ML17258A720

From kanterella
Jump to navigation Jump to search
Forwards Response to NRC 801215 Questions Re SEP Topic IV-2, Reactivity Control Sys. Design Features Which Limit Reactivity Insertion Rates & Rod Malfunctions from Single Failure Described
ML17258A720
Person / Time
Site: Ginna Constellation icon.png
Issue date: 01/19/1981
From: Maier J
ROCHESTER GAS & ELECTRIC CORP.
To: Crutchfield D
Office of Nuclear Reactor Regulation
References
TASK-04-02, TASK-RR NUDOCS 8101230418
Download: ML17258A720 (16)


Text

II l

REGULATORY FORMATION DISTRIBUTION SY M (RIDS)

ACCESSION NBR:8101230418 DOC ~ DATE: 81/01/19 NOTARIZED:

NO DOCKET 0

FACIL:50-244 Robert Emmet Ginna Nuclear PlantE Unit ii Rochester G

05000244

'AUTH ~ NAtlE AUTHOR AFFILIATION MAIER<J ~ E, Rochester Gas L Electric Corp.

REC IP ~ NAME'ECIPIENT AFFILIATION CRUTCHFIELD,D.

Operating Reactors Branch 5

SUBJECT; Forwards response to NRC 801215 questions re SEP Topic IV 2i reactivity control sys,Design features which limit reactivity insertion rates L rod malfunctions from single failure described, DISTRIBUTION CODE:

AO35S COPIES RECEIYED:LTR 3 ENCL j SIZE:4,a, TITLE: SEP Topics NOTES: 1 copy:SEP Sects Ldr.

05000244 RECIPIENT ID CODE/NAME ACTIONS CRUTCHF IELD 04 INTERNAL: A/D MATL8QUAL13 HYD/GEO BR 10 02'G F ILE 0 1 COPIES LTTR ENCL 7

7 1

1 2

2 1

1 1

1 RECIPIENT IO CODE/NAME CONT SYS A

07 I8E 06 OR ASSESS BR 11 SEP BR 12 COPIES LTTR ENCL 1

1 2

2 1

1 3

EXTERNAL: ACRS NSIC 14 05 16 16 1

1 LPDR 03 1

1 3C 3g TOTAL NUMBER OF COPIES REQUIRED ~

LTTR ENCL

/

///////// ///////////

l uiiz~iki(I zzzziiz ROCHESTER GAS AND ELECTRIC CORPORATION A

g

~ llAIK o

89 EAST AVENUE, ROCHESTER, N.Y. l4649 JOHN E.

MAIER VICE PRESIDENT TKLKPHONK ARKA COOK 7ld 546-2700 January 19, 1981 Director of Nuclear Reactor Regulation Attention:

Mr. Dennis M. Crutchfield, Chief Operating Reactors Branch 55 U.S. Nuclear'egulatory Commission Washington, D.C.

20555

Subject:

SEP Topic IV-2, Reactivity Control Systems R. E. Ginna Nuclear Power Plant; Docket No. 50-244

Dear Mr. Crutchfield:

Enclosed is the RG&E response to questions transmitted by the NRC via letter dated December 15, 1980 concerning this SEP topic ~

Very truly yours, J.

E. Maier JEM:ng Attachments

~F3'>~

~~KKI J

+4

~7 C IAJ CD Vlg CD I//P~

K" C//

sxoxsso g<%

I

Response

to SEP Topic IV-2 Questions 1.

Describe the single failures within systems used for reactivity control which can:

a)

Cause an inadvertent reactivity insertion.

b)

Cause a single or combination of rods to be positioned in other than the design sequence.

For PWRs this should include consideration of single rod withdrawal/

'insertions which can result, from a single eguipment component failure.

Response

The two systems that could cause an inadvertent reactivity insertion are the Chemical Volume Control Sys'em (CVCS) and the Rod Control System (RCS).

'he Ginna FSAR (Reference

1) evaluated the effect of inadvertent reactivity insertion resulting from a malfunction in the CVCS.

The dilution rate was based on plant piping layout and maximum pump capacity.

Another study of possible dilution paths was submitted to the NRC in a letter from RG&E dated April 30,

1979, "Postulated Boron Dilution". It is considered that all credible single failures have been accounted for in these analyses; the CVCS will thus not be further discussed.

An evaluation of the effect of single failures on the RCS has been done.

The results of that evaluation indicate that there are only two possible single failures that could cause an inadvertent. reactivity insertion.

1.

A malfunction of the rod motion control switch.

2.

Shifting of the bank overlap unit-digit causing banks to overlap improperly.

K The, study indicated that. all other single failures cause an Urgent Alarm which prevents rod motion (other than scram).

In addition to our evaluation the following statements are made in the FSAR:

Control banks can be moved only in their normal sequence with same overlap.

Relay interlocks, designed to meet the single failure criteria, are provided to preclude simultaneous withdrawal of more than one group except in overlap regions.

No possible failure in the power cabinet can cause more than one group of 4 control rod, drive mechanisms (CRDM) to move at the same time.

2.

" The CRDM's are wired into preselected groups and these group configurations are not altered during core life.

Therefore, the rods are physically prevented from withdrawing in other than their respective groups.

Delineate those design features which limit reactivity insertion rates and rod malpositions resulting from a single failure.

Provide the appropriate circuit schematics showing these design features.

Response

A failure within the RCS will generate an Urgent Alarm which will prevent, rod motion.

The Urgent Alarm does the following:

2.

Signal AL-1 is generated and commands reduced power to the Stationary and Movable Gripper Regulation Cards (1051E05 sh.

9 8 12).

Signal AL-3 is generated and commands zero current on Lift Regulator Card

(.1051EOS sh.

10 6 12).

An Urgent Alarm is generated in response to:

1.

Any card not in place each card has an interlock circuit associated with the Urgent Alarm.

2.

3.

An abnormal change in phase or current returning from the coils (Ripple detector 1051E05 sheet 2

6 10).

Coil current remaining saturated too long (E Sat.

Detector 1051E05 sh. 2).

4.

Firing circuit error (1051E05 sh.

11 S 12).

5.

Multiplexing error (1051EOS sh. 12).

6.

Logic Error (1051E05 sh. 12).

Another feature which limits the reactivity insertion rate is the manner by which rod speed is controlled.

A buffer memory accepts a command go signal.

Another go signal is inhibited until a slave cycler finishes.

(6056D01 sh.

4 and Figure 1-6).

Rod positioning is controlled by the bank overlap unit (6056D01 sh.

2 S 4).

This unit keeps track of rods that move and rods to be moved sending a signal to the power cabinets.

Thumb wheel switches with two diodes per switch per digit control bank overlap.

3 The referenced schematics are attached.

3.

Provide or reference appropriate analyses to demonstrate that specified acceptable fuel damage limits are not exceeded in the event of any of the single failures identified in

[Question]

1 above.

Response

The rod withdrawn transient and CVCS malfunction transient were presented in Reference 1 and updated in Reference 2.

The most limiting rod withdrawal was also reevaluated in Reference 3.

The reactivity insertion rates used in the rod withdrawal transient analyses envelope the actual possible reactivity insertion rates at Ginna.

The insertion rate used in the transient was greater than that for the two highest worth banks both assumed to be at their highest differential worth region.

Therefore, the reactivity insertion rates identified in question 1 above are enveloped by the analysis.

4.

Identify the operating procedures,

alarms, interlocks, or protection system actions which must be used in 'limiting the consequences following a single failure within systems used for reactivity control.

Where equipment. actions are required, indicate whether the equipment meets the criteria of IEEE-279.

Response

Should an inadvertent reactivity insertion occur, the transient response is presented in Reference 1,

2 and 3.

The equipment required to operate is specified in the analyses.

These transients require the reactor trip system to prevent Tuel damage.

This system meets the requirements of IEEE-279.

A description of the comparison of the Ginna Protection system to IEEE-279-1971 is provided in Section III.C.1 of Reference 4.

References 2.

Rochester Gas and Electric Corp. R.E. Ginna Final Facility Description and Safety Analysis Report.

Rochester Gas and Electric Corp. R.E. Ginna Technical Supplement Accompanying Application to Increase

Power, February 1971.

3.

Exxon Nuclear Co. Inc., XN-NF-77-40 "Plant Transient Analysis for the R.E. Ginna Unit. 1 Nuclear Power Plant",

November 1977.

RGB "Technical Supplement Accompanying Application for a Full Term Operating License",

August 1972.

r sr

~ ~

Ll 2 3see ST& CIONARY GRIPPER POWER I~s-<<.tt:w~sai~d l

s&4 1

<<wv ew IIV MN 1 w 1 e<<

IPs AO&

1st ~ Vevws

<<1 tel 1<<

VV

~<<

V I

V<<

1st VV 4

te<<

IS I4 I

I l

fr<<

vl f

\\ ~I<<

~

Elpsse et

~

~

if ii

~44

~

es w ten&

tttE~

LW

&tet CL~

teew

~

&III

~I

~sl tell ~

<<. ~

j j W Nt NlMle~

CPI<<M>>.1st llftell~

ll sel set

~I

~

~

~ st

~lt

~ 1 ~

2ws

>> I

-(<<s ~

Else~ ee( Ev~

~

~

.wl%'.s

'i i.:g I

1 ~

A fs

~

~

fl tj

~se tl M tst Wl SS&Q

14. IV Ssl Vs

~ 1

<<1 ~

V Vl~

~I ~

~I

~\\

~$

W ees

~

~

VV VVM11 IM1 'lese ~

R NIMIII

~IIveil ~

t

~

HIWi~ I Estt 4&e&seLr4 prt 14

~EP Cee(&egg+

t C&C04 l09(05 Figure 4-31.

Power Catstnct, Schcn4otlc Dlagrctn 105t EOS (8>cct 2 of 14)

L1 9

)))4)Kr~~

)I t) Ca)W +W5

~)/))pc I K II

~ Ia

~ al

~I

~ I

~I 4)la)llaahKWKK440444) llI(I I44'44 4444K4 444I) 405 L'l 4444 Q~~AIA%4 II KK aa

~

llI WtQ f

~

I

~4 (I~I aa II4a 4CHII441A )

~44(I 444'Iaa Kata a~II444I)

~Ia(II ~

I44 Italawa~

~4)K 'wA44 I44K ahalaaaa) 44 I a~/

~~

~4 IN

~4

~

~ 4

~

Iaaa K

~4 NIK41444 VI%4al>> K 4Kalt~ HIIat L44I444~ ~lA44 <<I ~ aal I

IKK444I 4

al I~ 44~ IKKaa

~ H I

~ M)

<<Wp W. 44~4 ~

r)l)a)a Cthe tS BO

~names.

E >)cc)

)05)D)b K

Figure 4-31.

Power Cabinet, Schematic Dtagram 1051 i%5 (Shcct 9 of 14)

I~

~ l5ifl 5 'i s.(

l1 aj I

e

Ll 11 I" )AC lA5tt54>> Ct&

'tt >>>>>>

>>I>>N IIZKCSltfl 4

II~t>>>> I

~tt>>II 5ta\\IIIN Ittt~fig 5 Ia

~It N NN I<<

~ 1 N

~ I J

ll~

I A ~

IM.

~ltl >>I ~

t..t '" i--""

<<1I tI4455 r>>

tt NJP!W'.1 4<< I

>>It I

4 NlI

~N lt

~ IA55405l 1>>l <<15>> N<<t>>tt Vtlflt I 11\\>>NN>>4 I<< tl >>ll<< IIV4 ttt 51 1<<l 4 I ~ ll NN>>454 ~ lt>>>> l<<NQ a<<t <<Ntl 4

~ I\\ <<<<4>>

~ ~

~ ~ III>>>> ~ INN>>t>>I 4 ~ N<< lll I NON 455 N.

~<<NN I\\

II~II>>I<<\\ N,

>>4 N>>tillt<<4514 1<<11 Nl>>45

~J N ~14

~ I

~ I 4 t'

5555

~I4 I

>>JN

~

I t 4

Nl

~ 4>>~ I

~

~

~t>>t~

~

I>>N I>>

~ >>>>

~

>> PI>> 5<<

I NW ~

IN

~W<<\\

I ~5 N>>~ IIN<<l

<< ' I I<<>> l<<NN~.

~ ~

~\\ ~

~ 1

~t

~IIV CPIIutt Ctlttt+ C.

Figure 4-31.

Power Cabinet, Schematic Diagram 10Sl hoS (Sheet ll oC H)

Ll 12

~lli J>> SI(r( Cliy 1 I H

~ r

'I INJ OI IS N (IS N<<<<

+C 4

I rl <<t I VV<<W (>> IN

~ ~

Ii<<s <<IA'ir

~I

>>\\

I 1 ~r

~4

~

<<r<<A lll(i

~rs <>rs

~ A<<~

M<<<<(

M>> 4( A(>>r I

<<<<1 <<<<AA NI

~ V VI V

~

~ I (r<<11 1 r>>V(14 (I A<<1 V<<s(I ~ sr( ~

~ H r

~

~

~ vt A (

%(rr j

~

(1 il >>

(<II<<(<<l 14

~

Vl

]I>>(

I Is v

~

r t I

~

ss rs

~

l

~ rl<<<<

J ">> I

~

<)

~

I (VV

~

~

~ rs r>><<<<

s<<r 1 <<

~

~ I<<<<<<

SH

~ ~

~ 1 P'I, >>

~

1 Wl.

~

II

~

1141

(

l Iws ~

I.

I W<<r

~ ~

<< ~

<< I

~ ~

s<>r H

- '(

4

~l

~ ~A S

4 S

~ Jl

~

~ &H

~ Vl ~

<<I

<<AJAI

~

4 A

<<<<<<4 S>>1

~ 4 H

~(<II( llgIIN<lg jgf~~g E

<6J<

<((JI<f<IQ Figure 4-31.

Po<rcr Cab!<<el, Schcmnllc D!<<gram 105l E05 (8<eel 12 <tl 14)

2 la<<I

~ I I

w\\i I oa

<<Ill ltfK<<I~

a UPI<<AfiWlttfilt C

2 L

I L

J r -m L

I L

J Lr --a I ~

ta L

J

'L L

I Itt J

I I

<<a n

I aa I

n

<<II

~I

<<t I

~

at I

I

~ IIH<<t<<W<<l<<Il<<l at

~<<

jan

~

~ <<W

<<W I ~

~

<<<<W I-

~I W

~ O WIWWINOC I I

~

~

I I

I 3

I I

t I

I I

I I

I I

I Ial laa lww l to<<all call<<cc la I

I I

I I

I

.I

~

I ~

V I

I

~Io<<ww l<<a ~

WIIIWO

<OI'i rjj gg

@2'toocfi<<I ocoacltwtol I<<l O<<O W Ofi C a<<i ~ W wla W ~ IWta<<o<<c<<ah till~

89661 G05GDOl 4

'bto 1

~llc 1

O<<ill t

<<a. I241 I

P.R 4-157/4-156 2

Ftguvo 4-68.

Logic Cebtnett Logtc Flow, htextmum System 6056D01 (Sheet 2 of 15)

<<HLO lt I

~la ttl al 4.

'I 2

f'

,llc(

ac O,

t 2$

rt

-~

O ol 1, ; '.'

,. *6 2'I,'

," Vt

'ht fifi

I;l
;

'i~')v.

I pff' j~ 4 2fit'c ~ Ia "

I

. /pe',.'

"I=j,vtot~.FIj Jpe J 9 co;.: Itj!

'v'0 ~@..f At'4

B'vkjI 334.

5 J '

Af' v

p I

jt

~

I e tijt r, ~ '0 5,1 I,.

'ef

~

t'>>

f 9

I"0~4 e

Ce ter, I

e-

~

i ~

0 p

I l e-e'j

'rtdl I:tli;Ieil":..K 0:;

ee II~ Ip>>

IO

~

0 Iveeve elite'40 I

0 ~ I ~

~ eeetl ~ I e

~ ~

I==-==-,;a

~ -I I

I I

I I

l I

~ &

Irv P

PAteer NIPII ew 0

~0 Ae le I

I j

I I

I "I

. I el I I

I I

I I-I, I

I I

I epeportrelI Ir J I-eo~~~p lm er

~ 0 I

~ ~lppovvge 'I lr

~ ~\\

I I

~ ~ we VIE r eec ~

IP

~o I r-------

ere I

ee ~

I

~

0 I

I I

I L

I I

I

~ e ~

I r

~ ~

eo wlep I

ell ~ rpeIeel r-ae L

~ ~ Iervepe I

v r

Ir-~

I

f. i 4

~

I 6

I v',

~ rior Aeieetlei ACOVCICAI909

(@+~<

oeo oe5 10 % creev0 p

~hei ore <<0 irtlrCIRCA IAI 89661 QQ5(jDQ) illI ~

0 rr 9VOI P.R.

F36tire 4-68. Lotto Cabtvoct, Logtc Flow, tttaxtmcm Syvttcm 6CSGDOI (Shoot 4 of 15 4-16t/4

C a

L2 15 Casa II c

I~

Daaceaela a

A caaaseDelccaccp

~a

~

I

~V

(

~

~

I I

~ ~

N I

I L

s ~

sla

~>>

PW ae a

-L Aal CIAH lw IICMCIcelec ~ aaa w

I I

I

,I "t

I

~

a a

I I

I jftffftfftftfj-..;.

llllllllllllll riiiiiiiiiiiiim I

Iasswa W

I I

I I

I I

~s I~

~s a as Daa ~

HIIIHCHIIICIA1 I

I I

I I

I I

tftftftftjttf llllllllllllll I IIIIIIIIIIIIII I

I H

~Iaa

>>l I

I I

I I

I I

I I

l I

I IL I

I I

L Dae cacse~

aaa'aa I

I,I Ia I

i~ac I

~i I

I I

r I

I I

I

~

ae

~I Ic Hacaa I

~

I ala>salle se~

w aa

~aa sa)

L

\\

~a a asaeac

~I I

aca I

aa I

II I

~

~aacaslcaa

'eeI I

a

~

av I

~ e Ial I

~a'D

/

~

~

~

I ea H aeaeae AIW+>>

~

~

Ma sea I a

a I

~. ~

~aa ACIDCICIC DCDUCICCH CDC

~

f Rhf-. ~

ael neA II n caaac ~ ae aaaL aala aealaeKDI laces Iaal 89661 QOSQ DDI CCAIC aIID HI SHCI'I IO HD.Ct Dl P.R.

Ftguro 4-68. Logic Cobtnct, Logic Flow, Moxtmum Symptom GOSGDOt (Shoot 15 of 15)

~

~

DDaanaaa

Eg IN CYCLE TIME IN MS~l IZe l23 I45 I20 l32 I48 I40'IF T

M.G.

S.G.

PULL PULL DROP UP IN OUT LIFT DROP DOWN S.G.

M.G.

PUI.L DROP IN OUT I6 I

l I20MS l30 MS LIFT COlL MOYABLE GRIPPER STATIONARY GRIPPER I

4s 7.5l 0

7.5i 4,

I 0

TIME IN MS l

66 3I I40 95 MS 49 OUT CYC LE l5l I54 85 MS 92 ll2 II3 l05 MS IE6 l2I I

~

l M.G.

S.G.

PULL DROP IN OUT 40L LIFT PULL UP S.G.

PULL IN M.CM L IF T OROP OR OP OUT OUT l

L I

ISO MS l5S MS l

I LIF T COIL MOVABL<

GRIPPER STAT IONARY GR IPPF R 0

,I 90 MS 0

I 7.5 4.2 l

, l' 0 MS 0 COUNTS 34 I20 MS l9 67 I02 IIO MS 89 90 MS 780 MS I 28 COUNT Ffi&1'c i"6.

L-106 Bod Control Drive Mechanism, Timing Diagram

'