ML20127D636: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 25: Line 25:
==SUBJECT:==
==SUBJECT:==
TRIP REPORT - LONG-TERM SERVICE (LTS) CRITERIA AND METHODOLOGY, APRIL 2 and 3, 1985 SAN ONOFRE UNIT I On April 2 and 3,1985, we and our consultants met with representatives of Southern California Edison Company (SCE), and their consultants to discuss the proposed LTS. criteria and methodology. A list of attendees is provided in Enclosure 1. Handouts 'used during the meeting are in Enclosure 2.
TRIP REPORT - LONG-TERM SERVICE (LTS) CRITERIA AND METHODOLOGY, APRIL 2 and 3, 1985 SAN ONOFRE UNIT I On April 2 and 3,1985, we and our consultants met with representatives of Southern California Edison Company (SCE), and their consultants to discuss the proposed LTS. criteria and methodology. A list of attendees is provided in Enclosure 1. Handouts 'used during the meeting are in Enclosure 2.
SCE submitted proposed criteria and methodology for seismic reevaluation by letter dated March 12, 1985. Staff review comments were issued by letter dated March 27, 1985. Additional questions discussed at the meeting are provided in Enclosure 3.
SCE submitted proposed criteria and methodology for seismic reevaluation by {{letter dated|date=March 12, 1985|text=letter dated March 12, 1985}}. Staff review comments were issued by {{letter dated|date=March 27, 1985|text=letter dated March 27, 1985}}. Additional questions discussed at the meeting are provided in Enclosure 3.
On April 2,1985, the discussion focused on load generation methods, inclu' ding soil-structure interaction techniques and the direct generation approach for the floor respense spectra.
On April 2,1985, the discussion focused on load generation methods, inclu' ding soil-structure interaction techniques and the direct generation approach for the floor respense spectra.
The staff and its consultants requested that SCE perform analyses of the test problems shown in Enclosure 4. As noted in this enclosure, the staff consul-tants will perform independent calculations using different methods for comparison purposes. The licensee analyses will be provided on April 15, 1985.
The staff and its consultants requested that SCE perform analyses of the test problems shown in Enclosure 4. As noted in this enclosure, the staff consul-tants will perform independent calculations using different methods for comparison purposes. The licensee analyses will be provided on April 15, 1985.
On April 3, 1985, the criteria and methodology for piping, supports and equip-ment were discussed. Enclosure 5 shows the status of each of the comments in the staff's March 27, 1985 letter.
On April 3, 1985, the criteria and methodology for piping, supports and equip-ment were discussed. Enclosure 5 shows the status of each of the comments in the staff's {{letter dated|date=March 27, 1985|text=March 27, 1985 letter}}.
As a result of this meeting, SCE agreed to provide the additional information listed in Enclosure 6.
As a result of this meeting, SCE agreed to provide the additional information listed in Enclosure 6.
CONTACT:
CONTACT:

Latest revision as of 05:43, 22 August 2022

Trip Rept of 850402-03 Meetings W/Util,Eg&G,Nct Engineering, Lll & Impell Re Proposed long-term Svc Criteria & Methodology.List of Attendees & Viewgraphs Encl
ML20127D636
Person / Time
Site: San Onofre Southern California Edison icon.png
Issue date: 04/15/1985
From: Cheng T, Mckenna E
Office of Nuclear Reactor Regulation
To: Charemagne Grimes
Office of Nuclear Reactor Regulation
References
NUDOCS 8504250313
Download: ML20127D636 (97)


Text

{{#Wiki_filter:r,Y m .

       ?

9 Q(Z 3 Dg UNITED STATES

       .[               g,            NUCLEAR.REGULATpftY COMMISSION O                j                     WASHINdTON, D. C. 20555
        %...../                                  April 15,1985 MEMORANDUM FOR:   Christopher I. Grimes, Chief Systematic Evaluation Program Branch Division of Licensing FROM:             Eileen McKenna, SEPB, DL Thomas Cheng, SEPB, DL

SUBJECT:

TRIP REPORT - LONG-TERM SERVICE (LTS) CRITERIA AND METHODOLOGY, APRIL 2 and 3, 1985 SAN ONOFRE UNIT I On April 2 and 3,1985, we and our consultants met with representatives of Southern California Edison Company (SCE), and their consultants to discuss the proposed LTS. criteria and methodology. A list of attendees is provided in Enclosure 1. Handouts 'used during the meeting are in Enclosure 2. SCE submitted proposed criteria and methodology for seismic reevaluation by letter dated March 12, 1985. Staff review comments were issued by letter dated March 27, 1985. Additional questions discussed at the meeting are provided in Enclosure 3. On April 2,1985, the discussion focused on load generation methods, inclu' ding soil-structure interaction techniques and the direct generation approach for the floor respense spectra. The staff and its consultants requested that SCE perform analyses of the test problems shown in Enclosure 4. As noted in this enclosure, the staff consul-tants will perform independent calculations using different methods for comparison purposes. The licensee analyses will be provided on April 15, 1985. On April 3, 1985, the criteria and methodology for piping, supports and equip-ment were discussed. Enclosure 5 shows the status of each of the comments in the staff's March 27, 1985 letter. As a result of this meeting, SCE agreed to provide the additional information listed in Enclosure 6. CONTACT: Eileen McKenna, X27468 Thomas Cheng, X28393 L 1

      ,                                  April 15,1985 Christopher I. Grimes                             The Safety Evaluation Report on the criteria and' methods is targeted for May 1, 1985. The staff also noted that audit reviews of implementation of the program will be performed. In addition, one piping problem will be selected for independent analysis by staff consultants. A meeting to discuss the additional information to be submitted (Enclosure 6) is tentatively scheduled for April 29, 1985.

MC Eileen McKenna, S PB, D f/f k T omas heng, SEPB,

Enclosures:

As stated cc/w enclosures: W. Paulson D. Crutchfield P. Chen Service List SCE - 9

1,1 #. San Onofre Mr. Kenneth P. Easkin i Vice~Presidentx

                      'JSouthern CaliforniaLEdison Ceteany                  '   '                    ~

2244 Walnut Grove' Avenue

       .                   LP.10. Sox-800.

LRcsecead,(California 91770! Mr. James C. Holccmbe

                           -Vice Presidentz-iPower Supply San Diego Gas:aLElectric Ccepany-101' Ash Street Post Office Box-1831~
                           . San Diego, Californial 92112:

Charle's R.: Kocher, Eso. Mr. Mark Medford James A. :Becletto, Esc. Southern California Edisen Corpany

                          --Southern Califernia Edison Company                        2244 Walnut Grove' Avenue-2244 Walnut Grove' Avenue                                P.-0. Box-800                                              -
                          -P.'0.                Box-8CO                 .

Rosenead,_ California 91770 tRosemead, California 91770 - _ Mr. Henry Peters '

                          ;0rrick, Herrington &JSutcliffe                             San Diego Gas & Electric-Ccepany 1 ATTN: ' David R. Pigott, Esq.                             P. O. Box 1831
                          '600-Montgomery Street San Diego, California 92112 San' Francisco,- California 94111 Richar'd .J. 'Wharton) Esc.

University of San Diego School' of<

                           -Alan R. . Watts , Esq. s                                            Law ERourke & Woodruff-                                          Environmental Law Clinic-Suitet1020                    _         _

San.Diego, California: 92110 1055 North Main Street San Clemente, California, 92701_ Charles E. McClung, Jr. , Esc. Attorney at Law. Mr. . V. CF Hall; 24012 Calle de la Plaza / Suite.320~ Combustion Engineering,'Inc. Laguna Hills, California 92653' 1000 Prospect Hill ~- Read ~ Uindsor, Connecticut- 06095 Region Administra' tor-Region Y/NRC~ 1450' Maria Lan/ Suite 213

                        .Mr. S. McClusky                                             Walnut' Creek, California: 92672 1450 Paria Lane /Suita 210 iWalnut Creek, California' 94596                              Resident Inspector, San Onofre i:PS
                                                                                    .clo U. S. NRC
           -           lir.            C.- B. 'Brinkran.                             Post Office Sex 4329
                       ~ Combustion Engineering, Inc.                                San Clemente, California 92672-
                          .7910.Wcodtont Avenue
Bethesda,-tiarylard 20814 JMr. CernC s-F..Kirsh U.S. .'Neisar Regulatcry Cc nissicn - Regier '.'

1250 W.r'a:'ane, Su Me 210

Yairut1 Creek,.Cr: 4fernia ' .:2 5.2 5
                                                                                                     ~

i D E

                                                                                        ,. . , . _ ,   ~ . --+= - ~ - ' * " * ~ ~ * ^ * * ' * ' " ' '

Enclosure 1 SCE/NRC Meeting i Seismic Reevaluation for Long-Term Service April 2-3, 1985 NAME ORGANIZATION Rick Ornelas SCE - Licensing Mark Russell EG&G, Idaho Eileen McKenna NRC Tom Tsai - NCT Engineering L. C. Shieh Lawrence Livermore National Lab

 ,          T. M Cheng                                 NRC/SEPB Ming Yang                                  NCT Engineering J. K. Yann                                 SCE Project Engineer Gordie Hau*                                IMPELL D. Pandya*                                  IMPELL Ken Barkle*              ~

IMPELL Walter Bau* IMPELL Ward Ingles

  • IMPELL George Stawniczy SCE Mech. Group Leader Jack Rainsberry SCE Licensing
          ' Mark Swatta                                IMPELL M. Manrique                                IMPELL W. Gallo                                   IMPELL J. Chen**                                  Lawrence Livermore National Lab M. Knarr**                                 SCE R. Bahar**                                 SCE A. Asafura**                               IMPELL
        . April 3 only l          April 2 only i

L l ? l l l

Enclosure 2 IMN - MEETING AGENDA APRIL 2, 1985 I. INTRODUCTION II. SCHEDULE STATUS III. LOAD GENERATION - OVERVIEW IV. LOAD GENERATION - DISCUSSION A. CLASSI B. DIRECT GENERATION - FLORA C. SUPERPIPE - RV SUPERPIPE l t ( l l l

   ~           -- -            .  --
                                             -= :. . _ _       . . - -   ._

IMEbh l l

                                                                                  \

LOAD GENERATION i SONGS 1 SOUTHERN CALIFORNIA EDISON PART I i 1 l APRIL 2, 1985 l l

          * *= =-.--    % wgw w w =m=w   -
                                 -...-.a.                                                ..a.-._.....-..   - ..-.z;... ...:.... . . . 'L.

M LOAD GENERATION FOR SONGS-1 0 SSIUSINGCLASSIFORREhCTORBUILDING S. CLASSI LICENSIBILITY 0 CLASSI ETHODOLOGY e RsSPONSE TO NRC QUESTIONS i i , 1

O { It4PJEO CLASSI LICENSIBILITY CLASSI HAS BEEN USED IN'THE FOLLOWING INSTANCES AND NRC REFERENCES ARE PROVIDED, WHEN AVAILABLE. 9 GESSAR - CONFIRMATORY ANALYSES: REV IEWED AND ACCEPTED BY THE NRC. REFERENCE NUREG 0979, SUPPLEMENT NO. 2. O BYRON - THE DESIGN-BASED SSl ANALYSES, PERFORMED BY A-E, WERE DONE USING THE FREQUENCY- DEPENDENT S0ll IMPEDANCE METHOD DEVELOPED BY DR. LUC 0 -- THE SAME TECHNIQUE USED BY CLASSI. ON BEHALF OF THE NRC, BROOKHAVEN USED CLASSI TO PERFORM CONFIRMATORY SSI ANALYSES TO AUDIT THE DESIGN-BASED SSI ANALYSES. ALL SSI WORK HAS BEEN REVIEWED AND ACCEPTED BY THE NRC.

                                               - 2. -

s ~ ~ ~ - -

        . . . .     .      - ..      . . .           .  . .  . .       --  c.  .

e IMN_4@

                                                                          )

9 HTGR - GA TECHNOLOGY (GENERAL ATOMIC) HAS USED CLASSI IN ALL OF THE PRELIMINARY DESIGN WORK FOR THE NEXT GENERATION HTGR. 8 LLL (NRC) - CLASSI HAS BEEN SELECTED BY THE LAWRENCE LIVERMORE LABORATORY (LLL) , TO FORM PART OF A COMPREHENSIVE SERIES OF COMPUTER PROGRAMS, SMACS (SEISMIC METHODOLOGY CHAIN WITH STATISTICS) USED IN THE NRC'S SPONSORED SEISMIC SAFETY MARGINS RESEARCH PROGRAM (SSW P). l l 3' l [_ .

    ---         _. - .        ... .=..    ..-          . . .- .   =.-.

s g IMPR @ - CLASSI ETH000 LOGY 1.0 OVERVIEW e 1 2.0 FOUNDAT10N INPUT MDT10N 3.0 FOUf0ATl0N IMPEDANCES l 4.0 SOLUTION OF EQUATIONS FOR SSI 5.0 SONGS-1 SSI APPLICATION 1

  - _      -. .     ._.       .    . . . . _ .    . .    ._.._..;- ... z_____._ _ ....._ _ _         _

MEh Q ASSI ETHODOLOGY 1.0 OVERVIEW O LINEAR - VISCOELASTIC THEORY 8 FREQUENCY DOMAIN SOLUTION 8 PARAETERS DEFINING THE MODEL ARE: SHEAR MODULUS PolSSON'S RATIO MATERIAL DAMPlNG FACTOR 0 SUBSTRUCTURE APPROACH

1) DETERMINE THE FOUNDATION INPUT MOTION ll) DETERMINE THE FOUNDATION lMPEDANCES lil) SOLVE THE COUPLED SOIL / FOUNDATION /

STRUCTURAL SYSTEM TO DETERMINE THE SSI RESPONSES. l l l

                                               ~{-
     .--         .--        -..-.--w..-.:           .. . . - .      .:  :.u = -..     . . . . . - . . . . - . . - . . .        .- -         . - .

o '* . SOIL STRUCTURE INTERACTION ANALYSIS SUBSTRUCTURE APPROACH 02 unnny (h ,' unnnu

                                  ,                                         ?nnen                                       '
                         %        ( n *d
                                     -          '                                                    P2'{3
                                                                                                                        /

vinnn1

                           \      u        m,                   .

s - .p1

                                                                                                           ,,1/
                                                                                               <11 M\          g                                                        (K) (U) = (P)

V Step 1. Kinematic input Step 2. Subgrade Impedances Determine the Net Determine the Dynamic Subgrade Accelerations (or Forces) Stiffness Characteristics for imposed on the Each Foundation Degree of Embedment Region Freedom il

                               .                                                                          1 1 l l (I

il d ' o K1

                                                                                        ..            111, i

K2ffK3 02 (f):fg);(f) OO3 _ ,gi Stop 3. Structure Model Step 4: Soil Structure Interaction i. Determine the Dynamic Frequency Domain Solution Characteristics of the of the Coupled Equations i Superstructure of Motion i 1

                                                           - (o   -

_ . - . . . . . . ~ . . . - -_. - .. . . - - . . . . - - . . - - IN E Q ASSI ETH000 LOGY (CONTINUED) 1.0 OVERVIEW (CONTINUED) O GENERAL EQUAT10N: {-w2 [M ,+ M b (w)] + [K ,(w)]} U = (K ,(w)} U* U* IS THE " FOUNDATION INPUT MOTION." THE EFFECTS OF SCATTERING OF THE INCIDENT WAVES BY THE RIG lD FOUNDATION ARE INCLUDED IN IT.

        .                   M,        IS THE MASS MATRIX OF THE FOUNDATION Mb (w)    IS THE FREQUENCY-DEPENDENT EQUIVALENT MASS MATRIX OF THE STRUCTURE.

K,(w) iS THE IMPEDANCE MATRIX OF THE FOUNDATION. U IS THE TOTAL MOTION OF THE FOUNDATION. l l l 1

                                                ~l
  • l 1

i . . . _ _ _ .

   .m__._             =_a_,         = _        _;          = - - . . . . =   .

l l IMEh 1 O ASSI ETHODOLOGY (CONTINUED)

                                                                           ]

2.0 DETERMINAT10N OF FOUNDATION INPUT MDT10N 0 EVALUATION OF THE HARMONIC RESPONSE OF THE RIGID, AND MASSLESS FOUNDATION BONDED TO THE SOIL AND SUBJECTED TO THE INCIDENT SEISMIC WAVES IN ABSENCE OF THE SUPERSTRUCTURE. 8 THE FOUNDATION INPUT MOTION IS EVALUATED AS FOLLOWS: {U*(w)} = [S(w)] {f(w)} f(w) lS THE COMPLEX FOURIER TRANSFORM OF THE FREE-FIELD MOTION. S(W) CALLED THE " SCATTERING MATRIX.'" REPRESENT THE RESPONSE OF A MASSLESS RIGlD FOUNDATION TO A GIVEN INCIDENT WAVE OF UNIT AMPL ITUDE. S(w) DEPENDS ON THE COMPOSITION OF THE FREE-FIELD l MOTION IN TERMS OF DIFFERENT TYPES OF i WAVES; ON THE GEOMETRY OF THE l FOUNDATION, AND ON THE CHARACTERISTICS OF THE Soll MEDIA (PROPERTIES AND CONFIGURATION). U*(w) IS THE RESPONSE OF THE RIGID MASSLESS FOUNDATION TO A PARTICULAR SEISMIC , EVENT. l l

                                            . g --

i -

SONGS-1 A APPLICATION NORMALIZED o.s - - AMPLITUDE ' OF TRANSFER FUNCTION o.6 - -

                                         '                                                                      ~

DECONVOLVED MOTION 0.2 - o e o C

  • C frequency (Hz)

TYPICAL SCATTERING COMPONENT FOR THE REACTOR DUILDING FOUNDATION.

REFERENCE:

The Final Progress Report for the San Onofre l Nuclear Generating Station Unit 1, Seismic Safety Margins Research Program, Lawrence Livermore National Laboratory, June 18, 1982. 1

                                                                  -}-

o .. Wl$ - Q ASSI ETHODOLOGY (CONTINUED) 3.0 DETERMINAT10N OF FOUNDAT10N IMPEDANCES S IMEDANCES ARE COMR_EX VALUED, AND FREQUENCY-DEPENDENT FORCE-DISR.ACEENT CHARACTERISTICS OF THE FOUNDAT10N/S0IL SYSTEM. 8 IMPEDANCES ARE DEPENDENT ON THE SOIL CONFIGURAT10N AND MATERIAL PROPERTIES, THE GE0ETRY OF THE FOUNDAT10N, AND THE FREQUENCY OF EXCITAT10N. 8 FOR. RIGID FOUNDATIONS THE FORCE-DISR.ACEENT CHARACTERISTICS ARE UNIQUELY DEFINED BY A 6 x 6 MATRIX RELATING THE FORCES AND M0ENTS TO A l 6 RIGID-BODY DEGREES OF FREEDOM, l 0 THE REAL PART OF THE IMPEDANCE REPRESENTS THE ! STIFFNESS OF THE SOIL. ! e THE IMAGINARY PART REPRESENTS THE Soll ! DAMPlNG. l - ! l

MEh 0 ASSI ETH000 LOGY (CONT lNUED) 4,0 SG UTION OF COUPLED SOIL /FOUWATION/ STRUCTURAL SYSTEM TO OBTAIN THE SSI RESPONSE 8 THE MODAL PROPERTIES OF THE STRUCTURE ARE

 ~

DEVELOPED AND INPUT .lNTO THE EQUAT10NS OF MOTION. O SOLVE THE SSI EQUATION: . {-w [M, + Mb (w)] + [K,(w)]} U = {K,(w)} U*

                              -w2 [M,+ M (w)]       REPRESENTS THE FORCE-DISPLACEMENT RELATIONSHIP        ,

FOR THE FOUNDATION AND - STRUCTURE SUBJECTED TO BASE EXCITATION. M, IS THE MASS MATRIX OF THE RIGID FOUNDATION (6 X 6 MATRIX). 4 Mb(w) lS THE EQUIVALENT MASS MATRIX OF THE SUPERSTRUCTURE. G SOLVE FOR U, TOTAL MOTIONS OF THE FOUNDAT10N. 8 U IS USED TO COMPUTE STRUCTURAL RESPONSES.

                                                -It-
       ..-                    -.- .-.            .     -   . . . . -.=..:-:.=.=.=..- -.     . . _ - - -    .-

MEh-SSI ETHODOLOGY FOR SONGS-1 REACTOR BUILDING e EMR_0Y THE SUBSTRUCTURE ETHOD OF ANA.YSIS. 8 THE 0.ASSI ETHODOLOGY IS USED WITH THE FOLLOWING REFINEMENTS:

1) THE FOUNDATION INPUT MOTION IS NOT REDUCED TO ACCOUNT FOR KINEMATIC INTERACTION EFFECTS,
                                                         ~

l.E. DECONV0LUTION OF THE INPUT MOTION IS NOT PERFORMED.

2) THE FREQUENCY-DEPENDENT FOUNDATION IMPEDANCE .

FUNCTIONS ARE EXPLICITLY DEVELOPED CONSIDERING THE SONGS-l SOIL SITE AND FOUNDATION GEOMETRY, USING THE SASSI FINITE ELEMENT FORMULATION. l l 8 THE NON-LINEAR STRESS-STRAIN CHARACTERISTICS OF THE S0ll ARE UTILIZED: i BY CONSIDERING SITE-SPECIFIC DATA FOR STRAIN-DEPENDANCY OF SHEAR MODUL i AND DAMPING, BY SELECTING VALUES WHICH ARE COMPATIBLE WITH l %g THE STRAINS DEVELOPED IN THE Soll PROFILE. _s/

                                                           - I 9( -

\ .

                                                                                                                               ...--.-.1 I

comma Ss400 4 Fe,%

               .m kbk
                ,                                                                  as, g =====

l_ - d N les . N w I

  • e*e e n+ es ee s es i WAJOR PRl WCI FnL STRAt W, 4, PERCENT J

3 .. E 5 58 5 t' r . g.- aru,.un. _/

, /
             !                     /

e I 'ag=5 g ** g3 3 68

  • E 85
  • 44AJ04 PRINCIPIE sfRAIN, C, .NRCK8tf Projecti SGIGS SOIL STRUCTURg sectus Am DMfLIE V8 STRAIN gy, gg Seal IR130 FtRathTICII SAND sessuaan.meestiu, e associatts 13 -

IMP _ ELL @ SSI PETH000 LOGY FOR SONGS-1 REACTOR BUILDING (CONTINUED) e MATERIAL DAMPING IS LIMITED TO THE DAMPlNG VALUE AT 0.1 PERCENT Soll STRAIN. 8 S0ll VARIATION STUDIES ARE PERFORED BY VARYING THE SHEAR MODULI BY 10 PERCENT, BASED ON DATA SPECIFIC TO THE SONGS-1 SITE, 8 STRUCTURAL MODEL OF THE REACTOR BUILDING IS THE SAE EDEL USED TO DEVELOP THE CURRENT DESIGN-SPECTRA.

                                 -I4~

IMPlE() SONGS-1 S0IL PARAKTERS 8 DR. R. MCNEIL, CONSULTANT e DEVELOPED SONGS-1, -2, AND -3 SITE DATA 0 PROPOSED S0ll PARAETERS , DENSITY DRY 125 PCF WET 81 PCF SHEAR MODULUS 2000 KSF PolSSON RATIO - 0.35

                    -     STRAIN DEPENDENT PER SONGS-2 AND -3 FSAR, FlGURE 2.5-25 l

l

                                         -IG-
                                                                                  .,x .   -m,a    ._,+_.a -_, __ 4m_.m_.s,sa      1   ___a 4 m;,. _    -Kmns.n      ___ _ _ _ __ _ , _ _           xa e--w                      a   ..we-    w ,,-%M
6.
  • 4 LDEFUAM 6

.i I ANSWERS TO NRC QUESTIONS i ,I 4 0 t I t I6 -

                                                                                                                                                                                                                ~

IM ISSUE 1.0: SPECIFY HOW THE SSI GUIDELINES FOR SEP PLANTS WILL BE ADDRESSED TO, IN PARTICULAR, REGARDING (A) THE Soll PROPERTY VARIATION

     .                    TO ACCOUNT FOR STRAIN DEPENDANCY AND OTHER UNCERTAINTIES, (B).THE RADIATION DAMPING, AND (C) THE EMBEDMENT EFFECT, IF ANY, WHEN USING THE SASSI CODE FOR THE SSI ANALYSIS.

RESPONSE

A) S0ll PROPERTY VARI ATION STUDIES 4 EXTENSIVE EXPERIMENTAL DATA FROM SONGS 2 a 3 Soll IS VERY UNIFORM; ALL SAN MATE 0 SAND MAXIMUM EXPECTED VARIATION IN SHEAR MODULUS IS 10 PERCENT. FOR LTS WE WILL PERFORM S0ll PROPERTY O VARIATION PARAETRIC STUDIES BY PERFORMING SEPARATE ANALYSES VARYING THE SOIL SHEAR MODULUS AS FOLLOWS: 1.10 Go 1.00 Go 0.90 Go Go 15 BEST ESTIMATE VALUE.

IQLL@ ISSUE 1.0 (CONTINUED) B) BADIATION DAMPING e RADIATION DAMPING ls EXPLICITLY INCLUDED IN THE Q.ASSI/SASSI FORMJLAT10N O IN CLASSI: CONT lNUUM MECHANICS APPROACH.

                     -      THROUGH THE COMPLEX, FREQUENCY-DEPENDENT IMPEDANCE FUNCTIONS.             THE REAL PART REPRESENTS THE FOUNDTION/ SOIL                     ,

l STlFFNESS THE IMAGINARY REPRESENTS THE COMBINED EFFECTS OF S0ll MATERIAL AND GEOMETRIC (RADIATION) DAMPING. l 0 IN SASSI: FINITE ELEMENT APPROACH. l USE OF ENERGY ABSORBING BOUNDARIES TO l MODEL INFl NITE SOIL MEDl A. j - SIMILAR AS ABOVE BUT WITHOUT LIMITATIONS l lN THE FOUNDATION /EMBEDMENT CONFlGURAT10N. l -te-1

                            ~-    - - - - .-
                                               ~    - - .   - . . . , . . .       _ _ _ , _ _ _

e IMgLLIA) ISSUE 1.0 (CONTINUED) C) EM3EDENT EFFECTS S EXPLiClTY CONSIDERED IN THE FORMJLATION OF IMPEDANCE FUNCTIONS FOR SONGS-1 SITE AND SONGS-1 FOUNDATION GE0ETRY.

                                - t9 -

O ISSUE 2.0: DO YOU PLAN TO CONSIDER THE INCIDENT EARTHQUAKE WAVES TRAVELING BOTH VERTICALLY AND AT SOME INCLINATION ANGLES FROM THE VERTICAL? RESPONSEe THE ECHANISM OF WAVE PROPAGATION AT THE SITE IS CONSIDERED TO BE COMPOSED OF VERTICALLY PROPAGATING SHEAR (HORIZONTAL) AND COMPRESS 10NAL (VERTICAL) WAVES. THIS IS THE MDST COMMON ASSUMPTION FOR SSI ANALYSIS AND PROVED TO BE THE MDST APPROPRIATE FOR MOST S0ILS (1), IN PARTICULAR FOR A S0ll SITE SUCH AS THAT OF SONGS-1. REFERENCE (1): SEED, H.B. : LYSER J. , "THE SEISMIC S0ll STRUCTURE INTERACT 10N PROBLEM FOR NUCLEAR FACILITIES." SEISMIC SAFETY MARGINS RESEARCH PROGRAM (SSMRP) PHASE I REPORT, APRIL 1980.

                                                   - QQ -

5Y ISSUE 3.0: WHAT IS THE STATUS OF DOCUMENTATION AND VERIFICATION OF THE SASSI CODE? RESPONSEr THE SASSI AND CLASSI CODES HAVE BEEN DOCUENTED AND VERIFIED IN ACCORDANCE WITH IMPELL'S QA PROCEDURES. THE SASSI AND CLASSI CODES HAVE BEEN VERIFIED BY: O COMPARISON OF CLASSI AND SASSI RESULTS WITH CLOSE FORM SOLUTIONS 0 COMPARISON OF CLASSI AND SASSI RESULTS WITH RESULTS FROM OTHER CODES 9 CLASSI CODE WAS DEVELOPED BY DR. LUC 0 1

                                            -RI-
    -        - :- . .- .:   .._... .. ...._:: =.. :_. .
                                                           - ~ . : ..:: : . . . , - - --_ - _

t IMP 3k@-- ' 4 LOAD GENERATION SONGS 1 SOUTHERN CALIFORNIA EDISON 4 PART II l APRIL 2, 1985 l

                                                                                                                                  ~

M NS h DIRECT GENERATION O FLORA: MATHEMATl CAL FORMJLAT10N 0 APPLIED TO TURBINE BUILDING LIGHT STRUCTURE SURFACE FOUNDED LITTLE S0ll-STRUCTURE INTERACTION O PARAETERS USED DESIGN BASI.S BUILDING MODEL DESIGN BASIS HOUSNER SPECTRUM e DEVELOP FLOOR SPECTRA STRUCTURE SECONDARY COUPL ING (PIPING)

                             --        _ _ . _ _ _ _ _ _ _ _ . - . _ _ _ _ _   __m       _ _________.-_.-_.__ _ _
             - - . .            -        ..                          *               ^
     . . . .             .                            ,. -   ' - - -        . .. - .. . .i k .u .'-.+ .

9 8 s 8 RESULTS MEAN SPECTRA FROM A FAMILY OF TIME HISTORIES 4 I Y *

          ^                  -                       -              . . . . . . . . ,    . _ . . _ _ . . _ _ _ _

T I IMPlE@- 3 C i 0- RJRPOSE TO ELIMINATE THE ENVELOPING AFFECT OF A TIME HISTORY SPECTRUM OVER'THE DESIGN SPECTRUM. TO ACCOUNT FOR PRIMARY / SECONDARY INTERACTION e' l . I i

_ _ __ .. .. . .. a . . ._ . e . 1 D Yh FLORA: MATHEMATICAL FORMULATION 9 l l- . . \

FLORAPROCEDUR$ l MODAL PROPERTIES MODAL PROPERTIES N DOF BUILDING <> OSCILLATOR l

                                                                                      ,vr

() one , t , n W

                                                       *s Ws Z , + ,

PERTURBATION

             #                                                                              ANALYSIS MODAL PROPERTIES
                                                                                                               'j N+1 DOF SYSTEM hJ NJ l'a h ' W O

WIDE BAND NARROW BAND

                                                                             ' APPROACH              ~ APPROACH e

gv-,-- ' - ww-- >- - 7p y-g.- , .-yv,- - - -

                                             .,b=..=.                            .:           . - . . . - . . . . . _

e-WIDE BAND APPROACH GROUND RESPONSE - MODAL PROPERTIES l SPECTRUM N+1 DOF SYSTEM o To J A w

                                                                     +. s w   a z. f. Er a

l I i l FLOOR RESPONSE SPECTRUM ORDINATE

                                         'N+1 N+1 2 I(*'I)ihyjhg R          g o'ij 1*fj* (Ni ** I i*)   j   *I*)

j TR

                                                      /').....  .,

WO

                                                                  'l e                      ,                           ,

U NEXT wo

                                               .                               . ~ .    -                        .
                                   .   . = :.u . .~ . . .        -                        .              _                     _

NARROW BAND APPROACH GROUND RESPONSE SPECTRUM , y m W -= MODAL PROPERTIES N+1 DOF SYSTEM POWER SPECTRAL DENSITY OF INPUT w *

                                                                                          $*,    W*, Z *, f
  • w r g s A_w
             -                                         X                                                                                     .

POWER SPECTRAL DENSITY OF RESPONSE G,

                                                                                       - U
                                                 .                        o
         ~

SPECTRAL MOMENTS . OF RESPONSE Am = [w'G,dm l I 1 FLOCR RESPONSE ,y g ,

                                                                                                     ~

SPECTRUM ORDINATE TR I"o,0 = P TR [\- . -. L - J e

 --,m-+          -                                                                                  -      , - - -     - - ,     - ------n
  . - - . - . . .     .-         .      ..       . :. .: = - . .
                                                   .                                           . . . . . . - . . - . - - . . - . . - . . = - - -

MEh EETING R2ENDA APRIL 3, 1985 .

l. CRITERIA - INTRODUCTION II. CRITERIA A. STRAIN / STRESS LIMITS B. COUPLED PIPE / STRUCTURE ETHOD C. SIMILARITY t

D. ENERGY BALANCE ETHOD 1 1 E .' SECANT STIFFNESS ETHOD F. MJLTIR_E PIPE SUPPORTS l i-1I1. REFUELING WATER STORME TANK

                                          +4                  4            e4    3-                                         #   -- -

WNh - Eh THE 2.0 Sy EQUATION 9 ALLOWABLE FOR LARGE BORE PIPING IS REASONABLE WHEN ASME CLASS 1 STRESS INDICES (By a 82) ARE USED. , EQUATION REVIEW: Q. ASS 1 FAULTED PRIMARY STRESS CHECK B 1 PD0+B2 DMI20S O Y NRC PRELIMINARY REVIEW Y Y Q_ ASS 2 a 3 FAULTED PRIMARY STRESS CHECK 3PD+ 0.751 E 1 2.0 Sy 4T Z LICENSEE PROPOSAL SOURCE: ASE CODE, SUBSECTIONS 2-3600 a NC-3600,1980 EDlTlON INCLUDING ADDENDA THROUGH WINTER 1980.

             % w w          - - * . - - _ m_ _ - _ _ _ _ _ _ _ _ - - - _ -                 _m

L.1 (CONT l NUED):

RESPONSE

1. IN THE SONGS-1 N0ft.lNEAR ANALYSIS, THE TIE HISTORY LOADING USED TO DEVELOP THE ELASTICALLY CALCULATED STRESS IS BASED ON:

PD o + 0.751 0 = 2.0S Y 4T Z AT CRITICAL COMPONENTS. THIS TIE HISTORY WAS INPUT FOR THE N0ft.INEAR Pl PING ANALYSIS, RESULTS OF WHICH INDlCATED ACCEPTABLE STRAIN LEVEL AND PIE OVALIZATION.

2. PRIMARY FAILURE MDDE UNDER SEISMIC LOADING HAS BEEN SHCWN TO BE FATIGUE RATHER THAN GROSS R.ASTIC COLLAPSE THEREFORE THE USE OF SIF (BASED ON C2K2/2) lS

( APPROPRIATE. i l

3. ANCO TESTS USED 0.751M/Z (SIF APPROACH) TO CALCULATE EQUIVALENT DYNAMIC STRESSES. FOR EXAMR E, DYNAMIC LOADING GJIVALENT TO 4.0Sy ELASTICALLY CALCULATED STRESS CAUSED NO LEAKAGE.
4. E.C. RODABAUGH RECOMENDED Q. ASS 1 FAULTED PRIMARY STRESS ALLCWABLES OF.4.5 SM AND 7.95 SM FOR CARBON AND STAINLESS STEEL, RESPECTIVELY.

Wb L.3: A 1% STRAIN CRITERl0N FOR CARBON STEEL IS ACCEPTABLE. THE STAFF IS CURRENTLY REVIEWING THE PROPOSED JUSTIFICATION FOR A , 2% STRAIN CRITERION FOR STAIM ESS STEEL.

RESPONSE

0 TEST RESULTS TESTS OF 5 THIN WALLED STAINLESS STEEL EL BOW S. LOADED IN-PLANE AND OUT-OF-PLANE -- SIMILAR RESULTS.

                                        -      TESTED T0, AND PAST, COLLAPSE LOAD USING DI SPLACEMENT CONTROLLED TECHNIQUES.

l STRAIN OF 2% CORRESPONDS TO FLOW AREA REDUCTION OF 5%. O STRESS-STRAIN QJRVES FOR STAIM_ESS STEEL AND CARBON STEEL l ( ) l l b

_, 4 4 ... < L = a- - O AE e, .+ w eimeeum + tr'M le m e e m...me.e-me474 e t ap wgWN

                                                                                                                              \
             +                                                                                                                1 2J (CONTINUED) l                  8     CODE CASE N-47 PREPARED FOR HIGH TEMPERATURES WHERE STRESS l                                   CRITERIA MAY NOT BE APPROPRIATE.                                                         .

CLASSIFIES SEISMIC STRESSES IN PIPING AS l P + P. L b USES 2% STRAIN LIMIT FOR P +P' L b

                                                                                                                            /

e e Cwve I, Strein, A per h 8 2 2 'n R S R o d 6 6 6 e d o d 6 70 Cwve I e Urtunate strength g

                                                     /                 T           III III T
                         =
                                               /                            i sewre nectme r                                 \                                                   '

Y" l \ g / r t t soave {* g/ , f,,(view mune --Cww I g E g r el till a /a %,ertenoi knot f

                         " 20          l
                                         /
                                      /
                                     /

10 [

                                  /
                           'O              -               u           e                              e     e  n 8               8           8                E             8     8  8 o               o           o                o             o     o  o Strea, A per A Curve E. View peut repen, strom, h per h
                            . Stress-Strain Curve for Mild Steel (0.25 carbon). Curve II is an enlargement of Curve I in Region of Yield Point
                   ~

pse, s vres es ser.ss sersa. serves & typ sei d 384 seed sess seeel Tycm 301 - 140

                                                                                                ~

800 - f - 100 m g 600 - Type 304 [ s

                                                                                                ~

I I 400 - - 60 l t a= 200 20 0 O O 20 40 to to Er9aserme stre a. %

%, ,. . iw.6L a... Am .w , . - +. + . - . . e. ~~ h e t

       ._ _ -                                                                _-                                                      M .OG                                       EE f. _ ?VWM -.. ._ . . _ _ . - _ .                                                                                                                                                .
              . . _ .- _ _ -__ d._ _                                                 -
                                                                                                        ! EofL ....CA*409.. (_ _SMirot.s.n _                                                                                                                                           _ _ _ _ . _ . _ _ _ _ _ . - . . . _
                                                                                                        ! _ _ _ _.a ra c w .. _ L . . _ . _ _ _ ._ _ ._. . _ . . .. _ _.                                                                                                                                                                                ....

i i s

                                                                                                        ,                                             +
                            . + . . . .                       .. . . ..... .._                                                 _     ...m                 . . . _              .               %.                            .. . . , . ..                                               _ . . . . .                          ... ..                              _

t

                        . . . . , .             + . .                           .._. ._. - - -                                          - . . - - -                         . -- .. , _ . . - - _ . +. . . . .--.                                                                                                                     .

7-j ._ J-l I _ A _ - - ~_...._. n v- , -

                                                                                                                                                                   /
                                                                                                                                                                                         /        r h                           __                 _
                                                                                                                                                                                                                                                                                                                     . p . . .. .                       ..

__ / _.5TA M ur.as . _ . _ _ _ _ _ . .

                                                                                                       '                    /                        '
            .                                               __._                                                 y                                 :._._ _                                          I c Tfit t. t.,_ _ _ ._ ,i _. __._._ _
                                                                                              /                                                      ,                                               4 e

1 a

                                                            ..-.4..
                                                                                                                                                                                                                                               . . . . . .                                                           .i_.... . . . .
                       ......w                    ._.          .
                                . . - . - .                                 . .- .._... - _ . . - - - . . , .                                                                     -._._.l.                                                              + -. . - - - . . . . .                                                                    .
                - - - . - . -                                         .. _. .-.-.                                                                                                                       - ..-.                                              D                       .,                   . - _ . . . . _ . . . , .

t

                      .m
  • y A*rc c t
          -                                                                                          -                                              t.

i e j _. _._ - -.. . . .-...--. ... t

                                                                                                                                   ~..%..                                                                                                                                - . - _ - . . .                                        -               _

6

                 '4       .h             -.em                                          ..g.

e 4. .- G . - e .

                                                                                                                                             . , .                                                ..                  w                   .m 6.-...w.                     ..ew                     .a4.         r-   -h.,               .&                  .-.e             4         ,--.e.          ge                      ,-.w,,.                  .
                                                                                                                                                                                   ._,.4
                                                                                                                                                                                                                                              . .                                                                     .e    -

1

          -t O-                                                - -

i

                         -~-.- -                                      . _ . . . . _ _ . . , . .                      _ . - _                ..i____.._ . .                                                      . . .
                 .   +.w=e-                       e             = _ . . i._                                        .                                    , - - - -                                                                                             . . . _ , . .                                                        . - .
                                                                                                   ,                                              i                                              ,                    ,

So

                                                      . .                                       L__                                              '                                                                    '
                                                                                                                                                                                                                                                     '                                                                I I                                               i                                                   l                                                                4 t                                        _ .

hl ' 8 _. d - _ . _ l...._........ ..

  • 8 J i l l 3
                                                                                                                                                                                                .                                                                                                                     i n

(

                                                                                                .I_ _ - . .

i f i

c. ..- .. . . .

f

                        ....--b-...                                                .. .. +                               , .-_ . *                       ,-.. . . .                                         . .                             .                                                              .                      .
          . ~ .    ~~-        .--            -

i

              - NMh                                                                              l 2.6 SECONDARY STFFI STRUCTURES l

A) WHENEVER A DUCTILITY CRITERION IS APR_IED, A . SYSTEM RESPONSE EVALUATION IS PRESENTED. B) WHENEVER THE ONE-HALF ULTIMATE UNIFORM STRAIN CRITERION IS APPLIED, THE EEER RESPONSE IS CORRELATED TO A DUCTILITY RATIO (DUCTILITY RATIO PREFERRED). C) APPROPRIATE CRITERIA FOR GE0ETRIC BUCKLING ARE APPLIED. l

RESPONSE

A) SYSTEM RESPONSE EVALUATION TO JUSTIFY INELASTIC BEHAVIOR l ! 8 AS STATED IN SECTION 3.4 0F CRITERIA DOCUMENT, EFFECT OF NONL INEAR BEHAV 10R ! 0F STRUCTURES ON PIPE FUNCTIONAL ITY WILL BE EVALUATED. l l lDENTIFY INELASTIC STRUCTURAL l BEAMS. ( )

NU

               -       FOR ISOLATED INELASTIC BEAMS, EVALUATE PIPING SPAN AND ADJACENT SUPPORTS TO ASSURE FUNCTIONAL!TY BY HAND EVALUATIONS OR ENERGY BALANCE METHOD.
               -       FOR MULTIPLE INELASTIC BEAMS, EVALUATE PIPING FUNCTIONAL ITY BY         ,

C6MPARING NEW EQUIVALENT SUPPORT STIFFNESSES WITH ASSUMED GENERIC VALUES, SECANT STIFFNESS METHOD, OR COUPLED PIPE / STRUCTURE ANALYSI S. B) ONE-HA.F ULTIMATE UNIFORM STRAIN CORRELATION 9 ONE-HALF ULTIMATE UNIFORM STRAIN CRITERl0N WILL ONLY BE APPL IED FOR MEMBERS UNDER TENSION. 9 THIS CRITERION CORRESPONDS TO 5 PERCENT AXI AL STRAIN FOR A-36 STEEL. 9 MORE CONSERVATIVE THAN THE ASME STANDARD LIMITS (EQUIVALENT TO 10 PERCENT AXl AL STRAIN). C) CRITERI A FOR GE0ETRIC BUCKLING S THE PLASTIC SECTION OF THE AISC CODE WILL BE USED FOR BUCKL ING EVALUATIONS.

bb 2.9 COUPLED PlPE/ STRUCTURE ANALYSIS COUPLED PIPE / STRUCTURE METHOD DOES NOT APPEAR , AT THIS TIME TO BE SOUNDLY BASED. RESPONSE-LTS ANALYSIS APPROACH WILL CONSIST OF THE FOLdWING STEPS: 0 FOR RIGlD STRUCTURES, GENERIC SUPPORT STIFFNESSES WILL BE USED IN THE PIPING MODEL. A STRUCTURE IS RIGID IF: ITS FIRST MODE FREQUENCY 13 OVER 33 HZ OR IN THE RIGl0 RANGE OF THE SPECTRUM, OR IT DEFLECTS LESS THAN ONE-ElGHTH INCH UNDER SEISMIC PIPE SUPPORT REACTION LOAD. 8 FOR NON-RIGID STRUCTURES, AN EQUIVALENT STIFFNESS OF STRUCTURE WILL BE INCORPORATED INTO THE PIPING MODEL. 0 ON A CASE-BY-CASE BASIS, A COUPLED PIPE / STRUCTURE EVALUATION MAY BE PERFORED BY MODELING THE NON_INEAR BEHAV10R OF THE SUPPORTING ELEENTS INTO PIPING MODEL AND ( PERFORMING A NON_INEAR ANALYSIS j l l

Md 3.1 STRUCTURAL STEEL STRENGTH WE BELIEVE THAT THE 30 PERCENT INCREASE WILL OVERESTIMATE MATERIAL STRENGTH. IT DOES NOT APPEAR THAT MATERIAL TEST DATA ~ ARE APPLICABLE TO SAN ONOFRE UNIT l. THE STRAIN RATE DATA DOES NOT APPEAR TO BE REPRESENTATIVE FOR SEISMIC LOADING CONDITIONS.

RESPONSE

LTS APPROACH CONSISTS OF: THE USE OF ASME LEVEL D STRESS LIMITS WITH CODE-SPECIFIED MINIMUM YlELD STRENGTH. THE USE OF 30 PERCENT INCREASE IN YlELD STRENGTH FOR EXISTING SUPPORTS (18 PERCENT FOR MATERIAL OVERSTRENGTH, 10 PERCENT FOR STRAIN RATE EFFECTS) ON A CASE-BY-CASE BASIS. THIS INCREASE WILL ONLY BE USED FOR MATERI ALS AT SONGS-l FOR WHICH THESE TESTS ARE APPL ICABLE.

                                 ~
 '                                                         ~           ~~
                                       ._    " __  . _ . .    . T . ..

I

                                                                          \

MEh l 3 3.1 STRUCTURAL STEEL STRENGTH (CONTINUED) JUSTIFICATION 0 MATERIAL OVERSTRENGTH SCEaG TEST DATA FOR A-36 STEEL SHOWS 21 PERCENT OVERSTRENGTH. ASTM SPECIFICATIONS REQUIRE 3-SIGMA LOWER BOUND FROM TEST RESULTS: EQU! VALENT TO 21 PERCENT OVERSTRENGTH FOR MILD STEEL. TEST DATA SPECIFIC TO SONGS-l FOR A-36 STEEL SHOWS 28 PERCENT AVERAGE i OVERSTRENGTH (25 SAMPLES) WILL ONLY BE USED ON A CASE-BY-CASE BASIS (USED ON LESS THAN 7 PERCENT OF SUPPORTS DURING RTS).

~ ~ ' ~ ~~

                                                                   . _ _ _ _1_ j Y

3.1 STRUCTURAL STFFI STRENGTH (CONTINUED) 8 STRAIN RATE EFFECTS LITERATURE SHOWS A SIGNIFICANT INCREASE IN YlELD STRENGTH WITH STRAIN RATE

         .           (MANJOINE).

REVIEW OF SUPPORT REACTION TIME HISTORIES TO DETERMINE ACTUAL LOAD RATES. ,

               -     FOR SUPPORTING STRUCTURES, SEISMIC LOADING AS A RESLLT OF PIPING EXCITATION HAS LOAD RATES OF 2-10 HZ. TEST'OATA SHOWS A MINIMUM OF 10 PERCENT INCREASE IN YlELD STRENGTH FOR THIS EXCITATION.

WILL ONLY BE USED ON A CASE-BY-CASE BASIS.

l IM531@ - es . .

-- l 7 i rI [ (1 1 I t,11 ) u i
    -                                       (I          l                                    I 3 Il W        Y               (

tI fl l 1 i \ f }"

         .   .                     I
      ~'=-

Ilpt

  • SitenOS Figure 1 - Typical Support Reaction Time History f

100 90 80 70 60

                                                                                                    /

W /

    $ 50                                                                                     /

E ,o /

                                                                                          /

m 40 30 _ 20 10 0 10* 103 i O-= o-i  : io io: ,o3 . s cr* 10-5 AVERAGE RATE OF STRAIN PER. SEC. Figure 2 - Relationship Between Material Yield and Strain Rate for Mild Steel (Reference 1) 4

t i O .t o N_ e o  ! o l

L  !

E '

           -                                                                                                                 o
                    ' '' ' l                                                                                  

b58'O?#^^^"'""~ ~ l I

          =

i.00 I4.00 I

          '0.00                     d. 00     S.00      l'2.00   l'5.00     l'8.00    II . 00          IT . 00 IO. 0 l i

TIME SECONDS - CHANNEL G2 EL 050E0-2LSE E2 H LEE DYNAMIC RESPONSE OF PROTOTYPICAL PIPING SYSTEMS [ l ANC0 ENGINEERSs INC. [.

                                                                                                                         !E
        ~

kb 3.6 ENERGY BN_ANCE >ETHOD CONFIRMATORY ANALYSIS REQUIRED.

                                                                                                         )
                                                                                                         \

1 THIS METHOD SHOULD NOT BE APPL IED IN SYSTEM SEGMENTS CONTAINING ELBOWS, TEES, OR VALVES.  ! RESPONSE-LTS APPROACH e USED ON A CASE-BY-CASE BASIS TO EVALUATE PIPE FUNCTIONALITY AS A RESULT OF FAILED /YlELDED SUPPORTS. 9 COMPARE CONSERVATIVE EARTHQUAKE KINETIC ENERGY INPUT TO MINIMUM STRAIN ENERGY CAPACITY OF PIPE. 8 ANALYSIS MODEL CONSIDERS: VALVE WEIGHTS FLEXIBIL ITY OF ELBOWS EFFECTS OF BRANCHES 1 i i. L

       ..                                                                   ~.             . .
                                                       . _.   ....m._.. ... _

O

  • NEh 4

l l 3.6 ENERGY BALANCE WTHOD (CONT lNUED) CONFIRMATORY ANR.YSIS 0 EVALUATE A REPRESENTATIVE SONGS-l PIPING SPAN USING: EXPL ICIT NONL INEAR ANALYSI S ENERGY BALANCE METHOD EXPLICIT NON_INEAR ANALYSIS 0 REPRESENTATIVE PIPING SYSTEM AT SONGS-l (IM-01). O PERFORMED NON INEAR ANALYSIS WITH AMPLIFIED ACCELERATION T/H SO AS TO PRODUCE HIGH STRAINS.

2 .. ..

                                           ~

D 8 O O 3

  • 4
                                                                                          ^0                         r-
                                                                                      ~
                                                                                                                    's

_ ._ = 2 .

                  * '                                              ?

a - 3 rW g 2 d -

                                                                                         %                               e
                                                                               .                    =
                                                                                                                         )

E s* e 2 b_ _ e

                                                     ,,                                   r          s      't           5 m        E 3

e  ;- 1g g s . n

                                                           .m 6M O
                                                                                "ao             :?

P e- _

                                                                                              ~

l r 3

                                                          %*             a    ,       _                %e
                                                                   . ==

T3 3

                                                                                                                                          /

_. . _ . ; .z.u . . _ . .

                 @d

( 3 , 3.6 ENERGY BALANCE ETHOD (CONTINUED) i ENERGY B4.ANCE ETHOD e DEVELOPED ANALYSIS MODEL. - S PERFORMED HAND EVALUATIONS TO PREDICT MAXIMUM STRAIN. RESULTS f G NON.INEAR ANALYSIS PREDICTS MAXIMUM STRAIN OF 2 PERCENT. 8 ENERGY BALANCE METHOD PREDICTS MAXIMUM STRAIN OF 4 PERCENT. O STRAIN PREDICTED BY ENERGY BALANCE METHOD IS A CONSERVATIVE UPPER BOUND VALUE.

                       *                                                                                                        ~
    .     ....=a  .      .     .          .-
                                                         . .. a : . .. - . -                        _

IMEh 3.7 s$C4NT STIFFNESS METHOD NOT PRESENTED IN SUFFICIENT DETAIL FOR THE STAFF TO REVIEW

RESPONSE

8 FW-04 SECANT STIFFNESS EVALUATIONS PRESENTED TO NRC 8 APPROACH (QUASI - LINEAR) PERFORM ANALYSIS ITH INITIAL GENERAL STIFFNESS VALUES EVALUATE SUFPORTING STRUCTURE FOR PIPING LOADS FOR INELASTIC BEAMS, INCLUDE SECANT STIFFNESS INTO PIPING MODEL, ITERATE UNTIL CONVERGENCE OF LOADS e

                                   ,p+ r,,--,-   .- g e   ,-....---w   .- ,     --,w +, -.._a.,m_,,   -        -

m,_ mmm, .-______ __ ___ _

n e i d 5 - S

         -               . . ~ . . . - - . .                 .           -       _ _ _   _ _ , _ _ . _ _ ._

l l l l l i Ff Ry - - - ._ 4 i / s, Fj ~ I l / lI dy k de

                                                                  /        ?

d2 d3 Cycle Duetility Member Duetility Pg " ds / dy pI "= p g di /dy i (2) l P2 = d2 /d: p . p, p .d 2/dy (3) l P3"d3/ d2 P = H*p2*H3.d3/ i dy Figure 2: Schematic Ductility Calculation Procedure

    . . . . - - - .     ._.:.._     .__._.._c.      - _ _ L..    .,

bb 3.9 C0mlNAT10N TECHNIQUE FOR GANG SUPPORTS INDEPENDENT MOTION OF PIPES HAS NOT BEEN DEMONSTRATED AND WE WOULD EXPECT THAT SUCH PIFE CONFIGURATIONS WOULD HAVE DEPENDENT MOTIONS, SUCH THAT ABS SUMMATION BE USED.

RESPONSE

LTS APPROACH l 9 EVALUATE T'HE SUPPORT FOR TOTAL LOADS !. (GRAV ITY + THERMAL + SEISMIC) l L S FOR GRAVITY AND THERMAL LOADS, USE ACTUAL SIGNS IN LOAD COMBINATIONS S FOR SEISMIC LOADS, USE THE GROUPING METHOD. (ABS FOR PIPING WITH FUNDAMENTAL FREQUENCIES WITHIN 10 PERCENT RANGE, SRSS FOR REMAINING.)

     ._       _             ._ _.        . _ _ _ _ _ . _.m.._   . . .. ._ -   _. . - _ . .- . _ _ . . _ . . . - .

kb 3.9 COEINAT[0N TECHNIQUE FOR GANG SUPPORTS

                         -(CONTINUED)

JUSTIFICATION 9 PIPING SYSTEMS WITH DIFFERENT SIZES AND SCHEDULES HAVE DIFFERENT DYNAMIC CHARACTERISTICS, AND PROBABILITY OF PEAK SEISMIC RESPONSES OCCURRING SIMULTANEOUSLY IS VERY SMALL. 8 IF FUNDAMENTAL FREQUENCIES ARE CLOSELY SPACED, ABS SUMMAT10N WILL BE. USED, OTHERWISE, SRSS METHOD WILL BE USED. PREVIOUS NRC REVIEW 4 APPROVED FOR FUNCTIONALITY EVALUATlON OF CONTROL ROD DRIVE HYDRAULIC SYSTEM (CRDHS) INSERT AND WITHDRAW PIPING AT QUAD CITIES UNITS l AND 2, AND DRESDEN UNITS I AND 2 FOR SE ISMIC LOADING.

4 MEh i l b f SONGS 1 REFUELING WATER STORME TANK PROGRESS REPORT APRIL 3,1985 l l l c

IMPR @ 8 S0ll STRUCTURE INTERACTION USING SASSI

                                            ~

8 CHOSEN LOAD GENERATION C0DE l 8 MODEL THE " LOOSE Soll" PROBLEM 1 I

                      . - - . - -     L.1:L L. _

4 WNh SOIL STRUCTURE INTERACTION 0 SITE PARAETERS CONSIDERED ACT,UAL UNDERLYING S0ll PROPERTIES SITE PARAMETERS V IRTUALLY IDENTICAL FOR NATIVE SOIL AND BACKF ILL UNDER RWST ANALYSES PERFORMED FOR MEDI AN AND UPPER BOUND (+ 50%) SOIL PROPERTIES MEDIAN UPPER BOUND SHEAR MODULUS 1,001 KSF 1,502 KSF DENSI TY 116 PCF ll6 PCF POISSONS RATIO 0.35 0.35 MATERI ALS DAMPING 11% 8.5% O MODEL CONSISTS OF MODIFIED HOUSNER MODEL FOR TANK (INCLUDES TANK FLEXIBILITY) CIRCULAR BASEMAT UNDERLYING S0ll REPRESENTED BY A UNIFORM HALF SPACE e SAM! SSI EVALUATION Oft.Y PERFORED FOR HORIZONTAL

              I/2CT 10N. FIXED BASE RESULT USED FOR VERTICAL DIRECTION.

e

MEh  ! O COMPARISON OF PREVIOUS AND CURRENT RESULTS 8 COMPRESSIVE A_LCWA8LE EVALUATION ASE CODE CASE N-284 7ALL = C0 E[ , R F.S. d ALL 1.0 5.9 KSI

                                                                  ~

1.34* 4.4 KSI

  • CC N-284 PRESCRIBED F.S. FOR LEVEL D LOADS.

t l l

        - _ = - _ _ _                                               .             --
                                                                                                                                        , , , . ,            -Enclosure 3 Preliminary Questionnaires on Methcdology for 30NCS Urtit 1 Long Terin 93 rvloe Scisaic Analysis I. Soil-Structure Interac_ tion (SSI)

(1) Please specify where the input free-Cield motion la to be applied as , Lnput for SASSI. (Ret. 1) . , , (2) Specify how the SSI Guide 1Ges fir'dI'Mta will be addressed to, in ' particular, regarding (a) the soll property variation to account for strain dependency and other uncertainties, (b) the radiation damping, and (c) the anbedmont effect, if any, when using SASSI code for the SSI analysis. (3) Do you plan to consider the incident earthquake waves traveling both vertically and at same . inclination angles from the vertical?

                           .(4) What la the status of documentation and verification of the SASSI code?

II. Direct Generation of Floor spectra for Secondary System Analysis

                 'II.1               Theory and Methodology (Refs._ 2, 3)

(1) The effective asas ratio egas defined on p. 7, Ref. 2, should be location dependent. However, foe the 10-atory buliding example shown on p. 28 (Ref 2), the e.g appears to be the same whether a la located on the 10th or the 5th ficor. Besides, how were ~ the ende shape values 951 "M 101 in table 1 umW to detennin tM ct value of, say, 0,0! based on in, s .634 slugs? Please provide explanations. (2) Is it true that Ref. 2 applies only'to a 1-mass secondary system attached to one structural support location? (3) For Ref. 3, is the amplification team the ground response spectria to et Ahe o floor spectrum derived based on the assumption that the ground-E itation is a white-noise, just like the Ref. 2 ? If so, on p. 9,'second 3 ph of Ref. 3, how can the nonstationality of earthquake e:teitation t.', . g be.;peoperly accounted for ,in the generated ficor spectrtsn while the M es amplification function la derived based on the stationality and white

                     ~,

noi e assumption 1 (4)! How is the cross-cross response spectna Sg used in the analysis of the secondary system (Ref. 3)? (5) on p. 55 of Ref. 3, what kind of ground motion will have an acceleration spectrum that increases with the square root of frequency? What Ls the 1

                        ,,,.....,..,,,,,,,,....,,..........,.,,,,,,,,,.,,,,,,,,,,,,,.,m.,,,,,,,,,,,,,,,,,,......,.  . , , , ,    ..       , . . . .......,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,...

e

amplitude or 2PA (zero period ' acceleration) associated with this ground motion time history 7 In additico, why is the 2PA of 'Jgg in Figs, 4,3, , 4.5, 4.7, etc. so seal.1 ? (6) What is the definition of m, H, k, and X in Tables 5.1, 5.5, 5.9 and 5.13 of Ref, ~3 ? (7) On p. 33 of Ret, 3, (a) what is the significance of the floor spectrum generated frt:s1 setting gm - 0 ? (b) what is the significance of m I*" ik actual applications where mg is derived by imposing the condition that the frequency shifts given by Eqs. (3.1) and (3.2) be equal ? As we pointed out before, m so d'erived can even exceed the total mass of the ik secondary system. (c) *y is the frequency shitt defined la Eq. (3.1) independent of the structure frequency of therl-th mode, rf 7 (8) On p.52 of Ref, 3, is the cross modai correlation coefficient in Eq, (4.16) the same as that coefficient defined in the Ft,0RA report (Ref. 4) or in the CQC report (Ref. 6) 7 II.2 PLORA Code (Ref. 4) (1) In Eq. (1), Section 2.0, what is the definition of "smail" damping for

                                                                                          ~

the close form solution of the cross coefficient ? Why is this assumption nootsaary 7 (2) On p.1 of User's Mtsnual, idiat is the definition for narrow vs. wide band? What is the critera to choose between these two options in actual app 11-oations? (3) On p.8 of the User's Manual, dat is the input data EH ? Now is EN related to the secondary systen to be analyzed in SUPERPIPE Code? (4) How dces FLORA approach account for uocertainties in the structural modeling techniques, material properties, etc.7 (5) on p.S of the User's Manual, what is the significance of the inpat para-meter FRAQ (exceedance expectation of response)? What value of FRAQ should be input for actual applications? (6) What is the value of FRAQ associated with all examples presented in the FLORA report? (7) In Fig. 6, Section 2.0, provide a better legibility of the time history solution near and at the spectrun peak frequency, so that it can be cam-pared with the other three solutions. (8) In Exmiple No. I, Section 4.0, the FLORA solution for Mke 24 is below mmmnummmmmuummmuvuu"~~.,~~~.-...- - ....-- =~~~~u~~~""~""~~"~~~~~.

a, _ .m _.1. .-. .~._.

           ~

the time history solution by as much as about 307. at some frequencies  ! near the spectral peak. Please justify the sufficiency of the FLORA j solution with respect to actual applications. i (9) In Example 3, Section 4.0, plea.se enlain why the FLOR 4 solutten exceeds the Bechtel envelope spectrian at tae low frequency and? Does it mean FLORA theory may not Work Well for low frequencies? Also, please show the raw Bechtel spectra prior to ther broadening and enveloping so that a more appropriate comparison with the FLORA solution can be done. -

              - (10) In Se4 tion 2.0, is the. modal correlation coefficient defined in Eq. (2) the same as that in.the CCC report (Ref. 6) 7 (11) Is the amplifloation Aanction tecm the grouAi spectmm to the generated floor spectrum in FlDRA independent of the property of the ground spectesan because, as we understand, the amplification is theoretically derived basW on the assumption that the ground action is a white noise (Ref. 2)? If the above is true, please pmvide the ataserical values for the amplifloation curve from FLORA for the following case :

Structure - a slagle DOF structure with f,a 5 Hz and < hap 1Ag of 5% ag = 0., and secondary system damping = 7/. Then, repeat the above case with the exception that f s 10 its. 3 II.3 Correlation ccerficients Report (Ref. 5) (1) What is the difference between SUPERPIPE and RV-SUPERPIPE7 (2) On. p.4, (a) Is Sk generated fran FLORA and then as an input to SUPERPIPE7 (b) Is Sg generated within SUPERPIPE7 Aod, does SUPERPIPE require the building modal properties and ground design spectra as input dat 4 for the generation of (7 What klad of building acdal properties are needed for idput M GUPERPIP87 (3) In Section 2.3, how does the user decide whether 3RSS or absolute sum shall be used to combine the dynamic and pseudostatic components? (4) In the example problem, (a) did the solution use only 8 medes? (b) how Was the time history analysis pertorised? (c) what are the input spectra

                                                                                                                                                                                                    ~

for the spectma method of analysis? (5) Is the correlation coet. p g different fece the CQC model correlation coef. in the CQC report (Ref. 6)? And, what building modal properties are required for calculating p 7 g 3 I DillllJ JilI6J 664BIllidl6 6 d o s illJIS V Ein lill4JJllilllllElllibilllllVilllillil?llililIVIlJilll !illld J 6 6 8 E F F D 'FE F F F E A I FE EEEl'e r r e n t

  • E*

e

(6) What is the definition of " group leYel"? $ (7) On p.5, in the definition of Cg why is the right hand side of the expression independent of the parameter X and L7 References - 1.." Guide for Practical App 11oation of SASSI Program", Impe11 Report C

2. A. Der Kiure6hian, J, L. Rahn and B. NouWd, " Dynamic Response of Light Equipment in Structures", EERC report, April,1980.
3. A. Asibra and A. Der Kiursghian, "A New Pioor Response Sepetrun Methcd for Seissio Analysis of Multiply Supported Secondary Systems",1ERC Report, June, 1984
4. " FLORA, A Program for the Direct Generation of Floor Response Spectra" Impell Report.
5. " correlation coefficients for Combination of Piping Responses" Impe11 Report.
6. "Ccaplete Quadratic Ccubination Technique for Hodal Responses",Impell Report.

G l l l

      . . _ . . . . . . _ _ . _ - - . _--                   _-       .          __.. . ... 5 2 _ . - .

Enclosure 4 April 1, 1985 SM85-60 TEST PROBLEMS FOR'SASSI, FLORA AND SUPERPIPE COMPUTER CODES AND CQC RESPONSE COMBINATION METHOD BY

,.                L. Shich      Lawrence Livermore National Laboratory N. C. Tsai        NCT Engineering, Inc.

f l FOR Long Tern Service Seismic Analysis, SONGS Unit 1

   .                                        ~

4

                                                     ------------ _-- - _-- ___4 . _ _ . . . . . . _ _                   -

e

  • The purpose of the test problems designed herein is to provide the reviewers (Lawrence Livermore National Laboratory and its designated contractor) a better understanding of seismic response calculation theories and their application proposed by the licensee (Southern ' California Edisore Company). The problems are so designed that some of the tasks will be performed by the licensee (or its designated contractor) and some by the reviewers. Table 1 defines the problems, required output
                             , quantities, task responsiblity and interaction between the lienesee and the reviewers.                              The required output quantities should include input and output listings in addition to those specified in Table 1.

9

T bla 1 . . Toot Problomo for SONGS 1 L~S Progrco Mathndolegy Problem No. Purpose Tasks to be Performed by Licensee Tasks t'o be Performed by LLNL/NCT (1) Soil-structure Generate floor response spectra by Generate corresponding floor response Interaction by SASSI. Input data including soil- spectra using both frequency-independent SASSI structure system and free field impedances and CLASSI ( freq-dependent) motion time history at surface are impedances to model the foundation. given in attachment. Required out-put are also specified in attachment. (11) CQC Method Calculate pipe moments and support Calculate the corresponding pipe moments g for Modal Re- forces for the RHR piping system and support forces usir.g both the time sponse Comb. from Zion Plant using the CQC method history method and the CQC method, for modal response combination. The required input and output are ape-cified in the attachment. (III) Floor Spectra Generste floor spectra using FLORA Generate corresponding floor spectra direct Gener- code for given structure and ground using time history method. j ation by FLORA spectra. Required input and output t

are specified in the attachment.  !

i (iV) Secondary Sys- Calculate the response of a secondary Calculate corresponding secondary systet. , tem Analysis system using SUPERPIPE, based on in- responses using time history method for , by SUPERPIPE put data specified in the attachment the coupled primary-secondary model.  ; and the FLDRA outputs. Required  ! output is specified in attachment. t i t t (

                                                                                                                           - t-k.

I

                                                                                                                       ~'M- . - -
                                                                                                                                                     ._. . . . . .. _. .. i .1. Zj .

NCT ENGINEERING M;ccr 5m65 ou,,ccr Teo L uce 2. ,,,ccr . / COMPUTED SY N CHECKED BY DATE 2NK REv.

                                                                                                                                             // '

A TTACH MEMT I. Te st P>oble u fo r SoLR-SAch L h yr _ 5 A cruu. Nw1'~ Nolc Ms. flo Ja l Tho s s ( t 'ps) E L. De7' d " 19 * '" U

  • M f /f!> b. .

E t [ g,'5 - - M 2i t o b

  • ht Sedh ik ew WMvhof EL,fEuu - 4 2430 y k W El 165.1 -

2 h 3oto (44') { fD ) (it') 0rQ l400 Too 2. 8 X to g E L M.'I - 7 '+ ' i o @ 9i* S'* * / 7 * 'O'

                       ,                      &                                      @                  qqo                     Too                / T y 10' E L (2),j -                f     o            920e                         g                  99,                     to o               o, p y fp l E L, lo ) ! - !                   <

b 4:eo.

                                                                                     @                  190                      Coo               C L Yl0'
                   $$%- 4 y                                                            S E L, W 4to o 4to*

O'" M % } A oof e05. ~ Et,6h - 3 o _ Oh % h a % < c!. ~ : ,20000 c.p s W 6ta= a E L 41,F - 2 " ww' - w n aD -mx o/s b 4 5. s t o" k up - -(t ** ]!u lje.j n a v .s - i , wa t ~ p ., , ,,. ., , ,, , n. . w s ,~ _ S 9 X 10 ' ' P/4tt "A o.17[ , se%1 ,

                                 / (L.uk___

r, = 6 5 " ru .ict C a ,. oe Base e bod bMP"N'2  : s C i F lO # O' O

              '            Ha          :pce                                                                         t Siearw,vevcoc2+-cs (T4. =
  • o s e '%ee.
                ,L                 '
                                                                 /
J A u>ca p - ,
                                                                                                                                ^(a.a = * ' "/ s4 J O ^ 5 f r. - ; fs I. C
                 '1               <              >

G : , 4 c. 2 s p r Fiq , i E m O. - SIru CAM h1T' v- __ ___ _ ___ _ _ - - - _ _ -- ___]

4 m.-+** ,m - e a e v sv. .-,+m s. g ,,e m1 ,y, _4, , , _ , , . I_ NCT ENGINEERING m ;ECT 5oN65 c ;cer re o P,e We m 2 suct, t COMPUTED BY d CHECKED BY DATE ['REV, 3wp8 0h9 r>ceafer eL*w M LYo <g [ vee-[ Add,k ,x

                             ~

t* ~ w, s a- uct.L qiopews w Ose not u

                              -p.                a . a ,. , 9 m u s , ,                                           .... - ~ ,.

JL ZJ Cf

C. EJ.-t, gedecJ vJm JA pm unsanfM. _ W Ha

0. 3 , 0 . 4 , 0. 3 , I, I'S o 's ' Si ' is 3 *[i - ", UY s [s [ Y, & S* ~, 9.

~?. t , E, 9, lo, 1 1,, /[, 2 0, 3 C, 3 0, I 4 y, u' 's s. ...u o ~ ').6 . - kr ~ ~C. . j i ~ m-- . _ . - , . . . .m A. :m.. _ .: _ .2.__.. . son 6 s NCT ENCINEERING enosccr suescer Te-rf P, . bra - I surcr 3 - comPuno sY M CHECKro BY DATE- 6 [REv. ., y) ,e rt- ew & c coc ma. sec esor3 strucTuv tese w A 34, a J U u A a sofog kyew-.pi,y . g - (RHR) g .tL 2.6 = clew p M M 4e

m. %p'pgLa e aF92.

5 ?T ffa$raf LtL) p@ d c4 pap M A M Pg S AP4 Qt -f JL J o-f n . Lit h. { ear pA- sew. ~ j~Ae .v<~L'cd L' rect'w la ds 3D hy .tL y -o.ml1 Iwp# a 'Ib $1u Q&4a % 4 LujJJ2 m ~ M e d - 4 M s p e d r e.- (Ahshauti.4) Q 3 y dwp

16. ~ kysDyen,- a. z de wa +u n n 69c.sJ.

elareeC n s. 1 ODp.3 Pn.kJ k ks.e 6 v for ea ch dwebu of eesrlp.Leinpf, O ufp f~ 3 / ~om..* AA a2 .b e $ & 4- ,c 7 6/e L. M -f'or c e1 4 a2_f 2a m por25. Do mf yerfrn d 're eb'ne -Q w nz.;- jaA,L rd. & * < a s p ,i. a ny>one.,fs. . - . - - . - . . . - - . ~ . . =="':= -"-""--t NCT ENGINEERING s 3tcT '##0 k Test Pro ble- I smen pcm

  • coueuTromy 44? cwrento aY oATE 3bI//1 REV

/ /~ ' Tahlc L . Outytd f.oca%O o-j S'p, Mome t Res Am71 v

  • He Pipe Etewed Uv. n o .h u. .

I T 2 3 6 3 4 8 4 4 1 5 7 fE i il IT 7 ly /7 8 IT 18 7 16 /7 /o 17 L/ // /7 2L IL zo 13 /3 */ JS /y 22 (6 /r 14 s8 li 23 3L /7 31 3S /F 33 36 i7 39 .38 to Sf 31 * 'I 41 37 at 9t 4r 13 4+ 49 2y 47 50 tr Cl CT 1( 59 C7 17 S') bo 27 to 25 29 61 47 3o / 68 3I 56 73 R e L r 's . % .4oc ,,. d G L. , r, A P H R. >~, M a . - - . _ _ . .. . . _ . . . _ _ . . _ . _ . . ._ . . m ;_,_. . g; 3/29/;3- I C, .) @ NM6HT No. 5 nod 6 No. O- .  ! SUPPORT @s o* 'N so 46 , M g , y Wbe ' 77 Z RHR Fl6, t RHR PIPINC1 MODEL , PRogtes g , 1 O ./

f. . . .- .- . - a... ~ ::. u d w , s. .. ..n.  ::- ~.  : a = a. - . . . .~ - .. . - ~ . . :. .~...----,a e

.J v b Y- , , )i 1 l .. I l l i 4 0{ i . e e . 9 J 37, - I ~.  ! C l t  ! i bd 5_ l l ' a w I e g g - i  ! '1 - e,i _ a I . f G e 1 - o e f b ', l - 0t  ; 4 C L C

f. l -

, _m  ; . I  % _. C 1 - _5 n. C D C C C *1 O W d'# *O "ha s asd i o.%.,, . > - - . .. - _ _ _ " "* -e o em 4 e 8 O e %e e W

  • 6

&Y l - st - ( I f l l i Of e 1 b CZ = = 6 , i 02 C ' e e.e 1 === 8 . e / 49  ; m i I / 1 Q l - . I U J, m e \ l b 1 C. ,- ' \ L. i a p # ./ 49 - a t i ~ t r ' ' 2 C \ * -- N i  :. i e , g c c c c c , e b N w N u.. . ~ .  :=-,..- .. . . - . * * - _ _ _ . . .I NCT ENZINEERING , T*O f'ebin- I mccT 6cM65 sus.itcT swccT wo. r l cowuTco ny NW - cscentoav oArc t/> f- "y o- nov-- E Ted Proble- [u Ft oeA N re a Re :p < . e J r *c% 6 * "' r*T b Shetac pnea cL I L sp m y s L e M 4 n .a ~ ~ sk, e-v d- a Tg.1, & Lm wat - p% c s.i ~ ugs luyT . tut n6m is m -jaa M Strsu tm damp 5; Es 6) per. m a dt- . . L.g# N ot j J .J1 y r a y 9 ,e h m m g  % 4. . . r , o . s 1, .. s, u o.or a y g aeths. ( k ebnent .E ). Dafpd Gepb d M Nuw- -- t 0 Seyoreie $ y w y

  • dva. certesp ne $a Wh>

-f.I% } M *~ }(>~ te--.a. J4 x< e%-.0 vn far: } u d- syee k d.~ C.' 4~ g w .,s 3 /loss.[r* w Lsted a Proble , L jlus -J% &.t m,0 fr e []M -/ Ired basc && fobouf J. 5 Hg), l' A bp Rat,'o : e , ,,, N-e c.a.6 % (IJo de 9) ; /,4 , // , EH : O, .TO,

  • f , 2$^**f FRAQ - C, +5 ye

.. L .L a .1..:' e I .-u. w .. n v.-, t O s [

  • _ ..' . - . . ~ _ . . . . . - - _ _ . - _ _ . . . . - _ - _ . . . . . - ~ . . , ~ _ ~ - . . _ -

.L..~ O @ k' i 1, Or I i $t E I, c, . . 2 / i f $2 o o o O )i - 02 a i / 5 l / $ x ,, I i 91  ! \ l .O I e / / ,/' / CL hN w f ' f /(fi 6 id N 5 S Ed w_tk 0 ja E , m e :c e e e,, e M M M en h ...:~..- . - . .. .. - - .- .=....,- e ~-. - - .- -. . - a . q , , gggq, NM MGMMNG eno xc7 suexc7 Te o P,c,1,tm yy ,gg g COMPUTED BY # CHECMED BY DATE _7.[ d EV. _ / /' IV Test Probleu -for supeReire .< tru8urc Desigp%% , $< fiog ArueTua k .-rt a u m cu  : tite 3 .a u / A P u ble .111.. Jb " w egAracM u a. pi q sy L azt-cL J G3c. (0 : an/ G,ge (2) : h& fScry hr & d$ ek W ll- d struk nw 4, ? , m // eKL T 3 Pre 3 s N E.u h n y . o.es-o l2, I f M if 2-- E L to ? , Pr o pe rter o{ mpipQ . A, gg ,~,g3 _ EL t7J.y' g d, - 1. o 6 2 s- E : 6.0718 y p i4 7Hi4 E' '"4 -t, = a. +ie' 7 kJ : 0.3 Y =~17 K'F/ft i,,y E. L 113 2, 04 by f = o 02 4 - ,,, 4 . - ,,_ ce n. Nede Q - o utp d .l.c ' M ( wsowt 30' Case.(l) CeseJ 2 ) Fg 3. SeWo,9 SArveIwvL 4- % Pr.uw 19 Tw put g v.-A 0 02 w apd em .6 7J w <bsca hrJ ^L l% blew 2. _. _ .. . . ~ - . . - . . - - - - --- ' * * -'^~~~^i.- enojtCT SON 6 S NCT ENGINEERING sue.scer Teer P " b/e - m succTNo.- 7 COMPUTED BY MS[ CHECMED BY DATE #/' /DP REv. _ l Outed fe W % A see. U V g For eacL cw , e,-tpr % -{onf : to) Pe A A m m Ts c2 W acuc&of a TQ 3 by crosse s (b) bu-e -farcecs ) n A hwfat p,:pecs). cc) a , a yw m .4.. -- g % -,y a b cEvut e +% 4 cL r n u ~acu x . * (d ) gK , 3 ,z,,, m g_ ,g ., , , , gh . * * ~ 4lC 'ih e ds Wph A w/ k M o~ft , ; - % n u d o cP & . p m J ~ p J r u e Tu s.n. A L loed ~ k n flu. pAE% ry 4 tau W ita,pecb'dy , ypt  % u b .,wp-r : de&c : rse :-H. ni< ag & ps&,ee rg - paoq shelm . M , /. g o .u q + M as .s tu ik .f+e A <.e Ic - n

  • u. u ~ . m .n 7 ra nu .

G e

  • ____f &-

Ahhs CO . LINES: 1 50 - -0.236976-0.222618-0.209606-0.194120-0.170229-0.136097-0.094971-0.055278 -0.022507 0.003460 0.026276 0.050467 0.075248 0.098141 0.117694 0.135228 ' 1 O.155707 0.180638 0.208340 0.233551 0.249818 0.254597 0.246310 0.225928 3 0.194734 0.154360 0.108096 0.061076 0.019440-0.012384-0.033761-0.045940 --.4 -0.051945-0.052559-0.046846-0.034730-0.017543-0.001357 0.007834 0.006925 5 -0.002936-0.013473-0.018716-0.014097-0.000237 O.016398 O.031615 O.038625 6 0.036611 0.028187 0.016695 0.006378-0.002315-0.009112-0.014116-0.0174e7 7 -0.018234-0.016146-0.010580-0.001312 0.011050 0.025572 0.040095 0.052769 8 O.062550 O.071352 O.076881 O.083318 0.090765 O.097883 O.105821 O.106749 9 O.106271 O.105506 O.105587 O.108483 O.108864 O.106426 O.097376 O.079043 10 O.049081 O.013599-0.027679-0.070757-0.111059-0.145971-0.165853-0.171066 11 -0.160274-0.135186-0.099448-0.061373-0.025384 0.000404 O.021417 O.03OObs 12 O 023407 0.009668-0.007170-0.023168-0.031803-0.039880-0.041845-0.039404 13 -0.034474-0.029533-0.026695-0.031381-0.048047-0.077996-0.120489-0.159984 -O,192559-0.211829-0.217124-0.216683-0.207779-0.200323-0,193096-0.I81618 14 15 -0.163456-0.127068-0.073893-0.003555 0.077462 0.153420 0.204659 0.213596 16 0.177508 0.112393 0.046829 0.013020 0.025270 0.078448 0.149641 0.205335 17 0.233812 0.220300 0.172294 0.104661 0.028512-0.03643e-0.087446-0.116980 18 -0.121206-0.105382-0.076968-0.054274-0.049174-0.064646-0.092411-0.126169 -0.153928-0.173542-0.188322-0.199080-0.212613-0.218200-0,208138-0.176714 19 20 -0.115958-0.049650 0.022413 0.083647 0.119389 0.129888 0.099533 0.050301 21 -0.005900-0.056667-0.082402-0.096593-0.085278-0.057844-0.027464-0.004795 22 O.002922-0.005132-0.027958-0.063552-0.114560-0.165786-0.221052-0.273199 23 -0.314268-0.333002-0.333882-0.308712-0.261858-0.202581-0.143811-0.092168 - 24 -0.055147-0.031572-0.016122-0.011030 0.003599 0.014658 4 021931 0.026296 25 0.012207 0.019776 0.021888 0.022823 0.025745 0.022970 0.027005 0.023675 26 O.014328 O.002021-0.010936-0.025782-0.041516-0.056055-0.065227-0.056156 27 -0.045999-0.021920 0.010542 0.045321 0.089485 0.115988 0."40741 0.157727 28 O.161528 O.146582 O.129224 O.108221 O.090347 O.078367 O.066284 0.061207 29 O.054161 0.047160 O.043343 O.049167 0.049999 0.049633 O.042020 O.024298 30 O.014412-0.014303-0.029217-0.029655-0.020423 O.012256 O.017832 O.025852 31 O.029834 O.025289 O.017919 O.002209-0.009627-0.017480-0.024269-0.033114 32 -0.042272-0.050745-0.056388-0.058725-0.069111-0.066930-0.070116-0.076902 33 -0.OM4907-0.123915-0.125508-0.139241-0.155983-0.166669-0.220524-0.208259 34 -0.216841-0.232301-0.236471-0.256799-0.222283-0.201548-0.193496-0.189150 35 -0.161260-0.156608-0.146525-0.139067-0.136613-0.102271-0.096388-0.063198 36 -0.012051 0.042939 0.124782 0.160759 0.202632 0.239558 0.257989 0.295658 - 37 0.2'0465 O.233493 O.212332 O.189447 O.162846 O.136803 O.12O203 O.I17414 38 0.126396 0.109163 0.128419 0.127594 0.111898 0.089410 0.048886 0.028353 39 O.003517-0.018655-0.032453-0.004546-0.018000-0.024419-0.034910-0.054434 40 -0.078453-0.092800-0.089311-0.065612-0.029752-0.018873-0.008002-0.044298 -0.123422-0,223245-0.253401-O,317040-0.305178-0.240157-0.160889-0.094805 41 42 -0.066956-0.067230-0.087207-0.118197-0.188905-0.209418-0.229027-0.229217 43 -0.196712-0.120674-0.048019 0.019924 0.064431 0.079404 0.064152 0.049204 44 O.033254 O.021022 O.010649 O.003777-0.014950-0.031012-0.036803-0.025091 45 0.031230 0.073207 0.128979 0.177668 0.200529 0.197946 0.158146 0.107157 46 O.058324 O.022716 O.028042 O.036690 0.078551 O.141476 O.208651 O.244344 47 0.290313 0.309825 0.309343 0.295487 0.203803 0.181994 0.123105 0.049887 48 -0.011364-0.058631-0.068359-0.067024-0.058301-0.043097-0.00431G O.004419 49 O.009083 O.002680-0.014662-0.050085-0.064338-0.076735-0.085460-0.089680 50 HoRizomAL G Pous p AcceaesTic > Tm riis roey , FOR PPOSLEM k OU = G nME27P=o.005Ot PSAM GROUND ACG LE R Arc t) = L e in s- 6. MTOP. RE,THe Tm c c'oY :H W G P LosA ; W6 7pe 5 f . w e .: C E _ 5 m ' 'J L G LJ A_ V ^C- _ _ _ _ e

  • Q l

l j I l LINES: 51 100 -0.075375-0.071281-0.056581-0.036529-0.017536 0 033660 O.038283 O.047443 O.031855 O.015934 0.005557 0.014168 0.024142 51 -0.014785-0.008593 0.004625 0.019760 0.064732 0.065314O.001301-0.010997-0.010605 52 0.072086 0.074434 53 O.062425 0.023884-0.008370-0.041833-0.066276-0.077843-0.114930-0.102810 54 i -0.101889-0.101638-0.089947-0.042861-0.013510 0.020545 0.046038 0.056541 55 -0.020065-0.005541-0.012291-0.015426 0.003241-0.029104 O.027164 O.040040 56 0.022814 0.001171 0.012241 0.005314 0.004532-0.003494-0.023001-0.033552 57 -0.059474-0.072146-0.075743-0.076546-0.070137-0.071083-0.066704'-0.059758 58 -0.054209-0.037544-0.037993-0.030242-0.017351-0.005620-0.050738-0.037777 59 -0.046217-0.057826-0.057314-0.110258-0.079278-0.083070-0.108827-0.136368 60 -0.156557-0.175304-0.202630-0.241830-0.286066-0.318043-0.342162-0.346850 - 61 -0.336239-0.315917-0.243102-0.225778-0.192348-0.160591-0.147251-0.108596 62 -0.141416-0.157231-0.160590-0.162433-0.101799-0.118318-0.096839-0.050S75 -0.001460 0.106288 0.123853 0.163871 63 0.181992 0.173098 0.176709 0.109864 0.2084280.121322 0.234280 0.088501 0.216316 0.201592 0.034100-0.014457 64 - ~ ~-6 5 -0.124870-0.120775-0.138069-0.156877-0.155586-0.108274-0.100725-0.118096 66 -0.176033-0.261214-0.328758-0.359932-0.323113-0.229622-0.109754 0.002946 67 0.089099 0.138928 0.155989 0.149883 0.278229 0.226943 0.240602 0.284917 68 0.320475 0.418398 0.394218 0.399146 0.409306 0.391532 0.261712 t.196250 0.105101 -69 0.024150-0.029125-0.047291-0.076811-0.101117-0.116249-0.113344 70 -0.105102-0.057102-0.009647 0.027132 0.045065-0.036203-0.056150-0.128804 71 -0.220400-0.291981-0.322048-0.314531-0.283677-0.245088-0.206603-0.317703 72 -0.250650-0.247983-0.273752-0.289990-0.347906-0.324222-0.338279-0.377573 -73 -0.412434-0.322519-0.321316-0.261337-0.181352-0.115601-0.120316-0.085983 74 -0.074636-0.068953-0.057385-0.076604-0.046410-0.033933-0.031955-0.029130 75 0.059203 0.058966 0.090944 0.129311 0.149638 0.212625 0.177598 0.166935 76 , 0.168599 0.161119 0.169524 0.117143 0.075984 0.047340 0.025876 0.076394 -77 0.053305 0.070674 0.111691 0.153613 0.315455 0.310290 0.357016 0.423135 78 0.467990 0.651898 0.596847 0.612469 0.665953 0.706525 0.820321 0.773611 79 0.771344 0.798806 0.821251 0.640624 0.651556 0.586363 0.502980 0.446294 0.128711 80 0.174840 0.096445-0.025781-0.098638-0.105102-0.059272-0.035676 -0.054335-0.094353 0.030180-0.008330 0.030374 0.091034 0.127551 0.189778 81 0.181771 82 0.372535 0.313104 0.273005 0.331758 0.289718 0.339656 0.355185 0.361240 0.213777 83 0.194362 0.164621 0.335919 0.318213 0.282207 0.251507 0.242141 0.220014 84 0.138477 0.192605 0.172497 0.183052 0.200233 0.204833 85 0.244720 0.336618 0.295709 0.219128 0.331079 0.217178 0.226777 0.231685 0.250392 0.243937 0.260132 86 i 0.361434 0.366910 0.359536 0.346970 0.295733 87 O.269328 0.217923 0.157607 0.107620 0.136644 0.110o41 0.117603 0.138529 88 O.159150 0.169574 0.190817 0.211839 0.230325 0.242861 0.166448 0.190143 89 0.186952 0.183590 0.202046 0.227324 0.279991 0.317141 0.337065 0.349832 90 0.267458 0.318966 0.345408 0.371130 0.415425 0.305821 0.376082 0.328857 91 0.200993 0.059909-0.035642-0.088471-0.097460-0.083848-0.065566-0.090486 92 0.090846-0.129770-0.197321-0.274896-0.486717-0.509480-0.566281-0.616010 93

0.618000-0.589896-0.501705-0.433437-0.402544-0.402385-0.152302-0.221924 94 0.182544-0.109029-0.078593-0.011014-0.095272-0.120812-0.090528-0.038351 95 0.045294 0.002473 0.025881 0.039437 0.044903 0.016435-0.024773-0.098651 96

*0.185248-0.261267-0.474757-0.459380-0.480585-0.498612-0.476174-0.313696 97 0.264613-0.202091-0.163711-0.162498-0.028766-0.086233-0.071405-0.027022 0.000315 0.001660 0.002085 0.031969 0.097836 0.181104 0.184387 0.250626 98 99 0.263922 0.250765 0.237295 0.213683 0.215320 0.202468 0.178683 0.15295o 100 . -. - . . . . - - - - - - . . $ c }/f"_ LINES: 101 150 0.051357 0.056866 0.027363-0.008697-0.030954-0.193616-0.155603-0.188481 101 -0.255352-0.307794-0.185282-0.216576-0.201381-0.190313-0.211987-0.015067 102 -0.104565-0.070138 0.022090 0.090719 0.199577 0.162411 0.169944 0.212641 103 0.251292 0.267591 0.242258 0.216531 0.205616 0.206463-0.013319 0.027995 104 -0.019658-0.087188-0.110589-0.214193-0.135507-0.131073-0.176441-0.219210 105 , -0.173630-0.167301-0.135704-0.106820-0.089719 0.039505 0.034774 0.078276 106 0.130089 0.153200 0.288453 0.231023 0.239668 0.277998 0.295521 0.163491 107 0.143377 0.090157 0.047823 0.037007-0.168214-0.110966-0.151288-0.227963 108 -0.273295-0.243396-0.210331-0.197651-0.196798-0.210228-0.154730-0.170898 109 -0.153007-0.123851-0.101343-0.002450-0.005785 0.028250 0.072298 0.096474 110 0.231057 0.182792 0.190987 0.223059 0.235506 0.315248 0.257803 0.257850 -111 0.301668 0.350454 0.412711 0.402795 0.396687 0.379451 0.401852 0.214279 112 0.211847 0.131191 0.032457-0.028716-0.230446-0.171934-0.191386-0.245814 113 -0.272668-0.364203-0.282794-0.260278-0.289077-0.331246-0.297349-0.318688 114 -0.312490-0.306989-0.316560-0.210064-0.251213-0.232995-0.193306-0.171050 115 0.017248-0.022025 0.044029 0.172151 0.293398 0.611109 0.578823 0.612385 116 0.659974 0.660549 0.768484 0.673014 0.695330 0.810267 0.909882 0.978500 117 1.003214 1.003219 1.003225 0.977791 0.927103 0.894327 0.814379 0.738472 118 0.703943 0.477529 0.570209 0.570083 0.528733 0.509539 0.376338 0.440259 - 119 0.413343 0.324840 0.236229-0.023658 0.015392-0.010870-0.060467-0.072558 120 -0.210721-0.084053-0.044830-0.075178-0.124221-0.384425-0.357985-0.431856 121 -0.556862-0.659177-0.827450-0.782584-0.766817-0.773799-0.772295-0.483365 122 -0.497795-0.422548-0.347562-0.343548-0.052663-0.230941-0.248647-0.188079 123 -0.157791-0.084126-0.183298-0.203889-0.152195-0.083220-0.263792-0.212345 124 -0.257821-0.318085-0.333557-0.493734-0.423399-0.452224-0.529740-0.583888 125 -0.556485-0.525073-0,485911-0.460885-0.446740-0.357088-0.348326-0.310954 126 -0.274035-0.257837-0.193862-0.213776-0.201658-0.177402-0.164792-0.200394 127 -0.197020-0.190721-0.171583-0.144369-0.118580-0.112801-0.119605-0.135382 128 -0.157743-0.114174-0.163999-0.187369-0.196261-0.204800-0.245454-0.251280 129 -0.259669-0.259716-0.246286-0.229661-0.204499-0.189016-0.183936-0.184685 130 -0.257722-0.239643-0.246102-0.258095-0.260259-0.212402-0.202023-0.185356 131 -0.175647-0.177536-0.183936-0.192388-0.195523-0.195740-0.197377-0.277107 132 -0.2e6778-0.283695-0.30549e-0.312349-0.326021-0.304616-0.301230-0.314568 133 -0.333942-0.172556-0.225024-0.208534-0.174783-0.171142 0.046809-0.051758 134 -0.032414 0.047819 0.109904 0.150592 0.118899 0.105901 0.119935 0.140082- 135 O.014226 O.020680-0.034400-0.100881-0.138098-0.129435-0.119671-0.108709 136 -0.102099-0.094744 0.123957 0.09559e 0.146308 0.216764 0.251206 0.131613 137 0.119215 0.072411 0.034223 0.028525-0.160347-0.083389-0.096118-0.147387 138 -0.175127-0.124499-0.087233-0.044787-0.023978-0.031015-0.213478-0.212824 139 -0.274056-0.350408-0.394961-0.691134-0.596417-0.618153-0.687689-0.715608 140 -0.678987-0.580984-0.497036-0.459669-0.465311-0.433461-0.480679-0.510049 141 -0.539508-0.581403-0.512723-0.576763-0.573694-0.536062-0.503954-0.384621 142 -0.406961-0,381047-0.334266-0,307997-0.330341-0.366201-0.400472-0.409769 143 -0.390880-0.226412-0.216979-0.159671-0.091761-0.052150 0.065736 0.001748 144 -0.026674-0.035542-0.051962 0.082477 0.012989 0.032903 0.110211 0.194835 145 0.439236 0.463430 0.543243 0.646060 0.703004 0.599472 0.544497 0.445749 146 0.357366 U.307328 0.259310 0.269561 0.275496 0.288469 0.321667 0.375577 147 0.432344 0.479939 0.510831 0.526394 0.404990 0.428816 0.396722 0.345807 14G O.316756 0.324708 0.352963 0.378v46 0.384955 0.375054 0.38629e 0.363855 149 0.352714 0.341248 0.319904 0.263341 0.043415 0.221577 0.211861 0.220890 150 Y/f O.287818 0.316631 0.369510 0.429519 0.481005 0.461289 0.497296 0.502367 151 0.492484 0.481427 0.200339 0.235100 0.151021 0.024959-0.059785-0.320112 . 452 -0.240362-0.258340-0.326736-0.368404-0.305698-0.251248-0.190414-0.161324 153 -0.168538-0.257186-0.265523-0.288864-0.317207-0.338694-0.524594-0.482757 154 -0.508476-0.561140-0.592956-0.645235-0.601045-0.582011-0.586368-0.594078 155 -0.399273-0.416350-0.348025-0.252357-0.183927-0.031752-0.052031-0.019264 156 0.040815 0.084448 0.108465 0.077496 0.044802 0.016606-0.015056-0.075210 157 -0.122000-0.171343-0.208787-0.229453-0.274425-0.273747-0.287184-0.302606 158 -0.307976-0.153481-0.182191-0.162915-0.137984-0.141572-0.191428-0.228932 159 -0.256016-0.260783-0.246366-0.4182OO-0.351604-0.3e4326-0.403352-0.415044 160 -0.250952-0.234999-0.178692-0.128949-0.111968 0.272293 0.1756el O.249723 161 0.388339 O.471898 0.669580 0.557667 0.536210 0.575237 0.601675 0.585840 162 0.526080 0.476256 0.457234 0.465948 0.375255 0.412797 0.404971 0.391511 163 0.404088 0.145825 0.249900 0.220477 0.136334 0.087148 0.167807 0.180298 164 0.183918 0.143449 0.067013 0.059215-0.008872-0.020846-0.008339-0.000638 '165 -0.178696-0.140782-0.153404-0.175232-0.173867-0.183164-0.143938-0.140360 166 -0.164702-0.193840-0.274989-0.253195-0.240785-0.227867-0.203396-0.177589 167 -0.141628-0.123724-0.125612-0.139851 0.041331-0.021607-0.006119 0.036856 168 0.Oh0455 0.192223 0.152530 0.192760 0.271306 0.327756 0.290200 0.271762 169 0.223811 0.182172 0.160648 0.199966 0.188573 0.202944 0.238608 0.287063 170 0.431113 0.465925 0.531025 0.597608 0.635000 0.594125 0.566179 0.512263 171 0.460657 0.431221 0.373499 0.396632 0.411504 0.423849.O.444451 0.695895 172 0.&83253 0.739837 0.799146 0.801924 0.959813 0.817091 0.771598 0.783368 173 0.792637 0.748543 0.705614 0.674955 0.677263 0.703854 0.682269 0.704998 174 0.692724 0.666799 0.645531 0.415923 0.449429 0.388155 0.294197 0.233637 175 0.027591 0.081606 0.046264-0.038772-0.105961-0.211888-0.173835-0.176909 176 -0.219316-0.268175-0.557181-0.496526-0.527185-0.593361-0.623689-0.718086 - 177 -0.609569-0.549215-0.527713-0.507185-0.495019-0.416071-0.358818-0.328663 178 -0.318185-0.278089-0.289519-0.285849-0.282866-0.291245-0.106479-0.168627 179 -0.145871-0.095108-0.077309 0.105276 0.001575-0.006797 0.035668 0.059845

  • 180 0.109788 0.040385 0.015235 0.037747 0.079311 0.051109 0.086092 0.092788 181 0.104346 0.139809 0.173105 0.223550 0.254969 0.271679 0.286408 0.288678 182 0.316650 0.336707 0.352649 0.372061 0.402880 0.427527 0.445396 0.450063 183 0.442525 0.358343 0.358353 0.328628 0.284789 0.244810 0.049994 0.077262 184 0.041520-0.011964-0.036545-0.256564-0.181004-0.200636-0.~291713-0.359630 185

-0.412495-0.399133-0.407495-0.446079-0.493711-0.266754-0.327300-0.269810 18e -0.178343-0.129281 0.119127 0.03:222 0.061559 0.145488 0.195406 0.428564 187 0.305200 0.287596 0.333353 0.364507 0.295033 0.249925 0.198998 0.185213 188 0.209549-0.046665 0.041583 0.000932-0.077799-0.107652-0.318374-0.217778 189 -0.249756-0.358323-0.448774-0.636140-0.573904-0.575934-0.624497-0.663031 190 -0.029050-0.586293-0.526604-0.490191-0.489216-0.293876-0.359450-0.340542 191 -0.298968-0.295882-0.109427-0.211276-0.190211-0.100000-0.025437 0.041562 192 0.006422-0.005733 0.013362 0.036994 0.113624 0.061910 0.028816 0.018818 193 0.022579 0.120260 0.104147 0.128723 0.170518 0.198660 0.152094 0.132046 194 0.078735 0.019821-0.024055-0.213175-0.185762-0.213471-0.250788-0.248496 195 -0.213127-0.128705-0.063548-0.034516-0.035401 0.007654-0.026791-0.040283 196 -0.046433-0.054951-0.176273-0.135186-0.117632-0.092838-0.039785-0.022891 197 0.058478 0.093930 0.088031 0.062451 0.206507 0.144070 0.147076 0.168969 198 0.164032 0.032625 0.013195-0.020997-0.037218-0.023107-0.364204-0.254393 199 -0.309260-0.427092-0.496225-0.718763-0.611637-0.617866-0.699253-0.773520 200 1 + = 1 LINES: 201 250 ~ ~ -0.708539-0.699553-0.654039-0.621654-0.621369-0.467834-0.523129-0.502904 ~' ~'201 -0.459234-0.445789-O.366912-0.434738-0.446981-0.424990-0.409027-0.280258 202 -0.325018-0.298689-0.228977-0.166386-0.011224-0.048980-0.038648 0.031879 0.093876 0.050153 0.026805 0.028565 0.041731 0.066516.0,063032 ~~~204 0.001433 203 0.032536 0.068777 0.079917 0.104278 0.108089 0.112320 0.114068 0.112663 205 0.184568 0.162088 0.171518 0.194170 0.208827 0.06782e 0.099544 0.073871 206 0.037847 0.028789 0.000036 0.028159 0.024431-0.008421-0.048349-0.134466 207 -0.131999-0.141223-0.153083-0.153712-0.325912-0.259767-0.269309-0.309001 208 -0.324516-0.286089-0.239198-0.199752-U.187269-0.196332-0.162382-0.169459 -0.143845-0.105064-0.073861 0.077290 0.052219 0.075875 0.111886 0.119495 209 210 0.180471 0.105750 0.072780 0.069540 0.067244 0.057177 0.034483 0.028514 211 O.047731 O.08404O O.048981 O.0947e4 U.103067 O.097663 O.099597 O.177300 212 0.161990 0.160284 0.153626 0.134750 0.086324 0.082416 0.081614 0.092524 213 0.117789 0.137004 0.180947 0.216287 0.243534 0.265158 0.440884 0.412539 214 0.434720 0.464146 0.461438 0.377406 0.337700 0.298674 0.282816 0.293137 215 0.194173 0.249323 0.249170 0.227146 0.216392 0.095309 0.122615 0.079020 216 -0.002917-0.072977-0.162193-0.146758-0.142686-0.148803-0.148700-0.295375 217 -0.230418-0.234542-0.276340-0.312618-0.524290-0.480740-0.524964-0.610411 218 -0.670403-0.548164-0.536004-0.470944-0.416274-0.410581-0.241160-0.343994 219 -0.360089-0.339324-0.343388-0.096279-0.220797-0.202084-0.101609-0.010461 220 0.407807 0.330388 0.409395 0.557211 0.650862 0.687819 0.594005 0.529344 221 0.524784 0.554275 0.473448 0.506325 0.488722 0.471362 0.490984 0.481132 222 0.555283 0.584475 0.581731 0.575013 0.414658 0.455761 0.421077 0.352878 223 0.307222 0.240211 0.293728 0.324979 0.334116 0.343724 0.250312 0.324779 224 0.350807 0.343390 0.331010 0.272842 0.293249 0.27985~ 0.241001 0.197977 225 0.194266 0.170719 0.169152 0.172109 0.167514-0.000934 0.016762-0.025411 226 -0.085596-0.124431-0.183004-0.169962-0.186873-0.226038-0.262478-0.274483 227 -0.264460-0.239241-0.210688-0.184540-0.236116-0.'197442-0.193481-0.206274 228 -0. 215978-0.110904-0.131832-0.117920-0.101657-0.106324 'O.'OB6251 "O. 016004 ~" 229 0.047372 0.123148 0.173608 0.190980 0.155827 0.134983 0.140561 0.158241 230 -0.124806-0.063383-0.121173-0.206904-0.237488-0.270586-0.188661-0.161810 231 -0.186412-0.226869-0.084176-0.144819-0.144136-0.141554-0.179601-0.161047 232 -0.264186-0.307333-0.307853-0.299540-0.218767-0.238335-0.215272-0.168093 233 -0.126160 0.100331 0.070904 0.130923 0.232966 0.313818 0.499332 0.466720 234 0.505449 0.593049 0.677588 0.582362 0.623328 0.589758 0.539564 0.512883 235 0.273743 0.317830 0.247317 0.129140 0.047875 0.138589 0.149236 0.205533 236 0.259121 0.289411 0.511233 0.485006 0.547995 0.636598 0.683311 0.619310 - 237 0.563463 0.495365 0.433680 0.387452 0.253692 0.259937 0.228809 0.190525 0.170058-0.043744 236 0.008671-0.028503-0.100021-0.144779-0.505445-0.412053 239 -0.474142-0.598454-0.665214-0.549771-0.463113-0.352358-0.277023-0.246023 240 0.046663 0.012366 0.103073 0.224483 0.282053 0.126930 0.081485-0.006239 241 -0.079982-0.117239-0.335579-0.299413-0.354561-0.446459-0.513622-0.726892 242 -0.680916-0.710eO3-0.774719-0.901309-0.767195-0.760208-0.740432-U.735111 243 -0.739104-0.663984-0.678410-0.65e980-0.621499-0.593843-0.387924-0.428070 244' -0.392212-0.332915-0.304873 0.032851-0.072693-0.019086 0.107642 0.194823 245 0.291812 0.222456 0.200955 0.230237 0.266082 0.292092 0.241748 0.182343 246 0.134837 0.102173 0.066437 0.038038 0.012913 0.002958 0.013877 U.011283 247 0.049809 0.070833 0.082020 0.094472 0.09504e 0.110020 0.105521 0.084732 248 0.060273-0.108348-0.077770-0.098403-0.135613-0.151713-0.294969-O.231853 249 -0.244011-0.302211-0.359653-0.405467-0.420311-0.448447-0.494716-0.545455 250 e

  • tival floor spectrus ( y,, 'p*,,, SWeg Tg.d' r.b, Me.

' ~' ' ~ spectrus deeping = .030 ' ~~ ~ ~ freq. (cpsi spectral accel (g) tes period (sect ~ 1.00 .1763 7.760 1.000 1.50 .2668  !!.660 .667 2.00 .3561 9.845 .500 2.50 .4048 9.445 400 3.00 .4397 11.060 .333 3.50 .5864 9.795 .284 4.00 .7080 9.000 .250 - 4.50 .9126 10.070 .222 5.00 1.2145 12.010 .200 5.50 .9305 0.605 .182 6.00 .5847 6.640 .167 6.50 .4091 3.635 .154 7.00 .3509 3.530 .143 7.50 .2719 10.975 .133 8,00 .2553 3.520 .125 9.00 .2678 10.850 .!!! 10.00 .2868 10.980 .100 - ' 12.00 .3456 11.670 .003 15.00 .2268 10.955 .067 20.00 .1876 11.655 .050 25.00 .1696 11.665 .040 ' ~ ' ' ' 30.00 .1698 II.665 .033 11.35 . .3433 7.125 .088 .30 .0506 5.200 3.333 40 .0696 7.995 2.500 .70 .1321 7.080 1.429 0 - O em-

  • s

T PAGE 1* A MACHINE F3/28/85 11:31:06 sex Y46 NCT ITLE e SI + RHR 0 PIPING la 1 1 e 0 0 1 1

  • 96 2 e e 0 e 1 1 1 -46.50ee 579.e909 -257.990s - ,

i 2 1 1 1 1 1 1 -45.500s 579.0000 -257.0000 0 1 1 -46.5098 580.0000 -257.eees = 3 1 1 1 1 0 4 1 1 1 1 1 1 -46.Sete 579.0008 -256.0000 e e 0 e e e -46.5000 574.6670 -257.0000 0 - 5 574.3330 -257.Sete 0 3 0 0 e 8 0 0 -46.5000 0 0 0 0 0 e -46. sees 573.3330 -25s.ee0s e  ; 7 o , 0 0 0 0 0 0 0 0 e 0 e e -u .5ees -46.5ees 573.3338 -2 i.75ee 573.3330 -265.7500 e e RHR PIPlWG MODEL 10 0 0 0 0 0 0 -47.2e71 572.6259 -246.7588 e it 0 0 0 0 0 0 -47.50ee 572.3338 -266.7500 0 0 0 0 -47.7871 572.1259 -266.750s 8 12 II 0 O 0 O 0 0 O 0 O 0 O 0 e 0 -48.Sese -48.00ee 571.4188 -266.75ee 57s.9990 -266.7500 e e SAP 4 T.NPtlT L.tSTin . { 34 0 15 0 0 0 0 0 0 -45.0000 570.1870 -266.7500 e e 0 0 0 e e -4a.00ee 569.5ese -266.75ee ic ii 0 0 0 0 0 0 e -4a.e000 56a. size -266.75ee 559.8620 -266.75ee e e t.JNIT - F T B - SE C. la 0 0 0 0 0 0 -48.00se 19 0 0 0 0 0 o -44.00e8 558.2500 -266.750s e - 23 0 0 0 0 0 0 -47.0000 557.2500 -266.7 e il  :  :  : :0  : : n :t u ! !!i:!! : :iit:?geo S:  : VERTICAL  : Y- Axis 25 0 0 0 0 0 -39.2071 557.2500 -266.4571 e .. U 24 25 0 0 0 0 0 0 0 0 8 0 e 0 -35.5000 556.2500 -265.7500 -38.5000 553.75.e -265.75e8 e e w 2?* 27 O 0 O 0 O 0 O 0 O e e e -38.500s 553.7500 -270.5es. -38.5e00 553.7500 -276.2183 e T435: F)ftc)B L E td A 23 0 0 0 0 0 0 -38.5000 553.75ee -281.9367 e 2'J 0 0 0 0 e e -38.5000 553.750s -287.455e e 30 0 0 0 0 e 9 -38.500s 553.75ee -291.0098 e 31 0 0 0 0 0 0 -38.5000 553.7500 -292.8420 0 32 0 0 0 0 e e -38.500s 553.7500 -296.9757 0 33 0 0 0 0 0 0 -38.5000 553.7500 -38 e O -38.5000 553.7500 -3.1.1053 'l 34 0 0 0 0 0 0 5.2370 e JP' 0 0 0 0 e 8 -sa.5000 553.7500 -304.8290 e li 35 e 3 3 ** 0 0 0 0 0 0 -38.5000 554.750s -3e7.8298

  • 0 0 0 0 0 0 -40.eece 556.2508 -3e7.e298 e 37 33 0 0 0 0 0 0 -43.50ee 556.2500 -3e7.0298 e  ?

a -l 'i 39 0 0 0 0 0 e -45.6287 556.2508 -307.0290 e CO O O O O O e -46.6893 556.6893 -307.8290 e =g, ll c 0 0 0 0 0 e -4a.75ee 55s.750s -3er.e29e e 'l ,l c2 0 0 0 0 0 e -58.952e 56e.952e -3e7.e298 e 'I C3 0 0 0 0 0 0 -51.4405 561.5483 -387.2395 e #\ 44 0 0 0 0 0 0 -52.8000 562.3130 -387.7798 e 'l 45 0 0 0 0 0 0 -52.4402 562.9369 -3e8.2192 0 j' C4 0 0 0 0 0 e -52.7500 563.9964 -308.5298 e , C7 0 0 0 0 e 8 -52.75e8 567.e010 -308.5298 e  %=# i i 43 0 0 0 0 0 0 -52.7500 57s.862e -308.529s e 49 0 0 0 0 e e -52.7500 574.7238 -304.5298 e emg  ; 50 0 0 0 0 0 e -52.750s 57a.5840 -30s.529 e 3 51 0 0 0 0 0 0 -52.7500 550.0440 -316.3290 e \m# 52 0 0 0 0 0 'e -52.750s sa0.ea40 -sii.e29s e e , 55 0 0 0 0 0 e -52.7500 580.0F40 -314.8298 54 0 0 0 0 0 0 -52.7500 588.e840 -317.9298 e t-55 0 0 0 0 0 0 -52.7500 58e.0840 -323.0290 e 56 0 0 0 0 0 0 -52.750s 580. 840 -323.3298 9 1 57 0 0 0 0 0 0 -52.7500 5as.e840 -324.2347 e N t . + M* ~ 43 g w, 55 en 8 1 4 t ifu I. I:

i .I:lII:m:

ei c2 . n. .. ..e. - -u . i .... w m m 63 . -: .n . 6 , , i i i i i i -.1. -.1. . .. ... .. -2. -: e . -:.. m . 13... .s ... i i - o.s s, i, i i i -a .c., ,s i .i .i .i . . -: . 18.=. n4 . .-:ya2- ....It 1 . -s,1 ns n m Hns . t, 4.. n.um . ... ..'t 1.isots- ,i n, . . n o 12 ..-n um --23..Ji 1, . o oss e 1. is . . . . -i . .os. nos4 s.u _ - .. aat.  : m m o ,m, . ., -i.s.. ,Is u. os. ... -n. m - >a i , - ss. .. -n . m i i i i i - ss. . -n m . 1. a .i i. i i i i - .1.1. ou. .. -n o ,. u, i . .i - .i .i .i -....1s. < ,ss. . -n 1 < .. o n2 .i ---.1.s.s . . . 2.t . i 1< . o,f....-a2 . ,<,no, a .J . . . -n i i -n.. i i i i a i i i i m u.s i i m i i i i i i -4 -.1. . tt nsot ..ti.-n o , ns i i i i i i . . . -n :.im ,i , u, i i i i . ...n o -n.t. i i o, i-co i i i i ,i i -31 .. o s. 4 . u .,fto ... -:-: ,.ve t' ft.= n . . -n no i i i - . n w i i i i i .i -: ..e e i i, i i i i -. . m ,. .. - -a., .. c, o 92 , i i i i -n . m .. . o; , i i i i i i - u ni .1,a m .i.. .. -si.n, .- o.s o i i i i i i i i i i i i . -n .n 3 . m,< . . 4.. -: . . ae,, e ,u.s .i .. -n . m. t vv ,4. i i i i - v 7: .i i i i i 6 i i i 1 :11.. . -n .m. t p .i..c.. .3. =2s i 5$ .i. . 53. 3 .ise .n -.s !I

5. o 2 .7..a . 2.. i i. 3... s.

i.i. as 3 . .7 . . 37 . i2 a Is I' 4 2s 7 i 22, il 25 .2. .7 .s .2i 31 .. 37:... .I2 IB . 2 IN !l

o. ..i . =2 s h I

 !,  ! !1  ! i 38 3 . i -w .s 2  : 38:28 !. . s7.s ...... i.ss.li ... !.!!!.!:.... . it..s.i

i. . . .

e v.1 i 2 j s .i 60 . i. i i 2 2 2 9 I ,8

I

I1 i *  ! 6 +?1i +  !  !? , ;e: .e e ' t :<  !' !' di!- C) " - E G A P ~ 0099900090e80090ee0099e0088t000908t0006t0e00980940s89s090s0, . 00 08 00 es00 909S 9e 5 .99.5 .8880.S.0.5 .00.5 5 .00.e.0090.e.009.2 2 .00.2 .e.0.2 .09.290.000.e.290.e.090.e.0.2 90 7.999 9480000 4897988s08s7.e00.e.980e0ee00080 0 000 9e0 0e0 0000t.0e080s0e007e7880e0ee0908089800098e00s0s50000e50es8se05 4 4H48648848886S886s5484s8SS8888478788878s4784888458s83s438s45 84699889906e006s6888s8009086880899989s88e8000060e09se04e82 {w9929980e8928992e2e98e90089998393e9939e83t4939999e39e998e93 I11 1111111 111 l 111i11111111 1 111 1l1 I11 1111l 1l11111-80800808808880e99e00eS40e00890089008008099006e800es00400e00. 30 30 00 ee00 8900 09 40 69 40 3 .99.3 .088090.5 .e.9.5 5 .S.S.e.90008900.5 5 .00.5 .89.5 .00.7 .00.s.e.4 .e.0 0.e.00. - et92s20ste0008000s7820002 0ssse00. 30998.008800000880002.9e9.e.00ee00090000 099 0 000.9992.000 899 08e000s030000se.0000900 344414444444744474744444444444434644444441444344444e4444444 5 5 7 7 5 ~5 5 5 6 6 8 8 5 5 5 5 5 5 5 5 5 5 5 5 0222922332228222s29211i111111110181118111e111s11111s1111111 0 9 9 e 9 0 9 0 e 0 0 0 9 9 e 9 0 9 5 5 5 5 5 5 9 9 5 5 5 5 2 2 7 7 7 4111811111118111918111i1111111131811161111111211111211111112 4 4 4 3 3 3 3 4 5 5 5 5 I123I4567S90I123I4I567a98123456I7I498I123I456I78981I23456781 T111T1111I12T222T2T222223133333T3T334T444T444T44455T55555551 0e12e3456759t012s3s45678981214596s749e012e34586789001234567 0l1101111111e222e2e222222333333930333t44de444044445055555550 0 0 e e e 9 8 e 0 8 0 0 0 0 0 5 5 5 5 5 5 _ G. e. t. 1 e1 e1 e1s1 s1e3 31 e3 31 s1 e1 749 e123456 739 e 123456759812 3 456 739 912 34567 8901234 - l111111 111 2 222222222333 3 333 333 444 44444 4455555 1 l1.0t - -~ 6 ~. .. , , - - . . . . . - . . . . . . ' . . __ _ _ , _ , _ _ 4 o v 1/ , e e e W O 4 NNNNNNNNNNNNNNNNNNNNNNNNO eweeeeeeeeeeeeeeeeeeeeeee +4+++++++++++++++++++++49 WWWWWWWWWWWWWWWWWWWWWWWW e SOeeeeeeeemeOOOeOOmeecece SeeeeeemeSOGOmesmeeeeeeg NNNNNNNNNNNNNNNNNNNNNNNN weeeeeeeeeeeeeeeeeeeeeep eeeee eeeeoeeeeeeoeeeoeee 999ee365e999003e990e99999 , e eseeeeeeeOSeeceOOOOGOceOS SeeeOOnceOOSemeOOmencemen SGemeOSSOcemeOWOSSOceGee e SOOmeeGOceeOOOOGGOOOOOOOO 59509eOeOS99999500900009 e e e e e e e e e e e e o e e e e e e e e e e 999999999999ee803e99e999 SeOSeeOOOOceOOOOOOOOOOOcc SecescocememesemeOceGesen GemeececcemeeOOOOOOOOOSee S99999900O505e0000000000 e SOOOOetJOOOOOOOOOOOOOneceO SemeseOSOOOOOOOOOOO ScenesesOGOOceseceGOOSSO 9999950T0T990009000 e *

  • e * * * * *
  • e * *
  • e e e e e* * * * *

*ee e e e seg ee e e e e e e e e e OceceesemeenOOcesseeOSee S00e00000@O00000000 3S09000 eO*eeOOOOOOO ennenneO9@@N4NNnnnn @ 995500e4e@e50009000 e SeeeeeONeNSOOOOOOOO 4 weewereteteweewomme e e seeOSeeeeeOOSeeOOOO SOOOceaeOGOOOOOOOOOOOOOOM O 8999955G9009000009e emeeOOOOOOOOOOOOOOOOOOOO O e e e e e e em em o e e e e e e e e G00000609000000000000000 e meOOneehSNOOceOOOOO e00000000000000000000000 M OOOOOOO eO *OOOOOOOOO e90000000000000OO0000000 M TTTTTTTMT@TTTTTTTTT emepeweeeeeeeeeeeeeeeeew@ 08 0tt4imlettttttie8 e em W e e CC@@@meOMOppenepeed M e e e e mW eeneppeWe%=nemenwee @ MM e 0 e W e e I"wNM%WMSMOpNMT@4hp M m@d4444h4H6hhhhhhh4 M^OpN@heWOpO=NMT@4PT NM9T@4eeONMT@4hmeSpNMT@40 0 @@444N404e4hhhhhhh*N 444hhnnnN4%4N49999999 e e WW e e ,^ Swep b emeMMMhhhTveppophhNMM4ppp  ? 4hWPee N MT@4%WPOW WW4hhheepNNMMTT@@@@hh4 @@@@@44 W 4444444%h koNaont'c1groundspectro ~~ ^ ' ~ " " - ' i-] spectrum .005 free. (cps)Camping spec= tral accel (g) tmx period (sec) 1.00 1.50 .3653 10.180 1.000 .6953 14.945 .667 2.00 .9315 12.355 .500 2.50 .9513 9.440 .400 1.0202 11.045 .333 $' 00 50 .6674 9.790 .286 ~ 3.71 .9031 9.755 .270 4.00 .7732 8.985 .250 . 4.50 .9761 12.165 .222 5.00 1.0372 11.990 .200 ~ "" 5.50 .7598 8.470 .182 6.00 .7574 6.600 .167 6.50 .7715 6.130 .154 7.00 .6846 6.780 .143 7.50 .7467 . 10.945 .133 8.00 . .7683 11.240 .125 9.00 .7062 5.750 .111 10.00 .6435 10.460 .100 ! 12.00 .5119 11.655 .083 15.00 .6873 3.495 .067

20.00 .2819 13.070 .050 t

25.00 .3404 3.250 .040 30.00 .2916 3.480 .033 35.00 .1706 5.558 .029 .30 .0039 5.235 3.333 l 40 .1267 8.025 2.500 .70 .2099 7.085 1.429 spectrum damping = .020 freq. (cps) spectral accel (g) tmn period (sec) 1.00 .2808 7.755 1.000 1.50 .4117 11.980 .667 l 2.00 .5642 9.855 .500

  • i 2.50 .5641 9.440 .400 i

3.00 .5739 11.055 .333 3.50 .5966 9.795 .286 3.71 .5750 9.755 .270 4.00 .5913 8.990 .250 4.50 .S867 9.735 .222 l 5.00 .6561 11.985 .200 5.50 .6451 8.465 .182 6.00 .5978 6.595 .167 6.50 .5866 3.515 .154 - 7.00 .5479 3.500 .143 7.50 .5238 9.325 .133

  • 8.00 .5012 11.240 .125 9.00 .4540 10.840 .111 10.00 .4086 5.225 .100 12.00 .3547 3.275 .003 15.00 .3542 3.395 .067 20.00 .2402 9.000 .050 25.00 .2192 3.253 .040 30.00 .1997 3.260 .033 35.00 .1696 5.558 .029

.30 .0787 5.220 3.333 .40 . .1115 7.995 2.500 .70 .2009 7.000 1.429 bon 2odal Growd Resfcusef S edro- (1Y' roWem E 9 IT X Direct,'on I n put _ _ _ _ _ . _ ....:a._--_..-_. .__-.w._ - . . . _ . _ ......._._..._m2.. .. . . u . _ . . .r . o o  ; kag'. "[2.. tine 0:40 120 1oricontal ground spectra spectrum .030 free. (cps)damping = teal spec accel (g) tmn period (sec) 1.00 .2574 7.750 1.000 1.50 .3607 11.350 .667 ~ *' 2.00 .4823 9.860 .500 2.50 .4741 9.445 .400 3.00 ' .4647 11.060 .333

3.50 .5234 9.795 .286 l 3.71 4851 9.755 .270 1

4.00 .5323 8.990 .250 4.50 .5241 9.735 .222 5.00 .5254 11.985 .200 5.50 .5306 S.465 .182 6.00 .5129 6.590 .167 6.50 .5146 3.515 .154 7.00 .5079 3.495 .143 7.50 .4171 9.325 .133 8.00 .4163 11.240 .125 9.00 .4044 10.840 .111 10.00 .3625 5.225 .100 1 .3142 3.275 .083 16' 00 .2944 3.395 .067 O.00 .2174 9.000 .050 $'5.00 .1981 3.253 .040 - 30.00 .1839 3.260 .033 35.00 .1684 5.558 .027 .30 40 .0755 5.205 3.333 .1030 7.900 2.500 .70 .1947 7.075 1.429 spectrum .050 freq. (cps)damping spec= tral accel (g) tan period (sec) 1.00 .2186 7.745 1.000 - - 1.50 .3018 11.360 .667 2.00 .3816 9.860 .500 - 2.50 . .3811 9.445 .400 3.00 .3535 11.250 .333 * .3.50 .4152 9.790 .286 3.71 .3846 9.760 .270 4.00 .4382 9.990 .250 4.50 .4325 9.735 .222 5.00 .3951 11.680 .200 5.50 .4054 8.465 .182 6.00 .3947 6.590 .167 6.50 4310 3.515 .154 7.00 4393 3.495 .343 7.50 .3287 3.485 .133 0.00 .3223 11.240 .125 9.00 .3174 10.675 ' .' 1 1 1 10.00 .2953 5.225 .100 12.00 .2674 3.275 .083 15.00 .2398 3.395 .067 20.00 .2057 6.150 .050 25.00 .1855 6.145 .040 30.00 .1676 6.138 .033 35.00 .1661 5.550 .30 .0699 5.190 3 .333 029 .40 .0891 7.950 2.500 .70 .1824 7.065 1.429 Worizon%l Ground Re.sponse Spech~ -(w Problem 2.

  • xv x - Pirector Input-

_. ~ z _L._LE. a .' 121. T.; ~ ~ ~ ~ .Z _ 1 X~ Enclosure 5 Status of March 27, 1985 Letter Comments - . j Item Comnents/Information to be Supplied 1.1 None  ! 1.2 ' SCEwillverifythatSRPcriteria(Sections 3.7.1 and3.7.3-3)aremet  ! 1.3 Report will be submitted in April l 1.4 None - 1.5 None 1.6 Documentation of SUPERPIPE to be submitted l 1.7 None 1.8 Peak shifting will not be used for the LTS program  ! 1-1.9 SCE will provide pro,iect instructions which explain  ! procedure for applying damping with the multiple . level response spectrum method l 1.10 None , 2.1 SCE will submit a revised discussion of their ,justif t. cation for their proposed acceptance criteria for large bore piping, including all supporting test reports. Staff questions concerning pipe materials operatirg e temperatures and piping natural frequency spectral peak will be addressed. l 2.2 None . 2,3 See 2.1 above ' 2.4 If a factor of safety less than 4 is determined, SCE  ! will provide a detsiled basis for acceptability on a case by-case basis j 4 2.5 SCE will provide information on welding practices i t 1 , i f~ c O _. i .- w . . . _ .. . . . . . _ ._ Enclosure 5 (continued) Item Comments /Information to be Supplied 2.6 - System response evaluation will be performed - Ductility will be limited to 3 (i uniform strain criterion will not be Iised) - SCE will compare proposed criteria for buckling with SEP guidelines 2.7 None 2.8 None 2.9 SCE will provide basis for use of 1/8" deflection as definition of a rigid structure 2.10 SCE will provide details of penetration analysis methods 3.1 SCE will apply the 30% increase of steel yield stress (10% increase due to strain rate effect and 18% increase based on material tests) only for the screening  ; evaluation of pipe supports. The proposed yield stress increase and its application appear reasonable pro. vided that SCE can demonstrate for each cateoory of pipe supports that a "1.3" factor on the yield stress results in a ductility factor less than three (3). In addition, SCE will provide information to justify the 10% increase due to strain rate effect and 18% increase based on material tests. . 3.2 See Item 2.4 3.3 See questions 17 to 28 of Enclosure G 3.4 SCE will provide a detailed basis for similarity whenever this method is used 3.5 Deferred pending Itcensee decision whether to use non-linear time history analysis 3.6 - SCE will provide a calculation to demonstrate that the pin ended beam model will result in maximum kinetic energy and a fixed ended model wfil result in minimum strain energy in a section of piptsg - SCE will provide project instructioM for using the energy balance method 3.7 SCE will revise partier report on piping peoblem FW.04, which discussnt secint stiffness method and discuss analysis assumptions, theory and the calculations 3.0 None 3.9 Licensen proposed to use absolute sum load comtination for gang supsorts if fundamental frecuencies are within f,10% of eac1 other and SRSS otherwise '^ . . . ~ . - . - . . . . - - - Enclosure 6 Infonnation to be Provided by SCE

1. A report describing the confirmatory analyses and methods for walkdown evaluation of small-bore piping will be submitted in mid-April.

(! tem 1.3)

2. Verification documentation for the SUPERP!PE computer code will be provided by April 15. (Item 1.6)
3. Project instructions, which describe the procedure for applying damping in the multilevel response spectra method will be provided. (! tem 1.9) 4 A revised report describing the justification for large bore piping criteria (both the 2.0 Sy criteria and the 1%/2% strain criteria) including all supporting test reports will be provided by April 15,1985.

(Items 2.1and2.3)

5. Information on weldin provided by April 15,g1985. practices for2.5)

(! tem San Onofre 1 construction will be

6. A systematic piping analysis report to demonstrate the adequacy of using ductility factor of "3" for the evaluation of the secondary structural members and a comparison of proposed buckling criteria with SEP guidelines will be provided by April 30, 1985. (! tem 2.6)
7. The basis for using 1/8" deflection as defining a rigid structure will be provided. (! tem 2.9) 8 The methods for penetration analysis will he submitted. (! tem 2.10)
9. Test reports for material strengths will be submitted. (! tem 3.1)
10. A justification of 10% increase of material strength (yfeld stress) due to the strain rate effect wfIl be provided. (! tem 3.1) '
11. For typical examples (such as a secondary beam, pipe support), an analysis will be submitted to demonstrate that a 30% increase in yield stress will result in a ductility ratio less than three. (! tem 3.1)
12. Project instructions which describe how to use the energy balance method will be submitted. (! tem 3.6)
13. The basis for selection of the fixed end beam model for the eneroy balance confinnatory analysis will be provided. (! tem 3.6)
14. A revised report on piping problem FW.04 will be provided. The report will include the analysis assumptions, theory and sample calculations to clearly explain the secant stiffness method. (! tem 3.7)
15. A report describing the analysis of the refueling water storage tank will be submitted in April.

s .- Enclosure 6 fcontinued)

16. As requested in the March 27, 1985 Intter, SCE will provide a table showing structures, systems and components within the scope of the LTS evaluation and the alternative methods and criteria to apply to specific elements, in order of preference, by the end of April.
17. A table listing the formulations for the correlation coefficients for each of the computer codes (FLORA, CLASS!, C0C and RV-SUPERPIPE) will be provided by April 8, 1985, 18 A quantitative definition of the difference between wide band and narrow band FLORA solutions will be provided by April 8, 1985, 19 The procedure for selecting EM values in FLORA will be provided by April 8, 1985.

20 The criteria for establishing significance of primary / secondary system interaction will be provided.

21. The procedure for grouping (see question !!.3(6) of Enclosure 3) will be provided.

22. Thenumericalvalueforthepeakresp)onseonFfgure6oftheFLORAreport (seequestion!!.2(7)ofEnclosure3 will be provided.

23. The site speciffe basis for soil material damping of 11% will be provided.

Consideration will be given to sensitivity studies of impedances with lower damping values.

24. Information on the sensitivity of results to basemat flexibility will be provided by April 15, 1985,
25. The applicability of existing analyses on the effect of the sphere enclosure building will be reviewed to determine whether the buf1 ding should be included in the CLASS! rodel. This information will be provided by April 15, 1985.
26. The adequacy of a + 10% variation in shear modulus will be evaluated considering the inTormation provided for SEP topic !!-4.F.
27. Additional information on the application of Computer Code SAS$!(soil proportins,modelingtechniques,boundaryconditions,etc.),willbe provided.

28 The following test problems will be analyzed by SCC. In each case, comuter input and output Ifstings will be provided to the NRC along wit 1 analysis results, a) Problem 1ofEnclosure4.(Soll-StructuroIntoraction): SASS!will be used to calculate soil impedancess CLAS$1 will be used for the in structurn results. A plot of the impedances and both a plot and a numerical Itsting of the spectral values at 25 specified frequencies, will be provided. This task will be completed by Aprff 15, 1985. , ..a. . . . . - . -... .* ~ ~ * -- -+-*=-- - - * * + ~ , 4 o l' Enclosure 6(continued) i i b) Problem 2ofEnclosure4(CQC): Calculated bending moment resultants at specified locations and forces in the supports will be submitted. This task will be completed April 15, 1985. . c) Problem 3ofEnclosure4(FLORA): Floor response spectra at the 25 I l ! frequencies of problem 1 and at the first mode frequency of the ! structure at two locations, for 3 secondary masses, will be submitted. l The parameter FRAQ will be set to zero for this problem. Task will  : l , be done by April 15, 1985. ( i d) Problem 4 of Enclosure 4 ($UPERP!PE) will be provided by the end of April. , i ! e) Seequestion!!.2(11)ofEnclosure3. The instructure response I spectra result from FLORA will be provided for the following problem:  ! l (for the cases of f, = 5 H, and f, = 10 Hg ) j RG 1.60 spectra . j Single degree of freedom structure with damping ratio of 5%, s m u = 0 (no mass cot,pling) . secondary system damping of 2%  ! i I f t p (. l , b 5 i  !}}