ML19077A088: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
Line 48: Line 48:


Environmental Resources Management (DERM) Department of Regulatory and Economic Resources. Be advised that the original has been sent certified mail via US Postal Service.
Environmental Resources Management (DERM) Department of Regulatory and Economic Resources. Be advised that the original has been sent certified mail via US Postal Service.
Frances Rodgers, Senior Executive Secretary Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) Office of the DERM Director 701 NW 1st Court, 4th Floor, Miami, Florida 33136 (305) 372-6754 (305) 372-6759 fax www.miamidade.gov/environment "Delivering Excellence Every Day" Please consider the environment before printing this email
Frances Rodgers, Senior Executive Secretary Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) Office of the DERM Director 701 NW 1st Court, 4th Floor, Miami, Florida 33136 (305) 372-6754 (305) 372-6759 fax www.miamidade.gov/environment "Delivering Excellence Every Day" Please consider the environment before printing this email Melody J. Hunt, Ph.D.
--
Melody J. Hunt, Ph.D.
Hydrologist National Park Service South Florida Natural Resources Center 950 North Krome Avenue Homestead, FL 33030 PH: 305-224-4211 Email: melody_hunt@nps.gov The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
Hydrologist National Park Service South Florida Natural Resources Center 950 North Krome Avenue Homestead, FL 33030 PH: 305-224-4211 Email: melody_hunt@nps.gov The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
Live feed from the Anhinga Trail Webcam
Live feed from the Anhinga Trail Webcam Bryan Faehner National Park Service, Southeast Region Energy & Environmental Protection Specialist MIB Room 2642 202-513-7256 (office) 202-604-5076 (cell)
--
Bryan Faehner National Park Service, Southeast Region Energy & Environmental Protection Specialist MIB Room 2642 202-513-7256 (office) 202-604-5076 (cell)
The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
2
2
Line 73: Line 69:
Redavo Dashed where data are insufficient                                                                                                          Base Leisure G-3698 !  Monitoring well name and chloride concentration, in milligrams per liter                                                          City 2,830 Harris Park Wittkop Park G-3698 2,830      !                                                                                      Biscayne Bay Newton G-3976            G-3966S                                                                  TPGW-12L Florida City                          36            5,610 G-3900                      !                              !                                          27,100
Redavo Dashed where data are insufficient                                                                                                          Base Leisure G-3698 !  Monitoring well name and chloride concentration, in milligrams per liter                                                          City 2,830 Harris Park Wittkop Park G-3698 2,830      !                                                                                      Biscayne Bay Newton G-3976            G-3966S                                                                  TPGW-12L Florida City                          36            5,610 G-3900                      !                              !                                          27,100
                                                                                                                                               !        !                      G-3699        TPGW-6L 31 SWIM well            !            10,700          7,570                                !
                                                                                                                                               !        !                      G-3699        TPGW-6L 31 SWIM well            !            10,700          7,570                                !
                                                                                                                                                                  !        !
130                G-3855                                                                        TPGW-10L Florida Keys                        FKS 9
130                G-3855                                                                        TPGW-10L Florida Keys                        FKS 9
                                                                                                                                                     !                7,960                                                                    !    26,400 Aqueduct                              48 Authority                            ACI-MW-05 !                      Sec34-MW-02-FS
                                                                                                                                                     !                7,960                                                                    !    26,400 Aqueduct                              48 Authority                            ACI-MW-05 !                      Sec34-MW-02-FS
Line 86: Line 81:
10,050 TPGW-2L 31,200            Cooling TPGW-9L                                                                                  !          canal FKS 5                                                                                                              system 31              25.2                                FKS 4
10,050 TPGW-2L 31,200            Cooling TPGW-9L                                                                                  !          canal FKS 5                                                                                                              system 31              25.2                                FKS 4
                                                                                                             !            !        ! G-3342
                                                                                                             !            !        ! G-3342
                                                                                                                                   !                          3,150          TPGW-4L
                                                                                                                                   !                          3,150          TPGW-4L FKS 7    2,390                                  ! 15,200 98 C-110 Canal FKS 6
                                                                                                                                                          !
                                                                                     ! 51 G-3167 TPGW-14L 65                                                                                                                                                              !      27,800 TPGW-3L FKS 3                                                                28,500 !
FKS 7    2,390                                  ! 15,200 98 C-110 Canal FKS 6
7,375                                                                                                            Card Sound FKS 2 G-1603  FKS 1 643  ! 57                              ! 763 FLORIDA Little Card Sound N
                                                                                     ! 51
                                                                                    !
G-3167 TPGW-14L 65                                                                                                                                                              !      27,800 TPGW-3L FKS 3                                                                28,500 !
7,375                                                                                                            Card Sound
                                                                                                                                          !
FKS 2 G-1603  FKS 1 643  ! 57                              ! 763 FLORIDA Little Card Sound N
EA OC NT Miami-Dade                                                                                                                                                                                                                                                              IC County                                        0                2              4 KILOMETERS AT Study area                                                                                                                                                                                                                                                  LA 0                            2                                4 MILES                                                                Barnes Sound Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey
EA OC NT Miami-Dade                                                                                                                                                                                                                                                              IC County                                        0                2              4 KILOMETERS AT Study area                                                                                                                                                                                                                                                  LA 0                            2                                4 MILES                                                                Barnes Sound Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey


Line 273: Line 262:
TPSWC1B  TPSWC2B    TPSWC3B  MDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)
TPSWC1B  TPSWC2B    TPSWC3B  MDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)


Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018
Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018 L31E-B L31E-A Depth          SpCond (u/s)
                                                                                                                                                                                                                        .
L31E-B L31E-A Depth          SpCond (u/s)
Depth        SpCond (u/s)
Depth        SpCond (u/s)
T (0.25 m)        4835.1 T (0.41 m)      9100.7 M (1.021m)        9146.1 M (1.45m)        9097.6 B (2.176m)        8642 B (3.477m)        9793 L31E-B L31E-A I-1 I-1 Depth        SpCond (u/s)
T (0.25 m)        4835.1 T (0.41 m)      9100.7 M (1.021m)        9146.1 M (1.45m)        9097.6 B (2.176m)        8642 B (3.477m)        9793 L31E-B L31E-A I-1 I-1 Depth        SpCond (u/s)
Line 385: Line 372:
Water Level (ft NGVD29)                                                                                                Nearby Wetland Ground Elevation (1.8 ft NGVD)
Water Level (ft NGVD29)                                                                                                Nearby Wetland Ground Elevation (1.8 ft NGVD)


Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018
Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018 L31E-D I-3 EEL2                                    EEL1 Depth        SpCond (u/s)                Depth          SpCond (u/s)
                                                                                                                    .
L31E-D I-3 EEL2                                    EEL1 Depth        SpCond (u/s)                Depth          SpCond (u/s)
T (0.179m)      5934.9                  T (0.1m)          5408 EEL2                              EEL1                  L31E-E I-4 L31E-F                                                    Specific Conductance Sampling Points Canals Miami-Dade EEL Program SFWMD Florida Power and Light Rockmining Lands and Associated Mitigation State of Florida Federal Private Rockmining Lands and Associated Mitigation Florida Power and Light Miles 0        0.2      0.4              0.8              1.2                1.6                Rockmining Lands and Associated Mitigation}}
T (0.179m)      5934.9                  T (0.1m)          5408 EEL2                              EEL1                  L31E-E I-4 L31E-F                                                    Specific Conductance Sampling Points Canals Miami-Dade EEL Program SFWMD Florida Power and Light Rockmining Lands and Associated Mitigation State of Florida Federal Private Rockmining Lands and Associated Mitigation Florida Power and Light Miles 0        0.2      0.4              0.8              1.2                1.6                Rockmining Lands and Associated Mitigation}}

Latest revision as of 11:45, 2 February 2020

SLR - (External_Sender) Fwd: (External) FW: Letter - Crandall - Rach 120 Extension Request FPL
ML19077A088
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 07/30/2018
From:
- No Known Affiliation
To:
References
+reviewed
Download: ML19077A088 (63)


Text

TurkeyPoint34SLRNPEm Resource From: Faehner, Bryan <bryan_faehner@nps.gov>

Sent: Monday, July 30, 2018 5:19 PM To: Moser, Michelle Cc: Melody Hunt

Subject:

[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Attachments: Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf FYI. This has bearing on operation of the cooling canals as it relates to water availability for the Turkey Point interceptor ditch.


Forwarded message ----------

From: Melody Hunt <melody_hunt@nps.gov>

Date: Mon, Jul 23, 2018 at 9:34 AM

Subject:

Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Theresa Lawrence <joan_lawrence@evergladesrestoration.gov>, Bryan Faehner

<bryan_faehner@nps.gov>

fyi- Letter from M-D County DERM to FL DEP.


Forwarded message ---------

From: Grossenbacher, Craig (RER) <Craig.Grossenbacher@miamidade.gov>

Date: Fri, Jul 20, 2018 at 8:57 AM

Subject:

[EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Melody Hunt (melody_hunt@nps.gov) <melody_hunt@nps.gov>, David Rudnick

<david_rudnick@nps.gov>, Agnes McLean (agnes_mclean@nps.gov) <agnes_mclean@nps.gov>,

Sarah_Bellmund@nps.gov <Sarah_Bellmund@nps.gov>, Kevin Kotun (kevin_kotun@nps.gov)

<kevin_kotun@nps.gov>, (erik_stabenau@nps.gov) <erik_stabenau@nps.gov>

I am forwarding this FYI. Please pass it on to the rest of the team.

Thanks, Craig

Original Message-----

From: Rodgers, Frances (RER) On Behalf Of Hefty, Lee (RER)

Sent: Wednesday, July 18, 2018 11:23 AM To: lea.crandall@dep.state.fl.us; timothy.rach@deb.state.fl.us Cc: john.truitt@dep.state.fl.us; emarks@sfwmd.gov; michael.sole@fpl.com; Raffenberg, Matthew; Schwaderer-Raurell, Abbie (CAO); Istambouli, Rashid (RER); Grossenbacher, Craig (RER); Spadafina, Lisa (RER); De Torres, Mayra (RER); Gordon, Donna (RER); Hefty, Lee (RER)

Subject:

Letter - Crandall - Rach 120 Extension Request FPL MAM The attached correspondence is being forwarded to you on behalf of Mr. Lee N. Hefty, Director, Division of 1

Environmental Resources Management (DERM) Department of Regulatory and Economic Resources. Be advised that the original has been sent certified mail via US Postal Service.

Frances Rodgers, Senior Executive Secretary Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) Office of the DERM Director 701 NW 1st Court, 4th Floor, Miami, Florida 33136 (305) 372-6754 (305) 372-6759 fax www.miamidade.gov/environment "Delivering Excellence Every Day" Please consider the environment before printing this email Melody J. Hunt, Ph.D.

Hydrologist National Park Service South Florida Natural Resources Center 950 North Krome Avenue Homestead, FL 33030 PH: 305-224-4211 Email: melody_hunt@nps.gov The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.

Live feed from the Anhinga Trail Webcam Bryan Faehner National Park Service, Southeast Region Energy & Environmental Protection Specialist MIB Room 2642 202-513-7256 (office) 202-604-5076 (cell)

The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.

2

Hearing Identifier: TurkeyPoint34_SLR_NonPublic Email Number: 4 Mail Envelope Properties (CADXRJ=gmb=JBUqNmAQ0Qn29dPuSe2cwTc8R4MuJ8N39KQqQZcQ)

Subject:

[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Sent Date: 7/30/2018 5:18:58 PM Received Date: 7/30/2018 5:21:43 PM From: Faehner, Bryan Created By: bryan_faehner@nps.gov Recipients:

"Melody Hunt" <melody_hunt@nps.gov>

Tracking Status: None "Moser, Michelle" <Michelle.Moser@nrc.gov>

Tracking Status: None Post Office: mail.gmail.com Files Size Date & Time MESSAGE 3745 7/30/2018 5:21:43 PM Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf 11810831 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date:

Recipients Received:

$77$&+0(176 Stage (ft NGVD) 0 0.5 1 1.5 2 2.5 3 3.5 1/1/2000 7/1/2000 1/1/2001 7/1/2001 1/1/2002 7/1/2002 1/1/2003 7/1/2003 1/1/2004 7/1/2004 1/1/2005 7/1/2005 1/1/2006 7/1/2006 1/1/2007 7/1/2007 S-20 Stage (ft NGVD) 1/1/2008 L-31E Water Levels 7/1/2008 1/1/2009 7/1/2009 1/1/2010 7/1/2010 1/1/2000 - 6/30/2018 Model Lands Basin 1/1/2011 7/1/2011 1/1/2012 7/1/2012 1/1/2013 Sea Level (0.67 ft NGVD) 7/1/2013 1/1/2014 7/1/2014 1/1/2015 7/1/2015 1/1/2016 7/1/2016 1/1/2017 7/1/2017 1/1/2018

Prepared in cooperation with Miami-Dade County Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 EXPLANATION Naranja Well field Park Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)

Approximation Dashed where data are insufficient G-1180 Approximate inland extent of saltwater in 2016 Homestead 22 Approximation Airforce  !

Redavo Dashed where data are insufficient Base Leisure G-3698 ! Monitoring well name and chloride concentration, in milligrams per liter City 2,830 Harris Park Wittkop Park G-3698 2,830  ! Biscayne Bay Newton G-3976 G-3966S TPGW-12L Florida City 36 5,610 G-3900  !  ! 27,100

!  ! G-3699 TPGW-6L 31 SWIM well  ! 10,700 7,570  !

130 G-3855 TPGW-10L Florida Keys FKS 9

! 7,960  ! 26,400 Aqueduct 48 Authority ACI-MW-05 ! Sec34-MW-02-FS

! TPGW-1L 47.4  !  !

29,100 ACI-MW-04 TPGW-7L G-1264 48.5  ! 2,750  ! 8,300 Everglades ACI-MW-03  !

Labor Camp TPGW-5L

! 17.8 !  ! 12,300 ACI-MW-09 ACI-MW-15

! 30.8 2,480

!  ! Model G-3166  ! G-3946D 150 TPGW-8L 46.2 5,780 Land TPGW-13L ACI-MW-16 36,800 TPGW-11L

! 36.9 Area 25,300 !

FKS 8  !

10,050 TPGW-2L 31,200 Cooling TPGW-9L  ! canal FKS 5 system 31 25.2 FKS 4

!  !  ! G-3342

! 3,150 TPGW-4L FKS 7 2,390  ! 15,200 98 C-110 Canal FKS 6

! 51 G-3167 TPGW-14L 65  ! 27,800 TPGW-3L FKS 3 28,500 !

7,375 Card Sound FKS 2 G-1603 FKS 1 643  ! 57  ! 763 FLORIDA Little Card Sound N

EA OC NT Miami-Dade IC County 0 2 4 KILOMETERS AT Study area LA 0 2 4 MILES Barnes Sound Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey

Cover. Map showing the approximate extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016. See https://doi.org/10.3133/sim3380 for map sheet.

Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Prepared in cooperation with Miami-Dade County Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGSthe Federal source for science about the Earth, its natural and living resources, natural hazards, and the environmentvisit https://www.usgs.gov or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Prinos, S.T., 2017, Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida : U.S. Geological Survey Scientific Investigations Map 3380, 8-p. pamphlet, 1 sheet, https://doi.org/10.3133/sim3380.

ISSN 2329-132X (online)

iii Acknowledgments The authors would like to acknowledge the organizations that provided data for the study area:

EAS Engineering, Inc., Florida Keys Aqueduct Authority, Florida Power & Light Company, Miami-Dade County, and South Florida Water Management District. Without the data provided by these organizations, the map in this report could not have been created.

v Contents Acknowledgments .......................................................................................................................................iii Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Mapping the Approximate Inland Extent of the Saltwater Interface ...................................................2 Approximating the Rate of Movement of the Saltwater Interface .......................................................2 Monitoring Network Improvements ..........................................................................................................3 References Cited ...........................................................................................................................................4 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring..................................................................................................5 Sheet

[Available from https://doi.org/10.3133/sim3380]

1. Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 Conversion Factors SI to Inch/Pound Multiply By To obtain Length meter (m) 3.281 foot (ft) kilometer (km) 0.6214 mile (mi)

Area square kilometer (km2) 247.1 acre square kilometer (km ) 2 0.3861 square mile (mi2)

Volume liter (L) 0.2642 gallon (gal) liter (L) 61.02 cubic inch (in3)

Flow rate meter per year (m/yr) 3.281 foot per year (ft/yr)

Mass gram (g) 0.03527 ounce, avoirdupois (oz) kilogram (kg) 2.205 pound, avoirdupois (lb)

Electrical conductivity siemens per meter (S/m) 10,000 microsiemens per centimeter 6FP

vi Electrical conductivity in microsiemens per centimeter [S/cm] can be converted to electrical resistivity in ohm-meters [ohm m] as follows: = 10,000/.

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 x °C) + 32 Datum Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (S/cm at 25 °C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).

Abbreviations bls below land surface GIS geographic information system TSEMIL time-series electromagnetic-induction log (dataset)

USGS U.S. Geological Survey

Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Abstract kilometers (km2) of the mainland part of the Biscayne aquifer were intruded by saltwater (Prinos and others, 2014). Intrusion The inland extent of saltwater at the base of the of the Biscayne aquifer by saltwater is a concern because it Biscayne aquifer in the Model Land Area of Miami-Dade can render the water unpotable in affected parts of the aquifer.

County, Florida, was mapped in 2011. Since that time, The maximum concentration of chloride allowed in drinking the saltwater interface has continued to move inland. The ZDWHULVPLOOLJUDPVSHUOLWHU PJ/86(QYLURQPHQWDO

LQWHUIDFHLVQHDUVHYHUDODFWLYHZHOO¿HOGVWKHUHIRUHDQ Protection Agency, 2014), whereas saltwater-intruded parts of updated approximation of the inland extent of saltwater and the aquifer commonly have water with chloride concentrations an improved understanding of the rate of movement of the of 1,000 mg/L or greater.

saltwater interface are necessary. A geographic information The inland extent of saltwater at the base of the Biscayne system was used to create a map using the data collected by aquifer was last mapped by Prinos and others (2014) in 2011.

the organizations that monitor water salinity in this area. An Since that time, saltwater has continued to intrude beneath average rate of saltwater interface movement of 140 meters WKH0RGHO/DQG$UHD7KLVDUHDLVDUHODWLYHO\DWDQGSRRUO\

per year was estimated by dividing the distance between two drained wetland area in southeastern Miami-Dade County that monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the is bordered on the east and south sides by Biscayne Bay, Card travel time. The travel time was determined by estimating Sound, Little Card Sound, and Barnes Sound. A system of the dates of arrival of the saltwater interface at the wells and FDQDOVZDWHUFRQWUROVWUXFWXUHVDQGOHYHHVUHJXODWHWKHRZ

computing the difference. This estimate assumes that the of surface water in this area. There is an extensive system of interface is traveling east to west between the two monitoring cooling canals in the eastern part of this area that has been wells. Although monitoring is spatially limited in this area hypersaline at times (Hughes and others, 2010).

and some of the wells are not ideally designed for salinity In the Model Land Area, the saltwater interface monitoring, the monitoring network in this area is improving LVQHDUVHYHUDODFWLYHZHOO¿HOGVWKHUHIRUHDQXSGDWHG

in spatial distribution and most of the new wells are well approximation of the inland extent of saltwater and an designed for salinity monitoring. The approximation of the improved understanding of the rate of movement of the inland extent of the saltwater interface and the estimated rate VDOWZDWHULQWHUIDFHDUHQHFHVVDU\7KH86*HRORJLFDO6XUYH\

of movement of the interface are dependent on existing data. 86*6 LQFRRSHUDWLRQZLWK0LDPL'DGH&RXQW\PDSSHGWKH

Improved estimates could be obtained by installing uniformly approximate inland extent of saltwater in the Model Land Area designed monitoring wells in systematic transects extending in 2016 and approximated the average rate of movement of the landward of the advancing saltwater interface. saltwater interface in this area based on data collected between 2007 and 2014. This study aligns directly with the strategic VFLHQFHGLUHFWLRQIRUWKH:DWHUGLVFLSOLQHRXWOLQHGLQ86*6

&LUFXODU 86*HRORJLFDO6XUYH\ E\TXDQWLI\LQJ

Introduction forecasting, and securing freshwater for Americas future.

The purpose of this report is to provide a map of the saltwater Seawater began intruding the Biscayne aquifer of Miami- interface (2016), an estimate of the rate of interface movement Dade County early in the 20th century because of a decline in given the dates of arrival at two wells, and a description of the the fresh groundwater level, estimated to have been 2.9 meters methodologies used to arrive at these results. The analyses and (m) below predrainage conditions near Miami (Prinos estimates are based on available data from existing monitoring and others, 2014). By 2011, approximately 1,200 square wells in the Model Land Area.

2 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Mapping the Approximate Inland basis, based on the available monitoring wells. The locations of the monitoring wells and the chloride concentration values Extent of the Saltwater Interface are shown on the map (sheet 1, available at https://doi.

org/10.3133/sim3380). The line depicting the approximate The approximate inland extent of saltwater in the inland extent of saltwater is dashed where the monitoring well Biscayne aquifer was determined by using (1) chloride GLVWULEXWLRQLVLQVXI¿FLHQWWRFUHDWHDUHDVRQDEO\DFFXUDWHDQG

FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHRIZDWHUVDPSOHV precise approximation.

collected from monitoring wells, (2) water conductivity 7KH76(0,/GHULYHGYHUWLFDOSUR¿OHVRIEXON

SUR¿OHVFROOHFWHGLQORQJRSHQLQWHUYDOZHOOVDQG  WLPH conductivity provide additional qualitative insights for VHULHVHOHFWURPDJQHWLFLQGXFWLRQORJ 76(0,/ GDWDVHWV PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH

collected in polyvinyl-chloride-cased monitoring wells. This water that do not correspond to the open interval of the well LQIRUPDWLRQZDVSURYLGHGE\($6(QJLQHHULQJ,QFWKH and temporal changes in the depth of the top of the saltwater Florida Keys Aqueduct Authority, the Florida Power & Light LQWHUIDFH:KHUHZDWHUFRQGXFWLYLW\SUR¿OHVZHUHXVHG

Company, the South Florida Water Management District for monitoring, chloride concentrations were estimated by 6):0' DQGWKH86*6$OPRVWDOORIWKHGDWDSURYLGHG using a relation based on a linear regression of the chloride by the SFWMD for this study area had been collected by the FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHDVGHVFULEHGLQ

other four organizations, so they are mostly redundant. The appendix 1.

information was entered into a geographic information system The majority of the monitoring wells used for this (GIS) for analysis and mapping. Data used to make the map analysis have short open intervals (about 1.5 meters [m] or are available as a data release (Prinos, 2017). less), but 37 percent have open intervals of 8 to 40 m (Prinos, Sampling, analysis, and quality assurance procedures of 2017). The long open-interval wells are not ideal for salinity the organizations collecting salinity data in the study area vary. monitoring for the reasons summarized in Prinos (2013) and Procedures used by the Florida Power & Light Company for Prinos and Valderrama (2015), but they are the only wells sampling and quality assurance are described in the Turkey available at some locations.

Point Quality Assurance Project Plan (Florida Power & Light Company, 2011). These procedures are likely among the most stringent used by organizations collecting salinity data in the study area. This plan was drafted jointly by the Florida Approximating the Rate of Movement

'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQWKH)ORULGD3RZHU of the Saltwater Interface

& Light Company, and the SFWMD and was approved by WKH6):0'3URFHGXUHVIRUVDPSOLQJE\WKH86*6DUH The saltwater interface in the study area is advancing JHQHUDOO\EDVHGRQWKRVHGHVFULEHGLQWKH86*6¿HOGPDQXDO at an estimated average rate of 140 meters per year (m/yr).

EXWSURFHGXUHVKDYHEHHQPRGL¿HGIRUH[SHGLHQF\DQG This estimate is based on limited data because there are few HI¿FDF\RIURXWLQHORQJWHUPVDOWZDWHULQWUXVLRQPRQLWRULQJ wells in this area where the date of arrival of the saltwater 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG/HH0DVVH\86 interface can be ascertained. Most wells were installed either

  • HRORJLFDO6XUYH\ZULWWHQFRPPXQ0DUFK ($6 after the saltwater interface had already passed the location (QJLQHHULQJ,QFDQGWKH)ORULGD.H\V$TXHGXFW$XWKRULW\ or where the saltwater interface has not yet arrived. The EDVHWKHLUVDPSOLQJRQWKHVSHFL¿FDWLRQVRIWKH)ORULGD estimate is based on data from monitoring wells Sec34-

'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ )ORULGD'HSDUWPHQW 0:)6DQG73*:/PRQLWRUHGE\($6(QJLQHHULQJ

RI(QYLURQPHQWDO3URWHFWLRQ 7RHQVXUHWKHTXDOLW\RI Inc., and the Florida Power & Light Company, respectively.

DQDO\]HGVDPSOHVWKH86*6ODERUDWRU\SDUWLFLSDWHVLQWKH 'DWDIURPZHOO73*:/DQGVHOHFWHGFRQGXFWDQFHSUR¿OHV

Branch of Quality Systems Standard Reference Sample Semi- from well Sec34-MW-02-FS are available in Prinos (2017).

$QQXDO3UR¿FLHQF\7HVWLQJ3URMHFW($6(QJLQHHULQJ,QF Well TPGW-7L is open to the aquifer from 24 to 26 m and the Florida Power & Light Company use laboratories that below land surface (bls), which is near the depth of the base DUHFHUWL¿HGWKURXJKWKH1DWLRQDO(QYLURQPHQWDO/DERUDWRU\ of the Biscayne aquifer at this location (Fish and Stewart, Accreditation Program. Participation in this accreditation 1991). The chloride concentration in water samples from SURJUDPOLNHO\DVVXUHVWKDWVDPSOHDQDO\VHVDUHDFFXUDWH well TPGW-7L increased from 180 to 825 mg/L between KRZHYHUWKH86*6FDQQRWFRPSOHWHO\YHULI\WKLVDFFXUDF\ December 3, 2013, and March 11, 2014, and from 825 to without reviewing the results of the accreditation testing for 1,300 mg/L between March 11, 2014, and June 9, 2014.

each laboratory used. :DWHUFRQGXFWDQFHSUR¿OHVZHUHFROOHFWHGIURPZHOO6HF

The approximate saltwater interface is represented by the 0:)67KHPD[LPXPFRQGXFWDQFHRIWKHSUR¿OHVZDV

1,000-mg/L isochlor at the base of the Biscayne aquifer. The IRXQGDWDGHSWKRIDERXWPEOV8VLQJHTXDWLRQVDQG

word approximate is used because the spatial distribution 2 (appendix 1), conductance values measured at this depth RIPRQLWRULQJZHOOVLVJHQHUDOO\LQVXI¿FLHQWWRFUHDWHD equate to chloride concentrations of about 190, 530, 930, and precise representation. The accuracy and precision of this PJ/IRU1RYHPEHU-DQXDU\$SULO

approximation is best evaluated on a location-by-location 2008, and May 15, 2008, respectively.

Monitoring Network Improvements 3 The average rate of saltwater interface movement from the estimated location of the saltwater interface. The was estimated by dividing the distance between the wells 1,000-mg/L isochlor may not arrive at this well until 2023, (830 m) by the difference between the interpolated dates of if the rate of movement of the saltwater interface proceeds at arrival of chloride concentrations of 250 and 1,000 mg/L at the average rate estimated in this study. Better estimates of each well. The interpolated dates of arrival at well Sec34- the rates of movement are needed before 2023, particularly 0:)6ZHUH1RYHPEHUDQG$SULO because the rate of movement may not be constant.

for concentrations of 250 and 1,000 mg/L, respectively. Monitoring well FKS 5 is even farther from the approximated The interpolated dates of arrival at well TPGW-7L were location of the saltwater interface than well FKS 9. The rate December 13, 2013, and April 13, 2014, for concentrations of and direction of movement of the saltwater interface near well 250 and 1,000 mg/L, respectively. Given these dates and the FKS 5 are unknown. If the rate of movement were the same distance between these wells, the estimated rate of movement as that between wells Sec34-MW-02-FS and TPGW-7L, the of the front is 137 m/yr based on a chloride concentration of 1,000-mg/L isochlor may not reach this well for 26 years if 250 mg/L, and the estimated rate based on a concentration of the interface moves northward, or 17 years if the interface 1,000 mg/L is 138 m/yr. These estimates can be rounded to an moves westward. Water managers would most likely need to average estimate of 140 m/yr. This rate of movement was used have a better understanding of the location of the saltwater to help interpolate the location of the 1,000-mg/L isochlor in interface, its rate of movement, and direction of movement the Model Land Area. than currently provided near FKS 5.

This estimate assumes that the direction of front Differences in the design, placement, quality of chemical movement is parallel to a line passing through these two well analyses, and type of monitoring can add uncertainty to this locations, and that the rate of front movement is constant. analysis. The analysis of the rate of movement of the saltwater 8VHRIWKLVUDWHIRULQWHUSRODWLQJWKHSRVLWLRQRIWKHVDOWZDWHU interface between monitoring wells Sec34-MW-02-FS and interface elsewhere in the study area assumes that (1) effective TPGW-7L, for example, required a number of estimations, porosity is uniform throughout this area, (2) direction of LQFOXGLQJWKHUHODWLRQEHWZHHQVSHFL¿FFRQGXFWDQFHDQG

front movement is east to west, and (3) that the rate of front chloride, the relation between pumped water samples and movement is the same throughout this area. Additional in situ measurements of conductance, and the conversion of monitoring is needed to evaluate these assumptions (see FRQGXFWDQFHWRVSHFL¿FFRQGXFWDQFH7KHVHUHODWLRQVDQG

0RQLWRULQJ1HWZRUN,PSURYHPHQWVVHFWLRQRIWKLVUHSRUW  conversions increase uncertainty.

Given the stated assumptions, the saltwater interface may Some monitoring wells, such as well Sec34-MW-PRYHXQGHUWKH1HZWRQZHOO¿HOGE\7KLVHVWLPDWHRI 02-FS and many of the wells monitored by the Florida Keys future movement may be conservative because withdrawals Aqueduct Authority, are designed to monitor the depth of the IURPWKHZHOO¿HOGPD\LQXHQFHWKHUDWHDQGGLUHFWLRQRI top of the saltwater interface through the collection of water travel. FRQGXFWLYLW\SUR¿OHVDQGZDWHUVDPSOHVIURPPXOWLSOHGHSWKV

Because these wells have long open intervals, the sample UHVXOWVPD\EHLQXHQFHGE\RZZLWKLQWKHZHOOERUHGXULQJ

VDPSOLQJRUXQGHUDPELHQWFRQGLWLRQV 3ULQRV3ULQRV

Monitoring Network Improvements and Valderrama, 2015). Although several organizations base their sampling on the Standard Operating Procedures of the Within the map, the line depicting the approximation )ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ3ULQRV

of the inland extent of the saltwater interface is dashed (2013) states that these procedures call for sampling of long near the Card Sound Road Canal and in the area around open-interval wells by pumping from near the top of the water WKH&&DQDOEHFDXVHWKHUHZHUHLQVXI¿FLHQWGDWDIRU column or top of the open interval, which could result in an accurate delineation of the interface. These areas were samples that are not representative of maximum salinity in the previously mapped by using helicopter electromagnetic DTXLIHU'8QFHUWDLQW\LVDOVRLQFUHDVHGEHFDXVHVRPHDQDO\VHV

surveys (Fitterman and Prinos, 2012) and time-domain DUHSHUIRUPHGLQWKH¿HOGDVRSSRVHGWRLQDODERUDWRU\WKDW

electromagnetic soundings (Fitterman and others, 2011). participates in a quality assurance testing program (see the Monitoring in these areas currently consists of only a few 0DSSLQJWKH$SSUR[LPDWH,QODQG([WHQWRIWKH6DOWZDWHU

wells that are too far from the expected current location of the Interface section of this report).

interface to provide relevant information. Monitoring near the (VWLPDWHVRIWKHUDWHRIPRYHPHQWRIWKHLQWHUIDFHFRXOG

edge of the elongated extension of saltwater that had intruded be improved by placing monitoring wells along a transect, along the Card Sound Road Canal (Prinos and others, 2014) is spaced at distances that would allow timely detection of any almost nonexistent. variations in the rate of movement of the saltwater interface, Given the rate of movement of the saltwater interface and parallel to the direction of movement of the interface. If estimated in this investigation, the chloride concentrations IRXURU¿YHVXFKWUDQVHFWVZHUHLQVWDOOHGLQWKHFRXQW\WKH

of samples from some of the monitoring wells on the resulting data could be used to evaluate spatial differences in freshwater side of the interface may not exceed 1,000 mg/L for the rates of movement of the saltwater interface at locations many years. Monitoring well FKS 9, for example, is 0.86 km ZKHUHWKHLQWHUIDFHLVHQFURDFKLQJ&ROOHFWLQJ76(0,/

4 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 datasets in wells in each transect could provide information on 3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU¿FLDODTXLIHU

KRZWKHGHSWKRIWKHLQWHUIDFHLVFKDQJLQJ8VLQJFRQVLVWHQW system of the Big Cypress Basin, southwest Florida, monitoring methods at wells in each transect could reduce the and a proposed plan for improved salinity monitoring:

uncertainty in the estimated rate of movement. 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

58 p., accessed January 5, 2017, at https://pubs.usgs.gov/

of/2013/1088/.

References Cited Prinos, S.T., 2017, Data pertaining to mapping the approximate inland extent of saltwater in the Biscayne

)LVK-(DQG6WHZDUW0DUN+\GURJHRORJ\RIWKH aquifer, in the Model Land Area of Miami-Dade County, VXU¿FLDODTXLIHUV\VWHP'DGH&RXQW\)ORULGD86 )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH

Geological Survey Water-Resources Investigations Report http://dx.doi.org/10.5066/F7R78CF8.

90-4108, 50 p., 11 sheets.

Prinos, S.T., and Valderrama, Robert, 2015, Changes in Fitterman, D.V., Deszcz-Pan, Maria, and Prinos, S.T., 2012, the saltwater interface corresponding to the installation Helicopter electromagnetic survey of the Model Land of a seepage barrier near Lake Okeechobee, Florida:

$UHDVRXWKHDVWHUQ0LDPL'DGH&RXQW\)ORULGD86 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

Geological Survey Open-File Report 2012-1176, 77 p., 24 p., accessed January 5, 2017, at https://pubs.usgs.gov/

39 pls., accessed January 5, 2017, at https://pubs.usgs.gov/ of/2014/1256/.

of/2012/1176/.

Prinos, S.T., Wacker, M.A., Cunningham, K.J., and Fitterman, Fitterman, D.V., and Prinos, S.T., 2011, Results of time- D.V., 2014, Origins and delineation of saltwater intrusion domain electromagnetic soundings in Miami-Dade and in the Biscayne aquifer and changes in the distribution of VRXWKHUQ%URZDUG&RXQWLHV)ORULGD86*HRORJLFDO VDOWZDWHULQ0LDPL'DGH&RXQW\)ORULGD86*HRORJLFDO

Survey Open File Report 2011-1299, 289 p., accessed 6XUYH\6FLHQWL¿F,QYHVWLJDWLRQV5HSRUW+/-S

January 5, 2017, at https://pubs.usgs.gov/of/2011/1299/. accessed January 5, 2017, at http://dx.doi.org/10.3133/

)ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ sir20145025.

2008, Groundwater sampling: Florida Department of 86(QYLURQPHQWDO3URWHFWLRQ$JHQF\6HFRQGDU\

(QYLURQPHQWDO3URWHFWLRQ6WDQGDUG2SHUDWLQJ3URFHGXUHV drinking water standards: Guidance for nuisance chemicals:

'(3623)6SDSSDFFHVVHG 86(QYLURQPHQWDO3URWHFWLRQ$JHQF\5HSRUW+/-I+/-+/-

February 10, 2017, at KWWSZZZGHSVWDWHXV:DWHUVDV 079, accessed January 26, 2011, at http://water.epa.gov/

sop/sops.htm. drink/contaminants/secondarystandards.cfm.

Florida Power & Light Company, 2011, Quality Assurance 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG1DWLRQDO¿HOGPDQXDO

Project PlanTurkey Point Monitoring Project: Florida IRUWKHFROOHFWLRQRIZDWHUTXDOLW\GDWD86*HRORJLFDO

Power & Light Company, 170 p., 9 app., accessed Survey Techniques of Water-Resources Investigations, February 22, 2017, at https://www.sfwmd.gov/documents-book 9, chaps. A1-A9, available online at http://pubs.water.

E\WDJISOWSVXUYH\"VRUWBE\ WLWOH VRUWBRUGHU '(6&.

usgs.gov/twri9A.

+XJKHV-'/DQJHYLQ&'DQG%UDNH¿HOG*RVZDPL

/LQ]\(IIHFWRIK\SHUVDOLQHFRROLQJFDQDOVRQDTXLIHU

salinization: Hydrogeology Journal, v. 18, p. 25-38.

Appendix 1 Appendix 1 5 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring

$WORFDWLRQVZKHUHZDWHUFRQGXFWLYLW\SUR¿OHVZHUH less), but 37 percent have open intervals of 8 to 40 m (Prinos, used for monitoring, chloride concentrations were estimated 2017). The long open-interval wells are not ideal for salinity by using a relation based on a linear regression of the chloride monitoring for the reasons summarized in Prinos (2013) and FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHRIZDWHU Prinos and Valderrama (2015), but they are the only wells VDPSOHVFROOHFWHGEHWZHHQ1RYHPEHUDQG available at some locations.

September 26, 2016, from 178 monitoring sites sampled E\WKH86*6LQVRXWKHUQ)ORULGD WDEOH+/- $OORIWKHVH

VDPSOHUHVXOWVDUHDYDLODEOHWKURXJKWKH86*61DWLRQDO:DWHU

,QIRUPDWLRQ6\VWHPZHEVLWH 86*HRORJLFDO6XUYH\  References Cited The relation is expressed as

&DUOVRQ*OHQQ>QG@6SHFL¿FFRQGXFWDQFHDVDQRXWSXWIRU

cc = 0.3458scí  FRQGXFWLYLW\UHDGLQJV,Q6LWX,QF7HFKQLFDO1RWHS

accessed March 6, 2017, at https://in-situ.com/wp-content/

where XSORDGV6SHFL¿F&RQGXFWDQFHDVDQ2XWSXW8QLW

cc is the chloride concentration in milligrams per IRU&RQGXFWLYLW\5HDGLQJV7HFK1RWHSGI.

liter, and sc LVWKHVSHFL¿FFRQGXFWDQFHLQPLFURVLHPHQV 3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU¿FLDODTXLIHU

per centimeter. system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring:

&RQGXFWDQFHZDVFRQYHUWHGWRVSHFL¿FFRQGXFWDQFHXVLQJWKH 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

following relation (Carlson, [n.d.]). 58 p., accessed January 5, 2017, at https://pubs.usgs.gov/

of/2013/1088/.

sc = c/(1 + r(Tí  

Prinos, S.T., 2017, Data pertaining to mapping the where approximate inland extent of saltwater in the Biscayne c is the actual conductance measured in aquifer, in the Model Land Area of Miami-Dade County, microsiemens per centimeter, )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH

T is the temperature of the sample in degrees http://dx.doi.org/10.5066/F7R78CF8.

Celsius, and r LVWKHWHPSHUDWXUHFRUUHFWLRQFRHI¿FLHQWIRU Prinos, S.T., and Valderrama, Robert, 2015, Changes in the sample. the saltwater interface corresponding to the installation of a seepage barrier near Lake Okeechobee, Florida:

7KH76(0,/GHULYHGYHUWLFDOSUR¿OHVRIEXON

86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

conductivity provide additional qualitative insights for 24 p., accessed January 5, 2017, at https://pubs.usgs.gov/

PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH

of/2014/1256/.

water that do not correspond to the open interval of the well and temporal changes in the depth of the top of the saltwater 86*HRORJLFDO6XUYH\1DWLRQDO:DWHU,QIRUPDWLRQ

interface. SystemWeb interface, accessed September 28, 2016, at The majority of the monitoring wells used for this KWWSG[GRLRUJ)3.-1.

analysis have short open intervals (about 1.5 meters [m] or

6 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 262313080044401 PB -1457 255453080110801 G-3978 262209080044702 PB -1669 254601080150301 G-3977 261100080140401 G -1212 254156080172101 G -3607 261122080083401 G -1232 252814080244101 G -3698 260547080105801 G -2352 252652080244301 G -3699 260920080092201 G -2898 252650080252701 G -3855 260551080111901 G -2957 253253080221201 G -3885 261740080054101 G -2893 253527080195401 G -3886 255916080090401 G -1435 253924080174601 G -3887A 255910080085802 G -2294 253924080174602 G -3887B 255919080091202 G -2409 254542080145901 G -3888A 255919080091203 G -2410 254542080145902 G -3888B 255936080091701 G -2477 254542080145903 G -3888C 255936080091702 G -2478 253948080250701 G -3897 255916080092001 G -2965 254152080282601 G -3898 260037080100700 Hollywood Canal at Hollywood Blvd, 253419080223701 G -3899 Hollywood, FL 252718080264901 G -3900 260104080101300 Hollywood Canal at Johnson St, Hollywood, 252506080300601 G -3901 FL 252431080261001 G -3946D 260225080095800 +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG

FL 252431080261002 G -3946S 260212080112500 +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG 255011080124501 G -3947 FL 255515080103601 G -3948D 260132080094900 Hollywood Canal at Taft St, Hollywood, FL 255515080103602 G -3948S 260041080093101 G -2425 255733080195601 G -3949D 260041080093102 G -2426 255733080195602 G -3949I 260120080093401 G -2441 255733080195603 G -3949S 260155080092002 G -2612 254824080155301 G -3964 260026080095801 G -2956 254500080162801 G -3965 254943080121501 F - 45 252719080253601 G -3966D 254841080164401 G - 571 252719080253602 G -3966S 255350080105801 G - 894 253335080213501 G -3967 254107080165201 G - 896 255315080111501 F - 279 254201080173001 G - 901 254828080161501 G - 354 254106080174601 G -1009B 254335080170501 G - 432 252947080235301 G -1180 254855080163701 G - 548 254813080161501 G -1351 253652080183701 G - 939 254833080155801 G -1354 253202080232601 G -3162 255222080123001 G -3224 253831080180204 G -3313C 254457080160301 G -3229 253831080180206 *(

254946080172601 G -3250 255358080114101 G -3601 252714080260901 G-3976 255116080120601 G -3602

Appendix 1 7 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 254908080125201 G -3603 260534080110801 G -2904 254722080152201 G -3604 262839081503100 L - 735 254629080143101 G -3605 262022081464201 L - 738 254341080174001 G -3606 263532081592202 L -1136 254108080170601 G -3608 263813081552801 L -2640 254005080171601 G -3609 263819081585801 L -2701 253819080183201 G -3610 263955082083102 L -2820 253710080184701 G -3611 263117082051002 L -2821 253457080195501 G -3612 264053081572501 L -4820 253024080231001 G -3615 262513081472002 L -5668R 253027080234701 G -3700 261926081454702 L -5745R 253214080224601 G -3701 264123080053801 PB - 809 253334080213601 G -3702 263044080035102 PB -1195 254822080125501 G -3704 262755080040101 PB -1707 255625080094901 G -3705 262803080041101 PB -1714 261302081473901 C - 489 263453080031501 PB -1717 261156081475801 C - 516 263633080031401 PB -1723 261002081483701 C - 525 265550080070701 PB -1732 261018081484101 C - 526 265611080080201 PB -1733 261200081483001 C - 528 265006081042502 GL - 334I 260549081441901 C - 600 265006081042501 GL - 334S 261802081354801 C - 688 265006081042503 GL - 334D 261347081351201 C - 953 264912081024602 GL -332S 261620081464402 C -1004R 264912081024601 GL -332 261604081480901 C -1059 264843080591502 GL - 333I 261311081480101 C -1061 264843080591501 GL - 333S 260137081375901 C -1063 264843080591503 GL - 333D 262228081361902 C -1080 264532080545902 +(6 261403080070801 G -2149 264532080545901 +(

260342080115902 G -2264 264343080511601 PB -1843S 261446080062801 G -2445 264343080511602 PB -1843I 261724080054603 G -2693 264343080511603 PB -1843D 260242080101101 G -2697 264154080480302 PB -1822S 261643080055901 G -2752 264154080480301 PB -1822 261740080054101 G -2893 264050080435502 PB -1842I 261304080072501 G -2896 264050080435501 PB -1842S 261030080083301 G -2897 264050080435503 PB -1842D 260804080092701 G -2899 264814080414302 PB -1819S 260325080113901 G -2900 264814080414301 PB -1819 260638080104801 G -2902 264926080394503 PB -1848D 255843080090901 G -2903 264930080394703 PB -1847D

8 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 265138080375802 PB -1818S 265428080364501 PB -1816 265138080375801 PB -1818 265519080364902 PB -1815S 265142080374202 PB -1817S 265519080364901 PB -1815 265142080374201 PB -1817 265701080363103 PB -1844D 265208080373902 PB -1845I 265701080363102 PB -1844I 265208080373901 PB -1845S 265701080363101 PB -1844S 265208080373903 PB -1845D 265839080365202 M -1369I 265200080373101 PB -1846S 265839080365201 M -1369D 265428080364502 PB -1816S For more information about this publication, contact:

Director, Caribbean-Florida Water Science Center U.S. Geological Survey 4446 Pet Lane, Suite 108 Lutz, FL 33559 (813) 498-5000 Or visit the USGS Caribbean-Florida Water Science Center website at:

https://fl.water.usgs.gov Publishing support provided by Lafayette Publishing Service Center

PrinosMap of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016SIM 3380 ISSN 2329-132X (online) https://doi.org/10.3133/sim3380

WITTKOP PARK HARRIS PARK Miami-Dade County Distance from Coast: 6.5 miles Salt Intrusion Extent NEWTON FLORIDA CITY Florida City Canal FLORIDA KEYS AQUADUCT AUTHORITY EVERGLADES LABOR CAMP S

rd Ca ou R

nd oa db ow orr c an al Salt Intrusion at the Base of the Biscayne Aquifer (1,000 mg/L chlorides)

Distance from US Geological Survey Data Coast: 10.6 miles 2016 Salt Intrusion Line 2011 Salt Intrusion Line 1995 Salt Intrusion Line 0 0.5 1 2 3 4 5 6 Miles Wellfield Protection Areas Saltline_trends_20180430.mxd - GMB - May 7, 2018

DERMClassIPermitRequiredMonitoringinL31ECanal June2015toMay29,2018SummaryofChlorideResults 18000 16000 14000 12000 10000 mg/L 8000 6000 4000 2000 0

TPSWC1B TPSWC2B TPSWC3B MDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)

Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018 L31E-B L31E-A Depth SpCond (u/s)

Depth SpCond (u/s)

T (0.25 m) 4835.1 T (0.41 m) 9100.7 M (1.021m) 9146.1 M (1.45m) 9097.6 B (2.176m) 8642 B (3.477m) 9793 L31E-B L31E-A I-1 I-1 Depth SpCond (u/s)

I-2 T (0.22 m) 9224.6 M (1.087m) 9245.4 I-2 B (2.117m) 8669.7 Depth SpCond (u/s)

T (0.49 m) 9336.1 M (1.7m) 9325.9 B (2.499m) 9130.6 L31E-C L31E-C Depth SpCond (u/s)

T (0.132m) 9462.3 M (1.549m) 9460.6 B (2.951m) 9322.3 L31E-D Depth SpCond (u/s)

T (0.24m) 21744.3 M (0.891m) 21588.7 B (1.841m) 21612.6 L31E-D I-3 I-3 EEL1 Depth SpCond (u/s)

Depth SpCond (u/s) T (0.071m) 21529.3 T (0.1m) 5408 M (1.493m) 21528.6 B (2.932m) 45473 EEL1 EEL2 L31E-E Spec ific Conductance Sampling Points L31E-E EEL2 Depth SpCond (u/s) Canals Depth SpCond (u/s)

T (0.079m) 21347 T (0.179m) 5934.9 M (0.956m) 21377.1 Miami-Dade EEL Program B (1.956m) 22714.6 SFWMD I-4 Florida Power and Light L31E-F I-4 L31E-F Depth SpCond (u/s) Rock mining Lands and Associated Mitigation Depth SpCond (u/s) T (0.299m) 21580 T (0.179m) 21444.5 M (0.939m) 21534.6 State of Florida M (0.707m) 21424.5 B (2.077m) 23692.6 B (1.653m) 31860.2 Federal Private Rock mining Lands and Associated Mitigation Florida Power and Light Miles 0 0.75 1.5 3 4.5 6 Rock mining Lands and Associated Mitigation

Model Lands Hydrology and FPL Everglades Mitigation Bank L-31E Culvert Weir Operation RER-DERM Water Resources Coordination and Education Division February 15, 2018

Model Lands Hydrology 3/4 Isolated by Roads/Levees 3/4 No Connection to Regional Canal System 3/4 Rain-driven

Interceptor Ditch pumps Model Lands Hydrology 3/4 Palm Drive culverts S-20 (restoration) 3/4 S-20 3/4 Everglades Mitigation Bank L-31E culvert weirs 3/4 Interceptor Ditch pumps

Model Lands Hydrology and S-20 Operations Central and Southern Florida Project for Flood Control and Other Purposes Master Water Control Manual - East Coast Canals - Volume 5

Model Lands Hydrology and S-20 Operations C&SF Project Structure Manual, S-20 Section (revised 1/16/2003):

Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft Optimum S-20 Headwater Elevation (per C&SF Master Manual)

Existing S-20 Operations for Flood Control, Salt 2.0 ft Intrusion Control Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)

FPL Everglades Mitigation Bank L-31E Culvert Weir Operations FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):

1.0 ft

  • Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft water level invert setting of the S-20 structure.

Mean Sea Level

  • During the dry season (October -

April), they will be set at 0.1 feet lower than the S-20 control elevation setting.

Model Lands Groundwater Stages Healthy Sawgrass Prairie:

Existing Conditions vs. Healthy Ecology 8-10 months Hydroperiod#

3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months 2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

  1. Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11 31-Jan-13 31-Jan-14 Trophic Level System Simulation 31-Jul-11 31-Jul-12 31-Jul-13 31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10 31-Oct-10 30-Jun-11 31-Oct-11 31-Jan-12 30-Jun-12 31-Oct-12 30-Jun-13 31-Oct-13 30-Jun-14 31-Oct-14 31-Jan-15 31-Aug-10 30-Nov-10 31-Dec-10 28-Feb-11 31-Mar-11 30-Apr-11 31-May-11 31-Aug-11 30-Sep-11 30-Nov-11 31-Dec-11 29-Feb-12 31-Mar-12 30-Apr-12 31-May-12 31-Aug-12 30-Sep-12 30-Nov-12 31-Dec-12 28-Feb-13 31-Mar-13 30-Apr-13 31-May-13 31-Aug-13 30-Sep-13 30-Nov-13 31-Dec-13 28-Feb-14 31-Mar-14 30-Apr-14 31-May-14 31-Aug-14 30-Sep-14 30-Nov-14 31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.

Water Level (ft NGVD29) Nearby Wetland Ground Elevation (1.8 ft NGVD)

C-111 Spreader Canal Western CERP Project 3/4 February 2012 - Project Construction completed under SFWMD state-expedited program 3/4 June 10, 2014 Congressional Authorization (WRDA 2014) 3/4 Features:

9 Frog Pond Detention Area 9 Aerojet Canal Features 9 Plugs in C-110 9 Operational Changes at S-18C 9 Plug at S-20A 9 Operational Changes at S-20

Model Lands Groundwater Control Elevations CERP Restoration Vision vs. Current Water Management 3.5 ft CERP Restoration, per C-111 3.0 ft CERP Restoration Vision Spreader Canal Western Project FEIS and BBCW Alt O Conceptual Design, Army Corps of Engineers):

  • S-20 open and close triggers to be 2.5 ft increased 0.5 foot
  • 4 pump stations on Florida City Local Wetland Existing S-20 Operations Canal pump up to 150 cfs into the Model Lands 2.0 ft Ground Elevation 1.5 ft FPL Everglades Mitigation Bank L-31E Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

C-111 Spreader Canal Western CERP Project Page xii:

OUR CONCLUSION: HYDROPERIOD RESTORATION IS DEPENDENT ON A REDUCTION IN OVERDRAINAGE CAUSED BY CANAL INFRASTRUCTURE

C-111 Spreader Canal Western CERP Project

C-111 Spreader Canal Western CERP Project

C-111 Spreader Canal Western CERP Project Army Corps Permit for construction of the FPL Everglades Mitigation Bank:

FPL L-31E Culvert Elevations Gate elevations were raised from 1.8 to 2.2 ft NGVD per DERM Consent Agreement (Condition 17(c)(i):

Raise control elevations in the Everglades Mitigation Bank. Within 30 days of the effective date of this Consent Agreement, FPL shall raise the control elevations of the FPL Everglades Mitigation Bank ("EMB") culvert weirs to no lower than 0.2 feet lower than the 2.4 foot trigger of the S-20 structure and shall maintain this elevation.

After the first year of operation, FPL shall evaluate the change .in control elevation, in regards to improvements in salinity, water quality, and lift in the area, and if FPL determines that the change in control elevations is not effective, or that FPL is negatively impacted in receiving mitigation credits as a result of this action, FPL will consult with DERM and propose potential alternatives.

FPL EMB L-31E Culvert Elevations FPL Annual Monitoring Report, Everglades Mitigation Bank Phase II (January 2018)

Stage (ft NGVD) 0 0.5 1 1.5 2 2.5 3 3.5 4 9/1/2010 11/1/2010 1/1/2011 3/1/2011 5/1/2011 7/1/2011 9/1/2011 11/1/2011 1/1/2012 3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013 3/1/2013 5/1/2013 7/1/2013 9/1/2013 11/1/2013 1/1/2014 FPL Everglades Mitigation Bank (EMB) 3/1/2014 5/1/2014 7/1/2014 9/1/2014 11/1/2014 1/1/2015 3/1/2015 5/1/2015 September 1, 2010 to September 30, 2017 7/1/2015 9/1/2015 11/1/2015 1/1/2016 FPL- EMB Culverts raised 3/1/2016 Culvert Elevations and Water Levels in L-31 E Canal 5/1/2016 from 1.8 ft NGVD to 2.2 ft NGVD 7/1/2016 9/1/2016 per CA requirement, 11/1/2016 10/22/2015 through 4/30/2017 1/1/2017 3/1/2017 (information provided by FPL) 5/1/2017 7/1/2017 9/1/2017

Interceptor Ditch Estimated Dry Season Volume Pumped 2011 - 2016 (January through May) 1400 1200 1000 800 Volume Pumped (MG) 600 400 200 0

2011 2012 2013 2014 2015 2016 L-31E culvert gates were raised to 2.2 ft NGVD on October 22, 2015 and remained at 2.2 ft NGVD through April 30, 2017

Volume (MG) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 1/1/2017 1/8/2017 1/15/2017 1/22/2017 1/29/2017 2/5/2017 2/12/2017 FPL- EMB Culverts raised from 1.8 ft 2/19/2017 2/26/2017 NGVD to 2.2 ft NGVD per CA requirement, 3/5/2017 3/12/2017 10/22/2015 through 4/30/2017 3/19/2017 3/26/2017 4/2/2017 (information provided by FPL) 4/9/2017 4/16/2017 4/23/2017 4/30/2017 L-31E Stage vs. Interceptor Ditch Pumping 5/7/2017 5/14/2017 5/21/2017 ID Daily Pumping Volume (MG) 5/28/2017 6/4/2017 6/11/2017 6/18/2017 6/25/2017 7/2/2017 January 1, 2017 to September 4, 2017 7/9/2017 7/16/2017 7/23/2017 7/30/2017 8/6/2017 8/13/2017 8/20/2017 8/27/2017 9/3/2017 0 1 2 3 0.5 1.5 2.5 Stage (ft NGVD)

Specific Conductance (S/cm) 0.00 5,000 5.0 10,000 10.0 15,000 15.0 20,000 20.0 25,000 25.0 30,000 30.0 35,000 35.0 40,000 40.0 1/1/2017 1/1/2017 1/8/2017 1/11/2017 1/15/2017 1/21/2017 1/22/2017 1/29/2017 1/31/2017 2/5/2017 2/10/2017 2/12/2017 2/19/2017 2/20/2017 2/26/2017 3/2/2017 3/5/2017 3/12/2017 3/12/2017 TPSWC-1B Avg. Daily Sp. Cond. (uS/cm) 3/19/2017 3/22/2017 3/26/2017 4/1/2017 4/2/2017 4/9/2017 4/11/2017 4/16/2017 4/21/2017 4/23/2017 4/30/2017 5/1/2017 5/7/2017 5/11/2017 5/14/2017 5/21/2017 S-20 Avg. Daily Stage (ft NGVD) 5/21/2017 TPSWC-2B Avg. Daily Sp. Cond. (uS/cm) 5/28/2017 5/31/2017 6/4/2017 6/10/2017 6/11/2017 January 1 to September 4, 2017 6/18/2017 6/20/2017 6/25/2017 6/30/2017 7/2/2017 7/9/2017 7/10/2017 7/16/2017 7/20/2017 7/23/2017 7/30/2017 7/30/2017 8/6/2017 8/9/2017 TPSWC-3B Avg. Daily Sp. Cond. (uS/cm)

L-31E Canal Bottom Specific Conductance vs. Surface Water Stage 8/13/2017 8/19/2017 8/20/2017 8/27/2017 8/29/2017 9/3/2017 0

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 Stage (ft NGVD)

L-31E Canal Uprate and Class I Permit Required Surface Water Monitoring Stations

mg/L 0.00 2,000.00 4,000.00 6,000.00 8,000.00 10,000.00 12,000.00 14,000.00 16,000.00 May 31 & Jun 1, 2015 Jun 15 & 16, 2015 Jun 29 & 30, 2015 Jul 13 & 14, 2015 Jul 27 & 28, 2015 TPSWC-1B August 10 & 11 Aug 24 & 25, 2015 Sept 8 & 9 2015 Sept 21 & 22 2015 Oct 5 to 7, 2015 Oct 19 & 20, 2015 Nov 2 & 4, 2015 TPSWC-2B Nov 16 to 19, 2015 Nov 30 to Dec3, 2015 Dec 14 & 15, 2015 Dec 28 & 29, 2015 Jan 11 & 12, 2016 Jan 25 & 26, 2016 Feb 8 & 9, 2016 TPSWC-3B Feb 22 & 23, 2016 Mar 7 & 8, 2016 Mar 21 & 22, 2016 April 4 & 5, 2016 April 18 & 19, 2016 May 2 & 3, 2016 May 16 & 17, 2016 May 31 to Jun 3, 2016 Jun 13 & 14, 2016 Jun 27 & 28, 2016 Jul 11 & 12, 2016 Jul 25 & 26, 2016 DERM Class I Permit Required Monitoring in L-31E Canal Aug 8 & 9, 2016 Aug 22 & 23, 2016 Sep 6 & 7, 2016 Sept. 19 & 20, 2016 Oct. 3 & 4, 2016 Oct. 17 & 18, 2016 Oct. 31 & Nov 1, 2016 Nov 14 & 15, 2016 Nov 28 & 29, 2016 Dec 12 & 13, 2016 Dec 27 & 28, 2016 June 2015 to January 17, 2018 Jan 9 & 10, 2017 Jan 23 & 24, 2017 Feb 6 & 7, 2017 Feb 20 & 21, 2017 Mar 6 & 7, 2017 Mar 20 & 21, 2017 Apr 3 & 4, 2017 Apr 24 & 25, 2017 May 8 & 9, 2017 May22 & 23, 2017 June 5 to 7, 2017 June 19 & 20, 2017 Jul 5 to 8, 2017 Summary of Chloride Results Jul 17 & 18, 2017 Jul 31 & Aug 1, 2017 Aug 14 & 15, 2017 Aug 28 & 29, 2017 Sep 26 to 28, 2017 9-Oct-17 Oct 23 & 24, 2017 Nov 6 & 7, 2017 MDC Chapter 24 Standard (500 mg/L, waste shall not increase natural background more than 10 percent)

Nov 21 & 22, 2017 Dec 4 & 5, 2017 Dec 18 & 19, 2017 Jan 2 & 3, 2018 Jan 16 & 17, 2018

L-31E Canal May 12, 2017 Physical Parameter Surface Water Quality Survey Monitoring sites (20 sites)

L-31E Canal Water Column Physical Parameter Survey Salinity Result Summary, May 12, 2017 25.00 20.00 15.00 Salinity (PSU) 23.41 10.00 19.21 5.00 10.65 3.65 4.37 3.65 0.00 0 to 1 ft. 1.01 to 7.99 ft. 8 to 9.25 ft.

Depth Below Surface (ft.)

Min Max

L-31E Canal Uprate Monitoring Tritium Results TPSWC-1B, TPSWC-1T, TPSWC-2B, TPSWC-2T, TPSWC-3B & TPSWC-3T 200.0 180.0 160.0 140.0 120.0 100.0 pCi/L 80.0 60.0 40.0 20.0 0.0 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11 Mar-12 Jun-12 Sep-12 Dec-12 Mar-13 Jun-13 Sep-13 Dec-13 Mar-14 Jun-14 Sep-14 Dec-14 Mar-15 Jun-15 Sep-15 Dec-15 Mar-16 Jun/Jul 2010 TPSWC-1B TPSWC-1T TPSWC-2B TPSWC-2T TPSWC-3B TPSWC-3T

L-31E Canal Uprate Monitoring Tritium Result Summary L-31E Canal Top vs. Bottom (N = 84 for each level) 200 180 160 140 120 100 pCi/L 182 80 154 60 40 60.1 57.2 20 8 10.3 0

Min Max Average Top (1 ft. below water surface) Bottom (1 ft. above canal bottom) Agencies screening level threshold (20 pCi/L)

Model Lands Hydrology and FPL Culvert Operations Summary 3/4 Per CERP, the Model Lands Basin is overdrained by the L-31 E and S-20 water control structure, with water levels occasionally dropping below sea level 3/4 Overdrainage needs to be stopped to restore both wetland stage and hydroperiod per CERP 3/4 The amount of drainage from the L-31 Canal is established by the elevation of the water in the L-31 E Canal. The water in the L-31 E canal is drained through FPLs culverts to the stage established by these adjustable culvert weirs when the S-20 structure is closed.

3/4 FPLs preferred setting for L-31 E canal water level at 1.8 ft NGVD is 1.1 feet lower than the planned CERP open trigger setting and 0.6 feet lower than the planned close trigger.

3/4 EMB culvert weir settings at 2.2 ft NGVD reduces overdrainage of the basin 3/4 CERP authorizes a change in S-20 operations to increase trigger stages by 0.5 ft in order to reduce overdrainage in the Model Lands 3/4 The S-20 operations change has agency support at local, state, and federal levels 3/4 The S-20 operations change is expected to make additional water available for release through the FPL culverts - a win-win for all parties

L31ECanalAverageDailySalinityattheBottom August30,2010toJuly16,2018 30 25 20 15 Salinity(PSU) 10 5

0 TPSWC1BAvgDailySalinity(PSU) TPSWC2BAvgDailySalinity(PSU) TPSWC3BAvgDailySalinity(PSU)

L31ECanalAverageDailySalinityProfiles January1toJuly16,2018 30 25 20 PSU 15 10 5

0 TPSWC1TAvgDailySalinity(PSU) TPSWC1BAvgDailySalinity(PSU) TPSWC2TAvgDailySalinity(PSU)

TPSWC2BAvgDailySalinity(PSU) TPSWC3TAvgDailySalinity(PSU) TPSWC3BAvgDailySalinity(PSU)

Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft Optimum S-20 Headwater Elevation (per C&SF Master Manual)

Existing S-20 Operations for Flood Control, Salt 2.0 ft Intrusion Control Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)

FPL Everglades Mitigation Bank L-31E Culvert Weir Operations FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):

1.0 ft

  • Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft water level invert setting of the S-20 structure.

Mean Sea Level

  • During the dry season (October -

April), they will be set at 0.1 feet lower than the S-20 control elevation setting.

Model Lands Groundwater Stages Healthy Sawgrass Prairie:

Existing Conditions vs. Healthy Ecology 8-10 months Hydroperiod#

3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months 2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

  1. Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11 31-Jan-13 31-Jan-14 Trophic Level System Simulation 31-Jul-11 31-Jul-12 31-Jul-13 31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10 31-Oct-10 30-Jun-11 31-Oct-11 31-Jan-12 30-Jun-12 31-Oct-12 30-Jun-13 31-Oct-13 30-Jun-14 31-Oct-14 31-Jan-15 31-Aug-10 30-Nov-10 31-Dec-10 28-Feb-11 31-Mar-11 30-Apr-11 31-May-11 31-Aug-11 30-Sep-11 30-Nov-11 31-Dec-11 29-Feb-12 31-Mar-12 30-Apr-12 31-May-12 31-Aug-12 30-Sep-12 30-Nov-12 31-Dec-12 28-Feb-13 31-Mar-13 30-Apr-13 31-May-13 31-Aug-13 30-Sep-13 30-Nov-13 31-Dec-13 28-Feb-14 31-Mar-14 30-Apr-14 31-May-14 31-Aug-14 30-Sep-14 30-Nov-14 31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.

Water Level (ft NGVD29) Nearby Wetland Ground Elevation (1.8 ft NGVD)

Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018 L31E-D I-3 EEL2 EEL1 Depth SpCond (u/s) Depth SpCond (u/s)

T (0.179m) 5934.9 T (0.1m) 5408 EEL2 EEL1 L31E-E I-4 L31E-F Specific Conductance Sampling Points Canals Miami-Dade EEL Program SFWMD Florida Power and Light Rockmining Lands and Associated Mitigation State of Florida Federal Private Rockmining Lands and Associated Mitigation Florida Power and Light Miles 0 0.2 0.4 0.8 1.2 1.6 Rockmining Lands and Associated Mitigation