ML031000508
| ML031000508 | |
| Person / Time | |
|---|---|
| Site: | Diablo Canyon |
| Issue date: | 03/27/2003 |
| From: | Womack L Pacific Gas & Electric Co |
| To: | Document Control Desk, Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation |
| References | |
| +sispmjr200505, -RFPFR, DIL-03-004, TAC L23399 | |
| Download: ML031000508 (109) | |
Text
ATTACHMENT 5-1
TO: Dr. William D. Page - PG&E Geosciences FROM: Jeffrey L. Bachhuber - William Lettis & Associates, Inc.
DATE: 14 March, 2003 RE: PG&E Diablo Canyon ISFSI Response to NRC Review Request No. 5 -
Transport Route Rock Slope Stability, Rock Mass Models 1.0 Introduction This memorandum presents the results from the William Lettis & Associates, Inc. (WLA) development of stability models for evaluation of the bedrock slope stability under the ISFSI Transport Route. This work was performed at the request of Pacific Gas & Electric Company (PG&E) under Contract Work Authorization No. 1223-92. Specific tasks included:
- Review of NRC request for information;
- Review of existing geologic cross sections and data in Calculation Package 0.21, Rev. 2, dated December 14, 2003;
- Selection and preparation of the analyses cross section M-M';
- Development of alternative slide mass models; and,
- Preparation of this memorandum.
Development of the slide mass models was performed by Mr. Jeff L. Bachhuber, C.E.G. Internal WLA review was performed by Dr. William R. Lettis, C.E.G., and Mr. Charles M. Brankman, R.G. Dr. William D. Page, C.E.G. of PG&E Geosciences Department provided Independent Technical Review (ITR).
2.0 NRC Request for Information This memorandum presents the technical basis and input cross section for slope stability modeling in response to NRC Request No. 5 "provide an assessment of the long term stability of the subsurface materials under the transport route for sections of the transport route underlain by bedrock, considering the transporter loading superimposed on the long-term static loading."
3.0 Review of Existing Information In preparation of the new cross section for stability analysis, existing data were reviewed from the ISFSI Safety Analyses Report, supporting documents, and WLA project file. Of particular relevance was existing cross section B-B." included in GEO.DCPP.01.21, rev 2. Subsurface information shown on this cross section is based on geologic mapping and borings completed during the ISFSI studies, and previous studies by Harding-Lawson Associates (HLA) in 1973 and 1970 (Hagler, Richard D., February 26, 2003 Transmittal Letter for HLA borings). The locations of borings in the analyses section area are shown on Figure TR-1.
WLA TransRteMemoNRCReqNo.5 final 1
4.0 Selection of Cross Section Location Several criteria were used to locate the analyses section M-M'(Figure TR-I). These criteria include:
- The cross section should cross the Transport Route where it is located on near-surface bedrock;
- The cross section should cross the hillslope where bedrock bedding dips downslope, permitting kinematically possible sliding along clay beds; and,
- The cross section should cross the steepest topography that meets the first two criteria.
5.0 Development of Cross Section M-M' Analyses Cross Section M-M' (Figure TR-2) was developed according to the procedures described in GEO.DCPP.0 1.21, rev. 2. That portion of section M-M' downhill, and west of, the Transport Route aligns with the location of existing cross section B-B"' presented in GEO.DCPP.01.21, rev. 2. The topography for this part of M-M' was taken directly from section B-B"'. The geology along this part of the cross section was modified from section B-B"' to reflect more detailed analyses of available borings. Uphill of the Transport Route, the location of the eastern part of section M-M' deviates from section B-B"' by continuing straight uphill, rather than making a 90 degree northward bend. The topography and geology for the upper part of the section was derived from the Site Geologic Map, Figure 21-4 and section B-B"' in GEO.DCPP.01.21, rev. 2. Subsurface information was compiled from test pits and borings that are located within 100 feet of cross section M-M', and was projected at a right angle into the section line. The original boring logs from the investigation by HLA (1970, 1973) and from the ISFSI investigations (Data Report B, William Lettis & Associates, Inc., 2001) were reviewed, with particular attention to occurrences and characteristics of clay beds and seams, and subsurface bedding dip directions. In addition, the nearest bedding measurements from surface outcrops were also used to establish control for bedrock structure in the near surface. Clay beds were extended from the borings in accordance with the criteria presented in GEO.DCPP.01.21, rev. 2 and as was done for the cross sections through the slope above the ISFSI:
Clay beds >1/4-inch thick - extended for 100 feet as a solid line and 100 feet as a dashed line from surface exposure, and to both sides of borings; Clay beds 1/8 - to 1/4-inch thick - extended for 50 feet as a solid line and 50 feet as a dashed line from surface exposures, and on both sides of borings; and, Clay beds <1/8 -inch thick - extended for 25 feet as a solid line and 25 feet as a dashed line from surface exposures, and on both sides of borings.
Clay beds are shown with shorter lateral continuity where they are known to be absent in adjoining boreholes. In these instances, the clay beds were extended to a point halfway between the two borings.
WLA TransRteMemoNRCReqNo.5 final 2
Two primary rock units are present on section M-M': dolomite (Tofb-l), and sandstone (Tofb-2)
(Figure TR-2). The dolomite is present as a thin sequence in the upper part of the cross section.
Most of the section, including the Transport Route is underlain by sandstone. Postulated slide mass models used for the stability analysis are located along clay beds entirely within the sandstone unit. Sandstone is exposed in the 15-to 20-foot high bedrock cutslope along the uphill margin of the Transport Route bench. Below the Transport Route, cross section M-M' extends across a small bedrock syncline, and the bedrock is covered by colluvium and Pleistocene fan deposits (Figure TR-2).
The location of the cross section is oriented in the downdip direction of bedding and inferred clay beds, and is skewed somewhat (about 10 to 20 degrees) from the topographic downslope direction. The downdip direction of bedding and clay beds is believed to provide the primary structural control for rock model sliding direction, and exerts a greater influence on the stability analyses than the skewing of the cross section location relative to the topographic downslope direction.
6.0 Rock Mass Sliding Models 6.1 Kinematic Stability Analysis A suite of slide mass models were considered for stability analyses based on evaluation of kinematically-permissible failure modes and geologic conditions.
Kinematic analyses methodology and results are discussed in Calculation Package GEO.DCPP.01.22, rev. 2. All rock mass slide models involve failure surfaces controlled by geologic structure (bedding) and inferred clay beds, and involve movement of a substantial amount of rock below the Transport Route bed. The northernmost part of the Transport Route that is founded on shallow bedrock crosses the axis of a bedrock syncline at about Station 46+10 (Figure TR-1).
South of the syncline axis and on the south limb of the fold, bedrock dips into the hillside and large-scale rock sliding along bedding or clay beds is not kinematically feasible.
No other persistent discontinuities were observed in the bedrock in this area that could serve as potential sliding planes. Therefore, large scale bedrock sliding south of Station 46+10 is unlikely, and was not considered for modeling.
North of Station 46+10 on the north limb of the syncline, bedding and potential clay beds dip downslope to the southwest to the direction to a point about midway between the Transport Route and power plant where the section crosses the syncline fold axis (Figure TR-2). The dip of the bedding and clay beds on the lower slope below the syncline axis is oblique into the slope, inhibiting bedding plane and clay bed sliding and constraining the daylighting locations of the slide mass models to the part of the slope east of the syncline axis. All proposed models therefore toe-out above the location of the syncline axis.
WLA TransRteMemoNRCReqNo.5 final 3
6.2 Model Basal Slide Planes Basal failure planes for each slide mass model are located along clay beds or clay zones that are interpreted to exist from evaluation of exploratory borings.
Although no clay beds were observed in outcrop above or below the Transport Route, they are assumed to occur within the slope as interpreted from the borings. The controlling clay beds for the analysis were interpreted from boring HLA-9 (Figures TR-1; TR-2), and consist of five clay zones documented in the original boring log (Attachment A). These potential clay beds are summarized in Table 1. The clay zones were not described on the boring log as clay beds by the HLA geologist, and no geometric information is included on the log to verify that these zones are actual clay beds rather than "clay-filled" rock fractures. Hence, all the clay zones are conservatively interpreted to be laterally extensive clay beds, and were modeled as potential slide planes for the slide mass models. The clay zones encountered in HLA-9 were not encountered in the closest up-dip borings, 01-B and 01-H, and are terminated between the borings in section M-M'.
TABLE 1. Interpreted Clay Beds and Properties from Boring HLA-9 Interpreted Depth (ft.)
Description Thickness for Model (inches) 22.1 "1/4" clay seam"
> 1/4 28.0 "clay cuttings" 1/8 to 1/4 44.5 "clay clumps" 1/8 to 1/4 51.0 "into clay, smooth drilling" 1/8 to 1/4 65.5 "1/2" clay filled fracture"
> 1/4 (1/2)
The apparent dip of the inferred clay beds in cross section M-M' are based on the nearest bedding measurements, in surface exposures and bedding and clay bed orientations from the nearest ISFSI borings that had downhole structural measurements.
The apparent dip of the bedding is well constrained by multiple measurements in the upper portion of section M-M' that traverses the ISFSI site, and in the power block area. However, between the Transport Route and the power block, the bedrock is covered by colluvium and Pleistocene fan deposits, and the HLA borings in this area did not include downhole structural measurements. The axis of the small syncline below the Transport Route is projected from the nearest bedding measurements.
The apparent dip of bedding and inferred clay beds was uniformly flattened between the projected syncline axis and nearest uphill outcrop bedding measurement (Figure TR-2).
6.3 Upslope Margin of Slide Models The upslope, headscarp margins of the rock mass margins were constrained by the following considerations:
6.3.1 The upslope termination of the clay beds constrains the uphill location of the slide mass models and location of tension cracks; WLA TransRteMemoNRCReqNo.5 final 4
6.3.2 Constraint on the uphill location of potential slide blocks is provided by the approximately 430,000 years old Qs marine terrace shoreline angle (Hanson and others, 1992) that is mapped approximately 120 feet uphill from the intersection of the Transport Route and Section M-M' (Figures TR-I, TR-2). This marine terrace shoreline angle is at an elevation of about 290 feet, and trends northwest along topographic contour approximately normal to the analysis section. The shoreline angle does not appear to be displaced or disrupted by past bedrock movements, providing geologic evidence that rock mass movements have not extended upslope of this horizon for at least 430,000 years; 6.3.3 The contact between dolomite (Tofb-l) and sandstone (Tofb-2) occurs uphill from the Transport Route, at about the location of the Qs terrace shoreline angle (Figures TR-l, TR-2). This contact does not show evidence of past displacements, and no translated blocks of Tofb-1 dolomite were found in the existing roadcut or described in the borings below the road. This provides further constraint on the uphill margin of sliding block models, which should therefore daylight below the geologic contact; 6.3.4 Analysis of preconstruction air photos and detailed mapping of bedrock at the ISFSI site (Calculation Package GEO.DCPP.01.21, Rev. 2) above the Transport Route show no evidence of ancient rock slides in the bedrock above the route; and, 6.3.5 The Transport Route locally is on a bedrock cut bench with a 15-to 20-foot high rock cutslope along the uphill margin of the route. The cutslope exposes stable bedrock that has performed well since construction of the road bench. The changes in slope geometry from construction of the road bench are favorable for stability and reduce the driving forces on the slope below the road. The inboard edge of the road bench is an area of minimal cover over the clay beds, and also is a geometric corner that is a loci for stress concentration. Therefore this point forms a logical daylighting point for the headscarp tension crack in the rock models.
7.0 Rock Slide Block Models Figures TR-3 and TR-4 show the slide mass models that were selected for stability analyses.
These two models capture the reasonable range in size and uphill-downhill geometry for possible mobilized rock masses that are feasible based on interpretation of the geology and inspection of the kinematics for potential slope instability. Both models have basal sliding surfaces on clay beds that were interpreted from boring HLA-9, and are inferred to have a gentle downslope dip of between about 2 and 8 degrees (Figures TR-1; TR-2).
These inferred clay beds would daylight at the surface under thick overburden Pleistocene fan and Quaternary colluvial deposits on the slope below the road. The uphill margins of the slide block models would break up through jointed rock in a stair-stepping manner between clay beds, either at termination points along the beds, or after traveling a distance of about 25 feet along the inferred clay bed.
Evaluation of clay bed continuity, waviness, and rock mass jointing spacing suggest that the 25-foot length is a reasonable assumption for the continuous length of failure planes along the thinner clay beds. The extent of the failure planes along the clay beds was also constrained by the location of the slide block headwall/tension crack, which is constrained to occur below the Qs WLA TransRteMemoNRCReqNo.5 final 5
terrace shoreline angle and contact between Tofb-1 and Tofb-2, and is placed at the base of the cutslope along Reservoir Road, as described above.
8.0 Conclusion The alternative slide mass models, shown on Figures TR-3 and TR-4 capture the potential range of possible rock mass movements based on geologic and topographic conditions. These models are considered reasonable and are recommended for stability analyses of the Transport Route bedrock stability conditions.
9.0 References Hagler, R.D., February 26, 2003, DCPP Boring Logs: Transmittal Letter for 1973 Harding-Lawson Associates boring logs.
William Lettis & Associates, Inc., 2001, Diablo Canyon ISFSI Data Report B, Rev. 1, Borings in ISFSI Site Area.
Hanson, K.L., Lettis, W.R., Wesling, J.R., Kelson, KI., and Mezger, L., 1992, Quaternary marine terraces, south-central coastal California: implications for crustal deformation and coastal evolution: in, Quaternary coasts of the United States: marine and lacustrine system: SEPM Special Publication No. 48, p. 323-332.
Geosciences Calculation packages GEO.DCPP.01.21, rev. 2, Dec. 14, 2001 Analysis of Bedrock Stratigraphy and Geologic Structure at the DCPP ISFSI Site.
GEO.DCPP.0 1.22, rev. 2, June 14, 2002, Kinematic Stability Analysis for Cutslopes at DCPP ISFSI Site.
WLA TransRteMemoNRCReqNo.5 final 6
ATTACHMENT A - Boring Logs Used for Section M-M' WLA TransRteMemoNRCReqNo.5 final 1 1
FIELD LOG OF BORING
-lv LOCATION OFORINxG -- -.
v-
- 0.
+
/-
/.
.P %
7 0 pez WI
/
vJ6 PROJECT;
),Aup
"$Ar'4 I BORING NO. q b-llTOTAL DEPTH 1
?k-'
dOe NO.,
9if, 024.O LOGG ED BYt ho)
PROJ.UGR.:
EDITED BY, DRILLING CONTRACTOR:
IJj
£ DRILL RIC TYPE
?trFV LwCq DRILLERS NAME' Jr1Fvzc __________PT BAMPUNG METHODS: SV. AX e1eE HAMMER WT.'
3 l DROP, w
sTARTED, TIME:
DATE:
/-47.k COMPLETEoI)IE, 4
IDATE' Y-Sr-72 BORING DoPT (ft I qtr CAS_ G DEPTH 1i.)
.Mth 4 C WATER DEPTH
'ttl I 6a I bJ a
I AE'&
I--
- b.
TIME'
.A0-[MS~
ATE LE u B ACKFILLEO, TIME:
DATE' By:
SURFACE ELEV. ZW.7 I DATUM:
Tvu Aw I
d~OWAML LA&df Y eeWY ff
-l G
zf -
'r ewov-gWAy f,
-s S
_d lh xtr f
7 r:
t
- 7.
j
-V K.(
!Nd U2L ApexL ?fr9 Av(e 1
_W 1 Afa=
7 Yb
,i!
q fl@ 3.°20 Zo
&t
!?S ef411~itf tS0J mf 6.V f!
HARDING, MILLER, LAWSON a ASSOCIATES 2.5C-175
IALAJl)Iz SKEET Z or-k r.r. A a or.E Mrl mtfile. kImbtnilikto I PROJECT
ONOCI BORING No q Jj 1Ir 1si L
1
- I I
I C
roV SW.Oe.p(-
.3 S.0 a..
o t
pp os ct. p
!.o _ _ _
U~
I.II ?.o f
-e
-0 S
_ (
f.o 2
/
9
!*1 L~
d
.0 1e~lf 0-u It"
-1
,,A-v-zLWvr Ii "I rfl£ I
me W&
a a, rI' 14t IL AOC' Br'X~w/sSS Aor mxg,
- UVw, I
=
- AMe, MIZ.*4J P' et.'
o9v(i
.AWA C4&.
-u~gw.
quw¶g/
waerUo V
svev Vz wj.n~
I g
ry,-
rA-C r,.r Nww 7 _I
- enf 1.
~.= /tC 2
tf7V
~b -
D ^<
_DI Fd4V Sq wob
<2 t
irwitr xFee-M&M azr 2 >-e P&G-Irmajo.& A~r Islo.2I?7p bOws fiA%12Ir*%C.68t;ts
- foCezus
'. o ItjmJ cm m)
N.'
-aD4 9
w7IWLS
.41 22" el) ff/!
E n
.0 I
9 U,.e SNRi1VG,.M*LLER.LAWo S3S0CACSAU 2.SC-176
IALA-'/ 3 a.
a a
-r s
nDL"Y It; 16V1WPW V WM s
i"'
W r)
I rj Pi o
s PROECT:
NO IORINONO P
o P I h I o0 c I
u
-0 2.
0Y e2.p Io /mI if I
l-4 24G Lo 2so bof ire ICf
_ 3
_ O 11.0 If 4
I<.
3
-F IZ M
~
.3 J
2.0 z4 lo r
I I
I I.'
I.'
I._
I a l A P / P /
t p o v 7 g e
.i f i "6
pffj2f-.c T4 I
I I
0 _
At e,&'
I) gs;
/11 e 4)
,rz-1* t iV
& V :
VOY to w n.4Y-TWit.
OQL#*.tfgi.tw c
. Curm P
ACe cs *P.
PMFO
,we-C' c n Cm,47u.
mSS
/A iW a-WAf w
I ervrro A&A Ay c4-.&
~.MV OTWOIm
- ~le 4
T 3
ftir kMylis i
Sr J L
& /A (
F,'
KAxNDINlIX"LLIHL*5%% 5 asWioAi.aS 2.5C-177 Septenber 1985 Revision 1
i-LA-1/4
!tmrrt 4 04.ne-nr SOIM2Mr U~ImibutDI I -
hi40 S.
¶ C-4
- R 4
a t
~
v w
ar *".y _
P.,, W.
t S
a I
I lb I l,Il
°l l
I I lS I Ul t
- oc -
i ie L c120 I
- I1.0 oIL1
- 3 2.
.0 2
/-
_- _ 0
_ 2 a
4 of>r S
-70
- 45N0roF 23 3
AI II 4
I p
I I
I I
I I.
I O.
II Ur' let "UN wf
.igA ict' ff,f afavat 2r!
-Vo a Jif f I rfxt A _~aewwla e
v?
ymvo e
IJ4MO f.e
/'V#I 4
A-1 a I
errsgA
.Al wq/(i tv ftfaW V
_1JAvW r(dAY f ZEAr MfTbWFA.
w!"SM. HSIOWL-1 WPV4C~f%4.
M. ftkoe, wtrove.nJr. swom
-Vuis
&cg C
w &sL -0'c iI L 4i lawqr if 94 giocP Al/
J Ill j w f yt'1.Aia dIW&
f f-
.S R
.j
,ft W l f
q ls- -
I a
---L _
z J _ _
Fro h
m £
=I&TLS 2.XC-178
U" A -"5{
SHEET. J Ofr b
cirL1t LOC OF bORING MCONTINUEC PROJECT NO IBORING No. q I-a 2:
b&I t.Uv S f 2o 0-
-z -I-4 I ? 4*,.
I IL gr I~ l 20 l
IP I
4ls
.I v
3.o 4 #0
-r 3.o 3-__
2
-3 7.
t I
4
£ 7
9,.
I-4-
6
.7 9-AIY eel
,i#
e' & r:
LS RV.
Xfr Avyel-f C* qr Alr 2Af P~MF Al-WV7zI 1cŽI3..
46 Ir
'35211
- 3 I.Ih I--
p's RANrolMG, lLLLRLA#4ON a A5SO=CTES 2.SC-179 Septenber 1985 RevIston 1
VAL.A-1/40 rlto Le or FoMtO G (cONTINUED)
PROJECT.,
lmO sOlNNG No
=
-AL. Fo w
V 7 T**
l de 2
k 30o
.1 OA
- 1.
CIAM1640 X cc.dJ: ge,-rwz ftgsr_
40w
_T
_ __ _ L 4
eemrv N
lRA'1'9/A UMLl~f A'fA dViff-? A4 a
ic f av rrvo Mm/
fo f 6
- - -I - - - - -
- I-I--
I 7
a
.9 t00 I
a S
.4 S
'I6 r
I 1WIJ 4 6
.f. t
.£.rs.4;1 a
u
-I 9
0 -
I S -
S -
A -
I I A -
ppe NARVIX9,NILLLN,LAVWX 5
A=CIATES 2.5C-18O
LOGofROCK BORINGcol-B3 r-A lI.-'.lk-1
- 30.
51lal Pa e of IiA-..
s 5
- g.
,,f Zel War-L,4r.
I"A_._
I 5w',r1 tin.e.I.r-Tsi.
1,&~imraigtkvt W vm iase rhvF c" w k t Osw r oo*
- ^___,_-
-- i j--.r lawor 31
&...549-1 valreca& A I 4-41 L
I r
I II 6
I I
9 i*
4v1 I"
9 1I 1%
I1
p0.
It 4
13
£pr I
i_
___f t C~ p hi y
- j 3 S.8 n ~ a~
u F u a u e a r yw S % N 7 V d P J e -- *Wid ML M.4, Id.
C.c ~ 0 rd )
a d v e.v yca m (.1 II US aO b. E a e.Ir & u. R.-
aC4 i ~ U ~ e~ nb.
f L-k V - t W L.
A.t d
~ h W o ~. a m
m S.
uu.
W tmm ktSlaug.
I ft..kW.
Wd v
m ut W
HL.
L ofu WOW-S K
dveswj.ta -wito feli
/
ROCK BORING LOG Page 2
.~3-ja _f.eO 3_.
D1) PP to I 12Z34 - I I
L10 l
- - of 5s I
-I:M
/
utiiogic Descripto Remarics i 1 F.
.I-
^
^
r-16 1%1 1"
I Y'4 T
w 3
/ --
4I I1I
.- *04 II u0.I
.11 I
I rAr-CA
_Z
_i q.4 I.0-1
£1
- jiC
~~L~'A 4hJ:
&^tL.
rwh
.c.m*.
0 4
i4A -
4--UOV
_-UA Ul-4k swaJ; raga._i_,
I.
_44
_4-
-Y I l C ;'Iri0i 25-
-)4 -
,,;p IIo;,SlIkO lbo pigs IS, tOx
- Te:wf1 o*4,..SI.
-or
'I, #rYo, e5, lot
- -c
'.5odS, v
- role, wCk
¶ 01.-
PT.o wes,S:
,T., OX T>@'
E9 t,SI,Cf so~
-~ *.q~a1~ 5gtop
- To
-S
- a,<1,,ttafox I-;J Sloop, or
-To,zo, ti,-
StO' ot J~,v.O
,p,#*
_n,,>0 A.- P, sliopte
-a
,Us46 IOP -I$%
pi, _,I.,Ox
-So, PSjI asslo Sern.X P.16,8 D..e-c~s -#e P--6 c
l
-0" r_ "
s.e_
k:)'-
Sorcec 0
I I
_P 4A C
7-R,
%P F
t Ir C..
-I IF
- 4%
!6 r
128 S.
tEJc~t*;
- tos, W..
- J-,Fz ftl letl 060%oao
.1 O.P.i- '
'ov'C;sc bicto Ms b(;te. 5'd 4Lts.t~
C..
- q sm Om I'
0
.M 5',
4 I
j0o ao1 al
.=
i _ i _ _ _; _ _ ;_Foomm griae _wgdr~_i znvw.VyW Pt W ar(r4lM&i w-_ r4aer).
"iA.
_v Cvam o4fr. ku C
iai_
al Sy SmAd.o-hq A3&~d~
leai_ U.W ~.l.l Wor R~ a m rbl EIL Ok 0 lA ce
~a.U u wau m
¢c
°u-i~aim~
bidding. F.*inb.l L izu~i ad ld f
G.
af V X
ftaw_.m4iS.-Ima"i I_
dovipgiJL&
H o_-y v
I
- 1
.9 ROCK BORING LOG IMU 12U4 -1 1'M 41t1l10 Page 3 ot _J-
_ _ffE_
n A
og~icDescription EPtion of DiOscontinuftes Remarks 31 C%
5 SW 7-S GA a,**rsaz..a Witq.%
r^S~ZI et -
l US -
4 OA
... mOc I
-32
.6.
&1.
_6 1l.a 53
.34
'.i
' 55
'36
).
lift Si; M
~12 I";
I%
3-LI I
(Til-;io. -
c c0A Ce 0. 6vc IF
_4
-4 4
S 3
ms, fj,,OK
.3,q rOP o
vslovepe
-MAO f4I,SIg, r-
-Sa,7S; a,IC Ior.
-2,,o h, Ft,
-OX 3 c..SpLS g,'Cic
~SS Wrla.s.
UcfgQy to leqof,\\l'%
4,S~r X O'skeCl b,"d,btd,¶I Op s
EAsl5,$%O.O JS, r
t
_stSe
- X,,S, o.a 4
I
.'.' 1 0
!-,4 S
41 q0
.f 0 1%
M I
$1 I,
r CA 2
I.
A I
8 I o to I *-f%
Ca, bse
-ft~
4%,'vt C 1W.4 q-42ft pi ass
.IEqt.A
%ls;X t.M. d fROA-W.11 c-tf.*
4 9a'.aCv
- 6 -ea..
Jos
&ew IS b...c..4.
O- ~.fe
- U 4a 11 Ot..c.
.9q8d.sv a a
I 1%.
rC I
II F.
nIf all At--
k0%
16 A. _
-r -
q3.
44 asr a,
Vet.
Iss 5-od ss;
.+.I.
LA,
- f~
34Y.
L i.
4 1 I 0 1d d
-_ I i A I.N I
E I
I I
I 5S" I I EL I 4
_jw 7 J_
I f 0'nj C1_
.67.
IscI L
A S"W4iz
-b.
MMM.M ZWX
.M iSe.
I F..
W6 c v
niqp ri.ic NW C.9 clmg4l "M
D gi a M" - d 1 Smq. RI-"
5-6q I4&-S & tpkihm enag. fi-U-L RI."
W i.L M 34It M Wu
' W.L ihi I 91W MAKIIW K>iA law ai vo-Wr L.,,+z rqr
_A j V Imi ml-mg.WS~! a~.b.t I u Si T i
mS d
~o.}c;".
Page aL of S ROCK BORING LOG
'f w
iIft
- _-D
,/;
u0 4?,
Liioogic DescripUon~9"Dsitoa Remarks
-I l
I I
I I
i I
I I
I Ci~
I"e I.t
=.
sw S.,,
q
%n et VIe
- 0 12I I e I
RIt Pt asl i PEL-4L¶ %04 A4 O-J 5(T acj %S.
- jd tft,4 L
p..
r.'.,i
^S 4.r"
. r p..
J lb,w; jsasp
.To b~fooloto MejD.rF e
f t
C lwaiLs
~~sifi'rlex 8';t'fi i
'13' ('.;
4...Iua.
'E:e a
A.vsJ cU¢r hjo Cot 4-3...d it two&
G'556o "-
ft{@tf'*e 1et 44 Io,, PA
-tO _ C 0 L
all walw~&a-646 #ait Ue41co, re ST I
- 0 w-q47N 1' I,
it d &%"a
- VI J
t4.iW...a,
-N.
I~.
a It
'1.1' lA 101" hl J
- r V"-
I'i 4#12 v~ea, A
4._-1.
r.,P
.0 N
I 4 II I _
D.-W.bMJAA tu^.
I" -b
-T,'.fUSW4.4 LOP al It
.I I
I-wouno ligh.
S~k uw4 I-im vu K~at Cw~Cs iniR LS.Ia&adui Z~
r w.v.y whimp Mnw~d
- r;I.
gJ
-lc3Ch p.-rin~
£g wm4ai.S-C4bod a0 U
- q. mW VU.
A-Aro w
m SM G wi,,lmooK s,.Sgi dk
- a. M SrUIJ-4 JLS q14_101
ROCK BORING LOG Paae S
),1
_ of _
lcD01 ricrTV rI124 - I 1 /_ oI a
011f- ~
~Descuip nwtzes Remarks 41 6,2 Oe I.k it S.
1-4 z.I lte Si Lu.
w@ay C.. f 5*. 3.dw SdVQ AJO7*%
&saw'
)
itfS Shlst BA &
jC3 I 3 j C.S
'IV t'.
04 PD Se 4
Sime as I J1 It3.
PI If, 1
so P.
%PvC
^0r,,lwe 08,1,ftso p to-cp~
& as I4%Peo I
U tax D4-aw*zl c~l
^a. otllb rft 6
aoI 0.6 Wot
-00k
.r TI
'I9
'IS I -
I -
I -
70 I 1 I
2 S
- N LI 160 1.2 au.
AiL aiv 3Oibb%$ip Ma FM 0t 7I 44 _
73.
4-I 70 4j fte rk
-s &%.
Su I N7r:'vs^w S'Q"l I
5 L-I
.1 I
I I
II..
.. L L... I..
I.
... I.
W 5 a i F - u= E w S rla g. M W i a a H'lg i r.C r _ d y ~. i_
_ t S J F
V W.
y W a P t W i.
. B
( 1 p 9 4 - f l n O. p r a n.
S t~~~~~~CW-M~*
C-f
%w 14t"mumg Uam..
Su,,. U~W 3.JU.I Vii. VA U-a.tWty Wii. LAIW.gi 000"-a' Wi %VL 6w I mm
-sla.
sai Lk L.8.w 54
- O T..,
LOG of ROCK BORING L
O-1:4 0';'_A.
f':1
- . % _Ltzcts%
st.
OI-H_
/I Paoq
" 01uma" 6mq Lam...
M PI LS-k I
Df. VI? = Srs-Page 1
of '
De=k T~w
- WW o;_
34,--l06 v-3r s 0_ o-e G wow De a Be Hak a.Ak 1c.v1e co, b-rl '4 Ws Vt-mill WA 0
o Niat-inrillio"
-.. n.-
c-^ rV,,>,,
r6 F X!%C-I X6 sI I
Z-I' C="
w ea id SS cp LeE.- S.
W
- tKCt c4(Wm Lo (CA J
J 1i6 Kw
+ T 1
o'f /II P'4 i-c 4 TL7 Ydofk!A
~ d~'e-Uthoogi Desuipion iscrf Iies___
Remaft nC A
2 i3 4
6 8
- ¢ 8
$10 13~
,4' 13 I
C 4-4 Is S1.
. 3 i
I C 3
IL.
E I
0:
it.
Aurr to 3TI K
T.s%
.CqJ u-ft I
LLS iS r "JsV0PE daa.1,
~,
Swin~C ro-%,§ -
rN Mirt 1
1 1u--
rZe'ust=,
U lr,'t0 Uas.
- ,s4t W,T.,SA.0 *hd lA-h C.A'&
i Ii M Cl.
it IA.
tl*
S.,
4br.
3 3%1f."..&
701,osr.
s,' V%
81ltsn ass A40-g.z;,,b,,.n b.v&
L$
'ii g.,
AIDsk" roO
~
fig r4v T dVIV4k,51re~va Boa >
hnC.
X VIF L
t4of e-s-
- Ws pski
.Ppi a ll ---
"soi 9
W A
I IL bI 2 I< Ito Job Plot Imf Sq
- kikt
,au 0-4. Aw Ns"r
. lr..
-01.Su-'*,
M.~
{v-w T.,3vw 41VTI, liE I
- ft
_4
_4 3
-3 3
3 WsI Mzs JE,.s L.
At5t 12) 8Sswgfi%
1
$wa..foa.
Taxi W4,v,-ri no SW.,
r,6, 9ma*,e.ui0 r.,v,,^9xFsvn e
<S.
sbt g;o joopI /mof
- logs
^
^'
IIDIo...,^
e6Dp4; C
mW I th
.1 w
' ts WAutN o-h" SW4IS UW-Ma-mm. IW4 hCWC-wW*. _d romma uud.
VW W.yWatP W_ _(r.n i*;fb4" p_-1t cWlu Oair n advc.c qChu(4n.f W.sgkDa a4pic 6&
u a.
Iuqhaass q"u4..1b. SJ-Si__tdzI.
al
.e r F f.S.Ucms Alevss (S0406.
SI-S3i0lY godk It-Rev.
Ml VA-Vaty god.h Amc Stiaeld. Wetklet Dil-Ofd ONttilN. h< of "Ilia$
fick-SL 6W
Il" L
ROCK BORING LOG Page Z of -
t I6-I I IDPPa WIT o~
13--4t-I \\
Pl/olbscl_
,i~#
6 fl.
.110
,5Q.
'I Z
/
'av;i I./scabn of 0/
DescripUo D
nbutes
.Wz'l-o Remarfs I
- 21-22 25 26 o
7 tis
'I;.~
Z.1 TW-i
.(-r r
r 1
4 1
r UI-3 313 11c I
W. fIpD ItA a
-I I
V 0
t Li
,SW,W
.i 1'.
Vfil I
145 92'.
313 lVW V
s,4i
-* 4 a
t5:2 5W Id.ehc Wgt ff (fS.
IWo*
e b
4-4,K e
1,.
be.
4.*%.- %
W.
cit wit kf W:Z8 16"-* It-}al ba db t
r4 to %u'.M K 1 4u cem.W.12.ji*
tm-ou hozi l.M4 VZ^el-~s I
A JZyb We," R ii.8, Sh t
30I.%W.
- 51.
i a,
see S
, sh
'5.
Pi V VL. h--rblo-4j.
brb e Wr, t
- r0gi,
,l~s~t}VtI,'
VW
- S COA.k4j& it*Lf.
rzopsi I
e x2I Swrb re$-I Ito ptli lle ts l
soN 1-El.
lco C.
5:.D S5 2Hot fo 5O'3 lvsl 6
C ro, rc nle12si fSlos 1 QbV OAW4%
i Mfizof
.1 0
SW W;
4Af is 07t i
,III I I I Nd I-1 L
-:0f -
B
-#ado~m Oidsbtmi~bz,_
3..Idi*_i*. fjd~b Ibldaag~eV kiidi34i-fip.Ssb*i I
ww~-jow_
ROCK BORING LOG Page,
I.POd ZIS3 1:3 4lB$l Z of 2 fw I
.:~
A Dsr/
/Descbon of 97f Discontinuies Remarks 30 w32 34 36 27 38 39 Xj t
-A 32 533 44 "5
LI VaIt
.5 i;
A4 qAMO2ms, 9%4d-riu
- a ILca4~wt-y)
Qu II
.h LBFA e
43 7
5V
.5I tt
" f m4i'
.14 31 fA~6 I
3q U
1' qlo4A Lt qtS
^.<l1 WW1&
I.^a o4a' hIts5'wLt4
,XI ows'st*
S I
U Lt 3
I ;,
~
v,*, ;
A T, sem'mr
'I, lo..Aw.4Cd~
16 SA*r wtdt
,pzA'i TI, tLiiisW S. SL. 1,0 b
&'t1 S9 JV iw,',1s,
.4wkl' rt.oVl;'S 61sl Tw1zAs~)Tn j>jr.
4; S
I VDe4 IP
_~
Ps W t4
~Sot
,rWA1La oxe 'e3IL U;eM.ULsA..
ckb goif 60k*ee
- Ca1, S.eN${
$q Lo %3^'
4il' "w
2fio ljj.-
e 7k'."
1!0 Psi 2^7:1L, nil'-
xi.1450 voo @@
of he.,
I 19¢5.. 1$7 S.
Da' 7aWf')
aws pti gD43 Ieog,^
I I1 roz. /
Wo4
.7.-
6*
-w NW FF-VF u
M MW.Mm5u. Kt4-A.C1
_di.
mF RS.IaroI usL Sml Cl
_vc-yC l S-I y
aau L
g ft4 wa oM S
I*
is km..
vm.L ammma..h-I tkVdi,~ ~
~
SiIh.
SvW
-S.b 4 SI IfiiIIUaLIMP'~
'A 14 Rnr.K RBRING% LOG Paae N"mgpp IiST 1173-l 1S4 A I 10; ot-Of-Et#
Osrtpaion of Discontinul ties Rema*$
it, Ik',s im, r gIe
,1 0%
1S,3V, it,;,,w H
S t
r t.,=
4 t.,p
$C retkail W% wo. CIu Vs, O~weJt"n, I't 4 raeIL J.,e,:*
%hI' z
&.op' Dtrs
,e w w
.z' Aofl
,w,
- S.1T, i
a S,,7,<64
_I;N
- bofu t
Sr S~e *>,q.~-.~uf s
e
,~~~,
p s;.
s',
la-A,
,5 s;.C I
I1 r
ts
.aW.
.wi h
I.
. _-.a
-dCV-.7Cbm(4trXsn:R~ny~
S~~bq 4u lMS~
lWhL-a ~~n~l&y~
LOWWWCVb-ipiU h*h LBGI h
se~u 4X_
b-U g. Fa.~mbF~fd
~
l ub h MgM nfrm.
dn 4 FImrmr Duon iV~f
._.~SzbUslXS-t-tb s~it,_n
O-l_ A ROCK BORING LOG Page or Uthologic Descripion SDisconies Remarks i t t
Vw Imhiw0St svsrft
.4v 2~s 4
d 1
ut <Q6 'bbC5.,l T,v, lS~
?O%
l tops J
V l Id % 4&w; ~]b,2 II 0
.4 ErSyo sI&m so le _
Tr s<ra
$t*S" st Q,, 1C,1 0.0f1°'3
- w%~
me 3¢^6z2 ES~
~
~
4 C"^3:LI
~
s; S
AT r
T
,U I.J,5,a&r,*;s
.1 W Si.
ss LE Fw&
ItiI&.
hin ml
,A *l 5iuo V.
t s b~~~~~~~~~~~U s S IDS b - h
,, t; b o 16 E&
l SL1 11
,I 1
_4 Ml vc.-"Cbw(4*-.
lamin~
D"*6 m
JV~~m~ 4Se.t~d~
Sq 2.J~W~lRS(mi~
~~ilM Rod SY-WK
£Awn0in.Sm..&II.UiMnd Ring9. £A3 mg V3..my Ea&UApuumW.Fl.L W4Wad@QmT.&*DW T
r%
A t
-W*
4CMWi49. AMM ML
ROCK BORING LOG Page C.
" OCK Po srIG rLOGIe-o-,
f1-F.
of P; 97-7f(,t '
YDescripbon of Discontinuffles Remarks vn,.:+,;lop 3bsol. flosl ori 6-S.-C 7
- is Sso1 PI, Sl'
,71.3 -71.'
ZouL; f;-;.1.r veok.
Wall o0cIA."D Goift D;fv
-<(.x*l4 II
-f ai@Ji,%t,£s ffiL
_1,6.- h, Si, r,ls S,;LK~F,1, Kf; tsdo
-roM P00 04 SIT; 2~2.of5 A.l.
C 4
iI _F2
'3,3 N
I.-
S a<seI". to o1os 48%, -..
r
&OW, tioo St-, T
%i
- w~w61.
r,:
s
- .;W,
, ;, s^
ILI Z9v3p 1 if#$ °-6s DMt 1
4 0
f ' I I
Be I *;.4l k
]K.&-;_7 -w*VP1j 65 16 a;, 6Ed,w&,stn, 0 1iI 5 Nr C I wot Torb-l 8a i,
ftso$
I e o &*.
tE4A I out',
nits ob&4
$f 4a MD MC t-Ma tD
". oS.
, "NA a, $l *At%lT7. Co IA%46r 5P20o p
l&
W&kFwJ..ksw.9gs. KW44skrau NW44igtd.CW.Chmdy. Mi RS-IWi.aIwd.F~aegiqV,--ii W
.wi...a4urC~v~
aWVC-%yCbin(rx WU 4Za~E..S.7U.£-u~3bmkq Zy~R.ay~
1 mEldI'
~ b~gsb4ik~.
a~fbbg.
b huh.uh-~wud%'k~ b&*~
DJ~l, H.#4"
Oa
,A-,
ROCK BORING LOG Page
- 13. or
°
.'tY
_s~3 lt~
IW WA-*-16111111-Yr fi DeOrpton of LUologic Descripgon 5 Disconfinuffes Remaris l
I I(X04 -LT@f'o -La)
's A.T t -k il avI v
6 a-a I :Se
,S, eS "T"~"
6'Je oriA.
l.u% %aT,"%"
&1-go Psi B'IqI-l20ts I D
1i I
%,osi II 2$0 F-J-IcI*'
E a r0gC-,'
SfrZO 6ii 14%
if111 I I
I I
I1i I1_________
W*mvFF-t4L SW44%L M rwftk.
SW i&Wad fluW
.* PrL wi-a n ma*m C" sroL-m adW-s c (4.
b0-Iw rU raLeM W.S st...
azwsi a x wa liiF nnSw_..*
m.
ATTACHMENT 6-1
Page I or 33 GEO.DCPP.01.28. Rev 3 PACIFIC GAS AND ELECTRIC COMPANY GEOSCIENCES DEPARTMENT CALCULATION DOCUMENT Calc Number: 28 Calc Revision: 3 Calc Date: 3/1412003 Quality Related:
ITR Verification Method: A 1.0 CALCULATION TTLE: STABILITY AND YIELD ACCELERATION ANALYSES OF POTENTIAL SLIDING MASSES ALONG DCPP ISFSI TRANSPORT ROUTE
2.0 SIGNATORIES
PREPARED BY:
VERIFIED BY:
4 Pia L.- SNmi Printed S&ne Printed Name DATE:
3 IS/
&&%C1 Y, ImL Organization DATE:
3/dt/>
3 Organization APPROVED BY:
aI/
I A&NZS.
d o Prinited tOne DATE:
Ž/
/
3" Organization e
- 1(,*
'4
.. s "ii'q3t°
Page 2 of 33 GEO.DCPP.01.28, Rev. 3 3.0 RECORD OF REVISIONS Rev.
Revision No.
Reason for RevisionDate 0
Initial Issue 11/26/01 Revised to address comments from 6/4/2002 NQS Assessment Report 01339023.
1 06/25/02 Removed superseded figures from attachments.
Added new attachments (e.g. list and excerpts of input and output files).
Numerous editorial changes.
Revision number on this sheet for 6/25/02 corrected to 1. Replaced page 2
5 and 16 of Calculation to show correct CD label name. Replaced CD 12/20/02 with revised README file.
Revised to address requests 5 and 7, clarification of RAIs.
Added analyses for a new section M-M' along transporter route.
Revised calculations for yield acceleration to include mass of 3
transporter. Added new figures and removed superseded figures.
03121/03 Revised Attachment A to include current input and output files.
Revised page numbers in Attachments B through E. Added Attachment F. Revised CD to include current input and output files. Numerous editorial changes.
-t
-4.
4.
Page 3 of 33 GEO.DCPP.01.28, Rev. 3 4.0 PURPOSE The purpose of this calculation is to evaluate the stability and yield acceleration of potential sliding masses along the transport route between Units 1 and 2 and the proposed ISFSI site.
The analyses described in this calculation package were conducted in accordance with the Geomatrix Consultants, Inc. Work Plan "Laboratory Testing of Soil and Rock Samples, Slope Stability Analysis, and Excavation design for Diablo Canyon Power Plant Independent Spent Fuel Storage Installation Site," Revision 2, dated December 8, 2000 and AR A0574914.
Potential sliding masses having the lowest factors of safety against sliding are identified in this calculation package. The yield accelerations of these potential sliding masses are used in calculation package GEO.DCPP.01.30, Rev 3to evaluate their potential for earthquake-induced deformations.
In response to request 5, clarification of the RAIs, the long term stability of the transporter route, for sections underlain by bedrock, was also evaluated considering the transporter load superimposed on the long-term static loading. Potential sliding masses having the lowest factor of safety for this long term static loading condition are also identified in this calculation package.
5.0 ASSUMPTIONS The stability and yield accelerations of potential sliding surfaces were evaluated for each cross section with the transporter load present. The transporter was modeled as an equivalent soil mass with a width, height, and unit weight. Since the transporter was modeled as an equivalent soil mass, the transporter inertial forces were included in the calculation of the yield acceleration. For comparison purposes, each cross section was then evaluated without the transporter load present.
The groundwater table is below the slope and no groundwater is assumed to exist above any slide mass analyzed. No tension cracks were included in the potential sliding mass surfaces.
Page 4 of 33 GEO.DCPP.01.28, Rev. 3 6.0 INPUTS The information required for the slope stability and yield acceleration analyses are the surface topography, soil strengths, and unit weights. The analyses described in this calculation package were conducted for cross sections L-L', E-E', and D-D' shown in calculation GEO.DCPP.Ol.21, Rev 2. For section M-M' (Attachment G), two slide mass models identified as Model 1 and Model 2 were used for stability analyses. Surface topography and subsurface geology were taken from these cross sections.
A summary of properties used for the stability and yield acceleration analyses for sections L-L', E-E', and D-D' is shown on Table 1. Soil properties for the Quaternary colluvial deposits (Qc, Qhf and Qpf), Pleistocene marine terrace deposit (Qptm), and Obispo Formation (Toft) were based on data reported in Harding Lawson, and Associates (1973), shown in Attachment B. The bi-linear undrained strength envelope for the clay beds in the Obispo Formation is described in GEO.DCPP.01.31, Rev 1.
Strength parameters for the deeper Pleistocene colluvial fan (Qpf) deposits were developed from the Unconsolidated-Undrained (UU) and Consolidated-Undrained (CU) triaxial compression data reported by Harding Lawson, and Associates (1973), shown in Attachment B and summarized in Figure 1. An undrained shear strength of 3000 psf was selected for the slope stability analysis. This value was selected based on the lower bound of the UU test data (below a depth of 10 feet) and the average of the three CU tests shown in Figure 1. The artificial fill (af) is described as a compacted fill derived from the native material underlying it, and was conservatively assigned the same properties as the Pleistocene colluvium (Qpf), as indicated in Attachment C. The artificial fill, however does not intersect any of the potential sliding surfaces analyzed and does not affect their stability.
Strength parameters for the shallow Quaternary colluvium (Qc) and Holocene colluvial fan (Qhf) deposits were based on test results from samples obtained from depths within 10 feet of the ground surface (Figure 1). A value of 1500 psf representing the lower bound of the data shown on Figure 1 was selected for the analysis.
For the analyses of section M-M', the material properties used for the Obispo Formation (Totb) rock units and clay beds are described in GEO.DCPP.01.24, Rev 3. A unit weight of
Page 5 of 33 GEO.DCPP.01.28, Rev. 3 140 pcf and a drained strength of c'=0 and 0'=50° were used for the rock units. For the clay beds, a unit weight of 115 pef and a drained strength of c'=0 and 0'=220 were used. A bi-linear strength envelope consisting of the lower of either c=800 psf and 41=150, or 41=290 was used for the undrained strength of the clay beds. This bi-linear strength envelope is described in GEO.DCPP.01.31, Rev 1.
Based on empirical correlations published by Mitchell (1993) and described in GEO.DCPP.01.31,Rev 1, a drained strength of 0'=22' was used for the Quartery colluvium (Qc) and Pleistocene colluvial fan (Qpf) deposits for the analysis of section M-M'. This drained strength is a lower bound value for materials with plastic indices (PI) values in the range of 30 to 40. The drained strength was used for the long term stability analyses of section M-M' performed in response to request 5, clarification of the RAls. The unit weights and undrained shear strengths (s.) used for these two colluvial deposits in the analyses of section M-M' are indicated in Table 1.
Additional input needed for stability analyses includes the assumed transporter loads. The transporter dimensions and loads were from PG&E as shown in Attachment D. The weight included in a one-foot section along the transporter length was converted into an equivalent soil mass. The transporter was modeled as an equivalent soil unit with a width of 18 feet, height of 12 feet and unit weight of 150 pcf. These dimensions were obtained based on the transporter weight and dimensions. Additional assumptions and calculations regarding the modeling of the transporter loads are presented in Attachment F.
7.0 METHOD Slope stability analyses were performed using the computer program UTEXAS4 (Wright, 1999), accepted by PG&E as documented in GEO.HBIP.02.09, Rev 0. Spencer's method, a method of slices that satisfies force and moment equilibrium, was used for the analyses.
Initially, searches were conducted to identify the circular or wedge-type sliding mass with the lowest factor of safety. If the potential sliding surface identified by the initial search did not intercept or affect the transport route, additional searches were conducted in the vicinity of the transport route to identify potential sliding surfaces that impacted the road. Among the
Page 6 of 33 GEO.DCPP.01.28, Rev. 3 potential sliding masses that included the transport route, the one with the lowest factor of safety was selected as the "critical sliding mass."
For Section M-M', the wedge type sliding masses followed the general shapes and lateral extents identified in Models 1 and 2. The potential sliding surfaces followed the clay bed orientations identified in the two models. Searches were conducted to identify orientations of the failure surfaces in the rock mass and overlying colluvium with the lowest factors of safety.
Once a critical sliding mass was identified based on its factor of safety and proximity to the transport route, its yield acceleration was calculated using UTEXAS4. The yield accelerations will be used in GEO.DCPP.01.30, Rev 3 for calculation of earthquake-induced displacements.
Horizontal seismic coefficients were incrementally applied to the critical sliding mass, and the yield acceleration was taken to be the horizontal seismic coefficient resulting in a factor of safety of unity. In the above calculations, the transporter load was modeled as an equivalent soil mass.
8.0 SOFTWARE The calculations of slope stability and yield acceleration were conducted using the program UTEXAS4. This program was verified in GEO.HBIP.02.09, Rev 0.
9.0 BODY OF CALCULATION The slope stability and yield acceleration calculations were conducted using UTEXAS4. The input and output files for the calculation of short-term stability and yield acceleration are contained in the enclosed compact disc labeled "GEO.DCPP.01.28, Rev 3". A list of the files, including the input files and excerpts from output file listings, are included in Attachment A.
10.0 RESULTS AND CONCLUSIONS The results of the short-term stability and yield acceleration analyses are summarized on Table 2. The locations of the "critical sliding masses" for each cross section analyzed are presented on Figures 2 through 21. The lowest factor of safety for the short-term static stability analysis (including the transporter loads) is 2.02, which was calculated for a circular sliding mass shown on Figure 2. Based on Attachment E, Section 6.4.4, Condition 3, the factor of safety of 1.60 is considered adequate for short-term stability
Page 7 of 33 GEO.DCPP.01.28, Rev. 3 The computed yield accelerations for the four sections analyzed ranged between 0.33 and 0.63. The lowest calculated yield acceleration was 0.33, corresponding to a wedge type sliding mass (with a factor of safety of 2.35) along cross section M-M, Model 1, shown on Figure 15. Yield accelerations are used to estimate earthquake-induced displacements, and are discussed further in calculation package GEO.DCPP.01.30, Rev 3.
In response to request 5, clarification of the RAIs, the long term stability of the transporter route for sections underlain by bedrock (section M-M') was also evaluated considering the transporter load superimposed on the long term static loading conditions. The factors of safety for the long-term stability analyses, including the transporter load, are 2.02 for model 1 and 2.07 for model 2. The locations of the "critical sliding masses" for the long term stability analyses are presented on Figures 22 and 23, for models 1 and 2 respectively.
11.0 LIMITATIONS The calculations are final and there are no limitations on the use of the calculation results.
12.0 IMPACT EVALUATION Yield accelerations are used to estimate earthquake-induced displacements, and are discussed further in calculation package GEO.DCPP.01.30, Rev 3.
13.0 REFERENCES
a) Geomatrix Consultants, Inc. Work Plan, Laboratory Testing of Soil and Rock Samples, Slope Stability Analyses, and Excavation Design for Diablo Canyon Power Plant Independent Spent Fuel Storage Installation Site, Revision 2, dated December 8, 2000 b) GEO.DCPP.01.21, Rev 2 - Analysis of Bedrock Stratigraphy and Geologic Structure at the DCPP ISFSI Site.
c) GEO.DCPP.01.31, Rev I -- Development of Strength Envelopes for Clay Beds at DCPP ISFSI.
d) GEO.HBIP.02.09, Rev 0- Verification of computer program UTEXAS4 e) Mitchell, JK., (1993), - Fundamentals of Soil Behavior, Second Edition, John Wiley&
Sons, Inc., New York f) Wright, S.G. (1999) - UTEXAS4, A computer program for slope stability calculations, May 1999-Revised September 1999, Shinoak Software, Austin, Texas.
Page 8 of 33 GEO.DCPP.01.28, Rev. 3 14.0 ATTACHMENTS Attachment A -Listing of input and output files for stability analysis, 84 pages Attachment B - Letter from Robert White to Faiz Makdisi (May 28, 2002).
Subject:
Transmittal of additional data for DCPP ISFSI Transport Route Analysis, 3 pages.
Attachment C - 11/19/01, PG&E Geosciences, Robert K. White, Re: Transmittal of additional inputs for DCPP ISFSI transport route analysis, 2 pages.
Attachment D - Letter from Robert White to Faiz Makdisi (November 5, 2001) subject:
Forwarding of Cold Machine Shop Retaining Wall Calculation Inputs from Project Engineer.
Partial enclosure: Klimczak, Richard L. (2001) Letter to Robert White, PG&E Geosciences,
Subject:
Diablo Canyon Units 1 and 2, Transmittal of Information on the Transporter Movement Along the Transport Route, Dated October 3, 2001, 5 pages.
Attachment E - ASCE Standard N725 Guideline for Design and Analysis of Nuclear Safety Related Earth Structures, Dated October 1988, 11 pages.
Attachment F - Transporter model calculations, Dated February 29, 2003, 3 pages.
Attachment G - Letter from Joseph Sun to Faiz Makdisi (March 17, 2003),
Subject:
Transmittal of Cross Section M-M' and rock Mass Models for Stability of Transport Route on Rock, 37 pages ENCLOSURES Compact disc labeled "GEO.DCPP.01.28, Revision 3" containing the input and output files for the calculation of long-term stability and yield acceleration. Dated March 21, 2002.
Listing of filenames given in Attachment A.
Page 9 of 33 GEO.DCPP.01.28, Rev. 3 TABLE 1 SOIL PARAMETERS FOR STABILITY ANALYSIS SLOPE SECTIONS D-D', E-E', AND L-LL' Geologic Description Density Shear Strength Unit**
In-Place Parameters (pci) af Artificial fill 115 S. = 3000 psf Qc, Qhf Quaternary colluvium, Holocene 115 Su = 1500 psf colluvial fan Qpf Pleistocene colluvial fan 115 Su = 3000 psf Qptm Pleistocene marine terrace deposits 130 c = 0,
= 400 Tofb Miocene Obispo Formation 140 c = 4000 psf;
__=_350
- Cross sections shown in GEO.DCPP.01.21, Rev 2
- Geologic unit symbols have been updated from the original presentation of Plate 7, Harding Lawson and Associates (1973). The equivalent current geologic unit designation are as follows:
Plate 7 Qsw Qc Qter Tm Current Qhf/Qc Qpf Qptm Trfb
Page 10 of 33 GEOM.DC0P.O1.28, Rev. 3 TABLE 2 FACTORS OF SAFETY AND YIELD ACCELERATIONS COMPUTED FOR POTENTIAL SLIDING MASSES Cross With Description FS ky (g)
Figures Section Transporter?
L-L' Yes Circular 2.02 0.48 2 & 3 L-L' No Circular 2.04 0.49 4 & 5 E-E' Yes Circular 3.36 0.50 6 & 7 E-E' No Circular 3.42 0.50 8 & 9 D-D' Yes Circular 2.21 0.63 10& 11 D-D' No Circular 2.21 0.63 12 & 13 M-M' Yes Wedge 2.35 0.33 14 & 15 Model 1 M-M' No Wedge 2.48 0.35 16 & 17 Model 1 M-M' Yes Wedge 2.78 0.44 18 & 19 Model 2 M-M' No Wedge 2.79 0.45 20 & 21 Model 2 M-M' Yes Wedge 2.02 n/a 22 Model 1 (Long-term)
M-M' Yes Wedge 2.07 n/a 23 Model 2 (Long-term)
I Files are organized in directories on CD by their respective cross section
(
C
(
Undrained Shear Strength (psfl 2000 4000 6000 8000 S
S I
I I
I 1
1 0
API -
0 0
4000 -
3000 -
C 5-0 0o (Qc) and (Qht El
.6 0
0 O..
I g
O-Cl)I 10-0
.S 15-
- a. 0) 20-0
-o 0
0 0
0 C)
Si) 1000 -
c (Opt) 0 25-0 0
- n..1 I
0 I
I I
i I
1000 2000 3000 Initial Confining Stress (psf)
I 4
4000 30-0 0 Umm"olraed Undralned (UM TrIam Data 0
0 Im HfaoInHd Lawson and Assodcaes (1973)
Value used for slatbt analsis Comofted-UnKahned (CU) Tfal Data farm Hanihg, Lwson nd AssocWes (19qg)
Vaku uwed for dablt an9s (3000 psi)
O bti
§00_
A
.2 a wjO.O
)
SECTION L-L': With Transporter Static Stability 500 400 300 200 100 0L 0
NO. DESCRIPTON UNrl SHEM l
PORE
______WEIGHT STRENGTH PRESSURE 1
Tot Ospo Con 4000.
No Roman 1 40 Cdon xne
. aptr Coiwlo 3n0000 2 PimM 16 Fon 1:60 N
+/- Tar Man Sf0 Veng s
ot h
Factor Of safety: 2.02 Frce Inc nation: 6.78 degrees Side fo IL.
CiN A'
100 200 300 400 500 600 700 Date: Mon Mar 17 2003 Fiename: IAProiec\\6000s\\6427.00fstabIlitv\\LL Utexas4\\LL trans.UT4 Timme: 07:25:1
)
SECTION L-U: With Transporter Seismic Coefficient = 0.48g HDE DCRPMN UNrIT SlTEA I RRES 5WEIHT SmEO~h PRESSURE U)
It E) a C4 CD R.
t-t D
C-9 500 400 300 200 100 0
ENO1 DS TN IUNITr SW-AR I
PORE
________WEGTJ STRENGTH PRESSURE 1
1 Toi Obbpo Fo
_tdn 140 Ceuulon: 4000.0 iction and.: 36 NO" TOc Obbp 4blnon rs 140 24tag Uneta IniWept (Kc-1). 4000.00 Slope (Ko. 1): 39.00 nlcWpt (Ko -
y: 4000.00 Slone (Ka _ Kf MARO Non C
d 116 Cc wi o None 2 _
_t6__Soo
_ 3 p
j 1160 IcVeSiona Not S
I
_ohn 163 Vbv NoADlcl Side foi Facto of safety: 1.01 rce Inc nation: -3.76 degrees
,2 i/2t Ith
-R OD. --
1>
W 0
100 200 300 400 500 600 700 Date: Mon Mar 17 2003 Reiname: I-\\Prolect\\6000s\\6427.0OaatablttL Utexas4\\LL-trans.UT4 Tlrr*: 08:38:5a~
)
SECTION L-L': Without Trasporter. Static Stability
`04'-
r rS.
0 I-500 400 300 200 100 0
INo. oEscarrnoN IuNIT ISHEAR lpPORE NO DES NUWEIGHT STRENGTH PRESSUREI 1
Tot) Obispo 1
cohei 4000
_ FbnmaM I4 mown ards35 LL:
2 OtPWd 116 C
on: SC00.0 Oolb Fftft Ide:
O I Factor Side force in
'of safety: 2.04 ination: 0.23 degrees 41=7 IV i
t Ci -
0 100 200 300 40 00 60 700 Date: Mon Mar 17 2003 Filename: I:\\Proiect\\6O00s\\6427.006sftb lli\\LL Utexas4\\LL.UT4 Time: 08:42:33 Date: Mon Mar 17 2003 Filename: i:\\Proieot\\6000s\\S427.00stabiIltvtL Utexas4\\LLUT4 Time: 08:42:33
)
)
SECTION L-L: Without Transporter Seismic Coefficient = 0.49g 500
£ CD Vp
~A I'
Lb 0.
0.
l 0CD 400 I I 30 1
200 r)
\\
100 0
0 I-
- w a
100 200 300 400 5o 600 700 Date: Mon Mar 17 2003 Fiename: I:\\Proqe Os.\\6427.006\\atabIIMLL Ultexas4\\LL.UT4 Tllme: 08:4,5:OE
I )
SECTION E-E': With Transporter: Static Stability lX!
0 0
9r.
0I-k0 SrA
=li H
'19 900 1 700 500 NO. DESCRIPTION UNIT SHEAR PORE WEIGHT STRENGTH PRESSURE I
Tof T*Taalpo 140 Cohnr 40o0.0 FormSon FddtlonwtS nrb:s 2 OPnM PidDtW*
ns 0Csonmlo 0.0 N
2fre TN em Ftldon 8:
40 Nw 0 OP$ PiSocec Ceio"n. 3o0o No CoOuvrum 115 F
d onm ar 4
AftifriFI 1
Chion: 3rel.0 None tQht Holocn Coeion: 1SC0.0 S
Colhim I11 w as: o N
+/- lbns 160 Vfvm 6 o
b Factor/of safety: 3.36 Side force
\\0~
300 100
-100
i,,
1
I 0
200 400 600 800 1000 1200 1400 IQ
.000 p <O 2
Date: Mon Mar 17 2003 Riename: lA\\Proect\\600s\\6427.006\\sablWlEE Utexas4\\E=E_trans.UT4 Tir-nge:3- 0852 I
11 I
Date: Mon Mar 17 2003 Filename: lAPro ect\\8000s427.008stabI EE Utexas4\\EE trans.UT4 Tlmn AQ'f§.lfl
SECTION E-E': With Transporter Seismic Coefficient = 0.50g i.
-t CD 0.
0 R
I 900 700 NO.
E UNIT SHEAR PORE WEIGHT STRENGTM PRESSURE T Tdb Tdopob140 ohesbft'4000
_ Fom 14 Wfolo range: 6Nn 2 op Fise 130 Cohebion: 0.0 MUa. TOme, Rkf 4
Non4 3 CORA_
1 t5 Friton an4: 0 Nan 4Aa HV 115 laer 1600.0 None 6 otki tn 11:
0 ___hn
+/- Traf 1E0.
VS UaSf 500 1 safety: 1.00 300 Side force 1nn
.2 I,:
I '~J 0
1400
-100 0
200 400 600 800 1000 12uO Date: Mon Mar 17 2003 Fi ename: I:Projec6000s\\6427.006\\stabIHtv\\EE Utexas4\\EEjrans.UT4 Time: 08:53:5E
)
)
SECTION E-E': Without Transporter Static Stability gm:
NO. 0ESCRIPON UNIT SHEAR PORE VWEIHT STRENGTH PRESSURE 00Tot T01c ON"p Cohesofi: 4000.0 Io I
Fonrafn 140 Frbib d: 36 mom P.
2 CbnITbo 130 ods': 0.0 HNO\\W M.M utieTerrse Oohsion G : 40.0 N
700 3 C 116 CohesdO 3.0 None Cak~n Pddobonde:0
-4 5F 116 N one fi 500 Side Factor safety: 3.42 W
Side force In ination: 9.59 degrees 0
00
-100 0
200 400 600 goo 1000 1200 1400 ate: Mon Mar 17 2003 Filename: I:\\ProiecM000s\\6427.00O8stabItt1EE UtGXaS4\\EE.UT4 lime: 08:55:5
- i
)
SECTION E-E': Without Transporter Seismic Coefficiernt =0.50g 90 NO. DESCRfIP UNIT SHEAR FORE 7
TotTote EIG HT STREN OM PR ES UR vv1Tolb TWo Obls~o U
CohoWMi4000 0-i Fonnaton 140 Mto U35Non.o 2
2 PhM S ISO Coholon 0o0 NonH 700 3
QptPao 11 F
o C1 4Mn WRt d
oonw.oo 40 4
t iArio 1
Cohoeson:30M0.0 7 00 II No\\
o Fdo bon ang s: 0 CD 0Fac 0
safety: 1.01
{d 300 Side force in linaflon: 44.3 degrees o
-100 o
200 400 FaD ct 1000 1200 1400 Date: Mon Mar 17 2003 Flbname: 1:\\Proler,"000s\\6427.006 stabilihAEE Utexas4\\EE.UT4
'n
- nAR f7-A Date:
Mon... Mar1
- 2.
Filename
_ :\\Prolect\\GOO~s\\6427.M I\\.
JT4 Ti-n f
l7 u.o
I I
)
SECTION D-D': With Transporter Static Stability
~A I
0 C
Q.
F-C ra cc CD R.
V
(~N 1000 750 500 250 0
-250 NO. DESCRIPTION UNIT S=REH 7 Tob Td_ Obipo 1
Cohein: 4000.0 2
(GJf Phbomm C0ohslon: 30.0 CA Fm 14v Fnkfm
- se S \\
2 apl FbCo t15Cdi:
no S Tranr Mass 150 VOSSI Factor of safety: 2.21 re Inc ination: 22.12 degrees a
Sf PORE PRESSURE Non.
None "ADIO Side for 0
250 500 750 1000 1250 1500 1750 Date: Mon Mar 17 2003 Fllename: 1.:\\Proiect\\6000s\\6427.006 stabilifty\\DD Utexas4\\DQ_tranis.UT4T Tirm!
1A nAlrie Date Mo Mar 172 03 Flen me:
A~r~ecM O s 427 O0@sabI~tiA D U exas \\D~ rans UT4Tim..1
..Iv
i 1
SECTION D-D': Without Transporter Seismic Coefficient = 0.63g Cu 0
I' C.
8 0
2H a
- I 9t 1000 750 600 250 0-
-250 A' a
I 21 yt
w
w 250 500 750 1000 1250 1500 1750 Date: Mon Mar 17 2003 Fiename: iAProlact\\6000s\\6427.00ffistablDD Utexas4\\DD.UT4 Tlme: 14:05:14
I
)
SECTION D-D': Without Transporter: Static Stability No.DECR~n0 I
NI I
SHEAR
- p PORE WEOP i T STRENGTH PRESSUREl fTw 11140 CohesioN:
one 2II P 1 IW s
Cohesion 30000 C41uwm Ffictionl 0 None oi 760 Ci Factor f safety: 2.21 Side force In nation: 22.12 degrees CDl
~~500 00 250 2
0 i
1 1
1 0
250 500 750 1000 125175000 176 Date: Mon Mar 17 2003 Flename: 1l\\ProiecMOOOs\\8427.008'stabhff\\DD Utexas4\\DD.UT4 Tlme: 14:02:34r
)
SECTION D-D': With Transporter: Seismic Coefficient = 0.63g Oil a
0 E0 ip
.8 0;
0.
00I 1000 750 500 250 0
-250 0
250 500 750 1000 1250 1500 1750 Tlne: 12:49:01 Date: Mon Mar 17 2003 Filename: l:\\ProiecM000s\\6427.006feabiliMDD Utexas4.DDDtrans.UT4
I I
I SECTION M-M: MODEL 1: WIth Tmansporter: Short Term Static Stability 0
I
-44 1
500 400 300 200 100 NO.
DESCRIPTION UNIT SHEAR POES6URE Totb-2Obipo 1
C 0.0 2
a7sw 115 Nonm None 4
_2iw
_e 115 COhein: 000.0 No.
Oo Qwany 15Cculn. 1600.0 4
odykm 115 ron axi. o None r-sTranmmwr MuI 150 I
Woista INotAoPNlaw Factor of safety: 2.35 Side force Inclination: 13.61 degrees
.Anodize
",
I k I of~
RIV I
O w
-100 0
100 200 300 400 500 600 Date: Mon Mar 17 2003 Filename: IAProieoctOOs\\6427.006\\stabflltMM Utexas4\\MMMod1_trans.UT4 TEme: 09:27:21
)
SECTION M-M: MODEL 1: With Transporter Seismic Coefficient = 0.33g 0.
a' CAa R.
C S.
I I
500 400 300 200 100 NO. DESCRIFION UNIT SHEAR PORE
_WEIGHT STRSENTH PRESSURE I
Toie Obhspo aCheul 0.0 1Formant4 dion 140 Ao 2
liSW i1 Nor_
Non 3 Op Ps t 115 Odin: 3000.0 4
00Oudsone 1t6 Fddbn anelb:0 Now O
uNW leM Friction
+/- j~uaaWms 16 IVrVJM..tREO NO. DEOITO UNIT SHEAR PORE WEIGHT STRENGTH PRESSURE 1 Tob2 Obipo 1
Cchon: 0.0 None
_Famw~on 140n MM 2
aqy Bed 115 2Nt e Opt P1lSt1cmn 1
Cohsn: 3000.0 4
Fhesion: 180o 4O c~uaw 115 Ffhzbn C011 Vum Mellon o Non I
JTf sjww 150 1Vay Sbwoo Not Apyliablol Factor of safety: 1.01 Side force Inclination: 32.22 degrees ri-0'I
-100 0
100 200 300 400 500 600 Date: Mon Mar 17 2003 Fiename: I:\\ProaectO000s\\6427.00f\\stabltMM Utexas4\\MMModl-trans.UT4 Tlme: 09:28:47
)
)
SECTION M-M': MODEL 1: Without Transporter Short Term Static Stability 0'r a
ON I
0 0
I R_0 500 400 30D 200 100 0
NO. DESCRIPTION WNIT SHEAR POREI WEKNIGHTI STRENG PREASSUREI T TOi-20bie 0p 0i1 0.
1FOM W 40 Fdoft 4W 60N 2
1O Ebd 115 N
No" 3 c awmw1 1
016 c",u 3XOO odw$ m 116 rOMln :8O CU 11 1was I
OOQritmfl 116 hab lftO M
Factor of safety, 2.48 Side force Inclination: 12.97 degrees CIN
-100 0
100 200 300 400 600 600 Date: Mon Mar 17 2003 Fliename: A.\\Proiect\\6000s\\427.008\\sabMNItMM Uxas4\\UMMMod1,UT4 Tmre: 09:30:56
)
1 SECTION M-M': MODEL 1: Without Transporter: Seismic Coefficient = 0.35g
`0 CL 01 w
Ca a.
0I I
I.
500 400 300 200 100 NO0 DESCRON jWEIGHTI STREQNGTH PR RE II Tolb42 Otiioo 1 1 Cohec 0.0 j__NonW
_ rnilon t0 Frco angl: SD NO. DESCRIPTION UNIT I SHEAS PORE IWEIGHT STRENGTH 1PRESSURE 11 Tollb-obIWO 140 1 Chson
.o No_
2 Olevd 115 Nonker
- Nond, 2
Clay Bed 115 24Wg Nonlb Efwiope Non a
115I IOdsion:S 0
Jn 3
Pboa t
Cohbslon: 3000.0 Non 4 1d P I
116 Cohesion: 20O
- :t P:
tSon.
115 I
18 MI I
II I 0 bMrI11 I Coheson: 16M00.0 None.
m..L.SUSL.S 1........
I..
lkMSirnFitona..I Factor of safety: 1.00 Side force Inclination: 32.13 degrees 0o 600 IAg0 WS
-100 0
100 200 300 400 500 Dane: Mon Mar 17 2003 Filename: A:\\ProjeWWr0s\\6427.008\\stabltVMM Utexas4\\MMMod1.UT4 Tlme: 09:37:41
I SECTION M-M': MODEL 2: WIth Transporter: Short Term Static Stability I-l R-.
0 C
C k
3\\t2 IN 50 0 400 300 200 100' 0
NO.
DESCRIPTION UhT SHEAR PORE
______~IWEIT STRENGTH PRESSURE I
Tdb4Obhpo UO C
d O.O 2
0* Ba 116 NovAim None 3
QPt PWabJoUW cOae", 3000.0 3
Oolkilim 115 Coalon: 1500.0 None B
T, FW O
S T17iaorntPof Ia 16D I
Very Sbtow Not APollcoo~o Factor of safety: 2.78 Side force Inclination: 15.19 degrees
-100 0
100 200 300 400 500 600 Date: Mon Mar 17 2003 Filenamne: I:\\Praleot\\S 0s\\6427.006atabllMMM Utexas4\\MMjMod2jlrans.UT4
,nme: 09:39:12
SECTION M-M': MODEL 2: With Transporter. Seismic Coefficient = 0.44g
-a
~0 0.
0 0
Ca.
0 2
t'3 5-I
~'H NO.l DESCIP'aN lI UNIT S1REN I
PORE IWEIGHT STRENGTH PESSURE tIolb-20ilpo C140 ohalon:0.0 Nol Fonon 140 Fidlao mid.: 501 NO.1 DESCRIPlON J UNIT I SHEAR PORE WEIlHl1 STRENGrH PRESSURE 11 Tofl20blapo 140 oh1on:O0.0 None FoM n
Friletm angl: so 500 400 300 200 100 0
0
-100 2
0W Bed 115 Nom 2
MhY ed 115 2NsEe Nont Enrlo~o No"
_ opt w I
Coh w ooo Na.
115 Cotefon:
.. 15 00o T
Ti m
d ion w
r
__________W 4G QjsN uy 116 Cots1ionQ 1
.15 Gho mun 115 O
N j t r M ISO IhO Lt.
Nol h5 VF CSbona
.NotIil~
A Factor of safety: 0.99 Side force Inclination: 31.53 degrees 0
100 200 300 400 600 600 Date: Mon Mar 17 2003 Fllename: l-AProlectMOOOs\\6427.006@stabIltvMM Utexas4\\MM-Mod2jtrans.UT4 Tlme: 09:40:24
>1 Iti.
CD 2*
9t.
Lb 0
tN) 0 (r-N 0
Irj p
0
-0 (J uw
)
)
)
SECTION M-M': MODEL 2: Without Transporter: Seismic Coefficient = 0.45g 500 400 300 200 100 Factor of safety: 1.00 Side force Inclination: 30.71 degrees of
-100 0
100 200 300 400 600 600 lDate: Mon Mar 17 2003 Flename: l:ProwecMO000^s6427.00\\staNbWilMM Utaxas4\\MM-Mod2.UT4 Time: 09:43:25E
}
)
l SECTION M-M': MODEL 1: With Transporter, Long Term Static Stability N)
N)I St I-.
0 I;
500 I NO.
DESCRiPTION UNT SHEAR PORE WEIGHT SOTENGtH PRESSURE T
Tofb2 Obpo 140 Cd:
0.0 2
aw SW 115 COh:stn 0.0 Non 3
Opt Pbidaoen t
CdtSot 0.o None collu*m 5Fddn og2 4 I Qoo Siwnry 115 I owoto None
_ Oll(n Mdon_22
+/-5 Tjtrl, ISO I
s L
400 Factor of safety: 2.02 Side force Inclination: 17.54 degrees 300 200 100 I
0
~
-100 0
100 200 300 400 500 600 Date: Mon Mar 17 20FIename: IAProJdot.000s\\6427.006\\stablKtMM Uls&AMMMod1_transong.UT4 Time: 09:46:.4t
I SECTION M-M': MODEL 2: With Transporter Long Term Static Stability KU)
C..
0 0
2 a.J H
t-t IS 500 400 300 200 100 NO.
DESCCPTION UNIT SHEAR PORE
______WEIGH4T STRENGTH PRESSURE 1
Tobt42 040 Oohdo 0.0
_ Foynabon 140 nn~5 Nons 2
Clay Bod 115 Oohm@IOn.0 None 3 C1PbWIamw 11 wdo5: 0.0 None
_ o u*m Fdb N 2
Nonn 4
00 Quawaiy 115 Coliow 0.0 Non.
I Oatm Ion 221 6
5TmrcsrMau 150 I
.V Napdbabj Factor of safety: 2.07 Side force Inclination: 18.39 degrees C>\\
0
-100 0
100 200 3S0 400 500 600 Date: Mon Mar 17 200Feiname: IAProlSc\\OOOs\\427.006\\stabNlMM Utoxas4\\MM-Mod2JtransJona.UT4 Tlrne: 09:48:2E
Page I of 84 GEO.DCPP.01.28, Rev. 3 Attachment A ATTACHMENT A
Page 2 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A TABLE A-1 LISTING OF INPUT AND OUTPUT FILES FOR STABILITY ANALYSIS Cross With Description Directory' File Name2 Section Transporter?
L-L' L-L' E-E' E-E' D-D' D-D' M-M' Model 1 M-M' Model 1 M-M' Model 2 M-M' Model 2 M-M' Model 1 M-M' Model 2 Yes No Yes No Yes No Yes Circular Circular Circular Circular Circular Circular Wedge (short-term)
Wedge (short-term)
Wedge (short-term)
Wedge (short-term)
Wedge (long-term)
Wedge Section LL Section LL Section EE Section EE Section DD Section DD Section MM Section MM Section MM Section MM Section MM Section MM LL trans.dat, LL trans.out LL.dat, LL.out EE_trans.dat, EEjtrans.out EE.dat, EE.out DD_trans.dat, DD-rans.out DD.dat, DD.out MM-Modltrans.dat, MMLModltrans.out MM_ModI.dat, MMModl.out MMLMod2_trans.dat, MNEK-od2_trans.out MM.Mod2.dat, M4&Mod2.out MMModl_trans_long.dat, MMModl_transJong.out MMMod2_translong.dat, MM_Mod2 trans_long.out No Yes No Yes Yes (long-term)
I.
A A
A
'Directory on CD labeled "GEO.DCPP.01.28, Rev 3."
2 Input = *.dat, output = *.out. Input files are included in Attachment A.
Page 3 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A LLtrans.dat GRAphics Output ElAding follows -
SECTION L-L' STATIC STABILITY AND YIELD ACCELERATION WITH TRANSPORTER MASS PROfile line data follow -
1 1 Tofb Obispo Formation 0
70 192 70 201 95 232 95 264 115 359 115 406 128 588 140 608 147 668 264 698 264 724 284 750 296 2 2 Qpf Pleistocene Colluvium 406 128 422 154 668 264 3 3 Transporter Mass 672 264 672 276 690 276 690 264 MATerial property data follow (for first stage)
I Tofb Obispo Formation 140
- unit weight Conventional shear strengths 4000 3S No Pore Pressure 2 Qpf Pleistocene Colluvium 115 a unit weight Conventional shear strengths 3000 0
Mo Pore Pressure 3 Transporter Kass 150 - unit weight Very Strong SECond stage input activated MATerial property data (second stage) 1 Tofb Obispo Formation 140 = unit weight
Page 4 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 2-stage Linear strength envelope 4000 35 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115 - unit weight Conventional shear strengths 3000 0
No Pore Pressure 3 Transporter Mass 150 = unit weight very Strong HEAding follows -
SECTION L-L':
With Transporters Static Stability ANmlysis/computation data follow -
Circular Search 1 398.0 512.0 1.0 0.0 Point follows-695.0 264.0 ITErations 1000 COMpute HEAding follows -
SECTION L-L':
Without Transporter:
Seismic Coefficient = 0.48g Alysis/computation data follow -
Circular 425.00 4S9.00 329.02 TWO stage computations SEIsmic coefficient 0.48 COMpute
Page 5 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A LL_trans.out TABLE NO. 1 COMPUTER PROGRAM DESIGNATION: UTEXAS4 Originally Coded By Stephen G. Wright VersLon No. 4.0.0.8 -
Last Revision Dates 07/27/2001 (C) Copyright 1985-2000 S. G. Wright -
All rights reserved
- RESULTS OF COMPUTATIONS PERFORMED USING THIS 80F5ARE
- SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY HAVE
- BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA
- OR FIELD EXPERIENCE.
THE USER SHOULD UNDERSTAND THE ALGORITHMS
- AND ANALYTICAL PROCEDURES USED IN THIS SOFTWXRE AND MUST HAVE
- READ ALL DOCUMENTATION FOR THIS SOFTWARE BEFORE ATTEMPTING
- TO USE IT.
NEITHER SHINOAK SOFTWARE NOR STEPHEN G. WRIGHT WMhP OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR
- IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
UTEXAS4 S/N:00107
- Version: 4.0.0.8 -
Latest Revislon: 07/27/2001 LLcensed for use bys Larry ScheLbel, Geomatrix Consultants Tlme and date of run: Sun Mar 16 16:53:21 2003 Name of Liput data file: IXt\\Project\\6000s\\6427.006\\stabLlity\\LL Utexas4dLL-trans.dat SECTION L-L' STATIC STABILITY AND YIELD ACCELERATION WITH TRANSPORTER MASS TABLE NO.
3
- 0** *0**********0*0*********
- NEW PROFILE LINE DATA *
Profile Line No. 1 - Material Type (Number)s 1-DescriptLon: Tofb Obispo Formation Point X
Y 1
0.00 70.00 2
192.00 70.00 3
201.00 95.00 4
232.00 95.00 5
264.00 115.00 6
359.00 115.00 7
406.00 128.00 8
588.00 140.00 9
608.00 147.00 10 668.00 264.00 11 698.00 264.00 12 724.00 284.00 13 750.00 296.00
Page 6 of 84 GEO.DCPP.0128, Rev. 3 Attachment A UTEXAS4 S/NsO0107 - Version: 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use bys Larry Scheibel, Geonatrix Consultants Time and date of runs Sun Mar 16 16:S3s21 2003 Same of input data files X:\\Project\\6000s\\6427.006\\stability\\LL Utexas4dLL-trans.dat SECTION L-L':
With Transporter:
Static Stability TABLE NO.
33
- 1-STAGE FINAL CRITICAL CIRCLE XNFOR1WTIOM *
- ****e******
CAUTION -
THE FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME OF THE GRID POINTS AROUND TEE MINIMUM X Coordinate of Center.
425.00 S Coordinate of Center...
459.00 Radius.
329.02 Factor of Safety.
. 2.016 Side Force Inclination (degrees) 6.78 Mumber of Circles Tried 132 Nuber of Circles F Calculated for.
93 Time Required for Search (seconds) 1.3
Page 7of84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 S/N:00107 - Version: 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of runs Sun War 16 16s53s21 2003 Name of input data file: X:\\Project\\6000a\\6427.006\\stalblity\\LL Utexas4zLLtr-ns.dat SECTION L-L't With Transporters Seismic Coefficient - 0.48g TABLE NO. 58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
- SPENCER'S PROCEDURE USED TO COMPUTE THE FACTOR OF SAFETY Factor of Safetyt 1.008 Side Force Inclination:
-3.76
-- VALUES AT CENTER OF BASE OF SLICE --------
Total Effective Slice Normal Normal Shear No.
K-Center Y-Center Stress stress Stress 1
414.75 130.22 1318.2 1318.2 2977.3 2
423.50 129.99 2745.2 2745.2 2977.3 3
433.61 130.21 3170.3 3170.3 2977.3 4
450.81 131.11 3833.6 3833.6 2977.3 5
467.93 132.91 4389.0 4389.0 2977.3 6
484.94 135.60 4832.7 4832.7 2977.3 7
501.78 139.18 5161.1 5161.1 2977.3 8
518.41 143.64 5370.7 5370.7 2977.3 9
534.79 148.96 5458.3 5458.3 2977.3 10 550.87 155.13 5420.6 5420.6 2977.3 11 566.60 162.13 5254.5 5254.5 2977.3 12 581.19 169.52 4977.9 4977.9 2977.3 13 595.37 177.66 4573.8 4573.8 2977.3 14 605.37 183.84 4221.4 4221.4 2977.3 15 615.03 190.54 3776.8 3776.8 2977.3 16 628.82 200.86 3022.7 3022.7 2977.3 17 638.04 208.29 2430.3 2430.3 2977.3 18 646.86 216.19
-683.1
-683.1 5475.0 19 659.26 228.13
-1344.0
-1344.0 5119.7 20 666.65 235.72
-1782.5
-1782.5 4878.2 21 670.00 239.41
-2106.9
-2106.9 4658.2 22 677.52 248.25
-2133.6
-2133.6 4823.1 23 686.52 259.43
-3274.8
-3274.8 4003.6 24 690.00 263.99
-4531.2
-4531.2 2896.5
Page 8 of 84 GEO.DCPP.01.28, Rev. 3 Atachment A LL.dat GRAphics Output HEAding follows -
SECTION L-LI STATIC STABILXTY AID YIELD ACCELERATION WITHOUT TRANSPORTER MASS PROfile line data follow -
1 1 ToEb Obispo Formation 0
70 192 70 201 95 232 95 264 115 359 115 406 128 588 140 608 147 668 264 698 264 724 284 750 296 2 2 406 422 668 Qpf Pleistocene Colluvium 128 154 264 MATerial property data follow (for first stage) 1 Tofb Obispo Formation 140 - unit weight Conventional shear strengths 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115 -
unit weight Conventional shear strengths 3000 0
no Pore Pressure SECond stage input activated MATerial property data (second stage) 1 Tofb Obispo Formation 140 - unit weight 2-stage Linear strength envelope 4000 35 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115
- unit weight Conventional shear strengths 3000 0
No Pore Pressure
Page 9 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A HEAding follows -
SECTION L-L':
Without Transporters Static Stability ANmlysislcomputation data follow -
Circular Search 1 398.0 512.0 1.0 0.0 Point follows-695.0 264.0 ITErations 1000 CoMpute HEAding follows -
SECTION L-L's Without Transporters Seismic Coefficient
- 0.49g ANAlysis/computation data follow -
Circular 425.00 438.00 308.023 TWO stage computations SEIsmzic coefficient 0.49 COMpute
Page 10 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A LL. out TABLE NO.
I CO!MUTER PROGRAM DESIGNATION: UTEXAS4 Originally Coded By Stephen G. Wright Version no. 4.0.0.8 - Last Revision Dates 07/27/2001 (C) Copyright 1985-2000 S. G. Wright -
All rights reserved Oo**0000000000000000000000000000000000000000000000****************
- RESUITS OF COMPUTATIONS PERFORMED USING THIS SOWARE
- SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY RIVE
- BEEN VERIFIED BY IDEPENDENT ANALYSES, EXPERIMENTAL DATA 0
- OR FIELD EXPERIENCE.
THE USER SHOULD UNDERSTAND THE ALGORITENS *
- AND ANALYTICAL PROCEDURES USED IN THIS SOFTWARE AND MUST HAIVE
- READ ALL DOCUMENTATION FOR THIS SOFTWARE BEFORE ATTEMPTING
- TO USE IT.
NEITHER SEINOAK SOFTWARE NOR STEPHEN 0.
WRIGHT
- IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
UTEXAS4 S/Ns00107 Version: 4.0.0.8 -
Latest Revisions 07/27/2001 Licensed for use bys Larry Scheibel, Geomatriz Consultants Time and date of runs Wed Mar 12 07:30s32 2003 Name of input data files Is:Project\\6000\\s6427.006\\stability\\LL Utexas4\\LL.dat SECTION L-L' STATIC STABILITY AND YIELD ACCELERATION WITHOUT TRANSPORTER MASS TABLE NO.
3
- NEW PROFILE LINE DATA *
Profile Line No. 1 -
Material Type (Number): 1-
==
Description:==
Tofb Obispo Formation Point X
Y 1
0.00 70.00 2
192.00 70.00 3
201.00 95.00 4
232.00 95.00 5
264.00 115.00 6
359.00 115.00 7
406.00 128.00 8
588.00 140.00 9
608.00 147.00 10 668.00 264.00 11 698.00 264.00 12 724.00 284.00 13 750.00 296.00
Page I Iof 84 GEO.DCPP.01.28, Rev. 3 Attachment A
Profile Line No.
2 - Naterial Type (Number)s 2 -----
UTEI[AS4 3/3s00107
- Versions 4.0.0.8 - Latest Revision: 07/27/2001 Licensed for use bys Larry ScheLbel, Geomatrix Consultants Time and date of run: Wed Mar 12 07:30:32 2003 Name of input data files I:\\Project\\6000s\\6427.006\\stability\\LL Utexas4\\LL.dat SECTION L-L's Without Transporters Static Stability TABLE NO. 33
- 1-STAGE FINAL CRITICAL CIRCLE INFORMATION
- Coordinate of Center............
Y Coordinate of Center.
Radius.
Factor of Safety.
Side Force Inclination (degrees)
Number of Circles Tried Number of Circles F Calculated for.
Time Required for Search (seconds).
425.00 438.00 308.02
. 2.035 0.23 133 126 1.9
Page 12 of 84 GEO.DCPP.0128, Rev. 3 Attachment A VTZXAS4 S/N:00107 - Version: 4.0.0.8 - Latest Revision: 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of run: Wed Mar 12 07s30:32 2003 Name of input data files Zs\\Project\\6000s\\6427.006\\stability\\LL Utexas4 \\L.dat SECTION L-L's Without Transporter:
Seismic Coefficient = 0.49g TABLE NO. 58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
- SPENCER' S PROCEDURE USED TO COMPUTE THE FACTOR OF SAFETY Factor of Safetys 0.996 Side Force Inclination:
69.51
VALUES AT CENTER OF BASE OF SLICE --------
Total Effective Slice Normal Normal Shear No.
X-Center Y-Center Stress Stress Stress 1
414.76 130.23 8487.4 8487.4 3012.4 2
423.50 129.98 7287.3 7287.3 3012.4 3
433.06 130.19 6497.8 6497.8 3012.4 4
449.16 131.03 5424.9 5424.9 3012.4 5
465.19 132.72 4593.4 4593.4 3012.4 6
481.11 135.24 3934.1 3934.1 3012.4 7
496.88 138.59 3402.2 3402.2 3012.4 8
512.45 142.76 2967.1 2967.1 3012.4 9
527.78 147.74 2607.0 2607.0 3012.4 10 542.83 153.52 2306.2 2306.2 3012.4 11 557.56 160.08 2052.5 2052.5 3012.4 12 571.93 167.40 1836.8 1836.8 3012.4 13 583.51 173.94 1681.3 1681.3 3012.4 14 594.73 181.08 1544.9 1544.9 3012.4 15 604.73 187.88 1431.7 1431.7 3012.4 16 614.36 195.19 1330.7 1330.7 3012.4 17 626.81 205.43 1207.2 1207.2 3012.4 18 638.70 216.31 1094.9 1094.9 3012.4 19 646.54 224.02 1022.3 1022.3 3012.4 20 653.97 232.12 1516.1 1516.1 4463.0 21 663.68 243.41 1189.2 1189.2 4039.5 22 672.79 255.20 869.0 869.0 3335.4 23 678.37 262.85 687.6 687.6 2765.2
Page 13 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A EE_trans.dat GRaphics Output HEading follows -
SECTION 2-2' STATIC STABILITY 1&1YD YIELD ACCELERATION WITH TRANSPORTER MASS PROfile line data follow -
1 1 Tofb Tofe Obispo Formation 0
50 180 50 913 90 980 100 1030 110 1073 140 1300 220 2 2 Qptm Pleistocene Marine Terrace 0
90 370 90 913 90 3 3 Qpf Pleistocene Colluvium 0
100 700 100 798 148 820 138 856 138 870 110 870 100 892 100 892 110 913 140 958 140 965 151.5 983 151.5 1000 163 1015 163 1015 166 1030 166 1030 173 1061 173 1070 190 1300 230 4 4 Artificial Fill #1 798 148 800 151.5 965 151.5 5 4 Artificial Fill #2 1000 163 1018 173
Page 14 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 1030 173 6 5 Qhf Holocene Colluvium 1070 190 1075 195 1300 240 7 6 Transporter Mass 1020 173 1020 185 1038 185 1038 173 MATerial property data follow (for first stage) -
1 Tofb Tofc Obispo Formation 140 = unit weight Conventional shear strengths 4000 35 No Pore Pressure 2 Qptm Pleistocene Marine Terrace 130 = unit weight Conventional shear strengths 0 40 No Pore Pressure 3 Qpf Pleistocene Colluvium 115 - unit weight Conventional shear strengths 3000 0
No Pore Pressure 4 Artificial Fill 115 = unit weight Conventional shear strengths 3000 0
No Pore Pressure 5 Qhf Holocene Colluvium 115 = unit weight Conventional shear strengths 1500 0
No Pore Pressure 6 Transporter Mass 150 a unit weight Vezy Strong EEAding follows -
SECTION E-E's With Transporters Static Stability ANAlysis/cosiutation data follow -
Circular Search 1 800 900 1 -100 Point 1060 173 REStrictions A S
Page 15 of84 GEO.DCPP.01.28, Rev. 3 Attachment A 0 798 A S 1039 1061 Iterations 1000 COMpute EiAding follows -
SECTION E-E's With Transporters Seismic Coefficient - 0.50g ANAlyusi/computation data follow -
Circular 804.0 857.0 765.791 SEIsmic Coefficient 0.50 COMpute
Page 16 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A EEtrans.out TABLE NO.
1 COMPUTER PROGRAM DESIGNATION: UTEXAS4 Originally Coded By Stephen G. Wright Version No. 4.0.0.8 - Last Revision Date: 07/27/2001 (C) Copyright 1985-2000 S. G. Wright -
All rights reserved
- RESULTS OF COMPUTATIONS PERFORMED USING THIS SOFTWARE
- SHOLD NO BE USED FOR DESIGN PURPOSES UNLESS THEY EAVE
- BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA
- OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE ALGORITHMS *
- AND ANALYTICAL PROCEDURES USED IN THIS SOFTWARE AND MUST HLVE
- READ ALL DOCUMENTATION FOR THIS SOFTWARE BEFORE ATTEMPTING
- TO USE IT.
NEITHER SINOAK SOFTWARE NOR STEPEEN G. WRIGHT
- KRUE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR MPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
UTEXAS4 8/N:00107
- Versions 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use bys Larry Scheibel, Geomatrlx Consultants Time and date of runs wed Mar 12 09*26t43 2003 Name of input data file: 1:\\Project\\6000s\\6427.006\\stability\\EE Utexas4dEE-trans.dat SECTION E-E' STATIC STABILITY AND YIELD ACCELERATION WITH TRANSPORTER MASS TABLE NO. 3
- NEW PROFILE LINE DATA *
Profile Line No. I - Material Type (Namber)s
==
Description:==
Tofb Tofc Obispo Formation Point X
Y 1
0.00 50.00 2
180.00 50.00 3
913.00 90.00 4
980.00 100.00 5
1030.00 110.00 6
1073.00 140.00 7
1300.00 220.00
Profile Line No. 2 -
Material Type (Number)s 2 -----
==
Description:==
______________leistocene____Marine___Ter___ace
==
Description:==
Qptm Pleistocene Marine Terrace Point X
r
Page 17of84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 S/NH00107 - Versions 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use by: Larry Scheibel, Geomatriz Consultants Time and date of run: Wed Mar 12 09s26:43 2003 Name of input data files I:\\Project\\6000s\\6427.006\\stability\\EE Utexas4\\ZE_trans.dat SECTION E-E's With Transporter:
Static Stability TABLE NO.
33
- 0*00*00*0*00*0*0
- 0*
0*0*
- t
- 0*0 0*0 *0*000 0**
- 1-STAGE FINAL CRITICAL CIRCLE INFORMATION 0 S Coordinate of Center.
Y Coordinate of Center.....
Factor of Safety.
Side Force Inclination (degrees)
Number of Circles Tried Number of Circles F Calculated for......
Time Required for Search (seconds)
- 804.00 857.00 765.79 3.360 9.34 264 224 35.2
Page l8 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 5/1s00107 - Version: 4.0.0.8 - Latest Revisions 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of run: Wed Mar 12 09:26s43 2003 Name of input data filet I:\\Preject\\6000s\\6427.006\\stability\\EE Utexas4\\EE-trans.dat SECTION E-K': With Transporter:
Seismic Coefficient - 0.50g TABLE NO. 58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
SPENCER'S PROCEDURZ USED TO COMPUTE TEE FACTOR OF SAFETY Factor of Safety: 0.998 Side Force Inclinations 39.26 VALUES AT CENTER OF BASE OF SLICE --------
Total Effective slice Normal Normal Shear No.
X-Center Y-Center Stress Stress Stress 1
694.15 99.15 3348.1 3348.1 3007.0 2
719.92 96.10 4088.0 4088.0 3007.0 3
759.86 92.74 5372.3 5372.3 3007.0 4
788.94 91.41 6162.4 6162.4 3007.0 5
799.00 91.23 6491.8 6491.8 3007.0 6
802.00 91.21 6579.2 6579.2 3007.0 7
812.00 91.29 6465.4 6465.4 3007.0 8
838.00 92.18 6135.3 6135.3 3007.0 9
863.00 93.52 5801.9 5801.9 3007.0 10 881.00 95.17 5527.7 5527.7 3007.0 11 902.50 97.64 5180.8 5180.8 3007.0 12 932.76 102.38 4638.2 4638.2 3007.0 13 955.26 106.30 4229.0 4229.0 3007.0 14 961.50 107.59 4106.4 4106.4 3007.0 15 972.50 110.02 3884.3 3884.3 3007.0 16 981.50 112.07 3701.9 3701.9 3007.0 17 991.50 114.57 3813.5 3813.5 3007.0 18 1007.50 118.78 4014.5 4014.5 3007.0 19 1016.50 121.28 4084.9 4084.9 3007.0 20 1019.00 122.01 4072.0 4072.0 3007.0 21 1025.00 123.81 4782.5 4782.5 3007.0 22 1034.00 126.58 4558.8 4558.8 3007.0 23 1049.50 131.73 3326.2 3326.2 3007.0 24 1065.50 137.26 3372.4 3372.4 3007.0 25 1071.50 139.45 3737.4 3737.4 3007.0 26 1074.00 140.39 3800.3 3800.3 3007.0 27 1093.56 148.35 3488.9 3488.9 3007.0
Page 19 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A EE.dat GRtph+/-Cs Output HEAding follows -
SECTION E-EP STATIC STABILITY AND YIELD ACCELERATION WITHOUT TRANSPORTER MASS PROfile line data follow -
1 1 Tofb Tofc Obispo Formation 0
50 180 50 913 90 980 100 1030 110 1073 140 1300 220 2 2 0
370 913 Qptm 90 90 90 Pleistocene Marine Terrace 3 3 0
700 798 820 856 870 870 892 892 913 958 965 983 1000 1015 1015 1030 1030 1061 1070 1300 44 798 800 965 5 4 1000 1018 1030 Qpf Pleistocene 100 100 148 138 138 110 100 100 110 140 140 151.5 151.5 163 163 166 166 173 173 190 230 Colluvium Artificial Fill #1 148 151.5 151.5 artificial Fill #2 163 173 173
Page 20 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 6 5 Qhf Holocene Colluvium 1070 190 1075 195 1300 240 MATerial property data follow (for first stage) 1 Tofb Tofc Obispo Formation 140 a unit weight Conventional shear strengths 4000 35 No Pore Pressure 2 Qptm Pleistocene Marine Terrace 130 - unit weight Conventional shear strengths 0
40 No Pore Pressure 3 Qpf Pleistocene Colluvium 115 - unit weight Conventional shear strengths 3000 0
No Pore Pressure 4 Artificial Fill 115 - unit weight Conventional shear strengths 3000 0
No Pore Pressure S Qhf Holocene Colluvium 115 = unit weight Conventional shear strengths 1500 0
No Pore Pressure HEkding follows -
SECTION E-E's Without Transporters Static Stability Aalysis/computation data follow -
Circular Search I 800 900 1 -100 Point 1060 173 REStrictions A S 0 798 A S 1039 1061 iterations 1000 COMpute ErlAing follows -
SECTION E-E's Without Transporter:
Seismic Coefficient
- 0. 50g
Page 21 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A AbNysis/comrputatlon data follow -
Circular 810.0 842.0 749.60 SEismic Cooe fficient 0.50 Compute
Page 22 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A EE.cut TABLE NO. 1 COV7MPE PROGRAM DESIGNATIONt UTEXIS4 Originally Coded By Stephen G. Wright Version No. 4.0.0.8 -
Last Revision Date: 07/27/2001 (C) Copyright 1985-2000 S. G. Wright -
All rights reserved
- RESULTS OF COMPUTATIONS PERFORMED USING THIS SOFTWARE
- SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY HAVE a
- BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA
- OR FIELD EXPERIENCE. 5TE USER SHOULD UNDERSTAND THE ALGORITHMS
- AND ANALYTICAL PROCEDURES USED IN THIS SOFTWARE AND MUST HAVE
- READ ALL DOCUMENTATXON FOR THIS SOFTWARE BEFORE ATTEMPTING TO USE IT.
NEITHER SHINOAK SOFTWARE NOR STEPHEN G.
WRIGHT a
- IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
a
- oa************************
UTEXAS4 S/N:00107 Version: 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use bys Larry Scheibe2, Goatrix Consultants Time and date of run: Wed Mar 12 10:25:42 2003 Name of input data fMle: IXProject\\6000s\\6427.006\\stability\\EE Utexas4\\EE.dat SECTION E-E' STATIC STABILITY AND YIELD ACCELERATION WITHOUT TRANSPORTER MASS TABLE NO.
3 aaaaaoaaaaaoaae**aaaaaaoa
- NEW PROFILE LINE DATA *
- a******************
Profile Line No.
I -
Material Type (Number): I -----
==
Description:==
Tofb Tofc Obispo Fozmation Point x
Y 1
0.00 50.00 2
180.00 50.00 3
913.00 90.00 4
980.00 100.00 5
1030.00 110.00 6
1073.00 140.00 7
1300.00 220.00
-Profile Line No.
2 -
Material Type (Number)s 2 -----
Des___ription_______t___Plei___to__ee__Marine___Terra___e Descriptioss Qptm Pleistocene Marine Terrace
Page 23 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 S/Nt00107 Versions 4.0.0.8 -
Latest Revisions 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of run: Wed Mar 12 10:25t42 2003 Name of input data filet Xs\\Project\\60O0s\\6427.00\\stability\\EE Utexas4\\EE.dat SECTION E-E':
Without Transporter:
Static Stability TABLE NO.
33
- 1-STAGE FINAL CRITICAL CIRCLE INFORMATION
- X Coordinate of Center.
Y Coordinate of Center............
Radius.........
Factor of Safety.
Side Force Inclination (degrees).
Number of Circles Tried.
Number of Circles F Calculated for.
Time Requlred for Search (seconds).
810.00 8
942.00 749.60
. 3.416
. 9.59 341 303
- 25.3
Page 24 of 84 GEO.DCPP.01.28, Rev. 3 Attachent A UTEXAS4 S/Ns00107 - Versions 4.0.0.8 -
Latest Revisions 07/27/2001 Licensed for use bys Larry Scheibel, Geomatrix Consultants Time and date of run: Wed Mar 12 10525s42 2003 Name of input data files IX\\Project\\6000s\\6427.006\\stabl3ity\\EE Utexas4ME.dat SECTION E-E': Without Transporter:
Seismic Coefficient c 0.50g TABLE NO.
58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
SPENCER'S PROCEDURE USED TO COMPUTE THE FACTOR OF SAFETY Factor of Safety: 1.005 Side Force Inclination:
44.30
VALUES AT CENTER OF EASE OF SLICE --------
Total Effective Slice Normal Normal Shear No.
X-Center Y-Center Stress Stress Stress 1
720.29 98.05 4502.3 4502.3 2984.2 2
759.35 94.37 5522.9 5522.9 2984.2 3
788.46 92.77 6147.7 6147.7 2984.2 4
799.00 92.48 6420.4 6420.4 2984.2 5
805.00 92.43 6452.4 6452.4 2984.2 6
815.00 92.43 6329.4 6329.4 2984.2 7
838.00 93.14 6017.7 6017.7 2984.2 8
863.00 94.31 5675.9 5675.9 2984.2 9
881.00 95.85 5403.4 5403.4 2984.2 10 902.50 98.20 5064.8 5064.8 2984.2 11 932.36 102.71 4555.4 4555.4 2984.2 12 954.86 106.54 4170.6 4170.6 2984.2 13 961.50 107.88 4049.6 4049.6 2984.2 14 972.50 110.27 3844.5 3844.5 2984.2 15 981.50 112.28 3676.9 3676.9 2984.2 16 991.50 114.76 3755.1 3755.1 2984.2 17 1007.50 118.93 3898.6 3898.6 2984.2 18 1016.50 121.41 3943.4 3943.4 2984.2 19 1024.00 123.62 3820.3 3820.3 2984.2 20 1045.50 130.54 3344.4 3344.4 2984.2 21 1065.50 137.30 3274.3 3274.3 2984.2 22 1071.50 139.49 3567.8 3567.8 2984.2 23 1074.00 140.43 3616.0 3616.0 2984.2 24 1093.17 148.22 3334.7 3334.7 2984.2 25 1129.09 163.99 2721.1 2721.1 2984.2 26 1164.14 181.62 2067.6 2067.6 2984.2 27 1198.21 201.06 1382.2 1382.2 2984.2
Page 25 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A DD_trans.dat GRIphics Outpot HEoding follows -
SECTION D-D' STATIC STABILITY AND YIELD ACCELERATION WITH TRANSPORTER MASS PROfile line data follow -
1 1 Tofb Tofc Obispo Formation 0
80 115 80 598 105 642 130 690 140 766 142 782 150 820 190 885 220 970 275 1045 317 1050 330 1200 425 1400 535 1500 556 1700 562 2 2 Qpf Pleistocene Colluvium 115 80 155 101 255 101 305 115 350 139 580 139 595 150 672 170 683 185 725 185 803 205 825 220 865 220 1050 330 3 3 Transporter Mass 830 220 830 232 848 232 848 220 MATerial property data follow (for first stage) -
1 Tofb Tofe Obispo Formation 140 W unit weight Conventional shear strengths 4000 35
Page 26 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A No Pore Pressure 2 Qpf Pleistocene Colluvium 115 = unit weight Conventional shear strengths 3000 0
No Pore Pressure 3 Transporter Mass IS0 m unit weight very Strong SECond stage input activated MATerial property data (second stage) 1 Tofb Tofc Obispo Formation 140 a unit weight 2-stage Linear strength envelope 4000 35 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115 -
unit weight Conventional shear strengths 3000 0
No Pore Pressure 3 Transporter Mass 150 a unit weight very Strong HEAding follows -
SECTION D-D's With Transporters Static Stability ANAlysis/computation data follow -
Circular Search 1 800 1100 1 0 Point 580 139 ITErations 1000 COMpute HEAding follows -
SECTION D-DI:
With Transporter:
Seismic Coefficient = 0.63g AmAlysis/computation data follow -
Circular 768 1057 914.10 TWO stage computations SEIsmic coefficient 0.63 Conpute
Page 27 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A DD.trans. out TABLE NO.
I COMPUTER PROGRAM DESIGNATION: UTEXAS4 Originally Coded By Stephen G. Wright Version No. 4.0.0.8 -
Last Revision Date: 07/27/2001 (C) Copyright 1985-2000 S.
G. Wright -
1an rights reserved
- RESULTS OF COMPUTATIONS PERFORMED USING THIS SOFWRE
- SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY HAVE
- BEEN VERIFIE BY ZNEPENDENT ANALYSES, EXPE TAL DATA
- OR FIELD EXPERIENCE.
THE USER SHOULD UNDERSTAND THE ALGORITHMS *
- AND ANALYTICAL PROCEDURES USED IN THIS SOFTWARE AND MUST HAVE
- READ ALL DOCUNMNTATION FOR THIS SOFTWARE BEFORE ATTEMPTING
- TO USE IT.
NEITHER SHNIOAK SOFTWARE NOR STEPHEN G. WRIGHT
- IMPLIED, CONCEIG THE ACCURACY, RELIABILITY, USEFULNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
UTEXAS4 S/Ns00107 -
Versions 4.0.0.8 -
Latest Revisiont 07/27/2001 Licensed for use bys Larry Scheibel, Geomatrix Consultants Time and date of run: Tue Mar 11 15s39:43 2003 Name of input data file: I:\\Project\\6000s\\6427.006\\stability\\DD Uterast4DDtrans.dat SECTION D-D' STATIC STABILITY AID YIELD ACCELERATION WITH TRANSPORTER MASS TABLE NO.
3
- NEW PROFILE LINE DATA *
Profile Line No. 1 -
Material Type (Number)s 1 -----
==
Description:==
Tofb Tofe Obispo Formation Point X
Y 1
0.00 80.00 2
115.00 80.00 3
598.00 105.00 4
642.00 130.00 5
690.00 140.00 6
766.00 142.00 7
782.00 150.00 8
820.00 190.00 9
885.00 220.00 10 970.00 275.00 11 1045.00 317.00 12 1050.00 330.00 13 1200.00 425.00
Page 28 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 8/N:00107 - Version: 4.0.0.8 -
Latest Revisions 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of runs Tue Mar 11 15s39s43 2003 Name of input data files Is\\Project\\6000s\\6427.006\\stability\\w Utexas4\\DDtrans.dat SECTION D-D', With Transporters Static Stability TABLE NO.
33
- 1-STAGE FINAL CRITICAL CIRCLE INFORMATION
- X Coordinate of Center.
Y Coordinate of Center.
Radius......
Factor of Safety.
Side Force Inclination (degrees).
Number of Circles Tried Number of Circles F Calculated for.
Time Required for Search (seconds)
- 768.00
- 1057.00
- 914.10
. 2.210
. 22.12
- 220
- 220 1.0
Page 29 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 S/NM00107 - Version: 4.0.0.8 -
Latest Revisions 07/27/2001 Licensed for use by: Larry Scheibel, Geomatriz Consultants Time and date of run: Tue Mar 11 15s39t43 2003 Name of input data files I:\\ProjectX6000sX6427.006Xstability\\DD Utexas4\\DD_trans.dat SECTION D-D':
With Transporter:
Seismic Coefficient = 0.63a TABLE NO.
58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
SPENCER' S PROCEDMEE USED TO COVPUTE THE FACTOR OF SAFETY Factor of Safetys 0.999 Side Force Inclination:
58.32
VALUES AT CENTER OF BASE OF SLICE --------
Total Effective slice Normal Nonmal Shear No.
X-Center Y-Center Stress Stress stress 1
629.20 153.59 7076.1 7076.1 3002.5 2
657.00 149.79 6478.3 6478.3 3002.5 3
677.50 147.41 6070.8 6070.8 3002.5 4
686.50 146.55 5897.3 5897.3 3002.5 5
707.50 145.07 5567.3 5567.3 3002.5 6
745.50 143.41 5027.4 5027.4 3002.5 7
766.90 142.90 4751.3 4751.3 3002.5 8
767.90 142.90 15285.7 15285.7 9509.0 9
775.00 142.95 15312.6 15312.6 9694.8 10 792.50 143.29 15486.5 15486.5 10234.4 11 811.50 143.98 16141.7 16141.7 11169.3 12 822.50 144.53 16720.7 16720.7 11879.2 13 827.50 144.84 16689.5 16689.5 11997.7 14 839.00 145.71 17959.0 17959.0 13270.0 15 856.50 147.23 15292.5 15292.5 11757.4 16 875.00 149.24 15032.8 15032.8 12061.0 17 908.64 154.10 15339.8 15339.8 13296.0 18 951.14 161.64 15351.3 15351.3 14658.7 19 993.19 171.40 14892.5 14892.5 15656.5 20 1030.69 181.59 14231.6 14231.6 16318.9 21 1047.50 186.68 13942.2 13942.2 16631.8 22 1072.56 195.46 13433.2 13433.2 17020.2 23 1117.23 212.58 12299.1 12299.1 17408.3 24 1160.95 232.02 11028.1 11028.1 17508.4 25 1191.28 246.86 10097.7 10097.7 17442.9 26 1220.78 263.28 9052.4 9052.4 17073.5 27 1261.70 288.06 7585.8 7585.8 16331.3
Page 30 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A DD. dat GRAphics Outpot HEAding follows -
SECTION D-D' STATIC STABILITY AMD TIELD ACCELERATION WITHOUT TRANSPORTER MASS PROfile line data follow -
1 1 Tofb Tofc ObiEpo Formation 0
80 115 80 598 105 642 130 690 140 766 142 782 150 820 190 885 220 970 275 1045 317 1050 330 1200 425 1400 535 1500 556 1700 562 2 2 Qpf Pleistocene Colluvium 115 80 155 101 255 101 305 115 350 139 580 139 595 150 672 170 683 185 725 185 803 205 825 220 865 220 1050 330 MATerial property data follow (for first stage) -
1 Tofb Tofe Obispo Formation 140 -
unit weight Conventional shear strengths 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115 a unit weight Conventional shear strengths 3000 0
No Pore Pressure
Page 31 of84 GEO.DCPP.01.28, Rsv. 3 Attachment A SECond stage input activated
- MTerial property data (second stage)
I Tofb Tofc Obispo Formation 140
- unit weight 2-stage Linear strength envelope 4000 35 4000 35 No Pore Pressure 2 Qpf Pleistocene Colluvium 115 = unit weight Conventional shear strengths 3000 0
No Pore Pressure HEIding follows -
SECTION D-D': Without Transporter: Static Stability
=NAlysis/computaticn data follow -
Circular Search I 800 1100 1 0 Point 580 139 ITErations 1000 COMpute HEAding follows -
SECTION D-D's Without Transporters Seismic Coefficient 0.63g ANklysis/computation data follow -
Circular 770 1052 909.28 TWO stage conputations SEIsmic coefficient 0 63 Compute
Page 32 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A DD. out TABLE NO.
I COMFPTER PROGRAM DESIGNATION: UTEXAS4 Originally Coded By Stephen G. Wright Version No. 4.0.0.8 - Last Revision Dates 07/27/2001 (C) Copyright 1985-2000 S. G. Wright - All rights reserved
- RESULTS OF COMPUTATIONS PERFORMED USING THIS SOFTWARE
- SHOULD VOT BE USED FOR DESIGN PURPOSES UNLESS THEY RAVE 0
- BEEN VERIFIED BY INDEPENDENT ANALYSES, ERIMENTAL DATA
- OR FIELD EXPERIENCE.
THE USER SHOULD UNDERSTAND THE ALGORITHMS
- AND AWkLYTICAL PROCEDURES USED IN THIS SOFTWARE AND MWST HAVE
- READ ALL DOCUMENTATION FOR THIS SOFTWARE BEFORE ATTEMPTING
- TO USE IT.
NEITHER SHINOAK SOFTWARE NOR STEPHEN G. WRIGT
- IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
- OR ADAPTABILITY OF THIS SOFTWARE.
UTEXAS4 S/N:00107
- Version: 4.0.0.8 - Latest Revisions 07/27/2001 Licensed for use by: Larry Scheibel, Geomatrix Consultants Time and date of runs Tue Mar 11 16s45:43 2003 Name of input data filet I:tProjectX6000s\\6427.006\\atability\\DD Utexas4\\DD.dat SECTION D-D' STATIC STABILITY AND YIELD ACCELERATION WITHOUT TRANSPORTER MASS TABLE NO.
3
- NEW PROFILE LINE DATA *
Profile Line No. 1 - Material Type (Number): I -----
==
Description:==
Tofb Tofc Obispo Formation Point X
Y 1
0.00 80.00 2
115.00 80.00 3
598.00 105.00 4
642.00 130.00 5
690.00 140.00 6
766.00 142.00 7
782.00 150.00 8
820.00 190.00 9
885.00 220.00 10 970.00 275.00 11 1045.00 317.00 12 1050.00 330.00 13 1200.00 425.00
Page 33 of 84 GEO.DCPP.O1.28, Rev. 3 Attachment A UTZXAS4 S/Ns00107 Tersioni 4.0.0.8 - Latest Revisions 07/27/2001 Licensed for use bys Larry Scheibel, Geomatrix Consultants Time and date of run-Tue Mar 11 16.45s43 2003 Name of isput data file: Z:\\Project\\6000s\\6427.006\\stability\\DD Utexas4\\DM.dat SECTXON D-D s Without Transportert Static Stability TABLE NO. 33
- 1-STAGE FINAL CRITICAL CIRCLE IRFORNATXON
- S Coordinate of Center.
Y Coordinate of Center.
Radius.
Factor of Safety...............
Side Force Inclination (degrees)
Number of Circles Tried Number of Circles F Calculated for.
Time Required for Search (seconds) 770.00
- 1052.00
- 909.28
. 2.206
. 22.12 223 223 0.9
Page 34 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A UTEXAS4 0/3s00107 -
Version: 4.0.0.8 -
Latest Revision: 07/27/2001 Licensed for use bys Larry Scheibel, Geomatrix Consultants Time and date of rUn: Tue Mar 11 l1645:43 2003 Name of input data files Xs\\Project\\6000s\\6427.006\\stability\\DD Utexas4\\DDdat SECTION D-D': Without Transporter:
Seismic Coefficient -
0.63g TABLE NO. 58
- Final Results for Stresses Along the Shear Surface
- (Results are for the critical shear surface in the case of a search.)
- SPENCER'S PROCEDURE USED TO CONPUTE THE FACTOR OF SAFETY Factor of Safety$ 0.999 Side Force Inclinations 58.22
VALUES AT CENTER OF BASE OF SLICE --------
Total Effective Slice Normal Normal Shear No.
X-Center Y-Center Stress Stress Stress 1
629.47 153.74 7099.6 7099.6 3002.6 2
657.00 149.90 6507.3 6507.3 3002.6 3
677.50 147.45 6102.9 6102.8 3002.6 4
686.50 146.57 5932.0 5932.0 3002.6 5
707.50 145.04 5598.7 5S98.7 3002.6 6
745.50 143.28 5056.3 5056.3 3002.6 7
766.72 142.73 4782.2 4782.2 3002.6 8
768.72 142.72 15388.0 15388.0 9567.6 9
776.00 142.76 15415.7 15415.7 9759.4 10 792.50 143.06 15587.3 15587.3 10275.9 11 811.50 143.71 16246.6 16246.6 11215.2 12 822.50 144.24 16828.7 16828.7 11927.6 13 845.00 146.04 15918.6 15918.6 11893.1 14 875.00 148.86 15129.4 15129.4 12114.6 15 908.52 153.65 15434.1 15434.1 13349.2 16 951.02 161.13 15440.9 15440.9 14715.0 17 993.07 170.83 14975.5 14975.5 15715.1 18 1030.57 180.99 14305.9 14305.9 16377.1 19 1047.50 186.10 14010.3 14010.3 16691.2 20 1072.45 194.82 13497.9 13497.9 17076.9 21 1116.89 211.83 12358.4 12358.4 17460.7 22 1160.39 231.13 11083.0 11083.0 17557.9 23 1190.94 246.09 10137.4 10137.4 17488.6 24 1220.67 262.62 9077.6 9077.6 17114.9 25 1261.37 287.29 7608.0 7608.0 16370.1 26 1300.71 314.05 6214.9 6214.9 15446.0
Page 35 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A FMoKodltrans.dat GRAphics output EMAding follows -
SECTION M-M' MODEL 1 STATIC STABILITY WITH TRANSPORTER PROfile line data folic 1 1 Tofb-2 Obispc 0.0 139.0 36.0 142.0 69.0 146.0 88.0 152.0 95.0 153.0 100.0 152.0 114.0 146.0 119.0 145.0 124.0 147.0 128.0 150.0 137.0 174.0 142.0 181.0 201.0 215.0 231.0 216.0 252.0 217.0 275.0 219.0 300.0 222.0 327.0 225.0 352.0 228.0 380.0 231.0 410.0 235.0 473.0 244.0 AND YIELD ACCELRATION o -
i Formation 2 2 Clay Bed 201.0 215.0 203.0 216.0 231.0 217.0 252.0 218.0 275.0 220.0 300.0 223.0 327.0 226.0 352.0 229.0 380.0 232.0 410.0 236.0 473.0 245.0 473.0 244.0 3 1 Tofb-2 Obispo 203.0 216.0 231.0 232.0 263.0 233.0 284.0 234.5 306.0 237.0 Fozration
Page 36 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 331.0 359.0 407.0 240.0 244.0 250.0 4 2 Clay Bed 231.0 232.0 232.0 232.5 263.0 233.5 284.0 235.0 306.0 237.5 331.0 240.5 359.0 244.5 407.0 250.5 407.0 250.0 5 1 Tofb-2 Obispo 232.0 232.5 248.0 239.0 264.0 239.5 289.0 241.5 311.0 244.0 335.0 247.0 358.0 250.0 405.0 256.0 6 2 Clay Bed 248.0 239.0 249.0 239.5 264.0 240.0 289.0 242.0 311.0 244.5 335.0 247.5 358.0 250.5 405.0 256.5 405.0 256.0 Formation 7 1 Tofb-2 Obispo 249.0 239.5 262.0 246.0 284.0 262.0 311.0 266.0 341.0 270.0 368.0 273.0 410.0 279.0 472.0 288.0 8 2 Clay Bed 284.0 262.0 285.5 263.0 311.0 267.0 341.0 271.0 368.0 274.0 410.0 280.0 472.0 289.0 For-mtion
Page 37 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 472.0 288.0 9 1 Tofb-2 ObiEpo 285.5 263.0 305.0 275.0 311.0 279.0 316.0 280.0 343.0 282.0 357.0 282.0 368.6 282.0 376.0 286.0 382.0 293.0 388.0 296.0 410.0 301.0 415.0 303.0 439.0 308.0 457.0 312.0 478.0 316.0 500.0 319.0 538.0 325.0 572.0 330.0 600.0 333.0 Formation 10 3 Qpf Pleistocene Colluvium 0.0 170.0 13.0 175.0 37.0 182.0 54.0 185.0 70.0 187.0 94.0 193.0 100.0 195.0 113.0 199.0 132.0 205.0 172.0 216.0 183.0 220.0 208.0 234.0 239.0 248.0 287.0 268.0 303.0 278.0 309.0 282.0 313.0 283.0 343.0 282.0 11 4 Qc Quaternary Colluvium 0.0 179.0 7.0 182.0 20.0 185.0 42.0 188.0 68.0 195.0 90.0 200.0 100.0 203.0 108.0 206.0 125.0 211.0 141.0 215.0 148.0 217.0
Page 38 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A 169.0 174.0 182. 0 203.0 218.0 230.0 237.0 253.0 273.0 285.0 298.0 306.0 312.0 314.0 317.0 320.0 323.0 363.0 366.0 369.0 377.0 382.0 222.0 223.0 228.0 237.0 243.0 249.0 253.0 258.0 266.0 271.0 279.0 283.0 285.5 286.0 285.0 283.0 286.0 286.0 283.0 285.0 290.0 293.0 12 5 Transporter Kass 334.0 286.0 334.0 298.0 352.0 298.0 352.0 286.0 MATerial property data follow (for first stage) 1 Tofb-2 Obispo Formation 140 m total unit weight Conventional shear strength 0.0 50.0 No Pore Pressure 2 clay Bed 115 a total unit weight Nonlinear strength envelope
-100000.0 0.0 0.0 0.0 2793.7 1548.5 100000.0 27594.9 No pore pressure 3 Qpf Pleistocene Colluvium 115 a total unit weight Conventional shear strength 3000.0 0.0 No pore pressure 4 Qc Quaternary Colluvium 115 a total unit weight Conventional shear strength 1500.0 0.0
Page 39 of 84 GEO.DCPP.01.28, Rev. 3 Attahment A No pore pressure 5 Transporter Mass 150 = total unit weight Very strong SECond stage input activated HATerial property data follow (for second stage) -
I Tofb-2 Obispo Formation 140 = total unoit weight Conventional shear strength 0.0 50.0 No pore pressure 2 Clay Bed 115
- total unit weight 2-stage monlinear strength envelope
-100000.0 0.0 0.0 0.0 0.0 0.0 2793.7 1548.5 1548.5 100000.0 27594.9 27594.9 No pore pressure 3 Qpf Pleistocene Colluvium 115 c total unit weight conventional shear strength 3000.0 0.0 No pore pressure 4 Qc Quaternazy Colluvium 115 = total unit weight Conventional shear strength 1500.0 0.0 No pore pressure 5 Transporter Mass 150
- Total unit weight Very Strong HEIEdng follows -
SECTION M-K's MODEL 1: With Transporters Short Term Static Stability ANklysis/computation data follow -
NoncLrcular Search 148.0 217.0 168.0 216.0 172.0 216.0 190.0 215.0 201.0 215.0 231.0 216.1 252.0 217.1 275.0 219.1 300.0 222.1 320.0 225.5 366.0 283.0 fixed 2.0 0.1 ITEratlons 1000
Page 40 of 84 GEO.DCPP.01.28, Rev. 3 Attachment A Compute HEhding follows -
SECTION M-M': MODEL 1: With Transporter: Seismic Coefficient = 0.33g ANAlysis/computation data follow -
Non-circular 168.25 221.82 168.93 221.50 173.24 220.06 190.14 216.12 201.00 215.03 231.00 216.04 252.00 217.06 275.00 219.10 300.01 222.07 320.20 225.21 366.00 283.00 TWO stage computations SEIsmic coefficient 0.33 COMpute