6.1-5fromdatainTables3.11-2and3.11-3.MaterialcompatibilitywithpostaccidentchemicalenvironmentisalsodiscussedindetailinSection6.1.2.1.ForaLOCA,containmentconditionswereanalyzedaspartofSEPTopicVI-2.DbytheLawrenceLivermoreNationalLaboratoryfoztheNRC(Reference18).Itwasdeterminedthatthepeakpressureis59.3psig,whichislessthanthedesignpressureof60psig.Inthelongterm(10,000to20,000sec),thecontainmenttemperaturestaysabovetheoriginalenvironmentalqualificationenvelope(250'Fversus219'F).TheRG&Elimitingtemperaturehasthusbeenincreasedaccordingly.TheNRCdeterminedthatthissmallvariationhadnoeffectonthequalificationstatusofGinnaStationequipment.Thepeaktemperatureof282'Fisalsolessthanthedesigntemperatureof286'F.AnevaluationwasperformedtodeterminetheeffectoftheBRIreplacementsteamgenerators(RSGs)atGinnaStationontheresultsofthecontainmentresponsefollowingaLBLOCA.TheRSGshaveapproximately0.9percentmoremassintheprimarysystemthantheoriginalsteamgenerators(OSGs).Thiswouldcausethepeakreactorbuildingpressureandtemperaturetoincreasebyapproximately0.5psiandapproximately1F,respectively.Thepeakpressureandtemperatureremainbelowtheacceptancecriteriaof60psigand286Fgrespectively.3.11-4REV.1312/96 GINNA/UFSARConservatismwasusedtoestablishtheaccidentradiationenvironmentusedfordesignpurposes.Areleaseof1008ofthenoblegases,508ofthehalogens,and1%ofallremainingfissionproductswasassumed.Nocreditwastakenforremovalofradioactivityfromthecontainmentatmospherebysprays,filters,andfission-productplateout.Thespecificactivityincontainmentwasroughlydoubledbyassumingacontainmentfreevolumeassociatedwithanicecondensercontainment;thus,theradiationenvironmentclearlyoverstatesthatwhichwouldbepresenteveninaminimumsafeguardscase.ThisconsezvatismisapparentfromacomparisontotheDORGuidelines,whichsuggestapost-LOCAintegrateddoseof2x10radsgamma.7Figure3.11-1showsthenomogramreproducedfromAppendixBoftheDORGuidelines.GinnaStation(1520MWt,containmentvolume997,000ft)is3representedbythelineshowninFigure3.11-1.ZnJune1984,theNRCissuedRevision1toRegulatoryGuide1.89.AppendixDofRegulatoryGuide1.89,Revision1,providesamethodologyfordeterminingthequalificationradiationdose.AcomparisonofthedetailedassumptionsindevelopingthedoseinformationcontainedinTablesD-1andD-2ofRegulatoryGuide1.89,Revision1,(reproducedasTables3.11-4and3.11-5)andGinnaStationisshowninTable3.11-6.AlthoughtheGinnaStationfancoolershaveiodineremovalcapability,nocreditistakenfoziodineremovalbythefiltersforconservatism.GinnaStationsatisfiestheassumptionsusedbytheNRCinestablishingTables3.11-4and3.11-5exceptforthereactorpowerlevelandcontainmentvolume.ThedoserateatthecenterlineofcontainmentinTables3.11-4and3.11-5wasdeterminedbythespecificactivityofthecontainment.atmosphere(i.e.,curies/cubicfeet).Thespecificactivity,therefore,isdirectlyproportionaltothereactorpowerlevelandinverselyproportionaltothecontainmentvolume.ThespecificactivityandthereforethecontainmentcenterlinedoserateforGinnaStationwouldbe(1520MWt/4100MWt)x(2,520,000ft/997,000ft)xtabulatedvaluesshowninTables3.11-4and3.11-53.11-5REV.1312/96 GINNA/UFSARor0.937xthetabulatedvaluesofTables3.11-4and3.11-5.Thetime-dependentdoseatthecontainmentcenterlineofGinnaStationiscontainedinTables3.11-2and3.11-3.Theintegratedgammadoseoutsidethecranewallwouldbereducedbyafactorof2.5belowthecenterlinedosebecauseoftheshieldingeffectsofthecranewall.SubmergenceofvalvesinsidecontainmentisdiscussedinReference19whereithasbeenshownthatoperationfollowingsubmergenceisnotrequired.SubmergenceofinstrumentationisdiscussedinReference20.Allinstrumentationrequiredtofunctionforpostaccidentmonitoringhasbeenelevatedtopreventsubmergence.3.11.3.1.2PostMainSteamLineBreakEnvironmentThepeakpressurefollowingamainsteamlinebreakis57.7psig.Thepeaktemperatureis374'F.ThishighertemperaturewasdeterminedbytheNRCnottobelimiting,however,forqualificationofequipmentrequiredfollowingamainsteamlinebreakbecauseA.Thehightemperaturetransientisverybriefandthereissuper-heatedsteam(withalowerheattransfercapability),asopposedtosaturatedsteam.B.Theequipmentisprotectedfromthedirecteffectsofthesteamlinebreakbyconcretefloorsandshields.C.Thesensitiveportionsoftheelectricalequipmentarenotdirectlyexposedtotheenvironmentbutareprotectedbyhousing,cablejackets,andthelike.Forthesereasons,thehumidityandsteamenvironmentfollowingaLOCAremainslimiting.ThisisconsistentwiththeNRCPosition4.2oftheGuidelinesfozEvaluatingEnvironmentalQualificationofClass1EElectricalEquipmentinOperatingReactors.Radiationlevelsincontainmentfollowingamainsteamlinebreakarenotlimitingsincefuelfailuresazenotprojectedtoresultfromamainsteamlinebreak.ChemicalenvironmentandsubmergenceareboundedbytheLOCAconditions'.11-6REV.1312/96 GINNA/UFSARTheNRCfurthezexaminedagenericissueconcerningmainsteamlinebreakwithcontinuedfeedwateraddition.InaFebruary9,1983,SER(Ref'ezence21)theNRCconcludedthattheresultsofSEPTopicVI-2.Dcalculationswereacceptablebecause(1)themainfeedwatersystemisautomaticallyisolatedandthepreferredauxiliaryfeedwatersystemlimitsflowtothesteamgenerators,I(2)thepreferredauxiliaryfeedwatezpumpsareprotectedfromtheeffectsofrunoutflow,and(3)allpotentialwatersourceswereidentifiedandalthoughareactorreturntopowerwouldoccur,thereisnoviolationofspecifiedacceptablefueldesignlimits.3.11-7REV.1312/96 GINNA/UISAR3.11.3.2AuxiliaryBuilding3.11.3.2.1Heatin,Ventilation,andAirConditioninTheauxiliarybuildinghasaheating,ventilation,andairconditioningsystemwhichprovidesclean,filtered,andtemperedairtotheoperatingflooroftheauxiliarybuildingandtothesurfaceofthedecontaminationpitandspentfuelstoragepool.Thesystemexhaustsairfromtheequipmentroomsandopenareasoftheauxiliarybuilding,andfromthedecontaminationpitandspentfuelpool(SFP)throughaclosedexhaustsystem.Theexhaustsystemincludesa100'h-capacitybankofhighefficiencyparticulateairfiltersandredundant1008-capacityfansdischargingtotheatmosphereviatheplantvent.Thisarrangementensurestheproperdirectionofairflowforremovalofairborneradioactivityfromtheauxiliarybuilding.Includedintheauxiliarybuildingexhaustsystemisaseparatecharcoalfiltercircuit,whichexhaustsfromroomswhezefission-productactivitymayaccumulateduringMODES1and2inconcentrationsexceedingtheaveragelevelsexpectedintherestofthebuilding.Althoughnocreditforthissystemisassumedintheplantsafetyanalysis,thiscircuitiscapableofprovidingexhaustventilationfromtheareascontainingpumpsandrelatedpipingandvalvingwhichareusedtorecirculatecontainmentsumpliquidfollowingaLOCA.Afull-flowcharcoalfilterbankisprovidedinthecircuit,alongwithtwo50%-capacityexhaustfans.Theair-operatedsuctionanddischargedampersassociatedwitheachfanareinterlockedwiththefansuchthattheyarefullyopenwhenthefanisoperatingandfullyclosedwhenthefanisstopped.Thesedampersfailtotheopenpositiononlossofcontrolsignalorcontrolair.Thefansdischargetothemainauxiliarybuildingexhaustsystemcontainingthehighefficiencyparticulateaiz(HEPA)filterbank.Toensureapathforthecharcoal(andHEPA)filteredexhausttotheplantventifthemainexhaustfansarenotoperating,afail-opendamperisinstalledinabypasscircuitaroundthetwomainexhaustfans.Inadditiontothemainauxiliarybuildingventilationsystem(ABVS),theresidualheatremoval,safetyinjection,containmentspray,andchargingpumpmotorsazeprovidedwithadditionalcoolingprovisionswhenthepumpsareoperating.Thesafetyinjectionandcontainmentspraypumpmotorsarelocatedinanopenareainthebasementoftheauxiliarybuildingandsharethreeservice-water-cooledheat3.11-8REV.1312/96 GINNA/UFSARexchangers.ln1992,servicewatertotheseheatexchangerswasblankedoff(seeSection9.4.9.1).Thechargingpumpsandresidualheatzemovalpumpsarelocatedinindividualrooms,eachroombeingprovidedwithtwocoolingunitsconsistingofredundantfans,water-cooledheatexchangers,andductworkforcirculatingthecooledair.Thecapacityofeachchargingpumpcoolingunitissufficienttomaintainacceptableroom-ambienttemperatureswiththeminimumnumberofpumpsrequiredforsystemoperationinservice.Thecoolingunitsintheresidualheatremovalpumppitarenotrequiredfortheoperationoftheresidualheatremovalpumps,evenifbothpumpsareoperating.Intheeventofalossofoffsitepower,theauxiliarybuildingventilationsystem(ABVS)mainsupplyandexhaustfanswouldbeinoperable.However,allotherfansintheauxiliarybuildingventilationsystem(ABVS)aresuppliedbyemergencydieselpower,includingthepumpcoolingcircuitsforsafety-relatedpumpmotors,asdescribedabove.Analysishasshownthatthethreelevelsoftheauxiliarybuildingandtheresidualheatremovalpumppitwouldremainwithinacceptablelimitswhentheoutsideairwasatitsmaximumexpectedtemperatureandallcoolingunitsexceptthoserelatedtothechargingpumpsfailed.Sincetheauxiliarybuildingisaverylargevolumebuilding,itisnotexpectedthattherewouldbeapostaccidenttemperatureincrea'seexceptinsomelocalareasnearhotpipingandlargemotors.Thissituationexistsonlyinthebasementoftheauxiliarybuildingwherethesafety-relatedpumpsandrecirculatedsumpfluidpipingarelocated.Thesafety-relatedpumpsandassociatedequipmentarequalifiedforthisenvironment.3.11'.2.2LossofVentilationNormalconvectivecooling,supplementedbytheventilationsystemasdescribedabove,isadequatetomaintainthepostaccidenttemperaturewithinnormalambientlevels.Intheeventthatallventilationwerelost,ithasbeendeterminedthatthepumpsandassociatedvalveswouldbecapableofoperatingintheresultantenvironmentforthetimerequiredtomitigatetheaccidentwithoutsignificantreductionintheavailableoperatinglifeoftheequipment(seeSection9.4.2.4).AspartofSEPTopicIII-S.B,anextensivereviewwasperformedofhigh-andmoderate-energypipebreaks.IntheauxiliarybuildingitwasdeterminedthatsteamheatinglinebreakswouldadverselyaffecttheenvironmentalREV.1312/96 GINNA/IJFSARqualificationofsafety-relatedelectricalequipment.Inresponsetothispostulatedpipebreakscenario,RG&Eprovidedpipewhipandjetimpingementprotectionfora6-in.steamlinetoprotectcertaincabletrays.Also,RG&Emadeavailablespareelectricalbreakersandcablezequizedforoperationofachargingpump,aswellasproceduresandadministrativecontrols.Thecalculatedpeakpressureandtemperatureconditionsintheauxiliarybuildingfortheeventare150'Fand0.1psig.3.11.3.2.3RadiationLevelsTheradiationlevelsintheauxiliarybuildingwouldincreaseintheeventofaLOCA.Usingconservativepostaccident.fission-productactivitylevels,thepostaccidentenvironmentintheauxiliarybuildingwascalculated.ThisisdiscussedindetailinSection12.4.3.3.Theonlymajorradiationfieldintermsofequipmentqualificationisinthevicinityoftherecirculatingfluid.Reference6addressestherequiredqualificationdosesfozalltheaffectedequipment.3.11.3.2.4FloodinFloodingisnotaconcernintheauxiliarybuilding.AreviewofpotentialequipmentfailureswasconductedaspartoftheAppendixRfireprotectionreviewaswellasSEPTopicIII-G,SeismicDesignConsiderations'twasdeterminedthatactuationofthefireprotectionspzinklezsorfailureofallnonseismictankswouldnotfloodrequiredsafety-relatedequipment.3.11-10REV.1312/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)3.11-11REV.1312/96 GINNA/UFSAR3.11.3.3IntermediateBuildingImplementationofanaugmentedinserviceinspectionprogramforhigh-energypipingoutsidecontainmenthasreducedtheprobabilityofpipebreaksinthesesystemstoacceptablylowlevels(Section3.6.2.1).A6-in.mainsteamlinebranchconnectionbreakistheintermediatebuildingdesign-basisevent.Ananalysisofthiseventresultedincalculatedsteamconditionsof0.25psigand212'F.Apipecrackorbranchlinethatcouldnotbeisolatedisthelimitingdesign-basiseventfortheintermediatebuildingenvironment.Massandenergyreleaseinthiscasewouldbelimitedbythedryoutofthesteamgeneratorswiththedurationoftheenvironmentdependentonthesizeoftheleakorbreak.Basedonflowthroughamainsteamsafetyvalve(a6-in.line)of247lb/secatasteamlinepressureof1100psiaandtheinventozyavailableforreleasefromamainsteambreakof165,500lb(Section15.1.5),themassandenergyflowwillcontinueforatleast11minutes.Smallerleaksmaycontinuesubstantiallylonger.Itisexpectedthatwithin30minutesto1hour,actioncouldbetakentoprovideaddedventilationtothebuildingbyopeningdoors.Withinseveralhours,returntonearambientconditionscouldbeaccomplished.Theexactdurationisnotcriticalintermsofaffectedequipmentqualification;therefore,noexplicitcalculationshavebeenperformed.Chemicalsprayisnotadesignconsiderationinthisbuilding.Theeffectsofsubmergenceneednotbeconsidered,asdiscussedinReferences22,23,and24.Reference8presentstheresultofananalysisperformedtoensurethatsafety-relatedequipmentwouldnotbefloodedintheeventofafeedlinebreakintheintermediatebuilding.Theturbine-drivenauxiliaryfeedwaterpump(TDAFW)areawasanalyzedtodeterminetheresultantenvironmentalconditionsifallventilationwerelost.Thepurposewastoobtaindatatoassessthefeasibilityofperformingmanualoperationofcertainvalvesinthearea.Theanalysisshowedthatthepeaktemperaturewouldreach145'Fwithinthefirsthourandthenstabilize(seeSection9.4.2.4).TheradiationenvironmentwasreviewedinresponsetotheTMILessonsLearnedcommitments.Theradiationenvironmentisnotsignificantintermsofequipmentqualification.3.11-12REV.1312/96 GINNA/UFSARAspartofSEPTopicII1-5.B,areviewwasmadeofhigh-energylinefailureswhichcouldaffectthesteamandfeedwaterlinesintheintermediatebuilding.Potentialcracksinthesteamandfeedwaterpipingweredeterminedtobeinsignificantintermsofdamagingrequiredsafeshutdownequipment.Anevaluationwasmadeofthepostulatedconsequencesofintermediatebuildingblockwallfailureduetoahigh-energylinebreakintheturbinebuilding.Itwasdeterminedthatfailureofthesafetyandreliefvalveswouldnotbelimitingandthatauxiliaryfeedwaterflowwouldbemaintained.However,RG&Edidcommittoevaluate,andmodifyasnecessary,thestructuralintegrityofsteamandfeedwaterlines,mainsteamisolationvalves,andauxiliaryfeedwaterconnectionsinconjunctionwiththeGinnaStationStructuralUpgradeProgram(Reference25)inordertoprovideprotectionfromthefailureoftheadjacentwali'hisinformationisprovidedinmoredetailinSection3.6.2.3.11-13REV.1312/96 GINNA/UFSAR3.11.3.4CableTunnelSincethecabletunneliseffectivelyopentotheintermediatebuilding,thelimitingenvironmentalconditionsforthecabletunnelareidenticaltotheintermediatebuildingconditions.However,physicalseparationissuchthatnoconcernexistswithrespecttodirecteffectssuchasjetimpingementduetopostulatedhigh-energylinebreaks.3.11.3.5ContxolBuildingThelimitingenvironmentalconditionsofthecontrolbuilding,whichincludesthecontrolroom,relayroom,andbatteryrooms,isnormalambientconditions.Protectionagainsthigh-energylinebreaksandcirculatingwaterlinebreakswhichcouldoccuroutsidethecontrolbuildingandaffectthecontrolbuildingenvironmentareidentifiedanddiscussedinReferences20through24and26through30.TheairconditioningsystemforthecontrolroomisdescribedinSections6.4and9.4.ThemainairhandlingunitandcirculationfansforthecontxolzoomazepoweredfromaClass1Emotorcontrolcenter(MCC-1K),whichreceivespowerfromadiesel-backedemergencybus(diesel1A).Thecontrolroomheating,ventilation,andairconditioningsystemhasbeenoutofserviceseveraltimesduringtheplantoperationformaintenance.Asatisfactoryenvironmenthasbeenmaintainedbyopeningthetwocontrolroomdoorsandtworelayroomdoors(connectingthetworoomstogether),andwithoutsideair,providingnaturalcirculation.Equipmentfailurehasneverbeenexperiencedduringtheseeventsbecauseofatemperatureincreaseduetolackofheating,ventilation,andaizconditioning.Itisalsopossibletoprovidefortheuseofportableairconditioningunitsorfanstomaintainenvironmentalconditionswithinproperspecifications.Therelayroomisnormallycooledbytwonon-safety-relatedairconditioningsystems,whichcanbemanuallyalignedtotheemergencybusesbyclosingthepxoperbus-tiebreakers.Naturalcizculationwiththecontrolroomandthe3.11-14REV.1312/96 GINNA/UFSARuseofportableairconditioningunitsandfansareoptionsavailabletomaintainenvironmentalconditionswithintherequiredspecifications.Tofurtherensurethatalossofventilationtothecontrolandrelayroomsisnotexpectedtobeaconcern,an8-hourtestwasconductedonSeptember15,1980.Ztwasdemonstratedthatforalossofallheating,ventilation,andaircon-ditioning,nosignificanttemperatureincreaseoccurredinthecontrolroomorrelayroomusingcoolingmeasuresasdiscussedabove.Onlytheplantcomputer,locatedinitsownroomwithintherelayroomandnotrequiredforaccidentmitigationozsafeshutdown,appearedtobesusceptibletooverheating.Thebatteryroomshaveasetofinletandexhaustfans,aswellasanairconditioningsystem.Additionalfanspowereddirectlyfromthebatterieshavealsobeeninstalled.AspartoftheSEPTopiclI1-5.Breview,RG&Edeterminedthatsteamheatingcoilsinthecontrolbuildingwouldresultinaharshenvironmentduetoapostulatedfailuze.Thesesourcesofsteamhavebeenremovedfromthecontrolbuilding.3.11.3.6DieselGeneratorRoomsTheemergencydieselgeneratorroomseachhavetheirownheating,ventilation,andairconditioningsystems,poweredfromthediesels.Assoonasthedieselsarebzoughtuptospeed,stabilized,andtheirrespectivecircuitbreakersclosedtotheiremergencybuses,theheating,ventilation,andairconditioningsystems(ventilatingfans)areenergized.Failureofasteamheatinglinewouldaffectonlyonediesel.Theotherdiesel,aswellasoffsitepower,wouldstillbeavailable.ThisconfigurationhasbeenreviewedbytheNRCinReference28andfoundacceptable.ProtectionagainsteventsoutsidetheroomsisdescribedinReferences20,23,26,27,and30.Thelimitingenvironmentinthedieselgeneratorrooms,therefore,isnormalambientconditions.Toprovideprotectionfromfloodinginthediesel-generatorroomsduetoacirculatingwaterlinebreak,18-in.-highsteelcurbswereinstalledinthe3.11-15REV.1312/96 GINNA/UFSARdieselgeneratorrooms.Subsequentinstallationofthe"supezwall"attheturbinebuildinginterfaceprecludesthenecessityforthecurbsatthatlocation.3.11.3'TurbineBuildingTheturbinebuildingdoesnotrequireaheating,ventilation,andaircon-ditioningsystemperse,butratherutilizesroofventfans,wallventfans,windows,andunitheatersforcontroloftheturbinebuildingenvironment.Intheeventoflossofpowertofansinthisbuilding,therewouldbenosignificanttemperaturerisesinceitisalargevolumebuildingwithsufficientopenings(windowsandaccessdoors)toadequatelycirculatetheoutsideaiz.Analyseshaveshownthatthelimitingpressureiscausedbyaninstantaneousbreakinthe20-in.feedlineintheturbinebuilding(seeSection3.6.2.5.1).Peakpressuresare1.14psigonthelowertwolevelsofthebuildingand0.70psigontheoperatingfloor.Failureofportionsoftheexteriorwalllimitsthedurationofthepressurepulsetoafewseconds.Pressureandtemperatureislimitedbythefailurecapacityoftheexteriorwalls.Assumingsaturationconditions,thelimitingtemperatureisapproximately220'F.A100%humiditysteam-airmixtureisassumed.Isolationofthemainsteamandfeedsystemwillisolatethesourceofenergytotheturbinebuilding.Forconservatism,ithasbeenassumedthatthepeakpressureandtemperatureconditionpersistsfor30minuteswithreturntoambientbeingaccomplishedinatotalof3hours.Theexactdurationofhighenvironmentalconditionsisnotcriticalintermsofaffectedequipmentqualification;therefore,noexplicitcalculationshavebeenperformed.Thelimitingfloodconditionresultingfromacirculatingwatersystempipebreakis18in.ofwaterlevelinthebasementofthebuilding(Reference20).3.11.3.8AuxiliaryBuildingAnnexThisstructurehousesthestandbyauxiliaryfeedwatersystem.Thelimitingenvironmentinthisstructureisnormalambientconditions.Thecoolingsystemforthisbuildingisredundantandseismicallyqualified.Floodingis3.11-16REV.1312/96 GINNA/UIiSARnotaconcernsinceallsafety-relatedequipmentassociatedwiththestandbyauxiliaryfeedwatersystem(SAFN)iselevatedsothatacompletefailureofthecondensatetesttankwouldnotcausesubmergence.3.11.3.9ScreenHouseThescreenhouse,liketheturbinebuilding,doesnotrequireaheating,ventilation,andairconditioningsystem,bututilizesroofventfans,wallventfans,windowsandunitheatersforcontroloftheenvironment.Intheeventofalossofpowertothefans,therewouldbenosignificanttemperaturerise,sinceitisalargevolumebuildingwithsufficientopeningstoadequatelycirculateoutsideair.Thelimitingenvironmentinthescreenhouseisnormalambientconditions.AreviewwasconductedaspartofSEPTopicIII-5.Btoevaluatetheeffectsofhigh-andmoderate-energylinebreaksinthescreenhouse.Itwasdeterminedthatnoprotectionwasneededbecausealternativeshutdownmeansareavailable,whichdonotrelyuponservicewaterfromthescreenhouse.Curbswereinstalledinthescreenhousein1975toprotectcriticalequipmentfromthefloodingsourceofapotentialcirculatingwaterlinebreak.3.11-17REV.1312/96 GINNAlUFSAR3.11.4EQUIPMENTQUALIFICATIONINFORMATIONCompleteandauditablerecordswhichincludesupportingdocumentationforenvironmentalqualificationofsafety-relatedelectricalequipmentaremaintainedbyRG&E.Thedocumentationwhichincludestestresults,specifications,reports,andotherdatahasbeenidentifiedbydocumentationreferencecitingsintheRG&EreportstotheNRContheenvironmentalqualificationprogram.3.11~5ENVIRONMENTALQUALIFICATIONPROGRAMTheNuclearPolicyManualdefinestheadditionalqualityassuranceprogramrequirementsforreplacementandmaintenanceofenvironmentallyqualifiedequipmenttoensurecompliancewiththerequirementsof10CFR50.49.Theenvironmentalqualificationprogramisembeddedinproceduresfordesign,installation,andmaintenanceofsystemsandcomponents.TheEquipmentQualificationMasterListisarrangedbysystem.TheNuclearPolicyManualisthecontrollingdocumentfortheenvironmentalqualificationprogramandassignstheEngineeringDepartmenttheresponsibilityforestablishinganevaluationprocessthatdocumentsthebasisforanychangesintheEquipmentQualificationMasterList.3.11-18REV.1312/96 GINNA/UFSARREFERENCESFORSECTION3.113~LetterfromD.L.Ziemann,NRC,toL.D.White,Jz.,RG&E,

Subject:

ElectricalEquipment,EnvironmentalQualification,datedFebruary15,1980.NRCInterimRule,10CFRPart50.49,EnvironmentalQualificationofElectricEquipment,'June25,1982.LetterfromL.D.White,Jr.,RG&E,toA.Schwencer,NRC,

Subject:

EnvironmentalQualificationofElectricalEquipment,datedFebruary24,1978.4~5.LetterfromL.D.White,Jr.,RG&E,toD.EnvironmentalQualificationofElectrical1978.LetterfromL.D.White,Jr.,RG&E,toD.EnvironmentalQualificationofElectricalApril25,1980.L.Ziemann,NRC,

Subject:

Equipment,datedDecember1,L.Ziemann,NRC,

Subject:

Equipment,Revision2,dated7.8.9.10.LetterfromJ.E.Maier,RG&E,toD.G.Eisenhut,NRC,

Subject:

EnvironmentalQualificationofElectricalEquipment,datedOctober31,1980.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

EquipmentQualificationofSafety-RelatedElectricalEquipment,datedJune1,1981.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

EnvironmentalQualificationofSafety-RelatedElectricalEquipment,datedSeptember4,1981.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

EnvironmentalQualificationofElectricalEquipment,datedNovember6,1981.LetterfromJ.E.Maier,RG&E,toD.M.Czutchfield,NRC,

Subject:

SchedulefozEnvironmentalQualificationofElectricalEquipment,datedFebruary18,1982.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

Safety-RelatedEvaluationReportforEnvironmentalQualificationofSafety-RelatedElectricalEquipment,datedDecember13,1982.12.LetterfzomJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

10CFR50.49,EnvironmentalQualificationofElectricalEquipment,datedMay19,1983'3'5.LetterfromJ.E.Maier,RG&E,EnvironmentalQualificationof1983.LetterfromR.W.Kober,RG&E,EnvironmentalQualificationof1984.LetterfromR.W.Kober,RG&E,EnvironmentalQualificationof1984.toD.M.Crutchfield,NRC,

Subject:

ElectricalEquipment,datedFebruary1,toD.M.Czutchfield,NRC,

Subject:

ElectricalEquipment,datedMarch30,toW.Paulson,NRC,

Subject:

ElectricalEquipment,datedAugust30,3.11-19REV.1312/96 GINNA/UIiSAR16.17.18.LetterfromR.W.Kober,RG&E,toJ.A.Zwolinski,NRC,

Subject:

GenericLetter84-24,EnvironmentalQualificationofElectricalEquipment,datedJanuary24,1985.1LetterfromJ.A.Zwolinski,NRC,toR.W.Kober,RG&E,

Subject:

EnvironmentalQualificationofElectricalEquipmentImportanttoSafety,datedFebruary28,1985.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicsVI-2.DandVI-3,datedNovember3,1981.19.LetterfromL.D.White,Jr.,RG&E,toR.A.Purple,NRC,

Subject:

ValvesSubjecttoFlooding,datedJune16,1975.20.21.22.LetterfromR.A.Purple,NRC,toL.D.White,Jr.,RG&E,

Subject:

EmergencyCoreCoolingSystemValveModification,datedJuly3,1975.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

MainSteamLineBreakwithContinuedFeedwaterAddition,datedFebruary9,1983.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

High-EnergyLineBreaksOutsideContainment,datedJune27,1979.23.LetterfromK.W.Amish,RG&E,toA.Giambusso,NRC,

Subject:

TransmittalofGAIReportNo.1815onEffectsofPostulatedPipeBreaksOutsidetheContainmentBuilding,datedNovember1,1973.24.25~26.LetterfromK.W.Amish,RG&E,toE.G.Case,NRC,

Subject:

PipeBreaksOutsideContainment,datedNovember1,1974.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIII-5.B,PipeBreakOutsideContainment,datedJuly20,1983.LetterfromK.W.Amish,RG&E,toA.Schwencer,NRC,

Subject:

PressureShieldingSteelDiaphragminTurbineBuilding,datedFebruary6,1978.27.LetterfromR.A.Purple,NRC,toL.D.White,Jr.,RG&E,

Subject:

AmendmentNo.7toProvisionalOperatingLicenseDPR-18,andtransmittal,datedMay14,1975.28.LetterfromL.D.White,Jr.,RG&E,toD.M.Crutchfield,NRC,

Subject:

SEPTopicIII-5.B,PipeBreakOutsideContainment,datedAugust7,1980.29.30.LetterfromD.M.Crutchfield,NRC,toL.D.White,Jr.,RG&E,

Subject:

SEPTopicIII-S.B,PipeBreakOutsideContainment,datedJune24,1980.LetterfromL.D.White,RG&E,toB.C.Rusche,NRC,

Subject:

Long-TermCooling,datedMay13,1975.3.11-20REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSZNSZDECONTAZNMENTNormal0erationODES1and2TemperaturePressureHumidityRadiationAccidentConditionsLOCATemperaturePressureHumidityRadiationChemicalsprayFlooding60'Fto120'F0psig50%(nominal)Lessthan1rad/hr.general.Canbehigherorlowernearspecificcomponents.Figure6.1-2(286'Fmaximum)Figure6.1-1(60psigdesign)100%Tables3.11-2and3.11-3;1.43x10radsgamma;2.07x10radsbetaSolutionofboricacid(2000to3000ppmboron)plusNaOHinwater.SolutionpHbetween8and10.7-feet(approximately).Maximumsubmergenceelevationis242ft.8in.AUZZLZARYBUZLDZNGNormal0erationODES1and2TemperaturePressureHumidityRadiation50'Fto104'F0psig60%(nominal)Lessthan10mrad/hr.general,withareasnearresidualheatremovalpipinglessthan100mrad/hr.duringshutdownoperation.Sheet1REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSAUXILIARYBUILDING(CONTINUED)AccidentConditionsLOCAonetrainoESFcoolinoeratin~Temperature'ressureHumidityRadiation0eratinfioor271-ft.elevation50'Fto104'F0psig60%(nominal)lessthan50radtotalNearbus14andmotorcontrolcenter100radtotal1Cand1LOtherareasIntermediatefloor253-ft.elevationNearbus16andmotorcontrolcenter900radtotal1Dand1MOtherareaslessthan500radtotalBasementfloor236-ft.elevation:Nearcontainmentspray,residualheat2.8x10radtotal(atcontact);5x10'adtotal(10removal,andsafetyinjectionpumpsfeetdistance)andplpmg.OtherareasFloodingAccidentConditionsBasedUonHih-EnerLineBreahsorModerate-EnerLineBrealrs:Temperature(peak)Pressure(peak)HumidityRadiationFlooding8.2inches150'F0.1psig=100%Notapplicable0feetSheet2REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSAUXILIARYBUILDING(CONTINUED)AccidentConditionsLOCAorsteamlinebreakincontainmentnoESFcoolinmaximumdesinterneraturedaTemperatureOperatinglevelIntermediatelevelBasementlevelwestBasementleveleastnearsafetyinjectionandcontainmentspraypumpsResidualheatremovalpumppitPeakof103.4'Fwithin2.5hours;cyclesbetween97Fand103.4'FbasedonsolareffectsPeakof95'Fwithin2hours;cyclesbetween92'Fand95Flongterm.Peakof100'Fwithin30minutes;stabilizesat94'Flongterm(20hours).Peakof10S'Fwithin30minutes;stabilizesat94'Flongterm(20hours).Peakof149'Fwithin13hours;stabilizesat149'Flongterm.INTEIQCEDIATEBUILDINGNormal0erationODESIand2TemperaturePressureHumidityRadiation1VormaloerationODESIand2-LossoAllacPopoverStationBlackoutTemperatureNearturbinedrivenauxiliaryfeedwaterpump(TDAFW)50'Fto104'F0psig60%(nominal)Lessthan1mrad/hr.(highernearreactorcoolantsamplinglines).Increasesto152'Fwiththedoorsclosedand145'Fwiththedoorsopenin4hoursSheet3REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSZNTERMEDZATEBUZLDZNG(CONTZNUED)AccidentConditionsBasedUonHih-EnerLineBreaksorModerate-EnerLinesBreaksTemperaturePressureHumidityRadiation'loodingAccidentConditionsBasedUonLOCAConditions:TemperaturePressureHumidityRadiationFlooding212'Ffor30minutes;thenreducingto104'Fwithin3hours.0.25psigfor30minutes;thenreducingto0psigwithin3hours=100%indefinitelyNotapplicable0feet115'Findefinitelynearlargemotorsandfeedwaterandsteamlinepiping.104'Finopenareas.0psig-1PP%NegligibleNoneofconsequence.(SeeReference8)SameasINTERMEDIATEBUILDINGCONTROLBUZLDZNGControlRoomNormaloerationODES1and2TemperaturePressureHumidityRadiation50'Fto104'F(usually70'Fto73'F)0psig60%(nominal)NegligibleShcct4REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSControlRoom(continued)AccidentConditionsTemperaturePressureHumidityRadiationFloodingLessthan104'F0psig60%(nominal)NegligibleNotapplicableRelayRoomNormaloerationODESIand2TemperaturePressureHumidityRadiationAccidentConditionsTemperaturePressureHumidityRadiationFlooding50'Fto104'F0psig60%(nominal)NegligibleLessthan104'F0psig60%(nominal)NegligibleNotapplicableBatteryRoomsNormaloerationODESIand2TemperaturePressureHumidityRadiation50'Fto104'F0psig60%(nominal)NegligibleSheet5REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSBatteryRooms(continued)AccidentConditionsTemperaturePressureHumidityRadiationFloodingLessthan104'F0psig60%(nominal)NegligibleNotapplicableMechanicalEquipmentRoom1VormaloerationODES1andZTemperaturePressureHumidityRadiationAccidentConditions:TemperaturePressureHumidityRadiationFlooding50'Fto104'F0psig60%(nominal)NegligibleLessthan104'F0psig60%(nominal)Negligible3feet(estimatedforaserviceivaterlineleak).DIESELGENERATORROOMS1VormaloerationODES1andZTemperaturePressureHumidityRadiation60'Fto104'F0psig60%(nominal)NegligibleSheet6REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSDieselGeneratorRooms(continued)AccidentConditionsTemperaturePressureHumidityRadiationSprayFlooding'neVentilationFan0eratinmaximumdesinterneraturedaTemperatureLessthan104'F0psig90%(estimated)NegligibleNotapplicableOft118'FTURBINEBUILDING1VormaloerationODESIand2TemperaturePressureHumidityRadiationAccidentConditionsih-EnerLineB~reakTemperaturePressureHumidityRadiationFlooding50'Fto104'F0psig60%(nominal)Negligible220'Ffor30minutes,reduceto100'Fwithin3hours1.14psigonmezzanineandbasementlevels,0.7psigonoperatingfloorfor30minutes,reducetoambient3hours.100%Negligible18inchesinbasement(circulatingwaterbreak)Sheet7REV.1312/96 GINNA/UFSARTABLE3.11-1ENVIRONMENTALSERVICECONDITIONSFOREQUIPMENTDESIGNEDTOMITIGATEDESIGN-BASISEVENTSAUZZLZARYBUZLDZNGANNEXNormaloerationODFS1and2TemperaturePressureHumidityRadiationAccidentConditionsTemperaturePressureHumidityRadiationFlooding60'Fto120'F0psig60%(nominal)Negligible60'Fto120'F0psig60%(normal)NegligibleApproximately2feetSCREENHOUSE1VormaloerationODES1and2TemperaturePressureHumidityRadiationAccidentConditionsTemperaturePressureHumidityRadiationFlooding50'Fto104'F0psig60%(nominal)NegligibleLessthan104'F0psig60%(nominal)Negligible18inches(circulationwaterbreak)Theresidualheatremovalpumppitrisesto106'Fifasinglecoilispluggedintheoperatingcooler.Estimated(noexplicitcalculationsperformed).Servicewaterlinecrackwouldaffectonlyoneroom.Sheet8REV.1312/96 GINNA/UFSARTABLE3.11-2ESTIMATESFORTOTALAIRBORNEGAMMADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTER-GINNASTATIONTime(hr.)0.000.030.060.090.120.150.180.210.250.380.500.751.002.005.008.0024.060.096.01922983945607208881060AirbonxeIodineDose4.48E+47.96E+41.01E+51.16E+51.28E+51.36E+51.44E+51.52E+51.74E+51.88E+52.17E+52.47E+53.36E+55.11E+56.16E+59.38E+51.21E+61.34E+61.56E+61.72E+61.81E+61.92E+61.98E+62.00E+62.02E+62LizboxneNobleGasDoseQ)6.89E+41.29E+41.84E+52.33E+52.79E+53.23E+53.64E+54.17E+55.75E+57.07E+59.57E+51.17E+61.89E+63.30E+64.07E+65.82E+66.65E+67.03E+67.70E+68.14E+68.22E+68.42E+68.50E+68.54E+68.56E+6PlateoutIodineDose1.57E+33.69E+36.71E+31.02E+41.41E+41.82E+42.24E+42.82E+44.69E+46.41E+49.85E+41.30E+52.42E+55.02E+56.94E+51.34E+61.95E+62.22E+62.65E+62.96E+63.17E+63.38E+63.49E+63.56E+63.59E+6TotalDose1.15E+52.12E+52.92E+53.59E+54.22E+54.78E+55.31E+55.97E+57.96E+59.57E+51.27E+61.55E+62.47E+64.32E+65.38E+68.11E+69.85E+61.06E+71.19E+71.28E+71.32E+71.37E+71.39E+71.41E+71.42E+7Shcct1REV.1312/96 GINNA/UIiSARTABLE3.11-2ESTIMATESFORTOTALAIRBORNEC'AMMADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTER-GINNASTATIONTime(2u'.)1220139015601730190020602230295036704390511058306550727080008710oxneIodineDose2.03E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62.04E+62LizhozneNobleGasDose(R)8.56E+68.56E+68.57E+68.57E+68.57E+68.57E+68.57E+68.58E+68.59E+68.59E+68.59E+68.59E+68.60E+68.61E+68.61E+68.62E+6PlateoutIodineDose3.61E+63.62E+63.63E+63.63E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+63.64E+62'otalDose(3)1.42E+71.42E+71.42E+71.42E+71.42E+71.42E+71.42E+71.43E+71.43E+71.43E+71.43E+71.43E+71.43E+71.43E+71.43E+71.43E+7TOTAL1.43E+7Shcct2REV.1312/96 GINNA/VI'SARTABLE3.11-3ESTIMATESFORTOTALAIRBORNEBETADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTER-GINNASTATIONTime(2xr)0.000.030.060.090.120.150.180.210.250.380.500.751.002.005.008.0024.060.096.019229839456072088810602LirboxneiodineDose(rads)1.36E+52.43E+53.09E+53.56E+53.90E+54.17E+54.39E+54.64E+55.27E+55.72E+56.62E+57.43E+59.94E+51.46E+61.75E+62.67E+63.62E+64.06E+64.77E+65.24E+65.56E+65.89E+66.07E+66.16E+66.22E+62LirboxneNob1eGasDose(rads)5.09E+59.16E+51.25E+61.53E+61.77E+61.9SE+62.18E+62.41E+63.06E+63.58E+64.54E+65.40E+68.38E+61.53E+72.04E+73.79E+75.71E+76.95E+79.29E+71.08E+S1.16E+81.24E+81.29E+81.32E+81.33E+8Tota1Dose(xads)6.46E+51.16E+61.56E+61.88E+62.16E+62.40E+62.62E+62.88E+63.59E+64.16E+65.20E+66.14E+69.38E+61.68E+72.22E+74.06E+76.07E+77.36E+79.76E+71.14E+81.21E+81.30E+81.35E+S1.38E+S1.40E+8Sheet1REV.1312/96 GINNA/UIiSARTABLE3.11-3ESTIMATESFORTOTALAIRBORNEBETADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTER-GINNASTATION2i'me(hr)12201390156017301900206022302950367043905110583065507270800087102LizbonxeZodineDose(rads)6.25E+66.27E+66.28E+66.28E+66.28E+6.6.28E+66.29E+66.29E+66.29E+66.29E+66.29E+66.29E+66.29E+66.29E+66.29E+66.29E+6AixborneNobleGasDose(rads)1.34E+81.36E+81.3SE+81.40E+81.41E+81.43E+81.44E+81.50E+81.57E+81.63E+81.70E+81.75E+S1.82E+S1.88E+81.94E+82.00E+8TotalDose(rads)1.41E+81.43E+81.45E+81.46E+81.47E+81.49E+81.50E+81.57E+81.63E+81.70E+81.75E+81.82E+81.SSE+81.95E+82.00E+82.07E+STOTAL2.07E+8Doseconversionfactorisbasedonabsorptionbytissue.Sheet2REV.1312/96 GINNA/UFSARTABLE3.11-4ESTIMATESFORTOTALAIRBORNEGAMMADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTERIREGULATORYGUIDE1~89IREVISION1Time(hr)0.000.030.060.090.120.150.180.210.250.380.500.751.002.005.008.0024.060.096.0192298394560720S88AixborneZodineDose(R)4.82E+48.57E+41.09E+51.25E+51.38E+51.47E+51.55E+51.64E+51.87E+52.03E+52.36E+52.66E+53.62E+55.50E+56.63E+51.01E+61.31E+61.45E+61.68E+61.85E+61.95E+62.07E+62.13E+62.16E+6AirborneNobleGasDose(R)7.42E+41.39E+51.98E+52.51E+53.01E+53.48E+53.92E+54.49E+56.19E+57.61E+51.03E+61.26E+62.04E+63.56E+64.38E+66.26E+67.16E+67.56E+68.29E+68.76E+68.SSE+69.06E+69.15E+69.19E+6PlateoutXodineDose(R)1.69E+33.98E+37.22E+31.10E+41.52E+41.96E+42.41E+43.03E+45.05E+46.90E+41.06E+51.40E+52.61E+55.40E+57.47E+51.45E+62.10E+62.39E+62.86E+63.19E+63.41E+63.64E+63.76E+63.83E+6TotalDose(R)1.24E+52.29E+53.14E+53.87E+54.54E+55.15E+55.71E+56.43E+58.57E+51.03E+61.37E+61.67E+62.66E+64.65E+65.79E+68.72E+61.06E+61.14E+71.2SE+71.38E+71.42E+71.48E+71.50E+71.52E+7Shcct1REV.1312/96 GINNA/UFSARTABLE3.11-4ESTIMATESFORTOTALAIRBORNEGAMMA.DOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTERiREGULATORYGUIDE189iREVISION1Time(2xx)10601220139015601730190020602230295036704390511058306550727080008710Ai.xboxneXodineDose2.18E+62.19E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62.20E+62LixboxneNobleGasDose(R)9.21E+69.21E+69.21E+69.22E+69.22E+69.22E+69.22E+69.22E+69.23E+69.24E+6'.24E+69.25E+69.25E+69.26E+69.27E+69.27E+69.28E+6PlateoutZodineDose3.87E+63.89E+63.90E+63.91E+63.91E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+63.92E+6TotalDose1.53E+71.53E+71.53E+71.53E+71.53E+71.53E+71.53E+71.53E+71.54E+71.54E+71.54E+71.54E+71.54E+71.54E+71.54E+71.54E+71.54E+7TOTAL1.54E+7Sheet2REV.1312/96 GINNA/UPSARTABLE3.11-5ESTIMATESFORTOTALAIRBORNEBETADOSECONTAINMENTTOAPOINTINTHECONTAINMENTGUIDE189~REVISION1CONTRIBUTORSINCENTER,REGULATORYTime(br)0.000.030.060.090.120.150.180.210.250.380.500.751.002.005.008.0024.060.096.01922983945607208881060AirborneIodineDose(rads)1.47E+52.62E+53.33E+53.83E+54.20E+54.49E+54.73E+55.00E+55.67E+56.15E+57.13E+58.00E+51.07E+61.58E+61.88E+62.S7E+63.89E+64.37E+65.14E+65.64E+65.99E+66.34E+66.53E+66.63E+66.69E+6AirborneNobleGasDose(rads)5.48E+59.86E+51.35E+51.65E+61.91E+62.14E+62.35E+62.60E+63.30E+63.86E+64.89E+65.81E+69.02E+61.65E+72.20E+74.08E+76.15E+77.48E+71.00E+81.17E+81.25E+81.34E+81.39E+81.42E+81.44E+8TotalDose(rads)6.95E+51.25E+61.6SE+62.03E+62.33E+62.59E+62.82E+63.10E+63.87E+64.48E+65.60E+66.61E+61.01E+71.S1E+72.39E+74.37E+76.54E+77.92E+71.05E+81.23E+S1.31E+S1.40E+81.46E+S1.49E+81.51E+8Sheet1REV.1312/96 GINNA/UFSARTABLE3.11-5ESTIMATESFORTOTALAIRBORNEBETADOSECONTRIBUTORSINCONTAINMENTTOAPOINTINTHECONTAINMENTCENTERIREGULATORYGUIDE1.89,REVISION1Time(br)1220139015601730190020602230295036704390511058306550727080008710AirborneXodineDose(rads)6.73E+66.75E+66.76E+66.76E+66.76E+66.76E+66.77E+66.77E+66.77E+66.77E+66.77E+66.77E+66.77E+66.77E+66.77E+66.77E+6ikixboxneNobleGasDose(rads)1.45E+81.47E+81.49E+81.51E+81.52E+81.54E+81.55E+81.62E+81.69E+S1.76E+81.83E+81.89E+81.96E+82.03E+82.09E+82.16E+8ToCalDose(rads)1.52E+81.54E+81.56E+81.58E+81.59E+81.61E+81.62E+S1.69E+S1.76E+S1.83E+S1.90E+81.96E+82.03E+82.10E+82.16E+82.23E+8TOTAL2.23E+8Doseconversionfactorisbasedonabsorptionbytissue.Shcct2REV.1312/96 GONNA/UFSARTABLE3.11-6GINNASTATION/REGULATORYGUIDE1.89COMPARISONOFPOSTACCIDENTRADIATIONENVIRONMENTASSUMPTIONSP~azacalxReatoGuideX.89GinnaStation2.1.1Releaseof50%oftheiodineand100%ofthenoblegasinventorytothecontainmentatmosphere.Releaseof50%oftheiodineand100%ofthenoblegasinventorytothecontainmentatmosphere.2.1.2Containmentfreevolumeof2.52x10ft.74%or1.86x106ftdirectlycoveredbycontainmentspray.Containmentfreevolumeof997,000f175%(minimum)or747,750ftcoveredbycontainmentspray.2.1.3Largereleaseuniformlydistributedinarelativelyopencontainment.Largereleaseuniformlydistributedinarelativelyopencontainment.2.1.4ESFfanswithaflowrateof220,000cfln.Mixingbetweenallmajorunsprayedregionsandthemainsprayregion.Fourfancoolersproduce169,000c6n.Thoroughmixingisobtained.'.1.6ContainmentsprayfromtwoequalContainmentsprayfromtwoequalcapacitytrainseachratedfor3000gpmcapacitytrainseachratedfor1000toboricacidsolution.1500gpmboricacidsolution."TheRegulatoryGuide1.89fancoolerflowrateof220,000canresultsinacompleterecirculationof2.5210ftofthecontainmentatmosphereevery11.45min.TheGinnaStationfancoolersrecirculatetheatmosphereonceevery5.89min.TheRegulatoryGuide1.89spraysystemprovidesforasprayflowof1gpmforevery310ftofsprayedvolume.TheGinnaStationspraysystemprovidesasprayflowof1gpmforevery300ftofsprayedvolume.REV.1312/96

GINNAIUFSARCHAPTER4REACTORTABLEOFCONTENTSSection2itiePacCe4.1SUMMARYDESCRIPTION4.1-14.1.1ReactorCore4.1.2~WestinghouseOptimizedFuelAssemblies4.1.3ReconstitutedFuelAssemblies4.1.4StartupReportReferencesforSection4.14.1-14.1-14.1<4.1-44.1-54.24.2.14.2.1.14.2.1.24.2.1.2.14.2.1.2.24.2.1.2.34.2.1.2.44.2.1.2.54.2.1.2.64.2.1.2.74.2.1.2.34.2.1.2.94.2.1.34.2.1.3.14.2.1.3.24.2.1.3.34.2.1.3.44.2.1.3.4.14.2.1.3.4.24.2.1.3.4.34.2.1.3.4.44.2.24.2.34.2.3.14.2.3.1.14.2.3.1.24.2.3.1.34.2.3.1.44.2.3.1.54.2.3.1.6FUELSYSTEMDESIGNDesignBasesPerformanceObjectivesPrincipalDesignCriteriaReactorCoreDesignSuppressionofPowerOscillationsRedundancyofReactivityControlReactivityMODE3(HotShutdown)CapabilityReactivityShutdownCapabilityReactivityHolddownCapabilityReactivityControlSystemsMalfunctionMaximumReactivityWorthofControlRodsConformanceWith1972GeneralDesignCriteriaSafetyLimitsNuclearLimitsReactivityControlLimitsThermalandHydraulicLimitsMechanicalLimitsReactorInternalsFuelAssembliesControlRodsControlRodDriveAssemblyFuelSystemDesignDescriptionCoreComponentsDesignDescriptionFuelAssemblyTopNozzle,Springs,andClampsBottomNozzleGuideThimblesInstrumentationTubeGridAssembliesFuelRods4.2-14.2-14.2-14.2-24.2-24.2A4.2P4.2C4.2-54.2-54.2-74.2-94.2-94.2-104.2-104.2-114.2-114.2-124.2-124.2-134.2-144.2-144.2-174.2-1S4.2-1S4.2-194.2-194.2-204.2-204.2-204.2-214-iREV.1312/96 GINNA/UFSARCHAPTER4REACTORTABLEOFCONTENTSSectionTitlePacae4.2.3.1.74.2.3.1.84.2.3.24.2.3.34.2.3.44.2.3.54.2.3.64.2.3.74.2.3.7.14.2.3.7.24.2.3.7.34.2.44.2.4.14.2.4.24.2.4.2.14.2.4.2.24.2.4.2.34.2.4.2.44.2.4.2.54.2.4.2.6'.2.4.2.74.2.4.2.84.2.4.2.94.2.4.2.9.14.2.4.2.9.24.2.4.2.9.34.2.4.2.9.44.2.4.34.2.5FuelAssemblyJointsandConnectionsFuelAssemblyIdentificationControlRodsNeutronSourceAssembliesPluggingDevicesFuelPelletandCladdingDesignConsiderations.ReloadFuelDesign-WestinghouseOptimizedFuelFuelAssemblyandRodClusterControlAssemblyTestsReactorEvaluationCenterTestsLoadingandHandlingTestsAxialandLateralBendingTestsDesignEvaluationFuelandCladdingEvaluation-OriginalCoreDesignEvaluation-ReloadOptimizedFuelAssemblyDesignIntroductionFuelDesignDesignforSeismicandLoss'-CoolantAccidentForcesEmergencyCore.CoolingSystemCalculationLoss-of-CoolantAccidentCladdingModelsInitialFuelConditionsforTransientAnalysisPredictedCladCollapseTimeNuclearDesignFuelAssemblyHydraulicLift-OffThermal-HydraulicAnalysisSensitivityFactorsWRB-1CorrelationRodBowPenaltiesDNBRDesignLimitsDesignEvaluationofReconstitutedFuelAssembliesCoreComponentsTestsandInspections4.2-214.2-224.2-224.2-244.2-244.2-254.2-264.2-264.2-264.2-264.2-274.2-294.2-294.2-304.2-304.2-304.2-304.2-304.2-304.2-314.2-314.2-324.2-324.2-334.2-334.2-344.2-354.2-354.2-36ReferencesforSection4.24.2-374.34.3.14.3.24.3.2.14.3.2.1.14.3.2.1.2RELOADCORENUCLEARDESIGNPreliminaryDesignPhaseDeterminationofNuclear-RelatedKeySafetyParametersReactivityControlAspectsInsertionLimitsTotalRodWorth4.3-14.3-14.3-24.3-34.3A4.3-54-iiREV.1312/96 GINNA/UFSARCHAPTER4REACTORTABLEOFCONTENTSSectionTitleP~cCe4.3.2.1.34.3.2.1.44.3.2.1.54.3.2.24.3.2.2.14.3.2.2.24.3.2.2.34.3.2.2.44.3.2.2.5~4.3.2.2.64.3.2.34.3.34.3.4TripReactivityDifferentialRodWorthsSummaryCoreReactivityParametersandCoeIIicientsModeratorTemperatureCoefficientFuelTemperatureCoefficientBoronWorthDelayedNeutronsPromptNeutronLifetimeSummaryReactorCorePowerDistributionEvaluationofReloadsWithOptimizedFuelAssembliesTestsforReactivityAnomalies4.3-54.344.3-64.344.3-84.3-84.3-84.3-94.3-94.3-94.3-104.3-114.3-11ReferencesforSection4.34.3-134.44414.4.24.4.2.14.4.2.24.4.2.2.14.4.2.2.24.4.2.2.34.4.2.2.44.4.2.2.54.4.2.2.64.4.2.34.4.2.3.14.4.2.3.24.4.34.4.3.14.4.3.24.4.44.4.54.4.5.14.4.5.2T!&RMKTANDHYDRAULICDESIGNDesignBasisDescriptionandEvaluationoftheThermal-HydraulicDesignandAnalysisofReloadCoresHydraulicEvaluationThermalandHydraulicKeySafetyParametersEngineeringHot-ChannelFactorsAxialFuelStackShrinkageFuelTemperaturesRodInternalPressureCoreThermalLimitsKeySafetyParametersforSpecificEventsTHINCCodesSteady-StateAnalysisTransientAnalysisThermal-HydraulicMethodologyforOptimizedFuelAssemblyDesignandEvaluationGeneralRodBowThermalandHydraulicTestsandInspectionsReactorCoolantFlowMeasurementPumpPowerSecondaryHeatBalance4.4-14.4-14.4-14.4-14.4-24.4-24.4-24.4-24.4-34.4Q4.4-54.444.4-644Q4.4-74.4-74.4-94.4-114.4-114.4-124.4-124-iiiREV.1312/96 GINNA/UFSARCHAPTER4REACTORTABLEOFCONTENTSSectionTitlePacCe4.4.5.34.4.5.44.4.5.54.4.5.64.4.5.74.4.5.8ElbowTapDifferentialPressureCoreExitThermocouplePumpPower-DifferentialPressureExperienceLowFlowTripSetpointPrecisionCalorimetricMeasurementforReactorCoolantSystemFlow4.4-124.4-124.4-134.4-144.4-154.4-15ReferencesforSection4.44.4-204.54.5.14.5.2REACTORMATERIALSControlRodDriveSystemStructuralMaterialsReactorInternalsMaterials4.5-14.5-14.5-14.6FUNCTIONALDESIGNOFREACTIVITYCONTROLSYSTEM4.6-14-ivREV.1312/96 GINNA/UFSARLISTOFTABLESTab1eIieie4.2-14.2-24.2-34.2-44.4-1NuclearDesignDataCoreMechanicalDesignParametersFuelDesignKineticParametersUsedinTransientAnalysisThermalandHydraulicDesignParameters4-vREV.1312/96 GINNA/UFSARLISTOFFIGURES~Fizreii81e4.2-'14.2-24.2-34.2A4.2-5TypicalRodClusterControlAssemblyFuelAssemblyandControlClusterCrossSection14x14OptimizedFuelAssemblyOptimizedTopNozzleAssemblyDebrisFilterBottomNozzle4.2W4.2-74.2-84.2-94.3-14.4-1OptimizedGuideThimbleAssemblyOptimizedInstrumentationTubeOptimizedMid-GridConnectionRemovableTopNozzleandTopGridConnectionControlRodClusterGroupsTypicalPumpPowerVersusFlowCurves4-viREV.1312/96 GINNA/UFSARCHAPTER4REACTOR4.1SUMMARYDESCRIPTION4.1.1REACTORCOREThereactorcoreisamulti-regioncorecontaining121fuelassemblies.Thefuelrodsarecoldworkedzircaloytubescontainingslightlyenricheduraniumdioxidefuel.Thefuelassemblyisacanlesstypewiththebasicassemblyconsistingoftherodclustercontrolguidethimblesfastenedtothegxidsandthetopandbottomnozzles.Thefuelrodsareheldbythegridsandgridspringswhichprovidelateralandaxialsupportforthefuelrods.Full-lengthrodclustercontrolassemblies(alsocommonlyreferredtoascontrolzods)areinsertedintotheguidethimblesofthefuelassemblies.Theabsorbersectionsofthe'controlrodsarefabricatedofsilver-indium-cadmiumalloysealedinstainlesssteeltubes.Thereare29full-lengthcontrolrods.Thecontxolroddrivemechanismsareofthemagneticlatchtype.Thelatchesarecontrolledbythreemagneticcoils.Theyaresodesignedthatuponalossofpowertothecoils,therodclustercontrolassemblyisreleasedandfallsbygravitytoshutdownthereactor.4.1.2WESTINGHOUSEOPTIMIZEDFUELASSEMBLIESTheoptimizedfuelassembliesareanewdesignbutsimilartoWestinghouseseven-grid14x14lowparasiticfuel(LOPAR)whichhashadsubstantialoperatingperformanceinanumberofplants.(ReferenceI).Thetransitiontoanall-Westinghouseoptimizedfuelassemblyfueledcorewascompletedwiththecycle20/21MODE6(Refueling)inthespringof1991.SomeoftheWestinghouseoptimizedfuelassembliescontainintegralfuelburnable4.1-1REV.1312/96 GINNA/UFSARabsorbers.Eachoftheseassembliesconsistsof179optimizedfuelassemblyrodlets,withtypicallyfrom8to64ofthemcontainingpelletscoatedwithaburnableabsorberconsistingofathinenrichedboridecoatingonthesurfaceofthefuelpellets.Theoptimizedfuelassemblytopandbottomnozzlesarefabricatedfromstainlesssteel.Bothnozzlesindexthefuelassemblyinthecoreanddirectflowintoandoutoftheassemblythroughperforatednozzleplates.Theaxialspacingbetweenthetopandbottomnozzleisestablishedtoaccommodatethegrowthofthefuelrodsduetoirradiationeffectsonthezircaloyfuel'tube.Theoptimizedfuelassemblytopandbottomnozzledesignhasareconstitutionfeaturewhichfacilitatesremovalofthenozzlefromthefuelassembly.Forcycle21(region23)thedebrisfilterbottomnozzlewasintroducedintothefuelassembliestohelpreducethepossibilityoffuelroddamageduetodebris-inducedfretting.Thestainless.steeldebrisfilterbottomnozzleissimilartotheconventionalbottomnozzledesignusedpreviously.However,thedebrisfilterbottomnozzledesignincorporatesamodifiedflowholesizeandpattern.Therelativelylargeflowholesinaconventionalbottomnozzlearereplacedwithanewpatternofsmallerflowholesinthedebrisfilterbottomnozzle.Theholesaresizedtominimizepassageofdebrisparticleslargeenoughtocausedamage.Theholesizingwasalsodesignedtoprovidesufficientflowarea,comparablepressuredrop,andcontinuedstructuralintegrityofthenozzle.Significanttestingtomeasurepressuredropanddemonstratestructuralintegrityhasbeenperformedtoverifythatthedebrisfilterbottomnozzleistotallycompatiblewiththepreviousdesign.Znadditiontothedebrisfilterbottomnozzle,incycle25anadditionallevelofdebrismitigationhasbeenaddedtotheregion27fuelassemblies.Apre-oxidizedprotectivecoatingonthelowermostportionofthefuelrodcladdingfurtherguardsagainstdebris-induceddamageatthebottomgridlocation.Theoxidecoatingisappliedtotheoutsidediametersurfaceofthebottomofthefuelrodcladdingusinganinductionheatingprocesswhichisindistinguishablefromin-reactoroxidation.Theendresultoftheoxidecoatingprocessistoacceleratetheoxidationprocessthatnaturallyoccursin-core.Analysesexplicitlyaccountforthethermaleffectsoftheoxidecoatingandconfirmthatevenwiththeinitialcoating,thelimitingnaturallyoccurringoxideatthehighertemperatureelevationsboundsthemaximum4.1-2REV.1312/96 GINNA/UFSARexpectedoxidethicknessinthecoatedsegment.Fuelrodperformanceandthecoresafetyconsiderationsarenotadverselyaffected,becausetheoxidecoatingisanaturallyoccurringphenomenonaccountedforinthefuelperformanceandthermal-hydraulicmodels.Holddownoftheoptimizedfuelassemblyisprovidedbyfoursetsofdouble-leafsprings.Thelnconel718springdesignpermitsbothahighspringrateandlargetravel,whichisrequiredtoaccommodatethedifferenceinthermalexpansionbetweenthezircaloythimblesandthestainlesssteelreactorinternals.ThisspringdesignalsoaccommodatesthegrowthofthezircaloythimblesduringserviceandpreventsfuelassemblyliftoffduringMODES1and2~ThefuelrodfrettingevaluationperformedonaWestinghouse14x14seven-gridoptimizedfuelassemblydesignhasshownthatevenwithnogridspringforceactingonthefuelrodbythefivezircaloygridsatend-of-life,thecladwearcriterionismet.SinceGinnaStationoptimizedfuelassemblydesigncontainsninegrids,includingsevenzixcaloygrids,considerableadditionalwearmarginexistsforthefueldesigntothatfortheseven-griddesign.Therodbowbehavioroftheoptimizedfuelassemblyisexpectedtobebetterthanthatoftheseven-gridWestinghousefuelassembly.Theoptimizedfuelassemblywillhavereducedgridspringforcesduetothezircaloygridshorterspanlengthsandahigherfueltubethickness-to-diameterratiothantheseven-gridfuelassembly.Thesedesignchangesshouldresultinreducedrodbow.ThezircaloygridspringforcesarelowerduringservicethanthosetypicallyusedonZnconelgrids.Therefore,lowerfrictionforcesaregeneratedbythedifferentialthermalexpansionandirradiationgrowthofthefuelrods.Thisresultsinlowerloadsappliedtotheskeletoncomponentsthanarepresentintheseven-gridWestinghouseassemblies.Theskeletoncomponentsareconservativelydesignedtoaccepttheseloadswithanadequatesafetymargin.Thecontrolrodsusedinthereactorcorearecompatiblewiththeoptimizedfuelassemblies.Thesecondarysourceswereremovedduringthecycle20/21refueling.Neutronsourcescausedbyspontaneousfissionintheburntfuelprovidesufficientsourcerangedetectorresponse.Partialorfullcore4.1-3REV.1312/96 thimbleplugassemblyremovalwasimplementedstartingwithcycle22.Thisresultsinanincreaseincorebypassflow.TheincreasedbypassflowhasbeenaccountedforintheChapter15safetyanalysis.4.1.3RECONSTITUTEDFUELASSEMBLIESGinnaisauthorizedtousereconstitutedfuelassembliesinreloadcores.Each14x14fuelassemblyincludes179fuelrodlocations,16guidetubes,andoneinstrumentthimble.Fuelrodsthatareknowntobedefectivecanbereplacedwithfillerrodsthatareeitherzircaloyorstainlesssteel.Thisreconstitutionprocesspermitsthecontinueduseofthesereconstitutedfuelassemblieswithoutincreasingcoolantactivity(Reference2).4.1.4STARTUPREPORTAsummaryreportofplantstaxtupandp'owerescalationtestingshallbesubmittedfollowing:(1)amendmenttotheoperatinglicenseinvolvingaplannedincreaseinpowerlevel,(2)installationoffuelthathasadifferentdesignoxhasbeenmanufacturedbyadifferentfuelsupplier,or(3)modificationsthatmayhavesignificantlyalteredthenucleax,thermal,orhydraulicperfonnanceoftheplant.Thereportshalladdresseachofthetestsperformedandshallingeneralincludeadescriptionofthemeasuredvaluesoftheoperatingconditionsoxcharactexisticsobtainedduringthetestpxogramandacomparisonofthesevalueswithdesignpredictionsandspecifications.Anycorrectiveactionsthatwererecpxiredtoobtainsatisfactoryoperationshallalsobedescribed.Anyadditionalspecificdetailsrecpxiredinlicenseconditionsbasedonothercommitmentsshallbeincludedinthisreport.Startupreportsshallbesubmittedwithin(1)90daysfallowingcompletionafthestartuptestpxogram,or(2)90daysfollowingresumptionofcommercialpoweroperation,whicheverisearliest.ZftheStaxtupReportdoesnotcoverbothevents(i.e.,completionofstartuptestprogram,andresumptionofcommercialpoweroperation),supplementaryreportsshallbesubmittedatleasteverythreemonthsuntilbotheventshavebeencompleted.4.1-4REV.1312/96 REFERENCESFORSECTION4.11.LetterfromJ.E.Maier,RG&E,toH.R.Denton,NRC,

Subject:

ApplicationforAmendment,toOL,Westinghouse14x14OptimizedFuelforCycle14,datedDecember20,1983.2.WestinghouseElectricCorporation,WestinhouseFuelAssemblReconstitutionEvaluationMethodolo,WCAP13061-NP-A,July1993.4.1-5REV.1312/96

GINNA/UFSAR4.3RELOADCORENUCLEARDESIGNThissectiondescribesthenucleardesignandevaluationofreloadcores.ThedesignbasesforthenucleardesignofthefuelandreactivitycontrolsystemaredescribedinSection4.2.1.Thedesignobjectivesandbasesarereviewedandeachofthedesignandevaluationphasesofareloadcozeisdiscussed.Thecapabilityofthereactortoachievetheseobjectiveswhileperformingsafelyunderoperationalmodes,includingbothtransientandsteady-state,isdemonstratedinthissection.Relevantdesignproceduresandmethodsarebrieflydescribedanddesigncodesarereferencedwhereappropriate.Theobjectiveofthenucleardesignprocessistodeterminethenumberandenrichmentofthefeedassembliesandapreliminaryloadingpatternthatmeetstherequiredenergyoutputoftherefueledcoreasdefinedinthedesigninitialization.ConstraintsfromthedesigninitializationspecifytheapproximateMODE6(Refueling)dates,theburnupwindowofthepreviouscycle,andsometimesanupperand/orlowerboundonthenumberoffeedassemblies(oralternativelyonthefeedenrichment).On'etheloadingpatternisset,thenuclearevaluationphasebegins.Theprimaryobjectiveofthisphaseistodeterminewhetherallnuclear-relatedkeysafetyparametersarewithintheboundingvaluesusedinthereferenceanalysis.Theseparametersareusedinthesafetyevaluation.4.3.1PRELIMINARYDESIGNPHASEThedetailandscopeofthepreliminarydesignprocessdependstoalargeextentonhowsimilartherefueledcoreistopreviousreloadcores.Whenitdifferssignificantlyfrompreviousreloads,detailedcalculationsareused,asoutlinedlaterinthissection.Whenthereloadisverysimilartoonesalreadydesigned,simplercalculationalmodelsmaybeused.Thesesimplercalculationalmodelsarebenchmarkedto"themoredetailedmodels.Whenapzeliminaryloadingpatternthatmeetstherequiredenergyoutputisestablished,anevaluationisperformedtoensurethatthefollowingcriteriaazesatisfied.4.3-1REV.1312/96 GINNA/UFSAR1.TheF~valueswithall-rods-outandD-bank-intotheinsertionlimitarebelowspecifiedlimits,withallowancefoxvariationintheactualburnupofthepreviouscycle.2.ThemoderatortemperaturecoefficientsatisfiestheTechnicalSpecificationsrequirements.3.SufficientrodworthisavailabletomeettheN-1rodsshutdownmargincriteriaatalltimes.Duringthepreliminarydesignphase,operatinghistoryisusedasmuchaspossibleandwherethisisnotavailable,thebestpredictionoftheoperatinghistoryisused.Someoftheparametersthatcomprisetheoperatinghistoryarepowerlevel,contxolrodposition,averagecoolanttemperature,andotherparametersthatmayaffectthenuclearmodels.Operatinghistoryisusedtoensurethatthenuclearmodelofthecorerepresentstheactualconditionofthecore.Withthecompletionofthepreliminarydesignphase,thepreliminaryloadingpatternincludingthenumberandenrichmentoffeedassembliesandthenumberofburnablepoisons,ifany,isfixed.Also,thethreecriteriaspecifiedabovearemet.Theremainingeffortconsistsofdeterminingthenuclearrelatedkeysafetyparameters.4.3.2DETERMINATIONOFNUCLEAR-RELATEDKEYSAFETYPARAMETERSAreloadcorecanaffectnuclear-relate'dkeysafetyparametersinthreebasicareas:corekineticcharacteristics,controlrodworths,andcorepowerdistributions.Keysafetyparameterscanbedeterminedbyacomparisonofthecurrentreloadcorecharacteristicswiththecharacteristicsofpreviouslyanalyzedreloadcores,scopingstudiesthattypicallyutilizeefficientspatiallydependentnuclearcalculations,orexplicitcalculationsusingdetailedtechniquesandmodels.Eachoftheabovemethodsisusedinvaryingdegreesforanyparticularreloadevaluation.Forexample,ifareloadcoreisidenticaltoapreviousreload(whereplantoperatingparameters,fuelenrichment,cycleburnup,fuelarrangement,controlrodpattern,etc.,remainthesame),asimplecomparisonwoulddemonstratethatthepreviouslyevaluatedparametersareapplicableandthatadditionalcalculationsarenotrequired.Thisexample,ofcourse,isanidealsituation.Conversely,areloadcoremaypossesscharacteristicsunlike4.3-2REV.1312/96 GINNA/UFSARanypreviouslyevaluatedcoze.Fozthisexample,comprehensivescopingcalculationsandexplicitworst-caseconditioncalculationswouldberequiredtoevaluatelimitingsafetyanalysisparameters.Mostreloadcorescannotbecategorizedbytheabovetwoexamples.Thatis,reloadcorespossessvaryingdegreesofsimilaritywithpreviouslyevaluatedreloadcoresandtheevaluationmethodsrecognizethisfact.Thefollowingdiscussiondescribesthemethodsfordeterminingthenuclearrelatedkeysafetyparametersforthereloadcore.Threeareasareaddressed:controlrodworthparameters,cozereactivityparametersandcoefficients,andothernuclear-relatedkeysafetyparametersforspecificevents.Nuclear-zelatedkeysafetyparametersazeidentifiedand,whereappropriate,adescriptionofcoreconditionsthatareassumedintheevaluationoftheseparametersisdiscussed.4~3.2.1ReactivityControlAspectsReactivitycontrolisprovidedby(1)asolublechemicalneutronabsorberinthereactorcoolant(boricacid,alsocalledchemicalshim),and(2)movableneutronabsorbingcontrolzods.Theconcentrationofboricacidisvariedasnecessaryduringthelifeofthecozetocompensatefor(1)changesinreactivitywhichoccurwithchangeintemperatureofthereactorcoolantfromMODE5(ColdShutdown)tothehotoperating,zeropowerconditions,(2)changesinreactivityassociatedwithchangesinthefissionproductpoisons,xenonandsamarium,(3)reactivitylossesassociatedwiththedepletionoffissileinventoryandbuildupoflong-livedfissionproductpoisons(otherthanxenonandsamarium),and(4)changesinreactivityduetoburnablepoisonburnup.Thecontrolrodsprovidereactivitycontrolfor(1)fastshutdown,(2)reactivitychangesassociatedwithchangesintheaveragecoolanttemperatureabovehotzeropower(coreaveragecoolanttemperatureisincreasedwithpowerlevel),(3)reactivityassociatedwithanyvoidformation,and(4)reactivitychangesassociatedwiththepowercoefficientofreactivity.Thecontrolrodsaredividedintotwocategoriesaccordingtotheirfunction.Therodswhichcompensateforchangesinreactivityduetovariationsinoperatingconditions4.3-3REV.1312/96 GINNA/UFSARofthereactor,suchascoolanttemperature,powerlevel,boronconcentration,orxenonconcentration,comprisethecontrolgroupofrods.Theotherrodsprovideadditionalshutdownreactivityandaretermedshutdownrods.Thetotalshutdownworthofallthecontrolrodsisspecifiedtoprovideadequateshutdownatalloperatingandhotzero-powerconditionswiththemostreactiverodstuckoutofthecore.ThedistributionofthevariouscontrolgrouprodsandshutdownrodswithinthecozeisshowninFigure4.3-1.Areloadcorecantypicallyalterindividualrodclustercontrolassemblyworthsandcontrolandshutdownbankworths.Thesechangescanbeattributedtochangesintheneutronfluxdistribution(andthus,reactivityimportance)thatareproducedbytheloadingpatternofburnedandfreshfuelassembliesandthefueldepletionwhichoccursduringthereloadfuelcycle.Changesincontrolrodworthsmayalsoaffectrodinseztionlimits,tripreactivity,differentialrodworths,andshutdownrodworth.Priortotheevaluationoflimitingcontrolzodworthparameters,aninitialevaluationoflimitingcontrolrodworthparametersisperformedbyrodworthcalculationsobtainedusingtwo-groupthree-dimensionalmodels.Thesecalculationsareperformedforthebeginningandendofthereloadfuelcycleatfullandzeropowerconditions.Thetotalworthofalltheshutdownbanksisalsocalculatedatzeropowerconditions.Inaddition,theimpactofthepreviouscycleburnup(burnupwindow)ontherodworthcalculationisalsoevaluatedforcompleteness.Thesecalculationsformthebasisfoztheevaluationofthelimitingcontrolrodworthparameters.4.3.2.1.1InsertionLimitsControlrodinsertionlimitsdefinethedeepestindividualcontrolbankinsertionthatcanbeallowed,asafunctionofthereactorpowerlevel.Oneofthepurposesfortheselimitsistophysicallyrestrictthevalueoftheinsertedintegralrodworthinthecoreatanypowerlevel.ThiswillensurethattheminimumshutdownmarginrequirementcanbesatisfiedregardlessofthecoreconfigurationduringMODES1and2.Itshouldberecognized,however,thatcontrolrodinsertionlimitsarenotdefinedbyreactivityconstraintsalone.ThefinaldeterminationofcontrolrodinsertionlimitsisdependentonpeakingfactorconstraintsthatmustbesatisfiedduringMODES1and2andduringcertainaccidentconditions.4.3-4REV.1312/96 GINNA/UFSAR'Insertionlimitsarecalculatedusingtwo-group,one-dimensionalaxialmodels.Thecoreisdepletedusingathree-dimensionalmodel.Thethree-dimensionalmodeliscollapsedintoanequivalentone-dimensionalaxialmodel.Thecalculationsareperformedatthebeginningandendofthereloadcycle.Subsequently,theaxialmodelisusedtocomputepowerlevelsforvariouszodpositions(withnormalbankoverlap)thatwouldrepresentapre-definedvalueofinsertedintegralrodworth(commonlyreferredtoastherodinsertionallowance).Rodinsertionlimitsazeconservativelyconstructedbylimitingtheamountofrodinsertionatanypowerleveltoavaluethatislessthanthecalculatedamount.4.3.2.1.2TotalRodNorthThetotalintegralrodworthisevaluatedbyassumingthatallthecontrolandshutdownbanksazeinsertedandthatthemostreactiveindividualrodclustercontrolassemblyisfullywithdrawnfromthecore.Calculationsazeperformedatthebeginningandendofthereloadfuelcycleat.hotzeropowerconditions.Two-groupthree-dimensionalcalculationsareusedtodeterminetheworthofthemostreactivestuckrod.Individualrodsarewithdrawnfromanall-rods-inconditionuntilthemostreactiverodisidentified.Thestuckrodworthissubtractedfromthetotalworthofallcontrolandshutdownbanksandtheresultantquantity(calledtheN-1rodworth)isfurtherreducedforconservatism.ThisevaluationoftheminimumN-1rodworthisusedtodeterminetheshutdownmarginthatisavailableatboththebeginningandendofthereloadfuelcycle.4.3.2.1.3TziReactivitTheminimumtripreactivityatornearfullpowerconditionsandthetripreactivityshape(i.e.,theinsertedrodworthversusrodposition)arecontrolrodworthparametersevaluatedforeachreloadcore.Theminimumtripreactivityisevaluatedatthebeginningandendofthezeloadfuelcycletoensurethatthepreviouslyestablishedlimitisvalidforpowerlevelsnearfullpowerandfortheentirecyclelength.Themostlimitingtripreactivityshape(accountingfortheworthaxialpowerdistribution)isevaluatedeachreloadfuelcycletodeterminetheminimuminsertedrodworthversusrodpositionthatwouldbeproducedbyN-1controlrodsenteringthecoreatfullpower.Thisevaluationisperformedwithtwo-4.3-5REV.1312/96 groupone-dimensionalaxialcalculations.Theaxialmodelisestablishedbycollapsingthethree-dimensionalmodelintoanequivalentone-dimensionalaxialmodel.ZtisassumedthatthecontrolrodscanbeinsertedasdeepasthefullpowerinsertionlimitandthatthepowerdistributioniswithinTechnicalSpecificationslimits.Usingthemostlimitingaxialpowershape,asingleshutdownbank,equalinworthtotheminimumtripreactivity,isinsertedintothecoreinastepwisefashion.Theresultsofthesecalculationsareusedtoevaluatetheminimuminsertedrodworthversusrodposition.4.3.2.1.4DifferentialRodNorthsMaximumdifferentialrodworthsatfullpowerandzeropowerconditionsareevaluatedforeachreloadcore.Theseevaluationsazeperformedatthebeginningandendofthefuelcycle.Two-group,one-dimensionalaxialcalculationsareusedtodeterminemaximumdifferentialrodworths.Thedifferentialzodworthsareobtainedusingtheequivalentaxialmodel,whichhasbeenobtainedbycollapsingthethree-dimensionalmodelwithcontrolbankcrosssectionsthatyieldthetotalworthdeterminedbythethree-dimensionalanalysesforthebankfullyinserted.Fullpowercalculationsareperformedtodeterminethemaximumdifferentialworthofanycontrolbankthatcouldbemovingduringpoweroperation.'hecontrolbanksazeassumedtomoveinnormalsequencewithprogrammedcontrolbankoverlap.Atzeropowerconditions,themaximumdifferentialzodworthofanytwosequentialcontrolbanksisdeterminedbyassumingthatthebanksazemovingwith100%overlap.Thatis,bothcontrolbanksarewithdrawnsimultaneouslyasinapostulatedstartupaccidentfromasubcriticalcondition.4.3.2.1.5SummarThecontrolrodworthparametersareevaluatedeachreloadfuelcycle.Thesekeysafetyparametersazethenfactoredintothereloadsafetyevaluation.4.3.2.2CoreReactivityParametersandCoefficientsThekineticcharacteristicsofthereactorcoredeterminetheresponseofthecozetochangingplantconditionsortooperatoradjustmentsmadeduringMODES1and2,aswellasthecoreresponseduringabnormaloraccidental4.34REV.1312/96 GINNA/UFSARtransients.Thesekineticcharacteristicsazequantifiedintermsofreactivitycoefficients.Thereactivitycoefficientsreflectthechangesintheneutronmultiplicationduetovaryingplantconditionssuchaschangesinpower,moderator,orfueltemperatures.Sincereactivitycoefficientschangeduringthelifeofthecoze,rangesofcoefficientsareemployedintransientanalysistodeterminetheresponseoftheplantthzoughoutlife.Reactivitycoefficientsazecalculatedonacore-widebasisusingthree-dimensionaltwo-groupcalculations.Forsomeaccidents,powerdistributionsduringthetransientdonotchangesignificantlyfromthoseoccurringduringnormaloperatingconditions,ensuringnegligiblechangesinthevaluesofreactivitycoefficients.However,foraccidentsleadingtosignificantpowerdistributionchangesfromthoseoccurringduringnormaloperatingconditions(e.g.,worststuckrodconfiguration),reactivitycoefficientsaredeterminedusingthepowerdistributionoccurringduringtheaccident.Theexactvaluesoftherea'ctivitycoefficientusedinthesafetyanalysisdependonwhetherthetransientofinterestisexaminedatbeginning-of-lifeorend-of-life,whetherthemostnegativeozthemostpositive(leastnegative)coefficientsproduceconservativeresults,andwhetherspatialnonuniformitymustbeconsideredintheanalysis.Conservativevaluesofreactivitycoefficients,consideringvariousaspectsofanalysis,areusedinthetransientanalysis.Table4.2-4illustratesthereactivityparametersandcoefficientsandthelimitingvalueswhichareevaluatedforeachreloadcore.Reactivityparametersandcoefficientsareevaluatedbyconsideringthefollowingconditions.A.Beginning,middle,andendofthereloadfuelcycle.B.Fullpower,partpower,andzeropoweroperation.C.RoddedcoreconfiguzationsallowedbytheTechnicalSpecificationsduringpoweroperation.Xnadditiontotheaboveconditions,considerationisalsogiventotheimpactthatthepreviouscycleburnuphasoncorereactivityparametersandcoefficients.Theevaluatedreactivityparametersandcoefficientsarediscussedbelow.4.3-7REV.1312/96 4.3.2.2.1ModeratorTemeratuzeCoefficientThemoderatortemperature(density)coefficientisdefinedasthechangeinreactivityperdegreechangeinmoderatortemperature(density).Thevalueofthiscoefficientissensitivetochangesinthemoderatordensity,themoderatortemperature(keepingthedensityconstant),thesolubleboronconcentration,thefuelburnup,andthepresenceofcontrolrodsand/ozburnablepoisonswhichreducetherequiredsolubleboronconcentrationandincreasethe"leakage"ofthecore.Themoderatorcoefficientiscalculatedforthevariousplantconditionsdiscussedabovebyperformingtwo-groupthree-dimensionalneutroniccalculations,varyingthemoderatortemperature(anddensity)byseveraldegreesabouteachofthemeantemperaturesofinterest.4.3.2.2.2FuelTemeratureCoefficientThefueltemperature(doppler)coefficientisdefinedasthechangeinreactivityperdegreechangeineffectivefueltemperature.ItisprimarilyameasureofthedopplerbroadeningofUranium-238andPlutonium-240resonanceabsozptionpeaks.Thefueltemperaturecoefficientiscalculatedbyperformingtwo-groupthree-dimensionalcalculations.Moderatortemperatureisheldconstantandpowerlevelisvaried.Thespatialvariationoffueltemperatureistakenintoaccountbycalculatingtheeffectivefueltemperatureasafunctionoflocalpowerdensitythroughoutthecore.Thedoppleronlycontributiontothepowercoefficientisderivedfromthesamecalculationsandisdefinedasthechangeinreactivityperpercentchangeinpower.4.3.2.2.3BoronWorthTheboronworthisdefinedasthechangeinreactivityperppmchangeintheboronconcentration.Thevalueofthisparameterdependsontheboronconcentration,onthemoderatortemperature(density),andonthepresenceofcontrolrodsand/ozburnablepoisons.Itiscalculatedforthevariousplantconditionsdiscussedabovebyperformingtwo-groupneutroniccalculations,varyingtheboronconcentrationaboutthereferencevaluesofinterest.4.3-8REV.1312/96 GINNA/UFSAR4.3.2.2.4DelaedNeutrons~~Delayedneutronsplayanimportantroleindeterminingthedynamicresponseofthecore.Thedelayedneutronsareemittedfromfissionproducts,calledprecuzsozs,ashorttimeafterafissionevent.Thedelayedneutronfractionineachoftheprecursorgroupsis,in,general,differentfordifferentfissionableisotopes.Theeffectivedelayedneutronfractionfortheentirecoreisobtainedbyweightingthedelayedneutronfractionfozdifferentisotopesandprecursorgroupsbytheregion-wisefractionoffissionsineachisotopeandtheregion-wisepowersharinginthecore.Region-wisepowersharingsforvariouscoreconditionsdescribedearlierazeobtainedfromtwo-groupthree-dimensionalneutzoniccalculations.Thefractionoffissionsineachisotopeisobtainedfromregion-wisemacroscopicfew-groupcross-sectioncalculations.4;3.2.2.5PromtNeutronLifetimeThepromptneutronlifetimevalueisobtainedinamannersimilartothecalculationoftheeffectivedelayedneutronfraction.Valuesofthepromptneutronlifetimeareobtainedfromregion-wisefew-gzoupcross-sectioncalculations.Thesevaluesareweightedbyregion-wisepowersharingstakenfromtwo-groupthree-dimensionalneutroniccalculationsforvariouscoreconditionstodeterminethecoreaverageprompt,neutronlifetime.4.3.2.2.6SummarCozereactivityparametersandcoefficientsevaluatedinreloadcoresdependonthepreviouscycleburnup,thenumberandenrichmentoffreshfuelassemblies,theloadingpatternofburnedandfreshfuel,thenumberandlocationofanyburnableabsorbers,etc.Thesecoefficientsandparametersdo,however,exhibitpredictabletrendswhicharedependentonsuchcoreaverageparametersasbuznup,boronconcentration,moderatorandfueltemperatures,andpowerlevel.Asaresultofthesetrendsandpastreloadevaluationexperience,reactivityparametersandcoefficientscanbeevaluatedusingdifferingdegreesofsophistication.4.3-9REV.1312/96 GINNA/UFSAR4.3.2.3ReactorCozePowerDistributionInordertomeettheperformanceobjectiveswithoutviolatingsafetylimits,thepeaktoaveragepowerdensitymustbewithinthelimitssetbythenuclearhot-channelfactors.Forthepeakpowerpointinthecore,theheatfluxhot-channelfactor,Fg,wasestablishedasspecifiedinTable4.2-1.Forthehottestchannelthenuclearenthalpyrisehot-channelfactors,F~,wasestablishedasspecifiedinTable4.2-1.PowercapabilityofaPWRcoreisdeterminedlargelybyconsiderationofthepowerdistributionanditsinterrelationshiptolimitingconditionsinvolving~Thelinearpowerdensity.~Thefuelcladdingintegrity.~Theenthalpyriseofthecoolant.Todeterminethecorepowercapability,localaswellasgrosscoreneutronfluxdistributionshavebeendeterminedforvariousoperatingconditionsatdifferenttimesincorelife.Thepresenceofcontrolrods,burnableabsorbers,andchemicalshimconcentrationallplaysignificantrolesinestablishingthefissionpowerdistribution,inadditiontotheinfluenceofthermal-hydraulicandtemperaturefeedbackconsiderations.Thecomputerprogramsusedtodetermineneutronfluxdistributionsincludeamodeltosimulatenonuniformwater(andchemicalshim)densitydistributions.Thermal-hydraulicfeedbackconsiderationsareespeciallyimportantlateincyclelifewherethemagnitudeofthefluxredistributionandreactivitychangewithchangeincozepowerorrodmovementarestronglyinfluencedbyenthalpyriseupthecoreandbythefuelburnupdistribution.Consequently,extensiveX-YandZpowerdistributionanalyseshavebeenperformedtoevaluatefissionpowerdistributions.In-coreinstrumentationisemployedtoevaluatethecorepowerdistributionsthroughoutcorelifetimetoensurethatthethermaldesigncriteriaaremet.4.3-10REV.1312/96 GINNA/UFSAR4.3.3EVALUATIONOFRELOADSWITHOPTIMIZEDFUELASSEMBLIESThekeysafetyparametersevaluatedfortheconceptualtransitionandfulloptimizedfuelassemblydesignsshowthattheexpectedrangesofvariationformanyoftheparameterswillliewithinthenormalcycle-to-cyclevariations.Theparameterswhichfalloutsideoftheserangesarethosewhicharesensitivetofueltype,e.g.,themoderatortemperaturecoefficient.Theaccidentevaluations,documentedinChapter15,haveconsideredrangesofparameterswhichareappropriateforthetransitioncyclesandbeyond.TheAdvancedNodalCode(ANC)(Reference1)wasimplementedinthereloaddesign,analysisbeginningwithcycle19.ANCisanadvancednodalanalysistheorycodecapableoftwo-orthree-dimensionalcalculations'eginningwithcycle22,PHOENIX-P(Reference2)computercodewasimplementedinthereloaddesignanalysis.PHOENIX-Pisatwo-dimensionaltransporttheorybasedcodethatcalculateslatticephysicsconstants.Thesemodelssupplementthe"StandardReloadSafetyEvaluationMethodology"(Reference3).ThesearethesamemethodsandmodelsthathavebeenusedinotherWestinghousereloadcycledesigns.AnumberofchangestotheTechnicalSpecificationswereapprovedaspartofthetransitiontooptimizedfuelassemblies.Someofthesechanges,whetherdirectlyrelatedtooptimizedfuelassembliesornot,impactthecorenucleardesign.Thesechangesinclude(1)thepositivemoderatortemperaturecoefficientspecification,(2)the0.3multiplierintheF~limitfunction,and(3)areductionintherequiredshutdownmarginto1.8%deltap.Powerdistributionsandpeakingfactorsareprimarilyloading-patterndependent.Theusualmethods,suchasenrichmentvariationcanbeemployedinthetransitionandfulloptimizedfuelassemblycorestoensurecompliancewiththepeakingfactorTechnicalSpecifications.4.3.4TESTSFORREACTIVITYANOMALIESTestsforreactivityanomaliesordesignerrorsareobtainedduringthereloadstartuptests.Reviewacceptancecriteriaareappliedtothecomparisonofmeasuredandpredictedresultsatstartuptoidentifyreactivityanomalies.4.3-11REV.1312/96 GINNA/UFSARMonitoringforreactivityanomaliesoverdepletionofthefuelisaccomplishedbyobtainingameasurementoftheboronconcentration,correctingthemeasurementtoasetofreferenceplantoperatingconditions,andplottingtheresultsversusfuelburnup.Areactivityanomalycanbeidentifiedbydepartureofthecorrectedmeasuredboronconcentrationfromthepredictedboronvalueorpath.4.3-12REV.1312/96 GINNAIUFSARREFERENCESFORSECTION4.31.Y.S.Liu,etal.,ANC:AWestinghouseAdvancedNodalComputerCode,WCAP10966-NP-A(Non-Proprietary),September1986.2.T.Q.Nguyen,etal.,QualificationofthePHOENIX-P/ANCNuclearDesignSystemforPressurizedWaterReactorCores,WCAP11597-A,June1988.3.S.L.DavidsonandW.R.Kramer(Ed.),WestinghouseReloadSafetyEvaluationMethodology,WCAP9273-A(Non-Proprietary),July1985.4.3-13REV.1312/96

GINNA/UFSAR4~5REACTORMATERIALSReactorvesselmaterialsarediscussedinSection5.3.1.Controlroddrivesystemstructuralmaterialsandreactorinternalsmaterialsarediscussedbelow.4.5.1CONTROLRODDRIVESYSTEMSTRUCTURALMATERIALSAllpartsexposedtoreactorcoolant,suchasthepressurevessel,latchassembly,anddrivezod,aremadeofmetalswhichresistthecorrosiveactionofthewater.Threetypesofmetalsazeusedexclusively:stainlesssteels,InconelX-750,andcobalt-basedalloys.Wherevermagneticfluxiscarriedbypartsexpos'edtothemaincoolant,stainlesssteelisused.Cobalt-basedalloysareusedforthepinsandlatchtips.InconelX-750isusedforthespringsofbothlatchassembliesandtype304stainlesssteelisusedforallpressurecontainment.Hardchromeplatingprovideswearsurfacesontheslidingpartsandpreventsgallingbetweenmatingparts(suchasthreads)duringassembly.Outsideofthepressurevessel,wherethemetalsareexposedonlytothecontainmentenvironmentandcannotcontaminatethemaincoolant,carbonandstainlessst'eelsareused.Carbonsteel,becauseofitshighpermeability,isusedforfluxreturnpathsaroundtheoperatingcoils.Itiszinc-plated0.001-in.thicktopreventcorrosion.AdditionalinformationonthecontrolroddrivesystemmaterialsispresentedinSection3.9.4.4.5.2REACTORINTERNALSMATERIALSInformationonreactorinternalsmaterialsispresentedinSection3.9.5.4.5-1REV.1312/96

GINNA/UFSAR4.6FUNCTIONALDESIGNOFREACTIVITYCONTROLSYSTEMInformationonthefunctionaldesignandevaluationofthecontrolroddrivesystemispresentedinSection7.7.ThemechanicaldesignisdiscussedinSection3.9.4.InformationonthefunctionaldesignandevaluationofthechemicalandvolumecontrolsystemispresentedinSection9.3.4.EvaluationofthecombinedperformanceofreactivitycontrolsystemspertainingtotheresponseoftheplanttopostulatedprocessdisturbancesandtopostulatedmalfunctionsorfailuresogequipmentarepresentedinChapter15andSection7.7.4.6-1REV.1312/96

GINNA/VFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSTABLEOFCONTENTSSectionPx81ePacCe5.1SUHMARYDESCRZPTZON5.1-15.1.15.1.25.1.35.1.3.1'5.1.3.25.1.3.35.1.3.45.1.3.55.1.3.65.1.3.75.1.3.85.1.3.95.1.3.105.1.45.1.4.15.1.4.25.1.55.1.65.1.75.1.8GeneralPerformanceObjectivesDesignCriteriaQualityStandardsPerformanceStandardsRecordsRequirementsMissileProtectionReactorCoolantPrcssureBoundaryMonitoringReactorCoolantLeakageReactorCoolantPrcssureBoundaryCapabilityReactorCoolantPrcssureBoundaryRapidPropagationFailurePreventionReactorCoolantPrcssureBoundarySurveillanceAdequacyofReactorCoolantSystemDesignRelativeto197210CFR50,AppendixA,CriteriaDesignCharacteristicsDesignPrcssureDesignTemperatureCyclicLoadsServiceLifeRelianceonIntcrconncctedSystemsSystemIncidentPotential5.1-15.1-15.1-25.1-25.1-35.1<5.1-45.1-55.1<5.1-65.1-75.1-85.1-105.1-105.1-105.1-105.1-115.1-115.1-125.1-12RefercnccsforSection5.15.1-135.21NTEGRZTYOFTHEREACTORCOOLANTPRESSUREBOUNDARY5.2-15.2.15.2.1.15.2.1.25.2.1.2.15.2.1.2.25.2.1.2.35.2.1.35.2.25.2.2.15.2.2.25.2.2.2.15.2.2.2.25.2.2.2.3ComplianceivithCodesSystemIntegrityCodesandClassificationsCodeRequirementsQualityControlFieldErectionProceduresSeismicLoadsOvcrprcssurizationProtectionNormalOperationLow-TemperatureOvcrpressureProtectionDesignBasesSystemDescriptionSystemEvaluation5.2-15.2-15.2-25.2-25.2-35.245.2<5.2-55.2-55.2-65.2-65.2-75.2-95-1REV.13-17/96 GINNA/VFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSTABLEOFCONTENTSSectionTitle~Pae5.2.2.2.3.15.2.2.2.3.25.2.2.2.3.35.2.2.2.3.45.2.2.2.3.55.2.2.2.45.2.35.2.3.15.2.3.1.15.2.3.1.1.15.2.3.1.1.25.2.3.1.25.2.3.1.2.15.2.3.1.2.25.2.3.1.2.35.2.3.25.2.45.2.4.15.2.4.25.2.4.2.15.2.4.2.25.2.4.35.2.4.45.2.4.55.2.4.65.2.4.75.2.4.85.2.55.2.5.15.2.5.25.2.5.35.2.5.45.2.5.4.15.2.5.4.1.15.2.5.4.1.25.2.5.4.1.35.2.5.4.1.45.2.5.4.25.2.5.4.35.2.5.4.4GeneralMassInputCaseHeatInputCaseEvaluationResultsAdministrativeControlsTestsandInspectionsReactorCoolantPressureBoundaryMaterialsMaterialSpecificationsNondestructiveExaminationofMaterialsandComponentsPriortoOperationQualityAssuranceProgramWeldingandHeatTreatmentQualityAssuranceforElcctroslagWeldsPipingElbowsIReactorCoolantPumpCasingsReactorCoolant'PumpFieldErectionandWeldingCompatibilityWithReactorCoolantInserviccInspectionandTestingoftheReactorCoolantSystemPressureBoundaryInserviccInspectionProgramInspectionAreasandComponentsAccessibleComponentsandAreasAccessibleAreasDuringRefuelingAccessibilityExaminationMethodsEvaluationofExaminationResultsRepairRequirementsPressureTestingExemptionsDetectionofLcakagcThroughReactorCoolantPressureBoundaryLeakageDetectionMethodsLeakageLimitationsLocatingLeaksLeakageDetectionSystemDescriptionsContainmcntAirParticulateandRadiogasMonitorsAirParticulateMonitorSensitivityAssumptionsLeakageDetectionThresholdRadiogasMonitorHumidityDetectorCondensateMeasuringSystemLiquidInventoryinProcessSystemsandContainmentSumps5.2-95.2-105.2-115.2-125.2-125.2-135.2-145.2-145.2-145.2-145.2-155.2-165.2-165.2-175.2-195.2-205.2-20a5.2-20a5.2-215.2-215.2-235.2-245.2-255.2-265.2-275.2-275.2-275.2-285.2-285.2-295.2-315.2-315.2-315.2-315.2-315.2-335.2-345.2-355.2-355.2-365-iiREV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSTABLEOFCONTENTSSectionTi81ePaces5.2.5.5LeakageDetectionSystemEvaluation5.2-37ReferencesforSection5.25.2-385.3REACTORVESSEL5.3-15.3.15.3.1.15.3.1.25.3.1.35.3.25.3.2.15.3.2.25.3.2.35.3.2.45.3.2.55.3.35.3.3.15.3.3.25.3.3.35.3.3.3.15.3.3.3.25.3.3.3.35.3.3.3.45.3.3.45.3.3.4.15.3.3.4.25.3.3.4.35.3.3.4.45.3.3.4.55.3.3.5ReactorVesselMaterialsReactorVesselDescriptionMaterialSpecificationsTestingandSurvcillanccPressure-TemperatureLimitsThermalandPrcssureLoadingsPressure-TemperatureLimitsPressure-TemperatureLimitCalculationIrradiationEffectonPressure-TemperatureLimitHeatupandCooldosvnRatesReactorVesselIntegritySafetyFactorsMaterialSurveillanceProgramSurveillanceProgramAnalysisResultsSummaryCharpyV-NotchImpactTestResultsTensionTestResultsRadiationAnalysisandNeutronDosimetryAnalysisofEffectsofLossofCoolantandSafetyInjectionontheReactorVesselReactorVesselSafetyInjectionNozzlesFuelAssemblyGridSpringsCoreBarrelandThermalShieldSubsequentAnalysesofReactorVesselPressurizedThermalShockReferencesforSection5.35.3-15.3-15.3-25.3<5.3-45.3-45.3-55.345.3-75.3-75.3-85.3-85.3-105.3-115.3-125.3-145.3-165.3-165.3-165.3-175.3-195.3-195.3-195.3-195.3-205.3-215.4COMPONENTANDSUBSYSTEMDESIGN5.4-15.4.15.4.1.15.4.1.1.1ReactorCoolantPumpsGeneralDescriptionCentrifugalPump5.4-15.4-15.4-1REV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSTABLEOFCONTENTSSectionTit1e5.4.1.1.25.4.1.1.35.4.1.1.45.4.1.1.55.4.1.25.4.1.2.15.4.1.2.25.4.1.2.35.4.1.2.45.4.1.2.55.4.1.2.65.4.25.4.2.15.4.2.25.4.2.35.4.2.45.4.35.4.3.15.4.3.1.15.4.3.1.25.4.3.25.4.3.2.15.4.3.2.25.4.45.4.55.4.5.15.4.5.25.4.5.2.15.4.5.2.25.4.5.2.2.15.4.5.2.2.25.4.5.2.2.35.4.5.2.2.45.4.5.35.4.5.3.15.4.5.3.1.15.4.5.3.1.25.4.5.3.25.4.5.3.2.15.4.5.3.2.25.4.5.3.2.35.4.5.3.3ControlledLeakageShaftSealPumpMotorVibrationMeasurementLubeOilLeakageCollectionSystemPumpFlywheelIntegrityPumpOverspccdPumpFlywheelDesignandFabricationFlgvhcclDesignEvaluationPumpSeismicDesignInscrviceInspectionProgramConclusionStcamGeneratorsRcplaccmcntStcamGeneratorMaterialsStcamGeneratorInserviceInspectionRcplaccmcntStcamGeneratorDesignEvaluationHighCycleFatigueFailureofOriginalSteamGcncratorTubesReactorCoolantPipingGeneralGeneralDescriptionPressureIsolationofLow-PressureSystemReactorCoolantSystemVentsGeneralReactorHeadVentSystemDescriptionMainSteamLincIsolationSystemResidualHeatRemoval(RHR)SystemDesignBasesSystemDesignCodesandClassificationsComponentsHeatExchangcrsPumpsValvesPipingPerformanceEvaluationIsolationRequirementIsolationValveDescriptionDeviationsFromBranchTcchnicalPositionRSB5-1ResidualHeatRemovalOverpressureProtectionDesignBasisAnalysisEffectofStuckOpenReliefValveResidualHeatRemovalPumpProtection5.4-15.4-35.4-35.4-35.4-35.4-35.4<5.4-55.4-65.445.445.4-85.4-95.4-95.4-95.4-105.4-135.4-135.4-135.4-145.4-145.4-145.4-155.4-185.4-215.4-215.4-215.4-235.4-245.4-245.4-245.4-245.4-255.4-255.4-255.4-255.4-265.4-285.4-285.4-285.4-30.5.4-305-lvREV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSTABLEOFCONTENTSSectionPit1ePacCe5.4.5.3.45.4.5.3.55.4.5.3.65.4.5.45.4.5.4.15.4.5.4.25.4.5.4.35.4.5.4.45.4.5.4.55.4.5.4.65.4.5.55.4.65.4.75.4.7.15.4.7.25.4.85.4.8.15.4.8.25.4.95.4.9.15.4.9.25.4.9.35.4.105.4.10.15.4.10.25.4.115.4.11.15.4.11.1.15.4.11.1.25.4.11.1.35.4.11.25.4.11.2.15.4.11.2.25.4.11.2.35.4.11.2.45.4.11.2.55.4.11.2.6Single-FailureConsiderationsLeakageProvisionsBoronConcentrationResidualHeatRemovalatReducedCoolantInventoryGenericLcttcr88-17RequirementsContainmentClosureInstrumentationforReducedInventoryOperationAvailableEquipmenttoMitigateLossofResidualHeatRemovalCoolingReducedInventoryProceduresAnalysesTestsandInspectionsMainSteamandFccdwatcrPipingPressurizerSystemDescriptionSeismicEvaluationPressurizerReliefDischargeSystemSystemDescriptionSystemAnalysisValvesOriginalValveDesignValveWallThicknessMotor-OperatedValveProgramSafetyandPressurizerPowerOpcratcdRclicfValvesSystemDescriptionPerformanceTestingandEvaluationComponentSupportsDesignCriteriaGeneralAsymmetricLosswf-CoolantAccidentLoadingLamellarTearingSupportStructuresReactorVesselSupportsStcamGeneratorSupportsReactorCoolantPumpSupportsPressurizerSupportsReactorCoolantPipingSupportsInspectionandTestingRcfcrcnccsforSection5.45.4-325.4-325.4-335.4-355.4-355.4-365.4-365.4-375.4-385.4-395.4-405.4<354+35.4-435.4-455.4-465.4-465.4<75.4-485.4485.4495.4-495.4-535.4-535.4-545.4-555.4-555.4-555.4-565.4-565.4-575.4-575.4-575.4-585.4-585.4-585.4-585.4405-vREV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSPLISTOFTABLESritieReactorCoolantSystemPressureSettingsReactorCoolantPipingDesignDataReactorCoolantSystemDesignPressureDropThermalandLoadingCyclesReactorCoolantSystemCodeRequirementsMaterialsofConstructionoftheReactorCoolantSystemComponentsReactorCoolantSystemQualityAssuranceProgramReactorCoolantWaterChemistrySpecificationsReactorCoolantPressureBoundarytoContainmentLeakageDetectionSystemsReactorCoolantPressureBoundaryIntersystemLeakageDetectionSystemsReactorVesselSpecificationsReactorVesselDesignDataReactorVesselMaterialsIdentificationofBeltlineMaterialsBcltlineMaterialChemicalCompositionMechanicalPropertiesofBeltlineMaterialsSummaryofPrimaryPlusSecondaryStressIntensityforComponentsoftheReactorVesselSummaryofCumulativeFatigueUsageFactorsforComponentsoftheReactorVesselSummaryofSurveillanceCapsuleResultsComparisonofSurveillanceMaterial30II-IbTransitionTemperatureShiftsandUpperShelf5-viREV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSLISTOFTABLESTabIe5.4-15.4-25.4-35.4-45.4-55.4-65.4-75.4-85.4-9EnergyDecreasesWithRegulatoryGuide1.99,Revision2,PredictionsReactorCoolantPumpDesignDataRcplaccmcntSteamGeneratorDesignDataReactorCoolantPumpCompositeHotPcrformanccCurveDataReactorCoolantPumpColdPerformanceCurveDataforIndividualImpcllcrsReactorVesselHeadVentEquipmentParametersResidualHeatRemovalSystemComponentDesignDataPressurizerDesignDataPressurizerReliefTankDesignDataValveandPipingInformation5-viiREV.13-17/96 GINNA/UFSARCHAPTER5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSIILISTOFFIGURESrinseReactorCoolantSystem-P&ID(Sheets1and2)ReactorVesselHcatupLimitationsApplicableforthefirst21EffectiveFullPowerYearsReactorVesselCooldownLimitationsApplicablcforthefirst21EQectiveFullPoiverYearsReactorCoolantSystemOverprcssureProtection,AccumulatorSystem-P&IDLithiumVersusBoronControlCurveReactorCoolantLe&DetectionSensitivityReactorVesselSchematic(Sheets1and2)IdentificationandLocationofBcltlineRegionMaterialArrangcmcntofSurveillanceCapsulesintheReactorVesselReactorCoolantPumpReactorCoolantPumpEstimatedPerformanceCharacterisiticsReactorCoolantPumpCompositeCurve,CalculatedHotPcrformancc,TotalHeadandHydraulicEfficiencyVersusFlowReactorCoolantPumpCompositeCurve,CalculatedHotPerformance,BrakeHorsepowerVersusFlowReactorCoolantPumpCompositeCurve,CalculatedColdPcrformancc,TotalHeadandHydraulicEfficiencyVersusFlowReactorCoolantPumpCompositeCurve,CalculatedColdPcrformancc,BrakeHorscpowcrVersusFlowReactorCoolantPressureShaftSealArrangementReactorCoolantPumpFlywheelReactorCoolantPumpFlywheelPrimaryStressatOperatingSpeed5-viiiREV.13-17/96 GINNA/UFSARCHAPTER5'EACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMSLISTOFFIGURESFicCureTit'le5.4-65.4-75.4-85.4-9ReplacementSteamGeneratorResidualHeatRemovalSystem-P&IDPressurizerPressurizerReliefTank5-ixREV.13-17/96 GINNA/UFSARChapter5REACTORCOOLANTSYSTEMANDCONNECTEDSYSTEMS5.1SUMMARYDESCRIPTION5.1.1.GENERALThereactorcoolantsystem,showninFigure5.1-1,consistsoftwoidenticalheattransferloopsconnectedinparalleltothereactorvessel.Eachloopcontainsacirculatingpumpandasteamgenerator.Thesystemalsoincludesapressurizer,pressurizerrelieftank,connectingpiping,andinstrumentationnecessaryforoperationalcontrol.ThepressurizerisconnectedtotheBloop.Auxiliarysystempipingconnectionsintothereactorcoolantpipingareprovidedasnecessary.Pressureinthesystemiscontrolledbythepressurizer,wherewaterandsteampressureismaintainedthroughtheuseofelectricalheatersandsprays.Steamcan,eitherbeformedbytheheatersorcondensedbyapressurizerspraytominimizepressurevariationsduetocontractionandexpansionofthecool-ant.Spring-loadedsteamsafetyvalvesandpower-operatedreliefvalvesareconnectedtothepressurizerandthedischargetothepressurizerrelieftank,wheredischargedsteamiscondensedandcooledbymixingwithwater.MajorcomponentswhicharelocatedinsidethecontainmentareindicatedinFigure5.1-1bythecontainmentboundary.Theintersectionofaprocesslinewiththisboundaryindicatesafunctionalpenetration.ReactorcoolantsystemdesigndataarelistedinTables5.1-1through5.1-3.5.1.2PERFORMANCEOBJECTIVESThereactorcoolantsystemtransferstheheatgeneratedinthecoretothesteamgenerators,wheresteamisgeneratedtodrivetheturbinegenerator.Demineralizedwateriscirculatedattheflowrateandtemperaturethatareconsistentwithachievingthereactorcorethermal-hydraulicperformance-presentedinChapter4.Thewateralsoactsasaneutronmoderatorand5.1-1 GINNA/UFSARreflector,andasasolventfortheneutronabsorberusedinchemicalshimcontrol.Thereactorcoolantsystemprovidesaboundaryforcontainingthecoolantunderoperatingtemperatureandpressureconditions.Itservestoconfineradioactivematerialandlimitstoacceptablevaluesitsuncontrolledreleasetothesecondarysystemandotherpartsoftheplant.Duringtransientoperation,theheatcapacityof,thesystemattenuatesthermaltransientsthataregeneratedbythecoreorextractedbythesteamgenerators.Thereactorcoolantsystemaccommodatescoolantvolumechangeswithintheprotectionsystemcriteria.Byappropriateselectionoftheinertiaofthereactorcoolantpumps,thethermal-hydrauliceffectsarereducedtoasafelevelduringthepumpcoastdownwhichwouldresultfromaloss-of-flowsituation.Thelayoutofthesystemensuresthenaturalcirculationcapabilityfollowingalossofflowtopermitplantcooldownwithoutoverheatingthecore.5.1.3DESIGNCRITERIAThedesigncriteriadiscussedinSections5.1.3.1through5.1.3.9wereusedduringthelicensingofGinnaStation.TheyrepresenttheAtomicIndustrialForum(AIF)versionofproposedcriteriaissuedbytheAECforcommentonJuly10,1967.ConformancewiththeGeneralDesignCriteria(GDC)of10CFR50,AppendixA,isdiscussedinSection5.1.3.10.Thefollowingdesigncriteriaapplytothereactorcoolantsystem.Criterion'.Thosesystemsandcomponentsofreactorfacilitieswhichareessentialtotheprevention,orthemitigationoftheconse-quences,ofnuclearaccidentswhichcouldcauseunduerisktothehealth,andsafetyofthepublicshallbeidentifiedandthendesigned,fabricated,anderectedtoqualitystandardsthatreflecttheimportanceofthesafetyfunctiontobeperformed.Wheregenerallyrecognizedcodesandstandardspertainingtodesign,materials,fabrication,andinspectionareused,theyshallbeidentified.Whereadherencetosuchcodesorstandards5.1-2 GINNA/UFSARdoesnotsufficetoassureaqualityproductinkeepingwiththesafetyfunction,theyshallbesupplementedormodifiedasneces-sary.Qualityassuranceprograms,testprocedures,andinspectionacceptance-criteriatobeusedshallbeidentified.Anindicationoftheapplicabilityofcodes,standards,qualityassurancepro-.grams,testprocedures,andinspectionacceptancecriteriausedisrequired.Wheresuchitemsarenotcoveredbyapplicablecodesandstandards,ashowingofadequacyisrequired(AIF-GDC1).Thereactorcoolantsystemisofprimaryimportancewithrespecttoitssafetyfunctioninprotectingthehealthandsafetyofthepublic.Qualitystandardsofmaterialselection,design,fabrication,andinspectionconformtotheapplicableprovisionsofrecognizedcodesandgoodnuclearpractice(Section5.2.1.2).Detailsofthequalityassuranceprograms,testprocedures,andinspectionacceptancelevelsaregiveninSection5.2.3.Particularemphasisisplacedonqualityassuranceintheselectionofreactorvesselmaterialsthathavepropertieswhichareuniformlywithintolerancesappropriatetotheapplicationofthedesignmethodsofthecode.5.1.3.2PerformanceStandardsCriterion:Thosesystemsandcomponentsofreactorfacilitieswhichareessentialtothepreventionortothemitigationoftheconse-quencesofnuclearaccidentswhichcouldcauseunduerisktothehealthandsafetyofthepublicshallbedesigned,fabricated,anderectedtoperformancestandardsthatwillenablesuchsystemsandcomponentstowithstand,withoutunduerisktothehealthandsafetyofthepublictheforcesthatmightreasonablybeimposedbytheoccurrenceofanextraordinarynaturalphenomenonsuchasearthquake,tornado,floodingcondition,highwindorheavyice.Thedesignbasessoestablishedshallreflect:(a)appropriateconsiderationofthemostsevereofthesenaturalphenomenathathavebeenofficiallyrecordedforthesiteandthesurroundingareaand(b)anappropriatemarginforwithstandingforcesgreaterthanthoserecordedtoreflectuncertaintiesaboutthehistoricaldataandtheirsuitabilityasabasisfordesign(AIF-GDC2).Allpiping,components,andsupportingstructuresofthereactorcoolantsystemaredesignedasSeismicCategoryIequipment,i.e.,'heyarecapableo'withstandingthefollowingstresseswithnolossoffunction:1.Code-allowableworkingstressesforthedesignseismicgroundacceleration.5.1-3 GINNA/UFSAR2.Themaximumpotentialseismicgroundaccelerationactinginthehorizontalandverticaldirectionsimultaneously.DetailsaregiveninSection5.4.11.Thereactorcoolantsystemislocatedinthecontainment,thedesignofwhich,inadditiontobeingaSeismicCategoryIstructure,alsoconsidersaccidentsorotherapplicablenaturalphenomena.DetailsofthecontainmentdesignaregiveninSections3.8and6.2.5.1.3.3RecordsReuirementsCriterion:Thereactorlicenseeshallberesponsibleforassuringthemain-tenanc'ethroughoutthelifeofthereactorofrecordsofthedesign,fabrication,andconstructionofmajorcomponentsoftheplantessentialtoavoidunduerisktothehealthandsafetyofthepublic(AIF-GDC5).Recordsofthedesign,fabrication,andconstructionofthemajorreactorcoolantsystem.componentsaretobemaintainedthroughoutthelifeoftheplant.5.1.3.4MissileProtectionCriterion:Adequateprotectionforthoseengineeredsafetyfeatures,thefailuresofwhichcouldcauseanunduerisktothehealthandsafetyofthepublic,shallbeprovidedagainstdynamiceffectsandmissilesthatmightresultfromplantequipmentfailures(AIF-GDC40).Thedynamiceffectsduringblowdownfollowingaloss-of-coolantaccidentareevaluatedinthedetailedlayoutanddesignofthehigh-pressureequipmentandbarrierswhichaffordmissileprotection.Fluidandmechanicaldrivingforcesarecalculatedandconsiderationisgiventopossibledamageduetofluidjetsandsecondarymissileswhichmightbeproduced.Thesteamgeneratorsaresupported,guided,andrestrainedinamannerwhichpreventsruptureofthesteamsideofagenerator,thesteamlines,andthefeedwaterpipingasaresultofforcescreatedbyareactorcoolantsystempiperupture.Thesesupports,guides,andrestraintsalsopreventruptureof5.1-4 GINNA/UFSARtheprimarysideofasteamgeneratorasaresultofforcescreatedbyasteamorfeedwaterlinerupture;Themechanicalconsequencesofapiperupturearerestrictedbydesignsuchthatthefunctionalcapabilityoftheengineeredsafetyfeaturesisnotimpaired.5.1.3.5ReactorCoolantPressureBoundarCriterion:Thereactorcoolantpressureboundaryshallbedesigned,fabri-catedandconstructedsoastohaveanexceedinglylowprobabilityofgrossruptureorsignificantuncontrolledleakagethroughoutitsdesignlifetime(AIF-GDC9).Thereactorcoolantsystem,inconjunctionwithitscontrolandprotectiveprovisions,isdesignedtoaccommodatethesystempressuresandtemperaturesattainedunderallexpectedmodesofplantoperationoranticipatedsysteminteractions,andmaintainthestresseswithinapplicablecodestresslimits.Fabricationofthecomponentswhichconstitutethepressure-retainingboundaryofthereactorcoolantsystemiscarriedoutinstrictaccordancewiththeapplicablecodes.Inaddition,thereareareaswhereequipmentspecificationsforreactorcoolantsystemcomponentsgobeyondtheapplicablecodes.Mate-rialsofconstructionwerechosentolessentheprobabilityofgrossleakageorfailure.DetailsaregiveninSection5.2.3.Thematerialsofconstructionofthepressure-retainingboundaryofthereactorcoolantsystemareprotectedbycontrolofcoolantchemistryfromcorrosionphenomenawhichmightotherwisereducethesystemstructuralintegrityduringitsservicelifetime.Systemconditionsresultingfromanticipated'transientsormalfunctionsaremonitoredandappropriateactionisautomaticallyinitiatedtomaintaintherequiredcoolingcapabilityandtolimitsystemconditionssothatcontinuedsafeoperationispossible.Thesystemisprotectedfromoverpressurebymeansofpressure-relievingdevices,asrequiredbySectionIIIoftheASMEBoilerandPressureVesselCode.Lowtemperatureoverpressureprotectionisalsoprovided,togetherwith,operatingprecautionstominimizeoperationunderundesirableconditions.(SeeSection5.2.2.)5.1-5 GINNA/UFSARIsolablesectionsofthesystemareprovidedwithoverpressure-relievingdevicesdischargingtoclosedsystemssuchthatthesystemcode-allowablereliefpressurewithintheprotectedsectionisnotexceeded.5.1.3.6MonitorinReactorCoolantLeakseCriterion:Meansshallbeprovidedtodetectsignificantuncontrolledleakagefromthereactorcoolantpressureboundary(AIF-GDC16).Positiveindicationsinthecontrolroomofleakageofcoolantfromthereactorcoolantsystemtothecontainmentareprovidedbyequipmentwhichpermitscontinuousmonitoringofcontainmentairactivityandhumidityandofrunofffromthecondensatecollectionsystemunderthecoolingcoilsofthecontainmentairrecirculationunits.Thisequipmentprovidesindicationofnormalbackgroundwhichisindicativeofabasiclevelofleakagefromprimarysystemsandcomponents.Anyincreaseintheobservedparametersisanindicationofchangewithinthecontainmentandtheequipmentprovidediscapableofmonitoringthischange.Thebasicdesigncriterionisthedetec-tionofdeviationsfromnormalcontainmentenvironmentalconditionsincludingairparticulateactivity,radiogasactivity,humidity,condensaterunoff,andliquidinventoryintheprocesssystemsandcontainmentsump.~iFurtherdetailsaresuppliedinSection5.2.5.5.1.3.7ReactorCoolantPressureBoundarCaabilitCriterion:Thereactorcoolantpressureboundaryshallbecapableofaccom-modatingwithoutrupturethestaticanddynamicloadsimposedonanyboundary"componentasaresultofaninadvertentandsuddenreleaseofenergytothecoolant.Asadesignreference,thissuddenreleaseshallbetakenasthatwhichwouldresultfromasuddenreactivityinsertionsuchasrodejection(unlesspreventedbypositivemechanicalmeans),roddropout,orcold~ateraddi-tion(AIF-GDC33).Thereactorcoolantboundaryisshowntobecapableofaccommodating,withoutfurtherrupture,thestaticanddynamicloadsimposedasaresultofasuddenreactivityinsertionsuchasarodejection.TherodejectionaccidentisdescribedinSection15.4.5.5.1-6 GINNA/UFSARTheoperationofthereactor,issuchthattheseverityofanejectionaccidentisinherentlylimited.Sincecontrolrodclustersareusedtocontrolloadvariationsonlyandcoredepletionisfollowedwithborondilution,onlytherodclustercontrolassembliesinthecontrollinggroupsareinsertedinthecoreatpower;atfullpowertheserodsareonlypartiallyinserted.Arodinsertionlimitmonitorisprovidedasanadministrativeaidtotheoperatortoensurethatthisconditionismet.Byusingtheflexibilityintheselectionofcontrolrodgroupings,radiallocationsandpositionasafunctionofload,thedesignlimitsthemaximumfuelenergyforthehighestworthejectedrodtoavaluewhichprecludesanyresultantdamagetotheprimarysystempressureboundary,i.e.,grossfueldispersioninthecoolantandpossibleexcessivepressuresurges.Thefailureofarodmechanismhousingcausingacontrolrodtoberapidlyejectedfromthecoreisevaluatedasatheoretical,thoughnotacredibleaccident.Whilelimitedfueldamagecouldresultfromthishypotheticalevent,thefissionproductsareconfinedtothereactorcoolantsystemandthereactorcontainment.Theenvironmentalconsequencesofrodejectionarelessseverethanfromthepostulatedloss-of-coolantaccident,forwhichpublichealthandsafetyisshowntobeadequatelyprotected.5.1.3.8ReactorCoolantPressureBoundarRaidProaationFailurePreventionCriterion:Thereactorcoolantpressureboundaryshallbedesignedandoperatedtoreducetoanacceptableleveltheprobabilityofarapidlypropagatingtypefailure.'onsiderationisgiven(a)totheprovisionsforcontroloverservicetemperatureandirradi-ationeffectswhichmayrequireoperationalrestrictions,(b)tothedesignandconstructionofthereactorpressurevesselinaccordancewithapplicablecodes,includingthosewhichestablishrequirementsforabsorptionofenergywithintheelasticstrainenergyrangeandforabsorptionofenergybyplasticdeformationand(c)tothedesignandconstructionofreactorcoolantpressureboundarypipingandequipmentinaccordancewithapplicablecodes(AIF-GDC34).Thereactorcoolantpressureboundaryisdesignedtoreducetoanacceptableleveltheprobabilityofarapidlypropagatingtypefailure.5.1-7 GINNA/UFSARInthecoreregionofthereactorvesselitisexpectedthatthenotchtoughnessofthematerialwillchangeasaresultoffastneutronexposure.Thischangeisevidencedasashiftinthenilductilitytransitiontemperaturewhichisfactoredintotheoperatingproceduresinsuchamannerthatfulloperatingpressureisnotobtaineduntiltheaffectedvesselmaterialisabovethenowhigherdesigntransitiontemperatureandintheductilematerialregion.Thepressureduringstartupandshutdownatthetemperaturebelownilductilitytransitiontemperatureismaintainedbelowthethresholdofconcernforsafeoperation.HThedesigntransitiontemperatureisaminimumofnilductilitytemperatureplus60'Fanddictatestheprocedurestobefollowedinthehydrostatictestandinstationoperationstoavoidexcessivecoldstress.Thevalue.ofthedesigntransitiontemperatureisincreasedduringthelifeoftheplantasrequiredbytheexpectedshiftinthenilductilitytransitiontemperatureandasconfirmedbytheexperimentaldataobtainedfromirradiatedspecimensofreactorvesselmaterialsduringtheplantlifetime.FurtherdetailsaregiveninSections5.2and5.3..Allpressure-containingcomponentsofthereactorcoolantsystemaredesigned,fabricated,inspected,andtestedinconformancewiththeapplicablecodes.FurtherdetailsaregiveninSection5.2.1.2.5.1.3.9ReactorCoolantPressureBoundarSurveillanceCriterion:Reactorcoolantpressureboundarycomponentsshallhaveprovisionsforinspection,testing,andsurveillanceofcriticalareasbyappropriatemeanstoassessthestructuralandleaktightintegrityoftheboundarycomponentsduringtheirservicelifetime.Forthereactorvessel,amaterialsurveillanceprogiamconformingwithcurrentapplicablecodesshallbeprovided(AIF-GDC36)..Thedesignofthereactorvesselanditsarrangementinthesystemprovidesthecapabilityforaccessibilityduringservicelifetotheentireinternalsurfacesofthevesselandcertainexternalzonesofthevesselincludingthenozzletoreactorcoolantpipingweldsandthetopandbottomheads.Thereactorarrangementwithinthecontainmentprovidessufficientspacefor4nspectionoftheexternalsurfacesofthereactorcoolantpiping,exceptfortheareaofpipewithintheprimyryshieldingconcrete.5.1-8 GINNA/UFSARMonitoringofthenilductilitytransitiontemperaturepropertiesofthecoreregionplatesforgings,weldments,andassociatedheat-treatedzonesareperformedinaccordancewithASTME185(RecommendedPracticeforSurveillanceTestsonStructuralMaterialsinNuclearReactors).Samplesofreactorvesselforgingmaterialsareretainedandcatalogedincasefutureengineeringdevelopmentshowstheneedforfurthertesting.Thematerialpropertiessurveillanceprogramincludesnotonlytheconventionaltensileandimpacttestsbutalsofracturemechanicsspecimens.Thefracturemechanicsspecimensarethewedge-openingloading-typespecimens.Theobservedshiftsinnilductilitytransitiontemperatureofthecoreregionmaterialswithirradiationwillbeusedtoconfirmthecalculatedlimitsofstartupandshutdowntransients.Todefinepermissibleoperatingconditionsbelowdesigntransienttemperature,apressurerangeisestablishedwhichisboundedbyalowerlimitforpumpoperationandanupperlimitthatsatisfiesreactorvesselstresscriteria.Toallowforthermalstressesduringheatuporcooldownofthereactorvessel,anequivalentpressurelimitisdefinedtocompensateforthermalstressasafunctionoftherateofcoolanttemperaturechange.Thereactorcoolanttemperatureandpressureandsystemheatupandcooldownrates(withtheexceptionofthepressurizer)arelimitedinaccordancewithFigures5.1-2and5.1-3forthefirst21effectivefullpoweryears.Theallowablepressure-temperaturerelationshipsfortheheatupandcooldownratesweredevelopedusingRegulatoryGuide1.99,Revision2,andAppendixGofSectionIIIoftheASMEBoilerandPressureVesselCodeandarediscussedintheTechnicalSpecificationsandReference1.Forthepressurizer,theheatupandcooldownratesdonotexceed100'Fperhrand200'Fperhr,respectively.Anadditionallimitationisthatspraycannotbeusedifthetemperaturedifferencebetweenthepressurizerandthesprayfluidisgreaterthan320'F.Sincethenormaloperatingtemperatureofthereactorvesseliswellabovethemaximumexpecteddesigntransienttemperature,brittlefractureduringnormaloperationisnotconsideredtobeacrediblemodeoffailure.Adiscussionof5.1-9REV912/92 GINNA/UFSARreactorvesselintegrityundertransientconditionsisincludedinSections5.3.3.4and5.3.3.5.5.1.3.10AdeuacofReactorCoolantSstemDesinRelativeto197210CFR50AendixACriteriaTheadequacyoftheGinnaStationreactorcoolantsystemdesignrelativetothefollowingGeneralDesignCriteria(GDC)isdiscussedinSection3.1.2:oGDC14,ReactorCoolantPressureBoundary.oGDC15,ReactorCoolantSystemDesign.oGDC30,QualityofReactorCoolantPressureBoundary.oGDC31,FracturePreventionofReactorCoolantPressureBoundary.oGDC32,InspectionofReactorCoolantPressureBoundary.oGDC34,ResidualHeatRemoval.TheuseofthefollowingSafetyGuidesisdiscussedinSection1.8:oSafetyGuide2,ThermalShocktoReactorPressureVessels.oSafetyGuide14,Reactor,CoolantPumpFlywheelIntegrity.5.1.4DESIGNCHARACTERISTICS5.1.4.1DesinPressureThereactorcoolantsystemdesignandoperatingpressure,togetherwiththesafety,powerrelief,andsprayvalvessetpointsandtheprotectionsystem'etpointpressures,arelistedinTable5.1-1.Thedesignpressureallowsforoperatingtransientpressurechanges.Theselecteddesignmarginconsiderscorethermallag,coolanttransporttimesandpressuredrops,instrumentationandcontrolresponsecharacteristics,andsystemreliefvalvecharacteristics.AdditionalreactorcoolantsystempipingandpressuredropdataarelistedinTables5.1-1through5.1-3.5.1.4.2DesinTemeratureForeachcomponent,thedesigntemperatureisselectedtobeabovethemaximumcoolanttemperatureunderallnormalandanticipatedtransientloadconditions.5.1-10 GINNA/UFSARThedesignandoperatingtemperaturesoftherespectivesystemcomponentsarediscussedinSections5.3.2and5.4.5.1.5CYCLICLOADSAllcomponentsinthereactorcoolantsystemaredesignedtowithstandtheeffectsofcyclicloadsduetoreactorsystemtemperatureandpressurechanges.Thesecyclicloadsareintroducedbynormalunitloadtransients,reactortrips,andstartupandshutdownoperation.ThenumberofthermalandloadingcyclesusedfordesignpurposesisshowninTable5.1-4.Duringunitstartupandshutdown,theratesoftemperatureandpressurechangesarelimited.Thenumberofcyclesforplantheatupandcooldownat100'F/hrwasselectedasaconservativeestimatebasedonanevaluationoftheexpectedrequirements.Theresultingnumber,whichaveragesfiveheatupandcooldowncyclesperyear,couldbeincreasedsignificantly;however,itistheintenttorepresentaconservativerealisticnumberratherthanthemaximumallowedbythedesign.Althoughlossofflowandlossofloadtransientsarenotincludedinthetabulationsincethetabulationisonlyintendedtorepresentnormaldesigntransients,theeffectsofthesetransientshavebeenanalyticallyevaluatedandareincludedinthefatigueanalysisforprimarysystemcomponents.Thereactorcoolantsystemanditscomponentsaredesignedtoaccommodate10Xoffullpowerstepchangesinplantloadand5Xoffullpowerperminuterampchangesovertherangefrom12.8Xfullpoweruptoandincludingbutnotexceeding100Xoffullpowerwithoutreactortrip.Thereactorcoolantsystemwillacceptacompletelossofloadfromfullpowerwithreactortrip.Inaddition,theturbinebypassandsteamdumpsystemmakesitpossibletoacceptasteploaddecreaseof50Xoffullpowerwithoutreactortrip,oraturbinetripfrombelow50Xpowerwithoutareactortrip.5.1.6SERVICELIFETheservicelifeofreactorcoolantsystempressurecomponentsdependsupontheend-of-lifematerialradiationdamage,unitoperationalthermalcycles,qualitymanufacturingstandards,environmentalprotection,andadherencetoestablishedoperatingprocedures.5.1-11 GINNA/UFSAR'.1.7RELIANCEONINTERCONNECTEDSYSTEMSTheprincipalheatremovalsystemswhichareinterconnectedwiththereactorcoolantsystemarethesteamandfeedwatersystemsandthesafetyinjectionandresidualheatremovalsystems.Thereactorcoolantsystemisdependentuponthesteamgeneratorsandthesteam,feedwater,andcondensatesystemsfordecayheatremovalfromnormaloperatingconditionstoareactorcoolanttemperatureofapproximately350'F.Thelayoutofthesystemensuresthenaturalcirculationcapabilitytopermitplantcooldownfollowingalossofallmainreactorcoolantpumps.FlowdiagramsofthesteamandfeedwatersystemsareshowninFigures10.3-1,10.3-2,and10.4-4.Intheeventthatthecondenserisnotavailabletoreceivethesteamgeneratedbyresidualheat,thewaterstoredinthefeed-watersystemmaybepumpedintothesteamgeneratorsandtheresultantsteamventedtotheatmosphere.Theauxiliaryfeedwatersystemwillsupplywatertothesteamgeneratorsintheeventthatthemainfeedwaterpumpsareinoperative.ThesystemisdescribedinSection10.5.ThesafetyinjectionsystemisdescribedinSection6.3.TheresidualheatremovalsystemisdescribedinSection5.4.5.5.1.8SYSTEMINCIDENTPOTENTIALThepotentialofthereactorcoolantsystemasacauseofaccidentsisevalu-atedbyinvestigatingtheconsequencesofcertaincredibletypesofcomponentandcontrolfailuresasdiscussedinSections15.1through15.4andSec-tion15.6.ReactorcoolantpiperuptureisevaluatedinSection15.6.4.5.1-12 GINNA/UFSARREFERENCESFORSECTION5.11.WestinghouseElectricCorporation,RochesterGasandElectricReactorVesselLifeAttainmentPlan,March1990.5.1-13REV912/92 GINNA/UFSARTable5.1-1REACTORCOOLANTSYSTEMPRESSURESETTINGSPressure~(s1)DesignpressureOperatingpressureSafetyvalvesPowerreliefvalvesSprayvalves(open)High-pressuretripHigh-pressurealarmLow-pressuretripHydrostatictestpressure2485223524852335226023772310187331105.1-15 GINNA/UFSARTable5.1-2REACTORCOOLANTPIPINGDESIGNDATAReactorinletpiping,I.D.,in.Reactoroutletpiping,I.D.,in.Coolantpumpsuctionpiping,I.D.,in.aPressurizersurgepiping,in.Design/operatingpressure,psigHydrostatictestpressure(cold),psigDesigntemperature,'FDesigntemperature(pressurizersurgeline),'F3Watervolume,ft27-1/2293110-Schedule1402485/22353110650680552aSurgelinefittedwitha14-'in./10-in.adapteratthepressurizer.5.1-16 GINNA/UFSARTable5.1-3REACTORCOOLANTSYSTEMDESIGNPRESSUREDROPPressureDrop(si)AcrosspumpdischargelegAcrossvessel,includingnozzlesAcrosshotlegAcrosssteamgeneratorAcrosspumpsuctionlegTotalpressuredrop1.344.01.532.23.082.05.1-17 GINNA/UFSARTable5.1-4THERMALANDLOADINGCYCLESTransientConditionDesinCclesaPlantheatupat100'F/hrPlantcooldownat100'F/hrPlantloadingat5XoffullpowerperminPlantunloadingat5XoffullpowerperminSteploadincreaseof10Xoffullpower(butnottoexceedfullpower)Steploaddecreaseof10%offullpowerSteploaddecreaseof50XoffullpowerReactortripHydrostatictestPressure3125psiaat100'F'Pressure2500psiaat400'FSteady-statefluctuations-thereactorcoolantaveragetemperatureforpurposesofdesignisassumedtoincreaseanddecreaseamaximumof6'Fin1min.Thecorrespondingreactorcoolantpressurevariationislessthan100psig.Itisassumedthataninfinitenumberofsuchfluctuationswilloccur.20020014,50014,5002,0002,00020040040aEstimatedforequipmentdesignpurposes(40-yearlife)andnotintendedtobeanaccuraterepresentationofactualtransientsortoreflectactualoperatingexperience.5.1-18 GINNA/UFSAR5.2INTEGRITYOFTHEREACTORCOOLANTPRESSUREBOUNDARY5.2.1COMPLIANCEWITHCODES5.2.1.1SstemInteritThereactorcoolantsystemservesasabarrierpreventingradionuclidescontainedinthereactorcoolantfromreachingtheatmosphere.Intheeventofafuelcladdingfailurethereactorcoolantsystemistheprimarybarrieragainsttheuncontrolledreleaseoffissionproducts.Byestablishingasystempressurelimit,thecontinuedintegrityofthereactorcoolantsystemisensured.Thus,thesafetylimitof2735psig(110%ofdesignpressure)hasbeenestablished.ThisrepresentsthemaximumtransientpressureallowableinthereactorcoolantsystemundertheASMECode,SectionIII,fornormaloperationandanticipatedtransientevents.ReactorcoolantsystempressuresettingsaregiveninTable5.1-1.Releaseofactivityintothereactorcoolantinitselfdoesnotconstituteasignificanthazard.Activityinthecoolantcouldconstituteasignificanthazardonlyifthereactorcoolantsystembarrierisbreached,andthenonlyifthecoolantcontainsexcessiveamountsofactivitywhichcouldbereleasedtotheenvironment.Thechemicalandvolumecontrolsystemmaintainsprimaryreactorcoolantactivitywithinacceptable,levels,asdefinedintheTechnicalSpecifications.Aruptureofasteam-generatortubewouldallowreactorcoolanttoenterthesecondarysyst'm.Inthisevent,aportionofthereactorcoolantsystemgaseousactivitycouldbereleasedtotheatmosphere.TheradiologicalconsequencesoftheeventarediscussedinSection15.6.3.Aspartofthedesigncontrolonmaterials,CharpyV-notchtoughnesstestcurveswereconductedforallferriticmaterialusedinfabricatingpressurepartsofthereactorvessel,steamgenerator,andpressurizertoprovideassuranceforhydrotestingandoperationintheductileregionatalltimes.Inaddition,drop-weighttestswereperformedonthereactorvesselmaterial.REV612/901 GINNA/UFSARReactorvesselmaterialsarediscussedinSection5.3.1.ReactorcoolantpressureboundarymaterialsarediscussedinSection5.2.3.Asanassuranceofsystemintegrity,allcomponentsinthesystemwerehydro-testedat3110psigpriortoinitialoperation.AspartoftheSystematicEvaluationProgram(SEP)theNRC,evaluated,inpart,thestressesinreactorcoolantsystemcomponentsundernormalandaccidentconditions.IntheNRCSafetyEvaluationReport,itwasconcludedthatthecontrolroddrivemechanism,reactorcoolantpumps,steamgeneratorandtubesupports,andpressurizerandreactorvesselsupportswereacceptablydesigned,withthestressanalysisresultswithinestablishedlimits.5,2:1.2CodesandClassifications5.2.1.2.1CodeRequirementsAllpressure-containingcomponentsofthereactorcoolantsystemwereoriginallydesigned,fabricated,inspected,andtestedinconformancewiththeapplicablecodeslistedinTable5.2-1.AspartoftheSEP,thecodes,standards,andclassificationstowhichthestationwasbuiltwerecomparedtocurrentcoderequirements.Itwasgenerallyconcludedthatchangesbetweenoriginalandcurrentcoderequirementsdonotaffectthesafetyfunctionsofthesystemsandcomponentsreviewed.Detailsofthereview,whichincludesthereactorcoolantsystemarepresentedinSection3.2.ThereactorcoolantsystemisclassifiedasSeismicCategoryI,requiringthattherewillbenolossoffunctionofsuchequipmentintheeventoftheassumedmaximumpotentialgroundaccelerationactinginthehorizontalandverticaldirectionssimultaneously,whencombinedwiththeprimarysteadystatestresses'ommencingin1979,RG&EperformedareanalysisofClassIpipingsystemsincludingthereactorcoolantsystemfortheseismicupgradeprogram.TheanalyticalprocedureusedforthepipingreanalysisisdescribedinSection5.2-2REV612/90 GINNA/UFSAR3.7.3.7.5.ThepipingandthermalstresseswerecalculatedusingtheformulasgiveninANSI31.1-"1973,1973SummerAddendarequirements.ThepipingreanalysisisdiscussedinSection3.9.2.1.8.5.2.1.2.2QualityControlQualitycontroltechniquesusedinthefabricationofthereactorcoolantsystemwereequivalenttothoseusedinmanufactureofthereactorvesselwhichconformstoSectionIIIoftheASMECode.kNuclearPipingCodeB31.7isderivedfromASMEIIIcriteria.Thus,theaddedqualityassurancerequirementsbyWestinghousetoUSASB31.1.0-1967procuredreactorcoolantpipingensuredthatthequalitylevelofaWestinghouseplantwascomparabletothatoftheNuclearPipingCodeUSASB31.7asitemizedbelow:1.ThematerialspecificationswereASTMspecificationsapprovedfornuclearuseinthevariouscodecases.2.ThereactorsystemsmaterialswerenondestructivelyexaminedtothelevelsrequiredofClassAvessels-thesamelevelssetforthinUSASB31.7.3.WeldingproceduresandwelderswererequiredtobequalifiedtotherequirementsofSectionIXoftheASMECode.ThesamerequirementprevailsinUSASB31.7.4.AllbuttweldswereexaminedtothesamestandardsrequiredinUSASB31.7.5.Allnozzleweldswererequiredtoberadiographicallyexaminedwhenthebranchweldwasinexcessof2-in.pipesize.ThisrequirementexceedsthatofUSASB31.7.6.Allnozzle,girth,andlongitudinalweldswererequiredtobeliquidpenetrantexamined.ThisrequirementisequivalenttoUSASB31.7.'.2'-3REV612/90 GINNA/UFSAR7.Hydrostatictestingwasperformedincompletedsystems.ThisrequirementisequivalenttoUSASB31.7.5.2.1.2.3FieldErectionProceduresFielderectionandweldingproceduresweregovernedbyWestinghousespecifica-tions,whichensuredthatthefieldfabricationresultedinthesamequalityconsistentwiththatexercisedintheshopfabricationofthesamepiping.InthesespecificationsforshopfabricationandfielderectionwerereferencestoportionsoftheASMECode(SectionsIII,,VIII,andIX),USASPressurePipingCode(B31.1)andNuclearCodeCasesN-7andN-10,andASTMStandards,aswellasanumberofWestinghousedocuments.Duringtheerection,Westinghouseonsitepersonnelcontinuallymonitoredalloperationstoensureconformancetospecifications,regulatorycodes,andgoodconstructionpractices.Adequaterecordsaremaintainedonsiteandincluderadiographyreportsandothernondestructivetestingreports.Theseismicloadingconditionswereinitiallyestablishedbythedesignearthquakeandmaximumpotentialearthquake.Theformerwasselectedtobetypicalofthelargestprobablegroundmotionbasedonthesiteseismichistory.Thelatterwasselectedto:bethelargestpotentialgroundmotionatthesitebasedonseismicandgeologicalfactorsandtheiruncertainties.Forthedesignearthquakeloadingcondition,thenuclearsteamsupplysystemwasdesignedtobecapableofcontinuedsafeoperation.Therefore,forthisloadingconditioncriticalstructuresandequipmentneededforthispurposearerequiredtooperatewithinnormaldesignlimits.Theseismicdesignforthemaximumpotentialearthquakewasintendedtoprovideamarginindesignthatensurescapabilitytoshutdownandmaintainthenuclearfacilityinasafecondition.Inthiscase,itwasonlynecessarytoensurethatthereactorcoolantsystemcomponentsdonotlosetheircapabilitytoperformtheirsafetyfunction.Thishadcometobereferredtoastheno-loss-of-functioncriteriaandtheloadingconditionastheno-loss-of-function"e'arthquakeloadingcondition.5.2-4REV612/90' GINNA/UFSARTheanalyticalmethodemployedinthedesignisdescribedinSection3.7forSeismicCategoryIstructuresandcomponents.Thenaturalperiodsnecessaryforthedeterminationof'theloadswereobtainedbyphysicalmodeltesting.TheloadingcombinationsandassociatedstresslimitsusedforthepipingsystemswhicharepartoftheSeismicPipingUpgradeProgramarediscussedinSection3.9,2.1'.8.ThecriteriaadoptedforallowablestressesandstressintensitiesinvesselsandpipingsubjectedtonormalloadsplusseismicloadsaredefinedinSections3.9.2and5.4.11.Thesecriteriaensuretheintegrityofthereactorcoolantsystemunderseismicloading.Forthecombinationofnormalanddesignearthquakeloadings,thestressesinthesupportstructuresarekeptwithinthelimitsoftheapplicablecodes.Forthecombinationofnormalandno-loss-of-functionearthquakeloadings,,thestressesinthesupportstructuresarelimitedtovaluesasnecessarytoensuretheirintegrityandtocontainthestressesinthereactorcoolantsystemcomponentswithintheallowablelimitsaspreviouslyestablished,AspartoftheGinnaStationSEPthereactorcoolantsystemhasbeenreevaluatedforthedesign-basisearthquake(safeshutdownearthquake)loadingswhereinthegroundaccelerationis0.2g.ThisreevaluationisdiscussedinSections3.7,3.8,and3.9.5,2.2OVERPRESSURIZATIONPROTECTION5.2.2.1Normal0erationDuringnormaloperationthereactorcoolantsystemisprotectedagainstoverpressurebysafetyvalveslocatedonthetopofthepress'urizer.Thesafetyvalvesonthepressurizeraresizedtopreventsystempressurefromexceedingthedesignpressurebymorethan10X,inaccordancewithSectionIIIoftheASIDECode.Thecapacityofthepressurizersafetyvalvesisdeterminedfromconsiderationsof(1)thereactorprotectionsystemand(2)accidentortransientconditionswhichmaypotentiallycauseoverpressure.5.2-5REV612/90) GINNA/UFSARThecombinedcapacityofthesafetyvalvesisequaltoorgreaterthanthemaximumsurgerateresultingfromcompletelossofloadwithoutadirectreactortriporanyothercontrol,exceptthatthesafetyvalvesonthesecondaryplantareassumedtoopenwhenthesteampressurereachesthesecondaryplantsafetyvalvesetting.DetailsoftheanalysisarereportedinSection15.2.2.'ThepressurizerreliefdischargesystemandsafetyvalvesaredescribedinSections5.4.8.1and5.4.10.1.5.2.2.2Low-TemeratureOverressureProtectionLow-temperaturereactorvesseloverpressureprotectionisprovidedbythetwopressurizerpower-operatedreliefvalves(Section5.4.10)withalow-pressuresetpointof424psigorless.Wheneverthereactorcoolantsystemcoldlegl9temperatureisbelow330'Fortheresidualheatremovalsystemisinoperation,2>thelow-pressuresetpointismanuallyenabledfromthecontrolroom.Pressuretransientscausedbymassadditionorheatadditionareterminatedbelowthelimitsof10CFR50,App'endixG,byautomaticoperationofthepower-operatedreliefvalves.Thesystemisdesignedtoprotectthereactorcoolantsystempressureboundaryfromtheeffectsofoperatingerrorsduringcoldshutdownwhenthereactorcoolantsystemisinawater-solidcondition.Thesystemalsosuppliesprotectionfortheresidualheatremovalsystemfromoverpressuriza-tion.Thefollowingsectionsgiveamoredetaileddiscussionoflowtemperatureoverpressureprotection.5.2.2.2.1DesignBasesThebasicpurposeofthelowtemperaturereactorvesseloverpressureprotectionsystemistopreventreactorvesselpressureinexcessof10CFR50,AppendixGlimits.Specificcriteriaforsystemperformanceare1.OperatorAction:Nocreditcanbetakenforoperatoractionfor10minutesaftertheoperatorisawareofatransient.2.SingleFailure:Thesystemmustbedesignedtorelievethepressuretransientgivenasinglefailureinadditiontothefailurethatinitiatedthepressuretransient.5.2-6REV912/92 GONNA/UFSAR3.Testability:Thesystemmustbetestableonaperiodicbasisconsistentwiththesystem'semployment.4.SeismicCriteria:ThesystemsafetyfunctionismetbyequipmentcategorizedasSeismicCategoryI.Thebasicobjectiveisthatthesystemshouldnotbevulnerabletoacommonfailurethatwouldbothinitiateapressuretransientanddisabletheoverpressuremitigatingsystem.Sucheventsaslossofinstrumentairandlossofoffsitepowermustbeconsidered.Twokindsofpressuretransientsareconsidered:1.Massinputtransientsfrominjectionsourcessuchaschargingpumps,safetyinjectionpumps,orsafetyinjectionaccumulators.2.Heatinputtransientsfromsourcessuchassteamgeneratorsordecayheat.OnWestinghousedesignedplants,acommoncauseofoverpressuretransientsisisolationoftheletdownpath(letdownduringlow-pressureoperationsisviaaflowpaththroughtheresidualheatremovalsystem).Thus,isolationoftheresidualheatremovalsystemcaninitiateapressuretransientifachargingpumpisleftrunning.Althoughothertransientsoccurwithlowerfrequency,thosewhichresultinthemostrapidpressureincreasesareofmainconcern.Themostlimitingmassinputtransientisthecharging-letdownmismatchwiththreechargingpumpsleftrunningwithletdowncompletelyisolated.Themost9limitingthermalexpansiontransient'isthestartofareactorcoolantpumpwitha50'Ftemperaturedifferencebetweenthewaterinthereactorvesselandthewaterinthesteamgenerator.ITheNRCconsidersthepower-operatedreliefvalvewithamanuallyenabledlow-pressuresetpointtobeanacceptableoverpressuremitigatingsystem.DetailedinformationonsystemdesigniscontainedinReferences2through4.5.2.2.2.2SstemDescritionRochesterGasandElectricCorporationhasadoptedthe"ReferenceMitigatingSystem"conceptdevelopedbyWestinghouseandtheWestinghouseOwner'sGroup.5.2-7REV912/92 GINNA/UFSARTheactuationcircuitryofthepressurizerpower-operatedreliefvalvesprovidesalow-pressuresetpointat424psigorless(normallysetat410psig)I9duringstartupandshutdownconditions.Thelow-pressurepower-operatedreliefvalveactuationcircuitryusesmultiplepressuresensors,powersupplies,andlogictrainstoimprovesystemreliability.Eachofthetwopower-operatedreliefvalvesismanuallyenabledusingtwokeylockswitches,onetolineuptheairornitrogensupplyandtheothertoenablethelow-pressuresetpoint.(9Whenthereactorvesselisatlowtemperatureswiththeoverpressureprotectionsystemenabled,apressuretransientisterminatedbelowtheAppendixGlimit)3byautomaticopeningofthepower-operatedreliefvalves.Anenablingalarmmonitorsthereactorcoolantsystemtemperature,thepositionofthekeylockswitches(twoperchannel),andtheupstreamisolationvalveposition.Theoverpressureprotectionsystemisrequiredtobeinoperationduringplantcooldownpriortodecreasingtemperaturebelow330'Foroninitiationofresidualheatremovalanditisdisabledpriortoexceeding350'Fduringplantheatup.Theenablingalarmalertstheoperatorintheeventthereactorcoolantsystemtemperatureisbelow330'Fandoverpressureprotectionsystemvalveorswitchalignmenthasnotbeencompleted.TheGinnapower-operatedreliefvalvesarespringclosedandairornitrogenopened.Eachofthetwopower-operatedreliefvalvesreceivesactuatinggasfromeithertheplantinstrumentairsystemorabackupnitrogenaccumulator.Theaccumulatorsaresizedtoprovidesufficientactuatingnitrogenfor10minofpower-operatedreliefvalveoperation(about150cycles)withoutoperatoractionduringthemostlimitingtransientandalossoftheplantinstrumentairsystem.Low-pressurealarmsareinstalledinthecontrolroomtoalerttheoperatortoalownitrogenaccumulatorpressurecondition.SeeFigure5.2-1.Theonlytimetheoverpressureprotectionsystemwouldnotbeenabledduringlowtemperatureoperationwouldbetoallowperformanceofrequiredsecondarysystemhydrostatictests.Analarmmonitorsthepositionofthepower-operatedreliefvalveisolationvalves,alongwiththelowsetpointenablingswitch,toensurethattheoverpressuremitigatingsystemisproperlyalignedforshutdownconditions.Anoverpressurealarmwhichincorporatestwosetpointsisalsoprovided.OnesetpointisvariableandfollowstheTechnicalSpecificationslimit.Theothersetpointalarmsatapreprogrammeddifferentialpressure.Bothsetpointsalarmandlightontheplantcomputer.5.2-8REV912/92 GINNA/UFSARTheinstalledpressureandtemperatureinstrumentationatGinnaStationwillprovideapermanentrecordoverthefullrangeofbothpressureandtemperature.5.2.2.2.3SstemEvaluation5.2.2.2.3.1General.GenericLetter88-11,'RRCPositiononRadiationEmbri:ttlementofReactorVesselMaterialsandItsImpactonPlantOperations,"requiredeachlicenseetoreevaluatetheeffectofneutronradiationonreactorvesselmaterialusingthemethodsdescribedinRegulatoryGuide1.99,Revision2.Thepressure-temperaturelimitsresultingfromtheimplementationofRegulatoryGuide1.99,Revision2,requiredthereevaluationofthe'power-operatedreliefvalvesetpoint.ThesetpointreevaluationwasperformedbywestinghouseandisdocumentedinReference5.~TheLOFTRANcodewasusedinthedeterminationofthelow-temperatureoverpressureprotectionsetpoint.TheLOFTRANcodepredictsplanttransientthermalandhydraulicbehaviorbymodelingthereactorcoolantsystem,includ-ingthesteamgenerators,pressurizer(includingpower-operatedreliefvalves),andreactorcoolantpumps,aswellasselectedvalving,andsomebalanceofplantsystems.TwoversionsoftheLOFTRANcodewereused.LOFT12,usedforthemassinputcalculations,collapsestheseveralreactorcoolantsystemloopsintoasingle-loopmodel.LOFT4,usedfortheheatinputcalculation',modelseachloopexplicitly.The'ollowingsystemparameterswereamongthoseconsideredinthesetpointevaluation:1.Volumeofthereactorcoolantinvolvedinthetransient.2.Reactorcoolantsystempressuresignaltransmissiondelay.3.Volumetriccapacityofthereliefvalvesversusopeningposition.4.Openingandclosingstroketimeofthereliefvalves.5.2-9REV912/92 GINNA/UFSAR5.Massinputrateintothereactorcoolantsystem.6.Heattransfercharacteristicsofthesteamgenerators.7.Initialtemperatureasymmetrybetweenthereactorcoolantsystemandsteamgeneratorsecondarywater.8.Massofsteamgeneratorsecondarywater.9.Reactorcoolantpumpstartupdynamics.10.10CFR50AppendixGpressureandtemperaturelimitsforthereactorvessel.Theanalysisassumedoverpressurizationtransientsresultingfromeithermassinputorheatinputeventsundertwo-loopwater-solidconditionsandassumedthefailureofoneofthepower-operatedreliefvalves.Thespecificassump-tionsandGinnaplantcharacteristicsusedintheanalysisareprovidedinReference5.5.2.2.2.3.2MassInutCase.Thecharging-letdownmismatchwiththreepositivedisplacementchargingpumpsinoperationwasdeterminedtobethemostlimitingmassinputcase.Foramassinputtransienttothereactorcoolantsystem,thepower-operatedreliefvalvewillbesignaledtoopenataspecificpressuresetpoint.Therewillbeapressureovershootduringthedelaytimebeforethevalvestartstomoveandduringthetimethevalveisopening.Therewillbeanundershootwhile*thevalveisrelieving,bothduetotheresetpressurebeingbelowthesetpointandduetothedelayinstrokingthevalveclosed.Themaximumandminimumpressuresreachedinthetransientareafunctionoftheselectedsetpoint.Anumberofmassinputcaseswererunatvariouslow-temperatureoverpressureprotectionsetpoints.Themassinputcaseswereconservativelyanalyzedat85'F~herethebulkmodulusofthefluidisthegreatest.Theresultingovershootisthereforetheworstcase.Initialreactorcoolantsystempressurewasassumedtobe100psilessthanthesetpointpressure.Scopingstudieswereperformedforvarioussetpointsbetween350and600psig5.2-10REV912/92 GINNA/UFSARandontherangeofmassinjectionratesbetween60gpm(onechargingpumpandnoletdownflow)to180gpm(threechargingpumpsandnoletdownflow).5.2.2.2.3.3ofareactorprimary-sidesystem.TheHeatInutCase.Themostlimitingheatinputcaseisthestartcoolantpumpwiththesteamgeneratorsecondary-sidewaterandtubewater50'Fhigherthantherestofthereactorcoolantheatinputeventwasevaluatedat85'Fand330'F.Theheatinputtransientprogressesinamannersimilartothemassinputtransientandwasanalyzedinasimilarmanner.Itisnotedthatasthe,reactorcoolantsystemtemperatureincreases,thesecondarytoprimaryheattransfercoefficientincreasesslowly.Therefore,foralow-temperatureoverpressureprotectionpower-operatedreliefvalvesetpointthatisconstantwithtemperature,thepressureovershootabovethepower-operatedreliefvalvesetpointwillincreaseslowlyasreactorcoolantsystemtemperatureincreases.Ithasbeenfoundthatthe10CFR50AppendixGlimitincreasesmorerapidlythantheincreaseinpressureovershoot.ForGinna,wherethelow-temperatureoverpressureprotectionpower-operatedreliefvalvesetpointisconstantwithreactorcoolantsystemtemperature,thelimitingconditionwithregardto10CFR50AppendixGlimits(minimummarginbetweenAppendixGlimitandpressureovershoots)occuratlowvaluesofreactorcoolantsystemtemperatures.Thereactorcoolantsystempressurelimitrequiredtoprovideresidualheatremovalsystemoverpressureprotectionalsoincreaseswithreactorcoolantsystemtemperature.However,thislimitincreasesmuchmoreslowlywithreactorcoolantsystemtemperaturethandoesthe10CFR50AppendixGlimit.Consequently,thelimitingconditionwithregardtoresidualheatremovalsystempressure'limitscorrespondstotheupperrangeofreactorcoolantsystemtemperatureapplicabletothelow-temperatureoverpressureprotectionsetpoint.Theinitialreactorcoolantsystempressurewasassumedtobe315psig.Thisisconservativeandensuresthatthetransientiswelldefinedbythetimethepower-operatedreliefvalvesetpointisreached.Scopingstudieswere5.2-11REV912/92 GINNA/UFSARperformedforvariouspower-operatedreliefvalvesetpointsbetween325and600psig.5,2.2.2.3.4EvaluationResults.At85Fapower-operatedreliefvalvesetpointofnogreaterthan484psigwillprovideoverpressureprotectionforboththeresidualheatremovalsystemandthereactorvessel10CFR50AppendixGlimitsforboththemassandheatinjectionevents.At330'Fapower-operatedreliefvalvesetpointofnogreaterthan424psigwillprovideoverpressureprotectionforboththeresidualheatremovalsystemandthereactorVessel10CFR50AppendixGlimitsforboththemassandheatinjectionevents.SincetheGinnalow-temperatureoverpressureprotectionsystemisasinglesetpointsystem(i.e.,power-operatedreliefvalvesetpointisconstantwithreactorcoolantsystemtemperature)asetpointofnogreaterthan424psigisrequiredtoprovideoverpressureprotectionforboththeresidualheatremovalsystemandthereactorvesselAppendixGlimits,forboththemassandheatinputeventsovertheentirerangeofreactorcoolantsystemtemperaturesapplicabletothelow-temperatureoverpressureprotectionsystem.Iftheresidualheatremovaloverpressureprotectionfunctionofthelow-temperatureoverpressureprotectionsystem(Section5.4.5.3.2.2)weretoberelinquished,thelimitingconditionwouldbetheAppendixGlimitat85'F,resultinginamaximumallowablepower-operatedreliefvalvesetpointof537psig.5.2.2.2.3.5AdministrativeControls.Tolimitthemagnitudeofpostulatedpressuretransientstowithintheboundsoftheanalysis,adefense-in-depthapproachisadoptedusingadministrativecontrols.SpecificconditionsrequiredtoensurethattheplantisoperatedwithintheboundsoftheanalysisaredescribedintheTechnicalSpecifications.AnumberofprovisionsforpreventionofpressuretransientsarealsocontainedintheGinnaoperatingprocedures.Theseproceduresrequirethatanacceptablereactorcoolantsystemtemperatureprofilebeachievedpriortostartupofareactorcoolantpumpwiththereactorcoolantsysteminawater-solid5.2-12REV912/92 GINNA/UFSARcondition.Inaddition,plantshutdownandcooldownprocedurescallforonereactorcoolantpumptoberununtilthereactorcoolantsystemtemperaturehasbeenloweredto150'F,thusreducingthepossibilityofasignificantreactorcoolantsystemtemperatureasymmetry.Also,plantproceduresrestrictwater-solidoperationstoonlythosetimeswhenabsolutelynecessary.Forexample,theplantmustbemaintainedinawater-solidconditionduringreactorcoolantsystemfillingandventingoperations,duringhydrostatictestingofthereactorcoolantsystem,andduringplantheatuppriortobringingthereactorcoolantsystemwithinwaterchemistryspecifications.Thecooldownproceduresrequirethesafetyinjectionsignalassociatedwiththepressurizerandsteamlinelowpressurebeblockedatapproximately2000psig.Atlessthan1800psig,thehigh-headsafetyinjectiondischargevalvestothereactorcoolantsystemloopsareshut.Atapproximately1500psigthehigh-headsafetyinjectionpumpsaredeenergizedbyplacingtheircontrolswitchesinthe"pull-stop"position.Inthe"pull-stop"positionthesafetyinjectionpumpscannotautomaticallystart.Thesafetyinjectionpumpsarenotreenergizedwhilethereactorcoolantsystemisinacoldandshutdownconditionunlessspecialsurveillancetestingisinprogressorasafetyinjectionaccumulatoristobefilledwhenonlyonesafetyinjectionpumpisenergized.Thediesel-generatorloadandsafeguardssequencetestconductedduringcoldorrefuelingshutdownoperateseachsafeguardtrain(twopumps).However,thepumpdischargevalvesareclosed,thevalvepowersupplybreakersareopen,andthebreakerdccontrolfusesareremoved.Duringotherteststhesafetyinjectionpumpsareprohibitedfromstartingand,exceptduringvalvecyclingtests,thedischargevalvesareshut.5.2,2.2.4TestsandInsectionsOperabilityofthelowtemperatureoverpressureprotectionsystemisverifiedpriortosolidsystem,lowtemperatureoperationbyuseoftheremotelyoperatedisolationvalve,andtheenable/disableswitches.Theactuation5.2-13Rzvsxz/9z GINNA/UFSARcircuitryistestedeachrefuelingoutage.TestingrequirementsareincludedintheTechnicalSpecifications.5.2.3REACTORCOOLANTPRESSUREBOUNDARYMATERIALS5.2.3.1MaterialSecificationsEachofthematerialsusedinthereactorcoolantsystemisselectedfortheexpectedenvironmentandserviceconditions.ThemajorcomponentmaterialsarelistedinTable5.2-2.5.2.3.1.1NondestructiveExaminationofMaterialsandComponentsPriortoOperation5.2.3.1.1.1ualitAssuranceProram.Table5.2-3summarizestheinitial6,qualityassuranceprogramforallreactorcoolantsystemcomponents.Inthistable,allofthenondestructivetestsandinspectionsrequiredbyWestinghousespecificationsonreactorcoolantsystemcomponentsandmaterialsarespecifiedforeachcomponent.Alltestsrequiredbytheapplicablecodesareincludedinthistable.Westinghouserequirements,whichweremorestringentinsomeareasthanthoserequirementsspecifiedintheapplicablecodes,arealsoincluded.Table5.2-3alsosummarizesthequalityassuranceprogramwithregardtoinspectionsperformedonprimarysystemcomponents.InadditiontotheinspectionsshowninTable5.2-3,therewerethosethattheequipmentsupplierperformedtoconfirmtheadequacyofmaterialreceived,andthoseperformedbythematerialmanufacturerinproducingthebasicmaterial.Theinspectionsofreactorvessel,pressurizer,andsteamgeneratorweregovernedbyASMECoderequirements.Theinspectionproceduresandacceptancestandards.requiredonpipematerialsandpipingfabricationweregovernedbyUSASB31.1andWestinghouserequirementsandwereequivalenttothoseperformedonASMECodevessels.ProceduresforperformingtheexaminationswereconsistentwiththoseestablishedintheASMECode,SectionIII,andwerereviewedbyqualifiedWestinghouseengineers.Theseproceduresweredevelopedtoprovidethehighest5.2-14 GINNA/UFSARassuranceofqualitymaterialandfabrication.Theyconsiderednotonlythesizeoftheflaws,butequallyasimportant,howthematerialwasfabricated,theorientationandtypeofpossibleflaws,andtheareasofmostsevereserviceconditions.Inaddition,thesurfacesmostsubjecttodamageasaresultoftheheattreating,rolling,forging,forming,andfabricatingIIIprocesses,receiveda100Xsurfaceinspectionbymagneticparticleorliquidpenetranttestingafteralltheseoperationswerecompleted.Althoughflawsinplatesareinherentlylaminationsinthecenter,allreactorcoolantplatematerialissubjecttoshearaswellaslongitudinalultrasonictestingtogivemaximumassuranceofquality.(Allforgingsreceivedthesameinspection.)Inaddition,100Xofthematerialvolumewascoveredinthesetestsasaddedassuranceoverthegridbasisrequiredinthecode.WestinghousequalitycontrolengineersandRGGEengineersmonitoredthesupplier'swork,andwitnessedkeyinspectionsnotonlyinthesupplier'sshopbutintheshopsofsubvendorsofthemajorforgingsandplatematerial.Normalsurveillanceincludedverificationofrecordsofmaterial,physicalandchemicalproperties,reviewofradiographs,performanceofrequiredtests,andqualificationofsupplierpersonnel.5.2.3.1.1.2WeldinandHeatTreatment.Equipmentspecificationsforfabricationrequiredthatsupplierssubmitthemanufacturingprocedures(welding,heattreating,etc.)toWestinghousewheretheywerereviewedbyqualifiedWestinghouseengineers.Thisalsowasdoneonthefieldfabricationprocedurestoensurethatinstallationweldswereofequalquality.SectionIIIoftheASMECoderequiredthatnozzlescarryingsignificantexternalloadsbeattachedtotheshellbyfullpenetrationwelds.Thisrequirementwascarriedoutinthereactorcoolantpiping,whereallauxiliarypipeconnectionstothereactorcoolantloopweremadeusingfullpenetrationwelds.Preheatrequirements,nonmandatoryundercoderules,wereperformedonallweldments,includingPlandP3materialswhichwerethematerialsofconstructioninthereactorvessel,pressurizer,andsteamgenerators.Preheatandpostheatofweldmentsbothserveacommonpurpose:theproductionoftough,ductilemetallurgicalstructuresinthecompletedweldment.5.2-15RZVSZZ/9Z) GINNA/UFSARPreheatingproducestoughductilewelds'yminimizingtheformationofhardzones,whereaspostheatingachievesthisbytemperinganyhardzoneswhichmayhaveformedduetorapidcooling.Thus,thereactorcoolantsystemcomponentswereweldedunderproceduresthatrequiredtheuseofbothpreheatandpostheat.5.2.3.1.2QualityAssuranceforElectroslagWelds5.2.3.1.2.1PiinElbows.The90-'degreeprimarysystemelbowswereelectroslagwelded.Thefollowingeffortswereperformedforqualityassuranceofthesecomponents:1.Theelectroslagweldingprocedureemployingone-wiretechniquewasqualifiedinaccordancewiththerequirementsofASMECode,SectionIXandCodeCase1355,plussupplementaryevaluationsasrequestedbyWestinghouse.Thefollowingtestspecimenswereremovedfroma5-in.-thickweldmentandsuccessfullytested.Theywere:a.Sixtransversetensilebars-aswelded.b.Sixtransversetensilebars-2050'F,H0quench.c.Sixtransversetensilebars-2050'F,H0quench+750'Fstressreliefheattreatment.d.Sixtransversetensilebars-2050'F,H0quench,testedat650F.e.Twelveguidedsidebendtestbars.2.Thecastingsegmentsweresurface"conditionedfor100Xradiographicandpenetrantinspections.TheacceptancestandardswereASTME-186severitylevel2(exceptnocategoryDorEdefectivenesswaspermitted)andUSASCodeCaseN-10,respectively.5.2-16REV912/92 GINNA/UFSAR3.Theedgesoftheelectroslagweldpreparationsweremachined.Thesesurfaceswerepenetrantinspectedpriortowelding.TheacceptancestandardswereUSASCodeCaseN-10.4.Thecompletedelectroslagweldsurfacesweregroundflushwiththecastingsurface.ThentheelectroslagweldandadjacentbasematerialwerelOOXradiographedinaccordancewithASMECodeCase1355.Also,theelectroslagweldsurfacesandadjacentbasematerialwerepenetrantinspectedinaccordancewithUSASCodeCaseN-10.5.Weldmetalandbasemetalchemicalandphysicalanalysesweredeterminedandcertified.6.Heattreatmentfurnacechartswererecordedandcertified.5.2.3.1.2.2ReactorCoolantPumCasins.TheGinnareactorcoolantpumpcasingswereelectroslagwelded.Thefollowingeffortswereperformedforqualityassuranceofthecomponents.1.Theelectroslagweldingprocedureemployingtwo-wireandthree-wiretechniqueswasqualifiedinaccordancewiththerequirementsoftheASMECode,SectionIXandCodeCase1355,plussupplementaryevaluationsasrequestedbyWestinghouse.Thefollowingtestspecimenswereremovedfroman8-in.-thickandfroma12-in.-thickweldmentandsuccessfullytestedforboththetwo-wireandthethree-wiretechniques,respectively.Theywereasfollows.a.Two-wireelectroslagprocess-8-in.-thickweldment.(1)Sixtransversetensilebars-750'Fpostweldstressrelief.(2)Twelveguidedsidebendtestbars.b.Three-wireelectroslagprocess-12-in.-thickweldment.(1)Sixtransversetensilebars-750'Fpostweldstressrelief.(2)Seventeenguidedsidebendtestbars.(3)Twenty-oneCharpyV-notchspecimens.5.2-17REV912/92( GINNA/UFSAR(4)Fullsectionmacroexaminationofweldandheataffectedzone.(5)Numerousmicroscopicexaminationsofspecimensremovedfromtheweldandheataffectedzoneregions.(6)Hardnesssurveyacrossweldandheataffectedzone.CoAseparateweldtestwasmadeusingthetwo-wireelectroslagtechniquetoevaluatetheeffectsofastopandrestartofweldingbythisprocess.Thisevaluationwasperformedtoestablishproperproceduresandtechniquesassuchanoccurrencewasanticipatedduringproductionapplicationsduetoequipmentmalfunction,poweroutages,etc.Thefollowingtestspecimenswereremovedfroman8-in.-thickweldmentinthestop-restart-repairedregionandsuccessfullytested.(1)Twotransversetensilebars-asfielded.(2)Fourguidedsidebendtestbars.(3)Fullsectionmacroexaminationofweldandheataffectedzone.d.Alloftheweldtestblocksinitemsa,b,andcabovewereradiographedusing'24-MeVbetatron.Theradiographicqualitylevelobtainedwasbetween0.5Xto1X(1-1T).Therewerenodiscontinuitiesevidentinanyoftheelectroslagwelds.(1)Thecastingsegmentsweresurfaceconditionedfor100Zradiographicandpenetrantinspections.TheradiographicacceptancestandardswereASTME-186severitylevel2(exceptnocategoryDorEdefectivenesswaspermittedforsectionthicknessupto4.5in.)andASTME-280severitylevel2forsectionthicknessesgreaterthan4.5in.ThepenetrantacceptancestandardswereASMECode,SectionIII,rparagraphN-627.(2)Theedgesoftheelectroslagweldpreparationsweremachined.Thesesurfaceswerepenetrantinspectedpriorto5.2-18REV912/92I GINNA/UFSARwelding.TheacceptancestandardswereASMECode,SectionIII,paragraphN-627.(3)Thecompletedelectroslagweldsurfacesweregroundflushwiththecastingsurface.Then,theelectroslagweldandadjacentbasematerialwere100XradiographedinaccordancewithASMECodeCase1355.Also,theelectroslagweldsurfacesandadjacentbasematerialwerepenetrantinspectedinaccordancewithASMECode,SectionIII,paragraphN-627.(4)Weldmetalandbasemetalchemicalandphysicalanalysesweredeterminedandcertified.(5)Heattreatmentfurnacechartswererecordedandcertified.5.2.3.1.2.3ReactorCoolantPumFieldErectionandWeldin.Fielderection6'ndfieldweldingofthereactorcoolantsystemwereperformedsoastopermitexactfit-upofthe31-in.I.D.closurepipesubassembliesbetweenthesteamgeneratorandthe'eactorcoolantpump.Afterinstallationofthepumpcasingandthesteamgenerator,measurementsweretakenofthepipelengthrequiredtoclosetheloop.Basedonthesemeasurements,the31-in.I.D.closurepipesubassemblywasproperlymachinedandthenerectedandfieldweldedtothepumpsuctionnozzleandtothesteam-generatorexitnozzle.Thus,uponcompletionoftheinstallation,thesystemwasessentiallyofzerostressintheinstalledposition.Cleaningofreactorcoolantsystempipingandequipmentwasaccomplishedbeforeand/orduringerectionofvariousequipment.Stainlesssteelpipingwascleanedinsectionsasspecificportionsofthesystemswereerected.Pipeandunitslargeenoughtopermitentrybypersonnelwerecleanedbylocallyapplyingapprovedsolvents(Stoddartsolvent,acetone,andalcohol)anddemineralizedwater,andbyusingarotarydisksanderor18-8wirebrushtoremovealltrappedforeignparticles.StandardsforfinalphysicalandchemicalcleanlinessaredefinedinSection14.1.1.2.2.5.2-19REV912/92) GINNA/UFSAR5.2.3.2ComatibilitWithReactorCoolantAllreactorcoolantsystemmaterialsthatareexposedtothecoolantarecorrosionresistant.TheyconsistofstainlesssteelsandInconel,andtheyarechosenforspecificpurposesatvariouslocationswithinthesystemfortheirsuperiorcompatibilitywiththereactorcoolant.Allexternalinsulationofreactorcoolantsystemcomponentsiscompatiblewiththecomponentmaterials.Thecylindricalshellexteriorandclosureflangestothereactorvesselareinsulatedwithmetallicreflectiveinsulation.Theclosureheadisinsulatedwithlowhalide-contentinsulatingmaterial.Allotherexternalcorrosionresistantsurfacesinthereactorcoolantsystemareinsulatedwithloworhalide-freeinsulatingmaterialasrequired.Thewaterchemistryisselectedtoprovidethenecessaryboroncontentforreactivitycontrolandtominimizecorrosionofthereactorcoolantsystemsurface.PeriodicanalysesofthecoolantchemicalcompositionareperformedtomonitortheadherenceofthesystemtothereactorcoolantwaterqualitylistedinTable5.2-4.ConcentrationlimitsoflithiumandlithiumhydroxideasafunctionofboronconcentrationaredeterminedfromFigure5.2-2.Maintenanceofthewaterqualitytominimizecorrosionisperformedbythechemicalandvolumecontrolsystemandsamplingsystem,whicharedescribedinSections9.3.4and9.3.2.GenericLetter88-'05(Reference6)directedPWRlicenseestohaveaprogramthataddressesthecorrosiveeffectsofreactorcoolantsystemleakagebelowTechnicalSpecificationslimitswhereinthecoolantcontainingdissolvedboricacidcomesincontactwithanddegradeslowalloycarbonsteelcomponents.Theconcernisthatconcentratedboricacidsolutionorboricacidcrystals,formed7byevaporationofwaterfromtheleakingreactorcoolant,ismorecorrosivethanthecoolantandwillcorrodethereactorcoolantpressureboundary.TheboricacidcorrosionpreventionprogramatGinnaStationaddressesbothreactorcoolantsystemleaksandleaksfromothersystemscontainingboricacidthatmaycontactanyreactorcoolantsystemcarbonsteelcomponents.TheprogrammeetstheintentofGenericLetter88-05(Reference7).5.2-20REV912/92I GINNA/UFSAR5.2.4INSERVICEINSPECTIONANDTESTINGOFTHEREACTORCOOLANTSYSTEMPRESSUREBOUNDARY5.2.4.1InserviceInsectionProramTheinserviceinspectionprogramforGinnaStationisdesignedtoverifythatthestructuralintegrityofthereactorcoolantpressureboundaryismaintainedthroughoutthelifeofthestation.Theprogram,whichisincludedinAppendixBoftheQualityAssuranceManual,isscheduledfor10-yearinspectionintervals.Thecurrent10-yearinspectioninterval,whichcommencedJanuary1,1990,isspecifiedinAppendixBoftheQualityAssuranceManual.TheprogramfollowstheguidanceofASMECode,SectionXI,1986Edition,no)9Addenda,andmeetstherequirementsof10CFR50.55a.Theinserviceinspectionprogramforthereactorvesselincludesavisualexaminationofaccessibleinternalsurfaces,nozzles,andinternalcomponentsofthereactorvesselandultrasonicexaminationsofthevesselwelds.TheultrasonicexaminationofweldsmeetstheguidanceprovidedinRegulatoryGuide1.150,Revision1.TheprogramisperformedinaccordancewithGinnaStationprocedures.Theinserviceinspectionprogramforsteam-generatortubeswasdevelopedtomeettheguidanceofRegulatoryGuide1.83,Revision1,andtherequirementsofAppendixIVoftheASMECode,SectionXI,andincludesrecommendationsoftheElectricPowerResearchInstitutePMRSteamGeneratorInspectionGuidelines.TheprogramisdescribedintheGinnaStationprocedures.Theplanforthecurrent10-yearinspectionintervalisdividedintotwo5-yearplans,whichprovideasystematicexaminationplantoensurethateachsteamgeneratortubeisexaminedforitsfulllengthatleastonce5]7every5years.SpecialreportingrequirementsaredescribedintheQualityAssuranceManual.Theinserviceinspectionprogramforthereactorcoolant)7pumpflywheelswasdevelopedtomeettheguidanceprovidedinRegul'atoryGuide1~14,Revision1.TheprogramisalsodescribedintheGinnaStationprocedures.NRCBulletin88-09(Reference8)requestedlicenseestoestablishaninspectionprogramtomonitorthimbletubeperformancebecauseofrecentlyidentifiedthimbletubethinningandleakage.Sincenoinserviceinspectionortestingrequirementsforthimbletubesexisted,theNRCbelievedthatthismayhave105.2-20aREV1012/93 GINNA/UFSARresultedinsignificantthimbletubedegradationhavinggoneundetected,creatingaconditionthatmaybeadversetosafety.TocomplywithNRCBulletin88-09,aninspectionprogramhasbeenestablishedtoensurethattheacceptancecriterionof65%through-wallwearisnotexceededandthatappropriatecorrectiveactionisperformedforanytubewhoseinspectionindicatesequaltoorgreaterthan55%through-wallinthewearareaasdocumentedinReference9.5.2-20bREV1012/93 GINNA/UFSAR5,2.4,2InsectionAreasandComonents5.2.4.2.1AccessibleComponentsandAreasThefollowingcomponentsandareasareavailableandaccessibleforvisualand/ornondestructiveexamination;1.Reactorvessel.a.Longitudinalandcircumferentialshellwelds.b.Circumferentialweldsinbottomheadandclosurehead.c.Vessel-to-flangeandhead-to-flangecircumferentialwelds.d.Primarynozzle-to-vesselweldsandinsidenozzlesection.e.Penetrations,includingcontrolroddriveandinstrumentationpenetrations.f.Nozzle-to-safe-endwelds.g.Closureheadstuds,nuts,washers,andpressureretainingbolts.h.Integrallyweldedattachments.i.Interiorsurface.Coresupportstructures.k.Controlroddrivehousings.2.Pressurizer.a.Longitudinalandcircumferentialwelds.b.Nozzle-to-vesselweldsandnozzle-to-vesselradiusedsection.c.Heaterpenetrations.5.2-21REV612/90 GINNA/UFSARd.Nozzle-to-safe-endwelds.e.Bolts,studs,andnuts.f.Integrallyweldedattachments.3.SteamGenerators.a.Longitudinalandcircumferentialwelds,includingtubesheet-to-headorshellweldsontheprimaryside.b.Nozzle-to-safe-endwelds.c,Bolts,studs,washers,andnuts.d.Integrallyweldedattachments.e.Tubing.4.ReactorCoolantPumps.a~b.c~d.e.Pumpcasingwelds.Supports.Bolts,studs,andnuts.Integrallyweldedattachments.Flywheel.5.PressureBoundaryPiping.a~b.C.d.e.g~Safe-endtopipingweldsandsafe-endinbranchpipingwelds.Circumferentialandlongitudinalpipewelds.Branchpipeconnectionwelds.Socketwelds.Supports.Bolts,studs,andnuts.Integrallyweldedattachments.5.2-22REV612/90 GINNA/UFSAR6.PressureBoundaryValves.a.Valve-bodywelds.b.Supports.c.Bolts,studs,andnuts.d.Integrallyweldedattachments',5,2.4.2.2AccessibleAreasDuringRefuelingTheinternalsurfaceofthereactorvesselisinspectedperiodicallyusingopticaldevicesovertheaccessibleareas.Duringrefueling,thevesselcladdingcanbeinspectedincertainareasbetweentheclosureflangeandtheprimarycoolantinletnozzlesand,ifdeemednecessaiybythisinspection,thecorebarrelcouldberemovedmakingtheentireinsidevesselsurfaceaccessible.Ultrasonictestingmethodsareemployedasrequired.Inordertofacilitatethistestprogram,criticalareasofthereactorvesselweremappedduringthefabricationphasetoserveasareferencebaseforsubsequentultrasonictests.Externally,thecontrolroddrivemechanismnozzlesontheclosurehead,theinstrumentnozzlesonthebottomofthevessel,andtheextensionspoolpiecesontheprimarycoolantoutletnozzlesareaccessibleforvisual,magneticparticle,ordyepenetrantinspectionduringrefuelings.Theclosureheadisexaminedvisuallyduringeachrefueling.Opticaldevicespermitaselectivevisualinspectionofthecladding,controlroddrivemechanismnozzles,andthegasketseatingsurface.Theknuckletransitionpiece,whichistheareaofhigheststressoftheclosurehead,alsoisaccessibleontheoutersurfaceforinspectionbyvisualanddyepenetrantmeans.Theclosurestudsareinspectedperiodicallyusingmagneticparticletestsand/orultrasonictests.Additionally,itispossibletoperformstraintestsduringthetensioning,whichassistsinverifyingthematerialproperties.5.2-23REV612/90 GINNA/UFSAR5.2.4.3AccesibilitTheconsiderationsthatareincorporatedintothereactorcoolantsystemdesigntopermittheseinspectionsareasfollows:1.Allreactorinternalsarecompletelyremovable.Thetoolsandstoragespacerequiredtopermittheseinspectionsareprovided.2.Theclosureheadisstoreddryonthereactoroperatingdeckduringrefuelingtofacilitatedirectvisualinspection.3.Allreactorvesselstuds,nuts,andwashersareremovedtodrystorageduringrefueling.4.Removableplugsareprovidedintheprimaryshieldjustabovethecoolantnozzles,andtheinsulationcoveringthenozzleweldsisreadilyremovable.5.Accessholesareprovidedinthelowerinternalsbarrelflangetoallowremoteaccesstothereactorvessel'nternalsurfacesbetweentheflangeandthenozzleswithoutremovaloftheinternals.6.Aremovableplugisprovidedinthelowercoresupportplatetoallowaccessforinspectionofthebottomheadwithoutremovalofthelowerinternals.7.Thestoragestandsthatareprovidedforstorageoftheinternalsallowforinspectionaccesstoboththeinsideandoutsideofthestructures.8.Thestationthatisprovidedforchangeoutofcontrolrodclustersfromonefuelassemblytoanotherisespeciallydesignedtoallowinspectionofbothfuelassembliesandcontrolrodclusters.9.Thecontrolrodmechanismisespeciallydesignedtoallowremovalofthemechanismassemblyfromthereactorvesselhead.5.2-24REV612/90 GINNA/UFSAR10.Manwaysareprovidedinthesteamgenerator,steamdrum,andchannelheadtoallowaccessforinternalinspection.11.Amanwayisprovidedinthepressurizertopheadtoallowaccessforinternalinspection.12.Insulationontheprimarysystemcomponents(exceptthereactorEvessel)andpiping(exceptforthepenetrationintheprimaryshield)includedinthe'nserviceinspectionprogramisremovable.5.2.4.4ExaminationMethodsThereactorcoolantpressureboundaryareasandcomponentsidentifiedinSection5.2.4.2willbeexaminedbytherequiredvisual,surface,orvolumetricmethods.Theseexaminationswillincludeoneoracombinationofvisual,liquidpenetrant,magneticparticle,ultrasonic,eddy-current,orradiographicexamination.ThesemethodswillbeinaccordancewiththerulesofIWA-2000oftheASMECode,SectionXI.l.Ultrasonicexaminationsforferriticvesselswithwallthicknessesof2.5in.orgreaterwillbeconductedinaccordancewiththerulesofAppendixIoftheASMECode,SectionXI.2.UltrasonicexaminationsforferriticpipingwillbeconductedinaccordancewiththerulesofAppendixIIIoftheASMECode,SectionV.3.UltrasonicexaminationofboltsandstudswillbeconductedinaccordancewiththerulesofAppendixVIoftheASMECode,SectionV.4.UltrasonicexaminationsforallothercomponentswillbeconductedinaccordancewiththerulesofArticle5oftheASMECode,SectionV.Steam-generatortubeswillbeexaminedbyavolumetricmethod(e.g.,eddy-current)oranalternativeacceptablemethod.5.2-25 GINNA/UFSARReactorcoolantpumpflywheelswillbeexaminedbytherequiredsurfaceandvolumetricmethodsinaccordancewiththerequirementsofIWA-2200oftheASMECode,SectionVI.TheeditionandaddendaoftheASMECodesectionscitedinUFSARSections5.2.4.4through5.2.4.8areasspecifiedinAppendixBoftheQualityAssuranceManual.In1981,RG&Eperformeda10-yearinserviceinspectionofthereactorcoolantpumpbowlsuccessfullyutilizingtheportableradiographiclinearacceleratorprototypeMINAC,developedbytheElectricPowerResearchInstitute,andamanipulator/controlsystemdevelopedbyRG6E.Thesystemwasplacedontothereactorcoolantpumpandaradiographicexaminationwasmadeofthemiddleweld(ranginginthicknessfrom5in.to9in.),bottomweld(ranginginthicknessfrom8.5in.to9in.),andthetopweld(ranginginthicknessfrom10.25in.to10.5in.).Asensitivitylevelof1Twasobtainedinmostexposuresandallradiographswereacceptable.Videoenhancementequipmentwasusedincon]unctionwiththeMINAChead-mountedcameraduringthevisualexaminationoftheinsidesurfaceoftheweldsandalsoasanaidtoverifythepositionofthegroundweldandMINACheadalignmentforeachoftheexposuresofthethreewelds.5.2.4.5EvaluationofExaminationResultsThe'evaluationofnondestructiveexaminationresultswillbeinaccordancewithArticleIWB-3000oftheASMECode,SectionXI.Allreportableindications5willbesubjecttocomparisonwithpreviousdatatoaidintheircharacteriza-tionandindeterminingtheirorigin.Theevaluationofthenondestructiveexaminationresultsfromthesteam-generatortubeexaminationwilldictatecertainactionintermsofresumptionofoperationandcorrectivemeasures,dependingonthetypeandextentofdegradation.SpecificcriteriaareincludedinAppendixBoftheQualityAssuranceManual.5,2-26REV612/90I GINNA/UFSAR5.2.4.6ReairReuirementsRepairofreactorcoolantpressureboundarycomponentswillbeperformedinaccordancewiththeapplicablesubsectionsoftheASMECode,SectionXI.ExaminationsassociatedwithrepairsormodificationswillmeettheapplicabledesignandcoderequirementsdescribedinAppendixBofthe'ualityAssuranceManual.Repairofsteam-generatortubesthathaveunacceptabledefectswillbeper-formedbyusingatubepluggingtechniqueorsleeving(seeSection5.4.2.7).,Steam-generatortubeandsleeverepaircriteriaareincludedintheTechnical5SpecificationsandinAppendixBtotheQualityAssuranceManual.,RepairofareactorcoolantpumpflywheelthathasunacceptabledefectswillbeperformedinaccordancewithRegulatoryGuide1.14,Revisionl.5.2.4.7PressureTestinThereactorcoolantsystempressuretestwillbeconductedinaccordancewithArticleIWA-5000oftheASMECode,SectionXI.Wheneverthesystemisclosed5afterithasbeenopened,itwillbeleaktestedinaccordancewithArticleIWA-5000aboveandthetemperatureandpressurerequirementsspecifiedintheTechnicalSpecifications.Atorneartheendofeachinspectionintervalahydrostaticpressuretestwillbeperformedonthereactorcoolantsystemcomponents.ThistestwillbeconductedinaccordancewiththerequirementsofArticleIWB-5000oftheASME'Code,SectionXI.-InaccordancewithparagraphsIWB-1220andIWC-1220oftheASMECode,SectionXI,componentsmaybeexemptfromexaminationswherecertainconditions5exist.DetaileddescriptionsoftheexemptionsatGinnaStationappearintheQualityAssuranceManual,AppendixB.ThemajorityofexemptionscoverareaswherealatereditionoftheASMECodeprovidesbetterassuranceandismorei5practicable;inthesecasesrelieffromtheearlierversionhasbeenapprovedbytheNRC,I55.2-27RRV612/90i GINNA/UFSAR5.2.5DETECTIONOFLEAKAGETHROUGHREACTORCOOLANTPRESSUREBOUNDARY5.2,5.1LeakaeDetectionMetodsTheexistenceofleakagefromthereactorcoolantsystemtothecontainment,regardlessofthesourceofleakage,isdetectedbyoneormoreofthefollowingconditions:1.Tworadiationsensitiveinstrumentsprovidethecapabilityfordetectionofleakagefromthereactorcoolantsystem.Thecontainmentairparticulatemonitorisquitesensitivetolowleakrates.Therateofleakagetowhichtheinstrumentissensitiveis0.013gpmwithin20min,assumingthepresenceofcorrosionproductactivity.Thecontainmentradiogasmonitorismuchlesssensitivebutcanbeusedasabackuptotheairparticulatemonitor.Thesensitivityrange,oftheinstrumentisapproximately2gpmtogreaterthan10gpm.2.Athirdinstrumentusedinleakdetectionisthehumiditydetector.Thisprovidesabackupmeansofmeasuringoverallleakagefromallwaterandsteamsystemswithinthecontainmentbutfurnishesalesssensitivemeasure.Thehumiditymonitoringmethodprovidesbackuptotheradiationmonitoringmethods.Thesensitivityrangeofthisinstrumentisfromapproximately2gpmto10gpm.3.Aleakagedetectionsystemisincludedwhichdeterminesleakagelossesfromallwaterandsteamsystemswithinthecontainmentincludingthatfromthereactorcoolantsystem.Thissystemcollectsandmeasuresmoisturecondensedfromthecontainmentatmospherebythecoolingcoilsofthemainrecirculationunits.Itreliesontheprinciplethatallleakagesuptosizespermissiblewithcontinuedplantoperationwillbeevaporatedintothecontainmentatmosphere.Thissystemprovidesadependableandaccuratemeansofmeasuringintegratedtotalleakage,includingleaksfromthecoolingcoilsthemselveswhicharepartofthecontainmentboundary.Thissystemcandetectleakagefromapproximately0.5gpmto10gpm.5.2-28REV612/90 GINNA/UFSAR4.Anincreaseintheamountofcoolantmakeupwaterwhichisrequiredtomaintainnormallevelinthepressurizerisapparentfrommonitoringthevolumecontroltanklevel.5.Anincreaseincontainmentsumplevelandsumppumpactuationmonitoringarelesssensitiveme'ansofdetectingleakage.6.Additionalindicationofleakagecanbeobtainedfromthecontainmenti3atmospheretemperatureandpressuremonitors.Table5.2-5liststheleakage-detectionsystemsavailabletomonitorreactorcoolantpressureboundaryleakagetothecontainment.Table5.2-6liststheleakage-detectionsystemsusedforintersystemleakage.5.2.5.2LeakaeLimitationsReactorcoolantsystemcomponentsaremanufacturedtoexactingspecificationswhichexceednormalcoderequirements(asoutlinedinSection5.2.1.2).Inaddition,becauseoftheweldedconstructionofthereactorcoolantsystemandtheextensivenondestructivetestingtowhichitissubjected(asoutlinedinSection5.2e3),itisconsideredthatleakagethroughmetalsurfacesorweldedjointsisveryunlikely.However,someleakagefromthereactorcoolantsystemispermittedbythereactorcoolantpumpseals.Also,allsealedjointsarepotentialsourcesofleakageeventhoughthemostappropriatesealingdeviceisselectedineachcase.Thus,becauseofthelargenumberofjointsandthedifficultyofensuringcompletefreedomfromleakageineachcase,asmallintegratedleakageisconsideredacceptable.TheElectricPowerResearchInstitute(EPRI)establishedaprogramin1984thatidentifiedtwoimprovementsinvalvestempackingtoreduceleakage.Theseincludedreplacementofwovenasbestospackingwithdie-formedflexiblegraphiteandtheadditionoflive(spring)loadingofpackingglandfollowers.GinnaStationmodifiedthevalvestempackingofseveralvalvestoincludetheseimprovements.6'.2-29REV612/90 GINNA/UFSARLeakagefromthereactorcoolantsystemiscollectedinthecontainmentorbyotherclosedsystems.Theseclosedsystemsarethesteamandfeedwatersystem,thewastedisposalsystem,andthecomponentcoolingwatersystem.Assumingtheexistenceofthemaximumallowableactivityinthereactorcoolant(seetheTechnicalSpecifications),therateof1gpmunidentifiedleakage,alsogivenintheTechnicalSpecifications,isaconservativelimitonwhatisallowablebeforetheguidelinesof10CFR20wouldbeexceeded.Thisisshownasfollows.Ifthereactorcoolantactivityis68/EpCi/cm-MeV(E-averagebeta+gammaenergyperdisintegrationinMeV)and1gpmofprimarysystemleakageisassumedtobedischargedthroughtheairejector,theyearlywhole-bodydoseresultingfromthisactivityatthesiteboundary,using-6anannualaverageX/Q-2.63x10sec/m,is0.07R/yrascomparedwiththe10CFR20guidelineof0.5R/yr.Withthelimitingreactorcoolantactivityandassuminginitiationofa1-gpmleakfromthereactorcoolantsystemtothecomponentcoolingsystem,theradiationmonitorinthecomponentcoolingpumpinletheaderwouldannunciateinthecontrolroomandinitiateclosureoftheventlinefromthesurgetankinthecomponentcoolingsystem,withinlessthan1minute.Inthecaseoffailureoftheclosureoftheventlineandresultingcontinuousdischargetotheatmosphereviathecomponentcoolingsurgetankvent,theresultantdoseatthesiteboundarywouldbe0.07R/yr.Leakagedirectlyintothecontainmentindicatesthepossibilityofabreachinthecoolantenvelope.Thelimitationof1gpmforasourceofleakagenotidentifiedissufficientlyabovetheminimumdetectableleakageratetoprovideareliableindicationofleakage.The1-gpmlimitiswellbelowthecapacityofonecoolantchargingpump(60gpm).Whenthesourceofleakagehasbeenidentified,thesituationcanbeevaluatedtodetermineifoperationcansafelycontinue.Undertheseconditions,anallowableleakagerateof10gpmhasbeenestablishedwhichisalsowellwithinthecapacityofonechargingpumpandmakeupwouldbeavailableevenunderthelossofoffsitepowercondition.5.2-30RRV612/90' GINNA/UFSAR5.2.5,3LocatinLeaksHydrostatictestingissuccessfulinlocatingleaksinapressurecontainingsystem.Methodsofleaklocationthatcanbeusedduringplantshutdownincludevisual3observationforescapingsteamorwaterorforthepresenceofboricacidcrystalsneartheleak.Theboricacidcrystalsaretransportedoutsidethereactorcoolantsystemintheleakingfluidandthenleftbehindbytheevaporationprocess.Periodicreactorcoolantsystemleakagesurveillanceisconductedpursuanttoplantprocedures.5.2.5.4LeakseDetectionSstemDescritios5.2.5.4.1ContainmentAirParticulateandRadiogasMonitors5.2.5.4.1.1AirParticulateMonitor.Thecontainmentairparticulatemonitor)6isthemostsensitiveinstrumentofthoseavailablefordetectionofreactorcoolantleakageintothecontainment.Thisinstrumentiscapableofdetectingparticulateradioactivityinconcentrationsaslowas10pCi/cm3ofcontainmentair.-95.2.5.4.1.2SensitivitAssumtions.Thesensitivityoftheairparticulate(6monitortoprimarysystemleakageisdeterminedbymakingthefollowinginitialassumptions:1.Containmentvolume-970,000ft2,7x10cm.102.Maximumairrecirculationrate-166p800ft/min.3.Averagedegassed(15min)activityinreactorcoolantsystem-0.2ndi/oman(consistsofcorrosionproductandtrampcontamination).~24.Noparticulateplateout.5.2-31REV612/90 GINNA/UFSAR5.Detectorsensitivitythreshold1.0x10pCi/cmofsampledair.-93UsingthemassbalanceequationdcA-QcVdtwhere(5.2-1)A-Leakrate(pCi/min)Recirculationflow(cm/min)cConcentrationincontainment(pCi/cm)VContainmentvolume(cm)t-Time(min)RearrangingEquation5.2-1givesdc1-~-dtA-QcV(5.2-2)Now,foraconstantleakrate,i.e.,Aconstant,d(A-Qc)-Qdc,or~dA-c)-Q(5.2-3)RearrangingEquation5.2-2gives~dA-~cA-QcV(5.2-4)IntegrateEquation5.2-4gives-OtA-Qc-KeV(5.2-5)wherec-CoandKA-QCoatt05.2-32REV612/90) GINNA/UFSARthus-OtA-Qc-(A-QCo)eVorAAc-----Coe-QQV(5.2-6)Equation5.2-6issolvedassumingvariousleakratesofreactorcoolantwithaparticulateactivityof0.2pCi/cm3whichistheaveragedegassed(15min)activityinthereactorcoolantsystem.TheresultsareplottedinFigure5.2-3.ThesensitivityindicatedbyFigure5.2-3doesnottakeintoaccountthefollowingadvantagesordisadvantages.1.Advantages.a.Theairparticulatemonitorfilterpapercanbefixed;theresultingsensitivitywouldaffordearlierdetectionforagivenleakrate.b.Theairrecirculati'onratecanbelower(herewehaveassumedthemaximum),thusgivingamorerapidincreaseincontainmentairactivity,2.Disadvantages.a.Theeffectofpartitionfactorinregionswhereleakageoccurs.b.Theabsenceofvolatileradioactiveparticulate(absenceofiodineisotope).5.2.5.4.1.3eakaeDetectionThreshod.Thesensitivityoftheairparticulatemonitorisgreatestwhenbaselineleakageislow,ashasbeendemonstratedbytheexperienceofIndianPointUnit1,YankeeRowe,andDresdenUnit1.Wherecontainmentairparticulateactivityisbelowthethresholdof-9detection(1.0x10pCi/cm),thesensitivityofthemonitorcanbeimproved5.2-33REV612/90 GINNA/UFSARbyfixingthefilterpaperinthemonitor.Inthiscase,therewillbeanaccumulationofactivityattherateofflowofthesample.Forexample,ifasampleflowrateofRScm/minisassumed,theaccumulationofactivityAatthedetectorwillbegovernedbythefollowingrelationship:ARC(t)dtwhereAisinpCi.C(t)isgivenbyamodifiedformofEquation5.2-6whereVandQareequaltothevolumeand'recirculationtermsapplicable.Hence4-Rg[Kit+Kej(5.2-7)'heevaluationoftheaboveequationforagivenleakagewoulddependuponthecharacteristicsandresponsetimeforagivendetector,Assumingalowbackgroundofcontainmentairparticulateradioactivity,areactorcoolantcorrosionproductradioactivity(iron,manganese,cobalt,chromium)of0.2pCi/cm(avalueconsistentwithlittleornofuelcladdingleakage),andcompletedispersionoftheleakingradioactivesolidsintothecontainmentair,theairparticulatemonitoriscapableofdetectingleaksassmallasapproximately0.013gpm(50cm/min)within20minaftertheyoccur.'fonly10%oftheparticulateactivityisactuallydispersedintheair,leakageratesoftheorderof0.13gpm(500cm/min)arewellwithinthedetectablerange.Forcaseswherebaselinereactorcoolantleakagefallswithinthedetectablelimitsoftheairparticulatemonitor,theinstrumentcanbeadjustedtoalarmonleakageincreasesfromtwotofivetimesthebaselinevalue.5.2.5.4.1.4RadioasMonitor.Thecontainmentradiogasmonitorisinherentlyi6~-6lesssensitive(thresholdat10pCi/cm3)thanthecontainmentairparticulate5.2-34REV612/90 GINNA/UFSARmonitorandwouldfunctionintheeventthatsignificantreactorcoolantgaseousactivityexistsfromfuelcladdingdefects.Assumingareactorcoolantactivityof0.3pCi/cm3,theoccurrenceofaleakof2to4gpmwoulddoublethebackground(predominantlyArgon-41)inlessthan1hr.Inthesecircumstancesthisinstrumentisausefulbackuptotheairparticulatemonitor.5.2.5.4.2HumidityDetectorThehumiditydetectioninstrumentationoffersanothermeansofdetectionofleakageintothecontainment.Thisinstrumentationhasnotnearlythesensitivityoftheairparticulatemonitorbuthastheadvantageofbeingsensitivetovapororiginatingfromallsources,includingthereactorcoolantandsteamandfeedwatersystems.Plotsofcontainmentairdewpointvariationsaboveabaselinemaximumestablishedbythecoolingwatertemperaturetotheaircoolersshouldbesensitivetoincrementalleakageequivalentto2.0to10gpm.Thesensitivityofthismethoddependsoncoolingwatertemperature,containmentairtemperaturevariation,andcontainmentairrecirculationrate.Thecontainmenthumidityrecorderislocatedintheintermediatebuilding.5.2.5.4.3CondensateMeasuringSyst:emTheprinciplethatthecondensatecollectedbythecoolingcoilsmatches,underequilibriumconditions,theleakageofwaterandsteamfromsystemswithinthecontainmentappliesbecauseconditionswithinthecontainmentpromotecompleteevaporationofleakingwaterfromhotsystems.Theairandinternalstructuretemperaturesarenormallyheldat120'Forless,theairisdry(i.e.,notsaturatedwithwatervapor),andthecoolingcoilsprovidetheonlysignificantsurfacesatorbelowthedewpointtemperature.Thecontainmentcoolingcoilsaredesignedtoremovethesensibleheatgeneratedwithinthecontainment.Theresultinglargecoilsurfaceareameansthattheexitairfromthecoilshasadewpointtemperaturewhichisverynearlyequaltothecoolingwatertemperatureattheairexit.5.2-35 GINNA/UFSARMeasurementofthecondensatedrainedfromthecoolingcoilsismadetodeterminecollectionrateandthusleakrate.Aboutone-halEhouraftertheoccurrenceofaleak,theequilibriumcondition1isestablishedinwhichtheamountoEtheleakagechangeismatchedbyachangeinthecoolingcoilcondensationrate.Thecondensatefromeachofthefourcontainmentcoolingcoilsdrainstoacondensatecollector(drainpan)thatisequippedwithastandpipethatisapproximately200in.long.Thecondensatecollectorlevelinstrumentationprovidesasignalproportionaltothewaterlevelinthestandpipeindicatingthatthecollectorisfrom0to100%fullwithanuncertaintyoflessthan+3%.Readoutsofcollectorwaterlevelandahi-hilevelalarmareprovidedinthecontrolroom.Thehi-hilevelalarmisactuatedwhenthestandpipeis80%+3%fullforthreeofthecollectorsand66%+3%fullforthefourthcollectoratwhichpointthecollectorisdumpedtothecontainmentsump.Condensateflowsfromapproximately1gpmto30gpmcanbemeasuredbythecondensatecollectionsystem.Flowslessthan1gpmcanbemeasuredbyperiodicobservationofthelevelchangesinthecondensatecollectionsystem.5.2.5.4.4LiquidInventoryinProcessSystemsandContainment,SumpsLeakscanalsobedetectedbyunscheduledincreasesintheamountofreactorcoolantmakeupwater,whichisrequiredtomaintainthenormallevelinthepressurizer.Basedonthefrequencyoftheinventorybalance,andthe'olumecontroltanklevelinstrumentation,itisestimatedthatthechargingsysteminventorymethodofleakdetectioncandetecta0.25-gpmleak.Grossleakagewillcauseariseinthecontainmentsumpswaterlevels.SumpAwaterlevelrisewillbealarmedinthecontrolroomuponauto-startofeitherofthesumpApumps.WaterlevelincontainmentsumpBisindicatedinthecontrolroombyaseriesoffivelightsactuatedbyredundantsignalcontactsevenlyspacedalongtheheightofthesump.5.2-36RRV612/90~ GINNA/UFSAR5.2.5.5LeakaeDetectionSstemEvaluationDetectionofleakagefromthereactorcoolantpressureboundarywasreviewedaspartoftheNRCSystematicEvaluationProgram(SEPTopicV-5).Theresults[5.ofthereviewaredocumentedinReferences10and11.Thereviewwasbasedon(10'herequirementsof10CFR50,AppendixA,GeneralDesignCriterion30,asimplementedbyRegulatoryGuide1.45andSRPSection5.2.5,whichspecifythe)5.typesandsensitivityofthesystems,aswellastheirseismic,indication,andtestabilitycriterianecessarytodetectleakageofprimaryreactorcoolanttothecontainmentortootherinterconnectedsystems.TheNRCconcludedthefollowing:GinnaStationhasallthreesystemsrequiredbyRegulatoryGuide1.45.Twoofthethreesystemsmeetthesensitivityrequirements.Thethirdsystem(sumpAlevelmonitoring)canmeasureapproximatelya2-gpmleakin1hr.Inadditiontothethreeleakagedetectionsystems,Ginnaalsoincorporatessixotherdiversesystems.Takingallthesesystemsintoconsideration,a1-gpmleakfromthereactorcoolantpressureboundarytothecontainmentcanbedetectedwithin1hr,asrequiredbytheRegulatoryGuide.2.Ginnahas,asoneofthediversesystems,thesumpElevelmonitoringsystem,whichisSeismicCategoryIandcanmeasurea10.5-gpmleakwithin1hr.Therefore,theplantadequatelymeetstheleakdetectionneedsfollowingaseismicevent,includingthesafeshut-downearthquake.3.Provisionsaremadetomonitorreactorcoolantinleakagetointerconnectedsystems(componentcoolingwatersystemandsecondarysystem).TheGinnaTechnicalSpecificationsmeettheintentoftheStandardTechnicalSpecificationsconcerningtheoperabilityoftheleakagedetectionsystemstomonitorleakagetotheprimarycontainment.Thereisadifferenceinthenumberofrequiredsystems,whichisnotasignificantsafetyfactorbecauseofthevariousdiverseleakagedetectionsystemsavailabletotheplantoperators.5.2-37REV1012/93 GINNA/UFSARREFERENCESFORSECTION5.21.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPSafetyTopicsIII-6,SeismicDesignConsiderationandIII-11,ComponentIntegrity,datedJanuary29,1982.2.LetterfromL.D.White,Jr.,RG&E,toA.Schwencer,NRC,

Subject:

OverpressureProtection,datedFebruary24,1977.3~LetterfromL.D.White,Jr.,RG&E,toA.Schwencer,NRC,

Subject:

OverpressureProtection,datedMarch31,1977.4.LetterfromL.D.White,Jr.,RG&E,toA.Schwencer,NRC,

Subject:

OverpressureProtection,datedJuly29,1977.5.WestinghouseElectricCorporation,R.E.GinnaLowTemeratureOveressureProtectionSstemLTOPSSetointPhaseIIEvaluationFinal~ReortOot,ober1990(Proprietary)andFebruary1991(NonPropr-ietary)(AttachmentCtoletterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

RochesterGasandElectricCorporation,R.E.GinnaNuclearPowerPlant,Docket50-244,datedFebruary15,1991).9,6.GenericLetter88-05,BoricAcidCorrosionofCarbonSteelReactorPressureBoundaryComponentsinPWRPlants,datedMarch17,1988.I9.7.LetterfromAllenJohnson,NRC,toR.C.Mecredy,RG&E,Subject,:PreventionofBoricAcidCorrosionatGinnaNuclearPowerPlant,datedAugust10,1990.8.NRCBulletin88-09,ThimbleTubeThinninginWestinghouseReactors,datedJuly26,1988.9.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

NRCBulletin88-09,datedApril8,1993.10.5.2-38REV1012/93 GINNA/UFSAR10.LetterFromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEP)10TopicV-5,ReactorCoolantPressureBoundaryLeakageDetection,datedFebruary8,1982.11.U.S.NuclearRegulatoryCommission,InteratedPlantSafetAssessment,)10SstematicEvaluationProramR.E.GinnaNuclearPowerPlant,NUREG0821,December1982.5.2-38aREV1012/93 GINNA/UFSARTable5.2-1REACTORCOOLANTSYSTEMCODEREQUIREMENTS~ComonentCodesReactorvesselASMEIIIClassARoddrivemechanismhousingASMEIIIClassASteamgeneratorsTubesideShellsidebASMEIIIClassAASMEIIIClassCReactorcoolantpumpvoluteASMEIIIClassAPressurizerASMEIIIClassAPressurizerrelieftankASMEIIIClassCPressurizersafetyvalvesASMEIIIReactorcoolantpipingUSASB31.1(1955)ReactorcoolantvalvesASAB16.5(1961)Systemvalves,fittingsandpipingUSASB31.1(1955)ASAB16.5(1961)aASMEBoilerandPressureVesselCode,SectionIII,NuclearVessels(1965).bTheshellsideofthesteamgeneratorconformstotherequirementsforClassAvesselsandissostampedaspermittedundertherulesofSectionIII.cUSASB31.1CodeforPressurePiping.5.2-39 GINNA/UFSARTable5.2-2MATERIALSOFCONSTRUCTIONOFTHEREACTORCOOLANTSYSTEMCOMPONENTS~CononentSectionMaterialsSteamgeneratorPressureplateCladding,stainlessweldrodCladdingfortubesheetsTubesChannelheadcastingsSA-302,gradeBType304equivalentInconelSB-163SA-216WCCPressurizerShellHeadsExternalplateCladding,stainlessInternalplateInternalpipingSA-302,gradeBSA-216WCCSA-302,gradeBType304equivalentSA-240type304SA-376type316PipingPipesFittingsNozzlesA-376type316A-351,CF8MA<<182$F316PumpsShaftImpellerCasingType304A-251jCF8A-351$CF8M5.2-40 GINNA/UFSARTable5.2-3REACTORCOOLANTSYSTEMQUALITYASSURANCEPROGRAMSteamgeneratorTubesheetForgingCladdingXXChannelheadCastingCladdingXXSecondaryshellandheadPlatesTubesNozzles(forgings)WeldmentsXXXShell,longitudinalShell,circumferentialCladdingNozzletoshellSupportbracketsTube-to-tubesheetInstrumentconnections(primaryandsecondary)TemporaryattachmentsafterremovalAfterhydrostatictest(allwelds)Nozzlesafeends(ifforgings)Nozzlesafeends(ifwelddeposit)XXXXXXXXXXXXPressurizerHeadsCastingCladdingXXX5.2-41REV1212/95' GINNA/UFSARTable5.2-3REACTORCOOLANTSYSTEMQUALITYASSURANCEPROGRAM(Continued)ShellPlatesCladdingXHeatersTubingsCenteringofelementXXNozzleXPipingFittings(castings)Fittings(forgings)XXPipeXWeldmentsLongitudinalCircumferentialNozzletorunpipeInstrumentconnectionsXXXXXXXPumpsCastingsForgingsWeldmentsXXCircumferentialInstrumentconnectionsXXReactorvesselForgingsFlangesStudsHeadadaptersXXXXXXPlatesX/125.2-42REV1212/95 GINNA/UFSARTable5.2-3REACTORCOOLANTSYSTEMQUALITYASSURANCEPROGRAM(Continued)~ComonentWeldmentsRTUTPTMTETMainsteamControlroddriveheadadapterconnectionInstrumentationtubeMainnozzlesCladdingNozzlesafeendsXXNotes:RT=RadiographicUTUltrasonicPTDyepenetrantMTMagneticparticleETEddycurrent5.2-43 GINNA/UFSARTable5.2-4REACTORCOOLANTWATERCHEMISTRYSPECIFICATIONSElectricalconductivityDeterminedbytheconcentrationofboricacidandalkalipercent.Expectedrangeislessthan1to4ymhos/cmat25'C.SolutionpHDeterminedbytheconcentrationofboricacidandalkalipresent.Expectedvaluesrangebetween4.2(highboricacidconcentra-tion)to10.5(lowboricacidconcentration)at25'C.Oxygen,ppm,maximumChloride,ppm,maximum0.100.15Fluoride,ppm,maximumHydrogen,cm(STP)/kgH030.1515-50Totalsuspendedsolids,ppm,maximumControlagentpH(LiOH)1.0Alithiumversusboricacidcurveisusedtodetermine,concentra-tionlimits(seeFigure5.2-2)Boric.acidasppmBVariablefrom0toapproximately4000(2000ppmminimumduringrefueling)Lithium,ppmTotalIequivalent,pCi/gm,maximum131Totalactivity,pCi/gmAlithiumversusboricacidcurveisusedtodetermineconcentra-tionlimits(seeFigure5.2-2)0284/E5.2-44 Table5.2-5REACTORCOOLANTPRESSUREBOUNDARYTOCONTAINMENTLEAKAGEDETECTIONSYSTEMS~SstemLeakRateSensitivitTimeRequiredtoAchieveSensitivitControlRoomIndicationforAlarmsandIndicatorsTestableDuringNormal0erationSumplevelmonitoring(inventory)NANAYesYesSumppumpactuationsmonitoring(timemeters)AirborneparticulateradioactivitymonitoringNA1gpmaNANAYesYesYesYesAirbornegaseousradioactivitymonitoring2-10gpm1hrYesYesCondensateflowratefromaircoolers1-30gpm1hrYesYesContainmentatmospherepressuremonitoringNA1hrYesYesContainmentatmospherehumiditymonitoring2-10gpmNANoYesContainmentatmospheretemperaturemonitoringNANANoYesChemicalandvolumecontrolsystem0.25gpm1hrYesYesNote:NA=Notavailable.a0.013gpmwithin20minassumingthepresenceofcorrosionproductsperTechnicalSpecifications. Table5.2-6REACTORCOOLANTPRESSUREBOUNDARYINTERSYSTEHLEAKAGEDETECTIONSYSTEMSSystemsWhichInterfaceWithReactorCoolantPressureBoundarMethodstoMeasureReactorCoolantPressureBoundaryInleakaeLeakRateSensitivitTimeRequiredtoAchieveSensitivitControlRoomIndi-cationforAlarmsandIndicatorsTestableDuringNormal~Oerat1onSecondarysystemCondensateairejectorradia-tionmonitor0.02gpm1minYesYesSecondarysystemBlowdownmonitor0.0025gpm1hrYesYesComponentcoolingwatersystemSurgetanklevelNANAYesYesComponentcoolingwatersystemRadiationmonitor0.16gpmNAYesYesaTotalleakageof0.5galnecessaryforindication. GINNA/UFSAR5.3REACTORVESSEL5.3.1REACTORVESSELMATERIALS5.3.1.1ReactorVesselDescritionTheGinnareactorvesselwasdesignedandfabricatedbyBabcockandWilcoxCompanyinaccordancewithWestinghousespecificationsandtherequirementsofASMECode,SectionIII,1965Edition.ThegoverningspecificationsarelistedinTable5.3-1.Thereactorvesseliscylindricalinshapewithahemisphericalbottomandaflangedandgasketedremovableupperhead.Coolantentersthereactorvesselthroughtwoinletnozzlesinaplanejustbelowthevesselflangeandabovethecore.Thecoolantflowsdownwardthroughtheannularspacebetweenthevesselwallandthecorebarrelintoaplenumatthebottomofthevesselwhereitreversesdirection.Approximately95%ofthetotalcoolantflowis4effectiveforheatremovalfromthecore.Theremainderisconsideredasby-passflowasitisnotfullyeffectiveforremovingheatgeneratedintheThisbypassflowincludestheflowthroughtherodclustercontrolguidethimbles,theflowbetweenthecorebaffleandbarrel,theleakageacrosscore.theoutletnozzles,theflowdeflectedintotheheadofthevesselforcoolingtheupperflange,andtheexcessflowintheflowcellssurroundingtherodclustercontrolguidethimbles.Thebypasscoolantandcorecoolantuniteandmixintheupperplenum,andthemixedcoolantstreamthenflowsoutofthevesselthroughtwoexitnozzleslocatedonthesameplaneastheinletnozzles.Figure5.3-1,Sheets1and2,isaschematicofthereactorvessel.Aone-piecethermalshield,concentricwiththereactorcore,islocatedbetweenthecorebarrelandthereactorvessel.Theshield,whichiscooledbythecoolantonitsdownwardpass,protectsthevesselbyattenuatingmuchofthegammaradiationandsomeofthefastneutronswhichescapefromthecore.Thisshieldminimizesthermalstressesinthevesselwhichresultfromheatgeneratedbytheabsorptionofgammaenergy.TheshieldisfurtherdescribedinSection3.9.5.1.1.Thirty-sixcoreinstrumentationnozzlesarelocatedonthelowerhead.5.3-1REV712/91 GINNA/UFSARThereactorclosureheadandthereactorvesselflangearejoinedbyforty-eight6<<in.diameterstuds.Twometallic0-ringssealthereactorvesselwhenthereactorclosureheadisboltedinplace.Aleakoffconnectionisprovidedbetweenthetwo0-ringstomonitorleakageacrosstheinner0-ring.Inaddition,aleakoffconnectionisalsoprovidedbeyondtheouter0-ringseal.Thevesselisinsulatedwithmetallic,reflectivetypeinsulationsupportedfromthenozzles.Insulationpanelsareprovidedforthereactorclosureheadandaresupportedontherefuelingsealledgeandventshroudsupportrings.Thereactorvesselinternalsaredesignedtodirectthecoolantflow,supportthereactorcore,andguidethecontrolrodsinthewithdrawnposition.Thereactorvesselcontainsthecoresupportassembly,upperplenumassembly,fuelassemblies,controlrodclusterassemblies,surveillancespecimens,andin-coreinstrumentation.ThereactorinternalsaredescribedinSections3.9,5and4.2.1andthegen-eralarrangementofthereactorvesselandinternalsisshowninFigures3.9-9and3.9-10.ReactorvesseldesigndataislistedinTable5.3-2.Thereactorvesselistheonlycomponentofthereactorcoolantsystemwhichisexposedtoasignificantlevelofneutronirradiationanditisthereforetheonlycomponentwhichissubjecttomaterialradiationdamageeffects.Thenilductilitytransitiontemperature(NDTT)shiftofthevesselmaterialandwelds,duetoradiationdamageeffectsduringservice,ismonitoredbyaradiationdamagesurveillanceprogram,asdescribedinSection5.3.3.5.3.1.2aterialSecificationsThematerialsofconstructionofthereactorvesselaregiveninTable5.3-3.AdetailedlistingofthereactorvesselcoreregionforgingsandweldsisgiveninTable5.3-4,alongwiththeheattreatmenthistory.ThechemistryofallthematerialsisgiveninTable5.3-5andthemechanicalpropertiesaregiveninTable5.3-6.ThelocationofthereactorvesselbeltlinematerialisshowninFigure5.3-2.5~32 GINNA/UFSARThecylindricalsectionofthereactorvesseliscomprisedofthreecylindri-calforgings(SA-508,class2).Thetopandbottomdomesectionsaremadefromplatematerial(SA-533,gradeA).Theshellcourse,flanges,andnozzlesaremadefromforgings(SA-508,class2).Theforgingswereprocessedbythemandrelforgingtechnique.Priortomandrelforging,theroughforgingwasupsetandthecentersectionremoved.Theforgedsectionweldlocationsusethesameinservicetesttechniquesasthoseusedforplatevesselwelds.Thefracturetoughnesspropertiesofforgingsarecomparabletoplatesintheunirradiatedconditionandtheirradiatedcondition.Mechanicalpropertytestsforshellcourseforgingsweretakenataone-fourththicknesslocationandataminimumdistanceofonethicknessfromthequenchededge.TestlocationscompliedwithASMECode,SectionIII,requirements.ThereactorvesselmaterialsoppositethecorewerepurchasedtoaspecifiedCharpyV-notchimpactenergyof30ft-lborgreateratacorrespondingNDTTof40'Forless.Thematerialsweresubsequentlytested(dropweight:)toverifyconformitytospecifiedNDTTrequirements.Inaddition,theplatesectionswere100%volumetricallyinspectedbyanultrasonictestusingbothlongitudinalandshearwavemethods.Theremainingmaterialinthereactorvesselmeetstheappropriatedesigncoderequirementsandspecificcomponentfunctionalrequirements.Thereactorvesselmaterialisheat-treatedspecificallytoobtaingoodnotch-ductilitywhichensuresalowNDTT,andtherebygivesassurancethatthefinishedvesselcanbeinitiallyhydrostaticallytestedandoperatedasneartoroomtemperatureaspossiblewithoutrestrictions.Thestresslimitsestablishedforthereactorvesselaredependentuponthetemperatureatwhichthestressesareapplied.Asaresultoffastneutronirradiationintheregionofthecore,thematerialpropertieswillchange,includinganincreaseintheNDTT.Therearetwoweldsinthebeltlineregion:thenozzleshelltointermediateshell(SA-1101)andtheintermediateshelltolowershell(SA-847).Botharecircumferentialweldsmadebythesubmergedarcprocess.Basedonradiationexposureandchemicalcomposition,weldSA-847isthelimitingvesselmaterial.5.3-3 GINNA/UFSAR5.3.1.3TestinandSueillance,Westinghouserequired,aspartofitsreactorvesselspecification,thatcertainspecialtestswhichwerenotspecifiedbytheapplicablecodesbeperformed.Thesetestsarelistedbelow:1.UltrasonicTesting.Westinghouserequiredthata1008volumetricultrasonictestofreactorvesselplateforshearwavebeperformed.The100%volumetricultrasonictestisasevererequirement,butitensuresthatplateusedforthereactorvesselisofthehighestquality.2.RadiationSurveillanceProgram.Inthesurveillanceprogram,theevaluationoftheradiationdamageisbasedonpreirradiationandpostirradiationtestingofCharpyV-notch,tensileandwedgeopeningloadingtestspecimens.Theseprogramsaredirectedtowardevaluationoftheeffectofradiationonthefracturetoughnessofreactorvesselsteelsbasedonthetransitiontemperatureapproachandthefracturemechanicsapproach,andareinaccordancewithASTME185,RecommendedPracticeforSurveillanceTests.onStructuralMaterialsinNuclearReactors.ThesurveillanceprogramfortheRG&EreactorvesselisdescribedinSection5.3.3.5.3.2PRESSURE-TEMPERATURELIMITS5.3.2.1ThermaandPessureLoadsReactorvesseldesignisbasedonthetransitiontemperaturemethodofevaluatingthepossibilityofbrittlefractureofthevesselmaterialresultingfromoperationssuchasleaktestingandplantheatupandcooldown.ToestablishtheservicelifeofthereactorcoolantsystemcomponentsasrequiredbytheASMECodeSectionIIIforClassAvessels,theunitoperatingconditionswhichinvolvethecyclicapplicationofloadsandthermalconditionsh5.3-4REV612/90 GINNA/UFSARhavebeenestablishedforthe40-yeardesignlife,ThenumberofthermalandloadingcyclesusedfordesignpurposesarelistedinTable5.1-4.Thestresslevelofmaterialinthereactorvessel,orinotherreactorcoolantsystemcomponents,isacombinationofstressescausedbyinternalpressuresandbythermalgradients'helatteraresignificantastheymayresultfromarateofchangeofreactorcoolanttemperatureandchangethelocationofthelimitingstressbetweenheatupandcooldown.Duringcooldown,thethermalstressvariesfromtensileattheinnerwalltocompressiveattheouterwall.Theinternalpressuresuperimposesatensilestressonthisthermalstresspattern,increasingthestressattheinsidewallandrelievingthestressattheoutsidewall.Therefore,thelocationofthelimitingstressisalwaysattheinsidewallsurface;however,forheatupthethermalstressisreversedsothelocationofthelimiting'stressisafunctionoftheheatuprate.Operatingrestrictionsareimposedtolimitthecombinedstressesto20%ofminimumyieldstresswhenatthedesigntransitiontemperature.ThedesigntransitiontemperatureisdefinedastheinitialNDTTplustheincreaseinNDTTduetoirradiationexperiencedplus60'F.Thisstresslimit(20%ofyieldstress)isreducedlinearlytoavalueof10%ofyieldatatemperatureof200'Fbelowdesigntransitiontemperature.CurveswhichdefinetheoperatinglimitsareincorporatedintheTechnicalSpecifications.5.3.2.2Pressure-TemeratureLimitsPressure-temperaturelimitsforreactorvesseloperationprovideameansofensuringvesselintegritythroughoutitsoperating1'ife.Operationinaccordancewiththecurvesensuresthat,inthenormaloperatingrange,thevesselwilloperateintheupper-shelfregionofitsmaterialtoughness.Thisalsoprovidesassurancethatthefracturetoughnessofvesselmaterialsduringheatupandcooldowntransientswillbeadequatetopreventrapidcrackpropagation(brittlefracture).Pressure-temperaturelimitsforinservicetesting,heatupandcooldown,andcoreoperationarerequiredtobeincompliancewiththerulesofAppendixGto10CFRPart50,FractureToughnessRequirements.Whenfirstpublishedin1971,AppendixGusedatransitiontemperatureapproachtoestablishsafeoperatinglimits.AppendixGwasrevisedin1973torequireafracture5~35REV612/90 GINNA/UFSARmechanicsapproach,whichusuallygivesmoreconservativeoperatinglimits.Thefracturemechanicsapproachreliesonafracturemechanicscharacterizationofthematerialanditsstressenvironment.Usingthischaracterization,thestressinanyportionofthevessel,inconjunctionwithanyassumedflaw,canbecomparedwiththestressed-flawtoleranceofthematerial,amaterialparametersuchasKIC(theplanestrainfracturetoughnessofamaterial).Usingthisparameter,thestressinthevesselcanbelimitedsuchthat,inthepresenceofanassumedflawsizesolargeastoensuredetection,norapidcrackpropagationcanoccur.AboveNDTT,thefracture'oughnessofthematerialsusedinthenuclearreactorvesselsincreasesgreatly.Thus,thecracktoleranceofthematerialatthenormaloperatingtemperaturesishigh.Underthissystemoffracturecontrol,preventionofrapidfractureisensuredbythe"controlofstressesandflawsizes.Fornuclearvesselmaterialsofnormalshelffracturetoughness(accordingtoAppendixG,10CFR50,aCharpyupper-shelfenergyof50ft-lbisrequired),verylargecrackswouldberequiredtocausetheonsetofrapidcrackpropagationatoperatingtemperatureandpressure.Inregionsofhighlocalstresses',suchasnozzlecorners,ductiletearingcouldcommenceatsmallercracksorlowerpressurebut,asthetearextendedintoaregionoflowernominalstresssuchasthevesselwall,rapidfracturewouldagainrequireverylargecracks.5,3.2.3Pessure-TemeratureLimitCalculatioThespecificmethodstocalculatethepressure-temperatureoperatinglimitsarecontainedinAppendixGtoASMECode,SectionIII.Forregionsremotefromdiscontinuities(thebeltlineregion),thestressintensityfactorscalculatedinthedevelopmentoftheseoperatinglimitsarebasedonapostulatedsharpsurfaceflawpenetratingtoadepthofone-fourthofthevesselwallthicknessandhavingalengthone-and-one-halftimesthesectionthickness.Sincethemaximumsizeflawthatmightescapedetectioninapreserviceorinserviceinspectionismuchsmallerthanthisassumedflawsize,thecombinationofinspectionsandconservativepressure-temperaturelimitsprovidesahighdegreeofassuranceforvesselintegritythroughoutservicelife.Fornozzles,flanges,andshellregionsneardiscontinuities,asmallerdefectsizemaybeused.Thesmallerdefectsizemustbejustifiedandnon-destructiveexaminationmethodsmustbesufficientlyreliableand5.3-6REV612/90 GINNA/UFSARsensitivetodetectthesesmallerdefects.Theprocedurestocalculatethestressintensityfactorsfortheseregionsprovidemarginsofsafetycomparabletothoserequiredforthebeltlineregion.AppendixGprovidesmethodstocalculatestressintensitiesformembranetensionstress,bendingstress,andst'ressesresultingfromthermalgradients,andliststhesafetyfactorstobeappliedtothesestressintensities.5.3.2.4IrradiationEffectonPressure-TemeratureLimit/6.IrradiationdegradesmaterialtoughnesscausingRTtoincrease.Sincethepressure-temperaturelimitsarebasedonatemperatureaboveRTNDT,theselimitsmustberevisedperiodicallytoreflectthechangesintoughness.Sincethepostulatedflawpenetratestoone-fourththewallthickness,theincreaseinRTisbasedonthefluenceattheone-fourththicknesslocation.NDTIncreasesinRTareusuallyobtainedfromtheresultsofthevesselmaterialNDTsurveillanceprogram.Iftheseresultsareforsomereasonnotconsideredapplicableorvalid,thestaffusesRegulatoryGuide1.99,Revision2,toobtainconservativeradiationdamagevalues.)7,5.3.2.5HeatuandCooldownRatesJ6Thereactorcoolanttemperatureandpressureandsystemheatupandcooldownrates(withtheexceptionofthepressurizer)arelimitedinaccordancewithFigures5.1-2and5.1-3forthefirst21effectivefullpoweryears.ThelimitsandprocedurestofollowifthelimitsareexceededareincludedintheTechnicalSpecifications.Theheatupandcooldownratesshallnotexceed60Fperhrand100'Fperhr,respectively.Forthepressurizer,theheatup9andcooldownratesdonotexceed100'Fperhrand200'Fperhr,respectively.Thepressurizersprayisnottobeusedifthetemperaturedifferencebetweenthepressurizerandthesprayfluidisgreaterthan320'F.Thenormalsystemheatingandcoolingrateis50'Fperhr.Sufficientelectricalheatersareinstalledinthepressurizertopermitaheatuprateof55'F/hr,startingwithaminimumwaterlevel.ThefastestcooldownrateswhichresultfromthehypotheticalcaseofamainsteamlinebreakarediscussedinSection15.1.5.5.3-7REV912/92 GINNA/UFSARAmaximumtemperaturedifferenceof320'Fbetweenthepressurizerandreactorcoolantsystemisspecifiedtomaintainthermalstresseswithinthesurgelinebelowdesignlimits.'emperaturerequirementsforpressurizationofthepressurizerandsteamgeneratorscorrespondwiththedesigntransitiontemperaturemeasuredforthematerialofeachcomponent.Theratesoftemperaturechangeareappliedastotalchangeintemperatureinany1-hrperiod.5.3.3REACTORVESSELINTEGRITYThereactorvesselhasa132-in.I.D.,whichiswithinstandardsizelimitsforwhichthereisagooddealofoperatingexperience.AstressevaluationofthereactorvesselwascarriedoutinaccordancewiththerulesofSectionIIIoftheASMECode.Theevaluationdemonstratedthatstresslevelswerewithinthestresslimitsofthecode.Table5.3-7presentsasummaryoftheresultsofthestressevaluation.AsummaryoffatigueusagefactorsforcomponentsofthereactorvesselisgiveninTable5.3-8.Thecyclesspecifiedforthefatigueanalysisaretheresultsofanevaluationoftheexpectedplantoperationcoupledwithexperiencefromoperationalnuclearpowerplants.Thesecyclesincludefiveheatupandcooldowncyclesperyear,aconservativeselectionsincethevesselwouldnotcompletemorethanonecycleperyearduringnormaloperation.Thevesseldesignpressureis2485psig,whilethenormaloperatingpressureis2235psig.Theresultingoperatingmembranestressisthereforeamplybelowthecode-allowablemembranestresstoaccountforoperatingpressuretransients.5.3-8 GINNA/UFSARThevesselclosurecontainsforty-eight6-in.studs.ThestudmaterialisASTMA-540andcodecase1335-2whichhasaminimumyieldstrengthof104,400psiatdesigntemperature.Themembranestressinthestudswhentheyareatthesteady-stateoperationalconditionisapproximately37,500psi.CThismeansthat18ofthe48studshavethecapabilityofwithstandingthehydrostaticendloadonvesselheadwithoutthemembranestressexceedingyieldstrengthofthestudmaterialatdesigntemperature.ThemethodtoperformanalysestoguardagainstfastfractureinthereactorvesselisincludedinAppendixGtoSectionIIIoftheASMECode.Themethodutilizesfracturemechanicsconceptsandisbasedonthereferencenilductilitytemperature,RTNDT.RTisdefinedasthegreaterofthedropweightNDTT(perASTME-208)orNDTthetemperature60'Flessthanthe50ft-lbtemperature(or35-millateralexpansiontemperatureifthisisgreater),asdeterminedfromCharpyspecimensorientednormalto'heworkingdirectionofthematerial.TheRTNDTofagivenmaterialisusedtoindexthatmaterialtoareferencestressintensityfactorcurve,KRcurve,whichappearsinAppendixGoftheASMECode.TheKRcurveisalowerboundofdynamic,crackarrest,andstaticfracturetoughnessresultsobtainedfromseveralheatsofpressurevesselsteel.WhenagivenmaterialisindexedtotheKRcurve,allowablestressintensityfactorscanbeobtainedforthismaterialasafunctionoftemperature.Allowableoperatinglimitscanthenbedeterminedutilizingtheseallowablestressintensityfactors.TheRTand,inturn,theoperatinglimitsofthereactorareadjustedtoNDTaccountfortheeffectsofradiationonthereactorvesselmaterialproperties.TheradiationembrittlementorchangesinmechanicalpropertiesofthepressurevesselsteelaremonitoredbythematerialsurveillanceprogramasdescribedinSection5'.3.2.TheincreaseintheCharpyV-notch)950ft-lbtemperature(deltaRTNDT)duetoirradiationisaddedtotheoriginalRTtoadjusttheRTNDTforradiati'onembrittlement.ThisadjustedRTNDTNDT(RTinitial+deltaRTNDT)isusedtoindexthematerialtotheKRcurveNDTand,inturn,tosetoperatinglimitsfortheplantwhichtakeintoaccounttheeffectsofirradiationonthereactorvesselmaterials.5.3-9REV912/92 GINNA/UFSARAspartoftheplantoperatortrainingprogram,supervisoryandoperatingpersonnelareinstructedinreactorvesseldesign,fabrication,andtesting,aswellasprecautionsnecessaryforpressuretestingandoperatingmodes.Theneedforrecordkeepingisstressed,suchrecordsbeinghelpfulforfuturesummationoftimeatpowerlevelandtemperaturewhichtendstoinfluencetheirradiatedpropertiesofthematerialinthecoreregion.Theseinstructionsareincorporatedintotheoperatingmanuals.5,3.3.2MaterialSurveillanceProramThematerialsurveillanceprogramforGinnawaspreviouslydescribedinWCAP7254.1Theprogramwasdesignedtomeettherequirementsof10CFR50,AppendixH,andASTME-185-73.CapsuleswithdrawnafterJuly26,1983,willbetestedandtheresultsreportedinaccordancewiththe1982revisionofASTME-185asrequiredby10CFR50,AppendixH.Itconsistsofsixsurveillancecapsules(V,R,T,P,S,andN)positionedinthereactorvesselbetweenthethermalshieldandthereactorvesselwallasshowninFigure5.3-3.Theverticalcenterofeachcapsuleisoppositetheverticalcenterofthecore.Eachcapsulecontainstensile,CharpyV-notch,andwedgeopeningloadingspecimensfromtheforgings(heats125P666and125S255)andweldmetal,andCharpyV-notchspecimensfromheat-affectedzonematerialandfromanA-302,GradeBcorrelationmaterialfurnishedbyU.S.SteelCorporation.Dataonthecorrelationmaterialgivesanindicationofradiationdamageinacommercialreactorvesselcomparedtoatestreactorvessel,andalsogivesanindicationoftheaccuracyoftheneutronfluencecalculations.ThematerialsurveillanceprogramforGinnaisdescribedinBAW1543.BAW1543describestheMasterIntegratedReactorVesselMaterialSurveillanceProgramforBabcock&Wilcox-fabricatedPWRreactorvesselscontainingseamweldsfabricatedbytheautomaticsubmergedarcprocessusingcopper-platedmagnesium-molybdenum-nickelsteelfillermetalandLinde80flux.BAW1543describestheapproachthattheBabcock&Wilcoxvesselownerswilluseinaddressingthe"Linde80"welds.Inadditiontothesixsupplementarycapsulesthatwerepreviouslyaddedtotheprogram,eightirradiationcapsulesareincluded,whichfurtherexpandthefracturetoughnessdatabaseforthisclassofmaterialsandincludelifeextensionandannealingconsiderations.TheMasterIntegratedReactorVesselMaterialSurveillanceProgram,therefore,5.3-10REV912/92 GINNA/UFSARincludesatotalof17plant-specificreactorvesselsurveillanceprogramsand14supplementarymaterialirradiationcapsules.ThesereactorvesselsincludeeightBabcock6Wilcox-designed177fuelassemblyplantsandnineWestinghouse-designedplantswithBabcock6Wilcox-fabricatedreactorvessels.Theinforma-9tionobtainedfromallofthesesourcesiscoordinatedandsharedtomaximizetheusefulnessofthedata.Allsurveillancespecimensweremachinedfromtheone-fourththicknesslocationoftheforgings.Thespecimensrepresentmaterialthatwastakenatleastoneforgingthicknessawayfromthequenchedendoftheforging.AllCharpyV-notchandtensilespecimenswereorientedwiththelongitudinalaxisofeachspecimenparalleltothehoopdirection(strongdirection)oftheforgings.Thewedgeopeningloadingspecimensweremachinedwiththesimulatedcrackofeachspecimenperpendiculartothesurfacesandthehoopdirectionoftheforgings.Thesurveillancecapsulescontaindosimeterwiresofcopper,nickel,andaluminum-cobalt.Theyalsocontaincadmium-shieldeddosimetersofNeptunium-237andUranium-238.Thedosimeterspermitevaluationoftheneutronfluxseenbythevariousspecimens.SurveillancecapsulesV,R,T,andShavebeenremovedandtestedinaccordancewithTechnicalSpecificationsandtestresultsweredocumented.Test3-7resultsareanalyzed,theshiftintransitiontemperatureiscomparedtothepredictedshift,andpressure-temperaturelimitcurves(Section5.3.2)arerevisedaccordingly.5.3.3.3SurveillanceProramAnalsisCapsuleVwasremovedandtestedin1971,capsuleRin1974,capsuleTin1980,ll'ndcapsuleSin1993.TheinsertionandwithdrawalschedulesforcapsulesPandNhavebeenpreparedinaccordancewithASTME-185-82andthecriteriaforintegratedsurveillanceprogramsof10CFR50,AppendixH,paragraphII.C,andresideintheMasterIntegratedReactorVesselMaterialSurveillanceProgram.TheNRCstaffhasdeterminedthatthematerialsurveillanceprogramatGinnasatisfiesAppendixHto10CFR50.Reference9documentedacceptabilityofBAW1543.AllcapsulesintheGinnareactorvesselsurveillanceprogram5.3-11REV1112/94 GINNA/UFSARcontainSA-1036weldmaterial,whichisasurrogateforSA-847,abeltlinematerialinGinnaandPointBeachUnit1.SA-1135weldmaterialisalsoa9surrogateforSA-847.CapsuleNisastandbycapsuleandisscheduledtobe]11withdrawnatonetotwotimestheinsidesurfaceend-of-lifefluenceandstored(withouttesting).CapsulePisscheduledtobewithdrawnatanestimatedinsidesurface48effective-full-power-yearfluenceandtested.5.3.3.3.1ResultsSummaryTheanalysisofthereactorvesselmaterialscontainedinsurveillancecapsuleS,thefourthcapsuletoberemovedfromthereactorpressurevessel,wasreportedtotheNRCbyReference6.Theanalysisledtothefollowingconclusions:1.Thecapsulereceivedanaveragefastneutronfluence(E>1.0MeV)of3.87x10n/cmafter17effectivefullpoweryearsofplantoperation.2.Irradiationofthereactorvessellowerforging125P666Charpyspecimens,orientedwiththelongitudinalaxisofthespecimenparalleltothemajorrollingdirection(tangentialorientation),to3.87x10n/cm(E>1.0MeV)resultedina30ft-lbtransitiontemperatureincreaseof42'Fanda50ft-lbtransitiontemperatureincreaseof45'F.Thisresultsinanirradiated30ft-lbtransition11temperatureof2'Fandanirradiated50ft-lbtransitiontemperatureof30'Fforthetangentiallyorientedspecimens.3.Irradiationofthereactorvesselintermediateshellforging125S255Charpyspecimens,orientedwiththelongitudinalaxisofthespecimenparalleltothemajorrollingdirection(tangentialorientation),to3.87x10n/cm(E>1.0MeV)resultedina30ft-lbtransitiontemperatureincreaseof60'Fanda50ft-lbtransitiontemperatureincreaseof58'F.Thisresultsinanirradiated30ft-lbtransitiontemperatureof35'Fandanirradiated50ft-lbtransitiontemperatureof70'Fforthetangentiallyorientedspecimens.5.3-12REV1112/94 GINNA/UFSAR4.IrradiationoftheweldmetalCharpyspecimensto3.87x10n/cm(E>1.0MeV)resultedina30ft-lbtransitiontemperatureincreaseof205'Fanda50ft-lbtransitiontemperatureincreaseof260'F.Thisresultsinanirradiated30ft-lbtransitiontemperatureof180'Fandanirradiated50ft-lbtransitiontemperatureincreaseof285'F.IrradiationoftheweldheataffectedzonemetalCharpyspecimensto3.87x101n/cm(E>1.0MeV)resultedina30ft-lbtransitiontemperatureincreaseoftemperatureof65'F.increaseof95'Fanda50ft-lbtransitiontemperature75F.Thisresultsinanirradiated30ft-lbtransitionof20'Fandanirradiated50ft-lbtransitiontemperature6.Theaverageuppershelfenergyoflowershellforging125P666(tangentialorientation)resultedinanenergydecreaseof35ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV).Thisresultsinanirradiatedaverageuppershelfenergyof148ft-lbforthetangentiallyorientedspecimens.Theaverageuppershelfenergyofintermediateshellforging125S255(tangentialorientation)resultedinanenergydecreaseof1ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV).Thisresultsinanirradiatedaverageuppershelfenergyof139ft-lbforthetangentiallyorientedspecimens.8.TheaverageuppershelfenergyoftheweldmetalCharpyspecimensresultedinanenergydecreaseof25ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV).Thisresultsinanirradiatedaverage19uppershelfenergyof55ft-lbfortheweldmetalspecimens.9.Thecalculatedend-of-life(32effectivefullpoweryears)maximumneutronfluence(E>1.0MeV)forthereactorvesselisasfollows:Vesselinnerradius*3.68x1019n/cm2*Clad/basemetalinterface.5.3-13REV1112/94 GINNA/UFSARVessel1/4thicknessVessel3/4thickness2.7010n/cm8.64x1018n/cm210.Theaverageuppershelfenergyoftheweldheataffectedzonemetalincreased14ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV).Thisresultsinanirradiateduppershelfenergyof104ft-lbfortheweldheataffectedzonemetal.ll.ThesurveillancecapsuleStestresultsinReference6indicatethatthesurveillancematerialsareingoodagreementwiththeRegulatoryGuide1.99,Revision2,predictions.ThesummaryofallfoursurveillancecapsuleresultsappearsinTable5.3-9.GenericLetter88-11,"NRCPositiononRadiationEmbrittlementofReactorVesselMaterialsandItsImpactonPlantOperations,"requiredeachlicenseetoreevaluatetheeffectofneutronradiationonreactorvesselmaterialusingthemethodsdescribedinRegulatoryGuide1.99,Revision2.ThisreevaluationwasperformedbyWestinghouseandisdocumentedinReference10.BasedontheWestinghousereevaluation,theheatupandcooldownlimitcurves(Figures5.1-2and5.1-3)currentlybeingusedforplantoperationareconsideredtobeappropriateforuseupto21effectivefullpoweryearsofoperation.g~5.3.3.3.2CharpyV-NotchImpactTestResultsIrradiationofthereactorvessellowershellforging125P666Charpyspecimensorientedwiththelongitudinalaxisofthespecimenparalleltothemajorrollingdirectionoftheforging(tangentialorientation)to3.87x10n/cm(E>1~0MeV)at550'Fresultedina30ft-lbtransitiontemperatureincreaseof42'Fanda50ft-lbtransitiontemperatureincreaseof45'F.Thisresultsinanirradiated30ft-lbtransitiontemperature,of2'Fandanirradiated50ft-lbtransitiontemperatureof30'F(tangentialorientation).Theaverageuppershelfenergyofthelowershellforging125P666Charpyspecimens(tangentialorientation)resultedinanenergydecreaseof35ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV)at550'F.Thisresultsinanirradiatedaverageuppershelfenergyof148ft-lb.5.3-14REV1112/94 GINNA/UFSARIrradiationofthereactorvesselintermediateshellforging125S255Charpy"specimensorientedwiththelongitudinalaxisofthespecimenparalleltothemajorrollingdirectionoftheforging(tangentialorientation)to3.87x10n/cm2(E>1.0MeV)at550'Fresultedina30ft-lbtransitiontemperatureincreaseof60'Fanda50ft-lbtransitiontemperatureincreaseof58'F.Thisresultsinanirradiated30ft-lbtransitiontemperatureof35'Fandanirradiated50ft-lbtransitiontemperatureof70'F(tangentialorientation).Theaverageuppershelfenergyoftheintermediateshellforging125S255Charpyspecimens(tangentialorientation)resultedinanenergydecreaseof1ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV)at550'F.Thisresultsinanirradiatedaverageuppershelfenergyof139ft-lb.IrradiationofthesurveillanceweldmetalCharpyspecimensto3.87x10n/cm(E>1.0MeV)at550'Fresultedina30ft-lbtransitiontemperatureshiftof205'Fanda50ft-lbtransitiontemperatureincreaseof260'F.Thisresultsinanirradiated30ft-lbtransitiontemperatureof180'Fandanirradiated50ft-lbtransitiontemperatureof285'F.Theaverageuppershelfenergyofthesurveillanceweldmetalresultedinanenergydecreaseof25ft-lbafterirradiationto3.87x10n/cm(E>1.0MeV)at550'F.Thisresultsinanirradiatedaverageuppershelfenergyof55ft-lb.IrradiationofthereactorvesselweldheataffectedzonemetalCharpyspecimensto3.87x10n/cm(E>1.0MeV)at550'Fresultedina30ft-lbtransitiontemperatureincreaseof95'Fanda50ft-lbtransitiontemperatureincreaseof75'F.Thisresultsinanirradiated30ft-lbtransitiontemperatureof20'Fandanirradiated50ft-lbtransitiontemperatureof65'F.Theaverageuppershelfenergyoftheweldheataffectedzonemetalresultedinanenergyincreaseof14ft-lbafterirradiationtoF87x10n/cm(E>1.0MeV)at550'F.Thisresultsinanirradiatedaverageuppershelfenergyof104ft-lb.5.3-15REV1112/94 GINNA/UFSARAcomparisonofthe30ft-lbtransitiontemperatureincreasesanduppershelfenergydecreasesforthevariousR.E.GinnasurveillancematerialswithpredictedvaluesusingthemethodsofRegulatoryGuide1.99,Revision2,ispresentedinTable5.3-10.ThiscomparisonindicatesthatthecapsuleSsurveillancematerialsareingoodagreementwiththeRegulatoryGuide1.99,Revision2,predictions.e5.3.3.3.3TensionTestResultsTheresultsofthetensiontestsperformedonthelowershellforging125P666(tangentialorientation)indicatedthatirradiationto3.87x10n/cm(E>1.0MeV)at550'Fcauseda3to9ksiincreaseinthe0.2%offsetyieldstrengthanda4to8ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiateddata.Theresultsofthetensiontestsperformedontheintermediateshellforging125S255(tangentialorientation)indicatedthatirradiationto3.87x10n/cm(E>1.0MeV)at550'Fcauseda2to9ksiincreaseinthe0.2%offsetyieldstrengthanda0to11ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiateddata.Theresultsofthetensiontestsperformedonthesurveillanceweldmetalindicatedthatirradiationto3.87x10n/cm(E>1.0MeV)at550'Fcauseda15to20ksiincreaseinthe0.2%offsetyieldstrengthanda15to18ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiateddata.5.3.3.3.4RadiationAnalysisandNeutronDosimetryTheradiationanalysisandneutrondosimetrymethodsemployedintheSurveillanceProgramAnalysisaredescribedindetailinReference6.5.3.3.4AnalsisofEffectsofLossofCoolantandSafetInectionontheReactorVesseTheanalysisoftheeffectsofinjectingsafetyinjectionwaterintothereactorcoolantsystemfollowingapostulatedloss-of-coolantaccidentwas5.3-16REV1112/94 GINNA/UFSARperformedbyWestinghousefortheinitiallicensingwiththefollowingresults.5.3.3.4.1ReactorVesselI6Forthereactorvessel,threemodesoffailurewereconsidered,includingtheductilemode,brittlemode,andfatiguemode.1.DuctileMode.ThefailurecriterionusedforthisevaluationwasthatthereshallbenogrossyieldingacrossthevesselwallusingthematerialyieldstressspecifiedinSectionIIIoftheASMEBoilerandPressureVesselCode.Thecombinedpressureandthermalstressesduringinjectionthroughthevesselthicknessasafunctionoftimewerecalculatedandcomparedtothematerialyieldstressatthetimesduringthesafetyinjectiontransient.Theresultsoftheanalysesshowedthatlocalyieldingmayoccurinapproximatelytheinner12%ofthebasemetalandinthecladding.2.BrittleMode.Thepossibilityofabrittlefractureoftheirra-diatedcoreregionwasconsideredfrombothatransitiontemperatureapproachandafracturemechanicsapproach.Thefailurecriterionusedforthetransitiontemperatureevaluationwasthatalocalflawcannotpropagatebeyondanygivenpointwheretheappliedstresswouldremainbelowthecriticalpropagationstressattheapplicabletemperatureatthatpoint.Theresultsofthetransitiontemperatureanalysisshowedthatthestress-temperatureconditionintheouter65%ofthebasemetalwallthicknessremainsinthecrackarrestregionatalltimesduringthesafetyinjectiontransient.Therefore,ifadefectwerepresentinthemostdetrimentallocationandorientation(i.e.,acrackontheinsidesurfaceandcircumferentiallydirected),itcouldnotpropagateanyfurtherthanapproximately35%ofthewallthickness,evenconsideringtheworstcaseassumptionsusedintheanalysis.5.3-17REV1112/94~ GINNA/UFSARTheresultsofthefracturemechanicsanalysis,consideringtheeffectsofwatertemperature,heattransfercoefficients,andfracturetoughnessofthematerialasafunctionoftime,temperature,andirradiationwereconsidered.Bothalocalcrackeffectandacontinuouscrackeffectwereconsideredwiththelatterrequiringtheuseofarigorousfiniteelementaxisymmetriccode.3.FatigueMode.ThefailurecriterionusedforthefailureanalysiswastheonepresentedinSectionIIIoftheASMEBoilerandPressureVesselCode.Inthismethodthepiecewasassumedtofailoncethecombinedusagefactoratthemostcriticallocationforalltransientsappliedtothevesselexceedsthecodeallowableusagefactorofone.Theresultsoftheanalysisshowedthatthecombinedusagefactorneverexceeded0.2,evenafterassumingthatthesafetyinjectiontransientoccurredattheendofplantlife.Inordertopromoteafatiguefailureduringthesafetyinjectiontr'ansientattheendofplantlife,ithasbeenestimatedthatawalltemperatureofapproximately1100'Fisneededatthemostcriticalareaofthevessel(instrumentationtubeweldsinthebottomhead).ThedesignbasisofthesafetyinjectionsystemensuresthatthemaximumzircaloycladdingtemperaturedoesnotexceedtheZircaloy-4melttemperature.Thisisachievedbypromptrecoveryofthecorethroughflooding,withthepassiveaccumulatorandtheinjectionsystems.Undertheseconditions,avesseltemperatureof1100'Fisnotconsideredacrediblepossibilityandtheevaluationofthevesselundersuchelevatedtemperaturesisforahypotheticalcase.Fortheductilefailuremode,suchhypotheticalriseinthewalltemperaturewouldincreasethedepthoflocalyieldinginthevesselwall.Theresultsoftheseanalysesshowthattheintegrityofthereactorvesselisneverviolated.5.3-18 GINNA/UFSAR5.3.3.4.2SafetyInjectionNozzlesI6Thesafetyinjectionnozzleshavebeendesignedtowithstandtenpostulatedsafetyinjectiontransientswithoutfailure.ThisdesignandassociatedanalyticalevaluationwasmadeinaccordancewiththerequirementsofSectionIIIoftheASMEBoilerandPressureVesselCode.Themaximumcalculatedpressureplusthermalstressinthesafetyinjectionnozzleduringthesafetyinjectiontransientwascalculatedtobeapproxi-mately50,900psi.Thisvaluecomparesfavorablywiththecodeallowablestressof80,000psi.Thesetensafetyinjectiontransientswereconsideredalongwithalltheotherdesigntransientsforthevesselinthefatigueanalysisofthenozzles.Thisanalysisshowedtheusagefactorforthesafetyinjectionnozzleswas0.47whichiswellbelowthecodeallowablevalueof1.0.Thesafetyinjectionnozzlesarenotinthehighlyirradiatedregionofthevesselandthustheyareconsideredductileduringthesafetyinjectiontransient.5.3.3.4.3FuelAssemblyGridSpringsI6Theeffectofthesafetyinjectionwateronthefuelassemblygridspringswasevaluated.Duetothefactthatthespringshavealargesurfaceareatovolumeratio,beingintheformofthinstrips,andareexpectedtofollowthecoolanttemperaturetransientwithverylittlelag,nothermalshockisexpectedandthecorecoolingisnotcompromised.5.3.3.4.4CoreBarrelandThermalShieldkEvaluationsofthecorebarrelandthermalshieldhavealsoshownthatcorecoolingisnotjeopardizedunderthepostulatedaccidentconditions.I65.3.3.4.5SubsequentAnalysesofReactorVesselI6SubsequentanalysesonthereactorvesselintegrityweresubmittedtotheNRCbyReference11(WCAP10019).Thisreport,submittedinresponsetoNUREG0737,ItemII.K.2.13,providesclassicalmechanicsanalysesofdesign-basis/95.3-19REV1112/94 GINNA/UFSARaccidents,whichdemonstratethattherearenoimmediatereactorvesselintegrityconcerns.ThebasisforthethermalstressandfractureanalysesofReferencellwasalsousedintheevaluationofthereactorvesselintegrity,performedaftertheGinnasteam-generatortuberuptureincident.TheNRCissuedRevision1ofGenericLetter92-01(Reference13)toobtain(llinformationneededtoassesscompliancewithrequirementsandcommitmentsregardingreactorvesselintegrityinviewofcertainconcernsraisedinthe9NRCstaff'sreviewofreactorvesselintegrity'fortheYankeeRoweNuclearPowerStation.TheinitialRGGEresponsetoRevision1ofGenericLetter92-01iscontainedinReference14.Additionalcorrespondenceonthissubject(References15through21)havesincebeensenttoorfromtheNRC.5.3.3.5PressurizedThermalShockTheissueofpressurizedthermalshockarisesbecauseinpressurizedwaterreactorstransientsandaccidentscanoccurthatresultinsevereovercoolingofthereactorvessel,concurrentwithorfollowedbyrepressurization.Theissueisaconcernafterthereactorvesselhaslostitstoughnesspropertiesandisembrittledbyneutronirradiation.Therateofdecreaseofthefractureresistanceofthereactorvesselmaterialisdependentonthemetallurgicalcompositionofthevesselwallsandwelds.Inaccordancewiththerequirementsof10CFR50.61,FractureToughnessRequirementsforProtectionAgainstPressurizedThermalShockEvents,GinnaStationsubmittedprojectedRTTSvaluesforthereactorvesselbeltlinematerialsfromthepresenttotheexpirationdateoftheoperatinglicensetotheNRC.Theprojectedvalueswerebelowthescreeningcriteriaforthe(11expirationdateandbeyond32effectivefullpoweryears.TheNRCbyReference23,whichincludedthesafetyevaluationreport,reportedthatGinna(11Stationmettherequirementsofthepressurizedthermalshockrule(10CFR50.61).5.3-20REV1112/94 GINNA/UFSARREFERENCESFORSECTION5.31.WestinghouseElectricCorporation,RochesterGasandElectricR.E.GinnaUnit1ReactorVesselRadiationSurveillanceProram,WCAP7254,May1969.2.Babcock&Wilcox,MasterInteratedReactorVesselMaterialSurveillance~Proram,BAW1543,Revision3,September1989.3.WestinghouseElectricCorporation,AnalsisofCasuleVfromtheRochesterGasandElectricRE.GinnaUnitNo.1ReactorVesselRadiationSurveillanceProram,FP-RA-l,April1973.(SubmittedbyRG&EtotheAECbyletterfromG.E.GreentoD.K.Skovholt,datedApril25,1973.)4.WestinghouseElectricCorporation,AnalsisofCasuleRfromtheRochesterGasandElectricR.E.GinnaUnitNo1ReactorVesselRadia-tionSurveillanceProram,WCAP8421,November1974.(SubmittedbyRG&E/9.totheNRCasanenclosuretoApplicationforAmendmenttotheOperatingLicensefortheR.E.GinnaNuclearPowerPlant,datedMarch6,1975.)(115.WestinghouseElectricCorporation,AnalsisofCasuleTfromtheRochesterGasandElectricCororationofREGinnaNuclearPlantReactorVesselRadiationSurveillanceProram,WCAP10086,April1982.(SubmittedbyRG&EtotheNRCasanenclosuretotheApplicationforAmendmenttotheOperatingLicensefortheR.E.GinnaNuclearPowerPlant,datedDecember8,1982.)I9-6.WestinghouseElectricCorporation,AnalsisofCasuleSfromtheRochesterGasandElectricCororationR.E.GinnaReactorVesselRadiationSurveillanceProram,WCAP13902,December1993.(SubmittedbyRG&EtotheNRCinaletterdatedMarch29,1994.)7.LetterfromR.W.Kober,RG&E,toW.A.Paulson,NRC,

Subject:

Reactor)11.VesselSurveillanceCapsuleT,datedAugust8,1984.5.3-21REVll12/94 GINNA/UFSARREFERENCESFORSECTION5.3(Continued)LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

Jssusnce[11ofAmendment44toFacilityOperatingLicense(Section3.1.2),datedAugust8,1991.9.LetterfromJ.N.Hannon,NRC,toJ.H.Taylor,B&WOwnersGroup,

Subject:

11B&WReportBAW1543,Rev.3,MasterIntegratedReactorVesselMaterialSurveillanceProgram(TACNo.75131),datedJune11,1991.10.WestinghouseElectricCorporation,RochesterGasandElectricReactorVesselLifeAttainmentPlan,March1990.11.T.Mayer,SummarReortonReactorVesselInteritforWestinhouse0eratinPlants,WCAP10019,December1981.(912.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

Inci-i9.dentEvaluationSteamGeneratorTubeRuptureIncident,datedApril12,1982.13.NRCGenericLetter92-01,Revision1,

Subject:

ReactorVesselStructuralIntegrity,10CFR50.54(f),datedMarch6,1992'4.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ReactorVesselStructuralIntegrity,10CFR50.54(f),ResponsetoGenericLetter92-01,Revision1,datedJuly2,1992.915.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ReactorVesselStructuralIntegrity,datedApril21,1993.16.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

ReactorVesselStructuralIntegrity--RequestforAdditionalInformation(RAI)(TACNo.M83733),datedSeptember24,1993.17.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ReactorVesselIntegrity--ResponsetoRequestforAdditionalInformation,datedNovember29,1993.5.3-22REVll12/94 GINNA/UFSARREFERENCESFORSECTION5.3(Continued)18.LetterfromADR.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

GenericLetter(GL)92-01,Revision1,"ReactorStructuralIntegrity,"(TACNo.M83733),datedApril12,1994.19.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

GenericLetter92-01,Revision1,ReactorStructuralIntegrity,ResponsetoRequestforAdditionalInformation,datedMay16,1994.20.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ResponsetoGenericLetter92-01,RequestforClosureInformation,datedJune30,1994.21.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

GenericLetter92-01,Revision1,"ReactorStructuralIntegrity,"DataTableUpdate,datedOctober25,1994.22.LetterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

Pressurized(11.ThermalShockRule-SixMonthSubmittal,datedJanuary13,1986.23.LetterfromG.E.Lear,NRCtoR.W.Kober,RG&E,

Subject:

ProjectedValuesofMaterialPropertiesforFractureToughnessRequirementsforProtectionAgainstPressurizedThermalShockEvents,R.E.GinnaNuclearPowerPlant,datedNovember17,1986.5.3-22aREV1112/94 GINNA/UFSARTable5.3-1REACTORVESSELSPECIFICATIONS1.TheAmericanSocietyofMechanicalEngineers,BoilerandPressureVesselCode,SectionIII,RulesforConstructionofNuclearVessels,1965,andapplicablecodecasesforClassAvessels.CodeCases:UerShellCourse-1332-1ShellisfabricatedofSA-336manganese-molybdenumsteel.LowerHeadRin-1332-1RingisfabricatedofSA-336manganese-molybdenumsteel.2.TheAmericanSocietyofMechanicalEngineers,BoilerandPressureVesselCode,SectionIX,WeldingQualifications,1965.3.ASAB31.1,CodeforPressurePiping,SectionVI,Chapter3,1955.4.WestinghouseAtomicPowerDivisionEquipmentSpecification676206,exceptasamendedbyWestinghouseElectricCorporation,AtomicPower'DivisionContractNo.54-Q-49758-BP,datedNovember15,1965.5.TheBabcock&WilcoxCompany,QualityControlDepartmentSpecificationscoveringthetopicsofwelding,nondestructivetesting,heattreating,cleaning,andtesting.5.3-23REV1112/94 GINNA/UFSARTable5.3-2REACTORVESSELDESIGNDATADesign/operatingpressure,psigHydrostatictestpressure,psigDesigntemperature,'FOverallheightofvesselandclosurehead,ft-in.Watervolume(withcoreandinternalsinplace),ft3Minimumthicknessofinsulation,in.NumberofreactorclosureheadstudsI.D.offlange,in.I.D.atshell,in.Outletnozzle,I.D.,in.Corefloodingwater,nozzle,in.Minimumcladthickness,in.Minimumlowerheadthickness,in.Minimumvesselbeltlinethickness,in.Closureheadthickness,in.2485/2235311065039-1.324733.048121.8127.4728.973.50.1564.1256.55.3755.3-24REV912/92~ GINNA/UFSARTable5.3-3REACTORVESSELMATERIALSSectionMaterialsDomeplate(topandbottom)CylindricalforgingsShellcourse,flanges,andnozzleforgingsSA-533,gradeASA-508,Class2SA-508,Class2Cladding(stainlessweldrod)Type304equipmentThermalshieldandinternalsA-240,type304503-25REV912/92i Table5.3-4IDENTIFICATIONOFBELTLINEMATERIALSNozzleshelltointermediateshellIntermediate.shelltolowershellSurveillanceweldSubmergedarcSubmergedarcSubmergedarcWeldControl~mhnxSA-1101SA-847SA-1036WeldWireXKRRMn-Ho-NiHn-Mo-NiMn-Ho-NiLinde80Linde80Linde801100-1125'F-48hr-FC1100-1125'F-48hr-FC1100'F-11-1/4hr-FCNozzleshellIntermediateshellLowershellSurveillanceForgingHealMaterial123P118VA1A336Bethlehem125S255VA1A508CL2Bethlehem125P666VA1A508CL2Bethlehem125S255VA1A508CL2BethlehemdmtmiQxe.1550'F-llhrWg1550'F-15-1/2hr4Q1550'F-9hr4Q1220'F-22hr-AC1210'F-18hr-AC1125'F-30hr-FC1125'F-30hr-FC1220'F-12hr-AC1125'F-30hr-FC1550'F-15-1/2hr4Q1210'F-18hr-AC1100'F-ll-l/4hr-FCForgingsInlet'ozzleZT2254-2A508CL2Midvale-HepenstallCo.Notavailable125P666VAlA508CL2Bethlehem1550'F-9hr-AC1220'F-12hr-AC1100'F-11hr-FCForgingsNotes:AC-aircooled-FCfurnacecooledWQwaterquenchedZT2289-2A508CLsHidvale-HepenstallCo.Notavailable Table5.3-5BELTLZNEMATERZALCHEMZCALCOMPOSZTZON(WeightPercent)123P118VA11258255VA1125P666VA1ZT-2254-2ZT-2289-20.190.190.190.200.0100.0090.650.230.600.690.0100.0070.660.230.580.690.420.330.070.020.0100.0110.670.200.570.690.370.050.020.0120.0140.590.210.580.710.370.090.0110.0140.660.200.600.690.300.09SA-1101SA-8470.070.0210.0141.280.520.370.600.0800.0120.0121.340.450.380.540.160.260.080.25Surveillanceweld0.0750.0120.0161.310.590.360.560.590.23(SA-1036) Table5.3-6MECHANICALPROPERTIESOFBELTLINEMATERIALSjgrrtnNumber123P118VA1125S255VA1125P666VA1NDTTNDTUpperShelfEnergy~eb'17114YSe66.8767.25UTS~s88.25Elongation~B25.5026.2526.2570.10SurveillanceTestResults125S255VA1125P666VA19178.2262.7297.1970.75UlGJIcoWeldgontrotMemberWeldWire~TFlux~eTNDTEnergyat10'F~tbTNDT'FShelfEnergy~lbYSUTS'longationRA}<si~st~}QQSA-1484SA-1101SurveillanceweldMn-Mo-NiMn-Mo-NiUnde80Unde80045,45,46058,60,36054,66.5,71Oa0a-19.579.068.6384.2667.0081.8873.5287.3528.529.5022.862.0'EstimatedbasedonNRCStandardReviewPlanSection5.3.2andMTEB5-2.'Yieldstrength.'Ultimatetensilestrength.Surveillancetestresults.'Energyat604F.'MeanvaluefromdatalnBAW-1803,Revlshn1andBAW-1920P. GINNA/UFSARTable5.3-7SUMMARYOFPRIMARYPLUSSECONDARYSTRESSINTENSITYFORCOMPONENTSOFTHEREACTORVESSELAreaControlrodhousingHeadflangeVesselflangeClosurestudsPrimarynozzleVesselsupportCoresupportpadBottomheadtoshellBottominstrumentationSafetyinjectionnozzleStressIntensitysi30,10069,40051,000104,00035,80024,90022,10030,80010,90050,900AllowableStress3SmatOperatingTemperaturesi70,00080,00080,000108,90080,00080,00034,900(1.5Sm)a80,00070,00080,000Primarylimitisshownherebecausethereisnosignificantsecondaryeffect.5.3-29REV912/92) GINNA/UFSARTable5.3-8SUMMARYOFCUMULATIVEFATIGUEUSAGEFACTORSFORCOMPONENTSOFTHEREACTORVESSELItemControlrodhousing0.000Headflange0.029Vesselflange0.016StudboltsPrimarynozzles0.155Vesselsupport0.020Coresupportpad(lateral)0.000Bottomheadtoshell0.000Bottominstrumentation0.000Safetyin)ectionnozzle0.4705.3-30REV912/92~ Table5.3-9SUMMARYOFSURVEILLANCECAPSULERESULTS30ft-lbTemeratureShiftAfterFluenceMateriala182b182c192d192WeldSA-1036Forging125P666VAlForging125S255VA10.230.050.07140'25'F25F165'F25'FO'150F35'FO'205'F42'F60'FAnalysisofCapsuleV,Reference3.AnalysisofCapsuleR,Reference4.AnalysisofCapsuleT,Reference5.AnalysisofCapsuleS,Reference6. Table5.3-10COMPARISONOFSURVEILLANCEMATERIAL30FT-LBTRANSITIONTEMPERATURESHIFTSANDUPPERSHELFENERGYDECREASESWITHREGULATORYGUIDE1.99,REVISION2,PREDICTIONS30ft-lbTransitionTemperatureShiftUpperShelfEnergyDecreaseMaterialFluenceCapsule(x10n/cm)Predicteda('F)Measured('F)PredictedMeasured(~)(X)Lowershellforging,125P666Intermediateshellforging,125S255SurveillanceweldmetalHeataffectedzonemetalVV0.5561.151.973.870.5561.151.973.870.5561.151.973.870.5561.151.973.872632374237465259135168191218252530426014016515020590100951619.522261619.522263137424813221937313117BasedonRegulatoryGuide1.99,Revision2,methodologyusingmeanwt%valuesofcopperandnickel. GINNA/UFSARc~Theresidualheatremovalisolationvalveshavenointerlockfeaturetoclosethemwhenreactorcoolantsystempressureincreasesabovethedesignresidualheatremovalpressure.RG&Ehasconcludedthatthedeviationregardingtheindependent,diverseinterlockstopreventopeningoftheoutboardresidualheatremovalisolationvalves(MOVs701and720)untilpressureisbelow410psigisacceptable.Theoutboardresidualheatremovalisolationvalveswillopenagainstadifferentialpressu'reofgreaterthan500psid.However,theinboardisolationvalves(MOVs700and721)areprovidedwithapressureinterlock.Byadministrativeprocedure,theoutboardresidualheatremovalvalves(MOVs701and720)arekey-lockedclosed,withpowerremoved.Inaddition,areliefvalve(RV-203)withacapacityof70,000lb/hr,setat600psig,isavailable.Powerwouldhavetoberestored,thekey-lockedswitchenabled,andMOV701oz720openedinviolationofproceduresand,inaddition,interlockedvalveMOV700or721wouldhavetofailtoallowsignificantleakageforapotentialresidualheatremovalsystemoverpressurizationtooccur.MOVs700and721areintheGinnaPumpandValveInserviceTestProgramandareleak-testedonanannualbasis.Thereforeitisconcludedthattheprobabilityofanintersystemloss-of-coolantaccidentisacceptablylow.Thedeviationregardingthelow-pressuresafetyinjectionisolationvalves(MOVs852AandB)isconsideredacceptable(Reference23),sincethecheckvalvetestingprovidessufficientassurancethatthesevalves(CVs853AandB)willperformtheirisolationfunctionuntilreactorcoolantsystempressuredecreasesbelowresidualheatremovalsystempressure.Thedeviationregardinglackofautomaticclosurefoxtheresidualheatremovalisolationvalvesonincreasingpressureisacceptable(Reference23)basedontheadministrativecontrolswhichareprovidedfortheoperationofthesevalves,coupledwiththeresidualheatremovalsystemhighpressurealarmat550psigandthereactorcoolantsysteminterlockpressurealarmat410psig.Thesealarmsprovideadequateassurancethattheoperatoractionrequiredbyprocedurewillbetakentoshuttheisolationvalveswhenreactorcoolantsystempressureisincreasingtowardstheresidualheatremovaldesignpressure.5.4-27REV.13-17/96 GINNA/UFSAR5.4.5.3.2ResidualHeatRemovalOverressureProtection5.4.5.3.2.1DESIGNBASIS.Theresidualheatremovalreliefvalvehasasetpointof600psigandacapacityof70,000lb/hr.Theresidualheatremovalsystemisprovidedwitha550psighigh-pressurealarmandareactorcoolantsysteminterlockpressurealarmat410psig.TheresidualheatremovalsystemisconnectedtotheloopAhotlegonthesuctionsideandtheloopBcoldlegonthedischargeside.Thedesignpressureandtemperatureoftheresidualheatremovalsystemare600psigand400'F.ThedesignbasiswithregardtooverpressureprotectionfortheGinnaStationresidualheatremovalsystemistopreventopeningoftheresidualheatremovalisolationvalveswhenreactorcoolantsystempressureexceeds450psigandtoprovidereliefcapacitysufficienttoaccommodatethermalexpansionofwaterintheresidualheatremovalsystemand/orleakagepastthesystemisolationvalves.5.4.5.3.2.2ANAI,vsIS.Ananalysisofincidentswhichmightleadtooverpressurizingtheresidualheatremovalsystemwasperformed(ReSerence24).Threeeventswereconsideredintheanalysis:Withreactorcoolantsysteminsolidconditionandresidualheatremovalandchargingpumpsoperating,theletdownlinefromthereactorcoolantsystemisisolated.b.Duringcooldownusingtworesidualheatremovaltrains,oneresidualheatremovaltrainsuffersafailureatatimewhenthecoreheatgenerationrateexceedstheheatremovalcapabilityofonetrain.cPressurizerheatersareenergizedwithresidualheatremovalinoperationandreactorcoolantsystemsolid.Theresultsoftheseanalysesshowedthattheresidualheatremovalsystemisprovidedadequatereliefcapacitywhenappropriateproceduralstepsazeinplace.Thereisnosafetyreliefvalveatthesuctionsideoftheresidualheatremovalsystemtoprotecttheresidualheatremovalsystemfrompotential5.4-28REV.13-17/96 GINNA/UFSARoverpressurization;thusthelow-temperatureoverpressureprotectionsystem(Section5.2.2)alsoprotectstheresidualheatremovalsystemfrom.overpressurizationwhentheresidualheatremovalsystemisconnectedtothereactorcoolantsystem.Westinghouseperformedanevaluationofthedesignbasistransientsformassinputandheatinput(Reference24),whichwassubsequentlyupdatedinsupportofthesteamgeneratorreplacementproject(Reference54).Thedesignbasistransientforthemassinputcaseisthecharging-letdownmismatchwiththreepositivedisplacementchargingpumpsinoperation.Thedesignbasistransientfortheheatinputcaseisthestartofareactorcoolantpumpwiththesteamgeneratorsecondary-sidewaterandprimary-sidetubewater50'Fhigherthantherestofthereactorcoolantsystem.Itwasdeterminedthattheallowablepeakreactorcoolantsystempressureismorelimitingfortheresidualheatremovalsystemprotectionthanthatfortheprotectionagainstthe10CFR50AppendixGreactorpressurevessellimits.TheTechnicalSpecifications(LCO3.4.12)requirethatnosafetyinjectionpumpbecapableofinjectingintothereactorcoolantsystemwheneveroverpressureprotectionisprovidedbythepressurizerpoweroperatedreliefvalves(PORVs).ThePORVsetpointscontainedinthePTLRprovideoverpressureprotectionforboththeresidualheatremovalsystemandthereactorvessel10CFR50AppendixGlimitsforboththemassandheatinputevents.Also,theTechnicalSpecificationsallowthatnomorethanonesafetyinjectionpumpbecapableofinjectingwhentheoverpressureprotectionisprovidedbyareactorcoolantsystemventequaltoorgreaterthan1.1in.Massadditionfromtheinadvertentoperationofasafetyinjectionpumpwillnotresultinresidualheatremovalsystempressureexceedingallowablelimitswhenoverpressureprotectionisbeingprovidedbyareactorcoolantsystemventequaltoorgreaterthan1.1in+TheTechnicalSpecificationsrequirementsdiscussedabovewereoriginallyapprovedbyReference15,andlaterbyReference55.Theanalysiswassubsequentlyupdatedinsupportofthesteamgeneratorreplacementproject(Reference54)andapprovedbytheNRCinReference57.5.4-29REV.13-17/96 GINNA/UFSAR5.4.5.3.2.3EzzccTozSTvcKOeEwREcxEvVms.Fluiddischargedthroughthe2-in.residualheatremovalreliefvalve(RV-203)isdirectedtothepressurerelieftankinsidethereactorcontainment.Thepressurerelieftankhasarupturediskwhichisdesignedtoruptureat100psigandallowthecontentsofthetanktooverflowtothecontainmentsump,whereitwouldbeavailableforrecirculation.Shouldflowfromastuckopenresidualheatremovalreliefvalvecausetherupturedisktorupture,theconsequencestosafety-relatedequipmentwouldbelessseverethantheconsequencesofpost-loss-of-coolantaccidentcontainmentfloodingwhichhasbeenpreviouslyanalyzedandfoundacceptable(Reference23)IfRV-203weretostickopeninapost-loss-of-coolant-accidentevent,residualheatremovalflowtothereactorcoolantsystemforbothlow-headrecirculationandlow-headsafetyinjectionmodeswouldbeaffected.ThisisbecauseaflowpathwouldexistfromtheresidualheatremovalsystemtoRV-203viavalvesHCV-133andV-703ineitheroftheseresidualheatremovaloperatingmodes.HCV-133failsshutfollowinglossofinstrumentaironcontainmentisolationfollowingaloss-of-coolantaccident,butaflowpathwouldstillexisttoRV-203viathe0.75-in.lockedopenmanualvalve703.TheeffectofthisflowdiversionwouldnotreducethecapabilityoftheEmergencyCoreCoolingSystem(ECCS)belowthatneededtomitigatetheconsequencesofapostulatedloss-of-coolantaccident.ThisisbecausethedesignflowratethroughRV-203(70,000lb/hr,whichisaconservativenumberinthiscasesinceHCV-133isshut)ismuchlessthantheflowrateofaresidualheatremovalpumpinthelow-pressuresafetyinjectionmode(776,000lb/hr).Eachresidualheatremovalpumphasthecapacitytoprovide100'hoftherequiredlow-pressuresafetyinjectionflow.Therefore,theleakagethroughRV-203wouldnotbeassevereaneventasthelossofaresidualheatremovalpumpwhichhasbeenpostulatedasasinglefailureintheEmergencyCoreCoolingSystem(ECCS)analysis.5.4.5.3.3ResidualHeatRemovalPumProtectionThefeaturesdesignedintotheGinnaStationresidualheatremovalsystemtopreventdamagetothesystemcentrifugalpumpsareprovisionsforpump5.4-30REV.13-17/96 GINNA/UFSARcooling,apumpmini-flowrecirculationflowpath,andsystemdesigntopreventlossofnetpositivesuctionhead.Thecomponentcoolingwater(CCW)systemprovidescoolingfoztheresidualheatremovalpumpstopreventdamagefromoverheating.Theresidualheatremovalpumpsareprovidedwitharecirculationlinetorecycleaportionofthepumpdischargefluidtothepumpsuction.Thispreventsoverheatingduringpumpoperationwhentheresidualheatremovalsystemisnotdeliveringflowtothereactorcoolantsystem.Netpositivesuctionheadcalculationswereperformedfortheresidualheatremovalpumps,andtheresidualheatremovalsystemoperationwasevaluatedfornormalplantshutdowncooling,low-pressuresafetyinjection,andpost-loss-of-coolantaccidentrecirculation.Althou'ghrecirculationoperationdevelopedthemost.limitingnetpositivesuctionheadrequirements,thecalculationsindicatedthatanacceptablenetpositivesuctionheadmarginisavailable.SeeSection6.3.3.9.NRCBulletin88-04expressedconcernaboutthepossibilityofresidualheatremovalpumpdamageduringparallelpumpoperationfeedingacommondischargeheaderunderlowflowconditions.Slightdifferencesintheirperformancecharacteristicscouldresultinthestrongerpumpforcingtheweakerpump'sdischargecheckvalveclosed,therebycreatingazero-flowordeadheadconditionanddamagingthepumpsbyoverheating.TheGinna'esidualheatremovalpumpsareeachprovidedwitharecirculationpathtopreventpumpdamagefromoverheating.Eachpumpisprovidedwitha3-in.recirculationlinewithmanualisolationvalvesoneitherend.Thelinestapofffromthepumpdischargelinebetweentheheatexchangerandcheckvalveandreturntotheresidualheatremovalpumpsuctioncrosstie.Thecheckvalves(697A,697B)isolatethepumprecirculationpathsfromeachother.Each3-in.recirculationlinecontainsa200-gpmorificeplate.Eachresidualheatremovalpumpthushasaminimumflowrecirculationlinethatisindependentoftheoppositetrainandthatprovidessufficientrecirculationflowtopreventdamagewhenthepumpdischargepathisisolated.Pressure,temperature,andflowinstrumentationisprovidedforeachrecirculationtrain.Therefore,ithasbeendeterminedthatthesafetyconcernsraisedinNRCBulletin88-04havebeenresolved(Reference25).5.4-31REV.13-17/96 GINNA/UFSAR5.4.5.3.4Sinle-FailureConsiderationsThesingleresidualheatremovalcoolingsuctionlinefromthereactorcoolantsystemandsingledischargelinetothereactorcoolantsystemrendertheresidualheatremovalsusceptibletosinglefailureofthein-linesuctionvalves(700,701)intheclosedpositionandpassivefailuresofeithersuctionordischargelines.(Valves700and701,whichareinsidecontainment,canbemanuallyoperatedtoovercomeamotoroperatororpowersupplyfailure.)Althoughthesefailureswouldrendertheresidualheatremovalmodeofdecayheatremovalinoperable,thealternatemeansofdecayheatremovalusingthesteamgeneratorsisstillavailableasabackup.Forthecaseofafailureofvalves700or701orapipebreakdownstreamofthesevalves,analternativeflowpathforcorecoolingisavailableviatheresidualheatremovalcoolingdischargelineandthehigh-pressuresafetyinjectionpumps.Othermeansofcoredecayheatremovalhavealowheatremovalcapabilitybutcouldbeusedtosupplementsteamgeneratorheatremovaluntilthedecayheatratewaslowenough.Thesemethodsareheatremovalviathechemicalandvolumecontrolsystemnonregenerativeandexcessletdownheatexchangers(requirescomponentcoolingwater(CCW))andcooldownflowfromthepressurizertothecontainmentviathepressurizersafetyvalveswithcoolantinjectionsfromthesafetyinjectionorchemicalandvolumecontrolsystems.Ifapipebreakupstreamofvalves700and701shouldoccur(i.e.aloss-of-coolantaccident),thecozecouldbeadequatelycooledbymeansoftheresidualheatremovalsumprecirculationmode.5.4.5.3.5LeakaeProvisionsThetworesidualheatremovalpumpsarelocatedbelowthebasementflooroftheauxiliarybuildinginazoomprovidedwithtwo50-gpmsumppumps,whichdischargetothewasteholduptank.Asinglesumppumpiscapableofhandlingaleakratefromaresidualheatremovalpumpsealfailure,conservativelyassumedtobe,50gpm.Itisassumedthatthispassivefailurecouldbeisolatedwithin30minutes.Consequentlythewasteholduptankisrequiredtooperateatalevelthatwillprovideaholdupcapabilityof1500galforthispostulatedeventduringpostaccidentrecirculation.Eachsumppumpstartsautomaticallyuponreceivingahigh-waterlevelsignalfromoneoftwolevelinstrumentsintheroom.5.4-32REV.13-17/96 GINNA/UFSARFromthestandpointofsystemreliabilityandavailabilityintheunlikelyeventoffailureofbothsumppumpsandassumingaconservativeleakrateof50-gpm,sufficienttimeisavailable(approximately2hr)toisolatetheleakingresidualheatremovalpumpbeforethewaterlevelinthepumproomwouldfloodtheresidualheatremovalpumpmotors.Theresidualheatremovalpumpsazeonseparatepipelinesinthezoominwhichtheyarelocated.Eachpipelinecontainsamotor-operatedvalve,whichcouldbeclosedremotelytoisolatetheleakageshouldthesealfailureoccurduringpostaccidentrecirculation.Theresidualheatremovalpumpsaredrivenbydrip-prooftypemotorscapableofoperationinhighhumidityconditionsandareprovidedwithsplashbarriers.(SeeSection5.4.5.2.)5.4.5.3.6BoronConcentrationOneormorereactorcoolantpumpsortheresidualheatremovalsystemisinoperationwhenareductionismadeintheboronconcentrationofthereactorcoolant.Atleastonereactorcoolantpumpmustbeinoperationforaplannedtransitionfromonereactoroperatingmodetoanotherinvolvinganincreaseintheboronconcentrationofthereactorcoolant,exceptforemergencyboration.Whentheboronconcentrationofthereactorcoolantsystemistobechanged,theprocessmustbeuniformtopreventsuddenreactivitychangesinthereactor.Mixingofthereactorcoolant,issufficienttomaintaina,uniformboronconcentrationifatleastonereactorcoolantpumporoneresidualheatremovalpumpisrunning(exceptasnotedabove)whilethechangeistakingplace.Oneresidualheatremovalpumpwillcirculatethereactorcoolantsystemvolumeinapproximately0.5hour.5.4-33REV.13-17/96 GINNA/UFSAR(INTENTIONALLYLEFTBLEBBY)5.4-34REV.13-17/96 GINNA/UFSAR5.4.5.4ResidualHeatRemovalatReducedCoolantInventory5.4.5.4.1GenericLetter88-17ReuirementsGenericLetter88-17identifiedactionstobetakentoprecludelossofdecayheatremovalduringnonpoweroperations.Theseactionsincludedoperatortrainingandthedevelopmentofproceduresandhardwaremodificationsasnecessarytopreventthelossofdecayheatremo'valduringreducedreactorcoolantinventoryoperations,tomitigateaccidentsbeforetheyprogresstocoredamage,andtocontrolradioactivematerialifacoredamageaccidentshouldoccur.Proceduresandadministrativecontrolswererequiredtoensurecontainmentclosurepriortothetimethatacoreuncoverycouldresultfromalossofdecayheatremovalcoupledwithaninabilitytosupplyalternativecoolingoradditionofwat'.ertothereactorcoolantsysteminventory.Procedureswererequiredthatcoverreducedinventoryoperationsandensurethatallhotlegsazenotblockedbynozzledamsunlessaventpathisprovidedthatislargeenoughtopreventpressurizationandlossofwaterfromthereactorvessel.Instrumentationwasrequiredtoprovidecontinuouscoreexittemperatureandreactorwaterlevelindication.Sufficientequipmentwasrequiredtobemaintainedinanoperableoravailablestatussoastomitigatelossoftheresidualheatremovalcoolingorlossofreactorcoolantsysteminventoryshouldtheyoccur.WestinghouseprovidedthermalhydraulicevaluationsofthelossoftheresidualheatremovalsysteminthereducedinventoryconditioninReference26.TheresultsoftheseanalyseswereusedbyGinnatoformthebasisfortherequiredoperatoractions,whichareimplementedinproceduresandadministrativecontzols,andfortheequipmentrequiredtobeavailableforprovidingcorecoolingintheeventresidualheatremovalcoolingislost.5.4.5.4.2ContainmentClosureGenericLetter88-17allowsWestinghouseplantstotakeupto2hxtoclosecontainmentwhenoperatinginthereducedinventoryconditionwithopeningstotalinggreaterthan1in.inthecoldlegsifaventpathexiststhatissufficientlylargethatcoreuncovexycannotoccurduetopressurizationresultingfromboilinginthecore.Ginnaproceduresprovideforcontxolofcontainmentpenetrationsandthecapabilitytoestablishcontainmentclosure5.4-35REV.13-17/96 GINNA/UFSARwithin2hzwhileinthereducedinventoryconditionduringtheperiodfollowingreactorshutdownwhenthedecayheatrateishighenoughtocausecoreuncovery.Asanimprovementtoachievecontainmentclosurewithin2hr,containmentpenetrationnumber2wasmodifiedtoprovideaccessintothecontainmentforthesteamgeneratorinspectionandmaintenancecabling,whichhadbeenpreviouslyroutedthroughtheequipmenthatchduringtheannualinspectionandoutage(seeSection6.2.4.4.6).Thus,thehatchcanbeclosedandcontainmentisolatedwithinthe2-hztimelimit.The2-hrtimelimitisnotapplicableattheendofaplannedMODE6(Refueling)outagewhenoperatinginthereducedinventoryconditionbecausethetimetoreachsaturationandcoreuncoveryareextended.ReSezence27providesplant-specificcurvescoveringthereactorcoolantsystemresponsetoalossofresidualheatremovalcoolingwiththereactorcoolantsystempartiallyfilledforallanticipatedplantconfigurations.Ginnaproceduresprovideforestablishmentofalargehot-sidereactorcoolantsystemventpathduringthedraindownprocessinthereducedinventoryconditionpriortonozzledaminstallationandforcaseswhereacold-sideopeningmustbemade.5.4.5.4.3ZnstrumentationfozReducedInventor0erationGinnahasinstrumentationthatisdesignedtoaidoperatorsintrendingparametersimportanttomaintainingresidualheatremovaloperationandtodetectabnormalitiespriortoaconditionthatcouldleadtoalossofresidualheatremovalcooling.Theconcernwasthatwhenusingtheresidualheatremovalsystemforshutdowncoolingwithareducedreactorcoolantsysteminventory,residualheatremovalpumpnetpositivesuctionhead(NPSH)couldbelost.TheGinnaresidualheatremovalsystemhasbeenprovidedwithinstrumentationtocontinuouslymonitorresidualheatremovalsystemperformancewheneverthesystemisbeingusedforcoolingthereactorcoolantsystemandthecoolantinventoryisreduced.Theinstrumentationmeasurespumpsuctionpressure,pumpmotorcurrent,pumpsuctiontemperature,andpumpdischargeflow.Thepumpsuctionpressure,temperature,andflowsignalsazeprovidedtotheplantprocesscomputersystem,whichcalculatespumpNPSHfromtheseinputs.Theresidualheatremovalpumpmot'orcurrentandsuctionpressurealsopermittrendingofcurrentandpressurefluctuationsassociatedwithvortexingatthejunctionoftheresidualheatremovalsuctionpipeandthereactorcoolantloop.Theplantprocesscomputersystemcandisplayand5.4-36REV.13-17/96 GINNA/IJIiSARtrendpumpsuctionpressureandtemperature,dischargeflow,motorcurrent,andmargintolossofNPSHforeachresidualheatremovalpump.TheplantprocesscomputersystemprovidesanaudiblealarmonreachingthesetlowlimitofmarginforlossofNPSH.Theplantprocesscomputer.systemalsohasarate-of-changealarmonpumpmotorcurrent.Looplevelinstrumentationisprovidedthataccuratelymeasuresreactorcoolantsystemlooplevelduringreducedinventoryconditions.Therangeis0to100in.Zeroin.correspondstoalevel4in.abovethebottomofthehotlegand100in.isapproximately16in.abovethereactorvesselflange.ThelevelsensinglineforreactorcoolantloopAistiedintothereactorcoolantloopAhotlegviatheresidualheatremovalsuctionlines.ThesensinglinefoxthereactorcoolantloopBhotlegistappeddirectlyoffthehotleg.Thelooplevelinstrumentationdirectlysensestheheadofwaterexistinginthereactorcoolantsystemandconvertsittoproportionalelectricalsignalsfortransmissiontothedisplayandprocessingsystems.Thelooplevelinstrumentationisdesignedforusewhentheplantisshutdownandthereactorcoolantsystemdepressurized.LocalsightglassindicationoflooplevelfortheBloopisavailableinthecontainmentbasement.Thesightglass(polycarbonatetube)withgraduatedlevelindicationmarkingsrangingfrom0to96in.ofwaterisinstalledandusedonlyduringMODE6(Refueling)outagesandisremovedandstoredpriortocommencingpoweroperations.The0in.markingcorrespondstoalevel4in.abovethebottomofthehotleg.Tenin.equalsthemid-loopcondition(centerlineofthereactorcoolantsystemhotleg).ThesightglassistiedintotheBlooplevelinstrumentationtap.Permanentlyinstalledstainlesssteeltubing,valves(2),andsupportsaccommodatetheremovablesightglass.5.4.5.4.4AvailableEuimenttoMitiateLossofResidualHeatRemoval~CoolinGenericLetter88-17recommendsthatatleasttwoavailableoroperablemeansofaddinginventorytothereactorcoolantsystembeprovidedinadditiontotheresidualheatremovalsystemduringreducedinventoryoperations.Thesemeansshouldincludeat'leastonehigh-pressureinjectionpump.Ginnawillhavethreemethodsavailableduringreducedinventoryoperations.Thepreferredmethodisbygravityfeedfromtherefuelingwaterstoragetank(RWST)directlytotheloopAhotlegthroughvalvesMOV-856,MOV-701,and5.4-37REV.13-17/96 GINNA/UFSARMOV-700(seeFigure5.4-7).Proceduresprovideforalargehot-sideventandallowabletimeconstraintspriortoenteringareducedinventorycondition.Reactorcoolantsystempressurizationwillnotoccurandthegravityfeedmethodwillbeeffectiveaslongastheventpathexistsandthetimeconstraintsareadheredto.Gravityfeedwillraisethewaterlevelwellabovethetopofthehotlegandallowrestartoftheresidualheatremovalpump.Achargingpumpwillbeavailableasthesecondmethodofinventoryaddition.Theflowpathwillbefromtherefuelingwaterstoragetank(RWST)totheloopBcoldleg(normalchargingpath).ForsituationswherealoopBcold-sideopeningexists,chargingwillbeshiftedtotheloopAalternativechargingpumplinepriortoopeningtheloopBcoldside.(SeeFigure9.3-13.)Theadequacyofthechargingpumpmethodtotheintactcoldleginitiatedwithin30minutesafterlossofresidualheatremovalcoolingforthelimitingcasewherethelos'sofresidualheatremovalcoolingoccurs48hraftershutdownhasbeendemonstratedinReference26.Thethirdmethodofrecoverywillbeanavailablesafetyinjectionpumptakingsuctionfromtherefuelingwaterstoragetank(RWST)anddeliveringtotheloopAhotlegifsafetyinjectionpumpBisusedortotheloopBhotlegifsafetyinjectionpumpAisused.Thecoldlegdischargepathswillbeclosedsothatallflowwillbedirectedtothehotleg.(SeeFigure6.3-1).Ginnaproceduresrequirethatthepreferredflowpathsandequipmentbeavailablepriortodraindownwithpowertotheappropriatecomponents.5'.5.4.5ReducedInventorProceduresGinnaproceduresprovideforthefollowingduringreducedreactorcoolantinventoryoperations:Requirealargeventpathsufficienttopreventpressurizationandsubsequentlossofinventory,whichcouldsubsequentlyleadtocoreuncoveryifunmitigated.Prohibitoperationswhenacold-sideopeningexistspriorto76hoursaftershutdown(<100'Freactorcoolantsystemwatertemperature)anduntilahotsideventpathexists.Twocoreexitthermocouplespoweredfromseparatetrainsremainconnectedduringreducedinventoryoperations.Controltheremovalandinstallationofsteamgeneratormanwaysandnozzledamssothatthehotlegmanwaysandnozzledamsare5.4-38REV.13-17/96 GINNA/UI'SARremovedfirstandinstalledlastinthesequencingofsteamgeneratormaintenance.Delayinstallationofthelasthotlegsteamgeneratornozzledamuntil76hoursaftershutdowntopreventthepossibilityofanadversecondition.Providecontrolofcontainmentpenetrationsandthecapabilitytocontrolcontainmentclosure.Providecapabilitytoestablishcontainmentclosureconditionwithinthe2-hrlimit.Requireresidualheatremovalflowtobereducedandmaintainedat800gpmwhenoperatingatalevelbetween5in.aboveloopcenterline(levelfornozzledaminstallation)toloopcenterline.Reduceresidualheatremovalflowtoapproximately500gpmforoperationat4in.belowloopcenterline(necessarytoperformresistancetemperaturedetectormaintenance).Reducedinventoryconditionwillnotbeentereduntilreactorcoolantsystemcold-legwatertemperaturehasbeenreducedtolessthan140'Fanduntilatleast48hoursaftershutdown.Requirepreferredflowpathsandequipmentbeavailablewithpowertotheappropriatecomponentspriortodraindownformeansofaddinginventorytothereactorcoolantsystemintheeventoflossofresidualheatremovalcooling.AdministrativecontrolsimplementedasaresultofGenericLetter88-17includethefollowing:Prohibitingcold-sideopeningswiththereactorcoolantsystemunvented.Stationinganindividualinsidecontainmentwhenwaterlevelisbelowthetopofthehotlegtoventtheresidualheatremovalsystemifnecessary.Useofavolumetricmeasurementofreactorcoolantsysteminventoryduringdraindowntoensurethattheappropriatevolumeofwaterhasbeendrainedpriortosteamgeneratormanwayremoval.Minimizingthetimewhileoperatingatreducedinventoryconsistentwithaccomplishingrequiredtasksduringthisconditionandinconsiderationofoverallplantsafety.5.4.5.4.6AnalsesPlant-specificanalyseswereconductedtoprovidetheevaluationsforexpectednuclearsteamsupplysystembehaviorforallphasesofnon-poweroperations.5.4-39REV.13-17/96 GINNA/UFSARTheyalsoprovidedthebasisforextendingcontainmentclosuretimelimitationsduringentryintoreducedinventoryoperationsattheendofanoutagewhendecayheatislowest.Resultsoftheanalysesincludethefollowing:Determinedtheplant-specificcurvesfortimetoreachsaturationasafunctionoftimeaftershutdownforreactorcoolantsysteminitialtemperaturesfrom100'Fto140'F.Calculatedtheboil-offratefollowinglossofresidualheatremovalfortheabove.Theseresultswereusedtodeterminerequiredmakeupflowtopreventcoreuncovery.Calculatedthereactorcoolantsystemventsizerequiredtoprecludepressurizationfollowinglossofresidualheatremovalwithnozzledamsinstalledandasafunctionoftimeaftershutdown.Thisanalysiswasusedtojustifytheuseofthepressurizermanwayventpathandotherpotentialventpaths.Determinedthetimeaftershutdownrequiredtomakethegravityfeedmethodofinventoryadditioncontinuallyeffectivewhenthehotsideventpathisprovidedfromthepressurizermanwayincombinationwithconoseals.DeterminedreactorcoolantsystempressureasafunctionoftimeaftershutdownwhenlateintheMODE6(Refueling)outageforalternativeventpathstothepressurizermanway.Calculatedthetimetocoreuncoveryasafunctionoftimeaftershutdownassumingthepressurizermanwayopeningforthreenozzledamcases:(1)ALLHOZZLEDAHSIHSTALLED.(2)NoHOZZLEDAHSIHSTALLED(I~E~iLARGEVENTCASE).(3)COLD-LEGHOZZLEDAHSIHSTALLEDgHOT-SIDENOZZLEDAHSHOTIHSTALLED.5.4.5.5TestsandInspectionsTheresidualheatremovalpumpsflowinstrumentchannelsarecalibratedperiodically.RegulatoryGuide1.68,InitialTestProgramsforWater-CooledReactorPowerPlants,wasnotinexistencewhentheGinnaStationpreoperationalandinitialstartuptestingwasaccomplished.However,testshavebeenperformedtoconfirmthatcooldownundernaturalcirculationcanbeachieved.Thecoreflowratesachievedundernaturalcirculationweremorethanadequatefor5.4-40REV.13-17/96 GINNA/UFSARdecayheatremoval.Thecalculatedcoreflowatapproximately28reactorpowerwas4.2Sofnominalfullpowerflow.Atapproximately4Sreactorpower,calculatedcoreflowwas5.2Sofnominal.Flowratesofthismagnitudeprovideadequatemixingofboronaddedtothereactorcoolantsystemduringcooldown.RochesterGasandElectricCorporationhasimplementedacheckvalvetestprograminresponsetoagenericNRCrequirement(Reference28)associatedwiththeissueoftheisolabilityoflow-pressuresystemsfrominterfacinghigh-pressuresystems.Specifically,checkvalves853AandB,867AandB,and878JandGaretestedto5.0gpmorlessleakageeach.ThetestingrequirementsareincludedintheTechnicalSpecifications.5.4-41REV.13-17/96 GINNA/UFSAR(INTENTIONALLYLEFTBLANK)5.4-42REV.13-17/96 GINNA/UFSAR5.4.6MAINSTEAMANDFEEDWATERPIPINGThemainsteampipinghasaninnerdiameterof28in.Steamflowismeasuredbymonitoringdynamicheadinnozzlesinsidethemainsteampiping.Thenozzles,whichhaveaninnerdiameterof16in.,arelocatedinsidecontainmentnearthesteamgeneratorsandservetolimitthemaximumsteamflowforanymainsteamlinebreakfurtherdownstream(Section15.1.5).ThemainsteamsystemisdiscussedinChapter10.ThemainfeedwaterpipingisASTMA106gradeCseamlesspipewithASTMA234gradeWPBfittings(exceptasnotedbelow),andwasfabricatedtotherequirementsoftheASACodeforPressurePiping,B31.1-1955.ThefeedwatertosteamgeneratornozzlesareSA-508Class3(formerlySA-336,CodeCase1332).Thesteamgeneratorfeed-ringandthermalsleeveareSA-335Gr.P22.In1979,severalpressurizedwaterreactors,GinnaStationincluded,experiencedfeedwaterpipecrackinginthevicinityofthefeedwatertosteamgeneratornozzles.AtGinnaStation,stress-assistedcorrosionandcorrosionfatiguecrackingwerefoundinthefeedwaterpiping-to-nozzleelbowweldsjustupstreamofthenozzles.InresponsetoIEBulletin79-13(References29through3I),theweldswererepairedanddocumentedbyreports(References32and33)submittedtotheNRC.Alsoin1979,the18-in.elbowsatthesteamgeneratornozzleswerereplacedwithelbowsofASTMA234gradeWP-11.5.4.7PRESSURIZER5.4.7.1SystemDescriptionThegeneralarrangementofthepressurizerisshowninFigure5.4-8andthedesigncharacteristicsarelistedinTable5.4-7.Thepressurizermaintainstherequiredreactorcoolantpressureduringsteady-stateoperation,limitsthepressurechangescausedbycoolantthermalexpansionandcontractionduringnormalloadtransients,andpreventsthepressureinthereactorcoolantsystemfromexceedingthedesignpressure.Thepressurizervesselcontainsreplaceabledirectimmersionheaters,multiple5.4-43REV.13-17/96 GINNA/UFSARsafetyandpressurizerpoweroperatedreliefvalves(PORVs)(Section5.4.10),aspraynozzle,andinterconnectingpiping,valves,andinstrumentation.Thereare78heatersseparatedintoacontrol/variablegroupandabackupgroup.Theheatersaremadeofnichromewirewithamagnesiumoxideinsulator.Theheaterterminalsarehermeticallysealedanddesignedtowithstandthedesignpressureandtemperatureofthepressurizer.Theheatersarelocatedinthelowersectionofthevesselandpressurizethereactorcoolantsystembykeepingthewaterandsteaminthepressurizeratsaturationtemperature.Theheatersarecapableofraisingthetemperatureofthepressurizerandcontentsatapproximately55'F/hrduringstartupofthereactor.Intheeventofalossofoffsitepower,pressurizerheaterscanbemanuallyloadedontoemergencypowersources.Thepressurizerisdesignedtoaccommodatepositiveandnegativesurgescausedbyloadtransients.Thesurgeline,whichisattachedtothebottomofthepressurizer,connectsthepressurizertothehotlegoftheBreactorcoolantloop.Duringapositivesurge,causedbyadecreaseinplantload,thespraysystem,whichisfedfromthecoldlegofacoolantloop,condensessteaminthevesseltopreventthepressurizerpressurefromreachingthesetpointofthepressurizerpoweroperatedreliefvalves(PORVs).Power-operatedsprayvalvesonthepressurizerlimitthepressureduringloadtransients.Inaddition,thesprayvalvescanbeoperatedmanuallybyacontrollerinthemaincontrolroom.Twoseparate,automaticallycontrolled'sprayvalveswithremote-manualoverridesareusedtoinitiatepressurizerspray.Amanualthrottlevalveinparallelwitheachsprayvalvepermitsasmallcontinuousflow(1gpm)througheachspraylinetoreducethermalstressesandthermalshockwhenthesprayvalvesopen.Thethrottlevalveflowalsohelpsmaintainuniformtemperatureandwaterchemistryinthepressurizer.Twoseparatesprayvalvesandspraylineconnectionsareprovidedsothatthespraywilloperatewhenonlyonereactorcoolantpumpisoperating.Aflowpathfromthechemicalandvolumecontrolsystemisalsoprovidedtothepressurizersprayline.Thisflowpathprovidesauxiliaryspraytothe5.4-44REV.13-17/96 GINNAfUFSARvaporspaceofthepressurizerduringcooldownwhenthereactorcoolantpumpsareoutofservice.Thermalsleevesonthepressurizersprayconnectionandspraypipingaredesignedtowithstandthethermalstressesresultingfromtheintroductionofcoldspraywater.Duringanegativepressuresurge,causedbyanincreaseinplantload,flashingofwatertosteamandgenerationofsteambyautomaticactuationoftheheaterskeepthepressureabovetheminimumallowablelimit.Heatersarealsoenergizedonhighwaterlevelduringpositivesurgestoheatthesubcooledsurgewaterenteringthepressurizerfromthereactorcoolantloop.Thepres'surizerisavertical,cylindricalvesselwithhemisphericaltopandbottomheads,constructedofcarbonsteelwithinternalsurfacescladwithausteniticstainlesssteel.Theheatersaresheathedinausteniticstainlesssteel.Thepressurizerisinsulatedtominimizeheatlossfromthepressurizervessel.TheinsulationconsistsofreflectivepanelsthatareremovabletopermitvisualexaminationofthepressurizerasrequiredbytheInserviceInspectionProgram.Thepressurizervesselsurgenozzleisprotectedfromthermalshockbyathermalsleeve.Athermalsleevealsoprotectsthepressurizerspraynozzleconnection.5.4.7.2SeismicEvaluationWithinthescopeofSEPTopicIII-1[ClassificationofStructures,Components,andSystems(SeismicandQuality)]theseismicresistanceofthepressurizerwasevaluated.Basedonanalysesofaheavier,1800ft,model(butwithidenticalsupportskirtstotheGinna800ftmodel)andutilizingafiniteelementmodelitwasconcludedthattheGinnapressurizerisadequatelysupportedforthe0.2gsafeshutdownearthquake.5.445REV.13-17/96 GINNA/UFSAR5.4.8PRESSURIZERRELIEFDISCHARGESYSTEM5.4.8.1SystemDescriptionThepressurizersafetyandpressurizerpoweroperatedreliefvalves(PORVs),describedinSection5.4.10,dischargetothepressurizerrelieftank.PrincipaldesignparametersofthepressurizerrelieftankaregiveninTable5.4-8~AdiagramofthetankisshowninFigure5.4-9.Steamandwaterdischargedfromthepressurizersafetyvalvesandpressurizerpoweroperatedreliefvalves(PORVs)passtothepressurizerrelieftankwhichispartiallyfilledwithwateratornearambientcontainmentconditions.Thecoolwatercondensesthedischargedsteamandthecondensateisdrainedtothewastedisposalsystem.Thetanknormallycontainswaterinapredominantlynitrogenatmosphere,althoughprovisionshavebeenmadetoperiodicallyanalyzethetankgasforaccumulationofhydrogenandoxygen.Nitrogenpressureisnormallymaintainedat3psig.Thetankisequippedwithasprayanddrainwhichareoperatedtocoolthetankfollowingadischarge.Thetanksizeisbasedontherequirementtocondenseandcooladischargeequivalentto110%ofthefullpowerpressurizersteamvolume.Assuminganinitialtankwatertemperatureof120'F,thetankiscapableofabsorbinganamountofheatsuchthatthefinalwatertemperatureisnogreaterthan200'F.Ifthetemperatureinthetankrisesabove120'Fduringplantoperation,thetankis'ooledbysprayingincoolreactormakeupwateranddrainingoutthewarmmixturetothereactorcoolantdraintank.Thesprayrateisdesignedtocoolthetankfrom200'Fto120'Finapproximately1hrfollowingthedesigndischargeofpressurizersteam.Thevolumeofnitrogengasinthetankisselectedtolimitthemaximumpressureto50psigfollowingadesigndischarge.Thetankisprotected'againstadischargeexceedingthedesignvaluebyarupturediskwhichdischargesintothereactorcontainment.Therupturediskontherelieftankhasareliefcapacityinexcessofthecombinedcapacityofthepressurizersafetyvalves.Thetankdesignpressure(andtherupturedisksetting)istwicethecalculatedpressureresultingfromthemaximumsafety5.4-46REV.13-17/96 GINNA/UFSARvalvedischargedescribedabove,i.e.,thetankdesignpressureis100psig.Thismarginistopreventdeformationofthedisk.Thetankandrupturediskholderarealsodesignedforfullvacuumtopreventtankcollapseifthetankcontentscoolwithoutnitrogenbeingadded.Pressurerelieftankpressureisindicatedinthecontrolroomonthemaincontrolboardonanarrowrange(0-7.5psig)andwiderange(0-150psig)meter.Thisallowsthecontrolroomoperatortomonitorpressurerelieftankpressureuptotheratingoftherupturedisk.Thedischargepipingfromthesafetyandpressurizerpoweroperatedreliefvalves(PORVs)totherelieftankissufficientlylargetopreventbackpressureatthesafetyvalvesfromexceeding20'hofthesetpointpressureatfullflow.Thepressurizerrelieftank,bymeansofitsconnectiontothewastedisposalsystem,providesameansforremovinganynoncondensiblegasesfromthereactorcoolantsystemwhichmightcollectinthepressurizervessel.Thetankisconstructedofcarbonsteelwithacorrosionresistantcoatingontheinternalsurface.Aflangednozzleisprovidedonthetankforthepressurizerdischargelineconnection.Thepressurizerdischargeline,thenozzle,andthesprayerinsidethetankareausteniticstainlesssteel.5.4.8.2SystemAnalysisInresponsetoNUREG0737,SectionII.D.1,andtheNRCplant-specificsubmittalrequestforpipingevaluation,WestinghouseperformedananalysisoftheGinnapressuxizersafetyandreliefvalvedischargepipingsystem(seeSection3.9.2.1.4).Itwasdeterminedthattheoperabilityandstructuralintegrityofthesystemwereensuredforallapplicableloadingsandloadcombinationsincluding'allpertinentsafetyandreliefvalvedischargecases.SA-47REV.13-17/96 GINNA/UFSAR5.4.9VALVES5.4.9.1OriginalValveDesignAllthevalvesoriginallyinstalledinthenuclearsteamsupplysystemhadstemswithbackseatstopreventejectionofvalvestems.Ifitwereassumedthatthestemthreadsfail,theupsetrequiredforthebackseatpreventspenetrationofthebonnetasshownbyanalysis,therebypreventingthestemfrombecomingamissile.Thestemsofair-andmotor-operatedvalvesincludedsimilarinterference.Valveswithnominaldiameterlargerthan2in.weredesignedtopreventbonnet-bodyconnectionfailureandsubsequentbonnetejection.Themeansofpreventionincluded(a)usingthedesignpracticeofASMESectionVIII,~whichlimitstheallowablestressofboltingmaterialtolessthan20%ofitsyieldstrength,(b)usingthedesignpracticeofASMESectionVIIIforflangedesign,and(c)controllingtheloadduringthebonnet-bodyconnectionstud-tighteningprocess.Thepressurecontainingparts,excepttheflangeandstuds,weredesignedpercriteriaestablishedbytheUSASB16.5.FlangesandstudsweredesignedinaccordancewithASMESectionVIII.MaterialsofconstructionforthesepartswereprocuredperASTMA182,F316,orA351,GRCF8M.StudandnutmaterialwasASTMA193-B7andA194-2H~Thebonnet-bodystudsandnutmaterialwerelaterupgradedwith17-4PHASTMA-564TP630andASTMA-194-8MTP316material,respectively.Theproperstudtozquingprocedures.andtheuseofatorquewrench,withindicationoftheappliedtorque,limitedthestressofthestudstotheallowablelimitsestablishedintheASMECode,i.e.,20,000psi.Thisstresslevelwasfarbelowthematerialyield,i.e.,about105,000psi.ThecompletevalveswerehydrotestedperUSASB16.5(1500-lbUSASvalveswerehydrotestedto5400psi).Thecaststainlesssteelbodiesandbonnetswere'adiographedanddyepenetranttestedtoverifysoundness.Valveswithnominaldiameterof2in.orsmallerwereforgedandhadscrewedbonnetswithcanopyseals.Thecanopysealwasthepressureboundarywhilethebonnetthreadsweredesignedtowithstandthehydrostaticendforce.The5.448REV.13-17/96 GINNA/UFSARpressurecontainingpartsweredesignedtothecriteriaestablishedbytheUSASB16.5specification.5.4.9.2ValveWallThicknessAnengineeringreviewofnuclearvalveswasconductedduringthe1974-1975timeperiodasrequiredbyReference34.Thereviewwas.thefirstphaseofaprogramtodemonstrateacceptablewallthicknessoncertainvalvesimportanttonuclearsafety.Theengineeringreviewofvalvesidentified55valveswithgreaterthana1-in.nominalpipesizewithintheGinnaStationreactorcoolantpressureboundary.Thesevalveswere1500-lbpressureclassvalvesdesignedforreactorcoolantsystemdesignpressureof2485psianddesigntemperatureof650'F.ThevalveswereoriginallypurchasedtoeitherASAB16.5,MSSSP-66,orASMESectionIII.Thevalvesvariedinsizefrom2-in.to10-in.nominalpipesize.Physicalorultrasonicinspectionswereconductedtoverifyadequatewallthicknessonallvalvesdescribedabove.ThemeasurementpzogramwasbasedondesignandmanufacturingrequirementsinANSIB16.5orMSSSP-66.Thevalveswereeitherfoundtomeetrequirementsor,inthecaseofonevalve,repairedtomeetrequirements.Valvewallthicknessmeasurementsweremadeonallsparenuclearvalvestheninstock.Specificationswerepreparedrequiringmeasurementandmanufacturer'scertificationofadequatevalvewallthicknessforallvalvestobesubsequentlypurchasedfozuseinGinnaStationSeismicCategoryIsystems.5.4.9.3Motor-OperatedValveProgramGenericLetter89-10TheGinnaStationmotor-operatedvalveprogramwasestablishedinresponsetoIEBulletin85-03(Reference35).TheprogramwaslaterexpandedtoaddresstherecommendationsofGenericLetter89-10(Reference36)toincludeallmotor-operatedvalvesinsafety-zelatedsystemsthatarenotblockedfrominadvertentoperationfromeitherthecontrolroom,motorcontrolcenter,or5.4A9REV.13-17/96 GINNA/UFSARthevalveitself.Thefollowingsafety-relatedsystemsareincludedintheprogram:High-headsafetyinjection-injectionmode.Low-headsafetyinjection-injectionmode.High-headsafetyinjection-recirculationmode.Low-headsafetyinjection-recirculationmode.Auxiliaryfeedwater.Standbyauxiliaryfeedwater.Containmentspray.Componentcoolingwater(CCN)-safetyinjectionandresidualheatremovalpumpcooling;sumprecirculationcooling.Servicewater(SN)-nonessentialloadisolation.Themotor-operatedvalvesintheabovesystemsaretestedatdesignpressurewhenpracticable;otherwise,alternativemethodsareusedtoensuremotor-operatedvalveoperability.Themotor-operatedvalveprogramisdescribedintheGinnaStationMotor-OperatedValveQualificationProgramPlan.Themotor-operatedvalveprogramisusedtoestablishtorqueswitchandlimitswitchsettingsforsafety-relatedacanddcmotor-operatedvalvesandtodemonstratevalveoperabilityduringnormalandabnormaldesignbasisevents.Theprogramalsoincludesperiodicandpostmaintenanceandrepairtestingtoverifycontinuedvalveoperability.Themotor-operatedvalveprogramandGinnaStationproceduresaredesignedtoensurethattheswitchsettingsofthemotor-operatedvalvesintheprogramareselected,set,andmaintainedcorrectlytoaccommodatethemaximumdifferentialpzessuresexpectedacrossthevalvesduringbothnormalandabnormaldesignbasiseventsthroughoutthelifeoftheplant.GenericLetter95-07InresponsetoGenericLetter95-07(Reference48),PressureLockingandThermalBindingofSafety-RelatedPower-OperatedGateValves,RG&Econsideredthesafety-relatedmotor-operatedgatevalves,includingallvalveswithintheGL89-10program,thatcouldbepotentiallysusceptibletothisphenomena,and5.4-50REV.13-17/96 GINNA/UIiSARperformedassessments,analysesoridentifiedpreviousvalvemodificationstojustifycontinuedoperabilityofthevalves.Theassessmentsofeachvalvewerebasedupontheoperationalconfigurationsandconditionsimposed.Anumberofvalvesreceivedanalysisthatdemonstratedthatthedevelopedvalvethrustiscapableofovercomingtheimposedloads.Theseincluded:valves860AI860B860CIand860D,(dischargeisolationvalvesfromcontainmentspraypumps);852Aand852B,(residualheatremovalsupplyvalvestothereactorvesseldeluge);857A,857B,and857C,(dischargevalvesfromresidualheatremovalpumpstothesafetyinjectionpumps);and871Aand871B(dischargevalvesfromsafetyinjectionpumpCtoreactorcoolantsystemloopsAandB).Valves515and516,thepressurizerpoweroperatedrelief(PORV)blockvalves,weremodifiedin1989withupstreamdiscsthathaveventholes,andvalves850Aand850BItheresidualheatremovalsuctionvalvesfromcontainmentsumpB,weremodifiedin1970toincludebonnetventstotheresidualheatremovalpumpsuctionsideofthevalves.Thebalanceofthevalvesidentifiedwerejustifiedbasedupontheoperationalconfigurationandaconditionsimposed.Theseincluded:valves738Aand738B,(componentcoolingwatersupplyvalvestotheresidualheatremovalheatexchanger);3504Aand3505A,(mainsteamsupplyvalvestotheturbinedrivenauxiliaryfeedwaterpump);704Aand704B,(suctionisolationvalvestotheresidualheatremovalpumps);1815Aand1815B,(suctionisolationvalvesforsafetyinjectionpumpC);and4615and4616(servicewaterisolationvalvestoauxiliarybuildingloads).RG&E'sresponsetothegenericletteriscontainedinReference49.5.4-51REV.13-17/96 GINNA/UPSAR(INTENTIONALLYLEFTBIdQ4K)5.4-52REV.13-17/96 GINNA/UFSAR5.4.10SAFETYANDPRESSURIZERPOWEROPERATEDRELIEFVALVES(PORVS)5.4.10.1SystemDescriptionThereactorcoolantsystemisprotectedagainstoverpressure(Section5.2.2)bycontrolandprotectivecircuitssuchasthetwohigh-pressurecodesafetyvalvesandthetwopressurizerpoweroperatedreliefvalves(PORVs)connectedtothetopheadofthepressurizer.Thevalvesdischargeintothepressurizerrelieftank,whichcondensesandcollectsthevalveeffluent.TheschematicarrangementofthereliefdevicesisshowninFigure5.1-1.Thepressurizerpoweroperatedreliefvalves(PORVs)andspring-loadedcodesafetyvalvesareprovidedtoprotectagainstpressuresurgesthatarebeyondthepressurelimitingcapacityofthepressurizerspray.Thepressurizerdischargelinesleadingtoeachpressurizerpoweroperatedreliefvalve(PORV)containamotor-operatedblockvalvetobeusedifthepressurizerpoweroperatedreliefvalve(PORV)opensinadvertentlyorfailstoclosefollowinganoverpressurizationtransient.Theblockvalvesareremotemanuallycontrolledfromthecontrolroom.Leakagelimitshavebeenestablishedfortheblockvalvesthatarewithi:nthemakeupcapacityofasinglechargingpump.Designparametersofthesafety,relief,andblockingvalvesaregiveninTable5.4-9.AtleastonepressurizercodesafetyvalveisinservicewheneverthereactorissubcriticalandthereactorcoolantsystemisinMODE4(HotStandby),exceptduringhydrostatictests.BothpressurizercodesafetyvalvesareinserviceduringMODE3.(HotShutdown)andpriortocriticality.Eachofthetwopressurizercodesafetyvalvesisdesignedtorelieve288,0001b/hrofsaturatedsteamatthevalvesetpoint.Below350'Fand350psiginthereactorcoolantsystem,theresidualheatremovalsystemcanremoveresidualheatandtherebycontrolsystemtemperatureandpressu're.Ifnoresidualheatwereremovedbyanyofthemeansavailabletheamountofsteamwhichcouldbegeneratedatsafetyvalvereliefpressurewouldbelessthanhalfthevalvescapacity.Onevalve,therefore,providesadequatedefenseagainstoverpressurization.5.4-53REV.13-17/96 GINNA/UFSARAresistancetemperaturedetectorlocatedinthedischargepipeofeachcodesafetyvalveprovidesindicationofvalvemovementozsignificantseatleakage.Actuationofasafetyvalvewillcausea,rapidriseind'ischazgetemperature,whichissensedbytheresistancetemperaturedetectorandindicated/alarmedinthecontxolroom.Alsolinearvoltagedifferentialtzansducersonthepressurizersafetyvalvesprovideadirectindicationofvalveposition.Thepressurizerpoweropezatedreliefvalves(PORVs)havedirectstempositionindicationinthecontrolroom.Analarmisprovidedinconjunctionwiththeindication.5.4'0.2PerformanceTestingandEvaluationUnderNUREG0737,ItemXZ.D.1,PerformanceTestingofBNRandPNRReliefandSafetyValves,alloperatingplantlicenseesandapplicantswererequiredtoconducttestingtoqualifythereactorcoolantsystemreliefandsafetyvalvesunderexpectedoperatingconditionsfordesign-basistransientsandaccidents.Inadditiontothequalificationofvalves,thefunctionalabilityandstructuralintegrityoftheas-builtdischargepipingandsupportswerealsorequiredtobedemonstratedonaplant-specificbasis.Xnresponsetotheserequirements,apxogramfortheperformancetestingofpressurizedwaterreactorsafetyandpressurizerpoweroperatedreliefvalves(PORVs)wasformulatedbyEPRI.Theprimaryobjectiveofthetestprogramwastoprovidefull-scaletestdataconfirmingthefunctionalabilityofthereactorcoolantsystempressurizerpoweroperatedreliefvalves(PORVs)andsafetyvalvesforexpectedoperatingandaccidentconditions.Thesecondobjectiveoftheprogramwastoobtainsufficientpipingthermalhydraulicloaddatatopermitconfirmationofmodelswhichmaybeutilizedforplantuniqueanalysisofsafetyandreliefvalvedischargepipingsystems.Thevalves,pipingarrangements,andfluidinletconditionsusedintheEPRItestsconfirmedtheabilityoftheGinnaStationsafetyvalves,pressurizerpoweroperatedreliefvalves(PORVs),andblockvalvestoopenandcloseunderexpectedconditions.Power-operatedreliefandblockvalveswerefoundto5.4-54REV.13-17/96 GINNA/UFSARfulfilltheirdesignfunctionswithneitherthevalvesnorthecontrolcircuitrybeingsubjectedtoaharshenvironment.TheoperabilityandstructuralintegrityoftheGinnaStationconfigurationwasalsoverifiedonaplant-specificbasisbyWestinghouseforall'applicableloadingsandloadcombinations,includingpertinentsafetyvalveandreliefvalvedischargecases.SeeSection3.9.2.1.4foradiscussionoftheanalysis.TheNRCSafetyEvaluationReport(Reference37)concludedthatRG&EhadprovidedanacceptableresponsetotherequirementsofNUREG0737,ItemII.D.l,providedthatplantproceduresareadoptedforinspectingthereliefandsafetyvalvesaftereachliftinvolvingtheloopsealorwaterdischarge.5.4.11COMPONENTSUPPORTS5.4.11.1DesignCriteria5.4.11.1.1GeneralTheclassificationofallcomponents,systems,andstructuresforthepurposesofseismicdesignaregiveninSection3.7.1.ThedefinitionofthethreeoriginalseismicClassesisgiveninSection3.7.1.1.Allcomponentsofthereactorcoolantsystemandassociatedsystemsweredesignedtothestandards'oftheapplicableASMECodeorUSASCode.TheloadingcombinationsthatwereoriginallyemployedinthedesignofSeismicCategoryIcomponentsofthesesystems,i.e.,vessels,piping,supports,vesselinternals,andotherapplicablecomponents,aregiveninTable3.9-1.Thistablealsoindicatesthestresslimitsthatwereusedinthedesignofthelistedequipmentforthevariousloadingcombinations.Tobeabletoperformtheirfunction,i.e.,allowcoreshutdownandcooling,thereactorvesselinternalshadtosatisfydeformationlimitsthatweremorerestrictivethanthestresslimitsshowninTable3.9-1.Forthisreasonthereactorvesselinternalsweretreatedseparately(seeSection3.9.5).Ingeneral,modificationsoradditionstopipingsystemsatGinnaStationsinceinitialoperationhavebeenseismicallyqualifiedusingdynamicanalyses.Somesmallpipinghasbeenseismicallyqualifiedusingequivalent5.4-55REV.13-17/96 GINNA/UFSARanalysisorspacingtabletechniques.SpecificcasesarediscussedinSection3.9.2.1.AsaresultoftheSEPpzeliminaryseismicreviewofGinnaStation,IEBulletin79-14,andotherNRCseismicrequirements,RG&EinitiatedaseismicupgradeprogramafterthecompletionofpipingsupportmodificationsrequiredbyIEBulletin79-14.TheloadingcombinationsandassociatedstresslimitsusedforthepipingsystemsthatazepartoftheseismicupgradeprogramazediscussedinSection3.9.2.1.8andappearinTable3.9-8.5.4.11.1.2AsetricLoss-of-CoolantAccidentLoadinInJanuary1978,alllicenseesofpressurized-waterreactorplantswererequiredbytheNRCtoprovideanassessmentoftheadequacyofthereactorvesselsupportsandotheraffectedstructurestowithstandcombinationsofresponsetoasymmetricloss-of-coolantaccidentloadsandthesafeshutdownearthquake.Inresponse,References38through42weresubmittedtotheNRCfoztheWestinghouseOwnersGroupplantsintheformofTopicalReportsrelatingtothe"leak-before-break"concept.TheNRCevaluation(Reference42)oftheabovereferencesconcludedthatanacceptablebasishadbeenprovidedsothattheasymmetricblowdownloadsresultingfromdouble-endedpipebreaksinmaincoolantlooppipingneednotbeconsideredasadesignbasisfortheWestinghouseOwnersGzoupplants,providedthatleakagedetectionsystemsexisttodetectpostulatedflawsutilizingguidancefromRegulatoryGuide1.45.ByReference43RG&EprovidedinformationtotheNRCconcerningthecapabilityoftheleakagedetectionsystemsinstalledatGinnaStationtodetecta1.0-gpmleakwithin4hour.ByReference44theNRCreportedthattheNRCmetthecriteriaspecifiedinReference42andthattheasymmetricblowdownloadsresultingfromdouble-endedpipebreaksinmaincoolantlooppipingneednotbeconsideredasadesignbasisforGinnaStation.5.4.11.1.3LamellarTearinDuringthemid-1970stheNRCraisedanumberofquestionsaboutthepotentialforlamellartearingandlowfracturetoughnessofmaterialsusedinsteamgeneratorsupportsandreactorcoolantpumpsupports;RG&Eaddressedthis5.4-56REV.13-17/96 GINNA/UFSARissueinReferences45and46.ItwasconcludedthatadequatefracturetoughnessexistsforthesupportsatGinnaStationandthatlamellartearingwasnotanissuefortheGinnaStationdesignandinstallation.5.4.11.2SupportStructuresSeealsoSection3.9.3.2.5.4.11.2.1ReactorVesselSuortsThevesselissupportedonsixindividualpedestals.Eachpedestalrestsuponplatesthatareinturnsupporteduponthecircularconcreteprimaryshieldwall.Thereactorvesselhassixsupportscomprisingfoursupportpadslocatedoneonthebottomofeachoftheprimarynozzlesandtwogussetsupportpads,onecentered1.5degreescounterclockwisefromthe90-degreeaxisandtheothercentered1.5degreescounterclockwisefromthe270-degreeaxis.Eachsupportbearsonasuppoztshoe,whichisfastenedtothesupportstructure.Thesupportshoeisastructuralmemberthattransmitsthesupportloadstothesupportingstructure.Thesupportshoeisdesignedtorestrainvertical,lateral,androtationalmovementofthereactorvessel,butallowsforthermalgrowthbypermittingradialslidingateachsupport,onbearingplates.TheseismicresistanceofthereactorvesselsupportswasevaluatedaspartofSEPTopicIII-6.Itwasconcluded,basedonexperiencefornozzle-supportedvessels,thattheseismicallyinducedstressesinthenozzlesandadjacentshellsazeverysmallandthatthegoverningelementforreactorvesselsupportistheconcreteshieldwall.Theshieldwallwasconsideredtobeadequatetowithstandthe0.2gsafeshutdownearthquakeaccordingtotheNRCreview(Reference47).5.4.11.2.2SteamGeneratorSuortsEachsteamgeneratorissupportedonastructuralsystemconsistingoffourverticalsupportcolumnsandtwo(upperandlower)supportsystems.Theverticalcolumns,whicharepinconnectedtothesteamgeneratorsupportfeet,'.4-57REV.13-17/96 GINNA/UFSARserveasverticalrestraintforoperatingweights,piperupture,andseismicconsiderationswhilepermittingmovementinthehorizontalplane.Thesupportsystems,byusingacombinationofstops,guides,andsnubbers,preventrotationandexcessivemovementofthesteamgeneratorinanyverticalplane.Thermalexpansionispermittedinthesupportsystemsbyakeyarrangement.(SeeSection3.9.3.2.2.)5.4.11.2.3ReactorCoolantPumSuortsThereactorcoolantpumpissupportedbyastructuralsystemconsistingofthreeverticalcolumnsandasystemofstops.Theverticalcolumnsareboltedtothepumpsupportfeetandpermitmovementinthehorizontalplanetoaccommodatereactorcoolantpipeexpansion.Horizontalrestraintisaccomplishedbyacombinationoftierodsandstopswhichlimithorizontalmovementforpiperuptureandseismiceffects.5.4.11.2.4PressurizerSuortsThepressurizerissupportedonaheavyconcreteslabspanningbetweentheconcreteshieldwallsforthesteamgeneratorcompartment.Thepressurizerisabottomskirtsupportvessel.5.4.11.2'ReactorCoolantPiinSuortsThereactorcoolantpipinglayoutisdesignedonthebasisofprovidingfloatingsupportsforthesteamgeneratorandreactorcoolantpumpinordertopermit.thethermalexpansionfromthefixedoranchoredreactorvessel.Acomprehensivethermalanalysiswasperformedtoensurethatstressesinducedbylinearthermalexpansionwerewithincodelimits.Shocksuppressors(snubbers)areprovidedthroughoutthereactorcoolantsystemtoensurepipingstructuralintegrityduringandfollowingaseismiceventorothereventinitiatingdynamicloads.5.4.11.2.6InsectionandTestinThehydraulicandmechanicalshocksuppressors(snubbers)arerequiredtobeoperabletoensurethatthestructuralintegrityofthereactorcoolantsystemandallothersafetysystemsismaintainedduringandfollowingaseismicorothereventinitiatingdynamicloads.TheInserviceInspectionProgramincludesalistingofsafety-relatedhydraulicsnubbersthatmustbeoperable,5.4-58REV.13-17/96 GINNA/UFSARlimitingconditionsofoperationsrelativetothesesnubbers,andaninspectionandtestingprogramforsnubbers.Theinspectionprogramincludesallsafety-relatedsnubbersandsnubbersinstalledonnon-safety-relatedsystemswhosefailureorfailureofthesystemonwhichtheyareinstalledcouldhaveanadverseeffectonasafety-relatedsystem(seeSection3.9.3.3.5).5.4-59REV.13-17/96 GINNA/UFSARREFERENCESFORSECTION5.44~5.8.9.10.12.13.14.15.ErnestL.Robinson,"BurstingTestsofSteam-TurbineDiskWheels,"TransactionsoftheASME,July1974.LetterfromD.M.Czutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

CompletionofTopicZZI-10.B,PumpFlywheelIntegrity,datedJune22,1981.DeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedNRCBulletinNo.88-02,RapidlyPropagatingFatigueCracksinSteamGenezatorTubes,datedFebruary5,1988'etterfromC.Stahle,NRC,toR.C.Mecredy,RG&E,

Subject:

CloseoutofBulletin88-02,IssuesonGinna(TAC67305),datedMarch30,1989.LetterfromJ.F.Hofscher,Westinghouse,toP.Gorski,RG&E,

Subject:

SiGTubeFatigueEvaluationUpdate,datedJuly16,1991(RGE-91-579).DeletedLetterfromD.L.Ziemann,NRC,toL.D.White,RG&E,

Subject:

AmendmentNo.26totheProvisionalOperatingLicense,datedApril18,1979.16.LetterfromR.W.Kober,RG&E,toC.Stahle,NRC,

Subject:

PeriodicVerificationofLeakTightIntegrityofPressureIsolationValves(PIV)(GenericLetter87-06),datedJunell,1987.17.18.19.20.21.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

FollowupActionsResultingfromtheNRCStaffReviewsRegardingtheThreeMileIslandUnit2Accident,datedOctober17,1979.LetterfromL.D.White,Jr.,RG&E,toD.L.Ziemann,NRC,

Subject:

ThreeMileIslandLessonsLearned-ShortTermRequirements,datedDecember28,1979.LetterfromL.D.White,Jr.,RG&E,toD.M.Crutchfield,NRC,

Subject:

ShortTermLessonsLearned,ReactorCoolantSystemVenting,datedJune2,1980.LetterfromJ.E.Maiez,RG&E,toD.M.Crutchfield,NRC,

Subject:

NUREG0737Requirements,datedJuly1,1981.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

ReactorCoolantSystemVents(TMIItemIZ.B.1),datedMay7,1982.5.4-60REV.13-17/96 GINNA/UFSAR22.LetterfromL.D.White,RG&E,toA.Schwencer,NRC,

Subject:

ReactorVesselOverpressurization,datedFebruary24,1977.23.25.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

SEPTopicsV-10.B,V-ll.B,andVII-3,datedSeptember29,1981.WestinghouseElectricCorporation,R.E.GinnaLowTemperatureOverpressureProtectionSystem(LTOP)SetpointPhaseIIEvaluationFinalReport,October1990(Proprietary)andFebruary1991(Non-Proprietary),(AttachmentCtoletterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

RochesterGasandElectricCorporation,R.E.GinnaNuclearPowerPlant,Docket50-244,datedFebruary15,1991)LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

NRCBulletin88-04,PotentialSafety-RelatedPumpLoss,datedAugust16,1989.26.WCAP11916,LossofResidualHeatRemovalCoolingWhiletheRCSisPartiallyFilled,Revision0,datedJuly1988.27.28.29.30.31.32.RG&EDesignAnalysisNSL-0000-005,Revision2,entitledThermalHydraulicAnalysesoftheLossofResidualHeatRemovalCoolingWhiletheRCSisPartiallyFilled(GenericLetter88-17),datedFebruary8,1990.LetterfromD.M.Crutchfield,NRC,toJ.Maier,RG&E,

Subject:

OrderforModificationofLicenseConcerningPrimaryCoolantSystemPressureIsolationValves(PIV),datedApril20,1981.U.S.NuclearRegulatoryCommission,"CrackinginFeedwaterSystemPiping,"IEBulletin79-13,June25,1979.U.S.NuclearRegulatozyCommission,"CrackinginFeedwaterSystemPiping,"IEBulletin79-13,Revision1,August30,1979.U.S.NuclearRegulatoryCommission,"CrackinginFeedwaterPiping,"IEBulletin79-13,Revision2,October17,1979.LetterfromL.D.White,Jz.RG&E,toB.H.Grier,NRC,

Subject:

CrackinginFeedwaterPiping,datedJuly27,1979.33.WestinghouseElectricCorporation,MetallurgicalInvestigationoftheSteamGeneratorFeedwatezPipingCracksattheRobertEmmettGinnaNuclearPowerGeneratingStation,WCAP9563,August1979.34..LetterfromJ.P.O'Reilly,NRC,toRG&E,

Subject:

ValveWallThickness,June22,1972.35.36.37.U.S.NuclearRegulatoryCommission,"Motor-OperatedValveCommonModeFailuresDuringPlantTransientsDuetoImproperSwitchSettings,"IEBulletin85-03,November15,1985.U.S.NuclearRegulatoryCommission,"Safety-RelatedMotor-OperatedValveTestingandSurveillance"GenericLetter89-10,June28,1989.LetterfromC.Stahle,NRC,toR.W.Kober,RG&E,

Subject:

SafetyEvaluationonthePerformanceTestingoftheGinnaReliefandSafetyValvesConductedinAccordanceWithNUREG0737Requirements,datedAugust20,1987.5.4-61REV.13-17/96 GINNA/UIiSAR38.WestinghouseElectricCorporation,MechanisticFractureEvaluationofReactorCoolantPipeContainingaPostulatedCircumferentialThzoughwallCrack,WCAP9558,Revision2(Proprietary),WCAP9570(Non-Proprietary),May1981.39.WestinghouseElectricCorporation,WestinghouseOwnersGroupAsymmetricLOCALoadEvaluation-PhaseC,W9(Non-Proprietary),June1980.40.WestinghouseElectricCorporation,TensileandToughnessPropertiesofPrimaryPipingWeldMetalforUseinMechanisticFractureEvaluation,WCAP9787,Revision1,May1981.LetterReportfromE.P.Rahe,Westinghouse,toD.G.Eisenhut,NRC,

Subject:

WestinghouseResponsetoQuestionsandCommentsRaisedbyMembersofACRSSubcommitteeonMetalComponentsDuringtheWestinghousePresentationonSeptember15,1981,NS-EPR-2519,datedNovember10,1981.42.43.45.46.47.48.49~50.U.S.NuclearRegulatoryCommission,"SafetyEvaluationofWestinghouseTopicalReportsDealingWithEliminationofPostulatedPipeBreaksinPWRPrimaryMainLoops,"GenericLetter84-04,February1,1984.LetterfromR.W.Kober,RG&E,toW.A.Paulson,NRC,

Subject:

GenericIssueA-2,EliminationofPostulatedPipeBreaks,datedOctober17,1984.LetterfromDominicC.DiIanni,NRC,toR.W.Kober,RG&E,

Subject:

GenericLetter84-04,datedSeptember9,1986.LetterfromL.D.White,Jz.,RG&E,toD.L.Ziemann,NRC,

Subject:

SteamGeneratorandReactorCoolantPumpMaterial,datedApril5,1978.WestinghouseElectricCorporation,FractureToughnessandDesignConsiderationsforAddressingLamellarTearingofSteamGeneratorandReactorCoolantPumpSupportMaterials,R.E.GinnaNuclearPowerPlant,May1978.U.S.NuclearRegulatoryCommission,SeismicReviewoftheRobertE.GinnaNuclearPowerPlantasPartoftheSystematicEvaluationPzogram,NUREG/CR1821,datedNovember1980.U.S.NuclearRegulatoryCommission,"PressureLockingandThexmalBindingofSafety-RelatedPower-OperatedGateValves",GenericLetter9507IdatedAugust17I1995~LetterfromR.C.Mecredy,RG&E,toA.R.Johnson/NRCI

Subject:

180-dayResponsetoNRCGenericLetter95-07,datedFebruary16,1996.LetterfromB.A.Snow,RG&E,toW.T.Russell,NRC,

Subject:

NRCBulletin88-02:RapidlyPropagatingFatigueCracksinSteamGeneratorTubes,datedMarch25,1988.51.LetterfromR.C.Mecredy,RG&E,toW.T.Russell,NRC,

Subject:

AdditionalInformationRelativetoNRCBulletin88-02:RapidlyPropagatingFatigueCracksinSteamGeneratorTubes,datedMarch3,1989.5.4-62REV.13-17/96 GINNA/UFSAR52.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

TransmittalofWestinghouseReassessmentofIEB88-02forR.E.Ginna,datedMarch2,1992.53.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

WestinghouseReassessmentofMPAX802(Bulletin88-02),datedDecember22,1992.54.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

ApplicationforAmendmenttoFacilityOperatingLicense,MethodologyforLowTemperatureOverpressureProtection(LTOP)Limits,datedFebruary9,1996.55.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

IssuanceofAmendment48toFacilityOperatingLicenseNo.DPR-18,datedMarch6,1992'6.LetterfromK.C.Hoskins,Westinghouse,toR.W.Eliasz,RG&E,

Subject:

ReactorCoolantPumpPerformanceCurves,NTD-NSRLA-OPL-94-301,datedOctober10,1994.57.LetterfromG.S.VissingINRCItoR.C.Mecredy,RG&E,

Subject:

IssuanceofAmendmentNo.64toFacilityOperatingLicenseNo.DPR-18,R.E.GinnaNuclearPowerPlant,(TACNo.M94770),datedMay23,1996.5.4-63REV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectionriezeP~cce9.19.1.19.1.29.1.2.19.1.2.1.19.1.2.1;29.1.2.1.39.1.2.1.49.1.2.1.59.1.2.1.69.1.2.1.79.1.2.1.89.1.2.1.99.1.2.1.109.1.2.1.119.1.2.1.129.1.2.1.139.1.2.29.1.2.2.19.1.2.2.29.1.2.39.1.2.49.1.2.4.19.1.2.4.1.19.1.2.4.1.29.1.2.4.1.39.1.2.4.1.49.1.2.4.29.1.2.4.2.19.1.2.4.2.29.1.2.4.2.39.1.2.59.1.2.69.1.2.79.1.39.1.3.19.1.3.2'.1.3.2.19.1.3.2.29.1.3.3FUELSTORAGEANDHANDLINGACreditgeNewFuelStorageSpentFuelStorageDesignCriteriaGeneralEffective'MultiplicationFactorProtectionAgainstDamageStorageCapacityFuelPoolCoolingSystemInstrumentationSeismicDesignFuelHandlingSystemMinimumCenter-to-CenterSpacingStabilityofFuelStorageRacksFuelPoolLeakagePreventionDepthofWaterOverFuelBoroflexPoisonBearingLoadsonPoolLinerDescriptionSpentFuelStoragePool(SFP)SpentFuelStorageRacks'esignEvaluationNuclearAnalysisMethodsofAnalysisReactivityEquivalencingforBurnupandIFBInfiniteMultiplicationFactorCriticalityAnalysisofConsolidatedRodStoraCanistersinSpentFuelRacksSummaryofCriticalityResultsAccidentAnalysisFreshFuelStorageRacksSpentFuelStorageRacksConsolidatedRodStorageCanistersThermal-HydraulicAnalysisRadiologicalEvaluationRadiologicalConsequencesofTornadoMissileImpactSpentFuelPool(SFP)CoolingDesignBases'ystemDesignandOperationSystemDesignSystemOperationSpentFuelPool(SFP)CoolingSystemComponents9.1-19.1-19.1-19.1-29.1-29.1-39.1<9,1<9.1-59.1-59.1-69.149.1%9.1-79.1-79.1-79.1-89.1-109.1-109.1-109.1-119.1-129.1-129.1-149.1-15.9.1-169.1-189.1-209.1-209.1-209.1-229.1-239.1-239.1-249.1-279.1-279.1-289.1-289.1-299.1-30f'@t$Ã9P&p9-iREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectionTitiePacCe'.1.3.3.19.1.3.3.29.1.3.3.39.1.3.3.49.1.3.3.59.1.3.3.69.1.3.3.79.1.3.3.89.1.3.49.1.3.4.19.1.3.4.1.19.1.3.4.1.29.1.3.4.1.39.1.3.4.1.49.1.3.4.1.59.1.3.4.1.69.1.3.4.29.1.3.4.39.1.3.4.49.1.3.59.1.49.1.4.19.1.4.29.1.4.39.1.4.3.19.1.4.3.29.1.4.3.39.1.4.3.49.1.4.3.59.1.4.3.69.1.4.3.79.1.4.3.89.1.4.3.99.1.4.49.1.4.4.19.1.4.4.29.1.4.4.39.1.4.4.49.1.4.4.59.1.4.4.6SpentFuelPool(SFP)HeatExchangersSpentFuelPool(SFP)PumpsSpentFuelPool(SFP)FilterSpentFuelPool(SFP)StrainerSpentFuelPool(SFP)DemineralizerSpentFuelPool(SFP)SkimmerSpentFuelPool(SFP)ValvesSpentFuelPool(SFP)PipingSystemEvaluationThermal-HydraulicAnalysisHeatRemovalRequirementsServiceWaterTemperatureAnalysisofHeatRemovalSystemCoolingWaterFlowinFuelPoolCoolingAnalysisofIndividualFuelAssembliesCoolingAnalysisofConsolidatedFuelCanistersLeakageProvisionsInterruptionofSpentFuelPool(SFP)CoolingFullCoreDischargeCoincidentivithServiceWater(SW)SystemHeaderBOutageMinimumOperatingConditions.FuelHandlingSystemsReactorCavityRefuelingCanalFuelHandlingEquipmentAuxiliaryBuildingCraneNewFuelElevatorSpentFuelPool(SFP)BridgeFuelTransferSystemManipulatorCraneReactorVesselHeadLiftingDeviceReactorInternalsLifungDeviceRodClusterControlAssemblyChangingFixtureUpperInternalsStorageStandFuelHandling/RefuelingToolsNewFuelAssemblyHandlingToolSpentFuelHandlingToolBurnablePoisonRodAssemblyHandlingToolControlRodDriveShaftToolThimblePlugHandlingToolIrradiationSampleHandlingTool9.1-309.1-319.1-319.1-319.1-319.1-319.1-319.1-329.1-329.1-329.1-329.1-329.1-339.1-349.1-359.1-369.1-369.1-379.1-389.1-399.1<19.1-419.1429.1-439.1<39.1-439.1-449.1<49.1-459.1469.1-479.1489.1489.1<99.1<99.1<99.1<99.1-519.1-519.1"-529-iiREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectionTit'leZ~ae9.1.4.4.79.1.4.59.1.4.5.19.1.4.5.29.1.4.5.39.1.4.5.49.1.4.69.1.4.6.19.1.4.6.29.1.4.79.1.4.89.1.5StudTensionersFuelHandlingSystemOperationDuringMODE6(Refueling)IntroductionPreparationPhaseMODE6(Refueling)PhaseReactorReassemblyFuelHandlingSystemEvaluationIncidentProtectionMalfunctionAnalysisMinimumOperatingConditionsTestsandInspectionsControlofHeavyLoadsReferencesforSection9.19.1-52.9.1-549.1-549.1-549.1-559.1-569.1-579.1-579.1-579.1-589.1-589.1-599.1%19.29.2.19.2.1.19.2.1.29.2.1.2.19.2.1.2.29.2.1.2.39.2.1.2.49.2.1.2.59.2.1.2.69.2.1.39.2.1.49.2.1.4.19.2.1.4.29.2.1.4.39.2.1.4.49.2.1.59.2.29.2.2.19.2.2.29.2.'2.39.2.2.49.2.2.4.1WATERSYSTEMSServiceWater(SW)SystemDesignBasesDescriptionGeneralDescriptionRedundantServiceWater(SW)TrainsServiceWater(SW)SystemInitiationonLossofOffsitePowerContainmentCoolingCoilsRadiationMonitorsServiceWater(SW)FoulingDesignEvaluationPostaccidentConditionsOneServiceWater(SW)Pump-RecirculationPhaseLimitingSteamLineBreakEventsAccidentConsiderationsWithOffsitePowerAvailablePostulatedServiceWater(SW)PumpDischargeCheckValveFailureTestsandInspectionsComponentCoolingWaterSystemDesignBasesSystemDesignandOperationComponentDescriptionSystemEvaluationAvailabilityandReliability9.2-19.2-19.2-19.2-19.2-19.2-39.2A9.2-59.2-69.2W9.2-89.2-99.2-109.2-119.2-119.2-129.2-129.2-12a9.2-12a9.2-12a9.2-139.2-149.2-149-iiiREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectioni'iticP~cCe9.2.2.4.1.19.2.2.4.1.29.2.2.4.1.39.2.2.4.1.49.2.2.4.1.59.2.2.4.1.69.2.2.4.29.2.2.4.2.19.2.2.4.2.29.2.2.4.2.39.2.2.4.39.2.2.4.49.2.2.59.2.2.69.2.2.79.2.39.2.4.AccessibilitySeismicDesignLossofComponentCoolingWaterSystemComponentCoolingWaterSurgeTankSafety-RelatedFunctionsFloiv-InducedVibrationLeakageProvisionsIntroductionLeakageDetectionReliefValvesIncidentControlMalfunctionAnalysisInstrumentationRequirementsMinimumOperatingConditionsTestsandInspectionsDemineralizedWaterMakeupSystemCondensateStorageFacilities9.2-149.2-159.2-159.2-169.2-179.2-179.2-189.2-189.2-199.2-209.2-209.2-229.2-229.2-239.2-239.2-239.2-24ReferencesforSection9.29.2-24a9.39.3.1'.3.1.19.3.1.29.3.1.2.19.3.1.2.29.3.1.2.39.3.1.2.49.3.29.3.2.19.3.2.1.19.3.2.1.1.19.3.2.1.1.29.3.2.1.29.3.2.1.2.19.3.2.1.2.2.9.3.2.1.2.39.3.2.1.2.49.3.2.1.2.5PROCESSADXILIARIESInstrumentandServiceAirSystemsSystemDescriptionComponentDescriptionCompressorsAftercoolersAirReceiversFiltersandDryersSamplingSystemsNuclearSamplingSystemDesignBasesFunctionalRequirementsOperationalRequirementsSystemDesignandOperationSamplingSystemReactorCoolantSamplesChemicalandVolumeControlSystemSamplesSteamGeneratorLiquidSamplesSampleSink9.3-19.3-19.3-19.3-29.3-29.3-39.3-49.3A9.3<a9.34a9.34a9.3<a9.349.3-79.3-79.3-79.3-89.3-89.3-99-ivREV.13-17/96 GINNA/UFSARCHAPTER9AUXILXARYSYSTEMSTABLEOFCONTENTSSectionTitleP~cCe9.3.2.1.2.69.3.2.1.2.79.3.2.1.39.3.2.1.3.19.3.2.1.3.29.3.2.1.3.39.3.2.1.3.49.3.2.1.3.59.3.2.1.3.69.3.2.1.3.79.3.2.1.49.3.2.1.4.19.3.2.1.4.29.3.2.1.4.39.3.2.1.59.3.2.1.69.3.2.29.3.2.2.19.3.2.2.29.3.2.2.39.3.2.2.49.3.2.2.59.3.2.39.3.2.3.19.3.2.3.29.3.2.3.39.3.2.3.3.19.3.2.3.3.29.3.2.3.3.39.3.2.3.3.49.3.2.3.3.59.3.2.3.3.69.3.2.3.3.79.3.2.3.3.89.3.2.3.3.99.3.2.3.3.109.3.39.3.49.3.4.19.3.4.1.1ferPumpEvacuatingInstrumentationSteamGeneratorBlowdownComponentDescriptionSampleHeatExchangersDelayCoilSamplePressureVesselsSampleSinkPipingandFittingsInstrumentationValvesSystemEvaluationAvailabilityandReliabilityLeakageProvisionsMalfunctionAnalysisMinimumOperatingConditionsTestsandInspectionsNonnuclearSamplingSystemSteamGeneratorBlowdownSamplingCondensateandFeedwaterSamplingMain-SteamSamplingSampleSinkSampleCoolingPostaccidentSamplingSystemDesignBasesSystemDescriptionComponentDescriptionandOperationLiquidandGasSamplePanelGasSamplingLiquidSamplingInstrumentPanelElectricalControlPanelPostaccidentSamplingSystemCoolersPostaccidentSamplingSystemWasteTankPostaccidentSamplingSystemWasteTransPostaccidentSamplingSystemWasteTankCompressorContainmentSumpASamplePumpEquipmentandFloorDrainsSystemsChemicalandVolumeControlSystemDesignBasesRedundancyofReactivityControl9.3-99.3-99.3-99.3-99.3-99.3-109.3-109.3-109.3-109.3-119.3-119.3-119.3-119.3-129.3-129.3-129.3-129.3-129.3-139.3-149.3-149.3-149.3-149.3-149.3-159.3-169.3-169.3-189.3-199.3-209.3-209.3-209.3-219.3-219.3-229.3-229.3-229.3-229.3-229.3-239-vREV.13-17/96, GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSection2i'tiePacCe9.3.4.1.29.3.4.1.39.3.4.1.49.3.4.1.59.3.4.29.3.4.2.19.3.4.2.29.3.4.2.2.19.3.4.2.2.29.3.4.2.39.3.4.2.49.3.4.2.4.19.3.4.2.4.29.3.4.2.4.39.3.4.2.4.49.3.4.2.59.3.4.2.5.19.3.4.2.5.29.3.4.2.69.3.4.39.3.4.3.19.3.4.3.1.19.3.4.3.1.29.3.4.3.1.39.3.4.3.1.49.3.4.3.1.59.3.4.3.1.69.3.4.3.1.79.3.4.3.1.89.3.4.3.1.99.3.4.3.1.109.3.4.3.1.119.3.4.3.1.129.3.4.3.1.139.3.4.3.29.3.4.3.2.19.3.4.3.2.29.3.4.3.2.39.3.4.3.39.3.4.3.3.19.3.4.3.3.2ReactivityHolddownCapabilityReactivityMODE3(HotShutdown)CapabilityReactivityShutdownCapabilityCodesandClassificationsSystemDesignandOperationGeneralLetdownandChargingSystemsGeneralChargingPumpControlSeal-WaterInjectionSystemReactorMakeupControlSystemSystemDescriptionAutomaticMakeupDilutionBorationBoronRecycleSystemSystemDescriptionAlarmFunctionsHeatTracingSystemComponentDescriptionLetdownandChargingSystemsRegenerativeHeatExchangerLetdownOrificesNonregenerativeHeatExchangerMixed-BedDemineralizersCationBedDemineralizerDeboratingDemineralizersResinFillTankReactorCoolantFilterVolumeControlTankChargingPumpsChargingPumpLeakoQ'TankChargingPumpDampenerExcessLetdownHeatExchangerSeal-WaterInjectionSystemSeal-WaterHeatExchangerSeal-WaterFilterSeal-WaterInjectionFiltersReactorMakeupControlSystemBoricAcidFilterBoricAcidStorageTanks9.3-239.3-249.3-259.3-259.3-269.3-269.3-279.3-279.3-289.3-299.3-309.3-309.3-319.3-329.3-329.3-339.3-339.3-349.3-359.3-369.3-369.3-36'9.3-369.3-369.3-379.3-379.3-379.3-389.3-389.3-389.3-399.3-399.3-399.3-399.3409.3-409.3409.3409.3-409.3-409.3<19-viREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSection9.3.4.3.3.39.3.4.3.3.49.3.4.3.3.59.3.4.3.3.69.3.4.3.3.79.3.4.3.3.89.3.4.3.3.99.3.4.3.3.109.3.4.3.49.3.4.3.4.19.3.4.3.4.29.3.4.3.4.39.3.4.3.4.49.3.4.3.4.59.3.4.3.4.69.3.4.3.4.79.3.4.3.4.89.3.4.3.4.99.3.4.3.4.109.3.4.3.4.119.3.4.3.4.129.3.4.3.4.139.3.4.3.4.149.3.4.3.4.159.3.4.3.59.3.4.3.69.3.4.49.3.4.4.19.3.4.4.29.3.4.4.39.3.4.4.49.3.4.4.59.3.4.4.5.19.3.4.4.5.29.3.4.4.5.39.3.4.4.5.49.3.4.4.5.59.3.4.4.69.3.4.4.6.19.3.4.4.6.29.3.4.4.7Pi8je.BatchingTankBoricAcidStorageTankHeatersBoricAcidTransferPumpsBoricAcidBlenderChemicalMixingTankHeatTracingReactorMakeupWaterPumpsReactorMakeupWaterTankBoronRecycleSystemHoldupTanksHoldupTankRecirculationPumpGasStripperFeedPumpsBaseRemovalIonExchangerCationIonExchangerIonExchangerFilterGasStripperEquipmentBoricAcidEvaporatorEquipmentEvaporatorCondensateDemineralizersCondensateFilterConcentratesFilterConcentratesHoldingTankConcentratesHoldingTankTransferPumpsMonitorTanksMonitorTankPumpValvesPipingSystemEvaluationAvailabilityandReliabilitySeismicAnalysisLeakagePreventionIncidentControlMalfunctionAnalysisSystemFailuresInadvertentDilutionAlternativeMethodsofBorationInadvertentDilutionofBoricAcidStorageTanksLossofSealInjectionWaterOverpressurizationProtectionSuctionLinesDischargeLinesGalvanicCorrosionPacCeI9.3-419.3429.3429.3-429.3-439.3-439.3-439.3A39.3A39.3-439.3-449.3A49.3-449.3449.3449.3<59.3Q59.3C69.3469.3469.3A79.3A79.3A79.3C79.3-479.3-489.3489.3<89.3P99.3A99.3-509.3-519.3-519.3-519.3-529.3-529.3-529.3-539.3-539.3-539.3-549-viiREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectionI'ItIePacCe9.3.4.4.89.3.4.4.99.3.4.4.9.19.3.4.4.9.29.3.4.4.9.39.3.4.4.9.49.3.4.4.9.59.3.4.5ControlofTritiumReactorCoolantActivityConcentrationCalculationsComputationMethodTritiumProductionRadioactivityMonitoringTechnicalSpecificationsLimitsTritiumLimitMinimumOperatingConditions9.3-559.3-559.3-559.3-569.3-569.3-579.3-589.3-58ReferencesforSection9.39.3-609.49.4.19.4.1.19.4.1.1.19.4.1.1.29.4.1.29.4.1.2.19.4.1.2.29.4.1.2.39.4.1.2.49.4.1.2.59.4.1.2.69.4.1.2.79.4.1.2.89.4.1.2.99.4.1.2.109.4.29.4.2.19.4.2.29.4.2.2.19.4.2.2.29.4.2.2.39.4.2.39.4.2.3.19.4.2.3.29.4.2.3.39.4.2.3.4AIRCONDITIONING'EATINGgCOOLINGtANDVENTILATIONSYSTEMSContainmentVentilationSystemDesignBasesDesignObjectivesDesignCriteriaSystemDesignIntroductionContainmentRecirculationCoolingandFiltrationSystemControlRodDriveMechanismCoolingSystemReactorCompartmentCoolingSystemRefuelingWaterSurfaceandPurgeSystemContainmentAuxiliaryCharcoalFilterSystemContainmentPostaccidentCharcoalFilterSystemContainmentShutdownPurgeSystemContainmentMini-PurgeSystemPenetrationCoolingSystemAuxilimyBuildingVentilationSystemDesignBasisSystemDesignandOperationSystemDesignObjectiveCharcoalFilterCircuitSystemOperationSystemComponentsAuxiliaryBuildingAirHandlingUnitAuxiliaryBuildingExhaustFan1CAuxiliaryBuildingExhaustFans1Aand1BAuxiliaryBuildingExhaustFan1G9.4-19.4-19.4-19.4-19.4-29.4-39.4-39.4A9.4-59.4-69.4W9.4-79.4-79.4-89.4-99.4-99.4-109.4-109.4-109.4-109.4-119.4-119.4-129.4-129.4-139.4-139.4-139-viiiREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectionPkf:LePacCe9.4.2.3.59.4.2.3.69.4.2.3.79.4.2.3.89.4.2.3.99.4.2.49.4.2.4.19.4.2.4.29.4.39.4.49.4.59.4.69.4.79.4.7.19.4.7.29.4.7.2.19.4.7.2.29.4.7.2.39.4.7.2.49.4.89.4.8.19.4.8.29.4.8.2.19.4.8.2.29.4.99.4.9.19.4.9.29.4.9.39.4.9.49.4.9.59.4.9.69.4.9.6.19.4.9.6.29.4.9.79.4.10AuxilimyBuildingCharcoalFilterFansIAand1BPenetrationCoolingFans1Aand1BPumpAreaCoolersIntermediateBuildingSupplyandExhaustFansSteamIsolationDampersSystemEvaluationEffectofLossofCoolingonPumpsandValvesEffectofLossofOffsitePoweronVentilationFlowControlRoomAreaVentilationSystemSpentFuelPool(SFP)AreaVentilationSystemTurbineBuildingVentilationSystemServiceBuildingVentilationSystemAll-Volatile-TreatmentBuildingVentilationSystemIntroductionSummaryDescriptionoftheSystemCompressorandBoosterPumpAreaVentilationSystemDemineralizerAreaVentilationSystemDemineralizerAreaControlRoomSystemHeatingSystemTechnicalSupportCenterVentilationSystemSystemDescriptionSystemOperationCoolingSystemsHeatingSystemsEngineeredSafetyFeaturesVentilationSystemsEngineeredSafetyFeaturesEquipmentVentilationandCoolingRelayRoomBatteryRoomsEssentialAuxiliarySystemsDieselGeneratorsStandbyAuxiliaryFeedwaterSystem(SAFW)SystemOperationControlsandInstrumentationPostaccidentFanCoolersandCharcoalFiltersStationHeatingSteamSystem9.4-149.4-149.4-149.4-14a9.4-159.4-159.4-159.4-169.4-179.4-179.4-179.4-189.4-199.4-199.4-199.4-199.4-209.4-219.4-219.4-219.4-219.4-239.4-239.4-249.4-249.4-259.4-269.4-269.4-279.4-289.4-309.4-309.4-319.4-329.4-32ReferencesforSection9.49.4-339-ixREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOFCONTENTSSectioniihie9.59.5.19.5.1.19.5.1.1.19.5.1.1.29.5.1.1.39.5.1.29.5.1.2.19.5.1.2.29.5.1.2.39.5.1.2.3.19.5.1.2.3.29.5.1.2.3.39.5.1.2.3.49.5.1.2.3.59.5.1.2.3.69.5.1.2.3.79.5.1.2.3.89.5.1.2.3.99.5.1.2.49.5.1.2.4.19.5.1.2.4.29.5.1.2.4.39.5.1.2.4.49.5.1.2.4.59.5.1.2.4.69.5.1.2.4.79.5.1.2.4.89.5.1.2.4.99.5.1.2.4.109.5.1.2.4.119.5.1.2.4.129.5.1.2.4.139.5.1.2.4.149.5.1.2.59.5.1.2.5.19.5.1.2.5.29.5.1.2.5.39.5.1.2.5.49.5.1.2.5.59.5.1.2.5.6OTHERAUXILIARYSYSTEMSFireProtectionSystemsDesignCriterionGeneralDesignCriterion3BranchTechnicalPosition9.5-1SafeShutdownCriteriaSystemDesignGeneralFireDetectionandSignalingSystemsFireSuppressionSystemsWaterSupplyFirePumpsPipingandValvesFireHydrantsYardLoopInteriorHoseStationsWaterSuppressionSystemsGasSuppressionSystemsPortableFireExtinguishersOtherDesignConsiderationsSmokeRemovalBreathingEquipmentControlBuildingVentilationReactorCoolantPumpMotorOilCollectionSystemFloorDrainsandCurbsLightingSystemsCommunicationsElectricalCableInsulationFireBarriersElectricalCablePenetrationsPipingandDuctPenetrationsCableSeparationSprayShieldsConstructionJointsAdministrativeControlsOrganizationFireBrigadeFireBrigadeTrainingControlofCombustiblesControlofIgnitionSourcesFire-FightingProcedures9.5-19.5-19.5-19.5-19.5-29.5P9.5-59.5-59.549.5-99.5-99.5-99.5-119.5-119.5-129.5-129.5-139.5-159.5-169.5-189.5-189.5-189.5-189.5-199.5-199.5-199.5-209.5-209.5-219.5-219.5-229.5-239.5-239.5-239.5-249.5-249.5-249.5-259.5-259.5-269.5-269-xREV.13-17/96 GINNA/UFSARCHAPTER9AUXILIARYSYSTEMSTABLEOF'ONTENTSSectionFitIe'arcae9.5.1.2.5.79.5.1.39.5.1.3.19.5.1.3.29.5.1.3.39.5.1.3.49.5.1.49.5.1.4.19.5.1.4.29.5.1.4.39.5.29.5.2.19.5.2.29.5.2.3.9.5.2.49.5.2.59.5.3-9.5.49.5.59.5.69.5.79.5.8QualityAssuranceOperabilityandSurveillanceRequirementsGeneralFireDetectionSystemFireSuppressionSystem(Water,Sprayand/orSprinklers,Halon,FireHoseStations,andYardLoop)FireBarrierPenetrationsSafeShutdownCapabilitySafeShutdownRequirementsAlternativeShutdownCapabilityShutdownFromOutsidetheControlRoom-CommunicationsSystemsPublicAddressSystemTelephoneSystemsRadioSystemsOffsiteCommunicationsEmergencyCommunicationsWiththeNRCLightingSystemsDieselGeneratorFuelOilStorageandTransferSystemDieselGeneratorCoolingSystemDieselGeneratorStartingSystem.DieselGeneratorLubricationSystemDieselGeneratorCombustionAirIntakeandExhaust9.5-279.5-29"9.5-299.5-299.5-309.5-319.5-329.5-329.5-329.5-339.5-359.5-359.5-359.5-369.5-379.5-389.5<09.5-419.5<39.5<49.5<59.5<5ReferencesforSection9.59.5469-xiREV.13-17/96 GINNA/UFSARLISTOFTABLESTitleFuelParamete'rsEmployedintheCriticalityAnalysisFuelPoolTornadoMissileAccidentAnalysisAssumptionsSpentFuelPoolCoolingSystemRatingSpentFuelPoolCoolingSystemComponentDataLoadsSuppliedbyServiceWater(SW)SystemMajorServiceWater(SW)SystemFlowsComponentCoolingLoopComponentDataFailureAnalysisofPumps,HeatExchangers,andValvesMinimumAllowedComponentsfortheComponentCoolingWaterSystemNuclearProcessSamplingSystemCodeRequirementsNuclearProcessSamplingSystemComponentsMalfunctionAnalysisofNuclearProcessSamplingSystemPostaccidentSamplingSystemFunctionalRequirementsLiquidandGasSamplePanelAnalyticalEquipmentRequirementsChemicalandVolumeControlSystemPerformanceParametersPrincipalComponentDataSummaryMalfunctionAnalysisofChemicalandVolumeControlSystemReactorCoolantSystemEquilibriumActivitiesParametersUsedintheCalculationofReactorCoolantFissionProductActivitiesTritiumProductionintheReactorCoolantContainmentVentilationSystem,PrincipalComponentDataSummaryFireSeMceWaterHoseReelLocations9-xiiREV.13-17/96 GINNA/UFSARLISTOFFIGURESF~iazeFitie9.1-19.1-29.1-3FuelHandlingStructuresNewFuelStorageRacksArrangementofSpentFuelStorageRacks9.1e49.1e4a9.1e4b9.1-4c9.1<d9.1-59.1-6'.1-79.1-89.1-99.1-109.1-11Region1SpentFuelRackIFBARequirement(1.0XLoading)Region1SpentFuelRackIFBARequirement(1.5XLoading)Region1SpentFuelRackIFBARequirement(2.0XLoading)Region2SpentFuelRackBurnupCreditReactivityofConsolidatedRodsRegion2SpentFuelRackSolubleBoronWorth,SpentFuelPool(SFP)CoolingSystemSpentFuelPool(SFP)CoolingCycleFuelTransferSystemManipulatorCraneReactorVesselHeadLiftingDeviceFuelHandlingDevices9.2-19.2-2ServiceWater(SW)System-PAID(SafetyRelated)(SheetsIthrough3)ServiceWater(SW)System-P&ID(NonSafetyRelated)(SheetsIand2)9.2-39.2-49.2-59.249.3-1ServiceWater(SW)forInstrumentandServiceAirComponentCoolingWaterSystem-P&ID(Sheets1through3)PrimaryWaterTreatmentChemicalSupplyTanksPrimaryWaterTreatment-P&ID(SheetsIthrough3)ServiceAirSystem-PAID(Sheets1and2)9-xiiiREV.13-17/96 GINNA/UFSAR'ISTOFFIGURESFiche2i.81e9.3-29.3-3InstrumentAirCompressors-P&ID(Sheets1and2)InstrumentAir,ContainmentBuilding-P&ID(Sheets1and2)9.3-4=-InstrumentAir,AuxiliaryBuilding-P&ID(Sheets1through4)9.3-5InstrumentAir,IntermediateBuilding-P&ID9.3W9.3-7InstrumentAir,TurbineBuilding-P&ID(Sheets1through3)InstrumentAir,TurbineBuildingandScreenHouse-PAID9.3-89.3-99.3-109.3-119.3-129.3-139.3-149.3-159.3-169.3-179.3-189.3-19InstrumentAir,CondensateDemineralizer(AVT)Building-P&ID(Sheets1and2)InstrumentAir,ServiceBuilding-P&ID(Sheets1through3)ProcessSamplingSystem-P&ID(Nuclear)(Sheets1and2)ProcessSamplingSystem-PAID(Nonnuclear)(Sheets1through4)PostaccidentSamplingSystem-P&IDChemicalandVolumeControlSystem,Charging-PAID(Sheets1and2)ChemicalandVolumeControlSystem,Letdown-P&IDChemicalandVolumeControlSystem,BoricAcid-P&IDReactorMakeupWaterSystem-'P&IDChemicalandVolumeControlSystem-BoricAcidEvaporatortoMonitorTanks-P&IDChemicalandVolumeControlSystem-HoldupTankstoGasStrippers-P&IDMaximum.TritiumActivityReleasedtoPrimaryCoolant9.4-1ContainmentHVACSystems,RecirculationandCoolingSystem,PostaccidentCharcoalFilters-P&ID9.4-2ContainmentHVACSystems,AuxiliaryCharcoalFilters,RefuelingWaterVentilation,ReactorCompartment,andControlRodDriveCooling-P&ID9.4-39.4-49.4-5ContainmentHVACSystems,PurgeSupply-PAIDContainmentHVACSystems,PurgeExhaust,PenetrationCooling-P&IDAuxiliary/IntermediateBuildingHVACSystems,SupplyAirSystems-P&ID9-xivREV.13-17/96 GINNA/UFSARLISTOFFIGURESFicozeTitle9.4-6Auxilimy/IntermediateBuildingHVACSystems,MainandSpentFuelandDecontaminationPitExhaustSystems-P&ID9.4-7,Auxiliary/IntermediateBuildingHVACSystems,VolumeControlTankExhaust,AuxiliaryBuildingCharcoalFilter,and1GFilter-P&ID9.4-8Auxiliary/IntermediateBuildingHVACSystems,Charging,SI,CS,RHR,andSAFWPumpCooling-N2andH2StorageVents-P&ID9.4-99.4-10Turbine/MiscellaneousBuildingHVACSystems,DieselGenerator,FeedPump,OilStorage,GasBottleStorage,Elevator,andScreenHouseVentilation-P&IDTurbine/MiscellaneousBuildingHVACSystems,CondensateDemineralizer(AVT)BuildingVentilation-P&ID9.4-11ServiceBuildingHVACSystems,AirHandlingUnit1C,ControlledAccessExhaustSystems-P&ID9.4-129.4-13,9.4-149.4-159.4-169.4'-179.4-18ServiceBuildingHVACSystems,AirHandlingUnits1Band1D-P&IDServiceBuildingHVACSystems,AirHandlingUnit1E-PAIDServiceBuildingHVACSystems,North-EndHVACSystem-PAIDServiceBuildingHVACSystems,AirHandlingUnit1AandReturnAirFan1A-P&IDServiceBuildingMiscellaneousHVACSystemsTechnicalSupportCenterHVACSystems-P&IDControlBuildingHVACSystems,RelayRoomCooling,BatteryRoomCoolingandVentilation-P&ID9.5-19.5-29.5-2a9.5-2b9.5-2cFireProtectionWaterSystem-PlantSystems-P&IDFireProtectionWaterSystem-TurbineBuildingandTechnicalSupportCenter-P&ID(Sheets1and2)FireProtectionWaterSystem-AuxiliaryBuilding,IntermediateBuilding,ContainmentBuilding-P&IDFireProtectionWaterSystem-FireWaterHeader"A",AuxiliaryBuildingHeader,1GCharcoalFilter-PAIDFireProtectionWaterSystem-FireWaterHeader"B"-P&ID(Sheets1and2)9-xvREV.13-17/96 GINNA/UFSARLISTOFFIGURES2'itieFireProtectionSystem-RelayandMUXRooms-PAIDFireProtectionSystemYardLoopDieselGeneratorSupportingSystems-P&ID(SheetsIand2)DieselEngineLubricatingOilSystem(Simplified)19-xviREV.13-17/96 GINNA/UIiSAR9.1.3SPENTFUELPOOLCOOLING9.1.3.1DesignBasesThespentfuelpool(SFP)coolingsystemisdesignedtoremovefromthespentfuelpool(SFP)theheatgeneratedbystoredspentfuelelements.Pipingissoarrangedthatfailureofanypipelinedoesnotdrainthespentfuelpool(SFP).Theheatremovalcriteriaofthespentfuelpool(SFP)coolingsystemarethatthesystemshouldbecapableofmaintainingthespentfuelpool(SFP)temperatureless,dhanozequalto120FduringnormalMODE6(Refueling)operationsandlessthanorequalto150'Fduringfullcoredischargesituations.The120'FisnotasafetyrequirementbutisalimitsetforoperatorcomfortduringMODE6(Refueling)operations.Forstructuralintegrityreasons,thepoolwatertemperatureisnottoexceed180'F.Inordertoprovidesufficienttimetotakecorrectiveactionintheeventofspentfuelpool(SFP)coolingsystemfailure,thepooltemperaturelimitisnottoexceed150'orallmodesofoperationincludingafullcoredischarge.NormalMODE6(Refueling)operationsareconductedannuallyandazedefinedforthepurposeofthesecriteriaashaving40fuelassemblies(one-thirdofthecore)beingremovedfromthecoreandplacedinthespentfuelpool(SFP).Fullcoredischargeoccuiswhenallthefuelinthereactor(121fuelassemblies)isplacedinthespentfuelpool(SFP).Thefullcorewillbedischargedonceevery10yearsforinserviceinspection.Fullcozedischargemayalsooccuronotheroccasionswhenitisdeemednecessary.Thesystemconsistsofthreecoolingloops.Theprima'ryloop(loop2)ismadeupofspentfuelpool(SFP)pumpB,spentfuelpool(SFP)heatexchangerB,andpiping.Thebackuploopsincludeinstalledloop1withspentfuelpool(SFP)pumpA,spentfuelpool(SFP)heatexchangerAandpiping,andskid-mountedloop3withskid-mountedspentfuelpool(SFP)pump,spentfuelpool(SFP)standbyheatexchanger,andhoses.9.1-27REV.13-17/96 GINNA/UFSARLoop2isdesignedtomaintainthespentfuelpool(SFP)waterbelow150'Fwithasafetybasisheatloadof16x10Btu/hr.ThisheatloadisbasedonstoringfuelfromallnormalMODE6(Refueling)sthrough1998plusafullcoredischargeattheendof1999.Ztisalsodesignedtomaintainthespentfuelpool(SFP)waterbelow120'Fwithanormalbasisheatloadof7.6x10Btu/hr.ThisheatloadisbasedonstoringfuelfromallnormalMODE6(Refueling)sthxough1998plusanormalone-thirdcoreremovalattheendof1999.Theloop2spentfuelpool(SFP)heatexchangerBissizedtoremovethesafetybasisandnormalbasisheatloadsusingservicewater(SW)at80'Fwiththeservicewater(SW)temperatureriseconstrainedto20'Fand15'F,xespectively,forthesafety,andnormalbasisheatloads.Loop1andloop3azeeachdesignedtoremove7.93x10Btu/hrwithapool6temperatureof150Fandservicewater(SW)at80F.Theyareeachcapableofremovingthenormalbasisheatloadandwhenoperatedinparallelarecapableofremovingthesafetybasisheatload.TheratingsofeachcoolingloopareshowninTable9.1-3.9.1.3.2SystemDesignandOperation9.1.3.2.1SstemDesinThespentfuelpool(SFP)coolingsystemisshowninFigure9'-6.IIThespentfuelpool(SFP)coolingsystemzemovesresidualheatfromfuelstoredinthespentfuelpool(SFP).Theloopisnormallyrequiredtohandletheheatloadfromone-thirdofthecorefreshlydischargedfromthereactor,plusthatstoxedfrompreviousMODE6(Refuelings),anditcansafelyaccommodatetheheatloadfromafullcoredischargeplusthatstoredfrompreviousMODE6(Refuelings).Thespentfuelpool(SFP)islocatedoutsidethereactorcontainmentandisnotaffectedbyanyloss-of-coolantaccidentinthecontainment.ThewaterinthepoolisseparatedduringMODE6(Refueling)fromthatinthexefuelingcanalbyagate.Onlyaverysmallamountofinterchangeofwateroccursasfuelassembliesaretransferred.9.1-28REV.13-17/96 GINNA/UFSAR9.1.5CONTROLOFHEAVYLOADSAsaresultoftheNRCreviewofload-handlingoperationsatnuclearpowerplants,NUREG0612,ControlofHeavyLoadsatNuclearPowerPlants,wasissued.FollowingtheissuanceofNUREG0612,agenericlettez,datedDecember22,,1980,wassenttoallplantsrequestingthatresponsesbepreparedtoindicatethedegreeofcompliancewiththeguidelinesofNUREG0612.Theresponsesweremadeintwostages.Thefirstresponse(PhaseI)wastoidentifytheload-handlingequipmentwithinthescopeofNUREG0612andtodescribetheassociatedloadpaths,procedures,operatortraining,specialandgeneralpurposeliftingdevices,themaintenance,testingandrepairofequipment,andthehandliqgequipmentspecifications.Thesecondresponse(PhaseII)wasintendedtoshowthateithersingle-failure-proofhandlingequipmentwasnotneededorthatsingle-failure-proofequipmenthadbeenprovided.GinnaStationrespondedwithsubmittalstotheNRConFebruary1,1982,(Reference18)March2,1983,(Reference19)andOctober12,1983(Reference20).TheNRCstaffanditsconsultant,theFranklinResearchCenter,havereviewedthesubmittalsforGinnaStationandhaveissuedatechnicalevaluationreport,(Reference21)andasafetyevaluationreport(Reference22)concludingthatPhaseIofthecontrolofheavyloadsissueforGinnaStationisacceptable.Sincetheissuanceofthesereports,anupdatedinspectionprogramforthereactorheadliftingrigwasproposedinalettertotheNRCdatedMay30,1986(Reference23).Thisprogramof1008annualvisualinspectionoftheliftingrigweldstogetherwith10-yearsurfaceexaminationsonexposedportionsoftheweldsisconsideredadequatetestingtoverifythattheliftingdeviceisincompliancewithNUREG0612.Theauxiliarybuildingcranehasbeenupgradedtothesingle-failurerequirementsofNUREG0554.SeeSection9.1.4~3~1.TheGinnaStationresponsestoPhaseIIoftheissueweresubmittedonMarch26,1984,(Reference24)andJuly31,1984.(Reference25).BasedonimprovementsinheavyloadshandlingobtainedfromtheimplementationofPhase9.1-59REV.13-17/96 GINNA/UFSARfurtheractionisnotrequiredtoreducetheriskassociatedwiththehandlingofheavyloads.Therefore,PhaseEIisconsideredcomplete.,9.1-60REV.13-17/96 GINNA/UFSARREFERENCESFORSECTION9.12.3.5.6.7;8.9.ApplicationforAmendmenttoOperatingLicense,January30,1976.LetterfromA.Schwencez,NRC,toL.D.White,Jr.,RG&E,

Subject:

IssuanceofAmendmentNo.11toProvisionalOperatingLicenseNo.DPR-18,datedNovember15,1976.LetterfzomR.W.Kober,RG&E,toH.R.Denton,NRC,

Subject:

IncreaseoftheSpent,FuelStorageCapacity,datedApril2,1984.LetterfromJ.A.Zwolinski,NRC,toR.W.Kober,RG&E,

Subject:

IncreaseoftheSpentFuelStorageCapacity,datedNovember14,1984.LetterfromG.E.Lear,NRC,toR.W.Kober,RG&E,

Subject:

StorageofConsolidatedFuel,datedDecember16,1985.LetterfromJ.E.Maier,RG&E,toH.R.Denton,NRC,

Subject:

ApplicationforAmendmenttoOperatingLicense,datedFebruary23,1983.W.E.FordIII,CSRL-V:ProcessedENDF/B-V227-Neutron-GroupandPointwiseCross-SectionLibrariesforCriticalitySafety,ReactorandShieldingStudies,ORNL/CSD/TM-160,June1982.N.M.Greene,AMPX:AModularCodeSystemforGeneratingCoupledMultigroupNeutron-GammaLibrariesfromENDF/B,ORNL/TM-3706,March1976.L.M.PetrieandN.'F.Landers,KENOVa-AnImprovedMonteCarloCriticalityProgramWithSupergrouping,NUREG/CR-0200,December1984.10.H.AmsterandR.Suarez,TheCalculationofThermalConstantsAveragedoveraWigner-WilkinsFluxSpectrum:DescriptionoftheSOFOCATECode,WAPDTM-39,January1957.T.Q.Nguyen,etal.,QualificationofthePHOENIX-P/ANCNuclearDesignSystemforPressurizedWaterReactorCores,WCAP11596-P-A(Proprietary),June1988.12.LetterfromJ.E.Maier,RG&E,toH.R.Denton,NRC,

Subject:

ApplicationforAmendmenttotheOperatingLicense,SpentFuelRackAnalysis,datedFebruary23,1983.13.15.16.17.T.R.England,CINDER-AOne-PointDepletionandFissionProductProgram,WAPD-TM-334,August1962.LetterfromW.A.Paulson,NRC,toR.W.Kober,RG&E,

Subject:

IssuanceofAmendmentNo.64toProvisionalOperatingLicenseNo.DPR-18,datedOctober5,1984.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

StorageofConsolidatedFuel,datedNovember5,1981.LetterfromR.W.Kober,RG&E,toT.E.Murley,NRC,

Subject:

RefuelingCavityWaterSeal,datedNovember28,1984.LetterfromR.W.Kober,RG&E,toT.E.Murley,NRC,

Subject:

RefuelingCavityWaterSeal,datedMarch29,1985.9.1-61REV.13-17/96 GINNA/UFSAR18.LetterfromJ.E.Maier,RG&E,toD.G.Eisenhut,NRC,

Subject:

ControlofHeavyLoads,datedFebruary1,1982.19.LetterfromJ.E.Maier,RG&E,toD.M.Czutchfield,NRC,SubjectContxolofHeavyLoads,SupplementalReport,datedMarch2,1983.20.LetterfromJ.E.Maier,RG&E,toD.M.Crutchfield,NRC,

Subject:

ControlofHeavyLoads,datedOctober12,1983.21.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

TransmittalofTechnicalEvaluationReportonControlofHeavyLoads,datedAugust19;1982.22.LetterfromD.M.Crutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

TransmittalofSafetyEvaluationonControlofHeavyLoads(PhaseI),datedJanuary18,1984.23.LetterfromR.W.Kober,RG&E,toG.E.Lear,NRC,

Subject:

ContxolofHeavyLoads,datedMay30,1986.24.LetterfromR.W.Kober,RG&E,toD.M.Crutchfield,NRC,

Subject:

ControlofHeavyLoads,datedMarch26,1984.25.LetterfromR.W.Kobex,RG&E,toW.A.Paulson,NRC,

Subject:

ControlofHeavyLoads,datedJuly31,1984.26.LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

SafetyEvaluationofRG&E'sProposedCriticalityAnalysisoftheGinnaNewandSpentFuelRack/ConsolidatedRodStorageCanisters,datedAugust30,1995.27.DesignAnalysis,NSL-OOOO-DA030,SpentFuelPoolHeatupTimes/Revision0,datedFebruary13,1991.28.LetterfromD.M.Czutchfield,NRC,toJ.E.Maier,RG&E,

Subject:

InsertionofaHighex'nrichmentFuelAssemblyIntotheSpentFuelRacks,dated,February8,1984.29.LetterfromG.E.,Lear,NRC,toR.W.Rober,RG&E,

Subject:

StorageofConsolidatedFuel,datedDecember16,1985.30.LetterfromARJohnsoniNRCtoRCMecredygRG&E)

Subject:

IssuanceofAmendmentNo.60toFacilityOperatingLicenseNo.,DPR-18(TACNo.M92188),datedFebruary6,1996.31.LetterfromR.C.Mecredy,RG&E,toA.R.Johnson,NRC,

Subject:

TechnicalSpecificationImprovementPxogram,datedMay5,1995and

Attachment:

CriticalityAnalysisoftheR.E.GinnaNuclearPowerPlantFreshandSpentFuelRacks,andConsolidatedRodStorageCanisters,datedJune,1994.9.1-62REV.13-17/96 GINNA/UFSAR9.1.4.3FuelHandlingEquipment9.1.4.3.1AuxiliarBuildinCraneTheauxiliarybuildingcraneisusedinmovingthenewfuelassembliesintoandoutoftheirstorageareaandinthemovementofthespentfuelshippingcask.Thecraneiselectricallyinterlockedtopreventmovementoverthespentfuelstorageracks.Theseinterlocksmaybedefeatedbykeys,andwhendefeated,indicatetheconditionbyrotatingflashingyelloworredlights.Wheninthiscondition,thecraneoperatorisresponsibletoobservethefollowingrestrictions:(1)Aloadinexcessofonefuelassemblyanditshandlingtoolmaynotbecarriedoverstoragerackscontainingspentfuel,and(2)therestrictionin(1)shallnotapplytothemovementofcanisterscontainingconsolidatedfuelrodsifthespentfuelracksbeneaththetransportedcanistercontainonlyspentfuelthathasdecayedatleast60dayssincereactorshutdown.Theweightofonestandardfuelassemblyanditshandlingtoolis2000lb.Theweightofafullyloadedcanisterisapproximately2300lb.Theauxiliarybuildingcranemeetsthesingle-failurecriteriaofNUREG0554andNUREG0612'hecraneisratedat32.5tons;however,themaximumcriticalloadis30tons,whichischaracterizedasafullyloadedsingle-elementspentfuelcaskwitharedundantyoke.Nosinglefailureofanyliftingcomponentofthecranewillresultinthedropofanyloadupto32.5tons.The40-tonhookisusedforhandlingheavyloadssuchasthespentfuelcask.The5-tonhook,whichisalsosingle-failureproof,isusedtohandlenewfuelassembliesandcanisters'hecraneiscapableofstoppingandholdingtheloadunderallconditions,includingthesafeshutdownearthquake.9.1.4.3.2NewFuelElevatorThenewfuelelevatorisabox-shapedcarriage(sizedtocontainasinglefuelassembly),whichridesonatrackmountedtothespentfuelpool(SFP)wall.Ztisusedexclusivelytolowernewfuelassembliesintothespentfuelpool(SFP).Theelevatorisnotinterlocked,butthebuttonmustbecontinuouslydepressedforupordownmovement.Anelectricwinchisusedasthemotivepowerfortheelevatorandiscontrolledfromtheoperatingfloor.9.1-43REV.13-17/96 GINNA/UFSAR9.1.4.3.3SentFuelPool(SFP)BrideThespentfuelpool(SFP)bridgeisawheel-mountedwalkwaywhichspansthespentfuelpool(SFP)inthenorth-southdirection.Ztcarriesanelectricmonorailhoistonanoverheadstructurewhichmaybemanuallypositionedalongthewalkway.Fuelassembliesaremovedwithinthepoolbymeansofalong-handledtool(spentfuelhandlingtool)suspendedfromthehoist.Thehoisttravelandtoollengthlimitthemaximumliftofafuelassembly,thusmaintainingasafeshieldingdepthofwaterabovethefuel.Adynamometerorscaleissometimesusedbetweenthehoistsandthehandlingtooltoallowaconstantcheckonfuelassemblyloadconditions.Themonorailhoistsandtrolleysareratedat1ton.9.1.4.3.4FuelTransferSstemThefueltransfersystemshowninFigure9.1-8isanunderwater,air-motor-drivenconveyorcarthatrunsontracksextendingfromthespentfuelpool(SFP)throughthetransfertubeandintothecontainmentrefuelingcanal.Theconveyorcarbasketreceivesafuelassemblyintheverticalposition,isloweredtothehorizontalforpassagethroughthefueltransfertube,andisraisedtothevertical'fozremovalofthefuelassembly.Conveyorcarmotionandtheupendingandloweringfunctionsazecontrolledfrompanelsontheoperatingfloor.Thepneumaticmotoroftheunderwaterconveyorcardrivesarollerchainandsprocketswhichengagearackonthebottomofthecar.Thepneumaticmotoriscontrolledbysolenoidvalvesthatareelectricallycontrolledfroma.controlpanelintheauxiliarybuildingorapanelincontainment.Onlyonepanelmayhavecontrolatatime.Underwaterswitchesstopthecaratthelimitsoftravelandindicateitspositiononthetrack.Thefuelassemblybasketispin-hingedtotheconveyorcartopermittippingittoaverticalpositionforfuelassemblyloadingandunloading.Thebasketengageswithanupendingframeateitherendofitstravel,andwhentheframeisraisedwithanelectricwinchontheoperatingfloor,thebasketandfuelassemblyazeraisedwithit.Theliftingframesareinterlockedsuchthattheconveyorcarmustbeattheendofitstravelbeforetheframewilloperate.AninterlockisalsoprovidedtopreventcarmotionunlessthefuelassemblybasketisintheDOWNpositionandthefueltransfertubevalveisopen.The9.1<4REV.13-17/96]]