ML20096E945

From kanterella
Jump to navigation Jump to search
Rev 1 to Drywell Temp Transient Following Sbo
ML20096E945
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 05/11/1992
From: Peterson R
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20096E925 List:
References
3C7-0390-002, 3C7-0390-002-R01, 3C7-390-2, 3C7-390-2-R1, NUDOCS 9205200112
Download: ML20096E945 (45)


Text

_ _ _ - - - - _ _ _ _ _ _ _ _ _ - -

y -

1

  • ' 1
pdV4Et.tTEMPEP.ATURETRANSIENT

^ NSLD l

/..F01._i_.~0.V._ili..G .'.ST.f.f.f0li.T,.L'ACWdi

~~' Calc. No. 3C7-0390-002 Date June 14, 1990 LCbmmonwealth;Edisen Company- safety.Related (Es l.aSalle County -Junit'l ' Project No(sf.- 8726-17 Project FilegNo.?35.2 Page No. i a System: , SB,0 -

CALCULATION REVISION

SUMMARY

SHEET

- REVISION: PREPARED- REVIEWED APPROVED REVISED

' NO. : BY/DATE BY/DATE BY/DATE PAGE NOS.

O * .N/A ff q 39 (

FAAMMUt+M

  • yydef%uf -

4-M= 90 - 6-iy' 9,, _ _

1 ,.

}hDW

'5-1I- Iz-W ) *' &

O f ' " ' f 'z- fGfy//#g 5- 2.

AII-m

-31

_a L

6 g , .

p 9205200112 920S15 PDR- ADOCK'05000373 P pan .

AlD (formerly NSLD)

Calc. No. JC7 0390-002 Date: May 11, 1992 Revision: 1

. . Page: 1 SAFETY RELATED Yes Prepared By

  • u r 1 4/ Date 5 II i l Reviewed By ad) **--<- , - _ Da t e _O S~-/ / - ? E . -

Approved By [ h7d/P Date d--//- Y2- 3 v

.i DRYWEtt TEMPFRATURE TRANSIENT FOLLOWING STATION BLACK 0UT v

Comonweilth Edison Company LaSalle County Unit !

Project No._8726 1)

Project file 35.2 System: SB0 4 Wlh 1218 4

_ma - _ _ _________-____mmm.m______m___m ._m m_ ._m_.- - _ -_

<>r }

i 1

Calc. No. 3C7 0390 002  ;~

Revision: 1 Page 2 Project No. 8726 17 _

TABLEOFCONTEN11 ]

1 SECTION fffi

1. 'NPUT' DATA -

3 1

!!. COMPUTER-PROGRAM 4

.!!!. ItifRODUCTION $

IV. ANALYTICAL MODEL- 6

-V. ASSUMPTIONS AND INFORMATION 12 .

t 5!! . . RESunS 14 Vll.- ' DISCUSS,10N OF RESULTS 15 Vill. -REFERENCES 16 i

IABLE.5 1 __N00E-DESCRIPTIONS, VOLUMES AND INITIAL CONDITIONS 19 2' HEAT STRUCTURES 20 '

3 ' HEAT TRANSFER' FUNCTIONS 23 4- BLOWDOWN OF MASS AND ENERGY INTO DRYWELL 25 5- TRANSIENT RPV-CONDITIONS 26

6. - HARSH ENVIRONMEN1rZONE - H2 - BOUNDING UFSAR ENVIRf'df to AL 27 t

-TEMPERATURE INSIDE'THE ORYWELL-FIGURES 1- $CHEMATIC-0F-NODES AND HEAT' STRUCTURES 28

~

2: DW TEMPERATURE AFTER STATION BLACK 0UT 29 REVIEW METHOD 30

^

APPENDICES

- l JA- HAND CALCULATIONS -Al-A7

. B COMPUTER INPUT OATA AND tilf '

'4E B1-B8 t

4 ll . ,

t

- a .. : _ , _ . . - . . _ _ . _ - . . . . . . . . . - . .. . _ . , _ . . _ _ _ . _ . , _ _ , _ _ _ _ _ . , , . . _

._,_,,._._,..._,-,i

1 i

Calc. No. 3C7-0390 0D2 Revision: 1 P69e 3 Project No. 8726 17

1. INPUT 0416 Information used in this calculation was obtained from . approved Sargent & Lundy calculations or LaSalle specific General Electric documentation and is assumed to be verified data except as follows:

None.

l Caic, No. 3(? 0390 002 Revision: 1 Page 4 Project 'M. 8726 17

11. COMPUTER PROGRAM The calculations reported herein were performed using S&t. Computer Program COMPARE /MODT PC (03.7.322 1.0), which is described in Ref. 1.

h t

w

-' m m , p -c-y av <- p,+y-m- svg -yw-- w w

Calc. No. 3C7 0390 002 Revision: )

Page 5 l

,, Project No. 8726 17 '

111. INTRODUCTION in order to demonstrate compliance with title 10 of the Code of Federal Regulations Part 50.63 requirements relative to station blackout (580),

specific plant parameters have been examined for a 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> SB0 scenario, (4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of SB0 followed by 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> of recovery). The 'LO event is defined as the loss of all AC power, including that from station diesel drives. The recovery period is defined as having the equipment available that can lower the reactor pressure vessel (RPV) temperature and/or the suppression pool temperature. The objective of this analysis is to calculate the air temperature in the Drywell (DW) atmosphere 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after the beginning of the scenario. This revision was made to extend the analysis to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, to add the abilit; of venting from the drywell and to remove some of the cunsersativeness of the original calculation.

- - ~

l Calc. No. 307 0390 002 Revinen: !

Page 6 Project No. 8726 17 IV. ANALYTICAL MODQ The analytical model consists of 6 nodes, as shown in Table 1,12 Heat Structures (HSs),aspresentedinTabla2andonejunction. The connection of nodes and HSs is shown diagrammatically in Figure 1. Figure 1 also identifies the left hand face (LitF) and the right hand face (RHF) of each HS.

The leakage of primary system water into the drywell (DW) is represented as a blowdown mass flow rate of ste_a and an associated enthalpy flowrate into the DW. This rate is held constant for the first four h e

  • and then is reduced to l-account for the decreased reactor pressure vessel (RPV) pressure. This l approach conservatively maximizes the DW temperature without being overly conservative.

Fourteen heat transfer functions (HTFs) are specified in the nodel, as presented in Part A of Table 3.

A blower curve (BC) i? specified to transfer mass and energy from Hode 1 (DW) to Node 6 (air space above the suppression pool). The mass transferred is based on a difference in pressure between the two nodes. The blower curve models the venting from the drywell to the wetwell through the suppression pool. As the drywell pressure increases, a point is rear.hed where the water in the ,downcomers is blown out, if the pressure in the drywell continues to increa.ie, air and steam will be vented to the suppression pool. The steam condenses and the air bubbles to the space above the pool, raising the pressure there.

Nede 1, representing th0 DW atmosphere, is assigned r,s an active node, i.e., a L node for which the COMPARE Code calculates conditions after the initial time of the transient.

l L

l 1

l .

Calc. No. 3C7 0390 002 Revision: 1 Page 1 Project No. 8726 17 Node 2, representing the region outside the sidewall of the DW, is specified as i an active node with a very large volume (VLV) such that no change in conditions occurs in it throughout the transient. In particular, its temperature remains constant at the initial value of 122'F.

Node 3, whose temperature is taken as that of the fluid and metal of the hottest equipment of the primary system (including the Reactor Pressure Vessel l (RPV), the Main Steam Lines (HSLs), the recirculation line; and pumps, etc.), j is specified as a time-dependent volume (TDV), such that the specified i t temperature versus time is the saturation temperature corresponding to the specified transient RPV pressure. Based on Case 1 (RCIC operation during the SB0 event) and Case 2 (HPCS operation during the SB0 event) of Reference 13, a 11;niting case is determined for the RPV pressure decay during SBO. This pressure decay is given in Table 5.

Node 4, whose temperature is taken as that of the fluid and metal of the feed water lines (FWLs), is assigned as an active node filled with pure air, but of a pressure and volume such that its heat capacitance (i.e. (mass) times (specific heat capacity) in BTV/'F) is the same as that of the combination of metal and (initially) subcooled water in the segments of the FWLs that ars within the DW.

Node 5, whose temperature is taken as that of fluid from the primary system as it vents through Safety Relief Valve (SRV) discharge lines, is assigned as a l

TDV. The pressure versus time and temperature versus time functions for node 5 p are specified such that at each instant throughout the transient:

1) the pressure of node 5 is 40 percent of the current primary system pressure (of node 3); and i
2) the temperature of node 5 corresponds to saturation conditions at the node 5 pressure.

1

- - _. . _ _ _ _ _ _ _ _ - . . , - - . . _ _ _, .,, . _ _ =

Calc. No. 307 0390-007 Revision: !

Page 8 Project No. 8726 17 Since, for all SRV vents (discharge lines), the stagnation pressure of fluid, even just downstream of the valve, will be less than 40 percent of the RPV pressure (with the valve fully open), the temperature of node 5, determined as described above, is expected to be conservatively high, on the average.

Node 6. representing the air space above the suppression pool is conservatively set at a fixed pressure of 36 psia, which represents the maximum pressure in the wetwell airspace following SBO. This pressure was determined based on no leakage going to the suppression pool. The pressure comes from Reference 14.

Heat transfer from venting primary system fluid to the inside surface of an SRV vent line is based on assigning a Heat Transfer Coefficient (HTC) which is proportional to the 0.8 power of the vent flow rate. Thus, heat transfer to the inside surface of a vent line occurs only during periods when flow is ,

venting, and is zero during periods between ventings. However HIF number 4 (for combined Natural Convection (NC) plus Surface to Vapor Radiation ( M )) is assigned to the vent line outer surface and accounts for heat flow into the DW atmosphere as long as the SRV vent line metal, heated during a venting period, remains hott:r than the DW atmosphere. The HTC at the inner surface of a vinting SRV line, with the RPV at normal operating pressure, has been estimated to be about 400 Btu /(hr sq.ft F), if only forced convection from vapor is controlling and condensation is not. As an allowance for condensation, a HTC of 2.5 times the forced convection value, i.e.1000. Btu /(hr-sq.ft) is used during the maximum vent flow rate period. ,

(he corresponding SRV vent line inside HTC(s) (proportional to the 0.8 power of the corresponding vent mass flow rate level (s)) are presented in Part B of Table 3. This table, together with Part A-of Table 2, indicates the periods when particular lines or particular groups of lines are venting.

a

~

Calc. fio. 3C7 0390 002 Revision: 1 Page 9 Project No. 8726 17 The choice of the particular SRV y9nt lines flowing is base,i on whether the SRV is opened automatically or by operator action. Where operator action occurs, the SRV is selected to 04 that with the longest length exposed to the DW atmosphere, and when a second SRV is opened by the operator, it is chosen as the one with the second longest length exposed to the DW atmosphere. The longest line exposed to the DW atmosphere is MSO4BB 12, and the next to longest is MS04BL 12. For automatic operation, the SRVs open in the order of increasing setpoint pressure. Th3 "first group" (lowest setpoints) to open automatically consists of the valves on lines MSO4BU 12 & M504BS 12. The scenario for the SRV openings and closings is based on a limiting case .

combining Case 1 and Case 2 of Reference 13. These considerations are reflected .in the areas selected for HSs 7, 8 and 9 as found in Part B of Table 2.

The stainless foil type of insulation, as used on all normally hot objects

_(equipment, including the RPV and recirculation pumps, and piping, including MSLs,.FWLs, etc. in the DW, is considered to have properties as noted in Part C

-of TableL2, based on Ref. 5. The thicknesses assigned to the insulation are tcken as-the distance from the outer foil of the insulation to tne outside '

surface of the insulated object, typically, and include the typical one inch of spacing between the inner-foil of the insulation and the outer surface of the insulated object. Based-on information provided in Ref. 7, the thicknesses of HS 3 (FWL insulation) and HS 2 (insulation on MSLs, RPY, and other " hottest" equipment) are assigned as noted in Part B of Table ?.

The inside surface areas 4r HS 3 (representing the cylindrical insulation ,

employed on the FWLs) and HS 2 (representing the cylindrical insulation employed on all other hot piping, the RPV, the recirculation pumps etc.) were chosen such that, together with'the inside'and outside HTCs employed, tne -

appro >riate heat loads (as implied from Reis. 4 & 6) would be obtained at the start-of the transient, in particular,- for the " normal operation 100% reactor L power condition - the total sensible hot piping and equipment loads implied in

' the table on'page 1 of'Ref. 4 apply at the start of the calculated transient -

~. , n - . . . . . . . - . - . _ - - - a ..-. - -- . .--._.--_.-..w-..

Calc. No. 3C7 0390-002 Revision: 1 Page 10 Project No. 8726 17 l (within 1 percent). Furthermore, the fraction of total hot p'. ping and equipment heat load (HS 3 plus HS 2) that is contributed by HS 3 (from the FWLs) is 0.93 of the scaled up load from the FWLs implied by the relative heat rejection rates given in columns 4, 5 & 6 of Table 1 of Ref. 4. This modeling of the FWLs load fraction is considered a conservative (but not overly conservative) choice.

For tus analysis, it is required that the modeling maximize the transient temperature in the UW. The modeling features adjusted to this end are:

1 The heat transfer to the heat receiving surfaces in the DW (heat sinks) is assigned in accordance with NUREG 0588 (involving only NC or Uchida Condensing (UC), whichever gives the larger heat transfer rate).

2 The heat transfer from heat sources (normally hot piping and equipment (HSs 2 & 3) and heated SRV vent lines (after the start of a transient))

is assigned as the combined heat transfer rate oue to f;C plus SVR.

3 The rate at which leakage flow enters the DW during the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 500 event is 61 gpm (7.79 lbm/s), based on a Technical Specification limit of 25 ,

gpm total leakage (Reference 11) plus 18 gpm per recirculation pump (as allowed by Reference 12). After 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, credit is taken for the drop in RPV pressure and a leakage flow of 27.4 gpm (3.50 lbm/s) is modeled, based on an RPV pressure of 200 psia discharging to initial-atmospheric conditions (SeeAppendixA). Since the RPV pressure at 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> is less than 200 psia (Table 5) and the drywell pressure is greater than 15.45 psia at 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, this approach is conservative (Flow is proportional to the square root of the pressure difference). Representation of the leakage flow calculated to flash is modeled by using a " time-dependent mass energy blowdown" (see Table 4).

4 - While the heat load due to the fan cooler motors & blowers is absent, so,

!- of course, is the scnsible and latent heat removal to the fan cooler's

.hi~iled water stream that would normally occur.

W--' N-' "T- *- - '-

p r

',alc. No. 3C7 0390 002 Revision: 1 Page 11 Project No. 8726 17 5 The initial relative humidity in the DW is taken as unity. Thir choice was found to yield maximum DW temperature during the hotter (later) part ,

of the transient.

6 A blower curve is modeled to determine the mass flowrate from Node 1 to Node 6 based on the difference in the pressure for each node. The pressure in Node 6 is fixed at 36 psia (the maximum) throughout the transient.

' b e

4 w

- - - ve v- y re m. 1

l Calc. ho. 3C7 03f 0 002 Revision: 1 Page 12 Project No. 8726.)?

l

, V. ASSUMPfl0NS AND INFORMATION Information and the major ar.sumptions governing the calculation reported herein '

are summarized below. -

1. The temperature of node 3 (fluid and metal walls of the RPV, the HSLs, the recirculation lines and pumps, but not the FWLs) for the first four hours is assumed to be M. the saturation temperature for the pressure versus '

time relationship given in Table 5. After 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 15 minutes, the RPV (t INode 3) is assumed to be cooled down at a rate of 100*F/hr due to the restoration of RPV cooling.

c.

2. The temperature N node 4 (fluid and metal walls of the FWLs) is  !

calculated on the basi. .htt the ..t capacitance of the FWLs remains constant at'its initial value throughout the transient. '

3. The HTF. governing. heat flow to the inside of an SRV vent line is assigned -;

a fixed value of 1000 Btu /(hr-sq.ft-F) while the SRV is open.

-4. Heat-flow to the DW atmosphere from the insulation on-hot piping and equipment, and from heated SRV vent lines is assigned as NC (Natural Convection) plus SVR (Surface-to-Vapor Radiation),

  • t
5. Areas assigned to normally hot piping and eqJipment are chosen so that the heat. loads predicted for " normal .100% Reactor Power operation" in Ref. 4 ,

apply at the start of the transient.-

16. .- HTFs governing heat transfer from the DW atmosphere to heat sinks (the DW sidewall and floor, the Pedestal, the Sacrificial Shield, and bear.1 and gratings-within the DW) are assigned _ as the larger of NC or UC (Uchida Condensing).

, ,-,.,_-+,s,,. r ,..+,.,.,,,,-.x, ,.- .g -- - -4 w.n ~ r , - .-s,- y

Calc. No. 3C7 0390 00^

Revision: 1 Page 13 Droject No. 8720 17

7. The initial latent heat load is based on flashing 37.76 percent of the 61 gpm leakage. After 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, 17.85 percent of the 27.4 gpm is assumed to flash. The enthalpy of the flashed steam is taken as 1205.6 Btu /lbm.

Thermodynamic justification for selecting these values is presented in Appendix A.

8. The fan cooler chiller system is assumed to be off from the start of the transient, i.e. there is no motor blower heat loading to the DW atmosphere and no sensible or latent heat removal from the DW atmosphere to the f an-ccaler chilled water system.
9. The initial relative humidity in the DW is assumed, conservatively, to be unity.

10 The pressure difference between Node 1 and Node 6 required for flow to leave the DW is assumed to be greater than 6 psi. The pressure difference was calculated in Appendix A and requires a 6 psi differential between the drywell and watwell airspace for the water in the downcomer to be initially pushed out. The flowrate is based on the pressure difference.

The total flow loss coefficient (entrance and exit) is taken to be 5.2 (Reference 22).

\

v

i .

Calc. No. 3C7-0390-002 Revision: 1 Page 14 Project No. 8726 17 VI. RESULTS The drywell temperature transient calculated for the SB0 event is presented in Figure 2. An initial temperature pt.ak of 162'F occurs about one minute af ter the SB0 begins. Thereafter, the temperature rises continuously, reaching a peak of 251'F at 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. A decreased drywell temperature of 245'F is computed 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after the start of the SB0 scenario, or after 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> of recovery from -

the SB0 event. This is to be expected since leakage into the drywell decreases (and thus the heat input decreases) at 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. <

4 e

9

_ _ _ . _ _ _ . _ _ _ _ _ - _ _ _ . _ . _ _ . _ _ _ . . . _ _ _ _ _ . _ _ _ _________._________m____.______.__ _ . _ _ _ _ _ _ _ _ _ _ _ _

Calc. fio. 3C7 0390-002 Revision: 1 Page 15 Project fio. 8726 17 VII. Q11QJLSilDN OF RESULTS l l

1 Fipure 2 shows a maximum temperature of 251'F for the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> SB0 scenario, which is well below the DW design limit of 340'F, listed in Table 6. The temperature after 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> must be kept below a bounding temperature of 250'F (Table 6). The computed temperature at 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is 245'F. The temperature is expected to decrease as equipment continues to remove heat in the drywell and the reactor power continues to decay.

l Two effects are believed to contribute to the formation of the initial peak temperature at about I minute after the start of the SB0:

l

1) Transition from NC to UC as the mode of heat transfer from the DW atmosphere to concrete walls, and
2) Rapid falloff of the heat load from the SRV lines which vent ju>t after the start of the SBO, but not afterwards.

An additional computer run was made for the case where no venting occurs to the wetwell.

The results from this run were used as input to Reference 14. The output is included in Appendix B.

l

i Calc. No. 3C' 039C-007 Revision: i Page 16 Project No. 8726 17 VI!!. REFERENCCS

1. User's Manual for COMPARE /MODT PC (S&L Program No. 03.7.322 1.0), "A Computer Prog,am for the Transient Calculation of a System of Volumes Connected by Flowing Vents."
2. Attar.hn. tnt DAC 270 of letter f rom H. R. Peffer (GE) to G. R. Crane (CECO) of2/11/83: "LaSalle County Station, Units 1 & 2 LaSalle Station Blackout Analysis." (DxC 270 is a report from GE entitled: "LaSalle Station Blackout Analysis," dated February 1983 and approved by E. C.

Eckert & A. S. Rao.)

3. " Heat Sink Thermophysical Properties," Table 3 of Branch Technical Position CSB 6-1 of Standard Review Plan 5.2.1, p. 6.2.1.5 8 (dated 11/24/75) of NUREG 75/087.

4c Memo from W. B. Paschal & E. P. Richohermoso , R. H. Pollock of 11/12/82: "High Drywell Temperature, AIR No. 1 8-460," and Attachments -

Table 1 & Figure 1.

5. Report prepared for Johns-Manville Corp. by Colorado School of Mines Research Institute, Project A21007: "Determinattun of Thermal Transference of Metallic Pipe insulation,' dated 1/26/73, by J. B.

Allison,

6. Memo from E. P. Ricohermoso to R. J. Hammersley and B. Obernel of 10/18/82: "HVAC Input to Perform Blackout Test." (This ref. notes the total power ;o motors of both fan coolers gives a heat load of 569120 Btu /hr to the DW atmosphere.)
7. Personal Communications from E. P. Ricohermoso (HVACD):
a. Insulation on RPV and MSLs is 3.5 inches thick,

Calc. No. 3C7 0390 002 Revision: 1 Page 17 Project No. 8726 17

b. Insulation on FWLs is 3.9 inches thick..
8. Memo from H. Vega (PMD) to B. Obersnel & R. Curry of 3/1/83: " Control Rod Drive Thermal Loading," with attachment: " General Electric Co.

Document No. 22A2715AA, Rev. 1." This ref. notes that following scram, the heat load from the 18$ uninsulated scram discharge lines (each about 70 ft long 3/4 inch NPS, S.S. TP 304, with 0.154 inch wall thickness) is

-1.128E6' Btu /hr, and the lines and their liquid content are 280"F.

9. NSLD Calc. No. 3C7-0678 002, Rev. 1, Approved 5/11/79 in particular page 9 of the computer pried >ut: "Line Characteristic Summary," and personnel l

communication from J. W. Ahrens.

10. NSLD Calc. No. 3C7-1032-001, Rev. O " Station Blackout: Drywell

-Temperature Transient," approved 4-22-83.

11. Commonwealth Edison Company, LaSalle County fitation Unit 2 Technical Specifications, Appendix "A" to License No, 18, Section 3/4.4.3 " Reactor Coolant System Leakage."
12. " Station Blackout (580) Implementation: Request for Supplemental Submittal to NRC," Letter from Byron Lee, Jr. (NUMARC), January 4, 1990.
13. NSLD Calc. No. 3C7-0390 001, Rev. 1, " Suppression Pool Temperature Transient following Station Blackout", Approved May 11, 1992.
14. ATO Calc. No. ATD Oll7, Rev. O, " Evaluation of NPSH Requirements for HPCS, RHR and RCIC Pumps and Backpressure Limitations of RCIC Turbine following Station Blackout", Approved May ll, 1992.
15. Crane Technical Paper No. 410, 1986.

E l

L i.

l

Caic. No. 3C7 0250-0 :

Revision. 1 Page 18 Project No. 8726-17

16. User's Manual for RELAP4/M005 (S&L Program No. 09.8.026 5.70), "A Computer Program for Transient Thermal Hydraulic Analysis of Nuclear Reactors and Related Systems".
17. LaSalle County Station Updated Final Safety Analysis Report, Table 3.11-4, Rev. O, 1984.
18. Keenan, J. H. , Keys, F. G., Hill, P.G. , Moore, J. G. , " Steam Tables (English Units)", John Wiley & Sons, Inc., N.Y. 1969.
19. S&L Structural Drawing 5-325, Revision P, Reactor Containment Liner Plate Cross Section, LaSalle Cour.ty Station Unit 1.
20. LaSalle County Station, Units 1 & 2. S&L Structural Drawing List, 4-03 92.
21. S&L Structural Drawing S-826, Revision V, Reactor Containment Liner Plate Sections and Details, Sheet 1, Unit 2.
22. NSLO Calc. No. 3C7-0277-004, Rev. O. " Calculation of the Loss Coefficient for the Vent System", Approved 3/10/77.
23. NED0-10320 The General Electric Pressut e Suppression Containment Analytical Model, Page 20, May 1971.
24. LaSalle County Station Updated Final Safety Analysis Report, Tables 6.21 and 6.2-3, Rev. O April 1984.

Calc. No. 3C7-0390 002 Revision: 1 Page 19 ,

Project No. 8726-17 TABLE 1 - NODE DESCRIPTIONS, VOLUMES AND INITIAL CONDITIONS


Initial Conditions --------

Net Relative Node Volume Teup. Press Humidity Number (cu. ft) (*F) (psia) (fraction) Description 1 173857. 135. 15.45 1.0 Drywell Atmosphere 2 (VLV) 122. 14.7 0. Region outside DW sidewall 3 (TDV) 550. 14.7 0. RPV, MSts & Recirc. lines and pumps (metal walls and contained fluid) 4 6.62E6 425. 14.7 0. FWts (metal walls and contained fluid) 5 -(TDV)- 450. 14.7 0. Fluid in SRV vent lines 6 (TDV) ---

36.0 ---

Wetwell Airspace Notes:

1. "TDV" refers to a " Time Dependent Volume" for which conditions after time zero are user specified functions of time.
2. Node 2 is a "Very large Voleme" (VLV), such ti at conditions remain fixed at their irritial values througivut the transient.
3. The temperatures of nodes 3 and 4 are assumed to apply equally to the metal walls and the contained fluids throughout the transient.
4. The volume of air assigned to node 41.es the same heat capacity, (Btu /F), as the metal walls plus the '

contained liquid water of the FWLs.

5. Since the pressure of Node 6 is fixed, the other initial conditions have no bearing on the analysis.

Calc. No. 3C7 0390 002 Revision: 1 Page 20 Project No. 8726 17 TABLE 2 HEAT STRUCTURES PART A Descriptions of Heat Structures (HSs)

HS HS Description Number RC = Reinforced Concrete. SSF1 Stainless Steel foil Insulation 1 RC sidewall of DW 2 SSFl on RPV, MSLs, & Recire, lines and pumps 3 SSF1 on FWLs 4 RC floor of DW 5 RC Sacrificial Shield 6 RC Pedestal (below RPV and Sac. Shield 7 Steel wall of SRV vent line: MSO4BB-12 8 Steel wall of SRV vent line: MSO4BL 12 9 Steel wall of SRV vent line(s): other SRV lines 10 Steel beams and supports inside DW 11 Steel gratings inside DW 12 Scram Discharge Piping (metal walls and contained fluid) e

Calc. No. 3C7 0390 002 Revision: 1 Page 21 Project No. 8726 17 TABLE 2 HEAT STRUCTURES (Cont'd)

PART B - HS Parameters LitF LHF RHF RHF LHF Thick- NL .iber t

HS Node HTF Node HTF Area, ness, of

& -h h 89 L 1so.ft) finchl Elements 1 1 1 2 1 15976. 72. 24 2 3 8 1 4 31204. 3,5 3 3 4 8 1 4 1744.8 3.0 3 4 1 2 0* 7 3667. 36, 6 5 1- 1 1 1 4297. 24, 6 6 1 1 0 7 1751. 58. 10 7 5 9 1 4 360.4 .688 1 8 5 10 1 4 305.2 .688 1 9 5 11 1 4 2142.** .688 1 10 1 12 0 0 28702. .5 1 11 1 13 0 0 12539. .1875 1 12 1 14 0 0 3580. .2625 1

  • Reference to node or HTF number "0" automatically imposes an adiabatic boundary condition at the corresponding HS face.
    • See Appendix A

Calc. No. 3C7 0390 002 Revision: 1 Page 22 Project No. 8726 17 TABLE 2 HEA1 STRUCTURES (Cont'd)

PART C HS Notes HSs 2, 3 & 6 are treated as cylindric geometry, all others as slab geometry. For HS no. 2: IR = 13.0 inches; OR 16.5 inches. For HS no. 3: IR - 12.0 inches; OR 15.0 inches. For HS no. 6: IR = 121 inches; OR 179 inches.

LHF = left Hand Face; RHF = Right Haad Face; HTF Heat Transfer Function.

IR Inner Radius; OR = Outer Radius The properties used for reinforced concrete are:

Thermal conductivity = 0.92 Btu /(hr f t F).

Density = 145. lbm/(cu.ft), &

Specific heat 0.156 Btu /(ibm F).

The properties used for steel (HSs B, 9, 10, 11 & 12)

Thermal conductivity = 27. Btu /(hr-ft F).

Density - 490.1bm/(cu.ft), &

Specific heat = 0.12 Btu /(1bm F).

The properties used for Stainless Steel Foil Insulation (SSFI) are:

Thermal conductivity in Btu /(hr ft F): = 0.1786 for FWLs (HS no. 3) =

0.1166 for RPV, MSLs, etc. (HS no. 2)

Density - 27.7 lbm/(cu.ft) &

Specific heat = 0.12 Btu /(1bn F).

" Number of Elements" refers to the number of elements into which the thickness of the HS is divided for the finite difference representat' ion.

~t)

Calc. No. 3C7 0390 002 Revision: 1 Page 23 Project No. B726 17 TABLE 3 HEAT TRANSFER FUNCTIONS l

Notes: '

HT = Heat Transfer; HTF = Heat Transfer function; HC = Natural Convection; UC = Uchida Condensing; SVR = Surface to Vapor Radiation; HTC=HeatTransferCoefftetent,(BTV)/(hr-sq.ftF);

t = time in seconds: NHTO = HTF option index used in COMPARE code; IWT = Wall Type index for NC: I for NC to a sidewall, = 2 for NC to a floor, J 3 for NC to a ceiling: NA Not Applicable.  !

PART A Description a type of HTFs HTF fit. Mil.Q Description 1 2,1WT=1 Max. of UC or NC to a room sidewall 2 2,1WT 2 Max, of UC or NC to a room floor 3 2,1WT=3 Max. of UC or NC to a room ceiling 4 10,1WT=1 Combined NC and SVR for room sidewall or large

, object (RPV, pipe, pump) 5 10,1WT=2 Combined NC and SVR for room floor 6 10,1WT 3 Combined NC and SVR for room ceiling 7 3 HTC = 0. set throughout transient 8 3 HTC = 10. set throughout transient 9 4 HTC vs. t as per table 3 part B 10 4 HTC vs. t as per table 3 part B 11 4 HTC vs. t as per table 3 part B 12 2,1WT=1 Max, of UC or NC to beams (height = 6 inches) 13 2,1WT=1 Max. of UC or NC to grating bars (ht. = 1.2 in.)

14 4 HTC=0.(t<.001); HTC=2.173(t>1.0) g -

Calc. No. 3C7 0390 002 Revision: 1 Page 24 Project No. 8726-17 TABLE 3 HEAT TRANSFER FL. 10NS (Cont'd)

Part B Subtables of HTC vs. t for HTFs of type NHTO = 4 (HTF Nos. 9.10 & 11)

Pt.

& HTF 9 HTF 10 HTF 11 1 HIC T _..dl(_ T .. H1C .

1 0. O. O. O. O. O.

2 .001 1000 3 0. 5.9 0.

3 140.4 1000 3.1 1000 6 1000 4 140.5 0. 86.9 1000 26.9 1000 5 329.5 0, 87 0. 27 0.

6 329.6 1000 1.E6 0. 1.E6 0.

7 1.E6 1000 M

e

- m_

Calc. No. 3C7 0390 002 Revision: 1 PEge 25 Project No. 8726 17 TABLE 4 BLOWOOWN OF MASS AND ENERGY INTO DRYWELL Blowdown table representing leakage from primary system vs. time Blowdown Hass Blowdown Enthalpy Time (seil (1bm/s) (BTU /s) 0 2.942 3547 14399 2.942 3547 14400 0.625 754 1.E6 0.625 754 Notes: '

Linear interpolation applies between adjacent points of each table.

I i

+ *

' a-w . . , . , , . . - . - . .-

Calc. No. 3C7-0390 002 Revision: i Page 26 Project No. 8726 17 TABLE 5 - TRANS!ENT RPV CONDITIONS TIME (Sec) PRESSURE (osia) TEMPERATURE ('F) 0 1040 549 140.5 912 534 1290 1015 546 1312 993 545 1694 844 SE4 2012 746 510

')

450 456 1, s u , 264 406 6442 227 393 7207 176 371 15300* 170 368 18900 41 268 22500 -- 168 24228 --

120 1.E6 -- 120

  • After 15,300 seconds, the RPV temperature is based on a cooling rate of 100'F/hr down to a temperature of 120'F, b

Calc. No. 3C7-0390-002 Revision: 1 Page 27 Project No. 8726 17 1ABLE 6 HARSH ENVIRONMENT ZONE H2 - BOUNDING UfSAR ENVIRONMENTAL TEMPERATURE INSIDE THE ORYWELL (Reference 17)

Temperature *F 340 320 250 200 Duration 0 3 hr 3-6 hr 6 hr to 1 day to 1 day 100 days e

YY

. = _ _ . . . _ _ . _ . _ . _ _ _ . _ _ _ _ . _ - _ _ . . . _ _ . _ _ _ _ . _ _ _ . _ _ . . - _

'I i Calc. No. 3c',-0390-00: '

Revisions 1 i es I'rcs: 25 y Project !!o. 8726-17 Node 2, region- CI1]'pY \ i outside DW sidewall s id es'all,/ ~ ~ ~ ' '

Node 3, hottest  ! / HS 2, insulatio. 7 equipment j __T on RPV. HSLs. etc. /

Node 4, TWLs

.(metal & fluid)_,

/ HS 3. insulation \

, \ on TVLs /

(HS5 Shield Sacrificial'_/ l Node $[ j HS 7, SRV vent vallt \  ;

fluid \ MSO4BB /

i in SRV Node 1, vent l

/ HS 8, SRV vent wallt \  !

lines \ MSO4BL- / Drywell j HS 9, SRV vent vall(s): \ Cas & ' i,

\ 16 others /

Vapor Hode 0 ,' '/ HS 4. Floor - \

(duammy. \ of DW /

node, O. attached to / HS 6, Pedestal l adiabatic \ below RPV- /

HS face)

/ HS 10,-Steel \ '

\ beams-in DW- /

_ / HS 11, Steel \

\ gratings in JW /

__ / _HS 12, Scram \

o

\- Discharge _ piping - '/

Node 6. I r

b. -

. Wetwell '

Airspaca N FIGURE SCHEMATIC OF NODES AND HEAT STRUCTURES DW=Dtyve11; TDVr: Dependent Volume; LHF=Left Hand Face; RHF=1ight Hand Face; 1

RPV= Reactor Pre,, cc Vessel; MSL-Main Steam Line; fvL= Feed Watar Line; SRV= Safety Relief Valve; eiS=Hrit Structure LRF of HS no. "K" ,

" Normal node- TDV node

_j-no. "I" ,

j no. "J" HS no. "K" 44* 4-

. d I;H7 of HS no. "Y."

a

, Junction f

M

_ p_. -

a u ez.s w o = x e~; -

2.=

E.r O

]

I Fig. 2 Drywell Temperature After Station Blackout 300 --

250 --

i 200 --

C 3

y 150 -

E

~

100 -- 'vono

t D (D &

o e < .- -

u.(p e.

.w g .o.

O s- -

. re o o .:-

so ..- , o a. .c.

o wo CO Q u e

. . . i ~ >

.1 eo a o i i

e a i

f L' 3 4 5 6 g c O 1 2 ,

Time thrs) @

ra 1

a e

. - _ __ _ _ l J

. Calc. No. 3C7-0390-002 Revision: 1

...E..-

.2 g. . ,E

. ,. SHE, .

Page: 30 (LAS~ PAGO Project No. 8726-17 This 'cahu'a:icn has beer. reviewed by me a::ording to the method (s) thetked below.

1. Computer Aided Calculations

. & .... t e f,. i . ~ , n. us i . .. cumuwie, c or .m m m . oe r ,..,e.s.a e.a vs wentee. is swit4 Die 1C the DeCDlte being thalytta, anc tnet tne CSICMIDtion contatns til neceSSSPy in*2Pmation fc* PeCONStPWCtion et a lateP este.

C Gevie. to ceiv-mine that the inDwt Cata at Specifisc ft' progree eneCut10m il Consist

  • emt =*tn tne 095190 inDut. CC*rectly Definen the DPCD1em for tne Comester sig0ettne anc is Sv8f,Ciently aCCWP&te 10 Deccate re5Witt witnin any numer1 Cal limitetions C* tne 9

C* C g' a fr .

C Eevie. to ve-ify tn8t the Pelvitt ootatne3 from tne proge&A 't r. k - 7Ct anc witnin State 3 855wmctions anc iim*tetions Of the Dr09'em one are d's. t witn tne inDut.

O Gavie valication ooCamentation for te*Dorary , . . to litted, or Development 41 ce Whiove Single SDCliCat10" D*cgeted. 10 S Stuf ts that metnoOS used DOSDuttely V8licate the D*Cp*S* 'CP ine 1etenotC SDC11CatioP.

e Revie. 08 CC3e incut Cni). Since the Computt" OPCW.*Dm nel Sufficient nist0Py of USe v .s s. pent 6 tune, ir .imo., c.i C oi.tions. .

f

/lnevit. . itsmet.: neCei . i to e to. e ceae inest aat..

, etne :

2. Hand Prepared Design Calculations

. ost ooe revie, ef sne e-igin.) c iCa t ions.

e new e, of an .sternate. simeitfies, e .corC=im.se metnoa of C.ieviation, e nevis ef . ree e,ent.tive ..mpie of renetitive C.iCaintions. --

e lnevie.of tne CatCuietion against a similar CaiCwistion previously performeo

3. Revisions a soiterial Cnanges eniy .

o tiimination of unaccrevec inest asta witnout ettePing calculateo resvits.

&78[LEZ) /2GV/6.N O/1-&hvf.3"El} CkL C_ .

i

4. Other l

Date-  !

Revie.  :

tgaiso L) - M--/ /-~YL s VAu FCW.Ctvit.-i C;'ib et

Calc. tu. 3C7 OS) 002 Revision 1 Page Al Project No. 8726-17 k

- APPENDIX A -

HAND CALCULATIONS 5

l l

l

-. i c.tc.. nr we. u,. w. ,3 n .,a i 'SARGENTfmLUNDY  !' __.

a" J. ca

O u NoiNa aste 6 ga g,,y. Rela ted Non Selety.Reletwo of q Pope A g -

Client Prepared by Date l Pro}ect Reviewed by Date Orr>l. No. * 'Q f,

  • Equip. No. Approved by D*'i T~o FI N D...w FLA

.~ 5 m.4.G ~ -

F 5 EAM

~ . ~ ,

To m L s a salt -

of GPM A 55 v M I NG, FLulo Co"DtTroN is sATuuTED LIGui0 AT #04o PstA {

L6 FET&CE.16 hT 548.48 BTO /16m l NT EMOL 4 T I N G R.E.FEwXE I B l: 4 SSvME. CONSTANT ENT- AL P Y TN ACTTLING l

AT bay v)ttt. PILE 55 v rt.E oF 15.45 Psl A ( Renuutt. 24 ) .

h5= I82.. e arv m m isircomi uo p re.u y a is A h3: 1151.44 laTu/ lbm

~

i vr tt PM. ATI N G ,,f k;3 : .lis 1 4 4 - 1 Bl.68 : 'l 6 8.*?b btu /lbm _ . . . . . _ _ .

. ~ . . . . . _ _ . . - . ,

=

b bs.4s esia  : bi + X b fd X5 G VA L ITY . .. ~ .  ; -.-.

kliow esa

~

546.4 8 **dbm : I 8 2, f,8 ""Abm'+ X %8.% "b . >

.U $..

i

.-......4.J

'X  : o.3776 9 3-). 76 % F'c A 5 H EL FOIL.. 4 Moon.5.. !

, .L..t..pf

,Ris is 4

con s EnvA ri v e .s m c E THE RPV PREssurLE L _. *

-l- DEt ri.E AS ES ' w s T y T_tME ANQ TH E - D/LY LQE LL f/[ES $U/L61 ..c

! I ut CLE A$FS J)iTP -TIME [ 6tVAL iT Y OF 5 TEAM = GoES Dow9 ) -

g

-[-

j

^

AFTER.! 4 Hova.6, R PV : ,P(LESSU/LE 15 2.co Psi A l

L hf: 355.(, B rv /l) rnTH/ tto7TLI 3 [tEF 16 NG 're 15 45 Ps t A

- iss.c,sw/e = i s 2. <,s 8  % , x %e.x B"6 X  : .l785 -) n. 95 % FLA5F E5 A FTErt- + Hov/L5 . .

L .

.__s._.._. _ . _ . - _ _ . . . _ _ _ . _

coce. ror e,i.. no.n , n e , ,:t.,!

-l

SARGENT&LUNDY ii a"* 1 -1

>- =.~i~...._ y se,siy.n.ieia, jj j Non.seieiy.neieie, pe,e 3 3 ..

Ct.ent Prepared by I Date Project. . Reviewed by Date Prol. No. .'s ") 14 Equip. No. Approved by Dale 1 ")

9 55 r;Asa go Av To4o ps iA Pic K W EicaT o r waT e t. = 7.66 o s Ib'n/G AL rt 3oo'F (R Enutsuce 15 )

7.s is A >J AV EftAGE ujEiGwT

7. G608 16m/ GAL x 61 GPM + 6o stc/niu = 7.'79 lbm/5 3"? 76 T '?. 79 S m / 5 ) :. 2. i + 2. Ibm /s FLASHED Fo rt. 4 Roue.5 g

To G E T M Ass FLAsRED A F TEIL 4 N ov a.5 b4 =.D -p.- m = m o kd,,  :!> rG : (fle k G. A. en. G.Ao G.

O;;

G fl Mass FLvX F'ov4 0 IN TABLE V) oF g,E FE0.E NCE lh ...

A1 6/ Loss S ecT bwAL AltEA oF F Lou) m 5. Nss oP Ft.ow

. .. .L FOIL lo+o psi A Faom ILEFEAE9CE {lo T C' . b 10001 PSIA- 7863.7 6ATullATED I uT'Jt PeL AT NG or 104o PJiA . ._

'D 1: .1200 Psi A.: -6 Slo 6 4l~

6 r. 7883 '?+ (-I)(##N'4I~70#3' "

i. ~ S e rl^Tt0 6*jo2.0,2,8

,; y o

LiGo)Q i

o VI l

6 200 Pti A ' Yoo8.l6 .(Ls F 16 l

n.n . . ,

Cate. N). *C, } ;} ' J ) .pg

==.

SARGENTkl. UNDY q' nov.1losi>

~~. E NDINE E MS 2 Safety.Related h l Non-Sately Related Pege hh of Cuent Prepetod by Date Project Revnewed by Date Prol. No. E g g f, . l '" Equip. No. Approved by Date

/, (fi 7,79 16m /s 3608.lG - 3,5o llm/s + 7.GGoS itec xeo Bo2 o , ?. 3 = M . 4GPM

3. 5'O 16m/.5 x . l73! : o . (,.15 ll, m / s Ft. ASHES AT 2oo Psi A l*JTo 15AS Psio coNTAinmeur To GE CON 1ERVATIVE 7HE MAXIMVM S. ATVA AT E D ENTHALpy oF VAPcR is vs:rD roR T4 E RANGE or PtE55uaES / TEMPEAAW45 I

co w s i DE as o : h3 = 1205.6 orv/lbm lw-N EA.GY RATES :

MST4 Houn.s : 2. c14 2. 14m/5 x 11o5 6 *//6m : 354 .EB BTV/6

.T . AFTER 4 HoutLS  : 0 425 lkmh X 1105 6 m/IM : '75 3. 5' btu /4 s

DOWN C.OM EfL

-I N_FotMATl

- _- ors D00 CD ME.G. LEuGTH ' 49 #- 3 "2 " + Yg " : 49 '- 3 S " 2.E FELE *J C E 2. {

N v M B EIL oF doc 1 COMERS : 98 REFMENCE M -

Di A IqETER, OF DowN CO ME /15 ; 2.1 Y s 1. 'l6 ' J i ctoss sernosa!. Ana : Tr ( i A6)fp 3 F7 t ..

BASED Q u REFE0.EMCE ~21. : ..

i.

S= o.o nz

! L-oss coEFFic TENT k: 5,20 ._. . . _

8 1

To AccovNT Foll I 9 Etm a oF W ATIa o UTs t DE TVE D otx N coMEO.,

RE F EfLE Nc5 2.3 SAYS USE FICTITio V 5 LE NCsTH : DIAMETEll OF PIPE =l.%'

SA SE0 0 0 A tre. m s ci t. E m . 7 i q h PE. 15 5 U 8MEAGE0 11' (R.GF l$

~

& 24)

TOTAL LENGTR 70 C L E A R. : 114116 13 96' msoew.s. m- _.

_ _ . . _ _ _ . _ _ __._ ._._..._m--_ _ . . . _ . . _ . . . - _ .

Ck8 F#f Cile. NL h *f.b 3 33 3p]

Date 1SARGENThLuNDYf

' Pev.}

_ CENotNetme gefety.Related Non.St,lety.Heleted of ll. Page A { j Citent Propered by Date Project ,

Rev6ewed by Date Equip. No. Approved by Proj No. j, *) 7 g . ) *) Oste vsc specien votum E A T' - Poot. Tre Paa ^? w.E = los F (TMF 13)l i\r = w o f b ( 42 5t V t hm bP= 6 ;, /((44 x u .) = 11. 9 4 5t/(u44 x o,olbl48) = de o PSI

.'. I T' TA K E S A 685: D i f rEA Ev 7s AL ro c t_ E A d. T H E Douw c o.MEL U$t u G A h :. ( KwrC) 2 AND D.6923 N O p J Psio4 xit g Psi c l .4 >

wpts 6P_ (Dahete- wcTwEU. ): 0 $ = 0 hh wwwaP: 6 Psl = f (,r, H to G'O E'/5 gPorsou or otLYwfu.s s8Eu '6R * -7 PSI  :- 'l34"NtO VSE M"ut #PoA*l5 Pila '

7

.v

%(, P6 i : l. PSI 9.,5(.4TivE 5 144n, w x 7.17361 D,!E hx .7.. xk; m ,,, ~

10 31FT : [ 507-)6 4 , . ..

V - - l l 2. l FT/S :

Q: I 13.1 AT/s x 3 FT' x 9 6 x Go b = 19162. Ilo.+ SM_- . _ .

  1. USE j 07. LoF' Fcow To BE co NS EJ1#T WF_ . . _ i.12-i

.TOilQq2l(,,4} (79 34cl5 c pg ,

_,,,___,,,,_,j

] . . . _ . .

!- wu 4 P = 10 Ps p 2 n " Ht0 . .

I RELATIVE 6 P = 4 Psi : I+1 X 7. I'136 x 4 2' 4f 32. FT vt 4137.FT : ( $, 7., .)64,4 Y: 2 2(,3 7, Fr/.5 '

X '!L X 98X 60 X e9 : 359 (390 CFM

-Q 2, g,1

$ kW g{q( As.

, .. , _ - . . .. . ~ - - . . . - . - - . . . - - ~ - _ ~ . n - . . _ , . ~

1 m,-

Celes.FCf Calc. Nc. 2 * */. ; #2 h.o*jt l

%[ _.

u.< a~ 1 loa SARGENT&LUNDYlJI

=~=~ seas g sei.iy.n.i.t.o -y I non-sei.iy.n.i. ion .

p.g. 3 g i

~x -

Client ' Pr.per.d by Date Project . . Reviewed by Date Proj. No, .@ */ gg . l*') Equip. No. Approved by Date wues a p :.15' Fw 4is hto--

-6P/tetAtwE  : $ g ; o 3 3

  • 916 ') T 9297 rr:-( 5* 1 )M V= 159.32 Fr/S Q: - 333 . m I < 9 6 x 6 0 x 9 7-5167084 GFM wtu 6P s 2o Psi .554 " Ha0 A Pnst : 14' Psi = 14-xto33 = 1 4 62 Fr

. v2

.144 6 2 FT ' [ $'. 2 .) 64.4-V = /r?.3.2. pT /s -

G v - 41.3 t x _ S x _ 98 x 60 x .4 : (f 7 TBS 7 5 C Ft) ,

wucy A P' . = 3o est

  • 631. " Hz.0.

6Pdt :- 24 Psi : 24 x 1033 -

2479 2. FT i z, .

2.4 79afG (5,t :.)di V: 554.11 - FT /5 - . ..

a G. :- ' 554. 11 4 3x48 %60 / > i 8 7 I7 oT2. C FA ._ ,.. .

1 7 ..

wuen AP = 4 e Psi c tio8 , HLO .

,, AP m 34 PSI : 34 Y lo37 = 35 /2. 2 FT .. ._ . . , . _

35 tu. Dr = ( 5.2 4.- _

-8 y = r,sq . 51 FT /.5

& = (o S9. s t. x 3 v 9 8 v 6o 2.i: to4-)o (, (o C.F%

l c-eq w A P so P.si : t385"RtO 6P ut 44 81 = 44 g 1033 'r 454 52. F r

'4 r457 FT : ( G 't )G t r

V = 75'o.1 FT /3 (9 : ~)6oa x 3 x 98 x 69 x S = \ \ 'i1 \ t'ii cFM p , , , ~ , . . . ,

e - .- , ,-

( _

cae. nr I I

cue. w 3.o. , m.

n' 2j

.SARGENT&LUNDY . .2 ! o

=~oi~ - s y .. .. i v.n. i. i. . lj w o n.s.,,,y. n.i . ,,, ,,,, j 7 o,,,4  ;

en.ni e,.p.,., ey D.i.  !

Project .

  • Revir **d by Date Proj. No. g g Q /, ,, t j Equip. No. Approved by Date tuurN 6P e too PSI 2.769 "M tO DP au . c(4 Psi - 94 x 1o33 e 97102 Fr Dlol rr e

(52 f o66,6L F7/3

) k4

. V

& = tor (,.bL x 3 x 98 < bo x.9 = 1m%1 een 42 ntu A P = G. I pst = l69" Hto 6 P rtn , . i Ps i . i x lo 33 =103.3 FT

~

lo 3 3 FT = ($. L ,

V = 3 5. n P, e s G 35,77 A 3 x 16 x 6o X , 9 =

56764*l CFM

,\

O M -*9'.

Ler us uct. to DEFl9fs THC AeA oP HS 9 As THE MEA .oF rgt s e.v 3 -nin us THE Two LoucesT. wus 16 sRv's AttE _

Co NS so E AE0 tr THE yAtv5 0C 4263 FT - (16-?

1

. lk L...____.__

SIUC E (LE.F Eft.EuCE 13 SMw3 THAT 0NLY A fW i N M .0 F 2 IQ .MV'5.

ALE- oPEtJ {BDvEro R5 9 ) THE AnE.A 0F HS 9 15..icqRitEC,TED.

~

i +2 %3 ( O = 2.i4 7 Fr ' J.T i

8

}

.- g Calc, te, 3C7-0390-00?

Revision 1 Page Bl.

Project No. 8726 17-b

- APPENDIX-B -

CCMPUTER INPUT DATA AND'0UTPUT I

hk 9

l;

INITIAL RUN CASE-10: DW T & - P,SBO, FIXED ARE 61 GPM LEAK AND RPV - T & P; INITIAL DW RH=1.

6 1 0 12 1000013 1 0 0 0 12 0 10 0 /B 1 0. .00002 30 0 /B1 1000000 1 7 0.-22000. 500. 1. /C1 Calc. No. 3C7-0390-002

.001. 00021 2 2 1 1 /C2-1 Revision: 1

-3, 1.0 1 1 1 1 /C2-2 page: B-2 3600. 3.0 300,7196-1 1 /C2-3 Project No. 8726-17 6000. 1.0 200 2400 1 1 14400 0.1 400 4200 1 1 /C2-4 15900 .1- 500 1500 1 1 /C2-5 1.E6 0.5 500-4000 1 1 /C2-6 173857. 15.45 135. 1. 8*0. 0 0. /D-1 1.E35 14.7 122. O. 3*0. 00, /D-2

1. 14.7 550. O. 8*0. 1 0. /D-3 6.62E6 14.7 425. O. 8*0. 0 0. /D-4
1. 14.7 450. O. 8*0. 2 0. /D-5 SRVL'S FLUID (TDV No. 2) 163000. 36.0 260.96 1. 8*0. 3 0, /D-6 VENTING NODE BY KIN
0. O. 0 0 /DD 616.0100 /E-1 JUNOTION INPUT J KIN ~

1.0 0.5 1.0 0.5 1.0 -1 0. 0 11*0. /F-1 JUNCTION INPUT J KIN NO /FF-1 NO CHOKE FOR JUNCTION J KIN 15 O. 1040. 549, 8*0.

141. 912.-534. 8*0. '

l'290. 1015. 546. 8*0.

1312. 993. 545.-8*0.

1694. 844. 524. 8*0.

2212. 746. 510. 8*0.

4169. 450. 456.-8*0.

5969. 264. 406, 8*0.

5442. 227. 393. C*0.

7207. 176. 371. 8*0.

15300. 170. 368. 8*0.

-18900. 40.5 268. 8*0.

22500. 15.45 168. 8*0.

24228. 15.45 120. 8*0.

1.E6 15.45 120.-8*0. /J-1 15 0 416. 446. 8*0. v 141. 365. 436. 8*0.

1290. 406. 446. 8*0.

1312. 397. 443. 8*0.

1694. 138. 428. 8*0.

2212. 738. 416. B*0.

4169. 180, 373. 8*0.

- 5969. 106. 332. 8*0.

6442.-91. 321. S*0.

7207. 70. 303. 8*0.

15303. 68. 301, 8*0.

18900. 15,45 01. 8*0.

-22500. 15.45 120. 8*0.

24228. 15.45 120. 8*0.

1.0E6 15.45 120. 8*0. /J-2 2 0. 36.0 260.96 1.0 7*0 1.0E6 16.0 260.96 1.0 7*O /J-3 1 11 0. /K-1 BCC INFO FOR JUNCTION J KIN 0 0

-166. O'

-169. -567849.

-194. 1795695.

-277. 3591390.

-415. 5387084.

-554 .6718875. ,

-831. 8797072.

-1108. 10470610.

d -1385. 11911291.

l

y , . . , m ._ _ _.

Y ' '

. 2769. 17409907.

'Caic. No. 3C7-0390_002 ~l

-/L Ravision: 1

1 4 -3 *0 /Q. ' Page: B-2

, !0..J2.94 2 ~ 354 6; 88 14399. 2.942 3546.88'

Project _No.- 8726-17
lt. 4 00. '.'625: 753.50=
1~. E 6 L - .625::753.50- 4

^ ?SINKc1- DW SIDEWALL-

-1L1 1s1'2:1.'15976. O. 1.E6 8*0 /X-1 3

'24-0-72.D133._124. -2J0-0_1 0 2 /Z-1

.92 -145. .156 /Z3-1

~ SINK 2 -= INSULATION ON; RPV, PUMPS, PIPES'F 550 F 2.l'3=8-1 4'31204.13.: -1.E6 8*0-

-3 0316.5 549. 268.8'-2.0 0 1 0 2

.1166-27.7~.12 /Z3-2 SINK =3'- INSULATION ON FWiPIPING 2 l'4"S 11-4'1744.8 12.'1.E6 8*O-

-320 15:.- 425.--268.8 -210 0 1l0 2

.1786 27.7=.12-/Z3-3.(SEG 1)=

SINK-4-- DW= FLOOR (BOTTOM SURFACE ADIABATIC) 11-1-2:073667. O. 1.E6 3*O 6-0-36, 2*135. 2~0 0'l 0-2

. 92 145.,.156./Z3-4

-SINK 5~- SAC. SHIELD

131~ 1 : 1 ' 1' l' 4 2 97 -. 0. . l'. E6 8
  • 0 -

'610-.24..2*135. 2L0-0'110 2

-
.92 145. 156'/Z3-5 .- --

_ST.NK-6 -' PEDESTAL (INNER FACE ADIABATIC) 2 ' 1 - 1 '1' . 0 7 1751 ' 17 9.- .' 1. E6 - 8

  • O /X-6
10 0 121.:2*135.-2 0 0 1 0-2 /Z -

.92-145.n.156_/Z3 SINK'.7 .-WALL OF MSO4BB-13e(LONGEST SRV VENT IN DW) 1 -1. 5'-9 l' 4 360.4 0.11.E6;8*0.1

~1'0;.688 2*135.-.2 0:0 1:0.2 /

i- 27. 490._.12 /-

SINK;81- WALL OF.MSO4BL -1'1 5 10.1-4 3 05. 2 O. :1. E618 *0. / -

-1 01: .688 2*135.J2-0 0 1.0 2 /

-27.-490.:_ 12 /-

TSINK'9E -16 OTHER.SRV WALLS-1'l-S 1171 4 2142. O . -- 1. F 6 .- 8

  • 0. - / -

1'O .68812*135;-.'210 0Tino 2 /:

-27.1490.<.12 /-

SINKc10'-l BEAMS INSIDE DW '

111 1 :'12 J 0. 0128702 0 0. 1.E6s B *0i /

1'On.5--2*135. 2 0 0 110:2'/

.27.:490.--.12 /

LSINK 11" : GRATINGS INSIDE DW 111"1,13 0 0 12539.:0. 1. E6 ' 8_* 0.1/ :

1 -- O .1875 2*135.-2:0 011 0 2:/

J27.'490. .12=/.

~

SINK 12?:- SCRAM 1 DISCHARGE-PIP 1NG' iif1T.1 14.OL0-3580.10.-1.E6 8*0 /-

.1-'0 .2625:-2*280..:2 0_0 1;0 2,/ -

3 27.1490.: .12'/i .

2L-1.-1.m 1. .9211 11-70.'2*O /ZZ1-1 4

2--

-1.<1. 1. .92:11.42:17 0.- - 2

  • O --/ Z Z1-2 n2'-1_. 1.:1. .9211'.23170. 2*0 /ZZ1-3

.10 1070.-60. 9.5*0 /ZZ1-4 110:2?70.-60. .9 5*01/ZZ1-5 s 110 ':3 7 0.;- 60. -. 9 " 5* 0 : /2Z1-6

-3 ' 9 *0.< /ZZ1-7 3010. 8*0.-/ZZ1-8

-z 4' 1;- 7 .7

  • 0. . - /ZZ1-9 47 2 617
  • 0'. -; /ZZ1-10; 4:316 7*0.-/ZZ1-11 .

2J-1. 1.~1. .92:1. 1 .5 2*0. /Z41-12 ',

t .

w - , 4 - - - ,

n M -1. 1. 1. . 93 1.;1. 1 200. /ZZ1-13 414:4 7*0. /ZZ1-14

-0:0:.001 1000'140.4'1000~140 5 0:329.5-:0.329.6 1000 1.E6 2000 /2Z2-1 0 0 3.0.3.1-1000 86.9 1000-87--0 1.E6 0 '/ZZ2-2

0-0 5.9 0'6 1000 26.9 1000 27 0 1.E6 0 17Z2-3

- 0. 0. .001:0. 1. 2.173 1.E6'2.173 /ZZ2-4 Calc. No. 3C7-0390-002' Revision: 1 Page:- B-4 Project No. 8726-17 e

(

_6

+

%NY INITfAL RUN e - -- ,

[ CASE-1D:DW T & P,SBO, FIXED ARE 61 GPM LEAK AND RPV T & F;NO VENTING 6 1 0 12 1 0 0 0 0 1 3-1 0 0 0 12 0 10 0 /B 1 0. .00002- 30 0 /B1 110000r3 1 7 0. 15300. 500. 1 /C1 Calc. No. 3C7-0390-002

.001 .00021 2 2 1 1 /C2-1 Revision: 1

3. 1.0 1 1 1 1 /C2-2 Page: B-5 3600. 3.0 300 7196- 1 1 /C2-3 Project No. 8726-17

-6000.-1.0 200 2400 1 1 14400 2.0 400 4200 1 1 /C2-4 15900 2.0 200 1500 1 1 /'2-5 1.E6 0.5 500-4000 1 1 /C2-6 173857. 15.45 135.-1. 8*0. 00, /D-1 1.E35 14.7 122. O. 8*0. 0 0. /D-2

1. 14.7 550. O. 8*0. 1 0. /D-3 6.62E6 14.7 425. O. 8*0. 0 0. /D-4 1, 14.7 450. O. 8*0. 2 0.-/D-5 SRVL'S FLUID (TDV NO. 2) 163000.- 36.0 260.96 1. 8*0. 30, /D-6 VENTING NODE BY KIN
0. O. 0 0 /DD 6160100 /E-1 JUNCTION INPUT J KIN 1.0-0.5 1.0 0.5 1.0 -1 0. 0 11*0. /F-1 JUNCTION INPUT J KIN NO /FF-1 NO CHOKE FOR JUNCTION J KIN 15 O. 1040. 549. 8*0.

141. 912. 534. b*0.

1290. 1015. 546, 8*0.

1312. 993. 545. 8*0.

1694. 844. 524. 8*0.

2212, 7 4 6'. 510. 8*0.

4169. 450. 456. 8*0.

5969. 264. 406. 8*0.

6442, 227. 393. 8*0.

7207. 176. 371. 8*0.

15300 170. 36E. 8*0.

18900 40.5 268. 8*0.

-22500. 15.45 168. 8*0.

24228. 15.45 120. 8*0.

1.0F6- 15.45 120. 8*0 /J-1 15-0 416. 448, 8*0.

-141. 365. 436. 8*0.

1290. 406. 446. 8*0.

1332. 397. 443. 8*0.

1694. 338.-428. 8*0.

2212. 298. 416. 8*0.

4169. 180. 373. 8*0.

', 5969. 106. 332. 8*0.

6442. 91. 321 8*0.

7207, 70. 303. C 5 0, 15300.-68. 301. 8*0.

18900.-15.45 201. 8*0.

22500. 15.45 120. 8*0.

24228. 15.45-120. 0*0.

1.0E6 15.45 120. 8*0. /J-2 2 0. 36.0 260.96 1.0-7*0 1.0F6 36.0 260.96 1.0 7*O /J-3 1 11 20000. _ fK-1-BCC INFO FOR JUNCTION J KIN

0. 0

-166. 0

-169. 567849.

-194. 1795695.

-277. 3591390.

-415.- 53E7084.

-554. 6718875.

-831. 8797072.

-1108. 10470610. ,

-1385. 11911291. l

y _ . _ _

Calc. No. 3C7-0390-002 3 -2769F 17409907. (f L e Revision: 1-1l4f3*01/Oc Page: 3-6 1

.2;942 3546-88 0.:

'14399.:2.942--3546.88 Project No. 8726-17 1 1

14400.- .625L:753.50--

- ila EG . .625- 753.'50L

  • a SINK l1:'- DW SIDEWALLi 1 :-1 ol-11 2 - 171.59 7 6. _ O'. :' ll E6 8
  • O /X-1 _ _ i'
24 0 72._133.zl24. -2 ' 0 ' 0 : 1 : 0-D 2 -/Z-1

+ 9 2 - .14 5'. 1.15 6 - / Z 3 -

1 SINK 2-- INSULATION ON RPV, PUMPS, PIPES 9 550 F <

2 1 3.811.4431204.-13. 1.E6=8*0' 23--0:-16.5 549. 268.'8 -2 0 0-1 0 2

.116 6 - 2 7. 7 -- .12 -- / Z 3 -2 .

SINK 3^ . INSULATION ON'FW PIPING

-. 2 - 1 ~ 4 8 1 4
1744.8 12.--1.E6 8*0. .-

,.:3 0 15.-~425.1268.8 -21010 1 L 2 U.1786 27.7 .12 /Z3-3-(SEG 1)

SINK -_4 - _- - DW: FLOOR:- ( BOTTOM SURFACE - ADI ABATIC)

'14l'1 2 0 7 3G67. O. 1.E6 8*O "6 0-.36.-2*135.:2 Os0 1 0 2

' 921145.r.156 /Z3-41

' SINK ~5"-JSAC. SHIELD 1 1 1 11-1~1 4297. O. 1.E6 8*O 6'0124. 2

  • 13 b ' ' 2 0 O c 1 2 :
. 9 2 - 14 5.' .156./Z3-5

' SINK 6 - PEDESTAL _(INNER FACE ADIABATIC) c2il;1--110 711751. 179. 1.E6-8*O /X-6

-10 Of121.:2*135'. 210.0 1 012n/Z 6- .

f.92-14W .1569 43-6=

JSINK='; -: WALL ~OF MSO4BB-121(LONGEST SRV VENT IN DW) 1--'1 5: 9-:1 4 360.4 0..l.E6-8*0.

1 0:.688-2*135.:2 0:-0 1 O__2 /

J 27.r 4 9 0'. - .12 - / :

SINK 8: : WALL OF MSO4BL-12~

-1 115-'10?1_:41305.2;0. 1.E6 8*0.--/ '

'1D0 .688:2*135. 2 i0-_.0 :1 _ 0 2 1 /

L 2 7. -J 4 9 0. : .121/ =

JSINK 9r-~:16:OTHER SRVJWALLS? ..

111'5 11?l14 2142.: O. 1.E6 8*0.n/-

?l'0;!.68812*135.E2-O. 0 11012,/

27.-490.z 12--/ -

SINK-19.--BEAMS 'ASIDE DWi-21 l'Is12 0'O 28702. 0. 1.E6 8*0. /

--110 .S 2*135.=2-O-3+1-.0 2 /-- -

27.A490.=.12 /'

SINK :11 -' GRATINGS -INSIDE- DW :-

f1'1-1L13 0 0.12539.LO. 1.E6'8*0. /

1:O s.'1875-2*135. 2_0:0 1 0 2 /.
27.--490.

.12']i

! SINK-12 CSCRAM DISCHARGE' PIPING ,

l.-It1 14?O O'3580.-O. 1.E6 8*0. /

?l"0c.2625.2*2804.2 Of0;1.0_2:/.  :

67.s490.;-.12 /- .. . _ . . . _

z2<:-1. 1. ; 1. - . 9211 7 l' 70.:_-2 *0 ; /ZZ1-1 2.-1,t1.11.. 92.1.:2 70, 2*O /ZZ1-2

.211-1. 1.21.;.92:1. 3 70.--J2*O /ZZ1-3 E10x1r70.o60. .9 5*O /ZZ1-4 :

10'2170. 60.. 9.5*0 fZZ1-5' -

a

$10_:3-70. 60. .9 5*0'/ZZ1-6 -

1319*0.:/ZZ1-7 3 10.18*0.=/ZZ1 '4 1J747*0.;/ZZ1-9 4-2:647*0. /ZZ1-10c 4 7 3 -- 6 '- 7_*0. /ZZ1-11 .. ,

2;-1.- 1. 1.. 92:1.:1-.5 2*0. /ZZ1-12

- - . - e e a t

.2 -1. 1. 1.: .92 1. 1 ,A 200. /ZZ1-13 4 ,!4-700. /ZZ1 1. O J .001 1000 140.4-1000 140.5 0 329.5 0 329.6 1000 1.E6 1000 /ZZ2-1 0.0 3 0 3.1 1000 86.9 1000 87 0 1.E6 0 /ZZ2-2

-0 0 5.9 0 6 1000 26.9 1000 27 0 1.E6 0 /ZZ2-3

0. O. .001 0. 1. 2.173 1.E6 2.173 /ZZ2-4 Calc. No. 3C7-0390-002 Revision: 1 Page: B-7 Project No. 8726-17 Y

w

.=

e.

I i

L--____-_-__________________.____ _ _ _ _ _ _ _ _ _ . _ . _ . _ - _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _

. .. . .-. . . . - - .. . . . - .. ., . . . - . .. . ... . ~ - .. . . - . _ . . . . _ _ .

4 4

Calc. No. 3c7 0390-002 Rsvision: -1 Page: 5-8 -

Project No. 8726-17 P

d 4

4 4

5 t.-

I -

sv .. r,. -. . . - . . - . - - ~ --