ML19093A503

From kanterella
Revision as of 11:07, 2 February 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
07/12/1977 Appendix I Analysis
ML19093A503
Person / Time
Site: Surry  Dominion icon.png
Issue date: 06/30/1977
From:
Office of Nuclear Reactor Regulation
To:
References
Download: ML19093A503 (49)


Text

I I APPENDIX I ANALYSIS I SURRY POWER STATION UNIT NOS . 1 AND 2 I

I*

I 1 JUNE 1977 I

I DOCKET NOS. 50-2 80 50-2 81


- - - - -~ . - ~-----------

I I - NOTICE -

I THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PEF,UOD AND MUST BE RETURNED TO THE RECORDS FACILITY I BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

DEADLINE RETURN DATE I

I I

-I

I I

I APPENDIX I ANALYSIS I TABLE OF CONTENTS Page No.

I LIST OF TABLES ii

,I LIST OF FIGURES iv I RESPONSES TO ENCLOSURE 1 1-1 I RESPONSES TO ENCLOSURE 2 2-1

  • 1 I

I

,I

,I I

I I

.I i

I I

I

  • 1 I LIST OF TABLES I Table No. Title Page No.

1.1-1 LADTAP Input Data and Results Maximum 1-5 I Individual Dose Calculations for Surry Units 1 and 2 (Demineralizer Radwaste System Without Steam Generator Blowdown Treat-I ment)

., 1.1-2 LADTAP Input Data and Results Maximum Individual Dose Calculations for Surry Units 1 and 2 (Modified Liquid Radwaste System 1-6 With Steam Generator Blowdown Treatment)

I 1.1-3 Maximum Doses to an Individual Resulting 1-7 I from Gaseous Effluents from Surry Units 1 and 2 With Steam Generator Flash Tank (mrem/yr. per unit)

,I 1.1-4 Maximum Doses to an Individual Resulting 1-8 from Gaseous Effluents from Surry Units 1 I,,

and 2 with Steam Generator Blowdown Cooled (mrem/yr. per unit)

I-,

2.1-1 Surry Units 1 and 2 Liquid Radwaste System 2-8 2 .1-2 Liquid Source Terms from Surry Units 1 and 2-9

\I 2 (Present System, Per/Unit Basis)

Liquid Source Terms from Surry Units 1 and 2-11 2.1-3 I 2 (Proposed Modified System, per Unit Basis Steam Generator Blowdowri Processing)

I 2.1-4 Ventilation and Exhaust Systems 2-13 2.1-5 Gaseous Source Terms from Surry Units 2-14 I 1 and 2 (Per Unit) 2 .2-1 Distance to the Nearest Residence, Garden, 2-20 I Milk Cow, Milk Goat, and Beef Cattle With-in 5 Miles of the Surry Plant II ii I*

.1 I

I LIST OF TABLES (continued)

I Table No. *Title Page No.

I 2.3-1 X/Q and D/Q Values At Special Distances and Release Modes For A 2-yr Data Period 2-22 I 3 Annual'Averqge X/Q (sec/m ) Values Based On A Ground Level Release Pot A 2-yr Data Period 2-23 I 2.3-3 2

Annual Average D/Q (m - ) Values Based On 2-24 A Ground Level Release For A 2-yr Data Period I 2.3-4 3

Annual Average X/Q (sec/m ) Values Based 2-25 On A Mixed Mode Release For a 2;..yr Data I Period

. . -2 2.3-5 Annual Average D/Q (m ) Values Based 2-26 I On A Mixed Moqe Release For A 2-yr Data Period I *~*

2.3-6 M.ont~ly ~ 1 l 5.&J D1sbnbut1on l%

ft _3 5 ft Stability 2-27 I 2.8-1 0-5 Mile Highpoints By Mile And 5-10 Mile Highpoints For 16 Cardinal Points From 2-35 I Surry Power Station I

I I

,, iii

I I LIST OF FIGURES

  • 1 Figure No. Title Page No.

I 2 .1-1 Process Flow Diagram of Boron Recovery System of Surry Units 1 and 2 2-16

  • 1 2 .1-2 Process Flow Diagram of Liquid Waste Disposal System of Surry Units 1 and 2 2-17 I 2.1-3 Process Flow Diagram of Steam Generator Blowdown System After Modifications and Diagrams of Laundry Waste System of Surry 2-18 I Units 1 and 2 I\-

,II I

I

'I

.1.

I iV' I

I I

I

-;:.

Enclosure 1 SURRY UNITS 1 & 2

  • I Item 1 I. Licensees should provide an evaluation showing their facility* s capability to meet the requirement set forth in Section II of Appendix I of 10 CFR t Part 50.

Response

.I Surry Units 1 & 2 were analyzed and evaluated utilizing the parameters and methodology set forth in Regulatory Guides 1.109, 1.111, and 1.112 I and NUREG-0017. Maximum individual doses resulting from gaseous and liquid effluents were calculated.

I Radioactive source terms, both liquid and gaseous, were calculated in a manner consistent with Regulatory Guide 1.112 and NUREG-0017. Speci-fic data used for the generation of the source terms is present~d in the I response to Item 1 of Enclosure 2

  • Meteorological information used in the calculation of doses was developed

-1 consistent with the methodology described in Regulatory Guide 1

  • 111 .

Information related to the meteorological inputs is filed in the responses to Items 4-8 of Enclosure 2 of this submittal. The response to Item 3 of

  • I Enclosure 2 contains the X/Q and D/Q values from the release points at Surry Units 1 & 2 to the various receptors indicated in Table 2. 2-1 of this response.

I Dose calculations were performed in a manner consistent with Regulatory

.,, Guide 1.109 *. The NRC computer codes LADTAP and GASPAR were used to perform the calculations.

The results of the analyses presented herein show Surry Units 1 & 2 *s I capability of keeping the levels of radioactivity in effluents as low as reasonably achievable., . **

I I

I 1-1 I

I 1*

I 1.1 Doses* froi:n Liquid Effluents

.1 Liquid source tenns were calculated for two specific cases using the GALE Code. These cases were as the liquid radwaste system is presently oper-1* ating and as the system will operate once modified. These cases are indicated below:

l ' (1) Dirty wastes treated by a system consisting of two mixed bed demineralizers and no treatment of steam generator blowdown.

1: (2) Same as (1) above only steam generator blowdown treated by two mixed bed demineralizers.

II Inputs to the GALE Code were based upon: (1) station operating experience; (2) infonnation supplied previously in the Surry Units 1 & 2 FSAR and

1 Environmental Report (ER); and (3) NUREG-0017. Source terms for each of the two cases outlined above are presented in Tables 2
  • 1-~ and 2. 1-3 of the response to Item 1 of Enclosure 2 .

I Liquid radioactive wastes from the units are released to the James River via the discharge canal. Possible pathways of exposure for releases from the station are ingestion of fish and invertebrates and shoreline activities.

The irrigated food pathway does not exist at this location nor does the

  • ,\ potable water pathway. For all pathways a river dilution factor of 5 was assumed as appropriate based upon Regulatory Guide 1.109.

Doses from liquid pathways were calculated for the maximum individual, I based upon the models given in Regulatory Guide 1.109, using the compu-ter code LADTAP. Dose factors, bioaccumulation factors, and shorewidth factors are given in Regulatory Guide 1.109 and in the LADTAP code were I used as were usage terms for shoreline activities and ingestion of fish and invertebrates.

I Tables 1

  • 1-1 and 1
  • 1-2 present the LADTAP input data and the maximum individual doses for doses for both cases indicated above.

.I I

1-2 I

,I I

a 1.2 Doses from Gaseous Effluents Gaseous source terms were calculated using the GALE Code and are pre-

1, sented. in Table 2 .1-5 of the response to Item 1 of Enclosure 2. Inputs to the GALE Code were based upon: (1) plant operating experience (2) information supplied previously in the Surry Units 1 & 2 FSAR and I ER, and (3) N.UREG"".0017.
  • I Doses to the maximum individual from gaseous effluents were calculated by the NRC GASPAR Code, using the models of Regulatory Guide 1 . 109.

Dose factors, annual air intake, intakes of food products, and para-meters for calculating radionuclide concentrations in food products as given in Regulatory Guide 1.109 and in the GASPAR Code were used.

Dose contributions from the following pathways were calculated and I analyzed in the assessment of the maximum individual:*

'I 1. immersion in the plume 2.

3*

ground contamination inhalation, and I 4. consumption of vegetables, meat and milk.

For dose calculational purposes the source terms of Table 2 .1-5 were di-I' vided into mixed mode releases (i.e. , those released from the Surry process vent which could be considered to be elevated at certain times and ground_ level at o~hers) and grour1:~ level releases (i.e., those re-I...._/'

leased from the ventilation vents, steam generator flash tank and turbine building). The sources of releases for the Surry process vent are indicated in Table 2 .1-4 of the response to Item 1 of Enclosure 2.

I,, For dose calculational purposes these releases were considered mixed mode and the X/Q and D/Q values, as presented in Table 2 .-3-1 of the response to Item 3 of Enclosure 2, reflect this.

The sources of releases from the steam generator flash tank, turbine building, and the ventilation vents of the Surry Units are also given in

'I Table 2 .1-4 of the response to Item 1 of Enclosure 2. For dose calcula-tion purposes these releases were considered ground level and the X/Q

_, and D/Q values, as presented in Table 2. 3-1 of the response to Item 3 of Enclosure 2, reflect this.

I 1-3 I

I I

  • Based upon the X/Q and D/Q values in Table 2. 3-1 of item 3 of Enclosure 2 , each specific, location, which was indicated in Table 2
  • 2 -1 of the

. response to Item 2 of Enclosure 2 , was analyzed for the location of the I maximum individual. When the principal locations were determined, dose calculations were performed incorporating the pathways specific to each location. By adding the doses resulting from both mixed mode and ground i.~~~

level releases for each of the pathways existing at these locations, the location of the maximum individual was determined

  • I After evaluating the special locations, the maximum organ dose occurred to an infant who resides 3. 7 5 miles NNW of the power station and drinks milk from a cow raised at this location. The maximum total body dose

.I occurred to an individual 1. 53 miles south of the Surry Power Station.

Table 1 .1-3 presents the doses at the location of the maximum individuals for Surry Units 1 & 2 *.

I Table 1.1-4 presents the doses to the above mentioned individual based upon the cooling of steam generator blowdown below .212 °r. Operation I in this manner eliminates the gaseous releases of I-131 and I-133 from the blowdown* vent offgas and results in a reduction of the maximum organ

.'I dose by a factor of 5.

I I

'I I

I I 1-4 I

TABLE 1.1-1 LADTAP INPUT DATA AND RESULTS MAXIMUM INDIVIDUAL DOSE CALCULATIONS FOR SURRY UNITS 1 & 2 (DEMINERALIZER RADWASTE SYSTEM WITHOUT STEAM GENERATOR BLOWDOWN TREATMENT)

Usage Rates (Kg/yr or hrs/yr)

Exposure Pathway Dilution Factor Transit Time (hrs) Adult Teen Child

. Fish Ingestion 5 I 24 21.0 16,0 6.9 Invertebrate Ingestion 5 24 5.0 3.8 1.7 Shoreline Use 5 0 12. 0 67.0 14.0 en I

Dose Results (mrem/yr per unit)

  • Adults Teenagers Exposure Pathway Total*Body GI-LLI Skin Total Body GI-LLI Skin Fish Ingestion 1.15(-1) ** 1. 74 (-2) 6.63(-2) 1.27(-2)

Invertebrate Ingestion 6.12(-2) 2. 02 5.47(-2) 1. 59 Shoreline Use 3.28(-3) 3.28(-3) 3. 82 (-3) 1. 83 (-2) 1. 83(-2) 2.13(-2)

1. 79 (~l.) 2.04 3.82(-3) 1.39(-1) 1. 62 . 2 .13(-2)
  • Doses to other individuals and organs are smaller than those pre.sented.
    • 1.15(-1) = 1.15 X 10-l

- _> -,' - ,. .,*- . * .) . '. . . : )lllllliill

~ I_ _

TABLE 1.1-2 LADTAP INPUT DATA AND RESULTS MAXIMUM INDIVIDUAL DOSE CALCULATIONS FOR SURRY UNITS I & 2 (MODIFIED LIQUID RADWASTE SYSTEM WITH .

STEAM GENERATOR BLOWDOWN TREATMENT)

Usage Rates (Kg/yr or hrs/yr Exposure Pathway Dilution Factor Transit Time (hrs) Adult Teen Child Fish Ingestion 5 24 21.0 16.0 6.9 Invertebrate Ingestion 5 24 5.0 3.8 1. 7 Shoreline Use 5 0 12. 0 67.0 14.0 I-'

I en Dose Results {mrem/yr per unit)

  • Adults Teenagers Exposure Pathway Total Body GI-LLI Skin Total Body GI-LLi Skin Fish Ingestion 1.06(-1) ** 7.22(-3) 6.06(-2) 5.16(-3)

Invertebrate Ing.estion 2

  • 81 (-2) 5.60(-1) 2 .-15(-2) 4. 40(-1)

Shoreline Use 3.06(-3) 3.06(-3) 3.57(-3) 1.71(-2) 1.71(-2) 2 .00(-2) 1.37(-1) 5. 70(-1) 3.57(-3) 9. 92 (-2) 4.62(-1) 2.00(-2)

  • Doses to other individuals and organs are smaller than those presented.
  • 1
  • 0 6 (-1 ) = 1. 06 X 1 (I -l

- - ,. . . -* ..... - \ .... * * - - ..... *- *- .. *- - *:1111111 TABLE 1.1-3 MAXIMUM DOSES TO AN INDIVIDUAL RESULTING FROM GASEOUS EFFLUENTS FROM SURRY UNITS 1 & 2 WITH STEAM GENERATOR FLASH TANK (mrem/yr per unit)

Location 2

  • 17 mi. SSW Location 3. 75 mi. NNW TOTAL BODY ORGAN DOSE (THYROID)

A. Radioiodines and Particulates (1)

Ground 7. 80(-4)

  • 3 .11 (-4)

Ingestion of Vegetables 5,01(-2)

Inhalation 3.31(-3) 9. 96(-2)

I-' Milk 1. 67 I

-...;i 5.42(-2) 1. 77 TOTAL BODY SKIN B. Noble Gases Pluflle (1

  • 53 mi. S) 1. 32 (-1) 3.53(-1}

C. Air Doses (1. 53 mi. S} Annual Beta 5. 67 (-1) mrad/yr Annual Gamma 2. 2 0 (-1) mrad/yr (Site Boundary O. 31 mi. N) Annual Beta, 15. 4 mrad/yr Annual Gamma 6. 2 6 mrad/yr (l) M ~ . d. . ' f ax..,mum organ o~e occurs to an m ant.

  • 7.80' (-4) = 7,80 X 10- 4

TABLE 1.1-4 MAXIMUM DOSES TO AN INDIVIDUAL RESULTING FROM GASEOUS EFFLUENTS FROM SURRY UNITS 1 & 2 WITH STEAM GENERATOR BLOWDOWN COOLED (mrem/yr per uriit)

Location 2

  • 1 7 mi. SSW Location 3
  • 7 5 mi. NNW TOTAL BODY ORGAN DOSE {THYROID}

(1)

A. Radioiodines and Particulates Ground 7.09(-4)* 2.81 (-4)

Ingestion of Vegetables 4.97 (-2)

Inhalation 3. 2 5 (-3) 2. 08 (-2)

I-'

I 00 Milk 3.00 (-1) 5.37 (-2) 3.21 (-1)

TOTAL BODY SKIN B. Noble Gases Plume (1. 53 mi. S) 1.32 (-1) 3.53 (-1)

c. Air Doses (1. 53 mi. S) Annual Beta 5. 67 (-1) mrad/yr Annual Gamma 2 .20 (--1) mrad/yr (Site Boundary O. 31 mi. N) Annual Beta 15. 4 mrad/yr Annual Gamma 6. 2 6 mrad/yr (l}M *
  • ax1mum .

organ d ose occurs to an m ' f ant.

  • 7.09 (-4) = 7 .09 X lQ- 4

I I

Enclosure 2 I SURRY UNITS 1 & 2 1:- Item 1 1 Provide the information requested in Appendix D of Draft Regulatory Guide

1. BB or 1. CC, as appropriate.

1* Response I Draft Regulatory Guide 1

  • BB has been replaced by Regulatory Guide 1. 112 ,

"Calculation of Releases of Radioactive Mc;iterials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors. 11 Appendix B of this I Regulatory Guide contains the latest version of Appendix D. The information requested

. in Appendix B is provided below.

I APPENDIX B

.I Units Value Source

1. GENERAL I (a) Maximum core thermal power evaluated for safety considera-MWt 2441 Pg. 1.1-1, FSAR tions in SAR I (b) Quantity of liquid tritium re- Ci/yr 480 Calculations leased GALE Code I (c) Quantity of gaseous tritium Ci/yr 490 Calculations released I 2. PRIMARY SYSTEM GALE Code 3

(a) Mass of coolant in prim ry system , 1 o lbs I excluding pressurizer and primary coolant* purification system, at 367 Calculations based upon information in

,I full power Tables 4 .1-3 and 4 .1-4 of FSAR I

I 2-1 I

I I

,I Units Value Source (b) gpm

-I Average primary system letdown rate to primary coolant purifica-tion system 60 Table 9 .1-2, FSAR I (c) Average flow rate through the primary coolant purification gpm 6 Table 9 .1-4,

. FSAR I (d) system cation demineralizer Average shim bleed flow gpm 1. 8 Unit I Qperating

  • Experience I 3. SECONDARY SYSTEM

. (a) Number of steam generators 3 Table 4 .1. 3-3, FSAR I (b) Type of steam generators U-tube Table 4 .1. 3-3,.

FSAR I (c) . Carryover factor u_s ed for 1% Iodine NUREG-0-017 evaluation of iodine and 0.1% Non-I non volatiles 6

volatiles (d) Total steam flow in secondary 10 lbs/hr 11.2 Figure 10.1-1, I system 3

FSAR (e) Mass of liquid in each steam 1 o lbs 90.7 Calculations

-I generator at full power based upon information in Table 4 .1. 3-4, I FSAR (f) Primary to secondary system lbs/day 100 NUREG-0017 I leakage rate used in evaluation 3

(g) Average steam generator blow- 10 lbs/hr 30.3 Unit I down rate used in evaluation total Operating Experience I

I 2-2 I

I I

I Units Value Source

{h) Description of steam generator Refer to I blowdown and blowdown purifica-tion system Item 4 below I . (i) Fraction of steam generator feed-water processed through the No condensate demineralizers condensate demineralizers I (j) DF' s used in evaluation of the NA condensate demineralizer system I (k) Number of condensate deminera- NA I (1) lizers Type of condensate demineralizers NA I (m) Size of condensate demineralizers '

n2 NA 3

I (n) Average flow rate through condensate demineralizers 1 O lbs/hr NA (o) Regeneration frequency of NA condensate demineralizers (p) Regenerant volume gal/event NA (q) Activity of regenerant volume NA (r) Ultrasonic resin cleaning used (yes or no) NA (s) Waste liquid volume associated gal NA with use of ultrasonic resin cleaning I 4. LIQUID'WASTE PROCESSING SYSTEMS I At the Surry Power St3.tion the liquid rady,aste system for Units 1 & 2 _qr_~_

  • shared except for the steam generator.blowdown flash tanks, the primary drain tanks, the degassifiers, the anion ion exchanger, and the boron recovery fil-I ter in the boron recovery system. Two systems currently exist for treating I 2-3 I

I I

I Surry Units 1 & 2 's liquid wastes. These are the boron recovery system and the liquid waste disposal system. The boron recovery system treats effluents collected in the primary drain tanks and letdown from the primary I coolant which is diverted from the Chemical and Volume' Control System (CVCS). The liquid waste disposal system treats the liquid wastes originating from containmen:t, auxiliary building, fuel building, and decontamination I building sumps and from laboratory drains. At the present time steam genera-tor blowdown is released to the discharge canal without treatment. A steam generator blowdown cooling system was in service about April 1, 1977. This I system cools the. blowdown below 212 op. It is planned that a blowdown treatment system will be installed by the end of 1978 which will essentially.*

eliminate blowdown as a source of liquid radioactive waste.

I Table 2 .1-1 presents appropriate information on the liquid radwaste systems prior to installation of the steam generator blowd.own treatment system and I following its installation, respectively.

(a) Shim Bleed I During normal plant operation part of the reactor coolant letdown steam is diverted to the Boron Recovery System via the primary drain tank. This "shim I bleed 11 passes through an anion-bed demineralizer and a degassifier to the boron recovery tanks. From thes~ tanks the shim bleed is sent to an evapora-

  • I tor.
  • The distillate from the evaporator is collected in distillate accumulators and sent to test tanks. The contents of the test tank are released to the dis-charge canal or recycled to the primary grade water tanks. Analysis presented herein is based upon releases to the discharge canal. Additional information I concerning the shim bleed is contained in Table 2 .1-1. Figure 2 .1-1 is a process flow diagram of the system.

I (b) Equipment Drains I Those wastes which are reactor grade in quality are considered equipment drain wastes. For Surry Units 1 & 2 these wastes are* collected in the primary drain tank and ate treated by the Boron Recovery System. The sources of these wastes I are shown in Figure 2 .1-1. The Boron Recovery System is d,e*scribed in para-graph (a) above and is shown in Figure 2 .1-1. For this analysis the contents of the test tanks were assumed to be handled identically as the shim bleed I and released to the discharge canal. Table 2 .1-1 presents additional in-formation on the equipment drain wastes.

I I 2-4 I

I I

I (c) Dirty Wastes Liquid Wastes originating from the containment, auxiliary building, fuel*

I building, and decontamination building pumps and from the hot laboratory drains are collected in the waste drain tanks. The liquid from the waste tanks is processed through two mixed bed demineralizers in series. Effluent I l.iquid from the mixed beds is collected in the waste disposal evaporator test tanks prior to sampling and subsequent rlease to the discharge canal.

Fig1,1re 2 .1-2 depicts the liquid waste disposal system. Table 2 .1-1 con-I tains additional information on the processing of dirty wastes.

(d) Steam Generator Slowdown I At the present time blowdown from the steam generators is released to the steam generator blowdown flash tank and then released to the discharge I canal without treatment. However, a new system is being installed which will cool the blowdown below 21.2 °p and which will treat the blowdown using mixed bed demineralizers. The system will have the option of either re-cycling the treated blowdown or releasing it to the discharge canal. In the analysis presented here the present and future blowdown handling methods were evaluated. In both cases the blowdown was assumed to be released to

.the discharge canal. Table 2. 1-1 contains additional information on the processing of steam generator blowdown while Figure 2 .1-3 is a process I flow diagram of the future steam generator blowdown treatment system.

(e) Detergent Wastes I Detergent wastes which originate from the laundry are collected in the con-taminated drains tanks. One system serves both units. For this analysis I the amount of detergent wastes was assumed to be 1,250 gallons per unit based upon station operating experience. Table 2 .1-1 contains additional information on the detergent waste system. Figure 2 .1-3 is a process flow*

I diagram of the system I

I I

I 2-5 I

I I

s. GASEOUS WASTE PROCESSING SYSTEM I Units Value Source I (a) Volume of gases stripped from primary coolant

.gpm 2.53 GALE I (b) Description of process u*sed to hold up gases stripped from primary ********

  • See **

Section 11.2.5.1 system during normal operations *

!Belowt

  • FSAR I and shutdown *******

Waste gases, primarily hydrogen, nitrogen and minor amounts of fission I produ~t gases, such as xenon and krypton, are removed from reactor coolant letdown by the stripper in the Boron Recovery System. The stripped gases are processed in the Gaseous Waste Disposal System.

I The Waste Gas Disposal System is designed to provide adequate radioactive I decay storage time for the waste gases and, in addition, provide long term holdup of these gases when either high flow letdown is required or adverse meteorological conditions make it desirable to discontinue release of waste I gas to the environment.

In the Waste Gas Disposal System, gases pass from the stripper to the I stripper surge tank where they are compressed. From the surge tank the gases are bled off to the waste gas surge drum. At a pressure of approxi-mately one atmosphere the waste gas diaphragm compressor transfers the I gases to one of two waste gas decay tanks .. When one waste gas decay

tank is filled, it is connected to the recombiner and the empty tank is con-nected to the stripper line. The gases in the full tank are then recycled I between the waste gas decay tank c3nd the recombiner.

. 3 The volume of each of the waste gas decay tanks is 434 ft which is an I adequate size to handle a maximum letdown of 17 gpm. The pressure of the tanks is 115 psig, The holdup time for the system was conservatively assumed'zero while'the fill time was calculated to b~ -19 .1 days sssuming I an operation pressure of 70% of design.

Before processing tlie stripped gases in the recombiner, nitrogen and oxygen I are added as required and the entire mixture is preheated. The maximum hydro-gen c.oncentration f s normally maintained at about 3 percent, which is below the lower hydrogen flammability limit of 4. 4 percent. The gas mixture flows I to the waste gas recombiner where about 99 percent of the hydrogen and oxygen is catalytically reacted to produce water vapor.

I 2-6 I

I I

The effluent gas from the recombiner is collect in the recombiner after-I cooler and then flows to the moisture separator. Condensed liquid from these two vessels is drained to the Liquid Waste Disposal System. The waste gas stream from the moisture separator is recycled to the recombiners I by the blowers

  • The recombiners are maintained at a preset pressure by bleeding from the I recycle line upstream of the blowers using pressure control The bleed
  • stream from the moisture separator is recycled to the recombiners by the blowers.

I When released effluent from the waste gas decay tanks is mixed with dilution I air, effluent from the Containment Vacuum System, and the aerated vents from the Vent and Drain System. The combined gaseous waste is filtered

  • through charcoal and HEPA filters prior to being released to the atmosphere.

I The process vent blowers maintain a small vacuum in the charcoal filters to prevent outleakage from the filter assembly~ The decay tank pressure relief valves discharge to the discharge side of the process vent blowers.

I The decay tank contents are sampled prior to any release to the process vent.

Value Source I (c) HEPA Filters, DP Yes, 100 NUREG-0017 I (d) Charcoal Filters, DP Yes, 10 NUREG-0017

6. VENTILATION AND EXHAUST SYTEM (See Table 2
  • 1-4)

I I

I I

I I

I 2-7 I


TABLE 2 .1-1 SURRY UNITS 1 & 2 LIQUID RADWASTE SYSTEM EQUIPMENT CLEAN AND STEAM GENERATOR DETERGENT SHIM BLEED DRAINS DIRTY WASTES BLOWDOWN WASTES Sources Reactor Coolant Primary Drain Waste Drain Laundry Wastes Letdown Tanks Tanks Flow Rate (gpd) 2,500 1,150 10,150 90,600 1,2~0 Activity (FPCA) 1.0 1.0 0.36 Collection Tank Volume (gal) 120,000 120,000 5,804 1,230 Collection Rate (gpd}* 7 I 300* 7,300* 20,300 2,500 Collection Time (days) 13.2 13.2 0.23 0 0.39 Processing Rate (gpd) . 31,700 31,700 34., ~60 72,000 Processing Time (days) 3.03 3.03 0.14 0 0.01 Discharge Tank Volume (gal). 30,000 30,000 3,548 1,230 N

I Discharge Rate (gpd) 7,300 7,300 72,000 72,000 a,

Discharge Time (days) 3.28 3.28 0.04 0 0.01 Fraction of Processed Stream Released l.O 1. 0 1.0 1.0 1.0 Case 1 Case 2 Anion Ion Exch. Evap. SAME AS Mixed Bed Dem in. Mixed Bed Dem in.

102 102 SHIM 2 . 10 2(10)

DF's I 10 (IO) Not NONE BLEED 103 Treated Cs, Rb 1 2 (10) l O(10) 103 2 2 Others l 10 (10) t 10 (IO)

  • Regenerant Time (days) Not Regenerated Not Regenerated Not Regenerated* Not Regenerated NA Regenerant Volume (gal)

Regenerant Activity Fraction of Regenerants Discharged Treatment of Regenerants Source Terms See Tables 2 .1-2 See Tables 2. 1-2 See Tables 2. 1-2 See Tables 2

  • 1-2 See Tables 2 .1-2 and 2 .1-3 . an~ 2.1-3 and 2 .1-3 and 2 .1-3 and 2 .1-3

.ft: Reflects shared system

  • Sum of*equipment drains and shim bleed for both units

TAhl.l: l. 1-2 LJ?Ull> SCURCI: Tr.HMS FROM SURRY UNITS I & 2 (PRESENTSY::i'fEM;PER 'UNIT BASIS)

ANNUAL AfLfASt.S TO OISC~ARGf CA~AL NUCLl~f HALf*LIFf cunL~~,

PRJ"'AIH' C~N[fNTA&TlflNS*-------------~-------------*----------------*--*-***-**-

SECmJOAQV IJOAON RS MISC, NASTES SECO~DAAY TURA"BLOG TOTAL LNS ADJUSTED TnTAL Ol!T!AliENT WUTU TOTAL COAVS) ("1JCR,: C:l/'"11 )("1JCRO CJ/,MU (CURIES) (CUldt.S) (CllHlf.SJ (CURIES) (CURIES) CCI/YA) (CJ/VA) (Cl/YR)

CORIHISl(l~ AND ACTIVATION PIH'IWCTS CR 51 i" 0 78E.tOt l 1bAF"*01 2,1 n:*Q7 1 002':i 7 ,i>06114 ,02bl.l1 ,00000 10111111 I 03757 0,00000 10UOO MN SIi* l.Q11:t0?.  ?,711f*O(I '1,1H,f*06 .000~2 ,OOllfl ,OOblll .,0(1000 1 oon11 11101121 10003b .,008b0 ff 'i5 1 0 ':i0f't02 ,.,ot.-01 t,77F*07 ,00271 . ,(10713 ,022l1J 1 0fl000 1 031Q9 ,032l0 0,00000 ,03200 ff 'i9 !1 0 'iOE.+Ot 1:1 0 fl (If: *O II l,JOF*ll7 .001aA 1 OOIJll5 .otb2a ,00000 1 02217 .0222'5 010001)0 102200 en '>fl 7.i1E.+Ol l.1Jlf*02 1,AOf*Of, ,Oi?IIQ2 ,07121 ,2?.'iOQ 100002 , 121 i.!11 132239 IO O11111 1llOOO en 1,0 l ,Qlft'l1 l,7fif*03 2 0 ?1!:*07 1 00 3110 1 00AQ1 1 Oi?81Jo; ,0(1000 ,OIJ077 1 nllOQI 100313 10111100 t.iP21'1 2 0 1Sf.t'lO l,09f*O\ 1,1111:*"7 , oo Q?.2 ,00'512 1 01112b ,00000 ,Ol9b0 1 0l9b7 0100000 102000 F JSSJJN P~IH)lJCH BR II\ I 'lOF"*O I O IJ 0 1)7f*OS I ,9bt.*07 ,00000 IO 0491.l a0245A 0 00:ioo ,02Q5b ,n29b7 0100000 1 0JOOO BA 11,, l.i'lt.*12 ?o71f*O\ .\, l9f *OIi O,OllOOO ,oOOOl

  • 0011 I 2 ,00000 1 ooa15 ,OOlllb 0,00000 ,oouo BR A5 2,011~-'l"\ \,2i>f *O~ \,53f*IO l!,00000 ,00000 ,000011 0 1 00000 ,00,,1111 ,nOOOII 0100000 1 0000II Rli !lb I 0 A7f+*ll 7,1171:*0~ 1, 071:*C)I\ ,OOOIH
  • 0 l l:lb8 ~ o o l \a ,00000 ,0201'1 , 02021 0100000 102000 Rli All I* ;?I.If. *ll2  ?,IIJE*nt I I H,r *Oh ,,,00')00 1 00?.lA 1 i70An ,00000 , I BOIi ,t71b7 0,00000 1 l7000 SR /19 '> 0 .?.M+nt "J.oqf"-01.1 ~olH*nll , ()01)~3
  • OO! Sh .oooa1 ,noooo ,008'ib ,(10859 01000(\0 ,oouo SR QO 1,n.Uto11 11,A?f*llh 1,ll>f.*09 , 'lOOOi' 1 0000il .00011, .00000 1 000?2 ,00022 0,00000 1000U

.V QO 2 0 t>7f.+ .)O laOQf*Ob 1,\1!:*tO ,0000?. ,00001 ,00009 ,00000 ,00011 .110012 0100000 ,ooou N SR 91 .:i.n.s_f **11 b, V,f*OIJ !l,71Jf*OR ,00000 .00210 ,oosq11 ,00000 ,ooens 1 01180A 0,00000 ,00810 i y QJ". :s.11n-,12 ,.11;>f" *ll1J .1.1,nf*OA ,unooo 1 00llb ,_00593 * ,00000 ,0('7i'8 ,00731 0,00000 1oonn

{Cl y q1 5, 11111: + o I '>ohhf*(l5 7 0 73f.*n9 ,00011 1 001\29 ,oonq7 ,00000 ,on t H ,00137 0100000 I 001110 Y 91 1.1,2'>1:*0 l 1.:sn-n~ \,'l<Jt.*09 ,oooor. , <in o I I ,0003q ,CioOOO* ,onoso ,1\0050 0,00000 100050 ZR Q'i b 0 o;o1:*n1 "i

  • 30F *05 7 0 7ll'"*llq ,00009 * (lf) 02*1 , 011097 ,110000 ,0(*133 o!IOlH 0,00000 1 00 IJO Nn 91j J.~of *OI 11,ll?f*O", 1, !IIJf *(IQ ,00009 ,00022 ,00098 ,00000 ,001,"* 1nouo 0100000 ,OOIJO MO QQ 2 0 191:tno 7,bH*(*c! 1,11M*n5 ,o?.,).H , 3b 11 l l,3552& ,00010 l,737115 1,711331 0,00000 1,70000 TC qql" 2 0 <\flf*Ol IJ 1 1)0f*0?  ;>,Qtl;*O~ ,OIQIJ8 ,i:'81!,;! l,b1HS1 1 00019 3,qa1179 3,q5902 0,00000 11,001100 AUt03 1.Qfit +\ll l,Qllf *O'i 'i,?.Of."*09 ,00001 1 001'20 ,OOOb'i 1 000C)O 1 000Q2 ,!10092 ,noons ,00097 RH1 l)\'1 1.Qbt:*02 4,71,f,*O'i \o10f*08 ,00007 ,00020 , 0 0 ]l'\q 100000 , OOIJ I b ,001117 0,00000 ,001120 RIJtOft l,&71:t02 11, I\ \f *1lh t, 2bF. **19 ,00002 1 000011 , 00 0 Ji, iooooo ,00022 ,noo22 1 00011b ,oouo RHJOI, 3,117f*l'4 J,Ollf*O", . !I, ij')f' **)Q ,00()02 ,000011 ,00111 ,00000 ,00118 ,IIOll 8 0100000 ,oouo Tf I 25'" <,.1111~+01 i?, 'ihf *IJ'-. i' 1 'S?F*09 .ooooa , ('0011 ,000?.9 ,00000 1 000110 ,non111 0100000 , 000117 n,n,.. ,.~9ft02 2,47f*Oll  ?,30F*O!I 1 OOOIIS , r,o 12s ,002s11 ,00000 ,004S7 ,00459 0,00000 I oouo Tl' 127 ,.9;?1:*0.t ll 0 l2F*0.4 l,t,nf*ll7 .0001.1~ 1 00Jli; ,02007 ,00000 ,023b7 ,02375 0,00000 ,021100 TE t 29"' 1 0 11of*o1 lai?IJl:*O\ 1,'i7f*07 ,OOIQ7 ,n0&22 1 019bi, .00000 ,0271.\b , 11279b 0,00000 I OZ&OO TE l ;,q 1.1,Hf*O?. l.f>9f*0\ '1, 07F.*!17 ,00127 ,001117 , It Ho ,00000 , ll 9111 111951 0,00000 I 12000 1n11 s.11F*o1  ;> 0 0.ff*O\ 1,77F*fl7 1 00000 1 00Ho ,02212 100001 ,02Q",O ,n29bl 0,00000 ,03000 TFl'\t"' 1.?~t.+no ?ali'l:*OS  ?,\llf*li7 ,00011 1 010?.I 1 0,?QA<; 100000 1 0 IJO l 11 ,n11nn 0,00000 ,011000 TE 111 1,711f*O?. l,17F.*u\ i..31,f-07 ,00002 , 00187 , l 01171 .oooon al llbfiO ,t0b9Q 0,00000 ,ttooo 1n1 11,n':iEtno 2a4tf*III ~.;,of'*n'i 1 Oi' 151 1 1 ,aqqo 4,015711 ,00312 5,23029 '5,?1191'5 ,00002 5,20000 TE 11? l,25ft,l0  ?,&11t*O? *;,.1n-01>
  • 00'12':i ,llf>7b ,,ao9t ,00001 ,IJ71Qb .413bb 0,00000 ,411000 113? Q,5111:*02 1,011e-01 I* *11,f*rj'i ,OOA5l 1 1q3i,o 1,82.S2f> ,00021, Z,02St.>2 2,03292. 0,00000 2100000 llH e.1~t.-01 1,5At'*O I 1,,, I t:.*(15 ,OOObO I I IJllt,.38 11,52219 ,0029, b,01<!12 b,033EIO 0100000 6 1 00000 11\4 l,f>7f'*02 11,911[*02 ~.Q ff*07 0,90900 , OOIJll9 111191 1 00090 ,llhlJO ,tlb82 0,00000 ,uooo cs11u 7,1JC1ft,i2  ? , t'lf.*Ol  ?,qqf*OI> ,01lb7 5,!>03111 ,17523 ,00001 5,Q'!IO]b 5197182 ,0011b8 b100000 Jn,; 2, 7Qf.*Ot 1,A9f*OI I* \(If" *O', ,00000 ,52153 l,b2b5? 100069 2, 1 IJ8711 2,t5bll9 0.00000 2,20000 cs,11, J 0 30lt01 I, I ':if *Oi.>  ! * \1F*Of> ~02321  ;, ,a,;11111 1171 QA ,00001 '.h01J995 3 ,l)b09(1 0,00000 3,lOOOO cs,n 1.10E+n11 l,57f*02 I ,Q<lf.*Ob ,05202 1,9b259 , ?1JQ711 ,00002 11,2ft1137 11127975 ,008bll' 11,!0000 BAI H" l,77E*OJ l,7;>f'*02 1,111~*05
  • 048bll 1,70502 1,77272 ,00002 5,!>2b41 5,511b311 0,00000 5,!10000 8Apip lai?61:iOI t .Q':if~ou  ;! 1 1JQf*llA .00021 1 000Q7 ,0031;> ,00000 ,001133 -
  • 0011311 0,00000 ,0011jo LAIIJO l,b8ftOO 1,.SRf*OII .S,IIOi:*08 ,00025 ,00072 1 00!12b ,00000 1005211 ,1)052b 0100000 ,00530 Cf Ill I J,211£+01 b, IQl::*O'i 7.lll>f:*09 ,00010 1 00031 100098 ,00000 ,00139 1001110 0,00000
  • 00 l 110 CE!Ul J .111t +00 "5 0 7C1f*O'; IJ 0 l]f*OQ ,00000 .oo~H, ,ooo':i2 ,00000 1 000b8 1 oOOb9 0100000 ,ooou

.t* ~ :--

TABLE 2 .1-2 (CONTINUED)

ANNUAL RELEASES TO DISCHARGE CANAL NUCLIDf HALF*LIFE COOLANT C(l~tf~ITRATIO~S*~*------~----*-****-**********~----*~*********~~-~~*-***

P.RfMA~V SHn1110ARY BORON RS MISC, WASTES SECONDARY TURB BLOG TOTAL LWS ADJUIT1£D TOTAL D[Tt:RG!NT HUTU TOTAL*

(IHYS) (MICRO CJ/ML)CMICPO CJ/ML) (CURIES) CCURJES) (CUHJES~ (CURJ!S) (CURIES) (CtlVR) (CllYR) (CIIYII)

PRtUl l 0 37f+Ot u,u~f-0~ ~.~1E*09 ,OOOOb ,00022 ,OOObQ .o~ooo ,00097 100098 0,00000 ,000'8 CEtUU 2.euE+o2 2,9tf*05. 5,0bE*09 ~OOOOb ,ooot5 ,OOOb~ .06000 ,000811 1000811 ,oou1 ~00270 PRIUU 1 1 ?0f*02 1,53E*05 3,UtE*08 ,OOOOb ,0001S. ,00421 1 00000 1 0011117 ,004119 010.0000 , 0011!10 ALL OTHERS o. o, ,00000 ,00000 0,00006 ,0000~ ,00000 ,00000

  • 0, 0 .00000 TOTAL CEXCfPT TRITIUM) 1 llbH 41,7111!57 ,02Zlill. u,00000 N TRITJUl'I RELEASE iieo CURIES PfR VEAR I

I-'

0

- - - - - - - - - - - - - - - - - - *- TABLE 2.1-3 LIQUID SOURCE TERMS FROM SURRY UNITS 1 & 2 (PROPOSED MODIFIED SYSTEM, PER UNIT BASIS STEAM GENERATOR BLOWDOWN PROCESSING)

ANNUAL AELEASfS TO DIOCHAIIGf CANAL COOLANT CONCINTRATJONS******~*****-*****~-~--~*-******************************* ADJUIT!D Ol!'rEAGENT ,oTAL NUCL!DP HAL,*Llff PlltHAAV lfCONDAR't BORON R8 MISC, WUT!I Sf!CONDAR't TUIIB IILDG TOUL LWS TOTAL WUT!S tDUI) (HICIIO CIIML)(H!CRn CtlHL) CCURIU) tCUA!U) (CURil!S) (CURIEi) (CURlfl> CCI/Ylt) (CIIVR) (CliYR)

CORROl!ON AND ACTIVATION PRODUCTI .

CR si a.,aE*Ol l.tBf!*OS i.llf*07 .002,., .ouu .ooon .00000 .011oq 1Dllll 0.00000 101 lOO MN SIi s.oSE*o! ,.,1.11!*01.1 5.16f*08 .00051 .ooue .,00001 .00000 000191 .001u .ooou ,oono fE 55 ,,90f+Oi! 1.411!*0] IO '7E*07 ~oon1 .oous .00002 ,00000 .00987 100991.1 0.00000 ,00990 f'E 59 ll 011DE+Ol ll 0Bl.lf!*OQ t.lOE*07 .0011.111 .001.11.111 .00002 .00000 ,0059Q 0QO!l99 0,00000 ,00000 co 511 ,.uE+ol 1,(llf'*Oi! 1,llQE*Ob ,02Q92 .07121 .oooH .00002 .09bl? .ono, ,OOlllll ,09900 co 60 1,*H:*01 1,fbP.01 .i,i!jE*07 .0011.10 100891 .00001 .00000 ,Oli!l5 .ouu ,0031] .ouoo NP2!9 Z.HE+OO I.O'E*OS 1.111t::.o, .00022 .ouu .00001 .00000 .00536 .005110 0,00000 . 10051.10 flSS!ON PlltODUCTS BR U 1 1 09f*OI 11,,?l!*OS t 1 t1,E,.07 .00000 ,001.1911 .00002 .00000 . ,00501

  • OO'!IO!i 0.00000 .00500 BR sq ",ZIE*Oi! 2,771!*03 3.i4E*08 0.00000 .oooos .00000 .00000 ,00003 .0000] 0.00000 .ooool RB 86 1,8'h01 7 gJl!aO'J 0 l,07E*OII .000111 .o,us .00001 .00000 ,011187 .ouo1 0,00000 ,01900 RB 1111 1,zu-oa z.111ir.01 1,3bf*06* 0.00000. 10021s .not 11 .00000 ,00389 1 00J91 0,00000 ,003'90 SR 8' ,,u£+01 S,09!*011 5~l'tf.08 .00051 ,00156 .00001 .00000 .00209 0 0 021 l 0.00000 .00210 SR 90 1,UE+oll 11,IIU*Ob l 0itbf*09 .ooooi .000011 .00000 .00000 ,00006 ,00006 0,00000 1 0000b

't pg Z1 U!+OO l,04f*Clb TaltE*IO .00001. .00001 .00000 .00000 .ooooz .0000, *0,00000 1 0000ii!

SR ~J . 11 1 0,E*Ol 6,1sr.01.1 ll 0 T11E*OII .00000 ,oouo .00001 .00000 100ll I 1 00ZIJ 0.00000 .00210

't :1M J 1 4'ho! '1 0 !1l!f*OI.I C0 71E*OII .00000 .001,, .00001 .00000 0 0011b .00117 0.00000 ,00140 y I IJ 1 911ftOI 111,661!*05 ,. 731.:*09 .00011 .00029 .00000 .00000 ,00040 .000110 0.00000 .000110 y 9!' 1.1 1 IIJE*O I 3.llf .. 05 :s.o*E*o* .00000 .00011 .00000 .00000 .00011 .00011 0,00000 .00011 N ZR 9'5 ! *,IOE*OI '5,30f*05 7.TtE.*09 .0000* .ooon .00000 .00000 .ooolb 1 0001b 0.00000 1 000'50 NB 9'5

.....I HO 99 s,eoE*o1 4 042f*05 T,811E*09 .0000* .* 00022 ,00000 .00000 ,00011 .00011 .0.00000 ,00031

..... TC 99H 2,,u*oo

! 1 IOE*OI 7,61f*02 1.1.110!*02 lo011f*0'5 2,'HE*O'i

.02on .hill .00116 .00010 .38'511.1 ,US91 0,00000 .i.ooo 0 n 19411 1l!B 161! ,003611 .-00019* * ,]01.191 ,)0711 0,00000 03tOOO RUlO'.'l 1.*u*o1 J. ltlll!*OIJ '!io20E*09 .00007 .00020 .00000 .00000 .0002' ,0001!7 ,00005 .00012 RHjO:SH J 1 t6Eaoi! 11,U!,iOS l 1IIE*08 0 .oono, .00020 .oonoo .00000 .00021 .00021 0,00000 .0002, RUJ06 1,UE+o2 11 111Jfa06 l.i?6E*09 .000011 ,00004 ,noooo .00000 ,00006 ,0000* , OOOl!b .0000 RHl06 i,1.11f110I.I 110111!:*0!I 8,81lE*09 I 0000&! .000011 .00000 .00000 .00001, ,ooooe, 0,00000 00000b Tl!l25H IJ,101!+01 i.,u.os 2,1>.E*09 .000011 .00011 .00000 .00000 .ooou .00011 0.00000 .00011 Tl!:l!JH. 1,ote:+oz  ! 1 1.171!:aOII 2.JOE*OII I OOOll"J .Doti!!! .00000 .00000 .00110 ,00171 0,00000 .00170 Tfl21 1,tlE-01 ll 1 Uf*OII labOh07 I 00011':I .outs. *~ooou .00000 ,0036i! ,oous 0.00000. .* ooJbo Tl!:J!9H S,Uf+Ol 1,lllf*OJ l.5~E*07 ,00197 .oo6ZZ .00002 .00000 ,0082! ,00828 0,00000 ,00830 T!l.!9 11,,,hOI 1.*u.01 ,.o~Eao7 .0012, .001.11, .00011 .00000 ,00'55&

  • 0 O!iltO o.noooo ,005b0 11!0 ,.,1e:.c,1  !,OSF.*O! l,T'PE*07 .00000 .o~n,. .00002 .00001 .
  • OOTIIO. ,007111 0.00000 000?50 Tl!lSlH 1 1 25E+oo 2.~u.01 1 1 3&E*07 .00011 aOIO!l .0000-s .00000. .01031, .010111 o,noooo ,01000 T.f J J1 1 1 711E*OI_ * . l 0 l?f*O'.S &0 36E*07 .ooou .001111 .00010 .00000 0 00199 ,OOIOl 0.00000 .oozoo ll 31 1 1 0Ut00  ! 1 111f*Ol J,olQE*05 ,UIS) l, 18990 .001102 .00112 t.21857 1.un, ,0000.? 1.20000 T!l!I J 1 25f+OO 2,llllf'*02 Z 1 7TE,.Ob .oosa~ 1 l lOT& ,0005 .00001 .usH .11uo 0.00000
  • nooo

!JU . t,OE*OI 1 004!'*01 l,IIU*O'J 1 00851 * ,n,o .ootei! ,000!6 ,20Ql9

  • 0IO!lb? 0.00000 .21000 1113 a,Of*Ol l,511F*Ol , ** , h0'5 ,00060 1,118638 ,00452. ,002415 1,49QQ'i 1 a 50U8 0,00000 1.10000 I &!I.I S1 67E*02 1.1 1 ~llf*Oi! e.*11-01 0.00000
  • 0011119 .00011 .00000 ,00460 .001.1u 0.00000 1 004b0 cs1s11 7 1 11U+O! ~ 1 1Bf*02 Z,9*1*06 .0110 'i,1011.11 .001n .00001 '5,578tll! '!1,*uu .001.1u 5.ooooo 1JS5 l 1'9f*Ol l ol"f*Ol 1,l~E*05 .00000 ali!UJ I 00 l la! ,000.9 .52385 1 !1UU 0,00000 .nooo Cl1Sfi 1,101+01 1,11!*02 1.nEao* .112121 1.8!11.111.1 ,oot u .00001 2,879611 2 1 900!UI 0,00000 z.*oooo csu1 J,l0£+ojj 1,,7f*02 1.**E*06 .05201' l,9UH .oono .00002 11.01111 11 1 0116U 1008bll 1.1,10000 IU IS?M 11 nr.o, J I Uf*02 1.*1Ewo'5 1 01111&11 S,70IIOI .001 n ,00002 1,7554~ 1.,111u 0.00000 , 3,00000 IUIIIO 1,IIIE*Ol J 1 9!1f*OI.I Z,IIU*Otl .00021 .0000 .00000 .00000 .00121 1 00 Ul 0,00000 ,00120 1,.AJI.I~ 1 1 Hf+OO l * 'UfaOI.I 1ollftE*08 .0002! .ooou .00000 .00000 .,000911 .00099 0,00000 .00099 Ct'. I q 1 J1Zllf*Ol 1t 0 J9t'.eU ,.h&:.09 ,00010 ,00011 .00000 .00000 1 000.1.1 I
  • oo04l 0.00000 1000111.

CfJ4S 1,1$1+00 s.,oho5 II. I iE*09 .00000 .0001, .00000 .00000 .00017 ,ooosr 0.00000 .00011 PR Ill S I ,lfho I l.l,llllf*05 1,S1h09 .00001, .ooozz .00000 .00000 ,00028 .ooou 0.00000 .00021 Ji ;_

  • 5.

TABLE 2 .1-3 (CONTINUED)

. A~NUAL ~!Lf~S!S TD Dl&CHA~G! CANAL .

COOLANT CONC!~TRAYIONl-~****,~----~-~--~*-~~-*-****-~***********************w~* ADJUST[O D!Tl!RGfNT .TOTAL NUCLJDf HAL,*LIFf PRJMAIIY SECONDARY BORON AS MISC, HUTU SECONDARY TURB BLDG TPTAL UIS tOUL HUTU Cl)OI> fMJCRO CI/ML,(M!CRO Cl/ML) (CURIES) tcURUS) (CURI,si fCURif&> UJURl!'S) CCI/YIU . CCI/YR) CCI/YR) cfi44 11 auf*o! !.11lf*05 !i,Gt,E*09 ,00006 iOOOl!I .00000 .00000 .00020 ,00020 ,oou, ,00210.

PA144* l.!O[*O! 5 0 ,u:.05 1.41!'.*08 .ooou .ooot5 .00000 .00000 ,00021 , OOCIII 0,00000 ,ooou ALL OTMflll J,Uf*O~ :S.5~E*tD ,00001) .ooooi, ,00000 .00000 ,00000 ,00000 0 .o ,00000 TOTAL .

,(fKCfPT TRITIUM> J,lllf*OO l .6o7h04 .,un iO,lH59 ,ci296o3 .00748' 20. 7108,6 . u.uoe,

  • 102i!ll4 *u .00000 TRITIUM llfL!'ASf. uo CURlfS PfR YEAII N

I 1-1 N

TABLE 2.1-4 VENTILATION AND EXHAUST SYSTEMS PROCESS VENT VENTILATION VENT TURBINE BUILDING VENTILATION VENT FIASH TANK VENT PIPE 1, Sources Gaseous Waste* System Auxiliary, Decontamination, Turbine Building Condensor Air Ejector Steam Generator and Containment Vacuum and Spent Fuel Buildings, Blowdown Flash Tank System Safeguards Area and Contain- .

ment Purge System

2. Charcoal Adsorber , DF Yes, lO NUREG-0017 Ye11, 10 NUREG-0017 No No No HEPA Filter, DF Yes, 100 NUREG-0017 Yes, 100 _NUREG-0017 No No No 3, Release Rate See 'J,'able 2.1-5 See Table 2. l-5 See Table 2. l-5 See Table 2.1-5 See Table 2. l-5 4, For the Release Point
a. Height above Grade (ft) . 1.31 114 102 114 48 b, Height above Adjacent N Structures (ft) 91 12 51 12 I
c. Relative location to 10' above top of contain- Above Service Building Next Roof of Turbine Building Above Service Building .Above AuxHiary Building

"' Adjacent Structures tainment next to auxiliary to Turbine Building Next to Service Building Next to Turbine Building building *

d. Expected Disch~rge Temperature P) 100 70-100 70-90 100 200
e. Flow Rate of Release (cfm) 300 190,000 572, 000/unit 5/unit B,550
f. Velocity through orifice (ft/sec) 400 -2 90.7 60 90.Y BO 2 34.9
g. Size of orifice (ft ) 1.23 X 10 34.9 19.6 1.77
h. Shape of orifice Circular Circular Circuiar Circular Circular 5, Free :f.olume of Containment (ft ) 6 NA l.Bx10 NA NA NA 6, Internal Recirculation-System a, Recirculation Rate (cfm) 4,000 NA NA NA NA
b. Charcoal Bed Depth (f::) 10 NA NA NA NA C, Operating Time Assumed (hr) 16 NA NA NA NA
d. Mix-ing Efficiency (%) 70 NA NA NA NA 7, Purge l'requency (/yr) 24 NA NA NA NA 8, Purge Duration (hrs) 16 NA NA NA NA
9. Venting Frequency (/yr) NA NA NA NA NA
10. Venting Duration (hrs) NA NA NA NA NA
11. Continuous ,Purge Rate (cfm) 5 NA NA NA NA

TABLE 2 .1-5 GASEOUS SOURCE TERMS FROM SURRY UNITS 1 & 2 (PER UNI1')

GASEOUS Rf LEASE IUTf

  • CURIES P!:R YUR PHp;4Hy StCOt1Dil~V GAS STPlPPTNG 6UtL0I~G IIENTILAT ION CClULANT (MICHOCI/GK)(MICROCT/G~

COr,LANl

~--*-****------~-.--~

S11l1T0(lw~ COr.,TJ NIJOUS *-~---~*-*******-*-~--~---~~-~

HE'\CTOH AUKILIARV TURBINE SLOWDOWN I/ENT OFFGAS AIR [JECTOR EXHAUST TOTAL

~***************~*********~************~****~****~******~*~*******~-~--~~*****~***~~*********~**e~~~~****~******~~~-~~~*@~~-~~~*~*

/ ICM-.d3H  ?..2~1t*02 A 32'JE*oq 0 7o0f+OO o. o. o. - o. 0** o. 1eOf+OO IIH*l!':i,., ,.,nr-01 Q 0 112bf.,.1JA lo9H01 7,0f+OO 1,0E+Oo 2.0f+OO o. o. 210.EtOO 5, lf+Ol l<H*8':i b,c!Bf'-02 2 0 JHl*OA 2.n-+01 l,!it+Oc! l,Of'+Ol 1,0E+OO o. o. o. 3eOE+02 I\H*ll7 ",Qlflt:.*ll.?. 2.2qq1;.n1:1 i:!.H*+o1 1,0F.+00 I) I loOf+OO o. o, O, i!,3E+Ol l<H*IHI c!,IJqf*lll 7 * /.17Qf;.(lt\ 7o1F.tOI doOF+OO 2,0f.+00 !i,Of+OO o. o. 1,0hOO 8,9f+Ol

!>, i79f*l)j 2.01 *,1:..uq o. o. o, o. o, I:',,)

K~*l:l9 Xf:.*111"' ll.l52f:.*il2 1.1,~f:.*06 2 0 0f+OO 2o1f+Ol 2, lf.+1)2 2,9E+Ol 2.ot+oo o. O, 1,0f+OO Z,OE+OO l,1E+U I

I-'

J:,. Xt:*I.SjM 2 0 lj<Jfw,,I 1'1 0 0711t.*JR 7olf+OI l,M+02 i:!o6E.+01 5,0f+OO o. o, leOf+OO l,?f+OZ lll:*IH t,'i11t:+OI s.ai.c;f-ot> S,\FtOj 2. !>Ft 1111 .s.qf+0.5 '5,U:+02 O, o. i!,lf+Ol l,5E+04

.(f;*l3')M l,.S9!1f:.*!l2 r; 0 111st-*1<1 s,of.+r,o o. o. Cl, o, 01 o. 5,0E+OO

'Ill:* 13 1, l,'>'151::*u I 1.:Htf:.*(17 1.1.f+Ol 11,H+Ol 9a0ft00 s.oE+OO o, O, 5,0f+OO l,9£+02 ll~*IH 9obb2f .. o.J ,.b<,.!E.*09 l,OF+OU 0, I). o. o. o. O, J,Of+OO l<f* I ltt 11*. 1 .S 11:: .. 112 I. 72Rf:.*08 lobf+OI o. o.* 1 oOf:.tOO o. o. o. l,U:+Ol TOUL N~IHLf:. r.-s1:s :s. t.!+04 l*I.H 2.ilu8t**Jl l,c!07t*O!, o. o. 2 1 1F*O.S l 1 8f:.e03 l,7f*03 1,or*o1 Zo4E*Ol 1,9f.,OI l*lB l.!>112f~llJ l 0 hllt*OS (1. o. *r,9Eoo0*11 5,7fo,(I] 2,0EooOl l18E.*Ol l,flf*OZ Z,Zt'.*01 fMITIU11 GA Sf (Jll5 Mf"L.FASf 11'10 CUHlES/YH o,o APPt:.A~J~G 1~ Tht TA~(F ,~oICATf:.5 Mf~tASt I5 LESS Tl1A~ 1,0 CJ/VH FOH NOBI.~ GAS* 0,0001 CI/VR ,oR I AR-41 25 CURIES'/YR C-14 8 CURIES/YR

. TABLE 2. l -5 (CONTINUED)

AlH00HNf PAHTJCULATE Rflt:ASE RATE*CURlfS PER YtAA dSH: GAS 1:1Ull,UIIIIG VtNTTLA l ION NUCL.IOE SVSTfM HtACTOH AVXILIAHV TOTAL

                    • ----~---**--***-****--------~------~-~~--*--*---------~-------~-----*~~--------------***----*--*-----~----~---*~--~------

t1N.,5q 11.~l'... o'J bo0t*!l5 l 0 IIE*Oq i! 0 9t*OII FE*59 l o'ff,.O';, 2 *IE .. o'J h 0 0!:.*05 q. bt:.*05 CO*'J8 l o'Jf.*011 iolE*Otl t, 1 0t*Otl 9,bE*OII CO*bO 1.ot .. o, 9,3t .. os i? 0 7t*Otl 11,lE*OII N SH*69 i,.SE:*Ob 11,71:.*0b I 1:SE*O'J 2, tt*O':i I

...... SH*90 b,0!:.*01 ll.lf*l)7 2.11t,00b J.6t*Ob CJ1 cs.u11 l.lo'JE'*OS bo0f*ll5 1,at .. ot1 i!,'1t*OII cs-111 1 o 'JI: *O';, loOf:.*O(I :s,ot-oq 11, l'lf:. .. 04

                                                                                    • -****************************~~****9~**********************9********************~*******

---*--------- DF's DF's I= 102 I= 1 R EACTOR COOLANT PUMP Cs, Rb= 1 Cs, Rb= 1 SEAL LEAKOFF OTHERS= 1 OTHERS= 1 PR IMARY COOLANT VENT & DRAINS

. PRIMARY BORON VA LVE STEM LEAKOFF

- DRAIN TANK

-- GAS STRIPPER -

ANION DEMIN.

- RECOVERY PR ESSURE RELIEF TANK DRAIN FILTER SH IM BLEED BORON RECOVERY TANK N

I I-'

en D F's

- ~

I=

TOTAL DF's Cs, R b = 103 I= 104 Cs, Rb= 103 ' OTHE RS= 103 OTHERS= 103 DISCHARGE CANAL OR

- TEST -- DISTILLATE - BORON TANK ACCUMULATOR EVAPORATOR PRIMARY GRADE WATER TANKS FIGURE 2.1-1. PROCESS FLOW DIAGRAM OF BORON RECOVERY SYSTEM OF SURRY UNITS 1 & 2

TEMPORARY ION EXCHANGERS DF's DF's I= 102 I= 10 Cs Rb= 2 Cs, Rb =10 OTHERS= 102 OTHERS= 10 CONTAINMENT SUMP AUXILIARY BLD. SUMP FUEL BLD. SUMP WASTE MIXED MIXED DRAIN BED DEMINERALIZER

- BED DEMINERALIZER LABORATORY DRAINS TANKS DECONTAMINATION BL!).

DRAINS TOTAL DF's I= 103 N Cs, Rb= 20 I OTHERS= 103 WASTE

-..J DISCHARGE -- FILTER

- DISPOSAL EVAPORATOR CANAL TEST TANKS FIGURE 2.1-2. PROCESS FLOW DIAGRAM OF LIQUID WASTE DISPOSAL SYSTEM OF SURRY UNITS 1 & 2

STEAM G.ENERATOR SLOWDOWN (AFTER MODIFICATION}

DF's DF's . TOTAL DF's I= 102 I= 10 I= 103

  • Cs, Rb= 10 Cs, Rb= 10 Cs, Rb= 102 OTHERS= 102 OTHERS= 10 OTHERS= 103 COOLED STEAM GENERATOR - MIXED MIXED DISCHARGE BLOWDOWN CANAL

- BED -- BED - OR DEMINERALIZER DEMINERALIZER RETURN TO CYCLE N LAUNDRY WASTES I

co CONTAMINATED DRAINS 1--,-----------------~ DISCHARGE CANAL TANKS FIGURE 2.1-3. PROCESS FLOW DIAGRAM OF STEAM GENERATOR BLOWD<;)WN SYSTEM AFTER MODIFICATIONS AND DIAGRAM OF LAUNDRY WASTE SYSTEM OF SURRY UNITS 1 & 2

I I

I ENCLOSURE 2 SURRY UNITS 1 & 2 I

I Item 2

  • Provide, in tabular form the distances from the centerline of the first I nuclear unit to the following for each of the 22-1/2 degree radial sectors centered on the 16 cardinal compass direction.

I a) nearest milk cow (to a distance of 5 miles)

I b) c)

nearest meat animal (to a distance of 5 miles) nearest milk goat (to a distance of 5 miles)

I d) neare.st residence (to a distance of 5 miles)

I e)

  • nearest vegetable garde~ greater than 500 ft2 (to a* distance of 5 miles)

I f) nearest site boundary For radioactivity releases from stacks which qualify as elevated releases I as defined in Draft Regulatory Guide 1. DD, identify the locations of all milk cows, milk goats, meat animals, residences, and vegetable gardens, in a similar manner, out to a distance of 3 miles for each radial sector.

I Response

.1 Table 2. 2-1 details the distance to the_ nearest milk cow, bovine, vegetable garden and residence within 5 miles of milk goat, the Surry Power Station in each .of the 16 cardinal compass. points. The site

  • I bo~11dary distances ate O. ll miles. in the north and south directions.

I I

z.,.19 I

I

I I,

ENCLOSURE 2 I TABLE 2. 2-1 I . DISTANCE TO THE NEAREST RESIDENCE I GARDEN I MILK cow I MILK GOAT, AND BEEF CATTLE WITHIN 5 MILES OF THE SURRY PLANT I Miles to the Nearest I Sector Residence Garden Milk Cow Milk Goat Beef Cattle I N NNE 1.90 I NE ENE I* E ESE I SE SSE 2.95 I s SSW 1.53 2.17 2.17 1.54 I SW WSW 1.79 2.10 3.0 I w WNW I NW NNW ... 3. 75 .

I I

I I 2-20 I

I I ENCLOSURE 2 SURRY l & 2 I*

I Item 3 Based on considerations in Draft Regulatory Guide l .DD provide estimates I of relative concentration ( X'/Q) and deposition (D/Q) at locations specified*

in response to Item 2 above for each release point spec#ied in response to Item l above *

.I Response I Table 2. 3-1 provides X/Q and D/Q values for ground level and mixed-mode

  • releases for the special appropriate distances as indicated in Enclosure 2, Item 2 for each downwind sector. Tables 2 ~ 3-2 and 2. 3-3 provide X/Q and I D/Q values associated with surface level releases from the con,tainment (considered as entrained in: the building wake and therefore a ground level

. release) for the standard population dis.tances. Tables 2 ~-3-4 a11.d 2 ~3-5 1* provide X/Q and D/Q values associated with a process vent release from 3 ._048 m above one of the containment structures, or approximately 43 m I above gra~e (considered as a mixed-mode release) for the* standard popula-tion distances

  • I: Two years (197 4-1976) of onsite meteorological data for the* March 3, 1974 to March 2, 1975 and May l, 1975 to April 30, 1976 periods were used. for*

all X/Q and D/Q calculations. L\T 15 aft- 3Sft stability data were used for I both ground level, and mixed-mode release calculations. Wind data from the_

35-ft level were used for ground level release calculations, while 150-ft level wind data were used for calculations for that portion of mixed-mode I reJeases qualifying as elevated. (See Table 2.3-6)

I I

I I 2-21

.1*

I

- - - *'-* - - - '*- *- *- - - - - - -\ - ',

TABLE 2. 3-1

(-

SURRY 1 & 2 X/Q AND D/Q VALUES AT SPECIAL DISTANCES AND RELEASE MODES FOR A 2'-YR DATA PERIOD*

  • Mixed-Mode Release

( Joint Ground Level and Receptor Ground :r,evel Release Elevated Release) 2 Direction Distance (m) X/Q (sec/m ) D/Q (m- 2 ) X/Q(sec/m 3 ) D/Q (m - )

NNE 2414 4. 7(-06) ** 1. 0(-08) 3.9(-07) 2.2(-09)

NNE 3058 2.9(-06) 5. 9(-09) 2.8(-07) 1.3(-09)

NE 2333 5.2(-06) 1. 1(-08) 4.2(-07) 3.3(-09) s 503 3. 1(-05) 1. 7(-07) 8.0(-07) 3.5(-08)

N N

I s 2470 1. 5 (-06) 5. 5(-09) 3.1(-07) 2.5(-09)

N SSW 3492 3. 8(-07) 1. 4(-09) 1. 2 (-07) 7.7(-10)

SW 2881 6. 7(-07) 2.0(-09) 1. 2 (-07} 9.7(-10)

SW 3379 4. 8(-07) 1. 4(-09) L 1(-07) 6.6(-10)

WSW 4828 2. 0(-07) 5.9(-10) 6.8(-08) 3.3(-10)

NNW 6034 5.9(-07) 5.9(-10) 5.5(-08) 1.2(-10)

N 274. 2.7(-04) 5.9(-07) 5.8(-07) 2.6(-08)

N 503 9.5(-05) 2.2(-07) 4.5(-07) 1. 7(-08)

SSE 4747 4. 1(-07) 1.3(-09) 7.5(-08) 4.8(-10)

'*Data period is March 3, 197 4-March 2, 1975 and May 1, 1975-April 30, 1976.

Open-ferrain corrective: factors of Regulatory Guide 1. 111 are incorporated.

    • 4. 7(-06) = 4. 7 X 10- 6

- * ., ,*** * . . . . .i r- <* ,,. ,* (* **-* -

TABLE 2. 3-2 SURRY 1 & 2 3

ANNUAL AVERAGE X/Q {sec/m ) VALUES BASED ON A GROUND LEVEL RELEASE FOR A 2-YR DATA PERIOD*

Distance in Meters Receptor Direction 805 2414 4023 5633 7242 12070 24140 40234 56327 72420 N 4.4("'.'"5) 4. 7(-6) 1.7(-6) 9. 4(-7) 6. 2 (-7) 2. 6(-7) 1. 1(-7) 5.5(-8) 3.6(-8) 2.7(-8)

NNE 4.4(-:5) 4.7(-6) 1. 7(-6) 9.2(-7) 6. 1(-7) 2.6(-7) . 1.0(-7) 5.4(-8) 3.6(-8) 2. 6(-8)

NE 4.5(-5) 4.8(-6) .1.7(-6) 9. 5 (-7) 6. 2 (-7) 2.6(-7) 1. 1(-7) 5.6(-8) 3. 7 (-8) 2.7(-8)

ENE 2.0(-5) 2_. 1(-6) 7. 5(-7). 4~ 1(-7) 2.7(-7) 1. 1(-7) 4. 6(-8) 2.4(-8) 1.6(-8) 1. 1(-8)

E 1.8(-5) l. 9(.:,6) 6.6(-7) 3.6(-7) 2.4(-7) 9.9("'.'"8) 4.0(-8) 2. 1(-8) 1.4(-8) 1.0(-8)

N I . ESE I. 5(-5) *l. 5(-6) 5. 3(-7) 2.9(-7) I. 9(-7) 7.8(-8)

  • 3.1(-8) 1.6(-8) I. 1(-8} 7.8(-9)

N w

SE L5(-5) 1. 6(-6) 5.5(-7) 3.0(-7) 1.9(-7) 8.1(-8} 3.3(-8) 1. 7(-8) 1. 1(-8} 8. 1(-9}

SSE 1. 6(-5} 1.6(-6} 5.6(-7) 3.0(-7} 1.9(-7) 8.0(-8) 3.2(-8) 1.6(-,,8) 1. 1(-8) 7.8(-9) s 1.5(-5) 1.6(-6) 5.3(-7) 2.9(-7) 1. 8(-7) 7.6(-8). 3.0(-8) 1.5(-8) I. 0(-8) 7.3(-9)

SSW .8.1(-6) 8.2(-7) 2.8(-7) 1.5(-7) 9.4(-8) 3.8(-8) 1. 5(-8) 7.6(-9) 4.9(-9) 3.6(-9)

SW 9.4(-6) 9.5(-7) 3. 3 (-7) 1.8(-7)* 1. 2(-7) 4.8(-8) 1.9(-8) 9.7(-9) 6.4(-9) 4.6(-9)

WSW 8.2(-6) 8.2(-7)' 2.8(-7) 1.5(-7) 9.5(-8) 3. 9(-8) 1. 5 (-8) 7.8(-9) 5.0(-9) .3.7(-~)

w 1.3(-5) 1. 3(-6) 4.4(-7) 2.4(-7) 1.5(-7) 6.3(-8) 2.5(-8) 1.3(-8) 8.2(-9) 6.0(-9)

WNW 1. 8(-5) 1.9(-6) 6.4(-7) 3. 5 (-7)

  • 2.3(-7) 9.4(-8) 3. 8(-8} 2. 0(-8) . 1. 3(-8) 9.3(-9)

NW 2.1(-5) 2.2(-6) 7.8(-7) 4.2(-7) 2 .8(-:-7) 1. 2(-7) ,:r_ 6(-8) 2.4(-8) 1.6(-8} 1.2(-8)

NNW 3.3(-5) 3.6(-6) 1.3(-6) 7.0(-7) 4. 6(-:7) 2.0(-7) 7 ~9(-8) 4.1(-8)_ 2.7(-8) 2. 0(-8) 0.5 mi l. 5 mi 2 .5 mi 3.5 mi -4.5mi 7.5 mi 15. 0 mi 25.0 mi 35. O mi 45. 0 mi

~Data period is March 3, 1974-March 2, 1975 and May 1, 1975-April 30, 1976, Open terrain correction factors of Regulatory Guide 1.111 are incorporated.

- .. -: ., - <. . . .! /-  !-;- *- *- - - - ..., *,-,'

TABLE 2. 3-3 SURRY 1 & 2

-l ,*. -

2 ANNUAL AVERAGE D/Q (m- ) VALUES BASED ON A GROUND LEVEL RELEASE FOR A 2-YR DATA PERIOD*

Distance in Meters Receptor Direction 805 2414 -4023 5633 7242 12070 24140 40234 56327 72420 N 9.7(-08) 7. 3{-09) 2. 1(-09) 9. 9 (-10) 5.9(-10) 2.0(-10) 5.4(--11) 2.0(-11) l.OC-11) 6.2(-12)

NNE 1. 4(-07) 1. 0(-08) 3.0(-09) 1. 4(-09) 8.4(-10) 2.8(-10) 7.8(-11) 2.9(-11) 1.5(-11) 8.9(-12)

NE 1. 4(-07) 1.0(-08) 3.0(-09) 1.4(-09) 8.3(-10) 2.8(-10) 7. 6.(-11) 2.8:(*dl) 1.4(-11) 8.8(-12)

ENE 6.4(-08) 4.8(-09) 1. 4(-09) fr.5(-10) 3.9(-10) 1.3(-10) 3.6(-11) ~.3('.""11) 6.7(-12) 4.1(-12)

E* 6. 0(-08) 4. 5(f..09) 1. 3(-09) 6.1(-10) 3.6(-10) 1.2(-10) 3.3(-11) 1.2(-11) 6.2(-12) 3.8(-12)

N I ESE 6.0(-08) 4. 5(-09) 1. 3(-09) 6.2(-10) 3~7(-10) 1.2(-10) 3. 4(-11) 1.2(-11) 6.3(-12) 3.9(-12)

N

""'* SE 7. 4(-08) 5.5(-09) 1. 6(-09) 7.6(-10) 4.5(-10) 1.5(-10) 4.1(-11) 1. 5 (-11) 7.7(-12) 4. 7(-12)

SSE 8. 4(-08) 6.3(-09) 1. 8(-09) 8.6(-10) 5.1(-10) 1. 7(-10) 4.7(-11) 1. 7(-1~) 8.8(-12) 5.4(-12) s 7. 7(-08) 5. 7(-09) 1. 7(-09) 7.9(-10) 4.6(-10) 1.5(-fO) 4.3(-11) 1.6(-11) 8.oc...:12) 4.9(-12)

SSW 4.5(-08) 3.3(-09) 9.6(-10) 4.6(-10) 2~7(,-.JO) '9 .0(97 ll) 2. 5 (-11) 9.1(-12) 4. 6(-12) 2.9(-12)

SW 4.0(-08) 3.0(-09) 8.8(-10) 4.2(-10) 2.5(-10) .8.2(-11) 2.3(-11) 8.3(-12) '4.2(-12) 2.6(-12)

WSW 4.1(-08) 3 ! 1(;_09)' 8.8(-10) 4. 2(-10) 2.5(-10) 8. 2 (-11) 2.3(-11) 8.3(-12) 4,.3(-12) 2.6(-12) w 6.4(-08) 4. 8(-09) 1. 4(-09) 6.5(-10) 3. 9(-10) 1.3(-10) 3.6(-11) 1.3(-11) 6. 7(-12) 4.1(-12)

WNW 7.0(-08) 5.2(-09) 1. 5(-09) 7 .1(-10) 4.2(-10) 1. 4(-10) 3.9(-11) 1.4(-11) 7~3(-12) 4.5(-12)

. NW 7.2(-08) 5. 4(-09) 1. 6(-09) 7.3(-10) 4 .. 3(-10) 1. 4(-10) 4.0(-11) 1. 5 (-'-11) 7.5(-12) 4.6(-12)

NNW 7.0(-08) 5.3(-09) 1. 5(-09) 7.2(-10) 4.3(-10) 1. 4(-10) .3.9(-11) 1. 4(-11) 7.3(-12) 4.5(-12) 0.5 mi 1.5 mi 2.5 mi 3.5 mi 4.5 mi 7 .5 mi 15. 0 mi 25. 0 mi 35. 0 mi 45.0 mi

  • Data period is March 3 ,* 197 4-March 2, 1975 and May 1, 1975-April 30, 1976.

Open terrain correction factors* of Regulatory Guide 1 .111 are incorporated.

- - - - - .. *- ,'-1 '- ,. - -* - - \- -* -'. -- - TABLE 2. 3- 4 SURRY 1 & 2 3

ANNUAL AVERAGE X/Q (sec/m ) VALUES BASED QN A MIXED MODE RELEASE FOR A 2-YR DATA PERIOD*

Distance in Meters Receptor Directior: 805 2414 4023 5633 7242 12070 24140 40234 56327 72420 N 5.6(-7) 2.8(-7) 1. 4(-7) 8.9(-8) 6.8(-8) 3.5(-8) 1.2(-8) 6. 3(-9) 4. 1(-9) 3.0(-9)

NNE 8..3(-7) 3. 9 (-7) 1.8(-7) 1.2(-7) 8.9(-8) 4.4(-8) 1. 4(-8) 7.3(-9) 4.8(-9) 3.5(-9)

NE L 0(-6) 3. 9(-7) 1.8(-7) 1.1(-7}, 8.2(-8} 4.1(-8) 1. 4(-8) 6.9(-9) 4.5(-9) 3.3(-9}

ENE 6.6(-7) 2.3(-7) 1. 1(-7) 6.6(-8} 4. 7(-8) 2. 4(-8} 8.1(-9} 4.1(-9} 2.7(-9} 2.0(-9}

E 6. 8(-7} 2.3(-7} 1.0(-7} 6.4(-8}* 4.6(-8} 2.3(-8} 8.0(-9) 4.1(-9} 2.6(-9} 1. 9(-9)

N

, ESE 6.7(-7) 1.9(-7} 8.2(-8) 5.3(-8) 3.7(-8} 1.8(-8} 7.2(-9} 3 .-7 (-9) 2. 4(-9) . 1. 7(-9}

fN

'C/1 SE 7. 5(-7) 2.1(-7} 9 .1(-8} 5 .6(-8} *4.0(-8) 1. 9(-8) 7.1(-9} 3.6(-9) 2.3(-9) 1. 7(-9)

SSE 7.3(-7} 2.2(-7) ,9. 5 (-8) 5.8(-8) 4.0(-8) l. 9(-8) 6.7(-9) 3. 4(-9}

  • 2.2(-9) l.6(-9),

s 8.7(-7} 3.1(:...7) 1. 4(-7) 8.4(-8). 5.9(-8} 2. 8(-8) 8.6(-9) 4. 4(-9) 2.8(-9) 2.1(-9)

SSW 6.2(-7} 2.0(-7) 8.9(-8) 5.9(-8) 4.3(-8) 2.0(~8) 6.6(-9) 3.4(-9) 2.2(-9) 1.6(-9)

SW 5. 4(-7} 1.6(-7} 7.8(-8} 4. 8(;8} 3.5(-8} 1. 7(-8) 5.6(-9) 2.9(-9} l. 9(-9} 1. 4(-9)

WSW 6.* 0(-7} 1.7(-7) 1. 0r-0> 5.3(-8} 3. 7 (-8) 1.9(-8} 6.1(-9} 3.1(-9) 2.0(-9) 1.5(-9) w 7. 1(-7) 2.3(-7) 1.0(-7) 6.7(-8) ,5.0(-8) 2.3(-8) 7.5(-9) 3. 8(-9) 2.5(-9) L 8(-9}

'WNW 6.0(-7) 2 ~.3(;,..7} 1.1(,-7) 6.6(-8) 4. 7(:,8) 2. 3(-8) 8. 9(-9) *4.5(-9) 3.0(-9) 2.2(-9)

NW 7. 5(-7) 2.2(-7) 1.0(".'"7) 6.4(-8) 4 .*6(-8} 2.5(-8) 9.2(-9). 4. 7(-,9) 3. 1(-9) 2.2(-9)

NNW 4. 4(-7) 1.9(-7) 9.6(-8} 6.3(-8) 4.7(-8) 2.8(-8} 9.'8(-9} . 5. 0(-9} 3.3(-9} 2.4(-9) 0.5 mi 1.5 mi 2.5 mi 3 .5 mi 4.5 mi 7.5 mi 15. 0 mi 25. 0 mi 31:i. 0 mi 45. 0 mi

  • Data period is March 3, 1974~March 2, 1975 and May 1, 1975-April 30, 1976.

Open terrain correction factors of Regulatory Guide 1.111 are incorporated.

- ... - - - \__ -* ...\-! '- - -* - - !-' .*,- *- ... TABLE 2~3-5 SURRY 1 & 2 2

ANNUAL AVERAGE D/Q (m - ) VALUES BASED ON A MIXED MODE RELEASE FOR A 2-YR DATA PERIOD*

Distance in Meters Receptor

!Direction 805 2414 4023 5633 7242 12070 24140 40234 '56327 72420 N 1. 0(-08) 1. 1(-09) 3~4(-10) 1. 8(-10) 1. 2(-10) 5.8(~11) 2. 4(-11) 1.0(-11) 5~9(-12) 4.1(-12)

NNE 2.0(-08) 2.2(-09) 6. 7(-10) 3.4(-10) 2; 2(-10) 9.8(-11) 3 ~ 8(-Ll) L 6(-11) 9. 3.(-:-12) 6. 4(-12)

NE 2.9(-08) 3. 0(-09) 9.0(-10) 4.5(-10) 2.9(-10) 1.2(-10) 4.3(-11) 1. 9(-:- 11) 1.1(-11) 7.0(-12)

ENE 1. 6(-08). 1. 7(-09) 5.2(-10) 2.6*(-10) I. 6(-10) 6.4(-11) 2. 3(-11) 9.9(-12) 5.6(-12) 3.7(-12)

E 1. 7(-08) 1. ~(:-09) 5.3(-10) 2. 6(.:.10) 1.6(-10) 6.4(-11) 2.3(-11) 9.7(-12) 5.5(-12) 3.6(-12)

N I

ESE 2.1(-'08) 2. 2(-09) 6.5(-10) 3.2(-10) 1.9(-10) 7.2(-11) 2.4(-11) 1.0(-11) 5. 7(-*12) 3.7(-12)

N 0)

SE 2.5(-08) 2. 6(-09) 7.6(-10) 3. 7(-10) 2.3(-10) 8.5(-11) 2.9(-11) 1. 2 (-11) 6. 7(-12) 4.4(-:12)

SSE 2. 1 (-08) 2.3(-09) 6.9(-10) 3.4(-10) 2 .1(-10) 7.8(-11) 2.7(-11) 1. 2 (-: 11) 6.5(-12) 4. 3(-12) s 2.3(-08) 2. 6(..:09) 7.9(-10) ~:.9(-:-10) 2*~.~(-10). 9.1(-11) 3.2('-11) 1. 4(-11) 7.9(-12) 5.2(-12)

SSW 1.5(-08) 1. 8(-09). 5.3F*l0) 2.6(-10) 1. 6(-10) 6.1(-1~) 2.1(-11) 9.2(-12) 5.2(-12) 3.4(-12)

SW 1. 3(-08) 1. 4(-09) 4.2(-10) 2.1(-10) 1.3(-10) 4.8('-11) 1.5(-11) 7.0(-12) 3.9(-12) 2.6(-12)

WSW 1. 5 (-08) 1. 6(-09)' 4.9(-10) 2.4(-10) 1.5(-10) 5. 4(-11) 1.9r;.*.11) 8.0(-12) 4.5(-12) 2.9(-12) w 1.7(-08) 1. 9(-09) 5.7(-10) 2.8(-10) 1. 7(:-10) 6.5(-11) 2.3(-11) 9.7(-12) 5.. 5 (-12) 3.6(-12)

WNW. 1.2(-08) 1.3(-09) 4.0(-10) 2.0(-10) 1. 3(-10) 5.2(-11) 1.9(-11) 8.2(-,12) 4.7(-12) 3.2(-12)

NW 2.5(-08) 2.4(-'09) 7.1(-10) 3.5(-10) 2.2(-10) 8. 2 (.., 11) 2.0r-11> 1. 2(-11) 6.5(-12) 4.3(-12)

NNW. 9. 3(-08) 9.6(-10) 2.9(-10) l.~(-10) 9.9(-11) 4.5(-ll) 1. 8(-' 11) 7.5(-12) 4.3(-12) ,3.0(-12) 0.5 mi 1.5 mi 2 .5 mi 3.5 mi 4.5 mi 7 .5 mi 15. 0 mi 2.S. 0 mi* 35. 0 mi 45. 0 mi

  • Data period.is Marc.h 3, 1974-March 2, 1975 and May 1, 1975-April 30, J~76 *.

Open terrain correction factors of Regulatory Guide 1 .111 are incorporated.

I I TABLE 2. 3-6 SURRY 1 & 2 I MONTHLY 6T lSOft- 35 ft STABILITY DIS'IRIBUTION (%)

I

  • Month A ' B C D E' F  :

G I JAN 1975* 2.13 2.63 2.79 36.29 41.22 7.88 7.06 2-YR* 10.07 . 2 .19 2.42 32.08 39.73 5.93 7.57 I FEB 1975 2-YR.

7.54 11.88 3.28 3.83 4.10 3.35

35. 57
  • 25.68 31.97 34.53 9.02 9.65 8.52 11.08

.I. MAR 1974-5 20.68 2-.YR 17~04 4.46 4 .12.

5.36 4.12 32.29

29. 75 28.12 32.42
  • 4.02 4.77 5:. 06 7.80 I APR 1974 2-YR 14.92 20.35 2.44 2.59 4.26 3.50 21.77 18.18 40.79
33. 78 8.37 9.65
7. 46' 11096 MAY 19-7-4 21.26 4.42 4.42
  • 24. 25 32.24 7.42 5.99 I 2-YR 15.06 3.35 4.28 21.98 34.33 9.92 11.06
  • . JUN 1974 17.26 *4.99 3.12 25.57 34.51 5.41 9.15 I 2-YR JUL 1974 12.85 15.47 3.68 5 .5.6 3.37 6.91 17.95
  • 19. 67 30.56 31.83
9. 72 8.56 21.87 12.01 2-YR.

I AUG 1974 7.67 10.01 3.33 3.65 4.27 5.28 21.49

29. 5 0 .

38.13

37. 89 9.84

. 6. 77 15 .27 6.90 2-YR 6.73 3. 05 4.58 28 .. 36 . . 34.88 r1 .10: 11.30 I SEP 1974 2-YR 14.12 7.77 5.24 3.78 4.37 3.63 26.93 23.46 33.77 41.03 7.57 7~63 8.01 12.71 I OCT 1974 2-YR 15.80 10.98 2.* 66 3.08 2.24

. 2. 87 17.62 18 *. 72 25.73 31.7I 14.13 12.12 21.82 20 .s2*

I* NOV 1974 . 16.74 2-YR 11. 72 4.08

3. 07 3.52

,3 .97 21.38 21.48 29.11 31.94 13.22 13.88 11.95 13.95 DEC 1974 1.6. 95 4.89 3.02 27. 01 34.48 7.61 6. 03 .

I 2-YR 13.27 3.76 2.77 29.03 36'!'48 7 *. 95 6.74 I *The first year data period is March 3, 197 4-March 2, 1975 and the 2-yr data period is the combined years of March 3, 19 74-March 2 , 197 5 and May l , 19 7 4~

April 3 o, 19 7 s

  • I I 2-2 7 I

I

(*

I ENCLOSURE 2 SURRY 1 & 2 I

I Item 4 Provide a detailed description of the meteorological data, models and I parameters used to determine the X'/Q and D/Q values. Include informa-tion concerning the validity and accuracy of the models and assumptions for your site .and the representativeness of the meteorological data used.

I Response

.I a. Model Dispersion factors ( X/Q) were calculated using a sector-average, straight-I line model specified in Regulatory Guide 1. 11 L Ground deposition (D/Q) values were calculated according to Regulatory Guide 1. 111 (Refer.ehc_e 1) .

The mixed release mode. was used as applicable for a release- height of I 3. 05. m above the 40 .1 m containment from a O. 08 in diameter vent at an exit velocity of 30. 5 m/ s. Qualifying elevated release_ heights were ad-justed for momentum,

  • stack dowriwash, and terrain rise as described in Re-I gulatory Guide 1. 111.

I' The open terrain correction factor for )(/Q and D/Q values was applied in accordance with Figure 2 of Regulatory Guide 1.111. -As described in References 2 and 3 and in the response to Item 8 of Enclosure 2, the I terrain is flat and rises to less than about 170-ft out to a distance of 50 miles near Richmond (References 2 and 3).

I b. Data The calculated X/Q and D/Q values were based on onsite meteorological

  • 1 data during the 1974-1976 period of March 3, 1974 to March 2, 1975 and May 1,, 1975 to April 30, 1976.

I Representative Joint frequency di'stributions were developed for ground level or elevated releases from the station:

I I

I 2-28 I

I I

ENCLOSURE 2 I SURRY 1 & 2 I (1) Ground level release X/Q and D/Q calculations were based on meteorological tower observations of wind I speed and direction at the 35-ft level and of temperature differential (~T) between the 15 0-ft and 35-ft levels.

These levels were selected to conservatively represent I the transport and diffusion of surface releases in the vic;:inity of the plant Q!:_for vent releases entrained in the building wake. The a 2 diffusion parameter was I based on the curves in Figure 1 of Regulatory Guide l

  • 111 (Reference 1) *
  • I (2) Qualifying elevated release X/Q and D/Q' calculations were based on meteorological tower observations of wind I speed and direction at the 150-ft level and of the same temperature differential (~T) between the 15 0-ft and 35-ft levels, as representing the snvironment of the plume I References ..

between its release height and the ground.

I 1. Methods for *tstima-i:frig Ai:mospherfo Transport. and Dispersion of Gaseous Releases* from Light-Watei--=cooled Reactors, *Regulatory I Guide 1. ff!", U.S. Nuclear Regulatory Commission, March 19 76.

2. Surry 3 & 4 Annual Meteorological Report, Virginia Electric and Power I Company, Docket Nos. 50-434 and 50-435, August 1975.
3. Surry Power Station Units 3 and 4 Final Environmental Statement, I U. S. Atomic Energy Commission, Docket Nos. 50-434 and 50:-435, May 1974.

I I

I I 2-29 I

I I ENCLOSURE 2 SURRY 1 & 2 I

I Item 5 I If an onsite program commensurate with the recommendations and intent of Regulatory Guide l . 2 3 exists:

I a) Provide representative annual and monthly, if available, joint fre-quency distributions of wind speed and direction by atmospheric stability class covering at least the most recent one year period of record, pre-I ferably two or more years of record. Wind speed and direction should be measured at levels applicable to release point elevations and stability should be determined from the vertical temperature gradient between I measurement levels that represent conditions into which the* effluent is released.

I b) Describe the representativeness of the available data-with respect to expected long-term conditions at the site.

I Response The onsite meteorological monitor:i,ng program (Reference 1) is commensurate I with the recommendations and intent of Regulatory Guide I. 23 (Reference 2).

The meteorological tower is located approximately 4900-ft southeast of Unit 1 in a clearing of trees. These trees are not anticipated to affect the meteorological I measurements (Reference 1). Among other parameters monitored on the 150-ft tower are winds and differential temperature (.1T). The instrumentation has been regularly maintained and calibrated quarterly during 197 4 to 1976. The March 3, I 1974 to March 2 ,_ 1975 analog and digital data were processed as described in Reference 1. Exclusively digital data were used for the May 1, 1975 to April 30, 19 7.6 period .

I The data were listed, teviewed and summarized into joint frequency distri-butions by using the atmospheric stability classification scheme shown in I Table 2 of Regulatory Guide I. 23.

The Joint frequency distributions of wind speed and wind direction by atmos-I pheric stability class were prepared on a monthly and an annual basis based on the format of Table l in Regulatory Guide 1. 23. Monthly and annual joint I frequency distributions of 35-ft wind and .1TlSOft- 3Sft data are presented in

  • Appendix 2. 5-A; and were used as input for X/Q _and D/Q calculations for

/

I 2-30.

I

I I ENCLOSURE 2 SURRY 1 & 2 I

I ground level releases!_.,. The 2-yr data recovery for this data set was 94 percent.

Monthly and annual joint frequency distributions of 150-ft wind and 6T 150ft_ 35 ft data are presented in Appendix 2. 5-B and were used as input for qualifying I elevated release calculations of X/Q and D/Q. The 2-yr data recovery for this data set was 87 percent. This two year 1974-1976 data set was chosen as the I most recent representative data set that could be used to respond to Enclosure 2.

  • The meteorological data for the period 1974-1976 are considered to be repre-I sentative of atmospheric transport and diffusion conditions of the site region on a long term basis. The stability distribution based on 6T 150ft_ 35 ft for the period March 3, 197 4-March 2, 1975 is consistent with the 2-yr dQta period I
  • as used in this report (Table 2. 3-6). Comparison of annual wind roses for both the 35-ft and 150-ft levels indicates that the annual 2-yr wind roses are consistent with the first year of data and are in general agreement with. Richmond I
  • and Norfolk wind roses for the period January 1, 1969-December 31, 1973

. (Reference 1) . The repres.entativenes-s ~ of the first year of the two year data set to the long terni meteorological conditions is discussed in Reference 1.

I References I 1. Surry 3 & 4 Annual Meteorological Report, Virginia Electric and Power Company, Docket Nos. 50-434 and 50-435, August 1975.

I 2. Onsite MeteorologicalPrograriis, Regulatory Guide 1. 23, U. S. Nuclear Regulatory Commission, February 1972.

I

  • 1 I

I I

I 2-31 I

I I ENCLOSURE 2 SURRY 1 & 2

  • I I Item 6 I If recent onsite meteorological, data are not available, or if the meteorological measurements program does not meet the recommendations and intent of Regulatory Guide 1.23:

I a) . Provide the best available meteorological data in the format described in item 5 .a above.

I b) Describe the representativeness of the available data with respect to onsite and near site atmospheric transport and diffusion conditions, I and with respect to expected long term conditions at the near the site.

c) Provide a description of the meteorological measurements used for I collection of the data presented. This description should include the loca-tion of the sensors with respect to the power plant(s) and other prominent topographic features (including buildings) and accuracy of the instrumentation.

I d) Provide a commitment to e.stablish a program to meet the recommendations and intent of Regulatory Guide I. 23, or provide sufficient justification to allow I the present program to remain unchanged.

Response.

I See Item 5 Response above as recent meteorological data conforming to the recommendations and intent of Regulatory Guide 1. 23 are available.

I I

I I

I I 2-32 I

I I ENCLOSURE 2 I SURRY 1 & 2 I Item 7 I Describe airflow trajectory regimes of importance in transporting effluents to the locations for which dose calculations are made.

I Response As discussed in Response to Item 4, the terrain is flat and low-relief out to I a distance of 50 miles. Therefore*, straight-line airflow trajectory regimes -

are considered*to_ reasonably represent dispersion conditions as related to

- annual average* X/Q values in the vicinity of the Surry 1 & 2 Power Station.

I I

I

-I I

I I

I I

I I

2-33 I

I I

ENCLOSURE 2 I SURRY UNITS 1 & 2 I Item 8 I '

Provide a m C/'-.

showing the detailed topographical features ( as modified by the plant) on a large scale, within a 10-mile radius of the plant and

  • a plot of the maximum topographic elevation versus distance from the I center of the plant in each of the sixteen 22-1/2 degree cardinal compass point sectors (centered on true north), radiating from the center of the plant, to a distance of 10 miles.

I Response I USGS maps show the topography within 10 miles of the site. Table 2 .8-1 contains the 0- 5 mile and 5-10 mile highpoints for the 16 cardinal points from the Surry Power Station.

I I

I I

I I

I I

1*

I 2-34 I

I I

TABLE 2. 8-1 I 0-5 MILE HIGHPOINTS BY MILE AND 5-10 MILE HIGHPOINTS FOR 16 CARDINAL POINTS .FROM SURRY POWER STATION

  • I Section 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
  • 5 - 10 (miles)

I N 37 12 55 80 I NNE NE 37 38 5

4 2 71 52 100 80 I ENE E

43 38 10 3

30 80 60 I ESE SE 38 39 37 36 11 30 I SSE s

39 37 33 39 39 50 37 51 37 60 50 80 I SSW SW 42 39 38 34 42 70 70 72 85 84 90.

95 I WSW w

40.

38 55 81 70 83 88 130 90 I WNW 39 6 5 10 80 NW 38 I NNW. 39 12 47 110 I

  • Allhighpoints are measured in feet. Dash (-) denotes sea level.

Sources: Surry Power Station Units 3 and 4 Environmental Report, I Figures 2. 6-8 through 2

  • 6-11; and U. S. Geological Survey 7. 5 minute topographic maps.

I I

I 2-35 I

I I

ENCLOSURE 2 I SURRY UNITS 1 & 2 I Item 9 I Provide the dates and times of radioactivity releases from intermittent sources by source location based on actual plant operation and, if I available, appropriate hourly meteorological data (i.e. , wind direction and speed, and atmospheric stability) during each period of release.

I Response ,

Included with this submittal are 3 copies of Appendix 2 . 9. In this Appendix I Tables 2. 9-1 and 2. 9-2 contain the occurrences of intermittent releases from Surry Units 1 & 2 during the period March 3 , 19 7 4 - March 2 , 19 7 5 and May 1, 1975 - April 30, 1976 and the meteorological data during these I periods.

I I

I I

I I

I I

I 2-36 I