ML061630245

From kanterella
Revision as of 19:36, 10 February 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

License Amendment, Issuance of Amendments Regarding Inoperability of Snubbers (TAC Nos. MD0256 & MD0257)
ML061630245
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 06/29/2006
From: Martin R E
NRC/NRR/ADRO/DORL/LPLC
To: Summer H L
Southern Nuclear Operating Co
Martin R E, NRR/DORL, 415-1493
Shared Package
ML061910064 List:
References
TAC MD0256, TAC MD0257
Download: ML061630245 (24)


Text

June 29, 2006 Mr. H. L. Summer, Jr.

Vice President - Farley Project

Southern Nuclear Operating

Company, Inc.

Post Office Box 1295

Birmingham, AL 35201-1295

SUBJECT:

JOSEPH M. FARLEY NUCLEAR PLANT, UNIT NOS. 1 AND 2 ISSUANCE OF AMENDMENTS REGARDING INOPERABILITY OF SNUBBERS (TAC NOS.

MD0256 AND MD0257)

Dear Mr. Summer:

The Nuclear Regulatory Commission has issued the enclosed Amendment No. 173 to Renewed Facility Operating License No. NPF-2 and Amendment No. 166 to Renewed Facility Operating

License No. NPF-8 for the Joseph M. Farley Nuclear Plant, Unit Nos. 1 and 2. The

amendments consist of changes to the Technical Specifications (TSs) in response to your

application dated February 17, 2006.

The amendments modify TS requirements for inoperable snubbers by adding Limiting Condition for Operation 3.0.8 to be consistent with the provisions of Industry/TS Task Force (TSTF)

change TSTF-372, Revision 4. The availability of TSTF-372 for adoption by licensees was

published in the Federal Register on May 4, 2005 (70 FR 23252).

A copy of the related Safety Evaluation is also enclosed. A Notice of Issuance will be included in the Commission's biweekly Federal Register notice.Sincerely,/RA/Robert E. Martin, Senior Project Manager Plant Licensing Branch II-1 Division of Operating Reactor Licensing

Office of Nuclear Reactor Regulation Docket Nos. 50-348 and 50-364

Enclosures:

1. Amendment No. 173 to NPF-2
2. Amendment No. 166 to NPF-8
3. Safety Evaluation cc w/encl: See next page June 29, 2006 Mr. H. L. Summer, Jr.

Vice President - Farley Project

Southern Nuclear Operating

Company, Inc.

Post Office Box 1295

Birmingham, AL 35201-1295

SUBJECT:

JOSEPH M. FARLEY NUCLEAR PLANT, UNIT NOS. 1 AND 2 ISSUANCE OF AMENDMENTS REGARDING INOPERABILITY OF SNUBBERS (TAC NOS.

MD0256 AND MD0257)

Dear Mr. Summer:

The Nuclear Regulatory Commission has issued the enclosed Amendment No. 173 to Renewed Facility Operating License No. NPF-2 and Amendment No. 166 to Renewed Facility Operating

License No. NPF-8 for the Joseph M. Farley Nuclear Plant, Unit Nos. 1 and 2. The

amendments consist of changes to the Technical Specifications (TSs) in response to your

application dated February 17, 2006.

The amendments modify TS requirements for inoperable snubbers by adding Limiting Condition for Operation 3.0.8 to be consistent with the provisions of Industry/TS Task Force (TSTF)

change TSTF-372, Revision 4. The availability of TSTF-372 for adoption by licensees was

published in the Federal Register on May 4, 2005 (70 FR 23252).

A copy of the related Safety Evaluation is also enclosed. A Notice of Issuance will be included in the Commission's biweekly Federal Register notice.Sincerely,/RA/Robert E. Martin, Senior Project Manager Plant Licensing Branch II-1 Division of Operating Reactor Licensing

Office of Nuclear Reactor Regulation Docket Nos. 50-348 and 50-364

Enclosures:

1. Amendment No. 173 to NPF-2
2. Amendment No. 166 to NPF-8
3. Safety Evaluation cc w/encl: See next page DISTRIBUTION:

PublicRidsAcrsAcnwMailCenter RidsNrrPMSLingam LPL2-1 R/FG. Hill, OiS (4 hard copies)RidsNrrDorlDpr (BSingal)

RidsNrrDorlLpl2-1(EMarinos)RidsNrrDirsItsb(TKobetz)RidsOgcRp RidsNrrPMRMartin(hard copy)T. Tjader, NRRRidsRgn2MailCenter(SShaeffer)

RidsNrrLARSola(hard copy)Package No. ML061910064Amendment No. ML061630245 Tech Spec No. ML061910406OFFICENRR/LPL2-1/PMNRR/LPL2-1/PMNRR/LPL2-1/LANRR/TSBNRR/LPL2-1/BCNAMESLingamRMartinRSolaTTjaderEMarinos DATE06/29/066/29/066/30/066/26/067/5/06 OFFICIAL RECORD COPY SOUTHERN NUCLEAR OPERATING COMPANY, INC.

ALABAMA POWER COMPANY DOCKET NO. 50-348 JOSEPH M. FARLEY NUCLEAR PLANT, UNIT 1 AMENDMENT TO RENEWED FACILITY OPERATING LICENSE Amendment No. 173 Renewed License No. NPF-21.The Nuclear Regulatory Commission (the Commission) has found that:A.The application for amendment by Sout hern Nuclear Operating Company, Inc.(Southern Nuclear), dated February 17, 2006, complies with the standards and

requirements of the Atomic Energy Act of 1954, as amended (the Act), and the

Commission's rules and regulations set forth in 10 CFR Chapter I;B.The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;C.There is reasonable assurance (I) that the activities authorized by this amendment can be conducted without endangering the health and safety of the

public, and (ii) that such activities will be conducted in compliance with the

Commission's regulations;D.The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; andE.The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.2.Accordingly, the license is amended by changes to the Technical Specifications, as indicated in the attachment to this license amendment; and paragraph 2.C.(2) of

Renewed Facility Operating License No. NPF-2 is hereby amended to read as follows: (2)Technical Specifications The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 173, are hereby incorporated in the license. Southern

Nuclear shall operate the facility in accordance with the Technical Specifications.3.This license amendment is effective as of its date of issuance and shall be implemented within 90 days of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

/RA/Evangelos C. Marinos, Chief Plant Licensing Branch II-1

Division of Operating Reactor Licensing

Office of Nuclear Reactor Regulation

Attachment:

Changes to License No. NPF-2

and the Technical Specifications Date of Issuance: June 29, 2006 ATTACHMENT TO LICENSE AMENDMENT NO. 173 TO RENEWED FACILITY OPERATING LICENSE NO. NPF-2 DOCKET NO. 50-348 AND LICENSE AMENDMENT NO. 166 TO RENEWED FACILITY OPERATING LICENSE NO. NPF-8 DOCKET NO. 50-364 Replace page 4 of Renewed Facility Operating License No. NPF-2 with the attached page 4.

Replace page 3 of Renewed Facility Operating License No. NPF-8 with the attached page 3.

Replace the following pages of the License and Appendix A Technical Specifications (TSs) with the attached revised pages. The revised pages are identified by amendment number and

contain marginal lines indicating the areas of change.

Remove Insert License Pages License PagesLicense No. NPF-2, page 4License No. NPF-2, page 4License No. NPF-8, page 4License No. NPF-8, page 4 TSs Pages TSs Pages3.0-13.0-13.0-23.0-2 3.0-33.0-3 3.0-43.0-4 SOUTHERN NUCLEAR OPERATING COMPANY, INC.

ALABAMA POWER COMPANY DOCKET NO. 50-364 JOSEPH M. FARLEY NUCLEAR PLANT, UNIT 2 AMENDMENT TO RENEWED FACILITY OPERATING LICENSE Amendment No. 166 Renewed License No. NPF-81.The Nuclear Regulatory Commission (the Commission) has found that:A.The application for amendment by Sout hern Nuclear Operating Company, Inc.(Southern Nuclear), dated February 17, 2006, complies with the standards and

requirements of the Atomic Energy Act of 1954, as amended (the Act), and the

Commission's rules and regulations set forth in 10 CFR Chapter I;B.The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;C.There is reasonable assurance (I) that the activities authorized by this amendment can be conducted without endangering the health and safety of the

public, and (ii) that such activities will be conducted in compliance with the

Commission's regulations;D.The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; andE.The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.2.Accordingly, the license is amended by changes to the Technical Specifications, as indicated in the attachment to this license amendment; and paragraph 2.C.(2) of

Renewed Facility Operating License No. NPF-8 is hereby amended to read as follows: (2)Technical Specifications The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 166, are hereby incorporated in the license. Southern

Nuclear shall operate the facility in accordance with the Technical Specifications.3.This license amendment is effective as of its date of issuance and shall be implemented within 90 days of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

/RA/Evangelos C. Marinos, Chief Plant Licensing Branch II-1

Division of Operating Reactor Licensing

Office of Nuclear Reactor Regulation

Attachment:

Changes to License No. NPF-8

and the Technical Specifications Date of Issuance: June 29, 2006 SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION RELATED TO AMENDMENT NO. 173 TO RENEWED FACILITY OPERATING LICENSE NO. NPF-2 AND AMENDMENT NO. 166 TO RENEWED FACILITY OPERATING LICENSE NO. NPF-8 SOUTHERN NUCLEAR OPERATING COMPANY, INC.

JOSEPH M. FARLEY NUCLEAR PLANT, UNIT NOS. 1 AND 2 DOCKET NOS. 50-348 AND 50-364

1.0 INTRODUCTION

By letter dated February 17, 2006 (Agencywi de Documents Access and Management System Accession No. ML060520069), Southern Nuclear Operating Company, Inc. (the licensee)

proposed license amendments to change the Technical Specifications (TSs) for the Joseph M.

Farley Nuclear Plant, Unit Nos. 1 and 2.

The requested changes would modify TS r equirements for inoperable snubbers by adding Limiting Condition for Operation (LCO) 3.0.8 to be consistent with the provisions of Industry/TS

Task Force (TSTF) change TSTF-372, Revision 4. The availability of TSTF-372 for adoption by

licensees was published in the Federal Register on May 4, 2005 (70 FR 23252).

On April 23, 2004, the Nuclear Energy Institute (NEI) Risk Informed Technical Specifications Task Force (RITSTF) submitted a proposed change, TSTF-372, Revision 4, to the standard

technical specifications (STS) (NUREGs 1430-1434) on behalf of the industry (TSTF-372, Revisions 1 through 3 were prior draft iterations). TSTF-372, Revision 4, is a proposal to add

an STS Limiting Condition for Operation 3.0.8, allowing a delay time for entering a supported

system TS, when the inoperability is due solely to an inoperable snubber, if risk is assessed and

managed. The postulated seismic event requiring snubbers is a low-probability occurrence and

the overall TS system safety function would still be available for the vast majority of anticipated challenges.

This proposal is one of the industry's initiatives being developed under the risk-informed TS program. These initiatives are intended to maintain or improve safety through the incorporation of risk assessment and management techniques in the TSs, while reducing unnecessary

burden and making TS requirements consistent with the Nuclear Regulatory Commission's (NRC's) other risk-informed regulatory requirements, in particular the Maintenance Rule.

The proposed change adds a new LCO, LCO 3.0.8, to the TSs. LCO 3.0.8 allows licensees to delay declaring an LCO not met for equipment, supported by snubbers unable to perform their associated support functions, when risk is assessed and managed. This new LCO 3.0.8 states:

When one or more required snubbers are unable to perform their associated support function(s), any affected supported LCO(s) are not required to be declared not met solely for

this reason if risk is assessed and managed, and:a.The snubbers not able to perform their associated support function(s) are associated with only one train or subsystem of a multiple train or subsystem

supported system or are associated with a single train or subsystem supported

system and are able to perform their associated support function within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />;

orb.The snubbers not able to perform their associated support function(s) are associated with more than one train or subsystem of a multiple train or

subsystem supported system and are able to perform their associated support

function within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

At the end of the specified period the required snubbers must be able to perform their associated support function(s), or the affected supported system LCO(s) shall be declared not

met.The proposed TS change is described in Sections 1.0 and 2.0. The technical evaluation and approach used to assess its risk impact is discussed in Section 3.0. The results and insights of

the risk assessment are presented and discussed in Section 3.1. Section 3.2 summarizes the

NRC staff's conclusions from the review of the proposed TS change.

2.0 REGULATORY EVALUATION

In Title 10 of the Code of Federal Regulations (10 CFR), Part 50, Section 50.36, the Commission established its regulatory requirements related to the content of the TSs. Pursuant

to 10 CFR 50.36, TSs are required to include items in the following five specific categories

related to station operation: (1) Safety limits, limiting safety system settings, and limiting control settings; (2) limiting conditions for operation (LCOs); (3) surveillance requirements (SRs);

(4) design features; and (5) administrative controls. The rule does not specify the particular

requirements to be included in a plant's TS. As stated in 10 CFR 50.36(c)(2)(I), the "Limiting

conditions for operation are the lowest functional capability or performance levels of equipment

required for safe operation of the facility. When a limiting condition for operation of a nuclear

reactor is not met, the licensee shall shut down the reactor or follow any remedial action

permitted by the technical specification ...." TS Section 3.0, on "LCO and SR Applicability,"

provides details or ground rules for complying with the LCOs.

Snubbers are chosen in lieu of rigid supports in areas where restricting thermal growth during normal operation would induce excessive stresses in the piping nozzles or other equipment.

Although they are classified as component standar d supports, they are not designed to provide any transmission of force during normal plant operations. However, in the presence of dynamic

transient loadings, which are induced by seismic events as well as by plant accidents and

transients, a snubber functions as a rigid support. The location and size of the snubbers are

determined by stress analysis based on different combinations of load conditions, depending on the design classification of the particular piping.

Prior to the conversion to the improved STS, TS requirements applied directly to snubbers.

These requirements included:*A requirement that snubbers be functional and in service when the supported equipment is required to be operable,*A requirement that snubber removal for testing be done only during plant shutdown,

  • A requirement that snubber removal for testing be done on a one-at-a-time basis when supported equipment is required to be operable during shutdown,*A requirement to repair or replace within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> any snubbers, found to be inoperable during operation in Modes 1 through 4, to avoid declaring any supported equipment

inoperable,*A requirement that each snubber be demonstrated operable by periodic visual inspections, and*A requirement to perform functional tests on a representative sample of at least 10 percent of plant snubbers, at least once every 18 months during shutdown.

In the late 1980s, a joint initiative of the NRC and industry was undertaken to improve the STS.

This effort identified the snubbers as candidates for relocation to a licensee-controlled

document based on the fact that the TS requirements for snubbers did not meet any of the four

criteria in 10 CFR 50.36(c)(2)(ii) for inclusion in the improved STS. The NRC approved the

relocation without placing any restriction on the use of the relocated requirements. However, this relocation resulted in different interpretations between the NRC and the industry regarding

its implementation. The NRC has stated, that since snubbers are supporting safety equipment

that is in the TS, the definition of OPERABILITY must be used to immediately evaluate

equipment supported by a removed snubber and, if found inoperable, the appropriate TS

required actions must be entered. This interpretation has in practice eliminated the 72-hour

delay to enter the actions for the supported equipment that existed prior to the conversion to the

improved STS (the only exception is if the supported system has been analyzed and determined

to be OPERABLE without the snubber). The industry has argued that since the NRC approved

the relocation without placing any restriction on the use of the relocated requirements, the

licensee-controlled document requirements for snubbers should be invoked before the

supported system's TS requirements become applic able. The industry's interpretation would, in effect, restore the 72-hour delay to enter the actions for the supported equipment that existed

prior to the conversion to the improved STS. The industry's proposal would allow a time delay

for all conditions, including snubber removal for testing at power. The option to relocate the

snubbers to a licensee-controlled document, as part of the conversion to improved STS, has

resulted in non-uniform and inconsistent treatment of snubbers. On the one hand, plants that

have relocated snubbers from their TS are allowed to change the TS requirements for snubbers

under the auspices of 10 CFR 50.59, but they are not allowed a 72-hour delay before they enter

the actions for the supported equipment. On the other hand, plants that have not converted to

improved STS have retained the 72-hour delay if snubbers are found to be inoperable, but they

are not allowed to use 10 CFR 50.59 to change TS requirements for snubbers. It should also be noted that a few plants that converted to the improved STS chose not to relocate the snubbers to a licensee-controlled document and, thus, retained the 72-hour delay. In addition, it

is important to note that unlike plants that have not relocated, plants that have relocated can

perform functional tests on the snubbers at power (as long as they enter the actions for the

supported equipment) and at the same time can reduce the testing frequency (as compared to

plants that have not relocated) if it is justified by 10 CFR 50.59 assessments. Some potential

undesirable consequences of this inconsistent treatment of snubbers are:*Performance of testing during crowded time period windows when the supported system is inoperable with the potential to reduce the snubber testing to a minimum since the

snubber requirements that have been relocated from TS are controlled by the licensee,*Performance of testing during crowded windows when the supported system is inoperable with the potential to increase the unavailability of safety systems, and*Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> allotted before entering MODE 3 under

LCO 3.0.3.

To remove the inconsistency in the treatment of snubbers among plants, the TSTF proposed a risk-informed TS change that introduces a delay time before entering the actions for the

supported equipment, when one or more snubbers are found inoperable or removed for testing, if risk is assessed and managed. Such a delay time will provide needed flexibility in the

performance of maintenance and testing during power operation and at the same time will

enhance overall plant safety by:*Avoiding unnecessary unscheduled plant shutdowns and, thus, minimizing plant transition and realignment risks,*Avoiding reduced snubber testing, and thus, increasing the availability of snubbers to perform their supporting function,*Performing most of the required testing and maintenance during the delay time when the supported system is available to mitigate most challenges and, thus, avoiding increases

in safety system unavailability, and*Providing explicit risk-informed guidance in areas where guidance currently does not exist, such as the treatment of snubbers impacting more than one redundant train of a

supported system.

3.0 TECHNICAL EVALUATION

The industry submitted TSTF-372, Revision 4, "Addition of LCO 3.0.8, Inoperability of Snubbers," in support of the proposed TS change. This submittal (Ref. 1) documents a risk-

informed analysis of the proposed TS change. Probabilistic risk assessment (PRA) results and

insights are used, in combination with deterministic and defense-in-depth arguments, to identify

and justify delay times for entering the actions for the supported equipment associated with

inoperable snubbers at nuclear power plants. This is in accordance with guidance provided in

Regulatory Guides (RGs) 1.174 and 1.177 (Refs. 2 and 3, respectively).

The risk impact associated with the proposed delay times for entering the TS actions for the supported equipment can be assessed using the same approach as for allowed completion time (CT) extensions. Therefore, the risk assessment was performed following the three-tiered

approach recommended in RG 1.177 for evaluating proposed extensions in currently allowed

CTs:*The first tier involves the assessment of the change in plant risk due to the proposed TS change. Such risk change is expressed (1) by the change in the average yearly core damage frequency (CDF) and the average yearly large early release frequency (LERF) and (2) by the incremental conditional core damage probability (ICCDP) and the incremental conditional large early release probability (ICLERP). The assessedCDF and LERF values are compared to acceptance guidelines, consistent with the Commission's Safety Goal Policy Statement as documented in RG 1.174, so that the

plant's average baseline risk is maintained within a minimal range. The assessed

ICCDP and ICLERP values are compared to acceptance guidelines provided in

RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably

during the period the equipment is taken out of service.*The second tier involves the identification of potentially high-risk configurations that could exist if equipment in addition to those associated with the change were to be taken

out of service simultaneously, or other risk-significant operational factors such as

concurrent equipment testing were also involved. The objective is to ensure that

appropriate restrictions are in place to avoid any potential high-risk configurations.*The third tier involves the establishment of an overall configuration risk management program (CRMP) to ensure that potentially risk-significant configurations resulting from

maintenance and other operational activities are identified. The objective of the CRMP

is to manage configuration-specific risk by appropriate scheduling of plant activities

and/or appropriate compensatory measures.

A simplified bounding risk assessment was performed to justify the proposed addition of LCO 3.0.8 to the TS. This approach was necessitated by (1) the general nature of the proposed

TS changes (i.e., they apply to all plants and are associated with an undetermined number of

snubbers that are not able to perform their function), (2) the lack of detailed engineering

analyses that establish the relationship between earthquake level and supported system pipe

failure probability when one or more snubbers are inoperable, and (3) the lack of seismic risk

assessment models for most plants. The simplified risk assessment is based on the following

major assumptions, which the NRC staff finds acceptable, as discussed below:*The accident sequences contributing to the risk increase associated with the proposed TS changes are assumed to be initiated by a seismically-induced loss-of-offsite-power (LOOP) event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than one train (or

subsystem) of the same system, it is assumed that all affected trains (or subsystems) of

the supported system are failed. This assumption was introduced to allow the

performance of a simple bounding risk assessment approach with application to all

plants. This approach was selected due to the lack of detailed plant-specific seismic risk

assessments for most plants and the lack of fragility data for piping when one or more

supporting snubbers are inoperable.

  • The LOOP event is assumed to occur due to the seismically-induced failure of the ceramic insulators used in the power distribution systems. These ceramic insulators

have a high confidence (95 percent) of low probability (5 percent) of failure (HCLPF) of

about 0.1g, expressed in terms of peak ground acceleration. Thus, a magnitude 0.1g

earthquake is conservatively assumed to have 5 percent probability of causing a LOOP

initiating event. The fact that no LOOP events caused by higher magnitude earthquakes

were considered is justified because (1) the frequency of earthquakes decreases with

increasing magnitude and (2) historical data (References 4 and 5) indicate that the mean

seismic capacity of ceramic insulators (used in seismic PRAs), in terms of peak ground

acceleration, is about 0.3g, which is significantly higher than the 0.1g HCLPF value.

Therefore, the simplified analysis, even though it does not consider LOOP events

caused by earthquakes of magnitude higher than 0.1g, bounds a detailed analysis which

would use mean seismic failure probabilities (fragilities) for the ceramic insulators.*Analytical and experimental results obtained in the mid-eighties as part of the industry's "Snubber Reduction Program" (References 4 and

6) indicated that piping systems have large margins against seismic stress. The assumption that a magnitude 0.1g

earthquake would cause the failure of all safety syst em trains supported by the out-of-service snubbers is very conservative because safety piping systems could withstand

much higher seismic stresses even when one or more supporting snubbers are out of

service. The actual piping failure probability is a function of the stress allowable and the

number of snubbers removed for maintenance or testing. Since the licensee-controlled

testing is done on only a small (about 10 percent) representative sample of the total

snubber population, typically only a few snubber s supporting a given safety system are out for testing at a time. Furthermore, since the testing of snubbers is a planned activity, licensees have flexibility in selecting a sample set of snubbers for testing from a much

larger population by conducting configuration-specific engineering and/or risk

assessments. Such a selection of snubbers for testing provides confidence that the

supported systems would perform their functions in the presence of a design-basis

earthquake and other dynamic loads and, in any case, the risk impact of the activity will remain within the limits of acceptability defined in risk-informed RGs 1.174 and 1.177.*The analysis assumes that one train (or subsystem) of all safety systems is unavailable during snubber testing or maintenance (an entire system is assumed unavailable if a

removed snubber is associated with both trains of a two-train system). This is a very

conservative assumption for the case of corrective maintenance since it is unlikely that a

visual inspection will reveal that one or more snubbers across all supported systems are

inoperable. This assumption is also conservative for the case of the licensee-controlled

testing of snubbers since such testing is performed only on a small representative sample.*In general, no credit is taken for recovery actions and alternative means of performing a function, such as the function performed by a system assumed failed (e.g., when LCO 3.0.8b applies). However, most plants have reliable alternative means of

performing certain critical functions. For example, feed and bleed (F&B) can be used to

remove heat in most pressurized water reactors (PWRs) when auxiliary feedwater (AFW), the most important system in mitigating LOOP accidents, is unavailable.

Similarly, if high pressure makeup (e.g., reactor core isolation cooling) and heat removal

capability (e.g., suppression pool cooling) are unavailable in boiling water reactors (BWRs), reactor depressurization in conjunction with low pressure makeup (e.g., low pressure coolant injection) and heat removal capability (e.g., shutdown cooling) can be

used to cool the core. A 10 percent failure probability for recovery actions to provide

core cooling using alternative means is assumed for Diablo Canyon, the only West

Coast PWR plant with F&B capability, when a snubber impacting more than one train of

the AFW system (i.e., when LCO 3.0.8b is applicable) is out of service. This failure

probability value is significantly higher than the value of 2.2E-2 used in Diablo Canyon's

PRA. Furthermore, Diablo Canyon has analyzed the impact of a single limiting snubber

failure, and concluded that no single snubber failure would impact two trains of AFW.

No credit for recovery actions to provide core cooling using alternative means is

necessary for West Coast PWR plants with no F&B capability because it has been

determined that there is no single snubber whose non-functionality would disable two

trains of AFW in a seismic event of magnitude up to the plant's safe shutdown

earthquake (SSE). It should be noted that a similar credit could have been applied to

most Central and Eastern U.S. plants but this was not necessary to demonstrate the low

risk impact of the proposed TS change due to the lower earthquake frequencies at

Central and Eastern U.S. plants as compared to West Coast plants.*The earthquake frequency at the 0.1g level was assumed to be 1E-3/year for Central and Eastern U.S. plants and 1E-1/year for West Coast plants. Each of these two values

envelop the range of earthquake frequency values at the 0.1g level, for Eastern U.S. and

West Coast sites, respectively (References 5 and 7).*The risk impact associated with non-LOOP accident sequences (e.g., seismically initiated loss-of-coolant-accident (LOCA) or anticipated-transient-without-scram (ATWS)

sequences) was not assessed. However, this risk impact is small compared to the risk

impact associated with the LOOP accident sequences modeled in the simplified

bounding risk assessment. Non-LOOP accident sequences, due to the ruggedness of

nuclear power plant designs, require seismically-induced failures that occur at

earthquake levels above 0.3g. Thus, the frequency of earthquakes initiating non-LOOP

accident sequences is much smaller than the frequency of seismically-initiated LOOP

events. Furthermore, because of the conservative assumption made for LOOP

sequences that a 0.1g level earthquake would fail all piping associated with inoperable

snubbers, non-LOOP sequences would not include any more failures associated with

inoperable snubbers than LOOP sequences. Therefore, the risk impact of inoperable

snubbers associated with non-LOOP accident sequences is small compared to the risk

impact associated with the LOOP accident sequences modeled in the simplified

bounding risk assessment.*The risk impact of dynamic loadings other than seismic loads is not assessed. These shock-type loads include thrust loads, blowdown loads, water hammer loads, steam

hammer loads, LOCA loads and pipe rupture loads. However, there are some important

distinctions between non-seismic (shock-type) loads and seismic loads which indicate

that, in general, the risk impact of the out-of-service snubbers is smaller for non-seismic

loads than for seismic loads. First, while a seismic load affects the entire plant, the

impact of a non-seismic load is localized to a certain system or area of the plant.

Second, although non-seismic shock loads may be higher in total force and the impact

could be as much or more than seismic loads, generally they are of much shorter

duration than seismic loads. Third, the impact of non-seismic loads is more plant-specific; thus, harder to analyze generically, than for seismic loads. For these reasons, licensees will be required to confirm every time LCO 3.0.8 is used, that at least

one train of each system that is supported by the inoperable snubber(s) would remain

capable of performing their required safety or support functions for postulated design

loads other than seismic loads.

3.1 Risk Assessment Results and Insights

The results and insights from the implementation of the three-tiered approach of RG 1.177 to support the proposed addition of LCO 3.0.8 to the TS are summarized and evaluated in the

following sections 3.1.1 to 3.1.3.

3.1.1 Risk Impact

The bounding risk assessment approach, discussed in section 3.0, was implemented generically for all U.S. operating nuclear power plants. Risk assessments were performed for

two categories of plants, Central and East Coast plants and West Coast plants, based on

historical seismic hazard curves (earthquake frequencies and associated magnitudes). The first

category, Central and East Coast plants, includes the vast majority of the U.S. nuclear power

plant population (Reference 7). For each category of plants, two risk assessments were

performed:*The first risk assessment applies to cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted safety systems. It was conservatively

assumed that a single train (or subsystem) of each safety system is unavailable. It was

also assumed that the probability of non-mitigation using the unaffected redundant trains (or subsystems) is 2 percent. This is a cons ervative value given that for core damage to occur under those conditions, two or more failures are required.*The second risk assessment applies to the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety

systems. It was assumed in this bounding analysis that all safety systems are unavailable to mitigate the accident, except for West Coast PWR plants. Credit for using

F&B to provide core cooling is taken for plants having F&B capability (e.g., Diablo

Canyon) when a snubber impacting more than one train of the AFW system is

inoperable. Credit for one AFW train to provide core cooling is taken for West Coast

PWR plants with no F&B capability (e.g., San Onofre) because it has been determined

that there is no single snubber whose non-functionality would disable two trains of AFW

in a seismic event of magnitude up to the plant's SSE.

The results of the performed risk assessments, in terms of core damage and large early release risk impacts, are summarized in Table 1. The first row lists the conditional risk increase, in

terms of core damage frequency (CDF), R CDF , caused by the out-of-service snubbers (as assumed in the bounding analysis). The second and third rows list the incremental conditional

core damage probability (ICCDP) and the incremental conditional large early release probability (ICLERP) values, respectively. The ICCDP for the case where all inoperable snubbers are

associated with only one train (or subsystem) of the supported safety systems, was obtained by

multiplying the corresponding R CDF value by the time fraction of the proposed 72-hour delay to enter the actions for the supported equipment. The ICCDP for the case where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system, was obtained by multiplying the corresponding R CDF value by the time fraction of the proposed 12- hour delay to enter the actions for the supported equipment. The ICLERP values

were obtained by multiplying the corresponding ICCDP values by 0.1 (i.e., by assuming that the

ICLERP value is an order of magnitude less than the ICCDP). This assumption is conservative

since containment bypass scenarios, such as steam generator tube rupture accidents and interfacing system loss-of-coolant accidents, would not be uniquely affected by the out-of-

service snubbers. Finally, the fourth and fifth rows list the assessed CDF and LERF values, respectively. These values were obtained by dividing the corresponding ICCDP and ICLERP

values by 1.5 (i.e., by assuming that the snubbers are tested every 18 months, as was the case

before the snubbers were relocated to a licensee-controlled document). This assumption is

reasonable because (1) it is not expected that licensees would test the snubbers more often

than what used to be required by the TS, and (2) testing of snubbers is associated with higher

risk impact than the average corrective maintenance of snubbers found inoperable by visual

inspection (testing is expected to involve significantly more snubbers out of service than

corrective maintenance). The assessed CDF and LERF values are compared to acceptance guidelines consistent with the Commission's Safety Goal Policy Statement as documented in

RG 1.174, so that the plant's average baseline risk is maintained within a minimal range. This

comparison indicates that the addition of LCO 3.0.8 to the existing TS would have an

insignificant risk impact.

Table 1.--Bounding Risk Assessment Results for Snubbers Impacting a Single Train and Multiple Trains of a Supported System



Central and east West coast coast plants Plants


Single MultipleSingle Multiple

train train train train



R CDF/yr.................... 1E-6 5E-6 1E-4 5E-4 ICCDP............................. 8E-9 7E-9 8E-7 7E-7 ICLERP............................ 8E-10 7E-10 8E-8 7E-8CDF/yr..................... 5E-9 5E-9 5E-7 5E-7LERF/yr.................... 5E-10 5E-10 5E-8 5E-8 --



The assessed CDF and LERF values meet the acceptance criteria of 1E-6/year and 1E-7/year, respectively, based on guidance provided in RG 1.174. This conclusion is true

without taking any credit for the removal of potential undesirable consequences associated with

the current inconsistent treatment of snubbers (e.g., reduced snubber testing frequency, increased safety system unavailability and treat ment of snubbers impacting multiple trains) discussed in Section 1 above, and given the bounding nature of the risk assessment.

The assessed ICCDP and ICLERP values are compared to acceptance guidelines provided in RG 1.177, which aim at ensuring that the plant risk does not increase unacceptably during the

period the equipment is taken out of service. This comparison indicates that the addition of

LCO 3.0.8 to the existing TS meets the RG 1.177 numerical guidelines of 5E-7 for ICCDP and

5E-8 for ICLERP. The small deviations shown for West Coast plants are acceptable because of

the bounding nature of the risk assessments, as discussed in section 2.

The risk assessment results of Table 1 are also compared to guidance provided in the revised section 11 of NUMARC 93-01, Revision 2 (Reference 8), endorsed by RG 1.182 (Reference 9),

for implementing the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65.

Such guidance is summarized in Table 2. Guidance regarding the acceptability of conditional

risk increase in terms of CDF (i.e., R CDF) for a planned configuration is provided. This guidance states that a specific configuration that is associated with a CDF higher than

1E-3/year should not be entered voluntarily. Since the assessed conditional risk increase,R CDF , is significantly less than 1E-3/year, plant configurations including out-of-service snubbers and other equipment may be entered voluntarily if supported by the results of the risk

assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS. Table 2.--Guidance for Implementing 10 CFR 50.65(a)(4)



R CDF Guidance



Greater than 1E-3/year................. Configuration should not normally be entered voluntarily.



ICCDP Guidance ICLERP Greater than 1E-5.....Configuration should not normally be entered voluntarily. Great er than 1E-6. 1E-6 to 1E-5..............Assess non- quantifiable factors.

1E-7 to 1E-6.

Establish risk management actions..

Less than1E-6..........Normal work controls..

Less than 1E-7.

Guidance regarding the acceptability of ICCDP and ICLERP values for a specific planned configuration and the establishment of risk m anagement actions is also provided in NUMARC 93-01. This guidance, as shown in Table 2, states that a specific plant configuration that is

associated with ICCDP and ICLERP values below 1E-6 and 1E-7, respectively, is considered to

require "normal work controls." Table 1 shows that for the majority of plants (i.e., for all plants in

the Central and East Coast category) the conservatively assessed ICCDP and ICLERP values

are over an order of magnitude less than what is recommended as the threshold for the "normal

work controls" region. For West Coast plants, the conservatively assessed ICCDP and ICLERP

values are still within the "normal work controls" region. Thus, the risk contribution from out of

service snubbers is within the normal range of maintenance activities carried out at a plant.

Therefore, plant configurations involving out of service snubbers and other equipment may be

entered voluntarily if supported by the result s of the risk assessment required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS. However, this simplified bounding analysis indicates

that for West Coast plants the provisions of LCO 3.0.8 must be used cautiously and in

conjunction with appropriate management actions, especially when equipment other than

snubbers is also inoperable, based on the results of configuration-specific risk assessments

required by 10 CFR 50.65(a)(4), by LCO 3.0.8, or by other TS.

The staff finds that the risk assessment results support the proposed addition of LCO 3.0.8 to the TS. The risk increases associated with this TS change will be insignificant based on

guidance provided in RGs 1.174 and 1.177 and within the range of risks associated with normal

maintenance activities. In addition, LCO 3.0.8 will remove potential undesirable consequences

stemming from the current inconsistent treatment of snubbers in the TS, such as reduced

frequency of snubber testing, increased safety system unavailability and the treatment of

snubbers impacting multiple trains.

3.1.2 Identification

of High-Risk Configurations

The second tier of the three-tiered approach recommended in RG 1.177 involves the identification of potentially high-risk configurations that could exist if equipment, in addition to

that associated with the TS change, were to be taken out of service simultaneously. Insights from the risk assessments, in conjunction with important assumptions made in the analysis and defense-in-depth considerations, were used to identify such configurations. To avoid these

potentially high-risk configurations, specific restrictions to the implementation of the proposed

TS changes were identified.

For cases where all inoperable snubbers are associated with only one train (or subsystem) of the impacted systems (i.e., when LCO 3.0.8a applies), it was assumed in the analysis that there will be unaffected redundant trains (or subsystems) available to mitigate the seismically initiated

LOOP accident sequences. This assumption implies that there will be at least one success

path available when LCO 3.0.8a applies. Therefore, potentially high-risk configurations can be

avoided by ensuring that such a success path exists when LCO 3.0.8a applies. Based on a

review of the accident sequences that contribute to the risk increase associated with LCO 3.0.8a, as modeled by the simplified bounding analysis (i.e., accident sequences initiated by a

seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out of service snubbers), the following restrictions were identified to prevent potentially

high-risk configurations:*For PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable

snubber(s), must be available when LCO 3.0.8a is used*For BWR plants, one of the following two means of heat removal must be available when LCO 3.0.8a is used:

At least one high pressure makeup path (e.g., using high pressure coolant injection (HPCI) or reactor core isolation cooling (RCIC) or equivalent) and heat

removal capability (e.g., suppression pool cooling), including a minimum set of

supporting equipment required for success, not associated with the inoperable

snubber(s), or At least one low pressure makeup path (e.g., low pressure coolant injection (LPCI) or containment spray (CS)) and heat removal capability (e.g., suppression

pool cooling or shutdown cooling), including a minimum set of supporting

equipment required for success, not associated with the inoperable snubber(s).

For cases where one or more of the inoperable snubbers are associated with multiple trains (or subsystems) of the same safety system (i.e., when LCO 3.0.8b applies), it was assumed in the

bounding analysis that all safety systems are unav ailable to mitigate the accident, except for West Coast plants. Credit for using F&B to provide core cooling is taken for plants having F&B

capability (e.g., Diablo Canyon) when a snubber impacting more than one train of the AFW

system is inoperable. Credit for one AFW train to provide core cooling is taken for West Coast

PWR plants with no F&B capability (e.g., San Onofre) because it has been determined that

there is no single snubber whose non-functionality would disable more than one train of AFW in

a seismic event of magnitude up to the plant's SSE. Based on a review of the accident

sequences that contribute to the risk increase associated with LCO 3.0.8b (as modeled by the

simplified bounding analysis) and defense-in-depth considerations, the following restrictions

were identified to prevent potentially high-risk configurations:*LCO 3.0.8b cannot be used at West Coast PWR plants with no F&B capability when a snubber whose non-functionality would disable more than one train of AFW in a seismic event of magnitude up to the plant's SSE is inoperable (it should be noted, however, that

based on information provided by the industry, there is no plant that falls in this

category).*When LCO 3.0.8b is used at PWR plants, at least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the

inoperable snubber(s), or some alternative means of core cooling (e.g., F&B, fire water

system or "aggressive secondary cooldown" using the steam generators) must be

available.*When LCO 3.0.8b is used at BWR plants, it must be verified that at least one success path exists, using equipment not associated with the inoperable snubber(s), to provide

makeup and core cooling needed to mitigate LOOP accident sequences.

3.1.3 Configuration

Risk Management

The third tier of the three-tiered approach recommended in RG 1.177 involves the establishment of an overall configuration risk management progr am (CRMP) to ensure that potentially risk-significant configurations resulting from maintenance and other operational activities are

identified. The objective of the CRMP is to manage configuration-specific risk by appropriate

scheduling of plant activities and/or appropriate compensatory measures. This objective is met

by licensee programs to comply with the requirements of paragraph (a)(4) of the Maintenance

Rule (10 CFR 50.65) to assess and manage risk resulting from maintenance activities, and by

the TS requiring risk assessments and management using (a)(4) processes if no maintenance

is in progress. These programs can support licensee decision making regarding the appropriate

actions to manage risk whenever a risk- informed TS is entered. Since the 10 CFR 50.65(a)(4)

guidance, the revised (May 2000) Section 11 of NUMARC 93-01, does not currently address

seismic risk, licensees adopting this change must ensure that the proposed LCO 3.0.8 is

considered with respect to other plant maintenance activities and integrated into the existing 10

CFR 50.65(a)(4) process whether the process is invoked by a TS or (a)(4) itself.

3.2 Summary

and Conclusions

The option to relocate the snubbers to a licensee-controlled document, as part of the conversion to Improved STS, has resulted in non-uniform and inconsistent treatment of snubbers. Some

potential undesirable consequences of this inconsistent treatment of snubbers are:*Performance of testing during crowded windows when the supported system is inoperable with the potential to reduce the snubber testing to a minimum since the

relocated snubber requirements are controlled by the licensee.*Performance of testing during crowded windows when the supported system is inoperable with the potential to increase the unavailability of safety systems.*Performance of testing and maintenance on snubbers affecting multiple trains of the same supported system during the 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> allotted before entering MODE 3 under

LCO 3.0.3.

To remove the inconsistency among plants in the treatment of snubbers, licensees are proposing a risk-informed TS change which introduces a delay time before entering the actions

for the supported equipment when one or more snubbers are found inoperable or removed for

testing. Such a delay time will provide needed flexibility in the performance of maintenance and

testing during power operation and at the same time will enhance overall plant safety by (1)

avoiding unnecessary unscheduled plant shutdowns, thus, minimizing plant transition and

realignment risks; (2) avoiding reduced snubber testing, thus, increasing the availability of

snubbers to perform their supporting function; (3) performing most of the required testing and

maintenance during the delay time when the supported system is available to mitigate most

challenges, thus, avoiding increases in safety system unavailability; and (4) providing explicit risk-informed guidance in areas where guidance curr ently does not exist, such as the treatment of snubbers impacting more than one redundant train of a supported system.

The risk impact of the proposed TS changes was assessed following the three-tiered approach recommended in RG 1.177. A simplified bounding risk assessment was performed to justify the

proposed TS changes. This bounding assessment assumes that the risk increase associated

with the proposed addition of LCO 3.0.8 to the TS is associated with accident sequences

initiated by a seismically-induced LOOP event with concurrent loss of all safety system trains supported by the out-of-service snubbers. In the case of snubbers associated with more than

one train, it is assumed that all affected trains of the supported system are failed. This

assumption was introduced to allow the performance of a simple bounding risk assessment

approach with application to all plants and was selected due to the lack of detailed plant-specific

seismic risk assessments for most plants and the lack of fragility data for piping when one or

more supporting snubbers are inoperable. The impact from the addition of the proposed LCO 3.0.8 to the TS on defense-in-depth was also evaluated in conjunction with the risk assessment

results.Based on this integrated evaluation, the staff concludes that the proposed addition of LCO 3.0.8 to the TS would lead to insignificant risk increases, if any. Indeed, this conclusion is true

without taking any credit for the removal of potential undesirable consequences associated with

the current inconsistent treatment of snubbers, such as the effects of avoiding a potential

reduction in the snubber testing frequency and increased safety system unavailability.

Consistent with the NRC staff's approval and inherent in the implementation of TSTF-372, licensees interested in implementing LCO 3.0.8 must, as applicable, operate in accordance with

the following stipulations:1.Appropriate plant procedures and administrat ive controls will be used to implement the following Tier 2 Restrictions.(a)At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable

snubber(s), must be available when LCO 3.0.8a is used at PWR plants.(b)At least one AFW train (including a minimum set of supporting equipment required for its successful operation) not associated with the inoperable

snubber(s), or some alternative means of core cooling (e.g., F&B, fire

water system or "aggressive secondary cooldown" using the steam

generators) must be available when LCO 3.0.8b is used at PWR plants. (c)LCO 3.0.8b cannot be used by West Coast PWR plants with no F&B capability when a snubber, whose non-functionality would disable more

than one train of AFW in a seismic event of magnitude up to the plant's

SSE, is inoperable.(d)BWR plants must verify, every time the provisions of LCO 3.0.8 are used, that at least one success path, involving equipment not associated with

the inoperable snubber(s), exists to provide makeup and core cooling

needed to mitigate LOOP accident sequences.(e)Every time the provisions of LCO 3.0.8 are used licensees will be required to confirm that at least one train (or subsystem) of systems

supported by the inoperable snubbers would remain capable of

performing their required safety or support functions for postulated design

loads other than seismic loads. LCO 3.0.8 does not apply to non-seismic

snubbers. In addition, a record of the design function of the inoperable

snubber (i.e., seismic vs. non-seismic), implementation of any applicable

Tier 2 restrictions, and the associated plant configuration shall be

available on a recoverable basis for NRC staff inspection.2.Should licensees implement the provisions of LCO 3.0.8 for snubbers, which include delay times to enter the actions for the supported equipment when one or more

snubbers are out of service for maintenance or testing, it must be done in accordance

with an overall CRMP to ensure that potentially risk-significant configurations resulting

from maintenance and other operational activities are identified and avoided, as

discussed in the proposed TS Bases. This objective is met by licensee programs to

comply with the requirements of paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65, to assess and manage risk resulting from maintenance activities or when

this process is invoked by LCO 3.0.8 or other TS. These programs can support licensee

decision making regarding the appropriate actions to manage risk whenever a risk-

informed TS is entered. Since the 10 CFR 50.65(a)(4) guidance, the revised (May 2000)

Section 11 of NUMARC 93-01, does not currently address seismic risk, licensees

adopting this change must ensure that the proposed LCO 3.0.8 is considered in

conjunction with other plant maintenance activities and integrated into the existing

10 CFR 50.65(a)(4) process. In the absence of a detailed seismic PRA, a bounding risk

assessment, such as utilized in this Safety Evaluation, shall be followed.

The licensee included in its application the revised TS Bases to be implemented with the TS change. The NRC staff finds that the TS Bases Control Program is the appropriate process for

updating the affected TS Bases pages and has, therefore, not included the affected Bases page

with this amendment.

4.0 STATE CONSULTATION

In accordance with the Nuclear Regulatory Commission's regulations, the Alabama State official was notified of the proposed issuance of the amendments. The State official had no comments.

5.0 ENVIRONMENTAL CONSIDERATION

The amendments change a requirement with respect to the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20. The NRC staff has

determined that the amendments involve no significant increase in the amounts and no

significant change in the types of any effluents that may be released offsite and that there is no

significant increase in individual or cumulative occupational radiation exposure. The Nuclear

Regulatory Commission has previously issued a proposed finding that the amendments involve no-significant-hazards consideration, and there has been no public comment on the finding

(71 FR 23960; April 25, 2006). Accordingly, the amendments meet the eligibility criteria for

categorical exclusion set forth in 10 CFR 51.22©)(9). Pursuant to 10 CFR 51.22(b) no

environmental impact statement or environm ental assessment need be prepared in connection with the issuance of the amendments.

6.0 CONCLUSION

The Nuclear Regulatory Commission has concluded, on the basis of considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not

be endangered by operation in the proposed manner, (2) such activities will be conducted in

compliance with the Commission's regulations, and (3) the issuance of the amendments will not

be inimical to the common defense and security or to the health and safety of the public.

7.0 REFERENCES

1.TSTF-372, Revision 4, "Addition of LCO 3.0.8, Inoperability of Snubbers," April 23, 2004.

2.Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decision Making on Plant Specific Changes to the Licensing Basis," USNRC,

August 1998.3.Regulatory Guide 1.177, "An Approach for Plant Specific Risk- Informed Decision Making: Technical Specifications," USNRC, August 1998.4.Budnitz, R. J. et al., "An Approach to the Quantification of Seismic Margins in Nuclear Power Plants," NUREG/CR-4334, Lawrence Livermore National Laboratory, July 1985.5.Advanced Light Water Reactor Utility Requirements Document, Volume 2, ALWR Evolutionary Plant, PRA Key Assumptions and Gr oundrules, Electric Power Research Institute, August 1990.6.Bier V. M. et al., "Development and Application of a Comprehensive Framework for Assessing Alternative Approaches to Snubber Reduction," International Topical

Conference on Probabilistic Safety Asse ssment and Risk Management PSA '87, Swiss Federal Institute of Technology, Zurich, August 30-September 4, 1987.7.NUREG-1488, "Revised Livermore Seismic Hazard Estimates for Sixty-Nine Nuclear Power Plant Sites East of the Rocky Mountains," April 1994.8.NEI, Revised Section 11 of Revision 2 of NUMARC 93-01, May 2000.

9.Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants," May 2000.

Principal Contributor: T. R. Tjader

Date: June 29, 2006 Joseph M. Farley Nuclear Plant, Units 1 & 2 cc:

Mr. J. R. Johnson General Manager

Southern Nuclear Operating Company, Inc.

P.O. Box 470

Ashford, AL 36312 Mr. B. D. McKinney, Licensing Manager Southern Nuclear Operating Company, Inc.

P.O. Box 1295

Birmingham, AL 35201-1295 Mr. M. Stanford Blanton Balch and Bingham Law Firm

P.O. Box 306

1710 Sixth Avenue North

Birmingham, AL 35201Mr. J. Gasser Executive Vice President

Southern Nuclear Operating Company, Inc.

P.O. Box 1295

Birmingham, AL 35201 State Health Officer Alabama Department of Public Health

434 Monroe St.

Montgomery, AL 36130-1701 Chairman Houston County Commission

P.O. Box 6406

Dothan, AL 36302 Resident Inspector U.S. Nuclear Regulatory Commission

7388 N. State Highway 95

Columbia, AL 36319