ML18009A356

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test
ML18009A356
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 10/31/1989
From:
CAROLINA POWER & LIGHT CO.
To:
Shared Package
ML18009A355 List:
References
NUDOCS 9002050064
Download: ML18009A356 (132)


Text

CAROLINA POWER AND LIGHT COMPANY SHEARON HARRIS NUCLEAR POWER PLANT REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST OCTOBER 1989

~2Pg(jpgg 900125 900 DO~y 0500g400

-PDR pDC P

I I

gpll gV d

S]

<L 0

I l

,W<

A

TABLE OF CONTENTS Sect.

1.0 2.0 Item Title SYNOPSIS INTRODUCTION Pacae 3.0 GENERAL TECHNICAL AND TEST DATA 3.1 3.2 3.3 GENERAL DATA TECHNICAL DATA TEST DATA 4.0 5.0 4.1 ACCEPTANCE CRITERIA TECHNICAL SPECIFICATION ACCEPTANCE CRITERXA TEST INSTRUMENTATION 5.1 5.2 5.3 5.4 5.5 5.6 5.7

SUMMARY

OF INSTRUMENTS SCHEMATIC ARRANGEMENT CALIBRATION CHECKS INSTRUMENTATION PERFORMANCE VOLUME WEIGHTING FACTORS SYSTEMATIC ERROR ANALYSIS SUPPLEMENTAL VERXFICATION 7

8 8'9 9

11 14 6.0 TEST PROCEDURE 7.0 6.1 6.2 6.3 PREREQUISITES GENERAL DISCUSSXON TEST PERFORMANCE METHODS OF ANALYSIS 15 16 17 20 8.0 7.1 7.2 GENERAL DISCUSSION STATXSTICAL EVALUATION DISCUSSION OF RESULTS 20 24 26'.1 8.2 8.3 8.4 RESULTS AT Pa SUPPLEMENTAL TEST RESULTS AS FOUND ANALYSXS LOCAL LEAKAGE'RATE 'TEST RESULTS 26 30 31 32 REFERENCES 33

'TABLE OF'CONTENTS (Cont'd)

APPENDICES A

SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATION B

REDUCED TEST DATA C

LEAKAGE RATE TEST GRAPHS D

COMPUTER RESULTS E

SUMMARY

OF LEAKAGE RATE RESULTS F

SUMMARY

OF TYPE B

6 C LEAKAGE RATES SINCE PRE OPERATIONAL ILRT

I J

~0 C g q>l

'll lh

/

4 k

J.

I4

%1~

r.

4

SYNOPSIS The Shearon Harris Nuclear Power Plant reactor containment building was subjected to. an integrated leak rate test during the period of October 19 to October 25, 1989.

The purpose of this test was to demonstrate=the acceptability of..the,.building leakage rate at an internal pressure of 41 psig (Pa).

Testing was performed in accordance with the requirements of 10CFR50 Appendix J, ANSI N45.4-1972, and Shearon Harris Nuclear Power Plant Technical Specifications.

The Mass Point method of analysis resulted in a measured leakage rate of 0.0395% by weight per day at 41 psig.

The leakage rate at the upper bound of the 95% confidence interval was 0.0406~ by weight per day.

A correction factor of 0.0008% by weight per day for eight penetrations which were not vented during the test and for changes in the net free volume of the containment due to water level changes must be. added to the test results.

Therefore, the leakage rate at the upper bound of the 95> confidence. interval is 0 '0414o

-by weight per day which is below the allowable leakage rate of 0.075% by weight per'ay;at 41-psig.

Utilizing the Total Time'method of analysis, the measured leakage rate was found to be 0.0406% by weight per day and 0.04724 by weight per day at the upper bound of the 954 confidence interval at 41 psig.

The

,mean of the measured leakage rates based on total time calculations for the last five hours of the test was 0.0434:

by weight per day.

All total time analysis are below the allowable leakage rate of 0.075% by weight per day.

The supplemental instrumentation verification test at Pa demonstrated an agreement between 'measured reactor containment building integrated leakage rates of 18.6%

using Mass Point and 4.51% using Total Time methods.

These values were within the 254 requirement of

10CFR50, Appendix J, Section III A.3.(b).

Testing was performed by Carolina Power 6 Light Company with the technical assistance of United Energy Services Corporation.

2.0 INTRODUCTION

The objective of the integrated. leak rate test was the establishment'of the degree of overall leak tightness of the reactor containment building at the calculated design accident pressure of 41 psig.

The allowable leakage is defined by the design..basis.

accident. applied in the safety analysis in accordance with site exposure guidelines specified in 10CFR100.

For the Shearon Harris Nuclear Power Plant the maximum allowable integrated leak rate at design basis accident pressure of 41 psig (Pa) is 0.10~ weight per day (La).

Testing was performed in accordance with the procedural requirements as stated in Shearon Harris Nuclear Power Plant 'Periodic Containment Integrated Leak Rate Testing (Type A Test)

EST-210.

Leakage rate testing was accomplished at a pressure of at least 41 psig for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

The 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period was followed by a 4.75 hour8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> supplemental test for verification of test instruction.

I

'e tt+

3.0 GENERAL TECHNICAL AND TEST DATA 3.1 GENERAL DATA Owner:

Carolina Power and Light Company Docket No.

Location:

Containment Type:

50-400 New Hill, N.C.

Reinforced concrete with steel liner Date Test Completed:

October 25, 1989 3.2 3.3 TECHNICAL DATA Containment Net Free 'Volume:

Design Pressure:

Calculated Accident Peak Pressure:

TEST DATA Test Method:

Data Analysis:

Maximum Allowable Leakage Rate (La):

Test Pressure:

Measured Leakage Rate:

Mass Point Total Time 2,266,000 cubic feet 45 psig 41 psig Absolute Mass Point and Total Time 0.10> wt per day 57.194 psia 0.'0395< wt per day 0.04064 wt per day

~ IQ C

Kl

3.3 TEST DATA (Continued)

Measured Leakage Rate at UCL:

Mass Point Total Time Supplemental Test Flow Rate:

Supplemental Test Measured Leak Rate:

Mass Point Total Time Supplemental Test and Lam Agreement:

Mass Point Total Time 0.04064 wt per day 0.0472< wt.per day 0.09804 wt per day 0.1189~ wt per day 0.1341> wt per day

18. 6c 4.5~

4.0 ACCEPTANCE CRITERIA 4.1 TECHNICAL SPECIFICATION ACCEPTANCE CRITERIA Acceptance criteria established prior to the test and as-specified by 10CFR50, Appendix Z, 'ANSI N45.4-1972, and the Shearon Harris Nuclear Power Plant Technical Specifications, are as follows:

a ~

The measured leakage rate (Lam) at the calculated design accident pressure of 41 psig (Pa) shall be less than 75~ of the maximum allowable leakage rate (La), specified as 0.100% by weight of the building atmosphere per day.

The acceptance criteria is determined as follows:

La

= 0.100% wt/day b.

0.75 La

= 0.075~ wt/day The test instrumentation shall be verified by-means of a supplemental test.

Agreement between the containment leakage measured during the Type A

test and "the containment'eakage measured during the supplemental test shall be within 25% of La.

5.0 TEST INSTRUMENTATION 5.1 5.1.1

SUMMARY

OF INSTRUMENTS Test instruments employed are described, by system,.in the following subsections.

Tem erature Indicatin S stem Components:

Resistance Temperature Detectors:

2.

Quantity Manufacturer Type

Range, F
Accuracy, F

Sensitivity, F

Data Acquisition System Quantity Manufacturer Resolution, F

Repeatability, 40 Burns Model WPP1A21-5 60-120

+/- 0. 1

+/- 0. 02 1

Kaye

+/- 0.018

+/- 0.0034 of reading plus 0.027 F

5.1.2 Dew oint Indicatin S stem Dewcell Elements:

2.

Quantity Manufacturer Type Range

Accuracy, F

Sensitivity, F

Data Acquisition System Quantity Manufacturer Resolution Repeatability RH 10 Phys-Chem Scientific Model 1150 0-1004 RH

+/-

2

+/- 0. 5 1

Kaye

'+/- '0.'001V

+/- 0.006% of reading plus 1 count

+

2 micro volts

I gaP 1i I

~

Vf V

4 1

I

5.1.3 Pressure Monitorin S stem Precision Pressure Gauges Quantity

,Manufacturer Type

Range, psia Accuracy, psia Sensitivity Repeatability 2

Texas Instruments Quartz Manometer 0-75

+/-

0.011'/-0.0013'f full scale

+/- 0.0005% of full scale 5.1.4 Su lemental Test Flow Monitorin S stem Flowmeter Quantity Manufacturer Type

Range, scfm Accuracy 1

Brooks Model 1114 0-10

+/-

1% of full scale 5.2 SCHEMATIC ARRANGEMENT The arrangement of the measuring systems""summarized in Section 5.1 is depicted in Appendix A.

Drybulb temperature sensors were placed throughout the reactor containment building volume to permit monitoring of internal temperature variations at 40 locations.

Relative humidity detectors were placed at 10 locations to permit monitoring of the reactor containment partial pressure of water vapor.

5.3 CALIBRATION CHECKS Temperature,

dewpoint, and pressure, measuring

.systems were checked for calibration before the test as recommended by ANSI N45.4-1972, Sections 6.2 and 6.3.

In addition, an area temperature survey of the containment was performed which confirmed that the locations selected for drybulb temperature and relative humidity sensors were representative locations.

The results of the calibration checks and temperature survey are on file at'the "Shearon Harris Nuclear Power Plant.

The supplemental test at 41 psig confirmed the "instrumentation acceptability.

5.4 INSTRUMENTATION PERFORMANCE 5.5 The 40 RTD's, 10 relative humidity detectors, two precision pressure

gauges, and flowmeter performed satisfactory throughout the performance of the integrated leak.rate test and provided adequate-coverage of the containment.

VOLUME WEIGHTING FACTORS Weighting factors were assigned to each drybulb temperature sensor and relative humidity sensor based on the calculated volume of the reactor containment building each sensing device monitored.

Drybulb temperature and relative humidity sensors elevation and weighting factors for the test were as follows:

Elevation/

Azimuth 4 16 '-6'I/180 416'-6"/270 416'6"/0 416'-6"/90 391'-6"/150 391'-6"/210 391 I-6 "/270o 391 I-6'330o 391 I 6<t/30 391'-6"/90 391'-613/-

343 I 6ii/135o 343'-6"/180o 343'-6"/225 343I 6></270 343 I-6"/315o 343'-6"/0 343'-6"/45 343'-6"/90o 343'-6"/-

297 '-6II/126 297 I 6i'/167o 297 I 6></200o 297 I 6<</232 297 I 6i'/285o 297'-6"/322o Radius 36'6'6'6'7.5'7.5'7.5'7.5'7.5'7.5'l 48.5'8.5'8.5'8.5'8.5'8.5'8.5I 48.5' I

48I 48'8'8'8I 48'emperature Element RTD-1-ILRT-Z-1 RTD-2-XLRT-Z-1 RTD-3-ILRT-Z-1 RTD-4-ILRT-Z-1 RTD-1-ILRT-Z-2 RTD-2-ILRT-Z-2 RTD-3-ILRT-Z-2 RTD-4-ILRT-Z-2 RTD-5-ILRT-Z-2 RTD-6-ILRT-Z-2 RTD-7-ILRT-Z-2 RTD-1-ILRT-Z-3 RTD-2-ILRT-Z-3 RTD-3-ILRT-Z-3 RTD-4-ILRT-Z-3 RTD-5-ILRT-Z-3 RTD-6-ILRT-Z-3 RTD-7-ILRT-Z-3 RTD-8-XLRT-Z-3 RTD-9-XLRT-Z-3 RTD-1-ILRT-Z-4 RTD-2-ILRT-Z-4 RTD-3-XLRT-Z-4 RTD-4-ILRT-Z-4 RTD-5-"ILRT-'Z-4 RTD-6-ILRT-Z-4 Weighting Factor 0.0251 0.0250 0.0251 0;0250 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0188 0.0188 0.0188 0.0188 0.0188 0.0188

ll A

~Q h

l f)

5.5 VOLUME WEIGHTING FACTORS (Continued)

Elevation/

Azimuth 297'-6"/po 297'-6"/44 297'-6"/79 297'-6'r/

254'/136 254//198 254//246 254>/314o 254'/150 254'/73 254'/30 254'/219 254</292o 254'/2 Elevation/

Azimuth 416)-6"/

391 i 6></2700 391'-6'I/90 343 t 6>t/1200 343'-6"/240o 343'-6"/p 297'-6"/216 257'-6"/62 254'/180 254'/327 Radius 48'8'85.5'5.5'5.5'5.5'5.5~

55.5'1'1'1'1'adius p I 47.5'7.5'8.5'8.5'8.5'48~

48'5.5~

31'emperature Element RTD-7-ILRT-Z-4 RTD-8-ILRT-Z-4 RTD-9-ILRT-Z-4 RTD-10-ILRT-Z-4 RTD-1-ILRT-Z-5 RTD-2-ILRT-Z-5'TD-3-ILRT-Z-5 RTD-4-ILRT-Z-5 RTD-5-ILRT-Z-5 RTD-6-ILRT-Z-5 RTD-7-ILRT-Z-5 RTD-8-ILRT-Z-5 RTD-9-ILRT-Z-5 RTD-10-ILRT-Z-5 Humidity Element RHD-A-ILRT-Z-l

. RHD-A-ILRT-Z-2 RHD-B-ILRT-Z-2 RHD-A-ILRT-Z-3 RHD-B-ILRT-Z-3 RHD-C-ILRT-Z-3 RHD-A-ILRT-Z-4 RHD-B-ILRT-Z-4 RHD-A-ILRT-Z-5 RHD-B-ILRT-Z-5 Weighting Factor 0.0188 0.0188 0.0188 0.0188 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 Weighting Factor 0.0999 0.1019 0.1019 0.0927 0.0927 0.0927 0.0940 0.0940 0.1151 0.1151

)p~

r

~

fi'tN'"-

1 Ql y 0\\

~ 'P

'I

'I

10 5.6 SYSTEMATIC ERROR 'ANALYSIS Systematic error, in this test, is. induced by. the operation of the.temperature indicating system, relative humidity indicating system, and the pressure indicating system.

Justification of instrumentation selection was accomplished, using manufacturer/s sensitivity and repeatability tolerances stated in Section 5.1, by computing the instrumentation selection guide (ISG) formula.

'ontainment leakage determined by the Absolute Method requires accurate measurement of small changes in containment pressure with suitable corrections for temperature and water-vapor.

Since the Absolute Method utilizes the change-in a reading (i.e., pressure and temperature) to calculate leak rate,,the repeatability, sensitivity, and readability of the instrument system is of more concern than.,the accuracy.

To perform the ISG calculation, the sensitivity error of the sensor and the repeatability of the measurement system.must;be used.

Sensitivity is defined as "the capability of a sensor to respond to change."

Sensitivity is usually a

function of the system measuring the sensor output.

When the sensor energy state is raised or lowered an amount equal to the smallest value which the entire system will process, a change of indication will occur.

To determine sensitivity for ILRT sensors, it is necessary to analyze the smallest value of the analog sensor output which will cause a one digit, change in the digital display.

Repeatability is defined as "the capability of the measurement system to reproduce a given reading'from 'a constant source."

5 e*

k>~

W(

1M ts

11 5.6 SYSTEMATIC ERROR ANALYSIS (Continued)

Utilizing the methods, techniques, and assumptions in Appendix G to ANS 56.8-1987, the ISG formula was computed for the Absolute Method as follows:

Conditions:

2.

La

=

0.104 wt/day P

=

57.194 psia T

=

83.83 F

Tdp

=

57.23 F

t

=

24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Total Absolute Pressure:

ep No. of sensors

= 2 Range

=

0 75 psia Sensor sensitivity (E

)

= +/- 0.00134 of full scale Measurement system error

(

)

= +/- 0.0005% of full scale e

= +/-

p e

= +/-

p

[(E

)

+ (<p)

] / /[no. of sensors]

p

[ (9 75x10

4) 2 ~

(3 75x10-4) 2 j 1/2/ [2) 1/2 3

~

e

= +/- 7.39x10 psia p

Water Vapor Pressure:

epv No. of sensors

= 10 Sensor sensitivity error (E v)

= +/-

0 '

F Measurement system error excluding sensor pv)

+/- 0. 006% of reading plus 1 count

+

2 micro volts

1

~J v

pt ~

l~ p(Q

5.6 SYSTEMATIC ERROR ANALYSIS (Continued) 12 At a dewpoint temperature of 57.23 F, the equivalent sensor sensitivity water vapor pressure change (as determined from steam tables) is 0.0084 psia/

F Epv = +/- 0.5 (0.0084 psia/

F)

Epv

+/

0. 0042 psia At a drybulb temperature of 83.83 F and a dewpoint temperature of 57.23 F, the relative humidity is 40.4 percent.

At 40.4 percent relative humidity, the input to the Kaye Datalogger is 4.04 volts.

Then the measurement system error is:

4.

e v = +/- (0.00006 x -4.04

+.001

+

2 x 10

) volts

= +/- 1.24 x 10 volts

'Since'-10 volts represents'-100%

relative humidity, then v in terms of relative humidity 1s:

1.24x10 F v = +/-

10 x 100~a RH = 1.24 x 10

>o RH At a drybulb temperature of 83.83 F (.5739 psia saturation pressure),

the equivalent water vapor pressure change is:

F v = +/- (.000124) x.5739 c v = +/- 7.12 x 10 psia pv

+/

[Epv)

+

( ~pv)

] / /[no. of sensors]

[ (p pp42) 2 +

(7 12x1p-5) 2] 1/2/[1p] 1/2 e

= +/- 1.33xl0 psia pv Temperature:

eT No. of sensors

= 40

'Sensor sensitivity error (ET)

= +/- 0.02 F

.= +/-0.02 R

,si 7+

~ M

. hi'

4.

Temperature:

eT (Continued) 13 Measurement system error

( T),

excluding sensor

= +/- 0.0034 of reading plus 0.027 F

At a dry bulb temperature of 83.83 F (543.52 R), the measurement system error, T, is:

~T = +/- (0.00003) x 83.83

+ 0.027

+/- 0.0295 F = +/- 0-0295 R

T

+/- [ (ET)

+ (<T)

)

/

[

[ (0 02) 2 + (0 0295) 2~ 1/2 / [40] 1/2 eT = +/- 5.64xl0 R

5.

Instrument Selection Guide (ISG):

ISG = +/

2400

[2(ep)2

+ 2(epv)2 7.39x10 ISG = +/-

[2( 57.194

)

+

t

+ 2(eT) 2

) 1/2 1.33x10 2(57.194')

+

0.295 2(543.52)

] /

ISG = +/- 100[3.34 x 10

+ 1.08 x 10

+ 5.89 x 10

)

ISG = +/- 0.009% wt/day 5.7 The ISG value does not exceed 0.25 L (0.025% wt/day) and it is therefore concluded that tPie instrumentation selected was acceptable for use in determining the reactor containment.integrated leakage rate.

SUPPLEMENTAL VERIFICATION In addition to the calibration checks described in Section 5.3, test instrumentation operation was verified by a supplemental test subsequent to the completion of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> -leakage rate *test.

This test consisted of imposing a known calibrated leakage rate

4a C ~j f

hm

~yY 4(

r gf L

'I, ~

Pl i%

@i P

t

5.7 SUPPLEMENTAL VERIFICATION (Continued) 14 on the reactor containment building.

After.the flow rate was established, it was not.altered for the duration of the test.

During the supplemental test, the measured leakage rate was:

Lc = Lv' Lo Where:

Lc

=

Measured composite leakage rate consisting of the reactor containment building leakage rate plus the imposed leakage rate Lo

=

Imposed leakage rate L '

Leakage rate of the reactor containment building during the supplemental test phase Rearranging the above equation,

= Lc Lo The reactor containment building leakage during the supplemental test can be calculated by subtracting the known superimposed leakage rate from the measured composite leakage rate.

The reactor containment building leakage rate during the supplemental test (L ') was then compared to the measured reactor containment building leakage rate during the preceding 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test (Lam) to determine instrumentation acceptability.. Instrumentation is considered acceptable if the difference between the.two building leakage rates -is within 25'f the maximum allowable leakage rate (La).

ey

  • 'l

~ ~

yAt

'ig

$~ ~ ~

lt~ ~

y01

~

14 ll

15 6.0 TEST PROCEDURE 6.1 PREREQUISITES

'rior to commencement'.of reactor containment.building pressurization, the following prerequisites were satisfied:

1.

Proper operation of all test instrumentation was verified.

2.

Reactor containment building isolation valves were closed using the normal mode of operation.

Associated system valves were placed in post-accident positions.

3.

Equipment within the" reactor 'containment building, subject to damage, was protected from external differential pressures.

4.

Portions of fluid systems, which under post-accident conditions become'extensions of the containment

boundary, were drained and vented.

5.

Containment pressurization system was operational.

6.

Potential pressure sources were removed or isolated from the containment.

7.

A general inspection of the accessible interior and exterior surfaces of the containment was completed.

Several indications were noted during this inspection.

Engineering analysis of these indications did not indicate any structural deterioration which would affect the containment structural integrity or leak-tightness.

6.2 GENERAL DISCUSSION Following the satisfaction of the prerequisites stated in Section 6.1, the reactor containment building pressurization was initiated.

Containment building pressure and temperature, were monitored hourly.

After the containment=was stabilized, leak rate testing was initiated at a pressure of at least 41 psig.

~I~

If A/I VI fp

\\fp 1'k ff*

16 6.2 GENERAL DISCUSSION (Continued)

During the test the following occurred at 15 minute intervals (see Appendix B Reduced Leakage Data):

Readings indicated by the two precision pressure gauges were recorded and entered into the computer.

The computer program computed the average total pressure.

2.

3.

Readings indicated by the 40 RTDs were recorded and entered into the computer.

The computer program calculated the weighted average containment building drybulb temperature by use of a weighting factor that was assigned to each RTD.

This value was subsequently converted to degrees Rankine for use in the ideal gas law equation to calculate containment building weight of air.

Readings indicated by the 10 relative humidity sensors were recorded..and.,entered into the computer.

The computer program calculated the partial, pressure'f water 'vapor for each -sensor and the weighted average containment. partial pressure of water vapor by use of a weighting factor assigned to each sensor.

The use of water vapor pressure (Pwv), temperature (T),

and the total pressure (Pa) is described in more detail in Section 7.1.

Data was entered into an Compaq Portable Computer located at the leak rate instrumentation room.

The ILRT computer program utilized for the test had been previously checked with sample data of known results and certified prior to the test.

The computer program then calculated the following",at 15 minutes intervals:

1.

Total'eight of containment air.

2.

Mass point least squares fit leakage rate.

3.

Mass point 954 upper confidence level leakage rate.

4.

'bserved total time" 1'eakage rate.

1

'I

~$C aw 4(,

'All I F$ g PV.

C p4

17 6.2 GENERAL DISCUSSION (Continued) 5.

Total time mean leakage rate.

6.

Total time least squares,fit leakage rate.

7.

Total time 954 upper confidence level leakage rate.

A plot of weighted average containment temperature, containment total pressure, containment average dewpoint temperature, and weight of air was performed for each 15 minute data set (see Appendix C).

Immediately following the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> leak test, a

,superimposed leakage rate was established for an additional 4.75 hour8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> test period.

During this. time, temperature,

pressure, and vapor. pressure were monitored as described above.

6.3 6.3.1 TEST PERFORMANCE Initial Pressurization Pressurization of the reactor containment building was started at 10:30 on October 19, 1989, with a pressurization rate of approximately 3.8 psi per hour.

During pressurization, containment spray isolation valves 1CT-86 and 1CT-87 (Penetration M24) were isolated due to water leakage.

The minimum pathway leakage from penetration M24 as determined from local leakage rate testing will be added as a Type C addition to the ILRT total leakage rate.

At 23:30 on October 19, 1989 pressurization was secured and containment recirculation fans were secured.

During the stabilization period, the temperature stabilized in 4

hours, but the air mass points had not stabilized.

After 13.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of data the leakage rate was

- relatively constant at.'approximately 0.24% wt/day.

Inspection teams found" leakage from.main steam lines indicating steam generator secondary leaks.

The severity of the leaks were verified by pressurizing the steam lines with nitrogen and observing leakage decrease to an acceptable value.

+h

%s4

~I

~ '

f l gl, l"+

I'It/

I pe 5

18 Initial Pressurization (Continued)

The reactor containment building was then depressurized and an inspection made with the steam generator secondary sides pressurized.

All steam generators indicated leakage at various root and vent valves.

The steam generators were depressurized and the leaks were corrected by tightening or replacing the packing.

The valves which required packing replacement or adjustment were:

1BD-7, 1BD-8, 1BD-26, 1FW-168, 1MS-7, 1MS-434, 1MS-l, 1MS-436, and 1MS-17.

The steam generators were depressurized and appropriate prerequisites were performed to allow restart of the test.

Since the steam generators are pressurized post LOCA by the auxiliary feedwater

system, the steam generators are not a post accident containment leakage path.

Pressurization of the reactor containment building was restarted at 03:10 on October 23, 1989, at

'pproximately 4 psig per hour.

When containment pressure reached 42.5 psig at 16:25, pressurization was secured.

Containment recirculation. fans were then.,also resecured.

Inte rated Leak Rate Testin Phase At 16:30 on October 23,

1989, 15 minute frequency test data collection was initiated.

At 02:00 on October 24, 1989, the temperature stabilization and air mass weight stabilization had been met and the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> leak rate test was started.

The 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test was completed at 02:00 on October 25, 1989 with the following results:

Utilizing the Mass Point method of analysis, the measured leakage rate was 0.03954 by weight per day and 0.0406'. by weight per day at the upper bound of the 954 confidence interval.

2.

Utilizing the Total Time method of analysis, the measured leakage rate was 0.0406% by weight per day and 0.04724 by weight per day at the upper bound of the 95% confidence interval.

Su lemental Leaka e Rate Test Phase "Fol'lowing completion, of.the,-24-"hour';integrated leak rate test, a leakage rate of 5.85 scfm was imposed on the containment building through a calibrated flow meter at 02:45 on October 25, 1989.

With an imposed leakage rate of 0.09804 by weight per day, a measured

Ib 4

~

N 4

'f~4) 44,"

f4 A

N ~

'VP'f

19 Su lemental Leaka e Rate Test Phase (Continued) composite leakage rate of 0.11894 by weight per day.was obtained using the Mass Point method.

This results in a reactor containment building leakage rate agreement of 18.6~O of La with results for'the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test.

Using the Total Time method of analysis, the measured composite leakage rate of 0.13414 by weight per day was obtained.

This results in a reactor containment building leakage rate agreement of 4.54 of the La with results from the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test.

These results are both within the acceptance limit of 254 La.

De ressurization Phase After all required data was obtained and evaluated, reactor containment building depressurization was started at a rate of 5 psi per hour.

post test inspection of the reactor containment building revealed no unusual findings.

20 7.0

'METHODS OF ANALYSIS 7.1 GENERAL DISCUSSION The Absolute Method of leakage rate determination-was employed during testing at the 41 psig.

The ILRT computer code calculates

.the percent by weight per day leakage rate using both the mass..point and total time methods.

7.1.1 Mass Point Anal sis The Mass Point method of computing leakage rates uses the following ideal gas law equation to calculate the weight of air inside containment for each 15 minute interval:

W = 144 PV KP RT T

Where:

W = Mass of.air inside containment, ibm K = 144 V/R = 6.11638866 x 10 1bf P = Partial pressure of air, psia T = Average internal containment temperature, R

V = 2.266 x 10 ft R = 53.35~

1bf ft

'1bm

R

'*The partial pressure of air, P, is calculated as follows:

Where:

'PT'.:Total-containment pressure

J'f.

'<<pi C!

gf V

21 Mass Point Anal sis (Continued)

Pwv = Partial pressure of water vapor. determined from the ten relative humidity sensors and converting to partial pressure of water vapor, psia.

The average internal containment temperature, T, is calculated as follows:

1 C Vfi i

Where:

i Vfi = Volume fraction of the i sensor Ti

= "Absolute temperature of the i sensor The weight of air is plotted versus time for.the, 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test and for the 5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> supplemental test.

The ILRT computer code fits the locus of these points to a straight line using a linear least squares fit..The

'equation of the linear least squares fit line is of the form W = At + B, where A is the slope in ibm per hour and B is the initial weight at time zero.

The least squares parameters are calculated as follows:

N

<t W

i i

i

<t W

S XX Where:

Sxx N

Wi Et 2

<t N(

Number of data points Measured mass of containment air Time interval

  • k~"

5/4

~

t I" W

.4 plN

Mass Point Anal sis (Continued) 22 The weight percent leakage per day can then be determined from the following, equation:

Lam = -2400 A

where the negative sign is used since A is a

negative slope to express the leakage rate as a

positive quantity.

Total Time Anal sis The total time method utilizes the following equation

,to determine the leakage rate of the reactor containment building:

2400 1

2 P

L =

[

1

)

t Where:

'L

='Measured leak rate in weight percent per day

= Time interval, in hours, between measurements T1,T2 = Average internal containment temperature, R, at the beginning and the end of the test interval respectively.

P1,P2

= Average containment pressure (corrected for water vapor pressure) at the beginning and end of the test interval respectively.

The mean total time leakage rate is derived from the

'above individual total time'alculations.

The equation for the mean leakage.,rate, is in the form:

L.

Ei i n

Where:

Li = Individual total time leakage rates n

= Number of total time leakage rates

Q X'

23 The individual leakage rates are then plotted against time for the duration of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, test.

The ILRT computer code fits the locus of these points to a straight line using a linear least squares fit.

The equation is of the form L Lo + L1t where L> is the slope in percent per hour and Lo is the initial leakage rate at time zero.

The least squares parameters are calculated as follows:

Ct.2 CL.

Ct.

CL t-i i

i l

1 0

S XX Ct CL i

i Where:

ct.

2

( ct.)

S

= N XX

Ihh h

~II h

hhh

24 7.2 7.2.1 STATISTICAL EVALUATION General After performing the least squares fit, the ILRT computer code calculates the following statistical parameters:

7.2.2 1.

Limits of the 95% confidence interval for the mass point leakage rate (CM).

2.

Limits of the 954 confidence interval for the total time leakage rate (CL).

These statistical parameters are then used to determine that the measured leakage rate plus the 95 UCL meet the acceptance criteria.

Mass Point Confidence The upper 95% confidence limit for the mass point leakage rate is calculated as follows:

CM = 2400 t95 (SA/B)

Where:

CM

= Upper 95% confidence limit t95

= Student' t distribution with N-2 degrees of freedom SA

= Standard deviation of the slope of the least squares fit line B

= Intercept of the least squares fit line The standard deviation of'the slope'f, the "least squares fit line (SA).is calculated as follows:

S

=

S (N)

[N( cti2

)

( ct

)2)

Where:

S

"= Common standard deviati'on of the weighted from the least squares fit line N

=

Number of data points ti =

Time interval of the'th data point

25

'Mass Point Confidence (Continued)

The common standard deviation '(S) is defined by:

S I g(Wi W)2

)

N-2 Where:

Wi = Observed mass of air W

= Least squares calculated mass of air The ILRT computer code calculates an upper 95%

confidence leakage rate as follows:

UCL = L

+ 2400 t95 (Sg/B)

This UCL value is then used to determine that the measured leakage rate, at the upper 95> confidence limit meets the acceptance criteria.

Total Time confidence The 95: confidence limit for the total time leakage rate is calculated as follows:

1 + 1 + (t t)2 ]1/2 L

95 n

c(ti t) 2 Where:

Total time interval Et

~

n Time interval for each data point Number of individual total time leakage rates

%T l,

26 8.0 DISCUSSION OF RESULTS 8.1 8.1.1 RESULTS AT Pa Mass Point Method of Anal sis Data obtained during the leak rate test at Pa indicated the following changes (highest to lowest) during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test:

Variable PT Maximum Chan e

0.030 psia 0.0055 psia 0 198 oF The method used in calculating the Mass Point leakage rate is described in Section 7.1.1.

The results of this leakage rate calculation was 0.0395:

by weight per day (see Appendix D).

The 954 confidence limit associated with this leakage rate is 0.0011% by weight per day.

Thus, the leakage rate at the upper bound of the 95~o confidence level becomes:

UCL = 0.0395

+ 0.0011 UCL = 0.0406: wt/day Additional leakage rates must be applied to the measured leakage rate at the upper 95% confidence level to account for penetration paths not exposed to the test pressure.

spV gcl~

27 Mass Point Method of Anal sis (Continued)

Minimum Pathway Containment Local Penetration Isolation Valves Leaka e Rate SCCM M-8 CVCS Normal Charging 98 +/-

4 M-9 CVCS Seal Water to "RCP A 20 +/-

4 M-10 CVCS Seal Water to RCP B

20 +/-

4 M-11 CVCS Seal Water to RCP C

20 +/- "4 M-12 CVCS Seal Water Return/Excess Letdown 441 +/- 40 M-24 M-62 M-78A

.Containment Spray 629 +/- 40 Reactor Coolant Sample 20 +/-

4 ILRT Pressure Sensing 20 +/-

4 The total applicable local leakage rate is 1268

+/- 57.4 SCCM which, is equivalent to a leakage rate incl'uding instrumentation error of 0.0008% by weight per day.

Level changes in the reactor containment building during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> integrated leakage rate test indicated a slight decrease in pressurizer level and no significant increase in containment'.,sump levels.

The decrease in.pressurizer, level, results, in an increase in containment net free volume and is conservatively accounted for in the leakage rate calculations.

The total containment leakage rate at the upper 95%

confidence level (UCL) is calculated as follows:

UCL = Lam + 954 confidence limit + Type C leakage UCL = 0.03954 wt/day +0.00114 wt/day + 0.0008< wt/day

,S 4a

~.

4

'fg 1

V k4.3

~

yse~

V ~t I

'L 1 I

r

28 Mass Point Method of Anal sis (Continued)

UCL = 0.0414% wt/day This value is below the acceptance criteria leakage rate of 0.075% by weight per day.

Total Time Method Of Anal sis The method used in calculating the total time leakage rates is defined in Section 7.1.2 The results of these calculations are as follows:

1.

The measured total time leakage rate for 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test was 0.04064 by weight per day.

2.

The 954 confidence limit associated with this leakage rate for the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test was 0.0066%

by weight per day.

Thus, the leakage rate at the upper bound of the 95% confidence level becomes:

UCL = 0.0406

+ 0.0066 UCL = 0.472% wt/day 3.

The mean of the measuxed leakage rates based on the last five hours of the test was 0.0434% by weight per day.

-.The.corrected reactor containment building leakage rate at the upper 95% confidence level (UCL) is calculated as follows:

UCL = Lam + 95% confidence limit + Type C leakage UCL = 0.0406% wt/day + 0.00664 wt/day + 0.00084 wt/day UCL = 0.0480% wt/day The total time measured leakage rate, the measured leakage rate at the upper bound of the 95~ confidence

level, and the mean of the measured leakage xates based on the last five hours of testing are below the acceptance criteria of 0.075< by weight per day.

Therefore, the reactor containment. building leakage

rate, based on both mass point and total time method of
analysis, at the calculated design basis accident pressured (Pa) of 41 psig is acceptable.

1

'Q

29 8.2 SUPPLEMENTAL TEST RESULTS After conclusion of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test at a pressure of at least 41 psig (Pa),

the flowmeter was placed in service and a flow rate of 0.09804 by weight per day; After the flow rate was established it was not altered for the duration of the supplemental test.

The measured leakage rate (Lc) during. the supplemental test was calculated to be 0.1189> by weight per day using the Mass Point method of analysis and 0.1341% by weight per day using the Total Time method.

The reactor containment building leakage rate during the supplemental test is then determined as follows:

Mass Point Lv' Lc Lo L

= 0.1189 0.0980 L '

0.0209~-wt/day Total Time L '

Lc Lo L

= 0.1341 0.0980 L ',0.0361< wt/day Comparing this leakage rate with the building leakage rate measured during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test yields the following:

Mass Point =

La Total Time =

Lam

Lv'a

.0395

.0209

= 0.1860

.1

.0406

.0361

= 0.0450

.1 The building leakage rates agree within 18.6% of La using the Mass Point method and 4.54-using Total Tfme which are below the acceptance criteria of 25:.

Using the formulation of ANS 56.8-1987, (Lo + Lam 0 '5La)

< Lc < (Lo + Lam + Oe25La)

(0 0980

+ 0'0395 0 025) LC (0 0980

+

0.0395

+ 0.025) 0'1125 Lc 0 1625

"4fl Po I

'4 4a

~k, t~

Al 1 Cjjt<

k~

8. 2'SUPPLEMENTAL TEST'"RESULTS (Continued) 30 Since Lc was measured to be 0.11894 by weight per day, using the Mass Point method and 0.13414 by weight per day using the Total Time method these values fall within the acceptable range of 0.1125< to 0.1625% by weight per day.

Therefore, the acceptability of the test instrumentation is considered to have been verified.

8.3 AS FOUND ANALYSIS 8.4 Since the integrated leakage rate test was performed prior to any repairs being made to any Type B or C test containment isolation barrier, then no as found correction is required.

LOCAL LEAKAGE RATE TEST RESULTS The local (Type B&C) leakage.rate 'test results since,

- the preoperational',integrated;~1'eakage rate testare'.

included in Appendix F.

31

9.0 REFERENCES

1 ~

Shearon Harris Nuclear Power Plant Final Safety Analysis Report.

2 ~

Code of Federal Regulations, Title 10, Part 50, Appendix Z.

3.

ANSI N45.4-1972, "Leakage Rate Testing of Containment Structures for Nuclear Reactors, "American Nuclear Society (March 16, 1972).

4.

5.

ANS-56.8-1987, "Containment System Leakage Testing Requirements,"

American Nuclear Society.

Steam Tables, American Society of Mechanical Engineers, 1967.

6.

ILRT Computer

Code, Gilbert/Commonwealth, Inc.

7 ~

EST-210, "Periodic Containment Integrated Leak Rate testing, (Type A Test)".

APPENDICES

0

APPENDIX A SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATION

t 4

~

APPENDIX A "SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATION AA~ AA A

A AAA ~

A A

A AA AAA A%A X k. 4 A

k. k. A

- DRYBULB TEMPERATURE SENSORS I

RELATIVEHUMIDITYSENSORS

APPENDIX B REDUCED TEST DATA I

REDUCED ILRT TEST DATA DATE 18-,24-89 I*

TXNE 1~15 l.<<.<<Q

1545, 1488 1415 14 '<<8 1445 15$ $

1515 15'<<8 1 54>J 1688 161'5 1,638'645J

1788, 1715 17."<<8 1 /45 1888 18 l.5 18 <<8 1845'988 1915

<<8 1945 2888 2815 28 '<<8

2845, 2188 21,15 21 <<8

- 14'-"

2288 221,5 22:<<8 2245

<<QQ 2'15 2<<.<<$,

2 445 J7

<<J7 ~

57

~

57 ~

5 J>>

57>>

57.

57>>

57.

57>>

<<J7 a

<<l7>>

e 57>>

57.

57>>

57>>

57.

57.

57.

57 ~

<<57>>

t 7 57.

57.

b7>>

57

'7.

57

'7

'7

'7>>

57.

57.

57.

57.

5 57>>

<<J7 57 ~

57.

191 191 1?Q 189 189 189 188 187 186 lan 185 184 184 18~

182 182 181 188 188 179'79 178 l77 177 176 176 1,75 175 175 lT4 1 7.D 17 '<<

172 172 172 172 171 178 178 178 178 178

178, 8.

S.

8.

8.

8.

8.

8.

S.

8 ~

8 8.

8.

S.

8, 8>>

8.

8 S.

S.

8.

8.

8.

S.

8.

8.

8>>

Q.

8.

Q.

8.

S.

8.

8.

S.

S.

8.

S.

8.

8.

S.

S.

8.

2",MB 2~i48

- <<48 2 '49 2<<<<iJQ 2<<<<58 2~49 2>>g 8 2 ':51 2<<<<58 2<<<<<<)2 Pp pL w a<<<<id<<<<

~ )%54 2854 2 56 2 '<<56 2>58 2 '<<57 2~5<<JB Q'757 2;~58 2w<<59 2&59 2 '*S.

2261 2 <<62 2~61 2 <<6 2 <<63 2364 2&6<<<<

2<<<<6+J 25&5 2 <<67 2~67 2 '<<66 2268 2367 2369 TANG 8'"<<. 918 8 <<.898 O'. 897 8 i. 894 8~. 887

83. 886 BZ. 877 B<<87 BZ;872 8 <<.861 83.8*6 8~i. 859 8;>. 853

.8 <<.849 8 <<.868 8 x. 837'

'<<. 8>5J 8:<<. 828 BZ. Bib

, B~ 825

,BZ; 824 8 >. 886 BZ 814 83,. 881 8 i. 792 8 <<. 797 B~. 79'?

83. 789 8~.789 8 <<781
83. 781 83.779
83. 781 B~ 78$

BZ. 76&

83. 778 8~ 768 8 <<.768 B<<759 8<<<<>> 75JB 8%

7<<$6 8.>>. 758

'8 ~ 752 NASS WEIGHT'48846.

86 64885 <<. 37 648843.99

'48848.95 648877.86 6488 '7. 93 64$ 8Z7.8<

6488 i5. 64 64883$.48 6488'<<3.85 648819 64/816.4'<<

648816.86 648815>>17 648791.63 648819.23

  • 48887.28 648884.16 648815.89 648796 82
  • 48795.83 648885.87 648784.36 648888.9$

648799.88 648791.92

  • 4877'7.52 64878 i. 44 648781 74 648784.85 648779.84 648774. '8
  • 48761.16 648755. 69 64877 '<<8 '<<,

648766>> 5 "<<

648772.98

  • 48764 78
  • 48759.64 648761.57 648762 48 648755. 2~
  • 48768. 29 1 8'-25-.89 8.
57. 169 57.'.69

$. 2."<<68

8. 2 '69 8'- 752 8<<<<>> 754 648755.64 648752. 8 ~

I ~

REDUCED ILRT TEST DATA DATE TINE 38 45 188 115 138 145

,288

~~7. 169

57. f69
57. 169-
57. 1.69
57. 168 5j. 168
57. 167 8.2 i78 8 2~72 8 2i72

.8. 2 7i 8 2'~75 8

. '~74 S. 2374 TAVG 8>.755 8~. 752

,83. 748

83. 7,~'7 8'i. 751 8~.744 83.738 NASS" NEXGHT C

648758.18 648751. 57 6487 "<6. 54 648768.81 648748

~~8 648742.88 648743.17 f

VERIF'XCATIQN TEST DATA

~

'8-J5-89 I

245 F88

~~ 1 5

~~8 345 488 415 428 588 51 5<>8 tl45 688 615 638 645 7$ 8, 715 7'8 w7 51m 57 57 ~

57~

5J7 e 57 a 57.

57 e 57.

5.7.

57 57 a tJ7 57.

57 57.

57 ~

57 ~

57.

164 164 164 162 168 15'7 155'59 158 156 154 154 152 145'49 149 148 146 146 8 2i78

8. 2>7*

S. 2'76 8.2~~77 8.2388 8.2~88 S. 2~79 8 ~ 2 'Pi S. 2 8'1

8. 2~81, S. 2'i82 8.

582 8.2382

8. 2.~8~i S. 2385
8. 238'".

$.2 ~84

8. 2885 8.2 ~87
8. 2 'i86
83. 7 >6

'8 i 726 82.736 8>.727 83.724 BZ. 716 8~.721 83.714 8~.717 83 711

83. 78.>

'3.695 8~. 781 83.698

83. 689 83.686
83. 678
83. 677 8;;i. 674 648787.92 648784.96 6487'15.88 648686.'M 64867$.55 648657.7'i 648668.i7 6486*8.84 648661.71 6486 ii. 79 648625. 48 648823.82 648618.1B 648682.48 648551.15 648588.81 648584. 81 648582. 17 648578. 32 648574.99

~

1

V

'l l fl n

REDUCED ILRT TE@T DATA DATE 1$-24-89 TXNE 2$$

215 23$

3$$

'ZS 4$$

415 4 i$

445 5$ $

545 6$$

615 8

645 78$

715 7~$

745 B88 815 B3$

B45 9$$

915 92$

'F45

'1888 181 1 $38 1845 118$

1115 1 1 ~8 1145 1288 1215 1238 1388 57 57; 57e 57.

57>>

57.

5!

57.

57.

57>>

57.

t/7 e 57.

57 e 57 ~

-57, 57 ~

57>>

57.

57>>

57.

57.

M7>>

. 57-57 e 57, ~

57>>

57.

57>>

57'.

I 7 57 5!7' 57 57.

57>>

~-!7 e 57.

. 57.

57 57 e 57>>

57.

I b7>>

57, ~

195 1'75 196 196 1'ls'6 197

197, 197 197 197 197 197 197 197 197 197 197 1'sI7 197 1 9'7 1 "s!7 197 197 197 197 597 197 197 197 197 197 1 '77 197 197

$ '76 194 194 194 194 193

'1 92

$. 2 ill

8. 2.s 1 9

$ >>2 ~21

8. 2 s 1 9 8 2 i21
8. 2~21 S. 2325
8. 2325 Se 2'i26
8. 2325

$.2327 8 2 'i27

$. 2329

$. 2:"29

$.28

8. 2329 8 2'i ~2 S. 2231

>>S e

e e

8>> ae'sDQ e

V p 8 e c'~~~~eS

$.2i i5

8. 2.~.~4

$ 2 iZ7

8. 2wZ5
8. 2'~,~7
8. 25 'i9

$. 23 ~9 8 2 'in 1 8 ~ 2 '4 l 8-2 41 8-2='4 l

$. 2'42

$. 2 F42

'.2'4'.2 42

$.2~44 8.2344

$.2344 8.2~45 8'. 2'"'n6 S. 2346

8. 2~46
8. 234B B3.829 B'i. B27 B3. B48 BZ. B46 BZ.B62 B5. Bb'>

B~.B66 B i. B7B B3. BB2 B'~. B91

, BZ.BB4 B5.89K 8%.987 B'~.988 BP. 914 B'. 9$ 9 B >.'s!15 BZ. 91+

B'. 9'15 GZ. 919 B>. V>2 8~. 'i!iB, B "927 B3.9~2 B i.926 B 'i. 's!27 B3.938 B3.927 B3. 974 B3. 936 B i.932 B;s. 9 ii B ~. 927

, B i.926 B'.92 i B3. 924

.B >. 921 "B~. 911 B3. 91.6 B'. 9 i.s 8'. 919 B~ 989 B3.912 B >. 915 B3.9$ 7 NABS MEIBHT 641887.15 641814. 65 64899B>>12 648998.2i, 64$ 9B2.4B 6489Bi.25 64891B.B5 648966."$ 9 648965.'~B

  • 48954.B1 648967.77 648956.BZ 648 23B. 11 648946.7Z 64892B.4S'48935.4~

648925.B2 648927.6B 648923.7'i 6489'iB.74 648981.B2 64Ql91B. 7$

648985.26 648"781.91 648787. 84 648985.43 64$ B5'9 ~ 3B 648982.45 648B86. 34 648B83.94 648B89.2B 648BB4.6=.

648BB9. 53 648B98.,24 64$B92.$ 2

  • 48B92.67 648B87.2B 648B82.57 648B76.9B 648B7B.7B 648B71>>11 648B77.78 64$ BbB 648B5B.22 648B55.84

N

APPENDIX C LEAKAGE RATE TEST GRAPHS

24 HOUR TEST

. 3),3l Ki /3i/5

~a,ee,ae 57,i8 33,i3

+AH%)

~~

~

IM (IMIB',

M/3k/33 IM,'M',M

)NJÃ IKEMIT 5

3IWIB IIM

t'

ez~,

.e>mmmr~s rtc K.

ii/31/33 1l',88',B9 IEI 3'f)KV,'/JAN

. M',lN',M l'IhJM ICKIEST i.$f C

, p~8~

NNH5 II)E

K( F 83,98

3,<s II%

(4(Q

~

~

K 3,'~/3l(33 il33 III (NM'9,'9(NI'M M,'ÃI,'M QJIN rveazvzrsx 5

3II%IB II%

k 0

I NEIclIII ~s IINE Flleal/H ll,'N',39 IEI 3MM'9',

lltI/N/II9 M'M'5 gaea INCREMENT NINIIIB

0 5

I I

~/M) 3,33 3I.

lz/2i/89 ll',M',33 5, l3 IB'f 5ThHTE9,'lV3$

/33 M'N'M

'V'<

'4<~,

~gv'e"~

~~j

I

'J'r f

t

TRIAL."

LElbM MTE ss TIM Qr)TEII T($ N lIoljM K <<'3',

is(3ii'5 ii33 lIl,3 k,j.

TEET 3TR'9,'lII'3$/iI)

M,'M,'M NhJ08 t359Ã I

l/INITB Tl )lE

i

'l

4.75 HOUR VERXFXCATZON

'.El',

usBVM i3.'O'.5 cr IBl'IMEi):

M/33/t85 ll>JNl IKM~ZIC l3 ilili'Rl'5

".B,'s/IM/33 13,'6,'.3'3 5,333 l3,333 az

~+

IB'f 3'fflEE),'WM/5 IM',(3',5

.x"

-~ l'AJM I)GEIRL H

t)ii%53

~

M Eik ~s Illà P

is</M(N l3',5',33 cog

~

k aaaeg IHQ fBI 3l~FiI~)',

5/33/N M',(i,'83 IÃ3Ã I(L34%J6 p

ill>ONE~

BlMI LKI

".9,'A/M()3 l3',~<3',.3l

'I5liMkl'll)',

5/)i/N

~

Clp)~ICd4

r/M 833 H M(@(E MIE cs II%

~~

l3', 3

~

i',33 IBI (I)3IE),

15/3Mh M'O'M A

~e

s/M) lÃ)l fE M(5(E MiE<s 11M 4~~~MB JINA M IÃll%

rm, 3/33 1,'33 IM (f)59WM/N M'5'tH

~

~

~

tl(Ã3 IKEKft i3 31%iE(

APPENDIX D COMPUTER RESULTS

TEMPERATURE STABILIZATION REPORT AYE DELTA T AVE DELTA T DELTA 4 HOURS-AVE TEHP OVER 4 HOURS OVER LAST HOUR DELTA LAST HOUR DES F DEG R

DES F DES R

DEG F DEG R

DEG F,DES R

1630 1645 1700 1715 1730 1745 1800 1815 1830 1845 1900 1915 1930 1945 2000 2015 2030 2215 2230 2245 2300 2315 2330 2345 0

15 30 45 100 115 130 145 83.63 83.50 83,45 83.41 83.41 83,42 83.43 83.44 83.46 83'8 83.50 83.51 83.53 83,55 83.57 83'8 83.58 83.61 83.61 83.64 83.65 83,67 83.67 83.&9 83,70 83.70 83.72 83.73 83.74 83'5 83.76 83.78 83.78 83,78 83.80 83.81 83,82 83.83 3

543'2 5Q.19 543.14 5Q.ie 5Q.10 543.11 543.12 543.13 543.15 5Q.17 543.19 543.20 543'2 543.24 5Q.2&

543.27 543.27 543.30 5Q.30 543.33 543.34 5Q.36 543.3&

543.38 543,39 5Q,39 5Q.41 543.42 5Q.43 543.44 543.45 543,47 543'7 543'7 5Q.49 5Q.50 5Q.51 5Q.52 0.00 0.00 0.00 0.00 0 F 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.06 e.eb Oieb 0.06 0 F 06 0.06 0 F 06 0 F 06 0.05 0.05 0,05 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0,00 0.'00 e.ee 0,00 0.00 0.00 0.00 0.01 0,03 e,04 0.06 0.06 0.06 0 F 06 0.06 0 F 06 0.06 0.06 0.05 0.05 0,05 0.05 0.05 0.05 0'4 0.05 0.04 0.04 0,04 0.21 0 F 08 0.01 0.04 0.05 0.06 0'6 0.07 0,07 0.07 O.Q7 0,06 0 F 05 0,06 0.05 0 F 06 0.07 0,06 0.06 0.06 0.04 0,03 0.05 0,21 0.08 0.01 0.04 0.05 0 F 06 0.06 0.07 0 F 07 0 F 07 Q.Q7 0,06 0,05

0.06 0.05 0,06 0 F 07 0.06 0,06 0 F 06 0.04 0.03 0.05 0.05 O,Q4 0.05 0.04 0.03 0,03 0.03 0.04 0,04 0.05 0.04 0,05 0.04 0.03 0,03 0.03 0.04 0,04 0,04 0.04 0.05'.05 0.00 0.00 0.00 0.00 0.00 0,00 0 F 00 0.00 0 F 00 0 F 00 0.00 0,00 0'4 0.03 0 F 00 0.01 0.01 0,00 0 F 00 0,01 0.01 0)02 0,01 0.02 0.01 0.00 0.01 0.00 0,01 0,01 0.01 0,01 0.00 0,00 0.00 0.00 Q.ee 0.00 0,00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0,04 0.03 0.00 0,01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0 F 01 0,00 0.01 0.00 0.01 0.01 0.01 0.01 e,ee 0.00

l

24 HOUR TEST

,INTEGRATED LEAK RATE TEST RESULTS by GILBERT/CONNOHNEALTH IHC.

MASS POINT ANALYSIS ILRT FHUN TEST POIHT HUNBER l TO 97 FRON 200 (10/24/89)

TO 200 (10/25/893 TINE INTERVAL OBS.

HEIGHT OBS. HIH. CALC, (LB3 (LB3 0

.25

.5 75 1.25 1 ~ 5 1.75 2

2,25 2.5 2.75 3.25 3,5 3.75',5 5.75 6

6,25 6.5 6,75 7

7.25 7.5 7.75 8

, 8.25 8.5 8.75 9

9.25 9.5 641007.1 641014.6 640998.1 640998 '

640982.5

&40981,3

&40978.9 6409&6 F 1 640965,4 640954.8 640967.8 640956.8 640938,1

&40946,8 640928,5 640'935.4 640925.8 640927.7 640923.8 640918.8 640901.8 640918.7 640905.3 640901.9 640907.9 640905.4 640899.4 640903,4 640886.3 640883.9 640889.3 640884.6 640889.5 640890.3 640892 640892 '

640887.3 640882.6 640877 29.83741 39.97456 26.07842 28 '0149 15.71371 17.1122&

17,35113 7.225703 9.144599 1,208147 16.80132 8,4'94576 "7,58166 3.672943

-11.94036

-2.367ll2

-9.336405

-4.8460&&

-6.155855

-8,514557

-22.80077

-3.282338

-14.09067

-14. 81334

-6.239422

-6 '18746 "9.43823

-2.727016

-17.2112

-1&.972

-9.002652

-11.01789

-3.479352

-.14008 4.282881 7.5&2542 4.803987 2 '29207

-,2198412

4t I

ICE MASS POINT ANALYSIS CONT'D CCf tttt ILRT tttt TEST POIHT HUNBER 1

TO 97 200 (10/24/89)

TO 200 (10/25/89)

TINE IHTERVAL 9 ~ 75 10 10,25 10i5 10,75 ll 11.25 11,5 11,75 12 12'5 12.5 12.75 13 13.25 13,5 13.75 14 14.25 15.75 16 16,25 16,5 16.75 17 17,25 17.5 17,75 18 18,25 18,5 18.75 19 19.25 19.5 OBS.

HEIGHT (LB) 640878.8 640871,1 640877,'7 640868.4 640858.3 640855.1, 640846.1 640853.4 640844 640840.9 640837.1 640837.9 640837,8 640835,6 640830.4 640833.9 640819.3 640816.4 640816.9 640815.2 640791.6 640819.3 640807.3 640804.1 640813.1 640796 640795 640805.9 640784.4 640800.9 640799 640791.9 640777.5 640783.4 640781,8 640784.9 640779 '

640774.4 640761.1 640755.7 OBS. NIH, CALC.

(LB) 4.211483

-.8201438 8 '96083 1.682056

-5.812023

-6.359592

-12.70327

-2.76069

-9 '01135

- -9,907904

-11.16606'7

'62454

-5,149596

-4,68353 "7.283737

-1.206837

-13.09136

-13,35601

-10.29452

-9.349653 "30.25346

-i.511762E-02

-9.332714

-9.82325 1.744209

-12.69417 "11.0468 2.423526

-16,44796 2.726775 3,460288

-.9795655

-12,74917

-4.195124

-3.261506 2.487823

.1051671 "2.718405

-13.30879

-16.14109

I J

0

NESS POINT ANALYSIS CONT'D ILRT

!tent

~EST POINT NUMBER 1

TO 97 200 (10/24/893 TO 200 (10/25/89)

TIME OBS.

NEIOHT OBS. NIN. CAl.CD INTERVAL (l.B)

(LB) 19.75 20 20.25 20.5 20.75 21 21.25 21.5 21.75 22 22.25 22.5 22.75 23 23,25 23.5 23.75 24 640773.8 640766,6 640772 '

6407&4.7 640759.6 640761.6 6407&2.5 640755.3 6407&0 ~ 3 640755.6 640752 640750,2 640751.6 640756.6 640768 640740 '

640742 640743.2 4 '316bi

-.0275&54 8.973745 3.408082

.9829804 5.547329 9.093404 4.475993 12.17023 10.15638 9.17441 9.961417 13.99048 21.5919 35.69796 10.70148, 14.95434 18.75468

,N0 =

640977.3085493514 LB

~

~

~

-10.53738530393458,.LB/HR a.~naABE RATE =

3.945494E-02 X PER DAY THE 95X UPPER CONFIDENCE INCREMENT =

1,125304E-03 X PER DAY UPPER LIMIT OF THE 95X CONFIDENCE LEVEL =

4,058025E-02 X PER DAY RATE IS ( 75X OF LA (.075

)

TOTAL TINE ANALYSIS TLRT fits

~

~

TEST POiRT RU33EER 1

TO 97 200 (10/24/893 TO 200 (10/25/893 X

OBS.

LEAKAGE RATE

.25

.5

.75 1

1.25 1,5 1.75 2

2.25 2,5 2,75 3.25 3.5 3.75 4

4.25 4,5 4,75 5

6.5 6.75 7

7.25 7.5 7.75 8

8.25 8,5

-,1123652

,0676012 4.4b245'9E-02 9.233376E-02 7,756857E-02 7,061975E-02 8,783063E-02 7,819117E-02 8,709358E-02 5.897651E-02

6. 851125E" 02 8.615346E-02 6.959544E-02 8.414467E-02 7,160703E-02 7.612085E-02 7.000809E"02 6,940037E"02

,0696834 7,886972E-02

.0630729 6.935702E-02 6.852742E"02

,0619657

.060933 6,207653E-02 5 '516038 Q2 6,461812E-02 6.362683E-Q2 5 884263E-02 5.H9074E-02

.0550458 5.305783E-02 5.070945E-02

444 TGTAL

~ TINE ANALYSIS CONT' tttt TLRT tttt TEST PO1RI RlmBER 1

TO 97 flQ/24/89)

TO 200 (10/25/89) 8.75 9.25 9,5 9.75 10 10.25 1Q.5 10.75 11 11.25 11.5 11.75 12 22.25 12.5 12,75 13 1'3.25 14.75 15 15.25 15,5 15,75 16 lb.25 16.5 16,75 1?

17.25 17.5 OBS.

lEAYASE RATE 4 '98448E-02 4.986731E-02 5.042565E-02 5.129917E-02 4.929375E-02 5.093163E-02 4.728517E-02 4.949279E"02 5.186942E-02 5.177361 E-02 5.'361106E-02 5.006622E-02 5,198824E-02

,051854 5,198547E-02 5.068539E-Q2 4,972724E-02 4.939543E-02 4.994259E-02 4.806296E-02 5.114256E-02

~ 0510046 4 '99755E-D2

4. 957177E" 02 5,470644E-02 4 '90452E-02 4.906997E-02 4,903336E-02 4,613146E-02 4,940578E-02

~ 0488731 4.567375E-02 4.979922E-02

~ 045424 4.517826E-02 4,604637E-02

TQTAL, TIME ANALYSIS CONT' ILRT tttt TEST POINT NUHBER 1

TO 97 200 (10/24/89j TO 200 (10/25/89$

X OBS.

LEAKABE RATE 17'5 18 18'5 18 '

l8.75 19 19,25 19.5 19.75 20 20'5 20.5 20.75 21 21.25 21.5 21.75'2 22.25 22,5

'22,75' 23.75 24 4.843614E-02 4.65320SE-02 4.624357E-02 4.4'9S823E-02 4.539022E-02

.045S685 4.784501E-02 4.828123E-02 4,423149E-02 4.504399E-02 4.33106SE-02 4.428015E-02 4.465957E-02 4 '78381E-02 4.310807E-02

'86966E-02 4.249439E-02 4.280256E-02 4.293016E-02 4,276057E-02 4.2061148-02 4,0?9538E-02 3.850934E-02 4.250192E-02 4,17993?E-02

4. 118206E-02 LO =

6.544309929934b86D-02 X PER DAY Ll = -1,0371264453010ID-03 X PER DAY PER HR THE 5 HOUR NEAN LEAKABE RATE CALCULATED LEAKABE RATE

< 24 HRS 95X UPPER CONFIDENCE INCRENENT

< 24 HRS UPPER LINIT OF THE 95X CONFIDENCE LEVEL

> 24 HRS 95X UPPER CONFIDENCE INCRENENT

"> 24 HRS UPPER LIHIT OF THE 95X CONFIDENCE LEVEL 4s343424E-02 X PER DAY 4,055207E-02 X PER DAY 4.028453E-02 X PER DAY 8.083659E-02 X PER DAY 6.690792E-03 X PER DAY 4.724286E-02 X PER DAY RATE IS

< 75X OF LA f.075 )

0

4.75 HOUR VERIFICATION

INTEGRATED LEAK RATE TEST RESULTS bv GILBERT/CGtlHGNHEALTH INC, 0 g Pc NASS POINT ANALYSIS 8C C tttt Superii;eased tktt EST PQINT )<UMBER 1

TO 20 k ~vs 245 (10/25/89'O 730 (10/25/89)

TIt"E CBS. 'EIGHT CBS.

ITIN, CPLC.

I',iTERVAL (LB)

{LB) 640707,9 640704.9 640715,1 640686.4 640670.6 640657.8 640668.2 640660.1 640b61.7 640631,8 640625.5 640623 '

640610.2 640602.5 640581.1 640588 640584,8 640582 '

640570,3 640575 0

.25

,5

.75 a

1.25 1.5 1.75 2

Ze25 2.5 2 75 3 25 3.75 4

4.25 4.5 640710,7759712186 Hl = -31.74328006943366

-Zs857141 Z..'20637 20,17327

-.b.'63291

-8.47908

-13 '7073 5,011123 4.815049 14.42."93

-7.558618

-5,935652

.3332513 "5,361266 "5,127206

-18.52094 "3.732185 1,004789 6 303492 2.385335 14.99029 LB LB/HR LEAKA":E RATE =

'THE 957.

UPPER CG."ii;"IBE)i'CE IhCREI)EAT =

~>PPER ilHIT QF THE 951 CBNFIOEhCE LEVEL =

.1189052 ! PER BAY 9 '98897E-03

/ >ER GAY

.1287041 X PER CAY

~ >s TOTAL VANE ANALYSIS

>>'".(8 Saucer!~eased FR"N TESTM PCINT l'."lOER 1

TO 20

('0/25/891 TO 730 f10/25/89'~

OOS.

LEAkASE RATE

.25

.5

.75 1,25 1.5 1.75 2

2.25 2.5 2.75 3,25 3.5 3)75 4.25 4.5 4e75 4.432161E"02

-5.363142E-Q2

.1077141

.}399648

,1504117 9.925685E-02

.1024835 8,654332E-02

.1267329

.1235184

.11456

.1220325

.1215222

,1356699

,1197799

.'152892

.1108318

.1145419

.1048313 LQ =

7.1701!416087<2440-02 2 PER OAT Ll =

.0131379518666613 K PER OA'/ PER HR

.'AN LEAkASE RATE v~iALATEO LEANSE RATE

< 24 HRS 95K UPPER CONFIOENCE INCREHENT

< 24 HRS UPPER LINIT OF THE 95>t CONFIOENCE LEVEL

.104546

/ PER OAY

,1341064 Y PER OA/

.0955914

/ PER OAY

~ 2296978

/

PER OAY

> 24 HRS 95K UPPER CO!L IOENCE IhCREHENT

> 24 HRS UPPER LIHI'F THE 95/

CONFIOENCE LBEL 3.182909E-02

'Y, PER OAY

.1659355

/ PER DN

APPENDXX E

SUMMARY

OF LEAKAGE RATE RESULTS

SLINNARY OFEAK ILRT CAROLINA PONER b LIGHT SHEAROtf HARRIS UHIT:1 RATE RESULTS FROtl TEST PDINT HUHBER 1

TO 97 FROM 200 llO/24/89]

TG 200 (10/25/89)

HASS IIHE HEIGHT TDTAL TIHE

( 24 UGLY

> 24 UCLII HASS POIHT UCLIt 200 215 230 245 300 315 330 345 400 415 430 445 500 515 530 700 715 730 745 800 815 830 845 900 915 930 945 1000 1015 1030 1045 1100 1115 1130 1145 1200 641007.146 641014.649 640998.118 640998.207 640982.485 640981.249 640978.854 640966.094 640965.378 640954.808 640967,766 640956.825 640938.115 640946.735 640928,487 640935.426 640925.823 640927,679 640923,734 640918.741 640901.821 640918.705 640905,262 640901.905 640907.845 640905,431 640899.377 640903.454 640886,336 640883,941 640889.276 640884.626 640889.530 640890,235 640892.024 640892.669 640887.276 640882,567 640876.984 640878.781 640871.115 640877.696 640868.348 640S58.220 640855.038 0.1117 0;1149 0;1110 0.1154 0.1132 0,1145 0.1050 0.101Q 0.1029 0,0995 0.10Q5 0.09Bl 0.0970, 0.0948 0.0927 0.0909 0.0911 0.0884 0.0871 O.DB59 0.0837 0 '817 0.0800 0.0779 0,0770 0.0761 0.0746 0.0733 0.0717 0.0700 0.0682 0.0664 0.0648 0.0634 0.0623 0,0610 0 F 0600

,0.0588 O.Q578 0.0572 0.0566 0.4316 0,3559 0 '174 0,2921 0.2742 0,2613

'.2481 0.2363 0.2293 0.2206 0.2153 0.2086 0.2033 0.1977 0.1925 0 '878 0.1848 D.1801 0.1765 0.1731 0'692 0.1655 0.1621 0,1586 0.1560 0,1535 0,15Q7 0.1481 0.1453 0.1426 0.1398 0.1370 0.1345 0.1321 0,1300

'.1278 0.1259 0.1238 0.1220 0,1204 0.1190 0,2685 0.22S3 0.2055 0 '941 0.1S29 0.1763 0.1636 0.1549

'.1520 Q.1454 0.1430 0.1381 0.1346

0. 1304 0.1266 0.1232 0.1217 0.1178 0.1153 0.1129 0.1098 0'068 0.1043 0,1014 0,0997 D.D980 0,0958 0.0939 0 '91/

D.0894 0 '871 0.0848 0,0828 0.0810 0.0794 0.0777 0.0763 0.0747 0 '733 0,0723 0.0714 0.0985 0.0967 0,0895 0.0950 0.0919 0,0940 0.0820 0.0783 0,0826 0.0793 0.0821 0 '798 0 '795 0.0773 0,0756 0.0742 0.0756 0.0727 0 '719 0.0711 0,0690 0 '670 0<0657 0.0636 0'.0633 0.0629 0,0617 0,0607 0.0592 0,0576 0.0559 0.0541 0.0527 O.0516 0.0508 0.0498 Oi0492 0.04BZ 0.0476 0,0474 0.0472 0 '764 0.1429 0.1215 0,1188 0 '102

'.1085 0 '992 0,0930 0,0958 0.0910 Q.0925 OA891 0.0877 0.0849 0.0825 0.0806 0.0815 0.0788 0.0775 0,0763 0.0742 0 '722 0,0706 0.0686 0,0680 0 '673 0.0660' 0648 0.0634 0 0618 0.0602 0,0585 0,0571 0.0559 0.0549 Q.0539 0,0531 0.0520 0.0513 0.0509 Q,0506

SUNNARY QF LEAK RATES CON T'D FOR

CAROLINA PQHER

& I.IGHT SHEAROH HARRIS

,Utilt';.I FRON TEST POltiT NUNBER 1

TG 97 FRDN 200 (io/24/89)

TO 200 (10/25/89)

NASS TOTAL

< 24

) 24 TINE HEIGHT TINE UCL4

UCLS NASS POINT UGLY 13IS 1330 134$

1400 1415 1430 1445 1500 1515 1530 1545 1600 1615 1630 1&45 1700 1830 1845 1900 1915 1930 1945 2000 2015 2030 2045 2100 2115 2130 2145 2200 2215 2230 2245 2300 2315 2330 640846.0&0 640853.368 640843.993

&40840.952

&40837 ~ 060 640837.929 640837,807

&40835.639 640830.404 640833.847 640819.328 640816.429 6'40816.856 640815,167 640791,629 640819,233 640807.281 640804.156 640813.089 64079&iol&

640795.029 640805,865 640784,359 640800,900 640798.999 640791.925 640777,521 640783.440

&40781.740 640784.855 640779.838

&40774.380 640761 '55

&40755.&88 640773.827 640766,533 640772.900 640764.700 640759,641 640761.571 640762.483 640755,231 640/60 '91 640755.642

&40752,026 0.0562

'.o555 0 0550 0.0546 0.0542 0,0537 0.0532 o.a527 Oa0523 0,0518 0.0515 0 0512 0.0509 0,0506 0,0506 0,0501 0,0498 0,0495 0.0491 0,0489 0.0486 0,0482 0 '480 0.0476 0,0473 0.04&9 0.0468 0.1178 0,1163 0.1151 0.1139 0.1128 0.1117 0.1105 0.1094 0.1084 0.1072 0.1064 0,1055 0.1047 0.1038 0.1033 0,1024 0>101&

0.1008 0.0999 0.0992 0.098&

0.0977 0.0971 0,0963 0.0956 0.0949 0.0943 0.0462 0.0459 0.0456 0.0454 0.0453 0.0452 0.0449 0.0446 0.0443 0.0441 0.0439 0.0436 0.0433 0,0431 0.0428 0,042&

0.0424 0.0931 0.0924 0.0918 0.0912 0.0907 0.0903 0.0897 0.0891 0.0885 o,ossa 0.0875 0,0869 0.0864 0,0859 0.0853 0.0848 0,0843 0.0465

~ 0937 0.0706 0.0&96 0.0688 0.0681 0.0&74 0 ~ 0667 0.0&59 0.0652 a.o&45 0.0638 0 ~ 0633 0.0628 0.0623 0.0617 0.0616 0 '609 0.0604 0.0600 0,0593 0.0590 0 '586 0.0580 0 '577 0.0571 0.0566 O.OM 0.0559 0,0555 0.0551 0.0546 0 '542 0.0539 0 '536 0.0534 0.0530 0.0527 0,0523 0.0519 0.05i&

0,0513 0.0509 0,0506 0 ~ 0502 0.0499 0.0496 0.0473 0.0469 0 '469 0,0468 0,0468 0.0466 0.0464 0,04&1 0.0460 0.0457 0.0457 0.0457 0.0457 0.0456 0.0460 0.0456 0.0455 0.0454 O,O451 0,0450 0,0450 0,0446 0 '447 0.0444 0,0441 0.0438 0.0439 a.o437 0,0436 0.0433 0.0431 0.0430 0.0430 0.0431 0.0429 0.0427 0,0424 0.0423 0.0421 0,0419 0.0417 0.0416 0.04i3 0.0411 0.0410 0 ~ 0505 0.0500 0,0498 0.0497 0 ~ 0495 0 ~ 0493 0,0489 0.0486 0.0484 0.0480 0.0479 0.0479 0.0477 0.0476 0,0479 0.0476 0.0474 0.0472 0,0469

',0468 0.0467 0.0463 0.0463 0.0460 0.0456 0.0454 0,0454 0.0452 0.0450, 0.0447 0.0445 0.0444 0.0444 o.o444 0.0441 0.0440 0.0437 0,0435 0 '433 0.0431 0.0429 0.0427 0.0425 0.0423 0.0421

I ~

~

BUNNARY OF LEAK RATES CONT'D FOR:

CAROLIHA POSER 6 LIGHT SHEAROH HARRIS UHIT:1 FRQH TEST POIHT HUHBER 1

TO 97 FROH 200 {10/24/893 TO 200 {10/25/89$

NSS T IHE HEIGHT 30 640750 '79 45 640751,574 100 640756,541 li5 640768,012 130 640740.3Si 145 640742.000 200 640743.166 TOTAL TIHE 0,0421 0,0419 0.0416 0.0412 0.0410 0.0408 0.0406

< 24 UCLN 0,0838 0,0833 0.0828 0 '822 0.0817 0.0813 0.0808

> 24 UCLN 0.0493 0.0489 0.0486 0.0481 0.0478 0,0475 0.0472 HASS POIHT UCLS 0.0408 0.0419 0,0406 0.0417 0,0403 0.0414 0,0399 0 '411

'0.0398 0.0409 0.0396 0,040S 0.0395 0,0406

BUNNARY OF LEAK RATE REBULTB

~~8>N

~

t$ $f Superi".posed FOR

CPPOI.INh FO'EII 6 LISHT

~

~

SHEA88N Ho~8IS NUIT:1 FII0jI TEST PCINT OS~i~8E8 1

TQ 20 FRCN 245 IIC/25/89)

TO 730 tIO/25/89>

THEE PASS hEIBHT TON'L TIP E

< 24 UC.O

> 24 L!ASS III,'L4 POINT 245 300 315 330 345.

400 4.'5 430 445 500 530 545 600 630 645 640707 '19 640704,961 640715.078 640686.352 6t'0670.5'4 640657.726 640668.172 640660.040 640661.711 640631.795 6@0625,482 640623.815 640610,185 640602.483 640581,154 640583.006 640584.808 640582.J.71 640570,317 640574.986 0.1268 0,$ 589 0 '470 0.1404 0.1288 C.1359 0.1393 0,1384 0 ~ 1398 0,1404 0.1443 0.1434 G,1415 0.1388 0.1373 C,1341 0.5123 0.4037 0.3650 0,3325 0.3062 0.2932 0.2824 0,2719 0.2646 0,2582 0.2555 0,2'32 0.2448 0,2394 0,2349 0.2297 0.3158 0.1399 0.2741 0.1639 0.2468 0.1382 0,2260 0.1261 0,2057 0.1104 0.2021 0.1208 0.1979 0 F 1253 0.1917 0.1240 0.1883 0.1259 0.1851

0. 1268 0.1855 0,1322 0.1820 0.1306 0.1781 0.1279 0.1737 0,1245 0.1705 0.1228 0,1659 0,1189 0.2766 0.2502 0.2032 0.1747 0,1509 0.1545 0.1528 0,.'467 0.145."

0.1431 0.1472 0,1438 CD 1398 0.1355 0 1328 0.'287

f T

APPENDIX F

SUMMARY

OF TYPE B

& C LEAKAGE RATES SINCE PRE OPERATIONAL ILRT

~

~

~

~

~,

I

~

~

~

)

~

~

I

~

~

~

~

~

~

~

~

I ~

t

~

~

~

~

I 4

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

t

~

t

~

~

~

0

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

I ~

~

~

~

~

I I

~

o I

I I I I

~

e I

~

~

~

~

~

~

~

~

~

~

~

t

~

~

I ~

~

~

~

~

~

I 1

~

~

~

~

t t

~

~

~

~

~

~

~ \\

I >>

~

~

~

~

~

~

~ i I

~

~

I

~

~

~

I

~

I

~

o I ~

I I

~

\\

~

~

~

~

~

~

~

~

~

~

I ~

~

~

I o I

o

~

I ~

I

~

~

~

~

~

I Ill

~

~

I ~

~

~

~

~

~

~

~

I ~

I ~

I I ~

I

~

~

~

~

I

~

~

I

~

~

~

~

~

~

~

~

~ f

~

~

~

~

I o

~

~ o

~

~

I ~

I ~

~

~

I ~

I

~

~

~ I I

~

~

~

I o

I

~

~

~

~

I I I I

~

~

I ~

I

~

~

~

~

I ~

I o

I I

o

~

I

~

~

~

I o

I

~

~ o

o

~

o

~

~

o

~

~ I

~

~

~

~

~

~

~

I

~

~

I

~

~

~

~

~

I I ~

I

~

I I

~

I ~

I

~

o

~

~

~

~

~

I

~

~

I

~

~

I ~

~

~

I I

I

~

I

~

~

~

I I

o

~

I '

o

~

I

~

~

I I'

I

~ '

~

~

I

~

~

~

~

~

~

~

I I

I

~

I I

I I

o I

I

~

~

I

~

~

I

~

~

~

0

~

I I I I o

o II

~

I

~

~

~

I

~

~

o I o

I I I I I

~

~

I ~

~

~

I o

~

'I

~

~

~

I I

~

~

I o

o I

I

~

I I

~

~

~

~

I

~

~

I o

I

~

~

~

~ '

~

I o

o

~

~

~

~

~

~

~

I

~

~

~

~ ~

I

~

o

~

~

~

~ I I

~

~

I I

o I ~

~

~

I o

I o o

~

~

I I ~

o

~

~

~

~

o I

I ~

I ~

~

~

~

~

~

~

~

~

~

~

I

~

~

~

I o

I o

~

I

~

~

I I o

~

~

~

~

~

~

~

~

~

~

~

I ~

o

~

~

~

~

~

~

~

~

I I

~

lo I

o I

I

~

lo I

o

~

I I

o I ~

I oo I

I o

I ~

I o

~

~

~

~

~

~

~

I

~

I

~

~

~

~

~

I I

~

I I

~

I

~

I

~

I I

~

I o

I

~

o I ~

~

~

~

~

I I

o

~

~

~

~

I

) 'I Ay

.A L'~l pA I

~

~

~

f t

~

~

~ I

~

~

~,

~

~

~ I I

~

~

I

~

~

~

~

I ~

~

~

~

~

~

~

~

~

~

~

t t

~

~

~

~

I ~

~

~

~

~

I ~

~

~

I ~

~

~

I ~

~

~

~

I

~

I III I

~

I ~

~

~

~

~

t

~

~

I o I

~

~

~

~

~

~

I ~

I

~

~

~

~

~

~

~

~

I ~

I

~

~

Io I

~ t

~

~

I

~

~

~

I

~

~

~

~ I I ~

~

~

~

~

~

~

I ~

~

~

~

~

I ~

~

~

~

~

~ t

~

~

I

~

I

~

~

~

~

I I ii I

~

I ~

~

~

t PL I

I ~

'4 4

I

I

~

~

~

~,

~

~

~

~ \\ I I

~

~

I I ~

I

~

~

~ I

~

~

~

~

~

~

~

~

~

~

~

~

~

I

~

~

~

I ~

~

~

~

~

~

~

I ~

~

~

~

~

~

~

~

~

~

I ~

~

~

~ ~

~

~

~

~

~

~

~

~

~

~

I ~

I ~

I ~

I

~

~

I

~

~

~

~

I I

~

I ~

~

~

~

~

I ~

I ~

I ~

I>>

~

~

I

~

~

~

I

~

I

~

~

~

~

I

~

~

I

~

I I

I

~

I ~

~

I

~

~

~

~

fy Jg f

I'p

~

~

~

~

I

~

~

~

~

~

~

I

~

~

~

I

~

~

~

~ ~

~ I

~

~

I ~

~

~

~

~

~

~

I o

~

~

~

~

Is I

~

~

~

~

~

~

I ~

~ ~

I ~

~

~

~ s I o

~

~

~

I

~

~

~

~

I ~

I o

~

o o

I Is I

~

~

I

~

~

~

~

o I

I I

I

~ o I '

~

~

~

~

's

~

I s

~

~

\\

~

~

~

~

~ I ~

I I

o'

~

~

I

~

o I

I o

~

I I

~

+

~

~

~

I s

~

~

~

I

~

~

~

~

~

~ I

)

~

I I

l

~

I ~

I I I I ~

I

~

~

I ~

I

~

~

t

~

~

~

~

I' o

I'

)I

~

~

I

~

I

~

~

~

I ~

I

~

I I

~

I I I

~

~

~

I a

I

~

~

~

~

~

~

I

~

I I

APPENDIX G

SUMMARY

OF TYPE B

& C LEAKAGE RATES SINCE PRE OPERATIONAL ILRT

J

~

<ff'