ML20199K587

From kanterella
Jump to navigation Jump to search
Rev 1 to Calculation L-001281, RWCU Areas Temperature Response Due to High Energy RWCU Fluid Leakage
ML20199K587
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 11/07/1997
From: Beitel C, Bianchi E, Peterson R
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20199K523 List:
References
CON-10244-013, CON-10244-13 L-001281, L-001281-R01, L-1281, L-1281-R1, NUDOCS 9712010159
Download: ML20199K587 (35)


Text

_ _ _ _ _ _ _ _ _ _ - _ _

ATTACHMENT F CALCULATION NO. L-001281. Rev.1, Nov. 07,1997 -

RWCU AREAS TEMPERATURE RESPONSE DUE TO HIGH ENERGY RWCU FLUID LEAKAGE (Note that the "Monanine Area" as referred to in the attached calculations is the same as the holdup pipe area for RWCU) n.-

u P

D A0 K0 73 PDR'

Exhibit C NEP.12-02 Revision 4 Page i ef 2 COMMONWEALTII EDISON COMPANY CALCULATION TITLE PAGE CALCULATION NO L 001281 PAGE NO :I

@ SAFETY RELATED D REGULATORY RELATED 0 NON SAFETY RELATED CALCULATION TITLE: -

RWCU Areas Temperature Response Due to High Energy RWCU Fluid Leakage STATION / UNIT.LaSalle / Units 1&2 SYSTEM ABBREVIATION: LD TQUIPNENT NO.: mmu PROJECT NO.: umu 10244-013 bAW-~~-~~~

EV D STATOSTTJNVE10Tn17-QJ3EIGXENtIUCCRRDTGOT-------"-

PREPARED BY: C R Beitel/ XVs DATE: 10/31/97 _

REVISION

SUMMARY

InitialIssue Main Body Pages 1-20 Attachment A ages Al-A13 Attachment B ages B194))

Attachment C ages Cl C9)

DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION YES@NOC

' (Refer to Assumptions 3.2,3.6a,3.6b, and 3.7. These are identified in Section 3.0 of this calculation.)

REVIEWED BY- E R Bianchi / d [1mr la

.- DATE: 10/31/97 REVIEW METHOD: Detailed COMMENTS (C, NC OR Cl):_N_C_.

The reviewer's signature indicates compliance with S&L standard GES 320.10 and the verification of the following minimum items: correctness of math for hand prepared calculations, appropriateness ofinput data, (n) _appronnateness of assumptions and appropriatrnesmof the calculation method APPROVED BY R L Peterson / - /$1,,I .I, kn# DATE:

10/31/97

Exhibit C NEP 12-02 Revision 4 Page 2 of 2 O COMMONWEALTil EDISON COMPANY CALCULATION REVISION PAGE CALCULATION NO.: L-001281 PAGE NO.:2 REV:1 STATUS: UNVERIFIED QA SEIUAL NO. OR CHRON NO. DATE:

PIEPARED BY: C R Beitel/ DATE: 11/07/97 REVISION

SUMMARY

Revision 1 (46 Pages) ,

Main Body Pages 120 Attachment A(Pages Al-A13)

Attachment B (Pages B1-B4)

Attachment C (Pages Cl-C9)

Revision 1 issued as a result of revised input data from NDIT No. LAS ENDIT-0501 Upgrade 2 (Ref. 5.2)

(Revision 0 of this calculation was based on Upgrade 1 of this NDIT)

Pages 2,3,12,17,18, AS, Al1, Al2, and Bl B4 affected.

O ELECTRONIC CALCULATION DATA FILES REVISED:

(Name ext / size /date/ hour; min / verification method / remarks)

DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION YES@ NOO (Refer to Assumptions 3.2,3.6a,3.6b, and 3.7. These are identified in Section 3.0 of this calculation.)

REVIEWED BY: E R Bianchi / [ /ac M Clu' DATE: 11/07/97 REVIEW METHOD: Detailed COMMENTS (C, NC OR Cl): NC The reviewer's signature indicater, compliance with S&L standard GES 320.10 and the verification of the following minimum items: correctness of math for hand :3repared calculations, appropriateness ofinput data, appropriateness of assumptions, and cppropriateness of t le calculation method.

APPROVED BY: R L Pe*ttson / ./ -tT) DATE: 11/07/97

Ethi$lt D

^

, NEP d-02 Revision 4.

COMMONWEALTil EDISON COMPAN Q CALCULATION TABLE OF CONTENTS .

CALCULATION NO. L-001281 PROJECT NO: PAGE NO. 3 10244 013 SECTION PAGE NO. SUB PAGE NO.

TITLE PAGE 1 REVISION

SUMMARY

2 TABLE OF CONTENTS 3 PURPOSE /0BJECTIVE 4 METHODOLOGY AND ACCEPTANCE CRITERIA $

ASSUMPTIONS / ENGINEERING JUDGMENTS 10 DESIGN INPlTT I1 REFERENCES 12 CALCULATIONS IS

SUMMARY

AND CONCLUSIONS' 16 A'!TACl{MENTS 20 Attachment A EXCEL Calculation Spreadsheets Table of Contents Al Calculation Spreadst.cets A2 A13 Attachment B - NDIT No. LAS ENDIT-0501, Upgraoc BI 84 No. 2 Attachment C - NRC Safety Evaluation of changes to Cl C9 LaSalle Station main steam tunnel leak detection systems, Docket Nos. 50-373 and 50-?74, Dated 04/04/96.

Rev.1

Ethibit E

  • NEP 12-02
  • Revision 4 COMMONWEALTII EDISON COMPANY p)

CALCULATION NO. L 001281 PAGE NO. 4 1.0 Purpose / Objective ne purpose of this calculation is to determine the steady-state .oom temperature and room differential tunperatures for the Reactor Water Cleanup (RWCU) systern areas as a result of high energy fluid leakage. Based on these temperature responses, analytical limits for establishing leak detection instrume-'t setpoints will be determined. Actual instrument setpoints will be calculated by the c~ninm m.C engmeer based on the analyticallimits. The RWCU system modtfication currently being conducted at LaSa'le County Station (we S&L letter SCM 04600, dated 07/08/97) introduces a n ,d for this analysis due to the fotbwing:

  • Replacement of existing RWCU system pumps with larger,2x100% pumps in Pump Rooms A and C
  • Change from air-cooled motor drives to water cooled drives for the pumps
  • Rt.moval of the RWCU system pump in Pump Room B (now called Pump Valve Room)
  • Re routing of portions of the RWCU system piping
  • Change in operatmg temperatures / pressures for several of ahe RWCU system pipelines
  • Re-routing of hot pipmg with2 the Memnme Area. This area is listed as Hold Up P/pe Room (el. 774' 0") on the r.frangement drawings for Reactor Duilding Ventilation System.

(Ref. 5.3]

  • Addition of temperature-based leak detection 'o the filter / demin. (F/D) valve room (el.

(V3 807'0")

ne Leak Detection system consists of ambient temperature as well as differential temperature sensors located in the liVAC supply and retum air system for the RWCU areas. In the event of a pipe failure in one of the rooms, a percentage of the high energy fluid released fmm the pipe would flash to steam. As a result, the ambient room temperature would quickly rise, setting off high

.mperatire alarms in the control room. If the temperature continues to nse, the RWCU system is isolated by actuation of the inboard and outboard isolation valves, (G33 F001 and G33 F004) preventmg additional flow into the system. De differential temperature (AT) sensors in the liVAC system can also cause the presiously desenbed alarm / isolation functions to occur if the measured AT across a given room exceeds normal operating AT by a set amount. His calculation will consider the following areas for analytical limit determination. All areas listed are applicable to both Unit I and 2:

  • RWCU Pump Rooms A & C (el. 761' 0")
  • RWCU Pump Valve Rcom (el. 76l' 0")
  • RWCU Mezzanine Area (11old Up Pipe Room at el. 774' 0")
  • RWCU Heat Exchanger Rooms / Valve Rooms (el. 786' 6")

RWCU F/D Valve Room (el. 807' 0")  !

It should be noted that the methodology used in this calculation is based on temperature nse due to the percentage ofIcaLage which flashes to steam, which is pnmanly a function of process fluid

( ,) temperature. As a result, this calculation will only consider leakage from piping in which the  !

'V process temperature is high enough to result in a significant percentage of flash steam and  !

corresponding temperature nse. j Rev.O j I

I Eshibit E

  • NEF.12-02 i Redelom 4 COMMONWEALTil EDISON COMPANY O CALCULNT10N NO. L 001281 PAGE NO. 5 .

10 Metisodology and Acceptance Criteria 2.1 Methodology.

The steady state temperature for each room due to high energy fluid leakage is calculated by applying psychometric fundan=wala in conjunction with the laws of mass and energy conservation it should be noted that only the portion of the leakace which flashes into steam is included in the IWAC mass and energy balan=. De <=daaaai poition ofleakage would have some impact on ambient room temperature and room AT, houver, this effect will be dimW to al'ow for some conservatism in establishing setpomts. Assummg that no work is done in the rmxing process, and ignoring all kmeth: and potenual energy effects, the steady state mass and energy balances representmg the control volumes (rooms) are as follows:

mt. = m.(m mi) Eq. 2.1 (mass balance) [Ref. 5.4J 0 = q. + m. ( h.i + mi x h i ) + ma ( h,) m. ( ho + m: x h.: ) Eq. 2.2 (energy balance)

[Ref. 5.4]

where:

my = mass flow rate of flash steam tudcage (Ib/ min)

m. = mass flow rate of dry IWAC supply air (Ib/ min) mi = humidity ratio ofIWAC supply air (lb, / lb) m: a humidity ratio ofIWAC retum air (Ib, / lb) h.i = enthalpy of dry INAC supply air (BTU /lb)

= cathalpy of entrained water vapor in the supply air (BTU /:b) h.i ha = enthalpy of dry IWAC retum air (BTU /lb)

= enthalpy of entrained water vapor in the return air (BTU /lb) h.:

q. =

room heat load (BTU / min) h, = enthalpy of saturated vapor at room (atmospheric) pressure (pi) (BTU /lb)

General Notes:

1) Humidity ratios and air enthalpics are referenced to pounds of dry air.
2) Supply air humidity ratio is calculated based on the relative humidity provided by Reference 5.2 as follows:

ui = 0.622 x p, / ( pi . p,) Eq. 2.3a [Ref. 5.4]

p, = 4 x p. Eq. 2.3b [Ref. 5.4) where: pi = atmospheric pressure (psia) ,

p, = partial pressure of water vapor entrained in the supply air (psia)

= relative humidity p, = saturation pressure (psia) of water at IWAC supply air temperature (Ti )

Rev.0 l l

l l l l t

Eshibit E NEP 12-02

  • Revision 4 COMMONWEALTH EDISON COMPANY CALCULATION NO. IA01281 PAGE NO, 6 .

The mass flow rate of flash steam leakage (mt.) will be determined based on the assumption of a constant enthalpy, adiabatic expansion of the high energy fluid throust the line break. Using this enthalpy and.the enthalpies of saturated liquid and saturated vapor at room pressure, the quality, or percent of flash steam (%FS) of the two-phase fluid will be determined as follow?:

%FS = (ht. hr) / (h, hr) Eq. 2.4 (percent of flash steam) [Ref. 5.4]

where:

h.t = enthalpy of fluid within the RWCU system at leakage point (BTU /lb), based on pt (pressure at leakage point) and Tt. (temperature at leakage point)

= cathalpy of saturated liquid at room pressure (BTU /lb) hr h, = as previously defined The total fhsh steam flow will then be computed by multiplying the percent of flash steam by the total amount of fluid leakage as follows:

mu =

mt x %FS Eq. 2.5a (total flash steam flow) where:

mta = Total mass flow rate ofleakage, based on t; al volumetric flow rate ofleakage (Qta) multiplied by the density (pi.), where pt si based on water at 60 *F, Use of this density is consistent with methods outlined for Main Steam tunnel leakage detection at LaSa!!c Station [Ref. 5.7]

he total mass flow rate of unflashed liquid (m d o is then given by:

mor a m, . ma Equation 2.5b (mass flow of unflashed liquid)

Once the flash steam flow (mt ) is obtained, the humidity ratio of the FWAC retum air (m2) is given by the following equatio 1, based on Assumptions 3.2 and 3.3 :

m2 = wi + mt,/m. Eq. 2.6 (exiting humidity ratio)

Dividing Equation 2.2 by m. and rearranging, we obtain the following equation which must be solved iteratively

q. / m. + h.t + mi x h i + mt, x h, / m, a ho + m: x h,2 Eq. 2.2a in this ,ase, an outlet temperature T is selected such that the corresponding values of her .:-i 19 balance the nght side with the left side of the equation.

q)

Rev.O

.- . ~- _ . , , - . - . . ~ . , _ _ - _ . _ _ - - - . . - - - - - . - . . . ~

. Exhibit E NEP 12 42 , ,

Revision 4

- COMMONWEALTH EDISON COMPANY CALCULATION NO. L 001281 - PAGE NO. 7 .

As &taded in LAS-ENDIT-0501 (Ref. 5.2), the HVAC supply air flow durms a leak is to based on the concept of constant volumetric flow rate for deternunation of the analytical limits for malatian. This methodologyis as follows:

"- 1he volumetric flow rate ofleakage stam is calculated This flow rate is given by the followag

. ..;n. .

Q. = my x v. Fq. '2.7

- where: v, = ' specific volume of saturated steam at atmospheric Pressure Q,is then compared with the normal supply air volumetric flow rate, if Q, exceeds this value, then the supply air flow is effectively shut off. Zero CFM supply air is then used in the calculation of room tempersture response, if the volumstnc flow rate of steam dos not exceed the normal supply air volumetric flow rate, then the supply air flow rate is reduced by an amount equal to Q,.'

This effect may occur to some extent for lower leakage cases such as 5 GPM, but is not considered, resultag in lower, more conservative analytical limits. For additional information h

concerning this =1 ~4alazy, refer to Reference 5.2.

The calculation spreadsheets (A*=rkment A, Pages A2-A6) will show temperature responses for the areas listed in Section 1.0 of this calculation for the followmg cases:

I.

One, [ . No I ==l< (Summer witn Eauinment Oneratina)

-lhis case deternunes the room temperature response for no leakage in the rooms during normal

,- RWCU system operation. It is used as a " base case" for evaluating whether a selected analytical

- limit could potennally cause a false alarm or false isolation.

Case 2 - 5 GPM i >=k (Summer w/Eauinment Ooeratino)

This case deternunes the room temperature responses during normal RWCU system operation for a leakage flow rate of 5 GPM during Summer. The pump and heat exchangers are therefore considered to be operating. The values calculated for this case will determme the analytical limits for alarm, which will be discussed and confirmed in Section 7.0 of this calculation.

Case 3 - Detectable I a L (Summer with Eauioment not Ooerntino) - Apphes to Pump Rooms Only

/ Heat Exchanger Rooms Only .

This case detemunes the amount of leakage which will cause an alarm in a non-operating pump room or heat exchanger room during Summer, and is for infonnation only. Since the heat load for the operating equipment is not included in the energy balance, it will naturally take more than 5 GPM leakage befoce the analytical limit established by Case 2 is reached.

e

-Rev 0

- ay-.,,,,,,w, ,q g-wy--- p ,+ygy gy,q, , . yp-yy e - y #- ---,u- ,--m=, -

r,-,-

- . - - - . - - ~ _ . _ - _ . . - - - . . . - - -..- - - - - . -

Eshibit E

  • NEP.12 42.

Revislos 4 * -

COMMONWEALTH EDISON COMPANY j PAGE NO. 8-

- CALCULA110N NO. L 001281 .

f C==> 4 - Da-*=hle 1-4 / AT Only Minter with Eauinment Cwirks) he " base case" sad the analytical limits for alarm are established by Case 1 and Case 2, respectively. Since these cases only consider Summet conditions, it is a-=== y to calculate the amount ofleakage wiuch will cause room t.,-..vi.r.rure to reach the Case 2 analytical limits by AT measurement durms Winter. The purpose ofincluding these cases is to show the conservansm in -

basing the analytical limits for AT on Summer conditions.

Ca= 4a - IF=hle leak / Amhiant Only Minear with hinn=nt Onermane)

  1. ^ '

De " base case" and the analytical limits for alarm are established by Case I and Case 2, -

respectively ' Since these cases only consider Summer W%, it is necessary to calculate the --

amount ofleakage which will cause room L .w.sare to reach the Case 2 analytical limits by ambient measurement during Winter. This case is provided for informatxm only, emma 5 - Da t=ble 1 -4 / AT Only Minter with Eauinment not C-. : - =)- Applies to Pump Rooms / Heat Exchanger Roomr Only c his case deternunes the amount ofleakage which will cause room L,..r.i. ire to reach the Case analytical Imuts by AT measurement in a non operaung pump room or heat ~k-=r room dunns Winter, and is for information only. Since the heat load for the operaung equipment is not included in the energy balance, it will naturally take more than 5 GPM leakage before the analytical limit established by. Case 2 is reached Fa=a 5a - Da~ t=ble I >4 / Ambient Only Minter with Eouinment not Cwi= si- Apphes to Pump Rooms / Heat Erchanger Rooms Only his case determines the amount ot' leakage which will cause room temperature to reach the Case 2 analytical limits by ambient measurement in a non operating pump room or heat exchanger room during Winter, and is for information only. Since the heat load for the operstmg equipment is not included in the energy balance, it will naturally take more than 5 GPM leakage before the analytical limit established by Case 2 is reached.

Case 6 - 25 GPM Leak his case determines the temperature responses for the various areas during a 25 GPM fluid leak.

As the calculation spreadsheets will show, 25 GPM leakage results in a volumetric steam flow which is greater than the volumetric air flow for all areas except for the heat exchanger rooms. Per Reference 5.2, the HVAC supply air flow will be shut off for these areas, makmg the calculation of both summer and winter cases unnecessary. Since this is not the case for the heat exchanger rooms, Cases 7 and 7a (see below) are provided to address this area's system capability during Winter, The values calculated for this case will determine the analytical lim;ts for isolation, which I

will be discussed and confirmed in Section 7.0 of this calculation.

1 Case 7 - Detectable Leak i AT Only Minter) Apphes to Heat Exchanger Rooms Only The " base case" and the analytical limits for isolation for the heat exchanger rooms are established by Case 1 and Case 6, respectively. Since th se cases only consider Summer conditions,it is nacessarv to calculate the amount ofleakage which will cause room temperature to reach the Case

( 6 analytical limits by AT measurement dunng Winter. ne purpose ofincludmg this case is to p- --

show the conservansm in basing the analytical limits for AT on Summer conditions.

Rev.0 l

Exhibit E e NEP 12-02 Resisten 4 COMMONWEALTH EDISON COMPANY O CALCULA110N NO.L 001281 PAGE NO. 9 ,

Case la - Detectable Leak I Ambient Only Mintet)- Apphes to Heat Exchanger Rooms Only The " base case" and the analytical limiu for isolation for the heat exchanger rooms are established by Case I auf Case 6, respectively. Smce these cases only consider Summer conditions,it is necessary to calculate the amount ofleakage which will cause room temperature to reach the Case 6 analytical limits by ambient measurement during Winter. This case is provided for informance only.

2.1 he~.tu.c# Criteria:

De analytical limits will be based on a conservative analysis of temperature r-= for vanous operaung scenarios, calculated per the method outlined in Section 2.0. In addition, the pae-ial for false alarms or isolations should be nunmuzed Analytical limits for alarm shall occur at temperatures responses correspondmg to approximately 5 GPM leakage, and limits for isolation shall co..W to approximately 25 GPM leakage rates (Actual alarm / isolation leakage rates will vary based on room temperature, nace this affects the sensitivity of the system.)

i O

i O

Rev; O

Exhibit E

  • NEP.12 02 Revision 4
  • COMMONWEALTH EDISON COMPANY CALCULATION NO. L-001281 PAGE NO. 10 .

3.0 Assumptions / Engineering Judgments 3.1 High pressure fluid leaking frora the RWCU system is assumed to undergo a constant enthalpy, adiabatic expansion to room pressure.

3.2 Large openmgs currently exist around the HVAC retum air ductwork penetrations between the RWCU pump rooms and RWCU valve room. It is assumed that these openmgs will be scaled in order to effectively limit the amount of steam which could pass between rooms during a leak. This

. ., assumption provides the basis for the engineering judgment that singic inlet / single exit HVAC flow may be used for modeling purposes. This assumpnon is unven)ed at this timefor both units.

3.3 ne entering and exiting moist air streams are regarded as ideal gas nuxtures of dry air and water vapor for pmposes of temperature sensing. ,

3.4 Room temperature responses due to the effect of the unflashed portion of leakage will be considered negligible. This covers both heat input from radiation / convection, as well as evaporative cooling effects.

3.5 Changes in pressure throughout the RWCU system are assumed to have a negligible impact on enthalpy. This assumption is substantiated by the following values, per Reference 5.6 :

Temocrature Pressure Enthalov Percent Difference 534'F 1200 psia $28.81 BTU /lb 534*F 915.6 psia (SAT.) 529.25 BTUnb 0.08 % (negligible) 437'F 1200 psia 416.30 BTUnb 437 'F 600 psia 415.85 BTU /lb 0.11 % (neghgible) 233*F 1200 psia 203.89 BTU 4b 233 'F 600 psia 202.60 BTU 4b 0.63 % (negligible)

, As a result, the normal operating mode pressure of 1020 psia given on the process diagram (Ref.

5.8] will be used in the calculation of fluid enthalpy for all cases corsidered 3.6a The routing of the newly installed RWCU piping for Unit 1 is assumed to follow the path outlined by References 5.916. Smce the ECNdrawings provided by Reference 3.9a have been issued onlyfor comment at this nme, this assumpnon is unvenfiedfor Umt 1.

3.6b The routing of the newly installed RWCU piping for Unit 2 is assumed to follow a path similar to that for Unit I. This assumpnon is therefore unvenfledat this nme. Although the extsangpiping drawsngs [Ref 3.9b] have been confirmed to be idenncalfor Umts 1 and 2 with regards to impacts on leak detecnon the Unit 2 ECNdrawmgs have not been issued at this nme.

A 3.7 It is assumed that Unit 2 HVAC design information will be identical to that provided for Unit I in

& Reference 5.2. This assumpnon is unvenfied at this nme.

Rev.0

Eskibit E

-

  • NEF.12 02 -

Itevision 4

  • COMMONWEALTH EDISON COMPANY O CALCULATIONNO L-001281 PAGE NO. 11 .

4.0 Design inputs 4.1 RWCU system operstmg pressures and temperatures are obtained from the General Electric process degrams for the RWCU system. [Ref. 5.8]

4.2 Heat loads for each of the rooms under various operstmg cases, as well as HVAC supply air '

- temperatures for all cases considered, were obtamed,via NDIT. [Ref. 5.2) 4.3 HVAC supply air flow rates for cases of 0 GPM and 5 GPM leakage were obtamad via NDIT,

[Ref. 5.2) This NDIT also prmded the m-madalogy for determmmg HVAC supply air flow rates for cases of 25 GPM leakage 4.4 The HVAC supply air relative humidity, which was used to calculate the supply air humidity ratio, was obtamed via NDIT, [Ref. 5.2]

4.5 The basis for using a density of 62.4 lb/ft' for converting volume ic leakage rates to mass flow rates was obtainad from an NRC safety evaluation for a similar type ofleak detection system at LaSalle County Station. [Ref. 5.7]

4.6 The fund = mentalt hermodynamic and psychometric equations used in calculatmg room t...r.gure responses, as well as supply air enthalpies, were obtained from a thermodynamics textbook [5.4]

4.7 Enthalpies of RWCU system fluids (i.e. steam, water) based on process conditions were obtamed from ASME steam tables. [Ref. 5.6]

4.8 General conversion factors used in the EXCEL calculation spreadsheets were obtained from Reference 5.5.

4.9 References 5.la-c provide general information concerning functional details of the RWCU system, Leak Detection system, and Reactor Building Ventilation system. It should be noted that these documents were used for background information only and prosided no analytical input to this calculation.

l 4.10 Routmg of the RWCU piping through the arcas under consideration was obtained from piping l drawings for the RWCU system. [5.9a-b] By analyzing these drawings, along with arrangement drawings for the reactor building ventilation system (5.3], the location of a given section of pipmg with regards to other physical details (walls, HVAC flows, etc.) was determined.

i i

O Rev.0

l l

- Exhibit E i

,e NEP-12 02 ' .l Itevision 4 -

1 l

COMMONWEALTH EDIEON COMPANY O .-

i CALCULA110'i NO.L 001281 PAGE NO.- 12 5.0 References 5.la P&lD's for Leak Detection System i M 155 sheet 2 of 2 Unit 1 P&ID - leak Detection (LD), Rev. H' M-157 sheet 2 of 2 Unit 2 P&lD - Leak Detection (LD), Rev. E 5.lb - P&ID's for Reactor Building Ventilation System M-1455 sheet 1 of 4 Unit 1 P&ID - Reactor Building Ventilanon System, Rev. F M-1455 shou 2 of 4 Unit 1 P&ID - Reactor Buildmg Vanhinhan System, Rev. J M 1455 sheet 3 of 4 Unit 1 P&ID - Reactor Buikhng Ventilation System, Rev. F M 1455 sheet 4 of 4 Unit 1&2 P&ID - Reactor Buildmg HVAC Misc. Systems, Rev. B M-1456 sheet 1 of 3 Unit 2 P&ID - Reactor Bmidmg Ventilation System, Rev. C M-1456 sheet 2 of 3 Unit 2 P&ID - Reactor Buikhng Ventilation System, Rev. K M 1456 sher.t 3 of 3 Unit 2 P&ID - Reactor Building Ventilation System, Rev. E 5.lc P&ID's for Reactor Water Cleanup System M-97 sheet 1 Unit 1 P&ID - Reactor Water Cleanup System, Rev. AD M-97 sheet 2 Unit 1 P&ID - Reactor Water Cleanup System, Rev. W M 97 sheet 3 Unit 1 P&ID - Reactor Water Cleanup System, Rev. V M 97 sheet 4 Unit 1 P&lD - Reactor Water Cleanup System, Rev U M-97 sheet 5 Unit 1 P&lD - Reactor Water Cleanup System, Rev. M M-143 sheet 1 Unit 2 P&lD - Reactor Wate Cleanup System, Rev. AA M-143 sheet 2 Unit 2 P&lD - Reactor Water Cleanup System, Rev. R M 143 sheet 3 Unit 2 P&lD - Reactor Water Cleanup System, Rev. P M-143 sheet 4 Unit 2 P&lD - Reactor Water Cleanup System, Rev. S M 143 sheet 5 Unit 2 P&lD - Reactor Water Cleanup System, Rev. P 5.2 NDIT No. LAS ENDIT-0501 Upgrade 2, Dated 11/05/97, Pages 13 (of 3) + attachment,

[ Included as Attachment B]

5.3 Arrargw.cr,t Drawings for Reactor Building Ventilation System :

M-1359 sheet 2 of 2 Unit i Reactor Building Ventilation System El. 761' 0" West, Rev. M M 1357 sheet 2 of 2 Unit i Reactor Building Ventilation System El. 786' 6" West, Rev. T M-1356 sheet I of 2 Unit i Reactor Building Ventilation System El. 807 0" West, Rev. M M-1354 sheet 2 of 2 Unit i Reactor Building Ventilation System El. 820' 6" West, Rev. L

- M_-1360 sheet 2 of 2 Unit 2 Reactor Building Ventibtion System El. 761' 0" West, Rev. N L M-1358 sheet 2 of 2 . Unit 2 Reactor Railding Ventilation System El. 786' 6" West, Rev. N M-1356 sheet 2 of 2 Unit 2 Reactor Ioilding Ven'ilation System El. 807' 0" West, Rev. K'

_ M-1355 sheet 2 of 2 Unit 2 Reactor Building Ventilation System El. 820' 6" West, Rev. K

, -()

~

Rev.1.

_ ~ _ . . _ _ _ - - _ , _ _ . . . _ _ . _ _ _ _ _ . . - _ . . . . . . _ . ..- _ _ _ _ .._ . . _ _ ._ _

Exhibit E -.

NEP 12 02

. Revislos 4 .  ;

COMMONWEALTH EDISON COMPAh?

CAlfULATION NO.L 001281 - PAGE NO. -

Rsferences. cont'd.

5A: Fundamentals of Engmeerms Thermodynamics - 2nd Edition, Moran & Shapiro,1992~

- Chapter 3, pp. 78-79 ,

- Chapter 12, p. 561 Chapter 12, p. 568 5.5 ' Cameron Hydrauhc Data.17th Edition 5.6 1967 ASME Stamm Tables.'American Society of Mechanical F=:H, NY, NY,1967.

5.7 . NRC Safety Evaluation of changes to LaSalle Station main steam tunnel leak detection systems, Docket Nos. 50-373 and 50-374, Dated 04/04/96 (included as A*=h C]

5.8 General Electric Drawing No. 922D263 Rev. 6, Process Diagram Reactor Water Cleanup System General Electric Drawing No. 922D263AA sht. 2 Rev. 8, Process Data Reactor Water Cleanup System' 5.9a - NDIT No. LAS-ENDIT-0477 Upgrade 0, Dated 9/24/97, Pages 1-2 (of 2) + attachments ,

(unwrified)

This NDIT provided the follomag ECN drawmss:

M440 sheet 10 Reactor Water Cleanup Piping - Racirc. Pumps Suction, Rev. NEW M440 sheet i1 Reactor Water Cleanup Piping - Recire. Pumps Discharge, Rev. NEW 4

- 5.9b Pininn Inometne Drawinns - Eviemo RWCU System Pininn:

' M440 sheet 1 of 9 Reactor Water Clean Up Piping, Rev. J M-840 sheet 2 of 9 Reactor Water Clean Up Piping, Rev. G M-840 sheet 3 of 9 Reactor Water Clean Up Piping, Rev. V M440 sheet 4 of 9 Reactor Water Clean Up Piping, Rev. M M440 sheet 5 of 9 Reactor Water Clean Up Piping, Rev. AA M-840 sheet 6 of 9 Reactor Water Clean Up Piping, Rev. J

- M 840 sheet 7 of 9 Reactor Water Clean Up Piping, Rev. R

. M440 sheet 8 of 9 Reactor Water Clean Up Piping, Rev. X -

.M-840 sheet 9 of 9 Reactor Water Clean Up Piping, Rev. M M-940 sheet 1 of 9z . Unit 2 Reactor Water Clean Up Piping, Rev. K M-940 sheet 2 of 9 Unit 2 Reactor Water Clean Up Piping, Rev. E M 940 sheet 3 of 9 Unit 2 Reactor Water Clean Up Piping, Rev. P I- M-940 sheet 4 of 9; Unit 2 Reactor Water Clean Up Piping, Rev. L M-940 sheet 5 of 9 Unit 2 Reactor Water Clean Up Piping, Rev. U M 940 sheet 6 of 9 _ Unit 2 Reactor Water Clean Up Piping, Rev. H M-940 sheet 7 of 9 . Unit 2 Reactor Water Clean Up Piping, Rev. P c

L M 940 sheet 8 of 9 Unit 2 Reactor Water Clean' Up Piping, Rev. S L -

Unit 2 Reactor Water Clean Up Piping, Rev. E

- M 940 sheet 9_of 9 Rev.0-

, . + - , , _ _ , , . . . . _

Eskibit E NEP.12-02 Revision 4 COMMONWEALTH EDISON COMPANY -

O CALCULADON NO. L 001281 PAGE NO. 14 .

Referenced. cont'd:

Notes: (1) Drawing revision confirmed sia EWCS on 10/03/97 .

(2) Drawing reymon confirmed via EWCS on 10/24/97 (Gen.) All other drawings listed were confirmed via EWCS on 10/02/97 O

l l

l-LO Rev.0

~---..,,e. , , , . , . _ , - - - - , . . . ,

~ ~._.. _ . . ..

l Exhibit E -  !

l NEP 12 02

  • i l Revision 4
COMMONWEALTH EDISON COMPANY CALCULA*I1ON NO. L@l281 ' PAGE NO. 15 .

6.0 Calculations Calculations for the temperature responses in the RWCU s>m areas were performed in EXCEL spreadsheets according to the methodology desenbed in section 2.0. These spreadsheets are provuled in A"=ehmant A, Tables 15. The formulas used in the calculations are provided in

, A"mehment A, Tables l A'-5A. ,

% h'* I- hi - I h ha h he- + .4 4 O

~

O Rev.0

- - ~ . - . - ~ v. . . .~. _ . - . . . . . - ~ . . - - ~ . - - , . -- - - . _ -

Eskibit E NEP 1242 ,

Revision 4 COMMONWEALTH EDISON COMPANY CALCULATION NO L 001281 PAGE NO. 16 .

7.0 Summary and Conclusions De analytical Imuts for alarm / isolation functions in the RWCU areas are taken from Attachment ,

A and summarued as follows:

RWCU Pump Rooms AT Ambient

~

Base Case (Zem iM=--) 18.0 T 122.0 T Alarm Analytical Linut

  • 32.4 7 136.4 7 Isolation Analytical Limit 94.0 7 212.0 T Discussion-

%e analytical limit for alarm is based on the Summer temperature response of 32.4 T AT /136.4 T ambient, which provides the Wa4g case for 5 GPM leakage in an operstmg pump room.

Based w a review of Table 1 in A*=h A, this limit will be reached by AT measurement with a 4.1 GPM leakage rate in the Winter (See Case 4). In the event the leak occurs in a non-operaung pump room, this limit will be reached by AT measurement with leakage rates of 10.2 GPM and 8.0 GPM for the Summer and Winter, respectively (See Cases 3 and 5 in Table 1).

De limit is not lowered based on a consideration of these cases because the probability of false alarms when the pump is in operation would be increased l

The HVAC supply air flow is shut off by a leakage rate of 25 GPM, as indicated by Reference 5.2

[

and the calculated volumetric flow rate of steam in Table 1 (See Case 6). Once this occurs, the room emironment will be 100% saturated steam. De analytical limit is therefore 212 T, regardless of the normal supply air temperatures considered. Some conservatism is offered by this limit, since heat input from the piping and equipment within the room was neglected for Case 6.

RWCU Pump Valve Room AT Ambient Base Case (Zero Leakage) 17.6 T 121.6 7 Alarm Analytical Limit 41.0 T 145.0 T isolation Analytical Limit 94.0 7 212.0 7 Discussion:

he analytical limit for alarm is based on the Summer temperature response of 41.0 T AT /145.0 T ambient, which provides the bouncung case for 5 GPM leakage in the RWCU Pump Valve -

Room. Based on a review of Ta'. c 2 in Attachment A, this limit will be reached by AT measurement with a 3.9 G'N v.0;tge rate in the Winter (See Case 4).

O Rev 0

Eshibit E

. NEP 12 02 Resision 4 -

q COMMONWEALTH EDISON COMPANY V CALCULAT10N NO. L-001281 PAGE NO. 17 Summarv and Conclusions. cont'd:

ne HVAC supply air flow is shut off by a leakage rate of 25 GPM, as indicated by Reference 5.2 awl the calculated volumetric flow rate of steam in Table 2 (See Case 6). Once this occurs, the room environment will be 100*/. saturated steam %e analytical limit is therefore 212 'F, regardless of the normal supply air temperatures considered. Some conservatism is offered by this limit, since heat input from the piping and equipment within the room was neglected for Case 6.

. . . . . RWCU Mezzanine Area AT Ambient Base Case (2 roImkage) 17.3 T 121.3 7 Alarm Analyticalihit 40.8 T 144.8 T isolation AnalyticalI.indt 94.0 T 212.0 T Discussion:

The analytical limit for alann is based on the Summer temperature response of 40.8 'F AT /144.8 e 'F ambient, which provides the boundmg case for 5 GPM leakage in the RWCU Memame Area.

r Based on a review of Table 3 in Attachment A, this limit will be reached by AT measurement with l

a 3.9 GPM leakage rate in the Winter (See Case 4).

He HVAC supply ait flow is shut off by a leakage rate of 25 GPM, as indicated by Reference 5.2 and the calculated volumetric flow rate of steam in Tabie 3 (See Case 6). Once this occurs, the room environment will be 100% saturated stearn. The analytical limit is therefore 212 'F, regardless of the normal supply air temperat tres considered. Some conservatism is offered by this limit, since heat input from the piping and equipment within the room was neglected for Case 6.

RWCU Heat Exchanger Rooms AT Ambient Mse Case (Zero Leakage) 17.6 *F 121,6 T Alarm AnalyticalLimit 24.6 7 128.6 7 l

l 1 solation Analytical Limit 41.8 7 159.8 T Discussion:

The analytical limit for alarm is based on the Summer temperature response of 24.6 T AT /128.6 T ambient. which provides the bounding case for 5 GPM leakage in the RWCU Heat Exchanger Rooms. Based on a review of Table 4 in Attachment A, this limit will be reached by AT l measurement with a 4.3 GPM leakage rate in the winter (See Case 4) In the event the leak occurs in a non operating heat exchanger room, this limit will be reached by AT measurement with leakage rates of 17.0 GPM and 13.6 GPM for the Summer and Winter, respectively (See Cases 3 l and 5 in Table 4). He limit is not lowered bas:d on a consideration of these cases because the probability of false alarms when the exchanger is in operation would be increased.

Rev.1

_~

Exhibit E

  • NEP-12-02 Revision 4 COMMONWEALTH EDISON COMPANY CALCULATION NO.L 001281 PAGE NO. I8 .

Summary and Conclusions. cont'd:

'Ihe HVAC supply air flow is agt shut off by a leakage rate of 25 GPM, as ind;cated by Reference 5.2 and the calculated volumetric flow rate of steam in Table 4 (See Case 6). Based on a resiew of Table 4, the Summer temperature response of 41.8 T AT /159.8 7 ambient prmides the boundmg case for 25 GPM leakage. This limit will be reached by AT measurement with a 17.0 GPM leakage rate in the Winter (See Case 7). ,

RWCU F/D Valve Room AT Ambient Base Case (Zero Leakage) 19.6 7 123.6 T Alarm Analytical Limit 44.5 T 148.5 7 Isolation Analytical Limit 94.0 7 212.0 T Discussion:

he analytical limit for alarm is based on the Summer temperature response of 44.5 T AT /148.5 T ambient, which provides the boundmg case for 5 GPM leakage in the RWCU F/D Valve Room

( Based on a review of Table 5 in Attachment A, this limit will be wached by AT incasurement with a 3.8 GPM leakage rate in the Winter (See Case 4).

He HVAC supply air flow is shut off by a leakage rate of 25 GPM, as indi:ated by Reference 5.2 and the calculated volumetric flow rate of steam in Table 5 (See Case 6). Once this occurs, the room environment will be 100% saturated steam ne analytical limit is therefore 212 T, regardless of the nomial supply air temperatures considered. Some ccraservatism is offered by this limit, since heat input from the piping and equipment within the room was neglected for Case 6.

General Discussion:

Please note following with regards to temperature-based leak detection sytems as described by this calculation:

  • Ambient air temperature sensors should be located within a given rmm, near the point where HVAC retum air exits the room.
  • Inlet air AT sensors should be located outside of a given room, so that the temperature of the induced HVAC supply air flow to the room is accurately measured. The sensors should be located well clear of any potential heat source, and should be located a sufficient distance from the room entryway (door, gravity damper, etc.). This is necessary so that the measured inlet air temperature is not affected by steam backflowing from a room during a leak.
  • Outlet air AT sensors should be located near the point where HVAC return air exits the room, p)

(

or within HVAC ductwork downstream of this point. It is imperative that the outlet AT sensors measure only the exiting airflow f1om a single room, and not a combined air flow from two (or more) rooms. He sensors should be locad well clear of any potential heat source.

Rev.1

Exhibit E NEP 12-02

  • Revision 4 COMMONWEALTH EDISON COMPANY

~ *

.CALCULA11GF NO.LA01281 PAGE NO. 19 ,

Summary pd Conclusions. cont'd.

  • Ifleakage occurs during operation with room supply air temperatures less than 104 'F, high temperature alarms will likely be actuated by the AT sensors before the ambient sensors.
  • As mentioned in Section 1.0 of this calculation, the actual instrument setpost will be ,

calculated based on the analytical limits listed above. It may be desirable or necessary to adjust this actual instruinent cetpoint up or down based on various consideranons Fo:

example, if the resulting calculated setpoint is es..dy close to the base-case (no leakage) analytical limit, it may be necessary to raise the setpost to avoid false alarms Ahernatively, it may be desirable to lower a calculated setpoint. For example, if the calculated isolation setpoint is 200*F, it may be desirable to lower this setpoint, since additional conservansm could be implemented without introducing the possibility of false isolations.

1 O ,

l l

G 1

)

l l

i p

O l

'Rev.0

-- ., .- . - ~_ . .. . . .- - - . .

__ _ ____ __ _ __ __ _ ._ . _ _ . . . _ . . . - . - _ . _ _ _ . _ _ . . _.._ ___,___. __ m ~

. EzLibit E NEP 12 02 ,

Revision 4 COMMONWEALTH EDISON COMPANY CALCULA110N NO.IA01281 PAGENO. 20 FINAL .

8.0 Attach-ts  !

The follomag documents are an=rW to this calculation :

  • Attachment A - EXCEL Calculation SpH=Les e Aa-kment B - Com.svedth Edison NDIi No. LAS-ENDIT-0501 e Attachment C - NRC Safety Evaluation of changes to LaSalle Station main steam tunnel leak detection systems, Docket Nos. 50-373 and 50-374, Dated 04/04/96.

O O

Rev.O

04~hnon No. L-001281 Rev. 0

  • Awhw A - Page Al ,

b Attachment A - Table of Contents .

5 Table 1 RWCU Pump Rooms Temperature Response Due to p.A2 High Energy Fluid Leakage Table 2 RWCU Pump Valve Room Temperature Response Due p.A3 to High Energy Fluid leakage Table 3 RWCU Mezzamne Area Temperature Response Duc p.A4 to High Energy Fluid leakage . .

Table 4 RWCU Heat Exchanger Room / Valve Room Temperature p. AS Response Due to High Fmrgy Fluid Leakage Table 5 3WCU F/D Valve Room Temperature Response Due to p.A6 High Energy Fluid !ahy Table 1A Formulas Used in Table i p. A7-A8 Table 2A Formulas Used in Table 2 p. A9 Table 3A Formulas Used in Table 3 p.A10 Table 4A Formulas Used in Table 4 p. Al1-A12 Table SA Formulas Used in Table 5 p.A13

{

1 l

l l

l l

l l

O l V Rev.O I

I

. l

Sargert LunW C.. ~..w. Edison LS$8ae County Nuclear Stabon Ce=*a1 NO. LOO 1281 itev. Q Attacriment A.Page A2 Table 1 1 I { l I  ! I I I RWCU Pump Rooms Temperature Response Due to High Energy Fluid Leakage I i i j i i , i i )

oRoreene cues are as conome: i i , , i i i Case 1. een Less it.anmer ensi f oiesnese Cearentep I i i '

c.ee , . . os.nusse ( - _ eie reone.se ,i 4 4 i ' ' '

Cass 3. r- Lees # Asetense e af (eussemer uusi Esimernere 8 eel Osorsegi i 8 1  !  !  !

Case 4. r="*==== Lees i aT Onsy W e Gausenere Osorseg) i 8 i Caen se . Denneen Less e asueuse c>sy fmeer usi tweenem oserumgi i 6 8 l caos s h Lees # of c>s,(wtuer wei teessure ner omerse si i e i case as . Desensee Lees s asnouse owy fweier usi towemere nas oeersegt i I Case e 75 Cate Lane i i t i t i i Case 1 Case 2 # Case 3 Case 4 Caso de Case 5 Case Se Case 8 ADnnaaranc Pmenin . p. ! (real 14 7 14 7 1 14 7 14 7 14 7 1 14 7 14 7 14 7 Entering 04VAC Aar Ceneseene 6 i i )

Room Sucesy f amooreture . T.! M i 104 104 4 104 ! to to } to 80 tis Raam Sucosy Temperature . T.i ("R) l S64 564 i S84 i 540 540 540 540 578 Remisme Humesey . o (%) i 35 % 2% i 35 % i 23% 23 % 23 % 23% 35%

Preneure of Sehseted Weer et i, . mai (pean i 1 07 1 07 i 1 07 i 0 $1 0 S1 0 51 0 $1 1 00 Portel Pressure of Weser vocar et f. . p.i (poet t 03744 0 3744 I. O3744 1 0 1188 0 itse 01108 01186 0 SED _

Hsvedity Rste) . no OtwJ Ibn 1 0 0163 0 0163,j 0 0163,J ,,0 3E0,,1,0 m20_(0,,520 0 Q,,,LO,024,6{

Entneev of Dry Ernereig Asr et 7, . N.; (87UAbt 134 82 134 82 : 134 82 i 129 06 1 129 06 1 120 06 ! 12906 1 13E18 Entheepy of Weser vacar et 'fe . N.I tBTunn) i 1106 ff[Ii'06 75 l 1108'78Ti'096A1 I 1096EIiU.h 1 1C257[ 1112.74 Comtansa Entheer of Ermanno wature . h.i (Stuat) i 152 81 i 152 81 l 152 81 1 134S1 134S1 1J4 51 134S1 imbS1 SpecA desume.wil (R*ID) I 14 8 14 8 1 14 8 i 13 7 13 7 13 7 117 111 Vulummenc Atee Role . O,' #/mm) i 1850 1990 1850 1850 1850 '850 1M0 0 ~

teens Assar Role . m, Ottmm) 127 127 127 135 135 135 12 0 ~

T- _ s N. -- _ _ .

Entheiov of Securered Lagual et Roten Preneure . fe (87040) 180 18 150 18 9 180 18 140 18 180 18 18Q 10 1EQ '!8 18fII Entheev u Saturesed Steam et Raton Preneure . N! (Bfunbi i 1150 48 1130 48 .1150 a81 1190 48 1150 de 1150 48 1190 48 1130 de Toint Host input . Get t87UMr) i 33 SdO 6 33 840 i S S12 ! 33 840 33840 S 512 S 512 0 i icoal Host input . Se (8furmm) i 564 i $64 i 92 i See $84 92 92 0 Y - _ _ . for Leneans Ceneer wee i I i i  !

temperature at Lamamos Pont . Tg m i 533 4 533 4 533 1 533 133 513 533 533 P'esauro et Lassage Pomt . iat (peat i 1020 j 1020 1 1020 1 1020 1020 1020 1020 1GIO Ereheev et Lassage Pennt . f% 187Unbl i S27 83 1 527 83 1 527 83 i 527 83 527 83 i S27 83 527 83 527 83 Percere of Floen fiteam . %FSI (%)  ! 3fis i 38 % 6 36 % i 3 tis 36 % i 36 % 38 % i 38 %

Osnedy . sg i st#1 i 62 40' i 62 40 I 6240 1 62 40 1 62 40 i 62 40 62 40 62 40 Saecific vosume of Assn Srsem .ve l #Ab) i 26 79 6 26 79 1 26 79 1 26 79 1 26 79 i 2679 26 79 26 79 Leaeage Quentity Calcutamen i i e e i e i i i f atal volumetric Flavr Rate . Qt.e. (gaumm) 0 i 5 l 10.2 l 4.1 l 14.3 l s.0 l 1s.5 l 25 0 Total Mas 4 FW Rate . mue, etsmini I O i 42 i 85 34 i 119 4 67  ! 163 e 209 Mens Flame Rate of Fleen Stoem . mui ptvmmi 4 0 1 15 1 31 t 12 1 43 i 24 1 58 i 7S Wess F4&m Rate of unflanned Litauido. m t Utvmm) i 0 i 27 SS . 22 i 76 i 43  ! 105 i 134 Votumetnc Flom Rats ot Amen Steam . Q,i Wimm) i 0 1 400 1 820 i 329 1 1942 t 643 1 1563 i 2322 Calculated Room conditsone After Leae Occurs e Humidity Ratio . eu Pb.,,i ib) i i # _ _L_ _L ,_, ,,,,( L I

00163 1 0 1340 - 0 2575 i 0 0960 0 3200 4 01829 0 4376 STEAM Temperature . 7, (Modey unos Chece 0 0)1 (*F) l 122.0 l 134.4 l 112 4 136 4 l 212.0 136 4 { 112 4 R*""'"' '  !*R) ' . 582 0....L Ss6 4.. ,,.596 $.., . .S.72 $._ .. 596.$..a....!.72 3... ..586 $_ wA Entnacy of Ory Air at 1,. No (Bfunbi 139 1 1420 . 142 6 . 1368 142 6 r 1368 142 6 N/A Entneev of Water veoor at fe.No i87Unbi i ~111'4TIIi'20 MI20 ETit'10N~1"130 Fi'150 4" 3 11205 i N, A reerecon of Enerin Datence to serve for T, i i i i a i i i N/A Left Suse of Ecuanoni i 157 3 2928 : 43t 1 i 2434

  • SO2 2 1 339 9 i 632 9 i N/A

, Rent Satie of Ecuateni 157 3 i 2928 i 431 1 1 2434 $

502 2 >

339 9 i 632 9 i N/A Chece s i 00 00 00 i 00 00 i 00 i 30 N/A Temoerature Oderence Actues Ranm . Afi  !*A l 18 0 l 32.4 l 32 4 32 4 56 4 32 4 56 4 l 94.0 10/31197 - 7 49 AM

Sargers LunW Commonwesem Edroort LA$ane County Nucient Stator)

Calculebort NO. L001*21 Rev 0 Attachmerit A.Page A3

) Table 2 i i i  ! 1  ! l 1

\

RWCU Pump Valve Room Temperature Response Due to High Energy Fluid Leakage i ,

i 4 e i i i Operoeme Ceems thoum era se Peenews: i i i i i i Case 1. ass teos (anemaior men toucause cessemet i i i I Came 3 8 OPW tena_ieusaner esfeuesmove Omerums) i i i i Come a . D>asionne teos i assere e 47 (Susamer men Geesment ese Oeereme) i i i Ca.e 4. Dumunesse Lone # 4T Crey (Widrest men ( - Osaaremsp 1 A

Case se . r- Laos # acesse C>uy (vesser meh W Oserswig) I caos e . Laae # 4f casy (weier men ssweemre sur oomsome) i .

Case to . Dammente teen # ameuse Onsy (weest mem f ansessent aus Onesserug) i Case 4 70 Opte Laos Case 1 Case 3 Caes 3 ' _ Case 4 Case 4e Cql Case le Cop 4 g Atmoschenc Preamse . p. (poes) 14 7 14 7' . 14 7 14 7 . . 14 7 Esutoring DeVAC Aar Cassedgene Rami Supsey Temmereture . T. ("F) 104 104 . 80 00 . . its Room Supefy Teneerature . T. ('R) 564 584 . 540 l 540 . . 578 Resuswo Hur'ussey . ,! (%) 33 % 3S% . 23% ! 23 % . 35 %

Pruneure af Saturneed Water et i, . p,I (penal 1 07 1 07 . O Si l 0 51 . . 1 to

_Pertus Proseure et Weer Vener a T . eq (pse) 0 3744 0 3744 . 01186 1 0 1105 . . OSED Havsesy Rate . en.6 (1h ,ilb) l .__()(3163 g 0_0,163 . . l 0,005010CK20 . .

1 00246_

f athspy of Dry Eritann0 As et T. . h..j (BTune) 134 82 i 134 82 i . I 12906 i 129 05 . i 13eis Enihespy ar Water Vecer et f e . h . ' (Bfuob) 1108'7[ ~1'105 78' . 1(26 N fiUB814 . . 111bf Comtered Etitheapy at Erearmg useure . n. (HTunel 152 81 11181 - 134 St 13451 . . 185 81 SomWic Vasurve w, (R*lb) 14 5 14 6 . 13 7 117 . . 151 Vasummene Fker Rate . Q. d (ft avuni 1 000 1 000 . 1000 1 330 . . O MeneFimeRote.m. (Itamount 69 tW . 73 73 - 0 Peremeagre Eriemmpy er Saturned Lawns et Rawn Pruneure . tv (BTune) 1e0 .a ten te . 100 18 18018 . . ten ts ErtNespy W Sohnessa seenm et Raorn Pressure . h, (BTuib) 11Su 44 1990 48 . 1150 48 1150 48 . . 1190 de foens Heat enout . % (Bfu/hr) 17 920 1 17 928 . 17 928 17 928 . 0 Tcans Heer input . % (87Ultruni 290 299 . 299 290 0 v Per _ . core r - 1 -

Temperature et Leenage Pters . Ti (*F) l S33 533 533 533 . .

533 _

Pressure et Lassage Pomt .og (aus) I 1020 1020 .

l 1020 1020 1020 Enthaev et Lesenge Port . tg (BTuib) I 52753 527 83 I . i 527 83 i S27 43

  • S27 83 Perrect et Heen Steam . %FS (%)  ! 3e% 36 % i a 36 % , 36 % . 36 %

Donety . m (itiat*) i 62 40 1 62 40 1 62 40 1 62 40 . l . 62 40 Somede Volume of Fleen Steam . we l (t'Ab) i 26 79 1 26 79 1 26 79 I 26 79 . I l 26 79 Leenage Quanuty Calcu:eeen i i i i i i I i f ota Vesumetne Flos Rate . Qu,i (ges/mmi 1 0 i S 1 l 3.s l 10.s l i i 25 0 Totm uaes Faw Rate mt,si otammi i c i 42 i 32 90 i i i 200 Mass Fww Rate er Fiesn steem . mt.i otymin) i 0 i iS I i 12 i 32 l . 1 I 75 wass F== Rate at unnasnoo Louus mt,i otvmmi 1 0 4 27 i i 2t i 58 i i i 134 Vanumetnc Fiove Rate of Fleen Steem.O,1 Ot*fmmi 1 0 i 43) i 311 1 861 I . .t . I 2G32 Cascuseene seem Canainene Aner Lean occure  ! i i i i i i i i Numidity Rate . e,i An t lD) i 00163 i 0 2341 i (o1643,t 0 4436 4 . l .

i _ STEAM iemsweture . 7, (Modify unos checs e 0 0)I (*F) _,[_,1210,,, ,_14R -

l 212.0 l 121.s l 145.0 _l_

Ran=ne Can. men, mi i $6i6, tem 0.i i ., Sato..1.. 6mq l . i NiA Entneev of Dry As et i,. h,,i (8tuie " 1301 144 7 138 9., _ ,144 7_ i . I N#A Ertheiov et Water Vapor et T,.h,gg (BTUAen i Tite D 11241 i . 1914 0 1 11240 I i i N/A ruremen se an.tyy a ie=e ie me we es,7, i i , i i i i i 4 =A Left Sede of Eausteni I 157 2 407 9 i 321 9 645 S i I NA Rvt See er Eoustioni i 157 2 , # 407 9 i 8 321 9 i fids S i i i N/A Checai 00 00 i 00 00 i {

t N/A Temos,et,se Deerence A:rtns Roorn . ATI M l 17.6 l 41 0 l 41 0 SL J .

l 64 0 10/31/97 7 49 AM i

Sargerit Lundy Commormeeltn Edison LaSame County Nuclear Staten

%% NO. LOO 1281 Rn 0 Attachment A.Page'A4 O -

' l able,3 I i l  ! I I e i

'\.

RWCU Mezzanine Area Temperature Response Due to High Energy Fluid Leakage i ,

j i i i i i i i Opereeng Caese Sstowe ses se Penews: i 1 i i i t i  !

Case t . het Laos (summer est gevemesit Oesresig) 4 i i i I 8 i Case 3 = 0 Opes Less (numsher ungeweye eg cuevece%g> t j i e i Case 8. Deseansaio Less # Ameese e 4af 8ummer esem f e,w mae Deernimg) i ( i Case 4 = h Lees # of Oasy (wnearNEeusemera Cournere) i I Case de Desseness Laos i Amespo Onse (wree een te.emere Opersarigt I

. Case 4. h L aus # 4Y Onfy (Woeur espi "- " not Caererie)

Case to . Demeenene Lane 8 Amesent Osory met feuena6at not Osesserug)

Cases.26 OPtsLane Case 1 Case 2 Cass 3 Case 4 Case de Case S CasJe Casa e Armanpriert Preneure . p. (poe) 14 I to 7 . 14 7 EI = = 14 7 Esugertng MVAC AAr Cesidiessee fhesm Suppsy Temperveure . T. (*i ) 104 104 i . 80 80 . . 118 Raam Suposy Terrgerature . T. (*R) $64 j S64 . 540 S40 . . $75 '

~ T Fl

~

ftoletswe Mummary , (%) 7% . 23 % 23% = . 36 I Pressure er Saturated Water et T, p. (peal 10F 1 07 .  ! O S1 0 S1 . . 1 00 Pedial Prweeure cf Wear vouar et T. . p. (pean) 4 0 3744 0 3744 . 1 0 ties i 0 ite . . O $833 Humsofty Rute . e,6 (it%, g i O O1,63 , ,0,01,63 l 1,0,CD50j,,0,0210 l . .

0 0246 ,

Erenemy of Dry Enorme As et T. . h .l (BTUAb) 134 82 . 134 82 i .

  • 129 De i 129 08 i . . i 13&10 Erehospy ar Weser veser et T. . n j (BTuobl 4 1105 75'I I156 7i1 . 1N16771"De564 l . . I 1115If Canemme Entreey of Ernorme Mature . h.i (BTUAb) 152 81 152 51 . 134 St 13451 . . 12 61 Seeniec Vasume . v, (It*td 14 6 14 8 . 13 7 137 . . 15 1 vahammere Fhne Rate . Q. (R'imm) 1 000 1 000 . 1 (XK' 1.000 . . O temas Flene Rete . m. (Itarmeg m es . 73 73 . . 0

_ : Peressessere Enhowy of Sasurseen uound et Room Preneure . h, (BT1Mb) 100 18 180 18 . 18118 100 13 . . 18Q 18 EMheery W Saturesed Steam et Ranm Pressure fi.i (BTUMO) 1150 46 1130 48 . 1130 48 113048 . . 1190 de imes Heat input . %ei (BTuthr) 17 602 17 802 17.002 17802 . . O Totaf Heat encut = th i (BTU /mmi 293 293 i 21 0 293 t . . O

_ Pere"; *ers her Laemeng t __

j j i i i Tomooreture et Lee. age Pone ou (*F) S33 i $33 . $33 533 j . . 533 Preneure et Leona0e Pemt . pt i (pass) 1020 1020 . 1020 1020 6 . . 1020 Eritheev et Lesenge Poet .t h j (BTunbi $27 83 527 83 . I S21 53 i $2183 i . . 527 83 Pereont of Flean Steem . %FSI (%) i 3e% 36 % . i 36 % ! 36 % * . . I 36 %

Osnasty . M Ot#) 1 62 40 1 62 40 . i 62 40 i 62 40 I . i 62 40 Somesne Votume of Fleen Stasm .vs t (P/lb) 4 26 79 I 26 79 6 26 79 1 26 79 I . I 26 79 Laateee Quenety Calcutamon i i e i e i i Tutal Volumetnc Flow Rate . Qs i (ganimini i 0 t S i l 3.9 l 10.7 l i . i 25 0 Total Maes Fame Rate mn .1 (t/mm) i 0 s 42 I i 32 90 . . t + , 200 Maes Feow Rate rif Flasn Steam . mt.j Otml i 0 i IS i i 12 32 e i i 75 Masa Fksw Re(e of Unnashed Lsound o. m i CD/rmnl 1 0 1 27 I i 21 $7 i . i i 134 voaumeenc Flme Rate of Flesh Steam . O,1 (ffmmi i 0 1 400 t i 312 i 860 i i i 2002 Calcuteted stooen Conessons After Laat Occurs j i e i i  !

! }

%srvuo.tv Ratm3. e.,i (Itw / ID) 1 0 01tE3 i 0 2341 I .j~01M6 i 0 4452 4 t t STEAM Temperature . Ts (Maoiry until Checa e 0 0)I (*F) l 1 21.3 l 144.8 l_ .

i . . 120. . 8._.. 144.. 8.....,: ..

..[ 212.0

..n, Enmaiov of Ory At et Te. n.it (Bfuob) 139 0

~

,,,1446, . . , . t 138 9.. . . .1446. . . e i N/A Enmaiov of Water vapor at T, rt e 1B TUAD) i 11'14I T 1I U O"i t 11139 Y 55E b - t i N/A storecen et Energy statance to toeve foe Te  ; i i 6 i e i I N/A Left See of Ecuaten' i 157 1 i a07 8 6 i 322 2 64S 0 i i N/A Rgnt See re Ecuateni 1 1571 i 40? 8 i 322 2 645 0 i . -

N/A_

Choct i i 00 i 00 t j CD 00 .

I i N/A Temooreture DPerence Across Room . aTi (*n l 17.3 l 40 a l 40 8 64 8 l 64 0 N.

10/3197 7 49 AM

Ser9ent Lan*J Cunmorweanh Edison LaSale County Nuclear Station e Calcutanon No L001281 F.sv.1 i Anachment A.Page A5 e n

[ Tab,le 4 _

j 1  ! l l l 1  !  ! l 6 L R_,W',CU Heat Exchanger Room lValve Room T3mpenstuie Res9onae Oue to High Energy i luH Leakage i T I  !

ope <ergc mesn m s eseven. [  !

c i. twtsu, m _ews.,

c m . s nau 5 e.,tw .e..es pe., , i  ! ,

  • it=*=_.1*_L****?* WPa*N W

. s 1* 0 0**?.= L*3Come.*SJr=EW i 9 t* .*.:1~".~.1~L**~ 0"t "*?? ~m :***'* ow=w __

., _._j 5* e ****>=el*.L4Lgnu*wf,tgenws., _ _,,, _

t, _

s-aea - a- ~~-. w m - ~ _ _ _

Cees t . 8148Wtevaarl f I

Q_t _ _i

m ? .twe=e= tw s 4Lepagn_ _ ,

I E***.l'. .;3"*"1** ' ""**: 0"!.7*'*'

cms cm2 isest es= F c.m es i__ cm s cm se cme cm? caee f e Atmoepneet Pgesse . p. (psel 14 7 14 7 14 7 j 1F to P ' ta 7 to 7 i 15 7 14 7 to 7 c ' ed.ps

  • j f ate (aa WVAC se 8 team Supewy Temperatute . T. N) 104 104 _104 to I to 40 63 1to SS SS 964 664 S40 Se0 878 12$ S2S naam Supeiy Tempr sture . T. ("R ) SN_~ 540 ! _%40 3S% 3S% 3S% 23% I 23% _ p

_s 23% 36 % 23 % D%

heetwe Mume g g (%)

Pressure et Seustee Water at T. . p,l (pen) 1 07 1 ?? 1 07 0 C1 0 51 1 0 61 0 61 1 to 0 31 0 31

~

Penes Peessueo et Weeer vapor et T . p. (pse) 0 3744 4 3744 0 3744 0 ttes 0 tsee 1 0 t'te 0 tiet 0 Se03 0 0703 0 0703 '

summe, mm . .. (%s my _ 0 Oils _ 0 0fu LO Ot43 0 cos0_ 0 0030J 0 00SO_0 00s0 _0 0246,_0 m230_ _0 0030, Entne.py of t>y katsang As at T.. h.. (8 71.ptb > .M 82 134 42, (1M 42 L 129 08 _129 06,, ,,,129 06 _ 129 08 , 138,16 _ ,,125 47 _ ,12S47_

tninespy er evater vepor e t f..N. t108 78 l 1 tot 74 1108 76 tous 44 tote 44 1096 44 9006 44 - 1112 74 tone 32 100 92 (8TunD)

Carate ed tatneipy st tatormg wature . n. (8 Tune) 132 41 1 152 81 152 51 1M it 134 61 134 91 tH $t 165 81 134 72 12472 13 3 Brecric Veume.m (@m) to 6 i 14 8 to 6 13 7 13 7 13 7 13 7 15 1 13 3 woumetra Ptom Rete . Q 2 ESO j 2 SSO 2 SSO 2 $$0 2 510 2 850 2 650 1491 1928 873 (Mime)

Wese Pwe aste m. 199 166 195 204 204 208 200 to 146 e6 (itume9 g M_6eseneerwee_ Peres stee. 100 to tainsipv W torussime Laevas at Room Pressure n,, (8Tunnt 140 is ta0 is too to 150 14 140 14 140 18 100 14 1a018 too it tafbespy et EM reese Seeem et Room Pressure.n,! (OTunct t150 44 11SO 44 1190 es 1150 44 11S0 e4 11So es tISO 44 1i30 as 1 ISO e4 t154 as Tetei eeet eiput awl (8Tum') $1142 41 142 2 270 61 142 51 142 2 270 2 270 0 0 0 Totai Heat input . g. 452 552 34 452 SS2 34 38 0 0 0 (87urmm) parameeece *er Louislag C - - ome 437 437 437 437 437 437 437 437 437 4J7 Temperature et Loosego P est . Ti (*F)

(poel 1020 1120 1020 1020 1020 1020 1C20 1020 1020 1020 Pteeece et Lessage Peeit . p.

4 atne:py at t eaue9e Pomt . % (nTutID) 414 to 416 it a tt it 416 16 416 14 414 16 416 it 416 16 416 14 416 16

, 24 % 24 %

Pe4Te89t ef fissa Steem.%8$ (%) 24% 24% 24% 24% 24 % 24 %

'd 24 % 24 %

62 40 Deasty . m f2 40 62 40 62 40 42 40 62 40 62 40 62 40 62 eo 62 40

('tWM) 50ecnic veume of nasa 9'.em . we (MAD) 26 79 M 79 M 79 26 79 26 79 26 79 26 79 26 ft 26 79 26 79 Leese,4 ousatity emuim a _

fossi wwumetre Ptow Rete . Q. (gstemel 0 $ 17 0 l 44 l 23 6 l 11 6 ! 3a F l 2S O l 1P e l me tat um n nm .%.i (=msa, 0 42 u2 a m no 2= 20. i4 i 303 um pm- neie er n.ea s m. m ei on,mm) 0 30 3S e 44 s 72 si u 74 um 7 am e uaaeense tose w.1 comm) 0 32 ice ar us sa 22s tsa 107 230 voum.ec e . neen n.eem.o.i (e,mm) 0 272 m 2n i2:3 740 im im m ier?

cm yem c.aem e an.itsee oseure i numme, men. . ., t% mi 0 Oi43 0 res2 . O isst j _0 04 r4 0 23ss g 0 i37s i _0 m33 0sms 0 24023_ tj2e1,,.

Tem m we.Tt twane, uam cnoci e 0 0) F) s ti e I t M e 1_ 1_2e.._s . ,._t04_s . _12_s e - 104 s  ; 1

- - .2e e. ._ I nee u t.o_e s.. : 1ss a I_ _

a 46 ...e.9+ s de .4 e .1= ..

.ges se ., ,q ,e 4,.. ..9 -. *.4 6a -

Eatnev, er ory as si Te m, e _ (8'uno> ns 1,,,;_uo 7.,;,,140 7; ,, iss e ,1,,,140 7 2 ,yi 0_ i _,40 i7 ,,,i _i,4s 2,,,,_13s s,; ,,,.1,4a 2,,,. ,

e_av.p, , Wme vese, e eano, toTunni un3 mr 2 m? 2 nor 0 in? 2 l uG70 int 2 u30 i u0s 0 nio i no a ..,9, .ee. u t.,it  !

ist 2 25s e oc3 s i nro s3s a 7sa 0 40i e i420 e ten see e tema -

3Ss1_ u? 4 iS7 2 246 e asi m4 403e i a?6 ni4 7w 0 40i e u20 asaeaoseev = a "

C""' - " " oo i *8.,_ . ..se8e8...d . *

  • t 00 - --" . . .I Temooreture on* mace oce anom . a7 F) l 37 4 l Me l 24 e 24 e = 24 s sa s l 45 s l - si **-- e i e4 e f

6 4

Nj 11/M7 4 48 AM

Sargerit Lunoy Commarieuman Edmort e Lasaae Courdy Nuclear Staborn Ch=i NO. LOO 1281 Rev.4 Attachmerit A.Page A6 s Table 5 I I t l l l t RWCU FD Valve Room Temperature Response Due to High Energy Fluid Leakage .

I l 1 Opersens Ceems sheen are se Posses a i

T i

  • 8e tems (siemmer use teuemme osseme)

Cass 8 5 oms Lese thunumer useguenese ceasemie)

Case 8. Deemente Lees (&muner uses teuesee see omosegi i g 4. Duesmeena Less i A? onsy (weest usee 3.w Onessie)

Case 4 Deesesse tema f Ameegse Cuay (Weiner e en Ge:nemese Onasseis)

Case S

  • Dueusesse Lees f of Osey (Weer een te.= .ase sus Osasemia)

Caso es . oseenies tea = t a nem o,e,(vens,my- e o,eee,e, Cass 4. M Oms t ene

. Case 1 Case 2 Case 3 mCese 4 Com de Caosfl Ca.*g% Caen 4 Abm:tx;rs *.== Jure . p, (pass) 14 7 14 7 , . 14 7 14 7 . . 14 7 5_setorens 64WAC ser casessene RrerA Sumefy Tergoeschee . Y, (*F) 104 104 . 80 00 . . 114 Ramsn Suessy Temisersture . T. (*R) See See . 540 S40 . . S78

  • O ~

Rennene ressesey .+ (%) Jeg 30% . 23% 27e ." '! '.tb4 P'emmse af Samarines Weser a T, . p. (peal 1 07 1 07 . O S1 a51 . . 1m Portal hessise of Weem vesar at T, . p. (seep Q3744 0 37m . 0.1188 0te . . QSMS hwasasey Reno . m. (Itwf sto 00183 0 0183 . 0 3100 0 NB0 . . 00246 Erishesy of Dry Erwareg Asr at T . h (STUAbt i 13482 i 134 82 i . 1290" 129 08 a . . I 138 18 Erehesey of Weser veser a T, .he. (STUAb) 1106 76 I 1108 70 I . 1M 44- ifM 44 ' . . 1112.74 Comtuneo EstW af Ereenrig seasure . h. (BTU 4) 152 81 152.81 I . 134 S1 134S1 . . im et SomeAc Vtascie . v. (Itlb) 14 6 14 8 . 13 7 117 . . 15 1 Volusseerie piew Rets . O. (It'Aven) 800 800 . 85) M . . 0 l

heems Fkuur Rete . m. (lefero 41 41 . 44 44 . . O S- Peresseenre l Erennepy of Saturense Lamed at Roere Piussure . h, (3TUAto tea to 100 18 . 100 18 10Q18 . . 18Q 18 EsWesuv af Saturated seem et Room Pressure . h. (STuntn 1190 48 1190 de . 1130 48 1 M 48 - . 1190 de Tees Homt trisut . % (9Tufhr) 11 977 11.977 . 11.977 11.977 . . O p I Tcesi Heat enout . % (BTUtirr0 200 2G) . 200 200 . . O i Peressisesse for Leemans e

, d Tomoorense et Lassage Pues . Tg (*F) 437 437 . 437 437 . . 437 I Pveneure et Lassage Pomt . og (pens) 1020 1020 . 1020 1020 . . 1020 Eruhetary at Lessage Pemt . ht (BTU 4b) die 16 die is . dia 16 41416 . . 414 16 Pellent rif Fleen Samm . %FS (%) 24g 24 % . 24% 24% . . 24 %

Derety . pt (Itint') 62 40 62 40 . 62 40 82 40 . . 82 40 Scocultc bosume of Fleen seem . v, (ft'AtF 26 79 26 79 . 26 79 26 79 . . 2679 Leenage Quensey Caecutemen Tats Vasumame Flost Rate . Q., (geumen) O S I -

l 3.8 l 10 4 l .

  • 25 0 f atel Mees Flosr Rete e rrwl (ItWmen) 0 1 42 * . i 32 i 87 i . . 209 Maes Fine Rate of Fleen seem m(el (Itymm) } O i 10 t . I 8 21 I t . S1 Mean Flos Role of UnAmened Lamuss.um i (Itymmt 0 i 32 i . I 24 66 i . i . 158 Voeumame Flos Rete of Fleen seem . Oi l t't' spurn 0 1 272 I . I 208 564 I . . I 1350

.C_e49 tease psom Cenesenene ARef Leon Occure t i j i i i Humsesty Retto.eil (Itwf e) 0 0163 6 026281 . l 0 1325] 0 4864 i . STEAM

{ .

Temperature . Ti (Madey urgd Chece = 0 Oy (*F) l 123.5 l 148 S l

  • i 124t, i 148 5 ! .
  • 212.0 Ranserie Cameru'oni (*R) 1 S83 6 6 6385 I . i See S l 608 S l l bua Erithmey cf Dry At et T,. h.,I (BTUAbi 2 139 5 145S i - i 130 7 145 S i . l . N/A Erthocy cf Water ver'or at i,.hori (BTUAtt i 1115 1 i 1125 5 i - 4 1115 5 l 1125 5 l - t ouA teorecen of EurTy talence to Solve for 7, t  ; e i 6 6 I i i euA Left See cf Equenoni i 157 7 i 441 3 i
  • 343 4 6 692 9 e i 4 euA

, Rv4 Side of Eaustusni i 157 7 i 441 3 i . i 30 4 5 892 9 4 i 6 %A Checai t 00 i 00  !,,. i 00 1 _00 t l t huA Temeerature, Oderence Across Room . ATI (*F) l 19.6 l 44 s l 44 5 66 S .

l 94 0 s

L) 10/31'97 ? 49 AM

a s

.s u Sergent Lundy A I e I c 1 i Tatne 1A i Formulas used in Table 1 -

i

< onesanne cesse we se pen :

Ces t . tes less teimuser em Sesssume opow 1

[

.C .

I' Cess 3 + 4 08. Less seassies estesymuss eyesasig ,

Cape b Damaman Less teemans,em Gemuness ame o,es si i E

, ,, @ e. eensemum 4 em f 6

  • cuer Weser een Egnemen o,s usim l E case as ompasse Las e asemme oser eswe -

_o ,

J1cse.1 *'==== 6anu.!91rfeL=r.=e - _ ame====e

.'i

Mew 6. o==== we e maes= w wea. e sess o.s s Ces e. n esis ta.

'1. came t

'til F*emare . p. (pemp 14 7 154 E ill treasone sarac AS Cenemuses i E tf name enessy T _ _ . f. ("P) tes lio. E se no e e, v _ . r. cm) .cir.een 6.oir es E se me .e.m s,.. m e as io u E 11 #seemse er enesamme vuuser as f.. en tpunt avammmetn esammeetn s - .e , s. .. . e. - _ 3e Desmesy Rams.o. as mgimg Al M as e33=cggem) , , , , ,,, , , , ,

j esemoy er thy emesseg er as T..ev (Stuent taesse 83PrqCierS1416 8011Qee83"2 f t82rtCier3141S 3011I, , , , , , , ,sente

, . , , 0779'fDier3141 d eseme, er woner wess, as f, . li,, gefugni esgasunecin empeam017)

S ceummieseseum,asassungeaswo.n. (STuent sc2kC22"C24 =Ot>032"O24 Se esmeen wense .v. te% 16eelc17.eesurec16c21rze or"1+4 *1eee101F+eesutto1' ff wensmemes resw asas.o. ge'eseis tese tese II memme etse asse.ei, chament ac27c38 =c27sD3e Il Pwusianese Il Mpump, as genreams uess e asen pseemse.e6 (sTwo esemencist messeroits esense, er Geneese aman a asse poemmee. n, gefunne esgesencisi esammeton I

fang pens egne e h (STubr) 33 hee ~ 33ee8 l l '

feespaume asus.g (WRausse 6 "O32fm

'4 .^_ _ _ _ _ _ ese temmum - _ _ _ _

$8 ' f ameeumee a Laaseen Pune . Ts (P) 633 933 IO #susase a Lammen Pese e og spent im 18M II esemoy at Laemmes Pune. A lefutt euerC3e C3el cuerD3S Gael 30 PusesseesPtnesi semm. %76 h) t erC37<3OwtC31<30) ist037 030WrO31-0.10) 30 Omnasy . g (esti let e 182 4 80 esseste wemmes of Phasi sensa.w, (s't) ausseC16 C31) ensusWD18 0311 41 Lammys enasemy Casunamnase 48 Tame wensamese ptme Asam * &an tenetsunt e S 45 Team asume emi, mas. . esas me aos21: Sert eem acaro3 err sem 44 tense Ptmo see et these ebeam. sg, fernung eCe39:34 eO43'014

  1. 4ense F1sw Asse of Laeneses Laeme. any temment ac4 bc44 eO4 M24

" Fine Aes of Ptman eteen.Q, (ehment eC401",44 =Oe0"044

~-

47 ' neesn commme,is ano, t.am ~_ --

" tesseav amme.., AJ ant ec22em eOE2-

    • i -- - -- . T, pamesy Lasa e e el ('F) l121 - - *

(1** " 9

stmese consumei ('9:3 .cas.een

. teney at thy Mr es f,. % gefun,g i.eeseegyT1Caer3E4ISAdre'eee3"2.754399CeeU54ileM5 " geese.eeetemee STPe'fu i'

esemoy at suuser weser a t, % getums .egnessicesi '

IWi ensumun

  • Dumer _ _ es eas.e our 7, Lee ehes af esammit . -3r de_4.4 we.Cee*C31C24  %%O22"C:

e - e, ,s.o.ii .Ce,.c.e.Ce2 .oe , .-2 mi . =cea. css loos + ost I='=884has E e ^A Aessn. att (*F) leCascip leess.417 10/31/97 7 *S AM

Commonweann EOson LaSane County Nuclear Staton Caecutagon No L001281 Rev 0 Aatachmers A.Page A7 I o I e I

  • I

~

l AMc ts r

I I ,

- 6. .l >u. Ei .

~

l l

  • $-l l i we.<

I e I i

~

I- _...................._ " ""'~ f l is U b Tl b r r y e. -

I ~

E E ces. ca s ca== 4 E se r is t E

I im .no l .en. Z ~

.*if aan E ex en I ,_.,s -m E eireas wirr3e

  • Stre3Esisey ......... .=;sarmesc11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.*??*..ean n amowsuis soni ,,,,,,;.meeg.9 tewouis mil,,,........ ..,...

meers. g,sas. . .... teinouis ....,,,,..,..........

se,,i,jt, . == = e m ,2wn,4,is wium ener3,J,is3ei m uisson,

.g sir mem E M 3e N B031r38 eM eat sitesW7 deswei4E2iras emes *1989 47*eseWWFiSMir3e 87"144:

E ines sees E .an=3e -

.evese E

E ===mme a acamerisi E m es musiii ~

=mesmeries E esta ~

330ee E *e33 fee

=P33GB E

E s33 a33 E isas

~

tem E .aumemstan wwirm rui E we37-e3 ns e3i-eloi t=(F17.F30MF31.F30s E e3 e e3 4 E 4.areis c u .weeis esu E

E e umEesses k,tefeesesseeene E *eeFe3e5eene ap4FF304 eam E *Ge3"e34 operF3e E *e eM e4 opewee

  • ees"e H esarpes g  ; ..

.g.. - . . . - .

E l1M h .J.ewest

. pit pe?
    • see+eet. espee.ees, lE.'O,........................................,,,.[.

'5!.ED.!#.!8..so,j,i

. Naense,s2,'r j5isMiy6 f5ageggeaM{45s[i[ Neente,s37f1Peadi5ikbik,h7,1hP,5N3ihis'ociU" aem e ~*i eemi M.

E N'W *(1343e *e f3.e3:re3e+fWit:30 eF31F3e+833*F3277e+8ee*F3 tF7e

- *eSi*e ert ~

l3 opti+84ePS3 I*ehtM "joetutt E 1.naen - s"4" "-

'N 9 O/d 59-

u_t -

W LamM e a \ u 1 e i Tatde 1 A, cont'd i

l\

, . ,, . , . . , , . . . 4 . . . . e = * * -

  • lt Ii i

<1 1

0 -

44 C.ame se case s C*e 6e 16 14 7 14 7 '*I if 17 ao ao ao te aantP+4eo eH17eeso *18**88 it e 22 e 23 8 33 N ausenwetM *peseWH1D *uessantM P1 e010MBM eH10'N3D *H N 2 *0 e221B2146164213 at e22Mt14tg164S1 NN.I........................

g"M 2Fewieo14,1sMosss2Jhafvoiani4Ess6i" %%u3ii)isE6i13"sess'ii@ilisiisssai" ,W, oosmyseo14is mo o wr2.

'd esipenwe1F) ** W D -ogsmissin l$ *G23*S22"n24 e63*e4t2H24 N N e1944701Fe4egyt(Ol6421F'20 SF*1444 e1646W F*4eoM9416.H21728 97'"144) e164s111Fo44tN41154217'2e 9F"1446 FF 1840 tage 1880 N *G2?K130 eGFeQG '82IM N

to =astemeroise wis "'essun s 41 measumni *'4F*'"8 8 88 Ti ,=13adoyimmetsi seta set 2 Ti 432,so

.am =>=

54 X.g11 _

su S33

$4 1020

'] toJo l102o 37 eestG3G G35) .egies,Oe M35)

I*' emus samt 34 erg 1743oWG31430) upoF e ing

--- --- :w e ett37mut430) y

~~

40 wGil G31)

-~. - .

eqMig pgg 84N419 01) 4g 42 14 2eeFleaseassa

~

l4.eseas3ssssseos hs.62sm104M 43 *G42'030rf 4408 e4 eG43T.x " eee2 TOW 7 480$ 16M

~

,,,,m gee 431u

&& eGe b4*Se e,eis m

~' l as45444 44 eGefrO44 e im40944 A44 ..}..........

Gneo44a3a . ",, cig;;ar e22 444u..

1 !38 4 5 k h"' '~

p so-4-4.o , r,,,;s;a" 138 4 _

es 4.o f.?,**** , , , ,*27',',

, , , , , M? "'S .*o1.!ro.***n ??.an-s.*.. " n.s e. at.n.... gens,tsomi. tis so!.!.ro.s.9a21

...g=*ee.n. e27s,,ean.i. .o.n..s. .n.o. .t..i.r..o. .e. s.e..r. ...rwies, 2..F..i.a. 2.e..w.........i.e..n.s..s.o.

sa 04 . t 80 3 3M37t*Qu+442 G24*G44 *C31M324 SS "Gl**G44*0$1 s*G14Ca **c3 **42 2H24****4 H314C8 imeN*423*i2D24****'W8

,,gg ,wg g eG344%3 4,,,gg 6 m11***4*tS 2 SF =G4 4317 es$44$3 j 39 4 m417 f iO/3taf 7 SS Aas b7?

  • M

c - eme LeSane Coway Nucesar Staten Caloutston No.LD01381 Rev.0 Ansehmese A.Page AS

' ANSTEC

_ APERTURE CARD

.m_,. . . _- .

Alse Avalleble on Aperture Cmd E

E

  • E E

E E

E I to 7

_s*

E E via E m r. des ,

m em gamusin 3 asie Jan SEN.OEl........................................----

, g tefS9 Qs3911) 6 SEP91JM14to 301%)'G 90er2 7temMJ1el3141e util

== =Jin m eJ3boJ2FJ34 g ettes1J17,400WNJ16J1172blP144)

E

  • m .errene -

E =====Jiei ~~

E e w ammJies

  • E
  • E *ames E

E tus E naso .

E inuune 438) 7 E marmnum E l43.4

'=muis nu ,

E las E **srJawr eene

~

, => ne ede%Jee

&#elPJ44 e

8 TEAM I. . ..

.,!III

=

!$!,k.W.l'I-- M E A E w m .

~

  • tfA lWD=J t 7 =

l

I l

Serpr8 L*8f ,

_ a , e I o i e t Tame 3A 7- -- Used to TeMe 2

^

$m M We k J _

a^

(.mm, t en sak- ^~

L'ame R e WM 1hamar -

r - . . n-,ga m,'a_-^

f.mm A . - tassi mm- am tautmassa

[mm to M M'esten te Negre enemass -_

- L(1u e ammans tsare e' em f**w w oneses ==g,y,qg,_ _ _

em se . ' Lamb e t'eme De Gener se samummee gur - __

r_ e , a yte tan, Cams 1 E88' I E888

' ~

_98MC AF h

  • 8passese M- . , tysase ee y h 8hese hamply _ _ u . g. ('yg see me j_! hussa heum " ____.8. f'et et t f.ees a01 **ese m amme oesmeasr e eau ew e ne I'

88 i G 4Weser S le . % toast . geerC1FI ochEID9F1

  1. see #suense e ones, og,sy a g . g ,,,,, ,c,g cy ,en,ggyg
    • 8'*889 8 tube *
  • stand te~.st eEF"QttC t%4*Jy .'

W 9'D9G848*W**eb+% .g

"~

%,,,,,,, g tWRJht . e.e. sus @;g . .

at eITUltftD

..e.s.s.t.M....S.N. ...h.... . M.. 5.k.,.C.M.....E..t.E..s.pE.f.f.".

.oesse t%C81)

ErlW1.DtM. 'e.Sti79..eeeB*3

..t.s.i.t- - - . - - - ., ~. F.e.s3p1

<=====e*.=w. ___ ,e.. ,.s., .cn.crrew on onw.

essoas semane.s ggabe e u .c o.eassesC t6Citr1e er***se **eerTOt'**e8mfDMSPN eP **** .

re- nom . a ev e ses sans tause f%mm hess eeg fameseg eC37C3

- ^

EOF 703 Gr#4by * -__ _ tasse e es.m . e, ;gte N JbC ill "'8888D988 12 . 48 7 -^ _ heen e Summ ' _ ag ggMme _ __ [ggi apev$t fess eee egns . g tetuseg e ftsp 18T30 lehu sens eens . h 194seene w'3 &es ll *__ 8er Lemeu C __

8094G8 l'

FLemerge #ese e A ("F) 150 Ll tM4

**mree Lene g#wuq m l ieense etap

.edIP t**=mv e s s. e . g l ,ense, ecu c asi -coois on.

  • w w% muni. eig _ mt .. OcarcassicD<w =O3' C WO U C

i8F u- .. ew, es e es e essede wensee e p%se mesm. g te'ee ansivt te C3 eg See>uee - 4 espeOte CU) d C les - - _ f%.e esas . % ggmpmene e $

9 ===e e. io e .c4is i., e e 44 u. =on r' oves **m

    • Oem.m .. .- . e-cu
  • 485 N EF^ .

=o. rote i tameo. sg. f eissent sca b.cae l ens t.n.a eF c sen. s.o . ew . g ,v e ecm.e 8

me.e c- - ea.,it ee.,, i .ooro.e i

'8 - - -

    • .. e . e., in , ei . .c n.cw se -nn.c em

's====a . 8 aa s.w o . s eil r* , l ere - e.

  • Iw---- e
  • "==(- "$ I ..

'***'*0*"*4 '%' Wem.................................................... .'.et*.........................-.......-.............-- '

e ==== = ==- e . e, .*ta.'_

e, ***'*

-c.e ?3.,'.cterpa,g,ony,e,es,ses,say [ygcim,3,g,soyyy,,,= esse [3ys,g,3 3,giy,%M,M.W,u g.WW

. a-== . e -,, e- es same =- e, ,,T.g . o... _,T'""""

    • 1.e. trip.s_e*,

, *** mee e e a#,.9 .$.LW.<re.c ct en u n.c FC la .ua T 1 w a . =os60 tem 1 c!rT24 <**m'cle Caisse . . .oU.ce-m r

%' r hr gt

  • **** * *
  • f**. ae o , es . , e 4. i.cy ,,

. .rs%6014 '

% ,, , I s it4t 4 7. f et aae o n.4 .

l ANSY80 . .,.

APERTURE CARD Commermosm Ednan tes.n.c = .e. ,e n Also Ap2rturo Availab'o CardUff**'*^"***'"""28' * * ^ *" '

n1 - \~- . \ . 1 . , a I

~

I r -

E E

E E

E l_ -

E.

g e a

F ... , . . 2, ~

. .s . --

48tV)W 964 #14 5 GW94n4GMy ** 9 - ' - '

mus er , .9,*ew ert,t,h ese?}Nhhhh,mhe~ '

  • m us now4,mdh,M,',hh5.h,h[

.E.dD- - - - -

3

. gaygete eenWW3 ens 9Psees ~E erster.eassgesMatem aPte * * """ # -"'

u was == * '

E saww g # seas

! .ines, . E e.nec **"'

x ,.

..se "#

l-Mr., L '

~~

E E tas g sas E .us e' 9 '"'

m . . . 'E..as on. "e*

  • A61 E eats J arme tiJ wi h tt4astseaNasi "#" #

K we gi D*

m . .e e i.. 3 =. ..., '"=">"

E E r iIserisenous i 8'

.r, a _

...,a 2 ro i .. **r""

, . . . =*r '=

m e. 6, = , .3 b i **

  • g e.,,u

. fe see * * ******

m. .

.k # I.8..! **.M. . . 4 9. tGe*6at,,, *

{_. t T Y.YE. .. .8........ .. . 4

--m m,

...?'***9.,.......................u . ne me.'.m m n.=m.a.

p'9 #**89 . . . .. . ...... . . ..... .. ..I . . . . .. ..... ....3 .m9.w a.-n : mu:mm. .n "i m .n , .. , ~ .. . . . . ,,  % , .. , , . . , ,, ,. . _ .. , . m , --

  • 1' .res, _ ,,,g t.r,.rvi, ' **

t oisein + +<.w i

.. .t.

$..., -m ' '

e W

l 1

g

%,*" ao f,'.l SelTert (Mier ,

  1. .O C i D I e d,Pseuestes used la Tahoe 3

- - w- .n :

Can t Shamm a h I.ame f . A "'"""r Asmaum - ^-

caen 3. - um- eum g --

,. m bI h MM *EME" ^~

.. -m . ..w e, , , ,,,,, ,,w e ee apr , w=*maar *"" - - - - - -

i r. assn es. - -- a , am G.m .- _ _ ^- -

en -

l bl .a. .h nanf at h me -_._ _- -

c <m--- . , , , , , ,

came a . m s'sumu Cens e Cup 8i

'eme e aumen,s. wee ^- _ __ _ . , gyang te p as 9 hemsgen gggfd w h * ,

==

1 -

AWep W GeuWemfe is p1 800 988

'4 meme heuw ioneerese. s. fing sCit=ess aO9 7*.se

'E M AD m .e 1%t GB 4M

' l' *" sus 8e . Gehduas upmer g f. . g, gpogg agmeClf) agguagD171

        • 8**emme e umme waar e 4. . , ,sese .<. iev.as aosevse
    • Nil.....<_......o........................ O..<.-..-.

esiume U_.'O amanesseiciegu.e esur*"*" nemgciname sei ..N OOeems spreierevis em"n esorg"neareensimis " " ' " " ' " * * *

  • ass
    • uur g , ** ggge=,=== **,g, e t. . *, " " ' * : g"* " ""+ + * "".e saurg" * ' * " " +" *""* " * "q ***1

( m== e == . # . . ,siume .cm.Carca ___

.ars. carum tenses vaname.. ge%e ..easicip emesec,ga,r,s erge., .,ensauces eswtotScr$rie sP*ee. .

  • esummes N Aen. db (g%uses em See W Ftum ens . an, egenset actCW aublON _.

Perusit og h S Gedrehe tamme S tesse % . O gh egge(t$p a guessOMt

$d91W9 W 4GW4Aug GEgge 3 dhamin % . g gghgg g( tgg e.gensOMt teIW 84me ema e t, q9 fuset t ru3 G PWI f oe. euse e.e . g, ggfusuun, esc 33ee af agbeg

.d l<h@ $89 Y"EE9 I' '.=e=me e i emmen e== . it p, ou sas Il eutuare e t.eege owse . gg gege, egg gem I'94Riv e tomoge shape . g 991ute argyCm C 31 .punOwe 0295 l

8#198 Seen 8fI t f%t MC39(MMC 19 Cgi st018 0Wytol$ 0 tot OWW8W

  • A ttW4") 444 93 4 d!b , M
  • endue w p' esse h. g gem et egneC14 C319 energott falt1 6- s em.

w  % .a , e- a e

    • r.= e 44 - ~ ~.M.E's

..m. m . ._ , w

.ortu ores . .cmem .i..=

. %i . .o.ne w a

'==.*===.: - _a . . .i . . < . . , o .<=. '

=a -'= = a . %. . g i c.m ,- i- 8 M **

,5ggtene.gom es c _ _ . aa.,i un o.m,,, g  ; ,

---_.m . ,,s ..,wr,-c <n ..an c cn '

  • - '- - - ri ina -
u. cm . . .. ni i . .. i. me ..sres I ,,

amc___#

a = = < =, *. e i, %,

re, -ive isnai iMv6'ssi'",ssii?"Eari d new cm.o -

w .e. '

ui .emy?.assE?.

' is6i"sh,e_'s. .. ...... .. . . .. ....... . . .mow

. .. .... 1*'

. . . . . .5.Mm. -

%..., i... Gu;"""""""""""""*"""""""""- Asi.;;""* i e.w = ,e.=,,e e.e en v. , .

.: t r3 w e t a . .c tK re-cn c n c?* c e t D<2e aonoto ort c27-no o.* won

' *n W w e a i i =.$, cee _u i sosicevu F

(*= man t i s( %*# 11 s etwS , I

'-*'s-e re s * *e---. ..e. ... l.c 4,, gm,, f I i

t l

i i

I l

1 1w

'04147. F 44 ans

ANSTEC gPt:PTURE c l &&ste Casey W,aser Staten Ct ' 3(.)

-8 *I" Ceanaun%e LOOlNt Rev 0 Ame@v.urs A.Poe. A10 pn3 Avute'd 3" w e.m Cud

- s i , l

. . i .i

~

n I

E E

E

= -

E E

E -

E

- tana ha h6 taan an ha me. 3

m. .- ,.

m.. -

m .g ..

'n ,n s ,. n . .

fra ..;

.+ . - .

, ar ..

a ei- * *

,.=m. ,5 d.h.=w.M5+y;' '

.~ ~7~"* ""v=m==md... M::...:..; . = m >=.v.n M & H Hmm.4.M EE9"ll.

, g.3 mman

  • '* .m a m, gs, . . ,r. n a -- - , r . . ..,.,,,r., .

<= . g .. ..

.~,r, -,

~ .; . ,

.., u

. . -s~ .g, .a m! - or .,

n h-,

o.,

tw,..,

u, e* eu W '" 2'*'"

        • '8"

- i .. . ,,

. .:: ,. ., . rn

,N r;-

en ~> '

-J:;2 12 . _-

=~- ..r. .u-

~

=.d[e . .. . . . 7 .. .. ... . . . , . . . . . . . . .

$ $' ". . . . . , - , . . . . . . i ,p ..,9gy,q{,,;jg,;,{.gjggg;,{,;g;j,__

. . . , . . . . . . . . ,~,.T.*. . . . . . . . . . . ,Q{,* "** " h, 9 ,es f **# "1' ,.

,"*" ?,*7 *P'.',18,'.S "*G !.' wa,tepe I

81t*,n.dp.e i r. ... . i.e e ' ilk 2n'lltilEM 1*!.it5d*

m,,w,nu if t5rassu i I.: .

i -*

WH

{w##

/ w.

f .

L seryes twaay a i e C D 1 T6tde 4A _

- . - . Formulas Used tri Table 4

(('eyge,g ih Etit f!L*?*,1-_

- - isttL a utite T M.in e w em

. istti;12W1W'9*** rittere

.-- Een a b!!"9"tW.1H=at!'tiserait-.nu ,,,,

,._!.Wti.h"I"at"tL'tif RSE*.t.RiteTL9ttEm

- ritst*M aga m ,yre-w _.

Jitt*tS=Sa'tiftL*ar.9L**!!! Ri eti'=.t 9ttys)

.i WtM*.Septistifi

_, ispth;ikasale't12e f **'*ee Pt f**er e+ e.e an oneem

. Mit(;J1YTiteIT1 (etUms=ulist

'Att,L_Damesme &*et ra' Pt L**gri

  • =cet be tweers
    • I .1=g.a

- 6 m . p. ._ (p e i47 is I

,2-t9m's ter*4 .Me**eae L

90 P s. e.,,ey 1 , an,, . t, _ (q _ + 64 ies se 6.n. 6, gig t n,.e . t, rn; . cit.ees =Dio.4eo 1 _ meseng.nem rw e >6 o as 9 em.= st 6.n, e wee a f . u pew . ymnoim

. I. Fees > = w w v.p . , . ,. m_. gn.ncin

.csetti ow si haser e m. =. m.e'61., "e astt:24c i6cra . ,,, ,,,, . . . . .

      • 9'I'!P16= g a, 4 n, je ru=L4eem orytc, tee,tef,tp!!!y!?nas d.e..sta cas40t6 034, , ,,,,,,,,i,9fttc),Mi,4,!!,to!!1,,,.

,h

,3 8aart w *==_ var _=. 'e hr ..1?n*L.afa"C. t *f" Din 0.aee.e 6. ewer as 6% mm e.ei, ptunt ac34.ctatM *oM*0** DM f ap e v.6 .., #e't. .i6441rtegistra p er sas; .ites tpie.4eogDis orype er.iu,

.,9 ~

vennem ~tm. mau . o. te%) sees M*e

_[me.. , e-me

, en e tw a .e., pa se .c M(87 *D76021

-- 4'eurtw,8,_te.e.s ta9.s a b.m W. A _ish *t=qDie)

A  % W 6en e am e n m m . g tofueL ,*ygit.elC1R _m,,ic,2ej

  • ige.moim

,[, teen eene by e. % (o tus.) 4ii88 6IisI

_t t une >=e tea . g, to ft.awv acabee .cnee A tEemaartMltthP11* ass =*as

_M te=, n.e e 4.ene p e . t, (P) aer *88 T h e t n.,. > e . pt _p,_ ism ioM

_[

,. 6,saptetje.g.pe m etnme .%s f.,C tej *T*?alD2al Jt.

  • 2rw.fysef=_.f.t!.i .e M448'Ac88480 v)*D*'Mll08:1

, e,,6 Den y. pt , pm e3 4 a3 4 ar sh, v # pn n s .., te%) ,secis e ar) wois ein 4; ~~

A.,.

7,j, La,4, age e amy censusemen i ne r _P ae. . n. m e a

'4,. 1.as tenu pie. nes. . eu , qiha , = caw 404 sec6 043 0404 aeon in e Fl he. .f fi n one.p.. eu pave j .Cas TM *o48 One H ===ew ae.*u - u s. w. A. .c.4os o o.4 n (===* a =sme_ n- , a==- ,.. . ,s o .

v .c. i .c.. .ne t.o..

E. 6 e. onwe _

1 te.s.my & en. . , en,,,# M 4 FleMC M *02 Seed 64;M 3 t emwouw.. I, M ura cae.e . 4 4 M iti o ns beteeedie iteskenesas.e

      • . fal_. ****eo

.oeo.4eo

{L,- e,ywc.,si._s -

a n . I, m., prue.L .eeen earsacsioisis sot sys seers rpewesi.oi4ts ooq, . -eemo stre rosusi4to sopre esers t, ism

-L. **arrw a = wie t i n., tonmi es==c tot

  • y sonet

_~.m.~,,

4 .

19_4 $ ate,3 8 { tassoa *C S.iM *C.34 *C IM II*C46 T I3T 79 *@S45LM_*Mjal 076*0.$ 01gM 1 aretS_tglem .. =c6I9M 48 *otL.Mt pt Chess . eclMle +044 064 08 T.av ese thA.e ero Ass e. A '

4f rF) *Clefie .O**4 is 11/I4Ia $ e4 A&4

=%

O

l

.ANSTEC APERTURE Cevvvierissem Ed.on C. [. h {.i~. L68 ate Casey h stegen CecJeten $$e L001261 Rev. t Aho Ava lable on " " * * ' '

Aperturo Cntd I _b E

~

E r

a .

l -

m

e. - m.

n .

m b

n.

.u en 1.

,,0 en e.

.e .. ,__

w ie

.e ... , ,n .

.iiW0i:.":.

Y$.N$606.56kiK #14!KEliC:.SNNEifE0EMiBEM%MiVC w '*

e-e.t ,.

.ou.4n a n,n

.. w e es ...nr or. _

. vie seiese<=rm er ,

2000 300e g U 304 ff of3eFIf g g ate' w eg E a y maim my ue**e tire 4ttat 4 use _

ed Snes E 857 437 m it. .

    • T8!MM ...

MBUM

  • 114 tl8Mt 94 011 , =ta Mit'Af M48 tt 43 e 43 4

~

I ogsqtie Ann =, set ie ala it emessaie:Mrs 4 - - = gry 443-seert mean

~

843 teeIIsas E *EWth .s.e p te m .e .

~

m E +44 t *6 44 eest tes

~

M ~

E =8t>4... 44 m . , t.:T.Jens..s.e... . ..~..

j.- - . . . . . . .. .. . _

.. ... . *0 #****. - . . . . . . , .. .. . Fle**M . .

1444 9819)... [*eese utgystaisig ge{ig ge431,1030'tt il4 4tl Mit),, J eest.0274ytt,4tett eettg eest'),. . . .. .. ....... ..... ,,.

t eleyll4943001,8) wm

_ _ _ _ _ _ w ie

  • 1?*9 R*lMailft M +4 *13 IM M ,,, * *** p._* te.Fitta.844 Fua se
  • fR44t'su .eu.a.e+u ese6 * ** .eess.g S,- - - -

l i

massa s -

__ _ .,,,__m_ _ . . _ . . - - .. '- ' '

i l

  • l WW .

/

4 e  ! a i I t Table 4 A, corit'd e

I 4 .

J .,

,, , Cese se Case 6 Cseg 6e le 7 14 p i47

$. a E, --

= "

e ne w no til , 0 78 1.I.I i 1 w ie .,eusec e ,marne g 43*421_ _

eneset ** tit i

=0 errota40164 8) , ,, , ,,,, , ,, ,, , , , , ,, ,, , , , , ,,, ,,,, , ,,,,,,, , , ,, ,,,,, ,, e 837 wage,i 6+u4l . ,, , , , ,, , ,, , . , . , . , , , , , , ,,, , , , ,,,,,, ,, , , , ,,,,,, , se stritMa & :2 2) , , , , . , , , , , . , , , , , . . , , , , , , , , , , , , , , , , , , , , ,

.k' .**"* 88'tE'.MM!8 "MN."*.EU312006.M!!!s,ee),9,,,,,I

.1 'be** t e lL,_o sa.owen avt=a'_*eme.es?q t;;,M!igt.so!!f? we.slt!!!, *e*" wen,933s,

  • ung,, ,, .een ene;,ii;,pte,i,9,w,i,37a,mep

_ .o..anwo __ =>awww _ _

.to.evoie segestasern ert** ***** eie***=nei6*nrw or l** *t***Ti* **omint.nrrn er i.9 .

"Il 3004 same Sete W3GEntf eUseet =#wat f

^

Misp n - rie ytte a

_:L *ey wroim _ net ayesine .

esies nre nre e o selbee eeneo eentee i 90 497 437 ett .

I' lose le2e te3e

[ayuC47 Gl4 @) mei *ye'lf..ine <

L *19194 mota onis yoons1 inns 3 *:o Tte niwsa ou .

,1434 634 43 4 q 4$ -w.siensa wie .o:i wne sin .

43 M 81448it4iDesass i3eew H. emes # 34 emesseessee67 y e. o.en .en swe .cos t s i.wr .eus 1

1*I 0 4*w we o. .

^ t t ^to emedest +

w at .

4' e4e t ual en t gest *w i'wt .

MI*o*6430 wo. ne.eea6&..Os ,.

~

W

. . ~

. . . .. 23*e464.

.. 20~ .. , .

WlL *ees.eee

. . . -eeneste..-. we4+44e .

,M, *e000 e279106t4tet,4 tet tp eett 3 F102e*t041964 06. set 1.).

  • t

~ ' 0sto $2?t*pe.l'.414. tl s.e. t ty'9.

se43.'.8. F. t'. leva.l.4. .'l.e. t.t set.t, j".. '.leteso $270*pl. I41415 1 9et17.9 e e303 e

t

  • 4 844 M)*,*4JO PS *G49 M429 *04 HJ *04 *tt 3 SOS *** 4 wt JHn etbe Ajoye+'IS*Q4**$'t3 RAJe 6
l MM** toes *et*=e+*
**L.** e,t s L. *******..

le *006 846 ***+*e.. **6**

to 6 .- **6 8 s t . a 15/747

e sm. e h____._____m .. _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _

ANSTEC APERTURE Ca...._ :r, Essen C A R D Canaebantes t** c->--

L001281 Rev 1 Aanctvnert A. Pope A12, Also AvnBable on Aperturo cord I e . i 6 I ~

I ene s.ee r < ~ r.

to i to P to f a a s.

t. .

. *i _

m en ,n m Jim wein we J 39' 431 *eL3r Kit et394f t fiE J 3aJ i s J a rt , . . . u . . . . . . . . . . . . , , , . ,,,,,,,,, ,Fia ,,,,s ,~

um i s an) , , , . . ,, , , , . . . . . . . . . . . . . . . . , , , , , ,, ,,, , , - ,,,,,,..e pat 1.* Mils t ra . . . . . , , , , , . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . ,, ,,

""'8 mat *5t*16 **1?rt "*81!t?"Y!**it!* **111. . ."".88'?15.1M11!.8.Mitu.'"8.1!!?E5!.**.!*!!.M!!L... "".M'n.tM11!8 M?.!d.e=91r3939,1,ne,te;,9 m39t, ae=J'" . . .

.."e *_*19

  • te las *J3 9'JM *E34.a29'E3s =L)e.03*t at ibe41Jte.eeenetJt6 J8Fr30 SP*teet et6ee'1116.eemeva148.23r30 9Ptee) *1640'tL16*eengL14tJFf30 GPteep l

bl8A(9C M MF)el *eb4Adf9C3 bas F) gg segnalgtbC344e 44 J30'JIf =K3esL27 *(2007 p$essJtop _ga te) g 44 BWestJ1% *eyeses top newealt tS p, l

~

99 447 487 135 t#JO 1938 MJ8I J,$_ ,, segust3? 13e angelL a t (34 ell!)iJmn't =33* alimass asti s ta t stat.ss t ati I4 es e esa gJtt J$n m ateg33 empaqL t 4 (SF) li'~ u use sesse.ee as 3resenseine

~

' 5'Jee/Pdest M *aat neert ment at43*teQ/7 ese6 W in ~

.nws se .sse1m MM0 *A44 E44  % 44446 pt.M. .... ..,s..

ps eunemesm.

  • ^' '* *

.ar ..o.

hisway~ " yiig""""" * *

  1. 46 400 .

~

  • L&4*440 '

MMk teet titty t4tejl tet tre 8043*3 f.t9M1Jil4. t416 90t ti ~ ocee8 62791tL4 44te.l.l D0l,'trS - t. .e83.*.3. .I.t.t391.El$.4. 94..i.l. .t.e. t.tf... ' **eest 9279jl.4414 t.l t. ot..t.re 8883*3. P.t. e re1L 5 t.4. tell. sot. t) r**d!MNt**lll',LU.*6 Albn .a ssatie.o4.an ass. net tjutre Mbarpe41.i.assts.tes ts As M***t38

  • *w *L6W9464

.asaw

_f'*a63.aae'a44 sse-tee m.e at . - - .u , "

- '""""

, _, _. .. ___,_ m__ _ -. _ - - - - - - - -

o  ;

e e i

en es== *

- , i

\

1 s e

A g g E E

, . - - gg

^" J

'in Teisim 5 l

_ y. _ _ _ _ _ . ._

_ -_ _ _ _ _ ~

_m - _ m __ _

Aman e Am a AEER(

.m te p anun

__ _ ,_ _ %B I m" -

6 ryt a W h -- - .h ft _T Z CC i

-- --- ,a e an em M aummes - gym, g g . m imme E

emece exempest T~ S M WEnn a li

  • h anun um n su G --

E -

Am.m hh g _. _ A,.,,,,,,,, .at - - .Z.,,,,,,,

g m e ____ er s te . t. sans gg,geg,geyggM,,,,, ,,, _ _.,__ _; ,gget

__ eens umaa 6.n. semi een see g gfjp,ts,eg,g]fjg,M, , , ,,,g, f u . . , . , , . _ ,,, , , , ,,,,,, __I4 u_ s E am - - - - - - _.

E ^

. Gb h. - -LL UmmD*4 6 *_____ 69f*ttet ___, ___ ___ 9P**est E 554 w

h S S h &_ r .am m amame - r a t -__ . h ---

- ^,

m as

-- eeasmamananumastanse.ok sama n __ sums . e, sney, ieyr '15FT

. m "OC ens. en S49 sus aCDtG g g -

kr -

^ *EtS E tuummese O- au s.( #91 esp e99 m Ehmmm Ataugumflue .k m Rh a- pums a tems IS W muisms mee muuBN 5081 y

M

., m m . e,gg m - am - - - -

" h . sk M Gle Se l Annan same e famn h.e6 tree seusto Case sese0te 0836 5 unnamn hammar ^ l M - W WapuBus 8hp Amp.een esguus 6 i

E 6 M 8h b 43 . ghs, shmene ace w ee E eOs'9W' een E 4MB b b & h h . eu etagne stemt a0mf9t' E W 8h*4h W h unde.av tesmen, t*@$ e$s W D E '

6 84p49 9 8 uunt Asso. 4 es'aupie , ecWtse apW9s t i Ammes ' my m ^ -

E 1 GO Menet % eii stem el a *C #$.t e WCI' 'OM*Clu 303' ',

s eum m , . e, enese, .sur sneen e o e., ,*, ' - - ' -

'te ^ - I

  • E"" MI

( E .M....___ _

EfWIND W @ , N . .. . ..... .. ... . . .. .. .. . ~ "3 '8 W10"M *8 'O #' 8 0 si tShambt +eM W891Cartteet evirg ege g ingsgCasteste gese ,_ _ _

neum.. .'tm.

der. .e9,% s 4a .iunt m.

j aM 9tff',$sWlW il W19F9 980*

m tousmo e tessun ensue , tem, sur e,

= t as han w e:Rac2hC21.C f'T11 tes Cane 2P E u n . " e_- - .

.c.4 e ra,

^* Dt2 02'T21.essmano29 c a. .. .

E

  • CBuss e ettMts -t t zt _ _ __ awee, esse a's '** =am e to  : " "to ~I.

'_*^

l l -./

94444te f et Aas 9

a -% WM

l 1

l ANSTELN At,E..rt i URg ..

Cammaressesi Edeen C*%RD --

cm . u. .

..(ptlNAh Aftoviimrt A.Pege A13 Also Availab!o on Anorturo Cnrd

--~

n *  ! e ,, ,

s I a I

E E

E E

E E

E E

  • E E t- e e- a-a e- a. e-e E"I ut up E

E# g pg ~

E*** . .m es Ei n er in

'EL*! *' . e ei . .mo em

  • * ' * .srae

.e Qo e6 M M M

'8 M M **# M . . . . . . . . ,,.,,m see3PGast g '

""""$!.t??.'!.?"'.'??."'U.f.'**T.'.huii5)i.'."

-=='

' '*?!;etam,

. , e. ,s.*?w.f Mjjje"um,j)95 }ijissis ("""  : 4mmm-me g!sr,iegw;jy}fj,smy]jpfj /ie4W Mf""" ;

.sq eersse om. arm I'llPdt'd 9*v * ***

  • orm *ma. . ,e 4aw se e' *=i .C z - -= 'aai E so[ o g--- .mm eg ns .

T e'"i . se =, es.,

"u==* "I ge wi . .=museen

"#r' . .i h e

  • *
  • 41 .a m ad o" ...

E '88 .se en

.geas me g8 ?>" m**"'

==i is . .

asi Amanni _,, um m= = mi

, , , ae a e, E'*'""'* .y, . . ,. mei m .,w, ,, T.

s ., .

., e mer' eam m ..r. o i< ] .o .ars' m e.es.i i .< .y $. . ,se m m4., , . . , i.ars e

.... ...-....~....0.**.8'...

...!"._.'*e.d'.

Ma.Aviiiw;;Wi;sisitiwm;;viiiiiii" "I... .!ZL.;;;;g;;;rs;;;;;;;s.p';rg.iiiisi;;rs;;;" y 15 .

.t...". . .... .

. . . 4...

., =

en U

3!!!=',21L e*** '*

<w.1! !v *"

  • u ?t t* m* o .,Elo.o n mn. nmo i **

ERJf.!.21' qa A. **

11**" . ..(su 6a , ,

,,g ., .g , .* **

t

.c g g se 1 mow

%0* '~

... .. . A

_ _ . _ _ _ _ . _ _ _ _ _ _ . . __