ML20205G857

From kanterella
Revision as of 16:51, 29 December 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Proposed Ts,Increasing Dei Limit from 0.15 to Uci/Gram IAW 10CFR50.90
ML20205G857
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 04/02/1999
From:
SOUTHERN NUCLEAR OPERATING CO.
To:
Shared Package
ML20205G852 List:
References
NUDOCS 9904070394
Download: ML20205G857 (35)


Text

.

l REACTOR COOLANT SYSTEM 3/4.4.9 SPECIFIC ACTIVITY LIMITING CONDITION FOR OPERATION 3.4.9 The specific activity of e primary coolant shall be limited to:

4microcurie per gram DOSE l

a. Less'than or equal to 0. i EQUIVALENT I-131; {
b. Less than or equal to 100/ E microcurie per gram. f APPLICABILITY: MODES 1, 2, 3, 4, and 5 ~

A l ACIlOE1.

A MODES 1, 2, and 3*:

a. With th G cific activity of the primary coolant greater .

than 0 icrocurie per gram DOSE EQUIVALENT I-131 for more l than 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> during one continuous time interval or exceeding 1 the limit line shown on Figure 3.4-1, be in at least HOT j j

STANDBY with Tavg less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, 1

b. With the specific activity of the primary coolant greater than 100/E microcurie per gram, be in at least HOT STANDBY with l Tavg less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. l i

1 e i

( i l

  • With Tavg greater than or equal to 500*F.

AMENDMENT NO. 26, 63, III, FARLET-UNIT 1 3/4 4 117, 128, 132 -

{

l l-9904070394 990402 .b I i

PDR ADOCK.05000348 Q P PDR y

REACTOR COOLANT SYSTEM ACTION: (continued)

MODES.1, 2, 3, 4, and 5

[O

a. With th a cific activity of the primary coolant greater than O. icrocurie per gram DOSE EQUIVALENT I-131 or l greater than 10 0 / E microcuries per gram, perform the sampling and analysis requirements of item 4a of Table 4.4-4 until the specific activity of the primary coolant is restored to within its limits.

SURVEIILANCE REQUIREMENTS 4.4.9 The specific activity of the primary coolant shall be' determined to be within the limits by perfomance of the sampling and analysis program of Table 4.4-4.

~

i l

l FARLEY-UNIT 1 3/4 4-24 AMENDMENTNO.25,k,III, l 117, 128, 132 l

t Cl:

l -

C

r g

o t

ED c LE a PR e MI r AU #

SQ 5 e E c HR , n C # i IS 4 s HI WS , . d Y 4 # s e NL 3 t s IA , i p N 3 , 3 m a SA # i l E , 2 , l e DD 2 2 ON , s e MA , # , t v 1 1 1 1 1 i a h

n i N h O t I i T n

, w A

  • E , . R L T m d d d E P

M N a n f R' o e r

P E r oEi O A

S

  • s r L g ~a Wr o R

S u A / etOe 2 agnPp t I f . VL s E Y o

  • i0I U Cp n ne e W T S h r O Y ,c egacLr P I

V M L 2 s esQ enhrAu s A AY 7 r pd E E -

wiceMo I

T R NC AN r u seeE o

/ tw e oR pRh E

i f o

C G E hecS 0 blE5He m A O e lW1Tn e s 4 R DU p

  • hxO 0 o t y C P NQ AE s 4 teD1 le foO P gD s a 4 e s h
r. rymr I p nEa y d F S .R c y t s m 4 I I EF n a n e et a o msLiT arAdAn 0 C S L P o d o pvi r e v g .1 'suMeRi t 2 E E Y m n

-,, L P L M t 4

  • e ni / 3 ore h a 'd B S A A s 1 6 c et11d n ehEcet Hxhi l n A N S a nh c C n o a T T A e r r OwaP.Ia O6Tetw o -

N l e ,e c D A D p P .i - '

P

) ) _

L N t y F . _

O A A 1 1 a b r Er _

O i a 4 C i m 2g

. i n _

Y r fo R p ol _

A 5 M 3 e mr I  ; 1 .ht uo '

R n - m P o I is .

n i e f nr o t nd o iu i Ea in y mo Sr da h t t a T

N a

n Ot Dne I o, i 8 E 3 v r4 i

rc r3 i e M

E S m

r on o1 t tr R IS 'e f o i f - c f o U Y t C 1 a af S L e s r s c nl A D i 1 o i ,

E A N s3 f s1 i f

ea kc MA y y1 y3 i ai t l - ln l 1 c tt F D i aI ao a- e i O N v n ci nI p er E A i A NT it A g p bp t ma cn b Y

P c cE iL en hi ii e ou A ts T pA cm pd h s oV or ie ou t l t

et s t I l l s o oU dt oc pa r sQ ae sn i t ml C IE RD I I n a U Ss a

1 2

3 4

  1. *w

-

  • s

. m h, haw a t} i$ ghg$ 5. N. y

  • y". &"

275 i

(\

E 4 i

( t * ! ' t ! !  ! ! ! I i t !  ! I i  ! ! # ! ! ! ! i

~4 u M 2 Li i i i i i ; i i

i i i i i i i , 4 4 ; 4 ,

-(k4 , , ,

O I i t *!  ! !  ! 1 ! !  ! l 1 1  ! ,

u ' t_W u . 6 i, i,ii i iii i i i i i E

kNA 8 5 5 i ,

3 "w\ui,,

225 __ ,\ i i i i i e i ,

y .- (

l' Mi i i i

i i i M t XL T- ,

s , , , , i M \ k\# I I I I I

)

I I II I i f I 3 3 h lh\ i i i a i , i i l 6

- \,. %\ ws UNACCEPTABLE I l i

& \ i w' '

OPERATION os 175 '\' Y^

i i \i M -

ii

'+ i i

, i x , 'sw , , , ,

i i u

w i

' ' i\ \u' ' ' '

i i i \-

n i i i i h 150 i W-u -

A n tal 8

\ i'N(

a. ,,t %f \hT  ! t i  !

i i i h .O\ i i 4 4 1 i i

  • 125 "u

= = ie t

% i i \ 'L\\! l 8 't w m ug i x

v.\

n , ,

E 5

\%:s ' "

w ACCEPTABLE '. \ a e

4 e g OPERATION \ h\- - ) i i i

i

\- lk's /GF __

t eg i t t i , , , , t T 'L'LN 7 M i i i i i i i i ( '(ll( i 7 _ f f I f f f' t lY< t f w g _ i i i i

% X'A i i

, , , X 'gT ( t 4 ,

3 D.

t

  • g,3 \ (% i T '<T ( ,

y g i I i i f \ ML w i

( OS D i 'ul&

O i ,__ mere NX*

,)

, i , \;. , s ! .

ist 1 I l bl en 0 l l 1 I I I l l l I l I l l I l l I I l l I I I IT 1 J 1 1 F riI

-8 20 30 40 50 so 70 80 90 100 PERCENT OF RATED THERMAL POWER FIGURE 3.4-1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RAT D THERMAL POWER with the Primary Coolant Specific Activity > 0 d5 pCi/ gram Dose Equivalent I-131 l FARLEY-UNIT 1 3/4 4-26 AMENDMENT NQ. 26, 106, ff7, 128, 132 i

e b e

h REACTOR COOLANT SYSTEM i

RASES i

3/4.4.8 CHEMISTRY l The limitations on Reactor Coolant System chemistry ensure that corrosion of the. Reactor Coolant System is minimized and reduces the potential for Reactor Coolant System leakage or failure due to stress corrosion.

Maintaining the chemistry within the Steady State Limits provides adequate

- corrosion protection to ensure the structural integrity of the Reactor ]

i Coolant System over the life of the plant. The, associated effects of l exceeding the oxygen, chloride, and fluoride limits are time and temperature dependent. Corrosion studies show that operation may be continued with contaminant concentration levels in excess of the Steady

-State Limits, up to the Transient Limits, for the specified limited time intervals without having a significant effect on the structural integrity of the Reactor Coolant System. The time interval permitting continued operation within the restrictions of the Transient Limits provides time for i taking dorrective actions to restore the contaminant concentrations to '

within the Steady State Limits.

The surveillance requirements provide adequate assurance that' I concentrations in excess of the limits will be detected in sufficient time l to take corrective action. l 1

3/4.4.9~ SPECIFIC ACTIVITY

  • The limitations on the specific activity of the primary coolant ensure that the resulting 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> doses at the site boundary will not exceed an appropriately samil fraction of Part 100 limits in the event of primary-to-secondary leakage as a. result of a steamline break.

The ACTION statement permitting POWER OPERATION to cont ue for limited tLS eriods with the primary coolant's specific activity greater than 0 'crocuries/ gram DOSE EQUIVALENT I-131, but within the all.twable l g limit shown on Figure 3.4-1, accommodates possible iodine spiking phenomenon which may occur following changes in THERMAL POWER.

1 FARLEY-UNIT 1 B 3/4 4-5 AMENDMENT NO.18, 2I, IIe 196, if7, f28, 132

F:s

, 1

)

REACTOR COOLANT SYSTEM

~

3 / 4 '. 4 . 9 'SPECITIC ACTIVITY' i

LIMITING CONDITION FOR OPERATION j j

3.4.9 The specific activity of the primary coolant. shall be limited to:

a. Less than or equal to 0. croCurie per gram DOSE l.

EQUIVALENT I-131;- l

b. Less than or equal to 100/E microcurie per gram *.

1 I

APPLICABILITY: -HODES 1, 2, 3, 4 and 5 ACTION: .

MODES 1, 2land 3*: yp a .' With the ecific activity of the prDaary coolant greater than 0 crocurie per gram DOSE EQUIVALENT I-131 for more l than 48. hours during one continuous time interval or exceeding the limit shown on Figure 3.4-1, be in at least HOT STANDBY with T,yg less than 500*r within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> .

b. With the s,pecific activity of the primary coolant greater than' 100/E microcurie per gram, be in at least HOT STANDBY with Tavg.less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

i I

l 1

l ,

  • With Tavg greater than or equal to 500*F.

,. FARLEY-UNIT 2 3/4 4-23 N NQ. 54, 94, 106, 124 t

1 REACTOR COOLANT SYSTEM .

ACTION: (Continued)

MODES 1, 2, 3, 4 and 5: '

a.

Wit the specific activity of the primary coolant greater than 1

O. 5 crocuriepergramDOSEEQUIVALENTI-131orgreater.thanl 10 / E_ microCuries per gram, perform the sampling and analysis requirements of' item 4a of Table 4.4-4 until the specific activity of the primary coolant is restored to within its

~

limits. -

SURVEILLANCE REQUI.REMENTS I

4.4.9 The specific activity of the primary coolant shall be determined to be within the limits by performance of the sampling and analysis program of Table'4.4-4.

~

1 l

, :s e= a FARLEY-UNIT 2 3/4 4-24 AMENDMENT.NO.49, 94, f96, -

124

(-

ED LE y

PR f MI AU N SQ S e E c HR , n C N i _

IS HI 4 s -

WS , .d Y 4 N s e NL 3 t s IA , i p N 3 3 ma SA E N i l DD , 2 ,

l e 2 2 ON s e MA , N t v 1 1 1 I 1 i a h -

n iN _

lO t I iT wA _

a , . R _

E T m d d dE _

L h fro P .

j N a n eP s E r a oEi rO M

A r c L g Wr o -

S S u i / 2 etOe t R I o f 1 agnPp sE Y

S Y h

,c i0 I C n ne egacLr. eW -

T U p rO L 2 s es Q enhrAu P I

V M AY 7 r pd E E wiceMo s _

NC use / t w pRh if _

I A AN r o eE eor E o R

T E e hecS 0 blE5He m _

C G DU p

  • hxO 0 lW1Tn e s A O 4 R NQ .i s 4t eD 1 eoO o t y C P AE :ec s h l f P gD s a _

4 R y t r rymr p .nEa yd I

F S EF n a n e et a o msLiT s L a rAdAn 0

. 4 E

I I C S E Y P

M

.o

't d . mo 4

,I pvir evg1 e ni / 3 s ore uMeRi h , n t2 r

L P L A s 1 6 cet 1 1d n ehEcet adeng B S A S a nhcC n Hxhi .l oan A N .e  !,

r r Owap1 a O 6Tet w i o o T T A ,i l e e cDl i

N p P -

t.

)' P A D l yF r -

L N A 1 1 a b  ;

  • rE o O A .

a O - m2 sr C i rf u Y poo R '

r 5 h em A - 3 M I 1 h u8 I

R n. , , ,- '. t m4 P

o , 1 i n i e f nr o t nd oio i

t Ea Sr i n da y mf T a Ot o, , t al N n Dn I i a E i e 3 vrc M S m rc r3 i ei E I R S r

e on fo E o1 f -

t t t cfi UY t C 1 aar e S e A L s r s A D i 1 o i , cnb E N s3 f s1 i eu y y1 y3 f k s MA t l - l n l 1 i a F D i aI ao a- ct t e

O N v n ci n1 pea s

EA i ATN i t A P

t c cE ma en cn g sbl Y A i L hi i i e os T

s pA oV cm pd ou ht a t w o r e s t I. i e tl o

r oU sQ dt ae o

snc

' ll r i po G I E RD I I t mt nac US a

. . . . e 1 2 3 4 N* r 0

g M7gsI h >

a W}; f N '" o!,5 I zP ;*. Nb

275 , ,

i

, ,, f -

E i i i i i 6 i

! I i i i 3 i ! 8 ( i( ) i i ! i ( ) i :

i i i u

2%x' i! i. '. . .' ' ,i i i ii i i i i i i i E 11 ' f  ? I ) 8 8 i i i j { ~l l  !  ! !

O Ll\l i i '

i i i iiii r i i i i i i i i E

3 wx , , i~

225 3 "

1 T<\ + 4 i e 1 \T \  ! ! 4 i i y L

\

M m i,ii,,,

i i i i i i i

>3 g L W\l ! f i i 9 f ;i i i i i i ! ! l 4i i

\ WXi i i i i i i p

e x. M w T w\ + UNACCEPTABLE i B e 1- ws ii

~ OPERATIOtt

' " - + ' ' ~+

9 175 O i i\ Mi i i i i i i 4 i s 2\t rT(1 : e i e a i i  :

y .

I i  ! \ \\\! f f f f i )

- i i 's M i i i i N

b 150 '

"e x 1

o x w  :

N m l Q* 1 iif i \ ,WV t i e i ! f

" i i i ii , A w\- i i i i i i  ;

  • 2 125 * ' ' m ' ' '

I f i f 't  %\ t t 4 1 8 l

i i h i  !

I i i i X '(T\1

\ VW 4

8 t u\

u , ,i y tw.

> tow 1 -L K - A N'i\ ,

j .. M ggp g iT '

<\( . >> >

> 8' s i i ro > i i  ; N i

$ ' 75 OPERATION *

? I \ 1M a J cg t i '( \th .

i T, (T\

M i i Y*

t i

i

\ ik' 6

. 50 . ,- . . i X 't ( i 4

! 1 i i f 1 k TL T .

f g i i i 6 i i i -

T Al\ i 3 i e i , \ m a a ,

  • g i i

i i

'(fx(N X W1 i

  • i i -

D  !  ! (N W i i O i \ IU~ 4~

W i i . i vi , ,ii_P 1

1 I l i l I I l l I l l  ! l i1 I l l I l I l I l IN J.#1I I11 I fa3 m 0 8 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THEluGLL POWER FIGURE 3.4-1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity > 0. ppCi / gram Dose Equivalent I-131 l TARLEY-UNIT 2 3/4 4-26 AMENDMENT NO. 94, ff6, 124

~

REACTOR COOLANT SYSTEM.

BASES 3/4.4.8 CNEMISTRY

. The lianitations on Reactor Coolant ~ System chemistry ensure that corrosion of the Reactor Coolant System is minimi. zed and reduces the potential for Reactor Coolant system leakage or failure due to stress corrosion.

Maintaining the chemistry within the Steady state Limits provides adequate corrosion protection to ensure the structural integrity of the Reactor Coolant system over the life of the plant. The associated ' effects of exceeding the oxygen, chloride and fluoride limits are time and temperature dependent. Corrosion studies show that operation may be continued with

' containment concentration: levels in excess of the Steady state Limits, up to~the Transient Limits, for the specified limited time intervals without having a significant effect on the structural integrity of the Reactor Coolant System. The time interval permatting continued operation within the restrictions of the Transient Limits provides time for taking corrective ~ actions to restore the containment concentrations to within the steady. State Limits. .

The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action.

v.

3/4.4.9 SPECIFIC ACTIVITY The limitations on the specific activity of the primary coolant ensure that the resulting 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> doses at the site boundary will not exceed an appropriately ==all fraction of Part 100 limits in the event of primary-to-secondary. leakage as a result of a steam line break.

, r.

The ACTION statement permitting POWER OPERATION to continue for limited g time periods with the primary coolant's specific activity greater than 0. Jl microcuries/ gram DOSE EQUIVALENT I-131, but within the allowable limit 1 shown on Figure 3.4-1, accommodates possible iodine spiking phenomenon which may occur following changes in THERMAL POWER.

I i

FARLEY-UNIT 2 B 3/4 4-5 AMENDMENT NO. II. IIe N 124 v

p- 1 l

]

.,)

l1 i

l

I Revised Current Technical Specification Pages

! I

.j l

Farley Unit i Page 3/4 4-23 Replace Page 3/4 4-24 Replace Page 3/4 4-25 Replace Page 3/4 4-26 Replace Page B 3/4 4-5 Replace Farley Unit 2 -

Page 3/4 4 23 Replace Page 3/4 4-24 Replace Page 3/4 4 Replace

! Page 3/4 4-26 Replace Page B 3/4 4-5 Replace -

l l

l i

I r

l l t: 1

f0' p- .

~ J L, REACTOR COOLANT SYSTEM 3 / 4 . '4. 9 SPECIFIC ACTIVITY P

LIMITING CONDITION FOR OPERATION 3.4 ~ 9 The specific activity of the prima ry coolant shall be limited to:

a. Less'than or equal to 0.30 microcurie per gram DOSE l l EQUIVALENT.I-131; _f l
b. Less than or equal to 100 / E . microcurie per gram, j APPLICABILITY: . MODES 1, 2, 3, 4, and 5~

l

- ACTION MODES 1, 2, and 3*:

l i

a. With the specific activity of the primary coolant greater than )

0.30 microcurie per gram DOSE EQUIVALENT I-131 for more than 40 l l hours during one continuous time interval or exceeding the limit line shown on Figure 3.4-1, be in at least HOT STANDBY with T.v, less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />,

b. With_the specific activity of the primary coolant greater than 100/E microcurie per gram, be in at least HOT STANDBY with Tav, less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. J

)

  • With Tav, greater than or equal to 500*F.

FARLEY-UNIT 1 3/4 4-23 AMENDMENT NO.

i i

i i

.)

r-

.s-i i

REACTOR COOLANT SYSTEM ACTION: (Continued)

MODES: 1, 2, 3; 4 ,' and 5:

4. With the specific activity of the primary coolant greater than
0. 30. microcurie per gram DOSE. EQUIVALENT I-131. o r greater than l 100/E microcuries per gram,- perform the sampling and analysis requirements of' item 4a of Table 4.4-4 until the specific activity of thefprimary coolant is restored to within its limits.

SURVEILLANCE REQUIREMENTS '

4.4.9 The specific activity of the primary caolant;shall.be determined to be within the limits by performance of the sampling and analysis program of . Table 4.4-4.

I s

l I

o

,o EARLEY-UNIT 1 3/4 4-24 AMENDMENT NO.

i

q..

[

r o

ED t LE c P R a MI e AU M r SQ S E e HR c C #

n I S i HI 4 s

WS Y 4 #

d

_NL 3 s e I A ,

t s N 3 3 i p S A #

m a

._ E i l DD , 2 ,

l e ON 2 2 MA ,

s e 1

1 1 8

1 1 t v i a h

n i N h O t I i T E w A L , .

R P T m d d d E M N a n f R o e P A a s E r oEi r O S

S r

u c0 L g Wr o Y I o i3 A/ 2 et O e t R S

f .

V i agnP p s E T Y h i0 I C n ne e W I

L , c U p egacLr r O V M AY 2 s esQ enhrAu P I A 7 rpdE E wiceMopRh s T R NC us eeE t w i f

.ANE /

C G r o h hecS eor E o xO 00 4 A O DU e blE5H e m R p

  • lW1 T n e s C P NQ s 4 t eD 1 eoO o t y 4

I AE e s h l fP gD s a F S R c y t rrymr p nEa y d 4 I I EF n a n e et a o msLiT s C S L o d o pvir a rAdAn 0 E E Y P evg1 L P L M m suMeRi t 2 B A t 4 eni/3 oR e h n A S A S s 1 6 cet i 1 d ehE cet a d T N a nh cC - n n H xhi l n T A e r r O wapI a O6T et w o a N l e e o A D p p c D L N t ) ) P O A A 1 1 a b y F .

O r E r C a e m 2 g Y i n R r f o A 5 p ol M

I R

3 1

h e mr uo P n - t m o I i s n i e f nr o t nd o i u i

t E a S r i n d a y mo h T a Ot o t a N n D n I , i 8 E i e 3 v r4 M

E IS m rc r3 i e R S r

e on E o1 t t r U Y t f o C

f -

I c f o a af S L e s r s A

E A D i 1 s3 f o i ,

s1 c nl M- N y y1 y3 i ea A f k c t l - l n l 1 i ai

.F D i aI ao a - c t t O N v n ci nI e i E A i ATN it A g p er P

t c cE ma en cn s b e Y A i L hi i i b e ou T pA oV cm pd h t s s

s t I o r i e ou tl t

et o

r oU sQ dt ae o s n c l l s i pa G I E RD I I t ml n a U S s 1

a 2 3 4 #

  • w mI C2 $ s { 7$ yEyQa 5 -

f l

1 I

l i

1 1

I 275  : : : : : e 4 4  : . . . . . . . 4 e 1 e : ...: t 1j

= > n ,.e. ..,..q u e ,4 u e..e.* .+ .. , e .. e . .. i ...s.. .s.. ..e.. t i ..e..e.e..e-ene..+ + $ e e.. ..,... e g

-  :  ! : : : I  : 1-

  • ' .:- - '- * * : ;n.1 f

... } ;..;om .- - -.

, ,. . . . t ._ . . .

7

. . ._ 1 .  : 7..;.....

m $..+..e..++..+=e..e..+e..+..e-- ,

.g._  : .e...4..+.. . $ ..+ tueue=4..e e. ,ne q 4 N . ; :8 ;: ..;! ....t ..;* u.* ... u ;! ..y!- -: -'

!...! ..;: ..;: u;! ..;: ..;!. !=...:;.  ;: ..:... :

,ed

.=

. . . . . 1. 7...! ;! ..

250

6. 4..+. e .+.-e e .4. 4 e -6.. -.

.- e *.. .... ....-. ...<-- + .+ $ -+ - e .4 + e +..e. 6..$ $ j

'  : : : : : : :  : : : : I

.+ e e..e. 4=e eue 4pe +..e* -- .su eenene eueu+=ene.4ueue e +

  • I N
  • 1 1 : * ! 1 i i * *
* !
  • l l
  • 1 1  : I y ..

. I ;..;..;

. . . . ;u;..;..;

. . . . . ._  ; ._ _ ., . 7. ..;

. .;..;a . :. ..;o.

. : . 8 , .

'r4 ,=.... e..q..+..q + + +. 4=e + e- i+ .-..s .. eentu+-+=6-e..e 6 4..+ 4..que. ,

Ei f  :

  • t

...f = - - = . . . . - : * * : :

" - .., - .I .t .: ......! ...: .:

  • 1 (,

^ . . : : : 1  : . e  : 4 1 1 3 : .  : : : : :

e .eae.=e +..eae $ 4 $ .eae $

f m, 4 9 u+ q , $..+..e ..e 9 e..: .I*

I b =,.3 1

.t .t .t .t  :

! * * .! ..! . 2! - ..t ...! ..: .: .: ..1u.2a.3 3 1 1 1 .: (

1 H 2 : .

  • i : $ 8  ! : :  : : : : : : : : :

e ..$..3.: e .:

l 8 I

,. + + e. ..e e e +...e 4 ...e...

a-g  : i . : 1 1 * ' ! ! " ,  :

f

-e e e-e 6

  • : . 2 3 1 ! ! 1 8 I i 1 g

.- .- :-+=e..g i a us. . . 7=.8

.$e+4 T ".+*:+.4..+ e: . .

.a

?""*" ? '* ?** ?"?"? ** ?'* p. ?".T"."*."T.

4 4 **

>. 200 g

, .:+e 1 ! ! 1

.7 .: e: ..e: .* I t
..:: : : UNACCEPTABLE

! ...t .t 8..88 7e +..4.....

H

~

t t t i l t t 1 : - ,,.... t i 1 l

> , ?  : :  : OPERATION i s ~ ,. "i"?..: .: .: .: e. ..e.".T".

  • 4 4..

. ., r. .... *T."..T"T. ".

,11 .! ...  ?

  • 175 m i e: g..e I 1: 4ne : ...i
3 eue +.

3 .

a* n.1 .! ...:

e eue.

4

.q . : - 6.

1 !

i ,

. 4.* .0..-

-.e..e+.e $.a +.*+*.e.+ + 4 4 .$

..111

1 :

e e.. I 5

.I ! : 1 1 ! 1

  • t '

1 1 1 : :  !  !..! .:

y u

g = i.e: 7e.7  :

T :. 7 :..:eu

+ $ . $.e..$..+

e* u* e..: ...e ..

...6..r -.4--

4*1..ea+= e **e =*,+.ea e e 4..e e 9 $ =

.! .:..2 : .: 4 .: 1 .:. .

h

  • * * * *
  • t : . ...

1 : ..u. : 3 :

j H
: : : : : : : : : : .

n- . . . . .  :

e .... 8 .. 3 .: ..,: +. a O . > e-,..e..e e e..e +..e..e e- = .e :

. . +..eueue..e..+.T '

t

  • 1 : ! : ! ! ! : . * * ':. : 1 1 11.s t *  !

W m

150 -

a 4 : : : : : : : : . . . . . : . . : : : : : : : (

o e a ..+ue..e + e +..e. 4 no..e 46.. ..++ 0. . 44+. 1.++.1.++.. e ae $. 4 4..e e..

i $..eu+..e u e N l

.! ..! . I t !  : : : : ' ' *

.t .: i. : i .! ..! ..: .. .:  : .! ..

b =

u

: 8 . 4 : :

,=4 $..+ 4 qu+ e eu+

I.7..........!

1 : :

eue..+. : ~

4 : : 4 : .

4..+..e

: : : : ..T :

4 $..e $ , eug..que e

1

= . 1..:  !. . 1 1 1 ' .u

  • 1 1 1 .; 1 3...! ...! 1

. e: e: ..+: .84=e.e  : . _. _1_

8 : 36 +o4aeae..e.  : : : _4...g..-

.1..8..: ..!. a .

3 4 I . !_

. . f : : : : : 2 :

125 m 3 : : 1  :  : : : : : : :

6...a+ .t -

ea+..eaea$*.+=.eae* $.*4..e

! : : : : : i : : 3 : :

eea

+..$..e ..+..e ..g .g .. ' . .e:...:i.ua.. ..-.. - $..e..e = $u 6..+..eu+ e..e..+ $ e.

a

. $ $ ..+..e e +.. $ - " i "

i

1..1. tu.1..! ...t ...i ...! ..: .I :_ .- t _ : .1 1 .: .: .: 1 .i ...: I ..* ..!

i i : 8 : 1 : : 8 : : e 4 4 : 3 3 : : : 1 I

m. e e..e que e $ 4uqueue e- .g- .g .u. +.e..+ que $ $ e $ e.

>4

- , 3 .g g g g g g g g ; g ;

, ;\.i g , . e.=4..+g g g

. . 3 .g ... 3 g 3 ,g..g .g g 8  :  :

p......g...- e  : 8 3 3 8 3 a : 1  :

u+..$ + + e..+=e..I...

100 m ,me p: ..+: e:=4 ..e +.4..+ + $ e=

l t t t

  • I ! : i t I i : : 1 2 3 :

ACCEPTABLE H

ci: ~ "Te .. T".T.".T."]'

.e .. . . . ._ . . i"T".T".T"T".T".T.".T".i".i..T

....e........+ T T.".

m .1a 1: 1: L.1

- OPERATION 8

,.4 __+.

4. . : ...- , '*.' :'......+...1: :lui: T'  :

7' e_e L:1..: 1:. L.1 . l . T.".T'

+ . : 1_

.! .: ." ...t ...t I f f f f 1 f

' t M

,t 75 . .:  : T 1 1

2
T T : : : : :

.u.... . ...

: . 4 4..T4* **uT

+ .* $T**.$.*++.e +

g

=m. + $ +..e +.+ $ eue=0 + + .g.....,u.s...*.-

6*

-.*=!** 8 *i ae.** *.e * * *.4.

.t t .I .I .: _1_

: "  : .2..* 3 ...: u.1 4 .i ..tu ..I..t .i

.=

H . . -

T.1 : : : : : . : : 4 . . ,  :  : : : : : : : : : a
m. e $ + 4*4 4 6. 4*.4 4 +=6.+6 5+. 9.= .- u.t '

+. 0..ea e.* * +a eu+=4.*4=4 4.+4 4=$

H m .t : : : : : :  : : :

.t

: '  :  : : : : :.= ! : I .I : : : 8 :

N -

,=T  :. T  :

..T.ny .:1..;:. .y:.7. 7.. . ,

. . , . .g. ...uy t : . : : : . : ,

7. g T .

4+.+=$ + 6..+ eae T LaJ

$O m +$+

t

+=e =+ .$ +..e a e 6. 4. 0 .t .4 4.. i .' 0 a +0

!  : 1 : 1

$.+..+=+=4

+t I : :._.I  : .t .: .:

+ ' +

......i

=t

: I : : : :

H

- . e....6+..e......

.i T..t.:.T..: :

! : 8 f 1 1 : : !

. . . , .2. + ... ... 4..+: ..e: .: .1.1. : +: T.

1 : : 1 1 1 1 1 : :

=

.jt.:.$7 '"

M T *iT **M"T**""T *'t'*

g m,+e+e4.++ TM+.**T.".+TM..e"i

4 =e nt 6. .l .d =.0 .t

l. + + . ~ 4 =+a+ 4 4=++4..e*4.*$ ~

W 25 ==

37 : : : : a.1.!..I

, .i : 1 1 1 1

: : :-t i+e.

2 1

1 i :

1 2 1 .
:.aT=,,o.1  : :

1u...  :

a m , + e + + 4 + +..e..e .!. .e .e

.e -.4.. .0 + .. e 1- e. e ** * .* +++-e+ .+6+

N g t

e

: t..t

. . I ....L* , Y..I..: -

m . .t .t ,: .I .!= .-

.7 Ii.: 1.l. I .I T .,i: T .I: .i: 1...! .: 1..  !. ...I . 1.i .:. . +..r..i

.i  :

8 r i: 1 1  : : 8  :

: f  : i 7 7777.777,.7777 7I 77 p _7.. .. 7 7..7_7.7T.... 777 I zI  ! I --l=l I l ' I 3 O

20 30 40 50 60 70 80 90 100 PERCENT OE' RATED THERMAL POWER FIGURE 3. 4-1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity > 0.30 Ci/ gram Dose Equivalent I-131 l FARLEY-UNIT 1 3/4 4-26 AMENDMENT NO.

(( ~ ,

)

l REACTOR COOLANT ' SYSTEM BASES- i l

3/4.4.8 CHEMISTRY l

The limitations on Reactor Coolant System chemistry ensure that corrosion of *.he Reactor Coolant System is minimized and reduces the potential for 4 Reactor Coolant System leakage or failure due to stress corrosion. f Maintaining the chemistry within the Steady State Limits provides' adequate l corrosion protection to' ensure the structural integrity of the Reactor )

Coolant System over the life of the plant. The associated effects of ]

- exceeding the oxygen, chloride, and fluoride limits are time and  !

temperature dependent. . Corrosion studies show that operation may be continued with. contaminant concentration levels in excess of the Steady

' State Limits, up to the Transient Limits, for the specified limited time  !

intervals without having a significant effect on the structural integrity of the Reactor. Coolant System. The time interval permitting continued operation within the restrictions of the Transient Limits provides time for taking corrective actions to restore the contaminant concentrations to within the Steady State Limits.

The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action. _

3/4.4.9 SPECIFIC ACTIVITY The limitations on the specific activity of the~primuty coolant ensure that

~

the'resulting 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> doses at the site boundary will net exceed an appropriately small fraction of Part 100 limits in the event of primary-to-secondary leakage as a result of a steamline break.

The ACTION statement permitting POWER OPERATION to continue for limited time periods with.the primary coolant's specific activity greater than 0.30 microcuries/ gram DOSE EQUIVALENT I-131, but within the allowable l limit shown on Figure 3.4-1, accommodates possible iodine spiking phenomenon which may occur following changes in THERMAL POWER.

I a

FARLEY-UNIT 1 B 3/4 4-5 AMENDMENT NO.

ue., a.- - - M. ,.a- . .-- -

p:

REACTOR COOLANT SYSTEM i 3/4.4.9 SPECIFIC ACTIVITY LIMITING CONDITION FOR OPERATION 3.4.9' The specific activity- of the primary coolant shall be limited to:

I

a. Less..than or' equal to 0.30 microcurie per gram DOSE l EQUIVALENT I-131;:
b. Less than or equal to 100/E microcurie per gram. I i

l

-APPLICABILITY: MODES 1, . 2 , 3, 4 and 5 j i

ACTION: i MODES 1, 2 and .3*: I

a. With the specific activity of the primary coolant greater ,

than 0.30. microcurie per gram DOSE ~ EQUIVALENT I-131 for more l than 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> during one continuous time interval or exceeding the limit shown on Figure 3.4-1, be in at least HOT STANDBY with T,yg less than 500'F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

b. With the specific activity of the primary coolant greater than 100/5 microcurie per gram, be in at least HOT STANDBY with Tavg less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

I i

I l

l l

l l-

  • With T avg greater than or equal to*500'F.

l l FARLEY-UNIT-2' 3/4 4-23 AMENDMENT NO.

t

f.

p

- i.

l l REACTOR COOLANT SYSTEM l

f ACTION: (Continued) i L MODES 1, 2, 3, 4 and 5:

i

a. With the specific activity of the primary coolant greater than

( 0.30 microcurie per gram DOSE EQUIVALENT I-131 or greater than l l 100/E microCuries per gram, perform the sampling and analysis '

requirements of item 4a of Table 4.4-4 until the specific

. activity of the primary coolant is restored to within its limits.

SURVEILLANCE REQUIREMENTS 4.4.9 The-specific activity of the primary coolant shall be detennined .

to'be within the limits by performance of the sampling and analysis -

program of Table 4.4-4. I 1

I 4

l l

l l

FARLEY-UNIT 2 3/4 4-24 AMENDMENT NO.

i t.

p .

s ED .

LE w PR +

MI a AU #

SQ 5 E e HR c C #

n IS i HI 4 s -

WS Y , .

d -

NL 4 # s e 3 t s I A ,

i p

. N 3 3 m a _

SA #

E i l =

DD , 2 ,

l e _

ON 2 2 MA ,

s e t v 1 1 1 1 1 i a h

n i N h O t I i T w A _

'E , .

R _

L T m d d d E P N a n fro e P M s E r a oEi r O A S r c0 L g Wr o S u i3 A/ 2 etOe t R I o .f .V i agnP p s E Y S h i0 I C n ne e W _

T Y ,c U egacLr r O I

L 2 s esQ enhrAu P -

V M AY 7 r pd E 5 wiceMo s A A NC use eE / t w pRh i f -

I T R AN E

r e

o hecS 0 eor blE5He E

m o .

C G DU A O NQ p

  • hxO 0 lW1Tn o

e s A _

eoO y 4

R AE s 4 t eD 1 t .

a s

C P e s h l f P gD s 4 I R c y t r rymr p nEa y d m F S EF n a n e et a o msLiT s 4 I I L o d o pvir a rAdAn 0 P evg1 s ore uMeRi h t 2 .

E' C S M t' m n r L E Y A 4 eni/3 a P L s 1 6 cet i 1d ehEcet d e  :

B S A S a nhcC n n Hxhi l ng _

A N e r r Owap1 a O6Tet w o an T T A l e e o o N p p c Dl A D t ) ) P L N A 1 1 a b y F r r E o -

O A a O m 2 s C i r Y r f u R 5 p oo A h _

M 3 e m _

1 h u8 -

I R n - t m4 P o 1 i n i e f nr o t nd o i o i Ea in mf -

t S r da y .

T a Ot o t al N n Dn I', i a E i e 3 v rc M m rc r3 i ei E S r on o1 t t t R IS e f o 5 f - c f i _

U Y t C l a ar _

SL e s r s', c _

A D i 1 o .c nb E A i

N y s3 f s1 i eu -

MA y1 y3 f k s t l - l n l 1 i a F D i aI ao a- c t t O N v n ci nI e s E A.

i ATN i t A g p ea P

t c cE ma en cn s bl -

m Y A iL hi i i e os T pA cm pd h t a s

s oV tI o r i e ou tl t

e w _

o oU dt oc l l r r sQ IE ae RD sn i po .

G I I t mt _

n ac _

U S a

. . . . e 1 2 3 4 #

  • r

= x$ u R" fN NEo@$ zO

s 275 - - .i

..g...to..go + = e n eneo+-+ u p u$ne ueu +ue. 4 qu

'.. .: .. g:o:;..;:.. :. :  : : : : : *

  • a
7. .. ; .. ;..; u.a r , 1 re. . ...g . .. g. ..g .. e .. + .. +. .+ e 4 = + .. $ .. $ ..e u + + = e a + ue - '

......e u.i. .u.

N -

5

" *...........................-e--.---

3 3 8 : 1

+4 c g .i .i i. ug ..

4 i

.:p 1. . :+ ..:+ .. e .. ,1.. e: .. $.. e .. e +..+ e .

......~....u!..1...*...:

i : 1 . 2 :

u . .. .!- - - - -

3 : 1 1

)d a . ,

x + .. p ..e..$ .. e u e.. p..e..q u e $a$..$ -

..g... ..g..

g i. . u .i .i.

1

...g .u g ...q .. i

- ' :  : : : : : : ! : : i :

  • 3 u .i i 4

9 -. .. __...................e.............+....

.E,,,,  : * : : : : : : : : ! : : : :

....= .. ... ;. ... ;. ...

. ; .. ..;..; o 7.

p 225 . u.I e:

...go..g e u g .. + u 4. . + + o p ..+..$ .. $ + .. $ ..+

1..1 1

.g .

l

. *. .1.1. ..: . ..: . . * * * * *1u.1 H  :  :  : 1  :

e..e..,3 . .

..e.. +..e 4  :

u e..eu e - +- 9=+

3 *

...e. g:

Z s. .e . . _e

.a H

g -

i -

.  : : : : :. : i * :

1...: ...: u.:

....s.........1..+4..s.  :

....!a.!

-e-+..+-+..e

>4 200 -. .. .! .  :

. .1 . . ' ' i i.1..?. .'

g . .

H

..g __

...$...e.... 2 ... . . .

> UNACCEPTABLE )

_ , ..+:..+..+..+--___  :

+ ... .1.....

H 1..+...

e

~-

i : : :

7 . :..;. 7. .. . ,

OPERATION 175 _ . ... .i. ,

u..

U  : .

-4

_ . .. . .. .. .. + . . .. ..

s.,

W -

: 9 l.. .t  ;: ..;I J H .

.! i ..e .e .eu

.....;...=7.;..-

. 1 . *..*..7.  :

. . + . . + . . + . . , ...+. e. .. e - + .. e -+ =

+ . e- ...

m 150 -

....u.g n g...

e  ! ..g . " 3 p..+: o4.. + i +:n ! e..+i nq 1 u36 ..1 4 1

-. . ..3...i.. $. 9..e..e M -

. ..;.. ; .. ; .. . .. ;.. .! ...: 1*f!

. . . . t . 3 .

8 = , ... ..+..e..eo+.. ..1..+. -+-+..+e.. ..- ..e ... .g .s...

  • g.

I * : 1 *

..;l... 1.: ;:. ..;:

  • I 1 . ...; . . .,

125 . . .g a ++..s . + ..e + .. e .. $..+ u + 9 u $. 4..g - g. p... .g o

..; ...;..;..;-.1 .! a;

!  : : !

  • 3 : : ! t  ! ! 2 '

a . . . . . . 1 . ._

7. . .3 . 7. . .

.+ue..+..+ 4 + $ eu+ u$we..$ e. _e

_ i.. .g. t.= u.g .ne... .,..

a.6 . .i.i--

t I ! :  : I t t t ! ! 1

- 6. . ++..+..+..s . + .. , 4 4 = 4 6..$ ..+ g

>d  !

1 1 :

." : 1 f . 1..

.I .! .! ...I 3 2 3 3 t

8 100 i .-. .g .

6. i n.e .e eae e-e..$ + ..+..+..+ - $ a 6 eae - 8 4.. ..= .ut . i. .-
  • 3 3- - .1 .I : 8 I t t (b '6 ~..$..+..$.

E we *.4 $ a 9* ***"G**+. * * *.- ".4.at- -u 6.=

..0-- .i..

(14 3..

ACCEPTABLE  : : : . .: = 1

.........$.. .! ...! 1

.1. .!.

i r *i i <

75

..t OPERATION *t t"t t"."t t"t i t" '

"t""+

H, _ ,. ..

,n e r.-:-.

...e. . . . . . . . . . .

-- :-1

...2. .. .

t. I ..e...t...,. ....1.*.l-.t."...*..!-
: I H --.

2"++*4*.*6 1 2. ' . 4 t a.'

a. .- l 8  : : : : : : : : : 3 i'

.u. 6- - + - 4 + .. $ . 4 $ ..+ . 4 + . 4 ** + =0 4.=4

  • 3:

bi  :  : : : : : : .!..: 3 3 3 .-

g ; . ... 7...;o;...!

..+..+..,1 1 .1 t 3

.s . ..I.e e!...

50 = , .o+. .

- .ut ...e. e -. .,

. .:+:. :. +:. . + . . *=+=0 i

. . e

--....u................-

1  :

> .!. -. 1: :....:u.* -+.. 1.

_.- .ne -.

: ;...1..1..$. .. 2-.3 .2

~ , ...

H 2

.I .I .t ..o 1

.r............t ..=.

3 t s I .. . . -

D 3 .  ! ! 3 : : 1

  • 8 1 1 3 8 -

3-g " * ~

_ e. o.. 6- .e =

+++.+..+-+.+++++..+-+..*.*+4.=.8

-6...' 4 ~. .

y D t.

. 1..t ..;! ..;! ..; .! .. .! ..;: ..1 ; ; .! ..;! .1..1  : ;

t.

., . 1 . . . . 1 . 1 . . 2 . . . . f. ..-

+ = 4.. +..$ " 4 a + .. $ .* $ * *e " 4 # e +.*6 **.4. . ~

2 g =" $. *.8** 8 3 * * : 1 1 1 1 * * !_l ! l M -

- r.?. t. a t. "?. "?"T. 1 . 1- ., g .. .

! 1 j

..e= + q ..$=+. 4.us. a.._

.=0.... .!g . ut.

8 .g.+4 .

. . . . .og .. .

t.= -

l I I f l. .g...

...,...-+uene..+..eo+..$..,..7.7.7 7.7..!.7  ! : :- 1 ! !

Il II '_l...g 2

7..I ...' ' ' l l l ..

O 20 30 40 50 60 70 80 90 100  ;

PERCENT OF PATED THEPMAL POWER FIGURE 3.4-1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus  !

i l

Percent of RATED THERMAL POWER with the Primary Coolant Specific l Activity > 0.30 pCi/ gram Dose Equivalent I-131 l l l

l 1

l FARLEY-UNIT 2 3/4 4-26 AMENDMENT NO.

REACTOR COOLANT SYSTEM BASES 3/4.4.8 - CH EMI ST RY The limitations on Reactor Coolant System chemistry ensure that corrosion of the Reactor Coolant System is minimized and reduces the potential for Reactor Coolant System leakage or failure due to stress corrosion.

Maintaining the chemistry within the Steady State Limits provides adequate corrosion protection to ensure the. structural integrity of the Reactor Coolant System over the life of the plant. The associated effects of exceeding the oxygen, chloride and fluoride limits are time and temperature dependent. Corrosion studies show that operation may be continued with containment concentration levels in excess of the Steady State Limits, up to the Transient Limits, for the specified limited time intervals without

, having a significant effect on the structural integrity of the Reactor Coolant System. The time interval permitting continued operation within the restrictions of the Transient Limits provides time for taking corrective actions to restore the containment concentrations to within the Steady State Limits.

-The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action.

3/4.4.9 SPECIFIC ACTIVITY The limitations on the specific activity of the primary coolant ensure that the resulting 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> doses at the site boundary will not exceed an appropriately small fraction of Part 100 limits in the event of primary-to-secondary leakage as a result of a steam line break.

l The ACTION statement permitting POWER OPERATION to continue for limited time periods with the primary coolant's specific activity greater than 0.30 l '

microcuries/ gram DOSE EQUIVALENT I-131, but within the allowable limit

- shown on Figure 3.4-1, accommodates possible iodine spiking phenomenon which may occur following changes in THERMAL POWER.

FARLEY-UNIT 2 B 3/4 4-5 AMENDMENT NO.

s ,

I h

te , ,

1, Enclosure 4 Farley Nuclear Plant Reactor Coolant System Specific Activity .

Technical Specifications Change Request

. Technical Specification Pages -

For Improved Technical Specifications 1

1 I

1 l

I

{

Pen and Ink Mark-ups i For Improved Technical Specifications l

4 l

RCS Sp:cific Activity 3.4.16

- t. 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.16 RCS Specific Activity 1

LCO . 3.4.16 The specific activity of the reactor coolant shall be within limits.

1

APPLICABILITY: MODES 1 and 2, MODE 3 with RCS average temperature (T,,) 2 500*F.

ACTIONS

' CONDITION REQUIRED ACTION COMPLETION TIME A. DOSE EQUIV LENT Note 1-131 > 0 pCi/gm. LCO 3.0.4 is not applicable.

30 A.1 Verify DOSE Once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> EQUIVALENT l-131 within the acceptable

-(-

region of Figure 3.4.16-1.

AND A.2 Restore DOSE 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> EQUIVALENT l-131 to within limit.

B. Gross speedic activity of B.1 Be in MODE 3 with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> the reactor coolant not -

T" < 500*F.

within limit. -

( j Fariey Units 1 and 2 3.4.16-1 Amendment No. (Unit 1) i Amendment No. (Unit 2)  ;

)

RCS Specific Activity 3.4.16 e

ACTIONS (

CONDITION REQUIRED ACTION COMPLETION TIME C. Required Action and C.1 Be in MODE 3 with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> associated Completion Time of Condition A not T" < 500*F. l met.

DOSE EQUIVALENT l-131 in the unacceptable

region of Figure 3.4.16-1.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.16.1 Verify reactor coolant gross specific activity 7 days s 100/E pCi/gm.

(l.

SR 3.4.16.2 NOTE Only required to be performed in MODE 1.

Verify reactor coolant SE EQUIVALENT l-131 14 days specific activity s 0 i/gm.

AND I Between 2 and 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after a THERMAL POWER change of 2: 15% RTP within a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 3 period C,,

Farley Units 1 and 2 3.4.16-2 Amendment No. (Unit 1)

. Amendment No. (Unit 2)

I

  • RCS Sp cific Activity 3.4.16 275 250 , i m

LW LW 225 %um b

z 200 ""

% m OE O.s Q,au .

UNACCEPTABLE i

S 175' M i a-s p Sh OPERATION N< w n -

,y tm ge 150 2LN

'2 SDln 58 un

~

p@5:

125 QM ,

tu\

g@i-

%\

J 100 M

$9 3

9h (m

o o% ACCEPTABLE s'a x 75 OPERATION %2d,h g 5M o 50 Ti2i m x

i i i 25 XilA ue 0' 4 0

20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER Figure 3.4.161 (page 1 of 1)

DOSE EQUIVALENT l 131 Primary Coolant Specific Activity Umit Versus Percent of RAT THER _L POWER with the Primary Coolant Specific

' Activity > 0. Ci/gr sE E uiv fen 31.

3 h5$ 5 5KEN Farley Units'1 and 2 3.4.16-4 Amendment No. (Unit 1)

Amendment No. (Unit 2) l l

L_.

RCS Operational LEAKAGE B 3.4.13 BASES f APPLICABLE Except for primary to secondary LEAKAGE, the safety analyses do not SAFETY ANALYSES address operational LEAKAGE. However, other operational LEAKAGE is typically seen as a precursor to a LOCA, the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 150 gpd per SG primary to secondary LEAKAGE as the initial condition.

Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident.

To a lesser extent, other accidents or transients involve secondary steam release to-the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid.

The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is released via the main steam safety valves. The majority of the activity released to the atmosphere results from the tube rupture. Therefore, the 150 gpd per SG primary to secondary LEAKAGE is inconsequential.

The main steam line break (MSLB) is more imiting for site radiation releases. The MSLB analysis in support of eneri Letter 95-05 has I shown that steam generator tube leakage o 3. pm in the faulted loop, and 0.1 gpm ( proximately 150 gpd)in each of the intact loops ~

q (totalleakage qf pm), following a main steam line break outside of containment, bGt upstream of the main steam isolation valves, results in offsite doses bounded by a small fraction (i.e.,10%) of th 0 CF 30 100 guidelines. The RQ!rBpecific activity assumed was 0. 5 Dose. EQvwW.Egr Gt/gtfDQose EquivalenJ)l-131, with either a pre-existing or an accident initiated iodine spike.

The RCS operational LEAKAGE satisfies Criterion 2 of the NRC Policy Statement.

1 LCO RCS operational LEAKAGE shall be limited to:

a. Pressure Boundary LEAKAGE No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher (continued)

Farley Units 1 and 2 B 3.4.13-2 Revision 0

RCS Spscific Activity 8 3.4.16 BASES I'

_ [

APPLICABLE leakage of pm in the faulted loop, and 0.1 gp a roximately SAFETY ANALYSES 150 gpd)in each of the intact loops (totalleakage o m). This {

tcontinued) analysis resulted in offsite doses bounded by a small fraction (i.e.,10%) I of the 10 CFR 100 guidelines using Regulatory Guide 1.109 Dose j Convers'o actors (DCFs). The initial RCS specific activity assumed I 0 was cr Ci/gm D_gsg_Eauivalent 1-131 with an iodine spike. The safetfa sis assumes for both the SGTR and MSLB the specific

' y of the secondary coolant at its limit of 0.1 Ci/gm DOSE EQUIVALENT l-131 from LCO 3.7.16, " Secondary Specific Activity." <

I The analysis for the MSLB accident establishes the acceptance limits -

for RCS' specific activity. Reference to this analysis is used to assess changes to the unit that could affect RCS specific activity, as they relate to the acceptance limits.

The SGTR analysis assumes an RCS coolant activity of 0.5 Ci/gm DOSE EQUIVALENT l-131, The MSLB analysis considers two cases of reactor coolant specific activity. One case assumes specific p activity at%Ci/gm DOSE EQUIVALENT l-131 with a concurrent large soaine spike that increases the 1-131 activity release rate into the reactor coolant by a factor of 500 immediately after the accident. The second case assumes the initial reactor coolant iodine activity at

(. .

L. ,

.0 i/gm DOSE EQUIVALENT l-131 due to a pre-accident iodine spike caused by an RCS transient. In both cases, the noble gas activity in the reactor coolant assumes 1% failed fuel, which closely equals the LCO limit of 100/G Ci/gm for gross specific activity.

The SGTR analysis also assumes a loss of offsite power coincident with a reactor trip. The SGTR causes a reduction in reactor coolant inventory. The reduction initiates a reactor trip from a low pressurizer pressure signal or an RCS overtemperature AT signal. l The coincident loss of offsite power causes the steam dump valves to close to protect the condenser. The rise in pressure in the ruptured SG discharges radioactively contaminated steam to the atmosphere through the SG power operated relief valves and the main steam safety valves. The unaffected SGs remove core decay heat by venting steam to the atmosphere until the cooldown ends.

The main steam line break (MSLB) analysis assumes a double-ended guillotine break of a main steamline outside of containment. The affected steam generator will rapidly depressurize and release both the radionuclides initially contained in the secondary coolant, and the primary coolant activity transferred via SG tube leakage, directly to t' (continued) ('

Farley Units 1 and 2 B 3.4.16-2 Revision 0

RCS Specific Activity 1 B 3.4.16

)

BASES APPLICABLE the outside atmosphere. A portion of the iodine activity initially SAFETY ANALYSES contained in the intact SGs and noble gas activity due to SG tube (continued) leakage is released to the atmosphere through either the SG I atmospheric relief valves (ARVs) or the SG safety relief valves. 4 The safety analysis assumes an accident initiated iodine spike and shows the radiological consequences of a MSLB accident are within a small fraction of the Reference 1 dose guideline limits.

Operation with iodine specific activity levels greater than the LCO limit is. permissible, if the activity levels do not exceed the limits shown in ':

Figure 3.4.16-1, in the applicable specification, for more than i 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />. The MSLB safety analysis has concurrent and pre-accident iodine spiking levels up to O Ci/gm DOSE EQUlVALENT l-131.

The remainder of the a55ve limit permissible iodine levels shown in Figure 3.4.16-1 are acceptable because of the low probability of a MSLB accident occurring during the established 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> time limit.

The occurrenc6 of a MSLB accident at these permissible levels could increase the site boundary dose levels, but still be within 10 CFR 100

,. dose guideline limits.

(

The limits on RCS specific activity are also used for establishing standardization in plant personnel radiation protection practices.

RCS specific activity satisfies Criterion 2 of the NRC Policy Statement.

LCO The specific iodine activity is limited to 0.5 Ci/g E l EQUIVALENT l-131 for the SGTR analysis and 0 m DOSE EQUIVALENT l-131 for the MSLB analysis, and the gross specific activity in the react r coolant is limited to the number of Ci/gm equal to 100 divided b average disintegration energy of the sum of the l

l

'y .

  • v.4, average beta and gamma energies of the coolant nuclides). The limit on DOSE EQUIVALENT l-131 ensures the thyroid dose to an

'S .,R. Individual during the Design Basis Accident (DBA) will be an appropriate fraction of the allowed thyroid dose. The limit on gross ,

specific activity ensures the 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> whole body dose to an individual at the site boundary during the DBA will be a small fraction of the I

allowed whole body dose.

(continued)

-(

Fariey Units 1 and 2 B 3.4.16-3 Revision 0

r_

i Revised Improved Tecimical Specification Pages Page 3.416 2 Replace Page 3.416 Replace Page B 3.4.13-2 Replace Page B 3.4.16-2 Replace Page B 3.4.16-3 Replace I

l

. RCS Specific Activity 3.4.16 3.4 - REACTOR COOLANT SYSTEM (RCS)  ;

3.4.16 RCS Specific Activity LCO 3.4.16 The specific activity of the reactor coolant shall be within limits. )

APPLICABILITY: MODES 1 and 2, )

MODE 3 with RCS average temperature (Tavg) 2 500*F.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME

-A. DOSE EQUIVALENT - - - - - - - - - N ote--------- -- ]

l-131 > 0.30 pCi/gm. LCO 3.0.4 is not applicable. 4 A.1 Verify DOSE _

Once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> )

EQUIVALENT l-131 {

within the acceptable l region of Figure 3.4.16-1. i AND l

1 A.2 Restore DOSE 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> j EQUlVALENT l-131 to within limit. -

B. Gross specific activity of . B.1 Be in MODE 3 with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> the reactor coolant not Tavg < 500*F. ,

' within limit.

Farley Units 1 and 2 3.4.16 1 Amendment No. (Unit 1)

Amendment No. (Unit 2)

7 RCS Specific Activity 3.4.16 ACTIONS __

CONDITION . REQUIRED ACTION COMPLETION TIME

' CI Required Action and C.1  : Be in MODE 3 with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> associated Completion Try < 500*F.

Time of Condition A not met.'

08 DOSE EQUIVALENT l-131 in the unacceptable -

" region of Figure 3.4.16-1.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.16.1 Verify reactor coolant gross specific activity 7 days l s 100/6 pCi/gm. -

SR - 3.4.16.2 - - - -

-NOTE -

Only required to be performed in MODE 1.

Verify reactor coolant DOSE EQUlVALENT l-131 14 days specific activity 5 0.30 pCi/gm. )

AND j Between 2 and 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after a THERMAL POWER change of 215% RTP within a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> period l ,

Farley Units 1 and 2

~

3.4.16-2 Amendment No. (Unit 1)

Amendment No. (Unit 2)

I b

, RCS Specific Activity 3.4.16 275 - ..,... . . , . . , . . . . . . - . . _,--,.- ..,,..,. .,.,,... .......-. . .. ,.

.s s.u.t.

.u.v.

.....o. a.o.-

.....u. . u. m. ,.ys.3.. .s.3 . . ....v.

.. . .. .s. ... ....... . ..

250 ". .

,.,.. c

. , . . ., r . ,.. . r . . , . , . , . , . . .c,.,.,.

~ , ,.. , .,-.,._

- .r.,.,. ,.,....

_,.c,.

.,.,.r,.

225 g -s.u

.;.u. .h- .u.v.

.u.v. .....u.

...1.u . . ; .u . .

. w ; . s. . .u.u.

.u u. .. s. . .. v. v. tt .. .. w. 4 ... .,u.

v. v. . .u.u.

.9 g. :. - . t .: .. p,.:.. _4 4,4 :.c-- -r,.r, - . .: . :. 4 4,p +.,.  ; . . ; + 4 3. .,3. ,4 4,. ,4 o - ,4 p r,.r_ 4. ,; .+r ,; _,c o- 200 oE ---~..- - ~ . ~ . ~ . . - - --- --- - - - - ~ . ~ ~ . . -- - - , ~ . ---.- .

j>. ~a - 's u.

. . " s* .-. u' . -'. .. ...u". . .. . u. " . ' . - u. . .'u'".- .s ".u'.-'.- . ' . . " . . - .u i . .. -".a.-

WQ

- ;. ..u. . t _ .u.t..

.u. .u, . _ 4. . u. . . . u. u..

. . . . . . . s . v. . . t. . . v. .. v. ,. . . u. . u .

E1-. 175 ,.c,.,-

.,. N . , .c , . _,.c,.. c . c , . r' , . . ., . r . ,' .

. , -c , . c . . .. , . , , .

t: ,.c,.c- ,,., .. .. .. ..-,. . .r,.c- .r,.r,- . r,. ,.

n. m e-....- - ... .

- . . - . . - . . - . - - -~-

Unacceptable -....-

EE 150 ao "- " ".."u - . .

+;+;

..i... . 2 .u ..

. - 4 .+c

.u.u. Operation .u.a.

3

- . :. .: . :.. ...  :. .:. 3 :.. . .,. r .,. r . . ; , ; .;.

4.-, 4.. . H, . :. .:.

c,.r,. + 4 4. 4

p. _ - ,,.r. ,s,r- ,

r .

..r., . . . .r. .,.

. r.,-

4

.,.,.c- .

.r r, . , . .r . r . ...c.i

..,c. ,s ..,. .,

zm => 125 .~ ~. . ~ . . .

o . ..~..

~ . . . .... .... .... . . . . . . . . .

_..m .u. .u.u.

.u u.

..u...

.m.m.

.u u.

8 c . s . o . i. .- .u.t. .u.u. _ v. . c. . s . u. 6 . . v. v. .

'+F+ +++1- -i+i

-H-H- '+f+f- H+t i 4-

.%a<o 100 +. H + , . - . ,. . . . .. ..~ . _ , . . , . . , . , . . , . . , .. , . , . . . .. ,. .. .. .r ,,. ...c ,. .

.,..,..e. . . .r.. . . r .

3 -

,,.r,.. ..

.r,r. r,.r,. .

c m

..u.s_

Acceptable -.... u.u.

u.

. s . u. . . ....... . .u.m.

m m 75 .;.u.u .i Operation u.. .u. .. .ut. . . 4 .u . .. .u.u.

m .p.;.;. + . + + + +._4 4 4, 4... H, 'r,. . ,.:. f 4 ) .- .;+;

O o

, 4 H,.F. - ,c- ,-c

.. .- -r , . .r ,r. -r. . . . . , . , . r. .- .r,.r,.

- -r r ...,4

(,.r.-r..r. ,.,..r..- . .r. ,s .rr , -

.: 4 4 4, .

. ,.u-... . c , . .r. .-

50 ..u. .ua. a. .- ...u... .u.. ..

. .v.s. .....a..

.u....

. . . . . . ~ . _..

..... .. _ . .u . m .u.u. .. .s.. .. . v.

. . .u.u.

.;.u.u .u.v. .u .u . _ 2 .u .t . .u.u. .s.t .t. . v. v. . .u.u.

r. :.;4 . .:. 4 4 ; . - 4.H .:. . . H . ;. .:. . + p ., t .

. ; .:. ; + .H.H.

25

- - . :. v :. . ..

,... , ..r- . . , . , , .. . . . .r

. , .. _ ,. ..., . . . r ,.. .r, .. .

. ,. ,.T - . . . . . ... -. ~ .

)

. .. ... .. .. . . . . ~ . ... ...

.s.u.. .. .u. . . .u. ...u.m .u.u. . s. u. i . . u. u. .u .a.

0

' ~

20 30 40 50 60 70 80 90 100 Percent of RATED THERMAL POWER Figure 3.4.161 (page 1 of 1)

DOSE EQUIVALENT l-131 Primary Coolant Specific Activity Limit Versus . j Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity > 0.3 Ci/gm DOSE EQUIVALENT l-131 Farley Units 1 and 2 3.4.16-4 Amendment No. (Unit 1)

Amendment No. (Unit 2) l i

l 1

RCS Operational LEAKAGE B 3.4.13 BASES APPLICABLE Except for primary to secondary LEAKAGE, the safety analyses do not SAFETY ANALYSES address operational LEAKAGE. However, other operational LEAKAGE is typically seen as a precursor to a LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 150 gpd per SG primary to secondary LEAKAGE as the initial condition.

Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident.

To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid.

The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is released via the main steam safety valves. The majority of the activity released to the atmosphere results from the tube rupture. Therefore, the 150 gpd per SG primary to secondary LEAKAGE is inconsequential.

The main steam line break (MSLB) is more limiting for site radiation releases. The MSLB analysis in support of Generic Letter 95-05 has shown that steam generator tube leakage of 11.8 gpm in the faulted loop, and 0.1 gpm (approximately 150 gpd) in each of the intact loops (total leakage of 12 gpm), following a main steam line break outside of containment, but upstream of the main steam isolation valves, results in offsite doses bounded by a small fraction (i.e.,10%) of the 10 CFR 100 guidelines. The RCS specific activity assumed was 0.30 pCi/grn DOSE EQUIVALENT l-131, with either a pre-existing or an accident initiated iodine spike.

The RCS operational LEAKAGE satisfies Criterion 2 of the NRC Policy Statement.

LCO RCS operational LEAKAGE shall be limited to:

a. Pressure Boundary LEAKAGE No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher (continued) 1 Farley Units 1 and 2 B 3.4.13-2 Revision 0 l

l

, RCS Spacific Activity

'* 8 3.4.16 BASES APPLICABLE leakage of 11.8 gpm in the faulted loop, and 0.1 gpm (approximately l SAFETY ANALYSES. 150 gpd) in each of the intact loops (total leakage of 12 gpm). This (continued) analysis resulted in offsite doses bounded by a small fraction (i.e.,10%)

of the 10 CFR 100 guidelines using Regulatory Guide 1.109 Dose '

Conversion Factors (DCFs). The initial RCS specific activity assumed was 0.30 pCi/gm DOSE EQUlVALENT l-131 with an iodine spike. The safety analysis assumes for both the SGTR and MSLB the specific j activity of the secondary coolant at its limit of 0.1 pCi/gm DOSE i EQUlVALENT l-131 from LCO 3.7.16, " Secondary Specific Activity." {

The analysis for the MSLB accident establishes the acceptance limits

for RCS specific activity. Reference to this analysis is used to assess changes to the unit that could affect RCS specific activity, as they relate to the acceptance limits, i

The SGTR analysis assumes an RCS coolant activity of 0.5 Ci/gm DOSE EQUIVALENT l-131. The MSLB analysis considers two cases of reactor coolant specific activity. One case assumes specific activity at 0.30 Ci/gm DOSE EQUIVALENT l-131 with a concurrent large iodine spike that increases the I-131 activity release rate into the reactor coolant by a factor of 500 immediately after the accident. The second case assumes the initial reactor coolant iodine activity at 18.0 Ci/gm DOSE EQUlVALENT l-131 due to a pre-accident iodine spike caused by an RCS transient. In both cases, the noble gas activity in the reactor coolant assumes 1% failed fuel, which closely equals the LCO limit of 100/G Ci/gm for gross specific activity.

The SGTR analysis also assumes a loss of offsite power coincident  ;

with a reactor trip. The SGTR causes a reduction in reactor coolant j inventory. The reduction initiates a reactor trip from a low pressurizer pressure signal or an RCS overtemperature AT signal.

The coincident loss of offsite power causes the steam dump valves to close to protect the condenser. The rise in pressure in the ruptured .

SG discharges radioactively contaminated steam to the atmosphere l through the SG power operated relief valves and the main steam safety valves. The unaffected SGs remove core decay heat by i venting steam to the atmosphere until the cooldown ends. l The main steam line break (MSLB) analysis assumes a double-ended .,

guillotine break of a main steamline outside of containment. The affected steam generator will rapidly depressurize and release both the radionuclides initially contained in the secondary coolant, and the primary coolant activity transferred via SG tube leakage, directly to (continued)

Farley Units 1 and 2 B 3.4.16-2 Revision 0

  • RCS Specific Activity B 3.4.16 BASES APPLICABLE the outside atmosphere. A portion of the iodine activity initially SAFETY ANALYSES contained in the intact SGs and noble gas activity due to SG tube  ;

(continued) leakage is released to the atmosphere through either the SG atmospheric relief valves (ARVs) or the SG safety relief valves.

The safety analysis assumes an accident initiated iodine spike and i shows the radiological consequences of a MSLB accident are within a small fraction of the Reference 1 dose guideline limits.

Operation with iodine specific activity levels greater than the LCO limit is permissible, if the activity levels do not exceed the limits shown in Figure 3.4.16-1, in the applicable specification, for more than l 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />. The MSLB safety analysis has concurrent and pre-accident iodine spiking levels up to 18.0 Ci/gm DOSE EQUIVALENT l-131.

l The remainder of the above limit permissible iodine levels shown in I Figure 3.4.16-1 are acceptable because of the low probability of a MSLB accident occurring during the established 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> time limit.

The occurrence of a MSLB accident at these permissible levels could increase the site boundary dose levels, but still be within 10 CFR 100 dose guideline limits.

The limits on RCS specific activity are also used for establishing standardization in plant personnel radiation protection practices.

RCS specific activity satisfies Criterion 2 of the NRC Policy Statement.

LCO The specific iodine activity is limited to 0.5 Ci/gm DOSE EQUIVALENT l-131 for the SGTR analysis and 0.30 Ci/gm DOSE EQUIVALENT l-131 for the MSLB analysis, and the gross specific activity in the reactor coolant is limited to the number of Ci/gm equal to 100 divided by E (average disintegration energy of the sum of the average beta and gamma energies of the coolant nuclides). The limit on DOSE EQUIVALENT l-131 ensures the thyroid dose to an individual during the Design Basis Accident (DBA) will be an appropriate fraction of the allowed thyroid dose. The limit on gross specific activity ensures the 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> whole body dose to an individual at the site boundary during the DBA will be a small fraction of the allowed whole body dose.

(continued) j Farley Units 1 and 2 B 3.4.16-3 Revision 0 1 1

-