ML15210A750

From kanterella
Revision as of 19:49, 6 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

Peach Bottom, Units 2 and 3 - Proposed Relief Request Associated with the Common Emergency Service Water (ESW) System Piping
ML15210A750
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 07/29/2015
From: David Helker
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RR I4R-56
Download: ML15210A750 (37)


Text

Exelon Generation O

TE 2494904-03 B ESW Pin Hole Leak Page 1of3 Title: Perform Code Case N-513 evaluation to support Operability. ADMINISTRATIVE: This evaluation was prepared in accordance with Exelon procedure CC-AA-309-101, revision 14, Engineering Technical Evaluations. A technical task risk/rigor assessment was performed for this activity in accordance with HU-AA-1212, revision 6. Risk rank was determined to be '1' with a medium consequence (C. 7, Safety System Loss), 1 human performance risk factor (H.10, Group Think), and 1 process risk factor (P.3, Fast Track). Therefore, per table 5.1 of attachment 5 to HU-AA-1212 existing process reviews are adequate. This conclusion was discussed with Jeff Chizever, Manager PEDM on 05/05/2015. impact review per CC-AA-102, revision 28 was performed and it was concluded that procedure revisions are not required. However, the Raw Water Program is impacted by this evaluation. Assignments 2494904-04 and 2494904-05 have been created for the program manager to incorporate any changes into the Raw Water Program. Safety Classification: This evaluation is associated with safety-related equipment and therefore the evaluation is classified as safety-related. This technical evaluation will be submitted to Records Management for retention. REASON FOR EVALUATION/SCOPE: Emergency Service Water (ESW) piping leak was discovered in the Unit 2 Reactor Building Sump room. The leak is directly below the Unit 2 Reactor Building Closed Cooling Water (RBCCW) room floor, upstream of M0-2-33-2972 which is located in the RBCCW room. The leakage was approximately 30 DPM at the time of discovery. The presence of this leak warrants an evaluation in accordance with ASME Code Case N-513-3 (Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping, Mandatory Appendix I) in order to allow the associated piping to remain operable until a permanent A S M E S e c t i o n X I C o d e repair can be completed. DETAILED EVALUATION; Engineering has performed an analysis of the areas in accordance with ASME Code Case N-513-3. This piping is 12-inch diameter, 0.375 inch thickness carbon steelpiping,A-106grade Bas shown in Peach Bottom specification M-300 (Piping Materials) and P&ID M-315, sheets 4 and 5 for 33HB class pipe. The design pressure is 150 psig and the design temperature is 100°F. As shown on attached pages 13 and 14, the areas found to be less than the minimum wall thickness value of 0.063 inch are approximately 0. 7 5 inch in the axial and circumferential directions.

TE 2494904-03 B ESW Pin Hole Leak Page 2 of 3 In accordance with CC N-513-3, the pipe circumference at the location of the flaw was examined volumetrically to characterize the length and depth of all flaws in the pipe section. The results of the circumferential examination show that there are no other flaws in the area that are below the minimum wall thickness and need to be considered in this evaluation. Additionally, shear wave UT performed around the area of the flaw verified that there are no crack-like indications present. See the completion remarks for work-order activity C0257348-06 for documentation of this result. Forces, moments, and stresses for the subject piping were extracted from reference between node points 201 and 206. They are shown on pages to 12 of the attachment. The approach to the evaluation methodology included in CC N-513-3 is to compute a static fracture toughness factor, Klc for the circumferential and axial flaw evaluations. For this evaluation, as shown on attached page 2, the value of Klc is 37.111 ksi*in0.5. The evaluation then computes the stress intensification factors, Kl for the circumferential and axial flaws for the various design modes (normal/upset and emergency/faulted) and then compares them to the previously calculated value for Klc. Kl is less than or equal to Klc then the acceptability of the through wall flaw is demonstrated. The following is a summary of the results of the attached CC N-513-3evaluation. Klc = 37.111 ksi*ino.5 Kl Circ. Normal/Upset= 5.036ksi*ino.5 37.111 ksi*ino.5, therefore acceptable. Kl Circ. Erner. /Fault= 4.426 ksi*in0.5 37.111 ksi*in°*5, therefore acceptable. Kl Axial= 7.643ksi*ino.5 37.111 ksi*in°.5, therefore acceptable. For simplification, the maximum safety factor of 2. 7 for Normal/Upset was used in the computation of a 11 Kl Axial, and the maximum safety factors for either the membrane or bending stress was used for the Circ. Normal/Upset and Erner. /Faulted computations. Additionally the subject location was evaluated for the effect of thin wall on the normal piping stress and compared to the established design allowable stress for the piping. In this comparison, the allowable stress of 17, 100 psi for the piping material (A-106, Grade was used. The results of this portion of the analysis, shown on attached pages 5 through 7, demonstrate that a uniform pipe wall thickness of 0.063 inch is acceptable to provide adequate structural integrity for the design basis loadings. CONCLUSIONS/FINDINGS: This evaluation of the discovered min-wall area indicates that the size of the flaw and the surrounding wall thickness is acceptable for continued operation of the associated ESW system piping within the requirements of ASME Code Case N-513-3.

REFERENCES:

TE 2494904-03 B ESW Pin Hole Leak Page 3 of 3 ASME Code Case N-513-3, Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping 2. ASME B31.1,Power Piping, 1967 3. ASME Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components, 2001 Edition plus addenda through and including 2003 4. Crane Technical Paper 410, Flow of Fluids 5. PBAPS Calculation 33-32, rev. lB, Pipe Stress Analysis -ESW System Unit 2 RBCCW Room 6. Technical Evaluation Al 998930-01, Request Min Wall 7. PBAPS Specification M-300, Piping Materials, Instrument Piping Standards & Valve Classifications 8. P&ID M-315, sh. 4 & 5, Emergency Service Water And High Pressure Service Water Systems ATIACHMENfS: Pages 1-8: Pages 9-12: Pages 13-14: Page 15: Prepared By: Reviewed By: ASME Code Case N-513-3Evaluation Excerpts from calculation 33-32 NDE Report Cale 33-32 page 19, Stress ISO Ken Hudson /Atf Doug Lord Ck:J.6L-Reviewer Comments: 05/05/2015 05/05/2015 Performed independent review of this technical evaluation and concur that the piping system remains acceptable for continued operation with the identified flaw. Approved By: Jeff Chizever, Manager PEDM 05/06/2015 Technbical Evaluation 2494904-03 Attachment of 1..5 Planar Flaw Evaluation in ferritic l!iJ!ini: IA W Code Case N-513-3 PBAPS ESW Min Wall "B" ESW (IR 2494904-03} Definitions: Flaw depth a= 0.312 in Pipe wall thickness t= 0.375 in Maximum assumed circumferential flaw length: l= 0.750 in Pipe outside diameter: D= 12.75 in Mean pipe radius: -2 R= 6.19 in Piping bending moment of inertia: I= 1t[D4-(D-2t}4J 64 I= 279.34 in"4 Flaw half-angle per Figure l, N-513: 0=....L 2*R 0= 0.061 rad Unit definition for kips: 1 kip = 1000 lbf Unit definition for psi: 1 ksi = 1000 psi PiJ!ini: Loads <Moments Increased hI 25% for Uncertainties}: Maximum operating pressure: OP= 150.00 psi Maximum operating pressure axial force: P0= n(.Jf-t)2 *OP Pop= 16964.60 lbs Axial load on pipe for Normal/Upset condition forces: Pnu= 109.00 lbs Axial load on pipe for Emergency/Faulted condition forces: Pnf= 261.60 lbs Total axial load on pipe, including pressure from piping analysis for normal/upset condition forces: Pn = Pop+Pnu Pn= 17073.60 lbs Total axial load on pipe, including pressure from piping analysis for emergency/faulted condition forces: Pr= Pop+Pnr Pf= 17226.20 lbs Applied bending moment on the pipe from piping analysis Mn= 2206.25 ft-lbf for normal/upset condition (SRSS(MA, MB, MC) for WfOl +SEISOB) Applied bending moment on the pipe from piping analysis Mf= 4328.02 ft-lbf for emergency/faulted condition (SRSS(MA, MB, MC) for WfOl +SEISSS) Pipe thermal expansion stress from piping analysis: Pe= 0.000 ksi Technbical Evaluation 2494904-03 Attachment Circumferential Flaw Evaluation Usina: N-513 Pil!ini: Material Prol!erties (Ref. ASME B31.1}: Young's Modulus: 27850 ksi Poisson's Ratio: µ= 0.30 E'= (FJ(l-µ2) E'= 30604.40 ksi Material Prol!erties for Flaws l!er H-4000: From ASME XI C-8322 11c = 45 in*lbf/in2 Allowable Fracture Toughness, Klc: Kie= 37.111 ksi*in°.s Klc = 1c

  • E') I (1000 lbflkip))o.s N-513 Al!l!endix I Circumferential Flaw eguations: Accurate between 5 and 20. Conservative over 20. Rlt= 16.500 Acceptable Am= -2.02917 + 1.67763*(R/t) -0.07987*(R/t)2 + 0.00176*(R/t)3 Am= 11.81 Bm = 7.09987 -4.42394*(R/t) + 0.21036*(R/t)2 -0.00463*(R/t)3 Bm= -29.42 Cm= 7.79661+5.16676*(R/t) -0.24577*(R/t)2 + 0.00541 *(R/t)3 Cm= 50.44 Fm= 1.0 + Am*(9ht)1.s + Bm*(9ht)2.s + Cm*(9hr)3.s Fm= 1.03 Ab= -3.26543 + 1.52784*(R/t) -0.072698*(R/t)2 + 0.001601 l *(R/t)3 Ab= 9.34 Bb = 11.36322 -3.91412*(R/t) + 0.18619*(R/t}2 -0.004099*(R/t)3 Bb= -20.94 Cb= -3.18609 + 3.84763*(R/t} -0.18304*(R/t)2 + 0.00403*(R/t)3 Cb= 28.57 Fb = 1.0 + Ab*(9ht)1.s + Bb*(9ht}2.s + Cb*(9ht}3.s Fb= 1.02 Technbical Evaluation 2494904-03 Attachment A1mlied Stress Intensitt Factor2 Kl2 for Circumferential Flaw: N-513 Aooendix requires that the flaw depth in the H-7300 stress intensity equations be changed to the flaw half-length, c: Maximum assumed circumferential flaw length: l= 0.75 in Flaw half-length, c = 1/2: c= 0.38 in Note: Units are converted automatically. Normal/Uuset Condition: K ( 2. 7
  • Pn ) ( rs F Kim= 3.536 o.s *K*C . 1-ln 2*K*R*t (2.3*Mn ) ( rs K1b= K*C *Fb !!*R *t K1b= 1.501 ks' . o.s 1-ln K1 =Kim +Kib K1= 5.036 ksi-inU..:J Therefore, K1 Kie: Acceptable Emeri,:encIIFaulted Condition: 1.B*P1 ks' . 0.5 K*C * *Fm Kim= 2.378 1-ln 2*K*R*t M 1 K lb Pe . 1! c . Fb !!* R *t Kib = 2.048 ks' . 0.5 1-lD K1 =Kim +Kib K1= 4.426 ks' . 0.5 Therefore, K1Kie: Acceptable Technbical Evaluation 2494904-03 Attachment Axial Throui:;h-walll Flaw Evaluation Using N-513 Stress Intensitt Factor3 Kl2 for an axial flaw subject to the boundini:; condition: Axial flaw length: l= 0.75 Flaw half-length, c = V2: c= 0.375 in Maximum operating pressure: OP= 150 psi Safety Factor for norrnaVupset conditions from C-2622: SF= 2.7 N-513 Aooendix I assigned flaw shape parameter for a throu2h-wall flaw: Q= 1.00 A.= c/(R *t)05 0.246 Therefore, Acceptable Note: Units are converted automatically F = 1.0 0.072449*A. 0.64856*A.2 -0.2327*A.3 0.038154*A.4 -0.0023487*A.s-F= 1.054 K =SF* OP*R. *F K1= 7.643 o.s 1-lll Therefore, K1 < Kie: Acceptable END OF ASME CODE CASE N-513-3 EVALUATION Technbical Evaluation 2494904-03 Attachment Code Minimum Wall Rec uirement Based on ASME ND-3640: Joint efficiency factor: E= 1.00 Corrosion allowance used: A= 0.00 in Maximum allowable stress for pipe material from Section II, Part D: S= 17.10 ksi y= 0.40 Design Pressure: PD= 150 psi Minimum ASME pipe wall thickness required, not including any corrosion allowance. PD*D +A tm = 0.056 in m 2* (S*E+PD* y)

Technbical Evaluation 2494904-03 Attachment Minimum Wall Thickness Evaluation@ 0.063 inch Thickness Outside diameter of pipe: D= 12.75 in analyzed pipe wall thickness: t= 0.375 in Allowable pipe wall thickness -Code minimum: t1 = 0.063 in (Use trial and error until satisfying modified stresses below) Design inside pipe diameter: d=D-2*t d= 12.00 in New inside pipe diameter: dl = D-2*tl dl = 12.624 in As analyzed Section Modulus: Z=0.()1)82 D4_;d4 Z= 43.829 in3 4 d 4 New Section Modulus: Zl = 0.@82 D -l Zl= 7.927 in3 D Design Pressure: Pd= 150 lpsig Maximum Pressure: Pm= 150 psig ME101 Ou out Stress Summarv -Innut from Calculation 33-32. Revision lB: Design Pressure Stress: SPd= 1164 psi Maximum Pressure Stress: SPm= 1164 psi Equation 11 Stress: Eqn 11 = 1336 psi Equation 12B Stress: Eqn 12B = 1751 psi Equation 12C Stress: Eqn 12C = 0 psi Equation 120 Stress: Eqn 12D= 2262 psi Equation 13 Stress: Eqn 13 = 0 psi Equation 14 Stress: Eqn 14= 1336 psi ME101 Modified Stresses Equation 11 Stress = ( ) Z D _ F.qn 11-SPd *-+Pd*Wti}-Zl 4*tl Equation 128 Stress =(Eqn 12B-SPrn)* ii +Pm* = Equation 12C Stress= (Eqn 12C-SPrn)* ii+ Pm* = Equation 12D Stress :(Eqn 12D-SPrn)* i 1 4 Technbical Evaluation 2494904-03 Attachment 1_ofJ5_ Allowable Stress 8540 psi 17,100 10835 psi 20520 NIA psi NIA 13660 psi 41040 Technbical Evaluation 2494904-03 Attachment _K__ofl5___ Evaluation Ingot Data From Calculation 33-32 Rev 1B1 Node Points 201-206 Fa Fb Fe Ma Mc PSis Weight 848 255 56 70 346 424 551.72 Thermal 0 0 0 0 0 0 0.00 OBE 109 210 227 672 693 735 1213.28 SSE 261 505 546 1613 1662 1763 2910.70 s Allows Pressures 1164 Equ.11 s 1336 17,100 Equ.12bs 1751 20,520 Equ.12ds 2262 41,040 Equ.13s NIA 33-32 WTOl STRESSES AND LOCAL FORCES AND MOMENTS ME101/N9 EXELON/824 (PM1107) 05/25/12 PM1107 PAGE 67/ ELEMENT TYPE/TITLE FROM LOCAL FORCES (LB) TO FA FC 198 201 TNGT 201 TNGT 206 B 206 B BEND 206 M 206 M BEND 206 E 206 E TNGT 207 207 208 TNGT 171 TNGT 209 209 TNGT 211 211 TNGT 216 B 216 B BEND 216 M 216 M BEND 216 E 216 E TNGT 221 221 TNGT 223 223 TNGT 226 226 TNGT 231 B 231 B BEND 231 M 231 M BEND 231 E -1055 ... -848 r ... ... 424 ..,,.-1:r *:t __ ,..!:p ." -424 175 \5; *. * -175 -56 56 -56 402 -484 -2459 2807 -2807 3137 -4054 4139 53 42 42 -42 42 -42 42 -42 42 -42 42 -70 70 -142 -56 56 -56 56 56 -184 -402 -56 56 -69 69 -72 72 -53 53 42 -112 112 -236 -236 253 -253 338 602 -449 449 -137 11 11 42 -56 -56 ..,2&_ i::;-56 -56 56 56 56 -72 72 69 -69 42 -42 53 -53 53 53 53 -53 53 -53 53 -98 98 166 -81 Bl 4 MOMENTS (FT-LB) STRESS (PSI .75IM/Z STRESS FLEX. FLEX. CODE OUT AND PLANE CLASS INT.FAC. IN MC (I) PLANE 70 459 -539 189. 1.000 1.000 1.000 B31S73 @._ . 14 7. ,: 000 1. 000 1. 000 -424 1. 000 1. 000 1. 000 B31S73 .. *.* 346 -70 ..{* -115 ----_._ . 1.000 1.000 1.000 -115 72 *t*:_;1i* . 31 -. 31 '. 31 333 -333 333 90 -90 90 -90 330 -330 330 139 -139 480 -480 480 -480 480 -480 480 -480 480 -480 91 423 31 81 -44 290 358 -582 883 -918 -560 573 -573 250 250 -241 241 -197 197 -117 117 183 266 -656 656 -567 190 -21 301 43. 2.862 2.862 2.862 9.359 9.359 9.359 9.359 B31S73 9.359 9.359 B31S73 ..... 173. ' 2.862 .9.359 9.359, 301 _80. ' l'. 000 -1. 000 1. 000 B31S73 326 124. 1.000 1.000 1.000 -326 212 121 -358 290 -523 -605 560 -918 995 -995 1204 1204 -1245 1245 -1491 1491 -704 704 193 7 -12 12 -18 181. 156. 68. 125. 125. 341. 486. 299. 643. 661. 661. 754. 351. 459. 459. 420. 420. 229. 229. 146. 313. 378. 378. 404. 1.000 1.000 2.172 1. 000 1. 000 2.172 2.172 1. 000 2.862 2.862 2.862 2.862 1.000 1.696 1.696 1.000 1.000 1. 000 1.000 1.000 2.862 2.862 2.862 2.862 Attachment to: Page q of 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1. 000 9.359 9.359 9.359 9.359 1. 000 1.000 1.000 1.000 1. 000 1.000 1. 000 1. 000 9.359 9.359 9.359 9.359 t? 1.000 B31S73 1.000 1. 000 B31S73 1. 000 1. 000 B31S73 1. 000 1. 000 B31S73 1.000 9.359 B31S73 9.359 9.359 B31S73 9.359 1.000 B31S73 1.000 1. 000 B31S73 1.000 1. 000 B31S73 1. 000 1. 000 B31S73 1.000 9.359 B31S73 9.359 9.359 B31S73 9.359 '2! g t (') 0 i CD a 33-32 SEISDE STRESSES AND LOCAL FORCES AND MOMENTS ME101/N9 EXELON/824 (PM1107) 05/25/12 PM1107 PAGE 349/ ELEMENT TYPE/TITLE LOCAL FORCES (LB) LOCAL MOMENTS (FT-LB) STRESS (PSI STRESS FLEX. FLEX. CODE OUT AND PLANE CLASS FROM TO 198 201 TNGT 201 TNGT '206 ....... ti *,..\., 1' ___,,. l!'_. FA FB FC 109 168 104 469 1.§8 __.._....:_ 1_04 y----108 @]) 94 206 B BEND <,.; 56 '* *, 98 J t*** .. 206 M___ __ ., 109 , 206 M BEND __?06 109 98 31 56 184 ... -' 67;2 ........ 184

  • 607 MC 841 1073 384. . INT.FAC. IN (I) PLANE 1. 000 1. 000 1. 000 1. 000 1.000 B31S73 1. 000 1.000 B31S73 1.000 427 284 122 194 402. 2.862 9.359 9.359 B31S73 ,431. 2.862 K" 9.359 9,359 284 356 431. 414. 2.862 2.862 9.359 9.359 9.359 B31S73 9.359 206 E TNGT 207 5lL_ t?-f);'I_ ".:\' 607 -356 176 i\ 193. 607 1190 158 358. 1.000 ,.1.000 1.000 B31S73 1.000 1.000 1.000 207 208 171 209 TNGT TNGT 209 TNGT 211 211 TNGT 216 B 216 B BEND 216 M 216 M BEND 216 E 216 E TNGT 221 221 223 223 226 226 231 B TNGT TNGT TNGT 231 B BEND 231 M 231 M BEND 231 E 99 58 58 58 508 508 508 508 534 534 237 231 231 120 105 105 100 100 89 89 81 212 277 400 400 318 99 99 155 155 151 151 466 466 120 135 135 237 242 242 244 244 167 167 134 104 318 131 131 277 231 231 165 165 140 140 138 138 492 492 492 492 500 500 504 504 508 508 319 369 212 212 212 212 1190 1190 541 541 541 541 922 922 922 565 565 236 236 236 236 236 236 236 236 211 211 379 379 589 607 982 781 1135 318 600 481 468 667 554 554 553 553 695 695 1324 1324 879 390 386 386 230 158 48 581 318 1135 1433 1045 667 468 474 474 560 560 579 579 692 692 446 446 348 861 991 991 817 522. 599. 483. 345. 345. 713. 639. 327. 703. 533. 533. 470. 219. 282. 282. 269. 269. 377. 377. 258. 553. 645. 645. 590. 1. 000 1. 000 2.172 1. 000 1.000 1.000 1. 000 1. 000 1.000 B31S73 1.000 1. 000 B31S73 1.000 1.000 1.000 1.000 B31S73 2.172 1.000 1.000 2.172 1.000 1.000 B31S73 1.000 1.000 1.000 2.862 9.359 9.359 B31S73 2.862 9.359 9.359 2.862 9.359 9.359 B31S73 2.862 9.359 9.359 1.000 1.000 1.000 B31S73 1.696 1.000 1.000 1.696 1. 000 1. 000 1. 000 1.000 1. 000 2.862 2.862 2.862 2.862 1. 000 1.000 1. 000 1. 000 1. 000 1. 000 9.359 9.359 9.359 9.359 1. 000 B31S73 1. 000 1.000 B31S73 1. 000 1.000 B31S73 1. 000 9.359 B31S73 9.359 9.359 B31S73 9.359 Attachment to: Page _.i......;1 0:::...___ of /5 z 0 ::s 'f n 0 .. c. 0 0 i a 33-32 SEISME STRESSES AND LOCAL FORCES AND MOMENTS ME101/N9 EXELON/024 (PM1107) 05/25/12 PM1107 PAGE 304/ ELEMENT TYPE/TITLE LOCAL FORCES (LB) LOCAL MOMENTS (FT-LB) STRESS (PSI STRESS FLEX. FLEX. CODE FROM TO 190 201 TNGT 201 TNGT 206 B 206 B BEND 2QLM 206 M BEND 206 E 206 TNG'!'.. 207 207 TNGT 200 171 TNGT 209 209 TNGT 211 211 TNGT 216 B 216 B BEND 216 M 216 M BEND 216 E 216 E TNGT 221 221 TNGT 223 223 TNGT 226 226 TNGT 231 B 231 B BEND 231 M 231 M BEND 231 E FA FB *--. "T' *** .. 403 ...... .403 260 .227 FC 254 352 MC 2019 2575 921. 711. INT. FAC. IN OUT AND (I) PLANE PLANE CLASS 1. 000 1. 000 1.000 1.000 1. 000 B31S73 1. 000 1126 1662 1763
  • 711. 1. 000 1. 000 1. 000 B31S73 293 450.
  • 1.000 1.000 1.000' 1311 1026 135-261 236 442
  • 13i1 1026 *r , ;* 965. 2.062 9.359 9.359 B31S73 ,...,. 4 ' .!52 .. -601 _ _:, ____ 465 ___ __ 75 "' 442 ( ** 1613____ 601 *.*. 465 :{' 2.862 9.359 9.359 B31S73 135. ., 442 . -.,,., . 145§ .:. 055 ;. 423 ,,.. 994. 2.062 9.359. 9.359 ' 139 . ---£ 139 6 1456 855 423 1456 2855 379 -*" 463. ' .1. 000 1. 000 1. 000 B31S73 859. 1.000 1.000 1.000 139 139 1220 1220 1220 1220 1201 1201 569 553 553 209 252 252 239 239 215 215 195 510 665 961 961 762 230 238 372 372 362 362 1110 1118 289 323 323 569 581 581 586 506 401 401 321 249 762 315 315 665 554 554 395 395 337 337 330 330 1180 1180 1180 1180 1201 1201 1209 1209 1219 1219 765 886 509 509 509 509 2855 2855 1299 1299 1299 1299 2212 2212 2212 1355 1355 567 567 567 567 567 567 567 567 507 507 900 900 1414 1456 379 2357 115 1875 1395 2724 763 763 2724 1440 3440 1155 1122 1601 1372 1372 1329 1329 1326 1326 1669 1669 3178 3178 2110 935 927 927 553 2507 1601 1122 1137 1137 1344 1344 1390 1390 1662 1662 1071 1071 835 2067 2378 2370 1961 1253. 1438. 1159. 820. 828. 1712. 1533. 785. 1686. 1279. 1279. 1127. 525. 678. 678. 644. 644. 905. 905. 619. 1328. 1547. 1547. 1416. 1. 000 1.000 2.172 1.000 1.000 2.172 1.000 1.000 1.000 1.000 1. 000 1. 000 1. 000 B31S73 1.000 1.000 B31S73 1. 000 1.000 B31S73 1.000 2.172 1.000 1.000 B31S73 1.000 1.000 1.000 2.862 9.359 9.359 B31S73 2.862 9.359 9.359 2.862 9.359 9.359 B31S73 2.862 9.359 9.359 1.000 1.000 1.000 B31S73 1.696 1.000 1.000 1.696 1.000 1.000 B31S73 1.000 1.000 1.000 1.000 1.000 1.000 B31S73 1.000 1.000 1.000 1.000 1.000 1.000 B31S73 1.000 1.000 1.000 2.862 9.359 9.359 B31S73 2.862 9.359 9.359 2.862 2.862 9.359 9.359 Attachment to: Page 11 ---9.359 B31S73 9.359 of J5 -z: 0 :s '3 0 a n 0 rf<

33-32 ALL STRESS ANALYSIS ME101/N9 EXELON/824 (PM1107) 05/25/12 PM1107 PAGE 553 CODE B31S73 SUSTAINED LOAD OCCASIONAL LOAD THERMAL EXPANSION NON-REPEATED ANCHOR MOV ELEMENT FROM TYPE TO TITLE 141 BEND 151 M 151 M BEND 156 156 TNGT PD/4T PSI 776 776 335 161 CHK-2-33-513 161 171 171 176 176 181 181 186 181 191 191 198 198 20+/-_._ TNGT TNGT TNGT CMPT M0-2972 TNGT TNGT TNGT 201 TNGT 20L!!_ 206 B BEND 206 M 206 M BEND 206 E 206 E TNGT 207 207 208 TNGT 776 1164 527 0 527 1164 1164 '"J* .. *.,, 1164 ,,,;i-* ,,, 1164 ._,_..._ :;" ..-; -.. 993 EQN 11 CALC ALLOW PSI PSI 1115 1039 1039 922 382 529 1132 1599 1432 1317 609 604 0 0 641 632 1360 1353 1353 _1311 1311 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 PD/4T PSI 776 776 335 776 1164 527 0 527 1164 1164 1164 LEVEL B EQN 12 CALC ALLOW PSI PSI 2453 2619 2619 2725 962 1257 2463 3503 2115 1737 832 822 0 0 863 843 1757 1736 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 LEVEL C EQN 12 CALC ALLOW PSI PSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1607 10000 r o 1226 15000 1413 .18000 0 '. _o LEVEL D EQN 12 CALC ALLOW PSI PSI 4327 4831 4831 5248 1775 2276 4325 6169 3071 2326 1145 1128 0 0 1175 1138 2313 2274 2274 2021 1675 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 EQNS 13/14 CALC ALLOW PSI PSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EQN CALC ALLOW PSI PSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 0 0 0 .Jc .0 ,._ 0 0 1297 15000 1207 15000 1164 1699 18000 0 0 36000 ,**. -0 0 0 0 1638 1-8000 0 ... ,. 2241., 360,00 -0 ,,.; 0. 0 01 1207 15000 1164 1638 18000 15000 .175L 18000 0 0 0 2241 36000 2331.. 36000 0 0 .1244 1288 15000 __ 1164 1437 18000. 0 L 0 1707. 36000. 0, .,) 1174 1150 15000 1646 18000 0 0 2147 36000 0 15000 15000 993 1696 1749 18000 18000 0 0 0 0 2427 2587 36000 36000 0 0 0 0 Q 0 0 0 0 Q 0 0 0 .IJ. o, 0 0 EXCEEDED ALLOWABLE IN EQUATION 13, EQUATION 14 USED EXCEEDED ALLOWABLE Attachment to: Page j 2 of JS z 0 :s n 0 a. n 0 S' a I [ x I I s .500" .500" .300" .300" .200" .200" .100" .100"

-

.... ....................... ___ .._.,11HalTIL..._,_...,...__,_ .. __.._..,__.., __ _ ---. .................................... ... ___ ...... .. W.O.IOTl8J*38/0HOJ) 559 .. REY. AS BUILT PER FIEJ.D INSP. "?d.t.i!: 71R8 Attachment Page 15of15 STlllJSMAL"Wm DATA* -nma&. nw. .. -, ..... -.iiFIUILL,_ UP..mei..*llCDFT. DP.CDEPF ....... SS EHERGEN:l'

  • SER'llCf WATER : (!Ne A/PJO\*---l..v.I \V k5" JIJSo-I J ,iYtt-.. c.t... (;;... J ,l. fC)<. '-t S" a:; rn o ... f() ...... 0 z . g ...... C5 3 Planar Flaw Evaluation in ferritic l!il!ing IA W Code Case N-513-3 PBAPS ESW Min Wall "B" ESW (IR 2494904-03} Definitions: Flaw depth a= 0.312 in Pipe wall thickness t= 0.375 in Maximum assumed circumferential flaw length: I= l.500 in Pipe outside diameter: D= 12.75 in Mean pipe radius: D-t R= 6.19 in Piping bending moment of inertia: !t[D4-(D-2t)4J 64 I= 279.34 inA4 Flaw half-angle per Figure I, N-513: 2*R 0= 0.121 rad Unit definition for kips: l kip= 1000 lbf Unit definition for psi: l ksi = 1000 psi Pil!ing Loads (Moments Increased b:y: 25% for Uncertainties}: Maximum operating pressure: OP= 150.00 psi Maximum operating pressure axial force: =1t(.lf-t}2 Pop= 16964.60 lbs Axial load on pipe for Normal/Upset condition forces: Pnu= 109.00 lbs Axial load on pipe for Emergency/Faulted condition forces: Pnf= 261.60 lbs Total axial load on pipe, including pressure from piping analysis for normal/upset condition forces: Pn = Pop+Pnu Pn= 17073.60 lbs Total axial load on pipe, including pressure from piping analysis for emergency/faulted condition forces: Pr= Pop+Pnr Pf= 17226.20 lbs Applied bending moment on the pipe from piping analysis Mn= 2206.25 ft-I bf for normal/upset condition (SRSS(MA, MB, MC) for WTOl+SEISOB) Applied bending moment on the pipe from piping analysis Mf= 4328.02 ft-I bf for emergency/faulted condition (SRSS(MA, MB, MC) for WTOI +SEISSS) Pipe thermal expansion stress from piping analysis: Pe= 0.000 ksi Page 1 of Circumferential Flaw Evaluation Using N-513 Pil!ing Material ProJ!erties {Ref. ASME B31.1}: Young's Modulus: E= 27850 ksi Poisson's Ratio: µ= 0.30 E'= (E/(1-µ2) E'= 30604.40 ksi Material ProJ!erties for Flaws J!er H-4000: From ASME XI C-8322 11c = Allowable Fracture Toughness, Kic: K1c = Kic = W1c
  • E') I (1000 lbtlkip))0*5 N-513 Al!l!endix I Circumferential Flaw eguations: Accurate between 5 and 20. Conservative over 20. Rlt= Am = -2.02917 I .67763*(R/t) -0.07987*(R/t)2 0.00 I 76*(R/t)3 Am= Bm = 7.09987 -4.42394*(R/t) 0.21036*(R!t}" -0.00463*(R!t)3 Bm= Cm = 7 .79661 5. l 6676*(R/t) -0.24577*(R/t)2 0.00541 *(R/t)3 Cm= Fm = 1.0 Am*(8!7t/5 Bm*(8/7t)2Cm*(8/7t)3*5 Fm= Ab = -3.26543 l .52784*(R/t) -0.072698*(R/t)2 0.0016011 *(R/t)3 Ab= Bb = 11.36322 -3.91412*(R/t) 0.18619*(R!t}2-0.004099*(R/t)3 Bb= Cb= -3.18609 3.84763*(R/t) -0.18304*(R/t)2 0.00403*(R/t)3 Cb= Fb = 1.0 Ab*(8/7t) 1.5 Bb*(817t)2'5 Cb*(8/7t)3*5 Fb= Page2 of_!_ 45 in*Ibf/in2 37.111 ksi*in°*5 16.500 Acceptable 11.81 -29.42 50.44 1.08 9.34 -20.94 28.57 1.07 A1mlied Stress Intensity Factor, KI, for Circumferential Flaw: N-513 Appendix I requires that the flaw depth in the H-7300 stress intensity equations be changed to the flaw half-length, c: Maximum assumed circumferential flaw length: I= 1.50 Flaw half-length, c = 1/2: c= 0.75 Note: Units are converted automatically. Normal/U(!set Condition: Kim 2.7. P,, c )o.s . Fiii Krm= 5.249 2*Jr*R*t K (2.3*M,, p) ( )°"5 F lb 2 e
  • J[ C
  • b Jr*R *t Krb= 2.207 Kr= Kim +K1b K1= 7.456 Therefore, K1 Klc: Acceptable Emergency/Faulted Condition: pf )°' Kim= . Jr* c . F111 Kim= 3.531 2*Jr*R*t M 1 K lb Pe . Jr . c . Fb Jr*R-*t K1b= 3.012 K1 = Krm +K1b K1= 6.543 Therefore, K1 Klc: Acceptable _1__ in in ksi-in°5 ksi-in°s ksi-inu*' ksi-in°*5 ksi-in°5 k .. 0.5 SI-In Axial Through-walll Flaw Evaluation Using N-513 Stress Intensity Factor, KI, for an axial flaw subject to the bounding condition: Axial flaw length: l= 1.50 Flaw half-length, c = 1/2: C= 0.75 Maximum operating pressure: OP= 150 Safety Factor for normal/upset conditions from C-2622: SF= 2.7 N-513 Appendix I assigned flaw shape parameter for a through-wall flaw: Q= 1.00 /... = c/(R *t>°5 'A.= 0.492 Therefore, O<'A.<5: Acceptable Note: Units are converted automatically F = 1.0 0.072449*1.. 0.64856*/...2 -0.2327*1..3 0.038154*1.. 4 -0.0023487*/...5 F= 1.167 K =SF* OP*R. *F t K,= 11.974 Therefore, K1 < Kie: Acceptable END OF ASME CODE CASE N-513-3 EVALUATION in in psi 0.5 SI-In Code Minimum Wall Reguirement Based on ASME ND-3640: Joint efficiency factor: E= Corrosion allowance used: A= Maximum allowable stress for pipe material from Section II, Part D: S= y= Design Pressure: PD= Minimum ASME pipe wall thickness required, not including any corrosion allowance. PD t111 +A tm= 2* S*E+P*y 1.00 0.00 m 15.00 ksi 0.40 150 psi 0.063 in Minimum Wall Thickness Evaluation @ 0.063 inch Thickness Outside diameter of pipe: D= As analyzed pipe wall thickness: t= Allowable pipe wall thickness -Code minimum: ti= (Use trial and error until satisfying modified stresses below) Design inside pipe diameter: d = D-2*t d= New inside pipe diameter: di =D-2*tl di= 4 4 As analyzed Section Modulus: Z=O 0982 D -d Z= . D 4 d 4 New Section Modulus: Zl = 0 0982 D -l ZI= . D Design Pressure: Pd= Maximum Pressure: Pm= 12.75 in 0.375 in 0.063 in 12.00 in 12.624 in 43.829
  • 3 7.927
  • 3 150 psig 150 psig ME101 Out11ut Stress Summary
  • In11ut from Calculation 33-321 Revision lB: Design Pressure Stress: SPd= 1164 psi Maximum Pressure Stress: SPm= 1164 psi Equation 11 Stress: Eqn 11 = 1336 psi Equation 128 Stress: IEqn 120 = 1751 psi Equation I 2C Stress: IEqn 12c = 0 psi Equation 12D Stress: Eqn 12D = 2262 psi Equation 13 Stress: Eqn 13 = 0 psi Equation 14 Stress: Eqn 14 = 1336 psi MElOl Modified Stresses ENCLOSURE 2 1.5 inch Through Wall Flaw Evaluation Equation 11 Stress = (Eqn Zl 4*tl Equation 128 Stress= (Eqn 12B-SPm)* ii+ Pm* = Equation 12C Stress =(Eqn 12C-SPm)*k+Pm = Zl 4*tl Equation l2D Stress :(E.qn 120-SPm)*k+ Zl 4*tl ___!.___ Allowable Stress 8540 psi 17,100 10835 psi 20520 NIA psi NIA 13660 psi 41040 Evaluation Data From Calculation 33-32 Rev lB, Node Points 201-206 Fa Fe Ma Mb Mc Mr PSls Weight 848 255 56 70 346 424 551.72 Thermal 0 0 0 0 0 0 0.00 OBE 109 210 227 672 693 735 1213.28 SSE 261 505 546 1613 1662 1763 2910.70 s Allows Pressures 1164 Equ.11 s 1336 17,100 Equ. 12b s 1751 20,520 Equ.12d s 2262 41,040 Equ.13 s NIA Prepared 8 y: Hudson OJ-23-201.5 Date Reviewed By: 1/ z.3/z.o 1.r Doug Lord Date _i__

....... .. J J 0.75" f5" m z en :::a m