ML20100P867

From kanterella
Jump to navigation Jump to search
Main Steam Tunnel Temp Response Due to Steam Leakage W/Ventilation Sys in Operation
ML20100P867
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 01/13/1996
From: Beaumont E, Kong P
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20100P861 List:
References
BSA-L-95-05, BSA-L-95-05-R00, BSA-L-95-5, BSA-L-95-5-R, NUDOCS 9603110387
Download: ML20100P867 (89)


Text

r ,

LaSalle Main Steam Tunnel Temperature Response due to Steam Leakage with Ventilation System in Operation Document NumberBSA-L-9545 Revision 0 Pedro L. Kong Eric T. Beaumont Safety Analysis

" - ~ L*: m o r =

l l

l Prepared by: '\

~

" 9[ Date:

v Reviewed b - hW Date: os//r/W Approved by: e >< d' ~

Date: (( f (Date Issued) l l

$b0*kOS!KOIo$o373PDR P

I

?

l BSA L 95-05 R; vision 0 Statement of Disclaimer l l

l This document was prepared by the Nuclear Fuel Services Department for use intemal l to the Commonwealth Edison Company. It is being made available to others upon the express understanding that neither Commonwealth Edison Company nor any of its officers, directors, agents, or employees makes any warranty or representation or assumes any obligation, responsibility or liability with respect to the contents of this document or its accuracy or completeness.

1 ii

BSA-L-95-05 R: vision 0 Release of Information Statement This document is furnished in confidence solely for the purpose or purposes stated. No other use, direct or indirect, of the document or the information it contains is authorized.

The recipient shall not publish or otherwise disclose this document or information therein to others without prior written consent of the Commonwealth Edison Company, and shall return the document at the request of the Commonwealth Edison Company, iii

BSA+L-95-05 -

R1 vision 0 Abstract The LaSalle main steam tunnel (MST) leak detection system consists of temperature sensors that monitor the MST temperature and the ventilation system supply and exhaust air temperatures. The system functions to isolate the main steam line whenever abnormal conditions exist as indicated by high MST temperature or high differential temperature between ventilation system supply and exhaust air. The trip settings are established based on the temperature response of the MST due to steam leakage. This calculation uses a GOTHIC system model to determine the MST temperature response due to a variety of leak rates and supply air temperatures. The results are intended to be used to determine the appropriate setpoints in conjunction l

with other design considerations, such as allowable leakage rate and instrument uncertainties, which are addressed in other design calculations.

l I

l l

l l ,

1 l

l l

W 1

CSA-L-95-05 R1 vision 0 Table of Contents 1 . I n t ro d u ct io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Methodology /Model Description and Assumptions ..................................................... 2 2.1 P hysical C o nfig u ration .. . ... . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ... . .. . . . ...... . . . . .. . ....... . .. . .. .. . .. . .. . . . . 2 2.2 Description of Tran sient . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . .. . . .. . . .. .. . . ..... .. ... . . . . . .. . . . . . . .... . 2
2. 3 An alytical M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. 4 C o m p ut e r C od e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 Input Assumptions and Paramete rs ......... ...................................................... 3 3 . M o d el B e n c h m a rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.Results........................................................................................................................8

5. C o ncl u sion s/D isc u ssion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. R e f e r e n ce s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appe n dix A - Mic rofiche i ndex . . . . . . .. .. . . . . . . . . ... . . .. . . . . ... . . .. . . . . . . . ... . . . . . . . . . .... . . .. .. ... .. .. . . . . .. . . .. . . . . A1 Appendix B - Input Data Set Protection Form............................................................... B1 Appendix C - Supporting Calculations .... .. .......... . .......... .......... ....................... ........ ...... C 1 Appendix D - Summary of inputs and Results .............................................................. D1 Appendix E - GOTHIC Input Tables and Results for Case C110-110.......................... E1 v

BSA-L-95-05 Rzvision 0 List of Tables  !

Table 1: Upper MST Temperature due to Steam Leakage...........................................12 Table 2: Upper MST VR Delta T due to Steam Leakage..............................................13 1

i a

1.

I l

l

[

Vi

BSA L-95-05 I Rivision 0 ,

List of Figures Figu re 1 : Sketch of Main Steam Tunnel .......................................................................14 Figure 2: MST Mass and Energy Balance ....................................................................15 Fig u re 3: Bench ma rk Results . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . .. ... . . . . . . . . . . . . . . . . . .. ... . . . . .. . . . . .. . . . . . . . . . . . . . . . 16 Figure 4: Upper MST Temperature Response for 110 deg F VR Inlet,100 gpm..........17 Figure 5: Upper MST Temperature due to Steam Leakage..........................................18 Figure 6: Upper MST VR Delta T due to Steam Leakage.............................................19 1

4 4

l 4

t t

I R

s l

s Vii

CSA-L-95-05 R: vision 0

1. Introduction The main steam tunnel leak detection system is a part of the reactor coolant pressure boundary (RCPB) leakage detection system. Its design basis satisfies the requirements of 10CFR50 Appendix A General Design Criteria 54. One of the safety design bases given in Section 7.6.2.1.1 of the LaSalle UFSAR is " signals are provided to permit isolation of abnormalleakage before the results of this leakage become unacceptable."

This basis can be achieved through monitoring of the MST temperature and the trip logic used to isolate the steamlino whenever abnormal leakage exists. Trip setpoints must be set high enough to avoid spurious trip under normal operating conditions and low enough to provide early detection of abnormal leakage.

The purpose of this calculation is to determine the temperature response of the main steam tunnel (MST) due to different amounts of steam leakage for different supply air temperatures. The temperature response can then be used to specify a setpoint for leak detection.

1 of 19

i i s

BSA-L-95-06

- R:vosoon 0

2. Methodology /Model Description and Assumptions The main steam tunnel temperature response was calculated by a GOTHIC system model. The following sections describe the tunnel configuration, the transient due to a steam leak, the analytical model, the computer code, and the input parameters and assumptions used in the analysis.

2.1 PhysicalConfiguration

~

A sketch of the MST is shown in Figure 1. In this analysis, the MST is subdivided into three areas denoted as the lower, middle and upper MST. The lower and upper MST extend from Elevation 687 to 706 ft and from Elevation 736 ft 7 in to 768 ft 4.5 in, respectively. The middle MST consists of th? vertical section of the tunnel between Elevation 706 ft and 736 ft 7 in.

The temperature of the MST is maintained by the reactor building ventilation (VR) system. Two streams of VR air enter the MST at different elevations and exit the tunnel via an exhaust riser located at the top of the MST. Air from the area between the primary containment and core standby cooling system (CSCS) cubicles enters the lower MST at the floor level (A). The air inlet at A is configured to yield a high velocity stream capable of sweeping the lower MST regions. In the current plant configuration, there l are two exhaust vents at B. The majority of the air introduced at A sweeps toward B I

. and then reverses direction, flowing to the upper regions. After flowing through the '

middle MST and the upper MST, the air exits the tunnel via the exhaust riser (D). The '

other air stream, which comes from the refueling floor and the reactor water cleanup (RWCU) area, enters the upper MST at (E) and exhaust through the exhaust riser (D).

This analysis is based on a revised configuration without the exhaust flow path at B, except for the heat load calculation which is based on data for the current configuration.

2.2 Description of Transient The analysis assumes continuous steam leakage from cracks in the main steam line.

The cracks are postulated to occur at any location along the fulllength of the steamline inside the MST. In the event of steam leakage with VR in operation, the temperature at locations downstream of the crack will experience a temperature rise, while locations upstream of the crack may not experience (except locally) any temperature increase at all. For example, cracks in the upper MST will not result in temperature rise in the lower MST. Hence, for leak detection purposes, a sensor located near the exhaust riser in the upper MST is capable of detecting leaks that occur anywhere in the MST. For a given amount of leakage, the temperature rise is greatest near the vicinity of the crack and decreases as the distance between the crack and the location of interest increases.

Therefore, the basis for the leak detection setpoint for a sensor located in the upper

MST is leakage from a crack located in the lower MST near the area where the steam lines exit the tunnel. Thus, in this analysis, only a leak in the lower MST is considered 2 of 19

BSA L-95-oS R; vision 0 i

j for the purpose of establishing a leak detection setpoint. However, upper MST leaks l

are also considered to confirm that the lower MST leak location is bounding.

2.3 Analytical Model The temperature response of the MST due to steam leakage is calculated by considering the mass and energy balances for the MST. A schematic of these quantities is shown in Figure 2. A GOTHIC system model is constructed based on this schematic, it consists of three control volumes representing the upper, middle and lower MST. Five additional control volumes are used to model the structures adjacent to the MST. A flow path is used to represent the flow from the lower to the middle MST and another path from the middle to the upper MST. Three additional flow paths are used to model the VR inlet and exhaust flows. Heat transfer through the walls, ceilings a.1d floors to the adjacent structures is modeled with 16 heat structures. The heat load in the MST is produced predominantly from ti:e main steam and feedwater lines and is represented by one heater located in each of the control volumes. Additional model features and assumptions are listed in Section 2.5.

l 2.4 Computer Code The GOTHIC (Reference 1) computer code is used in the analysis. This code was

! developed by Numerical Applications, incorporated for the Electric Power Research Institute (EPRI). GOTHIC is a general purpose thermal-hydraulics computer program for design, licensing, safety and operating analysis of nuclear power plant containments l

and other confinement buildings. Applications of GOTHlO include evaluation of l containment and containment sub compartment response to the full spectrum of high energy line breaks within the design basis envelope. Applications may include pressure l and temperature determination, equipment qualification profiles and inadvertent system initiation, and degradation and failure of engineered safety features.

l The code was verified and validated by Comed and was installed in the company l  !

computer system in accordance with approved Company procedures and requirements

! for design application computer codes (Reference 2).

l l 2.5 Input Assumptions and Parameters l

As described in Section 2.2, the basis for establishing a leak detection setpoint is the lowest temperature rise in the MST. Therefore, the input assumptions and parameters are chosen conservatively to yleid a low estimate of the temperature rise due to steam leakage. The following input assumptions and parameters were used in the analysis:

1. The heat transfer area of the walls, ceiling and floors were conservatively calculated without taking any allowances for obstructions. This assumption maximizes the heat

. i transfer out of the MST. Likewise, the gross volume of the MST is used.

r i

3 of 19

CSA L-95-05 Rivi: ion 0 Calculations for heat transfer areas, volumes and other geometrical parameters are given in Appendix C.

2. The mechanism of heat transfer between air and the heat structures is specified to be either convection plus radiation or condensation. The Uchida correlation is used to calculate the condensation heat transfer coefficient.
3. The thermal conductivity, density and specific heat of the reinforced concrete walls are taken as 0.92 Btu /hr-ft-F,145 lb/cu ft and 0.156 Btu /lb-F, respectively, based on Reference 3.
4. The temperatures of the VR supply air into the upper and lower MST are assumed to be equal. The VR supply air originates from outside the plant and enters the MST after passing through various areas in the reactor building. Hence, the VR supply air temperature is dependent on the outdoor air temperature. Two different supply air temperature values,65 and 110 deg F, are used to bound the conditions expected year-round. Another temperature wlue,95 deg F,is used which represents a typical condition expected during a moderately hot summer day. The relative humidity of the VR inlet air corresponding to the assumed temperatures are:

Temperature, F Relative Humidity, %

65 30 95 50 110 30 The temperatures of the upper and lower MST supply air may be different. Plant data indicates that the lower MST supply air temperature may be 6 to 7 deg F warmer, it is conservative to assume the upper and lower MST supply air temperatures to be equal because it results in a lower temperature rise in the upper MST.

5. The assumed conditions for the adjacent volumes corresponding to the assumed VR supply air temperatures, are:

VR supply air temperature, deg F 65 95 110 Auxiliary Building 65 104 110 Auxiliary Building (conditioned space) 75 75 75 Reactor Building 65 95 110 Containment 130 130 130 The assumed conditions provide the boundary conditions for the problem. They are also used by the code to calculate the initial temperature profiles in the heat structures. They have only a secondary effect on the through-wall heat transfer to the outside due to the thickness of the concrete and its low thermal diffusivity. The tunnel temperature response is quick and reaches steady state in a short period of 4 of 19

. _ _ _._ ._ _ . _ . . . . . _ _._ _ ~ _ . _ _ __ _ _ ._- _ _ . . _ _ _ _ _

l l CSA-L-95 06 ,

R; vision 0 -  ;

time. Only a fraction of the wall thickness experiences an appreciable change from ,

the initial conditions,  !

6. The VR flows are induced by the VR system exhaust fans. The upper MST exhaust flow, which consists of ventilation air and steam, is assumed to be at a i constant volumetric flow rate. The VR flow rates used in the analysis are based I on plant data and they are:  !

Upper MST supply air (initial condition) 24,000 cfm Lower MST supply air (initial condition) 40,000 cfm Upper MST exhaust air 64,000 cfm The flow rates are based on a temperature of 95 deg F.

Because the VR flows are induced by the VR exhaust fans, tha inlet VR flows are reduced by the presence of steam. The reduced inlet flow phenomenon may affect the temperature indication from a sensor located in the VR inlet. As the inlet flow l

reduces to zero due to increased leakage flow, the temperature indicated will be that of the MST instead of the inlet flow. The analysis takes into account the effects of reduced flow phenomenon as follows:

a. Analyses were performed by assuming only the lower VR inlet flow is reduced. '

, With no reduction in upper MST VR inlet flow, a conservative upper MST temperature will be calculated for leaks in the lower MST. These results form the l bases for the analytical values for setpoint determination.

b. Confirmatory analyses were performed to determine that the bases are bounding by allowing both the upper and lower MST inlet flows to vary according to the thermodynamic conditions in the MST. These analyses consider steam leaks in both upper and lower MST.
7. The heat load for each of the three volumes in the MST is calculated using the GOTHIC analytical model of the MST using the following input:

Lower MST supply air flowrate 40,000 cfm Lower MST supply air temperature 95 deg F l Lower MST supply air relative humidity 50 %

! Lower MST temperature 110 deg F l Lower MST exhaust air (through duct) flowrate 4,600 cfm Middle MST temperature 114 deg F Upper MST supply air flowrate 24,000 cfm Upper MST supply air temperature 95 deg F Upper MST supply air relative humidity 50 %

Upper MST temperature 124.6 deg F 5 of 19

BSA-L-95 05 Rivision 0 The calculated heat load is valid at the ambient temperature resulting from the above input conditions. It is multiplied by a normalized heat load vs. temperature curve to yield the heat load for a different tunnel temperature. Because the heat load in the MST is produced predominantly by the main steam and feedwater lines, the normalized curve is assumed to have the form:

O/Qo = U/Ua x (T- Tam)/(To- Tnm) I where U is the overall heat transfer coefficient of an insulated pipe and it is a function of temperature. Details of the heat load calculations are given in Appendix C.

~ 8 The amount of steam leakage is expressed in gpm By definition the mass flow rate of onc gpm of steam leakage is equal in numerical value to the mass flow rate of one gpm of water with a density of 62.4 lb/cu ft. For example, 1 gpm of steam leakage = 1 gpm x 62.4 lb/cu ft /7.48 gal /cu ft = 8.34 lb/ min of steam l

9. During normal plant operating conditions, the steam pressure at the throttle valve is 965 psia (Table 10.1-1, UFSAR) and the steam dome pressure is limited by Tech Spec to less than 1020 psig (Tech Spec Sec. 3.4.6.2). Over this range of pressure, the enthalpy of saturated steam varies inversely with pressure. For this analysis, it is conservative to assume a low enthalpy value. Therefore, the condition of steam is assumed to be saturated at 1050 psia with an enthalpy of 1189.9 Btu /lbm.

10.The leak is located in the lower MST. As discussed in Section 2.2, this location gives the most conservative temperature setpoint.

11.A linear 100 sec leakage development profile is used in the analysis. The temperature response is expected to be quick and a near steady state condition is expected to be reached in a short period of time. Hence, the temperature results are not affected by the assumed profile shape.

i 5

6 of 19

l CSA-L 95-05 )

R: vision 0 l

3. Model Benchmark l

The validity of the analytical model is established by comparing the GOTHIC model results with plant measured data. Figure 3 shows the results of the calculated upper MST temperature during normal operation at different VR inlet temperatures. The plant measured data taken in the period from October 8,1995 to November 20,1995 are also plotted in the same Figure for comparison. The plot shows very good agreement

! between the calculated results and plant data. l 1

1 J

i l

l i

4 l

l i

i l

7 of 19

CSA-L-95-05 R; vision 0

4. Results Figure 4 shows the upper MST temperature response as a result of 100 gpm of steam leakage. The VR inlet temperature is 110 deg F and the leak is initiated at time equal to 1000 sec. The temperature increased 45.1 degrees from 137.4 to 182.5 deg F in the first 10 minutes but added only 1.1 degrees in the next 30 minutes. The quick ,

temperature response is typical for all the cases analyzed. The quick response assures J that a leak of sufficient quantity produces a sufficient temperature rise which can be detected in a timely fashion.

Figure 5 shows the upper MST temperature for different leakage rates and for different  !

VR inlet temperatures. These are the temperatures at approximately 10 minutes after  !

the leak. In most cases, the temperature has reached a steady state value, and if it has  !

not, it is very close to the steady state value. The results show that the temperature i varies directly with the quantity of steam leakage. For a given leakage rate, the upper MST temperature is highest for a VR inlet temperature of 110 deg F and lowest for a VR inlet temperature of 65 deg F.

Figure 6 shows the temperature difference between the upper MST exhaust and supply air (VR Delta T). These are the Delta T's at approximately 10 minutes after the leak. In most cases, the Delta T has reached a steady state value, and if it has not, it is very close to the steady state value. The results show that the Delta T varies directly with the quantity of steam leakage. For a given leakage rate, the upper MST Delta T is highest for a VR inlet temperature of 65 deg F and lowest for a VR inlet temperature of 110 deg F.

I The results presented in Figures 5 and 6 are also listed in Tables 1 and 2.

i 8 of 19

BSA L-95-05 Revision 0

5. Conclusions / Discussion l l

There are two basic requirements needed in choosing a process variable to monitor for l

leak detection. First, the response of this variable should be quick so that the leak can be detected in a reasonable time. Second, the change in magnitude of this variable to a given amount of leakage should be ample enough to account for measurement uncertainties and to avoid spurious trips when no leakage is present. The results presented in Section 3 show that in looking at each VR inlet condition separately, the upper MST temperature and upper MST VR delta-T satisfy these two requirements.

Therefore, a high temperature and a high delta-T trip setpoint can be set for each of the l VR inlet condition. However, a single trip setpoint that is valid for all VR inlet conditions l b desired. This Section discusses how a leak detection trip setpoint can be established for use year-round. It also shows that under some conditions, it is not possible to establish a year-round setpoint. An example is given to show that the high tempmature trip setpoint can not be established to detect a leak of 100 gpm.  ;

l The first step in determining the trip setpoint is to establish the allowable leakage. This is determined from the critical crack flow, which is the leakage rate from a crack whose dimensions are calculated to rapidly propagate and result in pipe failure. Therefore, the allowable leakage is obtained by applying a design safety factor to the critical crack flow. The determination of the allowable leakage is not within the scope of this calculation.

If one assumes that the allowable leak rate has been determined to be 100 gpm, and the instmment uncertainties are +63 and -62, a proposed setpoint value can be established by using the analytical results as follows:

Setpoint s Analytical value for 100 gpm leak - 62 To avoid spurious trips, the proposed setpoint must have ample margin from the maximum expected temperature with no leakage during normal or no VR operation.

Therefore:

Setpoint 2 Analytical value for no leak + Si l

The right hand side of both inequalities may contain other margins and uncertainties due to operational transients such as loss of strtion heat or changes in outside air temperature, but for this discussion it is sufficient to include them in Si and 62 Therefore, the setpoint will be adequate if the difference between the analytical values for 100 gpm and no leak, the analytical margin, is greater than the sum of the measurement uncertainties:

Analytical margin 2 Si+ 62 l 9 of 19

CSA-L-9545 Rxvision 0 From Figure 5, the upper MST temperatures at 10 minutes for a 100 gpm leak are 151.3,173.5 and 182.5 deg F respectively for VR inlet temperatures of 65,95 and 110 deg F. If one setpoint value is used to cover the whole range of expected VR inlet temperature conditions, then the lowest calculated temperature for 100 gpm leak must be higher than the highest temperature for no leak. The analytical temperature value I

for 100 gpm leak is 151.3 deg F which is less than the temperature experienced in the MST when the VR system is out of service. Therefore, the single year-round high temperature setpoint can not be established based on an allowable leakage of 100 gpm.

From Figure 6, the upper MST VR delta-T's at 10 minutes for a 100 gpm leak are 86.3, 78.5 and 72.5 deg F respectively for VR inlet temperatures of 65,95 and 110 deg F.

Corresponding to these VR inlet temperatures, the delta-T's for no leak condition are 28.2,27.9 and 27.3 deg F. If one setpoint value is used to cover the whole range of expected VR inlet temperature conditions, then the lowest calculated delta-T for 100 l gpm leak and the highest calculated delta-T for no leak should be used in its detemilnation. This would result in an available margin of 72.5 - 28.2 = 44.3 degrees. l The available margin is also sufficient to cover the delta-T experienced in the MST when the VR system is out of service. The delta-T has been observed as high as 46 deg F, The calculated upper MST temperatures are higher when both the upper and lower VR inlet flows are varied according to MST conditions for both upper and lower MST steam leaks. Both upper and lower VR flows are reduced to zero for a 250 gpm leak. The '

results of the calculations show that the analytical value of 72.5 deg F for a 100 gpm leak is conservative l

l 10 of 19

BSA L-95-05 R1 vision 0 C. References

1) " GOTHIC Containment Analysis Package", Version 4.1, NAl 8907-02, Rev 5, Numerical Applications, incorporated, September 1994.
2) " Release of GOTHIC 4.1c for Controlled Analysis", NFS Memo NFS:CMD:95-030, D. C. Barringer to K. N. Kovar and R. W. Tsai, June 29,1995.
3) " Heat Sink Thermophysical Properties", Table 3 of Branch Technical Position CSB 6-1 of Standard Review Plan 6.2.1, NUREG 0800, Revision 2, July,1981.

4 11 of 19

BSA-L-95-05 R1 vision 0 l

I gpm 65 F VR inlet 95 F VR inlet 110 F VR inlet 0 93.2 122.9 137.4 25 104.6 135.7 148.0  ;

75 137.3 161.8 171.8 1 100 151.3 173.5 182.5 125 164.4 181.9 190.0 175 183.7 201.5 206.4  ;

Table 1: Upper MST Temperature due to Steam Leakage l l

I i

l

)

l 12 of 19

BSA-L-95-05 a R: vision 0 a

i b

gpm 65 F VR inlet 95 F VR inlet 110 F VR inlet 0 28.2 27.9 27.4 25 39.6 40.7 38.0 75 72.3 66.8 61.8

.; 100 86.3 78.5 72.5 125 99.4 86.9 80.0 175 118.7 106.5 96.4 l

I Table 2: Upper MST VR Delta T due to Steam Leakage l

I i

2 i

13 of 19

BSA-L-95-05 Revision 0 p EXHAUST AIR AlSER

, PER AIR INLET

' . we 'LE ge %8 g~ t 5084 J7

~

__.~

M.- pp _ _ ,.% b MSIV's I==* . i ,$ . a <me as ,, , , p 1

8 1

1 I

i -

1 I

I I

l l

,, J '- = =' ' =<' LOWER AIR INLET g

... .: . = . . :..-.-

. ..: W.-

i' C C d d 295

" ~

,e MAIN STEAM LINES

&= W Figure 1: Sketch of Main Steam Tunnel 1

14 of 19

ESA-L 95-06 Rtvision 0 l

/\

VR Exhaust i

( Heat Load Upper MST VR Supply ,s Heat Transfer

)through wall l )

Intemal Flow Middle MST Heat load A N Heat Transfer

' ' through wall

/N Intemal Flow Steam Leak N

/

v Heat Transfer through wall Lower MST VR Supply s j

/ N Heat load Figure 2: MST Mass and Energy Balance 15 of 19

CSA L-95-05 R1 vision 0 140 t 130- ,

1 J

120 t, - -

u. l ig110 3

s i

100 j

+ 116 to 1120 e 10-8 to 11-6 -in-GOTHIC 90 80 60 70 80 90 100 110 120 VR Inlet Temperature, deg F Figure 3: Benchmark Results 16 of 19

1 BSA-L 95-05 Rsvision 0 l Upper MST Temperature Response 190 -

g , .. .

180 l l

170 -

i l

l 160 , ,

E <>

{150 i , ,

1 A g5140 : L- 4 130-120 110 100 0 500 1000 1500 2000 2500 3000 3500 4000 Time, see Figure 4: Upper MST Temperature Response for 110 deg F VR Inlet,100 gpm l

17 of 19

l l

CSA-L-95-05 R1 vision 0 l

l Upper Steam Tunnel Temperature due to Steam Leakage i

I 220 l

' E 2%

//

180 '

/ / 7

u. 160

/ #

/

?

/

/ / l 1

{

W$140 , ( -+-65 deg F VR inlet

-e-95 deg F VR inlet

-*- 110 deg F VR inlet 120

/

100 80 0 20 40 60 80 100 120 140 160 180 Steam Leakage, gpm l

Figure 5: Upper MST Temperature due to Steam Leakage l

l

BSA-L-95-05 Rxvision 0 I

Upper Steam Tunnel VR Delta T due to Steam Leakage 120

/

/ '/'

/

100-80

/ (

n// ,

1

/

u.

p- 60

/ r  ;

40

/

-+--65 deg F VR inlet

-e-95 deg F VR inlet

-*--110 deg F VR inlet l

20 0

0 20 40 60 80 100 120 140 160 180 Steam Leakage, gpm Figure 6: Upper MST VR Delta T due to Steam Leakage 19 of 19

BSA-L-95 05 i

R: vision 0 Page A1 Appendix A - Microfiche Index Microfiche ID # of fiche Description NFSEBX 7537 3 Case C65-25,65 F VR inlet,25 gpm leak NFSEBX 7549 3 Case C65-75,65 F VR inlet,75 gpm leak NFSEBX 7595 3 Case C65-100,65 F VR inlet,100 gpm leak NFSEBX 7613 3 Case C65-125,65 F VR inlet,125 gpm leak NFSEBX 7624 3 Case C65-175,65 F VR inlet,175 gpm leak NFSEBX 7659 3 Case C95-25,95 F VR inlet,25 gpm leak 4

NFSEBX 7681 3 Case C95-75,95 F VR inlet,75 gpm leak NFSEBX 7699 3 Case C95-100,95 F VR inlet,100 gpm leak 1

NFSEBX 7723 3 Case C95-125,95 F VR inlet,125 gpm leak l

NFSEBX 7758 3 Case C95-175,95 F VR inlet,175 gpm leak NFSEBX 0451 3 Case C110-25,110 F VR inlet,25 gpm leak NFSEBX 0464 3 Case C110-75,110 F VR inlet,75 gpm leak

. NFSEBX 0478 3 Case C110-100,110 F VR inlet,100 gpm leak NFSEBX 0498 3 Case C110-125,110 F VR inlet,125 gpm leak NFSEBX 0505 3 Case C110-175,110 F VR inlet,175 gpm leak NFSEBX 0646 1 Case C65-0-B,65 F VR inlet, no leak NFSEBX 7852 1 Case C95-0-B,95 F VR inlet, no leak NFSEBX 7874 1 Case C110-0-B,110 F VR inlet, no leak NFSEBX 8063 3 Case C110-100,110 F VR inlet,100 gpm UST leak j NFSEBX 8108 3 Case C110-200,110 F VR inlet,125 gpm UST leak l NFSEBX 8111 3 Case C110-250,110 F VR inlet,175 gpm UST leak i

NFSEBX 8283 3 Case C110-100,100 gpm LST leak VR's Floated i

CSA-L-95-05 a Revision 0 l Page B1 Appendix B - Input Data Set Protection Form Station: LaSalle Unit: 1, 2 Cycle /Analycis:

i

/ '

y

_ z- -

EEiSm

?. .M

.EiEili3EEmilip y .; , . gggg-g .

. . . . EEliEiB gig po  :: -

EEiEEli-

gg .w,- -

=- -

-~

J DE5EEEiEE' i g;g .

7 ..-- .

EiEiSEEi!E g ,

g;ggg i EE - ~ EEEilEilliEiliR EH- EEEEEEEiB

~

Elli -

.. E E il E E i E li E li EB- IlliEIEiEEiE

~

EB z-iggggiggiggi;;

" " " " " = = = = " "

i -

liilillBilllHil mEmmsmammmmmmmmma meanssEs E- .

ili25 EEiEEi5 i B-

~

i iEliH EiliBiEi EEEEEEEEEEEEiEi2E5HEER IEiB EliEi3E  ;

i

I BSA-L-95-OS Revision 0 -

Page B2 Notes: 1) Info /se is not required. Begin eed fle location witi user id. F5e name should be desaipilve and include a means of identifying associated computer code.

2) Station, Unit, and Cycle / Analysis will define part of the deetnehon locaton ininfo.detsbenk/SA therefore, these are not need in the
  • Copy To* column
3) The SA Admin will place a check merk next to the verified chedunum numbers.

Author:

s, 9 Revie - -

,., A min: Date:

l BSA-L-95-05 Rxvision o Page C1 l

Appendix C - Supporting Calculations Contents l

1. Heat transfer areas, volumes and other geometrical parameters
2. Heat load forcing function l
3. VR inlet flow properties 1 \

1 j

1 l

l l

l l

l l

1

SSA- L- fM 1 Re> 0 NSl.

h  %- C g_

Y'

! I7b ( A-23+ )

..rI '

\

! HM i  !

,e 32' , y \

$2 5 A EE (A <

tof (A-L H)

Rjg gg s

- r ~~ n q

a:

=== '~

^ ~ Ela 7(oI O A ~(17 + 10 z ], ' 32-O

= 867 W Adjm,z m R a.,a19 i

s O (Ed M2. I

_.. .J _..

i

.g

_y _

i HN h 24. - 2 'q. < 21 '$ ff -;g g)

(a -z > >, > 3z' ll 21..Q A- 21 's x 32 = 673 fs' Eh, 768 '

A),n Au son nr .e a wa, of atau o.a -

1,2, ,

(cn :u ...n ,

- Aq.n,s c An 8 9 1. 78 7

85A -L- 1S'-o ET Ros O

?e C3 Oll.t gg3 T &, 7& r 'o , (M-14) g 762 - 4 2 .

l l

zl.f' p

III '

9 a88 7%'1"  !

(Hs t)  ;

gg; l

iii j Slw &*chas s lt a ff& aM () f,5 ft

~ '

bord e S&L M 3C 7- ogsp-ool a U FSA R &m l-l ,

.ree H. 3, 2,2 l,  ;

A = 32 x 26.f - 26 I h' \

HS4 Q 6 \

i \

l 26.f' f I (HS%) i e i

, -J

[M' 2 l'8 "

Gs2) I- ;

/- 2 y 26.9 ' x 21Y - // f> f i

t  !

- 4-aM- -

=

l 6

BSA - L- 15-0 5 e c5 l+ 2 7 (Cs~~ r uns )

At 740 'O" ECC '

fil . 6'.._s 1

N agg 35; ' '

(A-no) \

$$$ g = to'f t 3 'f'+ 25 / + 10 2 h e

' f-,

  • 41.5'

~\ 4 0=L'h /8" S-2x415(2xt?ig 1r -

31.1 A - s x Lt .o ess-

= 6I9 f $

= 31.1 x111 l

l l'

l l

l

b SA - L- 15-oS e/ O

& @ c cb H S 8' MCIB q' s T- $gg 7ab,7,,

I H5f 26I '

( w t usr) c.l p g

706,o..

4 s I3 I9' lll __L. _ W " S T) asy 687' act 1 32  :

o i F(HSI) 'i "g""

2(o.I x 32 = , 83 s' R *

/t=8

$* k. E (UFSAR &jua l1. 3. 2. 21) 1 Aa " l1 x 32 ' 608 h* .

MS [ Ca l. a

@ T d p w@ s @)  !

av ;4 l

==-

f@ '

x'1 4 i+

l i

.2_ g ._. t 4 J, . -

f, = @-3) - b,-tu

= 3 x2 (, - i' 7t' - 2 + ( A-tt, A-1t)

  • 72 - I. h 5 - 2 a s = 74 '

L2

=

3 0 - I'7l ' 2 + " = 26' ( ,, )

4- 2 3 - i 7i * + 2 '4 ' = l f ( .. )

t, = 2(, '

  • 2 '4 " + z 'f - 3 0 7 '

l Ar= J,-4 = 55

B SA - L 05 no HS 9 (cau) ap C7 4- 4% - (3 -I'7E) 26 + 30 7 - /. 375 = 59, 3 Ay= h (to xI O ) = 5'O ft A 7.czc 1, x J, t 14 x1, t A, 555 " 74 Y 2f f 30.7x55 + 50 d .

= 3663 ft '

l 1

HS IO 7?l'7 '*- 30.b '

H S 10 p .-

c-l 7I 0 b- 4'b'i 70b' b e7 ,, zer At j u

fn 1 (tf 5 2)

=

l (2I.l7 + 32) x 30.b

=

lb+2 ft' h.i = (21.67 + zi. 6') x I 1

- 82 5 ft*

(A t is {, ur of ka MST) l

I I

BiA -L o r k'? c8 HS // ( n, f y,, us7 ,

784, 7)

@ n, @

a

\

loS *) ,}

I I7 (^-234) l lll

~

l ~ k (no'd) (A-zsa) \

.y thi a 5' ti .

A - 3 2 x(5+ i,) - 70 4 (HE3)

\

C&ck,ars = 4 5' NS I?-- (Finr of uu /m asi MET sh(t) enfui.t3 \

/= Ans, = af&s (c' NS/3 Sa H 2' Aa 608 fr*

H S I b con no-ets 5 ha Mg7

Ii ESA -L 05 Ru o MS I4 (kuhisTmas)

L= 706 - 687 = l f '

Bras i = 1, +)z + J 3  % t- Ag (Hs1) lll - 74 + 26 + 11 + 30,7 F 55,3 nn =zog'

( :a wo a< Au lll A= 20 5' x If +Ac =

3275 + 22 3 = 4718 (f

$, 2Ltle = 3. 5 ' (nFSAlt App2~n H 3 2. 21) 14Sl5 (ku 'AST (tw uda vakt skre) y M' , A A= 3 2 x (z 4 - 2 '+ " - (, ')

50I ft.

I l-l Silo { Mik MST~ cik "'dL)

A= 30.6 x 21. 67 - 46 2 4't' l t

NSib at dw 3 W Aax ply

~t 78' T .

cahd sfm

l \

\ esA-L-15-05 HC VL ' M*

g' gr MST (k I )

> a l ,./

lil ._ 'T ]!

z7'r . i f.Sc g

. I ed.

J y 'n' /,bz_'_ 2 % 7.3 6 '7 ,,

- L_ 21'?,, ;.

-= ,

' 22

( U $4 cerky oL,' m 3, m

{ CQnSerV dew.

( ,

Vk = l9.1 x 32 < 27 l7

+ 26. 7 x 32 x 2 I. 67

= 17, 3 0 2

  • I t, 6 5+ - 357sf ft' \

Pa a.ca = 32. X22

  • 70+fc' q _ A G2 x ! 9. 9 ,

24 g pc 2(32+11.4)

( .

\,

BS/-L o.7 Ruo ,

i P y c ti W of k usr (se r)

V ~ Aq x if + ' hsis xAtofHS13 \

= %b3 xi f + colx i1 - 79, til (c' \

Pd uu. " A,uy + ksis = 3663 + Sol- ef + R*

/

f X SSR 11 R8g p, > :. _ z(55+-,t) n; 5 (.cc n 9 )

p, ' , 4 x74 "'t m , 39,2 j

z ( 7+ + t 9 )

g' '

Ds = if (Dx, + k )

  • 21.2 \

V A ~ e f u d 4 4- MlT(l%4)

V = 217 x s2 x nt 21,247 Pb" Ik uu. - O Di = kli,]l,f = 25,7 fc l

l

BSA - L - f 5-05 Ro o l Pag, c iz l Gl.edaZ;&n s j b~~ 4 3.7 q - 748 '- 4 k lll ,

- - - - -? y3g, '- 7 "

m

-- ia va s 30 7 l Run

-f --- yof' t9' /'rl f a _

e sgy-74'

(

i-I l

ISSA -L- 7 5-05 10 z Cl3

\

Ftw PaQ l

FP " l \

3 , , , , ,, . ,

gp

~ 6 73 ft"  !

Eli p, - 4xM' . 2 5,g' fc R8$

2 x(52 4 21.7) a

  • 5' ' '

L =

( B o.7+ 2D ) k 4 .

r=P

  • II

/= 32 x 21. 7 47s Pt \

9, . DM' '

. 2 r. 8 n. l u(a 2+ 2 f.7)

L k (741- 30 7 ) " ' '4 ft .

I k

l

.1

.L

- . . IBSR- L- f5-05. L \

-)ga o

. .i -

a-..

k, c (4

. . . . - i Md Losc T4cn 1ssE.t /k .

t ,

1 l

A _ . . .

..G 111 3g a 4 . .. A 4 -

.(

as:

- (2- t1), %% ) . ~

~~~

Tidd

~ " ~

iii . . .

5< a. ~ fx~ed ~~~,a, h is ~ d ~~~~

h ~ ~ ~ '

..]%1 rG ih tsdL XK.L.

f:p

~

, & ~ ~~ T i

' . . . ~._~. .~ frsf... E.7m. is.. .. .c. a.r .L. . . I. , ... b ic.ua. . A_ c is ~

cnctu .

~~~ ~

dE to ,

~~ ~

Vli[L in ~ c4 h, . _

( .:Y.

._.. .... _ a -J _ . _ J. .tz.ca-, Lz .. asr A ca s Lfs ,. .

~~: . TAvipz &

.. ~4 M tt3 K~ % 3

~

. ..L - .' I IL c- e tf~ ! - L. ye 6,. .h. &Os .

w. R % g u s ,2 , n af a , n sn ,

of

^~ . . . .R seu

~

c--J %cL G~r- t ktws

~ ~~ ^ ~ ^ ~ Tk Js i4 HTC, Ao, & A % w of

~'

.... _. .A L. .^' J." r J 4 r & t@ .6TGsL.

^

_ _ __~.

. . _ . , . . . . . 4= c c s T'^ .

~

^

L- A c

( T'- T e

[ c. (7;'+ ()(p r)(r;-rg) sT .- . . .

7T ---- - -- - -

3 ~ ~' ~ ^

4 - A c + A, cae msa. as .icKk

. . . 1.sc rusa l or

/

tLt /x J G b a usa .

.. . J .J .

i LJ L .B M-L- f 5'-of

, . . L _'.- .. . . . L .J . .,_.1 Ruo ..

2 deer l a s % K M iP W Cf x) fY Ij' IJfji Clf

~ ' '~

l

. ... ...._._.._J i'. ] . _. . . . _ . _ . . _ _ .

7 l

., K - u u n, nr %& i nai-r . .

.4 . . . . .

s .,~ o

.[

w of.. ..M T . k.p . . .: .~2.

D:~ra of Fkl ha ., ; 2+"

^ ~ ^

yy . .

l

+, ... . . . . _ . _ _ . . . . . . . _ .

ll,; y,a 2.4t--Stem. - - *M E.2- 72 ;-- - - - - -

(

yy .Tk a p,. -_ .n.. o 'F _~W~.~_W. % . . .

a 1 - o.2

..4.o.d. f=.-..a 2(, '. u. . ;--

_ . . ,o . .

d ._ __ /N . k .

AIh .# Y .M df.

...- i

( ..

.._.. To ._.... cea._..V w ir; _% f...,_.. 4,ct ~. w \

duT~ knN ~ a.]~. K , a l l li f I f 2

  • F ,

ca cu ..nss&.:Al~ .M. Lis ..cssG3 ~

^

a IWF. k Aur M ca r

~

is g Za fw A Q ng A; cm.ruids . Si~ET(dL ~~

fr.c}% .

sI <w sw.)

~ ~

~

, , 4 kJ. h~.'... hk . .. 7.5' F, '. 0K._. ~ .

.LL .Ct & .Velut. .. a.l~ l}6 #. f, ' Gm - .

ty Jwa bM 75'F ~> >wr Why . .

~

o Th u. y % ~~k a k A ~ ciE[if7

l I

!J.t.Lt.J_LL.Ii:  ! I i tiu i l l..L ._;_SSA.--b fs.ys- '

-. ... ._ t ._.m..._..

I 2_L. ,

(' '., .

.4.J. L.L_1. L t...J iI--. '

id t I ! L[..L e0. c ..C /b I I L.)

.. W. . . . . . Loss . . H. . .o. r , yp. _. _ . . a~ . J... . .. W u C a. . .. ._

j

. v -

l t

. ~'

J 2 .A .insia. fl., rss.' st&'_ _.+-ffhr.'rtq' _.

. - _-.-. ? NSWrn. Nro.t f S. t AS'dL flffet Cf I

lll sdm. ' f L <mst- y

.._.j. ,.. ,

- RS - - - - - - - -

. A c,,, ,, . + 4 a . m ,,,, __ ._ .. _ _ _ .

,,,3

. g'

. lFg p t_ _ gms

~ u A . M., ,

1 I

furn / 37, ~ ^

~

~

, ~. 1.31 .5 '

.n..... .... - ., ..

))

hf - o l'ot f $ 'stw ..Cf .

'#  ?. s '*' .

. .. . . . . . . . . . ,. J . .: . -

l3 .. ..

g ~

. _ j g,,, .

~~

' g'4, . - . . . . . . . . - _ - . . .

{

g, i

. . - . .. . _.. . y . . ~

- .j' 3 7 1

. ~d]z8 ,

. I. O . ~/ .. . . _ . _ , . . . . . . . . . . .

. . . . - _ .!...- . 7, g . _ . - . . _ - . . . . . .

. x a .ys .f , .,.

.c 4C- 4_ -

r cN O f,,,,

.-. _._. '.. . .. h . . h_ . 's. d d 2, . -.

g,,g (g)g .

W 4m e... .e e _. .s m.p e

0. 2f f _.

p . us/~6.t. - .!..

'~ ~ ~ ' ~

~

g =

9, , Ys

~

'(tttt ADiRAE W7!a}c-Qt - - .7 io,2 A .

y bc ._N_v.vea_/,-k ' . 2.kA l}'-

1

.. _ _ . 2 w ; , .., c , a ,

ef .. o. 3... _ ...a--

m-Apa s's .

%. uda.< of 0.7

I

. t s.n. w q

~ T~Qp) L--q' g a5

. +

l Whaick WLZa r.di (O ' Rs o. .

. i . ..u u.w+MrWj u1 . .

j-i i

%' c /7._3..

e i

_ .L.

= 1 0 ,* l.

.. n..., v.u r i co .'I F C ,3_ .3. _

l . . _ . _ _

' I .' ,i l j f

=p/yy-

~~

. .. . . _ . .. o . _..g , p +. 0,

,. ._ _ ~~1.._1 ~; ' ~ ~ ~7 I.

}j.

  • , l I

._l w! ._ l l . .

4; _j 73

. 1

.__ :g w . .%, ) , . _. t, ,,

_ . ._ . + . - } ,.0__*a - -. _7j . __. . \ ,

i  :

. . . . _ . _ _ i _. ' ; . . .

. ._ -. .. ..q. _r. ,H_3.___.o

- = -

g o _ ._ .. .. Q._74 _ . _ . -

_f. _ _ 4 __ _t. _ . m

_ . . . _ ... .a . -

m

'_%M . nCT ne

_ ._7).04d = .

012.4.: ,

,e

. _i _0.12 . .. . . . ._8' -. -

an .

o .. , ._ - . '. hedL. .ML _:_.. ( n * $, _ . [. ,

v't __, 4.*.* }r_0. ,
i
  • 7 _ ,..i..._

i i .. . _ . . . . , ..,_3

' .g. . I ..t..' _. ,

.._..._-.i..i h j ', +h '

.s -I s Il ..'L.** )! ' *

  • s j. . -

_.-_....L_'_'. I j._ 4_.i __L.,. _. .,.- _ . . . - . _ . _

L 1. s . A_4 ._ L 1 I b_l_ l/ ! L' d...}L._ _l ' ' O I"

2. _. . . .I . . __ ___,I. I_ .

. _ _ - . _ _ . _ _ _ ._._.1_ . L.._ - l - l,.___7_....__. ___ . _ _ !._ _ .

,,it . {. i i e i q i. .

l . . t i. e l i t r

7 . 4. . ..__.. _ : . .

. [.

' 4_.Q._ L . _ .. . 7., .q- .

E i . . _ .

. - _ _ . ,. . ,i_ . ,, , ; .

.r, . -.

s , .

'j t t

. _ _ _ . . . _ . 1 _ .___ - -. - T 'l '

l ;

j.} i j - T- ! '

i , . .

! l

. . i , i i

f.  : __. . _ _ _ l. . . ._

i * ,

. h. . L . .

j __ . . . . . _ . . _ g.

. 1. _ .,

._: J .. _ .. . _i . _..

t

. . . . , _ ,w i l !: '

m .. .

l i l . _ _ .

3

._ 7 ._

a . . . - . . ..A... _ ... _ . . . . .. . . . _ . _ _ . _ ,

_ _ _. _ .j.__. . I 7 . _ . , . . ,

. .h, , '._.i .

_.4 __ .c .

. .a .

. . . . ._. _....._..___._.__...._.___._.__m_.i__ . _ _ _ _ .

. _ . . .-__.,.a...._.- i

... ; - 2 f! ! J ' j_..t_f_._1. .  ! 1. _ . . _ _ _

..7...___..._.___.-_._.._,. ,

1.. . .

7 ._ . . _ _ _ ._. 7 . 7. . . . _ . _ , . . . . - -

i i ,. e i

, . ,2 . . . . . . . _ . _ . _. _ 1 _ . . ._

\

l - .

._ ._ . - . . . _ . . _ .._g._

l

_7 . , .,._p_.__.9___.. .-. .. - _ _ . - .

LaSalle Main Sterm Tunnst Normalized Haat Load Curva BSA-L 95-05 R;v. O Page C18

, From Table 10.1 1, LaSalle UFSAR: MS temperature = 540.3 Fand FW temperature = 420 F.

I For 26-in MS pipe Ambient T Operating T Delta T O(500) O(600) O(540) UA=O/DT 75 540 465 556.8 619.1 581.72 1.251011 90 540 450 541.7 606.3 567.54 1.2612 104 540 436 527.4 594.3 554.16 1.271009 122 540 418 508.6 578.4 536.52 1.283541 148 540 392 480.6 555 510.36 1.301939 Assume U=1.301939 at T=300:

l 300} 540l 240 312.4653 _

Assume U=1.251011 at T<75 l 45 540 495 619.2503 l 60 540 480 600.4852 For 24-in FW pipe Ambient T Operating T Delta T O(400) O(500) O(420) UA=O/DT l 75 420 345 454.6 517.8 467.24 1.354319 l 90 420 330 437.4 503.7 450.66 1.365636 104 420 316 421 490.4 434.88 1.376203 122 420 298 399.6 472.9 414.26 1.390134 148 420 272 367.8 446.9 383.82 1.410368 Assume U=1.410368 at T=300:

300l 420l 120 169.2441 l

{ Assume U=1.354319 at T<75 45 420 375 507.8696 ,

60 420 360 487.5548 l Composite O curve Ambient T 4*Q26+2*O24 Norm 45 3492.74 1.131655 60 3377.05 1.094171 75 3261.36 1.056687 90 3171.48 1.027566 104 3086.4 -1 122 2974.6 0.963777 148 2808.68 0.910018 300 1588.349 0.514629 k

MSTHEAT1.XLS

\

-= . - _ - . . . - - .. .

LaS lle M:Jn Stum Tunnel Normalized Hut Load Curve BSA-L-95-05 Rev.O Page C19 Normalized Heat Load 1.2 1

0.8 -

0.6 l+ Series 1 l

"' O.4 -

l 0.2 -

0 0 50 100 150 200 250 300 l

! Ambient Temperature, dog F l

1 l

l t

1 MSTHEAT1.XLS

6- ha mesa J e--- b. 4* *h A e1,--.$ .h 9- -SIE-JM ,L-- 1 4 -- 1u 4 aaAsm, --mA A &" - l-**m** --sa- -n-(bSA -/_-9.5-05 Ru o Ol'$ Wf ff9fLt f,a z e Czo T= 120 'F b =

$ srof.

ggg (sr - i.67u pa e aor i

  • H (L * $ x f.cc = 0.2+lz .

. ac N

  • 0 b2If[ -

$ ' =

f'N O. 8+b-

\

0.62 / 77 A I4: 614-0.8462

=

0.O38 flyallj,,

p Rr T~ .

ra, srz x (4&a + 120)

<~ ~

l3,k18 x I4+

l f-(ht

/6,57 6 '/ lam (o= Ih (I+ d)

=

,g gg (l + 0,038) = 0,06 7 my,,. = 2% 000 x o.o G 7 > h24. 2 tb/u EsL~L Q, a A , ,,,

7 120 + 4bo ' I A, a 400*0obl(igoagojT6"50 s y,a -

%7 + 24.8 - 5 = GG. 5

\

l /3 SA -L- f5-os' l RuO Pa.ge c2I JAnst~ ac pyCu T = 75- ' F

  • 502 lll fsa- - o.als3 ys.x a 75' F 6 -
0. 5 r o. h r 3 fa = 9 'pa- o, +o 77 ys,r 5 k) " 0. 6217 8 ( j 0 'T" ',

7 h~ (. a MOnb )

O.4077

  • 0 b*'1 E i+,67b- o.+o77 0,0172 Ils / Il, d' Rn T y ( Eg. 2.c) r 'l'
53. ss2 - (440 + 15)

/

~ (/676-o.fo77)x #4

- /4,39 fc'//1,

^^'% '

( f(i + ai) CE . f

=

,4, {l+,017A) l

=

~

0. 0 70 7 lhlpp) l 1 .

l

i Sheet 1 BSA< L-95-05 Rev.0 Page C 22 Air Properties Last Page T 65 95 110 Relative Humidity 30 50 30 Sat. press. 0.3056 0.8153 1.2748 Vapor pressure 0.09168 0.40765 0.38244 Humidity ratio, W 0.00390454 0.017745 0.016619 l Specific volume, IbwAba 13.3188331 14.39127 14.75419 density, Ibmix/cu ft 0.07537481 0.07072 0.068904 Lo HVAC in, cfm 40000.00 40000.00 40000.00  ;

Lo HVAC in,Ib/s 50.25 47.15 45.94 l Up HVAC in, cfm 24000.00 24000.00 24000.00 Up HVAC in, Ib/s 30.15 20.29 27.56 Lo HVAC out, cfm 4600.00 4600.00 4600.00 Assume temp rise 15.00 15.00 15.00 Lo HVAC out,Ib/s 5.62 5.28 5.15 Up HVAC out, Lb/s 74.78 70.16 68.35

. ["-

t LASALLE\MSTMIR.XLS

BSA-L-95-06 R: vision 0 Page D1 Appendix D - Summary of inputs and Results

(

i

- m BSA-L-95-05 Rev.0 Page D2  ;

Case Base Filename C95-25 .

C95-75 C95-100 c93-125 C95-175 c65-25 c65-75 c65-100 c65-125 c65-175 HTC options C C C C C C C C C C i Steam leakag2gpm e 25 75 100 125 175 25 75 100 125 175 Steam leakage,Ib/s 3.48 10.4 13.9 17.4 24.3 3.48 10.4 13.9 17.4 24.3 Boundary Conditions:

Lo MST HVAC in Temp 95 95 95 95 95 65 65 65 65 65 RH 50 50 50 50 50 30 30 30 30 30 Up MST HVAC in V400 V400 V400 V400 V400 V400 V400 V400 V400 V400 Temp 95 95 95 95 95 65 65 65 65 65

  • RH 50 50 50 50 50 30 30 30 30 30 Lo MST HVAC out 0 0 0 0 0 0 0 0 0 0 Up MST HVAC out V 1159.0 V-1159.0 V-1159.0 V-1159.0 V-1159.0 V-1163.67 /-1163.67 V-1163.67 V-1163.67 V-1163.67 Add.Lo HVAC out 0 0 0 0 0 0 0 0 0 0 Add.Up HVAC out 0 0 0 0 0 0 0 0 0 0 :

Volume initial temp:(init RH)

1. Up MST 124.6(30) 124.6(30) 124.6(30) 124.6(30) 124.6(30) 95.5(15) 95.5(15) 95.5(15) 95.5(15) 95.5(15)
2. Aux Bldg 104 104 104 104 104 65 65 65 65 65
3. Rx Bldg 95 95 95 95 95 65 65 65 65 65
4. Containment 130 130 130 130 130 130 130 130 130 130
5. Lo MST 110(30) 110(30) 110(30) 110(30) 110(30) 80(15) 80(15) 80(15) 80(15) 80(15)
6. Mid MST 114(30) 114(30) 114(30) 114(30) 114(30) 84.5(15) 84.5(15) 84.5(15) 84.5(15) 84.5(15)
7. Reactor Bldg 95 95 95 95 95 65 65 65 65 65
8. Aux Bldg (conditioned) 75 75 75 75 75 75 75 75 75 75 l up MST heat load 332.5 332.5 332.5 332.5 332.5 332.5 332.5 332.5 332.5 332.5 mid 45 45 45 45 45 45 45 45 45 45 lo 175 175 175 175 175 175 175 175 175 175 f

I l

BSA-L-95-05 Rev.0 Page D3 ,

Case l Filename c110-25 c110-75 c110-100 c110-125 c110-175 HTC options C C C C C Steam leakage, gpm 25 75 100 125 175 Steam leakage,itVs 3.48 10.4 13.9 17.4 24.3 Boundary Conditions:

Lo MST HVAC in Temp 110 110 110 110 110 RH 30 30 30 30 30 Up MST HVAC in V400 V400 V400 V400 V400  !

Temp i 110 110 110 110 110 RH 30 30 30 30 30 Lo MST HVAC out 0 0 0 0 0 Up MST HVAC out V-1157.17 V-1157.17 V-1157.17 V-1157.17 V-1157.17 Add.Lo HVAC out 0 0 0 0 0 Add.Up HVAC out 0 0 0 0 0 i

Volume initial temp:(init RH)

1. Up MST 139(10) 139(10) 139(10) 139(10) 139(10)
2. Aux Bldg 110 110 110 110 110
3. Rx Bldg 110 110 110 110 110
4. Containment 130 130 130 130 130
5. Lo MST 124.5(20) 124.5(20) 124.5(20) 124.5(20) 124.5(20)
6. Mid MST 128.5(15) 128.5(15) 128.5(15) 128.5(15) 128.5(15)
7. Reactor Bidg 110 110 110 110 110
8. Aux Bldg (conditiorwi) 75 75 75 75 75 up MST heat load 332.5 332.5 332.5 332.5 332.5 mM 45 45 45 45 45 lo 175 175 175 175 175

^

,- m.

BSA-L-9545 Flev.0 Page D4 ,

Case UST Leak UST Leak UST Leak LST Leak Filename ci10-100 c110-200 c110-250 c110-100 HTC options C C C C Steam leakage, gpm 100 200 250 100 t Steam leakage,Itvs 13.9 27.8 34.75 13.9 Boundary Conditions: ,

Lo MST HVAC in Temp 110 110 110 110 RH 30 30 30 30 Up MST HVAC in Temp 110 110 110 110 RH 30 30 30 30 -

1 Lo MST HVAC out 0 0 0 0 i 1 Up MST HVAC out V-1130.5 V-1130.5 V-1130.5 V-1130.5 Add.Lo HVAC out 0 0 0 0 Add.Up HVAC out 0 0 0 0 ,

Volume initial temp:(init RH)

1. Up MST 139(10) 139(10) 139(10) 139(10)
2. Aux Bldg 110 110 110 110
3. Rx Bldg 110 110 110 110
4. Contamment 130 130 130 130
5. Lo MST 124.5(20) 124.5(20) 124.5(20) 124.5(20)
6. Mid MS5 128.5(15) 128.5(15) 128.5(15) 128.5(15)
7. Reactor Bidg 110 110 110 110
8. Aux Bldg (conditioned) 75 75 75 75 up MST heat load 332.5 332.5 332.5 332.5 mid 45 45 45 45 lo 175 175 175 175 l

_. __ _ _ - - _ _ _ _ . - _ - . _ . _ _ _ _ - - - _ _ . _ _ _ _ . _ - - . _ . --____-u..-- _- m .e , ,n .mv. . . - - . ,

BSA-L-95-05 i Rev.0 Page D5 Case Base Filename C95-25 C95-75 C95-100 c95-125 C35-175 c65-25 c65-75 c65-100 c65-125 c65-175 Results:

At t = 1000 secs Up MST T (Vol 1) 122.9 122.9 122.9 122.9 122.9 932 93 2 932 93 2 93 2  !

Mid MST T (Vol 6) 112.8 112.8 112.8 112.8 112.8 82.8 82.8 82.8 82.8 82.8  !

Lo MST T (Vol 5) 109.3 109.3 109.3 109.3 109.3 792 792 792 792 792  !

Lo HVAC T increase 14.3 14.3 14.3 14.3 14.3 142 142 142 142 142 3 Up HVAC T increase 27.9 27.9 27.9 27.9 27.9 282 282 282 282 28.2 l At t=1582 secs Up MST T (Vol 1) 135.7 161.8 173.5 181.9 201.5 104.6 137.3 151.3 164.4 183.7 Mid MSTT(Vol 6) 135.6 180.0 200.3 214.1 249.1 112.0 159.0 1822 204.7 238.5 )

Lo MST T (Vol 5) 132.7 178.4 199.6 214.6 251.9 112.8 157.2 181.1 204.5 241.1 [

Up MST T increase 12.8 38.9 50.6 59.0 78.6 11.4 44.1 58.1 71 2 90.5 Mid MST T increase 22.8 672 87.5 101.3 136.3 292 762 99.4 121.9 155.7 Lo MST T increase 23.4 69.1 90.3 105.3 142.6 33.6 78.0 101.9 125.3 161.9 Lo HVAC Tincrease 37.7 83.4 104.6 119.6 156.9 47.8 922 116.1 139.5 176.1 Up HVAC T increase 40.7 66.8 78.5 86.9 106.5 39.6 72.3 I*.3 99.4 118.7 i At t=2782 secs  !

Up MST T (Vol 1) 135.9 164.1 174.6 188.0 204.3 107.9 142.6 157.2 168.1 190.8 Mid MST T (Vol 6) 136.1 183.4 201.4 221 2 256.8 114.6 165.6 191.0 210.1 250.6 to MST T (Vol 5) 1332 181.6 200.7 221.7 261.4 114.9 162.7 1892 209.8 254.6 I

Up MST T increase 13.0 41.2 51.7 63.1 81.4 14.7 49.4 64.0 74.9 97.6 i Mid MST Tincrease 23.3 70.6 88.6 108.4 144.0 31.8 82.8 1082 127.3 167.8 l Lo MST T increase 23.9 72.3 91.4 112.4 152.1 35.7 83.5 110.0 130.6 175.4  :

Lo HVAC Tincrease 382 88.6 105.7 126.7 166.4 49.9 97.7 1242 144.8 189.6  !

Up HVAC T increase 40.9 69.1 79.6 91.0 109.3 42.9 77.6 92.2 103.1 125.8 I i

I p

P i

i

e m BSA-L-95-05 Rev.O Page D6 Case Filename c110-25 c110-75 c110-100 c110-125 c110-175 Results:

At t = 1000 secs '

U 1 MSTT (Vol 1) 137.4 137.4 137.4 137.4 137.4 Mid MST T (Vol 6) 127.3 127.3 127.3 127.3 127.3 Lo MST T (Vol 5) 124.0 124.0 124.0 124.0 124.0 Lo HVAC T increase 14.0 14.0 14.0 14.0 14.0 Up HVAC T increase 27.4 27.4 27.4 27.4 27.4 At t=1592 secs Up MST T (Vol 1) 148.0 171.8 182.5 190.0 206.4 Mid MST T (Vol 6) 146.5 188.3 205.6 219.0 252.9 Lo MST T (Vol 5) 1442 187.3 204.8 220.0 255.9 Up MST T increase 10.6 34.4 45.1 52.6 69.0 Mid MST T increase 192 61.0 78.3 91.7 125.6 Lo MST Tincrease 202 63.3 80.8 96.0 131.9  !

Lo HVAC Tincrease 342 77.3 94.8 110.0 145.9 Up HVAC Tincrease 38.0 61.8 72.5 80.0 96.4 At t=2762 secs  !

Up MSTT (Vol1) 148.0 173.1 183.3 192.3 211.1 Mid MST T (Vol 6) 146.5 189.8 207.3 225.7 258.9 Lo MST T (Vol 5) 144.3 188.6 207.0 226.5 263.7 Up MST T increase 10.6 35.7 45.9 54.9 73.7 Mid MST T increase 192 62.5 80.0 98.4 131.6 Lo MST Tincrease 20.3 64.6 83.0 102.5 139.7 Lo HVAC Tincrease 34.3 78.6 97.0 116.5 153.7 '

Up HVAC T increase 38.0 83.1 73.3 82.3 101.1 t

[

n m BSA-L-95-05 Rev.0 Page D7 Case UST Leak UST Leak UST Leak LST Leak [(ast pq J Filename c110-100 c110-200 c110-250 c110-100 / /

Results:

At t = 100-? m Up MST1 (Vol1) 137.9 137.9 137.9 137.9 Mid MST T (Vol 6) 127.9 127.9 127.9 127.9 ,

Lo MST T (Vol 5) 124.5 124.5 124.5 124.5 Lo HVAC T increase 14.5 14.5 14.5 14.5 Up HVAC T increase 27.9 27.9 27.9 27.9 At t=1592 secs Up MSTT (Vol1) 196.7 253.0 229.3* 1882 Mid MST T (Voi 6) 135.7 150.1 132.8* 195.1 Lo MST T (Vol 5) 131.1 144.5 129.8* 194.3 Up MST Tincrease 58.8 115.1 91.4 50.3 Mid MST T increase 7.8 222 4.9 67.2 Lo MST T increase 6.6 20.0 5.3 69.8 Lo HVAC Tincrease 21.1 34.5 19.9 84.3 Up HVAC T increase 86.7 143.0 119.3 782 At t=2762 secs Up MSTT (Vol1) 195.9 252.5 N/A 187.8 Mid MST T (Vol 6) 136.1 153.5 N/A 193.7 Lo MST T (Vol 5) 131.4 147.1 N/A 193.0 Up MST Tincrease 58.0 114.6 49.9 Mid MST Tincrease 02 25.6 65.8 Lo MST T increase 6.9 22.6 68.5 Lo HVAC T increase 21.4 37.1 83.0 Up HVAC T increase 85.9 142.5 77.8

  • Twne at whch either VR inlets choke (1092 seconds)

CSA-L-95-05 Rivision 0 Page E1 Appendix E - GOTHIC Input Tables and Results for Case C110-100 l

l l

l l

l l

l 1

\

l

c110-100 BSA-L 95-05 t Fri Jcn 12 09:45:23 1996 Riv. 0 GOTHIC Version 4.1(QA)-c - M2y 1995 Page E2 e

e ,

i y - - - -- - - - - :

. . ,D...______..,.

: .  : i l l l l 5---- -

12F i

N k I----

I l ,

I s

. . . . . . . , h u....... $ , ,

14F '

(' IV 9P _yn l j y,

.----' l... ..... ....

l 11F , , g ,, . .

l ,, , ,

g, l

! I ld U .5 1

e s___11 .. %..10F .

j

!. j ....

..._..g_.. .

l e

. {7 .

1P

e

. l .-

...... m 7, E

s-,- -

c110-100 BSA-L-95-05 Fri Jan 12 09:43:25 1996 R:v. 0 GOTHIC Varsion 4.1(QA)-c - May 1995 Pcg3 E3 Control Volumes Vol Vol Elev Ht Hyd. D. Pl Area Burn

  1. Description (ft3) (ft) (ft) (ft) (ft2) Opt 1 Upper MST 35956. 736.6 26.9 24.5 704. NONE 2 Aux Bldg 1000000, 687. 87. 30. NONE 3 Reactor Bldg 1000000, 687. 87. 30. NONE 4 Containment 1000000. 736. 87. 30. NONE 5 Lower MST 79116. 687. 19, 29.2 4164. NONE 6 Middle MST 21249. 706. 30.6 25.9 0. NONE 7 Reactor Bldg 1000000. 687. 87. 30. NONE 8 Aux Bldg (contr 1000000. 687. 87. 30. NONE l

l Fluid Boundary Conditions - Table 1 l

Press. Temp. Flom ON OFF BC# Description (psia) FF (F) FF (lbm/s) FF Trip Trip 1P Lo MST HVAC in 14.7 3 110 0 0 0 8 l 2F Up MST HVAC in 14.7 110 v400.0 3 8

) ( 3F Lo MST HVAC out 15. 0 3 8 l

4F Up MST HVAC out 15. O v-1157. 3 8 0 l 5F Lo Steam leakag 55. E1189.9 13.9 2 4 0 l l 6P Pressure sink 14.7 100 l 7P Pressure sink 14.7 100 8P Pressure sink 14.7 100 9P Pressure sink 14.7 100 l 10F Mid MST HVAC in 15. 93.3 0 l 11F Mid Steam leaka 55. E1189.9 3.48 2 7 0 12F Up Steam Leakag 55. E1189.9 3.48 2 8 0 13F Lo HVAC out - e 15. 0 0 2 8 14F Up HVAC out - e 15. -3.09 2 8 b

l l

c110-100 BSA-L-95-05 Fri . Jatn 12 09:43:25 1996 Rt.v.0 GOTHIC Varcion 4.1(QA)-c - M;.y 1995 Page E4  ;

/

Fluid Boundary Conditions - Table 2 Liq. V .

Stm. Drop D Cpld Flow Heat BC# Frac. FF P.R. FF (in) FF BC# Frac. FF (Btu /s) FF

1P h30 2F h30 l a 3F h40 4F h40 5F 1 0.004 6P h40
7P h40 8P h40 3 9P h40

, 10F h52 i 11F 1 0.004 i 12F 1 0.004 i 13F h40

, 14F h40 Fluid Boundary Conditions - Table 3

(

Gas Pressure Ratios BC# Air FF Ar FF He FF H2 FF i

i IP 2F 3F 4F

! 5F 0.

, 6P

  • l 7P i 8P l 9P l 10F 11F 12F 13F 14F l

i 4

c110-100 BSA-L-95-05 Fri J&n 12 09:43:25 1996 R v.10 GOTHIC Varsion 4.1(QA)-c - May 1995 Page E5 Fluid Boundary Conditions Table 4 Gas Pressure Ratios BC# Kr FF N2 FF O2 FF Xe FF 1P 2F 3F 4F SF 6P 7P 8P 9P -

10F 11F 12F 13F l

14F Flow Paths - Table 1

( F.P. Vol Elev Ht Vol Elev Ht

  1. Description A (ft) (ft) B (ft) (ft) 1 MST internal fl 6 736.1 0.1 1 737.1 0.1 2 Up MST HVAC in 1 760. 0.5 2F 760. 0.5 3 Lo MST HVAC out 5 700. 0.5 3F 700. 0.5 4 Up MST HVAC out 1 760. 0.5 4F 760. 0.5 5 Lo Steam leakag 5 700. 0.5 SF 700. 0.5 6 Lo MST HVAC in 5 700. 0.5 1P 700. 0.5 7 Up MST Blowout 1 760. 0.5 6P 760. 0.5 8 Lo MST Blowout 5 700. 0.5 7P 700. 0.5 9 Lo MST flow bal 5 700. 0.5 8P 700. 0.5 10 Up MST flow bal 1 760. 0.5 9P 760. 0.5 11 MST internal fl 5 705.5 0.5 6 706.5 0.5 12 Mid MST HVAC in 6 707. 0.1 10F .707. 0.1 13 Mid Steam Leaka 6 721. 0.5 11F 721. 0.5 14 Up Steam Leakag 1 750. 0.5 12F 750. 0.5 15 Lo HVAC out - e 5 700. 0.5 13F 700. 0.5 16 Up HVAC out - e 1 760. 0.5 14F 760. 0.5

. . ~ . .. . .. - . . - - . . - . . .- ,

c110-100 BSA L-9f>05  :

) Fri Jan 12 09:43:25 1996 R v. 0 l GOTHIC Varsion 4.1(QA)-c - May 1995 Page E6 Flow Paths . Table 2 Flow Flow Hyd. Inertia Friction Critical De- Mom

, Path Area Diam. Length Length Flow Entrmt Trn l # (ft2) (ft) (ft) (ft) Model Frac. Opt 1 693. 25.8 28.8 28.8 NO 0. -

2 10. 10. 10. 10. NO -

3 10. 10. 10. 10. NO -

4 10. 10. 10. 10. NO -

5 10. 10. 10. 10. NO -

6 10. 10. 10. 10. NO -

7 50. 50. 10. 10. NO -

8 50. 50. 10. 10. NO -

9 5. 5. 10. 10. NO -

10 5. 5. 10. 10. NO -

11 693. 25.8 52.4 52.4 NO -

12 10. 10. 10. 10. NO -

13 10. 10. 10. 10. NO -

14 10. 10. 10. 10. NO -

15 10. 10. 10. 10. NO -

16 10. 10. 10. 10. NO -

(

-e

c110-100 BSA-L-95-05 Fri Jan 12 09:43:25 1996 R:v.0 GOTHIC Varcion 4.1(QA)-c - May 1995 Page E7 i

Flow Paths - Table 3 Flow Fwd. Rev.

Path Loss Loss Comp.

  1. Coeff. Coeff. Opt.

1 0. O. OFF 2 OFF 3 OFF 4 OFF 5 OFF 6 le+09 1.5 OFF 7 1.5 le+09 OFF 8 1.5 le+09 OFF 9 1.5 le+09 OFF 10 1.5 le+09 OFF 11 0. O. OFF 12 OFF 13 OFF 14 OFF 15 OFF 16 OFF

(

(.

. - . - , . . . . ~ . . - . - -- . - . , - .- - .-. . -- . . - - .- --- __ ___ -_.

c110-100 BSA-L-95-05 Fri Jcn 12 09:43:25 1996 R5v 0 GOTHIC Varzion 4.1(QA)-c - May 1995 P!ge ES t

Thermal Conductors Cond Vol HT Vol HT Cond S. A. Init.

  1. Description A Co B Co Type (ft2) T.(F) Or i Up Ceiling E of 1 3 3 2 1 869. 134. X 2 Up Ceiling W of 1 3 8 2 1 693. 134. X 3 Up Sidewall alo 1 1 2 1 1 861. 134. X 4 Up N & S wall W 1 1 2 1 1 1166. 134. X 5 Up N & S wall E 1- 1 3 1 1 1081. 134. X 6 Up Wall along J 1 1 3 1 2 .80. 134. X 7 Up Containment 1 1 4 1 2 619. 134. X 8 Mid E wall alon 6 1 7 1 1 835. 124. X

.9 Lo Ceiling 5 3 2 2 1 3663, 120. X 10 Mid MST walls 6 1 2 1 3 1642. 124. X 11 Upper MST floor 1 2 3 3 1 704, 134. X 12 Lower MST floor 5 2 2 3 1 3663. 120. X 13 Low E wall alo 5 1 7 1 1 608, 120. X 14 Lower'MST walls 5 1 2 1 3 4718. 120. X 15 Lo MST floor 5 2 2 3 1 501. 120. X

. 16 Mid MST side wa 6 1 8 1 3 663. 124. X

-. i Heat Transfer Coefficient Types - Table 1 Heat Cnd Sp Nat For Type Transfer Nominal Cnv Cnd Cnv Cnv Cnv Rad

  1. Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct XOR UCHI VERT SURF OFF ON 2 Direct XOR UCHI FACE UP OFF ON 3 Direct XOR UCHI FACE DOWN OFF ON Heat Transfer Coefficient Types - Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T
  1. Opt Fract Fract Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw '

3 VAP Tg-Tf Tb-Tw k

I c110-100 BSA-L-95-05 l Fri Jcn 12 09:43:25 1996 .

Rty. 0  !

GOTHIC Varsion 4.1(QA)-c - Msy 1995 PTg3 E9 i

Heat Transfer Coefficient Types - Table 3 Char. Nat For Nom Minimum Type Length Coef Exp Coef Exp Vel Vel Cony HTC

  1. (ft) FF FF FF FF (ft/s) FF (B/h-f2-F) i 1 -1. 1 2 -1.

3 -1.

1 HTC Types - Table 4  !

Total Peak Initial Post-BD l Type Heat Time Value Direct l # (Btu) (sec) (B/h-f2-F) FF 1  !

2 3

l Thermal Conductor Types Type Thick. O.D. Heat Heat

  1. Description Geom (in) (in) Regions (Btu /f t3 -s) FF 1 4.5 ft slab WALL 54. O. 11 0.

2 6.0 ft slab WALL 72. O. 12 0.

3 3.5 ft slab WALL 42. O. 13 0. J i

J

c110-100 BSA-L-9505 Fri Jan 12 09:43:25 1996 Rsv. 0 GOTHIC Varcion 4.1(QA)-c - May 1995 Page E10 Thermal conductor Type 1

4.5 ft slab Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 1.104 1 0.

2 1 1.104 2.208 1 0.

3 1 3.312 4.416 1 0.

4 1 7.728 8.832 1 0.

5 1 16.56 9.36 1 0.

6 1 25.92 9.36 1 0.

7 1 35.28 5.496 1 0. ,

8 1 40.776 5.496 1 0.  !

9 1 46.272 4.416 1 0.

10 1 50.688 2.208 1 0.

11 1 52.896 1.104 1 0.

Thermal Conductor Type 2

( 6.0 ft slab Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0, 1.104 1 0.

2 1 1.104 2.208 1 0.

3 1 3.312 4.416 1 0.

4 1 7.728 8.832 1 0.

5 1 16.56 17.664 1 0.

6 1 3'4.224 9.444 1 0.

7 1 43.668 9.444 1 0.

8 1 53.112 5.58 1 0.

9 1 58.692 5.58 1 0. 1 10 1 64.272 4.416 1 0.

11 1 68.688 2.208 1 0.

12 1 70.896 1.104 1 0.

c . .-.

- - - . . . - .- ~~ .- _ .. ..

c110-100 BSA L-9505 Fri Jan l'2 09 : 43 : 25 1996 Rzv.0 GOTHIC Varcion 4.1(QA)-c - Msy 1995 Page E11 j Thermal Conductor Type 3

3.5 ft slab i

Mat. Bdry. Thick Sub- Heat {

Region # (in) (in) regs. Factor  ;

1 1 1 0. 0.1104 1 0.

2 1 0.1104 0.2208 1 0.

3 1 0.3312 0.4416 1 0.

4 1 0.7728 0.8832 1 0.

5 1 1.656 1.7664 1 0.

6 1 3.4224 3.5328 1 0.

7 1 6.9552 7.0656 1 0.  ;

8 1 14.0208 6.9948 1 0.

9 1 21.0156 6.9948 1 0.

10 1 28.0104 5.3388 1 0.

11 1 33.3492 5.3388 1 0. 4 12 1 38.688 2.208 1 0.

13 1 40.896 1.104 1 0.

( Materials Type # Description 1 Concrete Material Type 1

Concrete Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu /hr-f t-F) (Btu /lbm-F) 100. 145. 0.92 0.156

I l

c110-100 BSA-L 95-05 Fri Jcn 12 09:43:25 1996 Rzv 0 GOTHIC Vorsion 4.1(QA)-c - May 1995 Page E12 Cooler / Heater Heater On Off Flow Flow Heat Heat Cooler Vol. Trip Trip Rate Rate Rate Rate Phs Ct

  1. Descr$ption # # # (CFM) FF (Btu /s) FF Opt L 1H Up.MST heat 1 1 3 332.5 1 VTE 2H Lo MST heat 1 5 3 175. 1 VTE 3H Mid MST heat 6 3 45. 1 VTE l Valves & Doors Flow Open Close Valve Valve Path Trip Trip Type Disch.
  1. Description # # # # Vol.

l 1V Upper MST blowo 7 1 9 1 6P 2V Lower MST blowd 8 2 10 1 7P 3V Up MST flow bal 10 8 0 2 9P 4V LO MST flow bal 9 8 0 2 8P

-(  ;

Valve / Door Types l Valve Stem Loss Flow I Type Valve Travel Coeff. Area i

  1. Option Curve Curve (ft2) 1 QUICK OPEN O O 50.

2 QUICK OPEN O O 5.

l l

1 j

cllo-100 BSA L-95-05 Fri Jan 12 09:43:25 1996 Rav 0

.-GOTHIC Version 4.1(QA)-c - May 1995 Page E13 l l

Component Trips i Trip Sense Sensor Sensor Var. Set Delay Rset CQnd Cond  !

  1. Var. 1 Loc. 2 Loc. Limit Point Time Trip Trip Type l 1 PRESS 1 UPPER 15.7 0. 9 AND I 2 PRESS 5 UPPER 15.7 0. 10 AND 3 TIME UPPER 0. O. AND 4 TIME UPPER 1000. O. AND 5 PRESS 1 UPPER 14.71 0. AND

'6 PRESS 5 UPPER 14.71 0. AND 7 TIME UPPER 3600. O. AND 8 TIME UPPER 3600. O. AND 9 PRESS 1 LOWER 15.2 0. AND 10 PRESS 5 LOWER 15.2 0. AND i

Functions FF# Description. Ind. Var. Dep. Var. Points O Constant - -

0

( 1 Heat load Temperatur Multiplier 8 2 Crack Propogati Time, sec. Value 3 3 Step down Time, sec Dep. Var. 3 Function 1

Heat load Ind. Var.: Temperature Dep. Var.: Multiplier Ind. Var. Dep. Var. Ind. Var. Dep. Var.

45, 1.132 60. 1.094

75. 1.057 90. 1.028 104. 1. 122. 0.9638 148. 0.91 300. 0.5146

c110-100 BSA-L-9505 Fri Jan 12 09:43:25 1996 RIV.0 GOTHIC Varnion 4.1(OA)-c - May 1995 Page E14 Function 2

Crack Propogation Ind. Var.: Time, sec.

Dep. Var.: Value Ind. Var. Dep. Var. Ind. Var. Dep. Var.

l

0. O. 100. 1. -

le+30 1.

l

, Function l 3 Step down l Ind. Var.: Time, see Dep. Var.:

l Ind. Var. Dep. Var. Ind. Var. Dep. Var.

O. 1. 0.1 0.

le+30 0.

I I

control Variables l CV Func. Initial Coeff. Coeff.

  1. Description Form Value G a0 Min Max 1 Junction 4 F1 div 0. 60. O. -le+32 le+32 2 Volume 1 dens sum O. 1. O. -le+32 le+32 3 Junction 6 F1 mult O. 847.457 0. -le+32 le+32 4 Junction 2 F1 mult O. 847.457 0. -le+32 le+32 5 Junction 3 F1 div 0. 60. O. -le+32 le+32 6 Volume 5 dens sum O. 1. O. -le+32 le+32 7 Junction 5 F1 mult O. 1608. O. -le+32 le+32 8 J5 + J6 Flow sum O. 1. O. -le+32 le+32

f '

l c110-100 BSA-L-9505 Fri Jan 12 09:43:25 1996 l R:v. 0 GOTHIC Varmion 4.1(QA)-c - Mty 1995 Page E15 l

I i

Function Components ]

Control Variable 1 Junction 4 Flow l div Y=G (a0+a2X2) / (a1X1)

Gothic s ~

variable coef.

  1. Name location a 1 cvval cv2 1.

2 wgjnc cJ4 1.

Function Components Control Variable 2 density l sum Y=G (a0+a1X1+a2X2 + . . . +anXn) l Gothic a Variable. Coef.

  1. Name~ location a l

( 1 2

rv rmgas cV1 cV1 1.

1.

l l

Function Components Control Variable 3 Junction 6 Flow l mult Y=G(a1X1*a2X2*...*anXn)

Gothic s ~

Variable Coef.

  1. Name location a ,

1 wgjnc cJ6 1.

(

l' c110-100 BSA-L-9505 FriJan 12 09:43:25 1996 RIv. 0 GOTHIC Vorsion 4.1(QA)-c - May 1995 P g3 E16 1

l l Function Components l Control Variable 4 Junction 2 Flow mult Y=G (a0+a2X2) / (a1X1)

Gothic a Variable Coef.

  1. Name- location a 1 wgjnc cJ2 1.

Function Components Control Variable 5

' Junction 3 Flow I div l equation Gothic ~ s' Variable Coef. l

  1. Name location a i 1 cvval cv6 1.

( 2 wgjnc cJ3 1.

Function Components l Control Variable 6 volume 5 density j sum i Y=G (a0+a1X1+a2X2+ . . . +anXn)

Gothi'c s Variable Coef.

  1. Name- location a 1 rv cV5 1.

2 rmgas cV5 1.

D n

. (

l

c110-100 BSA L-9505 Fri Jcn 12 09:43:25 1996 GOTHIC Varsion 4.1(QA)-c - Mty 1995 R1v.0 Page E17

(

Function Components Control Variable 7 Junction 5 Flow mult Y=G (a1X1*a2X2 * . . . *anXn)

Gothic a Variable Coef.

  1. Name- location a 1 wgjnc cJ5 1.

Function Components Control Variable 8 J5 + J6 Flow sum Y=G(a0+a1X1+a2X2+...+anXn) i i

Gothic s~

Variable Coef. 1

  1. Name location a j i

i cvval cv3 1. )

( 2 cvval cv7 1. 1 volume Initial Conditions Vapor Liquid Relative Liquid Ice Ice Vol Pressure Temp. Temp. Humidity Volume Volume Surf.A.

  1. (psia) (F) F (%) Fractio Fract. (ft2) def 14.7 80. 80. 60. O. O. O.

1 14.7 139. 139. 10. O. O. O.

2 14.7 110. 110. 40. O. O. O.

3 14.7 110. 110. 40. O. O. O.

4 14.7 130. 130. 40. O. O. O. ,

5 14.7 124.5 124.5 20. O. O. O. l 6 14.7 128.5 128.5 15. O. O. O.

7 14.7 110. 110. 40. O. O. O.

8 14.7 75. 75. 40. O. O. O.

e I

c110-100 BSA-L-95-05 Fri Jan 12 09:43:25 1996 Rav. 0 GOTHIC Version 4.1(QA)-c - May 1995 Page E18 Initial Gas Pressure Ratios l

Vol

  1. Air Ar He H Kr N O Xe 1

def 1. O. O. O. O. O. O. O.

! 1 1. O. O. O. C. O. O. O.

2 1. O. O. O. O. O. O. O.

l 3 1. O. O. O. O. O. O. O.

4 1. O. O. O. O. O. O. O.

5 1. O. O. O. O. O. O. O.

6 1. O. O. O. O. O. O. O.

7 1. O. O. O. O. O. O. O.

8 1. O. O. O. O. O. O. O.

Run Control Parameters (Seconds)

Time DT DT DT End Print Graph Max Dump Int Min Max Ratio Time Int Int CPU Int i 1 0.001 0.001 le+10 0.001 0.001 0.001 60. O.

( 2 0.001 1. 1. 120. 10, 5. 600. O.

3 0.1 1, 1. 970. 30, 30. 600. O. '

4 0.001 1. 1. 1050. 1. 1. 600. O.

5 0.01 1. 1, 1600. 30, 30. 600. O.

6 0.01 1. 1. 3600. 60. 60. 600. O.

Run Parameters Menu Parameter .Value Restart Time (sec) 0 Restart Time Step # 0 Restart Time Control NEW Revap. Fraction 0 Hetero. Nucleation? YES Min. NC HT Coeff. (Btu /ft2-hr-F) 0 Reference Pressure (psia) 0 Forced Ent. Drop Dia. (ft) 0.00833 I t

c110-100 BSA L 9505 Fri Jen 12 09:43:25 1996 Rrv. 0 GOTHIC Varzion 4.1(QA)-c - M y 1995 Page E19 I

l Ice Condenser Parameters '

1 Initial Bulk Surface Area Heat l Temp. Density Multiplier Transfer (F) (lbm/ft3) Function Option ,

1

15. 33.43 0 UCHIDA I Graphs Graph Curve Number
  1. Title Mon 1 2 3 4 5 1 Temperature of TV5 TV1 TV6 STS TA14 2 HVAC Flow Rates FV6 FV3 FV2 FV4 3 Steam Leakage FV5 FV13 FV14 4 Heat Transfer C HA10 HA3 HA14 5 Blowout Flowrat FV9 FV8 FV10 FV7 6 Pressure PR1 PR5 PR6 7 Temp Profile HS TP10t10 TP10t.0 TP14t16 TP3t300 TP14t30 8 Extra HVAC FV15 FV16

( 9 Volume Fraction AL5 MU5 AL1 10 Internal Flow FV11 FV1 11 Heat Load CQ2H CQ3H CQ1H 12 cv1 cv3 cv4 cv7 cv8 1

l 0

(

gnagr Imgr-

- ~

~

BS -L-95-05 ~

Sat Jan 13 14:13:16 1996 R:v,0 GOTHIC Version 4.1(QA)-c - May 1995 Paga E20 l

l Temperature of M57 Tv5 TV1 Tv6 sTS TA14 o t-- s t. _

  • t
  • t. et r o

a .

o N .~

e o u o -

y N .

h o - ' [j; ;;;;;;::::::::::::::::

t m _ .

l H H . .

)

l , 1.'

! _ -1 l -

o l 8

~

- l l 1

=

l i -

O l l l l l l l l l l l I l l l l l l l l l "0 1 2 3 4 i

X11e3 Time, sto seTric 4.1(0A)-e 01/09/95 05
05:02

(

t l

l t

f

c110-100 BSA-L.95-05 Sat Jan 13 14:13:17 1996 l GOTHIC . Version 4.1 (QA)-c - May 1995 Rtv. 0 Pag 3 E21  :

MVAC Flow Rates n6 n3 n2 n4

,t_._ e t. ._ e s t t.

  • o N .

~

o m -

w -

N .

'l 8

. I w -

f o L . .. . . .. . .. . ...

t = '

~

A

m. -

o w _

8 ~.... eeeeleeee e e e e le e e s

'O 1 2 3 4 x3h,,3 Tint, see seTxIt 4.1(0A)-o 01/09/95 08:08:02 r

t 1

i

c110-100 BSA-L-95-05 Sat Jan 13 14:13:17 1996 R0v. 0 GOTHIC Vercion 4.1(QA)-c - May 1995 Page E22 4

steam Leakage FV5 Fv13 M14 t t._ *s a M -

g .

~

4 o

~

i

b. -

M -

~

I

{

h -

1 4 1

~

l m -

v1 ii I f f f I I I i l l l l t i g g g g i

'O 1 at ;l 4 e x1de3 2 Time, seo

! ( s m re 4.1(ea)-s 81/09/96 e5 08.02 i

I 1

ello-100. l BSA-L-95-05 i Sat Jan 13 14:13:17 1996 GOTHIC Version 4.1(QA)-c - May 1995 Rev. 0 Pags E23 Meat Transfer coefficient MA10 MA3. MA14
  • **._st
  • l h .

a -

t

~

2 W -

t

.A -

',\

f S 3 -

o [

k

.=

- m -

$ 0

\

~

g  !  : l t t i 1[V i e II e i i 0 1 2 ;l 4 d, 3 Time (sto)

{ seTxt: 4.1(ta)-e 01/09/95 05:08:02 i

1 l

l c110-100 BSA-L-95-05 Sat Jan 13 14:13:17 1996 GOTHIC Vercion 4.1(QA)-c - Mny 1995 Rt.v.0 Page E24 i

, Blowout Flowrate i

I N F FV8 FV10 FV7 1 7*s VS

._

  • t. *s e t. . .*  !

w* i i *i .

, M -

u' o - -

. f.

1 I

s u

IC --

.a

$ o

- o

.. s I 2 -

2 ~

o  : .

V ~~~.. . . .. . .. . ... ,

- l

. 8 e m -

, o o, -

b $ ~

g . . . . i ....I... . , , , , 1, ..

s 1) 1 2 ;l 4 '

21l.ile3 T.ime, sec

( seTure 4.1(8A)-e 01/89/95 88:08 02 i.

l l

c110-100 BSA-L-95 05 Sat Jan 13 14:13:18 1996 Rsv. 0 GOTHIC Version 4.1(QA)-c - May 1995 Page E25 Pressure.

PR1 PRS PR6

  • t. *t e l N.t--

X .

n .

4 n .-

4 . I 8 .

' ~

.~ V~

g g  !

R w P

  • 9 _.

E  % .

o. .

3 .

4 w -

U .~

4 - - > >  ; , ,,I,,,, , , , , i , , , , I "O 1 2 ll 4 1 X1lIe3 Time, see seTxtc 4.1(eA)-e 01/effsg 33,0s,32 ,

i 1

l l

l

(

c110-100 BSA-L-95-05 Liat Jen 13 14:13:18 1996 R2v. O GOTHIC Version 4.1(QA)-c - May 1995 Paga E26 i

f Temp Profile M510 TP10t1000 TP10t.* 0014 t1600 TP3t3000 TP14t3003 o

  • t.
  • a s. . t ..

N .

l l

e l L l v o i w

$ ~l F

B ;i 4

. o I

{

H

.k.\

-\,

g ac"_,

- --- 2 . _ ,

o -

l t g f I l O t ie f l t t t l t t g e l t i e g "O 0.2 0.4 0.6 0.8 1 Relative Distance

( .. . ..u.u.. .v.u ,, ........

1

. __ . . . . . . . . - - - - . . . . . . . . . - . _ . - - . - - - _ . . = . . - - . .

-I' c110-100 BSA-L-95-05 Sat Jen 13 14:13:18 1996 Rsv.O GOTHIC Version 4.1(QA)-c - May 1995 P gs E27 Extra MVAC nas n16

  • t.
  • m v -

~

l i

" es -

, v .

.t., ~ -

m. -

. ." I l  !

l i i i i1ie i i 1e ie i i i e i li iii l I) 2 2 ;l 4

1. x10'e3 l

Time (sec) l ( emre 4.nea>-. euss/ss esissier i

l l

i f

I l

f

c110-100 BSA-L-95-05 Sat Jan 13 14:13:18 1996 GOTHIC Version 4.1(QA)-c - May 1995 - Rsv. 0 Prge E28 1

j Volume Fraction

c. ALS E6 E1 i s __a t. _ e t ,

y --

M  :

~

t

\ O

\

0 -

3 .

m N -

4> .

3 .

u h t, [

w a j

~

o -

> u - ,

l o f' l

/

,s/

e I e f l l l l 0 f f f f g l l t t i 1 0 1 2 3 4 " l X1de3 Time (sec)

( ... m ..u ,u.. .v.,,,,..f..f.,

I l

c110-100-BSA-L-95-05 Sat Jan 13 14:13:19 1996 Rsv. 0 GOTHIC Varsion 4.1(QA)-c - May 1995 Page E29 Internal Flow FV11 FV1

  • t. e E .

E -

R .

4  ; -

34 ~

as -

t E -

t  :

o -

2 ",,e e i e e i l ii i e i , e e Ie i i e

'O 3 2 3 4 g3lje3 Time, sec

( .. u n 4 . u a >-. e v e n u .......:

l l

t i

j I

I J

c110-100 BSA-L-95-05  !

Sat Jan 13 14:13:19 1996 Riv. 0 l GOTHIC Version 4.1(QA)-c - May 1995 Prg2 E30 i Meat Load i CQ2M CQ3M cQ1x

  • s. - _
  • t. _ e o  !

E. .

o

~

= .

h o -

V e -

g -

a o -

a = -

~

E .'

. m

~

a s-e i e l ie il ie i e i e e e i e e i e Ib 1 2 3 4 X1d' 'e3 Time, sto s m re 4.1(sa)-e 01/09/95 es esist I

f t

l

. , _ _ _ _ . .. . . . _ . . . . ~_ _..__. . _ _. _ _ . . . _ _ . _ . ._ _. .. . _ _ _ _ _ _ _ _ _ _ _

c110-100 BSA.L-95-05 Sat Jan-13 14:13:19 1.496 Rsv. 0 GOTHIC Version 4.1(QA)-c - May 1995 Page E31 (Last)

^

o.

Title

, evi cv3 cv4 cv7 cv0 w o 3. x.

E',u 8. - # o.

H .

~

n

~

A m s - -

D a

~

D -

4 g

m n

\-

r--

+ f .

% . ~ . .

, m -

T -

4 4 .

m -

8% i f I f l t I I g l g i a e e g g g l g g g g

'O 1 2 3 4 X1de3 Time (seconds)

, 6*TMID 4.1(fA)-s 01/09/96 08:08:42 I