ML18011A541

From kanterella
Revision as of 06:14, 22 October 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Cycle 6 Startup Test Rept. W/ 940808 Ltr
ML18011A541
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 08/08/1994
From: Robinson W
CAROLINA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
HNP-94-062, HNP-94-62, NF-94A-0597, NF-94A-597, NUDOCS 9408180204
Download: ML18011A541 (93)


Text

k'MJ.~Mj.'. 'Y (ACCELERATED RIDS 1

INFORMATION DISTRIBUTI~SYSTEM (RIDS)

PROCESSIN~<'EGULARLY

~-8 ACCESSION NBR: 9408180204 DOC. DATE: 94/08/08 NOTARIZED: NO DOCKET FACIL:50-400 Shearon Harris Nuclear Power Plant, Unit 1, Carolina 05000400 AUTH. NAME AUTHOR AFFILIATION ROBINSON,W.R.

RECIP.NAME Carolina Power RECIPIENT AFFILIATION

!'ight Co.

SUBJECT:

"Harris Nuclear Plant Unit l,Cycle 6 Startup Test Rept." W/

940808 ltr.

DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR TITLE: Startup Report/Refueling Report (per Tech Specs+ J ENCL ! SIZE: 5+

NOTES:Application for permit renewal filed. 05000400 C RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-1 PD 1 1 LE,N 2 2 1NTERNAL: ACRS 5 5 AEOD/DSP/TPAB 1 1 NRR/SRX 1 1 NUDOCS-ABSTRACT 1 1 EG FILE 02 1 1 RGN2 FILE 01 1 1 EXTERNAL: NRC PDR 1 1 NSIC 1 1 NOTE TO ALL'RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE AVASTE! CONTACTTHE DOCUMENT CONTROL DESK, ROOM Pl-37 (EXT. 504-2083 ) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 15 ENCL 15

I l

k

Carolina Power & Light Company William R. Robinson PO Box 165 Vice President New Hill NC 27562 Harris Nuclear Plant AUG os t9%

File Number: HO-940352 SERIAL: HNP-94-062 United States Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555 SHEARON HARRIS NUCLEAR POWER PLANT DOCKET NO. 50-400/LICENSE NO. NPF-63 STARTUP TEST REPORT Gentlemen:

In accordance with the reporting requirements for the Shearon Harris Nuclear Power Plant (SHNPP) Technical Specifications, Section 6.9.1.1,Carolina Power 8c Light Company herein submits the Startup Test Report for Cycle 6 operation. The report is required because the SHNPP core for Cycle 6 contains fuel purchased from a different supplier, Siemens Power Corporation.

Questions regarding this matter may be referred to Mr. R. W. Prunty at (919) 362-2030.

Sincerely, W. R. Robinson SDC/sdc c: Mr. S. D. Ebneter Mr. N. B. Le Mr. J. E. Tedrow j'uv~b t'(.. t. r.~

9408i80204 940808 PDR ADOCK 05000400 R PDR State Road1134 NewHill NC Tel 919362-2502 Fax 919362-6950

P Serial: NF-94A-0597 Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report The First Reload of a Transition from Westinghouse to Siemens Supplied Fuel NFMLSA File: 908.04 Page 1 of 50 (Rev. 0)

Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report Table of Contents Page

1. Introduction and Cycle Description....... 3
2. Control and Shutdown Rod Drop Times

'. Control and Shutdown Rod Bank Worth Measurements

4. Endpoint Measurements .
5. Isothermal Temperature Coefficients ... 9
6. Power Distributions 10
7. Intermediate Range Detector Setpoint Verification
8. Conclusions ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 12
9. References ... ~.... ~...... ~............

~ 13

10. Appendix 14
11. Distribution List ..

Page 2 of 50 IRev. 0)

I s Nuclear Plant Unit 1, Cycle 6 Startu st Report 1.0 Introduction and Cycle Description This report documents the startup test results for Harris Nuclear Plant Unit 1, Cycle 6. This report will focus primarily on the results obtained from the various startup physics tests and on a comparison between measured and predicted data supplied by Siemens Power Corporation (SPC). Note that this report is not intended to be a detailed description of the startup tests; for detailed documentation of the tests, refer to the following procedures:

EPT-069 Initial Criticality EPT-026 Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer Detector EPT-070 Reactivity Computer Initial Setup and Calibration EPT-067 Boron Endpoint Measurement - All Rods Out EST-707 Special Test Exceptions EST-703 Moderator Temperature Coefficient Measurement BOL After Each Refueling EST-701 Shutdown Margin Calculation Mode 2 EPT-068 Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique EST-724 Shutdown and Control Rod Drop Test Using Computer FMP-101 Incore Thermocouple and Flux Mapping EST-710 Hot Channel Factor Tests EPT-009 Intermediate Range Detector Setpoint Verification Specifically, the following items are addressed:

Control Rod Drop Times Contro'I and Shutdown Bank Worth Measurements Endpoint Measurements Isothermal Temperature Coefficients Power Distributions Intermediate Range Detector Setpoint Verification Conclusions page 3 of 60 (Rev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report 1.0 Introduction and Cycle Description (Continued)

Among the items discussed for each of the topics above will be measured data, comparisons to predicted data, and applicable acceptance criteria which must be satisfied for the successful completion of the tests.

Harris Unit 1 is a three-loop Westinghouse PWR reactor currently in its sixth cycle of operation. The rated thermal power is 2775 MWt. The reactor core consists of 157 assemblies grouped into four regions for Cycle 6; with 52 fresh Siemens High Thermal Performance (HTP) assemblies, 96 carryover Westinghouse Vantage-5 assemblies and 9 Westinghouse reinserted LOPAR assemblies. The 9 reinserted assemblies were used because of the potential to exceed the peak pin burnup limits in the assemblies that they replaced. Tables 1.1, 1.2, 1.3 and 1.4 provide a review of the Cycle 6 core design parameters and a description of each fuel type. Figures 1.1 and 1.2 provide the core loading pattern and the thimble and control rod locations, respectively. Figure 1.3 provides the gadolinia loading in the fresh fuel assemblies.

There are several new features in Cycle 6. The fresh fuel is now supplied by Siemens Power Corporation (SPC) and the burnable poison in the fresh fuel is gadolinium oxide (Gd~Oa). Additional changes to the Harris Plant include the elimination of the RTD bypass manifold, a T>> reduction of 8'F and the removal of the neutron source assemblies from use in the Cycle 6 core.

The predicted full power Cycle 6 length is 420 EFPDs based on a 463 EFPD Cycle 5.

Cycle 6 initial criticality was achieved on May 10, 1994; the unit synchronized to the grid on 5I12I94.

Following criticality, checkouts of the reactivity computers (connected to Nl-41 and Reactivity Computer Detector) were performed by comparing period measurements to the startup rate indicated by the computer. The six-group constants input to the reactivity computers were provided by SPC and are listed in Table 1.5. After confirming correct operation of the reactivity computers, startup physics testing continued in accordance with the established schedule. The reactivity computer connected to Nl-41 was disconnected since the reactivity computer connected to the Reactivity Computer Detector was performing satisfactorily. The results of the Low Power Physics tests and the applicable acceptance criteria are provided in Tables 1.6 and 1.7.

page 4 of 50 IRev. 0)

V is Nuclear Plant Unit 1, Cycle 6 Start~st Report 2.0 Control and Shutdown Rod Drop Times Rod drop tests were performed in accordance with procedure EST-724 at hot full flow coolant conditions. Briefly, a bank was selected and pulled to the fully withdrawn position. Rods were then dropped by opening the reactor trip breakers, thus interrupting the circuit.

Technical Specifications require that the rod drop time from the beginning of the drop to dashpot entry be no greater than 2.7 seconds at full core flow and T, 2 551eF In Cycle 6, all rods met the rod drop acceptance criteria.

The summarized results of the rod drop test are presented in Table 2.1 The data for the rods going

~

into the SPC fuel has been italicized.

Page 5 of 50 IRev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startup est Report 3.0 Control and Shutdown Rod Bank Worth Measurements Rod worthmeasurements were performedin accordance with plant procedure EPT-068. This procedure uses the rod swap technique to measure all banks except for the reference bank; this bank is measured through boron dilution. The purposes of this procedure are as follows:

To verify that the reactivity worth of the reference RCC bank, as determined through reactivity computer measurement, is consistent with design predictions. The reference RCC bank is the bank that has the highest predicted reactivity worth of all control and shutdown banks when inserted into an otherwise unrodded core. In Cycle 6 the Reference Bank is Control Bank B.

2. To verify that the reactivity worth of each control and shutdown bank (except for the Reference Bank), as measured in the presence of the Reference Bank in a critical configuration, is consistent with design predictions.
3. To verify by analysis that shutdown margin is consistent with accident analysis assumptions.
4. To determine the critical RCS boron concentration and associated reactivity worth appropriate to an endpoint configuration. The boron endpoints of interest in this procedure are those with ARO and the reference bank fully inserted. The method used to obtain this data is similar to that used in EPT-067, except that the Reference Bank is manipulated instead of Control Bank D.

pege 6 of 60 {Rev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report 3.0 Control and Shutdown Rod Bank Worth Measurements (Continued)

The review criteria for the rod worths is as follows:

1. The absolute value of the percent difference between measured and predicted integral worth of the Reference Bank is ( 10o/o.
2. For all banks other than the Reference Bank; either 80 The absolute value of the percent difference between measured and predicted worths is (15/o, or
b. The absolute value of the reactivity difference between measured and predicted worths is ( 100 pcm, whichever is greater.

The accePtance criteria requires that the sum of the measured worths be greater than 90o/o and less than 110/o of the sum of the predicted worths.

Table 3.1 presents the integral and differential worth of Control Bank 8 (Reference Bank). Table 1.6 presents the measured and predicted endpoint data and measured integral worth for all banks. Figures 3.1 and 3.2 graphically compare the predicted and measured integral and differential. rod worths for Control Bank B.

The review and acceptance criteria on bank worths were met.

Page 7 of 50 (Rev. Ol

4.0 Endpoint Measurements The ARO boron endpoint measurement was performed in accordance with the procedure EPT-067. The acceptance criterion for the boron endpoint measurement requires that the ARO critical boron concentration be within 500 pcm i71 ppm at Cycle 6 BOC boron worth) of the measured value.

For Cycle 6, the ARO endpoint was 16 ppm more than the predicted value (1826 ppm predicted, 1842 ppm measured). The acceptance criterion for the endpoint was met.

Page a of 50 lRev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startu est Report

~ ~

5.0 Isothermal Temperature Coefficient Isothermal Temperature Coefficient (ITC) measurements were taken, in accordance with EST-703, to insure that Technical Specification requirements limiting the moderator temperature coefficient to less than or equal to +5 pcm/'F at HZP and 0.0 pcm/'F at HFP are met. Should the MTC exceed +5 pcm/'F at HZP, ARO conditions, rod withdrawal limits for startup and power ascension must be established. The ITC is measured at HZP and operating pressure with rods close to ARO.

The ITC is obtained by a uniform cooldown and heatup of the primary system with the resultant reactivity changes monitored by the reactivity computer and recorded on an X-Y plotter. All measurements are made below the nuclear heating range to minimize Doppler feedback effects. Over the temperature range used (558-553'F) the reactivity versus temperature relationship is approximately linear. As such, the coefficients were measured as the slope of the reactivity change versus the temperature change provided on the X-Y plotter. Note that the ITC measurements were taken for two cooldowns and heatups (one cooldown was discarded because of reactivity computer problems during the process) and the results averaged in order to calculate the MTC. The averaging was done to minimize the effect of boron additions to the system during the cooldown (boron additions are caused by concentration mismatches between the RCS and pressurizer). Calculation of the MTC from the measured ITC is done using the equation below and the SPC predicted HZP Doppler coefficient of -1.60 pcm/'F:

Results of the ITC/MTC measurements are presented in Tables 5.1 and 5.2 and the actual test data is provided graphically (obtained from Cycle 6 EST-703) as Figures 5.1, 5.2 and 5.3.

The results indicate a negative MTC of -2.2 pcm/'F at HZP, ARO conditions indicating that no rod withdrawal limits would be necessary.

pago 9 of 50 {Rov. 0)

6.0 Power Distributions The core power distribution measurements are taken to insure correct core loading and to verify compliance with Technical Specification requirements and limits on hot channel factors, quadrant power tilts, power density and allowed power limits. Core power distribution is measured by processing moveable detector data using the INCORE code which evaluates the map quality, flux trace validity, hot channel factors and locations, and allowed power limits..

Tables 6.1 and 6.2 provide pertinent statistics for evaluating map quality and core parameters which must be monitored. Flux maps were taken at power levels of 27.5, 72.6, 93.8 and 99.8/o power (Maps 211, 212, 214 and 215, respectively). Map 213 was not valid because of detector drift due to axial and radial xenon oscillations induced by rod movement immediately prior to the start of taking thimble data.

Figures 6.1 through 6.8 provide pertinent INCORE results for the four flux maps. All Technical Specification limits were met.

page 10 of 50 (Rev. Ol

7.0 Intermediate Range Detector Setpoint Verification SPC introduced a new methodology for the adjustment of the Power and Intermediate Range Detectors to account for the flux leakage changes between the end of Cycle 5 and the beginning of Cycle 6.

During the power ascension phase of the startup physics testing, the procedure EPT-009 is used to verify that the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are within acceptance limits. Although EPT-009 is not specifically required by Technical Specifications, it is generally performed for each startup to monitor, verify and determine the Intermediate Range Detector Setpoints.

During a reactor startup, the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are verified to be as follows for both N35 and N36:

Current equivalent to 15% power 6 Pr,~ 6 current equivalent to 27% power for N35.

Current equivalent to 15% power 6 P7p 6 current equivalent to 27% power for N36.

The highest Power Range indicated power at which the bistables engaged for the Intermediate Range Trip was 18.5 and 22A, for N35 and N36 respectively.

The Technical Specification allowed value for the trip setpoint is 30.9% RTP.

psga 11 of 50 (Rov. 0)

h s Nuclear Plant Unit 1, Cycle 6 Startu t Report 8.0 Conclusions The data obtained during the Cycle 6 startup physics testing show acceptable agreement between measured and predicted rod worths, boron endpoints, temperature coefficients. The flux maps allowed power ascension and then full power operation based on meeting the acceptance criteria as presented in Table 1.7.

Since the startup physics predictions were acceptable overall, confidence in both the SPC data and the

'FM&SA Section's ability to predict future Cycle 6 core behavior is reasonable.

Page 12 of 50 {Rev. 0)

Nuclear Plant Unit 1, Cycle 6 Startu t Report 9.0 References

1. "Shearon Harris Unit 1, Cycle 6 Startup and Operations Report", EMF-94-025(P), April 1994.

2..- Shearon Harris Engineering Periodic Test Procedure EPT-069, "Initial Criticality", Revision 4, May 3,1994, Revision 4, May 3, 1994.

3. Shearon Harris Engineering Periodic Test Procedure EPT-070, "Reactivity Computer Initial Setup and Calibration", Revision 3, March 14, 1994.

Shearon Harris Engineering Periodic Test Procedure EPT-026, "Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer Detector", Revision 3, April 20, 1994.

Shearon Harris Engineering Periodic Test Procedure EPT-067, "Boron Endpoint Measurement

- All Rods Out", Revision 5, May 2, 1994. ~

6, Shearon Harris Engineering Surveillance Test Procedure EST-707, "Special Test Exceptions",

Revision 4, October 14, 1993.

7. Shearon Harris Engineering Surveillance Test Procedure EST-703, "Moderator Temperature Coefficient Measurement BOL After Each Refueling", Revision 8, May 2, 1994.

Shearon Harris Engineering Surveillance Test Procedure EST-701, "Shutdown Margin Calculation Mode 2", Revision 6, November 22, 1993.

9. Shearon Harris Engineering Periodic Test Procedure EPT-068, "Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique", Revision 5, May 2, 1994.
10. Shearon Harris Engineering Surveillance Test Procedure EST-724, "Shutdown and Control Rod Drop Test Using Computer", Revision 0, March 6, 1994.
11. Shearon Harris Fuel Management Procedure FMP-101, "Incore Thermocouple and Flux Mapping", Revision 7, May 13,1994.
12. Shearon Harris Engineering Surveillance Test Procedure EST-710, "Hot Channel Factor Tests",

Revision 10, May 13, 1994.

13. Shearon Harris Engineering Periodic Test Procedure EPT-009, "Intermediate Range Detector Setpoint Verification", Revision 4, March 3, 1994.

page 13 of 60 {Rev. 0)

10. Appendix: List of Tables and Figures in Appendix Table 1.1 Comparison of Cycles 5 and 6 Fuel Loading Table 1.2 Comparison of Cycles 5 and 6 Peaking Factor Limits Table 1.3 Fuel Inventory Dimensions Table 1.4 Fuel Inventory Enrichment Table 1.5 Input Parameters to the Reactivity Computer Table 1.6 Startup Test Summary Table 1.7 Startup Physics Test Procedures Acceptance Criteria Figure 1.1 Cycle 6 Loading Pattern Figure 1.2 Cycle 6 Control Rod and Thimble Locations Figure 1.3 Cycle 6 Gadolinia Loading Table 2.1 Hot Rod Drop Times Table 3.1 Rod Worth Measurement: Control Bank B Figure 3.1 Control Bank 8 Integral Worth Figure 3.2 Control Bank B Differential Worth Table 5.1 Isothermal Temperature Coefficient Table 5.2 Isothermal Temperature Coefficient, Cycles 1-6 Figure 5.1 ITC, D-212, Cooldown Measured Value Figure 5.2 ITC, D-212, Heatup ¹1 Measured Value Figure 5.3 ITC, D-212, Heatup ¹2 Measured Value Table 6.1 Flux Map Summary Table 6.2 Flux Map Statistics Figure 6.1 Assembly Relative Power Map 211 Figure 6.2 Assembly Relative Power Map 212 Figure 6.3 Assembly Relative Power Map 214 Figure 6.4 Assembly Relative Power Map 215 page 14 of 50 (Rev. 0)

~ 4

10. Appendix Continued Figure 6.5 Cycle 6 For "V(z)/K(z) versus Core Elevation, MaP 211 Figure 6.6 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 212 Figure 6.7 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 214 Figure 6.8 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 215 Note: Fc= F ~1.05" 1.03 Page 15 of 50 (Rev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.1 Comparison of Cycles 5 and 6 Fuel Loading Cycle 5 Cycle 6 As-built Zero Burnup Loading (MTU)

Region 1 4 Assy - 1.847 9 Assy - 4.161 Region 5A 13 Assy - 5.533 Region 5B 20 Assy - 8.495 Region 6A 32 Assy - 13.602 12 Assy - 5.098 Region 6B 28 Assy - 11.917 24 Assy - 10.213 Region 7A 32 Assy - 13.580 32 Assy - 13.580 Region 7B 28 Assy - 11.896 28 Assy - 11.896 Region 8 LFA 8 Assy - 3.663 Remainder Region 8 44 Assy - 20.046 Total (MTU) 66.870 68.657408 Power Rating (MWt) 2775 2775 Rod Out Park Position (steps) 228 231 System Pressure (psig) 2250 2250 Core Average Moderator Temperature 557/588.8 557/580.8 (HZP/HFP 'F)

Number of Poison Rod/Pins 4096 IFBAs 40O2 w/o Gd103 96 WABAs 63266 w/o Gd~Oa 160O8 w/o Gd~03 Page 16 of 50 (Rev. Ol

8

's Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.2 Comparison of Cycles 5 and 6 Peaking Factor Limits Cycle 5 Cycle 6 Fo Limit 2.45 - LOPAR, V5 2.45 - LOPAR, V5 2.52 SPC HTP F~ Limit 1.62- LOPAR 1.62- LOPAR 1.65 - V5 - V5

'.65 1.73- SPC HTP Page 17 of 50 (Rev. Ol

'4 is Nuclear Plant Unit 1, Cycle 6 Start st Report Table 1.3 Fuel Inventory Dimensions Region 6A 68 7A 78 Number of Assemblies 12 24 32 28 52 Fuel Design LOPAR V5 V5 V5 V5 HTP Pellet Density (% TD) 95 95 95.0 95.1"'3225 4"'5.6"'3088 95.6"'3088 5"'3088 Pellet O.D., inches .3088 .3215 Clad I.D., inches .329 ~ 315 .315 .315 .315 .328 Clad O.D., inches .374 .360 .360 .360 .360 .376 Fill Gas Pressure, psig 355 Region-wise loading, 4.161 5.098 10.213 13.580 11.896 23.709 MTU (1) Region 1, 6A, 68, 7A and 78 pellet densities are as built page 1a of 50 IRev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.4 Fuel Inventory Enrichment Nominal Initial Enrichment, w/o U235 Region 6A 6B 7A 7B Top 3 inches 2.10 0.72 0.72 0.74 0.74 0.71 Next 3 inches 2.10 0.72 0.72 0.74 0.74 4.95 Next 6 inches 2.10 4.40 a.8o 4.40 4.80 4.95 Central 120 inches:

0 w/o Gd,O, 2.10 4.40 4.80 4.40 4.80 4.95ru 2 w/o Gd~03 6 w/o Gd,Oa 4.85u'.65"'.55'"

8 w/o Gd~03 Next 3 inches 2.10 4.40 4.80 4.ao 4.80 4.95 Next 3 inches 2.10 0.72 0.72 o.7a 0.74 4.95 Bottom 3 inches 2.10 0.72 0.72 0.74 0.74 0.71 (1) 12,896 rods contain 0 w/o Gd,O, (2) 40 rods contain 2 w/o Gda03 (3) 632 rods contain 6 w/o Gd,O, (4) 160 rods contain 8 w/o Gd~03 page 19 of 60 {Rev. 0)

M s Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.5 Input Parameters to the Reactivity Computer Group Ai (sec')

.000207 .0128

.001293 .0316

.001163 .1203

.002497 .3211

.000904 1.4045

.000216 3.8696 EPi = 0 00628 I =1

/" = 17.39 0.965 P,= 0.006060 Pago 20 of 50 (Rev. OI

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.6 Startup Test Summary Boron Endpoint (ppm)

Configuration Measured Predicted Difference (M-P)

ARO 1842 1826 16 B-IN 1665 1637 28 Control Rod Worths (pcm)

Bank Measured Predicted Wm-Wp Percent Difference

., CBB 1281 1342 -61 -4.5%

CBA 346 371 -25 -6.7'lo SBC 433 480 -47 -9.Solo SBB 746 811 -65 -8.0%

SBA 956 1040 -84 8 1%

CBC 1081 1150 -69 -6 0%

CBD 901 948 -47 -5 0%

Sum of. the. Sum.of'the.' ..-0.9".Predicted 1.10 Predicted Worth

,

Measured "Predicted',Worths'-"'-,., '-Worth ': '

Worth s 5744 6142 5528 6756 Page 21 of 50 IRev. 0)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.6 Continued Startup Test Summary Moderator Temperature Coefficient (pcm/aF)

Configuration Measured Predicted Difference CBD-21 2 -202 -3.37 +1.2 Differential Boron Worth (pcm/ppm)

Configuration Measured Predicted Percent Difference CBB going in -7.24 -7.09 -201 Page 22 of 50 {Rev. 0)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.7 Startup Physics Test Procedures Acceptance Criteria Test Criteria Boron fndpoint The ARO critical boron concentration should be within 500 pcm (71 ppm) of the measured value.

Moderator Temperature Coefficient The moderator temperature coefficient during power escalation is less than or equal to +5.0 pcml'F at HZP.

Control Rod Worth Review Criteria.

The reference bank must be within ~10% of the predicted worth.

b. The absolute value of the percent difference between measured and predicted worths is (15%, or C. The absolute value of the reactivity difference between measured and predicted worths is (100 pcm, whichever is greater.

Acce tance Criteria:

The sum of the measured worths are within N10% of the sum of the predicted worths.

page 23 of 50 (Aev. 01

0 H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.7 Startup Physics Test Procedures Acceptance Criteria Test Power Distribution Maps 80 s,Criteria Fg"~Z(z) s, Fg(z) p )0,5 R~P*Z(z)

Zg(z) p z0,5 Where:

P is a fraction of HFP Fo~ = 2.45 for LOPAR and Vantage 5 fuel F" = 2.52 for SPC HTP fuel

b. F~ S 1.62I1 + 0.30(1-P)J (LOPAR Fuel)

F~ 6 1.65I1 + 0.35(1-P)J (Ventege 5Fuel)

F~ 6 1.73I1 + 0.35f1-P)J (SPC HTP Fuel)

c. Quadrant tilts 6 1.02 Control Rod Drop The drop time to dashpot under hot conditions S 2,7 secontls.

page 24 of 50 iRev. 0)

1 ~

Figure 1.1 Loading Pattern J F' 0 8 R P N M L H G C R F'48 f'06 01 40072 4]85] 14639 01 68 68 68 F57 F30 H03 G30 H02 F'10 F'05 02 4552] 38305 0 2]795 0 37123 00911 02 68 68 SR 78 SA 6R 68 F33 Hl I H27 GOB H33 G]% H26 HI 0 f'39 03 ~<038 0 0 2469] 0 246]4 0 0 440]2 68 SB 58 78 58 7A SB SB 68 03'6 f'35 HIB H<7 G25 G35 G26 G12 G21 H46 HIT FCO 04]88 0 0 26091 22668 20907 22055 26018 0 0 43581 00 68 58 SB 78 78 78 78 78 58 58 68 F'51 H12 IH8 815 GI I H39 G23 H38 G]2 827 H45 H09 F'53 05 457]5 0 0 15917 25539 0 2S206 0 25083 15916 0 0 45423 05 68 SB SB IR 78 SB 78 58 78 IR 58 58 68 F'01 H28 G22 G06 G38 G58 GS] G57 G<I G03 G19 H25 f'26 06 38076 0 25861 25137 21637 26009 23961 26068 2]664 25460 26074 0 38158 68 SB 78 78 78 78 78 78 78 78 78 58 68 F93 HON Gl 5 G36 HCO G60 812 H21 824 G55 H37 GWS G02 HO] I'49 07 45]43 0 24757 22367 0 25835 16234 0 16217 26118 0 22673 20805 0 40907 0?

68 SR 78 78 SB 78 IR SB IR 78 58 78 78 SR 68 f'09 GOT H30 G27 G28 G03 H22 R39 H24 G46 G32 G20 H36 G%9 f'05 08 42289 21260 0 24857 25011 23874 0 13475 0 23580 25321 24976 0 21358 4]905 08 6R 78 SB 78 7R 78 SB IR SB 78 78 78 SB 78 6R F'58 HOS G09 G00 Hd] GSN 806 H23 851 G56 Hdd G39 GI0 HOB F82 09 407]8 0 20693 22474 0 26]30 15685 0 16522 26047 0 22090 24645 .0 88395 09 68 SR 78 78 SB 78 IR 58 ]R 78 58 78 78 58 68 F'23 H29 G29 G13 G52 G53 GOO G59 GNB GOI G]7 H32 f'12 10 38395 0 26262 25629 21562 26002 23804 25912 21S56 249]5 25850 0 37397 10 68 SB 7R 7R 78 78 78 78 78 78 78 58 6A f'46 H13 tH9 835 G]6 H42 G24 H03 G04 821 H52 H16 F'52 45062 0 0 16651 25438 0 2512] 0 25310 ]62%0 0 0 45315 68 58 58 1R 78 SS 78 SB 78 ]A SB SB 68 F'36 H]9 H50 G30 G37 G31 G50 G 18 HS I H20 F34

'12 437%6 0 0 25956 22682 248hO 22686 26113 0 0 43712 12 68 58 SB 7R 78 78 78 78 58 SB 68 F38 H]0 H30 GOS H35 G07 H31 H]S F37 RSSEIIBLI 10 13 43926 0 0 24101 0 206K 0 0 03870 BOO EXPOSURE 13 68 58 58 ?8 SB 78 SB 58 68 F'UEI. REGlOH F'50 F'08 H06 G33 H07 F' 5 F47 451%] 37537 0 2]438 0 38322 55650 68 68 58 78 58 6R 68 f4] f07 F55 15 44746 02435 41084 15 68 6R 68 F'

R P N M J H G 0 C B R Page 26 of 60 IRev. 0)

~ ~

I e

~

H Nuclear Plant Unit 1, Cycle 6 Startup Report Figure 1.2 Control Rod and Flux Thimble Locations J F' 0 R P N M L K H G C 8 R 01 16 01 R

02 31 02 SR SR SG 03 9 10 03 00 13 37 00 SC SB SB 05 22 l9 39 05 0

06 15 06 SR SB SB SR 07 33 2B 20 29 17 07 0

08 25 08 SA SB SB 09 19 09 B R 10 26 23 Cl 12 10 SB SB SC 46 36 21 47 35 16 27 12 SC ROO BANK f1.uX YHlflBLCS

. 30 42 15 15 F'

R P N M L K J H G 0 C 8 R Pnge 26 of 60 (Rev. 01

's Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 1.3 Gadolinia Loading (ASM and AS represent Asymmetric gadolinia loadings)

R P N N L K J H G F C 0 C 8 Fi 1 08 F06 FRR 01 01 F57 F30 H03 634 H02 F IO %5 492 092 02 02 RSM RSM F33 Hl I H27 GOB H33 G)d H26 H)0 F'39 03 192RS 2096 2896 2096 192AS 03 496RS 496RS f35 H)6 H47 G35 626 G82 G21 H<6 H)7 06 696 2098 2098 696 06 RSM RSM H)2 HIB R)5 Gl I H39 G23 H38 G)2 A27 HNS HQ9 F53 05 192RS 2098 2896 2896 2098 192RS 05 096RS 496RS FQ) H28 G22 G06 G38 G58 GS) G57 Gl) G03 G)9 H25 F26 2096 2096 06 f83 HOS GIS G36 HHO G60 F)12 Hzl GSS H37 605 G02 HOI F89 07 492 2896 2096 2896 492 07 RSM RSM F09 Gki H3% G27 628 H22 R39 H2% G16 G32 G20 H36 683 FOS 08 2896 2096 2096 2896 F'58 H05 G09 G4% H'll GSS R06 H23 RS I G56 H00 G39 G)0 HOB fdz 09 492 2896 2096 2896 892 09 RSM foal RSM F23 H29 G29 G)3 G52 G53 GWO G59 GRB GQI G17 H32 F'12 10 2096 2096 10 F46 HI 3 H49 R35 G)6 H42 624 H03 G04 R21 HS2 H16 F'52 192RS 2098 2896 2896 2098 )92RS 096RS %96RS F36 H19 H50 G30 G37 G31 650 GIB H51 H20 f34 12 696 2098 2098 696 12 R5M RSM F38 Hl'I H30 G05 H35 G07 H31 Hl 5 F'37 RSSEMBL'I 10 13 192RS 2096 2896 2096 192RS AGRO P INS 13 196AS 896AS sGAO PINS FSO FOB H06 G33 H07 F') 5 F47 492RS %92RS F'07 FSS 15 15 F'

R P N N L K J H G 0 C B R Page 27 of 60 (Rev. 0)

H Nuclear Plant Unit 1, Cycle 6 Startup t Report Table 2.1 Hot Rod Drop Times Time from Time from Initiation of initiation of Drop RCCA RCCA Drop to to Bottom of RCS RCS Bank and Grid Dashpot Entry Dashpot RCS Tavg Flow Press Group Location (Seconds) (Seconds) t'F) (%) (psig) 1.485 1.937 557 100 2292 CBA B10 1.534 2.043 557 100 2292 1.613 2.105 557 100 2292 p6 1.484 1.934 557 100 2292 K2 1.485 1.934 557 100 2292 CBA B6 1.713 2.178 557 100 2292 F14 1.479 1.888 557 100 2292 P10 1.471 1.904 557 100 2292 F4 1.512 1.928 556.8 101 2221 CBB D10 1.488 1.915 556.8 101 2221 K12 1.439 1.896 556.8 101 2221 M6 1.457 1.897 556.8 101 2221 K4 1.482 1.971 556.8 101 2221 CBB D6 1.469 1.906 556.8 101 2221 F12 1.476 1.900 556.8 101 2221 M10 1.504 1.944 556.8 101 2221 page 28 of 50 (Rev. 0)

~ 0 H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 2.1 (Continued)

Hot Rod Drop Times Time from Time from Initiation of Initiation of Drop RCCA RCCA Drop to to Bottom of RCS RCS Bank and Grid Dashpot Entry Dashpot RCS Tavg Flow Press Group Location (Seconds) (Seconds) ('F) (psig) 1.438 1.865 557 100 2292 CBC D12 1.431 1.864 557 100 2292 M12 1.445 1.880 557 100 2292 M4 1.492 1.908 557 100 2292 H6 1.473 1.925 557 100 2292 CBC FB 1.424 1.878 557 100 2292 H10 1.450 1.954 557 100 2292 KB 1.472 1.965 557 100 2292 H2 1.482 1.947 556.8 101 2221 CBD 88 1.574 2.094 556.8 101 2221 H14 1.484 1.970 556.8 101 2221 PB 1.448 1.927 556.8 101 2221 1.484 1.958 556.8 101 2221 CBD F10 1.501 1.970 556.8 101 2221 K10 1.484 1.927 556.8 101 2221 K6 1.498 1.958 556.8 101 2221 Page 29 of 50 IRev. 0)

~ e H Nuclear Plant Unit 1, Cycle 6 Startup

~ Report Table 2.1 (Continued)

Hot Rod Drop Times Time from Time from Initiation of Initiation of Drop RCCA Drop to to Bottom of RCS RCS Bank and RCCA Grid Dashpot Entry Dashpot RCS Flow Press Group I ocation (Seconds) (Seconds) Tavg ('F) (%) (pslg)

G3 1.482 1.903 556.7 101 2291 SBA C9 1.468 1.883 556.7 101 2291 J13 1.455 1.889 556.7 101 2291 1.461 1.901 556.7 101 2291 J3 1.473 1.904 556.7 101 2291 SBA C7 1.484 1.901 556.7 101 2291 G13 1A78 1.900 556.7 101 2291 N9 1.464 1.895 556.7 101 2291 E5 1.481 1.926 556.8 101 2291 SBB E11 1.465 1.895 556.8 101 2291 L11 1.473 1.958 556.8 101 2291 L5 1.458 1.886 556.8 101 2291 G7 1.485 1.964 556.8 101 2291 SBB G9 1.481 1.920 556.8 101 2291 J9 1.471 1.917 556.8 101 2291 J7 1.464 1.914 556.8 101 2291 Page 30 ot 50 IRev. 0)

e H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 2.1 (Continued)

Hot Rod Drop Times Time from Time from Initiation of Initiation of Drop RCCA RCCA Grid Drop to to Bottom of RCS RCS Bank and Location Dashpot Entry Dashpot RCS Flow Press Group (Seconds) (Seconds) Tavg ('F) (%) (psig)

E3 1.429 1.865 556.9 100 2291 SBC 1.496 1.940 556.9 100 2291 L13 1.537 1.990 558.9 100 2291 N5 1.475 1.922 558.9 100 2291 pege 31 of 50 {Rev. 0)

~

)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 3.1 Rod Worth Measurement: Control Bank B RCCA Position (Steps Withdrawn)

RCC Position (Steps Withdrawn) Reactivity (pcm)

Initial Final Average ap/ah 231 217 223.5 19 19 1.3 217 209 213 69 88 8.6 209 206 207.5 31 119 10.3 206 202 204 47 166 11.8 202 199 200.5 32 198 10.7 199 196 197.5 33 231 11.0 196 193 194.5 33 264 11.0 193 189 191 42 306 10.5 189 185 187 40 346 10.0 185 180 1 82.5 47 393 9.4 180 175 177.5 44 437 8.8 175 170 172.5 42 479 8.4 170 165 167.5 42 521 8.4 165 160 162.5 40 561 8.0 160 155 157.5 37 598 7.4 155 149 152 43 641 7.2 149 143 146 41 682 6.8 143 137 140 42 724 7.0 137 131 134 38 762 6.3 Page 32 of 50 (Rev. 0)

e V

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 3.1 Rod Worth Measurement: Control Bank B RCCA Position {Steps Withdrawn)

RCC Position (Steps Withdrawn) Reactivity (pcm)

Initial Final Average 131 125 128 37 799 6.2 125 119 122 38 837 6.3 119 113 116 37 874 6.2 113 107 110 40 914 6.7 107 101 104 39 953 6.5 101 95 98 40 S93 6.7 95 89 92 1035 7.0 89 83 86 39 1074 6.5 83 77 80 38 1112 6.3 77 71 74 34 1146 5.7 71 62 66.5 48 1194 5.3 62 57 38 1232 3.8 52 45 48.5 17 1249 2.4 45 22.5 32 1281 0.7 Measured Integral Worth = 1281 pcm Predicted Integral Worth = 1342 pcm Percent Difference = -4.5%

Page 33 of 50 IRev. 0)

Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 3.1 Integral Worth of the Reference Bank (Control Bank B) BOL, HZP, No Xenon

-1400

-1300

-1200

-1100

-1000 E

O

-goo

-800 O

-700 oCh

-600 I -500

-400

-300

-200

-100 10 PCM/DiV 0

0 20 40 60 80 100 120 140 160 180 200 220 240 2 SlEPS/DIV PREDICTED eeeeo MEASURED pege 34 of 60 {Rev. 0)

s Nuclear Plant Unit 1, Cycle 6 Startu t Report Figure 3.2 Differential Worth of the Reference Bank (Control Bank B) BOL, HZP, No Xenon

-14

-13

-12

-10 Q

9 E

I Ch 7

O 0'

0.1 PCM/DIV 0

0 20 40 60 80 100 120 140 160 180 200 220 240 2 STEPS/DIV STEPS WITHDRAWN PREDICTED ee eel MEASURED Page 35 of 50 (Rev. 0)

h ~

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 5.1 Isothermal Temperature Coefficient Configuration Measured ITC (pcm/'F) Predicted Difference (pcm/'F) (pcm/'F)

Cooldown Heatup Average CBD-21 2 -3.7 -3.9 -3.8 -4.97 +1.2

-3.7 Table 5.2 Isothermal Temperature Coefficient

-Temperature. Coefficients, HZP, BOL Cycle =

Configuration Boron Measured ITC 'redicted

. ITC Difference Doppler (ppm) -(pcm/'F) , (pcm/'.F,) (pcm/'F) (pcm/'F)

ARO 1353 -1.50 -2.28 0.78 -1.9 D-216/21 7 1764 -0.82 -0.06 -0.76 -1.6 D-206 1839 -0.528 -0.79 0.262 -1.6 D-214 1718 -1.61 5 -1.39 -0.225 -1.69 D-206 1940 +1.17 + 1.43 -0.260 -1.86 D-212 1835 -3.8 -4.97 +1.2 -1.6 page 36 of 50 {Rev. 0)

k Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 5.1 ITC, D-212, Cooldown Measured Value ACCUCHAAT~ eottfd IIIS. CWIStta Oho SII010 II USA ~

I 2 2 1 S ~ I ~ 9 10 11 12 12 I~ 15 10 It I~ I~ 20 21 t2 22 21 22 20 tt 20 20 20 21 tt 21 SI SS 21 0

2 tt 0'"I hf

., Ih 10 12 I~ I" i ltlt I tft 0

IS I~

12 12 10 I fy' I 2 2 ~ S 0 2 0 9 10 11 12 IS 11 IS I~ 11 I~ 11 20 21 22 22 tl 2$ 20 21 20 tt 20 21 St 01 SI 1 20 SI IS pege 37 of 50 (Rev. 0)

p 4 H Nuclear Plant Unit 1, Cycle 6 Startup Report Figure 5.2 ITC, D-212, Heatup ¹1 Measured Value ACCVOIAIIZ 04IMI0 041 Orvv>> I Cr<<O IIIVkrdMI U SA ~

24 I 2 2 ~ S ~ 1 ~ 9 10 II 12 12 I~ IS 14 11 14 \9 20 21 22 22 ti tS 24 21 24 29 20 21 22 21 tr 2$ 24 4

>>I 21

,I M 21 0 M Ill' el I Ir Ill M I

IM tv I lilt 14 Vl 14 ll,<<

I I IIM I" 4' 'I <> ~ I', 't I 12 ll>> "f 41 10 ff I vv'4 4 44 Ml 44 I 0 IM et <<M I I Mt '

tt Sl 0 0 I 2 2 ~ 4 4 1 ~ 9 10 ll 12 12 II I~ 14 11 14 19 20 21 tt 22 21 tS 24 21 24 29 20 21 St St Sr 2$ 24 21 Pege 38 of 80 {Rev. 0)

2 rs H Nuclear Plant Unit 1, Cycle 6 Startup Report A. ~

Figure 5.3 ITC, D-212, Heatup ¹2 Measured Value AtccfffAfltto coolo life oorooo0 crso Rroed n U5A ~

I 2 2 ~ 5 4 2 ~ 0 ( ~10 11 12 1$ 1 ~ 15 14 11 1~ 1 ~ 20 21 22 2$ 21 2$ 24 22 24 20 $0 21 $2 SS Sl SS $4 $1 25 sl lst fs Ol,l s'

24 so $1 f1's 2

'I"'sl ISI sl III I

'ft >> ss llo ;41 sfr st 21 I s 0 ifft 41 I 0 sit II 5

10

'lsf As II I

'I ~ 4'ss 12 5 Is I I'Ills sf lsf, "

14 f 's IS 0 1 ~

st C,f

~ I 1$

Is Itss Jf f oil ss I'I 12 sl fft s* s -I 10 Crffs o. f r. Is

's', I

'Ils 44 4

~

fs 4 'o tt "I~, I st sl

'4 14 44 I

4 I Is Iff sf rs ,ss 4 I',I ff", 1st I st Ist 4 I tss II Sff 0 1 2 2 ~ 5 ~ 2 4 ~ 10 11 12 1$ I~ 14 I~ 11 ~ 10 20 21 2 2 21 25 24 21 to tl $0 St 22 SS Sl $5 $5 Sl $4 Pege 39 of 50 {Rev. 0)

4 H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 6.1 Flux Map Summary

'wd/ Core Avg Loc Map MTU Date PWR % - D Bank Core AO FZ 211 20 5/13/94 28 181 8.73 1.269 1.857 D12 212 61 5/16/94 73 190 4.66 1.217 1.796 M12 214 161 5/18/94 94 219 5.35 1 ~ 175 1.740 M12 215 344 5/24/94 100 219 3.87 1.154 1.651 D12 Table 6.1 (Continued)

Flux Map Summary MWd/- Max; Lim Loc ,LOC Map MTU 'KW/FT Fc/K(z) 'Fc

.

Fa.,:-

Fa'DC3 APL Fz Fq 211 20 3.65 2A44 2.372 D12 1.510 89.68 1 416 F6 212 61 8.94 2.281 2.201 M12 1.472 96.08 1.345 F10 214 161 11.03 2.176 2.101 M12 1.433 100.69 1.293 G11 215 344 11.52 2.129 2.004 Hj 1.359 102.93 1.227 J7 Fc includes a 1.03 engineering factor and a 1.05 measurement uncertainty F~ includes a 1.04 measurement uncertainty KW/FT includes a 1.03 engineering uncertainty and a 1.05 measurement uncertainty Page 40 of 50 (Rev. 0)

H. Nuclear Plant Unit 1, Cycle 6 Startup Report Table 6.1 (Continued)

Flux Map Summary Quadrant Tilt Power Fraction, Fuel Region Map NW SW SE 211 0.994 1.000 0.998 1.008 0.805 0.413 1.109 1.314 212 0.993 1.001 1.002 1.004 0.829 0.407 1.122 1.299 214 0.991 1.004 1.002 1.003 0.840 0.402 1 ~ 136 1.285 215 0.990 1.002 1.005 1.003 0.847 0.400 1.138 1.282 Table 6.2 Flux Map Statistics Standard, Deviation, Fuel:Region Central Region

'l No. of Useable , Reaction Rate

Map PWR % '2 -'". 4 , Thimble'Traces ~:Percent Differences 211 28 6.334 5.406 3.836 4.457 61 5.60 212 73 1.886 4.314 1.691

'.983 58 3.02 214 94 1.135 4.044 1.330 1.698 74 2.38 21 5 100 1.629 4.000 1.325 1.827 58 2.45 page 41 af 50 {Rev. 0)

~ All

'

r

's Nuclear Plant Unit 1, Cycle 6 Startu t Report Figure 6.1 Assembly Relative Power Map 211 Predicted Measured

% Difference 0.259. 0.294. 0.259.

e.275. e.Je2. e.267.

2 '3. 2.8S. 2.95.

e.334 e.sJS. 1. 119 e.ddQ'. i.tid'. e.s36. 'e.334:

B.J64 0.538. 1. 133 0.866. 1.143. B.S53. 0.346.

9.20 0.48. 1.2$ 2,86. 2. 21. 3.07. 3.43.

0.497. i.si2 1.38$ . 1.117. I . 243. 1. 117; S.366. 1.313. 0.497.

B.SJI. 1.395 1. 331. 1. 100. 1.22'I. 1.11d. 1.33d. 1.348. e.S16'.

6,82. 6.38 2.84. 1.58. -1.7d. M.ed. 2.28. 2.66. 3.62.

0.497. 1.420. 1.4JQ ~ 1. 161. 1.259. 1.158, 1.2d1. 1.152. 1.440. i.420. e.4i7'.

0.535. 1.482. 1.494 1. 160. 1.229. 1.12Q. '1.245. 1.174. 1.478. 1.4d2. 0.519.

7.52. 4.JI ~ '.63.

-2.39. -2. $ 4 -1. 20. 0.99. 1.OBJET

~ 2.57. 2.94. 4.52.

-e.e7.'.876.

6.334. 1.313. I 440. O.ddt F 1.289. 1.143. '1.290. 1.050. O.ddt 1.439. 1.J12. 0.334.

0.355. 1.390. I 459. e.dde. t'.edd'. 1.207. 1.070. 1.2J4. 1.091. 0.682. 1.481 '.374. 0.346.

~

6. 28. 5. 81. I . 25. W. Ib. M. 97. -5.35'. W.42. W.Jd. 1.05. 2.3J. 2.M. 4.72 '.63.

O.S36. 1.JOS. 1.1d2. i.eie. 1. 099. 1.127. I . 178. I . 128. 1.099. 1.078. 1.181. 1.305. 0.535.

O.SS2. 1.341. 1.165. 1.055. 1.054. 1.'04$ '. 1.093. 1.036. 1.054 1.174. 1.350. 0.5d5.

'2.

~

2.99. 2.63. 0.30. -2.16. W.17. 7 7. 27. W. 18. M. 18. 1.34. I.t4. 3.44. 5.52.

. e.259. t.ssd. I.ss7. 1.261. 1.290. 1. 12d. 0. 811. t.280. 0.611. 1. 127. 1.289 1.2SQ. 1, 117. 1. It9. 0.269.

6,260, I .123. 1,121. I,ZJQ. '1.239 I:e67.'$ 8.742. I '. t76'e'.746'. 1.837. '.254.

1.2$ 6. 1.144. 1.17$ . 0.290.

e.oJ. 0.43. e.37. -1.7e. '.95.

.40. M. 45. H. 12. -7.9d. 7.94. 2.71. W.27. 2.44. 5.25. 7.7e'.

0 294. 0.859. 1.243. 1.15S. 1.14J. 1. 176. 1.2de. 0.638. 1.260. 1. 176. 1. 143. 1.158. 1.243. O.dde. 0.294.

, O.iob. O.879. 1. 247. 1. 141. 1. 103. t.119. 1. 172. 0.770. 1.164. 1.BSQ 1.895. 1 155. 1.27'I 8.916. 0.312.

~ ~ ~

s.ss. 1.15. 0.35. 1.49. -3.45. -5.02. %.41. -8. 19. 7.51. 7.59. -4.20. 0.01. 2.26. 5.52. 5.44.

0.269. S. 119. I . 117. I . 25ks I . 269. 1. 127. 0.611. I 250. 0.611 1.126. ~ ~ 1 '90. 1. 261. 1. 117. 1. 118. 0.259.

. 0.27J. 1.160. I . 157. I . 260. 1.244. 1.076. 0.752. I.I77. e.7se. 1.044: 1.279. 1.150. 1.168. 0.274.

1.43. 3.62. 3.63. e.e7. H. 44. H. 51. -7.29. -7.54. 7.40. 2.dd. 1.49. 2.9d. 4.45. 5.SI .

1.253.'.04.

~

0 0.53$ . i.Jes. i.tet. 1.07$ . 1.099. 1. 128. I 178. 1.127. '1.099. 1.088. 1. 1d2. 1.306. 0.53d.

~

0.567. 1.378. 1. 179. 1.072. 1. 070. I.es4'. 1.092. 1.054. 1.050. 1.059. 1. 174. 1.343. 0.554

$ .94. 5.55. 1.55. W. 60. -2.70. 7.29. M.41 1.93. 1.03. 2.6'.23. ~

0.334. 1.312. 1.439. B.dd2. 1.080. 1.290. 1.143. 1.269. 1.078 0.8d2. 1.440. 1.313. 0.334.

e'.Js7. 1.399. 1.507. 0.872. 1.052. 1. 224. 1.085. 1.218. 1.061. d. 875. 1.508. 1.387. 0.357.

6.95. d.d4. 4.70. 1. 16. -2.54. -5. 'I 2. -5.07'. -5.46'. -i.dd'. 1. 46. 4.66'. S.dt'. 8.99'.

e.4i7. i.420'. 1.440. 1. 162. 1.261. 1.158. 1.259. '1,1dt. i.439'. 1.420. 0.497.

0.537. 1.463. t . 455. 1. 15d. 1.244. '1.144. 1.258. 1. 171. 1. 47S. 1.510. 0.540>

8.05. 4.39. 0.98. M. 58. 1.28. 1.21. M.tt. 0.67. 2,70. 8.32. 6.54.

. 0.497. 1. 313. 1.305. 1.117. 1.243. 1 117. 1.305. 1. 312. 0.497. ~

0'.537. I.J24. 1.275. 1.270. 1.171. 1.355. 1. 403. 0.$ 39.

6.05. 0.84 -2.3'I. 1. 18. 2.17. 4.85. 4.65. 8.91. 6.55.

~

~ ~ ~ ~

e.334,'.327.

0.538. I 11$ . 0.6de. I ~ 119. 0.$ 35. ~ .334.

~

O.S2$ . 1.13'I. ~ .695. 1.173. 0.502. O.JS2.

-2.27. 2. 12. 1.11. 2.93. 4.83. 4.97. 5.52.

~ \

0.259 0.294. ~ .269.

0.255 0.29S. 0.2b1.

1,77 1.38. 4.4d, I

Page 42 of 50 (Rev. Oi

s H is Nuclear Plant Unit 1, Cycle 6 Startup st Report Figure 6.2 Assembly Relative Power Map 212 Predicted Measured

% Oifference B. 271. e. 29S. e. 262.

0.268. 0.317. 0.274.

6.42. 6.51. 4.SS.

, C e.331 e'.534. i.t26. e.dbb.'.t25. 0.535. e.332.

0.347 0.526. 1.145. 0.909. 'I.15Q. 0.550. 0.343.

4.58 -1. 15. 1. SQ. 2. 3d. 3.85. 2. 79. 3. 36.

0.492 'I.303 1.300. I 116 1.248. I 115. 1.302. 1 385. 0.493.

~ ~ ~ ~

0.502. 1.322 1.263. 1.097. 1.225. '1.106. 1.300. 1.319. 8.513.

1.91. 1.45 -1.34. 1.59 -1.62. W.QI. M. 14. 1.12. 3.99

~ ~

0.493. '1.410. 1.432 1.158. 1.256 I 158.

~ ~ 1 ~ 257. 1.157. 1.433. 1.410. d.492.

0.501. 1.41S. 1.444 1.142. 1.229. I 130. ~ 1 229.

~ 1.147. 1.440. 1.432. e.584.'.28.

t.dd. 8.44. B.bd 1.26. -2.16. 2.23. '2.25. W.dd. 0.49. 1.57.

0.332. 1.305. 1.433. B.bdb. 1.061. 1.291. 1.142. 1.292. 1.062. 0.850. 1.432. i.3e3'. e.331:

0.329. 1.291. 1.417, O.d52. t.057. 1.241. 1.099. 1.246. 1.078. 0.656. 1.440. 1.320. 0.340.

-0.77. -1.02. -t.13. -8.97. 1.24. M.SS. -3.76. 3.56. M.40. W.27. 0.57. 1.31. 2. 56 ~

0.535. I 302. 1. 157. 1.052 1.121. 1.132. 1.179 '.133, 1.12t. 'I.dbt. 1.156. 1.300. 8.534.

~

0.531. 1.269. 1. 148. 1.873 1. 189. 1. 104. 1. 156. 1. 110. 1. 127. 1.063. 1. 154. 1.312.. e.551.

-B.&6. M.QT. M.63. M.TQ 1.10. -2.50. -2.82. -2.06. 0.48. 0.21. -0.17. 0.69. 3.25.

0 262. t.t25. 1. 118. 1.257. I 292 ~ 1.133. S.di3. 1.262. 0.813. 1.132. 1.291. 1.25d. 1.116. I 12d. e.271. ~

, 0.261. t.145. t.te7. 1.237. 1. 251 1. 115. 0.796. 1.263. 8.799. 1. 12$ . 1.250. 1.242. 1.131. 1.157. e'.262'.

7.41. 1.79, M.83. >>1.57. -2.40 -I.dl. -2.07. -1.44. 1.73. W.31. 2.37. t. lb. I 36 ~ '.73. 4.21.

0.296. B.SS8. 1.246. l. 156, 1. 142 1. 179. 1.262. 0.639. 1.2d2. 1. 179. 1.142. 1.155. 1.248. 0.665. b.296.

0.320. 0.911. 1.235. 1. 136. 1.117 1.151. 1.27d. 8.S35. 1.265. 1. t53. 1.'lid. 1 ~ '144. 1.252. 0.927 0.314. ~

7,53. 2.54. M.QS. 1.51. -2.17 -1.59. W.50. M.40. 1.21. -1.36. 2.31. M.QS. 1.10. 4.41. 5.42.

0,271. I . 126. 1.11S. 1.255'. 1.29t 1.132. 0.613. 1.262. 0.613. 1.133. 1.292. 1.257. 1. '116 1. 125. 0.252.~

0.291. 1. 157. 1.122. 1.245. '1.282 1.105. 0.764. 1.253. 0.795. 1.111. 1.256. 1.252. 1.14t. 1. 172 0 277. ~ ~

7.42. 2.80. 0.5d. W.64. -2.26 -2.40. M.57. -2.25. 1.63. 1.99. 1.63. W.36. 2. 17. 4.25 5.95.

~ ~

e.534: 1.300. 1.156. 1. 061. 1.121 1 lbs. 1.179. 1.132. 1.121 1.062. 1.157. 1.302.

~ ~ ~

'.535.

0.544. 1.319. 1.154. 1. 063. 1.113. 1.104. 1.154. 1.112. 1.115. 1.079. 1.1dT. 1.326, 0.566.

1.66. 1.46. 0.57, 0.25. W.72 '2.60. 2.17. 1.74. W.42. W.32. 0.63. 2.05e do23 ~,

B. 331. 1.303. 1.432. 0. 6 50. 1 082. 1 292 1 142. 1 291 'I 861 ~ .MO. '1.433. 1.305. ~ .332.

~ ~ ~ ~ ~ ~ ~ ~

0.343. 1.347. 1.4T2. 0.677. 1.071. 1.256. 1.114. 1.267. 1.0bQ. 0.652. 1.454. 1.332. ~ .348.

3.55. 3.39. 2.84. 1.96. 1.01, -2.65. 2.43. -I.d7. 0,73. 0.25. 1.45. 2. 11. S.bdo 0.492. 1.410. 1.433. 1.'157. 1.257. 1.156. 1.258. 1.156. 1.432. 1.410 0.493m ~

0.520. 1.450. 1.458. I 155. 1.233. '1.134. 1.241. 1.1dl ~ 1.433. 1.441 0.508.

~ ~

5.54. 3.55. 1.77. M.22, -1.94. -1,91 -1.20. 0,46 0.09. 2.22. 2.57.

~ ~

. 0.493. 1.385. 1.302. 1 lld. 1.248. t lid. 1.300. 1.303. 0.492

~ ~ ~

. 0.520. 1.32d. 1.266. 1.096. 1.239. 1.120. 1.307. 1.301. 0.504.

5.54. -2.57. <<1.65. M.74. 0.35. 0.55. W.20. 2.34.

i.67.'.332

~,535. 1.125. 8.866, 1.126. 0.534. 0.331 ~

0.342 0.552. 1.135. 0.907. 1.132. O.S40. 0.331.

3. 15 3.26. 1.01. 2.05. 0.52. 1.17. W.eb.

. ~ .262. 0.296. 0.271.

. 0.271. 0.307. 0.278.

3.61. 3.27. 2.58.

Page 43 ef 50 (Rev. 0)

0 is Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.3 Assembly Relative Power Map 214 Predicted Measured

% Difference 8.279. 8.313. 0.269.

0.296. 0.332. 0.2$ 2.

5.98. 5.96. 4.61.

. 0.323. 8.529. 1.146. 0.953 1.144. 8.530. 0.324.

e.'33s.'.'523.'.'s7.'.'966, '1.'72.'.'s47.

~

'e'.335.'.45.'i.17'e.od.'.st.'.40.'.05.'.51'.

. 0.477. 1.270. 1.282. 1.115. 1.263. 1.115. 1.2$ 3. 1.272. O.i7$ .

0.4$ 8. 1.26$ . 1.250. 1.094. 1.23d. 1.105. 1.2$ 6. 1.2$ 9. 0.497.

0.48. -0.21. -2.45. -1.$ 3. -2.17. -0.87. 0.21. 1.35. 3.9d.

0.478. 1.370. 1.402. 1.140. 1.246. 1.149. 1.247. 1.141. 1.403. 1.370. 0.477 '

e.'i79.'.'36i.'.'ies..12s'1.219. 1.12i.'.220. 'I.'147.'.ile.'.'39e.'.'4$ 5.

0.25. &.43. 0.21. -1.27. -2.li. 2.20. 2.12. 0.51. 0.49. 1.43. 1.55.

0.324. 1.272. 1,483. O.b54 1.090. 1.29$ , 1.14'.299. 1.092. 0.8S4. 1.402. 1.270. 0.323.

~

0.315. 1.233. 1.379. 0.844. 1.07d. 1.259. 1.10$ . '1.2ds. 1.101. 0.650. 1.405. 1.271. e.'333'.

-2.63. -3.03. -1.69. -1.22. -1.31. -3.03. -2.7$ . -2.d3. 0.$ 7. -0.44. 0.20. O.OS. 2.06.

0.530. 1.283. 1.141. 1.092. 1.19$ . 1.153. 1.1$ 5. 1.1S4. 1.19$ . 1.090. 1.140. 1.2$ 2. 0.529.

0.518. 1.24$ . 1.129. 1.093. 1.196. 1.140. 1.1$ 0. 1.154. 1.231. 1.094. 1.141. 1.2$ 1. e.sit.

-2.27. -2.69. -1.03. 0.10. M.22. -'I.11. M.it. W.04. 2.70. 0.31. 0. Ie. M.03. 2. lb.

0.269 1.144. 1.115. 1.247. 1.299. 1.1S4. 0.$ 23. 1.2$ 9. 0.$ 23. 1.'153. 1.29$ . 1.24d. 1.115. 1. 148. 0. 279.

0.2$ 9 I. 153. 1.093. 1.224. 1.274. 1.14$ . 0.820. 1.295. 0.$ 23. 1.175. 1.2$ 2. 1.230. 1.119. I.IS4. 0.2$ 5.

7,II 0.73. 1.94. 1.80. 1.95. -0.5S. -0.38. 0.40. -0.0$ . 1.92. 1.24. -1.25. 0.3$ . 0.72. 2.21.

B,313 0.9S3. 1.263. 1.1i9. 1.lie. 1.1$ 5. 1.2$ 9. 0.$ 43. 1.289. 1. 1$ 5. 1. 140. 1. 149. 1.263. e.o53: e.313'.

e,'33s 6.964. 1.234. 1.128. 1.121. 1.17$ . 1.30$ . 0.$ 57. 1.301. 1.196. 1.12d. 1.134. t.2di. 0.97d. 0.325.

>. IB i.td'. -2.30'. -I.bt'-1.70'. -e.s7'. 1.44: I.do'. e.oe'. e.oe'. -I.tb'. -1.st.'.el..'.146.

2.41. 3.90.

. 0.279 1.115. 1.246'.29$ . 1.153. 0.$ 23. 1.2$ 9. 0.823. 1.'l5i. 1.299. 1.247. l.'115. 1. 144. 0.2d9.

8.299 1.160. 1.100. 1.227. 1.272. 1.13$ . 0.815. 1.299. 0.82d. 1.157. 1.2$ 1. 1.230. 1.13'I. 1. 183. 0.2$ 4.

7.11 1.23. -1.30. 1.4'1.9$ . -1.33. 1.02. 0.73. 0.29. 0.27. -1 43. 1.32. 1.46. 3.36. 5.47. ~

0.529. 'I.2$ 2. 1. 140. 1.090. 1.19$ . 1.154. 1. 18S. 1.153 '.'19$ . 1.092. 1. 141. 1.2$ 3 e.530'.

B.S26. 1.267. 1. 140. 1.096. 1.200. 1. 140. I.I83. 1. 150. 1.209. 1.094. 1. 149. 1.309. 0.564.

-0.70. -1.18. b.bS. b.52. 0 17. 1.25. %.17. %.20. 0. 93. 0. 19. 0. 74. 2. OS. 0.42.

~

0.323. 1.270. 1.402. 0.$ 54. 1.092. 1.299. 1.140. 1.29$ . 1.090. 0.$ 54. 1.483. 1.272. ~ .324.

0.330. 1.290. l.i25. 0.872. 1.094. 1.277. 1.123. '1.280. 1.108. 0.$ 51. 1.41d. 1.295, 0.342m 1.96. 1.57. 1.de 2.09. 0.22. 1 '0. 1.48. 1.40. 1.42. W.34. 0.94. 1.85. 5.70'.

~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.477. 1.370. 1.403. 1.141 1.247. l.tio. 1.240. 1.140. 1.482. 1.370. 0.47$

>

~ ~

0.499. 1.414. 1.433. t.148. 1.223. 1.127. 1.22Q. 1.14d. 1.3Qd. 1.393. 0.4$ $ .

4.62. 3.20. 2.12. 0.43. I.QO. 1.97. -1.30. 0.57. W.43. 1.65. 2.15.

. 0.478. 1.272. 1.2$ 3. 1.115. 1.263. 1.115. 1.2$ 2. 1.270. 0.477.

0.500. 1.299. 1.258. 1.093. 1.2il. 1.103. 'l.26$ . 1.249. 0.4$ 6.

4.62. 2.14. -1.9$ . -1.9i. -1.75. -I.eb. -1.05. -1.7'I. 1.77.

0.32i O.S30. 1.144. 8.953. 1.146. 0.529. 0.323.

~

0.339. 0.55S. 1.155. 0.960. 1.131. 0.52d. 0.320.

4.62. 4.60. 0.99. 0.75. 1.26. M.57. -1.17.

0.269. ~ .313. 0.279.

. 0.2b2. 0.321. 0.279.

4.62. 2.41. d.07.

Pege 44 of 50 (Rev. 0)

4

~ %

H 'uclear Plant Unit 1, Cycle 6 Startup t Report Figure 6A Assembly Relative Power Map 215 Predicted Measured

'lo Difference

. e.2be. e.sis. e.271.

. e.'298'. e'.JJs..264'.

6.44. 6.42. 5.04.

. e.324. e.s29. i.$ 44: e.es4. i.t43. e.s31. e.324.

0.333. 0.525. 1. 152. 0.964. 1. 16s. 0.549. O.JJ6.

2.82. M.75. 0.70. 1.05. 2. lb. 3.41. J.S5.

0.476. 1.265. 1.279. 1.114. 1.26d. 1.114. $ .26$ . 1.2dd. 0.477.

0.476. 1.255. 1.24S. 1.092. 1.235. 1.104. 1.266. 1.265. 0.495.

W.04. -0.74. -2.44. -1.97. -2.44. W.QI. 0.57. 1.56. J.66.

0.477. 1.363. 1.396. 1.139. 1.245. 1.150. 1.24S. 1.140. 1.399. 1.363. 8.476.

0.474. 1.34S. 1.393. 1. 123. 1.217. 1. 123. 1.218. 1.147. 1.402. 1.375. 0.4S2.

M.de. -1.11. W.JS. -$ .39. -2.2J. -2.30. -2.25. e.67.'e.22. e.92. i.ta.

0.324. $ .266. 1.399. 0.657. 1.092. $ .301. 1.141. 1.302. i.e93: e.ds7. 'i.JQS. 1.265. 0.324.

0.312. 1.214. 1.365. O.S41. 1.074. 1.266. 1.114. 1.274. 1.104. 0.850. 1.390. 1.259. e.'333.'.es'.

-3.65. -4.eQ. -2.44. -I.be. -1.67. -2.71. -2.4e. -2.14. I Be. W.76. W.sd ~ ~ W 45.

~

0.531. 1.261. 1. 140. 1.093. 1.200. 1.156. 1. 187. 1.157. 1.200. 1.092. 1.1JQ. 1.279. 0.529.

0.517. I . 242. I . 12J. 1. BSS. 1. 199. 1. 151. 1. 167. 1.157. $ .231. 1.091. 1.135. 1.271. e.'sJS'.

-2.61. -J.BJ. -1.49. -0.46. W.BQ. M.JQ. e.e4. e.ed'. 2.54'. -e.t t'. -e.34'. -0.65'. 1.57.

0. 271. I . 143 1.114. 1.246. 1.302. 1.157. B.S26. 1.293. O.S2S. 1.15d. I 301. 1.245. 1.114. l. 144. 0.260.
0. 292. 1. 156 1.094. 1.222. 1.270. 1.154. 0.635. 1.305. 0.82d. 1.174. 1.2S4. 1.231. 1.117. I: Ise. e.'26s'.

7.93. 1.09 -1.82. -1.92. -2.42. -0.20. 0.77. 0.69. M.26. 1.57. -1.33. 1.14. 0.30. 0.54. 1.91.

e.Jis. 'e.es4 1.266. 1. 150. 1. $ 41. 1. 187. 1.29J. 0.647. 1.293. 1.187. 1. 141. 1.150. 1.2d6. e.es4. e.sis'.

e'.34e. '0'.Qda 1.23S. 1.13$ . 1.124. I.ISS. I.J34. 0.668. 1.312. 1.285. $ .$ 33. 1.1JS. 1.265. 0.949. 0.313.

7.90. 1.48 -2.20. -1.6d. 1.50. 0.11. J.IS. 2.45. '1.44. 1.5d. -0.71. 1.20. -0.01. W.59. W.64.

0.260. 1.144 1. 114. 1.245. 1.301. 1. 156. 0.62S. 1.293. 0.828. 1. 157. '1.382. 1.24d. 1.114. i.$ 43. e.27$ '.

e.Je2. I.tsa 1.094. 1.225. $ .27d. 1. 144. 0.625. 1.31a. e'.640. 1.173. 1.269. 1.231. 1.133. I'.147. 0.273'.

7.92. 1.20 -1.79. -1.59. 1.78. -0.96. -0.40. 1.74. 1.43. 1.41. -1.02. 1.27. I.de. e.37. e.79.

0.529 1.279. 1.139. 1.892. 1.200. 1.157. 1.167. 1.156. 1.200. 1.893. 1.140. 1.2dl. 8.531.

0. 521 1.255. 1.141. 1.104. 1.209. 1.146. 1.194. 1.1d2. 1.220. 1.099. 1.$ 46. 1.307. e.534'.

-1.55 -I . 9 J. 0. 16. 1. 12. 0.74. W. 76. 0. 59. 0.55. 1. 67. 0.53. 0. 69. 2.01. e.aa'.

0.324 $ .265. 1.39S. 0.657. 1.093. 1.302. 1.141. 1.301. $ .092. 0.657. 1.399. 1.26d. 0.324.

0.326 1.279. 1.422. 0.661. 1.102. 1.2SS. 1.129. 1.290. 1.111. 0.654. 1.4t2. 1.266. 0.34J.

1.49 1.15. 1.73. 2.90. 0.76. -1.25. 1.05. W.dd. 1.73. W.26. 0.91. 1.76. 5.7Q.

0.47S. 1.363. 1.399. 1.140. 1.248. 1.150. 1.245. 1.139. 1.396. '1.363. 0.477.

0.49S. 1.41$ . 1.440. 1.151. 1.225. 1.130. 1.231. 1.147. 1.393. 1.365. 0.467.

4.53. 3.56. 2.96. 0.96. '1.67. -1.73. -1.14. 0.70. -0.35. 1.63. 2.09.

0.477. 1.2S6. 1.2SI. 1.$ 14. 1.2dS. 1.114. 1.279. 1.265. 0.476.

0.496. 1.303. 1.259. 1.094. 1.243. 1.099. 1.261. 1.239. 0.464.

4.53. 2.94. 1.70. 1.79. 1.80. I.J4. -1.41. 1.96. 1.6S.

0.324. 0.531. 1. 143. 0.954. I. 144. 0.529. 0.324.

0.341. 0.556. 1.15S. 0.961. 1.127. 0.524. 0.3$ 9.

5.24. 5.20. 1.26. 0.72. -1.54. M.95. -1.37.

0.271. O.J15. 0.260.

e.'26s. '0.322.'.'279.'.20.

2.45. W.45.

Page 45 of 50 (Rev. 0)

H '8 Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 6.5 Fo'V(z)/K(z) versus Core Elevation Map 211 6.0 5.0 h.n 3.0 2.e I.e 0.0 2 3 h 5 6 7 8 9 18 11 12 13 1h 15 16 17 18 19 28 21 22 2J 2h Bor AXIAL POSITION (NOOES) TOP

~ ~ TECH SPEC LIMIT O~ FOT(Z)

+~ FOTov PDC Page 46 of 60 {Rev. Ol

A i

's Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.6 Fo" Y(z)IK(z) versus Core Elevation Map 212 2.0 l,0 0.0 0 1 2 S 4 5 0 7 b 9 10 11 12 1S 14 1S 10 17 10 19 20 21 22 2S 24 SOT ,AXIAL POSITION (HOOES) TOP

~ ~ TECH SPEC LIMIT o- raT(z)

+a FOTeV POC Pege 47 of 50 IRev. 01

4 l

t W

Vr

's Nuclear Plant Unit 1, Cycle 6 Startup st Report Figure 6.7 FoT'V(z)/K(z) versus Core Elevation Map 214 3.00

".50 2.00 1.50 1.00 0.50 0.00 0 1 2 4 5 6 7 6 9 18 11 12 IS 14 15 16 17 16 19 20 21 22 25 24 AXIAL POSITION (HOOES) TOP

~ ~ TECH SPEC LllllT 0~ POT(z)

+- rOT.V POC Page 48 of 60 lRev. Oi

6

'P 1

r

is Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.&

FQT "V(z)/K(z) versus Core Elevation Map 215 2.58 l.50 8.58 e.ee 8 1 2 5 4 5 8 7 8 9 10 11 12 13 14 15 18 1T 18 10 20 2'I 22 25 24 SOT AXIAL POSITION (HOOES) TOP

~ ~ TECH SPEC LIMIT 0 ~ FOT(Z)

+~ FOTov 3X Page 49 of 50 (Rev. 0)

p.

Ha uclear Plant Unit 1, Cycle 6 Startup Report Distribution List NRC Harris Plant Manager - NSSS Manager - Technical Support Manager - Regulatory Affairs Power Ascension Coordinator - Cycle 6 NFMRSA Section File: S08.04 pege 50 of 50 iRev. 0)

t~

e A