ML20217M661

From kanterella
Revision as of 22:43, 20 March 2021 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 2 to L-001166, Post LOCA CR Auxiliary Electric Room & Offsite Dose
ML20217M661
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 02/20/1998
From: Johnson W, Launi C, Schwartz B
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20217M645 List:
References
L-001166, L-001166-R02, L-1166, L-1166-R2, NUDOCS 9805050078
Download: ML20217M661 (77)


Text

ATTACHMENT C 1

Calculation 01166, Rev. 2, " Post LOCA Control Room, Auxiliary Electric Equipment Room, and Offsite Doses"  ;

GE Input Data contained in the D. Grim to G. Lahti letter dated 1/16/98 (GENE B13-01920-011) 9805050078 DR 980501 ADOCK 05000373 PDR

In Reply Referto SEAG Number l 98-000153 l February 20,1998

Subject:

LaSalle County Station - Unit 1 & 2 Calculation L-001166, Rev. 2 l

Post LOCA Control Room, Auxiliary Electric Equipment Room, and Offsite Doses Safety-Related

Reference:

1. S&L NDIT No. LAS-ENDIT-0420, Upgrade 2 dated 02/20/98 with Calculation L-001166, Rev. 2.
2. SEAG Letter 97-000357 dated 9/18/98 with Calculation L-001166, Rev.1 Design Engineering Supervisor:

The Site Engineering Department , in conjunction with Corporate Nuclear Engineering Department, has reviewed the Calculation L-001166, Rev. 2

  • Post LOCA Control Room, Auxiliary Electric Equipment Room, and Offsite Doses
  • and finds it technically acceptable. The Control Room and AEER doses calculated in this revision are considered the design basis values because they include MSIV leakage doses calculated by GE. The MSIV leakage doses calculated in Revision 1 were obtained by extrapolating the previous GE design basis calculation and may be non-conservative. However, the results in Revision 1 are considered valid for demnnstrating the behavior of th/roid doses as a function of variations in the ventilation sy. stem parameters.

The subject calculation documents the Design Basis for the planned Technical Specification submittal to clarify Technical Specification 4.6.5.3, Containment System - Standby Gas Treatment system

  • and 4.7.2, ' Control Room and Auxiliary Electric Equipment Room Emergency Filtration System *. The following parameters are considered the bounding conditions for the Design Basis with Siemens Fuel as the Source Term: .

Control Room Minimum Filtered Makeup Airflow: 1350 cfm Minimum Recirculation Airflow 18,000 cfm Maximum Inleakage 1200 cfm Recire. Filter initiation Time: within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Thyroid Dose: 19.92 rem Whole Body: 0.13 rem Beta Skin: 1.72 rem Auxiliary Electric Equipment Room Minimum Filtered Makeup Airflow: 2250 cfm Minimum Recirculation Airflow -

14,000 cfm Maximum inleakage -

1600 cfm Recire. Filter initiation Time: within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Thyroid Dose: 28.97 rem Whole Body: 0.12 rem Beta Skin: 1.96 rem

l

,The acceptance criteria for,the operator dose is General Design Criteria 19 of 10CFR50, which is 5 rem whole body or the equivalent.~ The equivalent thyroid and beta skin dose from Standard Rev6ew Plan (SRP) is 30 rem.

The Post LOCA thyroid dose at the EAB is 32.33 rem and the whole body dose is 3.56 rem.

The Post LOCA thyroid dose at the LPZ is 12.84 rem and the whole body dose is 0. 59 rem.

{

The acceptance criteria for offsite doses are from 10CFR100, which, for EAB, are 300 rem thyroid and 25 rom whole body for the first 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and, for the LPZ, are 300 rem thyroid and 25 rem whole body over the course of the accident.

The subject calculation concluded that the offsite doses following a design basis LOCA are within the limits speckled in 10CFR100, and the CR and AEER doses at bounding conditions are within the limits of 10CFR50 GDC 19.

The results of the subject calculations were compsred with the two additional accidents (Main Steam Line Break & Control Rod Drop Accident) identified in Chapter 15 of the UFSAR. This calculation determined that LOCA bounds these other accidents for Control Room and AEER doses.

Any questions regarding the subject calculation, please contact Jerry Lahti at Downers Grove tie-line 347-3858 or E. P. Ricohermoso at LaSalle extension 2287.

)

Prepared by: A/ "

Date: A U*Y

/ /E[. Ricohermoso/ G. P. Lahti Approved by: ,

Date:

R. Hall /

l

Attachment:

NDIT LAS-ENDIT-0420 Upgrade 2 with calculation L-001166, Rev. 2 cc:

G. Swihart -(1/1) l H. Pontious (1/1)

W. J. Bums (1/1)

R.Pande (1/1) l R. Hall (1/1) ~

J. Rommel (1/1) -

SEAG (1/1) l l

1

. o COMED NUCLEAR DESIGN INFORMATION TRANSMITTAL O SAFETY-RELATED Ortipnenne L .

NDIT No.: LAS-ENDIT-0420 0 NON-SAFETY RELATED Secean. NTRD Upgrade 2 REGULATORY RELATED Company- Sargent & Lundy Page 1 of 1 Station: LaSabe County Unas: 1,2 System: To: Racchermoso, Eusebio P. . Comed, DE-M Desagn Change Authortty No N/A VC VE

,, Sutgect; Transmittel of Calcuston L-001166, Rev. 2, Post-Loss of Cootent yP "XEbnt (LOCA) Control Room,' Auxihery Electric Equipment Room (AEER) and Offsits Does Johnson, William J Preparer Consultant Pommert

[agrunne

  • jf/ _ - 2118/98 os.

/

Schwartz, Barry C.

n-Senior Project Engsneer hfy, -*"

q/2o/7? l Pommen. y Dem Launi. C. M.

Manager 2 0 --

(- -

Status of information: Approved for Use Unverined VertAceton Method N/A Engmeenng Judgement Schedule:

{

Purpose of leeuence The purpose of this NDIT is to transmit Calculaten L 001166, Revisen 2. The Control Room and AEER doses calculated in this revoion are considered the design bass values because they include MSIV leakage doses calculated by GE and transtrutted in Letter '

GENE S13 01920 011.

The MSIV leakage doses calculated in Reveion 1 were obtained by extrapolating the previous GE design beso calculation. However, the results of Revoion 1 are conexiered valid as a parametric study for demonstratmg the behaver of thyroid doses as a functon of variatens in the ventilaton system parameters. Revsion 2 values will be used as the dessgn bass values.

Source of lnformatson LaSaine Calculation L 001166, Rewmen 2.

Description of information Calculation L-001166 demonstrates that the Post LOCA dose in the Control Room AEER, and Offsite are within regulatory hma Attachments: Calculation L-001166. Revision 2. dated 2/20/96 48 Pages Total . Calculation. 40 pages Attachment A. 7 page Attacnment B,1 pages Micro 6che,/ sneets (1 onginal and 1 diazo per sheet) i W

D6stribution SEAG Lahti, Gerald P. . Comed, McQueen, Donald L. Sargent & Lundy, MPED Comed Microfilming NDIT File (Original) . Sargent & Lundy Swihart,G. Comed,LIC

- WIN File WIN No.: 2807

PREPARATION, REVIEW AND APPROVAL OF CALCULATIONS 1

CALCULATION TITLE PAGE l

Calculation No: L-001166 DESCRIPTION CODE: ROI. R02 DISCIPLINE CODE: M I mMalle Unit 1 & 2 TITLE- Post LOCA Control Room. Andliary Fine Eauinment Room and Offsite Dose X Safety Related Angreated Quality Non-Safety Related REFERENCE NUMBERS Type Number Type Number -

ER 9702942 COMPONENT EPN: DOCUMENT NUMBERS:

EPN Compt Type Doc Type / Subtype Document Number 1

l l

REMARKS. l REV. REVISING APPROVED DATE' O.

ORGANIZATION PRINT / SIGN O S&L C. M. Launi/(See Origin L' for signature) 7/15/97 l 1 S&L C. M. Launi/(See,Origina for Signature) 9/12/97 I 2 S&L C. M. Launi/(([Mej ' 2 -lo .f6 i

l l

i COMMONFe.ALTH EDISON COMPANY CALCUl.ATION REVISION PAGE CALCUMTION NO. L 001f66 REV: 1 PAGE NO.: 2 STATUS:

QA SERIAL NO. OR CHRON NO. DATE:

PREPARED BY: W J .!eli6aan #See ariuinal for sion='um) DATE: 9/1247 I REVISION

SUMMARY

the current design and a 14000 cfm minimum recirculation fl inneakage values used to evaluate the doses. Specificalh, a 1200 cfm inleakage value control room and a 1600 cfm value was used for the AEER because these consspond to source term that resulted in lower gamma and skin doses due to M This is a complete revision and supersedes revision 0 to this calculation.

CALCULATION FILES REVISED:

(Name ext / size /date/ hour. min / verification method / remarks)

None DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE O YESLATER E NO VERIFI REVIEWED BY: R. G. ChowNSee c,h,a/ tbr skrWwe)

DATE: 9/12&7  !

! REVIEW METHOD:

COMMENTS (C, NC or Cl):

APPROVED BY: C. M. Launinsee ortalnal for sianature) DATE:Stf247 b STATUS:

QA SERIAL NO. OR CHRON NO. DATE:

PREPA BY:

DATE:

/

REVISION SU Y:

CALCULATION FILES REVISED:

(Name ext / size /date/ hour: min / verification met emarks DO ANY ASSUMPTIONS IN THIS C LATION REQUIRE LATE IFICATION: 0 YES O NO REVIEWED BY:. / DATE:

REVIEW TD BY: COMMENTS (C NC o -

DATE:

1 COMMONWEALTH EDISON COMPANY CALCULATION REVISION PAGE CALCULATIONNO. L-001166 PAGE NO.: 3 I

REVISION SUMMARIES 1 REV:2 REVISION

SUMMARY

Calculation for design basis conditions only. Added 'GE calculation for MSIV leakage.  !

Supersedes Revision 1 for design basis' applications. Revision 1 is considered valid for demonstrating behavior of thyroid doses as a function of variation in ventilation system parameters.

Electronic Calculation Data Fdes:

(Propam Name, Vernien, File masse ma/manfdene4mmur/: min) 'il None Prepared by: W. J. Johnson / / -I -

t/M/4# _

Print / Sign / Date Reviewed by: R. G. Chow / I Yrint/ Sign d #9 Date Type ofReview

[X 1 Detailed [ ] Alternate [ ] Test DO ANYASSUMFDONS N1HIS CALCULATIONRBQURELATERVERIRCATKN [ ] YE -

Tracked by-REV:

REVISION

SUMMARY

Electronic Calculation Data Files:

(Program Name, Version, File name ext /sha/ dea 4mourh min)

Prepared by: _

Print / Sign Date Reviewed by:

Print / Sign Date Type of Review

[ ] Detailed [ ] Alternate I 1 Test DO ANY Tracked by:ASSUMFDONS NTHIS CAlfULAT10N RBQUREIATER VERIRCATXN [ ] YE

COMMONWEALTH EDISON COMPANY CALCULATION TABLE OF CONTENTS PROJECT NO. 10346-002

{

CALCULATION NO. L-001166 REV. NO. 2 PAGE NO. 4 DESCRIPTION PAGE NO. SUB-PAGE NO.

utLE PAGE 1 REVISION

SUMMARY

2 TABLE OF CONTENTS 4 1

1. PURPOSE / OBJECTIVE 5
2. METHODOLOGY / ACCEPTANCE CRITERIA 5 2.1 Methodology 5

2.2 Acceptance Criteria 7

3. ASSUMPTIONS 7
4. DESIGN INPUT 8 4.1 Source Terms 8 4.2 Plant Parameters 9 i

4.3 Atmospheric Dispersion Parameters 9 {

i 4.4 Dose Conversion Factors 10 4.5 MSIV Leakage Doses 10

5. REFERENCES 23
6. CALCULATIONS 24 6.1 POSTDBA Case Descriptions 24 6.2 Containment and ECCS Leakage Pathways - 25 6.3 MSIV Leakage Pathway 30
7.

SUMMARY

AND CONCLUSIONS 37 7.1 Offsite Doses 37 '

7.2 Control Room and AEER Doses 37 7.3 Comparison With Other Accidents 37 ATTACHMENTS 40 A. POSTDBA ComputerInput B. POSTDBA Computer Output Microfiche A-1 to A-7 B-1  !

l

l

. COMMONWEALTH EDISON COMPANY PROJECT NO.10346 002 PAGE NO 5 l l CALCULATION NO. : L 001 66

1. PURPOSE / OBJECTIVE The purpose of this calculation is to estimate the thyroid dose from inside atmosphere to personnel in the control room (CR) and the Auxiliary Electric Equipment Room (AEER) and to estimate the dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) aAer a postulated design basis loss of coolant accident at the l4Salle County Station. The objective this revision is to evaluate the doses using specific design basis vantilation parameters for the control room vaatil=+ ion system (VC) and the AEER vd1=4n system (VE).
2. METHODOLOGY AND ACCEPTANCE CRITERIA 2.1 Methodology 2.1.1 Source Term The core inventory for this calculation will be based on the extended burnup sources provided by Siemens [ Reference 1). The core inventory used by GE in the analysis for MSIVleakage

_ [ Reference 2) are different, so the GE results will be scaled by the ratio of the initial source terms l to provide consistent results.

2.1.2 Suppression Pool Scrubbing The NRC guidance on the use of suppression pool scrubbing is documented in the Standard Review Plan (SRP) Section 6.5.5 [ Reference 3). Since the GE analysis for MSIV leakage takes credit for suppression pool scrubbing, this effect will also be 'mcluded in this calculation.

2.1.3 ICRP 30 Dose Conversion Factors The NRC has endorsed the use of dose conversion factors based on ICRP 30 [ Refer GE analysis for the MSIV leakage uses these newer values. To be consistent, this analysis will also use the ICRP 30 iodine dose conversion factors.

2.1.4 Ventilation System Parameters The control room /AEER will be analyzed with a 95% efficient makeup filter and a recirculation filter efficiency of 70%, and with a minimum recirculation flow rate and a minimum makeup rate.

The minimum makeup rate, which is 10% below the current design flow rate as specified in Technical Specification 3/4.7.2 [ Reference 5), represents the lower range of acceptable test values. The lower range is most conservative because it leads to a slower turnover of the control room atmosphere and a longer exposure time for operators in the control room.

l

. l REVISION NO.: 2

COMMONWEALTH EDISON COMPANY. l l CALCULATION NO. : L 001166 _ __ PROJECT NO. 10346-002 PAGE NO. 6 l Use of a minimum recirculation flow rate is also conservative because it minimizes the cleanup rate for the recirculation filter. The minimum air flow is based on current system performance [

[ Reference 23]. For the control room this flow is 18,000 cfm and for the AEER the minimum

~

- flow is 14,000 cfm. Both of these values are about 25% below the current design flow values. A recirculation filter bypass fraction of 5% will be used, based on a safety factor of 2.5 over inplace penetration and filter testing bypass test [ Reference 23]. To account for manual initiation of the recirculation filter, a delay of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> will be considered before taking credit for iodine removal by the recirculation filter.

The supply duct work inleakage values will be set to 1200 cfm for the control room and 1600 cfm for the AEER. These values are the maximum allowable values for these parameters and the actual inleakages are expected to be less, and would encompass such uncertainties as inleakage through doonvays (normally taken as 10 cfm [ Reference 14]). l i

2.1.5 Containment LAge l The doses in the control room, AEER and offsite due to leakage from the containment into the i reactor building will be calculated using the current version ofPOSTDBA [ Reference 6]. A five I minute drawdown period will be - omad prior to initiating the SGTS, which has a filter efficiency of 99% for iodines. A 30 minute fumigation period will start at the t=aianing of the accident and run concurrent with the drawdown period consistent with the guidance in Regulatory Guide 1.3

[ Reference 7].

2.1.6 MSIV Leakage l The doses due to MSIV leakage will be based on the calculation by GE. The original calculation supporting the removal of the MSIV leakage control system [ Reference 8] provided the offsite  ;

doses, which are not affected by the ventilation systems. This original calculation will also be l

used for the control room and AEER whole body and beta skin doses. Two additional )

calculational results have been provided by GE that provide the thyroid doses for the design basis l control room and AEER ventilation parameters [ Reference 9]. Since the GE results are provided  !

on a nuclide basis, the results for the Siemens sources will be obtained by multiplying each nuclide j result by the ratio of the initial source terms.  !

2.1.7 Containment Bypass Leakage MSIV leakage is considered containment bypass leakage, i.e., it bypasses the secondary l containment and is released directly to the atmosphere. In response to questions in the FSAR {

[ Reference 10, Question 021.11], all other potential bypass paths were analyzed. The conclusion l was that there are no additional credible pathways for bypassing the secondary containment. I l

l l REVISION NO.: 2 l l l

i COMMO.NWEALTH EDISON COMPANY

[ CALCULATION NO. : L-001166 PROJECT NO.10346 002 PAGE NO. 7 l l

2.1.8 ECCS Leakage l Ieakage from equipment cirmladag suppression pool water outside primary containment is

! another potential release pathway for activity to the environment SRP 15.6.5, Appendix B

[ Reference 11], describes the =*hadology used to analyze this path. At LaSalle, leakage froni systems handling postaccident fluids is expected to be minimal complying with the commitment in FSAR Section L-77. This commitment is implemented by station procedure LAP-100-14

[ Reference 12]. The ECCS leak rate will be conservatively based on the typical industry adinlii,64ive limit of 5 gal /hr. For the analysis, consistent with SRP 15.6.5, Appendix B, the  !

leak rate will be taken as two times the sum of the administrative limit for simultaneous leakage l from all components in the recirculation systems. This leak rate is conservatively approximated at )

L 10 gal /hr. Since the leakage will occur in the secondary com=L c ==t. the POSTDBA model for i this pathway is the same as the containment leakage pathway with appropriate source and leak  !

rate changes.

2.2 Acceptance Criteria The acceptance criteria for the operator dose is General Design Criteria 19 of 10CFR50

[ Reference 13), which is 5 rem whole body or the equivalent. The equivalent thyroid and beta i skin dose from SRP 6.4 [ Reference 14] is 30 rem.  !

The acceptance criteria for offsite doses are from 10CFR100 [ Reference 15), which, for the EAB, j are 300 rem thyroid and 25 rem whole body for the first two hours and, for the LPZ, are 300 rem thyroid and 25 rem whole body over the course of the accident.

3. ASSUMPTIONS The following assumptions describe the accident conditions and function of accident mitigating systems modeled in this calculation.
1. In accordance with the guidance in Regulatory Guide 1.3, the source term for containment leakage is 100% of the core inventory of noble gases and 25% of the core inventory of iodines. This activity is assumed to be instantaneously and uniformly distributed in the volume of the drywell and wetwell at time zero.
2. The airborne iodine available for release from the containment is m' stantaneously reduced by suppression pool scrubbin*g at time zero. To calculate the suppression pool bypass fraction, a geometric loss coefficient of 3 is assumed for the suppression pool bypass in accordance with the UFSAR [ Reference 16, page 6.2.27].

l REVISION NO.: 2 l

)

1 COMMONWEALTH EDISON COMPANY

- l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO. 6 l

- 3. - In accordance with the ydd -in Regulatory Guide 1.3, the containment is assumed to leak at the Technical Speci6 cation value for the duration of the accident.

4. It is assumed that it takes the Technical Speci6cstion period for the SGTS to draw down the reactor bdWia: During this period, the releases are at ground level. After draw down, the releases are from the stack through the SGTS with no mixing or holdup in the reactor N uding .
5. A fumigation period is assumed to exist for the fint 30 minutes of the accident consistent with the guidance in Regulatory Guide 1.3.
6. The control room emergency makeup filtration system is actuated prior to any activity entering the control room. Initiation of the recirculation Siter is delayed four hours;
7. After the end of the fumigation period, there is no additional activity taken into the control room from the containment and ECCS leakage pathways.
8. The assumptions in the GE model for MSIV leakage [ Reference 17] concerning activity .

transport, lodme plateout and resuspension in the steam _ lines, drain hnes, turbine and

.l condenser are considered valid and applicable to this analysis. l

9. As discussed in Section 2.1.8, the leakage from ECCS components outside containment is I conservatively assumed to be 10 gallons per hour. The source is 50% of the core iodines uniformly distributed in the minimum suppression pool water volume. In accordance with the guidance in SRP 15.6.5,10% of the iodine in the leaked fluid is assumed to become airborne and is available for release to the environment.
4. DESIGN INPUTS 4.1 Source Terms There are two sourc,: t'erms to be considered in this calculation: the source term used by GE to calculate the dose contribution from MSIV leakage, and the source generated by Siemens for extended burnup fuel. These two source terms are shown in Table 1. Note that in this table, the iodine activities represent 25% of the core inventory whereas the noble gas activities are 100% of the core inventory.

l REVISION NO.: 2 l

COMMONWEALTH EDlSON COMPANY l CALCULATION NO. : L-001166 PROJECT NO. 10346-002 PAGE NO. 9 l l l

4.2 Plant Design Parameters f

l The plant design pa.ameters are used to determine the leak rates from the containment and the activity concentrations in the control room and AEER. The flow rates for the control room j HVAC system are shown in Figure 1, and the flow rates for the AEER are shown in Figure 2. i Note that these are current design basis minimum flow rates, as discussed in Section 2.1.4. In this l calculation, filter efEciencies of 95% for the intaka filter and 70% for the recirculation filter are I used. For the SGTS flher, an efBciency of 99% is used. Additional plant data are listed in Table

2. Note that the containment volumes listed in this table are from the UFSAR. These volumes are used only to calculate a flow rate that corresponds to a containment leak rate of 0.635%/ day, so the volumes are not considered design input and do not require further verification.

4.3 Atmnscheric Disnersion Paramatars l

The atmospheric dispersion parameters used to calculate the offsite and comrol room dose due to

  • containment and ECCS leakage are taken from 1-CT-2 [ Reference 18] and are also shown in Table 2. The following is a summary of the basis for these values. Note that this discussion i l

applies only to leakage into the reactor building ad is not applicable to the releases through the MSIV's. The GE analysis uses a set ofoffsite atmospheric dispersion parameters that are different from the ones described in this section, and, as described in Section 2.1.6, those parameters are not changed in this analysis.

The EAB and LPZ x/Q values are taken directly from the graphical information presented in Regulatory Guide 1.3 for an EAB distance of 509 meters and LPZ distance of 6400 meters. The building wake correction used in ground level x/Q is based on a minimum reactor building area of 3

2270 m , and the elevated releases are based on a release height of 112.8 m for the EAB and 95.8 m for the LPZ.

In POSTDBA, the atmospheric dispersion for the control room in the first 30 minutes is evaluated by the fodowing expression:

x/Q = 2/(uA) where u is the fifth percentile wind speed and A is the projected area of the reactor building normal to the ' wind direction. Revision 2 of 1-CT-2 used meteorological data for the period 1982-1987 to determine the fifth percentile wind speed for the different inlets. The worst case was the south inlet which, using the values for u and A in Table 2, produces a x/Q of 2.65E-4 sec/m' (which is equivalent to the value of 2.462E-5 sec/(m-ft') detennined in 1-CT-2). This x/Q is only applicable for the first 30 minutes of the accident when ground level releases from the reactor building are assumed to exist. After 30 minutes, all releases from the reactor building are elevated and no activity reaches the control room.

l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO.10 l 4.4 Dose Conversion Factors The iodine dose conversion factors (DCF) used in this calculation are based on ICRP 30, and the gamma and beta depth dose factors are based on Regulatory Guide 1.109 [ Reference 19]. Since ,

the current version ofPOSTDBA has default data for iodine based ,on ICRP 30, .the Regulatory l' Guide 1.109 will have to be input into the code. The Regulatory Guide 1.109 depth dose factors are shown in Table 3, along with the dose conversion factors based on ICRP 30. Note that what are referred to here as the ICRP 30 dose conversion factors are actually taken from Federal l C@am Report 11 [ Reference 4], which is based on ICRP 30.

4.5 MSIV Leakage Doses i

The offiste and control room doses due to leakage through the MSIV's were calculated by GE and used as the basis for the licensing amendment removing the MSIV leakage control system

[ References 8 and 20]. Control room and AEER thyroid doses corresponding to the design basis flows in Figures 1 and 2 were provided by GE in Reference 9. The doses were reported by nuclide at time periods of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />,4 hours, I day and 30 days following the accident. The results of these are shown in Tables 4, 5, 6, 7 and 8. Note that five separate components are addressed by GE. The main contributor to the dose is leakage through the drain lines to the main condenser.

Thyroid doses due to releases through this pathway are dominated by organic iodine (which is not subject to plate out), and the resuspension of the plated out iodine. Particulate and elemental activity plates out and very little is released Whole body doses are due nearly entirely to noble ,

gases. The travel time required for the MSIV leakage to reach the turbine building is considerable I

~

(nearly 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) so the early time periods do not contribute significantly to the dose. The other pathway is through the turbine stop valves and the high pressure turbine. The travel time for this pathway is so long that there are no doses for the first day, and the subsequent doses are due only I to organic iodines and noble gases. For the whole body and beta doses, only the noble gas contribution is tabu!sted because the iodine contribution is Sve orders of magnitude smaller than the noble gases.  ;

I The only offsite dose calculated by GE was at the LPZ. To determine the dose at the EAB, they  !

simply scaled the 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> LPZ by the ratio of the EAB x/Q' (5.10E-4) to the LPZ x/Q' (1.10E-5). l l

t l REVISION NO.: 2 I

COMMONWEALTH EDISON COMPANY I CALCULATION NO. : L.001166 PROJECT NO.10346 002 PAGE NO.11 l l~ Table 1. LOCA Source Terms: 25% Core Inventory ofIodine,

! 100% Core Inventory of Noble Gas

! GE Souste (3458 Mw) Siemens l '

Nuclide Ci/Mw Ci '

Ci I-131 2.63 IE+04 2.27E+07 2.90E+07 I-132 3.845E+04 3.32E+07 4.08E+07 I-133 5.502E 44 4.76E+07 5.18E%7 l I-134 6.056E44 5.24E+07 5.80E+07 l I-135 5.195E44 4.49E+07 4.50E+07 Kr-83m 3.137E+03 1.08E+07 5.22E+06 Kr-85 3.015E+02 1.04E+06 2.27E46 Kr-85m 6.734E43 2.33E+07 2.01E+07 Kr-87 1.292E+04 4.47E+07 3.75E+07 Kr-88 1.830E+04 6.33EM7 5.55E+07 Kr-89 2.276E+04 7.87E+07 6.79E+07 Xe-131m 1.582E+02 5.47E+05 9.80E+05 Xe-133 5.528E+04 1.91E+08 2.07E+08 Xe-133m 2.305E+03 7.97E+06 5.08E+06 Xe-135 7.148E+03 2.47E+07 4.07E+07 Xe-135m 1.042E+04 3.60E+07 5.54E+07 Xe-137 4.852E44 1.68E+08 2.04E+08 Xe-138 4.610E+04 1.59E+08 1.98E+08 l

l l

!l l REVISION NO.: 2 I .

i

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO.12 l Talde 2. Plant Parameters Input Parameter l Value l Basis / Reference Containment Parameters Drywell free volume (ft') 229,538 UFSAR Table 6.2-1  ;

Wetwell volume (ft') 165,100 UFSAR Table 6.2-1 l Primary Cone.inment leak rate 0.635 T/S Bases,3/4.6.1.1 Prunary

(%/ day) Containment Integrity

~

Suppression pool maximum leakage 0.052 T/S 3/4.6.2.1 Suppression area, At (f12 )(See Section 6.4.2) Ch==d=r Suppression pool vent area, Av (ft') 232 LaSalle Drawing S-326 [Ref. 21]

Suppression pool volume (ft') 128,800 T/S 3/4.6.2.1 Suppression Chamber Suppression poolDF organic I 1 SRP 6.5.5  ;

elementalI 10 j particulate I 10 SGTS Ster fractional efBciency 0.99

)

SER Section 6.5 [Ref. 22]

T/S 3/4.6.5.3, Standby Gas Treatment System SGTS draw down time (min) 5 T/S 3/4.6.5.1, Secondary Containment Integrity l

Control Room Parameters i Outside air intake rate before intake 3544.8 NDIT No. LS-0570 [Ref. 23] l Eter(cfm) '

Outside air unfiltered instration after 55.2 NDIT No. LS-0570 makeup Ster (cfm)

Intake filter fractional efficiency 0.95 N552 No. LS-0570 Control room makeup rate (cfm) 1350 NDIT No. LS-0570 CR outside air unfiltered infiltration 1200 NDIT No. LS-0570 rate before recire Ster (cfm)

CR outside air unfiltered infiltration 7 NDIT No. LS-0570 rate after recire filter (cfm)

CR recire filter bypass (percent of full 5% NDIT No. LS-0570 I flow)

CR recire filter flow rate, including 18,000 NDIT No. LS-0570 blRass (cfm)

Free volume of the control room 117472 1-CT-2, Rev 1, page 74 HVAC boundary (ft')

CR Accire Siter fractional efficiency 0.70 NDIT No. LS-0570 l REVISION NO.: 2 l

. COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO.13 l Table 2. Plant Parameten f

Input Parameter l Value l Basis / Reference AEER Parameters - ,

AEER makeup rate (cfm) 2250 NDIT No. LS-0570 AEER outside air unfiltered 1600 NDIT No. LS-0570 l instration rate before recire Eter (cfm)

AEER outside air unstered 6 NDIT No. LS-0570 infiltration rate after recire Ster (cfm) l AEER recirc Ster bypass (percent of 5% NDIT No. LS-0570 l full flow) .

AEER recire filter flow rate indiading 14,000 NDIT No. LS-0570 bypass (cfm)

Free volume of the AEER HVAC 74,088 LaSalle Drawmgs A-186, A-17 l boundary (ft') and M-15 [Ref. 24, 25, 26]

AEER recire filter fractional efficiency 0.70 NDIT No. LS-0570 Atmospheric Dispenion Parameters

)

Cross section ofRx building (ft') 1-CT-2, Rev 2 South Inlet 56218 page 147 .

Fifth Percentile Wind Speed (m/sec) 1-CT-2, Rev 2 i South Inlet 1.445 page 147 '

EAB x/Q Reactor Bldg. (sec/m8 ): 1-CT-2, Rev 1 j Ground Level (0-5 min) 6.8E-4 page 78 l Fumigation (5 min .5 hr) 1.85E-4 ,

Elevated (.5-2 hr) 1.7E-5 l LPZ.X/Q Reactor Bldg. (sec/m'): 1-CT-2, Rev 1 Ground Level (0-5 min) 3.9E-5 .page 78 Fumigation (5m' in .Shr) 2.3E-5 Elevated .5-8hr 6.0E-6 8-24 hr 1.9E-6 1-4 days 6.lE-7 4-30 days 1.9E-7 l

I 9

l REVISION NO.: 2 l

COMMONWEALTH EDlSON COMPANY l CALCULATION NO. : L 001186 PROJECT NO.10346 002 PAGE NO.14 I Table 3. Dose Conversion Factors and Breathing Rates Thyroid Dose Convenion Facton (mm/CI)

Naclide  !

ICRP 30 (Ref. 6) .

1-131 1.08E+06 I-132 6.40E+03 1-133 1.80E+05 I-134 1.07E403 I-135 3.13E404 Depth Dose Facton (Ref. 27)

Nuclide Beta Skin Gamma Whole Body I-131 1.00E+00 1.00E+00 I-132 1.00E400 1.00E400 .

1-l'33 1.00E+00 1.90E+00 1-134 1.00E+00 1.00E+00 1-135 1.00E+00 1.00E+00 Kr-83m 1.00E+00 3.92E-03 Kr-85m 7.41E-01 9.51E-01 Kr-85 6.87E-01 9.36E-01 Kr-87 9.45E-01 9.59E-01 Kr-88 8.09E-01 9.67E-01 Kr-89 9.53E-01 9.60E-01 Xe-131m 1.00E+00 5.87E-01 Xe-133m 1.00E+00 7.68E-01 Xe-133 2.91E-01 8.75E-01 Xe-135m 1.00E400 9.29E-01 Xe-135 7.56E-01 9.43E-01 Xe.137 9.61E-01 9.40E-01 Xe-138 8.69E-01 9.59E-01 8

Breathing Rates (m /sec)(Ref. 7) i Time Period EAB/LPZ Control Room 0-8hr 3.47E-4 3.47E-4 '

8-24 hr 1.75E-4 3.47E-4 1-30 day 2.32E-4 3.47E-4 l REVISION NO.: 2 I

i

i COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO.15 l

\

Table 4. GE ControlRoom Thyroid Dose from MSIV Leskase 0-2 Hour D% rem Nuclide OR-DL Resus Total 1-131 2.102E-04 3.327E-06 2.135E-04 1-132 1.124E-06 0.000E+00 1.124E-06 1-133 6.978E-05 0.000E+00 6.978E-05 1-134 1.349E-07 0.000E+00 1.349E-07 I-135 1.018E-05 0.000E+00 1.018E-05 Total 2.914E-04 i 3.327E-06 2.947E-04 6-4 Hour Dc+a rem '

Nuclide OR-DL Resus Total I-131 2.731E-03 3.328E-05 2.764E-03 1-132 9.563E-06 0.000E+00 9.563E-06 I-133 8.679E-04 0.000E+00 8.679E-04 1-134 6.294E-07 0.000E400 6.294E-07 I-135 1.142E-04 0.000E+00 1.142E-04

__ Total 3.724E-03 3.328E-05 l 3.756E-03 '

0-1 Day Dose, rem Nuclide OR-DL Resus Total I-131 2.178E-01 7.115E-03 2.249E-01 I-132 5.683E-05 0.000E+00 5.683E-05 I-133 4.723E-02 0.000E+00 4.723E-02 1-134 1.100E-06 0.000E+00 1.100E-06 1-135 2.771E-03 0.000E+00 2.771E-03 Total 2.679E-01 7.115E-03 2.750E-01 0-30 Day Dose, rem Nuclide OR-DL Resus Total I-131 5.884E+00 4.555E+00 1.044E+01 I-132 5.703E-05 0.000E+00 5.703E-05 I-133 1.259E-01 0.000E400 1.259E-01 1-134 1.100E-06 0.000E+00 1.100E-06 I-135 3.295E-03 0.000E+00 3.295E-03 Total 6.013E+00 4.555E400 1.057E+01 OR-DL = Organic Iodine, Drain Line Pathway Resus = Resuspension, Drain Line Pathway l REVISION NO.: 2 I

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10346 002 PAGE NO.16 l l

Table 5. GE AEER Thyroid Dose from MSIV Imkaze 0-2 Hour D . na I

Nuclide OR-DL Resus Total 1-131 3.837E-04 5.909E-06 3.896E-04  !

1-132 2.054E-06 0.000E+00 2.054E-06 1-133 1.274E-04 i-0.000E+00 1.274E-04 1134 2.475E-07 0.000E+00 2.475E-07 1-135 1.860E-05 0.000E+00 1.860E-05 l Total 5.320E-04 5.909E-06 i 5.379E-04 '

0-4 Hour D=_ mm Nuclide OR-DL Resus Total 1-131 4.812E-03 5.866E-05 4.871E-03 i 1-132 1.689E-05 0.000E+00 1.689E-05 1-133 1.529E-03

! 0.000E+00 1.529E-03 I-134 1.118E-06 0.000E+00 1.118E-06 1-135 2.013E-04 0.000E+00 2.013E-04 Total 6.560E-03 5.866E-05 6.619E-03 01 Day D=, rems Nuclide OR-DL Resus Total 1-131 3.744E-01 1.225E-02 3.867E-01 4 1-132 9.841E-05 0.000E+00 9.841E-05  ;

l-133 8.122E-02 0.000E+00 8.122E-02 I-134 1.934E-06 0.000E+00 1.934E-06 1-135 4.771E-03 0.000E+00 4.771E-03 Total 4.605E-01 1.225E-02 4.728E-01 0-30 Day Dose, rum Nuclide OR-DL Resus Total 1-131 1.008E+01 7.805E+00 1.789E+01 1-132 9.874E-05 0.000E+00 9.874E-05 1-133 2.161E-01 0.000E+00 2.161E-01 1-134 1.934E-M 0.000E+00 1.934E-06 1-135 5.668E-03 0.000E+00 5.668E-03 Total 1.030E+01 7.805E+00 1.811E+01 OR-DL = Organic lodine, Dram Line Pathway Resus = Resuspension, Drain Line Pathway i

j l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO.17 I Table 6. . GE Control Room /AEER Whole Body and Skin Dose from MSIV Leakage Whole Body Dm rem Beta Skin Dose, rem Nuclide Drain Line Turbine Total Drain Une Turbine Total Kr-83m 2.276E-06 0.000E+00 2.276E-06 9.764E-09 0.000E+00 9.764E-09 Kr-85 5.270E-05 8.810E-10 5.270E-05 6.634E-02 1.109E-06 6.634E-02 Kr-85m 9.539E-05 7.73]E-34 9.539E-05 3.474E-03 2.816E-32 3.474E-03 Kr-87 3.999E-05 0.000E+00 3.999E-05 9.635E-04 0.000E+00 9.635E-04 Kr-88 1.011E-03 0.000E+00 1.011E-03 2.710E-03 0.000E+00 2.710E-03 Kr-89 6.602E-12 0.000E+00 6.602E-12 5.550E-11 0.000E+00 5.550E-11 Xe-131m 4.577E-04 4.005E-09 4.577E-04 5.644E-03 4.938E-08 5.644E-03 Xe-133 6.006E-02 1.707E-07 6.006E-07. 6.912E-01 1.965E-06 6.912E-01 Xe-133m 2.753E-04 2.496E-11 2.753E-04 - 2.475E-02 2.244E-09 2.475E-02

- Xe-135 6.304E-04 5.071E-21 6.304E-04 1.086E-02 8.735E-10 1.086E-02 Xe-135m 3.880E-08 0.000E+00 3.880E-08 1.341E-07 0.000E+00 1.341E-07 Xe-137 7.985E-12 0.000E+00 7.985E-12 1.076E-09 0.000E+00 1.076E-09 Xe-138 2.100E-07 0.000E+00 2.100E-07 2.303E-06 0.000E+00 2.303E-06 Total 6.263E-02 1.756E-07 6.263E-02 8.059E-01 3.126E-06 8.059E-01 l

I REVISION NO.: 2

. l m e e.

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001186 PROJECT NO.10346 002 PAGE NO.18 l i Table 7. GE LPZ Thyrwid Dose from MSIV Leakage 1

0-2 Hour Da . rena Nuclide El-DL OR-DL OR-T Resus Total I-131 1.860E-05 3.783E-04 0.000E+00 3.760E-06 4.007E-04 I I-132 * "J6E-07 2.046E-06 0.000E+00 0.000E+00 2.147E-06 I-133 o.i82E-06 1.257E-04 0.000E+00 0.000E+00 1.319E-04 I-134 1.215E-08 2.512E-07 0.000E400 0.000E+00 2.636E-07 I-135 9.047E-07 1.840E-05 0.000E+00 0.000E+00 1.930E-05 Total 2.580E-05 5.247E-04 0.000E+00 3.760E-06 5.543E-04 '

0-30 Day Da=, rem Nuclide El-DL OR-DL l OR-T Resus Total I-131 3.785E-02 4.660E400 2.663E-05 3.413E+00 8.lllE+00 l I-132 3.102E-06 6.455E-05 0.000E+00 0.000E+00 6.765E-05 l I-133 3.098E-03 1.063E-01 7.575E-13 0.000E+00 1.094E-01 j 1-134 7.799E-08 1.596E-06 0.000E+00 0.000E+00 1.674E-06 I-135 1.232E-04 2.829E-03 {

2.921E-24 0.000E+00 2.952E-03  !

Total 4.107E-02 4.769E+00 2.663E-05 3.413E+00 8.223E+00 I El-DL = Elernantal Iodine, Drain Line Pathway OR-DL = Organic lodine, Drain Line Pathway OR-T = Organic Iodine, HP Turbine Pathway -

Resus = P=+i- = =- Drain Line Pathway 1

1 I

l REVISION NO.: 2 1

4 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO.19 l Table 8. GE LPZ Whole Body Dose from MSIV Leaka8e 0-2 br Dose, res 0-30 day D=. rem Nuclide Drain Line Turbine Total Drain Line Turbine Total Kr-83m 4.873E-09 0.000E+00 4.873E-09 1.266E-07 0.000E400 1.266E-07 Kr-85 6.578E-10 0.000E+00 6.578E 4.199E-05 6.969E-10 4.199E-05 .i Kr-85m 7.832E-07 0.000E+00 7.832E-07 9.648E-05 7.976E-34 9.648E-05 Kr 4.494E-06 0.000E+00 4.494E-06 5.712E-05 {

0.000E+00 5.712E-05 Kr-88 2.377E-05 0.000E+00 2.377E-05 1.314E-03 1.401E-45 1.314E-03 Kr-89 8.554E-11 0.000E400 8.554E-11 8.554E-11 0.000E+00 8.554E-11 Xe-131m 3.315E-09 0.000E+00 3.315E-09 8.720E-05 7.438E-10 8.720E-05 Xe-133 2.399E-06 0.000E+00 2.399E-06 2.836E-02 7.624E-08 2.836E-02 Xe-133m 5.181E-08 0.000E+00 5.181E-08 2.262E-04 1.831E-11 2.262E-04 Xe-135 1.506E-06 0.000E+00 1.506E-06 6.061E-04 4.176E-21 6.061E-04 Xe-135m 9.140E-08 0.000E+00 9.140E-08 1.159E-07 0.000E+00 1.159E-07 Xe-137 7.622E-11 0.000E+00 7.622E-11 7.622E-11 0.000E+00 7.622E-11

. Xe-138 5.987E-07 0.000E400 5.987E-07 'i.133E-07 0.000E+00 7.133E-07 Total 3.370E-05 0.000E+00 3.370E-05 3.079E-02 7.770E-08 3.079E-02 9

l REVISION NO.: 2 l

I COMMONWEALTH EDISON COMPANY l

1 l CALCULATION NO. : L-001166 PROJECT NO.10346 002 PAGE NO. 20 l I l

Figure 1. Diagram of Control Room HVAC with Minimum Flows and Maximum inleakage i

g1 = 55.2 cfm '

f1 = 3544.8 cfm . '

Intake Filter 2250 cfm E1 = .95  : VE  ;

l 1

1350 cfm g3 = 7 cfm f; g2 = 1200 cfm

/  !

" u Charcoal Filter y

i l' E2= 7 i l .;

l B = 900 cfm t _ _ _ _ _ _ _ _ _ _ _ _ _ _ ;l f2 = 15443 cfm Recire Filter ,

2557 dm R = 18000 cfm

' Control ,

Rum '

l l l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L.001166 PROJECT NO.10346@2 PAGE NO. 21 l Figure 2. Diagram of Aux Electric Equipment Room HVAC with Minimum Flows and Maximum Inleakage g1 = 55.2 cfm fi = 3544.8 cfm . Intake Filter 1350 cfm E1 = .95 ,g 1

2250 cfm g3 = 6 cfm

= 1600 cfm

" " Charcoal Filter i: E2 = .7 W l B = 700 cfm t _ _ _ _ _ _ _ _ _ _ _ _ _ _ ;j f2 = 10144 cfm Recirc Filter 1928 cfm j

5072cfm

/ R = 14000 cfm Unit 1 Aux Electric ,

Equipment Room ' "

t 5072 cfm 1 Unit 2 Aux Electric ,

Equipment Room '

\

N 1928 cfm i

l REVISION NO.: 2

COMMONWEALTH EDISON COMPANY . l l CALCUI ATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 22 l

5. REFERENCES i

1.

" Radioactive Release Analysis Source Term Values," Letter.No. JHR:%:188 from J. H.

Riddle, Siemens Power Corporation, to R. J. Chin, Comed, dated May 20,1996 l 2.

"GE Source Term Values," Letter No. WHC:96-018 from W. H. Hetzel, General Electric to R. J. Chin, Comed, dated August 4,1996 3.

NUREG-0800, Standard Review Plan, Section 6.5.5 " Pressure Suppression Pool as a Fission Product Cleanup System," Rev. O, USNRC December 1988 '

4.

EPA-520/1-88-020, Federal Guidance Report No. I1, " Limiting Values ofRadionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersio and Ingestion," USEPA,'1988 5.

NUREG-0861, Technical Specifications, La Salle County Station, Unit No.1, Docket No.

50-373, April 1982 6.

POSTDBA, LWR Power Plant Dose After DBA Code, S&L Program Number 03.7.287 - 2.0 7.

Regulatory Guide 1.3, " Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors," USNRC, Revision 2, June 1974 8.

"LaSalle 1-2 Dose Calculations in Accordance with the BWROG Radiological Dose Methodology," Letter OG96-104-09 from T. A. Green, GE, to Gerald Swihart, Commonwealth Edison, dated February 8,1996 9.

"LaSalle MSIV Leak Rate Computer Runs," Letter No. GENE BB-01920-011 from David P. Grim, GE, to G. Lahti, Comed, dated January 16,1998 10.

LaSalle County Station Final Safety Analysis Report, Commonwealth Edison Co through Amendment 64, May 1984 11.

NUREG-0800, Standard Review Plan, Section 15.6.5 Appendix B, " Radiological Consequences of a Design Basis Loss-of-Coolant Accident: Leakage from Engineer Safety Feature Components Outside Containment," Rev.1, USNRC July 1981 l REVISION NO.: 2 l

l

l. - .

\

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO. 10346-002 PAGE NO. 23 l

12. LaSalle County Station Procedure LAP-100-14, " Leak Reduction Program," Rev. 5, February 25,1995
13. Title 10, Code ofFederal Regulations, Part 50 - Domestic Licensing ofProduction and Utilization Facilities, Appendix A - General Design Criteria for Nuclear Power Plants, Criterion 19 - Control Room (GDC 19)' 4
14. NUREG-0800, Standard Review Plan, Section 6.4, " Control Room Habitability Systems," l Rev. 2, USNRC July 1981
15. Title 10, Code ofFederal Regulations, Part 100 - Reactor Site Criteria l
16. 1.aSalle County Station, Updated Final Safety Analysis Report, Commonwealth Edison

~

Company, Revision 11

17. "BWROG Report for Increasing MSIV Leakage Rate Limits and Elimination ofLeakage  !

Control Systems," General Electric Document NEDC 31858P, Revision 2

18. Sargent & Lundy Calculation 1-CT-2, " Control Room Doses from Inside Atmosphere after LOCA," Revision 1,2 and 3, LaSalle County Station - Units 1 & 2, Pr<.,i. No 7043-48
19. Regulatory Guide 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, USNRC October 1977
20. "LaSalle County Nuclear Power Station Units 1 and 2 Application for Amendment of .

Facility Operating Licenses NPF-11 and NPF-18, Appendix A, Technical Speci6 cations, l and Exemption to Appendix J of 10CFR50 Regarding Elimination ofMSIV Leakage Control System and Increased MSIV Leakage Limits," Gary G. Benes, Comed, to U.S.

Nuclear Regulatory Commission, letter dated February 9,1996 l

21. " Reactor Containment Liner Plate Sect's & Det's, Sheet 1," LaSalle County Station Unit 1 Drawing S-326, Rev. AA ,

i 22.

NUREG-0519, " Safety Evaluation Report related to the operation ofLaSalle County ,

Stations Units 1 and 2, Docket Nos. 50-373 and 50-374, Commonwealth Edison Company," USNRC, March 1981

23. NDIT No. LS-0570, " Control Room and Auxiliary Electric Equipment Room (AEER)

HVAC Systems Unfiltered Inleakages," Upgrade 1 l REVISION NO.: 2 l

i l

t COMMONWEALTH EDISON COMPANY l

l CALCULATION NO. : L-001166 PROJECT NO. 10346 002 PAGE NO. 24 l

l

24. " Auxiliary Building Mezzanine Floor Plan, "LaSalle County Station Unit 1 Drawing A-186, Rev. AN 25.

' " Auxiliary Building Mezzanine Floor Plan," LaSalle County Station Unit 2 Drawing A-187, Rev. AM 26.

" General Arrangement Section 'C-C'," LaSalle County Station Unit 1 & 2 Drawing M-15,Rev.E 27.

POSTDBA, A PWR Power Plant Dose After Design Basis Accident Code, S&L Program No. 09.8.085-1.0, October 12,1978 28.

K.G. Murphy and K. M. Campe, " Nuclear Power Plant Control Room Ventilation System Design for Meeting General Criterion 19," USNRC,13th AEC Air Cleaning Conference, August,1974

6. CAIEULATIONS In this calculation, the offsite whole body and thyroid doses are calculated., which are the sum of the contributions from containment leakage, MSIV leakage, and ECCS component leakage outside containment. In the control room and AEER, thyroid, whole body and beta skin doses are calculated.

6.1 POSTDBA Case Descriotions A total of six POSTDB A cases will be run to calculate the doses from containment and ECC leakage on the doses in the con' trol room, AEER and offsite. These cases are:

1. Control Room Dose, Contai.unent Leakage
2. AEER Dose, Containment Leakage
3. Offsite Dose, Containment Leakage 4.. Control Room Dose, ECCS Leakage
5. AEER Dose, ECCS Leakage
6. Offsite Dose, ECCS Leakage The containment leakage and ECCS leakage results will be added to the GE MSIV leakage results, after adjustment for the source term, to give the total dose in the control room.

l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAG 3NO. 25 I 6.2 Containment and ECCS T #ahae Pathways l 1

The purpose of this section is to develop the input data used for the PC version ofPOSTDBA.-

The input parameters for POSTDBA include the following: containment volumes, initial fractions, containment purge rates, control room ventilation system parameters (flow rates an fdter fractions and finite cloud correction factors. Each of these is discussed b cases. The variation in parameters and the resulting doses are summarized in Table 9. See Attachment A for the detailed description of the POSTDBA input file.

6.2.1 Containment Volumes '

For this calculation the PWR LOCA model is used in POSTDBA. This model can be appl LaSalle because there is no holdup in secondary containment. The fact that the PWR model is two compartment model has no effect on the results since no removal mechanisms, such a containment spray, are utilized The t.wo compa1ments are set equal to each other an one half the total containment volume:

Vi = V, = 229538+165100 3 2 = 197319 ft .

(1)

For the ECCS leakage, the volume of containment is taken as the sump volume, so Vi = V, = 128800 = 64400ft 5

2 (2) 6.2.2 Initial Species Fractions - Suppression Pool Scrubbing The initial species fractions for iodine are used to model the scrubbing by the suppress The fraction of the blowdown that bypasses the suppression pool is the ratio of the leaka to the total vent area. To calculate the leakage area, the following design limit from Technical Specification 3/4.6.2 is used:

A

< 0.03 (3)

Setting the geometric loss factor, k, to 3 (see assumption 2), the leakage area would 2 be 0.052 The total blowdown area is calculated by estimating the area of the entry for the 98 downcommers. Each downcommer 2 has a nominal inside diameter of 23.5 inches, which woul produce a total area of 295 ft However, each downcommer has a tophat installed that pro l REVISION NO.: 2 l

I COMMONWEALTH EDISON COMPANY .

l CALCULATION NO. : L401166 PROJECT NO.10346-002 PAGE NO. 26 l a smaller effective volume. The tophat leaves a gap of about 4-5/8 inch around the circumference of each downcommer. The total area is calculated as:

A, = 98 2 144

= 232 ft ,

(4)

The bypass fraction can now be calculated as B = ^' = 0.052 = 224E - 4 .

Ay B2 (5) l SRP 6.5.5 allows a decontamination factor (DF) of 10 for particulate and elemental iodine. To

! account for the bypass fraction, the SRP provides the following formulation for the effective  !

! decontamination factor.

D= DF =

10 1 + B(DF- 1)

= 9.98 (6) 1 + 224E- 4(10- 1) i Dividing the species fractions by this value produces initial species fractions that reflect the scrubbing by the suppression pool:

Elemental = .91/9.98 ~= 0.091182 Particulate = .05/9.98 = 0.005010

Since ECCS leakage is not subject to suppression pool scrubbing, the species fraction are set to
l. 0.91,0.05 and 0.04 for elemental, particulate and organic iodine. As noted above, only 10% of the activity leaking from the ECCS components becomes airborne. This is accounted for the in l core release fraction. Noting that the source term for ECCS component leakage is 50% of the core inventory, rather than 25% as shown in Table 1, the release fraction of set to 0.2, doubling the source term to make it equal to 50% of the core while accounting for a 10% partitioning of the leaked iodine.

6.2.3 Containment Purge Rates l

In this model the containment purge path is used rather than the leak rate because the purge path has a filter in it that can be used to simulate the SGTS filter. Therefore the leak rate is set to 0

[ and the purge rateis set to P = 394638ft' x 0.635% / day = 1.7402 cfm . (7) 100 x 24hr / day x 60 min //r l REVISION NO.: 2 l

l l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO. 27 l For the ECCS leakage component, an assumed value of 10 gallons per hour is used. Note that if the values for other leak rates are required, the results can by scaled by the ratio of the leak rates.

The purge rate that corresponds to this leak mte is P= OW 60 min //r x 7.48 gal /A* = 2.228E-2 cfm . (8) 6.2.4 Control Room Ventilation System Parameters The ventilation system model used in POSTDBA is shown in Figure 3. In addition to the control room volume, there are five inputs to the model:

hi = Stered makeup rate, '

gi = outside air unstered inleakage rate, f2 = recirculation rate (leaving the control room),

Eci = effective intake Ster fractional efficiency for iodines, and Ec2 = effective recirculation Ster fractional efficiency.

The Ster efficiencies can have separate values for elemental, particulate and organic species. The actual operating characterinics of the control room and AEER are different than the POSTDBA models, so the POSTDBA parameters will be rewritten in terms of the following system parameters, which are shown in Figures 1 and 2.

fi - Stered outside airintake rate, Ei ~= intake filter fractional efficiency for iodines,

'E 2 = recirculation filter fractional efficiency, gi = unstered outside air intake rate (Ster bypass and infiltration),

g2 j

= outside air infdtration into recirculation loop before recirculation filter, B = recirculation filter bypass, R = recirculation fan flow rate, ki = fraction ofintake flow reaching recirculation loop.

The unfiltered inleakage is the infiltration into the recirculation rate after the Ster. The makeup rate is the sum of all the filtered inflows, which includes the fraction of the intake rate that reaches the control room and the infiltration into the recirculation loop before the Ster:

h, = (f, + gi)k, + g, . (9)

For the control room the makeup rate is

- l REVISION NO.: 2 l

I COMMONWEALTH EDISON COMPANY l

l CALCULATION NO. : L-001166 PROJECT NO.10346 002 PAGE NO. 28 l A_, = (3544.8 + 55.2)0375 + 1200 = 2550.

3 and for the AEER the makeup rate is

, A., = (3544.8 + 55.2)0.625 + 1600 = 3850. l The recirculation rate is determined by a flow balance across th'e~ recirculation filter:

/ = R - A -g3 ( 10 )

For the control room the recirculation rate is  !

f2., = 18000- 2550-7 = 15443.

and for the AEER the recirculation rate is fi., = 14000- 3850-6 = 10144.

The effective fiher efficiency for the recirculation filter is calculated by conserving the amount of ,

activity removed by the recirculation filter afier accounting for bypass:

l l

Ec2(A + f2)= E (A +f, -B) (l1) i or l B Ec2 = E, 1- .

( 12 )

< R ~ gy For the control room, the recirculation filter efficiency is r 900 Ec2.a = 0.7 ( 1- = 0.66499 18000 - 7s and for the AEER, the recirculation filter efficiency is 700

E c2. ,=0.7 1- = 0.66498 l s 14000 - 6s Note that these are nearly the same because the efficiency is dominated by the bypass fraction, l which is fixed at 5% for both filter units. I The effective filter efficiency for the makeup filter is calculated by conserving the amount of activity that actually reaches the recirculation filter from the outside

! l REVISION NO.: 2 l L

. l l 1 l

l  ;

COMMONWEALTH EDISON COMPANY l l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 29 l (1-E')hi =(1-E )fi ki +gi ik +g2 3 ( 13 )

or E'=. ( 14 )

h, This Ster eEciency applies to the makeup Ster prior to the initiation ofrecirculation filtration.

j For the control room, the Ster efficiency prior to recirculation is Ek = Om x2550 3M x OM = 0.49523 l

and for the AEER, the Ster esciency prior to recirculation is E6 = 0.625 x 3M x OSS = 0.54668 3850 __

l After the recirculation filter is aligned, the makeup filter efficiency adjusted to account for iodine removal in the recirculation filter:

l l

(1-E )=(1-Ec2)(1-E')

ci

( 15 ) )

or Eci = 1 -(1 - Ecs)(1 - E') . ( 16 )

i For the control room, the effective makeup filter efficiency after recirculation filtration is initiated is Eci .a, = 1 -(1 .66499)(1 .49523) =. 0.83090 I and for the AEER the effective makeup filter efficiency after recirculation Stration is initiated is Eci., = 1-(1.66498)(1.54668) = 0.84813 l l l

6.2.5 Finite Cloud Correction Factors l

' The control room finite cloud correction factor is calculated using the formula from Murphy-Campe [ Reference 28]:

GF = 1173, ( 17) l REVISION NO.: 2 l

COMMONWEALTH EDIS'ON COMPANY l CALCULATION NO. : L 001166 PROJECT NO. 10346-002 PAGE NO. 30 l where V is the control room or AEER volume. For the control room, the finite cloud correction factor is  !

I

= 22.7

. GF = (117472)*"

i The AEER is separated into two identical rooms, but for simplicity is modeled as a single volume.

The only results that could be affected by this one compawere model is the whole body dose, -

which is dependent on the size of the room. The approximate AEER dimensions are 49' x 42' x '

18' [ References 24,25 and 26], which produces a volume of37,044 A' for each AEER, or a total volume of 74,088 ft'. The finite cloud correction factor is calculated as GF= = 33.5

. (37044)*"

l 6.3 MSIV I **maa Pathway l

l The dose contribution to the control room and AEER from MSIV leakage is based on the GE results shown in Tables 4, 5 and 6, and the contribution to the offsite dose from MSIV leakage is based on the GE results in Tables 7 an 8.. These resuhs are scaled by the ratio of the initial source activity shown in Table I to obtain doses based on Siemens sources. The resuhs of the l

l scaling is shown in Table 10 for the offsite doses, Table 11 for the control room whole body and i beta skin doses, and Table 12 for the control room and AEER thyroid doses.

To account for the effect of delayed initiation of the recirculation filter, the total dose will actually be composed of two components. The first component is the dose for the initial time period during which there is no recirculation filter. This component will be scaled by the iodine j l protection factor (IPF) for the system without the recirculation filter. Using the terminology in '

) the diagram in Figure 3 and the approach from Murphy-Campe, d4 i

- = A,h,(1 - Eci)+ A,g, - Af, + Af,(1- Ec2)- A(h, + g,) ( 18 )

where A. = activity concentration (iodines) outside control room, and A = activity concentration (iodines) inside control room.

But IPF =b when N =0.0 so A dt l REVISION NO.: 2 l

f

. COMMONWEALTH EDISON COMPANY i

l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO. 31 l 97, g h, +f,Ee2 + g3 A 39 )

h,(1 - Ee,) + g, For the control room, theIPF is 777* _ 2550 + 15443 x 0.66499 +' ~729.269~

_12826 2550(1-0.83090)+ 7 438.21 and for the AEER, the IPFis jpg'" 3850 + 10144 x 0.66498 + 6_10602 _

3850(1-0.84813)+ 6 590.70 Prior to initiation of the recirculation filtration at four hours after the start of the accident, the recirculation filter efBeiency is zero, and the IPF is IPF' = b + I' h,(1 - E') + g3

('20 )

For the control room, the IPF prior to initiation of recirculation filtration is M0+7

= 1.976 IPF& = 2550(1 49523)+7 and for the AEER, the IPF prior to initiation ofrecirculation filtration is 50 + 6 IPF" = = 2.202 '

3850(1.54668)+ 6 The second component will be the dose for the remainder of the accident period (30 days) during which the recirculation filter is in use. The resulting dose for a delay time, t, prior to initiation of recirculation is D, = D.,, IPF +(D,,%-D,,,).

(21)

The application of this approach is discussed in the following section.

l REVISION NO.: 2 l

f COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 32 l

(

Table 9. POSTDBA Input Parameten and Results Summary Input Parameter Containment i enkage ECCS Leakage-and Results Type Control Room AEER Control Room AlmR Contamment Volumes, ft' 197319 197319 64400 .64400' l Species Fraction L ElementalIodine 0.091182 0.091182 0.91 0.91 l Particulate Iodine 0.005010 0.005010 0.05 0.05 I Organic lodme 0.04 0.04 0.04 0.04 Release Fraction 1.0 1.0 0.2 0.2

Containment Purge Rate, cfm 1.7402 1.7402 0.02228 0.02228 Makeup Rate, cfm 2550 3850 2550 3850 Recirculation Rate, cfm 15443 10144 15443 10144 l Recire Filter Efficiency 0.66499 0.66498 0.66499 0.66498 Makeup Filter Efficiency 0.49523 0.54668 0.49523 0.54668 before recirculation -

Makeup Filter Efficiency after 0.83090 0.84813 0.83090 0.84813 Recirculation Operator Thyroid Da=*; rem Thyroid 6.113E+0 5.547E+0 3.552E-1 3.195E-1 Whole Body 6.382E-2 5.392E-2 2.527E-3 2.131E-3 Beta Skin 7.445E-1 9.816E-1 2.935E-2 3.865E-2 Offsite Doses, rem EAB Thyroid 3.054E+1 1.759E+0 EAB Whole Body 3.425E+0 1.377E-1 LPZ Thyroid 2.242E+0 1.296E-1

^

LPZ Whole Body 5.424E-1 2.155E-2 l

l l

! l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY -

l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 33 l j Table 10. Offsite Doses Due to MSIV Leakage and Siemens Sources, swa LPZ Hyssid Dese Nuclide S.2 hr 0-30 day I-131 5.109E-04 1.034E401  ;

I-132 2.631E-06 8.293E-05 I I-133 1.435E-04 1.190E-01 1-134 2.920E-07 1.854E-06 I-135 1.934E-05 2.958E-03 Total 6.767E-04 1.047E+01 LPZ Whole Body Nuclide 0-2 hr 0-30 day -

Kr-83m 2.345E-09 6.092E-08 Kr-85 1.432E-09 9.142E-05 Kr-85m 6.760E-07 8.328E-05 Kr-87 3.774E-06 4.796E-05 Kr-88 2.085E-05 1.152E-03 Kr-89 7.379E-11 7.379E-11 Xe-131m 5.938E-09 1.562E-04 Xe-133 2.598E-06 3.071E-02 Xe-133m 3.302E-08 1.442E-04 Xe-135 2.480E-06 9.979E-04 Xe-135m 1.405E-07 1.781E-07 Xe-137 9.267E-11 9.267E-11 Xe-138 7.437E-07 8.861E-07 Total 3.130E-05 3.338E-02 l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 PAGE NO. 34 l

(

Table 11. Control Room Whole Body and Beta Skin Dose Due to MSIV Leakage and Siemens Sources, rem

)

Nuclide whole Body Beta Skin Kr-83m 1.095E-06 4.698E-09 Kr-85 1.147E-04 1.444E-01  !

Kr-85m 8.233E-05 2.999E-03 Kr-87 3.358E-05 8.090E-04 Kr-88 8.867E-04 2.377E-03 Kr-89 5.695E-12 4.788E-11 Xe-131m 8.199E-04 1.011E-02 Xe-133 6.504E-02 7.485E-01 Xe-133m l 9

1.755E-04 1.578E-02 1 Xe-135 1.038E-03 1.788E-02 Xe-135m 5.%3E-08 2.061E-07 Xe-137 9.708E-12 1.308E-09 Xe-138 2.609E-07 2.861E-06 Total 6.819E-02 9.429E-01 4 1

I l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATidN NO. : L-001166 PROJECT NO. 10346-002 PAGE NO. 35 l

(

Table 12. Control Room and AEER Doses Thyroid Due to MSIV I.makage and Siemens Sources, rem -

Costal Room i Nuclide 0-2 br 0-4 br 0-1 day 6-30 day  !

I-131 2.723E-04 3.525E-03 2.868E-01 1.331E+01 I-132 1.378E-06 1.172E-05 6.966E-05 6.991E-05 l I-133 7.593E-05 9.443E-04 5.139E-02 1.370E-01 1.494E-07 6.972E-07 l

_ I-134 1.219E-06 1.219E-06 I-135 1.020E-05 1.144E-04 2.777E-03

)

3.266E-03 i Total 3.599E-04 4.596E-03 3.410E-01 1.345E+01 AEER I-131 4.%8E-04 6.21lE-03 4.931E-01 2.281E+01 I-132 2.518E-06 2.070E-05 1.206E-04 1.210E-04 l I-133 1.386E-04 1.664E-03 8.837E-02 2.351E-01 1-134 2.742E-07 1.239E-06 2.142E-06 2.142E-06 I-135 1.864E-05 2.017E-04 4.781E-03 5.680E-03 Total 6.569E-04 8.098E-03 5.863E-01 2.305E+01  !

l l REVISION NO.: 2 l

1 1

l j

COMMONWEALTH EDISON COMPANY I l

l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 36 l Figure 3. Diagram of Control Room HVAC as Modeled in POSTDBA l

Recire Filter a

l g

is l w b .

h

_ intake Filter .

Control E, '

Room 9a l REVISION NO.; 2 l

i COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10346-002 - PAGE NO. 37 l

7.

SUMMARY

AND CONCLUSIONS l 7.1 Offsite Dose i The total thyroid and whole body doses are the EAB and LPZ are summarized on Table 13. The EAB dose due to MSIV leakage are the two hour LPZ doses from Table 10 scaled by the ratio of  !

  • the EAB x/Q to the LPZ x/Q (see Section 4.5). At the EAB the doses are dominated by containment leakage because only a small amount of the MSIV activity is released in the first two hours. For the LPZ, the MSIV leakage pathway is the dominant contributor to the thyroid dose since this release path is at ground level and is unfiltered. The impact ofMSIV leakage on the 1 whole body dose is much less because the shorter lived nobles decay before reaching the atmosphere. In all cases, the doses are a small fraction of the 10CFR100 limits 7.2 Control Room and AFFR Danae Table 14 contains the post LOCA control room and AEER doses by leakage pathway. For the first four hours the contribution to the thyroid dose from the MSIV leakage pathway has been scaled up by the ratio of the IPF's as described in Section 6. After this -= Hag, this component is less than 0.5% of the total thyroid dose, so any uncertainties in the IPF scaling will not have a noticeable affect on the results.

The whole body and skin doses are a small fraction of the GDC 19 limits The thyroid doses, however, are closer to the 30 rem limit (19.92 rem in the control room and 28.97 rem in the AEER). The thyroid doses are dominated by the MSIV leakage, which is continuous over the course of the accident and is at ground level so that it contributes to the dose over the duration of the accident.

.7.3 Comoarison With Other A ,cidents There are two additional accidents, analyzed in the UFSAR, that produce significant releases of iodine and would therefore produce signi6 cant doses in the control room and AEER. (The offsite consequences of these accidents are already addressed in the UFSAR.) The purpose of this section is to Mustrate that the LOCA bounds these other accidents for control room and AEE doses.

The first accident is the Main Steam Line Break (MSLB), which is addressed in.Section 15.6.4 of the UFSAR. Wnh a primary coolant concentration of approximately 0.1 pCi/gm ofI-131 equivalent activity, the MSLB results in the release of slightly less than 4 Ci ofI-131 equivalent activity. Since the Technical Specification limit for I-131 equivalent primary coolant activity is 4 pCi/gm I-131 equivalent, the activity released following the MSLB under these conditions would l REVISION NO.: 2 l ,

I i

l

COMMONWEALTH EDISON COMPANY l l CALCULATION NO. : L-001166 PROJECT NO. 10346-002 PAGE NO. 38 l be approximately 160 Ci I-131 equivalent. To estimate the impact of the MSLB on the control room, the containment lealage results for the LOCA will be used. Containment leakage is a short tenn (30 minute) ground level release similar to what would be expected following a MSLB.

From the POSTDBA computer output, 91 Ci ofl-131 is released during the first 30 minutes

' following a LOCA. This release results in a total 30 day thyroid dose of 4.6 rem in the control H room and 4.1 rem in the AEER. Scaling by total activity released, the expected thyroid dose due '

to the MSLB is 8.1 rem in the control room and 7.2 rem in the AEER. These are more than a '  !

factor of two less than the LOCA doses. l i

The other accident that has significant releases ofiodine is the Control Rod Drop Accident, which l

. is described in Section 15.4.9 ofthe UFSAR. This accident involves cladding failure, and the activity is transferred to the condenser where h is released to the environment. The rod drop results in 140 Ci ofI-131 released to the environment over 30 days, with more than 98% released after four hours. This is similar to the MSIV release pathway. Following a LOCA,'a total of  ;

43,000 Ci ofI-131 is released through this pathway, r-hing in a thyroid dose of 14 rem in the '

control room'and 24 rem in the AEER. Based on a comparison ofthe activity released, the control room and AEER thyroid doses followmg a rod drop accident will be less than 1 rem and therefore bounded by the LOCA.

+

+

l REVISION NO.: 2 1

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10346-002 PAGE NO. 39 l Table 13. Total Post IACA OKsite Doses with Siemens Soun:e, rem Pathway Thymid Whole Body (300 rem limit) (25 rem Limit)

EAB MSWIeakage 3.137E-02 1.45IE-03 Containment 3.054EMI 3.425E+00 ECCS Leakage 1.759E+00 1.377E-01 Total 3.233E+01 3.564E+00 LPZ MSNL=kay 1.047E+01 3.338E-02 Containment 2.242E+00 5.424E-01 ECCSImakap 1.296E-01 2.155E-2 '

Total 1.284E+01 5.973E-01 Table 14. Total Post LOCA Control Room and AEER Doses with Siemens Source, rem Pathway Thymid Whole Body Beta Skin (30 rem limit) (5 rem Limit) (30 rem Limit)

Control Room 0-4 hr MSN Leakage 6.808E-02 30 day MSN Leakage 1.345E+01 6.819E-02 9.429E-01 Containment 6.113E+00 6.382E-02 7.445E-01 ECCS Laakage 3.552E-01 2.527E-03 2.935E-02 Total 1.992E+01 1.345E-01 1.717E+00 AEER 0-4 hr MSN Leakage 6.600E-02 30 day MSN Leakage 2.304E401 6.819E-02 9.429E-01 Containment 5.547E+00 5.392E-02 9.816E 01 ECCS Lakage 3.195E-01 2.131E-03 3.865E-02 Total 2.897E+01 1.242E-01 1.963E+00 l REVISION NO.: 2 l

i COMMONWEALTH EDISON COMPANY f l CALCULATION NO. : L-001166 PROJECT NO. 10346-002 PAGE NO. 40 l ATTACHMENTS:

A. POSTDBA ComputerInput(7 pages)

B. POSTDBA Computer Output Micro 6che (1 page)

(Fm' alPage) i k

l l REVISION NO.: 2

\

l COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10135-013 PAGE NO. A- 1 l Attachment A. POSTDBA ComputerInput This attachment contains the detailed input parameter descriptions for POSTDBA. In general, each portion of the input data will be described for the first case, the control room dose,.and then the changes identified for subsequent cases.

POSTDBA Control Paramatars The input file for one computer run starts with three lines naming the output file or printer and giving printer control parameters. For this calculation the output will appear on file L1166-2.OUT, so the first line contains:

L1166-2.OUT Since a printer is not used, the next two lines are left blank. Line types 4 and 5 contain the case title, JITLE:

L-001166 R2, LSCS Control Room Dose, Containment Leakage Min makeup, min recire 9 4 hr, 1200 cfm inikg Each case has a unique title similar to the descriptions shown in Section 6.

Line type 6 contains the following control parameter:

IACC = 1 Pressurized Water Reactor Loss of Coolant Accident'(LaSalle Modeled as PWR Containment)

Line type 7 contains the following control parameters:

ITIME =

IoCC =

8 2

No. of time intervals.

ICl = 0 Apply occupancy factors after dose calculation Don't calculate containment finite cloud corrections IC2 = 0 Don't calculate control room finite cloud corrections MET = 0 INL =

Don't read meteorological data 0 Effective wind speeds will be read in IPAG1 = 0 IPAG2 =

Don' t . output nuclide page type 1 1

output nuclide page type 2 including control room doses IPAG3 = 0 JPAG1 =

Don' t output nuclide page type 3 0 Don't output totals page type 1 JPAG2 = 1 output totals page type 2 including control room doses JPAG3 = 0 Don' t output totals page type 3 l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L 001166 PROJECT NO.10135-013 PAGE NO. A- 2 l l JPAG4 = 0 Don't output totals page type 4 ISoR = 0 No additional sources These parameters are the same for all control room and AEER cases For the offsite cases, the control room output parameters (IPAGE2 and JPAGE2) are turned off and the remaining output

' parameters (IPAGEl, IPAGE3, JPAGEl, JPAGE3 and JPAGE4) are turned on. The combination of a control room and offsite case for each pathway provides a cornprehensive set of i

output.

POSTDBA Constant Data - Suncression Pool Scrubbino Line type 8 contains the following data:

I 1

TDECAY = 0.0 Radioactivity decay time before accident V1 =

1.97319E+5 Containment volume 1 (f t') ,

V2 =

1.97319E+5 Containment volume 2 (f t') ,

AREA = 5.6218E+4 ,

Containment projected area ( f t') , l FI (1) = .091182 Initial iodine elemental species fraction, FI (2) = .005010 I Initial lodine particulate species fraction, FI (3) = .04 Initial iodine organic species fraction, For the ECCS leakage pathway, the volumes are changed to 64400 and the species fractions for elemental and particulate are changed to 0.91 and 0.05, respectively.

Line type 9 contains the following data for all cases-DCON(1) = 0.0 Elemental iodine spray decontamination factor DCON(2) = 0.0 Particulate iodine DF will not affect spray removal DCoN (3) = 0.0 organic iodine DF will not affect spray removal PRED = 0.0 Particulate iodine spray removal rate DCoNP =

reduction factor at 0.0 Particulate iodine spray decontamination factor at which the spray removal rate FCoNT = 1.0 reduction factor will be applied, Fraction of initial source that is released to the unsprayed containment volume, Line type 11 contains the following data VC =

1.13545E+05 Control room free volume, ft' FSH = 1.0 Fraction of core inventory of iodine that is instantly released upon accident

! l REVISION NO.: 2 l

COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10135-013 PAGE NO. A- 3 l FsN = 1.0 Fraction of inventory of noble gases that is instantaneously released upon accident For the AEER cases the control room volume is changed to 74088 and for the ECCS leakage ~

case the release fraction for iodine (FSH) is changed to 0.2.

Time Denendent Data - Ventihtion Paramatars Each group of time dependent data has the same number oflines determined by the number of time steps. Each line contains data for a time period de6ned by the "Eading Time" on the previous line (ksd..g time) and the "Ending Time" on the current line; however, the begin time for the first line is zero hours. Data values given at the ending time of a time period are constant during the time po iod. An X entry means a data value equal to that immediately abov it. For all cases eight time steps were used. The first time steps ended at 5 minutes which is the end ofthe drawdown of the secondary containment and the start offiltration by the SGTS. The -

second time step is at 30 minutes, which is when the fumigation period ends. The next is at 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for control room and AEER doses, which is when recirculation filtration starts. The remaining time steps are 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />,16 hours,1 day,4 days and 30 days, which are used t atmospheric dispersion parameters and report doses at con, mient times. For the offsite do total of 11 time steps are used, with time steps added at I ri Ite, I hour and 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. The 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> time step is necessary because it is the end of the EAE releases. The other two times are added to be consistent with the time points at which releases to the environment are cu reported in the UFSAR.

i The first group of data is the containment leak rate, purge rate and purge filter efficiencies. Since the SGTS fiher efficiency is O for the first five minute draw down period and 99% thereafte type 12 contains the following data for all cases:

TIME PRIMARY PURGE PURGE PURGE INTERVAL PRIMARY CONT. ELEMENTAL PARTICULATE ORGANIC ENDING CONT. PURGE TIME, FILTER rILTER FILTER LEAK RATE, RATE, HOURS FRACTIONAL FRACTIONAL FRACTIONAL 1/HR CTH 0.08333 ErrICIENCY ErrICIENCY EFFICIENCY 0.0 1.1402 0.0 0.0 0.5 X 0.0 4.0 X 0.99 0.99 0.99 X X X 8.0 X X X X X 16.0 X X

  • X X X 24.0 X X X X X 96.0 X X X X X 720.0 X X X X X X X The second group of data contains the spray removal and plate out rates for containment. No removal mechanisms are modeled using these parameters, so they are set to 0. Since there ar removal mechanisms in either volume, the mixing rate is arbitraIy and is set to 100,000 cfm.

Therefore, line type 13 contains the following data for all cases l REVISION NO.: 2 l

r l

COMMONWEALTH EDISON COMPANY l l

l CALCULATION NO. : L-001166 PROJECT NO.10135 013 PAGE NO. A-4 l TIME . ELEMENTE PARTICUIATE ORGANIC VOL. 1 j

INTERVE SPRAY P. C. VOL. 2 SPRAY 8 PRAY VOLUMES ELEMENTAL ELEMENTAL 3

ENDING REMOVAL REMOVAL REMOVAL MIXING TIME, RATE, PLATE PIATE RATE, RATE, RATE, CUT RATE, CUT RATE, HOURS 1/HR 1/HR 1/HR CFM I

O.08333- 0.0 1/HR 1/HR '

0.0 0.0 1. 0+ 5 ' 0.0 0.0 0.5 X X X X X X 4.0 X X X X 1

X X 8.0 X X X l

X X X i 16.0 X X X X X

! 24.0 X X .

X X X X 96.0 X X X X X X 720.0 .X X l X X X X X l The next group of data are more removal rates and infonnation concerning the pipe penetration l

' area leak rate. Since none of this information is used, line type 14 contains the following data for all cases:

TIME VOL. 1 VOL.'2 PIPE PIPE ROCH PIPE ROOM INTERVAL IODINE PIPE ROOM IODINE PENETRATION ELEMENTAL PARTICUIATE ENDING REMOVAL ORGANIC REMOVE ROOM FILTER FILTER , FILTER i TIME, RATE, RATE, LEAKAGE FRACTIONAL HOURS 1/HR FRACTIONAL FRACTIONAL 1/HR FRACTION EFFICIENCY EFFICIENCY l 0.08333 0.0 0.0 EFFICIENCY 0.0 0.0 0.0 0.0

l. 0.5 X X X X X 4.0 X X

X X X X l 8.0 X X X X X X 16.0 X X X X X X 24.0 X X X X X X 96.0 X X X X X X 120.0 X X X X X X X The next group of data are the atmospheric dispersion parameters (x/Q') for the EAB and LPZ, and the breathing rates. Since the offsite doses are not reported for the control room and AEER cases, these values are set to zero. Therefore, the information shown below is for the offsite dose cases. Since this calculation only uses the purge pathway, line type 15 contains the following data for the offsite dose cases-TIME INTERVAL CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT CONTROL LEAXAGE LEAKAGE PURGE PURGE ENOING EAB OFF SITE ROOM LPZ EAB LPZ TIME, X/Q, BREATHING BREATHING X/Q, X/Q, X/Q, RATE, HOURS SEC/M**3 RATE, SEC/M**3 SEC/M**3 SEC/M**3 M**3/SEC 0.08333 0.0 M**3/SEC 0.0 6.80D-4 3.90D-5 3.47D-4 3.47D-4 0.5 X X 1.85D-4 2.0 2.300-5 X X X X 1.70D-5 6.000-6 X X

-8.0 X X 0.0 X X X 16.0 X X X 1.90D-6 24.0 X 1.75D-4 X X X X 96.0 X X X X X 6.10D-7 720.0 X 2.32D-4 X X X 1. 90D-7 X X The next group of data is used to describe ti e control room atmospheric dispersion and j

' ventilation system parameters. Since after the fumigation period no more containment leakage enters the control room, the effective wind speed is cut off at that time. Since POSTDBA will l REVISION NO.: 2 l

1 COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 - PROJECT NO.10135-013 PAGE NO. A- 5 l error offwith a windspeed of 0, the wind speed is set arbitrarily large to produce an essentially 0 X/Q'. Therefore, line type 16 contains the following data:

TIME 1 CONTAINMENT CONTAINMENT CONTROL CONTROL CONTROL INTERVAL I LEAKAGE PURGE CONTROL ROOM ROOM ROOM ENDING C. R. X/Q C. R. X/Q R004 MAKE-UP INFILTRATION RECIRCULATION TIME, SPEED, SPEED, OCCUPANCY ~ RATE, RATE, RATE, HOURS M/SEC M/SEC I1 TACTION CFM- CIM CIM 0.08333 1. 0 D+ 8 1.445 1.0 2550.0 7.000 0.0 0.5 X 1.445 X X X X 4.0 X 1.0D+8 X X X X 8.0 X X X X X 15443.0 16.0 X X X X X X 24.0 X X X X X X 96.0 X X 0.6 X X X 720.0 X X 0.4 X X X For the AEER cases, the makeup rate is changed to 3850, the infiltration rate is 6 and the recirculation rate is 10144.

The last group of time dependent data is the fiher efficiencies for the control room ventilation system. Therefore, line type 17 contains the following data:

TIME MAKE-UP MAKE-UP MAKE-UP PE. CIRC. RECIRC. RECIRC.

INTERVAL ELEMENTAL PARTICU1 ATE ORGANIC ELEMENTAL PARTICULATE ORGANIC ENDING FILTER FILTER FILTER FILTER FILTER TIME, FILTER FRACTIONAL FRACTIONAL FRACTIONAL FRACTIONAL FRACTIONAL HCURS FRACTIONAL EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY 0.08313 EFFICIENCY EFFICIENCY 0.49523 0.49523 0.49523 0.0 0.0 0.0 0.5 X X X X X X 4.0 X X X X X X 8.0 0.83089 0.83089 0.83089 0.66499 0.66499 0.66499 16.0 X X X X 24.0 X X X X X X 96.0 X X X X X X 720.0 X X X X X X X X For the AEER cases, the makeup futer effic:ency is 0.54668 initially and changes to 0.84813 at

~

four hours, and the recire filter efficiency is 0.66498. These filter efficiencies are not applicable to the offsite dose cases.

Source Terms and Nuclide Data The next set of data is the nuclide specific source data. Two cards are entered for each nuclide as determined on line type 23, which contains the following control parameters:

IRPT = 0 Read nuClide data on line type 24 through 30 as required NUC =0 Read nuClide basic parameters on line type 25 Line types 24 contains the following data for each isotope (Note: IRPT = 0 requires this):

IREVISION NO.: 2 l

I COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-d0' 1166 PROJECT NO. 10135-013 PAGE NO. A- 6 I ISO (I) Nuclide Acronym

! IPRN(I) 1 For Output of Nuclide Resulta-0 No Nuclide Results l AA0 (I) Core Inventory, C1, at Shutdown for this Nuclide FINC(I) Finite Cloud Ratio for the Control Room FINA(I) Finite Cloud Ratio for the Containment The parameters online type 25 are:

DIAM (I) Radiodecay Rate,hr" , for this Nuclide EG(I) Average Gamma Energy, Nev per Disintegration for this Nuclide EB(I) Average Electron (Including Beta) Energy, Nev per Disintegration, for this Nuclide DOS (I) Thyroid Inhalation Dose Correction Factor, Rem per Inhaled curie BOD (I) Ganna Whole Body Depth Dose Factor for this Nuclide l SEN (I) Electron (I'ncluding Beta) SKIN Depth Dose Factor for this  !

I Nuclide Line types 24 and 25 are listed below:

I-131 1 2.90D+7 22.9 1.0 l 3.593D-3 3.81D-1 1.91D-1 1.08D+6 1.0 1.0 i I-132 1 4.08D+7 22.9 1.0 3.035D-1 2.26D+0 4.90D-1 6.40D+3 1.0 I-133 1.0 1 5.18D+7 22.9 1.0 3.334D-2 6.08D-1 4.11D-1 1.80D+5 1.0 1-134 1.0 1 5.80D+7 22.9 1.0 7.920D-1 2.601D+0 6.21D-1 1.07D+3 1.0 1.0 I-135 1 4.50D+7 22.9 1.0 1.051D-1 1.557D+0 3.6BD-1 3.13D+4 1.0 1.0 KR-83M 1 5.22D+6 22.9 1.0 3.740D-1 2.450D-3 3.71D-2 0.000 3.920D-3 KR-85 1.0 1 2.27D+6 22.9 1.0 7.380D-6 2.210D-3 2.505D-1 0.0 9.360D-1 6.870D-1 KR-85M 1 2.01D+7 22.9 1.0 1.548D-1 1.580D-1 2.55D-1' O.0 9.510D-1 7.410D-1 KR-87 1 3.75D+7 22.9 1.0 5.472D-1 7.825D-1 1.324D+0 0.0 9.590D-1 9.450D-1 KR-88 1 5.55D+7 22.9 1.0 2.477D-1 1.934D+0 3.700D-1 0.0 KR-89 1 6.79D+7 9.670D-1 8.090D-1 22.9 1.0 1.318D+1 1.713D+0 1.352D-0 0.0 9.600D-1 9.5305 1 XE-31M 1 9.80D+5 22.9 1.0  !

2.408D-3 1.975D+0 1.422D-1 0. 0 5.870D-1 1.0 )

XE-133 1 2.07D+8 22.9

  • 1.0 )

l 5.470D-3 4.501D-2 1.352D-1 0.0 8.750D-1 2.910D-1 l XE-33M 1 5.08D+6 22.9 1.0 1

1.296D-2 4.123D-2 1.901D-1 0.0 7.680D-1 1.0 XE-135 1 4.07D+7 22.9 1.0

~

7.560D-2 2.471D-1 3.161D-1 0.0 9.4300-1 7.560D-1 XE-35M 1 5.54D+7 22.9 1.0 {'

1 l REVISION NO.: 2  !

l j 1

i l

L I

l i

COMMONWEALTH EDISON COMPANY l l CALCULATION NO. : L 001166 PROJECT NO. 10135-013 PAGE NO. A- 7 l l 2.718D+0 4.317D-1 9. 500D-2 0.0 9.290D-1 1.0 XE-137 1 2.04D+8 22.9 1.0 1.084D+1 1.968D-1 1.642D+0 0.0 9.400D-1 9.610D-1 XE-138 1 1.98D+8 22.9 1.0 2.930D+0 1.096D+0 6.765D-1 0.0 9.590D-1 '8.690D-1 l

1 For the AEER cases, this information is reentered with the finite cloud ratio set to 33.5. For the l offsite dose cases, it is not necessary to enter this data since the source data from the previous l AEER case is used. l l

Line type 26 contains the following data:

END l

The six cases are stacked in a single file, and the input and output files are in the microfiche at l Attachment B. '

l (FinalPage)

I 1

i 1

)

I l REVISION NO.: 2 l

i COMMONWEALTH EDISON COMPANY l CALCULATION NO. : L-001166 PROJECT NO.10135-013 PAGE NO. B- 1 l l

Attachment B. POSTDBA Computer Output Microfiche Attached to this calculation are microfiche for the POSTDBA computer run, a total ofI micro 6che sheet 1. The eye-readable label for each micro 6che is listed below.

l

! l CALC # I 001166, Rev 2, LCS CR, AEER and Offsite LOCA Dose i

PosTDBA20 version 2.0 -

sargent & Lundy Program No. 03.7.287-2.0 Deer 0A6450 on Pc2559 Nonday, February 16, 1998 Times 10:37:11 controlled Files:

Drive V a SNLi\SYs3: \

Detailed list of controlled files omitted at user request.

and of controlled File Infomation scope I

l (Final Page) l REVISION NO.: 2 l

]

9 6 GE NuclearEnergy Generst eccmc Camww Ewnw.n3 SM:L<ense:c Consumno Sevces

??S Cw.nerMenue SanJane CA GE:;5 GENE B13-01920-011 January 16,1998 cc: GE J. Post S. Wang H. Careway Mr. G. Lahti LaSalle County Nuclear Station 2601 North 21st Road Mars illes, Illinois 61341 Str.< JECT: LaSalle MSIV Leak Rate Computer Runs

REFERENCES:

1) LaSalle Small Job Work Authorization Form - LS-9801
2) DRF B13 01920-011 l

Dear Mr. Lahti,

l

{

i Attached is the GE response to Comed's request regarding the subject topic. This response i is provided in accordance with the referenced Small Job Work Authorization Form. j Please feel free to contact me if you have any questions or comments regarding this transmittal.

Respectfully, h

David P. Grim I Technical Account Manager (408)925-3218 l l

The results ofthis evaluation have been independently verifledandare containedin the referencedDRF. -

l

\

l I

l  !

l  !

i l

.1

. - DRFB13-01920-011 Summary ,

l. In 1995 a series of calculations were made under the auspices of the BWRO L Leakage Committee for the LaSalle station (this was part of a larg utilities) to determine the dose contribution to the control room opera basis accident conditions. These calculations were reported in GE letter O (DRF A00-04146) and form the basis for this additional sensitivity study. La requested two additional cases (see Appendix A) be run for the organic iodine thefollowing the dose table.contribution with modifications made to the control room mo

(

1995 Case Inputs Filtered Makeup 2,117 8 ft / min Emciency 0.999 m 3/sec 90.4 % 90.4% .

i

- Inleakage 7 8 ft / min Recirculation 3.304E-03 m 8/sec {,

26,340 ft /2 min Rectre Efficiency 12.43 m 8/sec )

73.5 %

73.5% .

Volume 117,454 ft3 l

3.326E+03 m2 L

Filtered Makeup Case 1 Sensitivity Study -

2,550 ft*/ min ,

Emciency 1.203 m 2/sec 83.9 %

Inleakage 83.9 %

7 ft*/ min 3.304E-03 m 2/sec Recirculation -15,443 ft*/ min Recire Emciency 7.29 m 2/sec 66.5 %  ;

66.5 %

Volume 117,454 ft2  !

3.326E+03 m2  !

i Filtered Makeup Case 2 Sensitivity Study l 3,850 fta/ min

! Efficiency 1.817 m8/sec 84.8 %

Inleakage 84.8 %

8 ft*/ min 2.832E 03 m 8/sec i

i Recirculation 10,144 ft*/ min Recirc Efficiency 4.79 m*/sec 66.5 % 66.5 %

Volume 74,088 ft2 '

2.098E+03 m3

! Introduction / Background i

The BWROG MSIV Leakage committee developed a method to calculate the do contribution from fission products leaking via the MSIVs to the environment and rooms acceptable to the NRC for analysis ofdesign basis accident conditions. This method was reported in Reference below. Following acceptance ofthis me NRC, GE undertook, under BWROG auspices, to analyze this leakage contrib number ofmember utilities of this committee to determine which utilities cou increased technical specification leakage The calculations e referr d t

.made in 1995 were part of this effort. o above as being c:UanalJe\ case 9801\resadadoc I

UlM8

f L

DRFB13 '01920-011 i

Methods and Assumptions l

The archival files from the 1995 calculation were restored including t of the MSIVLEAK following computer code which is stored with each series of c steps were followed: {

1.

The original requested files (CRORI A and CRRSI A), both inpu were restored and the cases rerun to instire the executable had not bj!

by a comparison of old and new output.' The output from this che Appendix B to this letter. (Note: {

2.

whereas the new output is designated "chk") input file is desig  !

The input files were modified by the values presented in " Summary"}

the cases rerun. The results are presented in Appendix C with theI designated by an extension of NC1 for case 1 and AER for caseI{

output files are NOT and AOT.

3.

In addition to the two sensitivity cases, the utility also asked for t releases to the environment for the two files. To produce this output 4 straight forward way (there are actually several ways to do this with l following modifications were made to each file: ~

3.1.

The run was set to an offsite run with the turbine building as the last compartment (the control room was deleted). This way the output of the code is without control room modification and represents an environmental release.

3.2.

The dose conversion factors were set to 1.0 with the exception of the average gamma energy which was set to 4.0. The formula in the code for the whole body is "0.25

  • DCF
  • Release" so that the resultant value DCF = 4 is the Release only.

3.3.

In the event the utility did not want the activity in curies, the dose conversion MBecquerrel. factor for Beta veas set to 3.7E4 to convert from c 3.4.

The meteorology and breathing factors were set to 1.0 The resultant output for Whole body and Thyroid would then become the integrated release in curies and for Beta the integrated release in M .

Additional output times were added at the utility request and are basic arbitrary. The run is presented in Appendix D.

Results and Conclusions 4

This calculation is a simple repetition without a sppcific analysis goal and th are no given direct conclusions in Appendixes C and D. to be drawn.' The resultant runs requested by th l

c:Uasauttane9801\resuladoc

-2 1/1 M 8 I

DRFB13 01920 0))

References:

Green, T.A., "BWROG Report for Increasing MSIV Leakage Rate Limits and Elimination of Leakage Control Systems", GE Report NEDC-31858!

III, DRF B21-00461, Sept 1993.

l I

l l

! c:%llevase980lksutagoe 3

1/IM8

DRFB13-01920-011 \

l Appendix A I LaSalle Request I

l l

l c:Ussallekase980)hsulu. doc 4 1/1488

.. __ ... .. . ., n . . ~w .e .. nu.w.* r.ve- ,

Saturday June 24.'1995 09:24 s c:\less11s\rv6_961erarla.oti Page: 71 1 I $ $ 15K S Total loput__ file = croria.lc1 u m erus.

5C 15un w 02h I-I-

cap 1 at 0: :00.00 inst :,.00 drb1 .000 cap 1 at .00 inst :. 00 dr61 M 1 dfctr 0 l- cs ; at .00 inst 1.00 M 1 cfetr 0

,- cup : at 0:

.00 inst 1.00

  1. 1 ofetr 0 cap :, at 0: .00 inst 1.00 drel

.000 ff I cfctr 0 PUWT

.000 ff I ofetr 0 co w 1 at 0 leek :00:00.00 rate 1 leak filtr .

IUr'er'*e*te : r.

Volume

2. =

1.157E44 tJe'e.turer r . NM

  • Pipe compartment # !!

inst rat us p outsi radius .0 aq R g'.3 Q '

mess / unit length . heat insul whi.y 2.250E-02 split etor ..

Pipe coopertment 9 3 .5 insi 2.46 outside radius EpradiusPe 1:5 mass / unit 'ength 5.04 Teal'tB hast

~

2.250E-02 split . 17 coup 4 insul t 0 esk :M:

^I rate ctor 1.00 31 leak f1 tr .000 s rate , purge fi tr .

rc rete PresSurt 1.

rectre filtr .

ta g erature 1 volume .97 coup 5 pt 0:00:00.

Ietk rete . leek filtr .

purge rate 1. 96 ft"tr i

a rectre rate .000 rc f1tr 2I7E+05 '

:00. Chiqu=

0:0s: . qu=

04 bethr= .47 -04 occup= 1.

1:  : que tretre . -04 accup= 1.

4:

00.

Drthr= occup= .6 qu= 4. -05 brtfir= 3.

occg = .4.

O' N T D E S Asurday Jesse 24.1995 09:24 c:\lasa11s\rv6,,95\croria.otl Page: 71

,ygg ap

  • gg 17:14 MMN E191SES80PT U1 M3Ilt:IIS

sm w.. . . e-w.s u . .av4. AuscA4-2ey-cFgh JAN 09'98

' 16:14 N3.011'P.04 Satureay J oe 24.- 1995 09:24 c:\lasalle\rv6,_95\croria.cti Page:

, 72

~

~

Jilliii L

b.00 '

Vent filt intake . ntake Filt 90.4-gntt gCont olm 3b 0:14 .00 t votd Beta 33 -

1 to4at = 1.

-06 g .

-08 '

0:04: .00 nen1< > Wd

- 1 4) .g s:

. :D  : .

L: i -

toca - i -o7 l  : .

4.<10:00.00 d L.  !!' 07  ::749E g'.

t$ta =

ii. h 3kgJ.

'0:IM:00.00- tam y I 05

[

.. 646E sa t !i LEE.

4 itsy June 24. 1995 09:24 c:\lasalle\rv6_,95\eror3a.otl Page:. 72 N S '98 17815 312 599 7753 N .888 EEM *5Duci EftTSE68BPI 01 tC11tsis FTTStn d+-310 W0 tid set 9T AA. #- *"

l l

'~  ;

C

~

3 I=

c- 5 **?-? 22332 '

m  ;-

  • ===== *a

=.h

< 3: 44a  :::::

Q == 4 . ---

i

??? -

M.

m. -K*5 Ov  ::

at :: * ::-

3 cg g 2 ., 9~*"-

9999t v =e. g  :;:a  :  :::a agg 4 , ,

~e .J

.j:o. 1 j:o.:

% 2.222 -: n..

A 1.

t o " .

4 -[' g. .- - s" .f. ): ::::

---e  ::::  ::

1

=

s 8-:.

.i g 85 9**9

.13.5 .-

81 32 81 It .13.  ::: .

0 """""

.w

.... t.Avi hwa: " -

.4 1.E:"E.I 5.E:

3g:..

E  ::::"" =* :=

21:21 e =- E =

Q:s

*2

... : ""*"4 "***4

.. =.  ::::=

&&&4& ....: .:.

... 6 e.e. .-

90 *:

3 Si ****-

i

: .g 9. c,  ::.39.t?.-
  • j
g ""***

6..  ::: "jt--4"st--4 !!!

-::::: 23:2

3 .[ .  : . " 2138*!;%286**:.

. . &- ee..  ::::: e -

e: - :e 12.gI e e a .-

er e...

..--. ----- 3- I4 p: .I  : :s :s s : 1:

m .-s .. 44 ggggt

..-s. a . . : -- .. ::: -- . ... .:t:.32. . . :., t.

0.

m .O ~ i.

s  : . -- .. ---..

w .= 4

.::::: .::::: .a. .a

. . 33 ......

g---- .....

't3 9 E i S d

= ;; :r :8 -' - -

8.0 l

m. u a,

.a v "

y .....

~ *

  • T ???

tutta K4 h 5" ::

O ?. ..  :::::

g. --

U *. g.  ???.? . . . . . . . .

~ 1.  :". ..... 4  :::  :: 9

= ,.-

g..  :::::

-:5

=

d:"  : -  : -  ::8- 8:

C4 - 22222 -: -

e--: ---

m .: .....

e-e ,

44444 ...

1 .i::: 1.t:e:  :.

i g~. ...

=

= i:

g. -

- ~~~~-

=

4- .- .

::=

mR . y 1.: 3 %x :. :s .1 a. -1 . .:

r .

-. ,p

E!g ,p R 12 EEES:-  : p: ::  ::  !  ! ,g:g miE- 3 L!
:: ::  ::::: = =

~

]:Ix iiiii  ::::: "2 ::::i :

.e c s-

-...=

2m,

: : : =..

= = = : s " ".

.- a - . a ..

in-

.=". I , " "..: "3 e5

- I n .4 a . .

. eses

.g g:::. -1:c--: -1:c--as:::

e::E  ::::: -

3 4:::

= i is siksi  :::::
ig*

ce p  :-  ::::: ----

.!:igja"j:.ja"1gs:::.n 3

3.g s 5.;::::s ,:: -

smaltais: ::3 .:

y -  : si ...a; ggggg y g: j ..

t : t s : r. 3

[ 5 .

.l

= :n  : -

II =====  ::::=

. }

t 3 ;! . LB 3"*"?" g----- :7""??

g ---- .I . . g -

" .' .E S d 3 , . .

u

e Q .t.:.

r tN l-

.=

os.

. . . .I m

% . 8 8

~~t L t. ~ .~..

. 3. . . ...... .

.o t. . ...

i

.Q 2..3 . . - 2 .....

~ . . . 3 ........

. . t

a. g a a - .3

..a a ,. . ..

m

..... .E

.. .... .~. ... ... . .

g.. n. .. u.

g 3.. ..

g

..r .

a ...

. .- . I ,

...... s x

~~...

.... ..... 1..... ....

. .8 . ... .. . .

6666 --- - . - ---

... .n ..

. . ~. .

. . . . ..~. ... .. . . . .....

. e. ~n - .

. .... - ~ ~~

.. ... . o nn

.. V.o

.t

  • 2 E .

t33- . 3 En. . ..

.3.. $.3 3...... ...

t

.l.

g.

'J

. . .3

. . ..5. .

w 1

i

.i ,

.. . k

.. j e . .. .

.... - . t i

. 8 3 -

. .... ~

. ~. I

. .... .2

.ee ...

...... .e.e

s. s. s. s. .. ..

. .s.-...s. .s .s .s . .s.s.s s s .s. s .s .s s s. s s .s s. . s. s s i

3 a .9 9 .*. .

  • I. .!.l *. 2 .* a... 9
  • 9 .- 2 9. .a a ... a 9 9 2..--. a. a
  • 9 ". 9 3....

a.a * *

  • 9 u..

X

~ .Xu8 1

. a n. n a. ~~

" I'w .. . ......... . ..e ..... . n......

. . e. .

. ..~~. ..

'. ' . e. s. isssses ess...

.. .E

.. ...~ g ..

t. s . s. ...

s

.e . i .s w-s g......

..s .s s

. s.

g .....

. gw. ....esss.

> , . --a

.. .a...

I i

i 1 .J. . ...t . .... . . . . . .n.. . . . ..... ....

AAEa

.u.r .e e . m.e..

B e...o. . e

e. .i -

QQQQ wgg A.p.... .. .M. ... . . 8.e. e. .t P.

e.t .

a j

3 -1 m .M . M. . *.

.t p . . M

. M .e M M l g .. 3 3. .. .E a

.It.i.c

.. . t 333.. . . . . .

i

. g g. . i

... ... .E. . .

. g. g . $

. = . =. $.

. =* ..=

t el .-

O

. .=

.4 me .

.5 . . p

.-----.g

.a 4 m..e.e

.e 4

.i

. w g

.- . . 6t..

.----- ..O . -----. ..

.m...

.t..

J i

1 j

e h

I I

I.

i i

I e,

i- 5 I t:

i; . ~

t w  :

N * ..............

D E ww===w.w.wwwww

"=~ .M cttttttttttttt

.Ci .. a. 44444444444444 y eg g .... .. .. ..

- 3. a  ::::::::: ::: . . .-

3 . ~ ...-~~~ ~~~ ~

?*

4

c. E-
  • ???*??-??????*

2 Q m g .$

3 4

4a 6 444 4 a.6444 4- .g.. ..g.

IIfI ,

E O

$I 6: .

3E3II333I33333 IItY ha gg I k x  ?  ::  :::  ;;;; ..

! d 83 "

=  :: = aaaa ta l

m .g a =g::::::::::::- g: , s: s

.: .... s3 8~, e t , g, g mza tt a E I=

u

-I'35

"- -I' "

5 **jI 2.g!"s. jut * :::::442mmasas  :?

.a : g = = = .g..

l ~~

3:

i

4:::::::4 a*!a* :s s"I*4* i  ::s iiii
2 U 1- la g a sa6;6666666666
  • -?"?"*-?*****

6...

6...

aaa6 S.

5  : ..

~~-- ::: .e  ::

.. .s. .a.s.a .
g. .

4.

g vj *

, g.g : _l , g.j g _1 oj 6666  :. -

gg 5 ,--, , , , , , , , , ,

,, .g :!

t: ar:s t a.:

?,?. g ?-? ::

3 -! ttttttttttttt!

? ?. g?

I F5  : - . ..............  :: * .::** =

m:::::" ::::" : g 46a6 "nea6 - 6

".gl4

% m i 3 .. L E* p4 g aaaaaaaaaaaaaa 5 u j  ;

. g g -

gs .$ i . . i e%

3 ..............

bh h h h W h h W h bh W h

~m ttuttttutttutt 4 44444444444444 r

p; j j .............. j W. -
::::::::::::: a;*? k g .g.

3C 6. m ~.

m

...~.~.~.~.~.~.~.~.~.~.

======== ===== LL BB $, ..

V, *

  • "::: 6
  • 8g gga ~ -........

? a - a - ? .~ ~. ....

ata- .geg ggg. gg c a: ;2;222222222:s 8 8: - t:  :::: j s 35 .

.i 44444444444 ,,, . .,, isis EE .

Q .- - 22 22 2  ;;;; ..

8- -

=  :::: 4a44 s: -

+

g gi  :::::::::::

.ps

. s.e. s azzz 3 1

g. = ette i m t.
:::::::::::::: 3 I'35 "- *I' " *5 ****

22* 2 22222:22  ;  : ....  : *.  !

$i*!

-: i  ::::::::::::::

at!a" si "* ig=a* i sisi ::::

j J "Ts - I  : - - " 44a6 l s 8a 646a6666666666- *: g J a  ??tatttettttt? 6... 4 1. . . . . . j

".g t m g 35  :

I. -

-**---aa**  ::a  ? :: 9 :: &h&&

i

.............. 6666 og O 8:  : 21 " * *************


 :---El6:---:3l 6

cg :. :g Ire -

1 "!

3 ttttttttttttti 5:1:18

'i:18

    • :gi

- I i_---. :  : t ::.

Es s.

um .: m :::::::::::::

e g

I:::: le es:6
  • sea 6 3.

i 3: . g 18 *a p 24aaaaaaaaaaaaa B o g

m. g  :

g: .$ .  : s i u 1

t' e

=

[ , a

~2, " ' t? 4' i

N: -Q

' l t

l

~

+

l v

Q s Ses s-I m

94

'I g .= " .*

1.:.in;

.@ g .=?

t l

. in .

is-

-: :- .:'.: .2 .:.

[$

-: 38 3$ 3$ 3$

-- g:a.g: . a g:a g:a a

$ g h b h

. f:4 3: 3 :s 3 :s 3: 2:

e 3: 2:

I 3 9a 99- 9* f*

4 5. 5. Na 5-V"

  1. 5 .

k3 k3 N3' k3

& 5  :. &

\l N

i t

t

. 1 T.

5 i

l

. l 1

I -

.* 5  ;

l  : E S ,E :I' 3 3 22 a. at 22

[$

n9 Ei Is 35 3$

'M

- 5:. 59.. 5.9. ^. .5 %.

es

4 4 4 4
3 3 2 : 2 2

$ g "4 . y *08 g N'* g 00?

0

-28

:  :  : l i 3_ :. t: t='.. t:

=a 34 24 24 4 & a f

u i.

p Appendix C 1

DRFB13-01920-011 Appendix C Sensitivity Studies Case CROR1A.NOT MSIV Leakage Program Version 1.2a execution on LASALLE (1 NIT 1 MSIV \

CNTRL RM ORGI VIA DRAIN LINES LEAK SCEH Total RATE 9 4001-12-1998 Input file = CROR1A.NC1 CONTROL power = 3.458E+03 mode = Control Rooto ISOTCPE

I-131 I-132 9.977E-07 2.631E+04 .357 1.05 I

I-133 8.426E-05 3.845E+04 .776 2.95 2.960E-02 1.080E+06 l

I-134 9.257E-06 5.502E+04 .589 1.08 8.130E-02 6.440E+03 I-135 2.196E-04 6.056E+04 .917 2.94 7.640E-02 1.800E+05 2.924E-05 5.195E+04 1.13 .117 1.070E+03 1.29 RELEASE- 9.370E-02 3.130E+04 I-131 I-132 cmp 1 at 0:00:00.00 inst 1.00 cmp 1 at 0:00:00.00 inst 1.00 dral .000 I-133 cmp 1 at 0:00:00.00 inst 1.00 deb 1 .000 ff 1 dietr 0 1-134 .000 ft 1 ofetr 0 I-135 cap 1 at 0:00:00.00 inst 1.00 drbi ff I dietr 0 cmp 1 at 0:00:00.00 inst 1.00 drb1 .000 ff 1 dietr 0 PLANT debl .000 ff I dfctr 0 comp 1 at 0:00:00.00 leak rate 1.08 purge rate leak filtr .000

.635~ ~ purge filt

( recarc rate .000 100.

pressure 2.83 recirc filtr temperature

.000 volume 1.157E+04 225.

Pipe compartment # 2

, inside radius 30.3 insul thickness 7.62 outside radius 33.0

! number of lines pipe length 208.

4.00 inital temp mass / unit length 287. 550.

insul conducty 2.250E-02heat capacity split factor .117 Pipe compartment # 3 .998 inside radius 2.46 insul thickness 6.35 outside radius 3.02 c number of lines pipe length 363.

4.00 instal temp mass / unit length 5.04 550.

insul conducty 2.250E-02heat capacity .117 split factor comp 4 at 0:00:00.00 1.00 leak rate 3.51 purge rate leak filtr .000

.000 purge 111tr .000 recire rate .000 pressure 1.00 recire filtz .000 temperature volume 100.

comp 5 at 0:00:00.006.976E+03 leak . rate .000 leak i

- purge rate 1.000E+06 recire rate .000 purgefiltr .000 filtz .000 pressure 1.00 recire filtr temperature

.000 volume 2.917E+05 68.0 i

METEOROLOGY 0:00:00.00 Chiqu= 2.650E-04 brtht= 3.470E-04 occup=~1.

0:08:00.00 Chiqu= 1.560E-04 bethr= 3.470E-04 occup= 1.

1:00:00.00 Chiqu= 9.940E-05 brtht= 3.470E-04 occup= .6 4:00:00.00 Chiqu= 4.370E-05 brthr= 3.470E-04 occup= .4 OUTPUT TIMES 0:02:00.00 ,

0:04:00.00 i 1:00:00.00 i 30:00:00.00  !

i 1

I

! c:%aalle\can9801\ rendu. doc .

i 9

1/IM8

{ l L  !

m ,

i Appendix C i DRFB13-01920-011 i CONTROL ROOM 0:00:00.00 Vent filt intake 1.20 Intake rilt.Eff 83.9 Rectre Rate 7.29 4

Rectre Filt Eff 66.5 -

vent OR Untiltvolum Gamma Intk 3.300E-03 3.326E+03 Cont Room Volum 3.32EE+03  ;

0;02:00.00- Whole Body Thyroid Beta I-131 2.538E-09 I-132 2.102E-04 1.660E-08 1.301E-08 1.124E-06 I-133 8.334E-09 4.088E-08 I-134 6.978E-05 8.536E-08 1.074E-08 1.349E-07 I-135 1.431E-08 4.252E-08 total = 1.018E-05 8.786E-08  !

4.894E-08 2.915E-04 2.732E-07 0:04:00.00 Whole Body Thyroid 1-131 3.297E-06 Beta I-132 2.731E-03 2.157E-07 1.101E-07 9.563E-06 I-133 1.037E-07 3.479E-07  !

I-134 8.679E-04 1.062E-06 5.011E-08 6.294E-07 I-135 1.605E-01 1.983E-07 total = 1.142E-04 9.849E-07 4.579E-07 3.724E-03 2.808E-06 1:00:00.00 Whole Body Thyroid I-131 Beta 2.630E-06 2.178E-01 I-132 6.579E-07 1.720E-05 I-133 5.683E-05 2.068E-06 -

5.640E-06 4.723E-02 I-134 8.757E-08 5.777E-05 I-135 1.100E-06 3.466E-07 3.894E-06 2.771E-03 total = 1.291E-05 2.390E-05

,2.679E-01 1.013E-04 30:00:00.00 Whole Body Thyroid 1-131 Beta 7.104E-05 5.884E+00 4.647E-04 I-132 6.602E-07 I-133 5.703E-05 2.075E-06 1.504E-05 1.259E-01 1-134 8.757E-08 1.540E-04 I-135 1.100E-06 3.466E-07 4.631E-06 3.295E-03 total a 9.145E-05 2.842E-05 6.013E+00 6.496E-04 4

Case CRRS1A.NOT MSIV Leakage Program Version 1.2a execution on LASALLE UNIT ; MSIV 1-12-1998 at 09:41:26.09 CNTRL PM RESUSP VIA DRAIN LINES LEAK PATE 8 400 SCTH Total Input fileE CRRS1A.NC1 CONTROL power = 3.458E+03 mode a Control Room r

. ISOTOPE l - I-131 9.977E-07 2.631E+04 .357 1.05 2.960E-02 1.080E+06 RELEASE I-131 cmp 1 at 0:00:00.00 inst .000 I-131 cap 1 at 0:02:00.00 inst .000 drb1 1.147E-04 ff 1 dfetr 0 I-131 cup 1 at 0:08:00.00 inst .000 drb1 7.682E-04 ff 1 dietr 0 1-131 cmp 1 at 0:21:00.00 inst .000 drb1 4.797E-03 ff 1 dictr 0 I-131 cmp 1 at 1:00:00.00 inst .000 drb1 1.146E-02 ff 1 dfctr 0 I-131 cmp 1 at 1:16:00.00 inst .000 drbl 2.209E-02 ff 1 ofctr 0 I-131 cap 1 at 2:00:00.00 inst .000 drb1 3.411E-02 ft 1 dietr 0 1-131 cmp 1 at 2:16:00.00 inst .000 drb1 4.345E-02 ff I dfctr 0 I-131 cmp 1 at 4:00:00.00 inst .000 drb1 5.632E-02 ff I dietr 0 1-131 cap 1 at 6:00:00.00 inst .000 debl 6.410E-02 ft 1 dietr 0 I-131 cap 1 at 8:00:00.00 inst .000 drb1 6.104E-02 ff 1 dfctr 0 I-131 cap 1 at 11:00:00.00 inst .000 drb1 5.223E-02'ff 1 dfctr 0 2-131 cap 1 at 15:00:00.00 inst .000 drb1 3.985E-02 ft 1 dfctr 0 I-131 cap 1 at 23:00:00.00 inst .000 drb12.337E-02 f f i dfctr 0 i

debi 1.098E-02 ff 1 dfctr 0 c:Masaue\ case 9801\reashr. doe 10 1/l4/98 L

Appendix C DRFB13-01920-011

! i PLANT comp 1 at 0:00:00.00 leak rate 3.51 leak

{ purge rate .000 filtr. .000 t

purge filtz .000 recare rate .000 recare filtz .000 pressure 1.00 temperature volume 100.

l 6.976E+03 comp 2 at 0:00:00.00 leak rate .000 leak filtr .000 purge- rate 1.000E+06 purge filtr .000 {

recirc rate .000 recirc filtr .000 f pressure 1.00 temperature volume 68.0 {

2.917E+05 '

! METEOROLOGY l 1

0:00:00.00 Chiqu= 2.650E-04 brthr= 3.470E-04 occup= 1. l 0:08:00.00 Chiqu= 1.560E-04 brthr= 3.470E-04 occup= 1. 1 l 1:00:00.00 Chiqu= 9.940E-05 brthr= 3.470E-04 occup= .6 1 I 4:00:00.00 Chiqu= 4.370E-05 brthr= 3.470E-04 occup= .4 1 OUTPUT TIMES i

0:02:00.00 -t 0:04:00.00 1:00:00.00 30:00:00.00 CONTROL ROOM 0:00:00.00 Vent filt intakt 1.20 ,

l Recirc Rate 7.29 Intake Filt Eff 83.9 4 L

Recite Filt Eff 66.5 -

l Vent Untilt Intk CR Camuna Volum 3.300E-03 cont Room volum 3.326E+03 j 3.326E+03  !

1 0:02:00.00 Whole Body Thyroid l I-131 Beta t l

l 4.017E-11 3.327E-06 2.628E-10 0:04:00.00 Whole Body Thyroid I-131 Beta 4.018E-10 3.328E-05 2.629E-09 1:00:00.00 Whole Body Thyroid I-131 Beta 8.590E-08 7.115E-03 5.620E-07 30:00:00.00 Whole Body Thyroid Beta l I-131 5.499E-05 4.555E+00

3.597E-04 L

Case CROR1A.AOT MSIV Leakage Program Versien 1.2a execution on LASALLE UNIT 1 MSIV 1-12-1998 at 09:40:51.65 AEER RM ORGI VIA DRAIN LINES LEAR RATE 8 400 SCFH Total Input file = CRORIA.AER l CONTROL t

power = 3.458E+03 l mode = control Room s

ISOTOPE I-131 9.977E-07 2.631E+04 .357 I-132 1.05 - 2.960E-02 1.080E+06 8.426E-05 3.845E+04 .776 2.95 I-133 9.257E-06 5.502E+04 .589 8.130E-02 6.440E+03 I-134 1.08 7.640E-02 1.800E+05 2.196E-04 6.056E+04 .917 2.94 .117 I-135 2.924E-05 5.195E+04 1.13 1.070E+03 1.29 9.370E-02 3.130E+04 RELEASE I-131 1-132 cup 1 at 0:00:00.00 inst 1.00 deb 1 .000 cap 1 at 0:00:00.00 inst 1.00 drbi .000 ff 1 d!ctr 0 1-133 cap 1 at 0:00:00.00 inst 1.00 debl 22 1 dfctr 0 I-134 .000 cup 1 at 0:00:00.00 inst 1.00 .000 ff 1 dfctr 0 deb 1 ff 1 ofetr 0 c;%aane\ case 9801\re=J" dw Ii 1/OM8 l

l t.

Appendix C DRFB13-01920-011 I-139 cap 1 at 0:00:00.00 inst 1.00 drb1 .000 ff I dict: O PLANT comp -1 at 0:00:00.00 leak rate 1.08 leak filtr .000 purge rate .635 purge filtr 100.

rectre rate .000 rectre filtz .000

. pressure 2.83 temperature 225.

volume 1.157E+04 Pipe compartment # 2 inside radius 30.3 outside radius 33.0 insul thickness 7.62 pipe length 208.

number of lines 4.00 inital temp 550.

mass / unit length 287. heat capacity .117 insul conducty 2.250E-02 split factor .998 Pipe compartment # 3 inside radius 2.46 outside radius. 3.02

  • insul thickness 6.35 pipe length 353.

number of lines 4.00 inital temp 550.

mass / unit length 5.04 heat capacity .117 insul conducty 2.250E-02 split factor 1.00 comp 4 at 0:00:00.00 leak rate 3.51 leak filtr .000 purge rate -000 rurge filtz .000 recirc rate .000 . aire filtr .000 pressure 1.00 t v erature 100.

volume 6.976E+03 comp 5 at 0:00:00.00 leak rate .000 leak filt .000 purge rate 1.000E+06 purge filtz .000 -

recirc rate .000 recirc filtr .000 pressure 1.00 temperature 68.0 volume 2.917E+05 METEOROLOGY 0:00:00.00 Chiqu= 2.650E-04 brthr= 3.470E-04 occup= 1.

0:08:00.00 Chiqu= 1.560E-04 brthr= 3.470E-04 occup= 1.

1:00:00.00 Chiqua 9.940E-05 brthr= 3.470E-04 occup= .6 4:00:00.00 Chiqu= 4.370E-05 bethr= 3.470E occupa .4 OUTPUT TIMES 0:02:00.00 0:04:00.00 1:00:00.00 30:00:00.00 CONTROL ROOM 0:00:00.00 Vent filt intake 1.82 Intake rilt Eff 84.8 Recirc Rate 4.79 Rectre rilt Eff 66.5 Vent Untilt Intk 2.830E-03 Cont Room Volum 2.098E+03 CR Gasuna Volum 2.098E+03 0:02:00.00 whole Body Thyroid Seta I-131 3.931E-09 3.837E-04 3.031E-08 I-132 2.035E-08 2.054E-06 7.474E-08 I-133 1.299E-06 1.274E-04 1.558E-01 I-134 1.687E-08 2.475E-07 7.790E-08 I-135 2.240E-08 1.860E-05 1.605E-07 total = 7.654E-08 5.320E-04 4.993E-07 0:04:00.00 whole Body Thyroid seta

~

I-131 4.929E-08 4.812E-03 3.801E-07 I-132 1.673E-07 1.689E-05 6.146E-07 I-133 1.559E-07 1.529E-03 1.871E-06 I-134 7.624E-08 1.118E-06 3.524E-07 I-135 2.425E-07 2.013E-04 1.737E-06 total = 6.912E-07 6.561E-03 4.955E-06

' 00:00.00 whole Body Thyroid Beta I-131 3.835E-06 3.744E-01 2.957E-05 I-132 9.746E-07 9.841E-05 3.500E-06 c:Unselir\canr9801\reneludoc 12 1/IM8

i Appendix C DRFB13-01920-011 1-133 I-134 8.281E-06 8.122E-02 1.318E-07 9.935E-05 I-135 1.934E-06 6.094E-07 total =

5.747E-06 4.171E-03 1.897E-05 4.116E-05 4.605E-01 1.743E-04.

30:00:00.00 : Whole Body I-131 Thyroid Bet I-132 1.033E-04 1.008E+01 9.779E-07 7. 9e 2-133 9.874E-05 3.50-I-134 2.203E-05 2.161E-01 1.318E-07 2.64 4 I-135 1.934E-06 6.094. 07 total =

6.828E-06 5.668E-03 1.333E-04 4.890E-05 1.030E+01 1.114E-03 Case CRRS1A.AOT .

HSIV Leakage Program Version 1.2a execution on LASALLE UNIT 1 MSIV AEER RM RESUSP VIA DRAIN LINES ScrHLEAK Total RATE 9 4001-12-199 Input filea CRRS1A.AER CONTROL power = 3.458E+03 mode = Control Room ISOTOPE I-131 9.977E-07 2.631E+04 .357 1.05 RELEASE 2.960E-02 1.000E+06 ,

I-131 cap 1 at 0:00:00.00 inst .

l 1-131 .000 I-131 cmp 1 at 0:02:00.00 inst .000 drb1 1.147E-04 ff 1 dfct 0 {

I-131 cap 1 at 0:08:00.00 inst .000 drb1 7.682E-04 ff 1 dfctr 0 I-131 cap 1 at 0:21:00.00 inst .000 drb1 4.797E-03 ff I dfctr 0 I-131- cup cap 1 at 1:00:00.00 inst .000 debi 1.146E-02 ft 1 dfctr o I-131 1 at 1:16:00.00 inst .000 deb 1 2.209E-02 ff 1 dictr 0 I-131 cap 1 at 2:00:00.00 inst .000 drb1 3.411E-02 ff 1 dfctr 0 1-131 cap 1 at 2:16:00.00 inst .000 drbi 4.345E-02 ff 1 ofetr 0 I .31 cap 1 at 4:00:00.00 inst .000 drb1 5.632E-02 ft 1 dietr o i

1 I 4 31 cmp 1 at 6:00:00.00 inst .000 drb1 6.410E-02 ff 1 dfctr 0 i I-131 cap 1 at 8:00:00.00 inst .000 drb1 6.104E-02 !! I dfctr 0-1-131 cap 1 at 11:00:00.00 inst .000 debl 5.223E-02 ff 1 dfctr 0 I-131 cmp 1 at 15:00:00.00 inst .000 deb 1 3.985E-02 ff 1 otetr 0 cmp 1 at 23:00:00.00 inst .000 drb1 2.337E-02 ff 1 dfctr 0 PLANT debi 1.008E-02 ff 1 dietr 0 comp 1 at 0:00:00.00 leak rate 3.51 purge' rate leak flitr .000

.000 purge filtr .000 recarc rate .000 pressure 1.00 rectre filtz .000 volume temperature 100.

comp 2 at 0:00:00.006.976E+03 leak rate .000 purge rate leak filte .000 recire rate 1.000E+06

.000 purge filtr .000 pressure 1.00 recirc filtr .000 temperature volume 2.917E+05 68.0 NETEOROLOGY 0:00:00.00 Chiqu= 2.650E-04 bethr= 3.470E-04 occup= 1.

0:08:00.00 Chiqu= 9.940E-05 1:00:00.00 -Chiqu= 1.560E-04 brthra 3.470E-04 occup= 1.

brthr= 3.470E-04 occup= .6 4:00:00.00 Chiqu= 4.370E-05 bethr= 3.470E-04 occup= .4 OUTPUT TIMES 0:02:00.00 0:04:00.00 1:00:00.00 30:00:00.00 CONTROL ROOH 0:00:00.00 Vent filt intake 1.82 Recire Rate Intake'riit Eff 84.8 4.79 Recarc Filt Eff 66.5 c:Unaalir\casr980lVwahr4oc 13 1/14/98

i DRFB13-01920-011 CR Gesuna VolumVent 2.098E+03 untilt Inth 2.830E-03 Cont Room Volum 2.098t+03 0:02:00.00 Whole Body I-131 Thyroid. Beta 6.053E-11 5.909E-06 4.667E-10 0:04:00.00 Whole Body Thyroid 1-131 6.009E-10 Beta 5.866E-05 4.633E-09 1:00:00.00 whole Body' I-131 Thyroid Beta 1.255E-07 1.225E-02

- 9.616E-01 30100200.00 whole Body I-131 Thyroid Beta 1.995E-05 7.805E+00 6.165E-04 f

1

)

i d

l I

c:WasalJeneasr980Ndh y Ulm8 1

Appendix D DRFB13-01920-011 Appendix D Activity Release Case Note:

WHOLE BODY and THYROID are activity release in Curies BETA is equivalent value in MBq.

CASE CROR1A. DOT MSIV Leakage Program Version 1.2a execution on LASALLE UNIT 1 MSIV Release ORGI VIA DPAIN LINESSCnt LEAK TotalRATE 8 4001-12-1998 Input file = crorla.ds1  !

4 CONTROL power = 3.458E+03 mode = Offsite Evaluation ISOTCPE I-131

~

1-132 9.977E-07 2.631E+04 4.00 1.00 3.700E+04 1.00 I-133 8.426E-05 3.845E+04 4.00 1.00 3.70 1.00 I-134 9.257E-06 5.502E+04 4.00 1.00 3.10 1.00 l 1-135 2.196E-04 6.056E+04 4.00 1.00 3.70  ;

2.924E-05 5.195?.+04 4.00 1.00 1.00 3.70 1.00

- 1 RELEASE I-131 cap 1 at 0:00:00.00 inst 1.00 1-132 drbi .000 ff 1 ofetr 0 I-133 cap 1 at 0:00:00.00 inst 1.00 drbi .000 I-134 cap 1 at 9:00:00.00 inst 1.00 drb1 .000 ff 1 ofctr 0 cap 1 at 0:00:00.00 inst 1.00 drb1 .000 ff 1 ofetr 0 I-135 cup 1 at 0:00:00.00 inst 1.00 ff 1 dfetr 0 drb1 .000 ff 1 dietr 0 PLANT ccmp 1 at 0:00:00.00 \

leak rate 1.08 leak purge rate filtr .000

.635 purge filtz 100.

recirc rate .000 pressure rectre filtz .000 2.83 temperature 225.

volume 1.157E+04 Pipe compartment # 2 inside radius 30.3 outside radius 33.0 insul thickness 7.62 pipe length 208, nummer of lines 4.00 inital temp 550.

mass / unit length 287 insul conducty 2.250E-02 splitespacity heat factor

.117

.998 Pipe compartment # 3 inside radius 2.46 outside radius 3.02 insul thickness 6.35 pipe length 353.

number of lines 4.00 inital temp 550.

mass / unit length 5.04 insul conducty 2.250E-02heat capacity split factor

.117 1.00 camp 4 at 0:00:00.00 leak rate 3.51 leak purge rate filtz .000

.000 purge filtr .000 recite rate .000 pressure recirc filtz .000 1.00 temperature 100.

volume 6.976E+03 coup 5 at 0:00:00.00 leak rate .000 leak filtr ".000 purge rate 1.000E+06 purge filtr .000 recirc rate .000 recire filtr .000 pressure 1.00 temperature 68.0 volume 2.917E+05 METEOROLOGY 0:00:00.00 Chiqu= 1.00 brthr= 1.00 occup= 1.

OUTPUT TIMES c:\laaalbakusr9801\remdu. doc 13 1/1M8

i l

AppendixD DRFB13-01920-01]

0:00:30.00 0:01:00.00 0 01:15.00 0 01:30.00 0:01:45.00 0:02:00.00 0:03:00.00 0:04:00.00 0:05:00.00 0:06:00.00 0:00:00.00 0:10:00.00 0:12:00.00 0:14:00.00 ,

0:16:00.00 0:18:00.00 0:20:00.00 0:22:00.00 1:00:00.00 1:12:00.00 2:00:00.00 4:00:00.00 6:00:00.00 8:00:00.00 10:00:00.00 12:00:00.00 15:00:00.00 ~

20:00t00.00 25:00:00.00 30:00:00.00 0:00:30.00 whole Body Thyroid I-131 Beta 2.112E-07 2.112E-07 7.814E-03 1-132 2.663E-07 I-133 2.663E-07 9.851E-07 4.352E-07 4.352E-07 1.610E-06 I-134 3.290E-07 3.298E-07 I-135 3.966E-07 1.220E-06 total = 3.966E-07 1.468E-06 1.639E-06 1.639E-06 7.820E-03

- 0:01:00.00 Whole Body Thyroid t I-131 Beta 3.455E-03 3.455E-03 1.278E+02 1-132 3.888E-03 I-133 3.088E-03 1.439E-02 7.041E-03 1.041E-03 2.605E-02 I-134 4.012E-03 I-135 4.012E-03 1.484E-02 6,243E-03 6.243E-03 total = 2.464E-02 2.310E-02 2.464E-02 1.279E+02 0:01:15.00 whole Body Thyroid

'I-131 Beta 1.146E-02 1.146E-02 4.239E+02 I-132 1.220E-02 1.220E-02.

  • I-133 2.322E-02 4.513E-02 I-134 2.322E-02 8.590E-02 1.153E-02 1.153E-02 4.265E-02 I-135 .

2.031E-02 total a 2.031E-02 7.516E-02 7.871E-02 7.871E-02 4.242E+02 0:01:30.00 Whole Body Thyroid I-131 Beta 2.611E-02 2.671E-02 9.883E+02 1-132 2.691E-02 I-133 2.691E-02 9.957E-02 5.382E-02 5.382E-02 1.992E-03 I-134 2.334E-02 I-135 2.334E-02 8.635E-02 4.647E-02 4.647E-02 1.719E-01 total = 1.773t-01 1.173E-01 9.888E+02 0 01:45.00 whole Body Thyroid 1-131 meta 5.130E-02 5.130E-02 1.890E+03 I-132 4.894E-02 I-133 '4.894E-02 1.811E-01 1.028E-01 1.028E-01 3.804E-01 I-134 3.901E-02 I-135 3.901E-02 1.443E-01 8.760E-02 8.760E-02 3.241E-01 total = 3.297E-01 3.297E-01 1.899E+03 0:02:00.00 Whole Body Thyroid I-131 8 eta

- 8.613E-02 8.613E-02 3.187t+03 I-132 7.793E-02 I-133 7.793E-02 2.883E-0?

1.717E-01 1.717E-01 6.353E-0.

I-134 5.731E-02 5.731E-02 2.121E-01 c:Maanue\ case 9801\ rendu. doc 16 U14/98

e

)

i Appendix D i DRFB13-01920-011 I

{

I-135 1.444E-01 total = 1.444E-01 5.343E }

5.375E-01 5.375E-01 3.188E+03 0:03:00.00 )

whole Body Thyroid Beta I-131 3.729E-01 I-132 3.729E-01 1.380E+04 2.725E-01 .2.725E-01 1.008E+00 I-133 7.272E I-134 7.272E-01 2.691E+00 t

! 1.468E-01 1.468E-01 5.430E-01 I-135 5.805E-01 total = 5.805E-01 2.148E+00 i 2.100E+00 2.100E+00 1.380E+04 l 0:04:00.00 whole Body Thyroid j I-131 Beta 9.525E-01 9.525E-01 3.524E+04 I-132 5.664E-01

}

I-133 5.664E 01 2.096E+00 2 1.818E+00 I-134 1.818E+70 6.727E+00

~2.309E-01 2.309E-01 8.544E-01 I-135 1.379E+00 total = 1.379E+00 5.103E+00 4.947E+00 4.947E+00 3.526t+04

0
05:00.00 whole Body Thyroid I-131 Beta i

! 1.892E+00 1.892E+00 7.000E+04 I-132 9.211E-01 I-133 9.211E-01 3.408E+00 3.535E+00 3.535E+00 1-134 2.938E-01 1.308t+01 1-135 2.938E-01 1.087E+00 2.550E+00 2.550E+00 9.435E+00 total = 9.192E+00 9.192E+00 7.002E+04 0:06:00.00 whole Body Thyroid 1-131 Beta 3.247E+00 3.247E+00 1.201E+05 I-132 1.301E+00 I-133 1.301E+00 4.815E+00 5.940E+00 5.940E+00 I-134 3.354E-01 2.198E+01 -

I-135 3.354E-01 1.241E+00

~4.078E+00 4.078E+00 total = 1.509E+01 1.490E+01 1.490E+01 1.202E+05 0:08:00.00 whole Body Thyroid I-131 Beta 7.291E+00 1.291E+00 2.698E+05 1-132 2.022E+00 I-133 2.022E+00 7.483E+00 1.279E+01 1.279E+01 I-134 4.734E+01 3.750E-01 3.750E-01 1.387t+00 2-135 7.976E+00

. total ='

7.976E+00 2.951E+01 3.046E+01 -3.046E+01 2.690E+05 0:10:00.00 whole Body Thyroid 1-131 Beta 1.327E+01 1.327E+01 4.910E+05 I-132 2.613E+00 2.613E+00 I-133 9.666E+00 2.236E+01 2.236E+01 8.271E+01 I-134 3.814E-01 1-135 3.874E-01 1.433E+00.

1.269E+01 1.269E+01 total = 5.132E+01 4.697E+01 5.132E+01 4.912E+05 0:12:00.00 whole Body Thyroid I-131 Beta 2.123E+01 2.123E+01 7.855E+05 I-132 3.046E+00 1-133. 3.046E+00 1.127E+01 3.435E+C1 3.435E+01 1-134 1.271E+02 3.908E-01 3.908E-01 1.446E+00 1-135 1_.7 8 3 E+ 01 total = 1.183E+01 6.595E+01 7.684E+01 7.684E+01 7.857E+05 0:14:00.00 whole Body Thyroid I-131 Beta 3.123E+01 3.123E+01 1.156t+06 I-132- 3.346E+00 3.346E+00 I-133 4.856t+01 1.238E+01 I-134 4.856E+01 1.797t+02 3.918E-01 3.918E-01 1.449E+00 1-135 2.310E+01 total = 2.310E+01 8.545E+01 1.066E+02 1.066E+02 1.156Ef06 0:16:00.00 whole Body Thyroid I-131 Beta 4.323E+01 4.323E+01 1.599E+06 I-132 3.544E+00 t I-133 3.544E+00 1.311E+01

( 6.462E+01 6.462E+01 I-134 3.920E-01 2.391E+02

( .I-135 3.920E-01 1.450E+00 2.826E+01 2.826E+01 1.045E+02 total = 1.400E+02 1.400E+02 1.600E+06

{ 0:18:00.00 whole Body Thyroid Beta c:Um=Messe9801\readadoc 17 OlM8

i l

l 1

Appendix D DRFB13-01920-011 I-131 5.725E+01 5.725E+01 I-132 2.118E+06 3.672E+00 '3.672E+00 1.359E+01

-I-133 8.231E+01 8.231E+01 I-134 3.046t+02 3.920E-01 3.920E-01 1.451E+00 I I-135 3.318E+01 3.318E+01  !

total = 1.228E+02 1.168E+02 1.768E+02 2.119E+06 l

.0 20:00.00 Whole Body Thyroid I-131 Beta 7.324E+01 7.324E+01 2.710E+06 I-132 3.752E+00 3.752E+00 1-133 1.388E+01

'1.013E+02 1.013E+02. 3.749E+02 I-134 3.920E-01 I-135 3.920E-01 1.451E+00 3.777E+01 3.777t+01 1.397E+02 total = 2.165E+0?

2.165E+02 2.710E+06 0:22:00.00 Whole Body Thyroid 1-131 seta 9.114E+01 9.114E+01 3.372E+06 I-132 3.801E+00 3.801E+00 I-133 1.214E+02 1.406E+01 I-134 1.214E+02 4.491E+02 3.920E-01 3.920E-01 1.451E+00 I-135 4.196E+01 4.196E+01

-total = 1.553E+02 2.587E+02 2.587E+02 3.373E+06 1:00:00.00 Whole Body Thyroid I-131 Beta 1.111E+02 1.111E+02 4.109E+06 I-132 3.831E+00 3.831E+00 I-133 1.424E+02 1.418t+01 I-134 1.424E+02 5.269E+02 3.921E-01 3.921E-01 1.451E+00 I-135 4.577E+01 4.577E+01 total = 1.693E+02 3.035E+02 3.035E+02 4.110E+06 1 12:00.00 whole Body Thyroid I-131 Beta 2.682E+02 2.682Et02 9.923E+06 I-132 3.874E+00 3.874E+00 1-133 1.433E+01 2.764E+02 i.764E+02 1.023E+03 I-134 3.921E-01 3.921E-01 I-135 1.451E+00 6.0836+01 6.083E+01 2.251E+02 total = 6.096E+02 6.096E+02 9.924E+06 2:00:00.00 whole Body Thyroid I-131 Beta 4.858E+02 4.858t+02 1.797E+07 I-132 3.875E+00 3.875E+00 1-133 1.434E+01 (

4.068E+02 4.068E+02 1.505E+03 1-134 3.921E-01 I-135 3.921E-01 1.451E+00 6.109E+01 6.709E+01 2.482E+02 .I total.= 9.639E+02 9.639E+02 1.798E+07 4:00:00.00 Whole Body Thyroid I-131 Beta 1.830E+03 1.830E+03 6.770E+07 I-132 3.875E+00 3.875E+00 I I-133 1.434E+01 7.462E+02 7.462E+02 2.761E+03 l 1-134 3.921E-01 I-135 3.921t-01 1.451E+00 7.058E+01 7.058t+01 2.611E+02 total = 2.651E+03 2.651E+03 6.770E+07 6:00:00.00 Whole Body Thyroid  !

I-131 Beta 3.681E+03 3.681E+03 1.362E+08 l 1-132 3.875E+00 3.875E+00 1-133 1.434E+01 1 8.625E+02 8.625E+02 3.191E+03 I-134 3.921E-01 3.921E-01 I-135 1.451E+00 i 7.062E+01 7.062E+01 2.613E+02 l total = 4.618E+03 '

4.618E+03 1.362E+08 8:00:00.00 whole Body Thyroid i

1-131 Beta 5.786E+03 5.786E+03 2.141E+08 I-132 3.875E+00 1-133 3.875E+00 1.434E+01 8.947E+02 8.947E+02 3.311E+03 i I-134 3.921E-01 I-135 3.921E-01 1.451E+00 I 7.062E+01 7.062E+01 2.613E+02 total = 6.755E+03 6.755E+03 2.141E+08 10:00:00.00 whole Body Thyroid 1-131 beta 7.971E+03 7.971E+03 2.949E+08 I-132 3.875E+00 3.875E+00 1-133 1.434E+01 9.028E+02 9.028t+02 3.340E+03 1-134 3.921E-01 3.921E-01 1.451E+00 c:Uanallekane9801\madadoc 18 U1498 t

1

' j Appendix D  !

DRFB13-01920-011 1

1-135 1.062E+01 7.062E+01 total = 2.613E+02 8.949E+03 8.949E+03 2.949E+0f 12:00:00.00 whole Body Thyroid Beta I-131 1.012E+04 1.012E+04 l I-132 3.744E+08 3.875E+00 3.815E+00 1.434E+01 I-133 9.047E+02 9.047E+02 I-134 3.348E+03 3.921E-01 3.921E-01 1.451E+00 I-135 7.062E+01 7.062E+01 2.613E+02 total = 1.110E+04 1.110E+04 3.744E+08 15:00:00.00 whole Body Thyroid Beta I-131 1.312E+04 1.312E+04 I-132 4.856E+08 3.875E+00 3.875E+00 1.434E+01 I-133 9.052E+02 9.052E+02 I-134 3.349E+03 3.921E-01 3.921E-01 1.451E+00 I 1-135 7.062E+01 7.062E+01 1 total = 2.613E+02 1.410E+04 1.410E+04 4.856E+08 20:00:00.00 whole Body Thyroid Beta 1-131 1.730E+04 1.730E+04 I-132 6.401E+08 3.875E+00 3.875E+00 1.434E+01  ;

I-133 9.053E+02 9.053E+02 1-134 3,921E-01 3.350E+03 3.921E-01 1.451E+00 1-135 1.062E+01 7.062E+01 total = 2.613E+02 1.828E+04- 1.828E+04 6.401E+08 25:00:00.00 whole Body Thyroid Beta I-131 2.039E+04 2.039E+04 7.545E+08 I-132 3.875E+00 3.875t+00 I-133 1.434E+01 9.053E&O2 9.053E+02 3.350E+03 I-134 3.921E-01 3.921E-01 1-135 1.451E+00 7.062E+01 7.062E+01 2.613E+02 total = 2.137t+04 2.137E+04 7.545E+08 30 00':00.00 whole Body Thyroid Eeta I-131 2.256E+04 2.256E+04 8.318E+08 I-132 3.875E+00 3.875E+00 I-133 1.434E+01 9.053E+02 9.053E+02 3.350E+03 1-134 3.921E-01 3.921E-01 1-135 1.451E+00 7.062E+01 7.062E+01 2.613E+02 total = 2.354E+04 2.354E+04 8.348E+08 HSIV Leakage Program Version 1.24 execution on 1-12-1998 at 11:07:56.60 LASALLE UNIT 1 MSIV Release RESUSP VIA DRAIN LINES LEAR RATEScrH 8 400Total CASE CRRS1 A. DOT Input file = crrsla.ds1 CONTROL power = 3.458E+03 mode ^ = Offsite Evaluation ISOTOPE I-131 9.971E-07 2.631E+04 4.00 1.00 3.700E+04 1.00 RELEASE I-131 omp 1 at 0:00:00.00 inst .000 I-131 cap 1 at 0:02:00.00 inst .000 deb 1 1.147E-04 ff I dietr 0 1-131 cup 1 at 0:08:00.00 inst .000 drb1 7.682E-04 ft 1 dfctr 0 I-131 cup 1 at 0:21:00.00 inst .000 drb1 4.797E-03 fi 1 otetr 0 1-131 cup 1 at 1:00:00.00 inst .000 drb1 1.146E-02 ff 1 dfcts: 0 I-131 cup 1 at 1:16:00.00 inst .000 drb1 2.209E-02 ff 1 dfctr 0 1-131 cup 1 at 2:00:00.00 inst .000 drb1 3.411E-02 ff I dietr 0 I-131 cup 1 at 2:16:00.00 inst .000 -debi 4.345E-02 f t 1 dictr 0 1-131 cup 1 at 4:00:00.00 inst .000 drbi 5.632E-02 ft 1 dfctr 0 1-131 cap 1 at 6:00:00.00 inst .000 drb1 6.410E-02 ff 1 dfctr 0 I-131 cap 1 at 8:00:00.00 inst .000 debi 6.104E-02 ff I dfetr 0 I-131 cap 1 at 11:00:00.00 inst .000 drb1 5.223E-02 ff 1 ofetr 0 I-131 cup 1 at 15:00:00.00 inst .000 drb1 3.985E-02 ff i dfctr 0 I-131 cup 1 at 23:00:00.00 inst .000 deb 1 2.337E-02 ft 1 dictr 0 drb1 1.098E-V2 ff 1 dfctr 0 PLANT coup 1 at 0:00:00.00 c:\lanellek: ant 980liveadLt. doc 19 1/1H8

AppendixD DRFB13-01920-011 leak rate. 3.51 leak filtr' .000 purge rate .000 purge filtr .000 recirc rate .000 recire 211tr .000 pressure 1.00 temperature 100. '

volume 6.976E+03 comp 2 at 0:00:00.00 leak rate .000 leak filtr .000 purge rate 1.000E+06 purge filtr .000 recirc rate .000 recire filtr .000 pressure 1.00 volume temperature 68.0 2.917E+05 METEOROLOGY -

0100t00.00 Chiqu= 1.00 brthr= 1.00 occup= 1.

OUTPUT TIMES 0:00:30.00 0 01:00.00 0101:15.00 0:01:30.00 0:01:45.00 0:02:00.00 0:03:00.00 0 04:00.00 0105:00.00 0:06:00.00 0108:00.00 0:10:00.00 0:12:00.00 0:14:00.00 0:16:00.00 -

\

0:18:00.00 i 0:20:00.00 f 0:22:00.00 -l 1:00:00.00 {

1 12:00.00 l 2:00:00.00 4:00:00.00 6:00:00.00 8:00:00.00 J 10:00:00.00 1 12:00:00.00 l 15:00:00.00 l 20:00:00.00 1 25 00:00.00 30:00:00.00 0:00:30.00 Whole Body Thyroid Beta I-131 7.460E-05 7.460E-05 2.160E+00

. 0101:00.00, Whole Body Thyroid Beta l I;131 2.996E-04 2.996E-04 l 1.108E+01 l

0:01:15.00 Whole Body Thyroid Beta 1

I-131 4.683E-04 4.683E-04 1.733E+01 )

0:01:30.00 Whole Body Thyroid Beta I

I-131 6.745E-04 6.745E-04 2.496E+01 l 0:01:45.00 Whole Body Thyroid Beta I-131 9.182E-04 9.182E-04 3.397E+01 0:02:00.00 Whole Body Thyroid Beta I-131 1.199E-03 1.199E-03 4.437E+01 0:03:00.00 Whole Body Thyroid Beta I-131 4.402E-03 4.402E-03 1.629E+02 0:04:00.00 Whole Body Thyroid Beta I-131 1.162E-02 1.162E-02 4.299E+02 0:05:00.00 Whole Body Thyroid Beta 1-131 2.2835-02 2.283E-02 8.446t+02 0:06:00.00 Whole Body Thyroid Beta 1-131 3.801E-02 3.801E-02 1.406E+03 c:Manaue\caarN0l\readu. doc 20 i/1M8

1 l

4 Appendix D - b DRFB13-01920-011 0:08:00.00 Whole Body Thyroid Beta I-131 8.020E-02 8.020E-02 2.968E+03 0:10:00.00 Whole Body Thyroid Beta I-131 1.802E-01 1.802E-01 6.666E+03 0:12:00.00 Whole Body Thyroid Beta I-131 3.795E-01 3.795E-01 1.404E+04 0:14:00.00 Whole Body Thyroid - Beta I-131 6.772E-01 6.772E-01 2.506E+04 0:16:00.00 Whole Body Thyroid Beta I-131 1.072E+00 .1.072E+00 3.967E+04 l i

0:18:00.00 whole Body Thyroid Beta I

I-131 1.564E+00 1.564E+00 5.786E+04 )

0:20:00.00 Whole Body Thyroid Beta l

1-131 2.151E+00 2.151E+00 1.957E+04 )

0:22:00.00 Whole Body Thyroid Beta I-131 2.849E+00 2.849E+00 1.054E+05 1:00:00.00 Whole Body Thyroid Beta I-131 3.764E+00 3.764E+00 1.393E+05 1:12:00.00 Whole Body Thyroid Beta I-131 1.795E+01 1.795E+01 6.642E+05 -

2:00:00.00 Whole Body Thyroid Beta I-131 4.953E+01 4.953E+01 1.833E+06 4:00:00.00 Whole Body Thyroid Beta 1-131 4.779E+02 4.779E+02 1.768E+07 6:00:00.00 Whole Body Thyroid Beta 1-131 1.456E+03 1.456E+03 5.389E+07 i

8:00:00.00 Whole Body Thyroid Beta 1-131 2.897E+03 2.897E+03 1.072E+08 10:00:00.00 Whole Body Thyroid Beta 1-131 4.634E+03 4.634E+03 1.715E+08 12:00:00.00 whole Body Thyroid Beta I-131 6.541E+03 6.541E+03 2.420E+08 15:00:00.00 whole Body Thyroid Beta I-131 9.455E+03 9.455E+03- 3.499E+08 20:00:00.00 Whole Body Thyroid Beta 1-131 1.384E+04 1.384E+04 5.122E+08 25:00:00.00 whole Body Thyroid Beta I-131 1.749E+04 1.749E+04 6.473E+08 30:00:00.00 Whole Body Thyroid Beta I-131 2.021E+04 2.021E+04 7.479E+08 c:Manaue\canr9801\readadoc 2] yj y

Notes to.inalysis DRFB13-01920-011 To run this test case the following was done:

1. Original files run in 1995 were copied to directory " case 9801". Then the following cases were rerun and a comparison made (using a small pc utility) to check to see if there were any variances. The original cases and the eneck cases were put into a

, sub-directory named "chkcases". The code runs correctly.

Case Input Original. Output Checked Output crorla.lc1 crorla.otl cmria.chk crorib.lcl crorlb.otl crorib.chk crssla.lcl crssia.otl crssla.chk

2. File endings follow this convention:

Use Input Output Original File from 95 LG1 OT1 Updated File NCl NOT AEER File AER AOT --

Condenser Release DS1 DOT

3. The condenser release is nm by removing the dose calculation from an offsite run package. Since the turbine release pathway is so small, the case is not run. The dose calculation is removed by setting the meteorology, breathing rate and dose conversion factors all to one except the average gamma energy w,hich is set to 4.0 (remember that the semi-infinite model is 0.25* avg gam eng). Since S&L did not specify units, it is assume that Curie / Rem are the units ofchoice. Even so, the Beta column uses a conversion factor of 3.7E4 so that what is output is the activity in terms of Mbq.
4. To check the activity calculation, a spreadsheet (chkactivitycalc.xis) was produced using the run crorla. dot and compared to the 1995 run osoria.otl (attached). The spreadsheet gives the output of crorla. dot in cells A4..F33. From osorta.otl, the def% de placed in A35..F35, the X/Q's and breathing rates in G4..H33. Finally, the individual thyroid dose by isotope and time period is calculated in cells 14..M33 and totaled up in column N. Rese can then be compared to the output of osoria.otl which is given in cells 04..P33. He comparison is reasonable until the last time period where round off error from the three place limitation on output in the I-131 causes a divergence.

c:UanalleVau9801\noendoc 1/l&98

- __