ML20339A041

From kanterella
Jump to navigation Jump to search
9 to Updated Final Safety Analysis Report, Chapter 15, Accident Analysis, Figures
ML20339A041
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/20/2020
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20339A309 List: ... further results
References
Download: ML20339A041 (147)


Text

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.0-1 Core Limits and Overpower-Overtemperature Delta T Setpoints (Tref =

576.0°F)

Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.0-2 Reactivity Coefficients Used in Non-LOCA Safety Analysis Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.0-3 Reactivity Insertion Scram Curves Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-1 Feedwater Flow Increase at Full Power, Nuclear Power and Loop Average Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-2 Feedwater Flow Increase at Full Power, Pressurizer Pressure and Steam Generator Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-3 Feedwater Flow Increase at Full Power, Steam Generator Mass Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-4 Steam Line Rupture, Multiplication Factor Versus Core Average Temperature (Calculated at 1050 psia)

Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-5 Steam Line Rupture, Integrated Doppler Defect Versus Fraction of Power Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-6 Steam Line Rupture, 1.4ft2 Break with Power, Two Loops in Service, Core Heat Flux and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-7 Steam Line Rupture, 1.4ft2 Break with Power, Two Loops in Service, Pressurizer Water Volume and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-8 Steam Line Rupture, 1.4ft2 Break with Power, Two Loops in Service, Loop TAVG and Cold Leg Loop Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-9 Steam Line Rupture, 1.4ft2 Break with Power, Two Loops in Service, Faulted Loop Steam Flow and Total Feedwater Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-10 Steam Line Rupture, 1.4ft2 Break with Power, Two Loops in Service, Core Averaged Boron and Reactivity Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-11 Steam Line Rupture, 1.4ft2 Break Without Power, Two Loops in Service, Core Heat Flux and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-12 Steam Line Rupture, 1.4ft2 Break Without Power, Two Loops in Service, Pres-surizer Water Volume and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-13 Steam Line Rupture, 1.4ft2 Break Without Power, Two Loops in Service, Loop TAVG and Cold Leg Loop Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-14 Steam Line Rupture, 1.4ft2 Break Without Power, Two Loops in Service, Faulted Loop Steam Flow and Total Feedwater Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-15 Steam Line Rupture, 1.4ft2 Break without Power, Two Loops in Service, Core Averaged Boron and Reactivity Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-16 Steam Line Rupture, 1.4ft2 Break with Power, One Loop in Service, Core Heat Flux and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-17 Steam Line Rupture, 1.4ft2 Break with Power, One Loop in Service, Pressurizer Water Volume and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-18 Steam Line Rupture, 1.4ft2 Break with Power, One Loop in Service, Loop TAVG and Cold Leg Loop Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-19 Steam Line Rupture, 1.4ft2 Break with Power, One Loop in Service, Faulted Loop Steam Flow and Total Feedwater Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-20 Steam Line Rupture, 1.4ft2 Break with Power, One Loop in Service, Core Averaged Boron and Reactivity Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-21 Combined Atmospheric Relief Valve and Main Feedwater Regulating Valve Failure, Nuclear Power and Core Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-22 Combined Atmospheric Relief Valve and Main Feedwater Regulating Valve Failure, Loop Average Temperature and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-23 Combined Atmospheric Relief Valve and Main Feedwater Regulating Valve Failure, DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.1-24 Combined Atmospheric Relief Valve and Main Feedwater Regulating Valve Failure, Steam Generator Level and Steam Generator Mass Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-1 Loss of Load, with Automatic Pressure Control, Nuclear Power and DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-2 Loss of Load, with Automatic Pressure Control, RCS Average Temperature and Pressurizer Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-3 Loss of Load, with Automatic Pressure Control, Steam Generator Pressure and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-4 Loss of Load, Without Pressure Control, Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-5 Loss of Load, Without Pressure Control, RCS Average Temperature and Pressurizer Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-6 Loss of Load, Without Pressure Control, Steam Generator Pressure and Reactor Coolant System Pressures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-7 Loss of Load, Peak MSS Pressure Case, Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-8 Loss of Load, Peak MSS Pressure Case, RCS Average Temperature and Pressurizer Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-9 Loss of Load, Peak MSS Pressure Case, Steam Generator Pressure and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-10 Figure Deleted Revision 26 4/2016 Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-11 Figure Deleted Revision 26 4/2016 Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-12 Figure Deleted Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-13 Loss of Offsite Alternating Current Power to the Station Auxiliaries, Nuclear Power and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-14 Loss of Offsite Alternating Current Power to the Station Auxiliaries, Pressurizer Water Volume and Pressurizer Steam Relief Rate Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-15 Loss of Offsite Alternating Current Power to the Station Auxiliaries, Reactor Coolant Flow and Core Inlet/Outlet Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-16 Loss of Offsite Alternating Current Power to the Station Auxiliaries, Steam Generator Mass and Steam Generator Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-17 Loss of Normal Feedwater With Power, Nuclear Power and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-18 Loss of Normal Feedwater With Power, Pressurizer Water Volume and Pressurizer Steam Relief Rate Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-19 Loss of Normal Feedwater With Power, Reactor Coolant Flow and Core Inlet/

Outlet Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-20 Loss of Normal Feedwater With Power, Steam Generator Mass and Steam Generator Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-21 Feedline Break With Offsite Power; Nuclear Power and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-22 Feedline Break With Offsite Power; Pressurizer Water Volume and Pressurizer Steam Relief Rate Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-23 Feedline Break With Offsite Power; Cold Leg, Hot Leg and Saturation Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-24 Feedline Break With Offsite Power; Steam Generator Mass and Steam Generator Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-25 Feedline Break With Offsite Power; Feedwater Mass Flow Rates Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-26 Feedline Break Without Offsite Power; Nuclear Power and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-27 Feedline Break Without Offsite Power; Pressurizer Water Volume and Pressurizer Steam Relief Rate Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-28 Feedline Break Without Offsite Power; Cold Leg, Hot Leg and Saturation Temperatures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-29 Feedline Break Without Offsite Power; Steam Generator Mass and Steam Generator Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.2-30 Feedline Break Without Offsite Power; Feedwater Mass Flow Rates Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-1 Full Loss of Flow (Undervoltage), Nuclear Power and RCS Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-1a Full Loss of Flow (Underfrequency), Nuclear Power and RCS Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-2 Full Loss of Flow (Undervoltage), Core Average and Hot Channel Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-2a Full Loss of Flow (Underfrequency), Core Average and Hot Channel Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-3 Full Loss of Flow (Undervoltage), RCS Pressures and DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-3a Full Loss of Flow (Underfrequency), DNBR and Reactor Coolant System Pressures Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-4 Partial Loss of Flow, Nuclear Power and RCS Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-5 Partial Loss of Flow, RCS Pressures and RCS Loop Flows Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-6 Partial Loss of Flow, Core Average and Hot Channel Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-7 Partial Loss of Flow, DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-8 Locked Rotor - RCS Pressures and RCS Loop Flows Versus Time An evaluation on the effect of applying a pressurizer level uncertainty showed that the peak pressure value in this figure (above) will increase less than 45 psi.

Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-9 Locked Rotor - Nuclear Power and RCS Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.3-10 Locked Rotor - Core Average Heat Flux and Cladding Inside Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-1 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal From Subcritical Conditions, Heat Flux and Nuclear Power Versus Time (422V+Fuel)

Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-2 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal From Subcritical Conditions, Clad Inside and Fuel Average Temperature Versus Time (422V+Fuel)

Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-3 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Minimum Feedback, 100 pcm/sec, Nuclear Power and Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-4 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Minimum Feedback, 100 pcm/sec, Pressurizer Pressure and Pressurizer Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-5 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Minimum Feedback, 100 pcm/sec, Tavg and DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-6 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Maximum Feedback, 5 pcm/sec, Nuclear Power and Heat Flux Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-7 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Maximum Feedback, 5 pcm/sec, Pressurizer Water Volume and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-8 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Maximum Feedback, 5 pcm/sec, TAVG and DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-9 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power, Maximum and Maximum Feedback, DNBR Versus Reactivity Insertion Rate Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-10 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal from 60% Power, Minimum and Maximum Feedback, DNBR Versus Reactivity Insertion Rate Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-11 Uncontrolled Rod Cluster Control Assembly Bank Withdrawal from 10% Power, Minimum and Maximum Feedback, DNBR Versus Reactivity Insertion Rate Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-12 Startup of an Inactive Coolant Loop, Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-13 Startup of an Inactive Coolant Loop, TAVG Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-14 Startup of an Inactive Coolant Loop, Core Inlet Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-15 Startup of an Inactive Coolant Loop, Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-16 Rod Cluster Control Assembly Ejection Beginning-of-Life, Full Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-16aRod Cluster Control Assembly Ejection, Beginning of Life, Full Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-16b Rod Cluster Control Assembly Ejection, Beginning of Life, Zero Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-17 Rod Cluster Control Assembly Ejection Beginning-of-Life, Zero Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-17a Rod Cluster Control Assembly Ejection, End of Life, Full Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-17b Rod Cluster Control Assembly Ejection, End of Life, Zero Power, Fuel and Clad Temperature and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-18 Rod Cluster Control Assembly Drop Heat Flux and Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.4-19 Rod Cluster Control Assembly Drop Pressurizer Pressure and Core Average Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-1 Steam Generator Tube Rupture (Overfill), Maximum Safety Injection Flow Versus Pressure Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-1a RCS Depressurization, Nuclear Power Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-1b RCS Pressurization, Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-1c RCS Depressurization, Indicated Loop Average Temperature Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-1d RCS Depressurization, DNBR Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-2 SGTR (Overfill), Pressurizer Level and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-3 SGTR (Overfill), Secondary Pressure and Steam Generator Liquid Mass Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-4 SGTR (Overfill), Hot and Cold Leg Temperatures for Intact and Ruptured Steam Generators Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-5 SGTR (Overfill), Total Primary to Secondary Leakage and Total Integrated Primary to Secondary Leakage Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-6 SGTR (Overfill), Steam Generator Relief Flow and Integrated Steam Generator Relief Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-7 SGTR (Overfill), Steam Generator Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-8 SGTR (Dose), Pressurizer Level and Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-9 SGTR (Dose), Secondary Pressure and Steam Generator Liquid Mass Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-10 SGTR (Dose), Hot and Cold Leg Temperatures for Intact and Ruptured Steam Generators Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-11 SGTR (Dose), Total Primary to Secondary Leakage and Total Integrated Primary to Secondary Leakage Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-12 SGTR (Dose), Steam Generator Relief Flow and Integrated Steam Generator Relief Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-13 SGTR (Dose), Steam Generator Water Volume Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-14 SGTR (Dose), Tube Rupture Flow Flashing Fraction and Integrated Flashed Break Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-15 Small Break LOCA Inch Break, Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-16 Small Break LOCA Inch Break, Core Mixture Level Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-17 Small Break LOCA Inch High Break, Peak Cladding Temperature at PCT Elevation Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-18 Small Break LOCA Inch High Break, Core Exit Vapor Flow Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-19 Small Break LOCA Inch Break, Hot Rod Heat Transfer Coefficient at PCT Elevation Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-20 Small Break LOCA Inch Break, Fluid Temperature at PCT Elevation Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-21 Small Break LOCA - Axial Power Distribution, Heat Rate Versus Core Elavation Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-22 Small Break LOCA - 1.5-Inch Break, Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-23 Small Break LOCA Inch High Break, Pressurizer Pressure Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-24 Small Break LOCA - 1.5-Inch Break, Core Mixture Level Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-25 Small Break LOCA Inch Break, Core Mixture Level Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-26 Small Break LOCA - 1.5-Inch Break, Peal Cladding Temperature at PCT Elavation Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-27 Small Break LOCA Inch Break, Peak Cladding Temperature at PCT Elevation Versus Time Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-28 Figure Deleted Revision 26 4/2016 Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-29 Figure Deleted Revision 26 4/2016 Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-30 Figure Deleted Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-31 R.E. Ginna Vessel Model Noding Diagram1 Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-32 R.E. Ginna Loop Model Noding Diagram Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-33 R.E. Ginna Initial Transient Axial Power Distributions Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-34 Containment Pressure Used for the R.E. Ginna Best-Estimate Large Break LOCA Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-35 Peak Clad Temperature of the 5 rods for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-36 Split Break Flow for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-37 Total Flow at the Bottom of the Core for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-38 Accumulator Injection Flow for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-39 High Head Safety Injection Flow for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-40 Low Head Safety Injection Flow for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-41 Average Collapsed Liquid Level in the Downcomer for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-42 Lower Plenum Collapsed Liquid Level for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-43 Core Collapsed Liquid Levels for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-44 Vessel Liquid Mass for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-45 Pressurizer Pressure for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-46 Hot Rod Peak Clad Temperature and Elevation for the Initial Transient Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-47 R.E. Ginna PBOT/PMID Analysis and Operating Limits Revision 29 11/2020

GINNA/UFSAR Chapter 15 ACCIDENT ANALYSES Figure 15.6-48 Lower Bound Containment Pressure for R.E. Ginna Analysis Revision 29 11/2020