|
---|
Category:Report
MONTHYEARL-23-214, Submittal of Relief Request for Impractical American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI Examination Requirements2024-06-0505 June 2024 Submittal of Relief Request for Impractical American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI Examination Requirements L-23-188, Energy Harbor Nuclear Corp., Supplement to Application for Order Consenting to Transfer of Licenses and Conforming License Amendments2023-08-0707 August 2023 Energy Harbor Nuclear Corp., Supplement to Application for Order Consenting to Transfer of Licenses and Conforming License Amendments L-22-253, Submittal of Pressure and Temperature Limits Report, Revision 52023-01-10010 January 2023 Submittal of Pressure and Temperature Limits Report, Revision 5 L-22-211, Technical Specification 5.6.6 Steam Generator Tube Inspection 180-Day Report2022-09-29029 September 2022 Technical Specification 5.6.6 Steam Generator Tube Inspection 180-Day Report L-22-216, Submittal of Pressure and Temperature Limits Report. Revision 42022-09-27027 September 2022 Submittal of Pressure and Temperature Limits Report. Revision 4 L-22-149, Post Accident Monitoring Report2022-06-23023 June 2022 Post Accident Monitoring Report ML22202A4362022-04-0808 April 2022 Enclosure F: Updated Inputs to 52 EFPY P-T Operating Curves ML22202A4372022-03-0202 March 2022 Enclosure G: Framatome Inc. Document 86-9344713-000, Davis-Besse Reactor Vessel Embrittlement Fluence Reconciliation Through 60 Years IR 05000346/20210902021-12-16016 December 2021 Reissue Davis-Besse NRC Inspection Report (05000346/2021090) Preliminary White Finding ML21322A2892021-12-0909 December 2021 Approval of Plant-Specific Analysis of Certain Reactor Vessel Internal Components in Accordance with License Renewal Commitment No. 53 ML20302A3022020-09-25025 September 2020 1 to Technical Requirements Manual ML19255H0992019-10-10010 October 2019 Staff Assessment of Flooding Focused Evaluation L-19-189, 54010-CALC-01, Davis-Besse Nuclear Power Station: Evaluation of Risk Significance of Permanent ILRT Extension.2019-07-29029 July 2019 54010-CALC-01, Davis-Besse Nuclear Power Station: Evaluation of Risk Significance of Permanent ILRT Extension. ML22262A1522019-05-0101 May 2019 Framatome Inc., Document ANP-2718NP, Revision 007, Appendix G Pressure-Temperature Limits for 52 EFPY for the Davis-Besse Nuclear Power Station ML22202A4332019-04-30030 April 2019 Enclosure C: Framatome ANP-2718NP, Rev. 7, Appendix G Pressure-Temperature Limits for 52 EFPY for the Davis-Besse Nuclear Power Station L-18-108, Request to Extend Enforcement Discretion Provided in Enforcement Guidance Memorandum 15-002 for Tornado-Generated Missile Protection Non-Conformance Identified in Response to Regulatory Issue Summary 2015-06, Tornado Missile....2018-04-12012 April 2018 Request to Extend Enforcement Discretion Provided in Enforcement Guidance Memorandum 15-002 for Tornado-Generated Missile Protection Non-Conformance Identified in Response to Regulatory Issue Summary 2015-06, Tornado Missile.... ML18149A2812018-02-16016 February 2018 2017 ATI Environmental Inc. Midwest Laboratory Radiological Environmental Monitoring Program L-17-270, Notification of Emergency Core Cooling System (ECCS) Evaluation Model Change Pursuant to 10 CFR 50.462017-09-0101 September 2017 Notification of Emergency Core Cooling System (ECCS) Evaluation Model Change Pursuant to 10 CFR 50.46 ML17086A0322017-03-31031 March 2017 Enclosure B to L-17-105, Areva Report ANP-3542NP, Revision 1, Time-Limited Aging Analysis (TLAA) Regarding Reactor Vessel Internals Loss of Ductility at 60 Years L-17-088, Independent Spent Fuel Storage Installation Changes, Tests and Experiments2017-03-27027 March 2017 Independent Spent Fuel Storage Installation Changes, Tests and Experiments ML17026A0082016-12-31031 December 2016 Areva Report ANP-3542NP, Time-Limited Aging Analysis (TLAA) Regarding Reactor Vessel Internals Loss of Ductility for Davis-Besse Nuclear Power Station, Unit No. 1 at 60 Years (Non Proprietary) L-16-229, Submittal of Pressure and Temperature Limits Report, Revision 32016-07-28028 July 2016 Submittal of Pressure and Temperature Limits Report, Revision 3 L-16-148, Fatigue Monitoring Program Evaluation of Reactor Coolant Pressure Boundary Components for Effects of the Reactor Coolant Environment on Fatigue Usage (I.E., Environmentally-Assisted Fatigue)2016-04-21021 April 2016 Fatigue Monitoring Program Evaluation of Reactor Coolant Pressure Boundary Components for Effects of the Reactor Coolant Environment on Fatigue Usage (I.E., Environmentally-Assisted Fatigue) L-15-288, Response to NRC Letter. Request for Information, Per 10 CFR 50.54(f) Regarding Recommendations 2.1. 2.3. and 9.3. of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident2015-10-0202 October 2015 Response to NRC Letter. Request for Information, Per 10 CFR 50.54(f) Regarding Recommendations 2.1. 2.3. and 9.3. of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident ML15230A2892015-08-25025 August 2015 Staff Assessment of Information Provided Pursuant to Title 10 of the Code of Federal Regulations Part 50 Seismic Hazard Reevaluations for Recommendation 2.1 of the Near-Term Task Force Review L-14-401, First Energy Nuclear Operating Company (FENOC) Expedited Seismic Evaluation Process (ESEP) Reports Response to NRC Request for Information Pursuant to 10 CFR50.54(f) Regarding Recommendation.1 of the Near-Term Task Force (NTTF) Review of In2014-12-19019 December 2014 First Energy Nuclear Operating Company (FENOC) Expedited Seismic Evaluation Process (ESEP) Reports Response to NRC Request for Information Pursuant to 10 CFR50.54(f) Regarding Recommendation.1 of the Near-Term Task Force (NTTF) Review of In ML14353A0602014-11-0303 November 2014 2734296-R-010, Rev. 0, Expedited Seismic Evaluation Process (ESEP) Report Davis-Besse Nuclear Power Station L-14-289, Pressure and Temperature Limits Report. Revision 22014-09-22022 September 2014 Pressure and Temperature Limits Report. Revision 2 L-14-259, Firstenergy Nuclear Operating Company'S (Fenoc'S) Third Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Reliable Spent Fuel Pool Instrumentation (Order Number EA-12-051)2014-08-28028 August 2014 Firstenergy Nuclear Operating Company'S (Fenoc'S) Third Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Reliable Spent Fuel Pool Instrumentation (Order Number EA-12-051) ML14141A5252014-06-30030 June 2014 Staff Assessment of the Flooding Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima DAI-ICHI Nuclear Power Plant Accident L-14-167, Report of Facility Changes, Tests and Experiments for the Period Ending May 26, 20142014-06-18018 June 2014 Report of Facility Changes, Tests and Experiments for the Period Ending May 26, 2014 ML14134A5172014-05-30030 May 2014 Staff Assessment of the Seismic Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima DAI-ICHI Nuclear Power Plant Accident L-14-148, CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models2014-05-19019 May 2014 CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models ML14112A3152014-04-21021 April 2014 Review of Draft Plant-Specific Supplement 52 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding L-14-104, Firstenergy Nuclear Operating Co. Response to NRC Request for Information Pursuant to 10 CFR 50.54 (F) Regarding the Flooding Aspects of Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident2014-03-11011 March 2014 Firstenergy Nuclear Operating Co. Response to NRC Request for Information Pursuant to 10 CFR 50.54 (F) Regarding the Flooding Aspects of Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident ML14007A6702014-02-21021 February 2014 Interim Staff Evaluation Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies) ML14042A2942014-02-19019 February 2014 Mega-Tech Services, LLC, Technical Evaluation Report Regarding the Overall Integrated Plan for Davis-Besse Nuclear Power Station, TAC No.: MF0961 ML13340A1592013-11-26026 November 2013 Davis-Besse Nuclear Power Station Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report Revision 1, Appendix a ML13340A1472013-11-26026 November 2013 Davis-Besse Nuclear Power Station & Perry Nuclear Power Plant - Response to RAI Associated with Seismic Aspects of Recommendation 2.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident (TAC Nos. MF0116 & MF0 ML13340A1632013-10-0909 October 2013 Davis-Besse Nuclear Power Station Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report Revision 1, Appendix C to Appendix G ML13340A1622013-10-0909 October 2013 Davis-Besse Nuclear Power Station Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report Revision 1, Appendix B (2 of 2) ML13340A1602013-10-0909 October 2013 Davis-Besse Nuclear Power Station Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report Revision 1, Appendix B (1 of 2) ML13340A1582013-10-0909 October 2013 Davis-Besse Nuclear Power Station Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report Revision 1 L-13-154, CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models2013-05-28028 May 2013 CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models L-13-157, Generic Safety Issue 191 Resolution Plan2013-05-15015 May 2013 Generic Safety Issue 191 Resolution Plan ML13009A3752012-12-12012 December 2012 Enclosure B to L-12-444, Calculation No. 32-9195651-000, Equivalent Margins Assessment of Davis-Besse Transition Welds for 52 EFPY - Non-Proprietary. L-12-347, FENOC Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Flooding Aspects of Recommendation 2.3 of Near-Term Task Force Review of Insights from Fukushima Dai-ichi Accident2012-11-27027 November 2012 FENOC Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Flooding Aspects of Recommendation 2.3 of Near-Term Task Force Review of Insights from Fukushima Dai-ichi Accident ML13135A2442012-08-10010 August 2012 Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report, Appendix B - Seismic Walkdown Checklists (Swcs), Sheet 1 of 379 Through Sheet 201 of 379 ML13135A2432012-08-10010 August 2012 Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report, Appendix a - Resumes and Qualifications ML13135A2422012-08-10010 August 2012 Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report, Cover Through Page 176 2024-06-05
[Table view] Category:Technical
MONTHYEARL-23-214, Submittal of Relief Request for Impractical American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI Examination Requirements2024-06-0505 June 2024 Submittal of Relief Request for Impractical American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI Examination Requirements L-22-253, Submittal of Pressure and Temperature Limits Report, Revision 52023-01-10010 January 2023 Submittal of Pressure and Temperature Limits Report, Revision 5 L-22-211, Technical Specification 5.6.6 Steam Generator Tube Inspection 180-Day Report2022-09-29029 September 2022 Technical Specification 5.6.6 Steam Generator Tube Inspection 180-Day Report L-22-216, Submittal of Pressure and Temperature Limits Report. Revision 42022-09-27027 September 2022 Submittal of Pressure and Temperature Limits Report. Revision 4 L-22-149, Post Accident Monitoring Report2022-06-23023 June 2022 Post Accident Monitoring Report ML22202A4362022-04-0808 April 2022 Enclosure F: Updated Inputs to 52 EFPY P-T Operating Curves ML22202A4372022-03-0202 March 2022 Enclosure G: Framatome Inc. Document 86-9344713-000, Davis-Besse Reactor Vessel Embrittlement Fluence Reconciliation Through 60 Years ML21322A2892021-12-0909 December 2021 Approval of Plant-Specific Analysis of Certain Reactor Vessel Internal Components in Accordance with License Renewal Commitment No. 53 ML20302A3022020-09-25025 September 2020 1 to Technical Requirements Manual ML19255H0992019-10-10010 October 2019 Staff Assessment of Flooding Focused Evaluation L-19-189, 54010-CALC-01, Davis-Besse Nuclear Power Station: Evaluation of Risk Significance of Permanent ILRT Extension.2019-07-29029 July 2019 54010-CALC-01, Davis-Besse Nuclear Power Station: Evaluation of Risk Significance of Permanent ILRT Extension. ML22262A1522019-05-0101 May 2019 Framatome Inc., Document ANP-2718NP, Revision 007, Appendix G Pressure-Temperature Limits for 52 EFPY for the Davis-Besse Nuclear Power Station ML22202A4332019-04-30030 April 2019 Enclosure C: Framatome ANP-2718NP, Rev. 7, Appendix G Pressure-Temperature Limits for 52 EFPY for the Davis-Besse Nuclear Power Station ML18149A2812018-02-16016 February 2018 2017 ATI Environmental Inc. Midwest Laboratory Radiological Environmental Monitoring Program L-17-270, Notification of Emergency Core Cooling System (ECCS) Evaluation Model Change Pursuant to 10 CFR 50.462017-09-0101 September 2017 Notification of Emergency Core Cooling System (ECCS) Evaluation Model Change Pursuant to 10 CFR 50.46 ML17086A0322017-03-31031 March 2017 Enclosure B to L-17-105, Areva Report ANP-3542NP, Revision 1, Time-Limited Aging Analysis (TLAA) Regarding Reactor Vessel Internals Loss of Ductility at 60 Years ML17026A0082016-12-31031 December 2016 Areva Report ANP-3542NP, Time-Limited Aging Analysis (TLAA) Regarding Reactor Vessel Internals Loss of Ductility for Davis-Besse Nuclear Power Station, Unit No. 1 at 60 Years (Non Proprietary) L-16-229, Submittal of Pressure and Temperature Limits Report, Revision 32016-07-28028 July 2016 Submittal of Pressure and Temperature Limits Report, Revision 3 L-15-288, Response to NRC Letter. Request for Information, Per 10 CFR 50.54(f) Regarding Recommendations 2.1. 2.3. and 9.3. of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident2015-10-0202 October 2015 Response to NRC Letter. Request for Information, Per 10 CFR 50.54(f) Regarding Recommendations 2.1. 2.3. and 9.3. of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident L-14-289, Pressure and Temperature Limits Report. Revision 22014-09-22022 September 2014 Pressure and Temperature Limits Report. Revision 2 ML14134A5172014-05-30030 May 2014 Staff Assessment of the Seismic Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima DAI-ICHI Nuclear Power Plant Accident L-14-148, CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models2014-05-19019 May 2014 CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models ML14112A3152014-04-21021 April 2014 Review of Draft Plant-Specific Supplement 52 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding ML14007A6702014-02-21021 February 2014 Interim Staff Evaluation Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies) ML14042A2942014-02-19019 February 2014 Mega-Tech Services, LLC, Technical Evaluation Report Regarding the Overall Integrated Plan for Davis-Besse Nuclear Power Station, TAC No.: MF0961 L-13-154, CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models2013-05-28028 May 2013 CFR 50.46 Report of Changes to or Errors in Emergency Core Cooling System Evaluation Models ML13009A3752012-12-12012 December 2012 Enclosure B to L-12-444, Calculation No. 32-9195651-000, Equivalent Margins Assessment of Davis-Besse Transition Welds for 52 EFPY - Non-Proprietary. ML13008A0612012-08-10010 August 2012 Davis-Besse Near-Term Task Force Recommendation 2.3 Seismic Walkdown Report, Appendix C, Area Walk-By Checklists, Sheet 21 of 139 Through End L-15-328, Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 7 of 72012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 7 of 7 ML15299A1502012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 6 of 7 ML15299A1492012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 5 of 7 ML15299A1482012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 4 of 7 ML15299A1472012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 3 of 7 ML15299A1462012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 2 of 7 ML15299A1442012-07-30030 July 2012 Enclosure B, Bechtel Report No. 25593-000-G83-GEG-00016-000, Effect of Laminar Cracks on Splice Capacity of No. 11 Bars Based on Testing Conducted at Purdue University and University of Kansas for Davis-Besse Shield Building. Part 1 of 7 ML12209A2602012-07-26026 July 2012 Attachment 31, Fauske & Associates, Inc. Technical Bulletin No. 1295-1, BWR MSIV Leakage Assessment: NUREG-1465 Vs. MAAP 4.0.2 ML1017400422010-06-0404 June 2010 0800368.407, Rev. 0, Summary of Design and Analysis of Weld Overlays for Reactor Coolant Pump Suction and Discharge, Cold Leg Drain, and Core Flood Nozzle Dissimilar Metal Welds for Alloy 600 Primary Water Stress Corrosion Cracking Mitigati L-10-132, 0800368.408, Revision 0, Summary of Weld Overlay Ultrasonic Examinations for Reactor Coolant Pump Suction and Discharge Nozzle Welds, Core Flood Nozzle Welds, and Cold Leg Drain Nozzle Welds2010-04-25025 April 2010 0800368.408, Revision 0, Summary of Weld Overlay Ultrasonic Examinations for Reactor Coolant Pump Suction and Discharge Nozzle Welds, Core Flood Nozzle Welds, and Cold Leg Drain Nozzle Welds ML1002501322010-01-11011 January 2010 0800368.404, Revision 1, Leak-Before-Break Evaluation of Reactor Coolant Pump Suction and Discharge Nozzle Weld Overlays for Davis-Besse Nuclear Power Station, Enclosure B ML11301A2222008-12-0101 December 2008 Reference: Combined Heat and Power Effective Energy Solutions for a Sustainable Future ML0821900132008-08-0707 August 2008 Monthly Operating Reports Second Quarter 2008 L-08-105, Reactor Head Inspection Report2008-04-11011 April 2008 Reactor Head Inspection Report L-08-005, Submittal of the 2007 Organizational Safety Culture and Safety Conscious Work Environment Independent Assessment Report for Davis-Besse2008-01-27027 January 2008 Submittal of the 2007 Organizational Safety Culture and Safety Conscious Work Environment Independent Assessment Report for Davis-Besse ML0726105652007-09-17017 September 2007 Confirmatory Order, 2007 Independent Assessment of Corrective Action Program (FENOC) ML0708602822007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Appendix B, Crack Driving Force and Growth Rate Estimates ML0708602812007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Appendix a, Finite Element Stress Analysis of Davis-Besse CRDM Nozzle 3 Penetration ML0708602802007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Section 10. the Unique Nature of the Davis-Besse Nozzle 3 Crack and the RPV Head Wastage Cavity ML0708602762007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Section 9. Cfd Modeling of Fluid Flow in CRDM Nozzle and Weld Cracks and Through Annulus ML0708602712007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Section 8. Stress Analysis and Crack Growth Rates for Davis-Besse CRDM Nozzles 2 and 3 ML0708602842007-03-15015 March 2007 Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event, Appendix C, Cfd Analysis 2024-06-05
[Table view] |
Text
1. Introduction, Purpose and Scope In March 2002, during a refueling outage inspection, a large wastage cavity was discovered in the reactor pressure vessel (RPV) head at the Davis-Besse nuclear plant in Ohio. The wastage cavity was adjacent to the control rod drive mechanism (CRDM)
Nozzle 3 near the top of the RPV head. The discovery of this cavity eventually resulted in the RPV head being replaced with a new head refurbished from the canceled Midland nuclear plant in Michigan. As a result of the event, the Davis-Besse plant was shut down until March 2004.
Exponent Failure Analysis Associates (Exponent) and Altran Solutions (Altran) were contracted to prepare this analysis by FirstEnergy Nuclear Operating Company (FENOC) in an arbitration against Nuclear Electric Insurance Limited (NEIL), the industry insurance organization that provides insurance to nuclear plant owners and operators and against which FENOC has a pending claim that is the subject of this arbitration.
Exponent and Altran addressed a number of issues that are involved in the arbitration claim. These issues relate to whether the event that caused the damage to the Davis-Besse RPV head was:
- A sudden, event of the moment;
- A condition which developed, progressed or changed over time or which was inevitable;
- An event that happened by chance, was unexpected and unforeseeable;
- Caused by any ordinary form of deterioration or wear and tear.
Also related to these key issues was whether or not the wastage cavity that developed at CRDM Nozzle 3 could have been detected in April-May 2000 when the Davis-Besse plant was shut down for its twelfth refueling outage (12RFO).
BN63097.001 B0T0 1106 DB05 1-1
In Section 2 that follows we summarize the principal conclusions and opinions that we have reached that are relevant to the issues in the arbitration. These conclusions and opinions are based upon the review and analysis set forth in Sections 4 through 10. In Section 3 we provide a brief description of the Davis-Besse plant, the RPV and the CRDMs.
In Section 4, we first describe the plant UT inspections that led to the discovery of the wastage cavity at CRDM Nozzle 3, and the subsequent laboratory inspections and metallurgical examinations that were performed on the CRDM nozzles and the wastage cavity at Nozzle 3. We also describe in Section 4 the wide-ranging analysis and investigation effort that was undertaken by FENOC, by industry organizations such as the Electric Power Research Institute (EPRI), and by the US Nuclear Regulatory Commission (NRC), which is ongoing today almost four years after the event. This extensive industry effort is an indication that this was not just an unanticipated event, but one that still remains largely unexplained.
In Section 5, we review and analyze the industry history of CRDM nozzle cracking and leakage between 1991 and 2002, and the industry and regulatory responses to this ongoing issue during that time period. With almost 10,700 CRDM nozzles in 155 operating PWR plants around the world, cracks have been found in only 414. Other than the Davis-Besse Nozzle 2 and 3 cracks, none of these axial cracks extended more than 0.6 inches above the nozzle weld, and none caused significant leakage. Moreover, other than the Davis-Besse event, there was no reported significant wastage of the RPV head as a result of any of these leaks. In contrast, the long axial crack discovered in Nozzle 3 in February 2002, which extended 1.23 inches above the weld was unprecedented. While much work has been undertaken to investigate and understand the reasons for this long crack at Davis-Besse Nozzle 3, it remains a unique, singular, and in many ways an unexplained event of the moment that can not, be considered the result of any expected or foreseeable ordinary, wear and tear process.
In Section 6, we present the results of our review and analysis of the industry history of boric acid leakage and corrosion of carbon steel components that occurred beginning in BN63097.001 B0T0 1106 DB05 1-2
1980 to 2002, the industry and regulatory responses to this ongoing issue during that time period, and the large body of relevant corrosion research that is available.
It is clear from our review of this thirty year history that the large wastage cavity discovered at Davis-Besse CRDM Nozzle 3 in March 2002 was again a unique and singular event that was totally unexpected and unanticipated either from the prior three decades of operating experience, or from the large body of boric acid corrosion research that had been conducted over that same time period.
Out of the approximately 155 operating PWR plants worldwide, and prior to the Davis-Besse event, only minor boric acid wastage of the RPV head had been reported in three isolated events over a 32-year time period from 1970 through 2002. In those three events, despite the fact that considerable quantities of boric acid had been deposited on the RPV head, no significant boric acid wastage of the RPV head was found under the deposits, all three RPV heads were returned to service, and are still in service today. At these three plants, the boric acid leakage occurred from leaking components (flanges) above the RPV head.
Similarly, leakage from the CRDM flanges in B&W-designed plants resulted in boric acid deposits on the RPV head on numerous occasions over the 30 or so years these plants have been operating, none of which caused any significant or reported wastage of the head. Therefore, boric acid deposits on the RPV head were not expected to, nor had they proved to, cause any significant wastage of the RPV head material.
The large wastage cavity at Davis-Besse CRDM Nozzle 3, as well as the smaller sub-surface cavity at CRDM Nozzle 2, remain the only reported instances of significant RPV head wastage caused by boric acid leakage from cracked CRDM nozzles.
In Section 7, we first summarize the response by FENOC to the industry experience with CRDM nozzle cracking and boric acid corrosion in the years leading up to 2002. We reviewed and formed opinions concerning the refueling outage and other operational activities at the Davis-Besse plant between 1983 and 2002, leading up to the March 2002 discovery of the corrosion cavity. This effort included a review of the RCS leakage BN63097.001 B0T0 1106 DB05 1-3
program and the history of CRDM flange leakage during all relevant RFOs to document the efforts of Davis-Besse staff and management to address the boric acid leakage issue.
The severe wastage discovered during the RPV head inspection at 13RFO was completely unanticipated and unexpected. No individual or organization in the nuclear utility industry, ranging from the reactor vendors, owners groups, operators, or regulators, anticipated that such severe RPV head wastage due to boric acid deposits was possible.
None of these organizations identified the potential for cracking of the CRDM nozzles to lead to significant RCS leakage and resulting head wastage. The unexpected nature of this event is further emphasized by the accidental discovery of the wastage cavity due to an unexpected tool movement during the nozzle repair process, as noted in Section 4 of this report.
In Section 8, we describe the results of our finite element stress analysis (FEA) of Davis-Besse Nozzle 3, and our predicted crack growth for the long crack at that nozzle. In this work, recently available experimental measurements developed by an NRC research program at Argonne National Laboratory (ANL) has provided new data for the crack growth rates for Alloy 600 material specifically taken from Davis-Besse Nozzle 3. While the very high crack growth rates measured for this material still remain unexplained, they allowed us to develop an accurate timeline for the growth of the long axial crack at Nozzle 3, which we have concluded occurred over a much shorter time frame than previously reported.
In Section 9 we describe the results of the detailed computational fluid dynamics (CFD) modeling effort that we undertook to develop a better understanding of the thermal hydraulic conditions in the Nozzle 3 annulus and developing wastage cavity. To our knowledge, there is no published work on this subject, and the initial phase of this effort has provided considerable insights into the development of thermal hydraulic environments in the CRDM annular crevice and developing wastage cavity. In turn, this has allowed us to relate these conditions to the potential metal removal rates by BN63097.001 B0T0 1106 DB05 1-4
mechanical jet cutting, jet impingement, molten metaboric acid corrosion, flow assisted corrosion, and possibly concentrated aqueous boric acid corrosion/erosion.
Finally, in Section 10, we integrate the data and analysis from the preceding sections to develop a chronology of the crack growth and wastage cavity development at Davis-Besse CRDM Nozzles 2 and 3. We conclude that at 12RFO in April-May 2001, the incipient forming sub-surface wastage cavity at Nozzle 3 would not have been found even if the RPV head had been completely cleaned of boric acid deposits, because at that time boric acid accumulation from the very low leak rate would have been miniscule.
Moreover, even had there been no pre-existing boric acid deposits on the RPV head from CRDM flange leakage at 12RFO, the sub-surface cavity that was present would not been detectable from the very small enlargement of the nozzle annulus that we believe to have been present at that time. The crack growth, CFD modeling, and analysis of the potential metal removal and wastage mechanisms lead us to conclude that a critical point was reached around October-November 2001 when the upward growing nozzle crack and the rapidly downward growing wastage cavity intersected. After that critical point in time, rapid metal removal of the remaining one inch of steel occurred, uncovering the large pre-existing weld crack. The leak rate increased by a factor of eight, the growth of the wastage cavity accelerated further, with most of the cavity formation between October-November 2001 and February 2002.
The Davis-Besse RPV head wastage event was therefore not the result of ordinary wear and tear. It was an unanticipated, unforeseeable, and extraordinary event of the moment that was brought about by a unique combination of a large, rapidly growing crack in CRDM Nozzle 3, leakage from that crack at a rate and at a location that caused a unique thermal hydraulic environment to develop in the nozzle annulus, that in turn caused the wastage cavity to develop at not just an unusual, but at an unprecedented rate.
BN63097.001 B0T0 1106 DB05 1-5