ML19150A443

From kanterella
Revision as of 02:01, 30 November 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Revision 28 to Updated Final Safety Analysis Report, Chapter 3, Table of Contents
ML19150A443
Person / Time
Site: Ginna Constellation icon.png
Issue date: 05/10/2019
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML19150A453 List: ... further results
References
Download: ML19150A443 (39)


Text

GINNA/UFSAR 3 DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT AND 1 SYSTEMS 3.1 CONFORMANCE WITH NRC GENERAL DESIGN CRITERIA 2 3.1.1 ATOMIC INDUSTRIAL FORUM DESIGN CRITERIA 2 3.1.1.1 Overall Plant Requirements 2 3.1.1.1.1 Quality Standards 2 3.1.1.1.2 Performance Standards 4 3.1.1.1.3 Fire Protection 5 3.1.1.1.4 Sharing of Systems 5 3.1.1.1.5 Records Requirements 5 3.1.1.2 Protection by Multiple Fission Product Barriers 6 3.1.1.2.1 Reactor Core Design 6 3.1.1.2.2 Suppression of Power Oscillations 7 3.1.1.2.3 Overall Power Coefficient 7 3.1.1.2.4 Reactor Coolant Pressure Boundary 7 3.1.1.2.5 Reactor Containment 8 3.1.1.3 Nuclear and Radiation Controls 9 3.1.1.3.1 Control Room 9 3.1.1.3.2 Instrumentation and Controls Systems 9 3.1.1.3.3 Fission Process Monitors and Controls 10 3.1.1.3.4 Core Protection Systems 11 3.1.1.3.5 Engineered Safety Features Protection Systems 11 3.1.1.3.6 Monitoring Reactor Coolant Leakage 12 3.1.1.3.7 Monitoring Radioactivity Releases 13 3.1.1.3.8 Monitoring Fuel and Waste Storage 13 3.1.1.4 Reliability and Testability of Protection Systems 14 3.1.1.4.1 Protection Systems Reliability 14 3.1.1.4.2 Protection Systems Redundancy and Independence 15 3.1.1.4.2.1 Reactor Trip Circuits 15 3.1.1.4.2.2 Engineered Safety Features Initiation Circuits 15 3.1.1.4.3 Single-Failure Definition (Category B) 16 3.1.1.4.4 Separation of Protection and Control Instrumentation Systems 16 3.1.1.4.5 Protection Against Multiple Disability for Protection Systems 16 3.1.1.4.6 Emergency Power for Protection Systems 16 3.1.1.4.7 Demonstration of Functional Operability of Protection Systems 17 3.1.1.4.8 Protection Systems Failure Analysis Design 17 Page 1 of 39 Revision 28 5/2019

GINNA/UFSAR 3.1.1.5 Reactivity Control 18 3.1.1.5.1 Redundancy of Reactivity Control 18 3.1.1.5.2 Reactivity Hot Shutdown Capability 18 3.1.1.5.3 Reactivity Shutdown Capability 18 3.1.1.5.4 Reactivity Hold-Down Capability 19 3.1.1.5.5 Reactivity Control Systems Malfunction 19 3.1.1.5.6 Maximum Reactivity Worth of Control Rods 20 3.1.1.6 Reactor Coolant Pressure Boundary 20 3.1.1.6.1 Reactor Coolant Pressure Boundary Capability 20 3.1.1.6.2 Reactor Coolant Pressure Boundary Rapid Propagation Failure Preven- 21 tion 3.1.1.6.3 Reactor Coolant Pressure Boundary Brittle Fracture Prevention 22 3.1.1.6.4 Reactor Coolant Pressure Boundary Surveillance 22 3.1.1.7 Engineered Safety Features 23 3.1.1.7.1 Engineered Safety Features Basis for Design 23 3.1.1.7.2 Reliability and Testability of Engineered Safety Features 24 3.1.1.7.3 Emergency Power 24 3.1.1.7.4 Missile Protection 25 3.1.1.7.5 Engineered Safety Features Performance Capability 26 3.1.1.7.6 Engineered Safety Features Components Capability 26 3.1.1.7.7 Accident Aggravation Prevention 27 3.1.1.7.8 Emergency Core Cooling System (ECCS) Capability 27 3.1.1.7.9 Inspection of Emergency Core Cooling System (ECCS) 28 3.1.1.7.10 Testing of Emergency Core Cooling System (ECCS) Components 28 3.1.1.7.11 Testing of Emergency Core Cooling System (ECCS) 28 3.1.1.7.12 Testing of Operational Sequence of Emergency Core Cooling System 28 (ECCS) 3.1.1.7.13 Containment Design Basis 29 3.1.1.7.14 Nil Ductility Transition Temperature Requirement for Containment 29 Material 3.1.1.7.15 Reactor Coolant Pressure Boundary Outside Containment 30 3.1.1.7.16 Containment Heat Removal Systems 30 3.1.1.7.17 Containment Isolation Valves 30 3.1.1.7.18 Initial Leakage Rate Testing of Containment 30 3.1.1.7.19 Periodic Containment Leakage Rate Testing 31 3.1.1.7.20 Provisions for Testing of Penetrations 31 3.1.1.7.21 Provisions for Testing of Isolation Valves 31 Page 2 of 39 Revision 28 5/2019

GINNA/UFSAR 3.1.1.7.22 Inspection of Containment Pressure-Reducing Systems 32 3.1.1.7.23 Testing of Containment Pressure-Reducing Systems Components 32 3.1.1.7.24 Testing of Containment Spray Systems 32 3.1.1.7.25 Testing of Operational Sequence of Containment Pressure-Reducing 32 Systems 3.1.1.7.26 Inspection of Air Cleanup Systems 33 3.1.1.7.27 Testing of Air Cleanup Systems Components 33 3.1.1.7.28 Testing Air Cleanup System 33 3.1.1.7.29 Testing of Operational Sequence of Air Cleanup Systems 33 3.1.1.8 Fuel and Waste Storage Systems 34 3.1.1.8.1 Prevention of Fuel Storage Criticality 34 3.1.1.8.2 Fuel and Waste Storage Decay Heat 34 3.1.1.8.3 Fuel and Waste Storage Radiation Shielding 35 3.1.1.8.4 Protection Against Radioactivity Release From Spent Fuel and Waste 35 Storage 3.1.1.9 Control of Releases of Radioactivity to the Environment 35 3.1.2 GENERAL DESIGN CRITERIA 36 3.1.2.1 Overall Requirements 36 3.1.2.1.1 General Design Criterion 1 - Quality Standards and Records 37 3.1.2.1.2 General Design Criterion 2 - Design Bases for Protection Against Nat- 38 ural Phenomena 3.1.2.1.3 General Design Criterion 3 - Fire Protection 38 3.1.2.1.4 General Design Criterion 4 - Environmental and Missile Design Bases 39 3.1.2.1.5 General Design Criterion 5 - Sharing of Structures, Systems, and Com- 39 ponents 3.1.2.2 Protection by Multiple Fission Product Barriers 39 3.1.2.2.1 General Design Criterion 10 - Reactor Design 39 3.1.2.2.2 General Design Criterion 11 - Reactor Inherent Protection 40 3.1.2.2.3 General Design Criterion 12 - Suppression of Reactor Power Oscilla- 40 tions 3.1.2.2.4 General Design Criterion 13 - Instrumentation and Control 40 3.1.2.2.5 General Design Criterion 14 - Reactor Coolant Pressure Boundary 41 3.1.2.2.6 General Design Criterion 15 - Reactor Coolant System Design 41 3.1.2.2.7 General Design Criterion 16 - Containment Design 42 3.1.2.2.8 General Design Criterion 17 - Electrical Power Systems 42 3.1.2.2.9 General Design Criterion 18 - Inspection and Testing of Electrical 44 Power Systems 3.1.2.2.10 General Design Criterion 19 - Control Room 44 Page 3 of 39 Revision 28 5/2019

GINNA/UFSAR 3.1.2.3 Protection and Reactivity Control Systems 45 3.1.2.3.1 General Design Criterion 20 - Protection Systems Functions 45 3.1.2.3.2 General Design Criterion 21 - Protection System Reliability and Test- 45 ability 3.1.2.3.3 General Design Criterion 22 - Protection System Independence 46 3.1.2.3.4 General Design Criterion 23 - Protection System Failure Modes 46 3.1.2.3.5 General Design Criterion 24 - Separation of Protection and Control 47 Systems 3.1.2.3.6 General Design Criterion 25 - Protection System Requirements for 47 Reactivity Control Malfunctions 3.1.2.3.7 General Design Criterion 26 - Reactivity Control System Redundancy 48 and Capability 3.1.2.3.8 General Design Criterion 27 - Combined Reactivity Control System 48 Capability 3.1.2.3.9 General Design Criterion 28 - Reactivity Limits 49 3.1.2.3.10 General Design Criterion 29 - Protection Against Anticipated Opera- 49 tional Occurrences 3.1.2.4 Fluid Systems 49 3.1.2.4.1 General Design Criterion 30 - Quality of Reactor Coolant Pressure 49 Boundary 3.1.2.4.2 General Design Criterion 31 - Fracture Prevention of Reactor Coolant 50 Pressure Boundary 3.1.2.4.3 General Design Criterion 32 - Inspection of Reactor Coolant Pressure 51 Boundary 3.1.2.4.4 General Design Criterion 33 - Reactor Coolant Makeup 51 3.1.2.4.5 General Design Criterion 34 - Residual Heat Removal 52 3.1.2.4.6 General Design Criterion 35 - Emergency Core Cooling 52 3.1.2.4.7 General Design Criterion 36 - Inspection of Emergency Core Cooling 53 System (ECCS) 3.1.2.4.8 General Design Criterion 37 - Testing of Emergency Core Cooling 53 Systems (ECCS) 3.1.2.4.9 General Design Criterion 38 - Containment Heat Removal 54 3.1.2.4.10 General Design Criterion 39 - Inspection of Containment Heat 54 Removal System 3.1.2.4.11 General Design Criterion 40 - Testing of Containment Heat Removal 54 System 3.1.2.4.12 General Design Criterion 41 - Containment Atmosphere Cleanup 55 3.1.2.4.13 General Design Criterion 42 - Inspection of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.14 General Design Criterion 43 - Testing of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.15 General Design Criterion 44 - Cooling Water 57 Page 4 of 39 Revision 28 5/2019

GINNA/UFSAR 3.1.2.4.16 General Design Criterion 45 - Inspection of Cooling Water System 57 3.1.2.4.17 General Design Criterion 46 - Testing of Cooling Water System 58 3.1.2.5 Reactor Containment 58 3.1.2.5.1 General Design Criterion 50 - Containment Design Basis 58 3.1.2.5.2 General Design Criterion 51 - Fracture Prevention of Containment 59 Pressure Boundary 3.1.2.5.3 General Design Criterion 52 - Capability for Containment Leakage 59 Rate Testing 3.1.2.5.4 General Design Criterion 53 - Provisions for Containment Testing and 59 Inspection 3.1.2.5.5 General Design Criterion 54 - Piping Systems Penetrating Containment 60 3.1.2.5.6 General Design Criterion 55 - Reactor Coolant Pressure Boundary Pen- 60 etrating Containment 3.1.2.5.7 General Design Criterion 56 - Primary Containment Isolation 61 3.1.2.5.8 General Design Criterion 57 - Closed System Isolation Valves 62 3.1.2.6 Fuel and Radioactivity Control 62 3.1.2.6.1 General Design Criterion 60 - Control of Releases of Radioactive 62 Materials to the Environment 3.1.2.6.2 General Design Criterion 61 - Fuel Storage and Handling and Radioac- 62 tivity Control 3.1.2.6.3 General Design Criterion 62 - Prevention of Criticality in Fuel Storage 63 and Handling 3.1.2.6.4 General Design Criterion 63 - Monitoring Fuel and Waste Storage 63 3.1.2.6.5 General Design Criterion 64 - Monitoring Radioactivity Releases 64 3.2 CLASSIFICATION OF STRUCTURES, COMPONENTS, AND SYS- 66 TEMS 3.

2.1 INTRODUCTION

66 3.2.2 SYSTEMATIC EVALUATION PROGRAM EVALUATION 66 3.2.2.1 Fracture Toughness 67 3.2.2.1.1 Pressurizer 67 3.2.2.1.2 Accumulators 68 3.2.2.1.3 Component Cooling Water (CCW) Pumps 68 3.2.2.1.4 Service Water Pumps 68 3.2.2.1.5 Main Steam Piping and Valves 69 3.2.2.1.6 Feedwater Piping and Valves 69 3.2.2.2 Radiography Requirements 69 3.2.2.2.1 Class 2 Pressure Vessels 69 3.2.2.2.2 Class 1 and 2 Welded Joints 70 3.2.2.2.3 Main Steam and Feedwater Piping 70 Page 5 of 39 Revision 28 5/2019

GINNA/UFSAR 3.2.2.3 Valve Design 71 3.2.2.4 Pump Design 71 3.2.2.5 Storage Tank Design 72 Table 3.2-1 CLASSIFICATION OF STRUCTURES, SYSTEMS, AND 74 COMPONENTS 3.3 WIND AND TORNADO LOADINGS 84 3.

3.1 INTRODUCTION

84 3.3.2 STRUCTURAL UPGRADE PROGRAM EVALUATION 84 3.3.2.1 Structural Evaluation Approach 84 3.3.2.1.1 Requirements 84 3.3.2.1.2 Structural Evaluation Process 84 3.3.2.1.3 Structural Evaluation Computer Program 85 3.3.2.1.4 Input Load Criteria 85 3.3.2.1.5 General Assumptions 86 3.3.2.1.6 Load Combinations and Acceptance Criteria 87 3.3.2.2 Structural Evaluation 88 3.3.2.2.1 Primary Member Evaluation 88 3.3.2.2.2 Secondary Member Evaluation 89 3.3.2.2.3 Connections and Anchorages Evaluation 89 3.3.2.2.4 Exterior Shell Evaluation 90 3.3.2.2.4.1 Siding 90 3.3.2.2.4.2 Concrete Masonry Block Walls 90 3.3.2.2.4.3 Architectural Items 91 3.3.2.3 Results of the Structural Evaluation 91 3.3.2.3.1 Primary Members 91 3.3.2.3.1.1 General 91 3.3.2.3.1.2 Severe Environmental Conditions 91 3.3.2.3.1.3 Extreme Snow Load Condition 92 3.3.2.3.1.4 132-mph Tornado 92 3.3.2.3.1.5 188-mph Tornado 92 3.3.2.3.1.6 250-mph Tornado 92 3.3.2.3.2 Secondary Members 93 3.3.2.3.3 Connections and Anchorages 93 3.3.2.3.4 Exterior Shell 94 3.3.2.3.4.1 Metal Siding 94 3.3.2.3.4.2 Roof Decking 94 Page 6 of 39 Revision 28 5/2019

GINNA/UFSAR 3.3.2.3.4.3 Block Walls 94 3.3.3 TORNADO MISSILES AND SAFE SHUTDOWN APPROACH 94 3.3.3.1 Background 94 3.3.3.2 Shutdown Methodology 95 3.3.3.2.1 Assumptions 95 3.3.3.2.2 Shutdown Details 95 3.3.3.3 Required Components 96 3.3.3.3.1 Refueling Water Storage Tank (RWST) 96 3.3.3.3.2 Electrical Buses 14, 17, and 18 96 3.3.3.3.3 Main Steam Lines A and B, and Main Feedwater Lines A and B 97 3.3.3.3.3.1 Results - Steel Rod 97 3.3.3.3.3.2 Results - Utility Pole 97 3.3.3.3.3.3 Failure of Block Walls 97 3.3.3.3.4 Surface of the Spent Fuel Pool 98 3.3.3.3.5 Diesel Generators and Their Fuel Supply 98 3.3.3.3.6 Relay Room 98 3.3.3.3.7 Service Water System 99 3.3.3.3.8 Standby Auxiliary Feedwater System 99 3.3.3.3.9 Instrumentation 99 3.3.3.3.10 Cable Tunnel 100 3.3.4 DESIGN TORNADO 100 3.3.4.1 Introduction 100 3.3.4.2 Safety Assessment 100 3.3.4.3 Reserve Plant Capacity 101 3.3.4.4 System Reserve Capacity 102 3.3.5 STRUCTURAL UPGRADE PROGRAM 103 3.3.5.1 Introduction 103 3.3.5.2 Criteria Changes 103 3.3.5.2.1 First Stage Review 103 3.3.5.2.2 Second Stage Review 104 3.3.5.3 Stability Evaluation 105 3.3.5.3.1 Primary Members 105 3.3.5.3.2 Connections and Anchorages 105 3.3.5.4 NRC Technical Evaluation Report (SEP Topic III-2) Open Items 106 3.3.5.4.1 Effective Tornado Loadings 106 3.3.5.4.2 Structural Loadings 107 Page 7 of 39 Revision 28 5/2019

GINNA/UFSAR 3.3.5.4.3 Structural Acceptance Criteria 107 3.3.5.4.4 Structural Systems 107 3.3.5.5 SEP Topic III-7.B, Loads, Load Combinations, and Design Criteria 108 3.3.5.6 Diesel Generator Component Operability 109 3.3.5.7 Conclusions 109 3.3.6 INTERMEDIATE BUILDING BLOCK WALL REINFORCEMENT 110 Table 3.3-1 PRIMARY MEMBER FAILURES PER LOADING COMBINATION 114 3.4 WATER LEVEL (FLOOD) DESIGN 115 3.4.1 FLOOD PROTECTION 115 3.4.1.1 Flood Protection Measures for Seismic Category I Structures 115 3.4.1.1.1 Introduction 115 3.4.1.1.2 Lake Ontario Flood Protection 115 3.4.1.1.3 Deer Creek Flood Protection 116 3.4.1.2 Permanent Dewatering System 116 3.4.2 FLOODING DUE TO FAILURE OF TANKS 117 3.4.3 ROOF DRAINAGE 117 3.5 MISSILE PROTECTION 120 3.5.1 INTERNALLY GENERATED MISSILES 120 3.5.1.1 Introduction 120 3.5.1.1.1 Design Criteria 120 3.5.1.1.2 Systematic Evaluation Program 120 3.5.1.2 Turbine Missiles 121 3.5.1.2.1 Introduction 121 3.5.1.2.2 Turbine Inspection Program 122 3.5.1.2.3 Systematic Evaluation Program Topic III-4 122 3.5.1.3 Effects of Internally Generated Missiles on Systems and Equipment 123 3.5.1.3.1 Systems Needed to Perform Safety Functions 123 3.5.1.3.1.1 Reactor Coolant System 123 3.5.1.3.1.2 Emergency Core Cooling System (ECCS) 124 3.5.1.3.1.3 Containment Heat Removal and Atmosphere Cleanup Systems 125 3.5.1.3.1.4 Chemical and Volume Control System 126 3.5.1.3.1.5 Residual Heat Removal System 127 3.5.1.3.1.6 Component Cooling Water System 127 3.5.1.3.1.7 Service Water System 127 3.5.1.3.1.8 Diesel-Generator Auxiliary Systems 128 Page 8 of 39 Revision 28 5/2019

GINNA/UFSAR 3.5.1.3.1.9 Main Steam System 128 3.5.1.3.1.10 Feedwater and Condensate Systems 129 3.5.1.3.1.11 Preferred Auxiliary Feedwater System 129 3.5.1.3.1.12 Standby Auxiliary Feedwater System (SAFW) 129 3.5.1.3.1.13 Ventilation Systems for Vital Areas 130 3.5.1.3.1.14 Combustible Gas Control System 130 3.5.1.3.2 Systems Whose Failure May Result in Activity Release 130 3.5.1.3.2.1 Spent Fuel Pool Cooling System 130 3.5.1.3.2.2 Sampling System 131 3.5.1.3.2.3 Waste Disposal System 131 3.5.1.3.2.4 Containment Shutdown Purge System 131 3.5.1.3.2.5 Instrument and Service Air Systems 131 3.5.1.3.3 Electrical Systems 132 3.5.1.3.3.1 Diesel Generators 132 3.5.1.3.3.2 Station Batteries 132 3.5.1.3.3.3 480-Volt Switchgear 132 3.5.1.3.3.4 Control Room 132 3.5.1.3.3.5 Cable Spreading/Relay Room 132 3.5.2 EXTERNALLY GENERATED MISSILES 133 3.5.2.1 Tornado Missiles 133 3.5.2.2 Site Proximity Missiles 133 3.5.2.2.1 Design Criteria 133 3.5.2.2.2 Nearby Hazardous Activities 133 3.5.2.2.3 Aircraft Hazards 134 3.6 PROTECTION AGAINST THE DYNAMIC EFFECTS ASSOCI- ATED WITH THE POSTULATED RUPTURE OF PIPING 136 3.6.1 POSTULATED PIPING FAILURES IN FLUID SYSTEMS INSIDE CONTAINMENT 136 3.6.1.1 Evaluation Procedure 136 3.6.1.1.1 Pipe Selection 136 3.6.1.1.2 Effects-Oriented Evaluation 137 3.6.1.1.3 Mechanistic Evaluation 137 3.6.1.2 Required Equipment 138 3.6.1.3 Safety Analysis 138 3.6.1.3.1 Single-Failure Considerations 138 3.6.1.3.1.1 Introduction 138 3.6.1.3.1.2 Containment Fan Coolers 139 Page 9 of 39 Revision 28 5/2019

GINNA/UFSAR 3.6.1.3.1.3 Low-Pressure Safety Injection Isolation Valves 139 3.6.1.3.2 High-Energy Line Break Effects 139 3.6.1.3.2.1 Introduction 139 3.6.1.3.2.2 Alternate Charging 140 3.6.1.3.2.3 Residual Heat Removal Pump Suction 140 3.6.1.3.2.4 Reactor Coolant Pump Seal-Water to Seals 141 3.6.1.3.2.5 Letdown Line 141 3.6.1.3.2.6 Charging Line 142 3.6.1.3.2.7 Steam Generator Blowdown Lines 143 3.6.1.3.2.8 Main Steam and Feedwater Lines 143 3.6.1.3.2.9 Residual Heat Removal Pump Discharge Line 146 3.6.1.3.2.10 Standby Auxiliary Feedwater Lines 146 3.6.1.3.2.11 Accumulator Lines and Branch Lines 146 3.6.1.3.2.12 Auxiliary Spray Line 149 3.6.1.3.2.13 Reactor Coolant System 150 3.6.1.3.2.14 Pressurizer Surge Line 150 3.6.1.3.2.15 Pressurizer Spray Lines 153 3.6.1.3.2.16 Pressurizer Safety and Relief Lines 153 3.6.2 POSTULATED PIPING FAILURES IN FLUID SYSTEMS OUTSIDE CONTAINMENT 154 3.6.2.1 Introduction and Summary 154 3.6.2.1.1 Initial Evaluation 154 3.6.2.1.2 Systematic Evaluation Program Reevaluation 155 3.6.2.2 Evaluation Procedure 156 3.6.2.2.1 Initial Evaluation 156 3.6.2.2.2 Systematic Evaluation Program Reevaluation 157 3.6.2.3 Analysis Criteria 158 3.6.2.3.1 December 18, 1972, AEC Letter Evaluation Criteria 158 3.6.2.3.2 Systematic Evaluation Program Criteria 158 3.6.2.3.2.1 High-Energy Fluid Systems Piping 158 3.6.2.3.2.2 Moderate-Energy Fluid System Piping 160 3.6.2.3.2.3 Type of Breaks and Leakage Cracks in Fluid System Piping 161 3.6.2.3.2.4 Assumptions 162 3.6.2.3.2.5 Effects of Piping Failure 163 3.6.2.4 Analysis in Response to December 18, 1972, AEC Letter 163 3.6.2.4.1 Rupture Load Analysis 163 Page 10 of 39 Revision 28 5/2019

GINNA/UFSAR 3.6.2.4.2 Main Steam System Load Analysis 164 3.6.2.4.3 Feedwater System Load Analysis 164 3.6.2.4.4 Jet Impingement Load Analysis 164 3.6.2.4.5 Pipe Whip Analysis for Main Steam and Feedwater Piping 165 3.6.2.4.5.1 Analytical Methods 165 3.6.2.4.5.2 Results of Analysis 165 3.6.2.4.6 Blowdown Analysis 166 3.6.2.4.6.1 Main Steam Blowdown Analysis 166 3.6.2.4.6.2 Feedwater Blowdown Analysis 166 3.6.2.4.7 Compartment Pressurization Analysis 167 3.6.2.4.7.1 Main Steam Line Ruptures 167 3.6.2.4.7.2 Building Pressurization for a Branch Line Rupture 167 3.6.2.4.8 Flooding Analysis 167 3.6.2.4.8.1 Intermediate Building Flooding 167 3.6.2.4.8.2 Screen House and Turbine Building Flooding 168 3.6.2.5 Systematic Evaluation Program Analysis 168 3.6.2.5.1 Zone Reevaluation Performed as Part of the Systematic Evaluation Program Review 168 3.6.2.5.1.1 Screen House 168 3.6.2.5.1.2 Intermediate Building 169 3.6.2.5.1.3 Turbine Building Main Steam and Main Feedwater Line Breaks 170 3.6.2.5.1.4 Structural Analysis of the Turbine Building for Pressurization 171 3.6.2.5.1.5 Battery Room/Mechanical Equipment Room Flooding 173 3.6.2.5.1.6 Auxiliary Feedwater Line Breaks on the 253-Ft Elevation of the Inter- mediate Building 173 3.6.2.5.1.7 Relay Room and Air Handling Room 173 3.6.2.5.1.8 Auxiliary Building 174 3.6.2.5.2 Main Steam Safety and Relief Valves 175 3.6.2.5.2.1 Pipe Failures in the Intermediate Building 175 3.6.2.5.2.2 Pipe Failures in the Turbine Building 176 3.6.2.5.2.3 Decay Heat Removal Following Blowdown from Both Steam Genera- 177 tors 3.6.2.5.2.4 Conclusions 178 Table 3.6-1 LINES PENETRATING CONTAINMENT WHICH NORMALLY OR 182 OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS Page 11 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.6-2 LINES INSIDE CONTAINMENT BUT NOT PENETRATING 184 CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS Table 3.6-3 CONTAINMENT PIPE DATA 185 3.7 SEISMIC DESIGN 187 3.7.1 SEISMIC INPUT 187 3.7.1.1 Introduction 187 3.7.1.1.1 Original Seismic Classification 187 3.7.1.1.2 Seismic Reevaluation 188 3.7.1.1.2.1 Scope of Reevaluation 188 3.7.1.1.2.2 Reevaluation Criteria 188 3.7.1.2 Design Response Spectra 189 3.7.1.3 Design Time-History 189 3.7.1.4 Critical Damping Values 19 3.7.1.5 Supporting Media for Seismic Category I Structures 190 3.7.2 SEISMIC SYSTEM ANALYSIS 191 3.7.2.1 Seismic Analysis Methods 191 3.7.2.1.1 Original Seismic Analysis 191 3.7.2.1.2 Seismic Reevaluation 192 3.7.2.2 Natural Frequencies and Response Loads 193 3.7.2.3 Procedure Used for Mathematical Modeling 193 3.7.2.4 Soil-Structure Interaction 193 3.7.2.5 Development of Floor Response Spectra 193 3.7.2.6 Combination of Earthquake Directional Components 194 3.7.2.7 Combination of Modal Responses 194 3.7.2.8 Interaction of Nonseismic Structures with Seismic Category I 194 Structures 3.7.2.9 Use of Constant Vertical Static Factors 195 3.7.3 SEISMIC SUBSYSTEM ANALYSIS 195 3.7.3.1 Seismic Analysis Methods 195 3.7.3.1.1 Original Design 195 3.7.3.1.1.1 Piping and Tanks 195 3.7.3.1.1.2 Steam Generator 196 3.7.3.1.1.3 Control Rod Drive Mechanisms 196 3.7.3.1.1.4 Reactor Internals 196 3.7.3.1.1.5 Reactor Vessel 197 Page 12 of 39 Revision 28 5/2019

GINNA/UFSAR 3.7.3.1.1.6 Pressurizer 197 3.7.3.1.2 Seismic Reevaluation 198 3.7.3.2 Basis for Selection of Frequencies 199 3.7.3.3 Use of Equivalent Static Analysis 199 3.7.3.4 Three Components of Earthquake Motion 199 3.7.3.5 Combination of Modal Responses 200 3.7.3.6 Analytical Procedures for Piping 200 3.7.3.6.1 Residual Heat Removal System Line from Reactor Coolant System Loop A to Containment 200 3.7.3.6.2 Steam Line from Steam Generator B to Containment 201 3.7.3.6.3 Pressurizer Safety and Relief Lines 201 3.7.3.6.3.1 Analytical Methods 201 3.7.3.6.3.2 Transfer Matrix Method 202 3.7.3.6.3.3 Stiffness Matrix Formulation 203 3.7.3.7 Seismic Piping Upgrade Program 204 3.7.3.7.1 Program Scope 204 3.7.3.7.2 Piping Selection Criteria 204 3.7.3.7.3 Selected Lines 205 3.7.3.7.3.1 Reactor Coolant System 205 3.7.3.7.3.2 Main Steam 205 3.7.3.7.3.3 Main Feedwater 205 3.7.3.7.3.4 Auxiliary Feedwater 205 3.7.3.7.3.5 Safety Injection 206 3.7.3.7.3.6 Residual Heat Removal 206 3.7.3.7.3.7 Containment Spray 206 3.7.3.7.3.8 Chemical and Volume Control System 207 3.7.3.7.3.9 Steam Generator Blowdown 207 3.7.3.7.3.10 Service Water System 207 3.7.3.7.3.11 Component Cooling Water 208 3.7.3.7.3.12 Standby Auxiliary Feedwater 209 3.7.3.7.4 Codes and Standards 209 3.7.3.7.5 Analytical Procedures 209 3.7.3.7.5.1 General 209 3.7.3.7.5.2 Damping Values 209 3.7.3.7.5.3 Combination of Modal Responses 210 3.7.3.7.5.4 Safe Shutdown Earthquake Stresses 212 Page 13 of 39 Revision 28 5/2019

GINNA/UFSAR 3.7.3.7.5.5 Small Piping Analysis 213 3.7.3.7.5.6 Branch Line Analysis 213 3.7.3.7.5.7 Piping Beyond Scope of Upgrade Program 213 3.7.3.7.6 Piping System Models 214 3.7.3.7.7 Valve Model 215 3.7.3.7.8 Equipment Model 215 3.7.3.7.9 Interaction Effects 215 3.7.3.7.10 Support Model 215 3.7.3.7.10.1 Deviations 215 3.7.3.7.10.2 Support-Welded Attachments 216 3.7.4 SEISMIC INSTRUMENTATION 217 Table 3.7-1 ORIGINAL AND CURRENT RECOMMENDED DAMPING 219 VALUES Table 3.7-2 MODAL FREQUENCIES OF THE INTERCONNECTED 220 BUILDING MODEL Table 3.7-3 EQUIPMENT AND LOCATIONS WHERE IN-STRUCTURE 222 SPECTRA WERE GENERATED FOR THE SYSTEMATIC EVALUATION PROGRAM 3.8 DESIGN OF SEISMIC CATEGORY I STRUCTURES 223 3.8.1 CONTAINMENT 223 3.8.1.1 General Description 223 3.8.1.1.1 Containment Structure 223 3.8.1.1.2 Waterproofing 224 3.8.1.1.3 Rock Anchors 224 3.8.1.1.4 Construction Sequence 224 3.8.1.1.5 Steel Reinforcement 226 3.8.1.2 Mechanical Design Bases 227 3.8.1.2.1 General 227 3.8.1.2.2 Design Loads 227 3.8.1.2.3 Design Stress Criteria 228 3.8.1.2.3.1 Limiting Loads 228 3.8.1.2.3.2 Load Factors 229 3.8.1.2.3.3 Maximum Thermal Load 229 3.8.1.2.4 Load Capacity 230 Page 14 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.1.2.4.1 Reinforced Concrete 230 3.8.1.2.4.2 Prestressed Concrete 232 3.8.1.2.4.3 Liner 233 3.8.1.2.4.4 Rock 234 3.8.1.2.5 Codes and Standards 234 3.8.1.2.5 Codes and Standards Steam Generator Replacement (Dome 237 Opening Repairs 3.8.1.3 Seismic Design 239 3.8.1.3.1 Initial Seismic Design 239 3.8.1.3.2 Seismic Reanalysis 240 3.8.1.4 Containment Detailed Design 240 3.8.1.4.1 Stress Analysis 240 3.8.1.4.1.1 Analysis Methods 240 3.8.1.4.1.2 Analysis Results 241 3.8.1.4.1.3 Analysis for Steam Generator Replacement Dome Openings 242 3.8.1.4.2 Rock Anchors 242 3.8.1.4.2.1 Rock Anchor Design 242 3.8.1.4.2.2 Preinstallation Grouting Test 243 3.8.1.4.2.3 Previous Applications 244 3.8.1.4.2.4 Rock Hold-Down Capacity 244 3.8.1.4.2.5 Hold-Down Factor of Safety 246 3.8.1.4.2.6 Installation 246 3.8.1.4.3 Tendons 247 3.8.1.4.3.1 General Design 247 3.8.1.4.3.2 Seismic Considerations 249 3.8.1.4.3.3 Stressing Procedure 251 3.8.1.4.3.4 Corrosion Protection 252 3.8.1.4.4 Hinge Design 254 3.8.1.4.4.1 Tension Bars 254 3.8.1.4.4.2 Liner Knuckle 256 3.8.1.4.4.3 Elastomer Bearing Pads 257 3.8.1.4.5 Concrete 259 3.8.1.4.5.1 Radial Shear 259 3.8.1.4.5.2 Longitudinal Shears 259 3.8.1.4.5.3 Horizontal Shear 260 3.8.1.4.5.4 Anchorage Stresses 261 Page 15 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.1.4.5.5 Shell Stress Analytical Procedures 262 3.8.1.4.6 Insulation 267 3.8.1.4.7 Liner 268 3.8.1.4.7.1 Vibrations 268 3.8.1.4.7.2 Anchorage Fatigue Analysis 268 3.8.1.4.7.3 Base Slab Liner 268 3.8.1.4.7.4 Liner Stresses 269 3.8.1.4.7.5 Liner Buckling 270 3.8.1.4.7.6 Liner Corrosion Allowance 274 3.8.1.5 Penetrations 274 3.8.1.5.1 General 274 3.8.1.5.2 Electrical Penetrations 275 3.8.1.5.3 Piping Penetrations 276 3.8.1.5.4 Access Hatch and Personnel Locks 276 3.8.1.5.5 Fuel Transfer Penetration 277 3.8.1.5.6 Typical Penetration Analysis 278 3.8.1.5.6.1 Loss-of-Coolant Accident 278 3.8.1.5.6.2 Loss-of-Coolant Accident Plus Earthquake 280 3.8.1.5.7 Penetration Reinforcement Analyzed for Pipe Rupture 281 3.8.1.6 Quality Control and Material Specifications 282 3.8.1.6.1 Concrete 282 3.8.1.6.1.1 Ultimate Compressive Strength 282 3.8.1.6.1.2 Quality Control Measures 282 3.8.1.6.1.3 Concrete Suppliers 283 3.8.1.6.1.4 Concrete Specifications 284 3.8.1.6.1.5 Admixtures 286 3.8.1.6.1.6 Replacement Concrete for the 1996 Steam Generator Replacement 287 3.8.1.6.2 Mild Steel Reinforcement 288 3.8.1.6.3 Cadwell Splices 289 3.8.1.6.4 Radial Tension Bars 290 3.8.1.6.5 Containment Liner 290 3.8.1.6.5.1 Fabrication and Workmanship 290 3.8.1.6.5.2 Penetrations 291 3.8.1.6.5.3 Welding 291 3.8.1.6.5.4 Erection Tolerances 292 3.8.1.6.5.5 Painting 292 Page 16 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.1.6.6 Elastomer Pads 293 3.8.1.6.7 Tendons 293 3.8.1.6.7.1 Materials 293 3.8.1.6.7.2 Tests and Inspection 294 3.8.1.6.8 Liner Insulation 294 3.8.1.7 Testing and Inservice Inspection Requirements 295 3.8.1.7.1 Construction Phase Testing 295 3.8.1.7.1.1 Liner 295 3.8.1.7.1.2 Prestressing Tendons 296 3.8.1.7.1.3 Concrete Reinforcement 296 3.8.1.7.1.4 Concrete 297 3.8.1.7.1.5 Elastomer Bearing Pads 298 3.8.1.7.1.6 Rock Anchor Tests 299 3.8.1.7.1.7 Large Opening Reinforcements 300 3.8.1.7.1.8 Liner Insulation 300 3.8.1.7.2 General Description of the Structural Integrity Test 300 3.8.1.7.2.1 Pressurization 300 3.8.1.7.2.2 Measurements 301 3.8.1.7.2.3 Test Pressure Justification 303 3.8.1.7.2.4 Test Results 303 303 3.8.1.7.2.5 Containment Return to Service Testing Post 1996 Steam Generator Replacement 3.8.1.7.3 Postoperational Surveillance 304 3.8.1.7.3.1 Leakage Monitoring 304 3.8.1.7.3.2 Initial Tendon Surveillance Program 304 3.8.1.7.3.3 Current Tendon Surveillance Program 305 3.8.1.7.3.4 Current Tendon Surveillance Program Results 306 3.8.1.7.3.5 Test on Rock Anchors 307 3.8.1.7.3.6 Inservice Inspection 307 3.8.2 STRUCTURAL REANALYSIS PROGRAM 308 3.8.2.1 Design Codes, Criteria, and Load Combinations - SEP Topic III-7.B 308 3.8.2.1.1 Introduction 308 3.8.2.1.1.1 Seismic Category I Structures 308 3.8.2.1.1.2 Structural Codes 309 3.8.2.1.1.3 Code Comparison 311 3.8.2.1.2 Assessment of Design Codes and Load Changes for Concrete 311 Structures Page 17 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.2.1.2.1 Columns With Spliced Reinforcing 311 3.8.2.1.2.2 Brackets and Corbels (Not on the Containment Shell) 312 3.8.2.1.2.3 Elements Loaded in Shear With No Diagonal Tension (Shear Friction) 313 3.8.2.1.2.4 Structural Walls - Primary Load Carrying 314 3.8.2.1.2.5 Elements Subject to Temperature Variations 315 3.8.2.1.2.6 Areas of Containment Shell Subject to Peripheral Shear 316 3.8.2.1.2.7 Areas of Containment Shell Subject to Torsion 317 3.8.2.1.2.8 Brackets and Corbels (On the Containment Shell) 317 3.8.2.1.2.9 Areas of Containment Shell Subject to Biaxial Tension 317 3.8.2.1.2.10 Steel Embedments Transmitting Loads to Concrete 318 3.8.2.1.3 Assessment of Design Codes and Load Changes for Steel Structures 318 3.8.2.1.3.1 Shear Connectors in Composite Beams 319 3.8.2.1.3.2 Composite Beams With Steel Deck 319 3.8.2.1.3.3 Hybrid Girders 319 3.8.2.1.3.4 Compression Elements 320 3.8.2.1.3.5 Tension Members 320 3.8.2.1.3.6 Coped Beams 320 3.8.2.1.3.7 Moment Connections 321 3.8.2.1.3.8 Lateral Bracing 321 3.8.2.1.3.9 Steel Embedments 321 3.8.2.1.4 Summary 323 3.8.2.2 Structural Reevaluation of Containment 323 3.8.2.2.1 Introduction 323 3.8.2.2.2 Containment Temperature 324 3.8.2.2.3 Containment Pressure 324 3.8.2.2.4 Seismic Loads 324 3.8.2.2.5 Design and Analysis Procedures 325 3.8.2.2.5.1 Containment Model 325 3.8.2.2.5.2 Seismic and Loss-of-Coolant Accident Loads 325 3.8.2.2.5.3 Pressure, Seismic, and Operating Temperature Loads 326 3.8.2.2.6 Structural Acceptance Criteria 327 3.8.2.2.7 Structural Evaluation of Containment 327 3.8.2.2.7.1 Seismic Analysis 327 3.8.2.2.7.2 Load Combinations 328 3.8.2.2.8 Structural Evaluation of Large Openings 329 3.8.2.2.9 Structural Evaluation of Tension Rods 329 Page 18 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.2.3 Dome Liner Reevaluation 329 3.8.2.3.1 Dome Liner Studs 329 3.8.2.3.2 Loads 329 3.8.2.3.2.1 Loss-of-Coolant Accident 329 3.8.2.3.2.2 Steam Line Break 330 3.8.2.3.3 Model Definition 330 3.8.2.3.3.1 General Dome Model 330 3.8.2.3.3.2 Insulation Termination Region Model 330 3.8.2.3.4 Analysis 331 3.8.2.3.4.1 Controlling Loads 331 3.8.2.3.4.2 Liner-Stud Interaction 331 3.8.2.3.4.3 Effect of Internal Pressure on Liner Buckling 333 3.8.2.3.5 Results and Conclusions 334 3.8.2.3.5.1 Insulation Termination Region 334 3.8.2.3.5.2 General Dome 335 3.8.2.3.5.3 Effect of Internal Pressure on Liner Buckling and Stud Integrity 336 3.8.2.3.6 Overall Conclusions 338 3.8.3 CONTAINMENT INTERNAL STRUCTURES 338 3.8.3.1 Description of the Internal Structures 338 3.8.3.2 Applicable Codes, Standards, and Specifications 339 3.8.3.3 Loads and Load Combinations 339 3.8.3.3.1 Load Combinations Considered 339 3.8.3.3.2 Applicable Load Combinations 339 3.8.3.4 Design and Analysis Procedures 340 3.8.3.4.1 Original Design 340 3.8.3.4.2 Systematic Evaluation Program Reevaluation 341 3.8.3.5 Method of Analysis 341 3.8.3.6 Structural Acceptance Criteria 342 3.8.3.7 Structural Evaluation 342 3.8.4 OTHER SEISMIC CATEGORY I STRUCTURES 342 3.8.4.1 Description of the Structures 342 3.8.4.1.1 Auxiliary Building 343 3.8.4.1.2 Control Building 343 3.8.4.1.3 Diesel Generator Building 344 3.8.4.1.4 Intermediate Building 344 Page 19 of 39 Revision 28 5/2019

GINNA/UFSAR 3.8.4.1.5 Standby Auxiliary Feedwater Building 345 3.8.4.1.6 Screen House 345 3.8.4.1.7 Turbine Building 346 3.8.4.1.8 Service Building 346 3.8.4.1.9 Interconnected Building Complex 347 3.8.4.1.10 Canister Preparation Building (CPB) 347 3.8.4.2 Applicable Codes, Standards, and Specifications 348 3.8.4.3 Loads and Load Combinations 348 3.8.4.4 Design and Analysis Procedures 348 3.8.4.4.1 Original Design and Analysis Procedures 348 3.8.4.4.2 SEP Reevaluation Design and Analysis Procedures 349 3.8.4.4.2.1 Mathematical Model 349 3.8.4.4.2.2 Method of Analysis 351 3.8.4.4.2.3 Structural Evaluation 352 3.8.4.5 Masonry Walls 353 3.8.4.5.1 Applicable Walls 353 3.8.4.5.2 Loads and Load Combinations 353 3.8.4.5.3 Stress Analysis 355 3.8.4.5.3.1 Computer Program 355 3.8.4.5.3.2 Seismic Analysis 355 3.8.4.5.4 Interstory Drift 356 3.8.4.5.5 Multi-Wythe Walls 356 3.8.4.5.6 Block Pullout 356 3.8.4.5.7 Structural Acceptance Criteria - Allowable Stresses 356 3.8.4.5.7.1 Normal Operating Conditions 356 3.8.4.5.7.2 Safe Shutdown Earthquake 357 3.8.4.5.8 Evaluation Results 357 3.8.4.5.8.1 General 357 3.8.4.5.8.2 Inelastic Analysis 358 3.8.4.5.8.3 Wall Modifications 358 3.8.4.5.9 Materials, Quality Control, and Special Construction 359 Techniques 3.8.5 FOUNDATIONS 360 Table 3.8-1a COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT 365 SEISMIC ANALYSIS - DIMENSIONS AND FORMULA Page 20 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.8-1b COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT 366 SEISMIC ANALYSIS - DIMENSION CALCULATIONS Table 3.8-1c COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT 367 SEISMIC ANALYSIS - NATURAL FREQUENCIES AND

RESPONSE

Table 3.8-2 MAJOR STRUCTURES FOR WHICH PRESTRESSED ROCK 368 ANCHORS WERE USED Table 3.8-3 PROPERTIES AND TESTS FOR CONTAINMENT ANCHOR AND 370 TENDON CORROSION INHIBITOR Table 3.8-4 ALLOWABLE STRESSES 371 Table 3.8-5a CONTAINMENT STRUCTURE STRESSES - LOADING #1 DEAD 372 LOAD Table 3.8-5b CONTAINMENT STRUCTURE STRESSES - LOADING #2 FINAL 373 PRESTRESS - 636 K/TENDON Table 3.8-5c CONTAINMENT STRUCTURE STRESSES - LOADING #3 375 OPERATING TEMPERATURE - WINTER Table 3.8-5d CONTAINMENT STRUCTURE STRESSES - LOADING #4 377 OPERATING TEMPERATURE - SUMMER Table 3.8-5e CONTAINMENT STRUCTURE STRESSES - LOADING #5 378 INTERNAL PRESSURE Table 3.8-5f CONTAINMENT STRUCTURE STRESSES - LOADING #6 379 ACCIDENT TEMPERATURE - P = 60 PSIG, T = 286F Table 3.8-5g CONTAINMENT STRUCTURE STRESSES - LOADING #7 380 ACCIDENT TEMPERATURE - P = 90 PSIG, T = 312F Table 3.8-5h CONTAINMENT STRUCTURE STRESSES - LOADING #8 0.10G 382 EARTHQUAKE - HORIZONTAL + VERTICAL COMPONENT Table 3.8-6a CONTAINMENT STRUCTURE LOADING COMBINATIONS - 383 LOAD NUMBERS 1 THROUGH 48 Table 3.8-6b CONTAINMENT STRUCTURE LOADING COMBINATIONS - 385 KEY TO SYMBOLS Table 3.8-7 CONCRETE COVER REQUIRED FOR REINFORCING STEEL 385 Table 3.8-8 ELASTOMER PADS PROPERTIES 387 Table 3.8-9 ROCK ANCHOR A - UPLIFT TEST WITH JACKING FRAME, 388 MAY 19, 1966 Table 3.8-10 DESIGN CODE COMPARISON 389 Table 3.8-11 ACI 318-63 VERSUS ACI 349-76 CODE COMPARISONS 391 Table 3.8-12 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975) COMPARISON 393 Table 3.8-13 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, 394 DIVISION 2, 1980 CODE COMPARISON Table 3.8-14 ASME B&PV CODE, SECTION III, DIVISION 2, 1980 (ACI 359-80) 395 VERSUS ACI 318-63 CODE COMPARISION Table 3.8-15 LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED 396 Page 21 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.8-16 MASSES, MOMENT OF INERTIA (I), FLEXURAL AREA (A), 398 AND SHEAR AREA (As) FOR THE LLNL MODEL Table 3.8-17 MODAL FREQUENCIES FOR THE LAWRENCE LIVERMORE 399 NATIONAL LABORATORY CONTAINMENT SHELL MODEL Table 3.8-18 RESPONSE VALUES FOR REGULATORY GUIDE 1.60 400 HORIZONTAL (0.17g) AND VERTICAL (0.11g) SPECTRA INPUT Table 3.8-19 PEAK HARMONIC AMPLITUDES OF THE SEISMIC LOAD ON 401 CYLINDER AND DOME OF THE CONTAINMENT SHELL Table 3.8-20 MATERIAL PROPERTIES FOR STEEL, CONCRETE, AND FOAM 402 INSULATION Table 3.8-21 MAXIMUM DISPLACEMENTS OF 5/8-INCH S6L STUDS IN THE 403 INSULATION TERMINATION REGION Table 3.8-22 MAXIMUM DISPLACEMENT OF STUDS IN GENERAL DOME 404 Table 3.8-23 LOAD DEFINITIONS 405 3.9 MECHANICAL SYSTEMS AND COMPONENTS 406 3.9.1 SPECIAL TOPICS FOR MECHANICAL COMPONENTS 406 3.9.1.1 Design Transients 406 3.9.1.1.1 Load Combinations 406 3.9.1.1.2 Cyclic Loads 406 3.9.1.1.2.1 Thermal and Pressure Cyclic Loads 406 3.9.1.1.2.2 Pressurizer Surge Line 406 3.9.1.1.2.3 Unisolable Connections to the Reactor Coolant System 407 3.9.1.1.3 Transient Hydraulic Loads 408 3.9.1.1.4 Operating-Basis Earthquake 408 3.9.1.1.5 Safe Shutdown Earthquake 408 3.9.1.1.6 Secondary System Fluid Flow Instability (Water Hammer) 408 3.9.1.1.7 Loss-of-Coolant Accident 408 3.9.1.2 Computer Programs Used in Analysis 409 3.9.1.3 Experimental Stress Analysis 410 3.9.1.3.1 Plastic Model Analysis 410 3.9.1.3.2 Plastic Model Details 410 3.9.1.3.3 Plastic Model Test Arrangement 411 3.9.2 DYNAMIC TESTING AND ANALYSIS 412 3.9.2.1 Piping Systems 412 3.9.2.1.1 General 412 3.9.2.1.2 Seismic Category I Piping, 2-1/2 Inch Nominal Size and Larger 413 3.9.2.1.2.1 Static Analysis 413 3.9.2.1.2.2 Dynamic Analysis 413 Page 22 of 39 Revision 28 5/2019

GINNA/UFSAR 3.9.2.1.2.3 Residual Heat Removal System Line From Reactor Coolant System 414 Loop A to Containment 3.9.2.1.2.4 Steam Line From Steam Generator B to Containment 415 3.9.2.1.2.5 Charging Line 416 3.9.2.1.3 Seismic Category I Piping, 2-Inch Nominal Size and Under, Original 416 Design 3.9.2.1.4 Pressurizer Safety and Relief Valve Discharge Piping 416 3.9.2.1.4.1 1972 Analysis 416 3.9.2.1.4.2 NUREG 0737, Item II.D.1 Analysis 417 3.9.2.1.5 Main Steam Header Dynamic Load Factor Analysis 418 3.9.2.1.5.1 Extended Power Uprate Considerations 419 3.9.2.1.6 Secondary System Water Hammer 419 3.9.2.1.6.1 Analysis 419 3.9.2.1.6.2 Evaluation Results 420 3.9.2.1.6.3 Corrective Actions 420 3.9.2.1.6.4 Extended Power Uprate Considerations 421 3.9.2.1.7 Velan Swing Check Valves 421 3.9.2.1.8 Seismic Piping Upgrade Program 421 3.9.2.2 Safety-Related Mechanical Equipment 422 3.9.2.2.1 Original Seismic Input and Behavior Criteria 422 3.9.2.2.2 Current Seismic Input 423 3.9.2.2.3 Systematic Evaluation Program 423 424 3.9.2.2.4 Systematic Evaluation Program Reevaluation of Selected Mechanical Components for Design Adequacy 3.9.2.2.4.1 Essential Service Water (SW) Pumps 424 3.9.2.2.4.2 Component Cooling Heat Exchanger 425 3.9.2.2.4.3 Component Cooling Surge Tank 425 3.9.2.2.4.4 Diesel-Generator Air Tanks 425 3.9.2.2.4.5 Boric Acid Storage Tank 426 3.9.2.2.4.6 Refueling Water Storage Tank (RWST) 426 3.9.2.2.4.7 Motor-Operated Valves 427 3.9.2.2.4.8 Steam Generators 427 3.9.2.2.4.9 Reactor Coolant Pumps 428 3.9.2.2.4.10 Pressurizer 428 3.9.2.2.4.11 Control Rod Drive Mechanism 429 429 3.9.2.3 Dynamic Response Analysis of Reactor Internals Under Operational Flow Transients and Steady-State Conditions Page 23 of 39 Revision 28 5/2019

GINNA/UFSAR 3.9.2.3.1 Design Criteria 430 3.9.2.3.1.1 General 430 3.9.2.3.1.2 Critical Internals 430 3.9.2.3.1.3 Allowable Stress Criteria 431 3.9.2.3.2 Blowdown and Force Analysis 431 3.9.2.3.2.1 Computer Program 431 3.9.2.3.2.2 Blowdown Model 432 3.9.2.3.2.3 LATFORC MODEL 433 3.9.2.3.2.4 FORCE2 MODEL 433 3.9.2.3.3 Fuel Assembly Thimbles 434 3.9.2.3.4 Dynamic System Analysis of Reactor Internals Under Loss-of-Coolant Accident (LOCA) 434 3.9.2.3.4.1 Mathematical Model of the Reactor Pressure Vessel (RPV) System 434 3.9.2.3.4.2 Analytical Methods 436 3.9.2.3.4.3 RPV Internal Hydraulic Loads 436 3.9.2.3.4.4 Reactor Coolant Loop Mechanical Loads 438 3.9.2.3.4.5 Results of the Analysis 438 3.9.2.3.5 Transverse Guide Tube Excitation by Blowdown Forces 438 3.9.2.3.5.1 General 438 3.9.2.3.5.2 Response of Guide Tube 439 3.9.2.3.5.3 Description of Stress Location 440 3.9.2.3.6 Reevaluation of the Dynamic Response of Reactor Internals for Extended Power Uprate (EPU) 440 3.9.2.3.6.1 Reactor Pressure Vessel System Thermal-Hydraulic Analysis 440 3.9.2.3.6.2 Bypass Flow Analysis 440 3.9.2.3.6.3 Thermal Analysis of the Baffle/Barrel Region 441 3.9.2.3.6.4 Pressure Drop Across the Baffle Plate Analyses 441 3.9.2.3.6.5 Flow Induced Vibration 441 3.9.2.3.6.6 Reactor Internals Structural Integrity 441 3.9.2.3.6.7 Control Rod Performance 441 3.9.2.3.6.8 Vessel/Internals/Fuel/Control Rod Response During Loca Conditions 442 3.9.2.3.6.9 Summary of Conclusions 442 3.9.2.4 Asymmetric Loss-of-Coolant Accident Loading Analysis 442 3.9.2.5 Seismic Evaluation of Reactor Vessel Internals 442 3.9.2.5.1 Analysis Procedure 442 3.9.2.5.2 Analysis Results 443 Page 24 of 39 Revision 28 5/2019

GINNA/UFSAR 3.9.3 COMPONENT SUPPORTS AND CORE SUPPORT STRUCTURES 444 3.9.3.1 Loading Combinations, Design Transients, and Stress Limits 444 3.9.3.2 Component Supports 444 3.9.3.2.1 Reactor Vessel 444 3.9.3.2.2 Steam Generators 445 3.9.3.2.3 Reactor Coolant Pumps 445 3.9.3.2.4 Pressurizer 446 3.9.3.2.5 Reactor Coolant Piping 446 3.9.3.3 Pipe Supports 446 3.9.3.3.1 Original Analysis 446 3.9.3.3.2 IE Bulletin Reanalysis 446 3.9.3.3.3 Seismic Piping Upgrade Program 447 3.9.3.3.3.1 Applicable Supports 447 3.9.3.3.3.2 Load Combinations and Stress Limits 447 3.9.3.3.3.3 Structural Requirements 447 3.9.3.3.4 Base Plate Flexibility 449 3.9.3.3.5 Snubbers 449 3.9.3.3.5.1 Design Loads 449 3.9.3.3.5.2 Surveillance Program 450 3.9.4 CONTROL ROD DRIVE SYSTEMS 450 3.9.4.1 Description 450 3.9.4.1.1 General 450 3.9.4.1.2 Latch Assembly 451 3.9.4.1.3 Pressure Vessel 452 3.9.4.1.4 Operating Coil Stack 452 3.9.4.1.5 Drive Shaft Assembly 452 3.9.4.1.6 Position Indicator Coil Stack 452 3.9.4.2 Design Loads, Stress Limits, and Allowable Deformation 452 3.9.4.3 Control Rod Drive Mechanism Housing Mechanical Failure Evaluation 453 3.9.4.3.1 Housing Description 453 3.9.4.3.2 Effects of Rod Travel Housing Longitudinal Failures 453 3.9.4.3.3 Effect of Rod Travel Housing Circumferential Failures 453 3.9.4.3.4 Summary 454 3.9.5 REACTOR PRESSURE VESSEL INTERNALS 454 3.9.5.1 Design Arrangements 454 3.9.5.1.1 Lower Core Support Structure 454 Page 25 of 39 Revision 28 5/2019

GINNA/UFSAR 3.9.5.1.1.1 Support Structure Assembly 454 3.9.5.1.1.2 Lower Core Plate 454 3.9.5.1.1.3 Thermal Shield 455 3.9.5.1.1.4 Coolant Flow Passages 456 3.9.5.1.1.5 Support and Alignment Arrangements 456 3.9.5.1.2 Upper Core Support Assembly 456 3.9.5.1.3 In-Core Instrumentation Support Structures 457 3.9.5.2 Loading Conditions 458 3.9.5.3 Design Bases 458 3.9.6 INSERVICE INSPECTION OF PUMPS AND VALVES 459 3.9.6.1 General 459 3.9.6.2 Inservice Testing of Pumps 459 3.9.6.3 Inservice Testing of Valves 460 3.9.7 Extended Power Uprate (EPU) 460 Table 3.9-1 ORIGINAL DESIGN LOADING COMBINATIONS AND STRESS 464 LIMITS Table 3.9-2 RESIDUAL HEAT REMOVAL LOOP A STRESS

SUMMARY

465 Table 3.9-3 MAIN STEAM LINE-LOOP B STRESS

SUMMARY

466 Table 3.9-4 CHARGING LINE STRESS

SUMMARY

467 Table 3.9-5 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR 468 PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - UPSTREAM OF VALVES Table 3.9-6 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR 469 PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - SEISMICALLY DESIGNED DOWNSTREAM PORTION Table 3.9-7 DEFINITIONS OF LOAD ABBREVIATIONS 470 Table 3.9-8 LOADING COMBINATIONS AND STRESS LIMITS FOR PIPING 471 FOR SEISMIC UPGRADE PROGRAMS Table 3.9-9 ALLOWABLE STEAM GENERATOR NOZZLE LOADS 472 Table 3.9-10 REACTOR COOLANT PUMP AUXILIARY NOZZLE UMBRELLA 473 LOADS Table 3.9-11 SYSTEMATIC EVALUATION PROGRAM STRUCTURAL 476 BEHAVIOR CRITERIA FOR DETERMINING SEISMIC DESIGN ADEQUACY Table 3.9-12 MECHANICAL COMPONENTS SELECTED FOR SEP SEISMIC 477 REVIEW Table 3.9-13 MAXIMUM STRESS HOT-LEG BREAK (ORIGINAL ANALYSIS) 478 Table 3.9-14 MAXIMUM STRESS COLD-LEG BREAK (ORIGINAL 479 ANALYSIS)

Page 26 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.9-15 MAXIMUM CORE BARREL STRESS AND DEFLECTION UNDER 480 HOT-LEG BLOWDOWN (ORIGINAL ANALYSIS)

Table 3.9-16a MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD- 481 LEG BLOWDOWN (ORIGINAL ANALYSIS) - IN THE UPPER BARREL Table 3.9-16b MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD- 482 LEG BLOWDOWN (ORIGINAL ANALYSIS) - AT THE UPPER BARREL ENDS Table 3.9-17 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 483 Table 3.9-18 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 484 Table 3.9-19 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 485 Table 3.9-20 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 486 Table 3.9-21 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 487 Table 3.9-22 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 489 Table 3.9-23a LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS 490 FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION - FOR PLANT EVENTS Table 3.9-23b LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS 491 FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION -

DEFINITION OF LOADING CONDITIONS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION IN TABLE 3.9-23a Table 3.9-24 RESIDUAL HEAT REMOVAL LOOP A SUPPORT LOADS1 492 CALCULATED FOR IE BULLETIN 79-07 Table 3.9-25a MAIN STEAM LINE LOOP B SUPPORT LOADS2 CALCULATED 495 FOR IE BULLETIN 79 SEISMIC SUPPORT Table 3.9-25b MAIN STEAM LINE LOOP B NOZZLE LOADS CALCULATED 496 FOR IE BULLETIN 79 NOZZLE LOADS Table 3.9-26 CHARGING LINE SUPPORT LOADSa CALCULATED FOR IE 497 BULLETIN 79-07 Page 27 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.9-27 LOADING COMBINATIONS AND STRESS LIMITS FOR 502 SUPPORTS ON PIPING SYSTEMS Table 3.9-28 ANALYSIS OF TYPICAL PIPE SUPPORT BASE PLATES 503 CALCULATED FOR IE BULLETIN 79-02 Table 3.9-29 INTERNALS DEFLECTIONS UNDER ABNORMAL OPERATION 504 3.10 SEISMIC QUALIFICATION OF SEISMIC CATEGORY I INSTRU- 505 MENTATION AND ELECTRICAL EQUIPMENT 3.10.1 SEISMIC QUALIFICATION CRITERIA 505 3.10.1.1 Original Criteria 505 3.10.1.2 Current Criteria 505 3.10.2 SEISMIC QUALIFICATION OF ELECTRICAL EQUIPMENT AND 506 INSTRUMENTATION 3.10.2.1 Introduction 506 3.10.2.2 Battery Racks 507 3.10.2.3 Motor Control Centers 1L and 1M 507 3.10.2.4 Switchgear 508 3.10.2.5 Control Room Electrical Panels 508 3.10.2.6 Electrical Cable Raceways 509 3.10.2.7 Constant Voltage Transformers 509 3.10.3 SEISMIC QUALIFICATION OF SUPPORTS OF ELECTRICAL 509 EQUIPMENT AND INSTRUMENTATION 3.10.3.1 Equipment Addressed 510 3.10.3.2 Raceway Anchorages 510 3.10.3.2.1 Test Program 510 3.10.3.2.2 Test Loads 511 3.10.3.2.3 Expansion Anchor Test Results 512 3.10.3.2.4 Frictional Anchor Test Results 512 3.10.3.2.5 Embedded Anchor Test Results 513 3.10.3.3 Class 1E Equipment Anchorage Qualification Program 513 3.10.3.4 Conclusions 514 3.10.4 FUNCTIONAL CAPABILITY OF COMPONENTS 514 3.10.5 SEISMIC CATEGORY I TUBING 514 3.10.5.1 Codes and Standards 514 3.10.5.1.1 Tubing Design Requirements 515 3.10.5.1.2 Tubing Supports Design Requirements 515 Page 28 of 39 Revision 28 5/2019

GINNA/UFSAR 3.10.5.2 Load Conditions 516 3.10.5.2.1 Tubing 516 3.10.5.2.2 Tubing Supports 516 3.10.5.3 Routing Requirements 517 Table 3.10-1 MAJOR CLASS 1E COMPONENTS AND THE BASIS FOR 520 SEISMIC QUALIFICATION Table 3.10-2 ELECTRICAL COMPONENTS SELECTED FOR SEISMIC 522 REVIEW Table 3.10-3 SHELL ANCHOR TEST

SUMMARY

523 Table 3.10-4 FRICTION BOLT TEST RESULT

SUMMARY

524 Table 3.10-5 CATEGORY 3 ANCHORS TEST

SUMMARY

525 Table 3.10-6 STRESS LIMITS FOR TUBING 526 3.11 ENVIRONMENTAL DESIGN OF MECHANICAL AND ELECTRI- 527 CAL EQUIPMENT 3.

11.1 BACKGROUND

527 3.11.1.1 Initial Design Considerations 527 3.11.1.2 Review of Environmental Qualification of Safety-Related Electrical 527 Equipment 3.11.2 Equipment Identification 528 3.11.3 IDENTIFICATION OF LIMITING ENVIRONMENTAL CONDI- 528 TIONS 3.11.3.1 Inside Containment 528 3.11.3.1.1 Post Loss-of-Coolant Accident Environment 528 3.11.3.1.2 Post Main Steam Line Break Environment 530 3.11.3.2 Auxiliary Building 530 3.11.3.2.1 Heating, Ventilation, and Air Conditioning 530 3.11.3.2.2 Loss of Ventilation 531 3.11.3.2.3 Radiation Levels 532 3.11.3.2.4 Flooding 532 3.11.3.3 Intermediate Building 532 3.11.3.4 Cable Tunnel 533 3.11.3.5 Control Building 533 3.11.3.6 Diesel Generator Rooms 534 3.11.3.7 Turbine Building 534 3.11.3.8 Auxiliary Building Annex 535 3.11.3.9 Screen House 535 3.11.4 EQUIPMENT QUALIFICATION INFORMATION 535 3.11.5 ENVIRONMENTAL QUALIFICATION PROGRAM 535 Page 29 of 39 Revision 28 5/2019

GINNA/UFSAR Table 3.11-1 ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT 540 DESIGNED TO MITIGATE DESIGN-BASIS EVENTS Table 3.11-2 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE 549 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION Table 3.11-3 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE 551 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION Table 3.11-4 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE 553 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 Table 3.11-5 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE 555 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 Table 3.11-6 GINNA STATION/REGULATORY GUIDE 1.89, APPENDIX D, 557 COMPARISON OF POSTACCIDENT RADIATION ENVIRONMENT ASSUMPTIONS FIGURES Figure 3.7-1 Seismic Response Spectra, 8%g Housner Model Figure 3.7-2 Seismic Response Spectra, 20%g Housner Model Figure 3.7-3 NRC Systematic Evaluation Program Site Specific Spectrum, Ginna Site (5% Damping)

Figure 3.7-4 Comparison of the Housner Response Spectrum for 2% of Critical Damping with the 7% Regulatory Guide 1.60 Spectrum Figure 3.7-5 In-Structure Response Spectra for Interconnected Building, Half-Area and Full-Area Models Figure 3.7-6 Containment Building and Complex of Interconnected Seismic Cate-gory I and Nonseismic Structures, Plan View Figure 3.7-7 Horizontal Response Spectra - SEP Systematic Evaluation Program Figure 3.7-8 Steam Generator Mathematical Model Figure 3.7-9 Mathematical Model of Reactor Vessel Figure 3.7-10 Seismic Average Acceleration Spectrum Design Earthquake, 1%

Damping Figure 3.7-11 Locations Where In-Structure Response Spectra Were Generated in Interconnected Building Complex Figure 3.7-12 SEP Response Spectra for Pressurizer PR-1 (Containment Building Elevation 253 ft) for 3%, 5%, and 7% Damping Figure 3.7-13 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 253 ft) for 3%, 5%, 7% Damping Figure 3.7-14 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Page 30 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 3.7-15 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-16 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-17 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-18 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-19 SEP Response Spectra for Reactor Coolant Pump Rp-1A (Containment Building Elevation 247 ft) for 3%, 5%, and 7%

Damping Figure 3.7-20 SEP Response Spectra for Reactor Coolant Pump RP-1B (Containment Building Elevation 247 ft) for 3%, 5%, and 7%

Damping Figure 3.7-21 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Platform (Elevation 281 ft 6 in)

Figure 3.7-22 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Heat Exchanger 35 (Elevation 281 ft 6 in)

Figure 3.7-23 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Surge Tank 34 Figure 3.7-24 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Boric Acid Storage Tank 34 Figure 3.7-25 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Operating Floor (Elevation 271 ft 6 in)

Figure 3.7-26 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Basement Floor (Elevation 250 ft 0 in)

Figure 3.7-27 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Relay Room Floor (Elevation 269 ft 9 in)

Figure 3.7-28 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Room Floor (Elevation 289 ft 9 in)

Figure 3.7-29 Residual Heat Removal Line Inside Containment Figure 3.7-30 Lumped Mass Model - Steam Line B Figure 3.7-31 Structural Model, Pressurizer Safety and Relief Line Figure 3.8-1 Containment Cross Section and Details Figure 3.8-2 Containment Mat Foundation and Ring Girder Figure 3.8-3 Containment Mat Foundation, Reinforcement and Details Figure 3.8-4 Containment Wall Reinforcement and Details Figure 3.8-5 Containment Dome Reinforcement and Details Figure 3.8-6 Containment Miscellaneous Embedded Back-Up Steel Figure 3.8-7 Tendon Vent Cans and Grease Fill Connections Figure 3.8-8 Temperature Gradients - Operating Conditions Figure 3.8-9 Earthquake Meridional Forces Page 31 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 3.8-10 Containment Dynamic Analysis Model Figure 3.8-11 Ginna Containment Mode Shapes Figure 3.8-12 Ginna Containment - Earthquake Response Figure 3.8-13 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination A Figure 3.8-14 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination B Figure 3.8-15 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination C Figure 3.8-16 Tendon to Rock Coupling Figure 3.8-17 Containment - Top Tendon Access Figure 3.8-18 Containment Miscellaneous Steel Tendon Conduit - Hinge Detail Figure 3.8-19 Liner Knuckle Dimensions Figure 3.8-20 Containment Base to Cylinder Model Figure 3.8-21 Containment Dome to Cylinder Discontinuity Model Figure 3.8-22 Cracked Wall Shear Modulus Analysis Figure 3.8-23 Liner Shear Stress Analysis Figure 3.8-24 Windgirder, Shear Channels, and Shear Studs Figure 3.8-25 Cylinder Liner Plate Support Model Figure 3.8-26 Containment Penetration Details Figure 3.8-27 Containment Penetration Details (Typical)

Figure 3.8-28 Composite Drawing Electrical Penetration Figure 3.8-29 Containment Penetrations Section and Details Figure 3.8-30 Containment Equipment Hatch Figure 3.8-31 Containment Personnel Hatch Figure 3.8-32 Containment - Fuel Transfer Tube Penetration Figure 3.8-33 Containment Penetrations Arrangements and Location Figure 3.8-34 Test Coupon - Containment Concrete Shell Figure 3.8-35 Cadweld Splice Test Results Figure 3.8-36 Quality Control Chart for 5000 PSI Concrete Figure 3.8-37 Neoprene Base Hinge Load Deformation Specimen 1 Figure 3.8-38 Neoprene Base Hinge Load Deformation Specimen 2 Figure 3.8-39 Rock Anchor Test A-1 Figure 3.8-40 Containment - Rock Anchor A Test Figure 3.8-41 Containment - Rock Anchor B Test Figure 3.8-42 Containment - Rock Anchor C Test Page 32 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 3.8-43 Accident Temperature Transient Inside the Containment Used for Liner Analysis Figure 3.8-44 Accident Pressure Transient Inside the Containment Used for Liner Analysis Figure 3.8-45 Plan View of the Facade Structure and Containment Figure 3.8-46 Accident Temperature Gradient Through the Uninsulated Containment Shell After 94 Seconds Figure 3.8-47 Accident Temperature Gradient Through the Uninsulated Containment Shell After 380 Seconds Figure 3.8-48 Ginna Containment Structure Figure 3.8-49 Liner Stud Interaction Models Figure 3.8-50 Accident Temperature Distribution in the Steel Liner Figure 3.8-51 Force Displacement Curve for 3/4 in. Headed Studs Figure 3.8-52 Force Displacement Curve for 5/8 in. S6L Studs Figure 3.8-53 Strut Buckling Under P and Delta T Figure 3.8-54 Pressure Effect on Liner Buckling Comparison With LOCA Figure 3.8-55 Reactor Containment Internal Structures Figure 3.8-56 Containment Interior Structures Model for STARDYNE Figure 3.8-57 Schematic Plan View of Major Ginna Structures Figure 3.8-58 Three-Dimensional View of Interconnected Building Complex Figure 3.8-59 Flow Chart of the Analysis of the Interconnected Building Complex Figure 3.8-60 Masonry Wall Reevaluation, Wall Location Plan, Lower Levels Figure 3.8-61 Masonry Wall Reevaluation, Wall Location Plan, Intermediate Levels Figure 3.8-62 Masonry Wall Reevaluation, Wall Location Plan, Operating Levels Figure 3.9-1 Steam-Generator Water Hammer Preliminary Forcing Function Figure 3.9-2 Plastic Model of Reactor Coolant System - Plan View Figure 3.9-3 Lumped Mass Dynamic Model of PCV 434 Figure 3.9-4 Lumped Mass Dynamic Model of PCV 435 Figure 3.9-5 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 519 Figure 3.9-6 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 560 Figure 3.9-6a Steam Generator Upper Support Systems Figure 3.9-7 Control Rod Drive Mechanism Assembly Figure 3.9-8 Control Rod Drive Mechanism Schematic Figure 3.9-9 Reactor Vessel Internals Figure 3.9-10 Detailed View of Reactor Vessel Internals Page 33 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 3.10-1 Q-Deck Detail Figure 3.10-2 Unistrut Detail Figure 3.10-3 Threaded Insert Detail Poured in Place Anchor Figure 3.10-4 Tray Support Types for Friction Bolt Testing Figure 3.11-1 Containment Volume and Reactor Power LOCA Dose Corrections Appendix 3A INITIAL EVALUATION OF CAPABILITY TO WITHSTAND TOR- 558 NADOES 3A.1 INTRODUCTION AND CONCLUSIONS 559 3A.2 IDENTIFICATION OF CRITICAL SYSTEMS AND STRUCTURES 561 3A.3 TORNADO EFFECTS ON STRUCTURES 562 3A.3.1 GENERAL 562 3A.3.2 REACTOR CONTAINMENT 562 3A.3.3 AUXILIARY BUILDING 562 3A.3.4 INTERMEDIATE BUILDING 563 3A.3.5 DIESEL-GENERATOR ANNEX 563 3A.3.6 SCREEN HOUSE 563 3A.3.7 CONTROL ROOM 564 3A.3.8 SERVICE BUILDING 564 3A.3.9 CABLE TUNNELS 564 3A.4 TORNADO EFFECTS ON THE SYSTEMS REQUIRED FOR HOT 565 SHUTDOWN 3A.4.1 DECAY HEAT REMOVAL 565 3A.4.1.1 Steam Relief System 565 3A.4.1.2 Auxiliary Feedwater System 565 3A.4.1.3 Service Water System 566 3A.4.2 REACTIVITY CONTROL 567 3A.4.2.1 Boration System 567 3A.4.2.2 Boration Using Refueling Water 567 3A.4.3 CONTAINMENT VENTILATION SYSTEM 568 3A.4.4 EMERGENCY POWER SUPPLY SYSTEM 569 3A.4.5 CONTROL SYSTEM 569 3A.4.5.1 Control Room 569 3A.4.5.2 Systems of Batteries 569 3A.4.5.3 Steam-Generator Level and Pressure Indicators, Pressurizer Pressure 569 and Level Control 3A.5 TORNADO EFFECT ON SPENT FUEL POOL 571 Appendix 3A Figures Page 34 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 1 Boration System Figure 2 Site Plot Plan Figure 3 Diesel Generator Annex - Elevation 253 ft 6 in.

Figure 4 Screen House Layout Figure 5 Steam Relief Valves Figure 6 Auxiliary Feedwater Pumps Figure 7 Component Cooling System Figure 8 Spent Fuel Storage Pool, Plan View Figure 9 Spent Fuel Storage Pool, Section View Appendix 3B DESIGN OF LARGE OPENING REINFORCEMENTS FOR CON- 572 TAINMENT VESSEL Table of Contents 573 Summary 576 I. Design Bases 576 II. GENERAL DESCRIPTION 576 III. STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A 576 CIRCULAR CYLINDRICAL SHELL IV. ANALYSIS OF STRESSES AROUND LARGE OPENINGS 576 V. VERIFICATION OF REINFORCEMENT ADEQUACY 577

1. DESIGN BASES 579 1.1 General 579 1.2 Design Loads 579 1.3 Load Combinations 579 1.4 Material Stress/Strain Criteria 580 1.5 Test Condition 582 1.6 Operating Condition 582
2. GENERAL DESCRIPTION OF OPENING REINFORCEMENT 583 2.1 Introduction 583 2.2 Rebar for Discontinuity Stresses 583 2.3 Normal Shear at Edge of Opening 583 2.4 Prestressing 583
3. STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A 584 CIRCULAR CYLINDRICAL SHELL 3.1 Introduction 584 3.2 Finite Element Method 585 3.3 Applications of Three-Dimensional Photoelasticity 586 Page 35 of 39 Revision 28 5/2019

GINNA/UFSAR

4. ANALYSIS OF THE STRESSES AROUND LARGE OPENINGS IN 588 THE R. E. GINNA SECONDARY CONTAINMENT VESSEL 4.1 Verification of Finite-element Method of Analysis 588 4.2 General Considerations Concerning Methods of Analysis of Reinforced 589 Concrete Structures in the Cracked Condition 4.3 Stress Analysis in Cracked and Uncracked Conditions Under Operating 590 and Accident Loads 4.3.2 Basic Loading Conditions 592 4.3.3 Effect of Concrete Cracking 595 4.3.4 Effect of Creep and Shrinkage 597
5. Verification of Design Criteria 598 5.1 Basis For Verification of Shell Loading Capacity Due to Primary Loads 598 (Principal Stress-resultants and Principal Stress-couples) 5.2 Interaction Diagram 599 5.3 Reinforcing Steel 600 5.4 Maximum Liner Stresses 600 5.5 Penetration Barrel 600 5.6 Normal Shear 601 5.7 Rebar Anchorage 602 5.8 Tendon Losses 603 5.9 Summary of Design and Conclusions 604 Table 4-1 Load Combinations 608 Table 4-2 Stress Around Equipment Hatch-Loading (Uncracked Shell) 609 Table 4-3 Stress Around Equipment Hatch-Loading (Cracked Shell) 611 Table 5-1 Maximum Liner Stresses Stress tangent to the edge in Ksi 619 Appendix A to EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER- 620 APPENDIX 3B ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 3B.A EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER- 621 ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL Appendix B TO EARTHQUAKE ANALYSIS 628 APPENDIX 3B 3B.B Earthquake Analysis 629 ADDENDUM TO ADDENDUM TO THE REPORT ON: DESIGN OF LARGE OPEN- 630 APPENDIX 3B ING REINFORCEMENTS FOR CONTAINMENT VESSEL 3B.C Introduction 631 1 Design 632 Page 36 of 39 Revision 28 5/2019

GINNA/UFSAR 1.1 Concrete Shear 632 1.2 Interaction Diagrams 632 1.3 Earthquake Design 632 1.4 Thermal Gradients 632 1.5 Penetration Material 633 1.6 Working Strength Design 633 1.7 Anchorage Plate Bearing Stress 633 1.8 Insulated Liner Temperature Increase 633 1.9 High Strength Rebar 633 1.10 Proof Test Instrumentation 633 1.11 Operating Conditions 634 1.12 Shear - Diagonal Tension 634 1.13 Normal Shears 635 1.14 Radial Shear at the Periphery of the Opening 635 1.15 Accident Temperature Effects 635 1.16 Analytical Model for Different Load Combinations 635 1.17 Shear Reinforcement 635 1.18 Equation (5.11) 636 1.19 Rebar Located Away from the Barrel 636 1.20 Verification of Analysis 637 1.21 Test Problem 638 1.22 Accident Temperature 638 2 Construction 639 2.1 Construction Schedule 639 2.2 Concrete Removal 639 2.3 Concrete Work 639 2.4 Retensioning Tendons 640 2.5 Rebar Splices 640 2.6 Tendon Conduit 640 Table I STRESS AROUND EQUIPMENT HATCH LOADING CONDITION 641 NO. 4 - Accident Temperature Appendix 3B Figures Figures Appendix 3B Figures Figure 1 Figure 2 Figure 3 Stress Distribution Around Openings in Cylindrical Shells Page 37 of 39 Revision 28 5/2019

GINNA/UFSAR Figure 4 Grid for Finite Element Analysis of the Stresses Around Openings Figure 5 Membrane Stress Around Opening Edge (Vessel Subject to Internal Pressure)

Figure 6 Surface Stresses Around Opening Edge (Vessel Subject to Internal Pressure)

Figure 7 Hoop Stresses Along Longitudinal Axis (Vessel Subject to Internal Pressure)

Figure 8 Axial Stresses Along Transverse Axis (vessel Subject to Inernal Pres-sure)

Figure 9 Hoop Stress-Resultant No Along Symmetry Axes (Test Problem)

Figure 10 Layer Thickness And Destination Figure 11 Nodal Forces Due to Curvature of Tendons in the Neighborhood of Opening Figure 12 Stress Distribution Around Openings (Thermal Gradient Near Equip-ment Opening)

Figure 13 Steady State Temperature Distributions - Winter Gradient Figure 14 Stress Distribution Around Openings (Effect of Bond Failure Along Terminated Rebars)

Figure 15 Hoop Stress-Resultant Along Horizontal And Vertical Symmetry Axes (Internal Pressure = 69 PSI)

Figure 16 Shell Displacements (Final Vertical Prestress)

Figure 17 Shell Displacements (69 PSI Internal Pressure)

Figure 18 Interaction Diagram for Axial Compression/Tension and Bending Figure 19 Interaction Diagram Ring Steel Direction Elements No. 73 & 74 Figure 20 Interaction Diagram Elements No. 97, 100, & 101 Figure 21 Interaction Diagram Elements No. 97, 100, & 101 Figure 22 Interaction Diagram Elements No. 33, 55, 66, & 77 Figure 23 Interaction Diagram Element No. 77 Figure 24 Interaction Diagram Element No. 55 Drawings Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforce-ment - Enlarged Sections Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforce-ment - Stretch-out & Sections Figure I Comparison of H.H. & GAI Results Hoop Stress Resultants Along Horizontal and Vertical Symmetry Axes (Internal Pressure = 69 PSI)

Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforcement - Enlarged Sections Page 38 of 39 Revision 28 5/2019

GINNA/UFSAR Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforcement - Stretch-out & Sections Figure Drawing 3 Large Openings - Pour Schedule Appendix 3C CONTAINMENT SHELL STRESS CALCULATION RESULTS 642 Table 3C-1 CONTAINMENT SHELL STRESS CALCULATION RESULTS 643 Appendix 3D CONTAINMENT TENDON ANCHORAGE HARDWARE CAPAC- 668 ITY TESTS Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con- 669 crete Stand Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con- 673 crete Stand Compression Tests of 90-Wire Anchor Head Assembly 681 Compression Tests of 90-Wire Anchor Head Assembly 683 Load Tests of Coupler and Adaptor 90-11 690 Load Tests of Coupler and Adaptor 90-11 692 90 Wire Tendon Test 696 90 Wire Tendon Test 697 90 Wire Tendon Test 698 Load Tests of 90-X7 Coupler 702 Appendix 3E CONTAINMENT LINER INSULATION PREOPERATIONAL 704 TESTS BM Containment Insulation SP-5290 Ginna Plant 705 Report No. E455-T-268, VINYLCEL (4 pcf) - Water Vapor Permeabil- 707 ity and Humid Aging Tests Report No. E455-T-266, VINYLCEL (4 pcf) - Effect of Heat and Pres- 711 sure Report No. E455-T-258, VINYLCEL - Resistance to Flame Exposure 718 Appendix 3F

SUMMARY

OF STRUCTURAL DESIGN CODE COMPARISON 740 Table of Contents 741 3F.1 INTRODUCTION 742 Table 3F.2-1 AISC 1963 VERSUS AISC 1980

SUMMARY

OF CODE 743 COMPARISON Table 3F.3-1 ACI 318-63 VERSUS ACI 349-76

SUMMARY

OF CODE 747 COMPARISON Table 3F.4-1 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975)

SUMMARY

OF 756 CODE COMPARISON Table 3F.5-1 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, 762 DIVISION 2, 1980,

SUMMARY

OF CODE COMPARISON Page 39 of 39 Revision 28 5/2019