ML17277B420

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test. W/ 840522 Ltr
ML17277B420
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 05/31/1984
From: Sorensen G
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To: Schwencer A
Office of Nuclear Reactor Regulation
References
GO2-84-338, NUDOCS 8405310177
Download: ML17277B420 (136)


Text

REGULAR( Y INFORMATION DISTRIBUTIO~~YSTEM (RIDS)

ACCESSION NBR;8005310177 DOC DATE: 8A/05/31 NOTARIZED: NO DOCKET FACIL:50 397 NPPSS Nuclear Projects, Unit 2i Washington Public Powe 05000397 AUTH ~ NAME, AUTHOR AFFILIATION SORENSENiG>>CD l<ashington Public Power Supply System RECIP ~ NAME RECIPIENT AFFILIATION SCHWA'ENCERpA ~ , Licensing Branch 2

SUBJECT:

"Reactor Containment Bldg Integrated Leak Rate- Test." tii 800522 ltr, DISTRIBUTION CODE: A017S COPIES RECEIVED:LTR ENCL . SIZF:

TITLE: OR Submittal'; Append J Containment Leak Rate Tes ing NOTES-'ECIPIENl COPIES REC IP IENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL NRR LB2 BC 01 I -

7 INTERNAL: 13 1 1 NRR/DS I/CSB 09 1 1 REG FILE 00 1 1 RGN5 1 1 EXTERNALS ACRS 11 10 10 LPDR 03 NRC PDR 02 1 1 h)SIC 05 1 1 NTIS 1 1 TOTAL NUMBER OF COPIES REQUIRED: LTTR 25 ENCL 25 e

'I f I '( rq 1 N I

C O

h it k

r t N t

f(

>>l I(

Washington Public Power Supply System P.O. Box 968 3000 George Washington Way Richland, Washington 99352 (509) 372-5000 May 22, 1984 G02-84-338 Docket No. 50-397 Director of Nuclear Reactor Regulation Attention: Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Mr. Schwencer:

Subject:

NUCLEAR PLANT NO. 2 REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST

References:

1) WNP-2 Final Safety Analysis Report, Washington Public Power Supply System 2} Primary Reactor Containment Leakage Testing for Water Cooled Power Reactors, Code of Federal Regulations, Title 10, Part 50, Appendix J, January 1983 Leakage Rate Testing of Containment Structures for Nuclear Reactors, American National Standards Institute, Inc., N.Y., NY; ANSI N45.4-1972 In accordance with the reporting requirements stipulated in reference 2), and in compliance with the testing comtitments, regulations, and guidelines specified in references 1}, 2), and 3), the Reactor Contain-ment Building Integrated Leak Rate Test, May 1984 is submitted.

Yery truly yours, G. C. Sorensen, Manager Regulatory Programs DAI/tmh Enclosure cc: R Auluck - NRC WS Chin - BPA AD Toth - NRC Site ,i'1

(

I

'4 C

REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST Washington Nuclear Plant Number Two (WNP-2)

Washington Public Power Supply System Richland, Washington May, 1984 8405310177 840531 PDR ADOCK 05000397

'DR P

REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST Washington Nuclear Plant Number Two (WNP-2)

Washington Public Power Supply System Richland, Washington May, l984

PCILRT FINAL REPORT TABLE OF CONTENTS SECTION PAGE

1.0 INTRODUCTION

2.0

SUMMARY

2.1 Type B h C Tests 2.2 Type A Tests 2.3 Bypass Leakage Rate Test Sequence 2.4 Acceptance Criteria and Results 3.0 DISCUSSION 3.1 Type B h C Tests 3.1.1 Chronology and M thods 3.1.2 Specif'ic Testing Categories 3.1.3 Acceptance Criteria and Results 3.2 Type A Test and the hypass Leakage Rate Test Sequence 8 3.2.1 Methods '8 3.2.2 Data'ollection and Reduction 8 3.2.3 Plant Status During Tests 9 3.2.4 Major Test Events 10 3.2.5 Acceptance Criteria and Results 13

4.0 CONCLUSION

20

5.0 REFERENCES

21

PCILRT FINAL REPORT TABLE OF CONTENTS ATTACHMENTS I. INSTRUMENTATION LIST 2 Pages II. INSTRUMENTATION SCHEMATIC 1 Page III. INSTRLNENTATION (WMPERATURE SENSOR) LOCATIONS 3 Pages IV. INSTRUMENTATION ERROR ANALYSIS 4 Pages V. LEAKAGE RATE CALCULATIONS ll Pages A. Pressure Decay Analysis Methods

8. Corrections to the PCILRT and the LRVT Calculated Results C

C. LRVT Calculations D. Correlation of the BLRT, Fluid Discharge Method, with the BLRT, Drywell Pressure Decay Method VI. DATA SUMMARIES 27 Pages VII. GRAPHS 9 Pages VIII. GLOSSARY 1 Page

~ .

PCILRT FINAL REPORT List of Tables

1. Summary of PCILRT, LRVT, and BLRT Corrected Results
2. LLRT Results for Bypass Leakage Paths Included in the Type C Test Result Surmation
3. LLRT Results for the t6IVs
4. Senary of the LLRT Program
5. Valve Lineup Exceptions During the PCILRT and the LRVT
6. Tabulation of the PCILRT, LRVT, and BLRT Results, with Corrections

1.0 INTRODUCTION

This report docuirents the preoperational testing performed on the Primary Reactor Containment of Washington Nuclear Plant Number Two (WNP-2). The plant consists of a GE BWR/5 NSSS System housed within a Mark II Over/

Under Containment.

Chronologically, all process lines penetrating the Primary Reactor Con-tainment (PRC) were pneumatically or hydrostatically leakage rate tested and fuel was installed in the Reactor Pressure Vessel (RPV) prior to the performance of the "Primary Containment Integrated Leak Rate Test" (PCILRT) (Ref. 5.11). The PCILRT was conducted from February 3, 1984 to February 16, 1984 and consisted of the 34.7 psig PCILRT proper, performed to quantify the Overall Integrated Leakage Rate (OILR) (see Ref. 5.2) and the Leakage Rate Verification Test (LRVT), the supplemental test per-formed to verify the veracity of the data collection system (see Ref. ~

5.2). Next came by a 45 psig pneumatic pressure test of the PRC, a 25 psid Drywell Floor Proof Test, and a series of Drywell Floor Bypass Leakage Rate Tests (BLRT).

This report is organized into three broad topics:

SUMMARY

, DISCUSSION, and CONCLUSION. Each topic consists of an appropriate level of informa-tion pertaining to the Type B h C Tests, the Type A Test, and the BLRTs.

Finally, supporting information is provided in the ATTACNENTS in suf-ficient detail to justify the CONCLUSIONS and to comply with regulatory and plant requirements (Ref. 5.1, 5.2 and 5.3).

Acronyms used in this report are listed in Attachment VIII.

2. 0 SLMMARY 2.1 T e B A C Tests The measured leakage rate for the sum of the Type B tests was 1,402.3 sccm and the sum of the Type C tests was 37,325.0 sccm. The allowable leakage rate for the sum of the Type B and C tests was 68,020 sccm (0.6 La); thus, the sum of the measured Type B and Type C leakage rates (38,727.3 sccm) was within the allowable limit.

2.2 T pe A Test The plant systems were lined up consistent with the requirements of references 5.1 and 5.2. Emergency Core Cooling Systems (RHR, LPCS and HPCS) were filled and available to perform their safety func-tions, with RHR Loops A and B used to maintain Reactor Pressure Ves-sel temperature within Technical Specification (Ref. 5'.1) limits.

SLC, RWCU, RFW, and the normally water filled portions of the PSR and FPC systems were also filled and, as in the case of RfR, LPCS and HPCS, were vented to see Pa via the head vent. The RCC, RWCU, and CRD systems were filled and operating; therefore, the CIYs in these systems were not exposed to Pa. The remaining systems were drained and vented to both the Primary Reactor Containment Atmo-sphere as well as outside the outermost CIV=to the Reactor Building atmosphere.

The 24-hour PCILRT quantified the Overall Integrated Leakage Rate of the PRC. This was preceded by a three day period, at Pa, wherein minor system leaks were stopped and minor instrumentation problems solved. The PCILRT was followed by the Leakage Rate Verification Test, which was a six hour supplemental test using a constant-rate superimposed leak.

Following the successful completion of the above two tests, a 45 psig pneumatic retest of the Primary Reactor Containment was per-formed to verify the integrity of selected containment welds.

The recorded 95X Upper Confidence Level (UCL) leakage rate (LR) for the PCILRT was 0.2834 weight percent per day (w/o/day) (based on Total Time Calculated method) which was then corrected for valve lineup exceptions, a wetwell water level drop, and a drywell sump water level increase to give 0.2758 w/o/day. Since 0.75 La is 0.375 w/o/day the leakage rate is less than the acceptance crite-ria. For the LRVT, the corrected acceptance criteria, based on a superimposed constant leakage rate of 0.5210 w/o/day, the calculated Total Time PCILRT LR of 0.2110 w/o/day, and a correction factor, was 0.7328 w/o/day + 0.125 w/o/day. The Total Time Calculated Leakage Rate, corrected for valve lineup test exceptions, was 0.6282 w/o/day; thus, the LRVT substantiated the validity of the PCILRT results.

2.3 B ass Leaka e Rate Test S uence The plant status during these tests was the same as during the PCILRT except that a flow path was created from the closed up Wetwell during a portion of these tests (see Table 5).

The sequence consisted of 25, 15, 5, and 1.5 psid tests performed after a 25 psid proof test of the Drywell Floor (DF) was conducted.

The proof test was done to assure the structural integrity of the concrete floor and the annular stainless steel "Omega Seal" con-necting the outer perimeter of the DR with the FRC shell.

The various acceptance criteria, based on the maximum allowable equivalent orifice size interconnecting the Drywell with the Wetwell (0.0045ft2), were 128.5, 128.4, 116.8, and 78.4 w/o/day respec-tively for the 25, 15, 5, and 1.5'LRTs. The respective Total Time 95K UCL results were 28.3, 23.0; 8.0 and 4.0 w/o/day.

2.4 Acce tance Criteria and Results The tabulated tests were performed with the results indicated in Table l.

Acceptance Corrected Results Criteria otal Time Mass Point Test (W/0/Da ) (W/O/Da ) (W/O/Da )

PCILRT ~0.375 4 O.27581 0.22641 0.7328 + 0.1255 0.62822 0.64402 25/E BLRT ~ 128.56 28.mal 25.75051 158 BLRT ~ 128.46 22 99591 22 51401 58 BLRT 116.86 8.00881 8.94551 1.58 BLRT 78.46 4.O4O71 >.76801 TABLE 1 Rrnmary of PCILRT, LRVT, and BLRT Corrected Results

NOTES:

PCILRT Primary Containaent Integrated Leakage Rate Test LRVT - Leakage Rate Verification Test BLRT - Bypass Leakage Rate Test

1. 95K UCL. Value (PCILRT Corrected)
2. Calculated, corrected
4. Based on 0.75 La, where La = 0.5 W/0/day
5. Based on an induced'eakage rate of 0.5210 w/o/day, a cal-culated Primary Containment Integrated Leakage Rate of 0.2110 w/o/day, and a correction factor of 0.0008 w/o/day.
6. Based on the leakage rate to be expected from the drywell if the leakage path. were an orifice with an A//K value of 0.0045 fthm.
3. 0 DISCUSSION 3.1.1 Chronology and Methods The Type B and C Record Tests were performed under the Startup Test, Program during the time period of January 4, 1983 through February 7, 1984.

The Pneumatic Type B h C Tests were performed utilizing the Pressure Decay and Makeup Flowrate methods. Hydro-static Type C testing on water sealed valves was accom-plished using the Makeup Flowrate method.

3.1.2 Specific Testing Categories The first categories are the air and nitrogen-tested Type B and Type C penetrations.. The measured leakage rate for the.sum of the Type B tests was 1,402.3 sccm and the sum of the Type C tests was 37,325.0 sccm. The allowable leakage rate for the sum of the Type B and C tests was 68,020 sccm (0.6 La); thus, the sum of the measured Type B and Type C leakage rates (38,727.3 sccm) was within the allowable limit.

The second category is a subset of the above Type C tests, being the measured leakage rates on the secondary contain-ment bypass lines that must be included in the sum of the Type B h C Tests (X-14, RWCU from the Reactor Vessel; X-22, MS drain; X-77Aa, RRC sample; and X-92, DW service to the Drywell). The allowable and measured leakage rates are tabulated in Table 2.

Leaka e Rate Allowable Measured Penetration Service (SCCM) (SCCM)

X-14 l RWCU from ~ 165 19.5 the Reactor Vessel I MS Drain  % 89 29.71 I

X-77Aa I RRC Sample c 23 317.62 X-92 DW Service. ~ 61 0.0 to the Ory-well TABLE 2 LLRT Results for Bypass Leakage Rate Paths Included in the Type C Test Result Summation

NOTES: 1. Retested subsequent to the POILRT, (on 5-16-84),

at which time the measured leakage rate was 42.5 sccme

2. The PCILRT was perf'ormed with this penetration as a documented def'iciency in that the outboard one inch solenoid operated globe valve did not meet the bypass leakage rate limit (see 3.2.4).

The inner valve did meet the acceptance criteria. The valves were both left closed during the test and the line outside the outboard valve was vented to the Reactor Build-ing atmosphere. The valve was subsequently repaired and retested (on March 24, 1984),

resulting in a measured leakage rate of'0.6 sccm for this penetration.

A special case of the above category makes up the third category and applies to the Main Steam Isolation Valves (MSIVs). They are similar to the second category in that any process line leakage passes directly from the PRC to the Turbine Building, thereby "bypassing" the SGT System.

The line leakage is not added to the sum of the Type C .

leakage rates because the Main Steam Leakage Control Sys-tem intercepts all leakage past the inboard CIV up to the allowable,.limit (See Ref 5.1). The allowable leakage rate is 5420 sccm per valve and the test results are tabulated in Table 3. Testing was performed at a test pressure of 25 psig (per Ref. 5.1).

Penetration Leakage Rate>

, (SCCM)

X-18A 3000 X-18B 2512 X-18C 4399 X-180 51962 TABLE 3 LLRT Results for the MSIVs NOTES: 1. Pressure decay test perl'oread between the in-board MSIV and the outboard MSIV; therefore, the LRs assigned to the penetrations are conserva-tive with respect to the acceptance criteria.

2. Ouring the stabilization period prior to the PCILRT this penetration appeared to have a leak-age rate exceeding the allowable value (a roto-meter was put on the test connection between the MSIV's while the Primary Reactor Containment was at pressure), but when tested subsequent to the PCILRT, this penetration had a leakage rate of 4024 sccm. The former value was'utilized in the LLRT Program; thus, it was retained.

The fourth, and last, category pertains to Containment Isolation Valves (CIV) sealed with fluid from a seal system (Ref. 5.2). Hydrostatic tests were performed on many valves sealed by water during an accident event re-quiring Primary Reactor Containment integrity. The sum of the leakage rates obtained by makeup leakage rate tests performed at 1.1 Pa was 0.0 gpm. This value is not re-quired to be included in the sum of the Type B h C leakage rates (see refs. 5.1 and 5.2).

Acceptance Criteria and Results Table 4 suamarizes the LLRT program.

Acceptance Category Criteria Results (SCCM) (SCCM)

Type B 1,402. 3 Type C (Air, N2) 37,325.0 KB hC > 68,020 38,727.3 Type C (Bypass)l 317.6 Type C (MSIV)2 ~ 5,420 5,196 Type C 8 1.0 GPM3 0.0 GPM (Hydrostatic)

TABLE 4 Summary of the LLRT Program NOTES: i. The worst case is listed. Ref'er to Table 2 f'r discossioll.

2. Again, the worst case is listed (X-180).
3. Per valve Acceptance Criteria.

3.2 T e A Test and the B ass Leaka e Rate Testin S uence 3.2.1 Methods The absolute method of pressure decay testing was used for the PCILRT, the LRVT, and the BLRT sequence (Drywell Pres-sure Decay). In addition to using the Drywell Pressure Decay Testing method on the BLRT sequence the fluid dis-charge method of leakage rate measurement was used for the two lowest of the four BLRT pressures. This method uses a flow measurement device (BLFI-1 of Figure II.1), attached to a singular Wetwell to Reactor Building vent path, to measure the rate of air ("fluid") "discharge" from the Wetwell after dynamic equilibrium is attained with the leakage from the Drywell to the Wetwell. The method was used to give a benchmark correlation with the standard pressure decay BLRT for future reference such that fluid discharge testing might be used in the future in lieu of the mre time consuming pressure decay testing for the BLRT sequence.

3.2.2 Data Collection and Reduction The Data Acquisition System consisted of'8 drybulb temp-erature probes, 6 dew cells and 2 pressure sensors. At-tachment III, Table III.l and Figure III.l present the location of each sensor, and Attachment III, Table III.2 presents the volume of each containment subvolume. The sensors were connected to a Volumetrics Integrated Leak Rate Monitoring System (ILRMS), model 14629LC (Ref. 5.4),

which printed out the measured value of each drybulb sensor and dew cell every 15 minutes. The quartz crystal pressure transducer outputs were continuously displayed on a digital readout panel and were manually recorded every 15 minutes. The pressure data were corrected using cali-bration data. Sensbr data were entered into the ILRT computer program (Ref. 5.12) through a CRT located near the Data Acquisition System (DAS). The CRT terminal was connected to the WNP-2 plant computer, located in the Control Room, into which the ILRT program was loaded.

Hardcopy printouts were obtained from the printer located in the Control Room.

The computer program printouts consisted of individual sensor data, averaged sensor data, air partial pressure, calculated dry air mass and leakage rate. The program also allows determination of temperature stabilization based on Reference 5.6. The program allows the operator to examine and correct any data at any point in time.

Plots of average temperature, dew point, pressure and leakage rate may be displayed on the CRT and can be printed at any time. Examples are shown in Attachment VII. The program was developed in-house and was verified against data and results accepted for a prior ILRT at another plant.

Reference 5.1 committed WNP-2 to using Reference 5.3 as the basic document for PRC leakage rate testing; there- .

fore, there are .two possible calculation methods that could be usedfor the reduction of the data for the PCILRT, the LRVT, and the pressure decay method of the BLRT: The Total Time method and the Point to Point method. Of the two, the Total Time method has, heen chosen as the basic method for this report. References 5.5 and 5.6 present the superior Mass Point method, which was also used for data reduction, the results of which are included for information only.

Plant Status During Tests The systems were placed in the following four broad categories:

A. Systems filled with water and not vented to the Primary Reactor Containment atmosphere.

1. Reactor Closed Cooling (RCC)
2. Control Rod Drive (CRD) 3.'eactor Recirculation (RRC), Seal Injection B. Systems filled with water but vented to the Primary Reactor Containment atmosphere.
1. Residual Heat Removal (RHR)
2. High Pressure Core Spray (HPCS)

Low Pressure Core Spray (LPCS)

4. Standby Liquid Control (SLC)
5. Reactor Water Cleanup (RWCU)
6. Reactor Feed Water (RFW),
7. Post Accident Sampling (PSR), Water-filled Portions
8. Fuel Pool Cooling (FPC), Supply C. Systems On-Line
l. Control Rod Drive (CRO)
2. Reactor Recirculation (RRC), Seal Injection

Residual Heat Removal (Rl+), A and B Loops

4. Reactor Water Cleanup (RWCU)
5. Containment Atmosphere Control (CAC)+
6. Sample Handling Equipment Hydrogen Oxygen Monitors
7. Reactor Closed Cooling (RCC)

+CIV's open but air pumps not running D. All other systems penetrating the PRC were drained and vented to the PRC atmosphere as well as the to Reactor Building atmosphere.

In the above listing all of the CIVs were closed except those used for specific purposes (e.g. X-42d: inboard CIV opened to give a flow path during the LRVT).

Major Test Events Section 3.2 deals with the testing performed by Reference 5.1 and consisted of the following six major phases:

1. Temperature and Pressure Stabilization 2.'4 Hour PCILRT

'4 Hour (Induced) LRVT

4. 45 Psig Pneumatic Weld Test
5. 25 Psid DF Proof Test
6. Drywell Floor Bypass Leakage Rate Tests Tem rature and Pressure Stabilization Pressurization of the containment began at 1143 on February 7, 1984. The ILRT test pressure, Pa, was reached at 0530 on February 8. Data were continuously collected from this time up to the conclusion of the ILRT test at 0339 on February J.2. While temperature stabiliza-tion was reached within a few hours after the pressuriza-tion was completed, the official 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> run was not started until a number of leaks were located and corrected and some instrumentation problems resolved.

10-

Primar Containment Inte rated Leaka e Rate Test The ILRT test was initiated at 0329 on February ll. The total containment pressure at this time was 49.552 psia (34.046 psig). Data were collected at 15 minute intervals and were uneventfully continued for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

Leaka e Rate Verification Test A six hour flow verification test was run immediately fol-lowing the ILRT test. The verification test provides a method for assuring that systematic error or bias is given adequate consideration. This test consisted of super-imposing a known leakage rate upon the existing leakage rate.

The verification test was started at 0415 on February 12 with an average superimposed LR of 4.00 scfm, which corresponds to a LR of 0.5210 w/o/day (see Attachment V.C).

45 Psi Pneumatic Test Various PRC pressure boundary welds had been made subse-quent to the original FRC Structural Integrity Test (performed in 1975); therefore, a pneumatic pressure test was run at Pd to verify the integrity of these welds.

This test was performed to meet ASME Code and Washington State requirements and not to meet Reference 5.2 require-ments; hence, LR data were not obtained. The accessible welds were successfully inspected.

25 Psid DF Proof Test I

The Orywell was pressurized to 25 psig with the Wetwell vented to the Reactor Building, held there for 15 minutes, then depressurized to 18 psig, at which time the Wetwell was entered and the underside of the OF was inspected for leaks. Some'small thru-leakage exit points were ident-ified but the larger leakage paths appeared to be by the Downcomer Test Plugs situated at the bottom end of each of the 102 downcomers (blowdown tubes from the Drywell to the Suppression Pool in the Wetwell). It was decided to con-tinue testing and quantify these leakage rates.

8 ass Leaka e Rate Tests Four drywell floor Bypass Leakage Rate Tests were per-formed to assure that the total drywell to wetwell leakage A//K, is less than 0.0045 ft2. Tests were run 'rea, with differential pressures of 25, 15, 5 and 1.5 psid across the drywell floor. These tests were performed by pressurizing the drywell to the desired differential pres-sure above the wetwell. Then the drywell temperature, dewpoint and pressure data were collected using the same instrumentation used for the ILRT. Using the collected data, the total drywell leak rate was determined. This leakage rate consisted of the composite of drywell to wetwell leakage and external leakage. The allowable DF leakage rate is hach greater than the allowable ILRT leakage rate; therefore, it is conservatively assumed that the measured leak rate is from bypass leakage only.

The 25 and 15 psid tests were performed with each of the 102. downcomers sealed by inflatable plugs. Since the downcomers are submerged by 12 feet of water (equivalent to 5.2 psid) the 5 psid and 1.5 psid tests were performed without the downcomers being sealed. Each pneumatically sealed. plug had a small vent plug in the center which was removed for these low pressure tests. These low pressure tests were performed to provide a benchmark for future bypass leakage tests which will be performed with differential pressures of 5 psid or less.

Two additional bypass leakage tests were performed at 5 and 1.5 psid using a fluid discharge method of measuring leakage'. This method consisted of maintaining a rela-tively constant drywell, pressure and venting the wetwell through a calibrated flow meter; thus, the air ("fluid")

that bypassed the DF and was "discharged" out the singular Wetwell exit (X-25A, Wetwell Spray Line) was measured for flow rate. Since the leakage rate across the DF was so small at these differential pressures it was not necessary to make up any air at all in the Drywell for the duration of each low pressure test using the Fluid Discharge Method.

This method may be used for future bypass testing. It is certainly capable of performing bypass leakage screening tests to determine if bypass leakage is near or above the acceptance criteria.

Acceptance Criteria and Results

'em erature Stabilization The acceptance criteria used for the PCILRT was:

1) "The rate of change of the weighted average PRC air temperature, linearly averaged over the latest four dry bulb data sets, is less than 0.5'F/h. 'onsecutive
2) Time elapsed from the completion of Ithe pressuriza-tion of the FRC to Pa] is four or more hours." (Ref.

5.11)

This was easily met, as was the more stringent requirement given in Ref. 5.6. This method requires that the absolute average temperature change per hour over the last 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> minus the absolute average temperature change per hour over the last hour be less than 0.5'F. The result of using this last analysis method, performed for information purposes only, -is given in Attachment VI, Table VI.l, which presents the average dry bulb temperature, the 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, and 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> minus 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> calculations for the time period of 2195 on February 10 to 0559 on February ll. As can be seen, the 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> minus 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> differential was less than 0.01'F, which meets the requirements of Ref.

5.6.

The above time period partially coincides with the start of the PCILRT but that fact is not significant because the temperature and pressure were stable, by the acceptance criteria used for this test, from 0744 on February 9, 1984 until the testing sequence was completed.

Primar Containment Inte rated Leaka e Rate Test The acceptance criteria for the PCILRT is that the measured 95 percent UCL leakage rate, Lam 95X, be less than 75 percent of the maximum allowable leakage rate, L is 0.5 percent per day and 75 percent of La is 0.335 percent per day. Therefore, the 95 percent UCL leakage rate, Lam, 95K, must be less than 0.375.

The average temperature, pressure and air mass for the 24, hour ILRT are presented in Attachment VI, Tables VI.2 and VI.3. Figures VII.1 through VII.4, Attachment VII, present the time history of average temperature, dewpoint, pressure, and air mass.

Attachment VI, Table VI.4 presents the summary of'he leakage rate calcuation based on the Total T<me method.

The Total Time 95X UCL leakage rate Lam, 95K f'r the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test was 0.2834 percent per day, which is well below the acceptance criteria of'.375 percent per day. The column labeled calculated leakage rate is the calculated mean leakage rate.

The leakage rate calculated by the mass point method is presented.in Table VI.5. The 95 percent UCL leak rate, 95'ased on the mass point method was 0.2340 per-cent per day which is well below the acceptance criteria of'.375 percent per day.

The PCILRT calculated result was corrected for the effects of'mproper valve lineup and water inventory changes, which are discussed below.

The effects caused by the improper valve lineup used during the PCILRT (and the LRVT) are tabulated in Table 5.

Valve Leakage Rate>

Penetration Numbers Exce tion Discussion (sea)

X-8 LPCS-V-6 I MOV that was manually 48.00 + 45.13 I closed I

X-22 t MS-V-16 a I Not vented to Reactor 5.92 + 5.08 I MS-V"19 Building X-53 CSP-V-800-2 Common line blocked; 11,41 + 7.62 CSP-V-800-24 therefore, valves did CSP-V-96 I not see Pa 10..$ 3 + 8.09 CSP-V-97 X-651 i CSP-V-11 Used for PI-1 tap 43.97 + 8.00 CSP-V-23 (Wetwell pressure)

X-42d2 PI>>VX-42cI Used for LRVT i'low 5.40 + 7.74 PI-V-216 Path TABLE 5 Valve Lineup Exceptions During the PCILRT and the LRVT NOlES: l. Used in lieu of'n instrusent'ine.

2. Used only during the LRVT.
3. Ref'er to Table IV.1 f'r details.

Statistically combining the first four factors of Table 5 adds 167.1 sccm to the PCILRT leakage rate, which is equivalent to 0.00077 w/o/day (see Attachment V.B). All five factors were statistically summed to add 173.2 sccm to the LRVT result (discussed later). This is equivalent to 0.00080 w/o/day (see Attachment V.B).

Two other correction factors were applied to the PCILRT results:

1) The suppression pool (located in the wetwell) level decreased 0.2 inches during the course of the PCILRT, and
2) The drywell sump collected 9 inches of water during the course of the PCILRT.

The former factor subtracted 0.02184 w/o/day from the PCILRT leakage rate and the latter factor added 0.03346 w/o/day to the PCILRT leakage rate (see Attachment, V.B).

Thus, the correction factor that was applied to the cal-culated 95K UCL LR was -0.00761 w/o/day, which resulted in a Total Time 95X UCL LR of 0.2758 w/o/day.

Leaka e Rate Verification Test The acceptance criteria for the Leakage Rate Verification test is:

(Lo + Lam -0.25 La) c '(Lo + Lam + 0.25 La) where: Lo = Known superimposed leakage rate, w/o/day Lam = Previously measured leakage rate, w/o/day

= Maximum allowable leakage rate, w/o/day

= Measured composite leakage rate, w/o/day The superimposed -leakage rate should be between 75 to 125 percent of La.

Data were collected at 15 minute intervals. Attachment VI, Tables V1.6 and V:.7 present the data summary for the test. Attachment VI, Table VI.8 presents the leakage rate calculation based on the Total Time method. The mean calculated composite 'eakage rate, Lc, was 0.6274 per-cent per day. The leakage rate based on a Mass Point calculation is given, for information only, in Attachment VI, Table VI.9.

Correcting L for the valve lineup factor previously presented (173.2 sccm, or 0.00080 w/o/day) gives 0.6282 w/o/day.

Based on corrected lower and upper band limits of 0.6078 w/o/day and 0.8578 w/o/day, respectively, it is apparent that the instrumentation accurately tracked actual PRC atmospheric parameters.

Therefore, the LRVT was successfully passed and the agree-ment between the expected and measured LRs indicates that systematic errors were not a factor in the performance of the PCILRT.

B ass Leaka e Rate Test Se uence The acceptance criteria used for the Bypass Leakage Rate Tests were based on the leal~<a e rate which would occur total leakage area (A/~K was 0.0045 ft2 at the if'he applied differential pressure. The acceptable leakage spectively.

rates for the tests were 128.5, 128.4, 116.8, and 78.4 percent per day for the 25, 15, 5 and 1.5 psid tests re-Attachment VI, Tables VI.10 through VI.25, present the data and results of the Bypass Leakage Rate Tests. The 95 percent upper confidence leakage rates, calculated using the Total Time method, were 28.34, 23.00, 8.01 and 4.04 percent per day for the 25, 15, 5 and 1.5 psid tests re-spectively. These tests show the bypass leakage was only about 22 percent of the acceptance criteria for the high pressure tests and less than 6 percent of the acceptance criteria for the 5 and 1.5 psid tests. The most likely reason for the reduced LRs obtained during the low pres-sure BLRTs may have been leakage around the inflatable downcomer plugs during the high pressure BLRTs. These tests demonstrated that the DF bypass leakage area is much less than 0.0045 ft2 (A/ ~K .

The acceptance criteria restated in units of scfm were 218 and 120 scfm for the 5 and 1.5 psid tests, respectively.

The discharge flows measured were 17 and approximately 6 scfm for the 5 and 1.5 psid tests, respectively. The equivalent LRs f'r 17 scfm and 6 scfm were 12.8 w/o/day and 4.5 w/o/day, respectively, which, when compared to the 95K UCL Drywell pressure decay-type bypass leakage rates, were 60K higher than the 58 BLRT and 12X higher than the 1.5/P BLRT. These errors could have been expected because of the larger differential pressure across the DF during the f'inal stages of'he readings (e.g. the differential pressures f'r the 58 BLRT, pressure decay, were 5.037 psid at the start and 4.515 psid at the end, whereas the dif-f'erential pressures for the 5/P BLRT, fluid discharge, were 4.791 psid at the start and 5.152 psid at the end, which was when the 17 scfm reading was taken). The accident pressure trend would be better represented by the former conditions; therefore, the BLR obtained via the latter method would agree better with the BLR obtained via the former method for if the proper corrections were applied to com-differing differential pressures. This pensate was not done herein but, if warranted, it may be con-sidered in the future. Since the method appears to be conservatively adequate, it future Bypass Leakage Rates.

may be used for determining An exception to the 15 psid BLRT acceptance criteria oc-curred during the test. Instead of comnencing the test at an originally planned differential pressure of 15 psid to 15.5 psid it was started with a DF differential pressure of only 14.23 psid. But the 158 BLRT acceptance criteria of 128.4 w/o/day was based on a 15 psid differential.

Since the actual leakage rates for all of the BLRTs were well under all of the acceptance criteria this pressure deviation was not considered to be significant.

The BLRTs were not corrected for valve lineup deficiencies because the acceptance criteria were large compared with the correction and the calculated leakage rates were all well under these acceptance criteria.

Based on inspection made before the 25 psid proof test and at the 18 psid hold point ioeediately following the proof test, no visible structural deformation of the DF was caused by the 25 psid differential. This DF integrity was subsequently quantitatively verified by the follow-on BLRTs, as discussed above.

Com arison of Results with Acce tan teria The acceptance criteria and results for all tests are presented in Table 6.

Results Reported Acceptance Results Date Criteria Total Time I Mass Point Corrections (Total Time)

Test Com leted (w/o/da ) (w/o/da ) (w/o/da ) (w/o/da ) (w/o/da )

PCILRT 2-12-84 I

~ 0. 3754 0. 28341 O.23401 -0.0076 O.27581 2-12-84 0.7328 + 0.125 0.62742 0.64322 0.0008 0.62822 258 BLRT 2-15-84 ~ 128 56 28.33931 25.75051 0.0 28.33931 158 BLRT 2-15-84 128 46 22.99591 22 51401 0.0 22 99591 58 BLRT 2-15-84 116 86 8,00881 8 94551 0.0 8 00881 1.58 BLRT 2-16-84 678.46 4 04071 3.768O1 0.0 4,04071 cceptance Measured Results Criteria n icate qua valent (SCFM) l(w/o/da ) I (SO=M) (w/o/da )

58 BLRT3 2-16-84 2187 116.86 17 12.8 0.0 Note 9 1.58 BLRT3 I 2-16-84 1207 78.46 ~68 0.0 Note 9 I

TABLE 6 Tabulation of the PdILRT, LRVT, and BLRT Results with Corrections

NOlES:

95K UCL Value Calculated Fluid Discharge Method (i.e. measured flow across DF via a singular wetwell exit) .

4. Based on 0.75 La, where La 0.5 w/o/day
5. Based on an induced leakage rate of 0.5210 w/o/day, a cal-culated Primary Containment Integrated Leakage Rate of 0.2110 w/o/day, and a correction factor of 0.0008 w/o/day.
6. Based on the leakage rate to be expected from the drywell if the leakage path were an orifice with an A/&value of 0.0045 ft2,
7. Equivalent flow rates in standard units based on the crit'erion specified in note 6, above.

The flow instrument was not calibrated below 10 scfm.

9. 'hese results are for information only.
4. 0 CONCLUSION

~

The Type B h C tests (Local Leakage Rate Tests) were successfully com-pleted on February 7, 1984, with a total measured leakage rate of 38,727.3 SCCM (0.3416La) thereby enabling the successful completion of the Type A Test (the Primary Containment Integrated Leakage Rate Test, or PCILRT) on February 12, 1984. The 95X UCL leakage rate (Lam, 95X) was 0.2834 w/o/day (0.567 La) which, when corrected for valve lineup excep-tions and water level changes inside the Primary Reactor Containment, was 0.2758 w/o/day, still well under the allowable leakage rate of 0.375 w/o/day. With La superimposed upon Lam during the Leakage Rate Veri-fication Test, the calculated leakage rate was 0.6274 w/o/day, or 0.6282 when corrected for valve lineup exceptions. This leakage rate is within the allowable corrected composite leakage rate band of 0.6078 w/o/day to 0.8578 w/o/day; therefore, the LRVT was successfully passed and the agreement between the expected and measured LRs indicate that systematic errors were not a factor in the performance of the PCILRT.

The Bypass Leakage Rate Testing sequence followed the successful 45 psig pneumatic retest of the Primary Reactor Containment and the successful 25 psid pneumatic proof test of the Drywell Floor. The sequence consisted of consecutive 25 psid, 15 psid, 5 psid and 1.5 psid tests. with the at-tendant 95X UCL Drywell Floor leakage rates predictably decreasing with the differential pressure from 28.34 w/o/day down through 23.00, 8.01, and 4.04 w/o/day. The respective allowable leakage rates were 128.5, 128.4, 116.8, and 78.4 w/o/day. The Bypass Leakage Rate Tests were successful in proving that the effective sum (A/~ of the Drywell Floor leakage paths were less than 0.0045 ft2 for all test conditions.

The independent measurements made of the 5fP Bypass Leakage Rate and the 1.58 Bypass Leakage Rate by utilizing the fluid discharge method conserv-atively agree with the above calculated values (see Table 6); therefore, this vore direct Bypass Leakage Rate measurement method may be exclu-sively considered for future Bypass Leakage Rate Tests.

All tests met their respective acceptance criteria; therefore, this test sequence was successful.

0 . Injerd T st Engineer

5. 0 REFERENCES 5.1 WNP-2 Final Safet Anal sis Re ort, Washington Public Power Supply System.

5.2 Primar Reactor Containment Leaka e Testin for Water Cooled Power Reactors, Code of Federal Regulations, Title 10, Part 50, Append x BflU3zp 1983.

5.3 Leaka e Rate Testin of Containment Structures for Nuclear Reactors, American Natzona Stan ar s Inst tute, nc , , Y; 1972.

5.4 ILRT Console eration, Volumetrics, Inc., for Model 14629-LC.

5.5 Containment S stem Leaka e Testin Re uirements, American Nuclear ocr.e y, La range ar, 8 5.6 Containment ochre y, 15, 1978.

a S

range ar,;,

stem Leaka e Testi R ra .,

uirements, American Nuclear Revision 3, November 5.7 Daniels and Aberty, Ph sical Chemistr, John Wiley h Sons, New York, 1955.

5.9

~ii ',>>,

5.8 R.C. Reid, J.M. Prauznitz and T.K. Sherwood, The Pro erties of

'1 J.H. Keenan, F.G. Keyes, P.C. Hill and J.G. Moore, Steam Tables, y.

Gas John Wiley h Sons, New York, 1969.

5.10 O.A. Hougen, K.M. Watson and R.A. Ragatz, Chemical Process Princi-ples, Part 1, 2nd Edition, McGraw Hill Boo mpany, 95 .

5.11 Primar Containment Inte rated Leak Rate Test, WNP-2.

Pre-Operational Test Number PT 201.0-A, Revision 1, with Two Test Change'Notices, February 2, 1984.

5.12 Inte rated Leak Rate Test Anal sis, Washington Public Power Supply System, February 1984.

CHMENT I I TATION LIST Table I.l Instrumentation Data Repeatab sty or.

Cal Cal Sensitivity> Resolution Instrum nt Make Model Accurac Ran e Date E)6 (E)6 I

I Drybulb Temp> I Rosemunt 78-65-17 + 0.5~F 50-120 F 12-16-83 0.036~F 0.0loF I I I Dewpointl I Foxboro 2711AG + 20oF 90~F 12-23-83 0.5oF 0 OloF I I I Pressurel I Mensor 10100-001 I+ 0.002X FS 0-100 PSIAI 12-16-83 0.001 PSIA 0.0005 PSIA I+ 0.010X RDGI I I LRVT Flow> Volumetrics/ 14629/505-9 ) + 1X FS 0-10 SCFM 01-09-84 0.025 SCFM 0.05 SCFM I Kurz + 4X FS I 10-15 SCFM I 01-09-84 I

Drybulb Temp2 Volumetrics + 0.1X RDG I 50-120oF 12-14-83 I

I Dewpoint2 Volumtrics + 0.1X RDG I 60-90~F 12-14-83 I I I Drybulb Temp> I Fluke 80T-150 + O.loF 32-104 oF 01-26-84 I 1.42oF 104-212 ~F 01-26-84 I

Dewpoint3 I Environmntal + 0 3oF 32-104~F 01-25-84 I Tectronics I

I Pressure> I Heise + 0.1X FS 0-60 PSIG I 01-19-84 I

LRVT Flow> I Fisher-Porter 10A + 2X FS 2-10 SCFM 01-24-84 I Drybulb Temp4 + 0 98 F 78 llOoF 2 3/6 84 I

I Dewpoint4 + 2 8oF 43-74~F 2-3/7-84 I

I Pressure4

,lI+ 0 08X RDG 0-60 PSIG 02-04-84 I I LRVT Flow4 + 2.3X FS 2-10 SCFM 02-09-84

ATTACHMENT I INS'RlNENTATION LIST NOTES

1. Primary sensors.
2. Temperature readout device calibration equipment (resistance boxes for RTD bridges).

Test Equipment used for the in-situ calibration checks.

4.. Calibration checks.

5. Som instrumntation was tested specifically for sensor sensitivity and readout repeatability, whereas others were not. For the latter case manufacturer's data was used.
6. Symbols defined for ISG formula (see Attachment IV and Refs. 5.5. and 5.6).

0 ATTACHMENT II INSTR&ENTATION SCHEMATXC 3

~JB JB DAS

)

\

) lcm TE(14)

)

1

))) RB

)

l

)

I-2 q ATM X-30a P L. VE(4) ) I I

BROKEN I I

COUPLING F I-1 FI-2 I-VX-224 I

)

)

PI-3 I P -VX-42d PI-VX-216 FVN l

t X-61c PR-1

)

4 I

DRYWELL )

PI-4 DRYWELL FLOOR )

) I WETWELL 4 I

TE(4) )

JB RB I 4

VE(2) l RB I RB ATM )

X-25A RHR-V-27A 2.4 l I

BLFI-1

)

RHR-V-130A l

CSP-V-4 I X-66 I CSP-V-800-12 1 I P I-1 J CSP-V- CSP-V-WATER SURFACE 800-11 800-23 NOTES:

I Part of

'. 1. ILRNS Cabinet

, 2, Only used during 58 and 1.58 BLRTS utilizing the fluid discharge method Permanently installed

( . 4. 'ata manually recorded I

Figure II, 1 - Instrumentation Schematic

ATTACHMENT III INSTRlNENTATION (TEMPERATURE SENSOR) LOCATIONS Table III.1 Dry-8ulb and Dew Cell Information Sensor Instrument Elevation Azimuth> Sub volume Volume

~Te Number (Ft) ~(De rees) Number Fraction Drybulb 'K-1 572 90 4 0.0265377 TE-2 550 240 3 0.0401997 525 5 2 0.0398009 505 120 1 0.0562705 550 120 0.0401997 505 0 1 0.0562705 525 75 2 0.0398009 525 235 2 0.0398009 525 180 2 0.0398009

'K>>10 550 0 3 0.0401997 TE-ll 572 270 4 0. 0265377 TE-12 525 125 2 0.0398009 TE-13 525 315 2 0.0398009

'K-14 505 240 1 0.0562705 TE-15 485 270 5 0.104677

'K-16 485 195 5 0.104677 TE-17 485 0 5 0.104677 TE-18 485 90 5 0.104677 De wcell ME-1 525 125 2 0.119403 550 90 3 ~ 0.173674 ME-3 505 240 1 0.168811 525 5 2 0.119403 ME-5 485 270 5 0.209354 485 90 5 0.209354 NOTE: Assumed to be equally spaced when Sensor Volume Fraction calculated.

ATTACHMENT III INS7RLMENTATION (TEMPERATURE SENSOR) LOCATIONS Table III.2 Volume of Containment Subvolumes Subvoluoe Volume Ft3 57,909 81,920 41,370 18,207 143 634 Total 343,040

ATTACHMENT III INSTRUMENTATION (TEMPERATURE SENSOR) LOCATIONS SUBVOLUMES

~ ~

EL, 606'0,5" EL. 598'"

DRYWELL RPV 3 PRIMARY REACTOR CONTAINMENT VESSEL (STEEL)

EL, 501'"

~ k DRYWELL FLOOR DOWNCOMERS (102)

WETWELL SUPPRESSION POOL EL. 466'.75" (MEAN)

EL, 435'"

~ ~

FIGURE I I I.1 Primary Reactor Containment Section View Showing Subvo1umes

ATTACHMENT IV ERROR ANALYSIS A. LLRT Selected LLRT results were analyzed to enable their summation with the PCILRT and LRVT results. These Type B and C-tested penetrations were the ones tabulated in Table 5. The analysis was performed in accordance with Reference 5.5, giving the pertinent data and calculated results tabulated in Table IV.1.

B. PCILRT The analysis was performed in accordance with References 5.5 and 5.6.

The instrument parameters were taken from Table I.l. Table IV.2 lists the results. Since the formulas used for the "ISG" (Instrument Selection Guide) are standard error analysis formulas they were used exactly as given in the references, even though the intent of the references authors was to present a method that could be used solely for instrumentation selection.

C. LRVT The same instrumentation was used for the LRVT as was used for the PCILRT; therefore, the PCILRT analysis, shown in Table IV.2, applies linearly by compensating for time differences.

BLRT The record method for this test was the Drywell Pressure Decay Method, using the same instrumentation and analysis technique as for B and C above. Since the number of sensors changed, a conservative sample error analysis is listed in Table IV.B for the 1.58 BLRT.

No error analysis was performed for the Fluid Discharge method. Since the readout for the flow measurement device had a minimum resolution of one SCFM that number could be used.

ATT T IV ERR LYSIS Table IV.1 LLRT Values to be Added to PCILRT & LRVT Resultsl Tl T2 V .LR g LR SLR f

Pen Valve Date (PSIA) (PSIA) ( R) (OR) (FT3) (SO=H) (SCFH) (scm) (SCm)

LPCS-V-6 10-18-83 I 50. 30 50.20 538.99 539.02 4.95 0.1018 0.09563 48.04 45.13 I

5.083

'.92 22 I MS-V-16/19 3-26-84' 50.20 50.09 536.14 536.17 0.5539 0.01255 0.01077 42d PI-VX-42d/216 I 2-16-84 I 49.70 49.65 538.33 538. 51 0. 8516 0. 011436 I 0.01639 5.40 7.735 I

53 I CSP-V-800-2 3-27-84I 49.75 49.60 535.57 535.48 0.8478 0.0241 0.01645 11.41 7.762 I @24 I I CSP-V-96 h 97I 3-27-84I 50.00 49.90 536.07 536.32 0.8828 0.0218 0.01714 10.33 8.089 I I 66 CSP-V-ll h 23I 3-16-84I 50.40 49.10 533.27 533.57 0.8681 0.2328 0.01695 43.97 8.000

1. Reference 5.5. used as analysis basis.
2. Added to LRVT Results only.

ATTACHMENT XV TABLE IV. 2 ILRT INSTRUMENT SELECTION GUIDE TOTAL CONTAINMENT PRESSURE = 49. 552 CONTAINMENT TEMPERATURE <F) = 82. 838 CONTAINMENT DEHPOINT (F >

= 78. 9bb TEST DURATION ( HRS ) = 24. 6 NUMBER OF PRESSURE SFNSOPS = 2 SENSOR ERROR (/ OF FULL RANGE) = 8. 89 RANGE ( PSIA ) = i09.

PRESSURE MEASUREMENT ERROR (/ OF FULL RANGE) = 8. 6965 NUMBER OF DEQCELLS = 6 Dc(JCELL SENSITIVZTY ERROR (F ) = 6. 5 DEMCELL SYSTEM ERROR = 9. Of NUMBER OF RTD = fB RTD SENSITIVITY ERROR (F) = 8. 83b RTD SYSTEM ERROR (F) = 9. Of ERROR XN PRESSURE IN DEhlCELL PRESSURE (PSX) = . 8032 MEASUREMENT(PSI) " 9867 ERROR ERROR ZN RTD MEASUREMENT (F> = . 6988 ISG (//DAY) =. 98'Pb

ATTACHMENT IV TABLE IV. 3 BLRT INSTRUMENTATION INSTRUMENT SELECTION GUIDE TOTAL CONTAINMENT PRESSURE = 16. 968 CONTAINMENT TEMPERATURE (F) = 'P4. 897 CONTAINMENT DEWPOINT (F) = 74. 689 TEST DURATION ( HRS ) = 4. 88 NUMBER OF PRESSURE SENSORS = 1 SENSOR ERROR (/ OF FULL RANCE) = 8. 881 RANGE ( PSIA ) = 199.

PRESSURE MEASUREMENT ERROR (/ OF FULL RANGE) "- 8. 8885 NUMBFR OF DEWCELLS - "4 DEWCELL SENSITIVITY ERROR ( F ) = 8. 5 DEWCELL SYSTEM ERROR = 9. 81 NUMBER OF RTD = 14 RTD SENS'XTIVITY ERROR (F) = 8. 936 RTD SYSTEM ERROR (F) = 8. 91 ERROR IN PRESSURE MEASUREMENT(PSI) = . 9919 ERROR IN DEWC'ELL PRESSURE (PSI) = . 0835 ERROR IN RTD MEASUREMENT (F) = . 9188 ISG (//DAY) =. 1954

ATTACHMENT V LEAKAGE RATE CALCULATIONS A. PRESSURE DECAY ANALYSIS METHODS There are several methods available for analysis of containment inte-grated leak rate data. The most commonly used methods are:

1. Mass point analysis
2. Total time analysis
3. Point to point analysis A computer program was developed for the purpose of computing the con-tainment leakage rate by all three methods (Ref. 5.12).

The mass point method consists of calculating the mass of air in the con-tainment from the volume averaged temperature, dewpoint and pressure data by application of the perfect gas law. The test data consists of a time series of independent values of air mass. Assuming the leak rate is con-stant with time, the data lends itself to analysis by the method of linear regression. The slope of the regression line represents the rate of change of air mass with time or leak rate. Because of its independent nature, any error in a data set does not materially affect the test re-sults. This is the most accurate method of analysis and is recommended in References 5.5 and 5.6.

The total time method is based on comparing the most recent data with the data taken at the start of the test. Thus each successive calculation is based on a longer time period. The leak rate in percent per day is de-termined by applying linear regression analysis to the leakage rate cal-culated at each time point (1).

The point to point method is similar to the total time method except that the leakage rate at each time point is determined using the most recent data and the data immediately preceeding. The leakage rate is determined for each data time interval and the overall leak rate is obtained by ap-.

plication of linear regression to the leakage rate at each time point.

This section presents the theoretical basis, justification and deriva-tions of formulae used in the computer program. The WPPSS ILRT program can calculate the leakage rate by all three methods.

(1) This is one of the methods approved by Reference 5.3 and is the one chosen by WPPSS as the primary reporting method.

1. Mass Point Method The individual temperature and dewpoint readings are volume averaged according to a volume fraction assigned to each sensor. This aver-aging process is the same for all three methods of calculating leak rate.

The average containment drybulb temperature, Taj, at time j is:

n Taj -+ fi Ti,j i=1 where:

Volume fraction of containment associated drybulb sensor i Ti j- Drybulb sensor i reading at, time j The average dewpoint temperature at time j, TDP j is:

Dp j = fi dp ij where:

Volume fraction of containment associated drybulb sensor i Tdp ij = Dewpoint reading of sensor i at time j If two pressure sensors are used, the averaged pressure is simply:

"Total = ~ ( A + B) where:

PA and PB are the two pressure readings The mass of air is calculated from the ideal gas law.

where:

air pressure,'psia volume, ft>

lb moles of air ideal gas law constant 10.731 Psi lb -~

fthm mole absolute containment temperature ('R)

- V

Rearranging equation (1) gives:

(2) N = PV RT The mass of air is simply the product of the number of lb moles and the molecular weight of air.

(3) W = N (MW) = PV (MW)

RT The molecular weight of air is 28.96 lb mass

~mo e Therefore the weight of air at any time is:

(g) W PV (28.96) .

ITr It is important to note that P is the partial pressure of air not the total containment pressure as measured by the pressure sensors.

The partial pressure of air is the total pressure minus the partial pressure of w'ater vapor, Q 0.

2'air

= PTotal PH 0 2

One of the widely used correlations for vapor pressure is the Antoine. correlation (Ref. 5.8) which is of the form:

lnP=A B T-C If C = 0 this equation reverts to the Clapeyron equation (Ref.

5.7). Rather than use published constants which cover a'wide temp-erature range for water vapor in the Antoine equation, constants were determined to more accurately cover a narrow temperature range by utilizing data from Keenan h Keyes (Ref. 5.9). Two sets of con-stants were generated, one set for dew points less than 100'F and the second set for the temperature range of 100 to 120'F. The cor-relations agree with data in Keenan h Keyes to within 0.0001 psia.

This functional form gives more accurate results than linear inter-polation between the data points.

The correlations developed and used in the ILRTA computer program (Ref. 5.12) are:

ln P 14, 940404 4144 ~ 18422 for 60+ T+100 where T is in 'K and ln P = 14.643483 - 3984.9582

~39.

for 100~T(120 where T is in 'K P is in psia With the equations listed above, the mass of air can be calculated for each data set. Next, a linear regression of the air mass is performed to obtain an estimate of the leak rate. This is done to provide a criteria for obtaining the best fit of the data, assuming a linear relation between air mass and time (i.e. a constant leak rate).

Linear regression or least mean square curve fit is given by:

W =A+St Where the slope, B, and intercept, A, are given by:

n(~tiWi) - (sWi) (Sti) n i)

(~t. (gati) and (ZWi) (Sti ) - (~tiWi) (Sti) n (gati ) - (~ti)

Each tl is the elapsed time between a clock time at which the initial reading is taken and the clock time at which the i th read-ing is taken. Thus tl = 0 for all the test durations and t2 is the elapsed time before the next reading and so on. In most test applications the time intervals between collected data sets will be essentially constant, but the equations for the slope, B, and inter-cept, A, do not impose this as a limitation.

- V The leakage rate for nuclear power plant containments is expressed as the ratio of the rate of change of air mass to the air mass in the containmnt at the beginning of the test. Since ti is ex-desired, the pressed in hours and percentage daily leakage rates are mass point leakage rate is expressed as a positive number, as:

Lam --

- 2400 B/A It should be noted-that A, the best estimate of the initial air mass, not Wo is used as the de'nominator of Lam. The units of Lam are percent per day.

The uncertainty in the estimated value of Lam is assessed in terms of the standard deviations of A and B and their covariance followed by the computation of the 95th confidence level for Lam.

The estimate of the common standard deviation of the air mass with respect to the regression line is given by:

2 1/2 K(W -W) n-

'where: Wi = measured air mass at time ti W = estimated air mass at time ti (i.e. 7 = A+ Bti)

The standard deviations of the slope and intercept are:

Knl/2 S K(gt2) 1/2 A

where:

[n(gati ) - (~ti) 1 and the covariance of the slope and intercept is:

SBA K2 (-Xti)

The above equations are presented in Reference 5.6 and can be found in most elementary statistical texts.

<<V The exact upper one-sided limit of a 95 percent confidence level for the leakage rate is given by:

UCL (Lexact) = - 2400 [b - (b2 ac)l/2~/a where:

2 a=A2 -t95 2 SA 2

b=AB>>t95 SAB 2

c = B 95 t 2 SB 2

t,95 is the 95th percentile of the "student's t distribution which is tabulated in Reference 5.6 and most texts on statistics as a functijon of the number of degrees of freedom. The number of degrees of'reedom is (n 2) where n is the number of observa-tions. If the number of degrees of freedom is equal to or greater than 5, the value of t 95 can be calculated from the following equation:

'1. 654 1. 576 2. 4 57.6 95 (n-2) n-2 (n-2)

The equations presented above for calculating the mass point leak rate and appropriate statistical treatment have been programmed into a flexible easy to use computer program.

2. Total Time Method The mass point method of computing leak rate is the preferred method and is recommended by References 5.5 and 5.6. However, in the past, the total tim and point to point leak rate analyses were used to calculate the containment leak rate and are the acceptable methods recognized by Reference 5.3, which is the basic document for this test. Therefore, these methods of computing leak rate were included in the computer program.

The equation for calculating the leak rate by the total time method is taken from Reference 5.2 The formula is:

LR

. 2400 0 i" vi ni H.

i where:

LRni = measured leak rate of time i, in weight percent per day Hi Elapsed time in hours at time i

- V-6

'o = Mean'containment absolute temperature at start of test Mean containment absolute temperature at time i Po = 'ean total pressure of containment atmosphere at start of test, psia Mean total pressure of containment atmosphere at time i, psia Pvo = Mean containment atmosphere water vapor pressure at start of test pvi = 'Mean containment atmosphere water vapor pressure at time i The calculated leak rate is obtained by performing a linear regres-sion of 3 or more sets of measured leak rate. The regression line is given by:

LRc = A+Bti The variance of the measured leak rate (LRm) from the calculated leak rate (LRi) is:

1/2

[LR . - (A + Bt.)]

where:

n = the number of measured data sets The 95 percent upper confidence limit of the leak rate is:

UCL - LRc + 0 T where:

T = Student T distribution for n-2 degrees of freedom 1/2 1 S(t n Z(ti -t) tp = Time after start of test or'otal elapsed time t = n The above equations have been included in the program.

- V

3. Point to Point Method The point to point method is essentially the same as the total time method, except rather than referencing the calculations to. the val-ues of pressure'and temperature at the start of the test, the pres-sure and temperature at ~an time i, are referenced to time i - l.

Thus, the measured leak rate equation is:

2400 1- 1 2 U2 where:

Mean absolute containment pressure, psia, at time i Ti = Mean containment atmosphere absolute temperature at time i h = time interval between time i and i - 1 The, regression line, variance and 95 percent upper confidence level are in the same manner for the total time method. The equations for the point to point method have been incorporated in the program.

- V f

I 0

B. CORRECTIONS TO TW PCILRT AND TEE LRVT CALCULATED RESULTS

1. PCILRT (Refer to Tabel IV.l)
a. LLRT Correction
1) g LR = 48.04 + 5.92 + 11.41 + 10.33 + 43.97 = 119.67 SCCM
2) Standard Deviation on (8.089)2+ (8)2]l/2 (1):'(45.13)2

+ (5.083)2 + (7.762)2 + 47.46 SCCM

3) 'R to add to PCILRT LR = 119.67 + 47.46

= 167.13 SCCH

4) Conversion:

14.696 f T + 459.69 167.l3 cm (60)(24) xl00 x 9 ) 9.69 30.48 cm (142,500 + 200,540) where, P = 49.163 psia T = 83.919oF

= 0.0007747 w/o/day

b. Wetwell (Suppression Pool) level change correction.
1) Level decreased 0.2 inches in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
2) Suppression Pool surface area =Vf15't2.
3) Correction =
0. 2 (4495) x 100 = -0.02184 w/o/day 42, +

c~ Drywell sump level change correction

1) Level increased 9 inches in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (equivalent to 46.2 ft3).
2) 46.2 Correction x 100 = 0.01346 w/o/day 142 500 + 200 540

- V

2. LRVT (Refer to Table IV.1)
a. X. LR = 119.67 + 5.40 = 125.07 SCCM
b. Standard Deviation on (1) [(47.46)2 ~ (7,735)2]l/2

= 48.09 SCCM

c. + LR to add to LRVT LR = 173.16 SCCM
d. Conversion:

Correction =

(30.48) (343,040)

= 0.0007965 w/o/day C. LRVT CALCULATIONS The superimposed leakage was 4.00 scfm. The average containment temperature and pressure were 85.414'F and 49.6808 psia. The total containaent volume is 343,040 ft3. Therefore the superimposed leakage rate, Lo, is:

4.00 scfm 14.696 sia 85.414 + 459.69R f L = 100K r + > 60 mj.~f 24 hr) 0 343,040 Ft 0.52098 weight percent per day The following values are therefore used to demonstrate compliance with the acceptance criteria.

= 0.5210 weight percent per day Lam = 0.2110 weight percent per day (calculated)

La = 0.5 weight percent per day Lc = 0.6274 weight percent per day (calculated)

Using these values in the acceptance criteria equation:

(Lo + L>> - .25 La) -. L = (Lo + Lam + .25 L.)

[0.5210 + .2110 - .25(.5)]5 0.6274~ [0.5210 + 0.2110 + .25(.5)]

0. 6070 ~ 0. 6274 0. 8570 Incorporating the LRVT correction factor (This Attachment, Section B.2.d) produces:

0.6078 w/o/d ~ 0.6282 w/o/d ~ 0.8578 w/o/d V

D. CORRELATION OF BLRT RESULTS USING THE FLUID DISCHARGE METHOD WITH THE BLRT RESULTS USING THE DRYWELL PRESSURE 0

l. 5 PSID BLRT
a. Fluid discharge leakage rate = 17 SCFM.
b. Conversion:

(17)(60)(24) 14.696 76.64 459.69

~zw +

(0.12207) (1.0199) (1. 0320)(100) 12.849 w/o/day

c. Comparison
1) Pressure Decay leakage rate = 8.01 w/o/day
2) Fluid Discharge leakage rate is 60.4X larger than the Pressure Decay leakage rate
2. 1.5 PSID BLRT
a. Fluid Discharge leakage rate = 6 SCFM+
b. Conversion:

(6) (60) (24) 14.696 76.70 + 459.69 (100)

(0.043084) (1.0146) (1.0321) (100) 4.5116 w/o/day C~ Comparison

1) Pressure Decay leakage rate = 4.04 w/o/day

'2) Fluid Discharge leakage rate is 11.7X larger than Decay leakage rate the'ressure

+ Flow instrument not calibrated below 10 SCFM

ATTACHMENT VI DATA SlNMARIES Table of Contents

l. Temperature Stabilization
2. PCILRT Averaged Measured Data
3. PCILRT Corrected Data Su+nary
4. PCILRT Total Time Leakage Rate
5. PCILRT Mass Point Leakage Rate
6. LRVT Averaged Measured Data
7. LRVT Corrected Data Summary
8. LRVT Total Time Leakage Rate
9. LRVT Mass Point Leakage Rate
10. 258 BLRT Averaged Measured Data, Drywell Pressure Decay
11. 258 BLRT Corrected Data Summary, Drywell Pressure Decay
12. 258. BLRT Total Time Leakage Rate, Drywell Pressure Decay 258 BLRT Mass Point Leakage Rate, Drywell Pressure Decay
14. 158 BLRT Average Measured Data, Drywell Pressure Decay
15. 158 BLRT Corrected Data Summary, Drywell Pressure Decay
16. 150 BLRT Total Time Leakage Rate, Drywell Pressure Decay
17. 158 BLRT Mass Point Leakage Rate, Drywell Pressure Decay
18. 58 BLRT Average Measured Data, Drywell Pressure Decay
19. 58 BLRT Corrected Data Su+nary, Drywell Pressure Decay
20. 58 BLRT Total Time Leakage Rate, Drywell Pressure Decay
21. 58 BLRT Mass Point Leakage Rate, Drywell Pressure Decay

ATTACHMENT VI DATA SlNMARIES Table of Contents (Cont.)

22. 1.50 BLRT Average Measured Data, Drywell Pressure Decay
23. 1.M BLRT Corrected Data Summary, Drywell Pressure Decay
24. 1.58 BLRT Total Time Leakage Rate, Drywell Pressure Decay
25. 1.58 BLRT Mass Point Leakage Rate, Drywell Pressure Decay

TABLE VI.1 WNP-2 ILRT RESTART AT 2159 HR TEST STARTED AT 2159 ON 2/18/S4 TENPERATURE STABXLIZATXON DATA TlNE TENP DELTA T DELTA T DELTA SET (HR) R 4-HR 1-HR

~ ¹ 1 541. Si'79 5 541. 9S99 542. 1882 13 542. 2324 17 542. 3373 8. 1149 9. 1649 9. 9999 21 542. 4725 8. 'i229 G. 1352 -8. 8123 25 542. 5964 8. 1248 9. 1239 9. 9861 29 542. 6994 8. 1167 G. 1638 6. 913S 33 542. 8137 . 8. 1191 G. 1143 6. 994S

0 ATTACHNENT VI TA8LE VI. 2 NNP-2 ILRT TEST STARTED AT 329 ON 2/ii/84 AVERAGED NEASURED DATA DATA TINE TEMP DEWPT PRESSURE SET <HR) <F) <F) <PSI) 329 82. 838 74. 593 49. 552 2 344 82. 871 74. 736 49. 553 3 359 82. 906 74. 666 49. 555 414 82. 922 74. 882 49. 557 5 429 82. 951 74. 834 49. 558 6 444 82. 978 74. 835 "

4'?. 560 7 459 83. 009 74. 959 49. 561 8 514 83. 848 75. 811 49. 563 9 529 83. 078 74. 971 49, 564 ao 544 83. 892 75. aae 49. 566 11 559 83. 124 75. 048 49. 568 12 614 83. 145 75. 068 49. 569 13 629 83. 169 75. 239 49. 571 a4 644 83. 283 75. 204 49. 573 15 659 83. 217 75. 257 49. 575 714 83. 252 75. 252 49. 577 729 83. 278 75. 333 49. 579 744 83. 306 75. 528 49. 588 19 759 83. 336 75. 557 49. 582 20 814 83. 364 75. 558 49. 584 21 829 83. 385 75. 734 49. S86 22 844 83. 489 75. 774 49. 588 23 859 83. 437 75. 889 49. 589 24 914 83. 488 75. 841 49. 591 929 83. 586 75. 724 49. 5'?3 944 83. 513 75. 967 49. 593 27 959 83. 531 75. 936 49. 595 28 ae14 83. 567 75. 90'? 49. 596 29 1829 83. 591 75. '?58 49. 598 30 1944 83. 601 75. 997 49. 597 31 1059 83. 618 76. 835 49. 5'?7 32 a114 83. 622 75. 983 49. 5'?6 33 1129 83. 635 76. 064 49. 5'?5 34 1144 83. 632 75. 836 4'?. 5'?5 35 1159 83. 615 75. 888 49. 595 36 1214 83. 635 75. 745 49. 593 3,7 1229 83. 627 75. 676 49. 593 38 1244 83. 633 75. 555 49. S'?1 39 1259 83. 636 75.. 678 49. 591 48 1314 83. 650 75. 665 49. 591 41 1329 83. 669 7S. 683 49. 5'?1 1344 83. 680 75. 817 49. 5'?2 1359 83. 796 7S. 886 49. 593 1414 83. 727 75. 942 4'?. 594

ATTACHMENT TABLE VI. 2 (CONT. ) vr DATA TINE TEMP DEWPT PRESSURE SET (HR) (F) (F) (PSI) 45 1429 83. 754 76. 861 49. 595 4a 1444 83. 761 76. 089 49. 596 47 1459 83. 777 76. 022 49. 598 48 1514 83. 886 76. 192 49. 599 49 1529 83. 831 76. 068 49. 681 58 1544 83. 846 76. 272 49. 683 51 1559 83. 871 76. 245 49. 684 52 1614 83. 901 76. 255 49. ae6 53 1629 83. 919 76. 368 49. 688 54 1644 83. 944 76. 347 N 1659 83. 978 76. 441 49. 611 56 1714 83. 992 76. 436 49. 612 57 1729 84. 819 76. 478 49. 614 58 1744 84. 838 76. 562 49. 615 59 1759 84. 862 76. 433 49. 617 60 1814 84. 878 76. oi4 49. 619 61 1829 84. 111 76. 631 49. 628 D2 1844 84. 129 76. 684 49. 622 63 1859 84. 153 76. 843 49. 624 64 1914 84. 173 76. 746 49. 626 65 1929 . 84. 284 76. 813 49. 628 66 1944 84. 235 76. 813 49. 629 67 1959 84. 262 76. 917 49. 631 68 2814 84. 298 76. 999 49. 633 69 2029 84. 319 77. 817 49. 635 79 2944 84..343 77. 079 49. 636 71 2859 84. 376 77. 101 49. 638 72 2114 84. 402 77. 238 49. 648 73 2129 84. 423 77. 146 74 2144 84. 452 77. 234 49. 644 75 2159 84. 475 77. 246 49. 645 76 2214 84. 488 77. 332 49. 647 77 2229 84. 526 77. 346 49, 649 78 2244 84. 549 77. 392 49. 650 79 2259 84. 579 77. 370 49. 652 89 2314 84. 595 77. 397 49. 654 Si 2329 84. 633 77. 535 49. 656 82 2344 84. 650 77. 568 49. 658 83 2359 84. 693 77. 557 49. 668 84 14 84. 712 77. 661 49. 662 85 29 84. 732 77. 592 49. 664 86 84. 743 77. 607 49. 665

'87 5a 84. 765 77. 792 SS 114 84. 781 77 719 668 Sa 129 84. 810 77. 893 90 84. 842 77. 848 49. 678 91 159 84. 870 77. 921 49. o72 214 84. 887 77. 959 49. 673 93 229 84. 918 77. 988 49. 675 any 84. 942 77. 958 49. 677 259 8!. 964 78. 047 49. 678 96 314 84. 9S2 78. 049 4a. a79 a7 nba 85. 0' 78. 066 49. 681

ATTACHMENT TABLE VI. 3 VI WNP-2 I RT TEST STARTED AT 3 9 Oi( '2/ 1 1 /84 CORRECTED DATA 3UNNARY DATA TINE TENP PRESSURE AIR PRESSURE SET AIR MASS TOTAL (HRS) <F) (PSI) (LB) (PSI) 1 329 82. 838 49. 1275 83831. 18 4'9. 5516 2 344 82. 871 49. 1269 83825. O9 49. 5531 3 359 82. 9O6 49. 1299 83824. 79 49. 5551 4 414 82. 922 49. 1295 83821. 68 49. 5566 5 429 82. 951 49. a3oo 83818. O3 49. 5576,,

6 444 82. 978 49. 132O 83817. 18 49. 5596 7 459 83. OO9 49. 1312 83811. Ob 49. 56O6 8 514 83. 04O 49. 1325 838O8. 4O 49. 5626 529 83. O7O 49. 134O 838Ob. 50 49. 5636 1O 544 83. O92 49. 134O 838O3. 10 49. 5656 559 83. 124 49. 1369 83863. 16 49. 5676 614 83. 145 49. 1381 83801. 92 49. 5691 13 629 83. 169 49. 1371 83796. 56 49. 57O5 14 644 83. 263 49. 1396 83795. 47 49. 5725 15 659 83. 217 49. 1409 83795. 48 49. 5745 ab 714 83. 252 49. 1429 83793. 53 49. 5765 729 83. 278 49. 1438 8379O. '?5 49. 5785 744 83. 3O6 49. 1426 83784. 62 49. 58OO 759 83. 336 49. 1445 83783. 19 49. 5825 2O 814 83. 364 49. 1459 83781. 47 49. 584O 21 829 83. 385 49. 1454 83777. 28 49. 586O 844 83. 4O9 49. 1473 83776. 77 49. 5885 23 859 83. 437 49. 1478 83773. 25 49. 5895 24 914 83. 488 49. 1488 83767. 19 49. 591O 25 929 83. 5O6 49. 1525 8377O. 63 49. 5929 26 944 83. 513 49. 1494 83764. 27 49. 5934 27 959 83. 531 49. 1514 83764. 88 49. 5949 28 1O14 83. 567 49. 1527 83761. 76 49. 5959 29 ao29 s3. 59a 49. 154O 8376O. 2O 49. 5979 3O iO44 83. 6O1 49. 1525 83756. O4 49. 5969 31 iO59 83. 618 49. 1519 83752. 42 49. 5969 aiaO 83. 622 49. 1521 83752. 16 49. 5964

33 1129 83. 635 49. 15OO 83746. 56 49. 5954 34 '44 83. 632 49. 1528 83751. 78 49. 5949 35 1159 83. 615 49. 1532 83755. O9 49. 5949 36 1214 83. 635 49. 1522 8375O. 3O 49. 5929 37 83. 627 49. 1532 83753. 15 49. 5929 38 1244 83,. 633 49. 1534 83752. 75 49. 5914 39 1259 83. 636 49. 1512 83748. 49 49, 59ao OO 1314 83. 65O 49. 1514 83746. 62 49. 59ao 41 1329 83. 669 49. 1511 83743. 28 4'?. 59ao 1344 83. 68O 49. 15Oa 83739 79 49. 5919 43 1359 83. 706 49. 15O1 83735. 78 49. 5929 1414 83. 727 49. 15O3 83732. 85 49. 5939 1 42'? 83. 754 49 '5OO 83728. 23 49. 5954 Ob 1~44 83. 761 4'?. '5Ob 83728. 11 49. 5964 47 83. 777 4'?. 1536 ( a 49. 5984 48 1514 83. 896 49. i521 72 49. 5994 r39 1529 83. 831 49. 1559 43 49. 6O14

ATTACHMENT TABLE VZ. 3 (CONT. ) VI DATA TlME TEMP PRESSURE AIR PRESSURE SET AIR MASS TOTAL (HR.S ) (F) (PSr) (LB) (PSZ) 5G 1544 83. 846 49. '48 83722. 32 4'?. 6G34 51 1559 83. 871 49. 1562 83720. 75 49. 6G44 52 1614 83. '?Gl 49. 1581 83719. 26 49. 6G64 53 1629 83. 919 4'?. 1579 83716. 2G 49. 6G79 54 1644 83, 944 49. 1597 83715. 46 49. 6G94 55 1659 83. 97G 49. 1603>> 83712. 46 49. 6114 56 1714 83. 992 4'?. 1614 8371G. 8'? 49. ba24 57 1729 84. G1G 49. 1622 837G9. 55 4'?. 6139 58 1744 84 G3G 49. 1624 837G6. 9G 49. 6153 5'? 1759 84. G62 4'?. 1664 837GS. 6'? 49. 6173 60 1814 84. G78 4'9. 1656 837G4. 92 49. 6193 61 1829 84. 111 49. 1664 837G1. 12 49. 62G3 62 1844 84. 12'? 4'?. 1676 837GG. 45 49. 6223 63 1859 S4. 153 49. 1672 836'?6. GG 49. 6243 64 1914 84. 173 49. 17G6 83698. 83 49. 6263 65 1929 84. 2G4 49. 1711 836'?4. 87 4'?. 6278 66 1944 84. 235 49. 1726 83692. 61 4'9. 6293 67 1959 84. 262 49. 173G 83689. 14 49. 6313 68 2814 Sn. 29S 49. 1738 836S4. 9'? 4'?. 6333 69 2G 2'? 84 319 49. 1755 83684. 68 49. 6353 7G 2044 4'?. 1757 83681. 3G 49. 6363 71 2G59 84 376 49. 1772 S3678. 64 49. 6382 72 2114, Sn OG2 49. 1772 83674. BG 49.-64G2 73 2129 84 '~23 49. 1SG5 83677. 12 49. 6422 74 2144 Sd 4'?. 18G6 83672. 9'? 49. 6437 75 215? 84 475 49. 182G 83671. 79 49. 6452 76 2214 84. 488 49. 1826 8367G. 72 49. 6472 77 2229 84. 526 49. 1839 836o7. GB 49. 6487 78 2244 84. 549 49. 1846 83664. 78 49. 65G2 7'? 2259 S4 579 49. 187G 83664. 26 49. 6522 SG 2314 84. 595 49: 1886 83664. 49 49. 6542 Sa 2329 84. 633 49. ass4 83658. 38 49: 6562 82 2344 SO. 65G 49. 1894 83o57. no 49. 6577 83 2359 Sn. 693 49. 1916 83654. 55 49. 6597 84 14 84. 712 49. 1'?20 83652. 36 49. 6617 85 29 84. 732 49. 1 951 83654. 50 49. 6637 Sb 44 4'?. 1'?58 S3653. '?9 49. 6647 87 59 80. 765 49. 1959 8365G. 78 49. 6662 88 114 8 i. 781 49. 1976 83651. 22 4'?. 6682 89 a29 84 81G 4'?. 1959 83o43. 87 49. 6692 9G 144 84. 842 49. 1'?71 836OG. 92 4'?. 6697 94 159 84 87G 4'?. 1'?79 83638. GS 49. 6716 92 214 Sn. 887 49. 1988 83636. 9'? 49. 6731 93 229 8 '. 91G 49. i'?99 83o35. 27 49. 6746 o4 244 a4 942 4'?. 2023 83634. 43 49. 6766

'?5 25'? .3 4. o4 ~

T 49. 2G19 8363G. 39 49. 6776 9o 314 ,~4. '2 49. 2G2'? 83629. 36 49. 6786 q7 3'2'9 Bl 4'?. 2G51 83o2S. 49. 6811

0 ATTACHNENT YI TABLE VI. 4 WNP-2 ILRT TF.ST STARTED AT 329 ON 2/ii/84 TOTAL TINE LEAK RATE ELAPSED TINE = 24. 99 OAT* ELAPSED TENP PRESSURE LEAK RATE S=T T Ii"IE AVC MEASURED CALCULATED (HR) (F) (PSIA)

9. 25 82. 8714 49. 1269 G. 69749 9. 34925 3 0. 59 82. '?964 49. 12'?9 Q. 36699 9. 33889 G. 75 9217 '2.
49. 1295 9. 36262 9. 33753 5 1, 90 82. 9513 49. 1399 9. 37638 9. 33617 I
1. 25 82. 9782 49. 1329 G. 32971 G. 33481 7 1. 59 83. 9994 49. 1312 G. 38419 9. 33345 8 1. 75 83. 9494 49. 1325 9. 37268 9. 33299 C P. 99 83. 49. 1349 G. 35323 9. 33973 G. 35739 32937 070'3.

19 2. 25 9922 4'?. 1349 9.

2. 59 83. 1237 49. 1369 G. 32987 9. 32891 2 75

~ 83. 1451 49. 1381 G. 39465 9. 32665

3. 09 83. 1686 4'?. 1371 G. 33940 9. 32529
3. 25 83. 2933 4'?. 1396 G. 3145'? 9. 32393
3. 59 83. 2174 49. 1499 G. 29262 9. 32257
3. 75 83. 2524 49. 1429 0. 28742 0. 32121
4. GG 83. 2783 49. 1438 G. 28791 G. 31'?85
4. 25 83. 3959 49. 1426 G. 31365 9. 31849
4. 59 83. 3363 49. 1445 9. 39532 9. 31713 r 145'? G. 29963 31577
4. 75 83. 3638 49. 9.

2'. , 5.99 83. 49. 1454 0. 30908 0. 31441 1473 0. 29671 31395 3S5'3.

22 5, 25 4991 49. 0.

23 5. 59 83. 4372 49. 1478 G. 39155 G. 31168 24 5. 75 83. 4878 49. 1488 9. 31859 9. 31932 r

6. 99 83. 5062 49. 1525 9. 28892 G. 39896 26 6. 25 S3. 5133 49. 1494 0. 39647 Q. 39769
b. 50 83. 5311 4'?. 1514 G. 29293 9. 39624
b. 75 83. 5666 <527 G.'29441 G. 39488 Q ig 7. 90 83. 5999 49. 1549 G. 29929 0. 39352 3 j. 7. 25 83. 6996 49. 1525 G. 2'?671 9. 30216
7. 59 83. 6178 49. 1519 G. 39965 9. 39989 (i 7. 75 83. 6223 49. 1521 G. 29188 9. 29944 J (3 B. 90 83. 6345 49. 1599 Q. 39289 G. 29SGS B. 25 S3. 6323 49. 152S G. 27551 0. 29672 83, 6153 49. 1532 9. 25627 Q. 2'?536 75 83. 6345 49. 1522 9. 26463 Q. 29490 QQ 83. 6272 49. 1532 9. 24821 G. 29264 25 83. 6329 49. 1534 Q. '24274 G. 2912S g j3 83. 63=6 49, 1512 Q. 24918 9. 28992 C7
83. 6498 <9. 15'. 9. 24827 Q. 28856 19, GQ 83. 6687 49. 1511 Q. 25164 G. 2S729 i 9, 83. 6899 49. 1591 9. 25526 9. 28584 1

g) cG 33. 7958 1591 9. 26910 G. 28448 BM (268 r. 9 1593 26'5r( G. 28312 7"'9 '599 g67Q 9. 28176 l(~~ -9 '596 26228 9 28949

'4 7779 1" 36 Q. 2~998 9 27994

ATTACHMENT TABLE VI. 4 (CONT. ) YI DATA PSEO T Ei IP PRESSURE LEAK RATE SET TIME AV( MEASURED CALCULATED (H R) "'F) (PSIA) 48 11. 75 83. 8955 49. 1521 Q. 26168 G. 27768 4Q 1< 4 89, S3. 8308 49. a559 G. 24998 G. 27632 58 25 83, 8456 49. 1548 8. 25449 G. 27496 51 58 S3. 8713 49. 1562 G. 25291 8. 27368 52 12. 75 S3. 9814 49. 1581 8. 25130 9. 27224 53 13. 09 83. 9191 49. 157'? 8. 2531'? G. 27888 54 13. 83. 9441 49. 1597 9. 25892 G. 26952 c5 13. 58 83. 9781 49. 1693 9. 25175'.

9. 26816 56 13. 75 83. '?921 49. 1614 25044 G. 26688 67 14. 99 84. 9105 49. 1622 G. 24872 0. 26544 58 14. 25 84. 9298 4'?. 1624 8. 24'?69 9. 26488 59 14. 59 84. 8617 49. 1664 9. 24184 0. 26272 69 75 84. 8782 49. 1656 8. 24587 9. 26136 61 15, 98 84. 1112 49. 1664 Q. 24824 9. 26898 62 15. 84. i2SS 49. 1676 G. 24542 8. 25864 63 15. 59 84. 1534 49. 1672 G. 24969 9. 25728 64 15. 75 84. 1727 49. 1786 9. 24856 0. 25592 '.

65 16. 89 84. 2839 49. 1711 8. 24391 25456 66 16. 25 84. 2359 49. 1726 8. 24412 0. 25329 67 16. 59 84. 2623 49. 1738 G. 24645 9. 25184 bs ab. 75 84. 2975 4'?. 1738 G. 24986 8. 25948 69 17. 80 84. 3188 49. 1755 8. 24672 8. 24912 70 17. 25 84. 3428 49. 1757 9. 24875 8. 24776 71 17. 59 84. 3764 49. 1772 G. 24'?54 9. 24649 t 2 a7 75 84. 4017 49. 1772 9. 25221 0. 24584 73 18 89 84. 4230 49. 1885 9. 24593 0. 24368

18. 84. 4516 49. 1886 G. 24815 9. 24232 75 18. 59 '84. 4749 49. as28 G. 24666 0. 24996 76 18. 75 84. 4S84 49. 1826 9. 24588 9. 23959 77 19. 90 84. 5257 49. 183'9 G. 24726 8. 23823 78 19. 28 84. 5494 49. 1846 8. 24747 9. 23687 .

79 1D 58 S4. 5787 49. 1878 8. 24585 9. 23551 SQ 75 84. 594S 49. 1886 Q. 24163 8. 23415 8 i 29. 88 84. 6339 49. 1884 8. 24735 8. 23279 82 29. 25 84. 6501 49. 1894 G. 24568 Q. 23143 83 SG 84, 6931 49. 1916 G. 24667 G. 23997 84 20. 75 84. 7115 49. 1920 G. 24671 8. 22871 85'6 80 84. 7315 49. 1'?5i Q. 24986 8. 22735 25 84. 7434 49. a95s Q. 2387 0. 22599

84. 7646 49. 1'?5'? 24822 22463 87 21. 59 G.

es + ~

75 S4. 7819 49. 1976 8. 23687 8. 22327 8% 2 GG 84. 8899 49. 1959 8. 24375 9. 22191 99 22 2M ~ 84. 8424 49. 1971 9. 24489 9. 22855 9r Q 84. 86'?8 49. 1'?79 24579 0, 21919 75 84. SS69 49. 1988 24437 8. 21783 P h +0+8 49. 199'? 24385 9, 21647

84. 94'24 49. '2923 24226 8. 21511
23. 58 9645 49. '19 24461 8. 21375 4'?. 2929 24327 9. 21239 951 24178 Q. 21183 APi KA I 9 2ii038 5 l! U=',"- ER CON I= IOENC 2 L IM i LEAK iAT A 2( U" 4~ O",4 R>< IE = Q. 3(5

ATTACHNENT TABLE VI. 5 VI WNP-2 ILRT STARTED AT 329 ON 2/11/84 i(ASS POINT LEAK RATE ELAPSED TINE = 24. QG DATA ELAPSED TEMP PRESSURE LEAK RATE SET TINE AVG NEASURED CALCULATED (HR) (F) (PSIA) 3 G. SQ 82. 9Q64 49. 1299 G. 366GG G. 23172 4 G. 75 82. 9217 49. 1295 G. 36262 G. 23172 5 i. OG 82. 9513 49. 13GG G. 37638 G. 23172

i. 25 82. 9782 49. 132G G. 32G71 G. 23172 7 1. 5G 83. OG94 49. 1312 G. 3841G G. 23172 8 1. 75 83. G4G4 49. 1325 G. 37268 G. 23172 9 2. 0Q 83. G7G1 49. 134Q G. 35323 G. 23172 1G 2. 25 83. 0922 49. 134Q G. 3573G Q. 23172
2. 5Q 83. 1237 49. 1369 Q. 32G87 G. 23172 12 2. 75 83. 1451 49. 1381 Q. 3G465 G. 23172 13 3. GG 83. 1686 49. 1371 G. 33G4G G. 23172 14 3. 25 83. 2Q33 49. 1396 G. 31459 G. 23172 15 3. 5G 83. 2174 49. 14G9 G. 29262 G. 23172

'6 3. 75 83. 2524 49. 1429 G. 28742 G. 23172 17 4. OG 83. 2783 49. 1438 G. 28791 G. 23172 18 4. 25 83. 3059 49. 1426 Q. 31365 G. 23172 19'Q 4. 5G 83. 3363 49. 1445 G. 3G532 G. 23172

4. 75 83. 3638 49. 1459 G. 29963 Q. 23172 21 5. GG 83. 3851 49. 1454 G. 3G9G8 G. 23172
5. 25 83. 4091 49. 1473 G. 29671 G. 23172 23 5. 5G 83. 4372 49. 1478 G. 3&155 G. 23172 24 5. 75 83. 4878 49. 1488 G. 31859 G. 23172 25 6. GQ 83. 5Q62 49. 1525 G. 28892 G. 23172 26 '6. 25 83. 5133 49. 1494 0. 3G647 G. 23172

'5 7 6. 5G 83. 5311 49. 1514 G. 292G3 G. 23172 28 6. 75 83. 5666 49. 1527 G. 29441 G. 23172 29 7. GG 83. 5909 49. 1540 G. 29G29 Q. 23172 3Q 7. 25 83. 6QG6 49. 1525 G. 29671 G. 23172 31 7. 5G 83. 6'78 49. 1519 G. 3GQ65 G. 23172

7. 75 83. 6223 49. 1521 G. 29188 G. 23172 33 8. GQ 83. 6345 49. 1500 G. 3G28G G. 23172 34 8. 25 83. 6323 49. 1528 G. 27551 G. 23172 35 8. 5G 83. 6153 49. 1532 G. 25627 G. 23172 36 8. 75 83. 6345 49. 1522 G. 26463 G. 23172 37 9. GQ 83. 6272 49. 1532 G. 24821 G. 23172 38 9. 25 83. 6329 49. 1534 G. 24274 G. 23172 P%

9 9. 5Q 83. 6356 49. 1512 G. 24918 G. 23172 4Q 9. 75 83. 6498 49. 1514 G. 24827 G: 23172

18. 00 83. 6687 n9. 1511 G. 25164 G. 23172 42 'Q. 25 83. 68QG 49. 1501 G. 25526 G. 23172 43 10. 5G 83. 7Q58 49. 1501 G, 26G1G G. 23172 4n 1Q. 75 S3. 7268 49. 15G3 G. 26185 G. 23172 11 QQ 83, 7539 49. 150Q Q. 26793 G. 23172 ii, 25 33. 76'2 49. 15Qh Q. 26228 G. 23172 ii. 50 83. 7770
83. SG55 49.

49.

1536 1521 G,

Q.

24998 26168 Q.

Q.

23172 23172

ATTACHMENT TABLE Vg. 5 (CONT. ) VI DATA ELAPSED TENP PRESSURE LEAK RATE SET TIME AVG NEASURED CALCULATED N (HR) (F) (PSIA) 49 12. QG 83. 8308 49. 1559 G. 2499G G. 23172 50 12. 25 83. 8456 49. 1548 G. 2544G G. 23172 51 12. 5G 83. 8713 49. 1562 Q, 25291 Q. 23172 52 12. 75 83. 9014 49. 1581 G. 2513G G. 23172 53 13. GG 83. 9191 49. 1579 G. 25319 G. 23172 54 13. 25 83. 9441 49. 1597 G. 25QQ2 G. 23172 55 13. 5G 83. 97G1 49. 16G3 G. 25175 G. 23172 56 13. 75 83. 9921 49. 1614 G. 25G44 G. 23172 57 14. GG 84. G1G5 49. 1622 G. 24872 Q. 23172 58 14. 25 84. G298 49. 1624 Q. 24969 G. 23172 59 14. 5Q 84. G617 49. 1664 G. 24184 G. 23172 60 14. 75 84. 0782 49. 1656 G. 24507 G. 23172 61 15. OG 84. 49. 1664 G. 24824 G. 23172 62 15. 25 84. 1288 49. 1676 G. 24542 G. 23172

  • 3 15. 5G 84. 1534 49. 1672 G. 24969 Q. 23172 64 15. 75 84. 1727 49. 17G6 G. 24G56 G. 23172 65 16. GG 84. 2Q39 49. 1711 Q. 24391 Q. 23172 66 16. 25 84. 2350 49. 1726 G. 24412 G. 23172 67 16. 5G 84. 2623 49. 173G G. 24645 0. 23172 68 lb. 75 84. 2975 49. 1738 G. 24986 G. 23172 69 17. GG 84. 3188 49. 1755 G. 24672 G. 23172 7Q 17. 25 84. 3428 49. 1757 G. 24875 G. 23172 71 17. 50 84. 3764 49. 1772 G. 24954 G. 23172 72 17. 75 84. 4G17 49. 1772 G. 25221 G. 23172 73 18. GO 84. 423G 49. 18G5 G. 245G3 G. 23172 74 18. 25 84. 4516 49. 18G6 G. 24815 G. 23172 75 18. 5G 84. 4749 49. 182G 0. 24666 G. 23172 76 is. 75 84. 4884 49. 1826 G. 2450G G. 23172 77 19. GG 84. 5257 49. 1839 G. 24726 G. 23172 78 19. 25 84. 5494 49. 1846 G. 24747 G. 23172 79 19. 5G 84. 5787 49. 1878 G. 245G5 G. 23172 BG 19. 75 84. 5948 49. 1886 G. 24163 G. 23172 81 20. GG 84. 633G 49. 1884 G. 24735 G. 23172 82 2G. 25 84. 65G1 49. 1894 Q. 2456Q G. 23172 2Q. 5G 84. 6931 49. 1916 G. 24667 G. 23172 84 20. 75 84. 7115 49. 192G 0. 24671 0. 23172 85 21. GQ 84. 7315 49. 1951 G. 24G86 G. 23172 86 21. 25 84. 7434 49. 1958 G. 23871 G. 23172 87 21. 50 84. 7646 49. 1959 G. 24G22 G. 23172 88 21. 75 84. 781G 49. 1976 G. 23687 G. 23172 89 22. GG 84. 8099 49. 1959 G. 24375 G. 23172 9G 22. 25 84. 8424 49. 1971 G. 2448G G. 23172
22. 5G 84. 8698 49. 1979 G. 2457G 0. 23172 A2 22. 75 84. 8869 49. 1988 Q. 24437 G. 23172 93 23. QG 8~ 9Q98 49. 1999 G. 24385 G. 23172 c3. 25 9424 49. 2G23 Q. 24226 G. 23172
23. 5Q 84. 9645 49. 2G19 Q. 24461 Q. 23172
23. 75 84. 98' 49. 2G29 Q. 24327 23172 P7 24. Go 85. Q'8 49. 2051 24178 Q. 23172 iA>SQ OINT L<4K RAiE Q. 231725 ~

95~ UPPER CONE~DENCE LZiqZT LEAK RATE Q. 234Q

(~A Y. INUi'! *LLOWABLE LEAK RATE = G. 375

0 ATTACHMENT TABLE VI. 6 VI WNP-2 VERIFICATION ILRT TEST STARTED AT 415 ON 2/12/84 AVERAGED MEASURED DATA DA TA TIME TEMP DEWPT PRESSURE SE T (HR) <F) (F) <PSI) 415 85. G76 78. 207 49. 686 2 43G 85. 113 78. 27G 49. 685 3 445 85. 143 78. 254 49. 684 4 5GG 85. 167 78. 318 49. 684 5 515 85. 188 78. 475 49. 683 6 53G 85. 243 78. 514 49. 683 7 545 85. 248 78. 435 49. 682 8 60G 85. 293 78. 652 49. 681 615 85. 328 78. 6GG 49. 681 1G 63G 85. 348 67G

'8.

49. 681 645 85. 364 78. 515 49. 681 12 70G 85. 382 78. 630 49. 68G 13 715 85. 398 78. 744 49. 68G 14 73G 85. 423 78. 736 49. 688 15 745 85. 454 78. 732 49. 68G 16 BGG 85. 499 78. 898 49. 68G 17 815 85. 535 78. 824 49. 68G 18 83G 85. 553 78. 9G4 49. 68G 19 845 85. 576 78. 922 49. 68G "

20 9GG 85. 602 78. 816 49. 679 21 915 85. 631 79. G22- 49. 679 22 93G 85. 652 78. 866 49. 678 23 945 85. 671 79. 052 49. 678 24 1GGG 85. 709 79. 168 49. 678 25 1G15 85. 745 79. 156 49. 678

ATTACHMENT VI TABLE VI. 7 WNP-2 VERIFICATION ILRT TEST STARTED *T 415 ON 2/12/84 CORRECTED DATA

SUMMARY

DATA TIME TEMP PRESSURE AIR PRESSURE SET AIR MASS TOTAL (HRS) '(F) (PSI) (LB) (PSI) 415 85. G76 49. 2074 83622. 44 49. 6856 43G 85. 113 49. 2G5'? 83614. 26 49. 6851

'3 445 85. 143 49. 2Q51 836G8. 42 49. 6841 5GQ 85. 167 49. 2041 G3 '36Q3.

49. 6841 5 5i5 85. 188 4'?. 2QG6 835'?3. '?2 49. b831 6 539 85. 243 49. 19'?5 83583. 5'? 49. 6826 7 545 85. 248 '49. 2Q03 83584. G3 49. 6821 8 6QG 85. 293 4'?. 1953 83568. 73 49. 68Q6 615 85. 328 49. 1962 83564. 79 49. 68Q6 KG 63G 85. 348 49. 1951 83559. 85 49. 68Q6 1 1 645 85. 364 49. 1'?75. 83561. 58 49. 68Q6 7GG 85. 382 49. 1952 83554. 97 49. beei 13 715 85. 3'98 49, 1934 83549. 37 49. 68G1 14 73Q 85. 423 49. 1935 83545. 7G 49. 6801 15 745 85. 454 4'?. 1936 83541. 12 49. 68G1 16 8GQ 85. 499 49. 19Q9 83529. 67 49. 68G1 7 815 8 tl ~ 535 49. 1921 83526. 18 49. 68G1

<<8 83G 85. 553 49.'1908 83521. 25 49. 68G1 a9 845 85. 576 ga anG5 83517. 18 4'?. 68G1 20 9GG 85. 602 49. 1912 83514. 48 49.

1874 b786 679?.

21 915 85. 631 49. 835G3. 55

'? 3G 85. 652 4? 1894 835G3. 71 49. 6781 23 '? 45 85. 671 49. 1859 83494. 90 "

49. 6776 24 1GOQ 85. 7Q9 49. 184Q 83485. 9G 49. 6776 25 1 Q15 85. 745 4'?. 1842 8348G. 67 49. 6776

ATTACHMENT VI TABLE VI. 8 WNP-2 VERIFICATION ILRT TEST STARTED AT 415 ON 2/12/84 TOTAL TIME LEAK RATE ELAPSED TIME = 6.00 DATA ELAPSED TEMP PRESSURE LEAK RATE SET TIME, AVG MEASURED CALCULATED N <HR) (F) (PSIA)

I 8. 25 85. 1131 49. 2859 G. 93978 9. 84354 3 8. 56 85. 1439 49. 2651 G. 88522 G. 83414 G. 75 85. 1668 49. 2641 8. 74284 9. 82474 5 1. GG 85. 1875 49. 2996 Q. 81857 9. 81535 6 1. 25 85. 2426 49. 1995 0. 89294 G. 89595 7 1. 58 85. 2481 49. 2983 9. 73494 G. 79655 8 1. 75 S5. 2935 49. 1953 G. 88094 G. 78715

2. 66 85. 3285 49. 1962 G. 82734 G. 77776 16 2. 25 85. 3483 49. 1951 9. 79844 8. 76836
2. 50 85. 3642 49. 1975 G. 69868 9. 75896 12 2. 75 85. 3816 49. 1952 G. 78418 6. 74957 13 3. 96 85. 3979 49. 1934 8. 69909 9. 74617 3.. 25 85. 4233 49. 1935 -
0. 67771 8. 73877
3. 50 85. 4539 49. 1936 8. 66683 8. 72138
3. 75 85. 4991 49. 1999 9. 71984 8. 71198 17 85. 5351 49. 1921 G. 69871 9. 78258 18 4. 25 85. 5531 49. 1998 6. 68339 G. 69319
4. 50 85. 5764 49. 1985 8. 67138 G. 68379 20 4. 75 85. 681S 49. 1912 G. 65237 6. 67449 21 5. 86 85. 6399 49. 1874 6. 68249 8. 66588 22 5. 25 85. 6521 49. 1894 8. 64987 8. 65568 23 5. 59 85. 6716 49. 1859 9. 66558 8. 64629 24 5. 75 85. 7089 49. 1848 G. 68154 6. 63681 25 6. 86 85. 7452 49. 1842 0. 67816 Q. 62741 TOTAL TIME LEAK RATE 6 627411 95/ UPPER CONFIDENCE LZt1IT LEAK RATE = 6. 7235 MAXIMUM ALLOWABLE LEAK RATE = 0. 375

ATTACHMENT VI TABLE Vi. 9 WNP-2 VERIFICATION ILRT TEST STARTED AT 415 ON 2/12/84 i'IASS POINT LEAK RATE ELAPSED TIME = 6. 99 0*TA ELAPSED TEMP PRESSURE LEAK RATE SET TIME AVG MEASURED CALCULATED (HR) (F) (PSIA) 3 9. 59 85. 1439 49. 2951 9. 89S22 9. 64319 4 G. 75 85. 1668 49. 2941 9. 74284 9. 64319 5 i. 69 85. 1875 49. 2966 9. 81857 9. 64319 6 l. 25 85. 2426 49. 1995 G. 89294 6. 64319 64319 7 1. 56 85. 2481 49. 2993 9. 73494 G.

8 1. 75 8S. 2935 49. 1953 G. 88994 9. 64319

2. 96 85. 3285 49. 1962 9. 82734 9. 64319 19 2. 25 85. 3483 49. 1951 G. 79844 9. 64319 11 2. 56 SS. 3642 49. 1975 9. 69868 9. 64319 12 2 75

~ 85. 3816 49. 1952 G. 79418 G. 64319 13 3. 99 85. 3979 49. 1934 G. 69999 9. 64319 14 3. 25 85. 4233 49. 1935 9. 67771 G. 64319 15 3. SG 85. 4539 49. 1936 G. 66683 9. 64319 16 3. 75 85. 4991 49. 1999 9. 71994 9. 64319 17 4. 96 85. 5351 49. 1921 G. 69971 9. 64319 18 4. 2S 85. 5531 49. 1998 9. 68339 0. 64319 19 4. 56 85. 5764 49. 1995 9. 67138 G. 64319 20 4. 75 85. 6918 49. 1912 G. 65237 G. 64319 21 5. 96 8S. 6369 49. 1874 9. 68249 9. 64319 22 5. 25 85. 6521 49. 1894 9. 64997 0. 64319

.23 5. 59 85. 6719 49. 1859 0. 66558 6. 64319 24 5. 75 85. 7089 49. 1849 9. 68154 6. 64319 2S 6. 96 85. 7452 49. 1842 G. 67816 9. 64319 I'IASS POINT LEAK RATE = G. 643185 95'/ UPPER CONFIDENCE LIMIT LEAK RATE = 6. 6627 MIA)lIMUil ALLOWABLE LEAK RATE = 6. 375

0 I

0

ATTACHNENT VI TABLE VI. 1G WNP-2 BYPASS LEARAGE TEST (25 PSID)

TEST STARTED AT 1915 ON 2/14/84 AVERAGED NEASURED DATA DATA TINE TEMP PRESSURE SET (HR) (F) (F) (PSI) 1915 85. 772 7G. 3Gi 39. 794 2 193G 85. 726 7G. 179 39. 583 3

4 1945 2GGG 85.

85.

739 786

'ENPT 7G.

7G.

533 533 39.

39.

478 373 5 2G15 85. 788 7G. 552 39. 382 6 203G 85. 833 70. 749 39. 275 7 2045 85. 859 7G. 874 39. 165 8 21GG 85. 916 71. 143 39. G55 9 2115 85. 944 71. 1'2 38. 947 10 2130 85. 984 71. 185 38. 842 11 2145 86. G39 71. 243 38. 733 12 22GG 86. 869 71. 336 38. 625 13 2215 86. G76 71. 387 38. 53G

.14 223G 86. 282 71. 546 38. 427 15 2245 86. 257 71. 743 38. 326 16 23GG 86. 293 71. 766 38. 224 17 .2315 86. 343 71. 864 38. 119 18 233G 86. 414 71. 85G 38. G16 19 2345 86. 461 72. 128 37. 916 2G G 86. 514 72. 148 37. 816 21 15 86. 569 72. 297 37. 716 22 3G 86. 615 72. 4G5 37. 62G 23 45 86. 68G 72. 444 37. 523 24 1GG 86. 74G 72. 6GG 37. 431 25 115 86. 784 72. 653 37 337.

ATTACHMENT VI TABLE VI. 11 WhJP-2 BYPASS LEAHAGE TEST (25 PSID)

TEST STARTED AT 1915 ON 2/14/84 CORRECTED DATA

SUMMARY

DATA TIME TEMP PRESSURE PRESSURE SET AIR MASS TOTAL (HRS) (F) (PSI) (LB) (PSI )

1915 85. 772 39. 3367 39829. 46 39. 7836 2 1930 85. 726 39. 2172 38914. 29 39..5826 3 a945 85. 739 39. 1886 38895. 53 39. 4785 4 2098 85. 786 39. 6834 38697. 84 39. 3733 5 2015 85. 788 39. 9122 38786. 48 39. 3823 6 2038 85. 833 38. 9926 38594. 51 39. 2752 7 2845 85. 859 38. 7909 38481. 85 39. 1651 8 Z1ee 85. 916 38. 6774 38365. 17 39. 6558 2115 85. 944 38. 5697 38256. 4O 38. 946'9 18 2130 85. 984, 38. 4636 38148. 34 38. 8417 11 2145 86. 939 38. 3537 38835. 52 38. 7326 12 2268 86. 969 38. 2454 37926. 98 38. 6255 13 2215 86. 876 38. 1495 37836. 41 38. 5382 14 2230 86. 292 38. 8443 37717. 44 .38. 4271 15 2245 86. 257 37. 9405 37610. 74 38. 3259 16 2360 86. 293 37. 8380 37586. 69 38. 2237 17 18 2315 2338 86.

86.

343 4a4 37.

37.

9396'IR 7317 6296 37397.

37291.

79 85 38.

38.

1186 8164 19  %%45 86. 461 37. 5269 37185. 94 37. 9163 2e 0 86. 514 37. 4254 37882. 78 37. 8161 21 as 86. 569 37, 3232 36977. 76 37. 7159 22 39 86. 615 37. 2256 36877. 91 37. 6197 23 45 86. 680 37. 1289 36777. 78 37. 5235 24 186 86. 749 37. 9346 36686. 38 37. 4313 25 115 86. 784 36. 36583. 26 37. 3378 P

N ATTACHMENT VI TABLE VI. 12 WNP-2 BYPASS LEAKAGE TEST (25 PSID)

TEST STARTED AT 1915 ON 2/14/84 TOTAL TIME LEAK RATE ELAPSED TIME = 6. 99 DATA ELAPSED TEMP PRESSURE LEAK RATE SET TIME AVG MEASURED CALCULATED (HR) (F) (PSIA)

0. 25 85. 7256 39. 2172 28. 34985 24. 38635 3 G. 59 85. 7393 39. 1986 27. 54816 24. 41368
8. 75 85. 7859 39. 8834'9.
27. 18'?39 24. 44191 5 85. 7879 8122 19. 86575 24. 46833 6 1. 25 85. 8325 38. 9826 21. 39692 24. 49566 7 1. 59 85. 8588 38. 7999 22. 44992 24. 52299 8 1. 75 85. 9165 38. 6774 23. 34187 24. 55931 9 2. 99 '5. 9439 38. 5697 23. 76898 24. 57764 19 2. 25 85. 9839 38. 4636 . 24. 88934 24. 68497
2. 58 86. 8394 38. 3537 24. 44719 24. 63238 12 2. 75 86. 968'? 38. 2454 24. 67252 24. 65962 13 3. 99 86. 9763 38. 14'?5 24. 57737 24. 68694
3. 25 86. 2821 38. 8443 24. 82417 24. 71427
3. 58 86. 2575 37. 9495 24. 92559 24. 74168
3. 75 86. 2938 37. 8388 24. 96998 24. 76893
4. 99 86. 3434 37. 7317 25. 88337 24. 79625
4. 25 86. 4142 37. 6296 25. 14871 24. 823S8

'4. 58 86. 4619 37. 5268 25. 19128 24. 85891 29 4. 75 86. 5137 37. 4254 25.,29184 24. 87824 21 5. 99 86. 5685 37. 3232 25. 23229 24. 98556

5. 25 86. bj.46 37. 2256 25. 28817 24. 93289 23 5. 58 86. 6798 37. 1289 25. 17586 24. 96822
5. 75 86. 7396 37. 9346 25. 12214 24. 98755 25 6. 99 86. 7835 36. 9396 2S. 96987 25. 91487 TOTAL., TIME LEAK RATE = 25. 914873 95% UPPER CONFIDENCE LIMIT LEAK RATE = 28. 3393 MAXZMUM ALLOWABLE LEAK RATE = 128.5

ATTACHMENT YI TABLE VI. 13 WNP-2 BYPASS LEAKAGE TEST (25 PSID)

TEST STARTED AT 1915 ON 2/14/84 MASS POINT LEAK RATE ELAPSED TIME = b. 90 DATA ELAPSED TEMP PRESSURE LEAK RATE SET TIME AVG MEASURED CALCULATED (HR) (F) (PSIA) 3 G. 56 85. 7393 39. 1986 27 54616 25. 43771 4 G. 75 85. 7859 39. 6934 27 18939 25. 43771 5 1. 99 85. 7879 39. 9122 19 86575 25. 43771 6 1. P5 85. 83P5 38. 9926 21 39692 25. 43771 7 1. 56 85. 85S8 38. 79C9 22 44992 25. 43771 8 1. 75 85. 9165 38. 6774 23 34187 25. 43771

2. 96 85 9439 38. 5697 23 76898 25. 43771 1

9 2. 25 85. 9839 38. 4636 24 08034 P.5. 43771

2. 59 86. 0394 38. 3537 24 44719 25. 43771 12 2. 75 86, 0689 38. 2454 24 67252 25. 43771 13 3. 96 86. C763 38. 1495 24 57737 25. 43771 14 3. 25 86. 2921 38. 9443 24 82417 25. 43771 15 3. 59 86. 2575 37. 9405 24 92556 25. 43771 3, 75 86. P939 37. 8389 24 96998 P5. 43771
86. 3434 37. 7317 25 98337 25. 43771
4. 25 86. 414P. 37. 6296 25 14971 25. 43771
4. 56 Sb. 4619 37. 5260 25 19129 25. 43771 4 ~ 75 86. 5137 37. 4254 25 26184 25. 43771
5. 66 86. 56S5 37. 3232. 25 23229 25. 43771
5. 25 Sb. 6146 37. 2256 25 29917 25. 43771 N3 5. 56 86. 6798 37. 1289 25 17566 25. 43771
5. 75 86. 7396 37. 6346 25 12214 25. 43771 25 6. 69 86. 7835 36. 9396 25 66987 25. 43771 MASS POINT LEAK RATE = 25. 437713 95'/ UPPER CONFIDENCE LIMIT LEAK RATE = 25. 7565 MAXIMUM ALLOMABLE LEAK RATE = 128.5

ATTACHMENT VI TASLE VI.

MNP-2 BYPASS LEAKAGE TEST (15 PSID)

TEST STARTED AT 388 ON 2/1S/84 AVERAGED MEASURED DATA DATA TIME TEMP DEWPT PRESSURE

'ET  !HR) (F) (F) (PSI) 1 388 86. 847 71. 924 29. 996 2 315 87. 822 72. 279 29. 932 3 338 87. 158 72. 457 29. 869 4 345 87. 269 647 '2:

2'9. 884 5 488 87. 337 72. 924 29. 748 6 415 87. 437 72. 988 29. 675 7 438 87. 519 73. 383 29. 612 8 445 87. 581 73. 488 29. 548 9 588 87. 646 73. 561 29. 433 18 51S 87. 743 73. 617 29. 428 11 538 87. 813 73. 737 29. 355 545 87. 862 73. 853 29. 292 13 688 87. 945 73. 887 29. 2P5 14 615 88. 828 74. 854 29. 159 15 638 88. 887 73. 999 29. 893 645 88. 149 74. 897 29. 831 17 788 88. 214 74. 211 28. 968 18 715 8S. 388 74. 302 28. 987 19 738 88. 355 74. 415 28. 848 28 745 88. 432 74. 438 28. 779 21 888 88. 482 74. 388 28. 717 22 815 88. 567 74. 604 28. 655 23 838 88. 623 74. 693 28. 599 24 845 88. 697 74. 887 28. 537

'25 908 88. 771 74. 984 28. 486

ATTACHMENT VI TABLE VZ.'l5 MNP-2 BYPASS LEAKAGE TEST (15 PSID)

TEST STARTED AT 380 ON 2/15/84 CORRECTED DATA

SUMMARY

DATA PRESSURE AZR PRESSURE SET AZR MASS TOTAL

¹ <HRS) (F) (PSZ) (LB) <PSZ) 1 388 86. 847 29. 6888 29318. 92 29. '9957 2 315 87. 822 29. 5401 29242. 34 29. 9325 3 338 87. 158 29. 4742 29178. 33 29. 8698 345 87. 269 29. 4872 29897. 67 29. 8845 5 488 87. 337 29. 3398 29826. 62 29. 7481 6 415 87. 437 29. 2727 2895S. 69 29. 6746 I 438 87. 519 29. 2858 28885. 28 29. 6128 8 445 87. 581 29. 1398 28815. 84 29. 5476 588 87. 646 29. 8237 28698. 39 29. 4334

,. 18 515 87. 743 29. 8188 28679. 77 29. 428S 538 87. 813 28. 9428 28689. 74 29. 3558 12 545 87. 862 28. 8787 28543. 83 29. 2925 608 87. 945 28. 8119 28473. 42 29. 2258 14 615 88. 828, 28. 7429 28481. 39 29. 159S 15 638 88. 887 28. 6773 28333. 89 29. 8931 16 645 88. 149 28. 6143 28267. 67 29. 8315 17 708 88. 214 28. 5492 28288. Gi 28. 9688 18 .715 88. 388 28. 4874 28134. 54 28. 9875 738 88. 355 28. 4185 28863. 61 28. 8481 2Q 745 88. 432 28. 3S66 27998. 61 28. 7786 21 880 88. 482 28. 2957 27935. 96 28. 7178 815 88. 567 28. 2312 27867. 98 28. 6555 23 838 88. 623 28. 1733 27887. 95 28. 5989 24 845 88. 697 28. 1891 27748. 78 28: 5374 25 988 88. 771 28. GS77 27686. 37 28. 4863

ATTACHMENT VI TABLE VZ. 16 WNP-2 BYPASS LEAKAGE TEST (15 PSID)

TEST STARTED AT 389 ON 2/15/84 TOTAL TINE LEAK RATE ELAPSED TIME = 6. 88 DATA ELAPSED TENP PRESSURE LEAK RATE SET TINE AV4 NEASURED CALCULATED (HR) (F) (PSIA)

8. 25 87. 8224 29. 5481 25. 87478 24. 41284 3 9. 59 87. 1591 29. 4742 24. 32697 24. 31673
8. 7S 87. 2687 29. 49.72 24. 14896 24. 22961 5 1. 80 87. 3372 29. 3398 23. 92673 24. 12458 6 1. 25 87. 4368 29. 2727 23. 78623 24. 92839 7 1. 58 87. 5189 29. 2958 23. 66868 23. 93228 8 1. 75 87. 5889 29. 1398 23. 53148 23. 83616
2. 89 87. 6469 29. 8237 25. 39718 23. 7499S 19 25 87. 7434 29. 8198 23. 25238 23. 64394 ii 2.

2.

2.

59 75 87.

87.

8131 8617 28.

28.

9428 8787 23.

23.

22138 97285 23.

23.

54787 45176 13 3. 99 87. 9447 28. 8119 23. 97864 23. 35565

3. 25 88. 9288 28. 7429 23. 11818 23. 25954
3. 58 88. 8866 28. 6773 23. 85673 23. 16343
3. 75 88. 1487 28. 6143 22. 94765 23. 86732 4, 89 88. 2140 28. 5492 22. 89798 22. 97121
4. 25 88. 3805 28. 4874 22. 81288 22. 87589
4. 58 88. 3552 28. 4185 22. 83495 22. 77898 20 4. 75 88. 4323 28. 3566 22. 75338 22. 68287 21 5. 99 88. 4819 28. 2957 22. 64116 22. 58676 22 5. 25 88. S669 28. 2312 22. 62422 22. 49965 23 5. 58 88. 6227 28. 1733 22. 48889 22. 39454
5. 75 88. 6968 28. 1091 22. 46663 22. 29842 25 6. 98 88. 7706 28. 8577 22. 27277 22. 28231 TOTAL TINE LEAK RATE = 22. 292312 95'/ UPPER CONFIDENCE LINIT LEAK RATE = 22. 9959 NAXZNUN ALL04IABLE LEAK RATE = 128. 4

ATTACHNENT VI TABLE VI. 17 MNP-2 BYPASS LEAKAGE TEST (15 PSID)

TEST STARTED AT 396 ON 2/15/84 NASS POINT LEAK RATE ELAPSED TIME = 6. GG DATA ELAPSED TEMP PRESSURE LEAK RATE

~ 'ET TINE AVC NEASURED CALCUl ATED (HR) <F) (PSIA) 3 8.56 S7. 1561 29. 4742 24. 32697 22. 36528 4 8. 75 87. 2687 29. 4972 24. 14866 22. 39529 5 1. 88 87. 3372 29. 3398 23. 92673 22. 39529 6 1. 25 87. 4368 29. 2727 23. 78623 22. 39526 7 1. 56 87. 5189 29. 2858 23. 66868 22. 38528 8 i. 75 87. 5889 29. 1398 23. 53149 22. 38528 9 2. 80 87. 6469 29. 6237 25. 39719 22. 36526 16 2. 25 87. 7434 29. 9168 23. 25238 22. 38528

2. 56 87. 8131 28. 9428 23. 22136 22. 36528 12 2. 75 87. 8617 28. 8787 23. 67265 22. 39528 13 3. 86 87. 9447 28. 8119 23. 87664 22. 38528 14 3. 25 88. 8269 28. 7429 23. 11916 22. 30520 15 3. 56 BS. 6866 28. 6773 23. 85673 22. 38529 16 3. 75 88. 1487 28, 6143 22. 94765 22. 38528 17 4. 89 88. 2148 28. 5492 22. 89798 22. 36529 18 4. 25 88. 3895 28. 4874 22. 81298 22. 39528
4. 56 S8. 3552 28. 4185 22. 83495 22. 36529 26 4. 75 88. 4323 28. 3566 22. 75338 22. 38526 21 5. 60 88. 4819 28. 2957 22. 64116'2.
22. 36528 22 5. 25 88. 5669 28. 2312 62422 22. 38529 23 5. 56 88. 6227 28. 1733 22. 48869 22. 39529 24 5. 75 -88. 6968 28. 1891 22. 46663 22. 39528 25 6. 96 88. 7786 28. 8577 22. 27277 22. 30526 MASS POiNT LEAK RATE = 22. 395293 95/ UPPER CONFIDENCE LINIT LEAK RATE 22. 5149 MAXIMUM ALLOWABLE LEAK RATE = 128. 4

AT'TACHNENT VI TABLE VE. 18 WNP-2 BYPASS LEAKACE TEST (5 PSlD)

TEST STARTED AT 1945 ON 2/15/84 AVERAGED NEASURED DATA DATA TXNE TENP DEWPT PRESSURE SET (HR) (F) (F) (PSX) 1 1945 91. 888 72. 344 19. 879 2 2899 91. 776 72. 427 19. 862 3 2815 91. 819 72. 593 19. 848 4 2839 91. 863 72. 642 19. 835 5 2845 91. 924 72. 772 19. 823 6 2189 91. 999 72. 782 19. 818 7 2115 92. 983 72. 986 19. 798 8 2138 92. 141 73. 168 19. 786 2145 92. 294 73. 157 19. 774 18 2209 92. 321 73. 375 19. 762 ii

'i2 2215 2239 92.

92.

384 473 73.

73.

485 573 19.

19.

751 739 13 2245 92. 548 73. 748 19. 728 14 2398 92. 625 73. 685 19. 717 15 2315 92. 691 73. 988 19. 706 16 2338 92. 768 74. 869 19. 695 17 2345 92. 844 74. 188 19. 683

ATTACHMENT vr TABLE VX. 19 NIP-2 BYPASS LEARAGE TEST (5 PSEUD)

TEST STARTED AT 1945 ON 2/15/84 CORRECTED DATA SUNNARY DATA TENE TEMP PRESSURE AlR PRESSURE SET AIR MASS TOTAL (HRS) (F) (PSZ) (LB) (PSX) 1 1945 91. 888 19. 4853 19121. 56 19. 8786 2 20ee 91. 776 19. 4673 19194. 99 19. 8617 3 2915 91. 819 19. 4524 19888. 86 19. 8478 283e 91. 863 19. 4376 19872. 86 19. 8349 5 2845 91. 924 19. 4246 19857. 37 19. 8239 6 2180 91. 999 19. 4109 19941. 89 19. Biee 7 2115 92. 083 19. 3962 19924. 62 19. 7981 8 2138 92. 141 19. 3819 19698. 63 19. 7862 2145 92. 284 19. 3781 18994. 82 19. 7743 le 2288 92. 321 19. 3551 18976. 11 19. 7623 ai 2215 92. 384 19. 3438 18962. 85 19. 7514 12 2238 92. 473 19. 3295 18945. BO 19. 7394 13 2245 48 19. 3162 18939. 16 19. 7285 14 2386 92. 625 19. 3852 18916. 79 19. 7166 15 2315 92. 691 19. 2980 18899. 64 19. 7857 16 2338 92. 768 19. 2788 18885..27 19. 6947 17 2345 92. 844 19. 2655 18879. 34 19. 6828

ATTACHNENT VI TA6LE VI. 20 NNP-2 SYPASS LEAKAGE TEST <5 PSID)

TEST STARTED AT 1945 ON 2/15/84 TOTAL TINE LEAK RATE ELAPSED TINE = 4. 68 DATA ELAPSED TEMP PRESSURE LEAK RATE SET TINE AUG NEASURED CALCULATED I

<HR) (F) (PSIA)

G. 25 91. 7758 19. 4673 8. 31829 8. 28124 3 G. 56 91. 8193 19. 4S24 8. 28845 8. 17996

9. 75 91. 8629 19. 4376 8. 14944 8. 15867 5 1. 99 '9l. 9236 19. 4248 8. 85689 8. 13739 6 1. 25 91. 9991 19. 4189 7. 9995S 8. 11611 7 1. 56 92. 6826 19. 3962 8. 11112 8. 69483
1. 75 92. 14iG 19. 3819 8. 69935 8. 97354
2. 98 92. 2849 19. 3791 7. 95347 8. 05226 ae 2. 25 92. 3211 19. 3551 8. 11358 8. 83898
2. 58 92. 3841 19. 3438 7. 96758 8. 86969 J 2 2. 7S 92. 4726 19. 3295 8. 92149 7. 98841 13 3. 96 92. 5486 19. 3162 8. 96736 7. 96713 14 3. 25 92. 6255 19. 3852 7. 91121 7. 94584 15 3. 58 92. 6912 19. 2988 7. 95784 7. 92456 16 3. 75 92. 7677 19. 2788. 7. 99866 7. 98328 17 4. 88 92. 8446 19. 2655 7. 88254 7. 88288 TOTAL TINE LEAK RATE = 7. 881996 95% UPPER CONFIDENCE LINIT LEAK RATE = 8. 8688 NA'AINUN ALLOMABLE LEAK RATE = 116. 7

ATTACHNENT VI TABLE VI. 21 WNP-2 BYPASS LEAKAGE TEST (5 PSID)

TEST STARTED AT 1945 ON 2/15/84 NASS POINT LEAK RATE ELAPSED TINE = 4. GO DATA ELAPSED TENP PRESSURE LEAK RATE SET TINE AVC NEASURED CALCULATED (HR) (F) (PSIA) 3 0. SG 91. 8193 19. 4524 8. 2G845 7. 8967G G. 75 91. 8629 19. 4376 8. 14944 7. 8967G 5 i. GG 91. 9236 19. 424G 8. G5609 7. 8967G 6 1. 25 91. 9991 19. 41G9 7. 99955 7. 8967G 7 i. 50 92. G826 19. 3962 8. 11112 7. 8967G 8 i. 75 92. 141G 19. 3819 8. G9935 7. 89670

2. GG 92. 2G4G 19. 37Gi 7. 95347 7. 8967G 1G 2. 25 92. 3211 19. 3551 8. 1135G 7. 8967G
2. 5G 92. 3841 i9. 3438 7. 96758 7. 8967G 12 2. 75 92. 4726 19. 3295 8. G2149 7. 8967G 13 3. G0 92. 548G 19. 3162 8. GG736 7. 8967G 14 3. 25 92. 6255 19. 3G52 7. 91121 7. 8967G 15 3. 5G 92. 6912 19. 29GG 7. 95784 7. 8967G 16 3. 75 92. 7677 19. 278G 7. 9G866 7. 8967G 17 4. GG . 92. 844G 19. 2655 7. 88254 7. 8967G NASS POINT LEAK RATE = 7. 8967G4 95/ UPPER CONFIDENCE LINIT LEAK RATE 7. 9455 NAXINUM ALLOWABLE LEAK RATE = 116. 7

ATTACHMENT VI TABLE VI. 22 WNP-2 BYPASS LEAKAGE TEST (i. 5 PSEUD)

TEST STARTED AT 588 ON 2/16/84 AVERAGED MEASURED DATA DATA TZilE , TEMP DEWPT PRESSURE SET (HR) (F) (F) (PSX) 506 94. 697 72 ~ 523 16. 893 2 ,

515 94. 244 72. 694 16. 894 3 538 94. 328 72. 869 lb. 893 4 545 94. 415 72. 859 16. 891 5 608 94. 562 73. 12S ib. 689 6 615 94. 584 73. 275 16. 887 7 636 94. 654 73. 288 lb. 884 8 645 94., 741 73. 529 lb. 682 766 94. 811 73. 476 16. 888 18 715 94. 886 73. 885 16. 877 11 738 94. 953 73. 717 16. 875 l2 745 95. 828 73. 836 16. 873 13 888 95. 899 74. 149 16. 878 14 815 95. 174 74. 185 16. 868 15 836 95, 221 74. 218 16. 865 16 845 95. 274 74. 488 16. 863 17 988 95. 342 74. '688 16. 868

ATTACHNENT VI TABLE VI. 23 WNP-2 BYPASS LEAKAGE TEST (i. 5 PSID)

TEST STARTED AT 588 ON 2/16/84 CORRECTED DATA SUNNARY DATA TINE TENP PRESSURE AIR PRESSURE SET AIR NASS TOTAL (HRS) (F) (PSI) (LB) (PSI) 598 94. 897 15. 6974 15348. 72 16. 8931 2 515 94. 244 15. 6961 15335. 38 16. 8941 3 530 94. 328 15. 6936 15338. 56 16. 8931 4 545 94. 415 15. 6989 15325. 55 16. 9911 5 689 94. 582 15. 6853 15317. 66 16. 8891 6 615 94. 584 15. 6813 15311. 47 16. 8871 7 638 94. 654 15. 6783 15386. 62 16. 8842 8 645 94. 741 15. 6729 15298. 93 16. 8822 789 94. 811 15. 6716 15295. 76 16. 8882 18 715 94. 888 15. 6641 15286. 58 16. 8772 739 94. 953 15. 6633 15283. 72 ib. 8752 12 745 95. 028 15. 6597 15278. 19 16. 8732

-13 880 95. 999 15. 6523 15268. 96 16. 9782 14 815 95. 174 15. 6498 15264. 46 16. 8682 15 838 95. 221 15. 6463 15259. 88 16. 8652 16 845 95. 274 15. 6485 15252. 67 ib. 8632 17 989 95. 342. 15. 6368 15246. 42 16. 8683

ATTACHMENT VI TABLE VI. 24 WNP-2 BYPASS LEAKAGE TEST (1. 5 PSID)

TEST STARTED AT 598 ON 2/ib/84 TOTAL TIME LEAK RATE ELAPSED TINE = 4. 89 DATA ELAPSED TENP PRESSURE LEAK RATE SET TINE AVG NEASURED CALCULATED (HR) (F) (PSIA)

8. 25 94. 2438 15. 6961 3. 34835 3. 37226 3 9. 58 94. 3278 15. 6936 3. 17822 3. 39886 4 8. 75 94. 4147 15. 6989 3. 16452 3. 42386 5 1. 98 94. 5921 15. 6853 3. 69773 3. 44966 6 1. 25 94. 5836 15. 6813 3. 66974 3. 47546 7 1. 58 94. 6541 15. 6783 3. 55662 3. 58i26 8 i. 75 94. 7413 15. 6729 3. 73625 3. 52797 9 2. 99 94. 8119 15. 6716 3. 51677 3. 55287 19 2. 25 94. 8893 15. 6641 3. 76993 3. 57867
2. 58 94. 9532 15. 6633 3. 56696 3. 68447 12 2. 75 95. 8281 15. 6597 3. 56251 3. 63827 13 3. 09 95. 8993 aS. 6S23 3. 74242 3. 65607
3. 25 95. 1737 15. 6498 3. 67977 3. 68187
3. 59 95. 2296 15. 6463 3. 61697 3. 78767
3. 75 95. 2738 15. 6405 3. 67323 3. 73347
4. 88 95. 3424 15. 6368 3. 68828 3. 75928 TOTAL TINE LEAK RATE = 3. 759275 95/ UPPER .CONFIDENCE LIMIT LEAK RATE = 4 8487 N*XINUM ALLOWABLE LEAK RATE = 78. 408

ATTACHMENT YI TABLE VI. 25 WNP-2 BYPASS LEAKAGE TEST (1. 5 PSID)

TEST STARTED AT 588 ON 2/16/84 MASS POINT LEAK RATE ELAPSED TIME = 4. 88 DATA ELAPSED TEMP- PRESSURE LEAK RATE SET TIME AVG MEASURED CALCULATED a (HR) (F) (PSIA) 3 94. 3278 15. 6936 3. 17822 3. 78628 4 8. 75 94. 4147 15; 6989 3. 16452 3. 78628

94. 5821 15. 6853 3. 68773 3. 78628 6 1. 25 94. 5836 15. 6813 3. 66874 3. 78628 7 1. 58 94. 6541 15. 6783 3. 55662 3. 78628 8 1. 75 94. 7413 15. 6729 3. 73625 3. 78628
2. 88 94. 8118 15. 6716 3. 51677 3. 78628 18 2. 25 94. 8883 15. 6641 3. 76993 3. 78628
2. 58 94. 9532 15. 6633 3. 56696 3. 78628
2. 75 95. 0281 15. 6597 3. 56251 3. 78628 13 3. 88 95. 8993 15. 6523 3. 74242 3. 78620
3. 25 95. 1737 15. 6498 3. 67877 3. 78628 15 95. 2286 15. 6463 3. 61697 3. 78628 16 3. 75 95. 2738 15. 6485 3. 67323 3. 78628
17. 4. 88 95. 3424 15. 6368 3. 68828 3. 78628 MASS POINT LEAK RATE = 3. 786197 95% UPPER CONFIDENCE LIMIT LEAK RATE "- 3. 7688 MAXIMUM ALLONABLE LEAK RATE = 78. 408

ATTACHMENT VII GRAPHS Table of'ontents

1. PCILRT Averaged Temperature ('F) Versus Time
2. PCILRT Averaged Dewpoint ('F) Versus Time PCILRT Averaged Absolute Pressure Versus Time
4. PCILRT Air Mass Versus Time
5. LRVT Averaged Temperature ('F) Versus Time
6. LRVT Averaged Dewpoint ('F) Versus Time
7. LRVT Averaged Absolute Pressure Versus Time
8. LRVT Air Mass Versus Time
78. 17%%

tkk

%% ~

77. 80%%

tk k

t tk

77. 43%%

%k 1

77. 06% t t

tt%

76. 69%%

k D

E t M 76. 32%%

t %k%

P T t  %% ~ t

75. 96% t  %%

t k F

%%% ~ tt t k t

75. 59%%

t t

75. 22%% t kk%

f

74. 85%%

%% ~t 74 48%%%%%%ttktktt ttt%tttttttf%%%% ~ %%%%%%tt%%%%%%%%kttt%%%tt%tttkt%%kk%%%tkkt%%%%%%%%%%%%%%k%%%k%%%%tt%%%k

~

k t k

0. 00 2. 42 4. 85 7. 27 9. 70 12. 12 14. 55 lb. 97 19. 40 21. 82 24. 25 TINE (HOURS)

FIGURC VII. 2 PCILRT AVERACED DEHPOIWT VS TIVE

19. 78>>>>

t

49. 75>>>>

k

49. 71>>l
49. 68>>>>

t >>%%%%%

k tl%1%

t 4%%t%

49. 64>>t

%4%%k P  %%4%

R t E 49. 61%%  % 4k l%%

8 >> k 8 kttk%%  %%%%%%%t%%%>>%%%4%

t l'9. 58%>>

8  %%%>>>>

4 I, k %%%>>4%

4>>

49. 54>>t t
49. 51>> t t
49. 47 ~ t
49. 44>> ~ >>tt>>>>Nk%>>>>>>t>>%>>t>>%4kt%%tt%%ttt%k>>%kttk%ttt%%ttttt%kttt%%k%%%%%%%%%%%>>%%%%%%%%%%%tttt>>%%%%%%%%%%%%%4k

>> >> t

0. 00 2. 4P. 4. 85 7. 27 9. 70 12. 12 14. 55 16. 97 19. 40 21. S2 24. 25 TIllE (SOURS)

FIAUAE VXI. 3 PCII.RI AVERAGED 6ASOl.UTE PRESSUAE VS TIllF

. 39%%

t t

. 38' kkkk r

. 38%%

kt kkkk

. 37kt t%%%%%%%%%k t k%%k L  %%%tk %kk 8 t  %%%%%%%

8 . 37%% %k%%%%

t1 t%%%% ~

A t  %%ttt t S 8 . 36%% ~ %%%ttt 8 %k%%k k%%

/

1 8 . 36kr 0

0 t 0 8, 35%%

k

, 35%%

r t

, 35%%

. 34%%%%k%%k%%k%k%%k%ktkkkkkkktt%% ~ %%%%kkkk%%%%%%%%%%%%%%%%%%%%%%t%%%%%%%kkk%ttt%%%%%%%%%tt%%% ~ %%%%%tkt%%%

r k k 0, 00 2. 42 4. 85 7. 27 9. 70 12. 12 14. 55 16. 97 19. 40 21.'82 24. 25 TINE (HOUAS)

FIGUAE VTI. 4 PCILAT AIR BASS VS TII12

85. 89%<<

k k

85, 80tt k

85. 71>><<

1 t

85. 6ikt
85. 52k t T

E H 85. 43%%

P t

F t

85. 34k t k
85. 25%% 4 t
85. 15%%

t

85. 06%%

t

84. 97k%k%%k ~ kkkkkkk+ktkkk%tttttkktkkkt%%1ktk%k%kk%%%%ktt%k%tk%%%%kttkt%tk%ktkkk%kk%kttt%kktk%k%k%kk%%kttkt~
0. 00 0. 65 L. 30 1. 95 2. 60 3. 25 3. 90 4. 55 5. 20 5. 85 6. 50 TIHE (HOURS)

FIGURF. VII. 5 LRVT AVERAGEO TEUPERATURE VERSUS TIPIE

I

79. 40% ~

t t

79. 27% t t

t

79. 14%%

t t

79. Bitt t

t

78. 88%k O t t E

W 78. 75%% t t

P k T t

78. 62%%

F t

78. 49%%

t l

t

78. 36%%

k

78. 23%%

t k

78. 10%tt%%%%%%%%%)%%%%%%%%%%%%%%%%%%%%%%tktk%%%%%%%%%%tttkk%%%k%%%%%%%%%%%%%tk ~ %%%%t%%%%%ktt%%ttt%kktktttkt
0. 00 0. 65 1. 30 1. 95 2. 60 3. 25 3. 90 4. 55 5. 20 5. 85 6. 50 TINE (HOURS)

F1GUAE VII. 6 LAVT AVERAGEO OEHf'OINT VS TINE

49. 79>>k t
49. 77>>t t
49. 75>>t t

t t

49. 72>>>>
49. 70<<t t

P t R

E 49. 68>>t k t t  %  % t t k  % t  %>> t S t 8

P 49. 66>>t 8 t I

A

49. 64>>>>

t

49. 61>> ~

k

49. 59>>>>

t

49. 57>>tk>>%%>>>>kkkkktk>>>>%%>>%%>>>>%>>>>%%>>k>>%>>%k%%%%>>>>%%%%%t%%%%kt>>%%>>>>% ~ %>>%%%%%>>kkt>>%%%%%>>%%%%%>>>>%tttkkk>>%>> ~ tt%%%

t t

0. 00 0. 65 1. 30 1. 95 2. 60 3. 25 3. 90 4. 55 5. 20 . 5. 85 6. 50 TIllE (ROURS)

FIGURE VII 7 LRVT AVERAGED ABSOLUTE PRESSURE VS TIRE

8. 37%%

t

8. 37%%

t t

8. 36% ~

t

8. 36k t t

L t k 8

8. 35%%

t N t k

8 B. 35%%

S

/

1 8. 35kt 0

0 I 0 k 0 8. 34%%

k

8. 34%%
0. 33%%

t

8. 33%%%%ktkt%%%%%%%%%%%%%%kkttttk%%%%%%%% ~ %%%%%%%%%tktktkt ~ %%%%%%%%%%%%%%tkkkt%%%%%%%%%ktkkkkkt%%%%%%tk%%%

t t t

0. 00 0. 65 L. 30 1. 95 2. 60 3. 25 3. 90 4. 55 5. 20 5. 85 6. 50 TINE (HOURS)

FTCUAE VII. 8 I AVT AIA NABS VS TINE

ATTACHMENT VIII GLOSSARY

'LFI--'ypass Leakage Flow Instrument BLR Bypass Leakage Rate (leakage from the Drywell to the Wetwell across the Drywell Floor)

BLRT Bypass Leakage Rate Test 0 BLRT- Specific BLRT wherein the test differential pressure (in psid) is specified. Could be 25, 15, 5, or 1.58 BLRT CIV- Containm nt Isolation Valve DAS Data Acquisition System Drywell Floor (horizontal concrete slab separating the Drywell from the Wetwell)

FVM- Flow Verification Monitor (part of ILRMS)

ILRMS- Integrated Leak Rate Monitoring System ILRT - Save as PCILRT ILRTA - Integrated Leak Rate Test Analysis (Ref. 5.12)

Local Leakage Rate Test (Type B or C test)

Leakage Rate Leakage Rate Verification Test (the supplemental test performed just after the Type A test)

)

MSIV- Main Steam Isolation Valve (CIVs in Main Steam Lines) r OILR- Overall Integrated Leakage Rate Pa- Peak Accident Pressure (34.7 psig)

PCILRT - Primary Containment Integrated Leakage Rate Test (Type A Test) pcI- PRC Design Pressure (45 psig)

PRC- Primary Reactor Containment Reactor Building RPV- Reactor Pressure Vessel SCCM- Standard Cubic Centimeters per Minute UCL- Upper Confidence Limit

- Weight Percent Per Day FRC Penetration (Blank numeral) filled in with the specific identifying

e