ML17258A720

From kanterella
Jump to navigation Jump to search
Forwards Response to NRC 801215 Questions Re SEP Topic IV-2, Reactivity Control Sys. Design Features Which Limit Reactivity Insertion Rates & Rod Malfunctions from Single Failure Described
ML17258A720
Person / Time
Site: Ginna Constellation icon.png
Issue date: 01/19/1981
From: Maier J
ROCHESTER GAS & ELECTRIC CORP.
To: Crutchfield D
Office of Nuclear Reactor Regulation
References
TASK-04-02, TASK-RR NUDOCS 8101230418
Download: ML17258A720 (16)


Text

II l

REGULATORY FORMATION DISTRIBUTION SY M (RIDS)

ACCESSION NBR:8101230418 DOC ~ DATE: 81/01/19 NOTARIZED: NO DOCKET 0 FACIL:50-244 Robert Emmet Ginna Nuclear PlantE Unit ii Rochester G 05000244

'AUTH ~ NAtlE AUTHOR AFFILIATION MAIER<J ~ E, Rochester Gas L Electric Corp.

REC IP ~ NAME'ECIPIENT AFFILIATION CRUTCHFIELD,D. Operating Reactors Branch 5 SUBJECT; Forwards response to NRC 801215 questions re SEP Topic IV 2i reactivity control sys,Design features which limit reactivity insertion rates L rod malfunctions from single failure described, DISTRIBUTION CODE: AO35S TITLE: SEP Topics COPIES RECEIYED:LTR 3 ENCL j SIZE:4,a, NOTES: 1 copy:SEP Sects Ldr. 05000244 RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL IO CODE/NAME LTTR ENCL ACTIONS CRUTCHF IELD 04 7 7 INTERNAL: A/D MATL8 QUAL13 1 1 CONT SYS A 07 1 1 HYD/GEO BR 10 2 2 I8E 06 2 2 02'G 1 1 OR ASSESS BR 11 1 1 F ILE 0 1 1 1 SEP BR 12 3 EXTERNAL: ACRS 14 16 16 LPDR 03 1 1 NSIC 05 1 1 3C 3g TOTAL NUMBER OF COPIES REQUIRED ~ LTTR ENCL

/ ///////// ///////////

A l uiiz~iki(I zzzziiz g ~ llAIK ROCHESTER GAS AND ELECTRIC CORPORATION o 89 EAST AVENUE, ROCHESTER, N.Y. l4649 JOHN E. MAIER TKLKPHONK VICE PRESIDENT ARKA COOK 7ld 546-2700 January 19, 1981 Director of Nuclear Reactor Regulation Attention: Mr. Dennis M. Crutchfield, Chief Operating Reactors Branch 55 U.S. Nuclear'egulatory Commission Washington, D.C. 20555

Subject:

SEP Topic IV-2, Reactivity Control Systems R. E. Ginna Nuclear Power Plant; Docket No. 50-244

Dear Mr. Crutchfield:

Enclosed is the RG&E response to questions transmitted by the NRC via letter dated December 15, 1980 concerning this SEP topic ~

Very truly yours, J. E. Maier JEM:ng Attachments IAJ CD Vlg CD I//P ~

K"

~F3'>~

~~KKI J C//

+4

~7 C sxoxsso g<%

I Response to SEP Topic IV-2 Questions

1. Describe the single failures within systems used for reactivity control which can:

a) Cause an inadvertent reactivity insertion.

b) Cause a single or combination of rods to be positioned in other than the design sequence. For PWRs this should include consideration of single rod withdrawal/

'insertions which can result, from a single eguipment component failure.

Response: The two systems that could cause an inadvertent reactivity insertion are the Chemical Volume Control Sys'em (CVCS) and the Rod Control System (RCS).

'he Ginna FSAR (Reference 1) evaluated the effect of inadvertent reactivity insertion resulting from a malfunction in the CVCS. The dilution rate was based on plant piping layout and maximum pump capacity.

Another study of possible dilution paths was submitted to the NRC in a letter from RG&E dated April 30, 1979, "Postulated Boron Dilution". It is considered that all credible single failures have been accounted for in these analyses; the CVCS will thus not be further discussed.

An evaluation of the effect of single failures on the RCS has been done. The results of that evaluation indicate that there are only two possible single failures that could cause an inadvertent. reactivity insertion.

1. A malfunction of the rod motion control switch.
2. Shifting of the bank overlap unit-digit causing banks to overlap improperly.

The, study indicated that. all other single failures cause K

an Urgent Alarm which prevents rod motion (other than scram).

In addition to our evaluation the following statements are made in the FSAR:

Control banks can be moved only in their normal sequence with same overlap. Relay interlocks, designed to meet the single failure criteria, are provided to preclude simultaneous withdrawal of more than one group except in overlap regions.

No possible failure in the power cabinet can cause more than one group of 4 control rod, drive mechanisms (CRDM) to move at the same time.

The CRDM's are wired into preselected groups and these group configurations are not altered during core life. Therefore, the rods are physically prevented from withdrawing in other than their respective groups.

2. Delineate those design features which limit reactivity insertion rates and rod malpositions resulting from a single failure. Provide the appropriate circuit schematics showing these design features.

Response: A failure within the RCS will generate an Urgent Alarm which will prevent, rod motion. The Urgent Alarm does the following:

Signal AL-1 is generated and commands reduced power to the Stationary and Movable Gripper Regulation Cards (1051E05 sh. 9 8 12).

2. Signal AL-3 is generated and commands zero current on Lift Regulator Card (.1051EOS sh. 10 6 12).

An Urgent Alarm is generated in response to:

1. Any card not in place each card has an interlock circuit associated with the Urgent Alarm.
2. An abnormal change in phase or current returning from the coils (Ripple detector 1051E05 sheet 2 6 10).
3. Coil current remaining saturated too long (E Sat.

Detector 1051E05 sh. 2).

4. Firing circuit error (1051E05 sh. 11 S 12).
5. Multiplexing error (1051EOS sh. 12).
6. Logic Error (1051E05 sh. 12).

Another feature which limits the reactivity insertion rate is the manner by which rod speed is controlled. A buffer memory accepts a command go signal. Another go signal is inhibited until a slave cycler finishes.

(6056D01 sh. 4 and Figure 1-6).

Rod positioning is controlled by the bank overlap unit (6056D01 sh. 2 S 4). This unit keeps track of rods that move and rods to be moved sending a signal to the power cabinets. Thumb wheel switches with two diodes per switch per digit control bank overlap.

3 The referenced schematics are attached.

3. Provide or reference appropriate analyses to demonstrate that specified acceptable fuel damage limits are not exceeded in the event of any of the single failures identified in

[Question] 1 above.

Response: The rod withdrawn transient and CVCS malfunction transient were presented in Reference 1 and updated in Reference 2. The most limiting rod withdrawal was also reevaluated in Reference 3. The reactivity insertion rates used in the rod withdrawal transient analyses envelope the actual possible reactivity insertion rates at Ginna. The insertion rate used in the transient was greater than that for the two highest worth banks both assumed to be at their highest differential worth region. Therefore, the reactivity insertion rates identified in question 1 above are enveloped by the analysis.

4. Identify the operating procedures, alarms, interlocks, or protection system actions which must be used in 'limiting the consequences following a single failure within systems used for reactivity control. Where equipment. actions are required, indicate whether the equipment meets the criteria of IEEE-279.

Response: Should an inadvertent reactivity insertion occur, the transient response is presented in Reference 1, 2 and

3. The equipment required to operate is specified in the analyses. These transients require the reactor trip system to prevent Tuel damage. This system meets the requirements of IEEE-279.

A description of the comparison of the Ginna Protection system to IEEE-279-1971 is provided in Section III.C.1 of Reference 4.

References Rochester Gas and Electric Corp. R.E. Ginna Final Facility Description and Safety Analysis Report.

2. Rochester Gas and Electric Corp. R.E. Ginna Technical Supplement Accompanying Application to Increase Power, February 1971.
3. Exxon Nuclear Co. Inc., XN-NF-77-40 "Plant Transient Analysis for the R.E. Ginna Unit. 1 Nuclear Power Plant",

November 1977.

RGB "Technical Supplement Accompanying Application for a Full Term Operating License", August 1972.

r sr

~ ~

Ll 2 I~s-<<.tt:w~sai~d l ST& CIONARY GRIPPER POWER 3 see s&4 1

<<wv ew MN 1e<<

IIV w 1 IPs 1st AO&

1st ~ Vevws I

<<1 tel 1<< ' ~

V

<< V<< VV VV

\~

te<< fr<< I<< ~

4 Elpsse IS I4 et I vl f I

l fl ii if

~ ~

jj tj

~ sl tell ~ Nt W Mle llftell ~ ~

M tstse tl Vl ~ ~ I ~

Nl ~ Wl SS&Q

~44 CPI<<M>> .1st 14.

~ es w ten& ll sel set IV Ssl Vs ttt E~ ~I A fs LW ~ ~ ~ st ~ lt ~ 1

&tet CL~ ~1 ~ 2ws >> I -(<<s ~ ~ ~ ~ ~ << <<1 ~ <<

teew ~

Else~ ee( Ev~

I &

& III ~I

<<. ~

'i

.wl %'.s i.:g 1 ~ V

~\

~ I VVM11 IM 1 'lese ~

~ W~ ees VV

$ ~

R t ~

NIMIII ~ IIveil ~ HI Wi ~ I Estt 4&e&seLr prt 4 14

~EP Cee(&egg+ t C&C04 l09(05 Figure 4-31. Power Catstnct, Schcn4otlc Dlagrctn 105t EOS (8>cct 2 of 14)

L1 9

)))4)Kr~ ~

)I t) Ca)W +W5

~)/))

I K pc II

~ Ia

~ al

~I

~ I

~I 4)la) l laahKWKK 440444) ll I(I I44'44 4444K4 444I) 405 Q~~AIA%4 II KK aa L'l 4444 4Kalt~ HIIat f

I

~ ~4 (I ~ I aa II4a 4CHII441A )

~ 44(I 4 44'Iaa Kata a ~I I444I) L44I444 ~

NIK41444 VI%4al>> K 4 al I~ 44~ IKK aa

~ lA 44 <<I ~ aal I IK K444I WtQ ~ Ia(II ~ I44

~ 4)K 'wA44 I44K Italawa~

ahalaaaa)

~

44 I a~/ ~

~ 4 IN

~4

~ ll I ~ ~ 4

~ Iaaa K

~ 4

~ H I ~ M)

<<Wp W. 44~4 ~

r)l)a)a Cthe tS BO

~ names. E >)cc) )05)D)b K

Figure 4-31. Power Cabinet, Schematic Dtagram 1051 i%5 (Shcct 9 of 14)

5 'i I~ ~

l5ifl l1 s.(

aj I e

Ll 11

>>I>>N IIZKCSltfl I" )AC lA5tt54>> Ct&

't t >>>>>>

4 II ~t>>>> I

~ tt>>II 5t a\ IIIN Ittt ~fig 5 Ia

~ It N NN 1

I<< NI

~

~

J ll ~

>>It I 4 NlI

~N ~ IA 55405l I 11\>>NN>>4 I ~a<<tll NN>>454 1>>l <<15>> N<<t>>tt Vtlflt I<< tl >>ll<< IIV4 ttt

<<Ntl 4 ~ lt>>>> l<<NQ 51 1<<l 4

~

~ ~<<NN I\ <<<<4>>

4~ ~

III>>>> ~I INN>>t>>I N<< lll I\

~ ~

NON 455 N.

II II>>I <<\ N,

>>4 N>>till t<<4514 1<<11 Nl>>45

~

I >> lt t..t '" i--""

~ ltl >>I ~ A ~ I M.

I

<<1 tttI4455 r>>

NJP!W'.1 4<< I

~J N ~14

~ I4

~ I I

>>JN

~ I t 4

~ I 4 t' . 5555 Nl ~ 4>>~ I ~ ~

~ t>>t ~ ~

~

I ~W <<\

>>I>>N

~5 PI>>

5<<

N>>

I I>>

~ IN<<l NW I

~

~ >>>>

IN

<< ' I I<<>> l<<NN~.

~ ~

~ \ ~

~ IIV

~ 1

~ t CPIIutt Ctlttt+ C.

Figure 4-31. Power Cabinet, Schematic Diagram 10Sl hoS (Sheet ll oC H)

Ll 12 ll i IS

~ J>> SI(r( Cliy OI 1 I ~r H INJ

'I

+C 4

rl << I tI N (IS N<<<<

Ii<<s ~I

<>\

VV<<W (>> IN ~ ~

I r~ rs <>rs

~ A<<~

I MV<<<<( M>> 4( A( >>r VI V <<<<AA NI

~

<<<<1 (I A<<1 4 ~ I (r<<11 sr( 1~ r>>V(14

~ ~ ~

V<<s(I vtr A ( ~

~

H

<<r<<A lll(i ~

~

~

%(rr

~

14 (1 il >> ~

(<II<<(<<lVl r

rs ~ l

~

~ rl<<<<

t I ~ ss (VVI J ">> I ~ ~

<) ~ ~ rs r>><<<<

~

s<<r 1 <<

]I>>( Is v ~ I<<<<<< ~

I P'I, >> ~

(

SH 1 l Iws ~

~~

Wl. ~

II ~

~ 1 I.

1141 I

~ ~

~ ~

<<H I

~A

- '( S

~ ~

4 4 s<>r

~

~ &H ~ Vl ~ <<I

<<AJAI ~ 4 A W <<r <<<<<<4 S>>1 ~ 4 H

~(<II ( llgIIN<lg jgf ~~g E <6J< <((JI<f<IQ Figure 4-31. Po<rcr Cab!<<el, Schcmnllc D!<<gram 105l E05 (8<eel 12 <tl 14)

2

~ I I la<<I w\i I oa <<Ill ltfK<<I~

a UPI<<Afi Wlttfilt

<OI'i rjj I

~ ~

I gg I t I la I

I IH<<t<<W<<l Il<<l I

~

at << ~ I I

I W

I I Itt J I I

I I

I I C 2 <<a

~ << I L I aa n I I

I Ial laa lww L

r J

-m I

<<II ~In jan ~

l to<<all call<<cc I ~

L I <<t ~ <<<<W L J ~ <<W I-I ~ L r

L

--a ta J

I

~

I at <<W ~O WIWWINOC I 3

I I

I ~ I ~

I

.IV I

I I

'L ~ I o<<ww l<<a ~

WII IWO L

@2'toocfi<<I 4

'bto 1

I<<l O<<O W Ofi C a<<i ~ W wla W ~ IW ta<<o<<c<<ah till~

ocoacltwtol 89661 G05GDOl

~ llc 1 O<<ill t 2 <<a. I 241 I P.R Ftguvo 4-68. Logic Cebtnett Logtc Flow, htextmum System 6056D01 (Sheet 2 of 15) 4-157/4-156

<<HLO << lt I ~ la ttl 2

'i~')v.

1,  ; '.' I

,ll c( rt

-~ ol

'I O ac O, 2$ ,. *6 al t pff' 2'I,'

4. '.:;

4 2fit'c ~ "

j~

Ia

," Vt 'ht fifi f' ;I;l :;

I

/pe',.' At'4 5,1 "I=

j,v tot~.FIj v I,. ~ t'>> "'".' f 9 " *.,' I"0~4

B'vkjI p 334.

I jt

~

e 0

p e'j I

5 Ce e- ter, I J ' e tijt I l Jpe J 9 co;.: Itj! 'ef

'v'0 ~@..f r, ~ '0 e-Af' i ~

~

'rtdl I:t li;Ieil":..K 0:;

I IO ~ ee II~ I p>> 0 ~ I~ ~ eeetl ~

I e 0 Iveeve elite'40

f. i 4 ~

I

I

~~

0

~0 I r eo

~~

wlep 6 I

~ &

I j Ae le I

I "I I I

epeportrel el I

I-eo~~~p lm J Ir I ell ~ rpeIeel v',

I I

I I er ~0 r-lppovvge 'I I ~~

lr ~~ \

L ae I==-==-,;a I I ~~ Iervepe

' I ~~ we VIE r eec ~

IP

." -I ~ I I

~o I

I I P

-I,I I

I r-------

~

ere I ee ~

I v

I 0

I r l

PA teer NIPII I

I I I

I r- ~

I ew I I I ~ e ~

I I I Irv L ~ rior p

Aeieetlei ACOVCICAI909 (@+~< oeo oe5 10 % creev0

~ hei ore <<0 irtlr CIRCA IAI 89661 QQ5(jDQ) illI ~ 0 rr 9VOI P.R.

F36tire 4-68. Lotto Cabtvoct, Logtc Flow, tttaxtmcm Syvttcm 6CSGDOI (Shoot 4 of 15 4-16t/4

C a

L2 15 II c I~

Casa Daaceaela a A caaaseDelccaccp sla I I I Aal CIAH lw IICMC Icelec ~ aaa jftffftfftftfj-..;.

ae w llllllllllllll

>> riiiiiiiiiiiiim

~

I a as Daa ~

HIIIHCHIIICIA1 tftftftftjttf L ala>salle I

I I

Iasswa I llllllllllllll I Ic Hacaa W I IIIIIIIIIIIIII Dae cacse~ ae ~

I ~

~ a ~

,I I aaa'aa I se~

~V (

I "t I ~ I I w

a I

~

PW I H

>>lIaa

~ ~aa aa sa)

~ I a I I I L I \

I ~ I ~a a asaeac I I I aca I I I a I I I Ia ,I I I I I a I I a I

~~ N aa I I I~ i~ac I I

~ I I I

I I

i I

~ aacaslcaa 'ee I

~

I

~ s ~ s I I I I l a L r

~

I av

-L I I

I Ial I~

e I

I ~ a'D

/

~ ~I ~

s~

I I L I ~

I AIW Ma

+>> I ea H aeaeae

~ ~

sea I

~ .~

~ aa

~

Rhf-.'

f ~ ael neA II n caaac ~ ae ACIDCICIC DCDUCICCH CDC aaaL aala aealaeKDI laces Iaal 89661 QOSQ DDI CCAIC a I ID HI SHCI'I IO HD.Ct Dl P.R.

Ftguro 4-68. Logic Cobtnct, Logic Flow, Moxtmum Symptom GOSGDOt (Shoot 15 of 15)

~ ~

DDaanaaa

Eg TIME IN MS ~l IZe T

l23 M.G.

IN I45 CYCLE S.G.

I20 LIFT l32 S.G .

I48 M.G.

40'IF I PULL UP PULL IN DROP OUT DROP DOWN PUI.L IN DROP OUT I

l I20MS l30 MS I6 LIFT COlL 4s I

7.5l l05 MOYABLE MS GRIPPER 0 3I II3 7.5i 4, 95 MS 85 MS STATIONARY I GRIPPER 0 49 92 IE6 OUT CYC LE TIME IN MS l 66 I40 l5l I54 ll2 l2I I

~

l M.G. S.G. LIFT S.G. M.CM L IF T PULL DROP PULL PULL OROP OR OP IN OUT UP IN OUT OUT 40L l

ISO MS l L l5S MS I

I L IF T COIL 0 34 67 I02

,I IIO MS MOVABL< 90 MS GRIPPER 0 89 I

7.5 4.2 I20 MS STAT ION ARY l 90 MS GR IPPF R l' l9 0 MS 780 MS 0 COUNTS I 28 COUNT Ffi&1'c i"6. L-106 Bod Control Drive Mechanism, Timing Diagram

'