3F1295-03, Forwards Responses to NRC 951024 RAI Re TS Change Request 203 Concerning Small Vol Eddy Current Indication Disposition.Rept B51956-R1, Crystal River 3 8R/9R Bobbin Voltage (S/N) Growth Rate Calculations Also Encl

From kanterella
(Redirected from 3F1295-03)
Jump to navigation Jump to search
Forwards Responses to NRC 951024 RAI Re TS Change Request 203 Concerning Small Vol Eddy Current Indication Disposition.Rept B51956-R1, Crystal River 3 8R/9R Bobbin Voltage (S/N) Growth Rate Calculations Also Encl
ML20095B183
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 12/05/1995
From: Kelley L
FLORIDA POWER CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML20095B185 List:
References
3F1295-03, 3F1295-3, NUDOCS 9512080156
Download: ML20095B183 (216)


Text

@

Florida Power CORPORATION EO*

December 5, 1995 3F1295-03 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D.C. 20555

Subject:

Technical Specification Change Request No. 203, Revision 0 Small Volume Eddy Current Indication Disposition

Reference:

A. FPC to NRC letter, 3F0595-05, dated May 31, 1995 B. NRC to FPC letter, 3N0494-21, dated April 26, 1994 C. NRC to FPC letter, 3N1095-21, dated October 24, 1995

Dear Sir:

Florida Power Corporation (FPC) submitted the referenced proposed change to our Technical Specifications on May 31, 1995 (Reference A) as required by a Confirmatory Action Letter (CAL) dated April 26,1994 (Reference B) . That change updated the Once Through Steam Generator (OTSG) Eddy Current (ECT) disposition strategy that we developed and used in Refuel 9, as required by the CAL, to reflect the results of the Refuel 9 inspections and tube pull campaign. Our )

staffs discussed the proposed change during an August 30, 1995 teleconference.

Your staff followed up with a formal Request for Additional Information (RAI) l dated October 24, 1995 (Reference C). A meeting was held in Rockville on i November 17, 1995 to discuss the NRC's concerns on a preliminary, conceptual i level so that we could more effectively respond to the RAI and so each of our  !

technical staffs could more accurately brief their management on how we could and i should proceed. FPC committed to respond to the RAI as soon as possible to l facilitate a meeting which has now been scheduled for December 15. The i attachments to this letter constitute FPC's response to the RAI. We plan to j discuss the responses in as much depth as necessary during the December 15 l meeting. We will be pleased to supplement these responses, as needed, following that meeting '

( UCO,92 i

CFWSTAL RVER ENERGY COMPLEX: 15760 W Power une St . Crystal Hiver, Florida 344284708 e (904) 7GG4486 A florida Progress Compar,y 9512080156 951205 3 PDR ADDCK 05000302 L \

p PDR

l U. S. Nuclear Regulatory Commission 3F1295-03 Page 2 The cover letter transmitting the RAI included a general discussion of the staff's initial reactions to our proposal. The issue was also discussed at a November 17, 1995 meeting. That meeting improved our understanding of the nature of your concerns. As noted during the meeting, we certainly agree that any sound proposal must reflect both past experience and adequately deal with likely results of future inspections. We also agree that the limited amount of data with which we are dealing creates a substantial technical challenge in developing a mutually acceptable criteria. This limited data is a result of good 0TSG experience and our attempt to deal with this issue as proactively as possible.

As we stated at the meeting, we may not yet be in full agreement on some points.

For clarity and completeness of the docket we thought it appropriate to respond ,

to them below, i

1) We would not place as much emphasis as the cover letter does in characterizing our proposal as " voltage-based." Signal voltage is used as one input to the evaluation process to add conservatism to our proposal from )

a structural perspective and to provide an appropriate limit from a leakage perspective. We are relying on a conservative estimate of defect dimensions as the structural repair criteria. The proposed approach is consistent with 1 the NRC guidance in Generic Letter 95-05 which encouraged the industry to  ;

continue efforts to improve inspection methods and repair criteria noting l that ones based on physical dimensions are the most desirable when they can be achieved.

2) Signal / noise (S/N) is the ratio of signal attributable to the discontinuity with that attributable to the various amount of other signal (called noise) present in all applications. It has been and is being used as a general indicator of the ability to accurately assign a through-wall (TW) depth estimate to an indication. In the structure of the TSCRN, it may appear to be more significant than it really is. The value of 5:1: was originally chosen to achieve a sizing error of less than 10%; is the value used in past CR-3 inspections; and thus is reflected in the historical data base. The analyst guidelines actually have allowed, and recently encouraged, a best-effort to make "TW calls" on all indications regardless of S/N ratio. This practice (removing a small volume indication with an estimated depth of greater than 40%) may cause us to remove from service some defects that have  ;

sufficient volume to generate a clear signal but which are really not significant from either a leakage or structural viewpoint. At some point, perhaps as we implement the proposed rulemaking in this area, we may be able to agree on a criteria to 'save' these sound tubes as well. It may be possible to eliminate consideration of S/N altogether.

3) We never believed all low S/N indications were Inter-Granular Attac9 (IGA).

We thought we had been careful not to leave others with that impt ession.

We noted from the outset the existence of similar NDE indications at the tube support plates (TSPs) and at free-span locations at several elevations.

We included related information in our previous discussions with the NRC.

During Refuel 8 we were able to remove tube sections from a region (first free-span above the lower tube sheet) where the dominant defect type was found to b. IGA. We did extensive evaluations and developed a most-likely cause and repair strategy. We were unsuccessful in extracting tube segments from other locations where wear would be more-likely (i.e., at TSP interfaces) until the second tube-pull campaign (Refuel 9 in 1994). When

1 U. S. Nuclear Regulatory Commission 3F1295-03 Page 3 i we did so, wear was indeed found. This was reflected in the inspection  !

results we provided in late 1994 (in response to CAL Item 8) and earlier i this year (concurrent with the TSCRN). Nevertheless, we now realize that we were apparently unsuccessful in communicating the presence of wear.

4) The letter includes the statement: "A low S/N ratio is a product of the inspection process and is not a characteristic intrinsic to a particular-mode of degradation." We agree; as long as " mode of degradation" is used to refer to degradation mechanism (cause) as opposed to morphology.

Morphology directly impacts inspection results (signal). We would add that low S/N ratio is fundamentally either due to a low signal OR high noise.

Some of our discussions and the RAI imply that the fundamental cause is high noise. We do not agree that is the case. We have observed at least two degradation mechanisms in the CR-3 OTSG's that produce very low signals for ,

similar reasons (both involve very limited defect volume). Our efforts to l reduce noise are addressed in the associated RAI responses.

l

5) We do not agree with the suggestion that the most appropriate course of action is to revise our proposal to focus solely on IGA. As we stated at the meeting, and as addressed in appropriate RAI responses, we cannot ,

readily distinguish between some of the wear (which we have termed  ;

volumetric as opposed to the more standard tapered-wear) and IGA. After considering the merits of various alternate repair criteria strategies we  ;

continue to believe that the one proposed best deals with the situation at CR-3. We understand that focussing on IGA might have been more l administratively similar to the generic DSM efforts but believe technical merit should outweigh such considerations.

We do agree that our proposal differs from other alternate repair criteria in a number of ways. For some time we even hesitated calling our proposal an alternate repair criteria reflecting our recognition that there were substantial ,

differences. We appreciate the difficulty this may cause. Our proposal is not l based on a highly focussed effort to deal with one degradation mechanism, but 1 rather is an alternate general approach that is directed at handling two defect types with similar morphology. These defect types appear to be generally dormant and are not significant from either a leakage or structural perspective. Rather than forcing our situation to fit a model not well-suited for it we would rather consider other alternatives further. While not fully developed, we would suggest:

a) We could mutually develop reporting requirements that require us to evaluate appropriate figures-of-merit (i.e., measures of growth rate, etc.) for the inspection results our program will continue to obtain. We currently reinspect (with standard bobbin coil) all low S/N tubes each outage.

Trending the average voltage and/or other appropriate values would help assess any fundamental change in the nature of defects we are leaving in-service.

b) The NRC's approval of all or portions of the TSCRN could be limited in duration. If the data to be obtained this outage, other data availability and the time to further review our proposals would benefit the NRC's review we would not object to the approval being for a single fuel-cycle. This would be consistent with some of the other generic efforts. This might also

,m . ._ . _ - _ _ . _ .__ _ - _ _ . _ _ __ . _ . . . _ . __ _ . _ _ _ _ . . _ _ . . . . . . _

3 8

U. S. Nuclear Regulatory Commission 3F1295-03 Page 4 i indicate to the industry that, while our proposal for dealing with IGA is fairly mature and acceptable to the NRC; its application to other degradation mechanisms with similar morphology is less so. This would also  !

allow the CR-3. program to continue to evolve. l c) If there are other specific NDE efforts or changes to the various nt:merical values proposed in the TSCRN that would help resolve your concerns we will  ;

work with your staff to evaluate them. We are not aware of any that would j

.seem appropriate, but never want to close the door to improving our ISI j efforts on such critical components. '

FPC appreciates the attention that this matter is getting and will do whatever we can to facilitate your reviews. As noted earlier we will supplement the l attached responses or address other issues as needed following the December 15 ,

~'

meeting. Our outaga begins in late February,1996 so we need to have reached fairly complete consensus by mid-January to allow for plant-specific analyst guidelines and other related efforts to proceed as needed.

Sincerely, f

Larry C. Ke ley, D rector Nuclear Operations Site Support KRW/BPW:ff Attachments xc: Regional Administrator, Region II NRR Project Manager l Senior Resident Inspector l 1

i

Attachment 1 FPC Responses October 24,1995 Requests For Additional Information TECHNICAL SPECIFICATION CHANGE REQUEST NUMBER 203 SMALL VOLUME EDDY CURRENT INDICATION DISPOSITION

l

- U. S. Nuclear Regulatory Commission l

3F1236-o3, Attachment i  !

Page 1

{

Dearadation Specific'Manaaement

1. Describe your long term plans to monitor the morphology of low signal-to-noise-(S/N) indications (e.g., tube pulls, destructive examinations, etc.). Reference 3 states that the B&W Owners Group Steam Generator Coemittee recommended pulling tubes from Oconee Units 1 and 3 in addition to those at Crystal River Unit 3 (CR-  ;
3) .- Describe how 'the results available 'to date from these4 other tube pulls' l

support the conclusions developed based on the' data from the CR-3 tube pulls;  ;

If. the Oconee tube pull data are not: currently available discuss your schedule  ;

and plans for incorporating the data into ?our analyses. . Provide a~ schedule of when the tube pull nondestructive examination comparison study cited on pages 2-2 and 3-6 in Reference 3 will' be available.

FPC's long. term plant-specific program'to monitor the morphology of low S/N l indications present in the CR-3 OTSGs focusses' on plans for supplemental non-destructive' examination (s) (NDE) during future inspection outages. The purpose of this eddy current testing (ECT) is to gather additional data on i the areas within the TSCRN report where ECT can provide insights into '

behavior of the indication. This includes plans ~for random MRPC sampling i below the - TSCRN voltage threshold, as discussed in the response to RAI  ;

number 16. FPC's program also includes continued participation in the B&W~

Owner's Group (B&WOG) Steam Generator Tube Pull and Tube Integrity Programs. i Together, these programs provide an examination of a wide spectrum of damage i mechanisms utilizing both laboratory-grown and pulled tube -defects. The~  ;

purpose of the examinations is to expand the present level of knowledge on i the range- of mechanisms postulated to occur in OTSG tubing. Additional-discussion of these two programs has been provided in earlier FPC submittals as well as during periodic meetings between the B&WOG and NRC Staff.

There are no plans to pull additional tubes from the CR-3 steam generators.

The two tube pulls which have already been performed are considered to have provided the information necessary to adequately describe the currently active- degradation mechanisms. This is ~ not to say there will never be  :

another tube pull at CR-3. Another tube pull would certainly be considered if plant-specific operating experience indicates one is needed (as was done for this, the S/N, issue). .

The examination of the Oconee pulled tubes is nearing completion, with the results expected to be available some time during the first quarter of 1996.

While the tube pull placed priority on indications of special interest to ,

Oconee, the information with applicability to CR-3 has supported the  !

conclusions reached for the CR-3 pulled tubes. Once the final Oconee pulled tube report is issued, FPC will perform a detailed review of the entire report for the purposes of gathering and applying additional data pertinent to CR-3. Assuming the Oconee examination results are available during the first quarter of 1996, the NDE comparison study cited in the RAI is expected to be completed by September 1,1996.

U. S. NutJear Regulatory Commission 3F1295-03, Attachment 1 Page 2

2. Appendix B to Reference 3 discusses sizing of wear indications. Is a wear scar standard used at CR-3 for sizing these indications? If so, discuss the basis for applying the proposed voltage-based repair criteria to wear indications.

Appendix B to Reference 3 describes the nuclear industry experience with steam generator tube wear, including a discussion of both the rectangular (i.e., tapered) and the spheroidal wear scar geometries. The sizing discussion referred to by the RAI discussed both of these geometries. FPC's past use of wear standards at CR-3 can be discussed in similar terms.

FPC has historically followed a standard industry practice for the examination and evaluation of 0TSG Tube Support Plate Wear. This practice involves a bobbin coil examination for flaw detection and initial sizing.

Sizing is performed using standard phase analysis techniques employing calibration curves constructed from the ASME holes (for indications exhibiting a S/N ratio of greater than 5:1). This technique has been proven to be over-conservative for wear. Confirmatory sizing with the MRPC technic,ue is typically applied to those wear indications which are estimated to be greater than 40% through-wall by bobbin. This method of sizing the indication is more accurate and employs a voltage-based calibration curve constructed from the simulated wear scars in the calibration standard. The MP.PC also provides for characterizatior of the indications location, geometry, and morphology.

What FPC has termed volumetric wear (i.e., oval, circular) has only recently been confirmed in OTSG tubing. This was accomplished during the most recent CR-3 tube pull in Spring 1994. Prior to this time, the mechanism causing these indications at the TSPs was unknown. From an eddy current " signature" perspective, the volta tric wear cannot be differentiated from the pit-like IGA, even when examir with MRPC.

Once the mechanism producing the indications at the TSPs was confirmed, the 1994 tube pull examination results were focussed on the most appropriate NDE technique for addressing these indications. The criteria for assessing various ECT techniques were accuracy in detection and sizing. However, consistent with FPC's philosophy of allowing structurally sound tubes to remain in service, the optimum disposition strategy is one which, while removing defective tubes from service, does so without imposing overly-conservative repair criteria. Two disposition strategies were examined with these criteria in mind. The first involved applying historic percent thru-wall sizing criteria based on bobbin coil phase angle. Application of an alternate disposition strategy similar to that proposed for the IGA was the second strategy considered.

A review of the limited pulled tube data was conducted to confirm whether the bobbin coil phase angle technique for the low S/N ratio, oval wear was subject to the same thru-wall sizing variability as the IGA (Figure 3-1 of Reference 1). The inability to accurately size low volume IGA was one of the principal technical considerations which necessitated FPC develop an

e ,

j U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 3 alternate disposition strategy for the CR-3 steam generators. This review was inconclusive. While the sizing error for the volumetric wear was improved with respect to that of the IGA, this was based upon a database of just five (5) indications.

The depth of the volumetric wear, as measured by metallurgical exam, ranged from 14% to 35% TW, with a number of defects in the 30-35% TW range. When the bobbin coil voltage of the defects from the laboratory exams were compared with those in the field, it was apparent there were potentially a large portion of the wear indications in the OTSGs which approached the current Technical Specification limit of 40% TW (assuming voltage is proportional to volume, and hence, depth). None of the pulled tube ner scars appro:ched any Regulatory Guide 1.121 structural or leakage considerations. Based on this data, it was also apparent there was considerable conservatism in applying the 40% TW acceptance criteria to these indications. Thus, application of the percent through-wall criteria did not meet FPC's goal of keeping structurally sound tubes in service as well as the alternate dispositicn strategy did.

From an ECT analyst perspective, combining the volumetric wear with the IGA as part of a singular disposition strategy was preferable. As mentioned, indications attributable to the two mechanisms are indistinguishable when examined with NDE. Considering the two together also removed any liabilities associated with assuming all indications at the TSPs are atti;butable to wear. While this has been wholly supported by the pulled tube data, the amount of data is limited.

For the reasons given, the decision was made to cor,bine volumetric wear and IGA under the umbrella of a single disposition strategy. Further, since the metal loss associated with the wear mechanism is greater than that from the IGA, it was considered conservative to include the wear within the proposed approach, from an eddy current perspective. Once this decision was made, I the technical justification for the proposed strategy was revised to include con:ideration of data unique to both mechanisms. FPC would continue to disposition tapered wear using the standard industry practice described I above.

1

3. The proposed voltage-based repair criteria applies only to volumetric indications located outside the tubesheet regions. Describe the eddy-current inspection procedures and quantitative data analysis criteria to distinguish between volumetric and crack-like indications.

The eddy current inspection procedure used to distinguish volumetric from crack-like indications employs rotating probe technology. Indications reported from the bobbin coil probe examination are typically selected for rotating examination to further characterize their morphology. In lieu of examining all indications that cannot be quantified with the bobbin coil a sampling plan is implemented with the application of some established selection criteria for indications which can be logically grouped based upon

_ - - - _ - - - - - - I

U. S. Nuclear Regulatory Conwnission 3F1295-03, Attachment 1 e Page 4 signal response and/or location. If results from the sampling plan reveals crack-like flaws it then becomes prudent to examine all r.on-quantifiable indications with the rotating technique.

The specific rotating technique used at CR-3 has been the standard 3-coil probe which contains a 0.080 inch diameter shielded pancake coil, and two directed coils; one an axially wound coil, and the other a circumferential1y wound coil.

Each coil is located in the same axial plane of the probe and spaced around the probes' circumference at 120 degree intervals. Each coil is held in contact with the tubes inside surface by mechanical means while the probe is simultaneously rotated about its' major axis and traversed through the tube past the location of interest. This scanning method gathers inspection data l in a helical pattern and can be processed to display the relative orientation, position and dimensions of a flaw.

The pancake coil is sensitive to both volumetric and crack-like flaws and is used as the primary detection coil during data evaluation. The pancake coil is also employed for depth and dimensional sizing of indications. The axially wound coil is sensitive to volumetric and circumferentially oriented flaws and is used for characterization of flaw orientation. The circumferential1y wound coil is sensitive to volumetric and axially oriented flaws and is also used for characterization of flaw orientation.

The basic evaluation procedure used to distinguish between volumetric and crack-like indications is performed by comparing the response from the three inspection coils. These coils are calibrated by adjusting their individual gains to produce an equal response to a volumetric flaw such as a drilled hole or shallow wear scar in a calibration standard. The amplitude response from flaw indications can then be compared for the three coils applying the following logic. Volumetric flaws should produce a nearly equal signal amplitude response from each of the three inspection coils. Crack-like ,

flaws should produce an enhanced response of larger amplitude on one of the  !

two directed coils (axial or circumferential). Further evaluation of signal I formation and C-Scan mapping of ti.c data is employed to insure accurate disposition of the flaws morphology.

4. The eddy current signals generated by wear and IGA pitting may be significantly different due to the different morphologies for each type of degradation. The larger and more easily detectable signals from wear can bias the statistics for the IGA pits if they are used together. Discuss the potential bias from the use of both IGA and wear data in the correlations incorporating eddy current voltages.

Both volumetric wear and pit-like IGA are three-dimensional discontinuities with a spheroidal geometry. Eddy current bobbin coil signal amplitude or voltage is proportional to the removed metal volume within the coil field of view. This is the basis for establishing a correlation relating amplitude to

7 . .

U. S. Nuclear Regulatory Carnission 3F1295-03 Attachment

  • Page5 volume. Volumetric wear will typically have a larger volume then pit-like IGA; thus sign.V amplitudes or voltages for wear will be larger while those for pit-like IGA will be smaller. The larger amplitude wear data will simply define the correlation curve at the upper voltage extreme whereas the smaller amplitude pit-like IGA data will define the correlation curve at the lower end. Voltage bias is not expected to be introduced by using a mixture of wear and pit-like IGA since the correlation is volume dependent.

Sianal-to-Noise

5. What actions have been taken to decrease the noise or increase the defect response signal during eddy-current inspections at CR-37 Discuss the use of alternate probes (size and type), inspection frequencies, assessments of noise origin, and other potential signal improvement measures. What alternative inspection techniques have been used in the past or been considered for the next inspection of 5/N indications?

Eddy current examination data has been scrutinized very closely in the past year in an attempt to identify noise sources that influence data quality.

These noise sources can be divided into three major areas which include,1) tube noise, 2) system noise and, 3) electrical interference.

1) Tube noise is either inherent due to the metallurgical and physical properties of the material or associative due to component configuration and operating environment. ,

A. Inherent tube noise comes from various sources such as non-alloying elements present in the material, surface condition, pilgering, geometry and thickness variations, and heat treat condition. Inherent i tube noise is seen by the eddy current field and produces signals which may interfere with the detection and/or sizing of indications.

Examples of inherent tube noise are pilgering noise, permeability variations, u-bend tangents, roll expansion transitions, and absolute drift from gradual thickness variations or heat treat. Probe wobble i is a dynamic noise variable caused by the modulation between the tube and the inspection probe and is usually factored in with tube noise.

Inherent tube noise and probe wobble are considered to be the primary contributors to the total background noise component.

B. Associative tube noise comes from various sources such as secondary side deposits and sludge, tube support plate and tubesheet interference, tube denting, residual stress and environmentally induced material property changes which are usually localized in a particular' area of the tubing.

2) System noise is a product of the inspection system configuration and includes the eddy current and associated control instruments, the cabling and inspection probes, and the remote manipulator and guide tube

.. , . - - ~ , . - _. . - . . - - .~ ~- - . . ~ - -.- .~ .

U. S. Nuclear Regulatory Comrmesion 3F1295-03, Attachment 1 Page 6 assembly.

3) Electrical interference is intrrduced into the signal path from various l sources such as electrical power supplies, poor grounding of the '

inspection system components, machinery and equipment operating nearby, and malfunctioning system components and probes.

There is very little that can be done to suppress inherent tube noise with the exception of permeability variations where magnetic biased probes are used with good results. Associative tube noise is handled  :

during data evaluation with the application of mixes and filters in an '

attempt to suppress the interference from known signal sources such as tube supports, tubesheets, roll transitions, copper deposits and dents.

The recent introduction of new or otherwise improved filtering techniques have also increased signal resolution through noise suppression.  ;

System noise has been reduced somewhat with the introduction of the Zetec MIZ-30 eddy current instrument, deemed quieter by some studies. The use of high performance or low-loss probe extension cables and improved connector designs have improved data quality. Efforts to reduce the length of analog signal cabling and the amount of connectors in the signal path are considered to be positive steps towards improving data quality.  ;

Electrical interference har been decreased through the use of dedicated power supplies, power 1 solation instruments and line conditioners. ,

Improved methods of grounding" system components and probes have shown some promise and the introduction of fiber optic lines for data transfer have provided immunity over those distances.

Another important aspect of the data quality issue is the emphasis placed  !

upon analyst training in the recognition of data quality. Structuring  ;

guidelines to address the issues involved with data quality and offering ,

example data .for training which presents the various types of noise  !

sources should improve the analysts understanding of how to handle or disposition various problems encountered with data quality.

There are a few ways in which to increase the inspection sensitivity; 1)

Increasing the probe diameter for bobbin inspection in an attempt to l increase the fill-factor and reduce probe wobble while also increasing the density of eddy currents in the material inspected, 2) Utilizing the features of the Zetec MIZ-30 instrument which allow for operator adjustment of the Variable Probe Drive and Programmable Gain options and,

3) Performing the initial data screening with -an inspection mode and frequency which is less affected by noise.

The probe diameter used is a compromise between maximum fill-factor and suce.essful probe delivery and probe life during an examination.

Typically, there is little to be gained in inspection sensitivity by increasing probe s;ze from the optimum diameter for examination to the i

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 7 maximum achievable diameter.

There are two new features offered with the Zetec MIZ-30 that have been used to increase the overall inspection sensitivity. The Variable Probe ,

Drive feature provides the operator with the capability of choosing the drive voltage applied to the coil. Increasing the probe drive voltage will increase the amplitude of the analog signal without significantly increasing system noise. The Programable Gain feature provides the operator with the capability of choosing the degree of analog signal amplification prior to digitization of the data. Adjustment of the programable gain provides a compromise between signal resolution and signal saturation. System noise remains constant with increasing probe drive voltage and increases as the gain is increased.

Background noise includes tubing noise and system noise. This background noise is that seen by the data analyst and is that noise component factored into any signal to noise comparisons performed to address data quality concerns. Background noise is a factor of 15 times greater than the instrument noise alone. The noise component from the tubing, which is in the form of eddy current signals, increases with probe drive voltage and instrument gain.  !

All other sources that produce eddy current signals result in a linear increase in signal amplitude with increases in probe drive voltage and instrument gain.

Increasing the probe drive voltage and programable gain values will increase both the signal of interest and noise component amplitudes.

Therefore it is not expected that an increase in signal to noise ratios will be achieved. For the case of programable gain it is not expected that signal formation will be enhanced or that the formation of previously non-detectable indications (compared to data acquired at lower gain settings) will be produced. However, as the signal amplitude is increased, the physical size of an indication produced in the lissajous screen will increase and thereby make it easier for the analyst to visually detect and subsequently process the indication for evaluation.

The defect response can be increased by performing the initial data screening with an inspection mode and frequency which is less affected by noise. Typically, the differential test mode is less affected by tube noise than the absolute test mode and a frequency which offers increased depth of penetration while still remaining in the upper bounds of the probes frequency response curve is desirable. This practice is employed at CR-3 by utilizing the 400 kHz differential channel for initial data screening. CR-3 also employs a high frequency coil wrap for the bobbin probe which is tuned better for the 600 kHz frequency used for sizing and S/N calculations.

i l

l

I k

U. S. Nuclear Regulatory Comnvesion  !

3F1295-03, Attachment 1 PageS

6. Appendix G to Reference 5 provided a simplified description of how noise is quantified. However, it is unclear how noise associated with an indication is measured when the signals are superimposed. Describe the procedures used at CR-3  ;

to quantify the signal-to-noise ratio of an indication where the contribution due  :

to noise is not easily separated from that of the indication. l The noise co;nponent is always superimposed on the signal component since the l noise cor,,onent is most always a continuous variable that is merely i fluctuating in intensity. Therefore the total voltage of the signal vector ,

of interest is factored against the voltage of noise vectors taken in the a immediate vicinity of the signal of interest using equal window openings. l In the event that the signal of interest contains unacceptable electrical interference it should be rejected and subsequently reexamined.  !

The procedure followed to quantify the signal to noise ratio is as follows:

1. Isolate the entire signal of interest by minimizing the lissajous trace window opening through adjustment of the associated cursor  ;

spacing. l

2. Measure the peak-to-peak voltage of the signal of interest and record  ;

this reading.

~

3. Using the window opening established in step 1 to determine the signal ,

of interest, move the data points to an area immediately adjacent to I the signal of interest which represents typical background noise.

4. Measure the peak-to-peak voltage of the noise and note this value.
5. In some instances it may be desirable to compare noise readings both immediately before and after the signal of interest in order to establish the deviation across the area of interest.
6. Calculate the signal to noise ratio by applying the formula; S/N.

Voltage of zthe signal of interest divided by the voltage of the noise component.

Figures I and 2 provide a pictorial illustration of how the S/N ratio is determined. The two Figures are bobbin coil graphics of an indication  ;

located in 1992 CR-3 pulled tube 41-44, section 2. This tube section corresponded to the first span of the 'B' OTSG and the indication illustrated was confirmed to be pit-like IGA by destructive examination.

From Figure 1, the indication exhibited a bobbin coil signal amplitude of 0.90 volts. Figure 2 illustrates Steps 3 and 4 above, determining a peak-  !

to-peak voltage value of 0.31 volts attributable to noise. Using figures 1 I and 2 in conjunction with one another, a S/N ratio of 3:1 is calculated (0.90V/0.31V) for this indication. j

4 5 *d

_ i m _

by g a i e

= K 1- .p 5 ,

t

= R M

$ N "s=

e .

I \ -

I3 E 1 ':

7 3 a

- e .

.- l w A  :

- 3:  :

E =

T. l 3 m > >

0 ..

4 8 V rvi  :

i i

A $

s q

s __

l )~

b f lo(( bN '

1 d

} .

s a

) o  !

u 1

i

$4 ~~ e ,

l L E MI

~

h b

A e ,

f#  ;

0 fi m_

l i

I aan6u

!! , ;!i ! ;1j . ' , !i $[!! Ii

,' o l

0 p I

= e. < .

H_ w l

F F

1 0

D 0 1 ll 1

1 4 m l

l 2 .

t ,

o

\

r i-

^ _

4 1  !

c ~

7 C .

l 0

. 0 d 5 -

G 6

  • 7 t

7

+

n a

4 .

I.

v 0 p v 1 s T

0 . I 3

0 L 1 l 0

4

] 4 B

B .

[

M ._

U T 0 l

= _

0 - .

1 0 y

r ._

4 l

= _

a .

m W _ -

i r O d p R ll

/

s B v _

a -

0 0 .

0 G 4 .

0 S  : 0 7 1 - l l 2

K 0

0

- y_ _

9 4 L 1 0

9 Y 1 A

- t M

t

]

S r C 0 B e

[

4: A V _

4 .

h.,

1 ll J _

R _

A a y }

T 0

0 5 _

i p 1 2 C _

5 . 0 I

9 t

i D a ll e d c.

p d A

A 7 8 -

d 0 G d 0 E e t p a

a u

p t F t

. r L F e D V ll i.

T

. 0 0

0 1

C k c ll m.

t.y 1 -

G s

l - -

E S a, T L

T L

^

j k w

n t

l a

r_

. T E

= -

[

~ ei I-

- - _ _ . - . . . - - -. - -.. -. - .-.~ ~ ~.-. .- ~..... ~ _ _ _ . - - _ . _ _ - - _ -

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 11

7. Appendix A of Reference 2-lists the eddy current voltage amplitude for all identified S/N indications in the CR-3 steam generators. However, the table does '

not include quantitative data for the level of noise measured for each indication. Provide the data recorded during eddy current inspections quantifying the level of noise associated with each indication. For indications inspected in more than one outage, provide noise measurements recorded during each inspection.

The level of noise associated with each S/N indication in the CR-3 steam generators has not been recorded in a readily available format during past inspections. The information exists in the raw eddy current examination data and would require a manual re-analysis of the subject tubes in order to measure and record the noise components associated with these indications.

8. The last paragraph in Section 2.3.1.3 in Reference 3 states that "the 0.540 inch HF bobbin coil exhibited slightly better detection performance than the 0.510 inch HF bobbin coil." This section also indicated that the 0.540-inch high frequency bobbin coil gave cleaner (higher signal-to-noise ratio) and more  ;

repeatable data. Do you plan to use the 0.540 inch high frequency bobbin coil  ;

probe for upcoming inspections of CR-3 steam generator tubes? If you plan on i using a bobbin coil probe with a diameter other than 0.540 inches discuss your t basis for doing so in light of the above.

There are no plans to use the 0.540 inch diameter bobbin probe at CR-3 in i future inspections. The 0.510 inch diameter bobbin probe is the standard l probe size used for inspection of OTSG tubing and it is expected that the ,

resolution gained from the application of the 0.540 inch diameter bobbin t probe would be negligible.

There would also be difficulties encountered with the introduction of the 0.540 inch diameter bobbin probe in a production examination. It is expected that there would be difficulty delivering the probe through the full length of the tubing due to restrictions caused by dings and tube end damage. There is the possibility of stuck probes which could cause problems with probe retrieval and shorter probe life due to increased friction between the probe and tube.

9. If all indications are recorded regardless of voltage amplitude and the i growth mechanism is dormant, only a small number of new indications should be detected during any outage (i.e., small voltage indications at the threshold of detection). What steps has the licensee taken to address the root cause for indications which have faded in and out from inspection to inspection?

The root cause for certain indications fading in and out from one inspection  !

to the next is believed to be related to the small amplitude (and therefore, volume since the two are proportional) of the indications exhibiting this behavior and the detection limitations associated with this size indication.

Since there is nothing which can be done to change the size of the j

_- \

-l l

U. S. Nuclear Regulatory Commission 3F1295-o3, Attachment 1  ;

Page la discontinuity, the steps - taken to address this phenomena are related to  !

improvements in the NDE area. This is discussed in the responses to RAI. l

' question 5. In: addition, eddy current data analyst guidelines require the ,

analysts to address previous history for each tube in which an indication is i called. TI-ls helps maintain database integrity by ensuring the analyst ,

takes a'secoed look at locations with previously reported indications. j I

In order to evaluate the frequency of this " fade" phenomena occurring, a j review of previous ECT data was performed. The review started with the 1987.  ;

inservice examination results and . worked towards the latest (1994)  :

inspection, looking for S/N indications which were considered present during at least.two outages, but which were not detected during each inspection of i the. tube containing the indication. The results of this review show that .

i this does occur, but the occurrence is a limited scope (< 5%).  ;

Given the results of the evaluation, a compensatory factor considered in i this issue of indications fading in and out is that the indications most  !

subject to this occurring are also those of the least structural  !

significance. A review of operating history shows the bobbin voltage of I these indications to be typically well below the minimum voltage threshold ,

(0.9 volts) established within the TSCRN. Thus, although these indications  !

may not be detected during each and every outage, the significance of  ;

missing an indication during an outage is minimal due the impact of these indications (assuming they are all representative of actual degradation) on the structural integrity of the tubing.

10. New 5/Ns are defined as those that have voltages greater than 0.9 volts and that have not been identified in any outage since 1987. Discuss the basis for considering only indications identified during inspections since 1987 in light of the fact that some. indications were first identified many years earlier.

The establishment of a cut-off date, before which indications are assumed E9.1. to have been present, is considered a conservative approach to defining new (S/N) indications. Rather than review original eddy current data tapes.

to determine whether an indication was present prior to the proposed cut-off date, the proposed approach considers any indication not currently in the database to be "new", and requires an initial MRPC inspection be performed for those indications exhibiting a signal amplitude greater than 0.9 volts.

The specific year (1987) was chosen based upon limitations of available historic ECT data. The eddy current test data management system used at CR-3 only contains previous tube history for inspections performed since 1987.

Prior to this time, the analysis techniques and analyst guidelines were such that the results of the earlier inspections could not be readily compared with the results of an inspection today.

FPC has inspected 100% of the CR-3 steam generator tubing at least one time since 1987. In recent inspections, it has been FPC's practice to inspect tubes containing previously identified indications, at each subsequent

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 13 inspection. Thus, there is a high confidence that the large majority of S/N l indications present in the CR-3 OTSGs have been previously identified and are contained in the current ECT database. This would naturally include valid signals present prior to 1987. l l

Growth

11. Appendix B of Appendix A to Reference 5 assessed the growth of intergranular j attack (IGA) patches for three tubes examined in 1989, 1990, and 1992 outages. l The study concluded that there was no evidence of growth of the observed IGA j patches included in the study. While past growth assessments may support your i assua:ption of zero growth for IGA S/N indications, the basis for assuming no  !

growth for tube wear indications is unclear. Provide the basis for this '

assumption. l The 1994 growth rate study performed by Packer Engineering (provided as part of the response to RAI #35) included consideration of CR-3 inservice S/N indications located at support locations. Based upon the 1994 CR-3 tube pull results, the indications present at the support plates can be attributed to wear. Thus, the results of the latest growth rate study support a conclusion that there is essentially no growth of wear indications ,

within the CR-3 OTSGs. This conclusion is based upon a review of the entire  ;

population of indications. Refer to Section 4.4 of Reference 1 for a more detailed discussion of the results of this study.

The B&W growth rate study also included a limited number of data points on defects located at tube support plates, but the data did not support a growth rate analysis of these indications (small number of data points, significant neaative mean change in bobbin voltage associated with the indications, etc.).

12. How frequently will each S/N indication be inspected in future outages?

FPC presently plans to inspect all S/N indications during each future inservice NDE inspection. However, future NDE inspection results providing information on degradation growth rate will be evaluated for justification of a statistically-based sampling plan of these tubes which would allow for less than a 100% inspection.

. m _ _ . . - _ _ _ _ _ ~ _ _ _ . _ _ _ _ . _ _ _ _ . _ _ _ .- _ - . _ _ - _

i i U. S. Nuclear Regulatory Commission i 3F1295-03, Attachment 1 Page 14

13. A number of growth studies have been cited in the various submittals supporting this TS amendment. Discuss how differences in probes, calibration procedures, cable lengths, calibration standards (including the use of transfer standards), probe wear, and other related factors have been accounted for in each of these studies. Indicate whether the data used in each of the studies are based on Vmax voltages or peak-to-peak voltages. It would be sufficient to address the more recent outages since they most likely used similar techniques and analysis criteria.

The three growth studies specifically referenced within the TSCRN 203 ,

technical report were performed independent of one another. In fact, steps  ;

were taken to maintain the independence of the various studies. This meant allowing the individual organizations - EPRI, B&W, and Packer, - the latitude to utilize the technical procedure they deemed appropriate and not dictating any one single approach to the evaluation. Thus, the procedures and data used in the individual studies are not necessarily consistent, even though the results and conclusion of "little or no growth" are. Each study  ;

is summarized sepatately below.

The EPRI growth rate study utilized eddy current bobbin coil voltages obtained from the Refuel 8 pulled tubes which were field inspected during  :

the 1989, 1990, and 1992 CR-3 inspection outages. Peak-to-peak voltages i were used in the evaluation, with the 600 kHz channel chosen for comparison.

To compare three successive outage data acquired by different diameter size probes and varying lengths of extension cable, eddy current signals from a 100% TW calibration hole were normalized to 5 volts peak-to-peak at a phase l angle of 40 degrees.

The B&W study utilized eddy current bobbin coil voltages from the 1989, 1990, and 1992 CR-3 Outages. Indications which were inspected in at least two of the outages were compared against one another using the bobbin coil technique. Peak-to-peak voltages were utilized in the evaluation, in order 4 to account for the changes to the essential variables which took place over i the period of time covering the three Outages. The essential variables of this technique are probe type and operating range examination frequencies, data acquisition speed and calibration standards. Each of these variables  !

was evaluated as were the differences in data analysis guidelines during 1 this time. The following is a brief discussion of the variables considered and their treatment.

The 1989 and 1990 examinations were performed with a mid-range frequency bobbin probe operating at 600, 400, 200 and 35 kHz in both differential and absolute modes. The 1989 target probe speed was 14 inches per second i coupled with a data sampling rate of 400 points per second, yielding i recorded results of 28.6 data points per inch of tube examined. The 1990 target probe speed was 24 inches per second coupled with a data sampling rate of 800 points per second yielding recorded results of 33.3 data points ,

per inch of tube examined. The 1992 examination was performed with a high- I frequency bobbin probe operating at 600, 400, 200, and 35 kHz in both the differential and absolute rrodes. The target probe speed and data sample

. _ - _ _ . _ . _ - . . _ _ . _ . , _ _ ~ _ _ ~ _ . . - _ . _ _ . _ . _ . _ - _ . . .. _ .. _ .. -

i U. S. Nuclear Regulatory Commission ,

3F129543, Attachment 1 Page 15 rate were the.same as during the 1990 exam. While the slight differences in f recording rates could result in some variation in sizing, the variation is considered acceptable .since calibration curves are fit with standard reflectors acquired at the same speed. 1 The change in probe operating range, from a mid-range to high frequency ,

design, was considered. For the probe and frequency combinations used during

~

the three outages, flaw detection is equivalent and was performed each time  !

with the 400 kHz differential channel which operates nearly equivalent for  :

both probe types. Flaw sizing, however, should be more accurate during the  !

1992 exam which used the high frequency probe and evaluation of 600 kHz.

This frequency is closer to the optimum test frequency for OTSG tubing and provides better phase separation for flaws of varying depths. l The calibration standards used for the~ three examinations were different.

However, they were of similar style with equal volume and depth of-artificial f1?ws and were therefore considered' equivalent for the purposes  ;

of the comparison. ,

Analyst guidelines also varied somewhat between examinations. Two changes  ;

merit further discussion. The first deals with the frequency used for reporting indications. During the 1989 and 1990 exams, indications were '

reported with the 400 kHz differential channel when they occurred in the freespan of the tubing. A 400/200 kHz mix channel was used for indications i at support intersections. During the 1992 examination, freespan indications  :

were reported with the 600 kHz differential while support locations were  ;

reported with the 600/200 mix. Since these two frequencies offer  ;

differences in phase spread, with the 400 kHz being smaller, the calibration l curves represented by these two channels diselay different degrees of 1 resolution. l The second point of interest is the method used for voltage normalization. l During the analysis setup it is common practice to set a specific voltage on  !

a particular signal from the calibration standard and then "save" this voltage scale to the other data channels. By performing this voltage normalization, a common scale can be applied to all the data. During the l 1989 and 1990 outages, the 400 kHz channel was set to 4 volts peak-to-peak '

on the signal from the broached TSP. In 1992, the 600 kHz was set to 6 volts

. peak-to-peak on the signal from the 4-100% drill holes. Although both '

procedures return a similar voltage scale, a different procedure was used to  !

allow comparison of the data. Using the 400 kHz, the system was set at 4  :

volts peak-to-peak on the signal from the 4-20% . flat bottom holes. -

Indications from all three outages were sized with the identical, identified technique and compared.

The Packer growth ratc study utilized eddy current bobbin coil voltages  ;

obtained during the >92 and 1994 CR-3 inspection outages. The study also i utilized peak-to-peak vcitage values. The essential variables of the 1992 '

and 1994 outages were maintained the same in order to facilitate th' comparison.  ;

- - . - _ _ , ~ _ ~ . . , - _ - . . - . ~ . _ . . - . - . - . - . - . _ _ . - . - .- . - - ~ - . -

U. S. Nuclear Regulatory Commission 3F1295 03, Attachment 1 Page is Probe wear, as a specific effect, was not considered within any of the studies.

14. Has a growth rate study of S/N indications been performed based on rotating pancake coil (RPC) sizes (i.e., axial and circumferential length)? If so, provide the results. If not, discuss the usefulness of such a study.

A comparison of axial and circumferential extent was performed for those indications of interest which received an MRPC inspection (clip plot sizing) during both the 1992 and 1994 inspections. The study was somewhat limited .

due to the number of indications (33) which met the aforementioned criteria.

The mean change in axial and circumferential extents were 0.008 inches and

(-) 0.015 inches, respectively. The standard deviation of all changes in extent measurement is 0.047 inches.

The resu'ts of this evaluation are generally consistent with those obtained by bobbin coil voltage for the various growth rate studies. Procedures for clip plot sizing were essentially unchanged during the two inspections, although there is likely some amount of analyst variability between the two measurement data sets. This variability is enveloped / bounded by the conservatism demonstrated for the MRPC sizing technique. .

15. An S/N indication is considered to have grown if it exhibits a 0.5 volt increase from the previous inspection and has a measured voltage in excess of 0.9 i volts. The basis for the 0.5 volt increase resides in the fact that this ,

criterion was used in the previous inspections of S/N indications. Provide technical justification for not performing a subsequent RPC examination of 3 indications previously RPC examined unless the bobbin voltage increases by 0.5 ,

volts. If an indication was identified as having an eddy current response of 0.4 volts and was later reexamined and found to exhibit a 0.8 volt response, discuss why this indication is not considered to have grown. The staff notes that since 1 the degradation mechanism is considered dormant and no allowance for flaw growth was used in the development of the tube repair criteria, there should be essentially no change in voltage with the exception of variations arising from nondestructive examination uncertainty. Since the probe wear model and analyst variability model being proposed have a total uncertainty of approximately 24%

at an upper 95% confidence level, it seems like a much lower threshold than 0.5  ;

volts should be used. Please discuss. Is the 0.5 volt increase determined from  !

the most recent inspection of the indication or from the original inspection in  ;

which the indication was identified? .

Voltage changes and their relationship to growth are discussed using data sets from CR-3 steam generator B; results using data from steam generator A are comparable.

I

__. ._.. . - . _ . . __ _ > _ . m m U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 17

. Free-span indications attributed to pit-like IGA l

Figure 3 shows a scatter plot of measured voltages for freespan indications from two consecutive outages attributed to pit-like IGA from CR-3 steam generator B. The measured voltages are essentially uniformly distributed about the zero growth line at 45 degrees indicative of no overall change. This observation is also supported by data presented in Figure 4 and Figure 5 which show amplitude change in volts and percentage respectively. Scatter plot and histogram formats are used in both figures to show changes. Voltage change was determined by taking the difference between the 1994 and 1992 data; percentage change was determined by dividing the voltage change by the average of the 1992 and 1994 measured voltages.

The data in Figure 4 shows that the mean voltage change is +0.0015 volts i (essentially no change) with a standard deviation of 0.105 volts. In terms of percentage change, the Figurs 5 data shows that the mean percentage change is -0.46% with a standard deviation of 18.41%. Since the data essentially show a near-zero mean in voltage or percentage change, no strong evidence of growth exists.

Indications at Tube Support Plates attributed to wear figure 6 shows a scatter plot of measured voltages for indications from two consecutive outages attributed to wear at tube support plates from CR-3 steam generator B. As before, the measured voltages are essentially uniformly distributed about the zero growth line at 45 degrees indicative of no overall change or growth. This observation is also supported by data presented in Figure 7 and Figure 8 which show amplitude change in volts and percentage respectively. Scatter plot and histogram formats are used in both figures to show changes. Voltage change was determined by taking the difference between the 1994 and 1992 data; percentage change was determined by dividing the voltage change by the average of the 1992 and 1994 measured voltages.

The data in Figure 7 shows that the mean voltage change is +0.012 volts (essentially no change) with a standard deviation of 0.165 volts. In terms of percentage change, the Figure 8 data shows that the mean percentage change is +0.83% with a standard deviation of 24.6%. Since the data essentially show a near-zero mean in voltage or percentage change, no strong group evidence for growth exists. However, a few individual data points exceeding a + 0.5 volt change likely show evidence for small growth.

l l

l U. S. fvuclear Regulatory Cornmission 3F1295-03, Attachment 1 a

i l

3.5 3.0 S/G B Freespan

,' l Y =0S2

  • X +0.03 R = OB8 SD = 0.14 ,

N =232 data poirts .

2.5 _

---s -

h 2.0 ,

>s

~~

h g .5 . .

8 10 .'- b ='"

s- . Data

-- Regrossion 0.5 - --

a 0.0 . , , , , .

0.0 0.5 1.0 1.5 20 25 3.0 3.5 1992 Voltage Figure 3. Voltage scatter plot from two consecutive outages for freespan indications attributed to pit-like IGA; CR-3 Steam Generator B.

18

.~ . . . . . . - .. .-.- - - .. - ~ - - - . . . - - . ~ . . - . - . - . . . - - . . . - - . . - . _ - . . ~ . . - - - . . - - . ..

4 J

U. S. Nuclear ReOutatory Commission 3F1295-03, Attachment 1 1.0 0.8 - -

0.6

....... ...... ....... ............. ......L........"....

f4 . .

8

- = " " " "- """ = .-

[.2 y .  %

's" p.0 +

p.2

}"g . *

=

-+g- e-o . -

me in

.................m.. ............. ............. ......

S.6 .

48 1D  ;  ;  ;

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Vohage (a) Scatter plot format 60 - y ,,,,,es,,,,

Mean s 0 0015 vous SD e 0105 vots

$ 40 -

u -

c E

n=

~3 U

U o

20 -

O I I r" ' I I I 1.0 -0.8 0.6 -0 .4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Change (b) Histogram format Figure 4. Voltage change for freespan indications attributed to pit-like IGA.

19

. _ _ _ . . _ _ _ . _ , . _ _m.m _. _ _ .._. . _ -. -. .~. ...~ . _ _ _ _ _ . _ . . . _ _ . _ _ _ . _ _ . _ _ . . . _ _ _ _ _ _ _ . . - . _ . . _ . _ _ _ _ _ _ _

i U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 100 l so B Freespan l 1

e M ". 3 .

E I , . . .e. " . . . , 4 3

....... e l

a. ..;.,.........y...... ......

Ik _' E ro - P_gh .Y.

Y a i E ....... . m .", .m . . .I. . . .". ....=... ......

2 .. i

,i

.s0 . __..

100- .

0.0 0.2 Oh 0.6 0.8 1!O 1.2 1.4 1.6 l

Volts (a) Scatter plot format so -

Percentsee Change Mean a 4 46%

SD

  • 18 41%

$40 -

e E

u 5  :

8 20 -

0 --

F 100 50 0 50 100 Change (b) Histogram format Figure 5. Percentage voltage change for freespan indications attributed to pit-like IGA.

20

._ _ - .. . _m _ _ . _ _ . . _ _ _ _ . .. .. . . _ . . _ _ _ _ . _ _ _ _ .

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 3.5 l

S/G B TSP '

3.0 Y = 0.79

  • X + 0.16 R = 0.68 SD = 021 ,..-

234 data poltts ,. -

25 ,. - i h20 g , .-

-m -

~

1 -

g .5 -. .. ,.. .

1.0- ,,"

9. . ~

0.5 - m - dression 0.0 .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1992 Voltage Figure 6. Voltage scatter plot from two consecutive outages for indications at tube support plates attributed to wear. CR-3 Steam Generator B.

I 1

I 21 l 1

. _ _ _ _ . . _ . _ . . . . . _ . . . . . . . ~ . . . . _ . . _ - . - . _ . _ . _ __ . . _ _ . _ . . . . . _ . . . _ _ . _ . _ . . . _ . _ _ . _ _ . _ _ _ _ . _ _ -

d .

! l 2 .

! l s

l t

j U. S. Nuclear Regulatory Commission j i 3F1295-03, Attachment 1 10 l i  ! .  !

3

0e-.q ,, , ,,, ,,,, p.,, ,

06 "

j i y .............. ................................. ......

! go 4 -- , , s

( .=

l h* k^, ^a *N , *lQ~f ,f iin. -

l i

&a tr2 lc.9".L"-

--r- .

p_ .......

a .

............j.................................

3 -

0.. -.

t as 1.0 ,

00 02 04 06 08 to 1.2 14 16 l Voltage j

l (a) Scatter plot format i

60 - l Vomage Change l Mean a +0 012 vots

$D = 0185 vots l

l v,

ca,40 -

c .

as 3

O U

O 20 -

0 9 m 1.0 -0.8 -0.6 0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Change b) Histogram format Figure 7. Voltage change for indications attributed to wear at tube support plates.

22

. . - - . - - . . - . . . ~ . - . - - - . . - . . - . . - - _ _ . - . - . _ . . . - . . .-

. . . . . . _ _ . . . . . - . . ~ _

t h

f 3

i i U. S. Nuclear Regulatory Commission j 3F1295-03, Attachment 1 4

l l l I 1m j =., - j .

e ,, .-l -

em gi . awa " .

is ,8 E g .. ... ......

, . o g.81. ....... ......

e um e f aem as "

0 , g,eg n ,

g ........ . . . . . = ,. . .

[ . 7". .= . . . . r....... .....-

e = P a n.-50 .--- ,g 3 ,

ee i m i

-100- o u

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 i 1

Voltage j l

l 1

(a) Scatter plot format

)

60 -

Mean e + 0 83%

SO = 24 6%

EA 40 5

t o

O 20 ~

0

-100 -60 0 60 100 Change (b) Histogram format Figure 8. Voltage change for indications attributed to wear at tube support plates.

23

U. S. Nuclear Regulatory Commession 3F1296-o3, Attachment 1 Page 24 The 1992 and 1994 data were acquired using the same acquisition procedure, using many different probes, with the data analyzed by numerous analysts.

The observed scatter in the data simply reflects overall NDE repeatability or NDE system measurement error. The scatter in the tube support plate wear data is greater because of the effects of support plate mix residual.

This mix residual acts like a noise vector which perturbs the indication increasing the scatter associated with the measurement of its features, e.g., magnitude and phase angle.

The 0.5 volt threshold originally proposed for establishing change essentially bounds all of the data for pit-like IGA (Figure 4(a)), and most of the data for wear at tube support plates (Figure 7(a)). However, with a two-sigma NDE system repeatability error of 0.21 volts for free-span IGA, a more-conservative threshold of 0.25 volts for growth could be-utilized. This increase would be applied using the most recent inspection data.

Essentially, the difference in the 0.25 and 0.5 volts is attributable to the manner in which each was developed. The 0.5 volt value was derived based upon technical judgement and was a criteria which was intended to provide, with some assurance, that growth was occurring. The 0.25 volt value is believed to represent the other end of the spectrum. It is representative of an approach whereby, with some assurance, the earliest signs of growth would be detected. Both approaches have benefits and drawbacks. However, based upon the data included within Figures 3 through 8, it appears both criteria are appropriate for their intended purpose.

In the context of a percentage change .in voltage, the absolute voltage level needs _ to be considered as shown with the data in Figure 5. For amplitudes less than approximately 0.9 volts, the percentage change can be quite large with extremes on the order of 100%. For amplitudes greater than approximately 0.9 volts, a 25 percentage point change bounds the bulk of the data. Clearly, estimates of the NDE system error will be strongly influenced by the voltage ranges of the indications included within the data set and the effects of support plate mix residual. For free-span indications with voltages greater than 0.9 volts, the 24% NDE system measurement error originally estimated agrees reasonably well with the experimental data.

Leakaae 16._ The basis for the 0.9 volt cutoff for determining when RPC examinations should be performed and the length based limits applied is net clear in light of past inspection data which indicates that voltages of about 0.8 volts can have an axial extent in excess of 0.5 inches (Figure 28 in Reference 5). Has a systematic review of all available CR-3 data as well as any pulled tube data from other plants been performed which supports the assumption that the 0.9 volt

. criteria will ensure that the proposed dimensional limits will not be exceeded?

.. ~,. -~ . . - . ~ - . . . . . - - . .- ~ . - - . . -, . - . - . . . ~ . . -

U. S. Nuclear Regulatory Corrmesion 3F1295-03, Attachment 1 i Page 25 Since the 0.9 volt cutoff is presumably based on experience to date, discuss your plans for randon RPC sampling below the appropriate voltage threshold (0.9 volts is being proposed).

A systematic review of all CR-3 data has been performed and the results of this review are presented in the technical report which supports the proposed TSCRN (Reference 1).

Inclusion of the particular indication mentioned in the RAI within Figure 28 of Reference 5 was an error. This indication, from RCSG-1B, tube number 70-125 had measured axial and circumferential extents of 0.52 and 0.19 inches, respectively, and is attributed to tapered wear. S'.nce tapered wear is not included within the scope of the proposed TSCRN, it ,

should not have been included within the subject data set. l Other plant data has always been considered for applicability and incorporation into the CR-3 database. Reference 5 included a discussion ,

of some IGA data from the Palisades nuclear plant. Further, industry data i used to support Degradation Specific Management efforts has been reviewed throughout the development of the CR-3 disposition strategy technical basis. This data has been utilized where appropriate.

The RAI requests FPC discuss its' plans for random MRPC sampling of indications exhibiting a bobbin coil voltage below the proposed lower voltage cutoff. Presumably, this is proposed as a means of using field data to validate the continued applicability of the voltage cutoff, as was addressed by Confirmatory Action Letter No. 2-94-004, Item # 4 (Reference 8). At the time the CAL was written, the cutoff value was based on a limited database, making the focussed inspection an appropriate action.

However, as discussed in the TSCRN 203 topical report, 413 additional data points were added to the database as a result of the 9R MRPC special interest inspection. Given the current amount of data, there is no reason to require additional MRPC for purposes of validating the voltage cutoff.

Although not a commitment, FPC does intend to inspect these indications on a time and resource basis during future inspection outages in order to further our understanding of the condition of the CR-3 OTSGs.

17. Independent staff calculations determined that leakage integrity is not assured at a 95% confidence level for indications with a bobbin coil signal of 0.9 volts. Discuss the 0.9 volt lower limit in light of this staff finding.

Consider the response to Question 18 below.

FPC calculational results do not agree with the NRC Staff's. For a bobbin coil signal of 0.9 volts, the volume and depth are estimated using Figureg 9 and Figure 12. From Figure 12, the volume is estimated at 90 x 10- in 4 at the upper 95% prediction interval. Using Figure 9, this volume corresponds to a depth of 80% through-wall at the upper 95% prediction interval. Since this depth is less than 87% through-wall, leakage integrity is maintained.  ;

- _ _ - _. . _ - - - _ _ . _ _._ _ _.-_.- _- _ ._ _-___.~_ _ ..__ _ .- -

i

$ 5

. U. S. Nuclear Regulatory Commission t

3F1295-03, Attachment 1 Page 26

18. .. The data in Figures 5-1 through 5-5 in Reference 1 illustrates the relationship between eddy current voltage measurements and the dimensions of S/N indications. However, these relationships are based on nominal correlations *

..without consideration to the scatter in the datn. Plot er.servative 95% -

prediction intervals. for each of these figures ansi deterr.ine the volume and ,

corresponding bobbin coil voltage associated with an D?% through-wal'. indication  !

evaluated at the 95% prediction interval. ,

95% prediction intervals for data presented as Figure 5-1 through 5-5 in '

(Reference 1) are shown as Figures 9 through 13 herein. Linear scaling of the prediction interval plots as opposed to log-log plots of the original data is used because of software limitations. In addition, for Figure 11, i volume has been correlated with the circumferential extent in afis rather -

than inches as originally presented in order to be consistent with the axial length correlation. j The 95% prediction intervals shown in the figures are calculated using the j equation  :

Yo - (a+bXo ) +/- t o,25 *s where a and b are the intercept and slope respectively of the least squares fit to the experimental data, s is the residual variance, and t o.25 is the Student t-parameter (Reference 9).

Dimensional values calculated in response to specific questions were estimated using the exact equation.

The volume and corresponding bobbin coil voltage associated with an 87%

through-wall indication is estimated as follows. From Figure 9, the volung aspociated with an 87% through-wall indication is approximately 104 x 10~

in at the upper 95% prediction interval. Figure 12 is used to estimate the corresponding bobbin coil voltage; entering the upper prediction interval at the desired. volume gives an amplitude of approximately 1 volt which exceeds the proposed 0.9 volt bobbin coil screening limit.

The conservatism present in the ligament calculation supported using raw data without consideration of the prediction interval. The calculations are based upon tube burst test results where the length of the degradation was one to two inches in length. Volumetric degradation with an axial '

extent less than the proposed limit of 0.33 inches would represent a much less severe degraded condition. Hence, the depth limit to avoid leakage is conservative. It is expected that the maximum depth of pit-like IGA, which is within the proposed axial and circumferential extent limits, would have to be virtually through-wall to result in leakage during a postulated steam line break.

l l

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 100 f

mean(X) l t 9s 80 f .

i .- -

8 60 + '

+ l'

+

+ "

et t +

fa , + +t k, +,

  • p 'f s

b ++

8$,-4

+ [ th y' j '-

mean(Y) 20 9

l

, +

  • /

4

  • 0 0 30 60 90 120 150 Volume, E-06 in3 Figure 9. Depth-volume correlation using Crystal River 3 pulled tube metallographic data.

27

_ - . . .. . .- .- -. . -- . _ . _ - . . . . - . ~ .. - -. . . .. - . .

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 100 , i i

l mean(X l l l l

^

75 l l u, .

t \

5 $

+

+ t ,

+ t + +

l t ,[ .. +

5 50  : +

3  !+ +

4 t4

+ + +-

t,

/mean(Y)

+ ..

25 I  %

t t l

b i 0

0 20 40 60 80 l Volume, E-06 in3 i

l Figure 10. Axial length-volume correlation using Crystal River 3 pulled tube metallographic data.

i I

l l

{

l l

l 28 I

U. S. Nuclear Regulatory Commission 3F1295 03, Attachment 1 i

l 300 mean(X > l i

f*

5

  • j i

+ l

+ l

+ 1 t

y100 C

T f

+

i

+ + 1

+

+ + i t l

+

t

".%t

  • ' +

. ,,e t- + -mean(Y)  !

  • ' l 0

0 20 40 60 80 Volume, E-06 in3 1

I l

I Figure 11. Circumferential length-volume using Crystal River 3 pulled tube l metallographic data.

\

l l

1 l

i I

i 1

1 1

29

. . _ . . . . > _ _ m_ _ _ _ _ . _ . _. - _. . ~ _ _ _ _ - . - -

U. S. Nuclear Regulatory Comtrussion 3F1295-03, Attachment 1 100 .p r mean(X)/

/s' 80 a*

,s f + V Q 4

  1. p e < +

. I ,

j mean(Y) 3 40

' r f , ,

V

./

/

+ + - /s

  • O

+

i

  1. s/,

0 --

/

0 0.2 0.4 0.6 0.8 1 1.2 Signal amplitude, volts t

Figure 12. Voltage-volume correlation using Crystal River 3 pulled tube data.

I l

1 l

i 30 )

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 15 .

taean(X) ,#

-./

12 ,e j

a - +

}'9 /'/

/  ! t t

! Y 6

?s'p' l r?s'.c 7

pqy) t

/p#  !

1 /l/t e#

3

- , .,V I s '

f, l

0

-s'/ I i 0 2 4 6 8 10 Signal amplitude, volts Figure 13. Voltage-volume correlation using BWOG NDE Committee samples.

1 31

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 32

19. Clarify what material properties were used to determine the proposed dimensional limits. Reference 7 indicates that the " probable" values are the 95%

probability /95% confidence values as does page 4-1 of Reference 1. However, the calculations provided in the appendices to Reference 7 indicate both " actual" and

" average" values were considered.

The determination of the proposed dimensional limits utilized the

" probable" tubing material properties (i.e., established at a 95%

probability of occurrence at a 95% confidence level) as an input to the calculation.

20. In Reference 5 (Section 8.2), a correction was made to account for the lower voltage response when using the mix frequency channel for sizing tube support plate indications. Is a similar correction needed with the current approach?

Discuss how the proposed depth / volume / bobbin voltage approach accounts for the lower voltages from indications located at the tube support plate intersections.

Also, discuss the basis for combining the data from tube support plate and freespan indications given that the voltages may not be comparable.

Freespan indications associated with pit-like IGA are typically reported using Channel 1 (600 Khz) whereas volumetric wear indications at tube

support plates are reported using a Mix 1 analysis channel. The voltage j scales for the two analysis channels e.g., 600 Khz and Mix 1, are l established differently using current Crystal River 3 analysis guidelines.

I In order to establish a volume-voltage correlation curve for both pit-like l

IGA and wear, eddy current indications were reanalyzed with the Mix 1 voltage scale set in the same manner as Channel 1. Measured signal amplitudes could then be plotted on the same curve relating volume to voltage.

The original voltages from wear scar indications are smaller because the voltage scale for the Mix 1 analysis channel had been set differently from ,

that of Channel 1 (600 Khz). If the voltage scales for the two analysis channels are initially set in the same manner then voltage readings from both channels are comparable.

U. S. Nuclear Regulatory Commission 3F1295-o3, Attachment 1 Page 33 Inservice InsDeCtion

21. The proposed dimensional requirements do not specify limits for indications exhibiting geometries with the maximum linear dimension inclined at an intermediate angle with respect to the steam generator tube axis (i.e., neither axial nor circumferential). Staff calculations indicate that consideration of only defect axial or circumferential lengths may be nonconservative for certain defect geometries. Discuss how the proposed dimensional limits will be applied to an S/N indication with its major axis not alignej to either the tube axial or circumferential directions.

FPC calculational results do not agree with the Staff's. The orientation terminology of the proposed dimensional repair criteria as ' axial' and

'circumferential' relates to the limiting Regulatory Guide 1.121 structural analysis and not the actual implementation of the criteria.

The analysis which calculated the proposed limits (Reference 7) assumed a planar defect, with no credit taken for ligaments between micro cracks.

A crack-like defect oriented strictly in the axial or circumferential l plane is bounded by this analysis. Other possible defect configurations which could occur in the secondary side of the CR-3 OTSG tubing are also covered by the structural analysis.

The configuration of the defect can be either symmetrical or non-symmetrical about the tube axis because the primary strm of concern (axial stress due to differential expansion effects during a LOCA) are not affected by the asymmetry of the defects. As indicated in the calculation, .all pertinent loads are reacted by either the tube or its support without the need for any bending moment capability of the tube at the defect (i.e., a plastic hinge can be assumed at the defect).

The projected axial and circumferential dimensions of an indication at an intermediate angle to the tube axis provide a good description of length needed to evaluate the structural integrity of a degraded tube. Test data on tubes with volumetric defects and plastic collapse considerations support the above statement.

22. Reference 1 provided limited details of the testing performed to support the nondestructive examination uncertainty allowance of 13.05% (pg 3-17). Discuss how many analysts were used, clarify if 10 different probes were used, discuss the need for considering additional data since the study was based on an examination of only six indications. Discuss the similarities and differences in the morphology between the indications in the NDE study and those in the population of S/N indications examined from pulled tubes at CR-37 The purpose of the test was to investigate data acquisition repeatability.

Three different probes were used including a conventional 510 bobbin probe and two variations of a 540 bobbin probe, e.g., mid-range and high-  ;

frequency designs. Ten independent data sets were acquired from six

_ ~ - ~ . - - _ - - .-_._-.---.~.~.-.--n.-~...._-- . . ~ - . . - - . . . . - - - . ~ .

I v

U. S, Nuclear Regulatory Commineion 3F1295-03, Attachment 1 [

Page 34 l

discontinuities using . the 510 high-frequency probe while an additional )

eight data sets' were acquired using the two 540 probes. Acquisition  ;

voltage repeatability studies were conducted using only the 510 bobbin  ;

probe data set. A single analyst was used to analyze the data. The six' i discontinuities used in the study were subsequently shown by tube pull to i be'predominantly volumetric wear. Since the morphology of the wear used'in j the study is three-dimensional or volumetric, comparable results would be i expected from free-span pit-like IGA. For volumetric discontinuities,  !

signal amplitude is proportional to the removed metal volume and is not j dependent on the particular damage. mechanism, e.g. , . pit-like iga or  :

volumetric wear. Additional testing using free-span pit-like IGA signals l with voltage ranges comparable to those covered in the data acquisition l repeatability ~ study would be expected to give comparable results. The -  ;

important consideration is the range of average voltages that were j included in the study which ranged from approximately 0.4 to 1.4 volts i covering the expected dynamic range of the voltage-volume correlation i curve, j The impact of multiple data analysts is estimated as follows. Detailed l EPRI studies in support of TSP ODSCC ARC show that signal amplitudes or l voltages can be read to within an +/- 10%. This analysis error is  !

independent of data acquisition error so the two error sources can be l combined. using RMS methods. The total error budget would increase from  ;

13.05% to approximately 16%.  ;

l

23. The error allowance for acquisition variability is assumed to be equal u  ;

that determined in EPRI report TR-100407 Revision 1 "PWR Steam Generator Tube  :

Repair Limits - Technical Support Document For Outside Diameter Stress Corrosion Cracking at Tube Support Plates," dated August 1993. However, the ISE error  :

quantified in the EPRI report uses different probe sizes, inspection frequencies, i' and procedures from those used at CR-3. Provide a basis for assuming a 7% error for acquisition variability considering these factors. In addition, acquisition variability is closely related to the amount of probe wear during inspections.

Discuss the need to limit the amount of probe wear in future CR-3 inspections to l ensure that the probe wear allowance used in the determination of the repair ,

limits is conservative.  ;

i Eddy current data acquisition procedures in use at Crystal River 3 are  !

comparable to those listed in EPRI Report TR-100407, Revision 1 "PWR Steam

  • Generator Tube Repair Limits - Technical Support Document For Outside Diameter Stress Corrosion Cracking at Tube Support Plates, " dated August 1993. While the absolute probe sizes and inspection frequencies are different one must take into account differences in tube wall thickness and tube diameter. The normalized essential test variables are phase angle spread (Primary analysis channel) and probe fill factor. Phase angle spread is typically established by measuring the difference in phase angles between the 100% and 20% ilat bottom holes in the ASME calibration ,

standard. Probe fill factor in percent is defined as the ratio of the  !

square of the probe outer diameter divided by the tube inner diameter r

-_ _ _ _ . . - ~ _ _ - _ - _ _ _ _ _ . . _ . . _ _ . _ _ - . _ . _ _ _ _ . - . _ _ _ . _ _ _ _ _

i U. S. Nuclear Regulatory Commission l

3F1295-o3, Attachment 1 i Page 35

{

times 100. Values for these variables are listed below in Table 1. Probe fill factors are virtually identical whereas phase angle differences in the primary an: lysis channels are within approximately 20%. This i difference is viewed as insignificant. The use of a higher primary acquisition frequency' to achieve a larger phase angle spread in OTSG l tubing comparable to RSG phase angle spread is discouraged because of the effects of system noise which are exaggerated at higher test frequencies.  ;

Table 1. Normalized Essential Variables Comparison RSG Tubina - 0.050" wa11/0.875 outer diameter i i

. 400 KHz - Phase angle spread between 100% through-wall hole and 20% i through-wall hole is approximately 113 degrees t 0.720"diameterprope- Probe fill . factor in percent is given by i 100 x (0.720/0.775) or 86%  ;

OTSG Tubina - 0.034" wa11/0.625" outer diameter  !

. 600 KHz - Phase angle spread between 100% through-wall hole and 20%

through-wall hole is approximately 90 degrees 1 0.510"diameterprope- Probe fill factor in percent is given by .

100 x (0.510/0.557) or 85%  ;

Probe wear effects require further study in OTSGs. Most of the: work to t date has been in RSGs in which U-bends may exaggerate probe wear dynamics.  :

An allowance of 7% for probe wear _ has been included in the NDE measurement ,'

error budget based on ODSCC at TSP alternate repair criteria studies (Reference 10).  !

24. Provide a comparison of the sizing error being proposed (Section 3.2 of I Reference 1) and that provided in EPRI report NP-6864-L Revision 2. "PWR Steam i Generator Tube Repair Limits: Technical Support Document For Expansion Zone- l PWSCC in Roll Transitions - Rev. 2" dated August 1993. Provide the field I procedure for length sizing S/Ns. Describe any differences between the field l procedures and the procedures used to support your length sizing uncertainty i estimate. Discuss how these procedures compare to those in the EPRI report l NP-6864-L. 1 A comparison of the sizing error proposed in Section 3.2 of Reference 1 and that provided in EPRI report NP-6864-L Revision 2 shows good correlation as follows: l CR-3 data - correlation coefficient = 0.99 standard deviation = 0.45 EPRI data - correlation coefficient - 0.93 1 standard deviation = 0.83

.-. - - ~ - ~ . . . _ - - ~-- - .. - - . . , . . ~ . . ._. _

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 36 The field procedure for measuring the length and width of S/N's is currently outlined in the Crystal River Unit #3 Eddy Current Data Analysis Guidelines as follows: i "5.0 INDICATION LENGTH AND WIDTH MEASUREMENTS 5.1 RPC Clio Plot Measurements RPC clip plot measurements will be performed on all bobbin coil S/N indications examined.

5.1.1 The primary frequency of the 300 kHz pancake coil will ,

be used to size the axial and circumferential extents of the indications.

5.1.2 The setup and calibration requirements for reporting indications are the same as those in Section 2.0 of the data analysis guidelines.

5.2 Clio Plot Setuo and Calibration Reauirements i

5.2.1 After performing the basic setup select the "MRPC/CRKMAP" menu. Go to user select and set the ,

tubing diameter to .551". ,

5.2.2 Set the axial scale in reference to the EDM calibration ,

standard. Refer to the EDM calibration standard drawing  !

for the standards total length. 1 5.2.3 Select "MEASFLAW". Plot the 60% 0.D. EDM notch at 270.  !

Position the threshold cursor just above tube noise.

5.2.4 Select " CLIP PLOT" function and plot the data at 0 degrees. "B0X ANGLE" must be kept at 0 degrees.

5.2.5 Perform length and width measurements by drawing the box equivalent to the same size of the 60% OD EDM notch signal. After the measurement is performed, move the box just bebw the signal.

5.2.6 Verify that the total length and width measurement is equivalent or greater than the as-built length and width  !

of the 60% OD EDM notch. If the measurement is not  !

(within +/- 0.10") reset the axial scale. I 5.2.7 When plotting data, set the strip chart cursor window to display + .86" to .86" (+/ .20")."

The field procedure used for length sizing S/N's and the procedure used to support the length sizing uncertainty error are the same.

l

U. S. Nuclear Regulatory Commission 3

3F1295-03, Attachment 1 Page 37 The procedure used for length sizing S/N's at CR-3 differs from that procedure used in the EPRI report NP-6864-L. The CR-3 procedure makes use of a routine in the Zetec Eddynet software called MEASFLAW or measure flaw while the EPRI report niakes use of a routine in the Zetec Eddynet software called CRKMAP or crack map.

The MEASFLAW routine is more applicable to volumetric indications since it allows measurement of a flaws axial and circumferential extents or length and width. The CRKMAP feature is used more for crack-like indications at the top-of-tubesheet since it calculates a flaws length for its major dimension and provides information about the flaws position with respect to the top-of-tubesheet. Both methods apply similar operator input and calibration such as axial and circumferential scale adjustment, threshold adjustment, selection of coil and frequency used for measurement, and both make ,

use of rotating coil data acquired following the same procedure. It l 1s expected that the resolution of the two measurement methods are .

comparable.

25. In order to demonstrate RPC sizing capability for S/N ir.dications, CR-3 pulled tube data were combined with data from IGA samples obtained from the B&W Owners Group NDE Committee. Discuss the applicability of combining eddy current data obtained from these two sources. Consider the differences in voltage response for the laboratory grown flaws and the sulfur-induced IGA indications found at CR-3.

Dimensional sizing error is not dependent on signal voltage and voltage  !

scales established during eddy current testing are arbitrary. A key factor contributing to sizing error is the length of the discontinuity in ,

relationship to the average coil diameter. For situations where this ratio l 1s small, the absolute error can be large but is always conservative. For i small discontinuities, e.g., those with dimensions comparable to or 1 smaller than the average coil diameter, one is essentially measuring the coil field spread or profile which is larger than the discontinuity. This ,

is why the measurement error is always conservative. l l

Combining dimensional sizing data from CR-3 pulled tube pit-like IGA and lab samples was done to establish the error at two length extremes. The lab samples have dimensions large relative to the average coil diameter  ;

whereas the pit samples have dimensions much smaller that the average coil l diameter. The fact that different voltage ranges are included is immaterial.

- ... . . - . - - . - --.~. - .. - - - -. . - _ . . - - - - - -

a 4

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 38 1

26. In Reference 3 it is stated that the probability of detection (P00) for the RPC was somewhat less than for the bobbin coil (page 1-2). This is supported by Section 3.2 of Reference 6; however, the study documented in Appendix B of Reference 6 (i.e., page B-4 of Appendix B to Reference 6) states that the IGA patches were better detected with the RPC. Please clarify these observations.

The exact basis behind each of these conflicting statements was not retrievable. Reviewing the technical data presented with the discussion of each study indicates both statements / conclusions to be supportable with the data provided. Section 3.2 referred to Figures 3-4 and 3-5 within the same text. From this data, one could conclude bobbin showed slightly better detectability. The data immediately preceding the relative POD comparison of the two techniques in Appendix B indicates a larger percentage of the total number of defects were detected with MRPC. Again, dependent upon the criteria used within the individual study, it is possible to reach the same conclusion as the text. Based upon the recent re-review of the data, the POD for the two techniques is' considered comparable in the defect range of interest.

27. What is the general shape of the free-span IGA? For example, is the shape  ;

cone-like or similar to a flat-bottomed hole? ,

The free-span IGA is three dimensional, generally appearing to be the i shape of a half-ellipsoid or as a " thumbnail-shaped" patch. The deepest i part of the defect generally occurs at the mid-plane of the defect. l l

Other Issues  ;

28. It is not apparent from the data presented, what data were used in t.he various correlations. The staff is having difficulty comparing the results from -

one section of a report to another and from one report to another. In addition, it appears that some correlations have more data than others although they should ,

apparently be coming from the same database. For example, the number of data I points used in Table 3-2 of Reference 6 does not match the number of dr.ta points used in Appendix D to Attachment 2 of Reference 4. Another example is tie number  :

of specimens cited in Table 3-1 of Reference 1 compared to the number of data  ;

points in Appendix B to Reference 6. In order to clarify the data presented in the various correlations, provide the following information. ,

a. Provide the pulled tube data points (1992 and 1994) used throughout your  ;

submittals. Identify the tube number, defect location, defect identification, defect classification (circular wear, IGA, etc.) field bobbin and RPC call, field and laboratory bobbin voltage, field and  ;

laboratory RPC voltage, field and laboratory percent through-wall call,  ;

laboratory reanalyzed voltages (if applicable), length, width, depth,  !

volume, and other relevant parameters. Since several different probes >

were used during the inspections, provide the information for the probe P

,,r,---, . - ,-, . . , , , - , - -g. . , . - - - .- ,n

.-. _ _ _ _ _ . . _ . _ . . _ _ . . _ _ . . _ _ . _ _ . . . . _ _ . ~ . _ _ . _ _ _ . . _ _ . _ _ _ _ _ . _ - - . _ _ _ _ _ _ .

l 4

U. S. Nuclear Regulatory Commission j 3F1295-o3, Attachment 1 j j Page 39

!' and inspection parameters (frequencies / calibration) to be used during the upcoming inspection, if available, or the " probe of record." i i

b. Identify which specimens were included in each correlation. For specimens  ;

with multiple discontinuities that were too close to be distinguished in i the field non-destructive examination (i.e., within the proposed 0.2"  !

band), provide details on what dimensions were used in the various correlations and/or analyses, annotate specimens that were combined, provide the data used for the combined data point, and indicate in which correlation this combined data point was used (e.g., the depth used in the  ;

probability of detection study). For example, if an ' indication" was missed, was the largest, smallest, or a combination of the defect dimensions used in the P0D curve, voltage versus volume correlation, etc. l For specimens excluded from any correlatian, discuss the reason for l excluding them. Discuss if any significant indications were not included i in a correlation since they were not destructively examined. For example. l in the P00 correlation, were any large laboratory detected indications '

which were not detected in the field not included in the analysis since they were not destructively examined. I

c. The above information should specifically identify the data used in the development of Figures 3-4, 3-5, 3-6, and 3-7 of Reference 1.

The information requested by this RAI question is included as Appendix A  ;

to this text.  !

Two general comments are provided with respect to this request. The last sentence in item 'a' appears to be out of context with respect to the balance of the request. It addresses plans for the upcoming outage NDE inspection while the majority of the request deals with providing pulled tube data. For completeness, a response is provided. As discussed in earlier RAI responses, there are no plans to change the probe of record for the upcoming outage from the ones (bobbin coil or MRPC) utilized i during the last two CR-3 outages. l The second comment deals with the scope of the request associated with item 'b' above. As written, the request could be interpreted to include i the data for every correlation which has ever been provided to the NRC l relative to the CR-3 OTSG S/N issue. FPC has chosen to address this i request in a much narrower fashion. Much of the older (1992) work has been superseded by more recent efforts as additional tube pull and inspection data has become available. NRC Staff review shoulu focus on the cost current, up-to-date information available. To this end, Appendix A provides the following information as part of the response to RAI number l 28, sub-item 'b' l

1) The data supporting all correlations included as part of Technical i Specification Change Request Number 203 (Reference 1).  !

l I

_- -. -_ ~- .- -. . . . .- - . - . . . -

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 40

2) The data supporting the probability of detection (P0D) correlations included as part of the final CR-3 9R tube pull examination report (Reference 3).
3) A discussion of the reason for the two differences cited within RAI number 28.

Additional information on other specific correlations can be made available upon request. Unless noted with the 'A ' prefix, page numbers are same as original document.

29. On page 2-5 of Reference 3, it indicates that a small amplitude low S/N indication was observed in the field for the 75% through-wall defect in the lower tubesheet region of tube 68-46; however, in other portions of Reference 3 (e.g.,

Table 2-3, page 1-4) it appears that the indication was not identified in the field (i.e., called an NDD). Please clarify whether this indication was detected in the field or not. If hindsight was used to identify this indication, discuss any improvements made to the eddy current data analysis guidelines to prevent missing such indications in the future. What is the threshold for reporting S/N indications during eddy current inspections?

The indication in the lower tubesheet region of tube 68-46 was not reported during the field examination. Hindsight was used to identify this indication following destructive examination. This flaw does not produce an indication with the bobbin coil technique which is reportable as a flaw hence no changes were made to the andysis guidelines to prevent missing such an indication in the future.

There is no minimum voltage threshold for reporting S/N indications during eddy current inspections at CR-3.

30. 600 kHz is stated to be the best frequency for sizing S/N indications but correlations of through-wall depth to voltage (Vmax) were developed at 400 kHz (Section 7.1 of Reference 5) justifying a 2.7 volt limit corresponding to a 100%

through-wall flaw. Staff calculations using the data in Table B2 of Appendix D to Reference 5 indicate that a reduction in the voltage limit corresponding to a 100% through-wall flaw from approximately 2.7 volts to 2.2 volts is obtained when using the 600 kHz channel (presumably the channel used to size indications in the field). The staff notes that the licensee is not currently proposing this correlation. Discuss the calibration procedure used in the development of Table B2. Discuss whether the voltages measured and recorded in the field are peak-to-peak voltages or Vmax. If peak-to-peak voltages are recorded in the field, provide a correlation based on peak-to-peak voltages developed with the frequency used to size these indications. These correlations should use all of the data (not just the 10 data points to support the 2.7 volt limit).

Voltages measured in the field are peak-to-peak voltages. Table B2 of Appendix D to Reference 5 utilized V y readings. The data presented in the Table was not used in the correlafion because of the difference in the way the voltage scales are set.

I U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 41

31. Discuss how the burst pressure of specimen 68-46-3A was adjusted to account I i for the brass shim. If discussed in the Electric Power Research Institute (EPRI) i Burst Testing Guidelines (Reference 2 of Reference 3), submitting a copy per  !

Question 35 below is acceptable.

The method of adjusting the burst pressure of 68-46-3A for the presence of ,

the brass shim is discussed in the EPRI Guidelines for Burst Testing Steam  !

Generator Tubes. The guidelines document is provided, as requested, in ,

response to question number 35 of this RAI. l

32. Quantify the level of error associated with the estimation of defect volume  !

from a metallographic analysis. )

The metallographic examination of a tube providu the best estimate of the 4

volume of a degradation, and is usually considered to be the real or actual volume. This estimate is normally obtained by measuring the

'; maximum axial and circumferential extents of the degradation from an ,

enlarged planar view, and measuring the depth from an enlarged sectional '

view through the maximum width of the degradation. For volumetric degradations, the volume is assumed to be half of an ellipsoid, which is a constant times the product of the three semi-axes defined by the three  ;

measured dimensions. '

The ellipsoid assumption presumes that the planar view of the degradation is described by an ellipse, and the section view is described by half of another ellipse, neglecting the curvature of the tube. If the outline of l the cavity is irregular the use of maximum extents will yield a somewhat 1 non-conservative volume. Volumetric degradations generally have the shape  ;

of a shallow dish, with deepest penetration at the center, which makes the i assumption of an ellipsoid shape most appropriate.

1 It is estimated that the measured depth and axial and circumferential extents of the cavity may each vary from the true dimensions within a j range of 3plus or minus 0.002 inches. For degradation on the order of 210 l x 10-6 in , which correlates to a 3.6 volt NDE limit for leakage discussed I in Section 5.2.2 of Reference 1, a 0.002 inch error amounts to an l approximate i 4% error in calculated volume. l

33. On page 2-3 of Reference 3, item 3 indicates that tapered wear marks were identified at two adjacent tube support plate lands. However, Table 2-3 does not identify the indications referred to in the text. Was one of the specimens not destructively examined? Please clarify.

Item 3 (Second bullet) on page 2-3 of Reference 3 discusses tapered wear defects located at the top and bottom of adjacent Tube Support Plate (TSP) lands. The text refers the reader to Figure 2-2, which is a photograph of the defects in question. The indications were at the 9th TSP of pulled tube 68-46 (Section 68-46-18). Referring to Table 2-3 under pulled tube

.- -. .- - - - - - . ~

U. S. Nuclear Regulatory Corrmasion 3F1295-03, Attachment 1 Page 42 68-46, both of these defects are indeed identified in the table. Thus, the exact nature of the RAI question is not clear.

34. Clarify the reason for the difference in the number of metallurgical indications reported in Appendix B to Reference 6 and the number reported in Table 3-1 of Reference 6. Furthermore, clarify the reason for the discrepancy between the previously cited data and the data (number of indications) reported in Tables B1/B2 of Appendix D to Attachment 2 to Reference 4. If the reasons for these discrepancies are a result of different analysts / analysis criteria, have the eddy current data analysis guidelines been improved to incorporate the best aspects of each analysis criteria?

The data in Table 3-1 is the listing of eddy current distinguishable defects present in the 1992 CR-3 pulled tubes. This information is a grouping of all defects from the destructive examination, by proximity of location, into defects which would be expected to be uniquely differentiable by NDE/ ECT. This grouping was done in order to correlate the destructive examination and NDE results. As indicated in Table 3-1, not all of the distinguishable defects were detected by means of field bobbin coil during the 1992 Outage. This was to be expected, given the probability of detection for this size (particularly volume) of indication.

Appendix B summarizes a review of CR-3 eddy current data from three consecutive outages performed by the EPRI NDE Center. Only those indications which were detected during each of the three Outages were available to be used in the study. Further, it was noted in Appendix B that only three of the six tubes pulled in 1992 were ECT inspected during these three Outages. One of the three tubes,109-30, was not destructively examined and is thus, not reported in Table 3-1.

The other reference (Appendix D) is to work the EPRI NDE Center performed to correlate eddy current voltage to volume wall loss for certain defects from the destructive examination. The work is based upon laboratory (B1) and field (B2) eddy current data analysis performed with the hindsight of the destructive examination results. This differs from the other work which was more of an objective examination of eddy current capabilities, particularly detection. The analyst performing the work in Appendix 0 apparently was comfortable assigning voltage values to the flaws as noted in Tables B1 and B2.

- _. - . - _,-- . - . , _. ~ . . _ -

U. S. Nuclear Regulatory Commission 3F1295-03, Attachment 1 Page 43

35. The numerous documents submitted in support of the proposed Technical Specification (TS) amendment refer to several supporting references. The NRC staff requests that the licensee forward the following references in support of this license amendment application.

A. Reference 2 of Reference 3: Robert F. Keating memo to D. Steininger (EPRI) dated October 25, 1993, "EPRI Guidelines for Leak & Burst Testing of SG Tubes," NSD-EPRI-0545.

B. Reference 15 of Reference 3: S.D. Brown, " Crystal River 3 BR/9R Bobbin Voltage (S/N) Growth Rate Calculations," Packer Engineering Report 851956-R1, Dated Nay 1995.

C. Reference 14 of Reference 1 Packer Engineering Report B519Es-R1-Rev. O,

" Crystal River 3 8R/9R Bobbin Voltage (S/N) arowth Rate Calculations,"

dated Narch 1995.

D. Reference 7 of Reference 3: "0TSG Pulled Tube Catalog," B&W Report 1190991, December 1988 and/or Reference 7 of Reference 1 "0TSG Pulled Tube Catalog," Revision 1 BWNT Report 1190991, August 1994 E. Reference 5 of Reference 1: "0TSG Trending Report" 7th Edition, BWNT Report 51-1229259-00, July 1994 F. Reference 10 of F.eference 5: BWNT Document 51-1229575-00.

G. Reference 2 of Reference 7: " Determination of Ninimum Required Tube Wall Thickness for 177-FA Once Through Steam Generators," Babcock & Wilcox, No.

10146. April 1980.

H. Reference 3 of Reference 7: " Review and Update of OTSG Tube Loads, Task 1 Summary," Babcock & Wilcox No 51-1202303-00, February 28, 1991.

References A, B, and F are attached as Appendix B. Reference C is a draft-for-comment version of Reference B and has not been provided since minimal changes occurred between the two documents. Reference F has yet to be finalized and has thus, been provided in draft form. The remaining references (D, E, G, and H) have minimal direct impact to the proposed TSCRN and have not been provided for this reason. The approach taken in this response has been discussed with the NRC Staff.

36. Section 2.3.1.2 of Reference 3 indicates that the tapered wear scars ranged up to 0.64 inches in length. Table 2-3 indicates that one tapered wear scar was 0.812-inch. Clarify this discrepancy. What was the depth of this indication?

The tapered wear scar present on tube 72-49 at a location corresponding to the lower edge of the 9th Tube Support Plate (TSP) was confirmed to be 0.812 inches in length. Thus, Section 2.3.1.2 of reference 3 is incorrect. This wear scar was considered the lesser of the two tapered

. - - . - . ~ . _ - _ . ~ . ~ . . . - ~ . - _ . . .

U. S. Nuclear Regulatory Commiselon 3F1296-03, Attachment 1 i Pago 44 wear scars identified during visual and stereovisual examinations of the j tube section. Because of this, no further destructive examination was  !

performed (i.e., depth was not determined). Presumably, the depth of the i indication was less than that of the wear scar present at the top of TSP I location (10%) which was destructively examined.

37. The number of indications identified with the bobbin coil (3) and the RPC l (2) in the 0.075-inch to 0.099-inch bin of Figure 2-8 in Reference 3 appears l inconsistent. It seems that the number of indications should be the same for i both (i.e., either there 'were 2 or 3 indications from the destructive i examination). Please clarify the number of indications identified by destructive -

examination in the 0.075-inch to 0.099-inch bin in Figure 2-8.  ;

Three discontinuities were identified in the 0.075-inch to 0.099-inch bin  ;

found during the destructive examination of the 9R pulled tubes. . Each of  ;

these defects was identified during the field bobbin coil examination. l However, the indication present'in' tube section 109-71-7 did not receive .

a field MRPC examination prior to pulling the tube. It is summized that ]

this inspection was not . performed due to the very small bobbin coil l voltage (0.17 volts) associated with the indication. This explains the difference in the number of indications presented for the two inspection j techniques. l

38. Confirm the circumferential extent for tube section 109-71-7 listed in Table 3-2 of Reference 1.

ihe correct circumferential extent for the discontinuity found in' tube section 109-71-7 was 0.097 inches.

39. In equation 5-1 of Reference 1, an allowance for ISE uncertainty is made.

Was the adjustment made to the beginning of cycle voltage (i.e., the repair limit

voltage) or the structural limit (LL) voltage?

This question suggests some confusion with other industry Degradation Specific Management (DSM) efforts. The CR-3 approach does not utilize two separate bobbin voltage limits as do other DSM approaches. Based upon little or no degradation growth rate, the FPC approach utilizes only one limit (2.5 volts). This is the Beginning of Cycle (B0C) and the End of Cycle (E0C) limit. Additionally, this limit is not a structural limit. ,

Ensuring adequate structural integrity is accomplished by proper '

application of the proposed length and width criteria. The proposed voltage criteria is only-explicitly credited for purposes of addressing  ;

primary-to-secondary leakage under worst-case differential pressure '

conditions.

_ - = _ -

U. S. Nuclear Regulatory Commission 3F1295-o3, Attachment 1 Page 45

40. The labeling of the vertical axis of Figure 1-4 in Reference 3 states that the data is given 'per 100 tubes inspected." Provide graphs showing the voltage distribution of all S/Ns currently in service in steam generator "A" and steam generator "B" (i.e., exclude the tubes repaired in 1994). How many active tubes in each steam generator have S/N indications?

The graphs requested are presented as Figures 14 and 15. Based upon Refuel 9 inspection results, there were 290 active tubes in 'A' and 817 tubes in the 'B' OTSG which contained S/N indications. A review of the CR-3 historical eddy current database indicates 351 active tubes in 'A' and 892 active tubes in 'B' have been assigned an S/N code in at least one outage since 1983. The difference in the two numbers is believed to be principally attributable to certain small amplitude signals " fading" in and out from one outage to another (discussed in the response to RAI #9),

as well as a number of S/N indications which have changed designation for one reason or another over the years.

41. The results provided in Table 4-12 of Reference 1 do not correspond to the results given in your letter dated Nay 25, 1994 (pages 20 and 57 of the Attachment). Specifically, the sample size and number of failures for the second expansion do not match. Please clarify.

The information presented in Reference 1 is correct. There were no subject failures present in the second expansion sample for RCSG-1A. Further, the number of indications inspected as part of the second sample for RCSG-1B was 58 instead of the value of 56 presented on page 57 of the Attachment to the May 25th letter.

I

I  !

U.S. Nuclear Regulatory Commission l 3F1295-03, Attachment 1 i

l Figure 14. Number of SIN Indications in Active Tubes of CR-3 RCSG-1 A Following Refuel 9 as a Function of Bobbin Coil Voltage I i

90 --

80 -- j 70 -- l

! i

$ 60 --

l 't i i

f 50 --

40 --

i j 30 --

20 --

l 1 I I I I I I I E I I I I"I-I"l I"! I I n N 9 9 9 9 N 9 9 -

n N 9 9 9 9 h 9 9 N o o o o o o o o o - - - - - - - - -

Bobbin Coil Signal Amplitude (Volts) l l

l 46

l i

U.S. Nuclear Regulatory Commission }'

j 3F1295-03, Attachment 1 Figure 15. Number of S/N Indications in Active Tubes of CR-3 RCSG-1B Following Refuel 9 as a Function of Bobbin Coil Voltage 400 --

350 --

l 300 --

E j 250 --

4 fO 200 --

e

$ 150 --

Y l 100 --

O I I I I I I  ! I I l l  ! l  ! l  !  !

l l l 5 N 9 *. 9 9 N 9 9 "

5 N 9 *. 9 9 N 9 9 "

o o o o o o o o o - - - - - - - - -

, Bobbin Coil Signal Amplitude (Volts) 47

I U. S. Nuclear Regulatory Comtrwesion 3F1295-03, Attachment 1 Page 48 i

References

]

1

1. " Alternate Disposition Strategy for Low Volume OTSG Eddy Current  ;

Indications," forwarded as Attachment 1 to a Florida Power Corporation '

(FPC) letter dated May 31, 1995 (3F0595-05). l

2. "0TSG Tube Inservice Inspection Refuel Outage 9 12 Month Report,"

forwarded as an attachment to a FPC letter dated May 31,1995(3F0595-07).

3. " Examination of Crystal River-3 Pulled Steam Generator Tubes - Final Report," forwarded as an attachment to a FPC letter dated May 31, 1995 (3F0595-07). l
4. " Refuel 9 Inspection Plan for Once Through Steam Generators," submitted by a FPC letter dated April 19, 1994 (3F0494-09).
5. " Crystal River Unit 3 Steam Generator Regulatory Guide 1.121 Evaluation Revision 2," forwarded as Attachment 2 to Reference 4.
6. " Draft EPRI Tube Pull Report," TR-103756, forwarded as Appendix A to Attachment 2 to Reference 4.
7. "MPR Structural Analysis," fonvarded as Appendix, B to Attachment 2 to Reference 4.
8. " Crystal River Nuclear Generating Plant Unit 3 - Confirmatory Action Letter (CAL) -

Regarding Once-Through-Steam-Generator (OTSG) Tube Inspection During Refuel 9," letter NRC to FPC, dated April 26, 1994.

9. Introductory Statistics. Thomas H. Wonnacott and Ronald J. Wonnacott.

Fifth Edition, John Wiley and Sons, 1990.

10. "PWR Steam Generator Tube Repair Limits - Technical Support Document for Outside Diameter Stress Corrosion Cracking at Tube Support Plates -

Revision 1," EPRI Report TR-100407, August 1993.

1 l

l 1

i

i

}

i i

i l

4 l

APPENDIX A i  !

i RESPONSE TO RAI NUMBER 28 i 1 i " CORRELATION DATA" I i

1 2

1 1

i i

i l

i t

i

)

\

1 l

l

1 i

TABLE OF CONTENTS .

1 SUBJECT Page j No.

I. 1992 and 1994 Pull ed Tube Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

11. Technical Specification Change Request Number 203 Correlations and Data ,

A. Figure 3-1.............................................A-17

8. Figure 3-2 and Figure 3-3..............................A-20 C. Figure 3-4(5-1), 3-5(5-2), 3-6(5-3), and 3-7(5-4)......A-22 D. Figure 3-8 (5-5).......................................A-29 E. Figure 4-1 and Figure 4-2..............................A-31 i

F. Figure 4-3.............................................A-50 G. EPRI Growth Rate Study.................................A-54 H. B&W Growth Rate Study..................................A-56 I. Figure 4-5, 4-6, 4-7, and 4-8..........................A-61 J. Refuel 9 Speci al Interest MRPC. . . . . . . . . . . . . . . . . . . . . . . . . A-77 l

K. Section 5.2.2 Discussion...............................A-96 L. Figure 5-6.............................................A-98 4

o 9

5 f

A-1

~- . - -_ __. . . _____. _ _ _ __ _ . . _ . . . . _ _ _ _ . _ _ . . _ . _ _ _ _

4 TABLE OF CONTENTS I

SUBJECT Page No.

l III. Final Report on the Examination of Crystal River Unit-3 Pulled Steam Generator Tubes, May 31, 1995 A. Figure 2-8 and 2-10....................................A-100 i B. F i g u r e . 2 - 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 10 2 IV. Other Data Pertinent to the NRC RAI of October 24, 1995 A. RAI Questi on Number 14 Dat a. . . . . . . . . . . . . . . . . . . . . . . . . . . . A-104 B. RAI Question Number 28 - Introductory Paragraph  ;

D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A- 10 5 1

0

)

1 i

A-ii  !

I

. . .- . - . ~ - . - - - - . .- . . . . - - - -- .- ..-.-. .- - - -_- .

I. 1992 and 1994 Pulled Tube Data Points The following pages of information are intended to satisfy RAI Question' Number  :

28, sub-item 'a'.

In the case of the 1992 pulled tube results, this data has previously been provided to the Staff as part of References 4, 5, and 6. The pertinent pages from the 1992 EPRI report are reproduced herein for completeness sake.

The majority of the 1994 pulled tube data has been previously provided as part of Reference 3. Once again, all requested information is included herein.

I l

l l

A-1 I

4 i

4 1992 PULLED Tuss EXAM DATA x

A-2

crno unconava enamonas Results on 1st Freespan Regions (52-51-2. 90-28-2. 97-91-2 & 106-32-2)

The majority of defects identified by stereovisual inspection (as well as the type of danage) were confirmed by metallography (see Figure 2-40). Again, tube degradation was primarily in the form of small patches of " thumbnail-shaped" IGA. A total of 108 defects were confirmed, with maximum and minimum depths of 62% and 1% throughwall, respectively, with an overall average depth of 28% and i a standard deviation of 16%. Metallography data is summarized in Table 2-9.

]

Table 2-9 FIRST SPAN METALLOGRAPHY

SUMMARY

l 52-51-2 90282 ,97-91 2 106-32-2 l

ID Type Depth ID Type Depth ID Type Depth ID Type Depth 10 Type Depth Z Pit NDD AF IGA 51 % AA Pit NDD BG IGA 11 % AG1 IG A N/A j X IGA 32% AD IGA 24 % Y Pit NDD BF IGA 17 % AE IGA 24 %  ;

V IGA N/A AD IGA 49 % W IGA 54 % BD IGA 31 % AD IGA 25 % l U 4G A 26% AB IGA 30 % U IGA 48 % BC IGA 30 % AC2 IGA 22 %

S IG A 33% Z IGA 30 % T IGA 44 % BB IGA 17 % AC1 IGA 18 %

R IGA 18 % X2 IGA 24 % S Pit 1% BA IGA 20 % AB IGA 18 %

P IGA 33 % X1 IGA 62 % R1 IGA 4% AZ IGA 22 % AA IGA 17 %

N2 IGA 19 % V2 IGA 46% P IGA 46 % AY IGA 36% Z IGA 51 %

N1 IGA 40 % V1 IGA 49 % ;0e lea 64% . AX IGA 32% Y IG A 8%

L IGA 13 % T2 IGA 53 % M IGA 16% AV IGA 29 % X2 IGA 49 %

K2 IGA 19 % T1 IGA 46 % K IGA 29 % AU IGA 39 % X1 IGA 27 % ,

K1 IG A 45 % S2 BGA 28 % i IGA 4% AT IGA 31 % V2 IGA 14 %

12 BGA 52% S1 IGA 23% G IGA 5% AR IGA 19 % V1 Pit NDD 11 IGA 28 % 0 IGA 45 % E2 IGA 5% AQ2 IGA 46 % T Pit NDD G IGA 34 % 0 IGA 45 % E1 IG A 5% AQ1 IGA 24 % R IGA NDD F' IG A 53 % N' IGA 60 % D IGA 8% AP IGA 42% - - -

D IG A 34 % M IG A 27 % B Pit 6% AO IGA 12% 0 Pit 7%

- - - K IGA 18 % - - - AN IGA 36% O IGA 3%

B 38 % 8 IG A 46 % AM3 IGA 25% N IGA 15%

H IG A 37 % AM2 IG A 22 % M1 IGA 3%

607 lea 53% AM1 IGA 12 % L Pit 14%

E IGA 50 % AM1 IG A 16% K IGA 17 %

C IGA 56% AL2 IGA 16% J Pit 5%

B IG A 12 % AL1 IGA 10% i IGA 31 %

- - - AK IGA 40 % H IGA 3%

AJ IGA 38 % G1 Pit 4%

AH IGA 29 % F IGA 9%

AG2 1GA 40% E IGA 23 %

C Pit 7%

Statistics: ,

Maximum F IGA 53 % X1 IGA 62% 0,W IGA 53 % Z IGA 51 %

Minimum L IGA 13 % B IGA 12% S Pit 1% O, M 1, H IGA 3%

Avsrage 32 % 40 % 22% 22 %

S. Dev. (a) 12 % 14 % 21 % 13 %

NDD = No Detectable Degradation; N/A = Date not available; Boldf ace / Shaded = Burst location: - = LTSF

  • Specimens utilized for SEM/EDS & S AM/XPS: depth estimated from SEM of fracture surf ace.

2-44 h

, s.rno uvensaa mawnso l

l i

TABLE 3-1

SUMMARY

OF EDDY CURRENT DISTINGUISHABLE DEFECTS Tube Position Defect Extent Eddy Current Results Section Defect Axlel Cire. Axial Cire. Depth ,Vol. Bobbin Coil MRPC No. No. (inches) (*) (rnils) (*) (%TW) (10* in*) Field Lab Field Lab i 90 28-2 AF 17.2 150' 28.9 2.0 51 % 3.0 S/N AD2/1 16.1 180'/315' 52.4 3.5 37 % 6.9 S/N AB 15.5 340' 54.4 8.3 30 % 13.8

/ Z 15.1 325' 38.2 1.3 30 % 1.5 S/N

]

X2/1 14.6 340'/110' 45.6 2.7 43 % 5.4 S/N S/N V2/1 14.0 270*/350' 53.7 7.5 48 % 19.9 T2/1 13.2 110'/330' 36.3 7.8 50 % 14.5

  • S 2/1 12.9 350*/110' 33.9 3.2 26% 2.9 S/N O 12.3 340' 59.2 3.1 45% 8.5 S/N O/N/M 11.5 340'/100'/290' 58.5 14.5 43 % 37.5 S/N S/N j K 10.8 290' 31.8 3.6 18 % 2.1 S/N l

I/H/G 10.2 200*/10'/330' 71.5 17.3 49 % 62.3 S/N S/N S/N S/N )

AFC' 9.2 S/N I 7.8 l E 340' 70.9 7.9 50 % 28.8 46% 36% S/N S/N j C/B 6.1 20'/315' 56.5 6.1 41 % 14.5 SW S/N F/N S/N l

[ AFC' 1.0 S/N 52512 X 16.5 315' 40.3 2.0 32 % 2.6 S/N

' l U 15.3 315' 32.7 4.8 26 % 4.2 l S 14.7 315' 63.7 8.3 33 % 17.9 )

R 14.1 250' 38.9 3.7 18 % 2.7 S/N S/N l

P 13.1 200' 43.9 5.3 33 % 7.9 j

) N2/1 12.4 180'/260' 33.6 4.6 30 % 4.8 L 11.4 180' 33.5 1.4 13 % 0.6 S/N i K2/1 11.0 250'/180' 42.7 7.8 45% 15.4 12/1 10.0 350'/270' 49.7 15.2 42% 32.9 S/N S/N S/N *i G/F 8.9 315'/350' 69.9 5.7 47 % 19.3 S/N S/N S/N AFC' 7.9 S/N S/N S/N S/N

, D 6.5 265' 60.9 8.4 34 % 17.9 S/N S/N S/N S/N j 1.0 38.6 B 20' 2.0 38 % 3.0 j 97-91 2 W 14.1 105' 60.6 9.6 54 % 32.0 67 % S/N S/N S/N l AFC' 12.3 S/N 245'/90'/958 U/T/S 11.5 58.2 26.0 46 % 70.9 S/N S/N S/N

]

i R1 9.3 350' 11.0 6.1 4% 0.3 S/N S/N l AFC' 8.6 S/N S/N S/N S/N l P/0 8.3 90'/15' 74.4 18.0 50 % 68.8 67 % S/N j

l l

'l 3-2 l h

EPRI Licensed Material TABLE 3-1 (Continued)

Tube Position Defect Extent Eddy Current Results Section Defect Axial Cire. Axial Circ. Depth Vol. Bobbin Coil MRPC No. No. (inches) (') (rnits) (*) (%TW) (10* In') Field Lob Field Lab 97912 M 7.1 320' 19.7 3.3 16% 1.1 (cont.) K 6.6 225' 49.8 3.8 29 % 5.7 1 5.6 355' 6.7 2.4 4% 0.1 G 3.3 20* 13.1 0.7 5% 0.0 E2/1/D 2.8 20'/285'/350' 13.5 5.7 6% 0.5 8 1.1 285' 16.3 2.5 6% 0.2 AFC' -1.7 S/N 106-32 2 BG/BF 16.6 90'/30' 55.1 7.6 15% 6.2 BD/BC 15.6 50'/30' 63.5 12.8 31 % 25.5 BB/BA/A 14.9 90'/35'/45' 35.3 12.9 20% . 9.4 Z

AY 14.6 220' 55.3 16.1 36% 32.9 S/N S/N AX 14.3 30' 39.9 9.6 32% 12.6 AT/AU/ 13.2 135'/45'/60' 46.8 42.3 34% 69.2 $/N S/N S/N AV AR 12.3 90' 44.9 12.8 19 % 11.2 S/N AQ2/1 11.7 180*/90' 38.1 16.0 35% 21.9 S/N AP/AO 11.2 208/90' 48.0 14.4 27 % 19.2 S/N AN/AM 10.8 240*/O'/50'/45' 26.5 31.9 27 % 23.5 S/N S/N S/N 3/2/1 125'/180*/170*

AL2/1 10.5 25'/80'/75' 27.7 10.2 11 % 3.2 S/N AJ/AK 9.9 190*/25' 61.3 22.8 39 % 56.0 S/N S/N S/N AG2/AH 8.8 100*/60' 59.1 13.0 35% 27.6 S/N S/N S/N AFC* 8.2 S/N AE/AD/ 7.7 225'/60' 62.5 27.5 24 % 42.4 S/N S/N AC2 220' AC1/AB 7.4 60*/70* 53.5 11.5 18% 11.4 Z/AA 7.0 180*/200' 46.2 18.6 34% 30.0 X2/Y/X 6.4 65'/85'/50' 33.7 20.4 28 % 19.8 S/N S/N S/N S/N 1

V2 5.3 125' 40.8 2.1 14% 1.2 S/N S/N O -0.6 190' 17.1 3.2 7% 0.4 N -1.8 270* 5.4 1.0 15% 0.1 L/K/J -2.3 280'/310'/105' 17.3 31.3 14% 7.8 t/H 40'/120' F 3.4 160' 12.0 9.3 9% 1.0 E 3.9 145' 18.2 3.4 23 % 1.5 C -5.4 350' 6.7 4.9 7% 0.2

  • AFC . Apparent Falso Call 3-3

TABLE 4 BOBBIN FIELD VS. LABORATORY EDDY CURRENT SPECIMEN FIELD RESULis LABORATORY RESULTS ROW-TUBE- AREA OF 1992 AxlAL 1992 MM PIECE INTEREST LOCAll0N VOLIS PHASE %iW LOCAil0N++ VOL IS PHASE %TW co ___ __ _ __

0.75 td O 41-44-2 26.3" 10 45.3" tisF + 6.86" 0.89 118 S/N BIM +11.92" 120 S/N LISF +12.12" 0.62 BIM +16.76" 0.80 OUO

{'< LISF +15.53" 0.85 117 126 S/N S/N BIM +20.64" BIM + 9.70"*

0.72 0.45 120 120 124 S/N

$/N S/N N C BIM +10.63"* 0.48 118 S/N U

hgh gng BTM +13.86"*

BIM +22.81"*

0.26 0.59 119 140 S/N S/N h 52-51-2 25.5" 10 42.3" LISF + 5./9" LIST + 8.03" 0.98 0.52 148 78 S/N S/N BIM + 8.64" <

BIM +10.91" 0.9/

0.79 154 87 s/N S/N yOM LISF + 9.22" 0.95 149 S/N BIM *12.21"- 1.02 130 S/N fft HM LISF +10.12" 0.47 75 S/N BIM +16.97" 0.35 107 S/N  %

4Z 2I MM 90-28-2 21.3" 10 42.3" LISF + 6.58" 1.00 107 S/u BIM +13.32" 0.91 99 S/W MMH L I SF + 7.88" 1.73 121 46 BfM +14.78" 1.66 122 36 C O

7Z LISF +10.35" 1.07 119 S/N BIM + 17.21" 1.06 126 S/W Cd> O

'> BIM + 7.98"a 0.44 144 S/N e ZOd BlM +17.65"* 0.46 100 sin vg HMH BIM +18.61"* 0.46 116 S/N @

g*9 d BIM +18.99"* 1.07 132 $/N Q.

yq BIM +19.72"*

BIM +21.39"+

0.66 1.12 143 130 S/N S/N g

g CD O ny BIM +21.92"*

B'M +23.66"*

0.65 1.08 91 S/N g m 164 S/N w E

97-91-2 28.3" 10 43.3" 1ISF + 8.28" 0.88 90 76 BIM *15.54" U.75 113 44 LISF + 8.56" 0.65 110 S/N BTM +15.82" 0.79 124 s/N MOO t LISF +14.28" 0.71 106 63 BIM +19.19" 0.64 91 62 M 'E: > 'N BIM +21.89"* 0.93 103 52 O BIM + 5.58"* 0.51 161 t/N

< O. M

.. . 8 m 106-32-2 25.3" to 42.3" t1SF + 5./6" 0.84 135 S/N Bitt + 9.13" 0.50 136 S/N P LISF + 8.22" 0.34 138 S/N BIM +12.89" 0.70 167 S/N P M LISF + 9.48" 0.55 156 S/N BIN +14.19" 0.74 144 S/N M* tISF +10.91" 0.48 147 5/N BIM +10.80" 0.56 155 $/N LISF +11.24" 0.34 131 S/N BIM + 8.76" 0.71 122 S/N n LISF +12.82" 0.57 162 S/N BIM

  • 7.27" 0.67 153 S/W mo N LISF +14.34" 0.30 110 S/N BIM + 5.90" 0.73 160 S/N OMM e o 109-30-2 25.3" 10 33.3" LISF + 5.66" 0.79 150 S/N B1M +13.11" 0.80 159 S/N LISF + 7.99" 0.94 133 30 BIM *15.39" 0.94 131 27 11SF + 9.22" 0.31 132 S/N BIM +16.62" 0.35 138 S/N LISF + 9.78" 6.60 150 5/N BIM +17.17" 0.54 148 S/N BIM +25.45"* 0.33 131 S/N
  • ADDlil0NAL LOCAll0NS REPORIED DURING LAB ANALYSIS

++AXI AL LOCATION IS MEASURED FROM THE BOTTOM IUBE END NOIE: Att PIECE 4*S FOR EAEH 10BE EXHlBlIED No DETECTA8tE DEGRADAllON (NDO)

..~

~ -_

L. _ _ _ _ _ _ - _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . . _ _ _ _ _ .

TABLE 5 MRPC FIELD VS. LABORATORY EDDY CLERENT SPECIMEN FIELD RESULTS LABORATORY RESULTS CIRCUMFERENTIAL LOCAll0N ROW-TUBE- AREA OF 1992 AMIAL 1992 TOP (NOTCH) = 0 PIECE INTEREST LOCATION VOLIS PHASE %iW LOCAfl0N++ VOLIS PNASE %TW DEGREES *+

ec M 41-44-2 26.3" 10 45.3" LTSF + 4.99" 1.44 115 S/N N00 CO tiSF + 5.93" 2.02 37 $/N NDD t* O tiSF + 7.20" 2,06 125 S/N BIM +14.11" 0.77 74 S/N 130 DEG td e< LIST +11.89" 2.59 29 S/N 81M +19.78" 1.76 39 S/N 0 DEG M LISF +13.37" 1.61 72 S/N BIM +21.62" 0.86 60 S/N 270 DEG OO LISF +15.50" 1.89 65 S/N BIM +24.26" 1.23 59 S/M 0 DEG LTSF +17.63" 2.04 67 S/N BIM +26.74" 0.92 111 $/N 270 DEG Md 52-51-2 25.3" TO 42.3" LISF + 5.90" 0.17 108 S/N NDO SIM + 8.14" 0.88 hMU phy LTSF + 6.22" (15F + 8.01" 1.83 0.24 108 57 S/N S/N BIM +10.68" 1.13 103 64 S/N

$/N 100 DEC 180 DEG tiSF

  • 8.47" 2.42 45 S/N NOD yam tisF
  • 9.25" 0.12 52 S/N NDO g HM LISF
  • 9.75" 1.61 30 S/N N00 .

< ';g LTSF +10.00" 0.14 142 S/N BIM +13.00" 0.35 125 S/N O DEG .

t'1 t'l L ISF +10.57" 0.90 70 S/W NDD  :

M !!1 H r-

>Z 90 23-2 21.3" TO 42.3" LTSF + 6.21" 0.41 12 S/N NDO C8> LTSF

  • 6.33" 2.09 85 S/N 8TM +13.22" 0.96 91 S/N 130 DEG l

> ZO8 LISF + 7.79" 3.93 15 S/N BIM +14.89" 0.92 86 S/N 90 DEG -

i HNH tysy + y,95" 0.23 22 S/N sin +17.25" 0.71 70 S/N 210 DEG t

& d 3 LISF + 9.12" 0.31 57 S/N BIM +18.54" 1.47 0.58 76 S/W 200 DEG

{

Wh* WO LISF +10.15" 2.70 54 S/N SIM +21.28" stM +23.07"* 0.76 52 45 S/N S/N 220 DEG 290 DEG  !

$ 97-91-2 28.3" 10 43.5" (TSF + 8.66" 0.35 82 S/N 81M +15.82" 1.09 117 S/N 310 DEG f tiSF + 8.95" 0.17 72 S/N BIM +15.51" 1.00 114 S/N 310 DEG LTSF +12.15" 0.21 43 S/N siM +19.17" 1.74 69 S/N 310 DEG  !

LTSF +14.84" 0.36 57 S/N sIM +21.88" 1.41 71 S/N 340 DEG STM +19.27"* 0.51 63 S/W 310 DEG

/1 O O  %

M:C> > 106-32-2 25.3" 10 42.3" LTSF + 5.77" 0.32 101 S/N afM +12.74" 1.12 133 S/W 180 DEG

<QH Q LISF + 6 15" 0.37 92 S/N BIM +14.00" 0.94 73 S/N 320 DEG

""M M LTSF + 8.17" 0.25 101 S/N SIM +16.12" 0.61 127 S/M 180 DEG LISF + 8.85" 0.19 8 S/N NDO P LTSF + 9.09" 0.20 87 S/N STM +16.36" 0.84 97 S/N 160 DEG H W LISF + 9.81" 0.12 80 $/N NDD M* LTSF +10.13" 0.27 93 S/N NDO

[ 1157 +10.78" 0.15 45 S/W NDD mg LISF +1).88" U.14 61 S/M NOD me y LIST *12.12" 0.12 41 S/N NDD O4M p LTSF +13.41" 0.13 76 S/N BIM +18.20" O.69 88 S/N 350 DEG o BTM +17.77"* 0.92 132 S/N 170 DEG 109-30-2 25.3" To M .3" (TSF + 8.47" 0.13 67 S/N STM +16.59" 0.42 58 S/N 150 DEG List + 9.66" 0.28 88 S/N N00

  • ADDITIONAL LOCAtl0NS REPORIED DURING L AB ANALYSl5

+ARIAL LOCATIOM 15 MEASURED TROM THE BOTTOM TUBE END

++ClROJMf tetuti At. LOCA1tou 15 NE AstNtt0 IM DECAEEE. TME COPPER PlfCf ATTACMfD TO THE SPECIMEN mo a t a tw a EPT C uf u ap .

a J

1994 PULLED TUBE EXAM DATA 7

I i

A-8

G320622 Bl44T SPIS F-975 T-991 P-002 DEC 01 '95 00: 12 Compiladon of Risults Table 4-1 IGA Patches on Tube Section 41-44-2

_ Defod Looston Defect Extent

  • Depth, ' Volume,"

Amel, Cec., Axial, cire., mits cu.in.

inches degrees mils mils 10.43 135 48 88 liSES 19.MS.dd58 it e6 210 49 8E 15 7a10*

11JO 90 76 73 d: ibm;'ju .MEFM*4 11.43 2tn to 81 ?nbsra ,:!.soglE5h 130 26 40  ?~, zig

. . _ . 12.11 . iiMF1TQ@.f 12.55 200 74 76 1M=n .-up,1lW"d?

13.18 12 39 82 10 5 x 10*

13.30 70 24 37 10 1x10*

19.30 340  ?$ 43 7 4 x 10*

13.38 im OS 30 2 1x10*

13.30 8e6 39 30 n W w.ek.:y:hl &.

13.?S 30 48 34 3# sMG. 3421(MG'fj 1424 ilm 41 83 74M 42M E: 4xKs 14.24 250 SE 32 t rilii::6 ERWin 14.43 150 20 56 11 3 x it*

14.81 228 as 77 13 8 m 1e*

14J6 0 38 38 MI);N 54)%?

14.us c es 44 egiip. 4:pe):1pfe 14.85 280 40 63 S*,j%ji-DAMS.$.E 15.36 140 80 51 Ij.9MNR *4 -ialirgid

  • sssTEE *W l

16.24 225 33 23 V 1T.24 30 80 86 MjaFru? M 9:~ .5 17.e5 170 Am 108 20 22 x 10*

17As o es de ten 1ctfuEgiug2  ;

1a.oe so 37 se Enerf @ #@p$p;  !

18 93- 100 52 47 i M 0p?3 3%8~5Mkii 19.24 316 45 44 11 6 x 10*

19.74 110 29 41 M43.i.d. s.31 IFS 8%

1 21.11 5 e6 34  ?!.100.ici! 4:3KM L 21.11 170 81 74 / IM;93 +a#VT9-21.80 210 se et + % ss4M3W@

22.as too 41 47  !.13 ~'I".2 m is pr:*p'r 23.18 80 44 42 d.p.9:tify  !.E.2iiTFg,i=

= meagu'eG Irom _-. ATm' iuyer-

  • Ce00Ulded assuffine W.etpsoid defect geometry Shaded values are defect depth anc volume essmated from constemon between depth and defed OD extent 4-3

s Table 2-3: Field NDE Results vs Destructive Examination ibsults Tube Number Location Defect Field Bobbin Defect Dimensions,10 inches (Row / Column) inches identification Call j Volts Maximum Axial length Width Volume (ini I

(%TW) Depth (%TW) 68-46 LTSF - 0.60 pit-like IGA NDD 28.0 (75%) 228 89 l l l 138(10)4 7th TSP - 0.56 "D*-shaped wear 1.36(27 %) 12.0 (32 %) 90 119 68(10)4 9th TSP + 0.81 Tapered wear 0.65(S/N) 7.0 (19%) 425 141 157(10)4 l

9th TSP - 0.58 Tapered wear 0.38(S/N) 4.9 (13%) 515 148 135(10)4 I I I I 72-49 Below LTSF pit-like IGA NDD 7.0 (19 %) 41 29 l 2(10)4 7th TSP - 0.69 Oval wear 0.50(39 %) 6.0 (16%) 94 134 35(10)4 9th TSP + 0.82 Tapered wear 0.49(S/N) 3.8 (10%) 640 134 62(10)4 9th TSP - Tapered wear NDD 812 145 109-71 3rd TSP - 0.67 "D"-shaped wear 0.17 (S/N) 5.0(14%) 86 97 l l l 17(10)4 7th TSP - 0.68 Circular wear 0.17(40 %) 12.2 (33 %) I12 101 66(10)4 136-26 LTSF None Irl @ LTS 3rd TSP None NDD 7th TSP - 0.70 "D"-shaped wear 1.29(31 %) 13.0 (35 %) 112 170 68(10)4 2-23

{

Discussions Table 5-2 Conelation of Eddy Current and Destructive Examination Results FIELD LAB LAB 0.510 0.510 0.540 FIELD LAB FIELD LAB TUBE- BOBBIN MRPC MRPC RFEC RFEC LOCATION DEFECT BOBBIN BOBBIN SAMPLE 72 49-2 LTSF IGA LCB DING N/A N/A DING DING NDO 19% TW 68-46-3 LTSF IGA LCB 43%,23%, N/A N/A 0.26 x 0.70 DING ODI &

! 0.6" 70% TW 0.25 x 0.15 S/N 68-46-3 LTSF IGA S/N NDD N/A PIT NDD NDD NDD

' + 12.3" PATCH

, 4144-2B2 LTSF IGA NDD NDD NDO NDD VOL N/A NDD

+5" 40% TW 0.15 x 0.11 41-44-2B4 LTSF 4-lGA NDD NDD S/N NDD NDO N/A NDD

+ 7.5" 28,27.20,

&7% TW l 41-44-2 B6 LTSF 2-lGA NDD S/N S/N NDD NDD N/A NDD

' 30,& 1992

+ 8.8*

35% TW & 1994

' S/N VOL N/A S/N 4144-2B8 LTSF 'GA S/N S/N S/N

+ 11.5" 65% TW 0.19 x 0.25 41 LTSF IGA NDD S/N NDO NDD NDO N/A NDD 2B10 + 13.6" 30% TW 68-46-14 7th TSP WEAR 27% 28% N/A 0.00 x 0.20 0.14 x 0.13 S/N S/N l 32% TW 68-46-18 9th TSP WEAR 2-S/N 2-S/N N/A 0.22 x.0.19 0.15 x 0.10 S/N 2-S/N f 0.21 x 0.17 0.22 x 0.15

  • 19 &

14%

72-49-13 7th TSP WEAR 39% 32 % N/A 0.11 x 0.22 0.12 x 0.16 S/N S/N 16%TW 72-49-17 9th TSP WEAR S/N S/N N/A 0.22 x 0.19 0.20 x 0.17 S/N 2-S/N 10%TW 0.22 x 0.19 0.22 x 0.15 109-71-7 3rd TSP WEAR S/N S/N N/A N/A NDD S/N S/N 14%TW 109-71-14 7th TSP WEAR 40% 13% N/A 0.20 x 0.19 0.10 x 0.08 S/N S/N 33%TW 7th TSP WEAR 31 % 32 % N/A' O.17 x 0.23 0.15 x 0.21 S/N S/N 136-26-15 35%1W Bobbin coE indications are listed at percent throughwal when available.

At MRPC indications were Volurnetric unless stated otherwise. The axial and circumferential extent of the MPRC Indications are given in (axla0 x (circurnferentiaQ format, in units of inches.

NDD = No Detectable Degradation, N/A = No Data Available, LCB = LocaRzed Banana signal 5-5 1

PULLED TUBE EDDY CURRENT RESULTS .510 BOBBIN SPECIMEN FIELDf.ESULTS LABORATORY RESb1TS ROW-TUBE / 1994 AIIAL SECTION 1994 LOCATION VOLTS PHASE %TW LOCATION ++ VOLTS PHASN %TN 68-46/18 09S + 0.81" 0.65 113 S/N BTM + 5.47" 1.44 144 095 - 0.58" S/N 0.38 119 S/N BTM + 4.21" 0.31 128 S/N 68-46/14 075 - 0.56" 1.36 119 27 BTM + 7.08" 118 1.65 28 68-46/03 LTS +12.32" O.16 70 S/N NDD NDD BTM + 5.74"# 2.71 119 43 NDD BTM + 5.21"# 1.33 137 23 NDD BTM + 4.61"# 0.25 121 S/N LTS + 0.00" 7.04 178 LCB NDD 68-46/01 NDD BTM + 5.55"# 2.85 141 18 I NDD BTM + 4.49"# 5.12 127 34 '

72-49/17 095 + 0.82" 0.49 123 S/N BTM +11.93" 0.43 102 S/N ,

72-49/13 07S - 0.69" 0.50 108 39 BTM +14.77" 0.56 115 32 [

72-49/08 NDD BTM +23.70"* 0.34 67 S/N  ;

72-49/04 NDD BtM + 9.50"* 130 0.23 S/N [ -

72-49/02 LTS + 0.00* 7.59 356 LCB BTM + 10.85" 5.58 0 DMG 7 C.

109-71/14 07S - 0.68"

=

1.32 107 40 BTM +12.84" 1.93 128 13 h

2 109-71/07 03S - 0.67" 0.17 67 S/N BTM +10.01" 0.35 120 "~

s/N [

>= I 136-26/15 07S - 0.70" 1.29 115 31 BTM +16.96" 115 1.39 32 C 136-26/02 LTS + 0.00" 6.75 350 LC1 BTM + 2.78 7.66 182 DNG  ;

++ AXIAL LOCATION IS MEASURED FROM THE BOTTOM TUBE END

  1. POSSIBLE MECHANICALLY-INDUCED FLAW OCCURRING DURING TUBE PULL
  • ADDITIONAL LOCATIONS REPORTED DURING LAB ANALYSIS '

h

._..m

. _ ..m

_m._._....

- - - - -. , __ c , . . . . . . . .

PULLED TUBE EDDY CURRENT RESULTS - BOBBIN (CONT'D.)'

SPECIMEN FIELD RESULTS LABORATORY RESULTS~

RON-TUBE / 1994 AXIAL 1994 SBCTION IACATION VOLTS PHASE %TN LOCATION ++ VOLTS PNASE %TN

, 41-44/02# BTM +25.36" 0.96 148 S/N l .510 BTM +22.82" 0.51 151 S/N-l PROBE BTM +22.63" 0.21 101 S/N BTM +21.58" 0.25 52 S/N ,

BTM +20.66" 0.79 111 S/N BTM +18.59" 0.47 48 8/N BTM +17.09" 0.79 100 S/N  :

BTM +15.97" 0.21 106 S/N BTM +14.21" 0.30 117 S/N l BTM +12.27" 0.66 121 S/N BTM +10.98" 0.39 126 S/N  ;

BTM +10.08" 0.40 132 S/N 41-44/02# BTM +25.73" 0.98 146 S/N

, .540 BTM +23.14" 0.42 145 S/N [

i PROBE BTM +22.93" O.22 79 S/N I BTM +21.97" 0.16 80 S/N p- [

BTM +21.10" 0.66 117 S/N O '

BTM +19.37" 0.21 122 S/N i BTM +19.05" 0.38 95 S/N m

BTM +18.21" 0.23 148 S/N BTM +17.50" 0.63 124 S/N BTM +16.38" 0.19 49 S/N BTM +14.54" 0.19 94 S/N O BTM +13.27" 0.20 141 S/N BTM +12.62" 0.77 131 S/N BTM +11.22" 0.39 89 S/N BTM +10.38" 0.42 133 S/N

++ AXIAL I4 CATION IS MEASURED FROM THE BOTTOM TUBE END

  1. ARCHIVED TUBE - ORIGINALLY ANALYEED 1992 N/.510 BOBBIN - NO 1994 FIELD DATA

. - _ _.  ;- -  : ;= ---^

l j

l i

PULLED TUBE EDDY CURRENT RESULTS COIL MRPC  !

DIMENSIONS CIRCUM- DIMENSIONS  !

FERENTIAL SPECIMEN FIELD RESULTS LGTH X WIDTH LABORATORY RESULTS LOCATION LGTH X WIDTH R04-TUBER 1991 L= AXIAL EXT. AXIAL 1991 TOP 000TCH)

SECTION L= AXIAL EXT.

LOCATION UOLTS PHASE %TU U= CIRC. EXT. LOCATION ++ UOLTS PHASE %TU =0 DEGREES + U= CIRC. EXT.

60-16/1B OSS + 0.72" 0.31 96 UDL 0.27 X 0.16 BTM + 5.58' O.77 18 UOL 315 DES 0.15 X 0.10 OSS - 0.71* 0.31 66 UOL 0.26 X 0.16 BTM + 1.29' O.81 57 UOL 110 DE6T 0.22 X 0.15 i 68-16/11 07S - 0.79' O.11 102 UOL 0.18 X 0.20 BTM + 7.12" 0.71 16 UOL 50 DE6 0.11 X 0.13  ;

68-16/03 LTS +12.72'au PIT NrA N00 BTM + 5.82"N 2.22 61 UOL 60 DEG 0.26 X 0.17 BTM + 5.13*N 0.65 77 UOL 310 DE6 0.25 X 0.15 72-19/17 09S + 0.77' O.61 13 UOL 0.20 X 0.17 t BTM +12.06" 0.16 133 UOL 200 DEG 0.20 X 0.17 093 - 0.61' O.51 19 UOL 0.21 X 0.21 BTM +10.66" 0.71 26 UOL 310 DEG 0.26 X 0.15 l 72-19/13 07S - 0.B7' O.29 37 UOL 0.11 X 0.22 BTM + 11.62' O.57 62 i UOL 110 DEG 0.12 X 0.16 i 72-19/02 -- -- -- - --

BTM +10.91's 1.25 355 DN6 80 DEG N/A  !

109-71/11 DC - 0.68" 0.53 69 UOL 0.21 X 0.18 BTM +12.93' 1.73 02 DN6 80 DE6 N/A  !

BTM + 12.89' O.31 113 - UOL 80 DEG 0.11 X 0.10 109-71/07 03S - 0.00*ms PIT N/A BTP + 10.01" 0.26 98 UOL 90 DES 0.08 K O.10 136-26/15 07S - 0.68' O.70 56 UOL L,17 X 0.23 BTM +16.96' O.6/ $8 UOL 200 DEG 0.13 X 0.20 136-26r02 - - -- - --

BTM + 2.79"a 6. 11 19 DNS 300 DEG N/A

++ AXIAL LOEATION IS nEASUPED FR0n lHE BOTICn IUBE E 4D )

h

+CIRCUMFERENTIAL LOCATION MEASURED IN DEGREES - COPPER PIECE ATTACHED TO SPECIMEN IS ZERG-DEGREE LOCATION. C i DEGREES INCREASE IN A POSITIUE MANNER ulTH CLOCKWISE ROTATION WHEN UIEWING SPECIMEN FROM THE COPPER PIECE.

[

mA00lTIONAL LOCATIONS REPORTED DURING LA8 ANALYSIS F

'  ?

muBOBBIN CALL - NO FIELD MRPC OATA

>=

C d

1

PULLED TUBE EDDY CURRENT RESULTS COIL MRPC (CONT'D.)

a CIRCUM- DIMENSIONS FERENTIAL SPECIMEN FIELD RESULTS LABORATORY RESULTS LOCATION LGTH X WIDTH ROW-TUBE / 1994 AKIAL 1994 TOP (NOICH) L= AXIAL EXT.

RECTION LOCATIOtt VOLTS PHASE MW IDCATION++ VOLTS PHASE %TW =0 DEGREES + W= CIRC. EIT.

. ! 41-44/02# BTM +25.93" 0.72 22 VOL 170 DEG 0.16 X 0.18

! BTM +23.26" 0.42 64 VOL 95 DEG 0.16 1 0.18 BTM +23.05" 0.29 35 VOL 25 DEG 0.09 I 0.15 BTM +21.05" 0.45 57 VOL 20 DEG 0.15 X 0.15 BTM +19.00" 0.26 40 VOL 90 DEG 0.12 X 0.17 BTM +17.35" 0.65 32 VOL 15 DEG 0.17 X 0.19 BTM +17.14" 0.28 61 VOL 140 DEG 0.19 I 0.25 BTM +12.54" 0.29 68 VOL 250 DEG 0.15 I 0.14 BTM +11.20" 0.42 51 VOL 100 DEG 0.16 I 0.17 BTM +10.68" 0.22 104 VOL 60 DEG 0.15 X 0.11 BTM +10.32" 0.34 64 VOL 50 DEG 0.20 X 0.16

++ AXIAL LOCATION IS MEASURED FROM THE BOTTOM TUBE END

+CIRCUMFERENTIAL LOCATION MEASURED IN DEGREES - COPPER PIECE ATTACHED TO SPECIMEN IS ZERO-DEGRE2 LOCATION.

DEGREES INCREASE IN A POSITIVE MANNER WITH CLOCKWISE ROTATION WHEN VIEWING SPECIMEN FROM THE COPPER PIECE.

  1. ARCHIVED TUBE - ORIGINALLY ANALYIED 1992 - NO 1994 FIELD DATA
2l:

M rei M

--4 W

C r_________--__ , c :__: r a_:_= - - _ Lw - __--------------Q

ARCHIVED TUBE 1992 EDDY CURRENT RESULTS - BOBBIN & MRPC CIRCUM-FERENTIAL SPECIMEN FIELD RESULTS LABORATORY RESULTS LOCATION ROM-TUBE / AXIAL SECTION LOCATION VOLTS PHASE %TW TOP (NOTCH)

IOCAT10N++ VOLTS PHASE %TW =0 DEGREES +

41-44/02 LTS + 6.86" O.89 118 S/N BTM +11.92" O.75 1992 120 S/N LTS +12.12" O.62 117 S/N BTM +16.76" O.80 120 S/N

.510 LTS +15.53" O.85 126 S/N BTN +20.64" O.72 BOBBIN - -

120 S/N BTM + 9.70"* O.45 124 S/N BTM +10.63"* O.48 118 S/N BTM +13.86"* O.26 119 S/N BTM +22.81** O.59 140 S/N 41-44/02 LTSF + 4.99" 1.44 115 S/N 1992 NDD LTSF + 5.93" 2.02 37 S/N MRPC NDD LTSF + 7.20" 2.06 125 S/N BTM +14.11' O.77 74 S/N 130 DEG LTSF +11.89" 2.59 29 S/N BTM +19.78" 1.76 39 S/N O DEG LTSF +13.37" 1.61 72 S/N BTM +21.62" O.86 60 S/N 270 DEG LTSF +15.50" 1.89 65 S/N BTM +24.26" 1.23 59 S/N O DEG LTSF +17.63* 2.04 67 S/N BTM +26.74" O.92 111 S/N 270 DEG

  • ADDITIONAL LOCATIONS REPORTED DURING 1992 LAB ANALYSIS

=4 5;

cm

C E

m 2:

--t

>==*

O

l 1

II.A Figure.3-1 l 1

i

. Figure 3-1. is a plot of a linear regression analysis of eddy current bobbin l coil estimates versus metallurgical test results for the 1992 CR-3 pulled tubes. There are 32' data points included within this compa ative analysis. i This data has previously been provided to the Staff as part of References 4, l 5, and 6. The pertinent pages from the 1992 EPRI report are reproduced herein -

for completeness sake. -The plotted points are derived from the 5/14/92 eddy current test results presented in the attached excerpt for those defects with  !

met data.  !

i l

9 l

l I

i I

i 1

i A-17 1

__ _ .__ . _ _ _ _ _ __ _ _ _ _ . . _ _ ~ _ . _ _ . . . _ . .

or ses uswssacu a:samssas Attachment B - IGA Detection and Sizing by Eddy Current 52-51 3/18/89 4/30/90 5/14/92 Met Locations (A) Volt / Phase /% (B) Volt / Phase /t (B) Volt / Phase /% (B) Locations /% (C) 6.38/6.43/6.21 0.89/148/2 0.62/153/0 0.62/148/16 9.06/34 8.66/8.64/8.48 0.47/94/66 0.57/92/68 0.33/79/82 11.37,11.63/53 9.89/9.87/9.66 0.88/139/17 0.75/136/21 0.61/150/13 12.63/52 10.77/10.73/10.59 0.19/80/77 0.24/47/96 0.30/66/89 13.50,13.63/45 NDD 14.0/13%

12.2/12.07/11.91 0.19/66/86 0.22/45/97 0.16/62/91 14.88,15.06/40 12.95/12.86/12.72 0.43/161/0 0.25/162/0 0.32/164/0 15.69/33 NDD 16.69/18 14.53/14.5/14.32 0.33/119/43 0.29/105/57 0.35/152/9 17.25/33 NDD 17.94/26 NDD 19.13/32 109-30 3/18/89 4/30/90 5/14/92 Met Locations Volt / Phase /% Volt / Phase /% Volt / Phase /t Locations /%

6.04/6.29/6.13 0.67/153/0 0.67/157/0 0.54/153/8 No met 8.34/8.54/8.46 0.75/125/36 0.66/126/35 0.65/137/31 15.88-15.96/50 9.52/9.77/9.66 0.33/131/28 0.27/129/31 0.23/135/33 No met ,

10.09/11.13/10.16 0.43/141/13 0.50/135/23 0.35/132/37 17.5-17.56/40 i 10.91/11.13/- 0.18/126/35 0.16/117/45 - No met 12.72/12.95/12.87 0.13/45/97 0.27/53.93 0.18/26/60 No met 14.84/15.17/15.15 0.32/20/50 0.36/28/70 0.20/32/74 No met 106-32 3/18/89 4/30/90 5/14/92 Met Locations Volt / Phase /% Volt / Phase /% Volt / Phase /% Locations /%

NDD 12.75/14 6.32/6.32/6.35 0.62/141/13 0.86/147/2 0.58/138/30 13.81,13.94/49 j 6.87/6.80/6.96 0.83/164/0 0.93/165/0 0.63/176/0 14.38/51 NDD 14.63,14.81/18 7.58/7.57/7.71 0.35/145/6 0.42/132/25 0.40/167/0 15.00-15.19/25 8.01/7.97/8.09 0.39/11/27 0.38/15/37 0.26/22/51 15.44/24 8.69/8.67/8.78 0.33/126/35 0.27/124/35 0.23/138/30 16.18,16.19/40 8.94/8.91/9.01 0.19/74/81 0.21/39/95 0.14/82/80 16.44/29 9.71/9.68/9.73 0.49/150/0 0.60/145/4 0.29/152/9 17.19/38 9.98/9.97/--- 0.46/139/16 0.50/146/4 0.34/157/1 17.50/40 NDD 17.94,18.0/16 NDD 18.19,18.25/22 NDD 18.36-18.56/36 11.34/11.33/11.44 0.35/127/34 0.53/146/4 0.32/150/13 18.75/42 11.71/11.71/11.78 0.55/134/24 0.65/134/22 0.24/133/36 19.13,19.25/46 NDD 19.81/19 13.09/13.20/13.34 0.57/133/25 0.58/140/14 0.36/150/13 20.69/31 NDD 20.94,21.06/39 14.63/14.56/14.81 0.22/101/61 0.43/117/44 0.20/110/59 21.81,22.13/36 NDD 22.31-22.50/22 NDD 23.00,23.13/31 NDD 24.00,24.13/17 B-6 I '

~5, >

EPRILicensed Materini Attachment B (Cont'd) 90-28 5/14/92 Met tocations Volt / Phase /% Locations /n 6.46 0.73/109/59 13.56,13.69/56 7.98 1.26/123/44 15.31/50 10.39 0.75/122/46 .17.63,17.69/53 10.65 0.32/124/43 17.88/46 NDD 18.25/18 11.59 0.25/115/53 18.80,19.06/27 11.93 0.79/138/24 19.25/45 NDD- 19.75/45 12.76 0.42/144/14 20.31/23 NDD 20.44/28 NDD 20.69/53 14.36 0.90/128/38 21.50,21.56/49 14.84 0.35/112/56 21.88,22.06/62 NDD 22.56/30 15.78 0.09/130/36 23.00/30 NDD 23.56/49 16.50 0.50/158/0 23.63/24 NDD 24.69/51 Notes (A) Eddy current flaw locations of respective tube from each outage (B) 600 kHz eddy current data and flaw depth estimates l (C) Actual met locations and met results l NDD - No detectable degradations 1

)

v.

l i

N A

B-7 Y

_ _ . _ _ _ _ _ _ . . . . _ - . . _ . . . . _ . _ . . _ _ . _ _ _ _ . ~ . _ _ _ _ . _ . . . _ - __. ..._ _ ._.

l.._.___ .

l

1. i II.B Figure 3-2 and Figure 3-3 i

These Figures are two different presentations of the same data. The Figures illustrate the dimensional sizing accuracy of the MRPC probe for sizing volumetric defects. The data plotted in the Figures .is extracted from Table 3-2 and Table 3-3 of the same report. The Tables are included herein. J 1

l l

1 I

l l

l l

A-20 t

Table 3-2 CR-3 Pulled Tube Dimensional Sizing TUBE SECTION AXIAL ID NUMBER MET. AXIAL MET. CIRC. MRPC AX!AL MRPC CIRC.

POSITION EXTENT, IN. EXTENT, IN. EXTENT, IN. EXTENT, IN.

52-51-2 LTSF + 9.25 D 0.061 0.041 0.15 0.20 LTSF + 12.75 12 0.048 0.037 0.19 0.17 LTSF + 12.75 11 0.053 0.037 0.19 0.17 90-28-2 LTSF + 13.6 C 0.053 0.010 0.14 0.19 LTSF + 13.6 B 0.063 0.020 0.11 0.14 LTSF + 15.3 E 0.071 0.038 0.16 0.20 ,

LTSF + 17.7  ! 0.063 0.023 0.19 0.19 i I

LTSF + 17.7 H 0.059 0.022 0.15 0.19 )

LTSF + 17.7 G 0.079 0.039 0.15 0.19 97-91-2 LTSF + 15.3 P 0.073 0.074 0.15 0.17 LTSF + 15.3 0 0.076 0.062 0.15 0.19 LTSF + 19.0 V 0.054 0.047 0.as 0.25 LTSF + 19.0 T 0.061 0.066 0.19 0.18 LTSF + 19.0 S 0.011 0.0005 0.08 0.10 LTSF + 21.6 W 0.061 0.047 0.16 0.18 106-32-2 LTSF + 13.8 X2 0.071 0.053 0.11 0.14 LTSF + 13.8 Y 0.015 0.008 0.13 0.11 LTSF + 13.8 XI 0.016 0.038 0.11 0.19 LTSF + 16.3 AG2 0.062 0.035 0.11 0.13 LTSF + 16.3 AH 0.056 0.028 0.12 0.15 LTSF + 21.0 AT 0.060 0.050 0.15 0.19 LTSF + 21.0 AU 0.047 0.054 0.11 0.25 68-46-14 07S - 0.79 148 0.090 0.119 0.18 0.20 l 72-49-13 075 - 0.87 138 0.094 0.134 0.11 0.22 109-71-7 03S - 0.00 7BX 0.086 0.097 0.08 0.10 l

109-71-14 075 - 0.68 148 0.112 0.101 0.20 0.19 136-26-15 07S - 0.68 ISB 0.112 0.170 0.17 0.23 I

4 4

~

Table 3-3 B&WOG NDE Committee IGA Samples MRPC Sizing Data Sample No. Length, in. Width, in. MI MRPC Length, in. Width, in.

1217423-B 1.508 0.263 1.62 0.524  :

1217423-C 0.772 0.255 0.88 0.524 1217423-D 1.5 0.236 1.56 0.436 1217424-B 1.49 0.245 1.59 0.436 1217424-C O.751 0.243 0.85 0.480 1217424-D 1.51 0.246 1.65 0.480 1217425-B 1.506 0.253 1.56 0.393 1217425-C 0.746 0.246 0.99 0.436 1 I

i l

1 I

l 1

i Fiaures 3-4. 3-5. and 3-6 Fifty nine of the data points are from the 1992 CR-3 tube pull originally listed in  !

Table 3-1 of (6). For convenience, these data points are included herein as a l Table, listing tube section number, defect number, and associated dimensional data. An additional data point (Defect No. G from tube section number 97-91-2) 4 was not used for correlation since it had a reported volume of 0.0 x 10 in'.

As stated in (6), these sixty data points represent clusters of defects separated  !

with an axial spacing of arproximately 0.2 inches. The volume of each defed -  !

was estimated by assuming an ellipsoidal shape for the IGA. For defects which i were combined to form a composite, axial extent and depths were de3 ermined by a weighted average (based on volume) and circumferential ex:ents were summed.

An additional eight data points are from the 1994 CR-3 tube puil and one tube pulled during 1992 but examined in conjunction with the 1994 pulled tubes.

Dimensional information was originally tabulated in Table 3-3 of (1). For convenience, these data points and their dimensions are included herein .

Axial and circumferential extents for the additional eight data points were not originally included in the correlations because the dimensional information was  ;

not available. This explains why Figures 3-5 and 3-6 from (1) have 8 fewer data i points than Figure 3-4 of (1). The dimensional information has since become l available. When the additional data is appended to the original volume-axial  !

length, volume-circumferential length data sets the correlation plots shown in the j Figures attached. These new plots with the extended data sets compare very )

well with the original plots.

22

Table 1 1992 Crystal River 3 Tube Pull Metallographic Dimensional Data Tube Defect Axial Circ. Depth Vol. .

4 Section No. No. (mils) (degrees) (% TW) (10 in*) >

90-28-2 AF 28.9 2.0 51 3.0 AD2/1 52.4 3.5 37 6.9 AB 54.4 8.3 30 13.8 Z 38.2 1.3 30 1.5 X2/1 45.6 2.7 43 5.4 V2/1 53.7 7.5 48 19.9 1 T2/1 36.3 7.8 50 14.5 S2/1 33.9 3.2 26 2.9 Q 59.2 3.1 45 8.5 O/M/N 58.5 14.5 43 37.5 i K. 31.8 3.6 18 2.1 l l/H/G 71.5 17.3 49 62.3 E 70.9 7.9 50 28.8 C/B 56.5 6.1 41 14.5 52-51-2 X 40.3 2.0 32 2.6 U 32.7 4.8 26 4.2 S 63.7 8.3 33 17.9 R 38.9 3.7 18 2.7 P 43.9 5.3 33 7.9 N2/1 33.6 4.6 30 4.8 L 33.5 1.4 13 0.6 K2/1 42.7 7.8 45 15.4 12/1 49.7 15.2 42 32.9 G/F 69.9 5.7 47 19.3 D 60.9 8.4 34 17.9 8 38.6 2.0 38 3.0 97-91-2 W 60.6 9.6 54 32.0 UmS 58.2 26.0 46 70.9 R1 11.0 6.1 4 0.3 23

Table 1 (Continued) ,

1992 Crystal River 3 Tube Pull Metallographic Dimensional Data i

)

Tube Defect Axial Circ. Depth Vol.

Section No. No. (mils) (degrees) (% TW) (10* In')

97-91-2 P/O 74.4 18.0 50 68.8 (cont.) M 19.7 3.3 16 1.1 l K 49.8 3.8 29 5.7 l 1 6.7 2.4 4 0.1 l G 13.1 0.7 5 0.0 .!

E2/1/D 13.5 5.7 6 0.5 i B 16.3 2.5 6 0.2  !

106-32-2 BG/BF 55.1 7.6 15 6.2 BD/BC 63.5 12.8 31 25.5 ,

BB/BA/AZ 35.3 12.9 20 9.4 l AY 55.3 16.1 36 32.9 i AX 39.9 9.6 32 12.6 l AT/AU/AV 46.8 42.3 34 69.2 AR 44.9 12.8 19 11.2 AQ2/1 38.1 16.0 35 21.9 AP/AO 48.0 14.4 27 19.2 AN/AM 26.S 31.9 27 23.5 l 3/2/1 l AL2/1 27.7 10.2 11 3.2 l AJ/AK 61.3 22.8 39 56.0 AG2/AH 59.1 13.0 35 27.6 AE/AD/AC2 62.5 27.5 24 42.4 AC1/AB 53.5 11.5 18 11.4 Z/AA 46.2 18.6 34 30.0 l X2/Y/X1 33.7 20.4 28 19.8 _ j V2 40.8 2.1 14 1.2 O 17.1 3.2 7 0.4 N 5.4 1.0 15 0.1 L/K/J/1/H 17.3 31.3 14 7.8 F 12.0 9.3 9 1.0

E 18.2 3.4 23 1.5 l C 6.7 4.9 7 0.2 24

Table 2 Additional Crystal River 3 Tube Pull

  • Metallographic Dimensional Data Tube Defect Location Axial . Circ. Depth Vol.

Section No. No. (mils) (mils) (% TW) (10* in*L 1992 41-44-2B A LTS-16.5" 69 106 54 21./ _

(IGA) 1994 68-46-3A B LTS-0.6" 228 89 76 134 (IGA) 68-46-14B C 7th TSP 90 119 '32 68 (Wear) 72-49-2B D LTS - ? 41 29 20 2.2 (IGA)  ;

72-49-138- E 7th TSP 94 134 16 35 ,

(Wear)  !

109-71-7Bx F 3rd TSP 86 97 14 17 (Wear) l 109-71-14B G 7th TSP 112 101 33 66 l (Wear) l 136-26-15B H 7th TSP 112 170 35 68 (Wear) '

l 1

Fiaure 3-7 The twelve CR-3 pulled tube data points used for voltage-volume correlation are listed in Table 3. Voltage values were obtained by reanalyzing 8R and 9R eddy current data for points that could be uniquely associated with discontinuities  !

listed in the tube pull reports. In general, association was based on volume  !

rather than location or depth since this parameter determines signal amplitude.

In addition, for multiple discontinuities within the coil field of view, volumes are additive. .

Association of particular data points with metallographic data presented in Tables 1 and 2 is shown in the last column of the table. Data for CR-31992 pulled tube 109-30 is not included in Table 1. The volume data are listed in Table 2-8 of (6) and represent a composite volume of mulitple pit-like IGA within an axial span of approximately 0.15 inches.

25

s Table 3 Data Used to Establish Voltage-Volume Correlation m

TUBE LOCATION VOLUME, E-06 VOLTAGE ' MECHANISM DEFECT #

CUBIC IN ,

1992 Tube Pull 90-28 LTSF + 6.38" 37.5 0.74 IGA O/N/M of Table 1 LTSF + 7.88" 62.3 1.19 IGA l/H/G of Table 2

LTSF + 28.8 0.72 IGA E of Table 1 10.35" 97-91 LTSF + 8.28" 68.8 0.74 IGA P/O of Table 1 LTSF + 70.9 0.52 lGA U/T/S of Table 1 14.28" 109-30 LTSF + 5.66" 26.9 2 0.47 IGA -

2 LTSF + 7.99" 39.2 0.58 IGA -

1994 Tube ,

Pull 68-46 7H - 0.56" 68 1.1 Wear C of Table 2 72-49 7H - 0.69" 35 0.42 Wear E of Table 2 109-71 3H - 0.67" 17 0.25 West F of Table 2 7H - 0.70" 66 0.91 Wear G of Table 2 136-26 7H - 0.70" 68 0.87 Wear H of Table 2 Notes:

W3 voltage normalization using Channel P1 2

Total volume of multiple discontinuities  ;

1 1

i i

26

100 u

a

& * \

g

. . a .m m ,e a

.d E -

e 8 m

- e b ' 11 c 10 -

S  :

8 3  !'

' Y = 0.33 *X + 1.31 l

R = 0.86 SD = 0.14 N = 67 data points i

1 . . . ....., . . ,

0.1 1 10 100 Volume, E-06 cubic in Figure of Volume-Axial length correlation using additional 8 data points.

27

-m _ __ _. ._ _

1000 Y = 0.32

  • X + 1.33 R = 0.5b SD = 03  !

M N = 67 data poets  !

E ,

m o a e 5 *

.=

$100 a "W 1 j 2 a i 5  ! '

'h% e i

c am . 8m E ""

s::y

3 10 1  ::- i 8  : a e 3 -

m a

1 0.1 1 10 100 Volume, E-06 cubic in Figure of Volume-Circumferential length correlation using additional 8 data points.

I l

l 1

I 28 .

II.D Figure 3-8 Figure 8 shows a scatter plot of bobbin coil voltage versus discontinuity volume for the B&WOG NDE Committee IGA sample data. The data supporting this plot was previously provided to the NRC Staff as Table 3-5 of the same report.

This Table is included below.

I Table 3-5 B&WOG NDE Committee IGA Samples Voltage vs. Volume Data l l

Sample Maximum Ax1 1 Bobbin Approx. )

Number %TW 2 in.3, Ci rp*gm. ,

in. Coil Volyme, 1217423-A 55 0.75 , 0.245 2 b.0034 l 1217423-B 72 1.5 0.245 7.5 0.0083 1217423-0 67 1.5 0.245 6.1 0.0082 1217423-E 55 0.75 0.245 2.9 0.0034 1217424-A 56 0.75 0.245 3.4 0.0035 1217424-B 79 1.5 0.245 9.8 0.0092 1217424-D 80 1.5 0.245 6.9 0.0102 1217424-E 71 0.75 0.245 7.7 0.0044 1217425-A 22 0.75 0.245 0.5 0.0013 1217425-8 42 1.5 0.245 2.25 0.0046 1217425-E 41 0.75 0.245 1.1 0.0025 Nominal dimensions 2

Dimensions not used in calculation of volume i

l I

I A-29

. . . _ . . _ . _ . _ _ . _ . _ _ . _ _ . . _ . . - . _ _ . _ . - . . . . . _ - . . . _ _ . . _ - . . _ _ _ _ _ . _ . _ . . . _ . . _ . ~ . . . . _ _ . _ . . _

I. II.F Figure 4-1 and Figure 4-2 These bar graphs illustrate the measured axial and circumferential extent distribution of volumetric indications which underwent an MRPC inspection during the 9R refueling outage. All MRPC calls of a volumetric or pit-like morphology were included within this plot. Raw data is attached.

l l

1 1

l l

i l

l l I i

)

i l

I e

i A-31 l

.. . - , . - , . _ _ - - . - - . = - _ . . , - . . . - . . ~ - . _ . ~ - - - . ~ - ~ . - , ~ - _ . _ . . . - . ~ . - . - . - . . - . . . _ - _ . ~

5 04/27/1994 Ch12:56 **************************e****

eeeeeeeeeeeeeeeeeeeeeeeeeee**** BWIrf TUBASI II (Vir21on 2.1)

Cryital River Urtit 3 ese****e **********e********ese eseeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeen seeeeeeeeeeeeeeeeeeeeeeeeeeeeee S/g A 94/04 RFC *************e*****************

seeeeeeeeeeeeeeeeeeeee********* *******************************

eeeeeeeeeeeeeeeeeeeeeeee******* SPECIAL IsrfEREST 30%

Page 1 SPSCIAL IlffEREST . PIT SPEC IHT. 20% . PIT LISTS EXTENT 1 EXTENT 2 PROSE ANLST CALG CopMEprfs ROW EIBE VOLTS CHN DEG ".#! 171* 14CATIO8f 128 +0.67 125 12S 520 H8259 11 PIT 2 8 0.71 P 1 0 VOL MSG LxW 0.16 x 0.17 PIT 520 H8259 71 10s +0.72 108 los 520 C9318 71 PIT 31 32 0.38 P 1 60 VOL .

520 H8259 71 P1 MSG LxW 0.15 x 0.21 PIT

+42.52 01S LTS $20 R6452 80 FIT 47 69 0.32 1 131 VOL LTS 520 R6452 80 1 MSG LxW 0.11 x 0.18 FIT 035 +0.77 03S 03S 520 B0690 80 PIT 55- 96 0.49 P 1 266 VOL 520 80690 80 MSG LxW 0.16 x 0.16 PIT 10s 105 10S 520 R6452 80 PIT

61. 124 0.20 P 1 44 VOL .-0.69 520 R6452 80 P1 MSG LxW 0.12 x 0.18 PIT 125 -0.81 125 128 520 80690 80 PIT I 149 19 0.22 P 1 95 VOL 520 R6452 80 MSG LxW 0.14 x 0.12 PIT MSG LxW 0.37 x 0.19 WAR 520 B0690 to Total Indications Found . 13 Total Tubes Found = 6 Total Tubes in Input File = 5 i

i 1

I

+

1 I

1

'eeeeeeeeeeeeeeeeeeeeeeeeeeeeee* BWtrr 7tIRAN !! (VarSion 2.1) 04/27/1994 07:13:34 esee****eeeeeeeeeeeeeeeeeeeeees meeeeeeeeeeeeeeeeeeeeeeeeeeeese Cryital River Unit 1 meeeeeeeeeeeeeeeeeeeeeeeeeeeeee ***e****eeeeee**eeeeeeeeeeeeeee S/3 A eseeeeeeeeeeeeeeeeeeees eeeeese eeeeeeeeeeeeeeeeeeeeeeeeeeeeese - 94/04 RF0 esemoeeeeeeeeeeeeeee........... ********e**eeeeeeee***eee******

r SPECIAL IerTERSST 20% *******seeeeeeeeeeee.*****eeeee Page 1 SPSCIAL 23rTERSST

  • YOL SPEC. Ilft. 204 - VOL LISTS ROW TUBS VOLTS CHN DEG IND 47W IhCAT10F 1 EXTElff! EXTENT 2 PROBE ANIAT CAL # COMENTS 7 27 0.36 P 1 0 VOL Oss +0.63 OSS OSS 520 N8259 71 VOL MSG LxW 0.24, x 0.20 VOL

$20 H8259 71 -

it 74 0.32 P 1 66 VOL DES +0.60 068 065 522 P2204 71 VOL MSc LxW 0.16 x 0.15 VOL 520 P2204 71 28 92 0.47 P 1 95 VOL 083 +0.67 088 08S 520 L7871 71 VOL '

MSG LxW 0.27 x 0.23 VOL 520 H8259 11 37 113 0.52 P 1 0 VOL 118 -0.66 118 115 520 30690 '78 VOL MSG LxW 0.18 x 0.18 VOL 520 R6452 78 41 116 0.24 P 1 0 VOL 115 -0.82 115 11S 520 R6452 78 VOL if MSG LxW 0.19 x 0.20 VOL 520 R6452 78 67 62 0.46 P 1 102 VOL 108 -0.73 105 105 520 H8259 81 VOL MSG LxW 0.20 x 0.20 VOL $20 H8259 81 Total Indications Found = 12 Total Tubes Found = 6 Il

-l Total Tubes in Input File = 6 q

l i

1 l

1 l

J

}

1 1

eeeeeeeee*eeee**e************** BWNT TUBAN !! (Virsion 2.1) 04/27/1994 07:27:53 e**********************eee*e***

eeeeeeeeeeeeeeeeeeeeeeee******* Crystal River Unit 3 *******************************

eeeeeeeeeeeeeeee*ee***essese*** S/G B **o****************************

eseeeeeeeeeeeeee***ese********* 94/04 RFO *************eseeeeeeee**eeeeee seeeeeeee++eeeeeeeee.....eeeeee SPECIAL INTEREST 20% *******************************

ki Page 1 SPECIAL INTEREST + PIT SPEC. INT 20% + PIT LISTS

-ROW 1UBE VOLTS CHN DEC IND %11f LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 Cops 1ENTS 27 94 0.35 P 1 62 VOL 09S +0.78 095 098 520 H8259 77 PIT MSG LxW 0.12 x 0.19 PIT 520 82640 77 MSG LxW 0.40 x 0.16 NAR 520 82600 77 35 20 0.19 P 1 61 VOL 048 -0.67 04S 04S 520 H8259 77 PIT MSG LxW 0.19 x 0.15 PIT $20 S2680 77 35 42 0.34 P 1 55 VOL 095 -0.74 OSS 098 520 H8259 77 PIT MSG LxW 0.13 x 0.21 PIT $20 82680 77 36 40 0.17 1 68 VOL LTS +23.42 LTS LTS 520 H8259 77 PIT MSG LxW 0.10 x 0.12 PIT 520 S2680 17 37 40 0.23 1 61 VOL LTS +27.32 LTS LTS 520 P2204 83 PIT MSG LxW 0.17 x 0.17 PIT 520 P2204 83 0.19 1 93 VOL LTS +27.21 LTS LTS 520 H8259 17 PIT HSG LxW 0.11 x 0.16 FIT 520 $2680 77 37 41 0.15 1 72 VOL LTS +4.58 LTS LTS 520 H8259 77 PIT MSG LxW 0.18 x 0.14 PIT 520 S2680 17 38 38 0.52 P 1 59 VOL 098 0.75 09S 09S 520 H8259 77 PIT MSG LxW 0.14 x 0.21 PIT 520 52680 77 39 41 0.21 1 77 VOL LTS +9.72 LTS LTS 520 H4259 77 PIT MSG LxW 0.15 x 0.17 PIT $20 S2680 77 41 47 0.23 1 26 VOL LTS +14.18 LTS LTS 520 H8259 7s PIT MSG LxW 0.cf x 0.12 PIT $20 S2680 77 41 56 0.16 P 1 42 VOL 035 -0.62 035 035 520 H8259 77 PIT MSG LxW 0.12 x 0.11 PIT 520 S2680 77 43 42 0.13 1 80 VOL LTS +0.97 LTS LTS 520 H8259 77 PIT MSG LxW 0.16 x 0.14 PIT 520 52680 17 43 80 0.86 P 1 35 VOL 12S +4.41 12S 125 $20 H8259 77 PIT MSG LxW 0.16 x 0.14 PIT '

520 S2680 77 45 35 0.40 P 1 35 VOL 07S -0.18 O 'S 07S 520 H4259 77 PIT MSG LxW 0.16 x 0.38 PIT 520 S2680 17 46 37 0.23 1 74 VOL LTS +10.39 LTS LTS $20 H8259 77 PIT l MSG LxW 0.08 x 0.19 PIT 520 S2600 77 I 46 44 0.24 1 86 VOL LTS +5.60 LTS LTS 520 H8259 77 PIT MSG LxW 0.12 x 0.14 PIT $20 S2680 77 47 48 0.22 1 108 VOL LTS +11.30 LTS LTS 520 H8259 77 PIT MSG LxW 0.08 x 0.10 PIT 520 $2680 11 48 38 0.18 1 82 VOL LTS +10.92 LTS LTS 520 H8259 77 PIT MSG LxW 0.19 x 0.16 PIT 520 S2680 77 48 47 0.19 1 76 VOL LTS +7.52 LTS LTS 520 H8259 77 PIT MSG LxW 0.19 x 0.16 PIT 520 S2680 77 49 35 0.13 P 1 88 VOL LTS +7.24 LTS LTS 520 H8259 77 PIT MSG LxW 0.18 x 0.14 PIT 520 S2680 77 49 48 0.21 1 62 VOL LTS +13.74 LTS LTS 520 R6452 77 PIT MSG LxW 0.13 x 0.16 PIT 520 S2680  ??

49 50 0.31 1 84 VOL LTS +10.69 LTS LTS 520 H8259 77 PIT MSG LxW 0.17 x 0.12 PIT 520 S2680 77 51 48 0.22 P 1 44 VOL 07S 0.69 07S 07S 520 H8259 77 PIT

, MSG LxW 0.15 x 0.15 PIT 520 S2680 77 52 36 0.24 1 81 VOL LTS +6.48 LTS LTS 520 H8259 77 PIT MSG LxW 0.16 x 0.16 PIT 520 S2680 77 53 39 0.28 1 131 VOL LTS +12.43 LTS LTS 520 H8259 77 PIT MSG LxW 0.11 x 0.16 PIT 520 S2680 77 54 98 1.33 P 1 66 VOL 055 -0.14 CSS OSS 520 H8259 77 PIT MSG LxW 0.35 x 0.27 PIT 520 S2680 77 57 34 0.15 1 90 VOL LTS +11.95 LTS LTS 520 H8259  ?? PIT MSG LxW 0.09 x 0.14 PIT 520 S2680 17 57 44 0151 95 VOL LTS +9.46 LTS LTS 520 H8259 77 PIT MSC LxW 0.13 x 0.15 PIT 520 S2680 77 57 52 0.16 1 45 VOL LTS +6.76 LTS LTS 520 H8259 77 PIT MSG LxW 0.11 x 0.16 PIT 510 S2640 77 58 18 MSG LxW 0.18 x 0.17 PIT 520 S2680 77 0 33 1

. 59 VOL LTS +9.06 LTS LTS 520 H8259 77 PIT MSG LxW 0.14 x 0.18 PIT 520 S2680 77 0.31 1 100 VOL LTS +11.74 LTS LTS 520 H8259 17 PIT MSG LxW 0.04 x 0.19 PIT 520 $2680 77 0.29 1 15 VOL LTS +7.05 LTS LTS $20 H8259 77 PIT 7

seeeeeeeeeeeeeeeeeeeee*o******* BWNT TUBAN II (VIrsion 2.H 04/27/1994 07:27:53 * ********eeeeee**eeeeeeeeeeee sesseeeeeeeeeeeeeeeeeeeeeese*** Cry"ts1

. River Unit 3 eeeee**********eeseeeeeeeeeeees seeeeeeeeeeeeeeeeeeeeeeeeeeeeee- S/G 3 esseeeeeeeeeeeeeeeeeeeeeeeeeeee seeeeeeeeeeeeeeeeeeeestoeeseeos 94/04 RFC se***************o**ee*********

eeeeeeeeeeeeeeeeeee+*********** SPECIAL IwltstEST 20% * " " * " * * " " * " " " " " " " "

p**.

Page 2 SPECIAL INTEllSST - PIT SPEC. INT. 20% PIT LISTS R0W 'IVBE VOLTS 001 DEG IND %TW 14 CATION EXTENT 1 EXTENT 2 PROBE ANLST CALW Cof* Ef75 59 122 0.61 P 1 82 VOL 09S -0.66 095 098 $20 H8259 17 PIT MSG LxW 0.11 x 0.20 PIT 520 82600 77 60 119 0.90 P 1 72 VOL 078 -0.67 073 078 520 H8259 77 PIT MSG LxW 0.14 x 0.24 PIT 520 52680 77 61 42 0.33 P 1 52 VOL 075 -0.75 078 078 520 H8259 77 PIT MSG LxW 0.12 x 0.11 PIT $20 52680 77 63 34 0.34 P 1 44 VOL 075 -0.73 07S 078 520 H8259 77 PIT MSG LxW 0.14 x 0.14 PIT 520 52600 77 45 122 0.32 P 2 80 VOL CSS +0.75 OSS OSS $20 H8259 77 PIT MSG LxW 0.11 x 0.16 PIT 520 S2600 77 66 37 0.29 P 1 73 VOL 098 0.71 093 09S $20 H8259 77 PIT MSG LxW 0.18 x 0.19 PIT $20 $2680 77 67 31 0.28 P 1 9 VOL 07S 0.601 07S 07S 520 Hf259 77 PIT MSG LxW 0.10 x 0.21 FIT 520 $2680 77 67 52 0.46 P 1 55 VOL 075 -0.63 075 075 520 H8259 77 PIT MSG LxW 0.14 x 0.25 PIT 520 S2680 77 69 56 0.19 P 1 65 VOL 035 -0.64 03S 038 520 P2204 86 VOL MSG LxW 0.08 x 0.06 VOL 520 P2204 86 0.43 P 1 255 VOL CSS 0.65 095 09S 520 H8259 77 PIT MSG LxW C.18 x 0.20 PIT 520 S2600 77 0.65 P 1 68 VOL 073 -0.71 075 07S 520 H8259 77 PIT MSG LxW C.14 x 0.24 PIT 520 $2680 77 80 127 0.30 P 1 81 VOL 075 0.61 075 078 520 H8259 77 PIT MSG LxW 0.23 x 0.19 PIT 520 S2600 77 81 64 0.27 P 1 71 VOL 105 -0.77 105 10S 520 S2680 80 PIT MSG LxW 0.14 x 0.19 PIT 520 $2680 80 81 122 0.38 P 1 73 VOL 075 0.70 075 07S $20 $1848 81 PIT i MSG LxW 0.24 x 0.21 PIT 520 H8259 81 83 56 0.26 1 92 VOL C2S -6.40 025 02S 520 S1848 81 PIT MSG LxW C.21 x 0.23 PIT 520 H8259 81 45 124 0.66 P 1 80 VOL 08S +0.58 C85 08S 520 S1848 81 PIT MSG LxW C.34 x 0.18 PIT 520 H8259 81 88 12 0.27 P 1 63 VOL 075 0.69 0'S 07S 520 S1848 82 PIT l MSG LxW C.13 x 0.19 PIT 520 S1848 82 89 34 0.11 1 88 VOL LTS +14.69 LTS LTS 520 P2204 42 PIT MSG LxW .18 x 0.21 PIT 520 P2204 82 0.25 1 72 POL LTS +5.25 LTS LTS 520 P22C4 82 P:7 )'

MSG LxW  :.16 x 0.21 PIT 520 P2204 42 93 43 0.26 1 80 VOL LTS +6.00 LTS LTS 520 M6664 81 FIT MSG LxW 0.11 x 0.12 PIT $20 H8259 81 90 60 0.32 P 1 47 VOL C78 0.39 015 2?S 520 S1848 81 PIT MSG LxW C.1C x 0.11 PIT 520 H8259 81 92 28 MSG LxW C.15 x 0.17 PIT $20 P2204 82 0.35 1 83 VOL LTS +7.94 LTS LTS 520 P2204 82 PIT 93 27 0.27 1 28 VOL LTS +7.76 LTS LTS 52C P2204 82 PIT MSG LxW C.14 x 0.17 PIT $20 P2204 82 93 36 0.61 P 1 76 VOL 095 -0.76 095 095 52C S1848 81 PIT MSG LxW C 24 x 0.20 PIT 520 HB259 81 94 4J 0.43 P 1 67 VOL C9S -0.74 095 09S 52C S1848 81 PIT MSG LxW C.13 x 0.22 FIT 52: H8259 81 0.13 P 1 91 VOL C95 0.71 095 095 52: H8259 81 PIT P1 MSG LxW  : C6 x 0.19 PIT 523 H8259 81 96 66 0.50 P 1 71 VOL C7S -0.75 07S 078 520 S1848 81 FIT MSG LxW 0.18 x 0.23 PIT 520 H4259 81 i 96 70 0.49 P 1 66 VOL C7S 0.74 07S 07S 522 81848 81 PIT I MSG LxW .13 x 0.19 PIT 520 H8259 81

  • e 7 27 0.17 1 68 VOL LTS 11.12 LTS LTS 52: P2204 82 FIT MSG LxW C.14 x 0.17 PIT 52C P22C4 82 98 95 0.14 1 84 VOL LTS +7.00 LTS LTS 52; P2204 82 PIT MSG LxW C.13 x 0.17 PIT $2; P2204 82 100 32 0.24 P 1 76 VOL LTS +8.35 L!S LTS 52; M6664 81 PIT MSG LxW C.14 x 0.14 PIT 52: H8259 81 101 41 0.17 1 55 VOL LTS +15.92 LTS LTS 52C S1848 81 PIT MSG LxW C.14 x 0.14 PIT 520 H8259 81 101 91 0.18 1 63 YOL LTS 8.98 LTS LTS 520 P2204 82 PIT

eeeeeeeeeeepsaseeeeeeeeeeeeeees BMWT TURAN II (VIrsion 2.1) 04/27/1994 07:27:53 *********eeeeeee**se***eeeeeeee eeeeeeeeeeenaeeeeeeeeeeeeeeeeee Crysts! River Unit 3 eeeeeeeeeeeeeeeeeeee***eeeeeese ***o*********eeeeeeeeeeeeeeeeee S/b 3 eo**o**.oeseeeeeeeeeeeeeeeeeeee seeeeeeeeeeeeeeeeeeeeeeeeeeeeee 94/04 RFC esseeeeee*e******************** *******************************

'f, t

SPECIAL INTqAEST 20% *******************************

A ,

SPECIAL IlfrERSST - PIT

  • Page 3 SPEC. INT. 208 - PIT LISTS I' ROW 'IUBE VOLTS 001 DEG IND 47W I4 CATION 7 EXTENT 1 EX7 TNT 2 PROBE ANLST CAL 8 CCe94ENTS

.v.

MSG LxW 0.11 x 0.LS PIT 102 46 0.61 P 1 71 VOL 520 P2204 82 078 0.76 1 078 07S 520 S1848 81 PIT MSG LxW 0.17 x 0.32, PIT 102 95 0.37 P 1 69 VOL 520 H8259 81 075 -0.65 . 078 07S 520 R6452 82 PIT MSG LxW 0.16 s 0.20PIT 103 44 0.28 1 70 VOL 520 R6452 82 LTS +11.10 LxW LTS LTS 520 State 81 PIT MSG 0.19 x 0.17' PIT $20 M8259 81 103 90 0.21 1 89 VOL LTS +7.96 , I.TS LTS 520 M6664 81 FIT MSG LxW 0.15 x 0.15* PIT lue 31 0.12 1 64 VOL 4;

$20 R6452 81 LTS +9.72 MSG LxW LTS LTS 520 $1848 81 PIT 0,16 x 0.164 PIT 105 $20 M8259 81 32 0.17 1' 95 VOL LTS +7.91 LTS LTS 520 51848 81 PIT MSG LxW 0.13 x 9 17 PIT 520 M8259 105 81 42 0.35 P 1 51 VOL 078 -0.79 LxW 07S 075 520 $1848 81 PIT MSG 0.17 x 0.20 PIT 520 M8259 81 105 113 0.47 P 1 73 VOL 078 0.86 078 075 520 R6452 81 PIT MSG LxW 0.19 x 0.24 PIT 520 R6452 106 81 38 0.48 P 1 $$ VOL 078 0.70 075 075 520 H9259 LxW 81 PIT MSG 0.15 x 0.17 PIT 520 M8259 81 107 50 0.23 1 82 VOL LTS +9.31 LTS LTS 520 P2204 83 PIT MSG LxW 0.17 x 0.15 PIT 520 92204 83 108 33 0.23 1 80 VOL LTS ~11.96 +

LTS LTS 520 S1848 81 PIT MSG LxW 0.10 x 0.15 PIT 0.12 1 4 9 VOL .

520 E8259 81 LTS 10.01 LTS LTS L*W 520 Slett 81 PIT MSG 0.14 x 0.15 PIT $20 M82E9 81 0.28 1 74 VOL 1 6.95 LTS LTS 520 R6452 41 PIT MSG LxW 0.12 x 0.19 PIT 520 M8259 81 109 32 0 12 1 68 VOL LTS +9.11 LTS LTS $20 M(664 81 PIT MSG LxW 0.11 x 0.12 520 M6664 81 109 45 0.15 . 81 VCL LTS *14.66 LTS LTS 520 S:848 LxW 81 PIT MSG 0.1C x 0.17 PIT 520 Et159 81 109 52 0.34 P 1 65 VOL 075 .71 075 07S 520 Rf452 41 PIT I MSG LxW 0.22 x 0.21 PIT $20 E(452 116 49 81  !

0.50 P 1, 57 VOL 015 -!.75 f 07S 075 520 $1948 81 PIT Mf1 LxW 0.20 x 0.15. PIT 520 1(452 117 81 44 0.34 1 66 VOL LTS +7.31 LTS g LTF 520 $*f48 81 PIT MS2 LxW O.14 x 0.18 PIT $20 El259 81 110 40 0.14 1 115 VOL LTS 23.83 LTS LTS 520 $1548 81 FIT MSG LxW 0.11 x 0.10 PIT 520 El259 81 0.10 1 82 VOL LTS l.11 LTS LTS 520 51848 81 PIT MSG Lxh 0.17 x 0.10 FIT 520 E8259 119 81 48 0.34 P 1 61 VOL 07S 0.63 078 07S 520 El259 81 FIT I MSG LxW 0.20 x 0.20 PIT 520 E4259 81 119 63 0.28 P 1 77 VOL 075 .:.78 078 07S 520 ES259 81 PIT P1 MSG LxW 0.25 *x 0.22 PIT 125 520 Ef452 81 89 0.76 P 1 57 VOL 075 .59 rMS 07S

) 520 Ef259 81 PIT MSG LxW 0.17 x 0.17 PIT 520 Et159 81 127 58 0.35 P 1 78 VOL 072 0.81 075 075 520 f*648 81 PIT MSG LxW 0.14 x 0.21 PIT $20 Ei452

. 128 81 53 0.25 P 1 69 VOL 13S -0.72 133 135 520 9.6452 81 PIT NSG LxW 0.14 x 0.17 PIT 520 11452 51 132 63 0.35 P 1 78 VOL 078 -0.77 075 07S 520 51548 81 PIT MSG LxW 0.17 x 0.20 PIT 520 1(452 136 81 32 0.29 P 1 66 V3L 073 .70 07S 078 520 1(452 81 PIT MSG LxW 0.15 x 0.20 PIT 520 R(452 51 139 14 0.22 P 1 100 VOL 07S -:.80 07S 071 520 15452 41 PIT 146 MSG law 0.14 x 0.16 PIT 520 Ef452 81 14 0.38 P 1 72 VOL 075 -;.69 075 075 $20 1(452 82 PIT MSG LxW 0.18 x 2,17 PIT 520 R1452 82 146 26 0.17 P 1 88 VDL 098 -0.59 098 095 $20 Kf452 82 WAR P1 PEG LxW 0.22 x 0.14 WAR 520 E(452 82 0.30 P 1 71 VDL 095 +0.71 095 098 $20 Rf452 82 WAR P1 MSG LxW 0.30 x 0.22 WAR 520 15452 81 0.21 P 1 87 VOL 085 0.50 CSS C8S 520 $1848 82 PIT MSG Law 0.18 x 0.17 PIT 520 3(452 82

e*eeeeeeeeeeeeeeeeeeeeeeeeeeeee suprr TURAN !! (V rtion 2.1) eeeeeeeeeeeeeeeeeeeeeeeeeeeeese 04/27/1994 07:28:45 ****?**************************

Crystal River Unit 3 eseeeeeeeeeeeeeeeeeeeeeeeeeeeee ************************ee*****

S/3 3 e**********e*******eeeeeeeeeees eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 94/04 RFC essee"......"............".. """"**"**"*"***********=

r% SPECIAL INTERSST 20% *""***"*"*""""*""".

SPECIAL INTE5LEST - VOL Page 1 SPEC. INT. 208 - YOL LISTS ROW TURE VOLTS CHN DSG IND STW LOCATION EXTENT 1 EXTEFf2 PROSE ANLST CAL 8 cop 0ENTS 41 53 0.53 P 1 66 VOL 038 0.66 038 03S 520 R6452 83 VOL P1 MSG LxW 0.11 x 0.15 VOL 59 1 0.18 P 1 52 VOL 098 0.68

$20 R6452 83 098 09S 520 Slett 83 VOL MSG LxW 0.07 x 0.14 VOL $20 S1848 69 83 56 0.19 P 1 65 VOL 038 0.64 038 038 520 P2204 86 VOL MSG LxW 0.08 x 0.06 VOL 520 P2204 86 0.43 P 1255 VOL 095 0.65 098 098 520 H8259 77 PIT MSG LxW 0.14 x 0.20 PIT 520 82680  ??

0.65 P 1 68 VOL 078 0.71 078 078 520 H8259 LxW 77 PIT MSG 0.14 x 0.24 PIT .520 $2480 17 72 67 0.34 P 1 95 VOL 035 0.75 03S 035 520 S2680 80 YOL MSG LxW O.12 x 0.11 VOL 520 S2680 80 79 39 0.31 P 1 66 VOL 128 -0.68 12S 125 $20 P2204 82 VOL MSG LxW 0.17 x 0,23 VOL 520 P2204 82 92 17 0.38 P 1 72 VOL 095 -0.65 098 098 520 P2204 82 VOL MSG LxW 0.14 x 0.20 VOL $20 P2204 82 93 17 0.49 P 1 71 VOL 095 -0.59 098 098 520 P2204 82 VOL I MSG LxW 0.16 x 0.24 VOL 520 P2204 82 96 28 0.68 P 1 64 VOL 093 -0.66 098 CSS 520 P2204 82 YOL MSG LxW 0.13 x 0.23 VOL 520 P2204 42 140 21 0.37 P 1 62 VOL 078 0.74 073 078 520 R6452 82 V0L P1 MSG LxW 0.17 x 0.23 VOL 144 12 0.29 P 1 79 VOL 520 R6452 82 078 -0.62 078 078 520 P2204 82 VOL MSG LxW 0.17 x 0.21 VOL 520 P2204 82 145 4 0.23 P 1 36 VOL 07S -0.68 078 078 520 P2204 82 VOL MSG LxW 0.14 x 0.14 VOL 520 P2204 82 151 13 0.61 P 1 81 VOL 105 -0.56 105 108 520 P2204 82 VOL MSG LxW 0.24 x 0.21 VOL 520 P2204 82 Total Indications Found = 28 Total Tubes Found .12 Total Tubes in Input File = 12 k

l l

i l

1 i

l

eeeeeeeeeeeeeeeeeeeeeeeeeeeeees Start 7 URAN II (V3rElon 2.1) 04/27/1994 07:16:03 *ee***ee**ese**eeeeeeeeeeee**ee eseeeeeeeeeeeeeeeeeeeeeeeeeeose Crystal River Unit 3 eweeeeee**eeee**eseeeeeeeeeeees eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee S/3 A seeeeeeeeeeeeeeeeeeeeeeeeeeeees esseeeeeeeeeeeeeeeeeeeeee....e*

  • 94/04 RPO ******************************.

seeeees.....................ee* SPEC. IWr. t ot EIP 1 e*e*************+++++++e*****ee SPSCIAL INTERSST - VOL SPEC. INT. 105 81 - VOL LISTS ROW TUDE VOLTS CHN DEG IND STW 1hCATION gKTENT1 EXTENr2 PROSE AN127 CAL 8 CopeerTS 8 21 MSG LxW 0.11 x 0.11 VOL $20 H8259 72 0.42 P 1 85 VOL 075 +0.75 07S 078 520 M6664 72 VOL 19 2 MSG LxW 0.20 x 0.17 VOL 520 H4259 72 1.30 P 1 115 VOL 128 +0.70 12S 128 520 M6664 72 VOL 27 91 0.54 1 17 VOL 138 +13.36 138 135 520 R6452 14 VOL MSG LxW 0.12 x 0.12 VOL $20 M6664 74 P1 MSG LxW 0.29 x 0.19 MAR 520 R6452 74 P1 MSG LxW 0.44 x 0.20 WAR 520 P6452 74 28 93 0.92 P 1 123 VOL 00s +0.56 CSS 085 520 M6664 72 VOL MSG LxW 0.30 x 0.18 VOL 520 H8259 72 34 72 0.57 1 84 VOL 02S +15.67 023 025 520 M6664 72 VOL MSG LxW 0.19 x 0.18 VOL 520 H8259 72 41 116 0.97 P 1 127 VOL 12S +0.70 12S 128 520 M6664 72 VOL MSG LxW 0.19 x 0.19 VOL 520 H8259 72 65 87 0.31 P 1 75 VOL 04S +0.73 04S 045 520 M6664 74 VOL MSG LxW 0.10 x 0.17 VOL 520 H8259 74 75 29 0.65 P 1 123 VOL 078 -0.68 078 07S $20 M6664 72 VOL MSG LxW 0.15 x 0.19 VOL 520 M6664 72 77 17 0.57 P 1 124 VOL 07S -0.73 07S 07S $20 M6664 72 VOL MSG LxW 0.13 x 0.15 VOL 520 H4259 72 79 120 0.20 P 1 105 VOL 105 +0.70 10S 105 520 M6664 14 VOL 1 MSG LxW 0.18 x 0.19 VOL 520 M6664 74 Total Indications Found . 22 Total Tubes Found .10 1otal Tubes in Input File e 10 4

a eeeeeeeee*eeeeee*** ecee *******e' BWNT TURAN II (V rJion 2.1) 04/27/1994 07:30:55 *******************************

ese**ee** ecee **es*****o******ee , Cryots! River Unit 3 *******************************

  • eseeeeeeeteneece***eeeee*****e 3/8 3 *******************************

eeeeeeee**eestese*eseee**eseees 94/04 RFO *******************************

eeeeeee** ....e e.e ........*** SPSC. INT.10% EXP 1 ee** ee....eeeeeee.*** **e****.

Page 1 SPECIAL INTEREST - PIT SPEC. INT. 10% 81 - PIT LISTS tj ROW '!VBE VOLTS CHN DEG IND $1W IDCATION EX7 TNT 1 EXTENT 2 PROBE ANLST CALS C0fMENTS

  • 14 34 0.21 P 1 95 VOL 07S -0.78 075 07S 520 C9318 84 PIT MSG LxW 0.14 x 0.14 FIT 520 C9318 84 37 48 0.29 P 1 10 VOL 078 -0.52 078 675 520 C9318 84 PIT MSG LxW 0.14 x 0.10 PIT 520 C9318 84 39 42 0.30 1 113 VOL LTS +28.85 LTS LTS 520- C9318 84 FIT I MSG LxW '0.15 x 0.15 PIT 520 C9318 84 46 37 0.26 1 60 VOL LTS +7.61 LTS LTS 520 C9318 84 PIT MSG LxW 0.18 x 0.21 PIT 520 C9318 84 46 44 0.18 1 90 VOL LTS +9.68 LTS LTS 520 C9318 84 PIT I MSG LxW 0.14 x 0.14 PIT 520 C9318 84
47 48 0.19 1 30 VOL LTS +9.78 LTS LTS 520 C9318 84 PIT MSG LxW 0.16 x 0.15 PIT 520 C9318 84 l 49 49 0.11 1 79 VOL LTS +12.91 LTS LTS 520 C9318 84 PIT .

1 MSG LxW 0.17 x 0.16 PIT $20 C9318 84 f 50 35 0.20 1 54 V0L LTS +8,73 LTS LTS $20 C9318 84 PIT MSG LxW 0.23 x 1.19 PIT 520 C9318 84 l 51 48 0.15 1 49 VOL LTS +6.48 LTS LTS 520 C9318 84 PIT MSG LxW 0.14 x 0.19 PIT 520 C9318 84 54 51 0.41 1 94 VOL LTS +11.70 LTS LTS 520 C9318 84 PIT MSG LxW 0.15 x 0.18 PIT 520 C9318 84 55 32 0.30 1 68 VOL LTS +7.51 LTS LTS 520 C9318 84 PIT MSG LxW 0.11 x 0.16 PIT 520 C9318 84 ~

55 81 0.19 1 98 VOL LTS e6.72 LTS LTS 520 C9318 84 PIT MSG LxW 0.19 x 0.18 PIT 520 C9318 84 56 44 0.19 1 110 VOL LTS +9.06 LTS LTS 520 C9318 84 PIT MSG LxW 0.11 x 0.16 PIT 520 C9318 84 '

I $6 51 0.22 1 155 VOL LTS +7.31 LTS LTS 520 C9318 84 PIT MSG LxW 0.14 x 0.19 PIT $20 C9318 84 [

80 22 0.06 P 1 75 VOL LTS +30.86 LTS LTS 520 C9318 84 PIT  !

MSG LxW 0.15 x 0.15 PIT 520 C9318 84 89 34 0.22 1 39 VOL LTS +0.54 LTS LTS 520 C9318 84 PIT I MSG LxW 0.17 x 0.17 PIT 520 C9318 84 89 43 0.27 1 69 VOL LTS +6.66 LTS LTS 520 C9318 84 PIT MSG LxW 0.17 x 0.22 PIT 520 C9318 84 90 96 0.12 1 82 VOL LTS +9.34 LTS LTS 520 C9318 84 FIT 1 MSG LxW 0.16 x 0.14 PIT 520 C9328 84 95 92 0.11 1 86 VOL LTS 12.19 LTS LTS 520 C9318 84 FIT MSG LxW 0.12 x 0.16 PIT 520 C9318 84 101 31 0.15 1 54 VOL LTS +11.11 LTS LTS 520 C9318 85 PIT '

MSG LxW 0.19 x 0.17 FIT 520 C9318 85 103 34 0.07 1 48 VOL LTS 15.99 LTS LTS 520 C9318 85 PIT '

MSG LxW 0.19 x 0.17 PIT 520 C9318 85 103 35 0.12 1 45 VOL LTS 9.31 LTS LTS 520 C9318 85 PIT I MSG LxW 0.20 x 0.19 PIT 520 C9318 85 104 33 0.10 1 56 VOL LTS +8.22 LTS LTS 520 C9318 85 PIT C MSG LxW 0.20 x 0.19 PIT 520 C9318 85 0.05 1 85 VOL LTS +6.43 LTS LTS 520 C9318 85 FIT

  • MSG LxW 0.17 x 0.16 FIT $20 C9318 85 110 41 0.26 1 55 VOL LTS +8.70 LTS LTS 520 C9318 85 PIT MSG LxW 0.18 x 0.18 PIT 520 C9318 85  ;

Tctal Indications Found = 50 Total Tubes Found . 24 Total Tubes in Input File = 24 l

l i

t r

. . . . . . , - - . ~ . . . . . ~ . . _ ~ . . .~. - . - . ~ - . _ _ . - _ _ . - - - _ . . - . . - . . . . . , . . ..- . ~ . ~ - . - -

L t

1 eeeeeeeeeeeeeeeeeeeeeeeeeeeeees , sier TVRAN II (V3raion 2,1) 04/27/1994 07:31:33 m eee m e m m eeeeeeeeeee m e

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee* '

Cry:tal River Unit 3 e'ee* * ******** * ** m eeeeeen seeeeeeeeeeeeeeeeeeeeeeeeeeeeee S/3 3 ese****eese***e**eeeeeeeeeeeeee eeeeee......... ..........eeee. g4/04 apo seeeeeeeeeeeeeeeeeee m ee m m seeeeeeeeeeeeeeeeeeeeeeeeeeeee. SygC. Isrr.10% EXP 1 ************************ m **** i A

i 4

( ,

2 Page 1 '

1 SPECIAL INTEREST . VOL SPEC. INT,10% 81. VOL LISTS , j

, ROM TUBE VOLTS CHN DEG IND 67w 14 CATION EXTENT 1 EXTENT 2 PROSE ANLST CALS C099ENTS

?

I f 40 52 0.16 P 1 97 VOL 075 0.78 078 078 520 R6452 84 VOL  !

, MSG LxN 0.12 x 0.12 VOL $20 R6452 84 '

80 50 0.12 P 1 64 VOL 095 0.85 098 098 520 C9318 84 VOL j f

MSG LxN 0.14 x 0.14 VOL $20 C9318 84 134 38 0.18 P 1 0 VOL 078 0.00 078 073 520 R6452 85 VOL MSG LxN 0.15 x 0.14 VOL 520 R6452 85 150 15 0.23 P 1 0 VOL 078 0,77 07S 07S 520 R6452 85 VOL ,

MSG LxN 0.15 x 0.15 VOL 520 R6452 85 Total Indications Found e 8 i

Total Tubes Found = 4 Total Tubes in Input File a 4 l i

i

[

h i

i

[

l i

i

-g .-

(

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee geert 7USAN !! (Virtion 2.1) 04/27/1994 07:18:37 ese****eeeeeeeeeeeeeeeeeeeeeees seeeeeeeeeeeeeeeeeeeeeeeeeeee** Crystal River Unit 3 ***eeeeeeeeeeeeeeeeeeeeeeeeeees i i eseeeeeeeeeeeeeeeeeeeeeeeeeeees S/3 A **eeeeeeeeeeeeeeeeeeeeeeeeeeees eeeeeeeeee+*****eeeeeeeee*eseee 94/04 RF0 ++ m e****eeeeeeeeeeeeeeee**ese seeeeeeeeeeeeeeeeeeeeeeeeeeeeee gpgC. INT. 10% EXP 2 eeeeee. .......eeeeeeeeeeeeeee.

Page 1 SPECIAL IIrtEREST - VOL f SPEC INT. 10% 02 . VOL LISTS Roes 7UBE VOLTS CHN DEG IND iTW LOCATION EXTENT 1 EXTErt2 PROSE ANLST CALG COperts 10 6 0.41 P 1 75 VOL 125 +0.70 125 128 520 M6664 76 VQL MSO LxW 9.17 x 0.19 VOL $20 M6664 16 31 11 0.30 P 1 75 VOL 095 +0.51 098 098 520 M6664 76 VOL MSG LxW 0.17 x 0.19 VOL 520 R6452 16 Total Indications Found = 4 Total Tubes Found = 2 Total Tubes in Input File = 2 p

4 1

1 i

l i

l

.1

. _ _ . ._ _ _. m . . _ . m._ .

esseeeeeeeeeeeeeeeeeeeeeeeeeeee 3WWT TURAW !! (VJrsion 2.1) 04/27/1994 07:34:01

  • o * * * *
  • eee e ee *
  • e e* *es** e ee ee e es  ;

eeeeeeeeeeeeeeeeeeeeeeeeeeeeese Cryettl River Unit 3 *****eeeeeeeeeeeeeeeeeeeeeeeese seeeeeeeeeeeeeeeeeeeeeeeeeeeeee S/3 8 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 94/04 RPO seeeeeeeeeeeeeeeeeeeeeeeeeeeees eseeeeeeeeeee.................. SPgC. INT 10% EXP 2 e ee l eeeeee... *** e ******ees

(

P.S. 1 SPECIAL INTEREST PIT ,

SPEC. INT, 10% 82 - PIT LISTS ROW TUBE VOLTS CHN DEG IND %7W 14 CATION EXTENT 1 EXTENT 2 PROBE ANLST CALS CopMElfrS I 37 40 0.27 1 70 VOL LTS +9.20 LTS LTS 520 P2204 88 PIT MSG LzW 0.13 x 0.20 PIT 520 P2204 88 i 0.24 1 55 VOL LTS +5.87 LTS LTS 520 P2204 88 PIT LxW MSG 0.17 x 0.20 PIT 520 P2204 88 39 42 0.24 1 216 VOL LTS +14.27 LTS LT, 520 P2204 88 PIT MSG LxW 0.13 x 0.18 FIT 520 P2204 88 l 39 45 0.21 1 82 VOL LTS +8.04 LTS LTS 520 P2204 88 PIT I MSG LxW 0.13 x 0.19 PIT 520 P2204 88 44 46 0.18 1 59 VOL LTS +11.72 LTS LTS $20 P1790 89 PIT '

MSG LxW 0.14 x 0.16 PIT $20 P1790 89 45 46 0.13 1 42 VOL LTS +14.68 LTS LTS 520 P2204 48 PIT MSG LxW 0.14 x 0.13 PIT $20 P2204 88 46 44 0.15 1 42 VOL LTS +13.89 LTS LTS 520 P2204 88 PIT MSG LxW 0.16 x 0.17 PIT 520 P2204 88 47 48 0.15 1 43 VOL LTS +14.84 7.TS LTS 520 R6452 89 PIT ,

1 MSG LxW 0.16 x 0.15 PIT 520 R6452 89 49 47 0.15 1 6 VOL LTS +13.07 LTS LTS 520 80690 08 PIT MSG LxW 0.15 x 0.14 PIT $20 80690 08  !

$0 33 0.23 1 83 VOL LTS +7.24 LTS LTS 520 P2204 88 PIT  !

MSG LxW 0.13 x 0.16 FIT 520 P2204 88 51 49 0.26 P 1 271 VOL LTS *13.77 LTS LTS 520 M6664 92 PIT ,

1 MSG LxW 0.06 x 0.12 PIT 520 M6664 92 52 40 0.27 1 .10 VOL LTS +12.25 LTS LTS 520 P2204 88 PIT MSG LxW 0.16 x 0.16 PIT 520 P2204 88 58 38 0.37 1 98 VOL LTS +11.42 LTS LTS 520 R6452 09 PIT 1 MSG LxW 0.13 x 0.16 PIT 520 R6452 89 .

45 28 0.01 1 72 VOL LTS +11.03 LTS LTS 520 P2204 08 PIT MSG LxW 0.16 x 0.14 PIT 520 P2204 88

. 68 35 0.12 1 4 0 VOL LTS + 12. 4 0 LTS LTS 520 80690, 88 PIT MSG LxW 0.14 x 0.16 PIT $20 R6452 88 84 99 0.34 3 90 VOL LTS +8.67 LTS LTS 520 P2204 88 PIT MSG LxW 0.17 x 0.15 PIT 520 P2204 88 85 99 0.10 1 18 VOL LTS +10.26 LTS LTS 520 P2204 at PIT MSG LxW 0.17 x 0.17 PIT $20 P2204 88 89 34 0.14 1 69 VOL LTS +15.78 LTS LTS 520 P2204 08 PIT [

MSG LxW 0.11 x 0.15 FIT $20 P2204 88 90 44 0.20 1 85 VOL LTS +7.79 LTS LTS 520 P2204 88 PI; MSG LxW 0.13 x 0.15 PIT 520 P2204 88 94 43 0.28 1 116 VOL LTS +0.10 LTS LTS 520 80690 88 FI; MSG LxW 0.16 x 0.14 PIT 520 80690 88 97 27 0.18 1 66 VOL LTS +11.31 LTS LTS 520 P2204 89 PIT MSG LxW 0.13 x 0.17 PIT 520 P2204 89 100 91 0.16 1 75 VOL LTS +12.07 LTS LTS 520 R6452 88 PI!

MSG LxW 0.13 x 0.17 PIT 520 P2204 88 101 93 0.24 1 75 VOL LTS e5.01 LTS LTS 520 P2204 44 FIT MSG txW 0.16 x 0.15 PIT 520 P2204 08 0.28 1 60 VOL LTS +7.07 LTS LTS 520 P2204 08 FIT +

MSG LxW 0.12 x 0.12 FIT 520 P2204 80 j 104 51 0.13 1 34 VOL LTS +9.51 LTS LTS 520 P2204 88 PIT -

MSG LxW 0.16 x 0.16 FIT $20 P2204 88 i 105 36 0.22 1 45 VOL LTS +9.73 LTS LTS 520 P1790 49 PIT  ;

MSG LxW 0.16 x 0.13 PIT 520 P1790 89 i 107 40 0.31 1 67 VOL LTS +11.66 LTS LTS $20 P22C4 88 PIT MSG LxW 0.10 x 0.12 PIT 520 P2204 88 113 39 0.21 1 114 VOL LTS +13.79 LTS LTS 520 P2204 09 FIT MSG LzW 0.13 x 0.16 520 P2204 89 Total Indicatior.s Found = 56 Total Tubes Pou.ed . 26 Total tubes in Irput File = 26 r

, . . ~ . , - . - - - - - . . . . . . - . ~ . . n. - , .--~, .n - . -

eeeeeeeeeeeeeeeeeeeeeeeeeeeeees eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee BWWT TURAN II (VJr: ion 2.1) 04/27/1994 07:34:49 **********e***o***********o****

Cry;ts1 River Unit 3 **********e**eeeeee****eeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee S/G S ****eeeeeeeeeeeeeeeeeeeeeeeeeee seeeeeeeeeeeeeeeeeeeeeeeeeeeeee 9s/04 RPC *******************************

eseeeeee***eeeeeeeeeeeeeeeeeeee SPEC. It?, 10% EXP 2 *******************************

r Page 1 SPECIAL INTEREST - VOL SPEC. INT.10% 82 - VOL LISTS ROW TUDE VOLTS CHN DEG IMO 47W 14 CATION EXTENT 1 EXTENT 2 PROSE ANLST CAL 8 C0f9EENTS 7 10 0.37 P 1 60 VOL 088 +0.60 088 085 520 P2204 88 VOL MSG LxW 0.23 x 0.20 VOL 520 P2204 48 10 12 0.22 P 1 92 VOL 09S -0.82 098 095 520 P2204 88 VOL MSG LxW 0.15 x 0.15 VOL $20 P2204 80 32 71 0.33 1 149 VOL 06S -0.97 068 068 520 80690 S8 VOL MSG LxN 0.26 x 0.29 VOL 520 50690 88 40 49 0.28 P 1 71 VOL 078 -0.65 078 078 520 P2204 88 VOL ,

MSG LxW 0.07 x 0.14 VOL 520 P2204 88 65 115 0.51 P 1 61 VOL 045 +0.55 04S 045 520 R6452 89 YOL P1 MSG LxW 0.10 x 0.21 VOL 520 A6452 89 l 73 51 - 0.17 P 1 63 VOL 018 -0.67 038 035 520 P2204 88 YOL MSG LxW 0.14 x 0.14 VOL 510 P2204 88 75 123 0.09 P 1 49 VOL 048 +0.72 045 048 520 P2204 88 VOL MSG LxW 0.11 x 0.17 VOL 520 P2204 88 88 31 0.21 P 1 89 VOL 093 -0.72 095 095 520 P2204 48 VOL i MSG LxW 0.13 x 0.16 VOL 520 P2204 88 '

92 36 0.34 P 1 77 VOL 075 -0.59 07S 075 520 P2204 89 VOL MSG LxW 0.10 x 0.13 VOL 520 P2204 89 104 46 0.20 P 1 63 VOL 075 -0.66 075 07S 520 P2204 88 VOL MSG LxW 0.15 x 0.25 VOL 520 R6452 88 118 66 0.24 P 1 81 VOL 078 -0.77 075 078 520 P2204 88 VOL [

MSG LxW 0.13 x 0.20 VOL 520 P2204 88 119 12 0.19 P 1 98 VOL 075 -0.76 075 075 520 P2204 88 VOL MSG LxW 0,16 x 0.18 VOL $20 P2204 88 120 63 0.30 P 1 14 VOL 078 -0.74 075 075 520 P2204 88 VOL MSG LxW 0.16 x 0.21 VOL 520 P2204 88 127 96 0.21 P 1 64 VOL 103 +0.69 108 10$ 520 R6452 89 VOL P1 MS3 LxW 0.17 x 0.17 VOL 520 R6452 89 130 23 0.48 P 1 87 VOL 078 -0.00 075 07S 520 R6452 88 VOL P1 MSG LxW 0.18 x 0.17 VOL 120 R6452 88 131 50 0.30 P 1 68 VOL 075 -0.75 078 078 $20 P2204 88 VOL MS3 LxW 0.19 x 0.16 VOL $20 P2204 es 132 45 0.15 P 1 92 VOL 078 -0.70 075 07S 520 P2204 88 VOL MSO LxW 0.13 x 0.16 VOL 520 R6452 48 134 63 0.43 P 1 84 VOL 978 -0.64 07S 075 520 P2204 88 VOL MS3 LxW 0.16 x 0.20 VOL 520 P2204 88 Total Indications Found = 36 Total Tubes Found . 28 Total Tubes in Input File

  • 18 l

l t

i

m~ m .~. . m -. . _ . _ . . _ . m. .._ - . _ _ . . _ m .. . _ _ . .. ._ . .

[

j eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee gearr 7t3AN II (Vircion 2.1) 04/27/1994 01:21:04 **e***eeeeeeeeeeeeeeeeeeeeeeeee

- esseeeeeeeeeeeeeeeeeeeeeeeeeeee Cryst:1 River Unit 3 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eseeeeeeeeeeeeeeeeeeeeeeeeeeeen S/2 A eeeeeeeeeeeeeeeeeeeeeeeeeeeeee, i eseeosesseeeeeeeeeeeeeeeeee++ee 94/04 RPO eeeeeeeeeeeeeeeee**eeeeeeeeeeee eeeeeeeeeeee..................e SPgC. INT.108 EFP 3 i

e***eeeeeeeeeeeeeeeeeeee.**e ee Page 1 SPECIAL IW?ERSST - VOL

[ SPEC INT. 10% 83 - VOL LISTS l R0W TUDE VOLTS CHN DSG IND %7W 14 CATION EXTENT 1 EXTENT 2 PROBE ANLST CALS CCD9 EFTS 7 27 0.35 P 1 92 VOL 07S +0.56 078 078 520 L7871 86 VOL i MSG LxW 0.23 x 0.17 VOL 520 L7871 86 l 0.24 P 1 91 VDL 078 -0.58 078 078 522 L7871 8 6 VU*,

} Msc LxW 0.08 x 0.06 VOL 520 L7871 86 l 0.27 P 1 123 VOL 075 +0.65 078 078 520 L7871 86 VOL  ;

f MSG. LxW 0.08 x 0.11 520 L7871 86 i

22 59 0.18 P 1 72 VOL 108 +0.62 108 10S $20 L7871 86 VOL l M80 LxW 0.15 x 0.13 VOL 520 L7871 86

! 02 130 0.20 P 1 52 VOL LTS +24.67 LTS LTS 520 L7871 86 VOL

( MSG LxW 0.23 x 0.16 VOL $20 L7871 86 j 90 9 0.41 P 1 65 VOL 088 -0.64 00S OSS $20 L7671 86 VOL i MSG LxW 0.13 x 0.13 VOL 520 L7871 86 l 107 15 0.33 P 1 91 VOL 145 -0.92 148 148 520 L7871 86 YOL MSc LxW 0.16 x 0.13 VOL $20 L7871 86 148 36 MSG LxW 0.68 x 0.12 WAR $20 L7871 86 0.23 P 1 91 VOL los +0.79 105 105 $20 L7871 86 VOL MSG LxW 0.20 x 0.13 VOL 520 L7871 86 l 150 7 0.39 P 1 52 VOL 105 -0.80 10S 10s 520 L7871 86 VOL MSG LxW 0.14 x 0.09 VOL 520 L7871 86 Total Indications Found 19 Total Tubes Found a 7 Total Tubes in Input File = 7 ;l

[

! /-

I d

N i

i I

i t

s I v I

_ _ _ , m ~~ .

eeeeeeeeeeeeeeeeeeeeeeeee*eesee BWNT TUBAN II (Varsion 2.1) 04/27/1994 13:16:16 ~*******************o****eseeeee eeeeeeeeeeeeeeeeeeeee***esesses Cry %tti River Unit 3 *******************************

eeeeeeeeeeeeeeeeeeeeeeees**esee S/G B *****************************ee eseeen........eeeeee ********** 94/04 RPO *******************************

eseeeeeeeeeeeeeeeeeeeeeeeee**** SPEC. INT. 10% EXP 3 *******************************

SPECIAL INTEREST'- PIT SPEC, INT. 10% 83 - PIT LISTS ROW 'IUBE VOLTS CHN DEG IND n W LOCATION EXTElrf1 EXTElff2 PROBE ANLST CALS COPMENTS 15 35 0.33 P 1 63 VOL 09S -0.91 098 098 520 C9318 90 PIT MSG LxW 0.18 x 0.14 PIT 520 C9318 90 35 38 0.15 1 49 VOL LTS +27.05 LTS LTS 520 S1848 90 PIT MSG LxW 0.10 x 0.17 PIT 520 S1848 90 i 36- 40 0.13 1 94 VOL LTS +28.83 LTS LTS $20 S1848 91 PIT  !

MSG LxW 0.13 x 0.13 PIT 520 S1848 91 -

39 42 0.13 1 50 VOL LTS +8.77 LTS LTS 520 S1848 90 PIT t MSG LxW 0.17 x 0.14 PIT 520 81848 90 41 47 0.21 1 61 VOL LTS +9.51 LTS LTS 520 S1848 90 PIT MSG LxW 0.10 x 0.17 PIT 520 S1848 90 43 42 0.23 1 82 VOL LTS +9.53 LTS LTS 520 -S1848 90 PIT I MSG LxW 0.10. x 0.17 PIT 520 S1848 90 44 46 0.17 1 121 VOL LTS +8.46 LTS LTS 520 $1848- 90 PIT MSG LxW 0.13 x 0.13 PIT 520 S1848 90 47 48 0.19 1 75 VOL LTS +5.86 LTS LTS 520 S1848 90 PIT MSG LxW 0.17 x 0.17 PIT $20 S1848 90 57 51 0.19 1 49 VOL LTS +9.90 LTS LTS 520 S1848 90 PIT ,

MSG LxW 0.13 x 0.15 PIT 520- S1848 90 >

60 38 0.29 1 98 VOL LTS +9.56 LTS LTS 520 81848 90 PIT MSG LxW 0.17 x 0.15 PIT 520 S1848 90 63 27 0.09 P 1 55 VOL LTS +0.38 LTS LTS 520 M6664 90 PIT ,

MSG LxW 0.07 x 0.08 PIT 520 M6664 90 l

' 63 29 0.18 1 98 VOL LTS +6.20 LTS LTS 520 S1848 90 PIT l MSG LxW. 0.13 x 0.17' PIT 520 S1848' 90 I 66 28 0.25 1 55 VOL LTS +8.16 LTS LTS 520 S1848 90 PIT MSG L W e.07 x 0.13 PIT 520 S1848 90 84 90 0.07 P 1 79 VOL LTS +12.05 LTS LTS 520 M6664 90 PIT MSG LxW 0.13 x 0.13 PIT 520 M6664 90 92 93 0.20 1 68 VOL LTS +6.12 LTS LTS 520 S2680 90 PIT MSG LxW 0.17 x 0.17 PIT 520 S2680 90 96 29 0.09 1 50 VOL LTS +26.59 LTS LTS 520 S1848 90 PIT MSG LxW 0.09 x 0.15 PIT 520 S1848 90 96 116 0.09 1 70 VOL 155 +21.39 15S 15s 520 S1848 90 PIT MSG LxW 0.10 x 0.17 PIT $20 S1848 90 -

99 94 0.12 1 87 VOL LTS +5.79 LTS LTS 520 M6664 90 PIT MSG - LxW 0.13 x 0.14 PIT $20 M6664 90 110 45 'O.12 1 AOL ' LTS +11.65 LTS LTS 520 S1848 91 PIT ASG LxW 0.07 x 0.20 FIT 520 S1848 91 112 40 0.21 1 36 VOL LTS +6.31 LTS LTS 520 S1848 90 PIT MSG LxW 0.10 x 0.15 PIT 520 S1848 90 117 44 0.22 1 95 VOL LTS +10.76 LTS LTS 520 S1848 91 PIT MSG LxW 0.16 x 0.13 PIT $20 S1848 91 0.21 1 74 VOL LTS +8.68 LTS LTS 520 S1848 91 PIT MSG LxW 0.10 x 0.17 PIT 520 S1848 91 Total Indications Found e 44 Total Tubes Found = 21 Total Tubes in Input File = 21

- . - ~ . . . . - . . - ~ ~ ~ ~ ~ . . . - . ~ . . _ - ,n-.~. . _ - ~ - . . - - ~ . . ... .-. ~ _ - - ~. _ - ,~

eeeeeeeeeeeeeeeeeeeeeee******e* i 9

BWNT TUBAN II (Varsion 2.1) 04/27/1994 13:03:31 i eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. Crystal Riv$r Unit 3 ******************************* {

eeeeeeeeeeeeeeeeeeeeeeee**ee**e- S/G B ******************************* '

eseeeeeeee***ee****ee+++******* 94/04 SFO *******************************

esee..............ee. e***e e** SPEC, INT, 10% EXP 3 '*******************************

' i Page 1 l SPECIAL INTEREST - YOL  !

SPEC, INT 10% 83 - VOL LISTS i ROW TUBS VOLTS CHN DEG IND t?W LOCATIOtt EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 Co m ENTS .

5 30 0.58 P 1 83 VOL 098 -0.85 098 095 520 S2680 90 VOL MSG LxW 0.21 x 0.21 VOL 520 82680 90 l 27 94 0.27 P 1 71 VOL 11S +0.84 118 118 520 S2680 91 VOL P1 MSG LxW 0.20 x 0.18 VOL 520 52680 91 36 47 0.26 P 1 73 YOL 07S -0.73 078 078 520 S1848 90 VOL -

MSG LxW 0.10 x 0.15 VOL $20 81848 90 49 47 0.08 P 1 25 VOL LTS +13.54 LTS LTS 520 M6664 90 VOL MSG LxW 0.13 x 0.13 VOL 520 M6664 90 49 44 0.36 P 1 111 VOL 098 .

-0.73 098 095 520 S1848 90 VOL f MSG LxW 0.13 x 0.19 VOL 520 81848 90 .

51 37 0.22 P 1 78 VOL 09S -0.59 095 OSS 520 M6664 90 VOL i MSG LxW 0.13 x 0.14 VOL 520 M6664 90  ;

61 26 0.11 P 1 62 VOL 06S -0.67 068 06S 520 M6664 90 VOL MSG LxW 0.08 x 0.17 VOL 520 M6664 90 64 68 0.35 P 1 51 VOL 078 -0.69 07S 07S 520 M6664 90 VOL i MSG LxW 0.16 x 0.16 VOL 520 M6664 90  !

64 121 0.34 P 1 63 V0L 04S +0.98 045 04S 520 M6664 90 VOL MSG LxW 0.08 x 0.11 VOL 520 M6664 90 68 102 0.15 P 1 69 VOL 075 -0.64 078 078 520 M6664 90 VOL MSG LxW 0.11 x 0.11 V0L $20 M6664 90 69 45 0.28 P 1.101 VOL 09S +0.68 098 09S 520 S2680 90 VOL '

P1 MSG LxW 0.21 x 0.18 VOL 520 82680 90 l 79 40 0,23 P 1 96 VOL 11S -0.73 11S 118 520 81848 90 VOL MSG LxW 0.13 x 0.24 VOL 520 S1848 90 .

92 126 075 '

0.40 P 1 85 VOL -0.72 078 078 520 M6664 90 VOL MSG LxW 0.11 x 0.15 VOL 520 M6664 90 117 71 0.35 P 1 98 VOL 078 .

-0.73 078 07S 520 M6664 91 VOL ,

MSG LxW 0.08 x 0.12 VOL 520 M6664 91 117 73 0.27 P 1 110 VOL 078 -0.69 07S 07S 520 S1848 91 VOL .

MSG LxW 0.10 x 0.18 VOL 520 S1848 91 f 124~ 48 0.32 P 1 71 VOL 075 -0.74 078 078 520 M6664 91 VOL 1 MSG LxW 0.12 x 0.16 VOL 520 M6664 91 .!

126 53 0.30 P 1 89 V0L 078 -0.73 07S 07S 520 M6664 91 VOL MSG LxW 0.18 x 0.20 VOL. 520 M6664

[

91  !

129 52 0.21 P 1 61 VOL 07S -0.76 078 07S 520 M6664 91 VOL MSG LxW 0.13 x 0.20 VOL 520 M6664 91 130 47 0.28 P 1 78 VOL 078 -0.68 07S 07S 520 M6664 91 VOL i MSG LxW 0.15' x 0.15 VOL 520 M6664 91 147 23 0.28 P 1 62 VOL 035 0.67 03S 03S 520 M6664 91 VOL MSG LxW 0.23 x 0.20 VOL 520 M6664 91 Total Indications Found = 40 Total Tubes Found = 20 Total Tubes in Input File = 20 l

I 4

. . . . . -. . - . ~ . . . . . . . . ~ ~ . . - . . . . . . ~ . - - . . . . . . . . - . - - . . . - . . . . . . - . . - . - - . , . . . . . . . .

4 i

A i

i l II.G Figure 4-3 4  !

t l- The a ',a points on this Figure are contained within the following Tables from the same report. Calculated pressures are based on the BHK equation.  !

Table 4-3 for laboratory grown IGA-Table 4-6 for the pulled tube IGA Table 4-8 for the pulled tube wear

[

The Tables from Reference 1 are included herein for completeness sake.

8 I

s t

4 4

1 A-50

TSCRN 203 Technical Report FPC Propnetary Table 4-3 Laboratory IGA Samples (Calculations Based on Maximum Degradation Depth)

Tube Degradation Degradation Maximum Measured Calculated Calculated Calculated Calculated Section Width Length Degradation Burst Burst Burst Burst Burst (in.) (in.) Depth Pressure Pressure Pressure Pressure Pressure

(% TW) (psi) (psi) (psi) (psi) (psi)

(Framatome (BHK (Uniform (PNL Slot '

Equation) Equation) Thinness Equation)

Equation) 23-8 0.263 1.508 73.4 6850 4363 6210 5378 5530 23-D D236 1.500 66.6 6300 5056 6847 6502 6233 24-8 0.245 1.490 78.7 5800 4019 6128 4727 5401 24-D 0.246 1.510 80.4 5250 3874 6027 4419 5285-25-8 0.253 1.506 41.5 9750 7044 8006 8465 7623 25-D O.239 1.534 68.8 8400 4861 6704 6215 6070 44

P

-t TSCRN 203 Technical Report FPC Propnetary i

Table 4-6 1 Burst Pressure of Tubes with IGA Dearadation Tube Degradahon Degradahon Maximum Measured Calculated Calculated Calculated Calculated Section Width Length Degradation Burst Burst Burst Burst Burst - -

(in.) (in.) Depth Pressure Pressure Pressure Pressure Pressure  !

(% TW) (psi) (psi) (psi) (psi) (psi) l

' (Framatome (BHK (Uniform (PNL Slot Equation) Equation) Thinness Equation)

Equation) i I

i 41-44-2' O.106 0.069 54 9800 7155 8746 8705 8410 68-46-3 0.089 0.228 75 7000 4548 6705 5654 5996  !

97-91-2' O.098 0.076 54 10300' 7305 9022 8968 8636 106-32-2' O.070 0.062 40 10900' 8417 9568 9643 9305 72-49-2 0.029 0.041 19 10650 9638 9945 9998 9848 i

i Notes: l

1. Tube puted in 1992.

2.1992 burst pressure adjusted per Appendix A of Reference 3.  :

i i

i i

t 4-13

I TSCRN 203 Techmcal Report FPC Propnetary i

TABLE 4-8 Burst Pressure of Tubes with Wear Dearadation i Tube Degradation Degradation Maximum Measured Calculated Calculated Calculated Calculated Section Width Length Degradation Burst Burst Burst Burst Burst (in.) (in.) Depth Pressure Pressure Pressure Pressure Pressure

(% TW)' (psi) (pai) (psi) (psi) (psi) t (Framatome (BHK (Uniform (PNL Slot Equation) Equation) - Thinness Equation)

Equation) -

t 68-46-14 0.119 0.090 32 10850 8806 9802 9979 9544 j 68-46-18 0.141 0.425 19 10700 9005 9106 9534 8915 '

72-49-7 0 0 0 10650 10380 10120 10120 10120 72-49-13 0.134 0.094 16 10550 9416 9769 9903 6442 1

1. Based on tube wall thickness of 0.037 inches.  ;

I l

I l

t 4-16

.. - . . - . . . . - . - . - . - - . _ _ . _ . . . . ..- .. ~ -. . - - - _ . . . . . .. -

f II.H EPRI Growth Rate Study The data utilized in this study was previously provided to the NRC Staff as part of References 4, 5, and 6. It is contained within the 1992 EPRI pulled tube report as Attachment A to Appendix 8. Excerpt from the EPRI report is provided herein for completeness.

I 1

A-54

v ..

EPRILicensed Meterial e

' Attachment A - Comparative Analysis of Eddy Current Signals 52-51 3/18/89 4/30/90 5/14/92 Met ,

Locations (A). Volt / Phase /t(B)~ Volt / Phase /t(B) Volt / Phase /t(B) Locations /t(C)

  • 6.38/6.43/6.21 0.89/148/2 0.62/153/0 0.62/148/16 9.12-9.34/34 l

-8.66/8.64/8.48 0.47/94/66 0.57/92/68 0.33/79/82 11.39-11.57/53(2) l 9.89/9.87/9.66 0.88/139/17 0.75/136/21 0.61/150/13 12.57-12.78/52(2) l 10.77/10.73/10.59 0.19/80/77 0.24/47/96 0.30/66/89 13.50-13.68/45(2)- j

.12.2/12.07/11.91 0.19/66/86 0.22/45/97 0.16/62/91 14.82-15.11/40(2) ,

12.95/12.86/12.72 0.43/161/0 0.26/162/0 0.32/164/0 15.63-15.86/33(2) .

14.53/14.5/14.32 0.33/119/43 0.29/105/57 0.35/152/9 17.23-17.44/33 {

109-30 3/18/89 4/30/90 5/14/92 Met-Locations Volt / Phase /t Volt / Phase /t Volt / Phase /t Locations /t 6.04/6.29/6.13 -0.67/153/0 0.67/157/0 0.54/153/8 No met 8.34/8.54/8.46 0.75/125/36 0.66/126/35 0.65/137/31 15.75-15.95/50 9.52/9.77/9.66 0.33/131/28 0.27/129/31 0.23/135/33 No met- l 10.09/11.13/10.16 0.43/141/13 -0.50/135/23 0.35/132/37 17.5-18.54/40 '

10.91/11.13/- 0.18/126/35 0.16/117/45 -

No met d 12.72/12.95/12.87 0.13/45/97 0.27/53.93 0.18/26/60 No met 2 14.84/15.17/15.15 0.32/20/50 0.36/28/70 0.20/32/74 No met V

106 3/18/89 4/30/90 5/14/92 Met f; Locations Volt / Phase /t Volt / Phase /t Volt /Phame/% Locations /t 6.32/6.32/6.35 0.62/141/13 0.86/147/2 0.58/138/30 13.73-13.76/49(3) 6.87/6.80/6.96 0.83/164/0 0.93/165/0 0.63/176/0 14.21-14.37/51(2)

=

7.58/7.57/7.71 0.35/145/6 0.42/132/25 0.40/167/0 14.98-15.12/25(4) 8.01/7.97/8.09 0.39/11/27 0.38/15/37 0.26/22/51 15.38-15.50/24 ,

8.69/8.67/8.78 0.33/126/35 0.27/124/35 0.23/138/30 16.08-16.19/40(2) d 8.94/8.91/9.01 0.19/74/81 0.21/39/95 0.14/82/80 16.32-16.42/29  !

9.71/9.68/9.73 0.49/150/0 0.60/145/4 0.29/152/9 17.09-17.14/38 )

-9.98/9.97/--- 0.46/139/16 0.50/146/4 0.34/157/1 17.38-17.39/40 {

11.34/11.33/11.44.0.35/127/34 0.53/146/4 0.32/150/13 18.74-18.85/42(2) >

11.71/11.71/11.78 0.55/134/24 0.65/134/22 0.24/133/36 19.12-19.19/46(2) 13.09/13.20/13.34.0.57/133/25 0.58/140/14 0.36/150/13 20.5-20.75/39(3) 14.63/14.56/14.81 0.22/101/61 0.43/117/44 0.20/110/59 21.97-22.22/36(3)

Notes: (A) Eddy current flaw locations of respective tube from each outage (B) 600 kMs eddy current data and flaw depth estimates (C) Adjusted locations and associated met results, (X) indicates multiple # of indications 3/18/89 4/30/90 5/14/92 Difference  ;

Average Peak-to-Peak Volt 0.472 0.499 0.366 -234 i Average Phase Angle 120 117 127 +6% .

Average Percent Wall Loss 30 33 33 +9% j i

N RA

.. . _ _-. _ . _ _ .__...,_._...._.__._......__..._._________._..._..__.__.__...m__

- II.I B&W Growth Rate Study The data utilized within this study was previously provided to the NRC Staff as part of References 4 and 5. It is included herein for completeness.

I 1

i i

l 1

I I

s t

A-56 ,

_ _.- - -, ,c , . . . - . . . . - . , ,

i i 2 4

4 .

TABLE 4: s/'; se:* .t 5:;cv (s8eet i or ::

CR-3 GROWTH EVALUATION OF FREESPAN INDICATIONS 1900 1900 1902 DELTA RADO ROW COL LOCADON VOLTS VOLTS VOLTS VOLTS VOLTS S/G B 83 SS 001 + 31.44 0.00 0.71 0.11 1.1s S/G S 73 28 001 + 34.79 0.58 0.43 0.a3 1.05

$4 A 44 111 05 + 24.73 0.47 W 4 00 0.83 S/G S 74 28 05 + 2198 0.31 0.30 0.05 1.t e S45 74 28 05 + 29.M W 0.38 0.01 1.03 S/G S SB 22 03 + 3E20 at1 0N 0.07 1.11 S/G S 74 28 05 + 3&28 0.48 0.46 4 04 0.32 S/G A 4 18 003 + 9.08 1.18 0.08 0.M Ass 0.54 S/G A 29 73 Om + 11.80 0.87 1.03 0.14 1.1s S/G A 41 SS 004 + 9.83 0.M 0.42 4 12 0.79 S/G A 28 41 008 + 1.48 0.83 0.75 4 08 0.90 S/G A N 08 008 + 3.34 0.15 0.14 4 01 0.98 S/G A 27 99 000 + 12.40 0.71 0.M . 4 07 0.90 ,

S/G A 27 33 05 + 23.M 0.31 0.53 E01 1.02 4/G A 27 SS 008 + 31.29 0.38 OAS. 0.00 1.00 S/G A S1 88 010 + S.75 0.72 0.08 4 07 0.90 S/G A 16 41 011 + 14.07 0.57 0.70 0.13 1.23

$4 A SF 73 012 + 23.88 aM 0M Q.00 1.00 S/G S 1 21 1 013 + 1&SF Q.42 0.44 E05 1.08 S/G B 34 70 013 + 18.89 0.37 448 0.12 1.32 S/G S 80 41 014 + 11.88 0.88 0.01 4 04 0.M S/G S E 7 018 + 1.87 0.48 0.78' O.M 4 14 0.79 S/G B B 5 015 + S.85 0.88 1.01 0.18 1.23 S/G B e 7 018 + 5.a5 0.57 0.se 0.m 0.08 1.04 S/G S E 7 015 + 21.18 0.51 0.50 0.70 0.18 1.37 S/G S 27 N 015 + 22.41 0.55 0.01 0.03 1.08 8/G B Zr M 015 + 22.70 0.st 0.78 4a3 0.e5 S/G S E 7 018 + 24.75 0.73 0.81 0.08 0.13 1.18 S/G A 27 SS 018 + 48J9 0.38 4 38 0.08 1.08 SAB A 27 SS 015 + 43.85 4 85 0.8) 4 04 0.05 S/G S W 43 LTS + 5.37 0.34 0.38 0.04 1.12 S/G S de 44 LT5 + EOS EM 0.83 4 01 0.95

. S/G B 80 43 LTB + S.48 aa8 0.74 4 00 0.90 S/G S m 33 LTS + 4.58 c.39 0so att 1.28 S/G S M 39 LTS + SJO 0.37 0.35 4 04 0.88 43 LTS + 7.00 0.88 0.78 0.10 1.15 S/G B es 33

1 1

i l TMLE 4: s/N scewen study (sheet 2 of 4)

}

CR-3 GROWTH EVALUATION OF FREESPAN INDICATIONS i 1980 1982 DELTA RATIO 1900 j ROW COL LOCATION VOLTS VOLTS VOLT 5 VOLTS VOLTS 0.43- 0.82 0.00 1.17 j S43 44 47 LTS + 73 48 38 LTS + 7.40 0.81 0.97 0.18 12 8/G B 44 LTS + 7.42 0.54 0.M Q.10 1.19 l

34 8 de 117 44 LTS + 7.47 0.48 GAS 4 00 0.98 l S/G B 48 47 LTS + 7.30 E80; RM 0.06 1.07 l S/G S 44 LTS + S22 0.54 0.80 0.08 1.00 S/G S 30 l 0.30 0.M 0.00 1.18 i SM3 3 83 28 LTS + S.29 S/G B 44 44 LTS + 8.71 0M 0.5 0.04 1.08 j

81 M L19 + S.38 0.80 0.71 0.11 1.18

! 8/G S S/G B 104 51 LTS + SAS 0.71 0.78 404 1.00 l 0.41 0.81 0.00 1.08 S/G B 104 31 LTS + S.97 l

S/G S 108 as LTS + 10.11 W 0.88 4 00 0.08 M 90 LTS + 11.00 0.88 0.48 4 00 0.83 S/G B l

110 48 LTS + 112 0.M 0.51 4 11 0.m S/G S l

83 as LTS + 11.40 0.89 0.e8 EOS 1m l S/G S 97 2r LTS + 11.58 Q.88 0.78 4 08 0.M l S/G S 0.71 0.80 4 11 0.a4 S/GB 108 44 LTS +11.88 l 0.33 0.30 act 1.03

, 84 3 M as LTS + 1133 10B 44 LTS + 1138 0.57. 0.M 4 13 0.81 S/G S 0.M Q.48 0.07 1.18

$/G B M M L18 + 12.SF 98 48 LTS + 12.54 0.37 0.44 4 13 0.77 S/G S 52 31 LTS + 1188 , 0.M 0.43 0.47 4 07 0.57 S/G B 44 LTS + 13.5 0.48 0.88 0.10 1.m

$48 48 48 LTS + 18.01 0.48 0.88 0.13 1.31 S/G B 44 87 48 LTS + 1484 Q.SS OR 02 1.04 S/G S 0.78 0.79 0.00 1.00 S/G S 70 48 LTS + 14.71 0.37 0.48 0.00 1.24 S/G S SS W LTS + 15.48 0.38 0.54 0.08 1.00 S/G S 70 e LTS + 1187 0.58 0.51 4 01 0.88 a/G B 48 44 LTS + St80 4 01 f.02 AVG. 0Sf. '

att 0.18 STD.DSV.

4 I

5/N "arowtn Study (Sheet 3 of 4)

. TAS).E 4:

CR.3 GROWTH EVALUATION OF SUPPORT PLATE IN 1900 1900 1902 DELTA RATIO ROW COL LOCATION neS VOLTS 1m VOLTS am 4VOLTS 16 astVOLT 3 V s4A at se 007 + 0.00 0.83 0.77 4 08 0 SS 34 8 SS 113 00F.0.M OJO 0.84 0.98 403 1.08 S/G S ST 88 00F.0.88 E72 0.M 4 08 CE 34 8 W W 007 m 4 17 0.81 QJ1 0.74 SM S SS 12 007 2 0.40 Ret 4 12 0.38 SMS S M 38 007-0.73 0.M 438 0.38 45 ,

84 5 146 11 00F .m 114 15 00F.O.74 m W 4 11 4 73 l S4 A 0.08 0.41 0.13 1.19 53 00F m 0.88 84 8 119 0.38 OJS 4 07 0.3 S4 S te 12 00F.m 0.B 0.58 4 24 0.71 S45 130 28 007.&76 1.34 0.R 4 83 0.50 84 5 138 3 007 0.M 74 00F.0.77 1AS Em 4 74 0.48 84 8 17 0.80 0.33 Agr 0,eg 100 ES 00F.0.M SMR S 1.3 0.51 0.81 410 84 5 148 34 00F.O.78  ;

1.06 0.04 4 41 0.81 84 8 148 14 00F.0.M 1E 6 00F.O.M 0.41 &M 411 l S4A 14 1.00 0J4 AN 0.23 SAS S 15 5 00F.O.70 ESS QJ1 4 85 0.3 553 8 12 38 00F.0.M 1.41 OJS 1.tS 0.18 l 84 8' 13 38 007 0.M l 0.41 0.18 4 28 0.30

$4 8 141 3 00F.O.M QE 4 41 0.54 4 17 SM3 5 1B 4 00F 0.5 4 08 0.93 18 00F. AN 0.M 0.71 SNB B 144 0.M 4 41 0.81 4 10 SAS S 144 3 00F.0.91 0.38 QJF 0.14 4 23 SMB B 144 m 00F.481 0.98 OJ1 0.47 4 04 SAR S 117 M 00F.0.84 0.tr Q sf E58 4 00 SMB B 144 18 00F.0.M 418 0.73 0.71 0.56 SS S SF SS 00F.0.88 4 14 0.74 0.5 CJS 54 8 14F M 00F.O.88 0.01 1.08 f

0.64 aAS SAR S ISO 18 00F-0 E 0.08 1.14 OAS 0.40 SAB B 144 SS 00F.0JO 4 06 0.88 0.38 0.N 84 8 11F 71 007 0JS 0.m 1.04 0.81 0.58 S4A 73 13 008 + 0.00 4 08 0.91 0.SF E44 0.81 84 A B SS 006 + ES4 414 1.38 Q.44 0.88 S4 S SS 123 008 0.M 35

5 TM 4: S/N Growth Study (Sheet 4 of 4)

CR-3 GROWTH EVALUATON OF SUPPORT Pt. ATE IN 1900 1900 1982 DE.TA RATO ROW COL LOCATION VOLTS VOLTS VOLTS VOLTS OM VOLTS M 139 ON 0.74 0.75 W' O.N 4 10 l l

3/G A 0.48 0.05 1.13 0.40 a 12 000 477 s/G A 8 44 008- & 77 1.44 i W 4M 0.35 SMB 3 3/G B 148 28 000 481  ????? W 0.14 AN 0.17 QJ6 0.75 ' em 1.38 S/G S 38 12 008 W 1.38 7 000 444 44, QM 0.14 S/G B 31 Wi 0.00 4 47 QJe 8/G A 81 1 ON+ W 1.15 19 000 + W 0.5 i 0.48 45 0.00 S/G 8 4 0.00 0.st i 4 08 OM SMBA at 83 05 + 0.75 0.00 WI E80 4 10 0.33 5/G S as 0 000 + 0.78 SS 4 10 0.70 S/G S M IM 000 RW Wl OJS 0.88 0.06 1M S/G B M 4 ON-0.73 j 0.N: 0.48 4 27 0.01 S/G B B 38 ON-M 4 80 GM 12 1.2El OAS 8/0 5 8 48 05-0.79 0.44

, 0 21, 0.40 4 81 S/G S 14 7 ON 0.78 -

1X G.40 4 41 OJs 8/G B 4 M ON 481 1.10!

SJ1 j

&as 1.10: 4.44 4 48 10 it ON-W 8/G S 148 N ON GJS WI W 4 80 0.15 l S/G S 031 4 14 as?

0.4 81 S/GA 2E N 010 + 0.00 0.5 34 0.40 4 13 0.75 8/G S 148 30 010 + 0.88 0.44 0.00 0.14 1.38 8/G A se 3 010 + 0.78 448 02 4 14 0.87 l S/G B 141 3 010 W l 0.s8 0.07 1.14 08 010-0.75 0.40 l 8/G S 127 18 010 M 0.75 W 4 13 W 4/G B 151 444 Om 40. i.14 sa A 1. m 010.m 0.47 m 1.12 0.48 t/GA 144 38 010 0.78 0.M 0.51 AN 0A4

$/GA 144 W 010 0.75 4 19 0.75 AV48. 0SV. W 0.31 STO.0SV.

e l

36

i l

l II.J Figures 4-5, 4-6, 4-7, and 4-8 These scatter plots present the results of the Packer Engineering growth rate study. The indications utilized within this study, including the 1992 and 1994 field bobbin coil voltage readings, are provided.

l l

l 1

l l

'I l

i i

A-61 i i

l l

Dita Utilind in Rgure 4-5 i

Tube Identification Location 1992 Volts 1994 Volts 4 18 "03S 9.58 0.76 0.88 l 8 30 "09S 4.71 0.57 0.62 )

8 30 "LTS 21.33 0.46 0.67 J 8 30 *06S 20.14 0.6 0.97 13 57 "02S 22.27 0.51 0.74 ,

16 47 "01S 20.31 0.39 0.41 16 41 "11S 16.24 _

0.55 0.47 24 88 "10S 13.59 0.75 0.63 24 86 "08S 31.07 0.98 0.66 i 24 89 "13S 31.53 0.75 0.92 26 90 "15S 40.2 0.78 0.83 26 90 "15S 21.3 0.63 0.97 )

27 91 "09S 31.07 0.56 0.63 l 27 91 "02S 20.24 0.63 0.77 27 91 "11S 21.45 0.66 0.8 27 91 "07S 25.06 0.66 0.8 ,

27 93 "08S 12 0.74 0.81  !

27 91 "LTS 38.36 0.75 1.19 l 28 92 "08S 15.64 0.4 0.6 ,

29 73 "03S 12.16 1.04 1.06 33 52 "11S 35.22 0.48 0.55 34 72 "02S 15.67 0.85 1.35 l 35 59 "12S 12.36 1.43 1.47 )

39 1 "LTS 23.46 1.13 1.17 j 40 69 "10S 28.65 0.28 0.32 40 117 "13S 28.69 0.66 0.6 )

42 68 "11S 3.79 1.19 0.66 )

42 69 "09S 23.93 0.49 0.69 47 58 "05S 22.5 1.83 1.78 57 122 "08S 31.21 0.5 1.12 58 123 "09S 14.11 1.22 1.16 j 58 125 "13S 25.6 1.09 1.34  ;

60 65 "12S 8.7 0.27 0.31 61 88 "10S 8.81 0.45 0.45 l 63 128 "LTS 17.54 0.32 0.47 67 73 "12S 23.93 0.34 0.38 71 47 "11S 25.82 2.01 1.62 71 90 "11S 8.47 1.36 1.65 73 85 "0SS 13.59 2.09 2.1 82 130 "LTS 24.67 0.7 1.02 86 74 "11S 20.1 0.29 0.24 i

86 74 "11S 16.06 0.57 0.66 90 72 "12S 15.38 0.91 1.11 91 37 "01S 27.75 0.68 0.6 96 83 "06S 3.05 0.48 0.44 l 96 83 "06S 27.24 0.78 0.61 108 86 "0SS 3.47 0.32 0.27 i

i l

Page A-62 l

l l

Dit2 Utiliz:d in Figure 4-5

! Tube identification Location 1992 Volts 1994 Volts l 108 68 "LTS 40.45 0.41 0.41 1

108 86 "10S 27.99 0.46 0.41 l 108 70 "11S 32.12 0.52 0.63 109 72 "03S 18.66 0.74 0.73 111 68 "15S 10.16 0.47 0.67 113 112 "14S 9.73 0.49 0.56 120 77 "04S 2.36 0.64 0.89 129 69 "04S 23.49 0.47 0.47 131 89 "15S 5.49 0.89 0.65 135 63 "03S 34.01 0.58 0.6 135 63 "0SS 12.96 0.98 0.89 136 49 "10S 33.09 0.43 0.69 147 45 "12S 18.88 0.53 0.48 147 45 "12S 12.43 0.37 0.62 147 45 "11S 32.56 0.49 0.79 Page A-63

.- - - - ~ ~ . - . - --. - . _ . -. . . - . - - - - . .- - ... - . _ - - . - - ..

h Data Utilized in Figuro 4-6 i

L i Tube Identification Location 1992 Volts 1994 Volts

! 2 8 "12S 0.6 1.62 1.17 9 34 "12S 0.67 0.39 0.47 10 6 "12S 0.58 0.75 0.48 '

11 7 "12S 0.62 1.16 1.11

~

12 7 "07S -0.73 0.55 0.63 14 8 "07S -0.62 0.71 0.73 '

15 30 "06S 0.76 1.11 1.06 18 25 "09S 0.63 0.64 0.52 18 74 "06S 0.66 0.9 0.68 19 3 "12S 0.66 0.89 0.96 22 59 "10S 0.77 0.72 0.66 ,

22 79 "11S 0.61 2.71 -2.58 23 91 "08S -0.87 0.66 0.7 1 24 7 "12S 0.63 0.6 0.53  !

26 95 "08S -0.72 0.72 0.61 27 93 "08S 0.59 0.91 0.72 27 91 "08S 13.36 0.87 0.78 27 89 "04S -0.58 1.26 1.4 28 93 "08S 0.61 0.83 0.72 31 11 "09S 0.45 0.77 0.89 31 32 "10S 0.7 1.17 1.21 37 113 "11S 0.72 1.4 1.45 41 116 "12S 0.67 0.82 0.87 41 116 "11S -0.75 1.15 1.05 52 11 "03S 0.69 0.54 0.47 56 5 "09S 0.59 0.58 0.7 56 3 "10S 0.71 0.55 0.85 57 2 "08S 0.67 0.51 0.89 59 2 "08S 0.61 0.65 0.67 60 1 "10S 0.67 0.51 0.58 60 103 "04S 0.68 0.61 0.92 61 124 "08S -0.8 0.35 0.62 61 1 "09S 0.59 0.93 0.83 62 5 "09S 0.56 0.41 0.39 62 4 "07S -0.72 0.68 0.59 65 87 "04S 0.66 0.82 0.82 )

67 62 "10S 0.68 1.14 0.59 j 68 130 "11S -0.81 0.38 0.65 68 22 "12S 0.67 0.57 0.8 73 41 "12S 0.82 0.5 1.13 75 29 "07S -0.69 0.89 0.84 77 17 "07S -0.86 0.8 0.65 78 123 "08S -0.74 0.67 0.69 79 19 "04S 0.79 0.45 0.5 79 128 "10S 0.48 0.83 1.13 82 40 "08S -0.77 0.42 0.27 82 130 "11S -0.66 0.57 0.41 Page A-64

- . - . .- ~ .- . - . . ... . . . . . - . - - .

I Data Utilind in Fi0ure 4-6 Tube Identification Location 1992 Volts 1994 Volts 82 58 "10S 0.68 0.35 0.64 82 53 "10S 0.62 0.45 0.74 ,

85 9 "08S -0.79 0.57 0.47 )

90 9 "08S -0.74 0.7 0.96 94 129 "08S -0.7 0.85 1.06 96 70 "04S 0.71 0.66 0.81 107 31 "03S 0.51 0.57 0.6 107 31 "09S 0.68 0.44 0.62 l 114 109 "07S -0.92 0.4 0.45 121 32 "0SS -0.7 0.51 0.53 l 125 80 "04S 0.67 0.57 0.89 l 125 63 "08S 0.7 0.55 0.96 j 127 60 "O9S 0.71 0.59 0.84 134 3 "12S 0.68 1.4 1.21 135 71 "09S -0.86 1.64 2.09 )

136 80 "08S -0.67 0.68 0.68 l 143 48 "07S -0.81 0.46 0.51 146 26 "O7S -0.97 0.49 0.64 146 7 "08S -0.8 0.41 0.71  !

l 146 7 "08S 0.68 0.52 0.75 146 22 "07S -0.86 0.82 0.75 148 3 "11S 0.56 0.65 0.81 )

149 19 "12S -0.79 0.97 0.54 149 11 "08S -0.77 0.91 0.56 150 18 "10S -0.57 0.72 0.51 150 7 "10S -0.74 0.72 0.85 i

l Page A-65

.. ._m _m. _ . _ _ - _ _ _ .. .- ~ . _ . . - . . _ . . . - . . _ _ . ~ , _ . _ . - . _ , . - _ . . .. _

!~ Data Utilized in Fi0ura 4-7 Tube identification Location 1992 Volts 1994 Volts 7 11 """12S" 27.9 1.41 0.97 15 2 """10S" 26.32 0.57 0.46 25 4 " " " LTS " 24.58 0.62 0.72 25 10 """15S" 23.46 1.19 1.21 25 10 """15S" 24.76 1.21 1.23

. 27 92 """15S" 21.99 0.6 0.61 27 94 """11 S" 9.56 0.7 0.74 27 71 " "

  • LTS" 2.91 1.42 1.21 31 52 """14S" 13.4 0.35 0.39 t

34 70 """13S" 18.91 0.37 0.41 35 38 """LTS" 14.35 0.39 0.43 35 38 " " " LTS" 27.53 0.7 0.7 36 44 " " " LTS" 7.75 0.57 0.52 36 40 " " " LTS" 10.68 0.44 0.54 >

37 40 " " " LTS" 6.64 0.27 0.56 37 40 " " " LTS" 9.39 0.77 'O.66 37 41 " " " LTS" 7.11 0.74 0.74 37 44 " " " LTS" 5.86 0.64 0.78 38 41 """LTS" 6.53 0.64 0.75 39 41 " " " LTS " 12.56 0.37 0.37 39 41 " " " LTS " 22.1 0.44 0.43 39 41 " " " LTS " 30.2 0.46 0.47 39 41 " " " LTS " 26.22 0.49 0.55 39 42 " " " LTS" 9.15 0.72 0.65 39 41 " " " LTS" 11.23 0.52 0.75 39 45 " " " LTS" 8.31 0.78 0.89 39 41 " " " LTS " 9.62 1.27 1.13  :

40 47 " " " LTS " 13.22 0.53 0.48  ;

40 47 " " " LTS" 8.72 0.56 0.5 41 47 " " " LTS" 14.27 0.38 0.43 41 47 " " " LTS" 9.36 0.7 0.65 ,

42 41 " " " LTS " 8.52 0.49 0.38 42 39 " " " LTS " 7.82 0.32 0.45 42 48 " " " LTS " 9.16 0.49 0.54 43 80 """12S" 6.7 0.69 0.G' 43 42 " " " LTS " 9.34 0.71 0.63 44 46 " " " LTS " 12.09 0.73 0.66 45 37 " " " LTS " 10.98 0.38 0.37 45 46 " * " LTS " 12.29 0.59 0.6 45 77 """01 S" 30.29 0.77 0.7 46 44 " " " LTS " 7.25 0.47 0.6 46 46 " " " LTS " 8.4 0.54 0.61 46 44 """LTS" 13.07 0.58 0.64_

46 37 " " " LTS" 6.47 0.74 0.79 47 31 """13S" 9.55 1.03 1.23 48 38 " " " LTS" 10.88 0.34 0.67 49 42 " "

  • LTS" 9.48 0.49 0.46 Page A-67 i

P D:ta UtilizId in Figura 4-7 l

! Tube identification Location 1992 Volts 1994 Volts l

r e

49 48 " " " LTS" 10.51 0.35 0.49 1

. 49 41 ""LTS" 12.39 0.42 0.51 i 49 42 ""LTS" 8.87 0.66 0.52 j 49 49 ""LTS" 13.52 0.84 0.59 49 38 ""LTS" 10.35 0.61 0.6 -}

49 47 ""LTS" 10.34 0.68 0.63 49 48 ""LTS" 7.42 0.69 0.65 49 50 ""LTS" 10.71 1.02 0.65 49 48 " " " LTS" 14.18 0.9 0.84 49 ~35 ""LTS" 7.35 0.96 0.93 50 35 ""LTS" 12.26 0.23 0.51 50 33 ""LTS" 7.64 0.79 0.78 51 48 " " LTS

  • 9.29 0.65 0.64 51 48 ""LTS" 6.76 0.89 0.84 ,

52 81 " " " LTS " 12.9 0.51 0.39 52 41 ""LTS" 7.59 0.35 0.45 j 52 43 ""LTS" 8.22 0.62 0.66  ;

52 36 ""LTS" 10.1 0.67 0.73 52 40 ""LTS" 12.78 0.79 0.76 53 81 """LTS" 15.58 0.52 0.51 53 81 ""LTS" 16.47 0.57 0.65 54 37 ""LTS" 8.35 0.51 0.64 55 41 ""LTS" 15.36 0.3 0.3 55 41 " "

  • LTS" 10.85 0.49 0.44 i 55 81 ""LTS" 6.81 0.83 0.64 56 80 ""0SS" 22.92 0.31 0.26 56 82 ""LTS" 6.91 0.51 0.65 56 44 ""LTS" 8.33 0.82 0.81 56 51 """LTS" 8.07 0.81 - 0.81 56 53 ""13S" 15.99 0.74 0.81 56 50 ""LTS" 11.93 0.61 0.82 57 -40 ""LTS" 6.47 0.38 0.47

' '~ 57 44 ""LTS" 9.56 0.53 0.48

[ 57 96 ""LTS" 10.05 0.63 0.59 57 52 ""LT S" 7.28 0.74 0.82 57 38 ""LTS" 12.17 1.14 0.83 58 44 ""LTS" 8.12 0.56 0.4 58 83 ""LTS" 6.4 0.3 0.4 58 41 ""LTS" 11.63 0.63 0.41 58 27 ""LTS" 10.43 0.57 0.52 50 45 " " " LTS " 9.35 0.46 0.54 58 38 ""LTS" 7.51 1.56 1.44 59 25 " " LTS " 10.58 0.2 0.34 i 59 49 " " " LTS " 7.66 0.21 0.4 39 ""LTS" 0.5 0.47 59 11.11 59 26 " " " LTS " 8.54 0.46 0.49 59 39 ""LTS" 12.57 0.58 0.55 Page A-38

_ = , . - - , .

Data Utilized in Figurs 4-7 Tube identification Location l 1992 Volts 1994 Volts 61 26 "" LTS" 12.61 0.43 0.45 4 61 26 "' '! TS" 15.07 0.46 0.53 61 29 ""LTS" 10.36 0.37 0.57 62 27 " " " LTS " 7.34 0.52 0.59 62 33 ""LTS" 13.23 0.38 0.71 63 29 " " " LTS" 11.41 0.52 0.35 63 39 " " " LTS " 15.12 0.36 0.39 63 29 ""LTS" 8.14 0.49 0.44 63 29 ""LTS" 10.11 0.37 0.52 I 63 27 " " " LTS" 7.56 0.65 0.85 64 39 ""LTS" 11.94 0.24 0.3 )

64 39 ""LTS" 6.59 0.37 0.34 l 64 46 " " LTS " 11.53 0.38 0.41 64 46 " " LTS" 9.39 0.45 0.52

! 65 28 ""LTS" 9.27 0.3 0.77 65 28 ""LTS" 6.39 0.66 0.91 66 28 ""LTS" 8.47 0.72 0.78 67 36 ""08S" 19.87 0.56 0.48 67 43 ""LTS* 14.53 0.52 0.6 68 35 """LTS* 11.88 0.78 0.8 69 99 ""LTS" 10.96 0.49 0.45 1

70 42 " " " LTS" 15.41 0.47 0.56 l l 70 42 ""LTS" 14.41 0.,68 0.57

! 72 29 ""09S" 3.11 0.54 0.67 73 26 ""01 S" 12.73 0.38 0.3_3 73 74 ""03S" 27.68 0.37 0.39 l 73 39 " " LTS " 13.94 0.44 0.44 l 74, 24 """09S" 10.57 0.37 0.23 1 743 25 ""02S" 36.06 0.39 0.36 80 41 ""14S" 11.86 0.39 0.36 84 95 ""LTS" 8.19 0.44 0.4 84 95 ""LTS" 9.27 0.38 0.47 84 99 " " LT S " 9.93 0.32 0.94 86 32 ""LTS" 10.02 0.56 0.53 86 94 ""LTS" 7.74 0.59 0.59 89 43 " " LT S" 5.37 0.31 0.28 89 95 ""LTS" 12.99 0.55 0.48 89 95 " " " LTS " 14.59 0.65 0.51 89 96 " " " LTS " 8.34 0.4 0.52 89 96 " " LTS " 13.51 0.66 0.56 89 43 " " " LT S " 7 0.81 0.91 89 34 " " LT S " 12.45 1.54 1.4 90 94 "" LTS" 14.49 0.36 0.41 90 43 " " " LT S " 10.46 0.66 0.56 90 43 " " LT S" 8.03 0.64 0.65 90 44 " " " LTS " 7.65 0.77 0.82 90 43 ""LTS" 6.32 1 0.95 Page A-69 l

. - _ - . - ~ .-- .- . - _ _ - - . . - ..-.~ -. --- _-. --. -

l Data Utilind in Figure 4-7 Tube Identification Location 1992 Volts 1994 Volts I

, 92 93 ""LTS" 10.13 0.53 0.32 92 45 ""LTS" 6.53 0.54 0.49 92 44 ""LTS" 10.2 0.67 0.71 92 44 ""LTS" 9.01 0.63 0.81 92 96 ""LTS" 9.61 0.68 0.82 28 ""LTS" l 92 8.1 0.79 1 92 28 ""LTS" 6.73 1.42 1.32 92 28 ""LTS" 10.93 1.6 1.39 92 28 ""LTS" 8.79 1.18 1.45 93 22 """02S" 35.09 0.46 0.36 94 81 ""10S" 18.39 0.72 0.93 96 28 " " " LT S " 7.27 0.42 0.41 96 116 """15S" 23.65 0.69 0.76 97 94 ""03S" 5.65 0.68 0.64 97 27 ""LTS" 11.2 0.98 0.89 97 43 " " " LTS" 17.95 3.24 3.27 98 93 ""LTS" 7.01 0.19 0.43 98 43 " " " LTS " 12.48 0.69 0.44 98 95 ""LTS" 7 0.95 0.95 I 99 94 ""LTS" 6 0.7 0.88 100 94 ""LTS" 7.54 0.47 0.3 100 27 " " " LTS " 5.9 0.34 0.56 100 37 """12S" 31 0.59 0.74 100 32 ""LTS" 8.35 0.96 0.8 i 100 91 " " " LTS" 11.73 0.78 0.81 101 41 "" LTS" 16.24 0.43 0.41 l 101 31 " " " LT S" 12.5 0.68 0.63 l 101 93 " " " LTS " 5.24 0.79 0.67 101 31 " " " LTS" 11.35 0.61 0.71 101 93 ""LTS" 7.44 0.74 0.76 101 41 ""LTS" 15.02 0.81 0.9 101 91 ""LTS" 8.98 0.95 1.09 103 37 ""LTS" 15.4 0.37 0.27 103 37 " " " LTS " 9.99 0.53 0.5 l 103 44 " " " LT S " 13.82 0.45 0.5 l 103 81 """03S" 11.67 0.52 0.5 l 103 35 " " " LTS " 9.63 0.83 0.51 44 l

103 " " " LTS" 12.25 0.69 0.58 103 44 ""LTS" 11.57 0.99 0.7

~

103 90 " " " LTS" 8.14 1.05 0.78 103 34 " " LTS " 9.83 0.45 0.8 l 103 90 ""LTS" 11.71 0.63 0.93 i 104 51 ""LTS" 10.17 0.34 0.2 {

104 51 ""LTS" 9.75 0.76 0.5 '

104 36 " " " LTS " 6.94 0.48 0.52 104 33 ""LTS" 5.51 0.55 0.7 104 33 " " LT S " 6.52 0.81 0.76 l

Page A-70

. . - . . . . _ - . . _ - _.~ - . -.-.- - . - -.. -.-. _ . _ ..- ... -.. _ - - _ .~.

l  !

,  ?

!. Data Utilized in Figura 4-7 f

! i Tube Identification Location 1992 Volts 1994 Volts l

104 31 ""LTS" 10.12 0.91 0.88 105 43 "" " LT S " 11.8 0.27 0.27  !

105 36 ""LTS" 10.01 0.73 0.47 l 105 43 " " " LTS 16.58 0.31 0.47 105 43 """ LTS" 18.01 0.54 0.47  !

105 43 ""LTS" 12.22 0.34 0.49  !

105 32 ""LTS" 9.4 0.48 0.74 106 35 ""LTS" 8.7 0.37 0.61 106 47 ""LTS" 9.62 0.57 0.61

]

107 50 ""LTS" 5.71 0.25 0.35 i 107 50 ""LTS" 10.94 0.41 0.5 j 108 33 ""LTS" 13.01 0.29 0.28 l 108 33 ""LTS" 12.65 0.53 0.47 108 33 ""LTS" 6.36 0.74 0.59 109 32 " " LTS " 9.52 0.94 0.61 110 45 ""LTS" 11.16 0.71 0.32 110 70 ""03S" 26.41 0.5 0.47 111 41 ""LTS" 9.14 0.58 0.6 112 40 " " LTS " 9.31 0.52 0.56 112 40 " " " LTS " 9.99 0.65 0.56 112 40 " " " LTS " 13.33 0.51 0.78 112 40 ""LTS" 6.65 0.7 0.78 113 48 ""LTS" 16.97 0.43 0.53 113 48 ""LTS" 14.1 0.59 0.54 ,

113 39 ""LTS" 10.41 0.64 0.63 ,

113 39 ""LTS" 12.05 0.73 0.7 I 113 39 " " " LTS " 15.42 0.65 0.74 113 39 ""LTS" 11.23 0.63 0.9  ;

117 44 " " " LTS " 7.48 0.92 1.12  ;

118 40 " " " LTS " 6.35 0.31 0.37 j 118 40 ""LTS" 8.67 0.57 0.53 118 40 " " " LT S " 24.57 0.31 0.56 123 10 ""07S" 6.55 0.9 0.9 123 10 ""07S" 5.59 0.94 1.07 124 8 ""09S" 12.33 0.67 0.64 127 8 """06S" 8.28 0.43 0.39 127 8 ""04 S" 17.31 0.5 0.48 127 8 ""05S" 24.94 0.6 0.49 127 8 ""06S" 17.03 0.67 0.62 127 8 ""02S" 19.16 0.67 0.64 127 8 "" 12 S" 14.71 0.71 0.67 130 57 ""07S" 28.76 0.38 0.5 134 44 ""08S" 16.5 0.38 0.45 142 42 "*10S" 22.32 0.37 0.35 Page A-71

i i

D:ts Utilized in Figura 4-8 Tube identification Location 1992 Volts 1994 Volts 2 21 """10S" -0.68 0.75 0.79 4 16 """08S" -0.78 0.46 0.3_1 4 19 ""*09S" 0.62 0.67 0.7 4 24 """09S" -0.85 0.49 0.73 5 38 """09S" -0.82 0.71 1.08 6 46 """08S" -0.77 0.68 0.61 44 I 6 "" "09 S" -0.81 0.69 0.83 6 49 """09S" -0.82 0.29 0.9 7 26 ""* 12S" -0.86 0.29 0.56  ;

7 20 """07S" C.56 0.98 0.81 10 27 """09S" -0.83 0.61 0.53 l 10 12 """09S" -0.81 0.79 0.56 13 27 " "" 03 S" -0.72 0.41 0.45  !

13 9 """08S" -0.83 0.45 0.77 14 34 ""'07S" -0.86 0.82 0.89 14 7 " ""09 S" -0.95 0.53 0.91 15 5 """08S" -0.87 0.64 0.46 15 3 """09S" -0.81 0.56 0.63 15 35 ""*09S" -0.85 0.72 0.87 16 38 """07S" -0.72 0.45 0.48 17 74 ""*07S" -0.79 1.53 0.79 19 6 " ""09 S" -0.9 0.48 0.69 j 19 30 """07S" -0.86 0.63 0.86 21 40 """07S" -0.77 0.42 0.46 21 40 """09S" -0.82 0.69 0.78 22 35 """07S" -0.81 0.6 0.61 )

23 36 """03S" -0.72 0.66 0.54 23 12 """08S" -0.84 0.32 0.63 27 5 """09S" -0.79 0.52 0.6 28 6 """095" -0.85 0.54 0.49 29 42 " * ")3 S " -0.69 0.52 0.47 30 14 """09S" -0.84 0.43 0.64 31 7 """08S" -0.81 0.61 0.75 32 71 """06S" 1.04 0.75 0.43 33 8 """07S" 0.67 0.75 0.85 34 8 """09S" -0.93 0.34 1.29 35 42 """09S" -0.82 0.87 0.65 35 20 " "" 04 S" -0.69 0.93 0.95 36 47 """07S" -0.83 0.72 0.45 37 12 """09S" -0.72 0.59 0.38 37 48 """07S" -0.68 0.81 0.78 39 61 """09S" -0.79 0.56 0.56 39 49 """03S" -0.67 0.69 0.74 39 8 """07S" 0.65 0.8 0.78 40 52 """07S" -0.79 0.85 0.42 40 8 """07S" 0.77 0.44 0.44 40 49 """07S" -0.77 0.75 0.64 Page A-72

Dats Utilized in Figure 4-8 i Tube identification Location 1992 Volts 1994 Volts 4i j56 " ".03 S " -Q.S1 0.54 0.44 41 53 """03S" -033 1.27 0.88 42 69 """03S" -0.79 0.63 0.56 45 7 ""07S" 0.77 0.99 0.78 i 47 7 ""07S" 0.67 0.82 0.67  !

48 7 """07S" 0.53 0.82 0.77 52 30 ""10S" -0.85 0.83 0.98 I 54 124 ""09S" -0.77 0.53 0.28 1 54 6 """07S" 0.71 0.59 0.58  !

54 51 ""07S" -0.62 0.68 0.78 l 54 98 """05S" -0.28 0.98 0.98 )

58 125 """08S" -0.79 0.45 0.39 )

59 1 "*"09S" -0.78 0.93 0.6 l 59 113 ""07S" -0.8 0.75 0.63 59 122 ""09S" -0.74 1.19 1.04 60 117 """07S" -0.77 0.48 0.56 60 119 ""07S" -0.8 1.12 0.99 j 62 13 ""03 S" -0.67 0.68 0.51 -

63 34 ""07S" -0.68 1.17 1.33 63 69 ""07S" -0.74 1.44 1.46 64 68 """07S" -0.8 0.7 0.48 64 121 " " " 04 S" 0.65 0.71 0.83 65 115 " " " 04 S" 0.71 0.73 0.85 65 122 ""05S" 0.65 1.02 0.85 65 121 """05S" 0.62 0.96 1.03 65 119 """05S" 0.59 1.59 1.68 66 111 """05S" 0.71 0.58 0.95 66 126 " " " 04 S " 0.68 1.04 1.14 67 112 """05S" 0.65 0.58 0.63 67 33 ""07S" -0.65 1.07 0.78 68 56 ""09S" 0.56 0.42 0.6 68 125 """05S" -0.59 0.65 0.67 68 49 """09S" 0.73 0.52 0.74 68 48 """09S" 0.68 0.65 0.83 68 42 """09S" 0.65 0.6 0.92 68 21 """08S" -0.9 1.41 1.22 l 69 56 "*09S" -0.63 1.14 0.77  ;

69 56 ""07S" -0.68 1.31 0.98 69 47 """09S" 0.78 0.49 1.07 70 58 ""09S" 0.68 0.37 0.57 70 61 """09S" 0.68 0.59 0.62 70 125 " " " 12 S" 0.3 0.63 0.81 70 68 """075" -0.82 0.86 1.04 ,

71 43 ""09S" 0.71 0.56 0.92 I 72 64 ""10S" -0.7 0.48 0.6 l 73 66 ""05S" -0.64 0.59 0.66 73 56 ""07S" -0.72 0.57 0.68 Page A 73 * -

i

i Dita Utiliztd in Figura 4-8 l Tube identification Location 1992 Volts 1994 Volts  ;

i 73 66 " " " 06 S " -0.67 0.99 1.06 l 76 68 """07S" -0.76 0.63 0.54 l 79 126 """O7S" -0.76 0.64 0.41 ,

79 66 """07S" -0.68 0.51 0.55 ,

79 123 " " " 06 S " -0.81 0.36 0.61 79 21 **"07S" -0.69 0.82 0.86  !

79 39 """12S" -0.64 0.96 0.88 l 79 22 """1 1 S" -0.46 0.84 1 80 65 """10S" -0.71 0.35 0.43 ,

80 127 """07S" -0.79 0.98 0.86  ;

80 58 """07S" -0.8 1.11 1.2 l 81 122 """07S" -0.85 1.09 0.92 l 81 65 """10S" -0.71 1.04 1.07 l 81 64 """ 10S" -0.79 1.34 1.32 82 38 """09S" -0.74 0.56 0.42 1 82 6 """09S" -0.82 0.82 0.5 83 131 """09S" 0.77 0.56 0.59 84 75 ""*07S" -0.73 0.59 0.61 ,

84 39 """07S" -0.81 1.07 1.02 -

l 85 72 " " " 06 S " -0.78 0.49 0.49 l 85 38 """03S" -0.89 0.64 0.51 86 108 " " " 06S" -0.82 0.36 0.47 j 86 6 """09S" 0.51 0.85 0.59 86 53 " " " 07 S -0.78 0.87 0.71 87 112 """07S" 0.55 0.52 0.6 88 12 """07S" -0.79 1.28 0.76 92 126 """07S" -0.85 0.72 0.57 i 92 60 """07S" -0.77 0.87 0.63 )

92 36 """07S" -0.78 0.73 0.79 '

93 17 """09S" -0.79 0.92 0.79 l 96 70 """07S" -0.78 0.96 0.7  !

96 66 """0I 3" -0.75 1.24 1.08 96 28 """09S" -0.79 1.07 1.31 102 46 """07S" -0.81 1.52 0.88 102 95 """07S" -0.79 1.17 1.02 103 5 """09S" 0.62 1.17 1.12 j 104 46 """07S" _ -0 78 0.78 0.41 1 105 113 """07S" -0.79 0.9 0.53 105 42 """07S" -0.73 1.73 1.03 106 38 """07S" -0.83 1.39 0.49 106 61 """O7S" -0.86 1.21 0.91 109 84 """07S" -0.76 0.7 0.74 111 71 """03S" -0.77 0.48 0.54 111 66 """07S" -0.79 0.6 0.8 112 82 """07S" -0.8 0.6 0.63 i 114 70 """07S" -0.8 0.69 0.78 l 115 100 """07S" -0.77 0.47 0.48 Page A-74

4 D ta Utilind in Figura 4-8 Tube identification Location 1992 Volts 1994 Volts

! 115 43 """07S" -0.83 0.65 0.51

. 116 61 "" "07 S" -0.9 0.35 0.53 116 80 """07S" -0.83 0.42 0.54 116 49 """07S" -0.79 1.28 0.86 117 71 """07S" -0.76 0.7 0.65 118 99 """07S" -0.76 0.54 0.43 i 118 66 "*"03S" -0.75 0.54 0.48 118 66 """O7S" -0.75 0.77 0.81 119 66 """07S" -0.81 0.53 0.38 119 12 """07S" -0.84 0.77 0.62 119 48 """07S" -0.81 1.15 0.77 119 63 """07 S" -0.79 0.97 1.04 120 102 """07S" -0.77 0.67 0.49 ,

120 97 """07S" -0.78 0.68 0.58 '

120 63 """07S" -0.83 0.78 0.72 121 78 """03S" -0.76 0.56 0.36 121 48 """07S" -0.73 0.48 0.39 122 102 """07S" -0.93 0.6 0.62 123 74 "" "07 S" -0.82 0.63 0.57 125 98 "" " 10S" -0.71 0.51 0.56 I 125 89 """07S" -0.79 0.92 0.75 126 53 """07S" -0.8 0.7 0.65 126 43 """07S" -0.85 0.46 0.67 127 96 ""10S" -0.08 0.75 0.73 ,

127 58 """07S" -0.8 0.94 1.15 128 53 """13S" -0.84 0.91 1.28  ;

129 52 """03S" -0.75 0.49 0.31 '

129 52 """07S" -0.75 0.7 0.58 129 34 """07S" -0.81 1.19 0.97 130 40 """07S" -0.81 0.56 0.58 l 130 14 " " " 09 S" -0.82 0.65 0.63 l 130 47 """07S" -0.78 0.72 0.75 130 23 """07S" -0.81 0.75 0.82 131 50 """07S" -0.81 0.74 0.72 132 36 """07S" -0.8 0.55 0.43 132 45 ""*07S" -0.81 0.79 0.5 132 58 """07S" -0.78 0.64 0.58 132 63 """07S" -0.76 1.14 0.89 132 48 """07S" -0.8 1.12 1.07 133 35 ""07S" -0.76 0.62 0.48 134 78 """07S" -0.8 0.48 0.51 134 29 """07S" -0.78 0.64 0.55 134 63 " "" 07 5" -0.76 0.76 0.63 134 39 """07S" -0.81 0.51 0.78 135 47 " " " 07 S" -0.83 0.46 0.48 135 43 """09S" -0.89 0.52 0.68 136 49 """O7S" -0.79 0.62 0.47 Page A-75

l -

l I

t Data Utilizcd in Figuro 4-8 l Tube Identification Location 1992 Volts 1994 Volts t

136 32 """07S" -0.74 1.04 0.75 i 137 3 """ 10S" 0.66 0.58 0.62 138 20 """07S" -0.8 0.37 0.57 ,

138 30 """07S" -0.8 0.89 0.81 139 33 """07S" -0.77 0.34 0.36 l l 139 21 """07S" -0.76 0.59 0.47

! 139 74 """07S" -0.88 1.19 1.25 )

l 140 32 """07S" -0.82 0.49 0.59 I

(: 140 21 """07S" -0.69 0.98 0.84 l 140 15 """07S" -0.77 1.92 1.45 l- 141 57 """07S" -0.85 0.58 0.78 142 57 """07S" -0.85 0.41 0.36 142 38 """03S" -0.82 0.41 0.47 142 38 """07S" -0.82 0.5 0.49

, 142 24 """07S" -0.77 0.53 0.51 l 142 11 """07S" -0.75 0.43 0.61 l l 142 12 """07S" -0.78 0.57 0.63 142 14 """07S" -0.8 0.83 0.64 143 31 """07S" -0.79 0.52 0.51 ,

144 24 """07S" -0.77 0.47 0.45 l 144 56 " " " 07 S" -0.84 0.58 0.46 l 144 22 """07S" -0.79 0.55 0.57 144 13 """07S" -0.74 0.57 0.61 144 12 """07S" -0.89 0.98 0.99 144 57 """07S" -0.84 0.91 1 144 15 """07S" -0.78 0.77 1.02 144 49 """07S" -0.81 0.96 1.07 145 28 """07S" -0.8 0.54 0.64 145 8 """07S" -0.83 0.68 0.67_

145 34 "" "07 S" -0.8 0.69 0.77 146 30 """07S" -0.86 0.45 0.61 146 47 """07S" -0.88 0.51 0.66 146 14 """07S" -0.89 1.25 1.11 147 23 """07 S" -0.79 0.47 0.59 147 12 """07S" -0.77 0.69 0.67 147 24 """O7S" -0.77 0.49 0.8 147 44 " "" 07 S" -0.86 0.57 0.82

i. 148 38 """07S" 1.02 1.27 1.11 l 149 32 " " " 10S" 0.66 0.41 0.48 l

l 149 30 ""

  • 10S" 0.63 0.51 0.52 .,

l 149 11 """07S" -0.74 0.65 0.65  ;

! 149 13 """10S" 0.55 1.17 1.33 l

I 150 15 """07S" -0.83 0.81 1 i 151 3 """10S" -0.79 0.53 0.48 1

3 151 13 """10S" 0.61 0.56 0.54 i 151 13 " " " 10 S" -0.75 1.11 1.06 Page A-76

_ _ , , ~

II.K Refuel Outage 9 Special Interest MRPC Inspection Results This inspection was performed to satisfy NRC Confirmatory Action Letter 2-94-004, Item No. 4. The results have been provided to the NRC in previous correspondence, but the raw MRPC data from the inspection has not. This

-information, in conjunction with the bobbin voltage data provided in Reference 2 defines the scope of data adressed by the correlations using this data.

]

l l

l I

l l

l 1

I A-77

_ _ . _ . - - _ _ . ~ - - . - - ~ . . . . . - - - . . - . - . . - -

t eeeeeeeeeeeeeeeeeeeeeeeee***e** BWWT TUBAN II (Vareion 2.11 04/28/1994 09:40:35 ****************************ee*

eeeeeeeeeeeeeeeeeeeeeeeeeeeeees Crystal River Unit 3 **etee*****ee*e*ee* **eees ****  !

seeee........................ee S/G A eeeeeeee**eeee***eeeeeeeeeeeeee eeeeee...................***e.* 94/04 RFO *****5 <***e****eeee***** *ee*

  • eeeeeeeeeeeeeeee...e**e*eee *** SPEC. INT. 208 **** .******e*************e***

t Page 1 I LIST OF ALL SPECIAL INTERSST 208 MRPC CALLS ,

LIST OF ALL S.I. 208 CALLS l ROW TUBE VOLTS CHN DEG IND SDt LOCATION EXTENT 1 EXTENT 2 PPOBE ANLST CAL # COMMENTS 2 8 0.71 P 1~ 0 VOL 12S +0.67 12S 12S 520 H8250 71 PIT I MSG LxW 0.16 x 0.17 PIT 520 H8259 71 7 27 0.36 P 1 0 VOL CSS +0.63 088 08S 520 H8259' 71 VOL MSG LxW 0.24 x 0.20 VOL 520 H8259 71 I 8 30 NDF LTS +1.17 LTS LTS 520 C9318 71 18 14 0.32 P 1 66 VOL 065 +0.60 063 068 520 P2204 71 VOL MSG LxW 0.16 x 0.15 V9L 520 P2204 71 21 39 0.34 1 103 VOL 038 -3.37 03S 03S 520 C9318 71 MaM MSG LxW 0.32 x 0.32 MBM 520 C9318 71 24 86 0.64 1 69 VOL 09S -7.09 CSS 09S 520 C9318 71 MBM MSG LxW 0.46 x 0.37 MBM 520 C9318 71 24 88 NDP 11S +24.27 11S 11S 520 C9318 71 24 89 NDF 14S +5.76 14S 14S 520 C9318 '71 27 89 NDF 15S +33.90 15S . 15S $20 'P1790 82 NDF ISS +34.33 155 155 520 P1790 82 NDP 15S +34.79 15S 15S 520 P1790 82 NDF 045 -0.58 04S 045 520 C9318 71 NDP LTE +6.51 LTS LTE 520 L7871 85 NDF LTS +6.51 LTS LTS 520 C9318 71

'27 91 NDP 13S -6.68 13S 13S 520 L7871 85 NDF 07S +6.61 07S 07S 520 L7871 85 MSG LxW 0.37 x 0.17 WAR 520 L7871 85 0.26 P 1 0 WAR 14 07S +0.56 07S 07S 520 L7871 85 WAR 0.32 P 1 84 WAR 16 07S -0.67 07S 07S 520 L7871 85 WAR NDF 15S +24.93 ISS 15S 520 C9318 81 MSG LxW 0.37 x 0.15 WAR 520 L7871 85 NDP CIS -8.06 01S 01S 520 L7871 85 NDP 13S +12.98 13S 13S 520 C9318 71 NDF 13S -5.00 13S 13S 520 C9318 71 0.46 1 125 VOL LTE +14.97 LTE LTE 520 P2204 71 MBM MSG LxW 0.14 x 0.24 MBM 520 P2204 71 0.38 P 1 0 WAR 12 07S -0.68 07S 07S 520 P2204 71 WAR MSG LxW 0.34 x 0.24 NAR 520 P2204 71 RIC LTS +37.94 /r-_ 520 L7871 71 27 93 0.31 P 1 0 WAR 16 08S +0.77 085 088 520 L7811 85 NAR MSG LxW 0.58 x 0.15 WAR 520 L1871 86 0.18 P 1 98 WAR 10 CSS -0.76 08S 08S 520 L7871 85 WAR MSG LxW 0.24 x 0.12 WAR 520 L7871 85 2b 92 0.47 P 1 95 VOL 08S +0.67 08S OSS 520 L7871 71 VOL l MSG LxW 0.27 x 0.23 VOL 520 H8259 71 29 73 0.48 1 49 VOL 03S +10.92 03S 03S 520 P2204 71 MBM MSG LxW 0.41 x 0.31 MBM 520 P2204 71 31 32 0.38 P 1 60 VOL 10S +0.72 10S 10S 520 C9318 71 PIT P1 MSG LxW 0.15 x 0.21 PIT $20 H8259 71 35 59 1.09 1 12 VOL 12S +12.11 12S 12S 520 L1871 85 MBM MSG LxW 0.29 x 0.17 MBM 520 L7871 85 RIC 12S +12.36 520 L7871 71 37 113 0.52 P 1 0 VOL 11S -0.66 11S 11S 520 80690 78 VOL j MSG LxW 0.18 x 0.18 VOL 520 R6452 78 j 39 1 1.70 1 151 VOL LTS +24.55 LTS LTS 520 H8259 41 MBM j MSG LxW 0.81 x 0.17 MBM 520 H8259 81 2.40 1 352 DNG LTS +23.84 LTS LTS 520 P1790 81 41 116 0.24 P 1 0 VOL 11S -0.82 11S 115 520 R6452 78 VOL MSG LxW 0.19 x 0.20 VOL 520 R6452 78 42 68 0.44 1 279 VOL 115 +4.29 115 11S 520 B0690 80 MBM MSG LxW 0.33 x 0.29 MBM 520 R6452 80 47 58 1.73 1 102 VOL CSS +23.12 CSS 055 520 P1790 80 MBM MSG LxW 0.48 x 0.34 MBM 520 P1790 80 47 69 0.32 1 131 VOL LTS +42.52 01S LTS 520 R6452 80 PIT 1 MSG LxW 0.11 x 0.18 PIT 520 R6452 80 55 96 0.49 P 1 266 VOL 03S 40.77 03S 03S 520 B0690 80 PIT MSG LxW 0.16 x 0.16 PIT 520 80690 80 l' 58 123 NDF 09S +14.11 095 095 520 P1790 80 58 125 0.80 1 42 VOL 13S +26.06 13S 13S 520 *1790 80 MBM MSG LxW 0.59 x 0.34 MBM 520 P1790 80

.. ~ . . - . . . ~ . . - - - ~ - , , - - . - ~ . - - - ~ ~ . _ . . . . . . ~ . - . . .

eeeeeeeeeeeeeeeeeeeeees**eee*** BWNT TUBAN II (Varsion 2.11 04/28/1994 09:40:33 *******************************

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee Crystal River Unit 3 *******************************

eeeeee......................... S/G A ...............................

eeeeeeeeeeeeeeeeeeeeeeeeeeee*** 94/04 RFO *******************************

eeeeee......... *************** SPEC. INT. 20% m * * ************************

Page 2 LIST OF ALL SPECIAL INTEREST 20% MRPC CALLS LIST OF ALL S.I. 20% CALLS ROW TUBE VOLTS CHN DEG IND %Di LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 C0fe1ENTS 61 1 0.38 P 1 0 WAR 12 09S -0.61 09S 09S 520 P1790 78 WAR MSG LxW 0.17 x 0.16 WAR 520 P1790 78 61 124' O.20 P 1 44 VOL 10S .0.69 105 108 $20 R6452 80 PIT P1 MSG LxW 0.12 x 0.18 PIT 520 R6452 80 62 128 0.64 P 1 241 WAR 22 los +0.08 10S 108 520 80690 78 WAR MSG LxW 1,38 x 0.18 WAR 520 B0690 78 63 128 NDP LTS +16.57 LTS LTS 520 P1790 80 67 62 0.46 P 1 102 VOL 105 -0.73 10S 10S 520 H8259 81 VOL MSG LxW 0.20 x 0.20 VOL 520 H8259 81 11 90 0.39 1 77 VOL 115 +9.27 11S 118 520 C9318 81 MBM MSG LxW 0.39 x 0.30 MBM 520 C9318 81 71' 128 0.28 P 1 0 WAR 6 10S -0.68 10S 10S 520 P1790 80 WAR MSG LxW 0.65 x 0.18 WAR 520 P1790 80 MSG LxW 0.57 x 0.11 WAR 520 P1790 80 71 129 0.30 P 1 0 WAR 7 los +0.00 10S 10S 520 P1790 80 WAR.

MSG LxW 1.56 x 0.16 WAR 520 P1790 80 73, 128 0.36 P 1 0 WAR 9 08S -0.57 08S 08S 520 P1790 80 WAR MSG LxW 0.53 x 0.17 WAR 520 P1790 80 90 72 0.52 1 38 VOL 12S +15.57 12S 12S 520 .B0690 82 MBM MSG LxW 0.27 x 0.23 MBM 520 B0690 - 82 135 63 0.87 1 111 VOL CSS +12.54 055 OSS 520 P1790 80 MBM MSG LxW 0.48 x 0.37 MBM 520 R6452 80 135 71 0.43 P 1 0 WAR 11 09S -0.79 09S 09S 520 P1790 80 WAR MSG LxW 0.26 x 0.19 WAR 520 P1790 80 149 11 0.38 P 1 0 WAR 10 08S -0.62 083 088 520 P1790 80 WAR l MSG LxW 0.19 x 0.20 WAR 520 P1790 80 l

.149 19 0.22 P 1 95 VOL 12S -0.81 12S 12S 520 80690 80 PIT MSG LxW 0.14 x 0.12 PIT 520 R6452 80 0.53 P 1 0 WAR 15 10S -0.62 10S 10S 520 80690 80 WAR MSG LxW 0.37 x 0.19 WAR 520 B0690 80

.149 - 28 MSG LxW 0.67 x 0.19 WAR- 520 B0690 80 0.47 P 1 0 WAR 14 10S -0.37 105 10S 520' B0690 80 WAR 150 16 0.60 P 1 0 WAR 17 10s -0.55 10S 10S 520 B0690' 80 WAR MSG LxW 0.82 x 0.21 WAR 520 R6452 80 Total Indications Found = 99 Total Tubes Found = 40

.J

, - _ - _ . .- _m_ _ . - _ _ _ ~ . . - . _ . _m.. __ _ _ . . _ _ __ _ . . . . _ _ , . . _ . _ . . _ _ . _

eeeeeeeeeeeeeeeeeeeeee.eeeeee.* BWNT TUBAN II (V6rsion 2.1) 04/28/1994 10:00:19 **********************.*e*****. t

.ee............................ Crystal River Unit 3 ****************************+++ f ee...................... .***** S/G B *****************************a*

eeeee.......................*** 94/04 RFO *******************************

e.ee.......ee........*.******** SPEC, INT. 20% *******************************

Page 1 LIST OF ALL SPECIAL IlfrEREST 20% MRPC CALLS LIST OF ALL S.I. 20% CALLS EXTENT 1 EXTENT 2 PROBE ANLST CAL # C0f9ENTS ROW TUBE VOLTS CHN DEG IND %'Df LOCATION 7 11 NDF 12S +27.90 13S 12S 520 P1790 76 e 7 20 0.16 P 1 96 VOL 07S +0.78 07S 07S 520 P1790 76 6 MSG LxW 0.12 x 0.15 $20 P1790 76 ,

+0.59 085 520 P1790 76 WAR 5 7 30 0.30 P 1 86 VOL 085 08S MSG LxW 0.38 x 0.18 520 P1790 76 0.55 P 1 67 VOL 095 -0.79 09S 095 520 P1790 76 WAR MSG LxW 0.41 x 0.21 520 P1790 76 f 13 9 0.18 P 1 79 VOL Ots -0.81 088 OSS 520 P1790 76 MSG LxW 0.19 x 0.14 520 P1790 76 13 - 43 0.18 P 1 54 VOL 09S -0.79 09S 09S 520 P1790 76 MSG LxW 0.16 x 0.17 520 P1790 76 15 69 0.24 P 1 121 VOL 07S +0.62 07S 078 520 H7791 76 MSG LxW- 0.20 x 0.15 520 H7791 16 16 JO 0.40 P 1 67 VOL 09S 0.71 09S 09S 520 P1790 76 MSG LxW 0.11 x 0.19 520 P1790 76 17 74 0.19 P 1 57 VOL 075 +0.69 07S 075 520 P1790 76 MSG LxW 0.20 x 0.17 520 P1790 76 0.35 P 1 72 VOL 07S -0.80 075 07S 520 P1790 76 MSG LxW 0.16 x 0.17 520 P1790 76  ;

25 10 NDF 15S +23.46 15S 15S 520 P2204 83 NDF 15S +24.76 ISS 15S 520 P2204 83 0.55 P 1 0 WAR 17 095 +0.57 09S 09S 520 P2204 83 WAR MSG LxW 0.50 x 0.22 WAR 520 P2204 83 NDP LTS -3.20 LTS LTS 520 P2204 83 NDP LTS -2.22 LTS LTS $20 P2204 83 ,

NDF LTS 3.86 LTS LTS 520 P2204 83 27 71 MSG LxW 0.28 x 0.43 MBM 520 S2680 77 0.24 1 62 VOL LTS +2.78 LTS LTS 520 P2204 77 MBM 27 94 0.35 P 1 62 VOL 09S +0.78 09S 09S 520 H8259 77 PIT MSG LxW 0.12 x 0.19 PIT 520 S2680 77 0.65 P 1 0 WAR 20 CSS +0.53 088 08S 520 R6452 77 WAR MSG LxW 0.40 x 0.16 WAR 520 S2680 77 35 20 0.19 P 1 61 VOL 048 -0.67 04S 04S 520 H8259 77 PIT MSG LxW 0.19 x 0.15 PIT 520 S2680 77 35 42 0.34 P 1 55 VOL 09S -0.74 09S 09S 520 H8259 77 PIT ,

MSG LxW 0.13 x 0.21 PIT 520 S2680 77 36 40 NDF 09S 0490 09S 09S 520 C9318 77 0.17 1 68 VOL LTS *23.42 LTS LTS 520 H8259 77 PIT MSG LxW 0.10 x 0.12 PIT 520 S2680 77 37 12 NDF LTS +27.32 LTS LTS 520 P2204 83 37 - 40 0.23 1 61 VOL LTS +27.32 LTS LTS 520 P2204 83 PIT MSG LxW 0.17 x 0.17 PIT 520 P2204 83 0.19 1 93 VOL LTS +27.21 LTS LTS 520 H8259 17 PIT MSG LxW 0.11 x 0.16 PIT 520 S2680 77 37 41 0.15 1 72 VOL LTS +6.58 LTS LTS 520 H8259 77 PIT MSG LxW 0.18 x 0.14 PIT 520 $2680 77 38 38 0.52 P 1 59 VOL 095 0.75 09S 09S 520 H8259 77 PIT MSG LxW 0.14 x 0.21 PIT 520 82680 77 39 41 0.21 1 77 VOL LTS +9.72 LTS LTS 520 H8259 77 PIT MSG LxW 0.15 x 0.17 PIT 520 82680 77 41 47 0.23 1 26 VOL LTS +14.18 LTS LTS 520 H8259 77 PIT MSG LxW 0.09 x 0.12 PIT 520 S2680 77 41 53 0.53 P 1 66 VOL 035 -0.66 03S 03S 520 R6452 83 VOL P1 MSG LxW 0.11 x 0.15 VOL 520 R6452 83 41 56 0.16 P 1 4 2 VOL 03S -0.62 03S 03S 520 H8259 77 PIT MSG LxW 0.12 x 0.11 PIT 520 S2680 77 43 42 0.13 1 80 VOL LTS +8.97 LTS LTS 520 H8259 77 PIT MSG LxW 0.16 x 0.14 PIT 520 S2680 77 E 43 80 0.86 P 1 35 VOL 12S 6.41 12S 128 520 H8259 77 PIT MSG LxW 0.16 x 0.14 P?T 520 S2680 77 .

45 7 0.43 P 1 74 WAR 14 078 +0.68 07S 07S $20 R6452 83 WAR P1 MSG LxW 0.43 x 0.20 WAR 520 R6452 83 45 35 0.40 P 1 36 VOL 07S -0.78 07S 07S 520 H8259 77 PIT KSG LxW 0.16 x 0.38 PIT 520 S2680 77 46 37 0.23 1 14 VOL LTS +10.39 LTS LTS 520 H8259 77 PIT

,,m- -

- - . - . - . ~ . _ - - _ - . _- -- . _ . ~ . - - - , - . - . . _ -

r

- 'eeeeeeeeeeeeee**eee*****e****** BWNT TUBAN II (Vsrgion 2.1) 04/28/1994 10:00:19 *****e**o********e***eeee*e****

  • eeeeeeeeeeeeeeeeeeeee**e****ee Cry 2tal Rivsr Unit 3 ***ete*e***********ee****ee*.ee j eeee*....................e* ... S/G 3 ............................ ..  !

eseeeeeeeeeeeeeee***eee.++e**** 94/04 RFO *******************************

e*eee4************************* SPEC. INT. 208 *****.***********.******** **+e 5

i Page 2 [

LIST OF ALL SPECIAL INTEREST 208 MRPC CALLS ,

LIST OF ALL S.I. 20% CALLS ROW WBE VOLTS CHN DEG IND 8TW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CALS C069ENTS MSG LxW 0.08 x 0.19 PIT 520 S2680 77 f 46 44 0.24 1 86 VOL LTS +5.60 LTS LTS 520 H8259 77 PIT 6 MSG LxW 0.12' x 0.14 PIT 520 S2680 77 47 31 0.61 1 67 VOL 13S- +9.23 13S 13S 520 H8259 77 MBM MSG LxW 0.35 x 0.25 MBM 520 82680 77 47 48 0.22 1' 108 VOL LTS +11.30 LTS LTS 520 H8259 77 PIT' MSG LxW 0.08 x 0.10 PIT $20 S2680 77 48 38 0.18 1 82 VOL LTS +10.92 LTS LTS 520 H8259 77 PIT <

MSG LxW 0.19 x 0.16 PIT 520 82680 77 1 48 47 0.19 1 76 VOL LTS +7.52 LTS LTS 520 H8259  ?? PIT MSG LxW 0.19 x 0.16 PIT $20 S2680 77 49 35 0.13 P 1 88 VOL LTS +7.24 LTS LTS 520 H8259 77 PIT 1 MSG LxW 0.18 x 0.14 PIT 520 S2680 77  ;

49 48 0.21 1 62 VOL LTS +13.74 LTS LTS 520 R6452 77 PIT  !

MSG LxW 0.13 x 0.16 PIT 520 S2680 77

)

49 50 0.31 1 84 VOL LTS +10.69 LTS LTS $20 H8259 77 PIT MSG LxW 0.17 x 0.12 PIT 520 S2680 77 I

51 48 0.22 P 1 44 VOL 073 -0.69 078 07S 520 H8259 77 PIT MSG LxW 0.15 x 0.15 PIT 520 S2680 77 52 36 0.24 1 81 VOL LTS +6.48 LTS LTS 520 H8259 77 PIT MSG LxW 0.16 x 0.16 PIT 520 S2680 77 53 39 0.28 1 131 VOL LTS +12.43 LTS LTS 520 H8259 77 PIT MSG LxW 0.11 x 0.16 PIT 520 S2680 77 54 98 1.33 P 1 66 VOL CSS -0 14 CSS 055 520 H8259 77 PIT j MSG LxW 0.35 x 0.27 PIT 520 .S2600 77  ;

57 38 0.16 1 90 VOL LTS +11.95 LTS LTS 520 E8259 77 PIT i MSG LxW 0.09 x 0.14 PIT 520 S2680 77 )

57 44 0.15 1 95 VOL LTS +9.46 LTS LTS 520 H8259 77 PIT l MSG LxW 0.13.x 0.15 PIT 520 S2680 77 l

%7 52 0.16 1 45 VOL LTS +6.76 LTS LTS 520 H8259 '77 PIT MSG LxW 0.11 x 0.16 PIT 520 S2680 77 58 38 MSG LxW 0.18 x 0.17 PIT 520 $2680 77 ,

0.33 1 59 VOL LTS +9.06 LTS LTS 520 H8259 77 PIT 1 MSG LxW 0.14 x 0.18 PIT 520 S2680 .77 NDF LTS +9.59 LTS LTS 520 P2204 77 l 0.31 1 100 VOL LTS +11.71 LTS LTS 520 H8259' 77 PIT MSG LxW 0.08 x 0.19 PIT $20 S2680 77 -

NDF LTS +12.34 LTS LTS 520 P2204 77 0.29 1 15 VOL LTS +7.05 LTS LTS 520 H8259 77 PIT i 59 1 0.18 P 1 52 VOL 095 -0.68 09S 09S 520 S1848 83 VOL MSG LxW 0.07 x 0.14 VOL 520 $1848 83  ;

59 122 0.61 P 1 82 VOL 09S -0.66 09S 09S 520 H8259 17 PIT MSG LxW 0.11 x 0.20 PIT 520 S2680 77 60 119 0.90 P 1 72 VOL 075 -0.67 07S 07S 520 H8259 77 PIT  !

MSG LxW 0.14 x 0.24 PIT 520 S2680 77 )

61 42 0.33 P 1 52 VOL 078 -0.75 078 07S 520 H8259 77 PIT MSG LxW 0.12 x 0.11 PIT 520 S2680 77 63 34 0.34 P 1 48 VOL 078 -0.73 07S 07S 520 H8259 77 PIT l MSG LxW 0.14 x 0.16 PIT $20 S2680 77 l

64 3 NDF 15S -0.87 15S ISS 520 P2204 82 '

65 122 0.32 P 2 80 VOL OSS +0.75 CSS OSS 520 H8259 77 PIT MSG LxW 0.11 x 0.16 PIT 520 S2680 77 66 37 0.29 P 1 73 VOL 095 -0.71 09S 09S 520 H8259 77 PIT MSG LxW 0.18 x 0.19 PIT *

$20 S2680 77 67 33 0.28 P 1 9 VOL 078 -0.60 07S 078 520 M8259 77 PIT MSG LxW 0.10 x 0.21 PIT 520 S2680 77 l l

67 52 0.46 P 1 55 VOL 078 -0.63 07S 07S 520 H8259 77 PIT MSG LxW 0.14 x 0.25 PIT 520 S2680 77 68 21 NDF 08S -0.90 C89 08S 520 P2204 77 69 - 56 NDF 10S +0.00 108 10S 520 P2204 86 NDF 08S +0.00 085 08S 520 P2204 86 NDP 06S +0.00 06S 065 520 P2204 86 '

NDF 05S +0.00 CSS OSS 520 P2204 86 NDP 04S +0.00 04S 04S 520 P2204 86 0.19 P 1 65 VOL 03S -0.64 03S 03S 520 P2204 86 VOL l

ss .

_ , . ~ . - .. . . _ -~. . . . . - . . .

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee BNNT TURAN II (V2rsion 2.1) 04/28/1994 10:00:19 ********************e********ee eeeeeeeeeeeeeeeeeeeeeeeeeeeeees CryIttl Rivsr Unit 3 *******************************

-eeeee e e e e e e e e e e e e e e e e e e e e e e *

  • e e S/G B *******************************

eeeeeeeeeeee++eeeeeeeee******** 94/04 RPO *******************************

eeeeeeeeeeeee.. ............e** SPEC. INT. 20% ******=********ee..............

Page 3 LIST OF ALL SPECIAL IlrrEREST 20% MRPC CALLS LIST OF ALL S.I. 20% CALLS ROW TUBE VOLTS CHN DEG IND STW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL # CODNEttrS MSG LxW 0.08 x 0.06 VOL 520 P2204 86 I 0.43 P 1 255 VOL 09S -0.65 09S 09S 520 H8259 71 PIT MSG LxW 0.18 x 0.20 PIT 520 S2680 77 0.65 P 1 68 VOL 07S -0.71 07S 078 520 H8259 77 PIT MSG LxW 0.14 x 0.24 PIT 520 $2680 77 72 67 0.34 P 1 95 VOL 035 -0.75 038 038 520 S2680 80 VOL 7 MSG LxW 0.12 x 0.11 VOL 520 S2680 80 73 66 MSG LxW 0.50 x 0.17 WAR 520 S2680 80 '

O.75 P 1 0 WAR 26 068 -0.68 068 065 520 P2204 80 WAR 77 125 'O.33 P 1 70 WAR 11 118 -0.67 118 115 520 H8259 77 WAR l MSG LxW 0.38 x 0.20 WAR 520 S2680 77 )

79 39 0.31 P 1 66 VOL 12S -0.68 12S ' 12S 520 P2204 82 VOL MSG LxW 0.17 x 0.23 VOL $20 P2204 82 80 58 NDP 07S 0.81 07S 07S 520 M6664 81 80 127 0.30 P 1 81 VOL 07S -0,61 07S 07S 520 H8259 77 PIT MSG LxW 0.23 x 0.19 PIT 520 S2680 77 81 64 0.27 P 1 71 VOL 10S -0.77 10s 10S 520 S2680 80 PIT l MSG LxW 0.14 x 0.19 PIT 520 S2680 80 81 122 0.38 P 1 73 VOL 07S 0.70 07S 07S 520 51848 81 PIT MSG LxW 0.24 x 0.21 PIT 520 H8259 61 81 126 0.55 P 1 0 WAR 22 CSS +0.72 CSS 08S 520 M6664 81 WAR l 1

P1 MSG LxW 0.18 x 0.14 520 M6664 81 82 6 0.38 P 1 0 WAR 12 095 -0.61 09S 093 520 S1848 82 WAR l MSG LxW 0.29 x 0.22 WAR 520 R6452 82 83 56 0.26 1 92 VOL 028 -6.40 02S 02S 520 S1848 81 PIT MSG LxW 0.21 x 0.23 PIT 520 H8259 81 84 . 39 NDP 07S -0.81 07S 07S 520 P2204 86 85 124 0.66 P 1 80 VOL 08S +0.58 08S 08S 520 S1848 81 PIT MSG LxW 0.34 x 0.18 PIT 520 H8259 81 88 12 0.27 P 1 63 VOL 078 -0.69 07S 07S 520 S1848 82 PIT i

- MSG LxW 0.13 x 0.19 PIT 520 S1948 82 l 88 47 NDF 098 -0.72 09S 093 520 M6664 81 89 34 0.11 1 88 VOL LTS +14.69 LTS LTS 520 P2204 82 PIT MSG LxW 0.18 x 0.21 PIT 520 P2204 82 0.25 1 72 VOL LTS +5.25 LTS LTS 520 P2204 82 PIT MSG LxW 0.16 x 0.21 PIs 520 P2204 82 90 43 0,26 1 80 VOL LTS +6.00 LTS LTS 520 M6664 81 PIT MSG LxW 0.13 x 0.12 PIT 520 H8250 81 90 60 0.32 P 1 47 VOL 078 +0.39 078 07S 520 S1848 81 PIT MSG LxW 0.10 x 0.11 PIT 520 H8250 81

' 92 17 0.38 P 1 72 VOL 095 -0.65 09S 09S 520 P2204 82 VOL MSG LxW 0.14 x 0.20 VOL 520 P2204 82 92 28 MSG LxW 0.15 x 0.17 PIT 520 P2204 82 0.35 1 83 VOL LTS +7.94 LTS LTS 520 P2204 82 PIT .

' 93 17 0.49 P 1 71 VOL 098 -0.59 09S 09S 520 P2204 82 VOL l MSG LxW 0.16 x 0.24 VOL 520 P2204 82 l 93 27 0.27 1 28 VOL LTS +1.76 LTS LTS 520 P2204 82 PIT l;

MSG LxW 0.14 x 0.17 PIT 520 P2204 82 93 36 0.61 P 1 76 VOL 098 -0.76 09S 09S 520 S1848 81 PIT MSG LxW 0.24 x 0.20 PIT 520 H8259 81 93 42 NDP 03S -6.77 03S 03S 520 M6664 81 94 43 0.43 P 1 67 VOL 095 -0.74 09S 09S 520 81848 81 FIT MSG LxW 0.13 x 0.22 PIT 520 H8259 81 0.13 . 1 91 VOL 095 +0.71 09S 098 520 H8259 81 PIT P1 MSG LxW 0.06 x 0.19 PIT 520 H8259 81 96 28 0.68 P 1 64 VOL 09S -0.66 09S 09S 520 P2204 82 VOL MSG LxW 0,13 x 0.23 VOL 520 P2204 82 96 66 0.50 P 1 71 Vol 078 -0.75 075 07S 520 S1848 81 FIT l MC 3 LxW 0.18 x 0.23 PIT 520 H8259 81 96 70 0.49 P 1 66 VC L 07S -0.74 078 07S 520 S1848 81 PIT mig LxW 0.13 x 0.19 PIT 520 H8259 81 97 27 0.17 1 68 V)L LTS +11.12 LTS LTS 520 P2204 82 PIT 930 LxW 0.14 x 0.17 PIT 520 P2204 82 97 48 1.46 1 199 VOL ISS +27.50 15S ISS 520 M6664 81 MBM MSG LxW 0.37 x 0.33 MBM 520 H8259 81

. , .~ - .. -. -- _ _ ~ ~ ~ . - - - - - - ~ ~ . -. . - - . ~ . - - - - - - . - . -

.eeeeeeeeeeeeeeeeeeeeeeeeeeeeee* BWNT TUBAN II (Varcion 2.1) 04/28/1994 10:00:19 *****e***************e********* ,

eee....*....******.....******** Crystal River Unit 3 ******************************* '

, eeee..............e************ S/G B *******************************

eeeeeeeeeeeeeee.*************** 94/04 RFC ******************************* .

eeee*................*ee.******* SPEC. INT. 20% ******************************* r i

Page 4 LIST OF ALL SPECIAL IlrfEREST 20% MRPC CALLS LIST OF ALL S.I. 20% CALLS .

j' ROW TUBE VOLTS CHN DEG IND STW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CALS COPNENTS 98 95 0.14 1 84 VOL LTS +7.00 LTS ,LTS 520 P2204 82 PIT l MSG LxW 0.13 x 0.17 PIT 520 P2204 82 100 32 0.24 P 1 76 VOL LTS +8.35 .

LTS LTS 520 M6664 81 PIT l MSG LxW 0.14 x 0.14 PIT 520 H8259 81  !

100 90 NDP UTS +12.97 UTS UTS 520 M6664 81 101 41 0.17 1 55 VOL LTS +15.92 LTS LTS 520 S1848 81 PIT MSG LxW 0.14 x 0.14 PIT 520 H8259 81 101 91 0.18 1 63 VOL LTS +8.98 LTS LTS 520 P2204 82 PIT MSG LxW 0.11 x 0.13 PIT .520 P2204 82 102 4'6 0.61 P 1' 11 VOL 07S -0.76 078 07S 520 81848 81 PIT MSG .LxW 0.17 x 0.32 PIT 520 H8259 81 102 ; 95 0.37 P 1 69 VOL 073 +0.65 075 075 520' R6452 82 PIT ,

MSG LxW 0.16 x 0.20 PIT 520 R6452 82 103 5 0.49 P 1 78 VOL - 09S +0.62 09S 09S 520 R6452 82 NAR P1 MSG LxW 0.27 x 0.19 WAR 520 R6452 82 j 103 44 0.28 1 70 VOL LTS +11.10 LTS LTS 520 81848 81 PIT MSG LxW 0.19 x 0.17 PIT 520 H8259 81 i 103 90 0.21 1 89 VOL LTS +7.96 LTS LTS 520 M6664 81 PIT MSG LxW 0.15 x 0.15 PIT 520 R6452 81 104 31 0.12 1 64 VOL LTS +9.77 LTS LTS 520 'S1848 81 PIT MSG LxW 0.16 x 0.16 PIT F1e H8259 81 105 32 0.17 1 95 VOL LTS +1.91 LTS LTS S1848 81 PIT MSG LxW 0.13 x 0,17 PIT H8259 81 105 42 0.35 P 1 51 VOL 07S -0.79 075 07S s.J S1848 01 PIT MSG LxW 0.17 x 0.20 PIT 520 H8259 01 105 113 0.47 P 1 73 VOL 07S -0.86 07S 07S 520 R6452 81 PIT MSG LxW 0.19 x 0.24 PIT 520 R6452 81 206 38 0.48 P 1 55 VOL 073 -0.70 078 07S 520 H8259 81 PIT ,

MSG LxW 0.15 x 0.17 PIT 520 H8259 81 i 107 50 0.23 1 82 VOL LTS +9.31 LTS LTS 520 P2204 83 PIT MSG LxW 0.17 x 0.15 PIT 520 P2204 83 RIC LTS +9.31 $20 H8259 81 108 33 0.23 1 80 VOL LTS +11.96 LTS LTS 520 S1848 81 PIT MSG LxW 0.10 x 0.15 PIT 520 H8259 81 0.12 1 49 VOL LTS +10.01 LTS LTS 520 S1848 81 PIT l MSG LxW 0.14 x 0.15 PIT 520 H8259 81 0.28 1 74 VOL LTS +6.95~ LTS LTS 520 R6452 .81 PIT 8 MSG LxW 0.12 x 0.19 PIT 520 H8259 81 e 109 32-- 0.12 1 68 VOL LTS +9.11 LTS LTS 520 M6664 81 PIT MSG LxW 0.11 x 0.12 520 M6664 81 109 45 0.15 1 81 VOL LTS +14.66 LTS LTS 520 S1848 81 PIT MSG LxW 0.10 x 0.17 PIT 520 H8259 81 i f

109 52 0.34 P 1 65 VOL 075 -0.71 078 07S 520 R6452 81 PIT MSG LxW 0.22 x 0.21 PIT 520 R6452 81 116 49 0.50 P 1 57 VOL 07S -0.75 07S 078 520 S1848 81 PIT I MSG LxW 0.20 x 0.15 PIT 520 R6452 81 f 117 44 - 0.34 1 66 VOL LTS +7.31 LTS LTS 520 S1848 81 PIT l MSG LxW 0.14 x 0.18 PIT 520 H8259 81 118 40 0.14 1 115 VOL LTS +23.83 LTS LTS 520 S1848 81 PIT ,

MSG LxW 0.11 x 0.10 PIT 520 H8259 81 O.10 1 82 VOL LTS +0.11 LTS LTS 520 S1848 81 PIT I

MSG LxW 0.17 x 0.10 PIT 520 H8259 81 119. 48 0,34 P1 61 VOL 07S -0.63 078 078 520 H8259 01 PIT )

MSG LxW 0.20 x 0.20 PIT 520 H8259 81 j 119 63 0.28 P 1 77 VOL 078 -0.78 078 07S $20 H8259 81 PIT P1 MSG LxW 0.25 x 0.22 PIT $20 R6452 81 .

I 123 10 NDF 07S +5.59 078 07S 520 P2204 82 NDF 07S +6.55 078 07S 520 P2204 82 l 125 39 0.76 P 1 57 VOL 078 -0.59 07S 07S 520 H8259 81 PIT i MSG LxW 0.17 x 0.17 PIT 520 H8259 81 127 8 NDF LTE +3.11 LTE LTE $20 P2204 82 127 58 0.35 P 1 78 VOL 07S -0.01 075 07S 520 51848 81 PIT MSG LxW 0.14 x 0.21 PIT 520 R6452 81 ,

128 53 0.25 P 1 69 VOL 13S -0.72 13S 135 520 R6452 81 PIT MSG LxW 0.14 x 0.17 PIT 520 R6452 81 l l

- ._ ~

eeeeeeeeeeeeeeeeeeeeeeeeeeee*** BWNT TUBAN II (Varzion 2.1) 04/28/1594 10:00:19 **********************e**e*****

eeeee........................ee Crystal River Unit 3 *******************************

eeee .......ee.....e ......ee** S/G B *******************************

eeeeee**eeeeeeee**ee++********* 94/04 RFC *******************************

eeeeee...............eeeeeeeeee SPEC. INT.-208 *******************************

Page 5

, LIST OF ALL SPECIAL INTEREST 20% MRPC CALLS LIST OP ALL S.I. 20% CALLS ROW TUBE VOLTS CHN DEG IND tTW 1DCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 COPHENTS 132 63 0.35 P 1 78 VOL' 07S -0.77 07S 07S 520 S1848 81 PIT MSG LxW 0.17 x 0.20 PIT 520 R6452 81 136 32 0.29 P 1 66 VOL 073 -0.70 078 07S 520 R6452 81 PIT MSG LxW 0.15 x C.20 PIT $20 R6452 81 139 74 0.22 P 1 100 VOL 078 0.80 07S 07S 520 R6452 81 PIT MSG LxW 0.14 x 0.16 PIT 520 R6452 81-140 21 0.37 P 1 62 VOL 078 -0.74 078 075 520 R6452 82 VOL P1 MSG LxW 0.17 x 0.23 VOL $20 R6452- 82

.144 12 0.29 P 1 79 VOL 07S 0.62 075 078 520 P2204 82 VOL MSG LxW 0.17 x 0.21 VOL 520 P2204 82 145 8 0.23 P 1 36 VOL 07S 0.68 07S 07S 520 P2204 82 VOL MSG LxW 0.14 x 0.14 VOL 520 P2204' 82 146- 14 0.38 P 1 72 VOL 075 -0.69 07S 07S 520 R6452 82 FIT MSG LxW 0.18 x 0.17 PIT 520 R6452 82 146 26 0.17 P 1 88 VOL 09S -0.59 095 09S 520 R6452 82 WAR P1 MSQ LxW 0.22 x 0.14 WAR 520 R6452 .82 0.30 P 1 71 VOL 09S +0.71 09S 09S 520 ' R6452 82 WAR P1 MSG LxW 0.30 x 0.22 WAR 520 R6452 82 0.21 P 1 87 VOL OSS -0.58 08S 08S 520 S1848 82 PIT MSG LxW 0.18 x 0.17 PIT 520 R6452 82 149 13 0.81 P 1 70 VOL 10S +0.59 10S 108 520' R6452 82 WAR MSG LxW 0.26 x 0.22 WAR 520 R6452 82 151 13 0.61 P 1 81 VOL 108 0.56 10S 105 520 P2204 82 VOL MSG LxW 0.24 x 0.21 VOL 520 P2204 82 Total Indications Found = 284 Total Tubes Found = 125

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee BWNT TUBAN II (Vsrsion 2.1) 04/28/1994 09:41:00 *******************************

eeeeeeeeeeeeeeeeeeeee********** Cryttal River Unit 3 *******************************

............ **eeeeee** .e***e S/G A .............. .. ...... ......

eeeee. ee........... e********* 94/04 RF0 *********************e*********

                                                              • SPEC. INT. 10% EXP 1 *******************************

Page 1 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 81 CALLS LIST OF ALL S.I. 10% CALLS - 1 ROW TUBE VOLTS CHN DEG IND %Di LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CALS CopWEtrTS 8 21 MSG LxW 0.11 x 0.11 VOL $20 H8259 72 0.42 P 1 85 VOL 078 +0.75 075 07S 520 M6664 72 VOL 19 3 MSG LxW 0.20 x 0.17 VOL 520 H8259 72 1.30 P 1 115 VOL 125 +0.70 12S 12S 520 M6664 72 VOL 24 88 NDP 11S +14.74 11S 11S 520 M6664 72 27 89 NDF 15S +22.54 15S 15S 520 L7871 83 NDP ISS +25.59 155 15S 520 M6664 72 27 91 NDF 07S -3.14 07S 07S 520 L7871 83 0.54 1 17 VOL 13S +13.36 13S 13S 520 R6452 74 VOL MSG LxW 0.12 x 0.12 VOL 520 M6664 74 NDF LTE +14.33 LTE LTE 520 R6452 74' RIC - 13S +12.58 520 M6664 72 NDP lis +2.15 118 11S 520 M6664 72 NDP 08S +13.37 08S 08S 520 M6664 72 RBD 075 -3.14 520 H8259 72 RBD LTE +14.33 520 L7871 72 0.24 P 1 0 WAR 8 10S +0.62 10S 10S 520 R6452 74 WAR P1 MSG LxW 0.29 x 0.19 WAR 520 R6452 74 0.30 P 1 0 WAR 10 10S -0.61 10S 10S 520 R6452 74 WAR P1 MSG LxW 0.44 x 0.20 WAR 520 .R6452 74 28 ' 92 NDF 118 +13.48 11S 11S 520 M6664 72 28 93 0.92 P 1 123 VOL 08S +0.56 085 08S 520 M6664 72 VOL MSG LxW 0.30 x 0.18 VOL 520 H8259 72 34 72 0.57 1 84 VOL 02S +15.67 023 02S 520 M6664 72 VOL MSG LxW 0.19 x 0.18 VOL $20 H8259 12 41 116 0.97 P 1 127 VOL 12S +0.70 12S 12S 520 M6664 72 VOL MSG LxW 0.19 x 0.19 VOL 520 H8259 72 65 87 0.31 P 1 75 VOL 04S +0.73 04S 04S 520 MG664 74 VOL MSG LxW 0.10 x 0.17 VOL 520 H8259 74 j RBD 04S +0.00 520 M6664 72 72 127 0.55 P 1 0 WAR 18 10S -0.59 10S 10S 520 R6452 74 WAR i P1 MSG LxW 0.33 x 0.17 WAR 520 R6452 74 l 0.19 P 1 0 WAR 6 10S -0.53 10S 10S 520 R6452 74 WAR l P1 MSG LxW 0.29 x 0.19 WAR 520 R6452 74 l 75 29 0.65 P 1 123 VOL 078 -0,68 07S 07S 520 M6664 72 VOL j MSG LxW 0.15 x 0.19 VOL 520 M6664 72 76 122 0.52 P 1 O WAR 19 09S +0.44 09S 09S 520 L7871 74 WAR MSG LxW 0.45 x 0.20 WAR 520 R6452 74 77 17 0.57 P 1 124 VOL 078 -0.73 07S 07S 520 M6664 72 VOL MSG LxW 0.13 x 0.15 VOL 520 H8259 72 79 128 0.20 P 1 105 VOL 10S +0.70 10S 10S 520 M6664 74 VOL 1 MSG LxW 0.18 x 0.19 VOL 520 M6664 14 94 129 0.61 P 1 0 WAR 20 085 -0.68 08S 08S 520 R6452 74 WAR P1. MSG LxW 0.37 x 0.18 WAR 520 R6452 74 131 89 0.24 1 18 MBM 15S +5.24 ISS 15S 520 M6664 74 MBM MSG LxW 0,27 x 0.25 MBM 520 R6452 74 132 30 NDF LTE +16.95 LTE LTE 520 L7871 74 146 22 0.32 P 1 0 WAR 11 07S -0.71 07S 07S 520 R6452 74 WAR MSG LxW 0.28 x 0.23 WAR 520 R6452 74 149 21 0.44 P 1 108 WAR 18 105 0.64 108 10S 520 L7871 74 WAR MSG LxW 0.41 x 0.21 WAR 520 R6452 74 Total Indications Found = 51 Total Tubes Found = 20 l

l 1

i l

eseeeeeeeeeeeeeeee eeeee******* BKNT TUBAN II (Viraion 2.1) 04/28/1994 10:00:59 *******************************

                                                              • Crystal River Unit 3 *******************************
                                                              • S/G B *******************************

eee*********************e****** 94/04 RF0 *******************************

eeee*********e***************** SPEC. INT. 108 EXP 1 *******************************

Page 1 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 81 CALLS LIST OF M.L S.I. 10% CALLS - 1 ROW WBE VOLTS CHN DEG IND %TW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 COMMENTS 12 1 0.17 P 1 0 WAR 10 C8S 0.77 08S 08S 520 C9318 84 WAR MSG LxW 0.21 x 0.14 WAR 520 C9318 84 14 34 0.21 P 1 98 VOL 07S -0.78 07S 07S 520 C9318 84 PIT MSG LxW 0.14 x 0.14 PIT 520 C9318 84 25 10 NDF LTE +4.20 LTE LTE 520 L7871 87 0.14 1 154 VOL LTS +4.01 LTS LTS 520 C9318 84 MBM MSG LxW 0.24 x 0.16 MBM 520 C9318 84 37 48 0.29 P 1 70 VOL 07S -0.62 07S 07S 520 C9318 84 FIT MSG LxW 0.14 x 0.10 PIT 520 C9318 84 39 8 0.24 P 1 0 WAR 7 07S +0.75 07S 07S 520 R6452 84 WAR MSG LxW 0.17 x 0.16 WAR 520 C9318 84 39 42 0.30 1 113 VOL LTS +2e.85 LTS LTS 520 C9318 84 PIT MSG LxW 0.15 x 0.15 PIT 520 C9318 84 40 52 0.16 P 1 97 VOL 07S -0.78 07S 07S 520 R6452 84 VOL HSG LxW 0.12 x 0.12 VOL 520 R6452 84 46 37 0.26 1 60 VOL LTS +7.61 LTS LTS 520 C9318 84 PIT MSG LxW 0.18 x 0.21 PIT 520 C9318 84 46 44 0.18 1 90 VOL LTS +9.68 LTS LTS 520 C9318 84 PIT MSG LFW 0.14 x 0.14 PIT 520 C9318 84 47 7 0.38 P 1 0 WAR 21 07S +0.77 075 07S 520 C9318 84 WAR MSG LxW 0.20 x 0.17 WAR 520 C9318 84 47 48 0.19 1 30 VOL LTS +9.78 LTS LTS 520 C9318 84 PIT MSG LxW 0.16 x 0.15 PIT 520 C9318 84 48 7 0.30 P 1 0 NAR 17 07S +0.60 07S 078 520 H7791 84 WAR MSG LxW 0.22 x 0.18 WAR 520 H7791 84 49 49 0.11 1 79 VOL LTS +12.91 LTS LTS 520 C9318 84 PIT MSG LxW 0.17 x 0.16 PIT 520 C9318 84 50 35 0.20 1 54 VOL LTS +8.73 LTS LTS 520 C9318 84 PIT MSG LxW 0.23 x 0.19 PIT 520 C9318 84 51 48 0.15 1 49 VOL LTS +6.48 LTS LTS 520 C9318 84 PIT MSG LxW 0.14 x 0.19 PIT 520 C9318 84 52 30 NDF 10S -0.85 10S 10S 520 C9318 84 54 51 0.41 1 94 VOL LTS +11.70 LTS LTS 520 C9318 84 PIT MSG LxW 0.15 x 0.18 PIT 520 C9318 84 55 32 0.30 1 f4 VOL LTS +7.51 LTS LTS 520 C9318 84 PIT MSG LxW 0.11 x 0.16 PIT 520 C9318 84 55 81 0.19 1 98 OSL LTS +6.72 LTS LTS 520 C9318 84 PIT MSG LxW 0.19 x 0.18 PIT 520 C9318 84 56 44 0.19 1 110 VOL LTS +9.06 LTS LTS 520 C9318 84 PIT MSG LxW 0.11 x 0.16 PIT 520 C9318 84 56 51 0.22 1 155 VOL LTS +7.31 LTS LTS 520 C9318 84 PIT MSG LxW 0.14 x 0.19 PIT 520 C9318 84 66 106 0.18 P 1 0 WAR 11 07S -0.60 07S 07S 520 C9318 84 WAR MSG LxW 0.05 x 0.13 WAR 520 C9318 84 68 35 0.28 P 1 0 WAR 16 07S -0.77 07S 078 520 C9318 84 WAR MSG LxW 0.19 x 0.13 WAR 520 C9318 84 68 50 0.27 P 1 127 WAR 10 09S +0.68 09S 09S 520 R6452 84 WAR MSG LxW 0.20 x 0.20 WAR 520 C9318 84 69 46 0.23 P 1 0 WAR 14 09S +0.81 09S 09S 520 C9318 84 WAR MSG LxW 0.39 x 0.18 WAR 520 C9318 84 70 68 0.20 P 1 0 VOL 07S -0.70 07S 07S 520 R6452 85 WAR P1 MSG LxW 0.18 x 0.14 WAR 520 R6452 85 79 21 0.10 P 1 0 WAR 6 07S -0.70 07S 07S 520 C9318 84 WAR MSG LxW 0.09 x 0.12 WAR 520 C9318 84 80 22 0.06 P 1 75 VOL LTS +30.86 LTS LTS 520 C9318 84 PIT KSG LxW 0.15 x 0.15 PIT 520 C9318 84 80 58 0.12 P 1 64 VOL 095 -0.85 09S 09S 520 C9318 84 VOL MSG LxW 0.14 x 0.14 VOL 520 C9318 84 86 6 0.35 P 1 0 WAR 19 09S +0.52 09S 09S 520 H7791 84 WAR MSG LxW 0.37 x 0.21 WAR 520 H7791 84 86 53 0.26 P 1 0 WAR 15 07S -0.66 07S 078 520 H7791 84 WAR MSG LxW 0.18 x 0.17 NAR 520 H7791 84 ,

87 49 0.25 P 1 0 WAR 15 06S -0.82 06S 068 520 C9318 84 WAR  !

MSG LxW 0.19 x 0.18 WAR 520 C9318 84 89 34 0.22 1 39 VOL LTS +0.54 LTS LTS 520 C9118 84 PIT

eeese************************** BWNT TUBAN II (V$rsion 2.1) 04/28/1994 10:00:59 *******************************

eeeeeeeeeeeeeeeeeeeeeeeeeee**** Crystc1 River Unit 3 *******************************

eeee*************************** S/G B *******************************

ee***************************** 94/04 RFO *******************************

eeee*************************** SPEC, INT. 10% EXP 1 *******************************

Page 2 LIST CF ALL SPECIAL INTEREST lot MRPC EXPANSION 81 CALLS LIST CF ALL S.I. 10% CALLS - 1 ROW TUBE VOLTS CHN DEG IND %Di LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL # COMMENTS MSG LxW 0.17 x 0.17 PIT 520 C9318 84 89 43 0.27 1 69 VOL LTS +6.66 LTS LTS 520 C9318 84 PIT MSG LxW 0.17 x 0.22 PIT 520 C9318 84 90 96 0.12 1 82 VOL LTS +9.34 LTS LTS 520 C9318 84 PIT 1 MSG LxW 0.16 x 0.14 PIT 520 C9318 84 92 60 0.22 P 1 0 WAR 13 07S -0.66 07S 07S 520 C9318 84 NAR MSG LxW 0.20 x 0.19 WAR 520 C9318 64 95 92 0.11 1 86 VOL LTS +12.19 LTS LTS 520 C9318 84 PIT MSG LxW 0.12 x 0.16 PIT 520 C9318 84 >

99 41 NDP 03S -0.76 03S 03S 520 C9318 84 100 27 0.25 P 1 0 WAR 15 078 -0.69 07S 07S 520 C9318 85 WAR MSG LxW 0.13 x 0.11 WAR 520 C9318 85 101 31 0.15 1 54 VOL LTS +11.71 LTS LTS 520 C9318 85 PIT MSG LxW 0.19 x 0.17 PIT 520 C9318 85 103 34 0.07 1 4 8 VOL LTS +15.99 LTS LTS 520 C9318 85 PIT MSG LxW 0.19 x 0.17 PIT 520 C9318 85 103 35 0.12 1 45 VOL LTS +9.31 LTS LTS 520 C9318 85 PIT ,

MSG LxW 0.20 x 0.19 PIT 520 C9318 85 104 33 0.10 1 56 VOL LTS +8.22 LTS LTS 520 C9318 85 PIT 0 MSG LxW 0.20 x 0.19 PIT 520 C9318 85 l 0.05 1 85 VOL LTS +6.43 LTS LTS 520 C9318 85 PIT MSG LxW 0,17 x 0.16 PIT 520 C9318 85 109 45 0.14 P 1 0 WAR 9 073 -0.67 07S 07S 520 C9318 85 WAR MSG LxW 0.14 x 0.12 WAR 520 C9318 85 110 41 0.26 1 55 VOL LTS +8.70 LTS LTS 520 C9318 85 PIT MSG LxW 0.18 x 0.18 PIT 520 C9318 85 l 124 8 NDP 09S +22.53 09S 09S 520 C9318 85 i 134 38 0.18 P 1 0 VOL 07S -0.80 07S 07S 520 R6452 85 VOL MSG LxW 0.15 x 0.14 VOL 520 R6452 85 l 135 29 0.15 P 1 0 WAR 9 07S -0.75 07S 07S 520 C9318 85 WAR 1 MSG LxW 0.18 x 0.16 WAR 520 C9318 85 l 138 2 0.24 P 1 0 WAR 10 10S +0.61 10S 10S 520 R6452 85 WAR l MSG LxW 0.28 x 0.15 WAR 520 R6452 85 l 138 30 0.25 P 1 0 WAR 12 07S -0.74 07S 07S 520 H7791 85 WAR '

MSG LxW 0.19 x 0.16 WAR 520 H7791 85 l 141 29 0.11 0 WAR 5 13S -0.77 13S 13S 520 H1791 85 WAR )

MSG LxW 0.15 x 0.15 WAR 520 H7791 85  ;

0.10 P 1 0 WAR 5 13S -0.79 13S 13S 520 H7791 85 WAR l MSG LxW 0.09 x 0.20 WAR 520 R6452 85 l 142 14 0.24 P 1 0 WAR 14 07S -0.77 07S 07S 520 C9318 85 WAR j' P1 MSG LxW 0.18 x 0.16 WAR 520 C9318 85 150 15 0.23 P 1 0 VOL 07S -0.77 07S 07S 520 R6452 85 VOL MSG LxW 0.15 x 0.15 VOL 520 R6452 85 Total Indications Found = 108 Total Tubes Found - 53 l

4

)

- . ._ m. . - m._ __ -~__~_m- _ m - - _ _ _ - . -~ _- . _ . ._

l

.........ee.............e.e**** BWNT TUBAN II (V$rsion 2.1) 04/28/1994 09:41:22 ***********.*******************

I ..........e.................... ery.t.1 Riv., Unie 3 ...............................

l ......eeeeee.. ....eeeeeeeeee . S/G A ***e************* ** ....e eeee  !

j ..e..eeeeeeeeee**eee**********e - 94/04 RFC *************************e*****

  • i .......... ...e....e**e*****ee* SPEC. INT.10% EXP 2 *******************************

I Page 1 [

LIST OF ALL SPECIAL INTEREST lot MRPC EXPANSION 82 CALLS l LIST OF ALL S.I. 10% CALLS - 2 l R0W TUBE VOLTS CHN DEG IND tTW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 CODNENTS l

4 18 0.42 P 1 47 VOL 03S +9.14 038 03S 520 M6664 76 MBM >

MSG LxW 0.28 x 0.22 MBM 520 R6452 76 8 30 NDP 07S +18,48 07S 07S 520 L7871 84

! 0.37 P 1 87 WAR 19 LYS +0.66 07S 07S 520 L7871 84 WAR MSG LxW 0.51 x 0.13 WAR 520 L7871 84 ,

-0.61 075 07S 520 L7871 84 WAR l

[

0.38 P 1 90 MSG WAR 19 LxW 07S .. 0.42 x 0.12 WAR 520 H8259 84 i

- NDF LTS +20.40 LTS LTS 520 R6452 76 l 0.29 P 1 0 WAR 10 07S +0.66 07S 075 520 R6452 76 WAR j P1 MSG LxW 0.36 x 0.14 WAR 520 R6452 76 0.32 P 1 O WAR 11 07S -0.75 07S 075 520 R6452 76 WAR f, P1 MSG LxW 0.29 x 0.11 WAR 520 R6452 76 l l 10 6 0.41 P 1 75 VOL 12S +0.70 12S 12S 520 M6664 76 VOL  ;

! MSG LxW 0.17 x 0.19 VOL 520 M6664 76 j' 12 70 0.37 P 1 0 WAR 13 10S +0.68 10S 10S 520 R6452 76 WAR P1 MSc LxW 0.65 x 0.21 WAR 520 R6452 76 24 88 NDP 10S +13.59 10$ 10S 520 R6452 76 24 89 NDF 14S -4.47 14S 14S 520 R6452 76 26 90 NDF UTS -5.66 UTS UTS 520 R6452 76 27 91 NDF 08S +3.47 08S 08S 520 L7871 84 0.33 P 1 70 WAR 17 08S +0.61 08S 08S 520 L7871 84 WAR MSG LxW 1.13 x 0.19 WAR 520 L7871 84 NDF 078 +15.21 0?S 07S 520 L7871 84 0.24 P 1 86 WAR 13 07S +0.60 07S 07S 520 L7811 84 WAR 0.32 P 1 0 WAR 12 085 +0.57 08S 08S 520 R6452 76 WAR MSG LxW 0.30 x 0.13 WAR 520 L7871 84  ;

P1 MSG LxW 0.27 x 0.12 WAR 520 R6452 76 l 0.22 P 1 108 WAR 12 07S -0.73 07S 07S 520 L7871 84 WAR

! 0.25 P 1 0 WAR 9 07S +0.61 07S 078 520 R6452 76 WAR MSG LxW 0.36 x 0.15 WAR 520 L7871 84

(

l P1 MSG LxW 0.28 x 0.12 WAR 520 R6452 76 0.33 P 1 0 WAR 12 07S -0.68 07S 07$ 520 R6452 76 WAR j P1 MSG LxW 0.41 x 0.15 WAR 520 R6452 76 i i

r NDP LTS +38.36 LTS LTS 520 R6452 76 l l 27 93 0.29 P 1 0 WAR 10 OSS +0.62 08S 0$$ 520 R6452 76 WAR l P1 MSG LxW 0.46 x 0.16 WAR 520 R6452 76

[ 08S 520 R6452 76 WAR O.15 P 1 0 WAR 5 08S -0.69 08S P1 MSG LxW 0.31 x 0.15 NAR 520 R6452 76 NDF 08S +12.00 CBS 08S 520 L7871 84 28 3 NDF 01S +19.20 to +27.10 018 015 520 L7871 84 RIC 03S +25.92 $20 M6664 76 28 93 0.24 P 1 0 WAR 8 07S +0.74 07S 07S 520 R6452 76 WAR P1 MSG LxW 0.41 x 0.15 WAR 520 R6452 76 0.35 P 1 0 WAR 13 07S -0.56 07S 07S 520 R6452 76 WAR P1 MSG LxW 0.49 x 0.15 WAR 520 R6452 76 31 11 0.38 P 1 75 VOL 09S +0.51 098 098 520 M6664 76 VOL MSG LxW 0.17 x 0.19 VOL 520 R6452 76 l

31 59 0.65 1 37 VOL 11S +17.62 11S 115 520 R6452 76 MBM l MSG LxW 0.58 x 0.20 MBM 520 R6452 76 l

73 128 0.49 P 1 0 WAR 18 09S +0.61 093 09S 520 P1790 79 WAR l MSG LxW O.53 x 0.18 WAR 520 P1790 79 l

i 76 123 0.36 P 1 0 WAR 13 105 +0.75 10s 10S 520 P1790 79 WAR MSG LxW 0.31 x 0.18 WAR 520 P1790 79 88 53 0.41 P 1 0 WAR 15 098 +0.17 09S 098 520 P1790 79 WAR MSG LxW 0.16 x 0.20 WAR 520 P1790 79 96 83 0.19 1 38 VOL 06S +3.06 06S 06S 520 P1790 79 MBM MSG LxW 0.23 x 0.24 MBM 520 P1790 79

$ NDF 06S +27.24 065 06S 520 P1790 79 l 109 72 0.91 1 67 VOL 03S +19.29 03S 03S 520 R6452 79 MBM MSG LxW 0.35 x 0.13 MBH 520 R6452 79 149 20 0.22 P 1 0 WAR 5 10$ +0.77 10S 1GS $20 P1790 79 WAR MSG LxW 0.13 x 0.09 WAR 520 P1790 79 0.48 P 1 0 WAR 18 10S -0.69 10S 10S 520 P1790 79 WAR MSG LxW 0.28 x 0.15 WAR 520 P1790 19 150 15 0.38 P 1 0 WAR 13 10S -0.78 10S 10S 520 P1790 79 WAR l

i

eeeeeeeeeeeeeeeeeeeeeeeeeee**** BW!rf TUBAN II (Varcion 2.1) 04/28/1994 09:41:22 ********************* *******ee seeeeeeeeeeeeeeeeeeeeeee******* Crystc1 Rivsr Unit 3 ************************e******

eeee........................... 3/g A *..............................

..............***.........+ee** 94/04 RFO *******************************

e***************************"* SPEC, INT. 10% EXP 2 *******************************

Page 2 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 82 CALLS LIST OF ALL S.I. 10% CALLS - 2 ROW TUBE VOLTS CHN DEG IND tDI 14 CATION EXTENT 1 EXTENT 2 PROBE ANLST CALN COMMENTS MSG LxW 0.43 x 0.16 WAR 520 P1790 79 Total Indications Found = 66 Total Tubes Found + 20

                                                              • BWNT TUBAN II (Vartion 2.1) 04/28/1994 10:01:25 *******************************
                      • ese***************** Crystal Riv*r Unit 3 *******************************
                                                              • S/G B *******************************
                                                              • 94/04 RFC *******************************
                                    • ee*********** SPEC. INT. 10% EXP 2 *******************************

Page 1 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 82 CALLS LIST OF ALL S.I. 104 CALLS - J ROW TUBE VOLTS CHN DEG IND %'!W LOCATION EXTENT 1 EXTEFT2 PROBE ANLST CALS CONS 2 21 0.55 P 1 0 MAR 18 10S -0.67 105 108 $20 P2204 88 WAR MSG LxW 0.59 x 0.19 WAR 520 P2204 88 7 10 0.37 P 1 60 VOL 08S +0.60 08S 085 520 P2204 88 VOL MSG LxW 0.23 x 0.20 VOL 520 P2204 88 10 12 ~ 0.22 P 1 92 VOL 098 -0.82 09S 095 520 P2204 88 VOL MSG LxW 0.15 x 0.15 VOL 520 P2204 88 25 8 NDF UTS -4.44 UTS UTS 520 S1848 92 NDF UTS -4.89 UTS UTS 520 S1848 92 RIC 15S +41.94 ISS 15S 520 R6452 88 RIC 15S +41.49 15S 15S 520 R6452 88 NDP 153 +22.01 ISS 15S 520 B0690 88 27 94 NDF 11S +29.24 115 11S 520 P1790 89 32 71 0.33 1 149 VOL 06S -0.97 06S 06S 520' B0690 8 8 VOL -

MSG LxW 0.26 x 0.29 VOL 520 B0690 88 33 8 0.31 P 1 84 WAR 11 07S +0.64 07S 075 520 'R6452 88 WAR MSG LxW 0.17 x 0.15 WAR 520 R6452 88 37 40 0.27 1 70 VOL LTS +9.20 LTS LTS 520 P2204 88 PIT MSG LxW 0.13 x 0.20 PIT $20 P2204 88 0.24 1 55 VOL LTS +5.87 LTS LTS 520 P2204 88 PIT MSG -LxW 0.17 x 0.20 PIT 520 P2204 88 39 42 0.24 1 216 VOL LTS +14.27 LTS LTS 520 P2204 .$$ PIT MSG LxW 0.13 x 0.18 PIT $20 P2204 88 39 45 0.21 1 82 VOL LTS +0.04 LTS LTS 520 P2204 88 PIT MSG LxW 0.13 x 0.19 PIT 520 P2204 88 40 49 0.28 P 1 71 VOL 075 -0.65 07S 07S 520 P2204 88 VOL MSG LxW 0.07 x 0.14 VOL 520 P2204 88 44 46 0.18 1 59 VOL LTS +11.72 LTS LTS 520 P1790 89 PIT MSG LxW 0.14 x 0.16 PIT 520 P1790 89 45 46 0.13 1 42 VOL LTS +14.68 LTS LTS 520 P2204 88 PIT MSG LxW 0.14 x 0.13 PIT 520 P2204 88 45 77 0.58 1 95 VOL 02S -7.18 02S 02S 520 P2204 88 MBH MSG LxW 0.50 x 0.30 MBM 520 R6452 88 46 44 0.15 1 42 VOL LTS +13.89 LTS LTS 520 P2204 88 PIT MSG LxW 0.16 x 0.17 PIT 520 P2204 88 47 48 0.15 1 43 VOL LTS +14.84 LTS LTS 520 R6452 89 PIT 1 _ MSG LxW 0.16 x 0.15 PIT 520 R6452 89 49 47 0.15 1 6 VOL LTS +13.07 LTS LTS 520 B0690 88 PIT MSG LxW 0.15 x 0.14 PIT 520 B0690 88 50 33 0.23 1 83 VOL LTS +7.24 LTS LTS 520 P2204 88 PIT MSG LxW 0.13 x 0.16 PIT $20 P2204 88 51 49 0.26 P 1 271 VOL LTS +13.77 LTS LTS 520 M6664 92 PIT 1 MSG LxW 0.06 x 0.12 PIT 520 M6664 92 RIC LTS +14.18 520 R6452 88 52 40 0.27 1 70 VOL LTS +12.25 LTS LTS 520 P2204 88 PIT MSG LxW 0.16 x 0.16 PIT 520 P2204 88 56 $3 0.38 1 44 VOL 135 +15.43 13S 13S 520 P2204 88 MBM MSG LxW 0.36 x 0.24 MBM 520 P2204 88 58 38 0.37 1 98 VOL LTS +11.42 LTS LTS 520 R6452 89 PIT 1 MSG LxW 0.13 x 0.16 PIT 520 R6452 89 58 45 NDP LTS +11.79 .,

LTS LTS 520 P1790 89 59 113 NDP 075 -0.80 078 07S 520 P2204 88 65 28 0.09 1 72 VOL LTS +11.03 LTS LTS 520 P2204 88 PIT MSG LxW O.16 x 0.14 PIT 520 P2204 88 65 115 0.51 P 1 61 VOL 04S +0.55 048 048 520 R6452 89 VOL P1 MSG LxW 0.10 x 0.21 VOL 520 R6452 89 68 35 0.12 1 40 VOL LTS +12.40 LTS LTS 520 B0690 88 PIT MSG LxW 0.14 x 0.16 PIT 520 R6452 88 73 51 0.17 P 1 63 VOL 03S -0.69 03S 038 520 P2204 88 VOL MSG LxW 0.14 x 0.14 VOL 520 P2204 88 75 123 0.09 P 1 49 VOL 04S +0.72 04S 048 520 P2204 88 VOL '

MSG LxW 0.11 x 0.17 VOL 520 P2204 88 84 99 0.34 3 90 VOL LTS +8.67 LTS LTS 520 P2204 88 PIT MSG LxW 0.17 x 0.15 PIT 520 P2204 88 85 99 0.10 1 78 VOL LTS +10.26 LTS LTS 520 P2204 88 PIT MSG LxW 0.17 x 0.17 PIT 520 P2204 88

_ . ._ . . . . - . _. -- ~.- - - .~ .. ~. ~. .. ._.-.-.-..~~,...~.--._,,n

.i eeeeeeeeeeeeeee**************** BWNT TURAN II (Varsion 2.11 04/28/1994 10:01:25 *******************************

eseeeeeeeeeeeeeeeeeeeeeeee***** Crystal River Unit 3 *******************************

eeeeeeeeeeeeeeeeeeeeeee...***** S/G B ******************************* ,

j eeeeeeeeeeeeeeeeeeeeeeeeee***** 94/04 RFQ *******************************

eeeeee**eee******************** SPEC. INT. 10% EXP 2 *******************************

l Page 2 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 82 CALLS LIST OF ALL'S.I. 10% CALLS - 2 .

ROW TUBE VOLTS CHN DEG IND %TW I4 CATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 COPNENTS 88 31 0.21 P 1 8 9 VOL 09S -0.72 09S 09S 520 P2204 88 VOL MSG LxW 0.13 x 0.16 VOL 520 P2204 88 89 34 0.14 1 69 VOL LTS +15.78 LTS LTS 520 P2204 88 PIT I MSG LxW 0.11 x 0.15 PIT 520 P2204 88 90 44 0.20 1 85 VOL LTS +7.79 LTS LTS 520 P2204 88 PIT MSG LxW 0.13 x 0.15 PIT 520 P2204 88 92 36 0.34 P 1 77 VOL 07S -0.59 078 07S 520 P2204 89 VOL MSG LxW 0.10 x 0.13 VOL 520 P2204 89 94 43 0.28 1 116 VOL LTS +8.10 LTS LTS 520 B0690 88 PIT '

MSG LxW 0.16 x 0.14 PIT 520 B0690 88 97 27 0.18 1 66 VOL LTS +11.31 LTS LTS 520 P2204 89 PIT

- MSG LxW 0.13 x 0.17 PIT 520 P2204 89 100 91 0.16 1 75 VOL LTS +12.07 LTS LTS 520 R6452 88 PIT j MSG LxW 0.13 x 0.17 PIT $20 92204 88 ,

101 93 0.26 1 75 VOL LTS +5.01 LTS LTS 520 P2204 88 PIT i MSG LxW 0.16 x 0.15 PIT 520 P2204 88  !

0.28 1 60 VOL LTS +7.07 LTS LTS 520 P2204 88 PIT

  • MSG LxW 0.12 x 0.12 PIT 520 P2204 88 {

075 -0,66 88 VOL 104 46 0.20 P 1 63 VOL 07S 07S 520 P2204 MSG LxW 0.15 x 0.25 VOL $20 R6452 88 104 51 0.13 1 34 VOL LTS +9.51 LTS LTS 520 P2204 88 PIT MSG LxW 0.16 x 0.16 PIT 520 P2204 88 105 ' 36 0.22 1 45 VOL LTS +9.73 LTS LTS 520 P1790 89 PIT MSG LxW. 0.16 x 0.13 PIT 520 P1790 89 107 48 0.31 1 67 VOL LTS +11.66 LTS LTS 520 P2204 88 PIT MSG LxW 0.10 x 0.12 PIT 520 P2204 88 113 39 0.21 1 114 $0L LTS +11.79 LTS LTS 520 P2204 89 PIT MSG LxW 0.13 x 0.16 520 P2204 89 ,

118 66 0.24 P 1 81 VOL 07S -0.77 07S 07S 520 P2204 68 VOL l MSG LxW 0.13 x 0.20 VOL 520 P2204 88  !

119 12 0.19 P 1 98 VOL 075 -0.76 07S 07S 520 P2204 88 VOL i I

MSG LxW 0.16 x 0.18 VOL $20 P2204 88-l 120 63 0.30 P 1 74 VOL 07S ' 0.74 07S 075 520 P2204 88 VOL MSG LxW 0.16 x 0.21 VOL 520 P2204 88

! 127 96 0.21 P 1 64 VOL 10S +0.69 10S 10S 520 R6452 89 VOL  !

l P1 MSG LxW 0.17 x 0.17 VOL 520 R6452 89 l l 130 23 0.48 P 1 87 VOL 07S -0.80 07S 07S 520 R6452 88 VOL ,

P1 MSG LxW 0.18 x 0.17 VOL 520 R6452 88  !

131 50 0'30 P 1 68 VOL

. 075 -0.75 07S 07S $20 P2204 88 VOL MSG LxW 0.19 x 0.16 VOL 520 P2204 88 l 132 45 0.15 P 1 92 VOL 075 -0.70 07S 07S 520 P2204 88 VOL MSG LxW 0.13 x 0.16 VOL 520 R6452 88 j

~134 63 0.43 P 1 84 VOL 078 -0.64 07S 07S 520 P2204 88 VOL MSG LxW 0.16 x 0.20 VOL 520 P2204 88 >

?

144 15 0.47 P 1 O WAR 13 078 -0.78 07S 07S 520 B0690 88 WAR MSG LxW 0.30 x 0.22 WAR 520 B0690 88 Total Indications Found = 111 Total Tubes Found = 53 l

E i

E

eeeeeeeeeeeeeeee*************** BWNT TUBAN II (Vstsion 2.1) 04/28/1994 09:41:44 ****ee******ee***********ese**e seeeeeeeeeeeeeeeeeeeeeeeeeeeees Crystal River Unit 3 *******************************

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee g/g A eeeeeeeeeeeeeeeeeeeeeeee.......

eeeeeeeeeeeeeeeeee************* 94/04 RF0 ******************************* ,

                                                              • SPEC. INT.10% EXP 3 *******************************

Page 1 LIST OF ALL SPECIAL INTEREST 10% MRPC EXPANSION 83 CALLS LIST OF ALL S.I. 10% CALLS - 3 ROW TUBE VOLTS CHN DEG IND %TW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 COP 9ENTS 7 27 0.35 P 1 92 VOL 07S +0.56 078 07S 520 L7871 86 VOL MSG LxW 0.23 x 0.17 VOL 520 L7871 86 0.24 P 1 91 VOL - 075 -0.58 07S 07S 520 L7871 86 VOL MSG LxW 0.00 x 0.06 VOL 520 L7871 86 0.27 P 1 123 VOL 07S +0.65 075 075 520 L7871 86 VOL MSG LxW 0.08 x 0.11 520 L7871 86 8 30 NDP OSS +25.37 098 08S 520 H8259 86 NDF' 085 +25.37 09S 08S $20 H8259 86 0.28 P 1 0 WAR 14 08S +0.60 09S CSS 520 H8259 86 WAR P1 MSG LxW 0.24 x 0.18 WAR 520 L7871 86 0.33 P 1 .0 WAR 15 08S -0.50 09S 08S 520 H8259 86 WAR  !

MSG LxW 0.29 x 0.14 WAR 520 L1871 86 0.35 P 1 0 WAR 16 07S +0.70 07S 07S 520 L7871 86 WAR MSG LxW 0.26 x 0.14 WAR 520 L7871 86  !

0.40 P 1 0 WAR 18 075 -0.55 07S 075 520 L7871 86 WAR MSG LxW 0.39 x 0.15 WAR 520 L7871 86 14 8 0.29 P 1 0 CDI 14 07S -0.71 07S 07S 520 L7871 86 VOL MSG LxW 0.20 x 0.17 VOL 520, L7871 86 22 59 0.18 P 1 72 VOL 10s +0.62 10S 10S 520 L7871 86 VOL ,

MSG LxW 0.15 x 0.13 VOL 520 L7811 86 l 26 95 0.47 P 1 0 WAR 21 08S -0.68 CSS 08S 520 L7871 86 WAR l MSG LxW 0.44 x 0.13 WAR 520 L7871 86 l

+19.54 520 L7871 86 l 27 91 NDP LTS LTS .LTS 63 128 0.37 P 1 0 WAR 17 10S +0.00 10S 10S 520 L7871 86 WAR MSG LxW 1.52 x 0.18 WAR 520 L7871 86 65 129 0.71 P 1 0 WAR 29 103 +0.00 10S 10S 520 L7871 86 WAR MSG LxW 1.22 x 0.17 WAR 520 L7871 86 81 130 0.30 P 1 59 WAR S/N 10S -0.89 10S 10S 520 L7871 86 WAR i MSG LxW 0.45 x 0.13 WAR 520 L7871 86 )'

82 130 0.20 P 1 52 VOL LTS +24.67 LTS LTS 520 L7871 86 VOL MSG LxW 0.23 x 0.16 VOL 520 L7871 86 90 9 0.41 P 1 65 VOL 088 -0.64 08S 08S 520 L7871 86 VOL MSG LxW 0.13 x 0.13 V0L 520 L7871 86 107 15 0.33 P 1 91 VOL 145 -0.92 14S 14S 520 L7871 86 VOL MSG LxW 0.16 x 0.13 VOL 520 L7871 86 140 55 0.24 1 145 DNG 115 +19.96 11S 11S 520 H8259 86 148 36 0.37 P 1 0 WAR 17 10S -0.68 10S 10S 520 L7871 86 WAR MSG LxW 0.68 x 0.12 WAR 520 L7871 86 0.23 P 1 91 VOL 10S +0.79 10S 10S 520 L7871 86 VOL MSG LxW 0.20 x 0.13 VOL 520 L7871 86 150 7 0.39 P 1 52 VOL 10S -0.80 10S 10S 520 L7871 86 VOL MSG LxW 0.14 x 0.09 VOL 520 L7871 86 150 18 0.67 P 1 0 WAR 28 10S -0.00 10S 10S 520 L7871 86 WAR MSG LxW 1.52 x 0.33 WAR 520 L1871 86 Total Indications Found = 44 Total Tubes Found = 16 l

1 i

.. - _.- ~ _ . _ . . mmm . . . . . . . _mm . . _ m _ _ _. _ . . _ . . _ . .--..m _ _

l se*eeeeee****eeeeeeeeeeeee***** BWNT TUBAN II (Vareion 2.1) 04/20/1994 10:01551 *******************************

                                                              • Crystal River Unit 3 *******************************

, eeeeeeee***********e**e******** S/G B *******************************

eeeeee*****ese****e************ 94/04 RFC *******************************

, seeee************************** SPEC. INT. 10% EXP 3 *******************************

i n

Page 1 l LIST OF ALL SPECIAL INTEREST lot MRPC EXPANSION 83 CALLS

, LIST OF ALL S.I. 10% CALLS - 3 q ROW TUBE VOLTS CHN DEG IND %TW I4 CATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 COPNENTS 5 30 0.58 P 1 83 VOL 09S -0.85 095 098 520 S2680 90 VOL MSG LxW 0.21 x 0.21 VOL 520 S2680 90 j 15 35 0.33 P 1 63 VOL 095 -0.91 09S 09S 520 C9318 90 PIT j MSG LxW 0.18 x 0.14 PIT 520 C9318 90 25 8 NDP OSS +5.30 Ces 08S 520 81848 90 27 94 0.27 P 1. 71 VOL 115 +0.84 11S 11S .520 S2680 91 VOL i P1 MSG LxW 0.20 x 0.18 VOL 520 S2680 91 4: NDP 118 +9.56 11S 11S 520 S2680 91

+9.56

~

RIC 118 520 S1848 90 35 30 0.15 1 49 VOL LTS +27.05 LTS LTS 520 S1848 90 FIT MSG LxW 0.10 x 0.17 PIT 520 S1848 90 j 36 40 0.13 1 94 VOL LTS +28,83 LTS LTS 520 S1848 91 PIT MSG LxW 0.13 x 0.13 PIT 520 S1848 91

RIC LTS +27.95 520 M6664 90 i 36 47 0.26 P 1 73 VOL 07S -0.73 07S 07S 520 S1848 to VOL
MSG LxW 0.10 x 0.15 VOL 520 S1848 90 42 50 VOL LTS +8.77 LTS LTS 520 S1848 90 PIT 39 0.13 1 i MSG LxW 0.17 x 0.14 PIT 520 S1848 90

[ 41 47 0.21 1 61 VOL LTS +9.51 LTS LTS 520 S1848 90 PIT MSG LxW 0.10 x 0.17 PIT 520 S1848 90 e 43 42 0.23 1 82 VOL LTS +9.53 LTS LTS 520 S1848 90 PIT

  • MSG LxW 0.10 x 0.17 PIT $20 S1848 90 I 43 76 0.25 P 1 43 VOL 12S -5.87 12S 12S 520 M6664 90 MBM MSG LxW . 0.47 x 0.27 MBM 520 M6664 90 44 46 0.17 1 121 VOL LTS +8.46 LTS LTS 520 S1848 90 PIT MSG LxW 0.13 x 0.13 PIT 520 S1848 90 47 48 0.19 1 75 VOL LTS +5.86 LTS LTS 520 S1848 90 FIT MSG LxW 0.17 x 0.17 PIT 520 S1848 90 49 47 0.08 P 1 25 VOL LTS +13.54 LTS LTS 520 M6664 90 VOL MSG LxW 0.13 x 0.13 VOL 520 M6664 90 49 48 0.36 P 1 111 VOL 09S -0.73 09S 09S 520 $1848 90 VOL MSG LxW 0.13 x 0.19 VOL 520 S1848 90 51 37 0.22 P 1 78 VOL 098 -0.59 09S 09S 520 M6664 90 VOL l MSG LxW 0.13 x 0.14 VOL 520 M6664 90 57 51 0.19 1 49 VOL LTS +9.90 LTS LTS 520 S1848 90 PIT MSG LxW 0.13 x 0.15 PIT 520 S1848 90 60 38 0.29 1 98 VOL LTS +9.56 LTS LTS 520 S1848 90 PIT MSG LxW 0.17 x 0.15 PIT 520 S1848 90 61 26 0.11 P 1 62 VOL 06S 0.67 06S 06S 520 M6664 90 VOL MSG LxW 0.08 x 0.17 VOL 520 M6664 90 63 27 0.09 P 1 55 VOL LTS +8.38 LTS LTS 520 M6664 90 PIT MSG LxW 0.07 x 0.08 PIT 520 M6664 90 63 29 0.10 1 98 VOL LTS +6.20 LTS LTS 520 S1848 90 FIT MSG LxW O.13 x 0.17 PIT 520 S1848 90 64 68 0.35 P 1 51 VOL 07S 0.69 07S 078 520 M6664 90 VOL MSG LxW 0.16 x 0.16 VOL 520 M6664 90 64 121 0.34 P 1 63 VOL 04S +0.98 04S 04S 520 M6664 90 VOL MSG LxW 0.08 x 0.11 VOL 520 M6664 90 66 20 0.25 1 55 VOL LTS +8.16 LTS LTS 520 S1848 90 PIT MSG LxW 0.07 x 0.13 PIT 520 S1848 90 68 102 0.15 P 1 69 VOL 07S -0.64 07S 07S 520 M6664 90 VOL MSG LxW 0.11 x 0.11 VOL 520 M6664 90 69 45 0.28 P 1 101 VOL 09S +0.68 09S 095 520 S2680 90 VOL P1 MSG LxW 0.21 x 0.18 VOL 520 S2680 90 79 40 0.23 P 1 96 VOL 11s -0.73 11S 11S 520 S1848 90 VOL MSG LxW 0.13 x 0.24 VOL 520 S1848 90 84 98 0.07 P 1 79 VOL LTS +12.05 LTS LTS 520 M6664 90 PIT MSG LxW 0.13 x 0.13 PIT 520 M6664 90 92 93 0.20 1 68 VOL LTS +6.12 LTS LTS 520 S2680 90 PIT MSG LxW 0.17 x 0.17 PIT 520 S2680 90 92 126 0.40 P 1 85 VOL 07S -0.72 07S 079 520 M6664 90 VOL MSG LxW 0.11 x 0.15 VOL 520 M6664 90 94 81 0.77 1 77 VOL 10S +18.09 10S 10S 520 M6664 91 MBM MSG LxW 0.41 x 0.26 MBM 520 M6664 91 96 29 0.09 1 50 VOL LTS +26.59 LTS LTS 520 $1848 90 PIT

.m- . ._. . . _ . - . - . . .~.. ._ - -..._ _ - . -..__.m. m._... . - , .. _ . . _ . . _ .. . m ~. _ _ _ . .

I I

eeeeeeeeeeeeeeeeeeeeeeeeeee**** BWNT TUBAN II (Vsreion 2.1) . 04/28/1994 10:01:51 *********************o*********

e......*.e'e**ee...ee...******* Cryocal River U nit 3 ' *******************************

eeeeee*****ee***e*ee***********

  • S/G B ********************* **** **e.

eeeee.. *** * . **.ee********** 94/04 RF0 *******************************

.........***..*..*.************* SPEC. INT. 10% EXP 3 *******************************

I Page 2 LIST OF ALL SPECIAL INTEREST lot MRPC EXPANSION 83 CALLS LIST OF ALL S.I. 10% CALLS - 3 ROW WBE VOLTS CPN DEG IND tTW LOCATION EXTENT 1 EXTENT 2 PROBE ANLST CAL 8 C0691ENTS MSG LxW 0.09 x 0.15 PIT 520 S1848 90 96 116 0.09 1 70 VOL 15S +21.39 155 15S 520 81848 90 PIT I

MSG LxW 0.10 x 0.17 PIT 520 S1848 90 99 94 0.12.1 87 VOL LTS +5.79 LTS LTS 520 M6664 90 PIT MSG LxW 0.13 x 0.14 PIT 520 M6664 90 110 45 0.12 1 106 VOL LTS +11.65 LTS LTS 520 S1848 91 PIT MSG LxW 0.07 x 0.20 PIT 520 S1848 91 ,

RIC LTS +11.16 520 S1848 90 112 40 0.21 1 36 VOL LTS +6.31 LTS LTS 520 S1848 90 PIT MSG LxW 0.10 x 0.15 PIT 520 S1848 90

- 117 44 0.22 1 95 VOL LTS +10.76 LTS LTS 520 S1848 91 PIT MSG LxW 0.16 x 0.13 PIT 520 S1848 91 0.21 1 74 VOL LTS +8.68 LTS LTS 520 S1848 91 PIT MSG LxW 0.10 x 0.17 PIT 520 G1848 91 117 71 0.35 P 1 98 VOL 07S -0.73 07S 07S 520 M6664- 91 VOL MSG LxW 0,08 x 0 12 VOL 520 M6664 91 117 73 0.27 P 1 110 VOL- 07S -0.69 07S 07S 520 S1848 91 VOL MSG LxW 0.10 x 0.18 VOL 520 S1848 91 124 48 0.32 P 1 71 VOL 07S -0.74 07S 07S 520 M6664 91 VOL MSG LxW 0.12 x 0.16 VOL 520 M6664 91 126 53 0.30 P 1 89 VOL 075 -0.73 07S 07S 520 M6664 91 VOL MSG LxW 0.18 x 0.20 VOL 520 M6664 91 127 8 NDP 12S +14.71 12S 12S 520 S1848 91 129 52 0.21 P 1 61 VOL 07S -0.76 075 07S 520 M6664 91 VOL MSG LxW 0.13 x 0.20 VOL 520 M6664 91 130 47 0.28 P 1 78 VOL 07S -0.68 07S 07S 520 M6664 91 VOL MSG LxW 0.15 x 0.15 VOL 520 M6664 91 147 23 0.28 P 1 62 VOL 03S -0.67 03S 03S 520 M6664 91 VOL MSG LxW 0.23 x 0.20 VOL 520 M6664 91 Total Indications Found . 94 Total Tubes Found = 45 l

T- 4 - -

4M-' w- r- --N

l Data Utilized in Secti:n 5.2.2 Discussion Tube / Defect Axial Extent, In. Circumferential Extent, In. Depth, % TW ,

52-51-2-D O.061 0.041 34 52-51-2-12 0.048 0.037 52  ;

52-51-2-11 0.053 0.037 28 52-51 X 0.0403 0.011 32 52-51 U 0.0327 0.026 26 52-51-2-S 0.0637 0.045 33 52-51-2-R 0.0389 0.02 18 52-51 P 0.0439 0.029 33 52-51-2-N2/1 0.0336 0.025 30 52-51 L 0.0335 0.007 13 52-51 2-K2/1 0.0427 0.043 45  ;

52-51-2-G/F 0.0699 0.031 47 52-51 B 0.0386 0.011 38 90-28-2-C 0.053 0.01 56 90-28-2 AF 0.0289 0.011 51 90-28-2-AD2/1 0.0524 0.019 37 90-28-2-AB 0.0544 0.045 30 90-28-2-Z 0.0382 0.007 30 90-28-2-X2/1 0.0456 0.015 43 90-28-2-V2/1 0.0537 0.041 48 90-28-2-T2/1 0.0363 0.043 50 90-28-2-S2/1- 0.0339 0.017 26 90-28-2-Q 0.0592 0.017 45 90-28-2-O/N/M ' O.0585 0.079 43 ,

90-28-2-K 0.0318 0.02 18 l 90-28-2-B 0.063 0.02 12  !

90-28-2-E 0.071 0.038 50 90-28-2-1 0.063 0.023 46 90-28-2-H 0.059 0.022 37 90-28-2-G 0.079 0.039 53 ,

97-91 P 0.073 0.074 46 97912-0 0.076 0.062 54 3 97-91-2-U - 0.054 0.047 48 97-91 T 0.061 0.066 44 97-91 2-S 0.011 0.001 1 97-91 2-W 0.061 0.047 54 97-91 R1 0.011 0.033 4 97-91 M 0.0197 0.018 16 97 31-2-K 0.0498 0.021 29 97-91-2-1 0.0067 0.013 4 97-91-2-G 0.0131 0.004 5 97-91-2-E2/1/D 0.0135 0.031 6 97-91 B 0.0163 0.014 6 106-32-2-X2 0.071 0.053 49 106-32-2-Y 0.015 0.008 8 106-32 2-X1 .

0.016 0.038 27 I 106-32 2 AG2 l 0.062 0.035 40 Page A-96

' Data Utilized in Section 5.2.2 Discussi:n'

]

Tubel Defect Axial Extent, In. Circumferential Extent, in. Depth, % TW

'l 106-32-2-AH ..0.056 0.028 29 j 106-32-2-AT 0.06 0.05 31 , 1 106-32-2-AU 0.047 0.054 39 106-32-2-BG/BF 0.0551 0.041 15 106-32-2-BD/BC 0.0635 0.07 31 106-32-2-BB/BA/AZ 0.0353 0.07 20 j 106-32 2-AY _

0.0553 0.088 36 106-32 2 AX - _ ,,

0.0399 ,

0.052 32 106-32 2-AR '

O.0449 0.07 19 106-32-2-AQ2/1 0.0381 0.087 35  ?

106-32-2-AF/AO 0.048 0.078 27 106-32-2-AN/AM3/2/1 0.0265 0.174 27 106-32-2-AL2/1 0.0277 0.056 11 106-32-2-AJ/AK 0.0613 0.124 39 l 106-32 2-AE/A.D/AC2 0.0625 0.15 24 l 106-32-2-AC1/AB 0.0535 0.063 18 l 106-32-2-Z/AA - 0.0462 0.101 34 106-32-2 V2 0.0408 0.011 ,

14 106-32 2-0 0.0171 0.017 7 106-32-2-N 0.0054 0.005 15 106-32-2-L/K/J/l/H _

0.0173 0.171 14 1 CS-32-2-F 0.012 0.051- 9 106-32-2-E 0.0182 0.019 23 j 106-32-2-C 0.0067 0.027 7 l

ij 3-46-14B O.09 - 0.119 30 0.228 88-46-3A - 0.089 75  !

72-49-138 0.094 0.134 18 L- 109-71-7BX 0.086 0.097 15 )

i 139 71-14B 0.112 0.101 36

( 136-26-15B 0.112 0.17 38  :

41-44-2-B2 0.049 0.065 44 I

! 41-44-2-B4 A 0.039 0.082 29 l l

41-44-2-B4B 0.024 0.037 29 l

[ 41-44-2-B4C 0.076 0.043 20 l i

41-44-2-84 D 0.069 0.03 6 i 41-44-2-B6A 0.029 0.058 32

( 41-44-2-B68 0.046 0.072 38 i

! 41-44 2-B8D 0.069 0.106 59  ;

41-44-2-B10 0.045 0.084 32  !

i i

i k I 1

4 i

i i

!  ?

l 1 Page A-97 I i

i

.,n

t Data Utilized in Figura 5-6 +

t Discontinuity ID Depth (%TW) 90-28-2-AF 51 90-28-2-AD2/1 37 90-28-2-AB 30 90-28-2-Z l 30 90-28-2-X2/1 43 90-28-2 V2/1 48 90-28-2-T2/1 50 90-28-2-S2/1 26 90-28-2-0 45 .

90-28-2-K 18 l 90-28-2-C/B 41 90-28-2 O/N/M 43 90-28-2-E l 50 90-28-2-1/H/G 49

52-51 2-X 32 52-51 U 26 52-51-2-S 33 52 512 R 18 52-51 P 33 ,

52-51-2-N2/1 30 52-51-2-L l 13 52-51-2-K2/1 45 i

52-51-2-G/F 47 52-51-2-D l 34 52-51-2 12/1 42 l 52-51 B 38 f 97-91-2-R1 4 97 91-2-M 16  ;

97-91-2-K 29 97-91 2-1 4 97-91 G 5 97-91-2-E2/1/D 6 97-91 2-B 6 97-912 W 54 97-91 2-U/T/S 46 97-91 P/O 50 106-32-2-BG/BF 15 106-32-2-BB/BA/AZ 20 106-32-2-AX 32 106-32-2-AR 19 106-32-2-AQ2/1 35 106-32-2-AP/AO 27 106-32-2-AN/AM3/2/1 27 106-32-2-AL2/1 11 106-32-2-AC1/AB 18 106-32-2-X2/Y/X1 28 106 32-2-V2 14 Page A-98

l l

Data Utilized in Figure 5-6 )

I i

!- Discontinuity ID Depth (%TW) j -l- I 106-32-2-BD/BC 31 106-32 2-AY- 36 106-32-2-AG2/AH 35 106-32-2-AE/AD/AC2 24 106-32-2-Z/AA 34 106-32-2-AT/AU/AV 34 106-32-2-AJ/AK 39 106-32-2-Q 7 106-32 2-N 15 106-32-2-L/K/J/l/H 14 106-32-2 F 9 106-32-2-E 23 106-32-2-C 7 41-44-2-B1 35 41-44 2-B2 44 41-44-2-83A 44 41-44-2-B3B 29 41 44-2-B3C - 20 41-44-2-83D 44 41-44-2-B4A 29 41 44-2-84B 29 41-44-2-B4C 20 41-44-2-B4D 6 41 2-B5 A1. 24 41-44-2-B5B1 35 41-44-2-B582 20 41-44-2-B6A 32 41-44-2-B68 38 41-44-2-B7A 32 41-44-2-B78 29 41-44-2-B7C 29 41-44-2-B7D 20 41-44-2-B7E 18 41-44 2-B8A 50 41-44 2-88D 59 41-44 2-B9A 29 41-44-2-B98 26 41-44-2-B9C 20 41-44-2-B9D 29 41-44-2-B10 32 41-44-2-B11 A 20 41-44-2-B11 B 29 41-44-2-B11 C 41 41-44-2-B11 D 29 41-44-2-B11 E 26 41-44-2-B11 F 26 Page A-99 l

j

- - - . . ~ . - - - . - . - . . - - .-. . . _ . - . - . - - . . . .

t

\

D;ts Utilized in the Dev:lopmInt of Figuras 2-8 cnd 2-10 l l l Axial Extent Range 0-0.024 Inches (0-24 Mils)

Discontinuity ID Axial Extent (Mils) Detection (Y or N)

Bobbin MRPC l 97-91-2-1 6.7 N N 97-91 R1 11 N Y j 97-91-2-M 19.7 N N 97 91-2-G 13.1 N N l 97-91-2-E2/1/D 13.5 N N 97-91-2-B 16.3 N N ,

l j Axial Extent Range 0.025-0.049 inches (25-49 Mils)  :

Discontinuity ID Axial Extent (Mils) Detection (Y or N) l Bobbin MRPC 41-44-2-B4B 25 N N 106-32-2-AN/AM/3/2/1 26.5 Y Y 106-32-2-AL2/1 27.7 N Y 90-28-2-AFl 28.9 N N l 41 2-B6 A 22 N N 41-44-2-B4A 39 N N 90-28-2-Z l 38.2 N N ,

! 90-28-2-T2/1 36.3 N N l 90-28-2-S2/1 33.9 N N 90-28-2-K 31.8 N N 52-51-2-U 32.7 N N 52-51 R 38.9 N N

! 52-51-2-N2/1 33.6 N N 52-51-2-Ll 33.5 N N 106-32-2-BB/BA/AZ 35.3 N N ,

106-32-2-AX 39.9 N N j l

106-32-2-AQ2/1 38.1 N Y l 106-32-2-X2/Y/X1 33.7 Y Y 106-32-2-V2 40.8 N Y l

41-44-2-B10 45 N N l 41-44-2-B6B 46 N N l 90-28-2 X2/1 45.6 N N l

52-51 X 40.3 N N 52-51 P 43.9 N N j 52-51 K2/1 42.7 N N i 52 51-2-12/1 49.7 Y Y

, 97 91-2-K l 49.8 N N l 106-32-2-AT/AU/AV 46.8 Y Y 106-32-2-AR 44.9 N Y 106-32-2-AP/AO 48 Y N 106-32-2-Z/AA 46.2 N N 41 2-B2 49 N N Page A-100

Data Utilized in ths Dev:lopment of Figur::s 2-8 cnd 2-10 '

l l -1 I Axial Extent Range 0.050-0.074 Inches (50-74 Mils)

Discontinuity ID Axial Extent (Mils) Detection (Y or N)

  • l Bobbin - MRPC-  !

90-28-2-AD2/1 52.4 N N 90-28-2 AB 54.4 N- N 90-28-2-V2/1 53.7 N N l 90-28-2-0 l 59.2 N N l 90-28-2-O/N/M 58.5 N N i 90-28-2-C/B 56.5 Y Y i 97-91-2-U/T/S - 58.2 N Y I 97-91-2 W l 60.6 Y Y 106-32 2-BG/BF 55.1 N N -

I 106-32 2-AY 55.3 Y N 106-32-2-AG2/AH - 59.1 N Y 106-32-2-AC1/AB - > 53.5 N N I

52-51-2 S l 63.7 N N 52-51-2-G/F 69.9 Y Y is?-51-2-D l- . 60.9 Y Y 106-32-2-BD/BC 63.5 N N 106-32-2-AJ/AK 61.3 Y Y- I 106-32-AE/AD/AC2 62.5 Y N J 41-44-2-B4D 69 Y Y I 41-44-2-B8l 69 N N 90-28-2-l/H/G 71.5 Y Y 90-28-2-E l - 70.9 Y Y 97-91-2-P/O 74.4 Y N 41-44-2-B4C 76 N N Axial Extent Range 0.075-0.099 inches (75-99 Mils)

Discontinuity ID Axial Extent (Mils) Detection (Y or N)

Bobbin MRPC 68-46-14 90 Y Y 72-49-13 94 Y Y 109-71-7 86 Y N/A-Note l Axial Extent Range 0.100-0.124 Inches (100-124 Mils)

Discontinuity ID Axial Extent (Mils) Detection (Y or N)

Bobbin MRPC 109-71-14 112 Y Y 136-26-15 112 Y Y l

\

l l

Page A-101 '

l

i Dats Utiliz:d in the Dev:l:pmInt of Figure 2-9 l

}'

l' Volume Range 0-24E-6 Inches l l Discontinuity ID Volume (E-6 cubic inches) Detection (Y or N) (

, Bobbin MRPC  !

l 90-28-2 AF 3 N N l 90-28-2 AD2/1 6.9 N N i 90-28-2-AB 13.8 N N j 90-28-2-Z l 1.5 N N i 90-28-2-X2/1 5.4 N N f 90-28 2-V2/1 19.9 N N I 90-28-2-T2/1 14.5 N N .

90-28-2-S2/1 2.9 N N j 90-28-2-0 8.5 N N  !

90-28-2-K 2.1 N N 90-28-2-C/D 14.5 Y Y I 52-51 X 2.6 N N 52-51 2-U 4.2 N N 52-51-2 S 17.9 N N l 52-51 R 2.7 N N I 52-51-2-P 7.9 N N I 52 51-2-N2/1 4.8 N N 52-51-2-L l 0.6 N N 52-51-2-K2/1 15.4 N N 52-51-2-G/F 19.3 Y Y 52-51 D 17.9 Y Y 97-91 R1 0.3 N Y 97-91 M 1.1 N N 97-91 K 5.7 N N 97-91-2-1 0.1 N N j 97 91-2-G 0 N N 97-91-2-E2/1/D - 0.5 N N ,

97-91-2-B l 0.2 N N 106-32-2-BG/BF 6.2 N N 106-32-2-BB/BA/AZ 9.4 N N 106-32 2-AX 12.6 N N l

106-32-2-AR 11.2 N Y 106-32-2-AQ2/1 21.9 N Y l I

106-32-2-AP/AO 19.2 Y N 106-32-2-AN/AM3/2/1 23.5 Y Y j 106-32 2-AL2/1 3.2 N Y 10S-32-2-AC1/AB 11.4 N N 106-32 2-X2/Y/X1 19.8 Y Y 106-32-2-V2 1.2 N Y 109-71-7Bx 17 Y N/A l 41-44-2B l 7 N N 41 2-B4 A 5 N N  !

41 2-B4B 1 N N 41-44-2-B4C 4 N N I 41-44 2-B4D 1 N N 41 2-B6A 3 N N Page A-102

- =

Data Utilized in the DIvtlopmint of Figura 2-9 l Volume Rance 0-24E-6 Inches (Contir.ved) l Discontinuity ID Volume (E-6 cubic inches) Detection (Y or N) l 41-44-2-B68 6 N N 41-44-2-B8l 22 Y Y 41-44-2-B10 6 N N Volume Range 25-49 E-6 Inches  ;

Discontinuity ID Volume (E-6 cubic inches) Detection (Y or N) 1 l Bobbin MRPC 90-28-2-O/N/M 37.5 N N 90-28-2-E l 28.8 Y Y 52-51-2-12/1 32.9 Y Y 97-91 W l 32 Y Y 106-32-2 BD/BC 25.5 N N 106-32-2-AY 32.9 Y N 106-32-2-AG2/AH 27.6 N Y 106-32-2-AE/AD/AC2 42.4 Y N  ;

106-32-2-Z/AA 30 N N 72-49-13 35 Y Y Volume Range 50-74 E-6 Inches Discontinuity ID Volume (E-6 cubic inches) Detection (Y or N) l Bobbin MRPC 90-28-2-1/H/G 62.3 Y Y 97-91 2-U/T/S 70.9 N Y 97-91 2-P/O 68.8 Y N 106-32-2-AT/AU/AV 69.2 Y Y 106-32-2-AJ/AK 56 Y Y 68-46-14B l 68 Y Y 109-71-14B 66 Y Y 136-26-15B 68 Y Y i

I Page A-103

RAI #14 Data Tube Location L1 (8R) 'L2 (9R) w1 (8R) w2 (9R) 13-9 08S-0.80 0.14 0.19 0.19 0.14 35-42 09S-0.63 0.16 0.13 0.22 0.21 37-41 LTSF + 6.78 0.14 0.18 0.14 0.14 37-48 07S-0.79 0.11 0.14 0.17 0.1 41-47 LTSF + 14.00 0.15 0.09 0.17 0.12 43-42 LTSF + 8.85 0.14 0.16 0.18 0.14 43-80 12S + 6.84 0.16 0.16 0.05 0.14 48-38 LTSF + 10.86 0.15 0.19 0.21 0.16 53-39 LTSF + 12.44 0.18 0.11 0.16 0.16 57-38 LTSF + 12.00 0.07 0.09 0.13 0.14 57-44 LTSF + 9.64 0.14 0.13 0.13 0.15 57-52 LTSF + 6.74 0.14 0.11 0.18 0.16 60-119 07S-0.69 0.14 0.14 0.19 0.24 67-52 07S-0.77 0.12 0.14 0.21 0.25 69-45 09S + 0.67 0.12 0.21 0.18 0.18 72-67 03S-0.62 0.14 0.12 0.18 0.11 96-70 07S-0.75 0.05 0.13 0.09 0.19 101-41 LTSF + 16.23 0.17 0.14 0.18 0.14 104-33 LTSF + 5.33 0.08 0.17 0.14 0.16 107-50 LTSF + 8.80 0.12 0.17 0.16 0.15 108-33 LTSF + 12.15 0.14 0.1 0.19 0.15 108-33 LTSF + 10.00 0.14 0.14 0.2 0.15 108-33 LTSF + 5.82 0.11 0.12 0.2 0.19 110-45 LTSF + 11.64 0.05 0.07 0.17 0.2 116-49 07S-0.87 0.13 0.2 0.21 0.15 117-44 LTSF + 7.43 0.17 0.14 0.22 0.18 118-40 LTSF + 7.97 0.14 0.17 0.12 0.1 118-40 LTSF + 23.05 0.22 0.11 0.15 0.1 118-66 07S-0.78 0.1 0.13 0.14 0.2 144-12 07S-0.92 0.16 0.17 0.18 0.21 145-8 07S-0.85 0.14 0.14 0.15 0.14 34-72A 02S + 14.64 0.29 0.19 0.23 0.18 79-128A 10S + 0.54 0.1 0.18 0.13 0.19 t

l Page A-104  ;

I

IV.B RAI Question Number 28 - Introductory Paragraph Discussion -

The introductory paragraph refers to two instances where the NRC Staff felt  !

there was an apparent discrepancy between data sets presented. Each of these '

is discussed below.

1 Table 3-2 is a compilation of the detectability information presented in Table 3-1 " Summary of Eddy Current Distinguishable Defects." As discussed in the response to RAI Question Number 34, the difference between the data presented in Appendix D to Attachment 2 of Reference 4 resides in the intended purpose t of the respective evaluation.

The second example cited compares 1992 pulled tube data with the population of pulled tube data following the 1994 tube pull. Presumably, the RAI is referring to the number of indications detected by MRPC since this is the subject of Table 3-1. In this case, Appendix B contained a number of detected indications based upon combined eddy current results and total defect count.

This approach was not utilized in later disposition strategy development i efforts.

i i

i l

l 1

j l

1 A-105 l

d i

APPENDIX B RESPONSE To RAI NUMBER 35

" REFERENCES"

. ~ . - --

. . - - . .._- - - - .- ~.- .- - - . - - - - . - . . .

' Guidelines for Leak Testing d Steam Gen:rator Tubes [

Prepamd far the EPRI ARC Committee by Watinghousa, Lsbomlec, & Packsr Engineering l

1. SCOPE.

The purpose of this guide is to describe recommended practices for the  !

measurement of fluid leak rate (s) from tubes with through-wall degradation,  ;

that are either pulled from steam generators (SG's) or produced under -l laboratory conditions. l Since acceptable leak rate testing may be performed utilizing a variety of test j facility and measuring equipment, a specific delineation of such equipment and its', configuration is not specified herein. j l

2. TEST SPECIMEN (S). j

. The test specimens should consist of tube sections approximately 10" (250 j mm) long, with the degraded area located as close as practicable to the mid-length position of the specimen. In specific cases lengths as short as 6" (150 mm) may bejustified.

If the degradation is visible at the tube outside diameter (OD) surface, a good quality (preferably color) photograph should be taken of the degraded area.

3. PROCEDURE RECOMMENDATIONS.

Testing shall be performed in accordance with a viritten test procedure. The test procedure shal. be aimed at providing a direct or adjusted evaluation of

  • the leak rate to be expected under the specified environmental conditions, e.g.,

the internal and external pressure, temperature and fluid conditions, of inferest.

Note: Usually the desired leak rate is for faulted conditions, with the water pressure and temperature specified on the primary side, and an i essentially zero (ambient) pressure vapor phase on the secondary side. i The leak rate measurement (s) shall be performed at a differential pressure closely matching the actual SG conditions (as specified).

It is further desirable, but, not mandatory, that the testing conditions fully duplicate the specified environment, including the SG operating temperatures.

Adjustments to the measured leak rates are required when the absolute pressures (both sides of the tube) and/or the temperatures are not prototypic.

e m i n x ctuos Page 1 of 4 un, m

Guidallnes for Leak Testing of Steam Gen:rator Tubes

  • Pmp2nd far the EPRI ARC Committe2 by W43tingh use, L:bomlec, & Prek;4r Engineering i L This is always the case for room temperature testing. While such an l

} adjustment procedure involves some additional uncertainty, the latter is  !

!- usually considered to be much smaller than the scatter of leak rates from '

nominally similar crack morphologies, i.e., as characterized by standard non-destructive examination (NDE) techniques. l l Even if the test is performed at the specific differential pressure, it is - t j desirable, but, not mandatory, to gain some knowledge about the rate of

! change ofleak rate with pressure. This addresses a sensitivity concern, and i may provide a basis for the possible extrapolation or interpolation of the  :

results to other faulted conditions that might be further considered by plant J safety evaluations, i

It is recommended that additional leak rate measurements, preferably three  !

or four, be performed at selected pressure difference levels ranging from not i lower than the normal operation condition to not higher than 110% of the specified faulted condition.  !

1 The leak test duration, i.e., time at each pressure level, should be determined  !

based on the required measurement accuracy and the measuring equipment being used. ~ Replicate tests for each configuration are recommended. Due to plasticity effects, crack opening areas are path dependent. Therefore, leak  ;

rate measurements at a low pressure difference will increase markedly after exposure to a higher pressure difference. Transient pressure fiuctuations during the approach to steady state test conditions should thus be controlled to avoid unwanted crack opening deformation.

- The measurement system should be capable of providing reliable leak rate results in the range from 0.01 to 1001/h, with an accuracy of plus or minus 10%.

4. TEST EQUIPMENT Test equipment may vary widely, depending on the selected testing conditions and method. In general terms, the following may be required:
1) a supply system, delivering the high pressure, and possibly high temperature, water into the primary side of the test specimen,
2) a secondary side enclosure, in the case of high temperature testing, with possible provisions for:

EPRI LEAK GUIDE Page 2 of 4 u, i. m4

. I Guidelines for Imak Tating of Steam Gen:rator Tubes Pmpared f;r the EPRI ARC Committee by Westinghouse, Lxborelee, & Packcr Engineering e

a. pressure confinement, l b. leakage collection, i-

, 3) a measurement systt of either the injected flow rate or collected leak rate, j 4) adequate control and instrumentation' to establish and maintain the 4 applicable testing conditions, such as pressure (s) and temperature (s), l i -;

for the duration of the test.

t i The int'egrated testing facility should be qualified. Such qualification should I

consist of demonstrating its' functional capability over the full range of l

'specified leak rates, pressures, and temperatures.  !

i.

l Attention should be~ paid to functional limitations that might impair the nominal measuring ranges, e.g., when the order of magnitude of the flow  ;

i resistance of piping connections becomes comparable to that of the cracked specimen. ,

4. DOCUMENTATION a

l Leak rate testing should comply with all relevant quality assurance (QA) .

l requirements in effect at the testing laboratory organization. As a minimum the following documentation shall be available:

(1) a description and qualification of the leak rate measurement system, including the accuracy of the measurements, (2) the adjustment procedure to accident conditions (if applicable),

(3) a written test procedure, I (4) a test report including: )

(a) full specimen identification, (b) a sketch, schematic diagram or written description of the test equipment and instrumentation, and the configuration of same, (c) full description of test parameters, EPRI LEAK GUIDE Page 3 of 4 Joir i.i994 I

)

l

. . . . . . . - . . - .- . - . - . - . . . - - . - - . . . . . - . . . . . . ~ . - . . .

t

.. Guidelines for T*ak Testing of Steam Gen:rator Tubes  ;

Papand for the EPRI ARC Committee by Wcatingh:use, Labomlee, & Peck:r Engineering (d) t'est equipment serial numbers, (e) (reference to) instrument calibration data, (f) measured leak rates (for each selected pressure level),  !

(g) adjusted leak rates (if applicable), l (h) ' appended photographs of the degraded area, before and after testing

' l (optional).  !

. i 1

l 1

I i

i EPRI LEAK GUIDE Page 4 of 4 u ri. im

Guidelines for Burst Testing of Steam Generator Tubes _

Prep: red for the EPRI ARC Committee by Wutinghouse, Laborelee, &

1. SCOPE.

The purpose of this guide is to define the configuration of test specime equipment and setup, and the procedure to be used for the burst testinii degraded tubes that are either: 1) removed from steam generators (SG produced in a laboratory under simulated field conditions, or 3) produ{ '

suitable or 0.3 mm).artificial simulation, e.g., EDM slots (with widths not exceedin

2. i TEST SPECIMEN (S).

The test specimen will be a tube section approximately 10 inches (250 long, with the degraded area located at mid-length (as close as practic In specific cases lengths as short as -6" (150 mm) may be justified.

I In order to prevent leakage before burst, an unreinforced plastic bladd 1 to 0.125" (2 to 4 mm) thick, will be inserted in the specimen.

The bladder OD is to be matched as close as practicable to the tube ID, and is to be mechi cally sealed at both ends of the specimen.

NOTE: The total bladder thickness may be achieved by the use of m!

l concentric bladders. The use of more than two (2) concentric bl i achieve the desired thickness is not recommended.

If the degradation is through or nearly through, and/or the specimen is technically valuable, e.g., a pulled tube section or a unique prototype it is i

recommended that the bladder be reinforced with a thin metal foil s i inserted between the tube defect and bladder.

In case of a premature bladder failure (extrusion through the defect o before tube burst) in a prior pressurization test (of the actual specimen or other similar specimens), (re) pressurization shall be achieved utilizing a reinforcing foil as described in the following paragraph.

If reinforcing foil is used, it shall be of brass or copy a co 8 mils (0.1 to 0.2 mm) thick, about 0.4" to 0.5" (~10 to 12 mm) wide e M with a length not exceeding the ends of the defect by more than 0.25" (6 mm). Alternatively the foil may be stainless steel, 2 to 4 mils (0.05 to 0.1 mm) thick. The foil should be centered on the degradation. Proper angular positioning of the f may require information about the (largest) defect from a dye penetrant, RPC and/or UT inspection relative to a known reference point on the specimen.

Em sunstcuroe Page 1 of 6

.no i. im

_ . _ _ .___ _ _... _ _ . _ ._ _ _ _. y 1 i i

Guidelines for Bumt Testing of Steam Generator Tubes  !

Prepared for the EPRI ARC Committee by Wutinghsuse, Laborelee, & Packsr Engineering j i The use of a reinforcing shim' may result in a measured burst pressure greater  !

than the actual value; therefore a corrected, or adjusted, burst pressure shall '

be obtained by applying a 5% reduction to the measured burst pressure.

+  :

The specimen shall be connected to the test rig by Swagelok' or equivalent ,

type fittings; this may include a " union" connection to a tube extension if- l required for proper simulation of environmantal constraints, e.g., for a circum- l ferential crack with lateral motion of the tube constrained by a tube support 1 plate. j Considering the defect to be oriented at the O' azimuth, the tube outside diameter (OD) shall be measured at the O' and 90' azimuth locations, at the defect axial location, at both ends of the specimen, and at the level of any i external constraint (s) of the specimen or the tube extension. For specimens in which the defect is a machined slit, the OD measurement at the O' azimuth should be performed before the machining process. j i

The tube thickness shall be measured at both ends of the specimen at the  !

same azimuth orientations. It is also recommended that the thickness be measured at each end of the specimen at the 180' and 270* azimuth locations.

The thickness measurements should be direct if practicable, e.g., pin microme-ter. If direct measurement of the thickness cannot be effected, inside diame-ter (ID) and outside diameter measurements may be made and the thickness calculated.

If the defect is visible at the tube OD surface, a good quality (preferably color) photograph shall be taken of the degraded area. Inclusion of a scale in the photograph is recommended but not mandatory.

A virgin control specimen with known or tested material properties shall be prepared for testing with each series (defined as requiring a separate test equipment setup) of test specimens. i

3. TEST RIG.

If required to obtain a representative burst pressure, the test specimen will be i placed in a test rig simulating the geometrical constraints acting under actual l steam generator conditions. The tube support conditions above and below the tube degradation location in the steam generator should be simulated for the burst test. For example, if the failure mode implies significant bending as could be the case for circumferentially oriented defects at the top of the tubesheet, an assembly of a split collar (no gap) as a tubesheet simulant and i sm suarrcuios Page 2 of 6 u rt. im

i Guidelines for Burst Testing of Steam Gen:rator Tubes Prepared fer the EPRI ARC Committee by Wutinghouse, Liborelee, & Packtr Enginecring ring collar (s), with controlled gap, to simulate the tube support plate (s), linked together by a rigid axial frame, would be required to simulate the restraining effect of the tube support plates. I

4. TEST EQUIPMENT. l The test equipment consists mainly of pressurizing devices and measuring instruments.  !

(1) Pressurizing is achieved by a cold incompressible medium such as water or, oil. The pressurizing system consists of a pump, an air-driven pres-sure multiplier and/or ancillary devices, allowing a controlled pressure ,

rise (with minimum pressure fluctuations) up to a pressure on the order l of 13000 psi (900 bar).

NOTE: A system capability of 15000 psi (1034 bar) may be necessary for l burst testing of U-bend specimens. The capacity of the equipment  :

must exceed the strength of the specimen.

l (2) The measuring / recording system shall include at least:

(a) a pressure transducer (two are recommended for pulled tube tests to avoid loss of data in the event of a malfunction)

(b) a recording device, e.g., tape or pen plotter, etc. (two are recommend-ed for pulled tube tests to avoid loss of data in the event of a mal-function)

Additional features are recommended to provide redundancy to compensate for the potential malfunctioning of any part (with proper attention paid to such common failure modes as associated with power supply).

All instruments, gauges and test equipment shall be calibrated prior to testing (unless valid calibration certificates are already available) and recalibrated after testing in case of disagreement between the independent measurement channels, if present, or if there is any reason to suspect the validity of the ob-served results. Calibrations shall be traceable to the appropriate national standards institute for the country in which the tests are preformed.

enu suarr cinos Page 3 of 6 auiyi.i994

Guidelines for Burst Testing of Steam Gen:rator Tubes Prepared f;r the EPRI ARC Committes by Wutinghouse, L borelee, & Pecksr Engineering

5. TEST PROCEDURE.

(1) Prepare specimens as defined under 92. Note that the control specimen is to be tested first.

(2) Take dimensional measurements and defect photographs, if not previous-ly obtained.

(3) Attach the specimen to the test rig (extension tube, if applicable) and pressurizing system; over torquing of the sealing fittings is permitted if ,

leakage is observed during test. ,

(4) Check the availability of the measurement equipment and its' calibration  :

l data (as defined under f4).

(5) Verification of the settings of the instrumentation shall be based on the i results to be obtained from the control specimen.

(6) Fill and bleed the hydraulic system. l

'l (7) Turn-on the recorder (s)just before pressurizing the system.

(8) Increase the primary side pressure at a rate between 200 and 2000 psi /second (15 to 150 bar/sec). Pressurization rates in the upper half of l the specified range are recommended when no reinforcing foil is being used because rates in the lower half of the range, e.g., less than 1000 ,

psi /sec (70 bar/sec), may affect the integrity of the bladder seal.

(9) Turn-off the recorders and the pressurizing system after burst of the specimen (or seal failure) has occurred.

(10) Disassemble and examine the test specimen. If the defect has not ex- '

tended by tearing beyond its initial length and/or does not exhibit signifi-cant bulging / fishmouth opening, premature bladder failure has occurred, and the recorded pressure is but a lower bound for the actual burst pressure.

In such a case, it is recommended that repressurizing be performed after reinforcing the bladder arrangement, as indicated under 52. If prema-ture bladder failure is suspected, such shall be documented in the test record.

sm sunstcuros Page 4 of 6 Juiy i. um

Guidelines for Burst Testing of Steam Gen:rator Tubes Prepared f r the EPRI ARC Committee by Wetinghiuse, Laborelee, & Pick:r Engine: ring (11) Take good quality (preferably color) photographs of the burst opening. j l

(12) Measure the defect dimensions (final length and opening width) and any other noticeable change of the degraded area. Diametral measurements should be made at the bulge location, including the maximum diameter 1 to the lip of the burst opening and at 90* to that location, and at loca-tions remote from the burst opening NOTE: Additional measurements may be specified as required depending on the planned end usage of the data.

6. QUALITY ASSURANCE.

Burst pressure testing should comply will all relevant QA requirements in effect at the testing laboratory organization.

As a minimum, documentation shall include:

(1) a written test procedure ,

(2) a test report with (a) full specimen identification (b) a sketch / schematic or written description of the test setup (c) a sketch of support details with pertinent dimensions, if special support of the specimen is employed  !

1 (d) test equipment serial numbers (e) (reference to) instrument calibration data (0 description (with dimensions) of the specimen sealing system (g) maximum recorded pressure (with a statement of qualification as valid burst pressure). If a reinforcing foil has been used, both the measured and corrected values are to be reported.

(h) dimensional measurements before and after test est aussrcuros Page 5 of 6 My 1.1994

Guidelines for Burst Testing of Steam Generator Tubes Prepared nr the EPRI ARC Committee by Wartinghouse, Laboralee, & Pecksr Engineering (i) appended pressure plot (s) l Note: These are considered optional for distributed copies of the test )

report. The plots shall be retained with the master file report. l J

(j) appended photographs before and after test.  ;

1 Note: These are censidered optional for distributed copies of the test i report. The photographs shall be retained with the master file  ;

, report.  :

I i

i 1

i r

i i

r h

f i

l l

l 1

em suarr ctnoe Page 6 of 6 Juir i.t994 l

P

_m_ _ _ _ . _ _ - w