ML19312D799: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 18: | Line 18: | ||
=Text= | =Text= | ||
{{#Wiki_filter:_ _ | {{#Wiki_filter:_ _ | ||
I | |||
* i E | |||
i E | |||
I A | I A | ||
! 'g | ! 'g | ||
Line 31: | Line 28: | ||
i 9 | i 9 | ||
EEASc0 SERV 1cES, 1Nc0s,0eA1so g | EEASc0 SERV 1cES, 1Nc0s,0eA1so g | ||
JANUARY 1980 l | JANUARY 1980 l | ||
t i | t i | ||
sezsewz - | sezsewz - | ||
I WPPSS NUCLEAR PROJECT NOS. 3 & 5 GROUNDWATER DRAINAGE SYSTEM ANALYSIS OF SYSTDi PERFORMANCE I | I WPPSS NUCLEAR PROJECT NOS. 3 & 5 GROUNDWATER DRAINAGE SYSTEM ANALYSIS OF SYSTDi PERFORMANCE I | ||
Table of Contents | Table of Contents I Introduction II Initial Groundwater Model & Assumptions III Instrumentation IV Groundwater Flow Measurements V Interpretation of Data 3 m Ne. Gr_e.ater me g m ver m oa u.n eroSr.. | ||
I Introduction II Initial Groundwater Model & Assumptions III Instrumentation IV Groundwater Flow Measurements V Interpretation of Data 3 m Ne. Gr_e.ater me g m ver m oa u.n eroSr.. | |||
"~'""" | "~'""" | ||
t " " | t " " | ||
t 4 | t 4 | ||
I 1 | I 1 | ||
I l | I l | ||
Line 66: | Line 54: | ||
: 4. INSTRUMENTATION LIST WITH STANDPIPE ELEVATIONS E 5. RESULTS OF TIME LAG PERMEABILITY TESTS | : 4. INSTRUMENTATION LIST WITH STANDPIPE ELEVATIONS E 5. RESULTS OF TIME LAG PERMEABILITY TESTS | ||
: 6. RAB 3 OPEN-WELL PIEZ0 METER WATER LEVELS | : 6. RAB 3 OPEN-WELL PIEZ0 METER WATER LEVELS | ||
.; . 7. RAB 3 INCLINGMETER-PIEZ0 METER WATER LEVELS | .; . 7. RAB 3 INCLINGMETER-PIEZ0 METER WATER LEVELS I : | ||
I : | |||
;i ; | ;i ; | ||
4 1 | 4 1 | ||
l 3 | l 3 | ||
l l l | l l l | ||
lI 1 | lI 1 | ||
l | l | ||
S 5 WPPSS NUCLEAR PROJECTS NOS. 3 '& 3 I GROUNDWATER DRAINAGE SYSTEM j | |||
S | ANAI.YSIS OF SYSTEM PERFORMANCE List of Figures | ||
5 WPPSS NUCLEAR PROJECTS NOS. 3 '& 3 I GROUNDWATER DRAINAGE SYSTEM j | |||
ANAI.YSIS OF SYSTEM PERFORMANCE | |||
List of Figures | |||
: 1. GROUNDWATER DRAINAGE SYSTEM PLAN (PSAR FIGURE 3.4.5-1) | : 1. GROUNDWATER DRAINAGE SYSTEM PLAN (PSAR FIGURE 3.4.5-1) | ||
: 2. DETAILS OF GROUNDWATER DRAINAGE | : 2. DETAILS OF GROUNDWATER DRAINAGE | ||
Line 99: | Line 76: | ||
I | I | ||
t i I. Introduction l The WNP 3 and 5 Projects have a permanent groundwater drainage | t i I. Introduction l The WNP 3 and 5 Projects have a permanent groundwater drainage | ||
\ | \ | ||
Line 108: | Line 84: | ||
5 i | 5 i | ||
The results of the engineering review and analysis of the groundwater drainage system for the WNP 3 and 5 Projects are presented in this report. This report presents evidence sufficient to demonstrate the adequacy of the GWDS, since previous reports of analysis of data collected relevant to the | The results of the engineering review and analysis of the groundwater drainage system for the WNP 3 and 5 Projects are presented in this report. This report presents evidence sufficient to demonstrate the adequacy of the GWDS, since previous reports of analysis of data collected relevant to the expected performance of the GWDS were inconclusive. The report includes an outline of the groundwater drainage system design philosophy as described in the PSAR, the system performance to date, and its effect on adjacent groundwater levels. All per: nt information, descriptions and data have been included to anow for a complete understanding of the drainage system and I groundwater behavior. | ||
expected performance of the GWDS were inconclusive. The report includes an outline of the groundwater drainage system design philosophy as described in the PSAR, the system performance to date, and its effect on adjacent groundwater levels. All per: nt information, descriptions and data have been included to anow for a complete understanding of the drainage system and I groundwater behavior. | |||
; | ; | ||
The interpretation of this data varies from that presented in previous | The interpretation of this data varies from that presented in previous reports and PSAR sections. Intensive examination of the data gathered prior to and following the installation of the system indicates that the design parameters used to develop the drainage systen, while resulting in an adequate design, do not accurately represent sit.e conditions. The system, however, will function as designed, a dewatering of adjacent rock will occur, and the dravdown radius of influence will develop as originally predicted. The groundwater recharge rate, upon the postulated total failure of the system, will allow sufficient time for remedial action based on the timely inspection requirements established in the PSAR. | ||
The conservatism of the GWDS will be verified through a full scale test simulating a total failure of the system as outlined in Section VII of this report. | |||
reports and PSAR sections. Intensive examination of the data | |||
gathered prior to and following the installation of the system indicates that the design parameters used to develop the drainage systen, while resulting in an adequate design, do not accurately represent sit.e conditions. The system, however, will function as designed, a dewatering of adjacent rock will occur, and the dravdown radius of influence will develop as originally predicted. The groundwater recharge rate, upon the postulated total failure of the system, will allow sufficient time for remedial action based on the timely inspection requirements established in the PSAR. | |||
The conservatism of the GWDS will be verified through a full scale | |||
test simulating a total failure of the system as outlined in Section VII of this report. | |||
it I | it I | ||
I II. Initial Groundwater Model Assumption Th e GWDS will permanently lower the groundwater level near the RAB. | I II. Initial Groundwater Model Assumption Th e GWDS will permanently lower the groundwater level near the RAB. | ||
Line 136: | Line 103: | ||
: 2) The converging effeet of the groundwater in each quadrant was considered for mass conservation although the system was still assumed to be one dimensional. | : 2) The converging effeet of the groundwater in each quadrant was considered for mass conservation although the system was still assumed to be one dimensional. | ||
: 3) The consideratims of geometry were accounted for by a special form of the Boussineq equation (refer to PSAR section 3.5.4). | : 3) The consideratims of geometry were accounted for by a special form of the Boussineq equation (refer to PSAR section 3.5.4). | ||
The PSAR analysis indicated that the groundwater level adjacent to the RAB walls would depress from the initial plant grade elevation to elevation 330.5 ft. during the 5 year period preceding plant operation (see PSAR Figure 3.4.5-5). The extent of the drawdown varies directly according to the magnitude of the permeability coefficient. The total flow from the GWDS,5 years after excavation | The PSAR analysis indicated that the groundwater level adjacent to the RAB walls would depress from the initial plant grade elevation to elevation 330.5 ft. during the 5 year period preceding plant operation (see PSAR Figure 3.4.5-5). The extent of the drawdown varies directly according to the magnitude of the permeability coefficient. The total flow from the GWDS,5 years after excavation was calculated to vary from 8.5 to 46 gpm corresponding to | ||
was calculated to vary from 8.5 to 46 gpm corresponding to | |||
-0 and 10-5 /s s W alp | -0 and 10-5 /s s W alp | ||
; permeability values of 10 I Based on the above assumptions and calculational analysis, if complete clogging of the system were to occur, following the achievement of I a stabilized drawdown condition, the groundwater level would rise slowly up the walls of the Reactor Auxiliary Building. The time required, following such a total failure of the system, for the ground- | ; permeability values of 10 I Based on the above assumptions and calculational analysis, if complete clogging of the system were to occur, following the achievement of I a stabilized drawdown condition, the groundwater level would rise slowly up the walls of the Reactor Auxiliary Building. The time required, following such a total failure of the system, for the ground- | ||
Line 155: | Line 120: | ||
The description of the instrumentation is presented below: | The description of the instrumentation is presented below: | ||
a) Inclinometer - Piezometers - consist of continuously perforated inclinometer casings installed to a depth of 85 f t. , we.h pea gravel backfill around the circumference of the casings. There are sixteen in place around each excavation. The casings are located 20 feet and 50 feet away from the edge of the excavation, as shown in Figures 5 and 6. | a) Inclinometer - Piezometers - consist of continuously perforated inclinometer casings installed to a depth of 85 f t. , we.h pea gravel backfill around the circumference of the casings. There are sixteen in place around each excavation. The casings are located 20 feet and 50 feet away from the edge of the excavation, as shown in Figures 5 and 6. | ||
b) Open-Well Piezometers - consist of 2 inch diameter PVC pipe, slotted over the lower 21 feet of length. There are twenty-one in place arourA the WNP 3 excavation and sixteen around | b) Open-Well Piezometers - consist of 2 inch diameter PVC pipe, slotted over the lower 21 feet of length. There are twenty-one in place arourA the WNP 3 excavation and sixteen around the WNP 5 excavation. The pipes were installed 9 feet from l | ||
the WNP 5 excavation. The pipes were installed 9 feet from l | |||
the edge of the excavations to various selected depths, as shown in Figures 5 and 6. The space outside the slotted | the edge of the excavations to various selected depths, as shown in Figures 5 and 6. The space outside the slotted | ||
;I I | ;I I | ||
E section is backfilled with pea gravel and the piezometer is | E section is backfilled with pea gravel and the piezometer is | ||
'5- sealed from surface inflow by cement grout outside the solid pipe to the surface. The open-well piezometers were install-ed at various elevations to define the piezometric level within the rock at various levels so as to aid in the definition of apparent perched water conditions. | '5- sealed from surface inflow by cement grout outside the solid pipe to the surface. The open-well piezometers were install-ed at various elevations to define the piezometric level within the rock at various levels so as to aid in the definition of apparent perched water conditions. | ||
Figures 5 and 6 show the groundwater data collected to date from | Figures 5 and 6 show the groundwater data collected to date from all piezometer installations around the excavations for WP-3 and WP-5, respectively. | ||
I IV. Groundwater Flow Measurements Small flows of groundwater exiting from the sandstone walls of the WP-3 and WN -5 excavations are intercepted and diverted by the previously described GWDS. Saturated sandstone beneath the RAB is drained by an 8" diameter perforated under mat drainage system (UMD) as shown in Figure 1. Both systems slope toward and exit into a drainage tunnel. Construction water is now removed from I theexcavationviaa$hirdpipewhichalsoexitsintothetunnel. | |||
all piezometer installations around the excavations for WP-3 and WP-5, respectively. | |||
I | |||
IV. Groundwater Flow Measurements Small flows of groundwater exiting from the sandstone walls of the WP-3 and WN -5 excavations are intercepted and diverted | |||
by the previously described GWDS. Saturated sandstone beneath the RAB is drained by an 8" diameter perforated under mat drainage | |||
system (UMD) as shown in Figure 1. Both systems slope toward and exit into a drainage tunnel. Construction water is now removed from I theexcavationviaa$hirdpipewhichalsoexitsintothetunnel. | |||
GWDS flows are measured directly by stop watch and calibrated container at the exit point of the 8" header. Similar measurement of UMD flows has not been possible due to partial inundation of the UMD outlet pipe which exits at floor level of the tunnel. These flows are determined by taking the difference between the total flow from the three outlet pipes (measured at the outfall of the drainage t.unnel) and the sum of GWDS and construction water flows l | GWDS flows are measured directly by stop watch and calibrated container at the exit point of the 8" header. Similar measurement of UMD flows has not been possible due to partial inundation of the UMD outlet pipe which exits at floor level of the tunnel. These flows are determined by taking the difference between the total flow from the three outlet pipes (measured at the outfall of the drainage t.unnel) and the sum of GWDS and construction water flows l | ||
1 | 1 | ||
I J | I J | ||
I l | I l I (measured at their exit point at the head of the tunnel). This method of determining UMD flows is inaccurate since construction water flows may vary drastically between the time of measurement at the tunnel outfall and the tunnel head. Plans are currently in progress to extend the construction water pipe the full length of the drainage tunnel to eliminate this variable. | ||
I (measured at their exit point at the head of the tunnel). This method of determining UMD flows is inaccurate since construction water flows may vary drastically between the time of measurement at the tunnel outfall and the tunnel head. Plans are currently in progress to extend the construction water pipe the full length of the drainage tunnel to eliminate this variable. | |||
8 Flow measurements obtained through December 14, 1979, are presented on Figure 7. The measured flows that are coincident with significant rainfall periods show rapid increases and decreases illustrative of direct inflow of surface water into the systems. Other short duration higher flows have also been recorded when construction water was in use around the excavation such as the period from late October through mid-November when intermittent flushing and cleanout at the WNP-5 CWDS was accomplished. | 8 Flow measurements obtained through December 14, 1979, are presented on Figure 7. The measured flows that are coincident with significant rainfall periods show rapid increases and decreases illustrative of direct inflow of surface water into the systems. Other short duration higher flows have also been recorded when construction water was in use around the excavation such as the period from late October through mid-November when intermittent flushing and cleanout at the WNP-5 CWDS was accomplished. | ||
Direct surf ace inflow to drain systems will be reduced as a result of completion of the construction ramp backfill expected by early summer. Further reduction will be realized with the completion of adjacent plant structures, miscellaneous paving, final plant grading, topsoiling and landscaping. | Direct surf ace inflow to drain systems will be reduced as a result of completion of the construction ramp backfill expected by early summer. Further reduction will be realized with the completion of adjacent plant structures, miscellaneous paving, final plant grading, topsoiling and landscaping. | ||
Line 187: | Line 138: | ||
; | ; | ||
1 I | 1 I | ||
I I | I I | ||
In spite of unsealed drainage systems which allow inflow of surface water and mask the true groundwater flows, close inspection of the data discloses certain baseline flow rates I which are considered valid. The indication is that the increment of the groundwater flow from each excavation is less than 5 gpm. | In spite of unsealed drainage systems which allow inflow of surface water and mask the true groundwater flows, close inspection of the data discloses certain baseline flow rates I which are considered valid. The indication is that the increment of the groundwater flow from each excavation is less than 5 gpm. | ||
These low yields confirm the low permeabilities determined by the previously described packer tests api the recently performed recharge tests (see Table 5). Considering the 8 inch diameter of the GWDS collector pipe and the UMD, the capacity of WNP-3 & 5 8 drainage systems is significantly greater than required. | |||
These low yields confirm the low permeabilities determined by the | |||
previously described packer tests api the recently performed recharge tests (see Table 5). Considering the 8 inch diameter of the GWDS collector pipe and the UMD, the capacity of WNP-3 & 5 8 drainage systems is significantly greater than required. | |||
V. Interpretation of Data Intensive examination of the data collected to date and an analysis | V. Interpretation of Data Intensive examination of the data collected to date and an analysis | ||
; | ; | ||
Line 208: | Line 154: | ||
was determined by the Boyle's Law Method. Thus, the porosity calculated was total porosity,not effective porosity. Specific retention was determined using the centrifuge method to avoid the capillarity problem associated with using small laboratory samples. Thus, the specific I retention reported by Core Labs was minimum water retention which may not represent site conditions. The use of effective porosity and the consideration of capillary pressure consistent with site conditions would result in more accurate and representative storage constants. The sensitivity of the CWDS to this parameter is addressed in Section VI of this report. | was determined by the Boyle's Law Method. Thus, the porosity calculated was total porosity,not effective porosity. Specific retention was determined using the centrifuge method to avoid the capillarity problem associated with using small laboratory samples. Thus, the specific I retention reported by Core Labs was minimum water retention which may not represent site conditions. The use of effective porosity and the consideration of capillary pressure consistent with site conditions would result in more accurate and representative storage constants. The sensitivity of the CWDS to this parameter is addressed in Section VI of this report. | ||
1 I | 1 I | ||
I 1 | I 1 | ||
Line 219: | Line 164: | ||
However, in every instance, the piezometric level in the "P" piezometers decreases with depth of the screened opening. | However, in every instance, the piezometric level in the "P" piezometers decreases with depth of the screened opening. | ||
This suggests that either: | This suggests that either: | ||
:I a) groundwater movement is routed toward excavation faces through joint, bedding planes, and minor lithologic-discontinuity of contrasting permeabilities. This phenomenon is somewhat comparable to a regional aquifer recharge-discharge case wherein heads decrease with increasing depth in the discharge zone. The relative resistance to flow (permeability) determines the magnitude of the head' difference; or, | :I a) groundwater movement is routed toward excavation faces through joint, bedding planes, and minor lithologic-discontinuity of contrasting permeabilities. This phenomenon is somewhat comparable to a regional aquifer recharge-discharge case wherein heads decrease with increasing depth in the discharge zone. The relative resistance to flow (permeability) determines the magnitude of the head' difference; or, E | ||
I l b) the head on individual minor discontinuities causes drainage of the larger masses of poorly permeable rock to the RAB face and none of these discontinuities are interconnected to more than one of the "P" Piezometers. | |||
l b) the head on individual minor discontinuities causes drainage of the larger masses of poorly permeable rock to the RAB face and none of these discontinuities are interconnected to more than one of the "P" Piezometers. | |||
Consequently, the shallower rock near the RAB faces cyc being locally recharged by surface water infiltration. | Consequently, the shallower rock near the RAB faces cyc being locally recharged by surface water infiltration. | ||
This effect would not be observed if the rock near the | This effect would not be observed if the rock near the RAB faces were represented by higher permeabilities. | ||
RAB faces were represented by higher permeabilities. | |||
8 | 8 | ||
: 5. The initial PSAR analysis implies that the Astoria formation | : 5. The initial PSAR analysis implies that the Astoria formation is homogeneous and isotropic (item 9 in table 1). | ||
is homogeneous and isotropic (item 9 in table 1). | |||
Reanalysis of pre-excavation borings, examination of the excavated rock face, and the interpretation of piezometric water levels in the vicinity of the excavation reveal that the formation consists of indurated beds of poorly sorted tuffaceous sandstone; tuff, thin conglomerate lenses, silt-stone and all gradations in between. Groundwater storage and movement is principally in secondary discontinuities and joints which in turn drain larger masses of poorly permeable rock. | Reanalysis of pre-excavation borings, examination of the excavated rock face, and the interpretation of piezometric water levels in the vicinity of the excavation reveal that the formation consists of indurated beds of poorly sorted tuffaceous sandstone; tuff, thin conglomerate lenses, silt-stone and all gradations in between. Groundwater storage and movement is principally in secondary discontinuities and joints which in turn drain larger masses of poorly permeable rock. | ||
This explains why the open-well piezometers (installed to various depths) show multiple water levels with no apparent common source. Figures 10 and 11 show a direct correlation between avenues of flow (sucP as beddiag planes, and minor lithologic-g g | This explains why the open-well piezometers (installed to various depths) show multiple water levels with no apparent common source. Figures 10 and 11 show a direct correlation between avenues of flow (sucP as beddiag planes, and minor lithologic-g g | ||
I al discontinuities) and observed groundwater levels (see piexometers P-2, 4, 7A, 8, 8A & 9 for Unit 3 and I | I al discontinuities) and observed groundwater levels (see piexometers P-2, 4, 7A, 8, 8A & 9 for Unit 3 and I | ||
I I | I I | ||
I piezometers P-2A, 6, 7 & 8 for Unit 5). | I piezometers P-2A, 6, 7 & 8 for Unit 5). | ||
I Figures 8 and 9 illustrate the various water levels for Units 3 & 5 measured in the piezometers on the date of August 27, 1979. Each drawing has profiles along the excavation I faces and cross-sections perpendicular to the face, with the appropriate water levels indicated. These figures clearly indicate once again the discontinuity between the different water levels. | I Figures 8 and 9 illustrate the various water levels for Units 3 & 5 measured in the piezometers on the date of August 27, 1979. Each drawing has profiles along the excavation I faces and cross-sections perpendicular to the face, with the appropriate water levels indicated. These figures clearly indicate once again the discontinuity between the different water levels. | ||
For example, profile A-A on Figure 9 indicates three individual water levels for the north face for piezometers P-3, P-3A and B-10. | For example, profile A-A on Figure 9 indicates three individual water levels for the north face for piezometers P-3, P-3A and B-10. | ||
The locations of these 3 piezometers are within an 11 foot radius and yet they show water elevations varying by as much as 15 feet. | The locations of these 3 piezometers are within an 11 foot radius and yet they show water elevations varying by as much as 15 feet. | ||
The perpendicular cross-sections show the various water levels and discontinuity with respect to the excavation face. For example, cross-section L-L on Figure 8 for piezometers P-4, P-4A and P-4B, all equidistant from the face of the excavation indicate water levels varying by as much as 28 feet. The higher water level corresponds to the piezometer which is slotted from 5 ft. to 26 ft. below grade, while the lowest level is indicated on the piezometer slotted from 45 ft. to 66 ft. below grade. In this same cross-section, piezometer B-8, 20 feet back from the face indicates a water level lower than that of piezameter P-4B which is closer to the face and presumably better able to drain groundwater to the GWDS. | The perpendicular cross-sections show the various water levels and discontinuity with respect to the excavation face. For example, cross-section L-L on Figure 8 for piezometers P-4, P-4A and P-4B, all equidistant from the face of the excavation indicate water levels varying by as much as 28 feet. The higher water level corresponds to the piezometer which is slotted from 5 ft. to 26 ft. below grade, while the lowest level is indicated on the piezometer slotted from 45 ft. to 66 ft. below grade. In this same cross-section, piezometer B-8, 20 feet back from the face indicates a water level lower than that of piezameter P-4B which is closer to the face and presumably better able to drain groundwater to the GWDS. | ||
I | I | ||
Line 255: | Line 190: | ||
I | I | ||
I I | |||
I | parameters which influence groundwater behavior at the site: | ||
gW l. The natural groundwater levels conform to the local topography. | gW l. The natural groundwater levels conform to the local topography. | ||
: 2. Drainage occurs both to the north and south of the site into steep ravines thus effecting the rate of development, size and shape of the dewatering cone. Drawdown does occur as a result of the CWDS. Below the drawdown cone surface, all rock is saturated. | : 2. Drainage occurs both to the north and south of the site into steep ravines thus effecting the rate of development, size and shape of the dewatering cone. Drawdown does occur as a result of the CWDS. Below the drawdown cone surface, all rock is saturated. | ||
Line 266: | Line 199: | ||
I I 1 I . | I I 1 I . | ||
j | j | ||
Based on observation and detailed analysis of data collected it has been determined that l | Based on observation and detailed analysis of data collected it has been determined that l | ||
a) the Astoria formation consists of cemented beds of poorly sorted tuffaccous sandstone, l | a) the Astoria formation consists of cemented beds of poorly sorted tuffaccous sandstone, l | ||
Line 278: | Line 207: | ||
I I | I I | ||
I I | I I | ||
The above factors are important when analyzing the rate of rise of groundwater around the RAB given the extremely unlikely gross | The above factors are important when analyzing the rate of rise of groundwater around the RAB given the extremely unlikely gross | ||
, failure of the GWDS in the most adverse failure mode. | , failure of the GWDS in the most adverse failure mode. | ||
Groundwater will continue to flow through the CWDS at low levels during plant operation, ranging from 1 to 5 gpm. The rate at which groundwater rises and the maximum height that the groundwater will attain in the unlikely event of a complete system failure must be determined. With the existence of the operating system and with sufficient time available during construction, the groundwater recharge behavior can be accurately determined through the implementation of a full scale test and verification program as discussed in the following | Groundwater will continue to flow through the CWDS at low levels during plant operation, ranging from 1 to 5 gpm. The rate at which groundwater rises and the maximum height that the groundwater will attain in the unlikely event of a complete system failure must be determined. With the existence of the operating system and with sufficient time available during construction, the groundwater recharge behavior can be accurately determined through the implementation of a full scale test and verification program as discussed in the following section. | ||
VII. Verification Program A field test will be performed using the existing GWDS to evaluate the consequences of a postulated failure (complete plugging) of the drainage system. This test will determine the rate of water | |||
section. | |||
VII. Verification Program A field test will be performed using the existing GWDS to evaluate | |||
the consequences of a postulated failure (complete plugging) of the drainage system. This test will determine the rate of water | |||
; | ; | ||
rise (against the RAB exterior wall) vs time. The permanent groundwater monitoring system and frequency of GWDS inspection can be then either verified or re-established. | rise (against the RAB exterior wall) vs time. The permanent groundwater monitoring system and frequency of GWDS inspection can be then either verified or re-established. | ||
As shown by Figure 7 ( Groundwater Flow vs Precipitation ), there are separate pipe outlets for the GWDS, the undermat drain (UMD), | As shown by Figure 7 ( Groundwater Flow vs Precipitation ), there are separate pipe outlets for the GWDS, the undermat drain (UMD), | ||
and the construction water drain at the head of the drainage tunnel exiting from each excavation. The GWDS and undermat drain outlets | and the construction water drain at the head of the drainage tunnel exiting from each excavation. The GWDS and undermat drain outlets | ||
"" will be capped allowing only groundwater from the surrounding Astoria formation to fill up the half-rounds. The head of water | "" will be capped allowing only groundwater from the surrounding Astoria formation to fill up the half-rounds. The head of water i | ||
l that builds against the RAB walls will be recorded with respect to time by the use of a pressure gauge arrangement at the sealed l | |||
that builds against the RAB walls will be recorded with respect to time by the use of a pressure gauge arrangement at the sealed l | |||
GWDS outlet and direct monitoring in selected half-rounds. | GWDS outlet and direct monitoring in selected half-rounds. | ||
l I | l I | ||
Line 311: | Line 227: | ||
I | I | ||
. i | . i | ||
!I | !I 5 i A full scale test, simulating the unlikely failure of the system as postulated in the PSAR, will be implemented to verify the l | ||
5 i | |||
A full scale test, simulating the unlikely failure of the system | |||
as postulated in the PSAR, will be implemented to verify the l | |||
;W actual groundwater behavior. The verification test program and | ;W actual groundwater behavior. The verification test program and | ||
:I | :I | ||
!I l | !I l | ||
8 4 | 8 4 | ||
J | J | ||
Line 332: | Line 238: | ||
!I. | !I. | ||
!I | !I | ||
!I | !I | ||
!I ll lI lI | !I ll lI lI | ||
M M M M M M M M M M M M M M M M M M M T A B l.E 1 COMPARISON OF WNP 365 PREDICTED VS OBSERVED HYDROI,0GIC CONDITIONS | M M M M M M M M M M M M M M M M M M M T A B l.E 1 COMPARISON OF WNP 365 PREDICTED VS OBSERVED HYDROI,0GIC CONDITIONS | ||
Line 361: | Line 263: | ||
l | l | ||
I . | I . | ||
TEE 2 3 | TEE 2 3 | ||
Line 373: | Line 274: | ||
-6 Weathered sandstone B-13P 113.5 358.1 10.1 6.2 x 10 | -6 Weathered sandstone B-13P 113.5 358.1 10.1 6.2 x 10 | ||
-7 Weathered sandstone | -7 Weathered sandstone | ||
< 1 x 10 | < 1 x 10 B-13P 116.9 354.7 11.2 | ||
B-13P 116.9 354.7 11.2 | |||
~7 B-13P 126.5 345.1 10.9 5.8 x 10 Weathered sandstone | ~7 B-13P 126.5 345.1 10.9 5.8 x 10 Weathered sandstone | ||
-6 Fresh sandstone B-13P 134.8 336.8 9.5 2.1 x 10 | -6 Fresh sandstone B-13P 134.8 336.8 9.5 2.1 x 10 | ||
~0 B-13P 144.8 326.8 9.5 2.0 x 10 Fresh sandstone | ~0 B-13P 144.8 326.8 9.5 2.0 x 10 Fresh sandstone | ||
Line 404: | Line 302: | ||
~ | ~ | ||
k (cm/sec) | k (cm/sec) | ||
Falling | Falling Boring Head Bailing l ~7 D-3P 5.1 x 10 -6 - | ||
Boring Head Bailing l ~7 D-3P 5.1 x 10 -6 - | |||
-6 D-5P 7.5 x 10 -6 6.0 x 10 B-22P 6.4 x 10 6.7 x 10-6 All of these results were obtained from the initial borings in 1975. | -6 D-5P 7.5 x 10 -6 6.0 x 10 B-22P 6.4 x 10 6.7 x 10-6 All of these results were obtained from the initial borings in 1975. | ||
E E E E E E E W M M M M M g g g TABLE 3 CENTRIFUCE TEST RESULTS Minimum 4 2 | |||
E E E E E E E W M M M M M g g g TABLE 3 | |||
CENTRIFUCE TEST RESULTS Minimum 4 2 | |||
. Sample 1 | . Sample 1 | ||
Sample Total Water Spun Out Water Retained Correction Specific Storage 3 "g" "g" Factor Retention Cbns tant Remarks No. Elevation Porosity @ 1000 @ 1000 | Sample Total Water Spun Out Water Retained Correction Specific Storage 3 "g" "g" Factor Retention Cbns tant Remarks No. Elevation Porosity @ 1000 @ 1000 | ||
Line 422: | Line 311: | ||
(% of Volume) 32.4% 15 17.4 1.00 17.4 15.0 _1_ Weathered Sandstor 1 383 16.9 1.00 16.9 16.0 11 Weathered Sandstor 2 383 32.9% 16 15 16.2 1.00 16.2 15.0 _L Weathered Sandator 3 369 31.2% | (% of Volume) 32.4% 15 17.4 1.00 17.4 15.0 _1_ Weathered Sandstor 1 383 16.9 1.00 16.9 16.0 11 Weathered Sandstor 2 383 32.9% 16 15 16.2 1.00 16.2 15.0 _L Weathered Sandator 3 369 31.2% | ||
17.0 1.00 17.0 -15.0 11 Weathered Sandstoi 4 369 32.0% 15 36.2% 9 27.2 0.90 24.5 11.7 _L_ Fresh Sandstone 5 343 27.9 0.90 2".1 11.8 11 Fresh Sandstone 6 343 36.9% 9 325 35.4% 6 29.4 0.88 25.9 9.5 .1_ Fresh Sandstone 7 | 17.0 1.00 17.0 -15.0 11 Weathered Sandstoi 4 369 32.0% 15 36.2% 9 27.2 0.90 24.5 11.7 _L_ Fresh Sandstone 5 343 27.9 0.90 2".1 11.8 11 Fresh Sandstone 6 343 36.9% 9 325 35.4% 6 29.4 0.88 25.9 9.5 .1_ Fresh Sandstone 7 | ||
27.0 0.90 24.3 9.7 11 Fresh Sandstone 8 325 34.0% 7 16.8% 27.0 9.8 1.15 11.3- 25.5 ..L Tuf f 9 356 | 27.0 0.90 24.3 9.7 11 Fresh Sandstone 8 325 34.0% 7 16.8% 27.0 9.8 1.15 11.3- 25.5 ..L Tuf f 9 356 1 Samples 1 through 8 taken from boring B-36; sample 9 taken from boring B-34 2 Taken from PSAR Reference 3.4.7. | ||
1 Samples 1 through 8 taken from boring B-36; sample 9 taken from boring B-34 2 Taken from PSAR Reference 3.4.7. | |||
3 _L_ Denotes sample cut perpendicular to core axis. | 3 _L_ Denotes sample cut perpendicular to core axis. | ||
11 Denotes sample cut parallel to core axis. | 11 Denotes sample cut parallel to core axis. | ||
4 Storage constant = total porosity - specific retention. | 4 Storage constant = total porosity - specific retention. | ||
4 9 | 4 9 | ||
,) | ,) | ||
/\ 0 1 | |||
/\ 0 | 8*%<> . | ||
,p< #& | ,p< #& | ||
i IMAGE EVALUATION NN TEST TARGET (MT-3) | i IMAGE EVALUATION NN TEST TARGET (MT-3) | ||
~ | ~ | ||
1.0 l#8M122 m | 1.0 l#8M122 m | ||
;; | ;; | ||
Line 446: | Line 328: | ||
= | = | ||
l,l h,U ff!f!N | l,l h,U ff!f!N | ||
\ | \ | ||
I I l.8 l-I.25 1.4 1.6 | I I l.8 l-I.25 1.4 1.6 | ||
Line 452: | Line 333: | ||
MICROCOPY RESOLUTION TEST CHART l | MICROCOPY RESOLUTION TEST CHART l | ||
of 495,,;4 ; | of 495,,;4 ; | ||
%A# y | %A# y | ||
; , , | ; , , | ||
{ | { | ||
I . | I . | ||
ME4 I | ME4 I | ||
Line 469: | Line 346: | ||
, P-6B I P-7 P-7A 388.5 389.0 388.8 P-7 P-7A 389.9 390.0 P-7B 389.0 I P-8 P-8A 388.9 389.3 P-8 P-8A 389.7 389.9 P-8B 389.5 - | , P-6B I P-7 P-7A 388.5 389.0 388.8 P-7 P-7A 389.9 390.0 P-7B 389.0 I P-8 P-8A 388.9 389.3 P-8 P-8A 389.7 389.9 P-8B 389.5 - | ||
P-9 389.5 , | P-9 389.5 , | ||
P-9A 390.1 -- | P-9A 390.1 -- | ||
P-10 389.4 I | P-10 389.4 I | ||
I | I | ||
:I . | :I . | ||
I i | I i | ||
,i TABLE 5 lI RESULTS OF TIME L1G PERMEABILITY TESTS k (cm/sec. ) WHEN PERFORMED PIEZOMETER | |||
,i TABLE 5 lI RESULTS OF TIME L1G PERMEABILITY TESTS | |||
k (cm/sec. ) WHEN PERFORMED PIEZOMETER | |||
-5 12/78 P-2 (RAB 3) 1.3 x 10 | -5 12/78 P-2 (RAB 3) 1.3 x 10 | ||
~ | ~ | ||
" 7.0 x 10 12/78 | " 7.0 x 10 12/78 | ||
. P-3A | . P-3A | ||
-5 12/78 | -5 12/78 P-4 " 1.1 x 10 | ||
P-4 " 1.1 x 10 | |||
~0 | ~0 | ||
" 7.1 x 10 12/78 P-8 | " 7.1 x 10 12/78 P-8 | ||
-5 12/78 g P-9A " 2.1 x 10 i | -5 12/78 g P-9A " 2.1 x 10 i | ||
'E | 'E i | ||
i | |||
~ | ~ | ||
1.1 x 10 2/79 P-3 (RAB 3) | 1.1 x 10 2/79 P-3 (RAB 3) | ||
P-10 " 5.5 x 10"~ 2/79 2/79 4 | |||
P-10 " 5.5 x 10"~ 2/79 | .P-8A (RAB 5) 1.3 x 10 I P-7A (RAB 3) 5.2 x 10 | ||
2/79 4 | |||
.P-8A (RAB 5) 1.3 x 10 | |||
I P-7A (RAB 3) 5.2 x 10 | |||
-5 9/79 I Note: All but one of the permeability determinations were performed from the piezometers around RAB-3, since that excavation exhibited the greatest | -5 9/79 I Note: All but one of the permeability determinations were performed from the piezometers around RAB-3, since that excavation exhibited the greatest | ||
, variation in water tables encountered. | , variation in water tables encountered. | ||
I I | I I | ||
I | I I - | ||
I | |||
I I TABLE 6 RAB-3 OPEN-WELL PIEZOMETER WATER LEVELS Piezometer August 1978 August 1979 Difference P-1 57.5 60.6 - 3.1 P-2 56.2 59.0 - 2.8 P-3 52.2 52.3 - .1 ; | I I TABLE 6 RAB-3 OPEN-WELL PIEZOMETER WATER LEVELS Piezometer August 1978 August 1979 Difference P-1 57.5 60.6 - 3.1 P-2 56.2 59.0 - 2.8 P-3 52.2 52.3 - .1 ; | ||
P-3A 29.0 33.9 - 4.9 j P-3B 22.5 23.6 - 1.1 | P-3A 29.0 33.9 - 4.9 j P-3B 22.5 23.6 - 1.1 I P-4 P-4A P-4B 48.9 39.1 18.3 46.8 41.8 19.7 | ||
+ 2.1 2.7 1.4 61.6 60.6 + 0.5 I | |||
I P-4 P-4A P-4B 48.9 39.1 18.3 46.8 41.8 19.7 | |||
+ 2.1 | |||
2.7 1.4 61.6 60.6 + 0.5 I | |||
I P-5 T-6 P-6A 4,8.9 39.0 47.5 41.6 | I P-5 T-6 P-6A 4,8.9 39.0 47.5 41.6 | ||
+ 1.4 | + 1.4 2.6 P-6B 25.7 25.4 (dry) - | ||
2.6 P-6B 25.7 25.4 (dry) - | |||
P-7 59.5 44.0 + 15.5 lI l P-7A 38.5 33.3 + 5.2 P-7B 24.9 25.0 (dry) - | P-7 59.5 44.0 + 15.5 lI l P-7A 38.5 33.3 + 5.2 P-7B 24.9 25.0 (dry) - | ||
I 51.9 55.0 3.1 | I 51.9 55.0 3.1 P-8 P-8A 32.6 38.5 - | ||
P-8 P-8A 32.6 38.5 - | |||
5.9 P-8B 17.8 24.4 - | 5.9 P-8B 17.8 24.4 - | ||
6.6 l | 6.6 l | ||
Line 538: | Line 387: | ||
I | I | ||
I TABLE 7 RAB-3 INCLINOMETER-PIEZ0 METER WATER LEVELS I Piezometer August 1973 August 1979 Difference I B-1 58.2 59 .8 | I TABLE 7 RAB-3 INCLINOMETER-PIEZ0 METER WATER LEVELS I Piezometer August 1973 August 1979 Difference I B-1 58.2 59 .8 B-2 56.9 58.5 - 1.6 B-3 53.3 55.8 - 2.5 56.5 I 55.4 B-4 - 1.1 B-5 21.7 18.8 + 2.9 B-6 43.5 (Average) 29.3 (Average) +14.2 B-7 32.7 28.1 + 4.6 B-8 44.9 39.8 + 5.1 i B-9 46.9 42.4 (July) + 4.5 B-10 59.8 54.4 + 5.4 I B-11 B-12 33 38.8 36.5 silted in since Jan 1979 39.2 | ||
B-2 56.9 58.5 - 1.6 B-3 53.3 55.8 - 2.5 56.5 I 55.4 B-4 - 1.1 B-5 21.7 18.8 + 2.9 B-6 43.5 (Average) 29.3 (Average) +14.2 | |||
B-7 32.7 28.1 + 4.6 B-8 44.9 39.8 + 5.1 i B-9 46.9 42.4 (July) + 4.5 B-10 59.8 54.4 + 5.4 I B-11 B-12 33 38.8 36.5 silted in since Jan 1979 39.2 | |||
- 3.5 | - 3.5 | ||
.4 29.4 +18.6 I B-13 B-14 B-15 48 18.5 36.5 37.9 29.3 | .4 29.4 +18.6 I B-13 B-14 B-15 48 18.5 36.5 37.9 29.3 | ||
-19.4 | -19.4 | ||
+ 7.2 B-16 50 45.0 + 5.0 I | + 7.2 B-16 50 45.0 + 5.0 I | ||
I I | I I | ||
l I | l I | ||
I I | |||
1 I | |||
I | I | ||
I 7 | I 7 | ||
'N | 'N 2 | ||
2 | |||
-Til'& 34 SPACES @ 8'-rs = 28'3' o , | -Til'& 34 SPACES @ 8'-rs = 28'3' o , | ||
' I. ' | ' I. ' | ||
n4L (TYP. 2, SIDErp) uu z _ | n4L (TYP. 2, SIDErp) uu z _ | ||
' 1N | ' 1N | ||
,3g ,5 | ,3g ,5 M H 1-Q | ||
M H 1-Q | |||
' l - - | ' l - - | ||
INV iw n,324,c,7 | INV iw n,324,c,7 ct.330.s l NA | ||
ct.330.s l NA | |||
/ | / | ||
/ 3; | / 3; | ||
,o | ,o l | ||
\ 4 i lt El i | |||
l | 3" W PERrotAfro | ||
\ 4 i lt El | |||
/* | /* | ||
A ! of | A ! of 4 | ||
l UNotRoaAiN [ | |||
UNotRoaAiN [ | |||
e r i n g-e o | e r i n g-e o | ||
* :.9 | * :.9 l | ||
N /' l I x n s | |||
i / | i / | ||
g j / \ lP | g j / \ lP | ||
/ \ | / \ | ||
l: | l: | ||
i : | i : | ||
I l / \_Y , | I l / \_Y , | ||
D l l p* | D l l p* | ||
l TEMPORARY CONST. , | l TEMPORARY CONST. , | ||
DRAIN FROM MAT - | DRAIN FROM MAT - | ||
Line 616: | Line 431: | ||
g.} | g.} | ||
l ! | l ! | ||
y , 3 yl ______________ ___ . | y , 3 yl ______________ ___ . | ||
- w R.318.9 -8 p COLLECTOR PIPE I" ' ' 0 g | - w R.318.9 -8 p COLLECTOR PIPE I" ' ' 0 g | ||
; | ; | ||
Mu "d \ | Mu "d \ | ||
DET C Get Fica. 2.) | |||
DET C | |||
Get Fica. 2.) | |||
l | l | ||
- N GRAvfL, tADEA I i l- SECT S B WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S | - N GRAvfL, tADEA I i l- SECT S B WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S | ||
'I GROUNDWATER DRAINAGE SYSTEM PLAN FIGURE 1 | 'I GROUNDWATER DRAINAGE SYSTEM PLAN FIGURE 1 | ||
8'- 6 [ s'. 6 ' | 8'- 6 [ s'. 6 ' | ||
CAULKIN4 (TYP) l . | CAULKIN4 (TYP) l . | ||
I M'd havewsu%ht _ | I M'd havewsu%ht _ | ||
tve,nv ie v e g@gw | tve,nv ie v e g@gw e | ||
e | |||
'[ I" SHOTCRET E h , | '[ I" SHOTCRET E h , | ||
} | } | ||
Line 651: | Line 449: | ||
5 | 5 | ||
" I A 12 ROUND | " I A 12 ROUND | ||
, G"PIPC TYP. PART PLAN | , G"PIPC TYP. PART PLAN s EL 390.CDQ | ||
: 1. HAWHMMU | : 1. HAWHMMU | ||
- G"4 STL PIPET. , | - G"4 STL PIPET. , | ||
It RC)UND G4PtPE MAT | |||
It RC)UND G4PtPE | |||
MAT | |||
_l; _; [TCP EL. 3M Oi:.co I / | _l; _; [TCP EL. 3M Oi:.co I / | ||
1 | 1 I | ||
I | |||
[ | [ | ||
;' .-- CONC FILL AROUND EL VARIES 2' I | ;' .-- CONC FILL AROUND EL VARIES 2' I | ||
Line 673: | Line 460: | ||
,. , g s m._.__., s,ercarn ) | ,. , g s m._.__., s,ercarn ) | ||
1wm r. ,r., | 1wm r. ,r., | ||
M AT TYR SECTION A-A 1 l | M AT TYR SECTION A-A 1 l | ||
WCT by CpMTRAC nos cR 2 G3 : | WCT by CpMTRAC nos cR 2 G3 : | ||
i | i | ||
'9 | '9 | ||
\ | \ | ||
; EL.%4.5('l R | ; EL.%4.5('l R | ||
[' EL.%4 (4.r<smo | [' EL.%4 (4.r<smo | ||
'- Vi h I | '- Vi h I | ||
; | ; | ||
i j | i j | ||
( TUMWEL O | ( TUMWEL O | ||
NEAT LNE. | NEAT LNE. | ||
N SVABs / | N SVABs / | ||
COMPOSITE / | COMPOSITE / | ||
CROSS PlPE | CROSS PlPE | ||
/ _ | / _ | ||
i | i | ||
_3 -, | _3 -, | ||
W_, " | W_, " | ||
\ | \ | ||
f!?f / | f!?f / | ||
i 6 | i 6 | ||
4 DETML C 4 A ste ric,. i> & f MAT f J&AM ': 2S | 4 DETML C 4 A ste ric,. i> & f MAT f J&AM ': 2S | ||
. 8" DABS PlPE INV. EL.tE 50 2 WORKI% SLA6 NOT 6YCONTf | . 8" DABS PlPE INV. EL.tE 50 2 WORKI% SLA6 NOT 6YCONTf | ||
,4Cf/gg,-h 3 LRfl.M $.50 | ,4Cf/gg,-h 3 LRfl.M $.50 7CE OR'26 '6 h . a t | ||
7CE OR'26 '6 h . a t | |||
* IMV. EL.%? M ^- ' | * IMV. EL.%? M ^- ' | ||
.{bfj ; . | .{bfj ; . | ||
Line 721: | Line 491: | ||
e - | e - | ||
y6;iN {8"$Ab6~ | y6;iN {8"$Ab6~ | ||
" CO@ SITE PIPt | " CO@ SITE PIPt RA6 Ex?AV. NEAT LNE E L.S/23'f;0 ii\9m st! PL AN (H 5) @tRF RATED) | ||
E SECT 10ki D RNV.!L. GEE PLAN'(H5) g4A65 COMPCSITE P!PE Fj ,,p' WORK SLAD EL.(Sif PLAM) 5"$Abi COMPOSITE PIPE (LEVEL) l . | |||
RA6 Ex?AV. NEAT LNE | |||
E L.S/23'f;0 ii\9m st! PL AN (H 5) @tRF RATED) | |||
E SECT 10ki D RNV.!L. GEE PLAN'(H5) g4A65 COMPCSITE P!PE Fj ,,p' WORK SLAD EL.(Sif PLAM) 5"$Abi COMPOSITE PIPE (LEVEL) | |||
l . | |||
[ d (PEMORATED) | [ d (PEMORATED) | ||
L | L | ||
_ /, i . . | _ /, i . . | ||
-lWV.EL.sEE PLAW(H6) f" < . | -lWV.EL.sEE PLAW(H6) f" < . | ||
;s o ki fM WASHlHGTON PUBLIC POWER SUPPLY SYSTEM | ;s o ki fM WASHlHGTON PUBLIC POWER SUPPLY SYSTEM | ||
% g( WPP55 Huclear Project No. 3& S DETAILS OF GROUNDWATER DRAINAGE 1CTl0M E eicuae 2 | % g( WPP55 Huclear Project No. 3& S DETAILS OF GROUNDWATER DRAINAGE 1CTl0M E eicuae 2 | ||
' (ctC fib. t) | ' (ctC fib. t) | ||
I I | I I | ||
e ~, l 3 | e ~, l 3 | ||
E" kI- - . | E" kI- - . | ||
) | ) | ||
5 | 5 | ||
*D | *D | ||
\ | \ | ||
x .. | x .. | ||
I | I | ||
~ | ~ | ||
i | i I Ng E ; | ||
I Ng E ; | |||
g$ | g$ | ||
8e i c Q I if W | |||
8e i c Q I if | e | ||
- 1 4Jy ' | - 1 4Jy ' | ||
! $ .' N "z | ! $ .' N "z | ||
* m ,_- 1 s, N y- g o a 5 < R J x a 5 | * m ,_- 1 s, N y- g o a 5 < R J x a 5 | ||
:s $ | :s $ | ||
z' | z' | ||
Line 778: | Line 525: | ||
&lj | &lj | ||
%; | %; | ||
,E | ,E | ||
_xw E , , | _xw E , , | ||
dI sd s!. | dI sd s!. | ||
El %. | El %. | ||
E + $ 6 E~ | E + $ 6 E~ | ||
l I M' n / | |||
l I M' | |||
n / | |||
} | } | ||
x w t; 4 I | x w t; 4 I | ||
e o r O $ Q* . | e o r O $ Q* . | ||
W I A in j h {3 e a t' | W I A in j h {3 e a t' I M *- | ||
I M *- | |||
kW$ | kW$ | ||
4 m | 4 m | ||
,I | ,I i _._ | ||
i _._ | |||
IIl l l l l l l 8 | IIl l l l l l l 8 | ||
I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S SECTION THROUGH TUNNEL | I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S SECTION THROUGH TUNNEL | ||
{ | { | ||
FIGURE 3 I | FIGURE 3 I | ||
1 | 1 | ||
I I | I I | ||
a a g | I a a g | ||
k REACTOR BLOG (REACTOR BLDG WNP-5 WNP-3 8 | k REACTOR BLOG (REACTOR BLDG WNP-5 WNP-3 8 | ||
* cp- | * cp-PLANT ISLAND "* - " ' | ||
E l l l l I; _ _ _ | |||
PLANT ISLAND "* - " ' | |||
E l l l l | |||
I; _ _ _ | |||
I ' | I ' | ||
.I r ; , | .I r ; , | ||
Line 832: | Line 554: | ||
\\ | \\ | ||
ll I! | ll I! | ||
b $7gu g a tg \\ jf NT!TlI ll | b $7gu g a tg \\ jf NT!TlI ll | ||
'g)y | 'g)y | ||
Line 846: | Line 567: | ||
I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Nuclear Project No. 3 & 5 | I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Nuclear Project No. 3 & 5 | ||
. GROUNDWATER DRAINAGE PAT , 1 { | . GROUNDWATER DRAINAGE PAT , 1 { | ||
FIGURE 4 | FIGURE 4 | ||
.t a | .t a | ||
v y | v y | ||
Line 862: | Line 578: | ||
; | ; | ||
s s4,8 ** | s s4,8 ** | ||
s___ _ _m_ '' | s___ _ _m_ '' | ||
,. ;.--.. . | ,. ;.--.. . | ||
____s "--- | ____s "--- | ||
.. s__ ____ | .. s__ ____ | ||
7 ; | 7 ; | ||
~ | ~ | ||
w t - | w t - | ||
s s | s s | ||
, ,._y.,__ _ _ _ . _ _____, __ | , ,._y.,__ _ _ _ . _ _____, __ | ||
g b-., ,hmA.* dw -- _- ------.-.h- -.,f - | |||
m_. _ _ _ _ . | m_. _ _ _ _ . | ||
~ | ~ | ||
e I | |||
e | i u ' !s h- r L -. ._. | ||
u ' !s h- r L -. ._. | |||
i D-S,6 eo | i D-S,6 eo | ||
; x7.m> - w-- - - - - - x..q g - | ; x7.m> - w-- - - - - - x..q g - | ||
3 % | 3 % | ||
s s__ _ _ _ | s s__ _ _ _ | ||
3 | 3 e . . . , _ c.w., - | ||
e . . . , _ c.w., - | |||
- I | - I | ||
-t - | -t - | ||
-._,.s_._%.-.-- i ,, , | -._,.s_._%.-.-- i ,, , | ||
? n, _/' f g --- 4 n . A----. . - | ? n, _/' f g --- 4 n . A----. . - | ||
o F44 ** | o F44 ** | ||
: g. - - | : g. - - | ||
w_+--_. m c, .. - i , | w_+--_. m c, .. - i , | ||
i s | i s | ||
_! 3---- - -- _ - - - - | _! 3---- - -- _ - - - - | ||
~''%.s~~''' | ~''%.s~~''' | ||
..h | ..h | ||
... ~ . | ... ~ . | ||
- _... ; | - _... ; | ||
! y' | ! y' | ||
- l 1 3 | - l 1 3 | ||
o | o g . _ . . . . . . . . _ ,r .'.'w M "L"acT-- | ||
g . _ . . . . . . . . _ ,r .'.'w M "L"acT-- | |||
g - | g - | ||
._y__--_ | ._y__--_ | ||
~._T.,'"'"" | ~._T.,'"'"" | ||
; | ; | ||
- , . .e. - . | - , . .e. - . | ||
g* | g* | ||
j s____qt t | |||
j | |||
s____qt t | |||
a \ | a \ | ||
O l | O l | ||
$ t.*1 ,~_.-- ~~ ' | $ t.*1 ,~_.-- ~~ ' | ||
A ' | A ' | ||
- - . - -- n-_ [ | - - . - -- n-_ [ | ||
h ' $ 'I ' ' ' ' ' - ^ - - ' "' f | h ' $ 'I ' ' ' ' ' - ^ - - ' "' f 3,_ '..''..'_'J~~'----- | ||
3,_ '..''..'_'J~~'----- | |||
... x' - - _-____' t 2 *% tl | ... x' - - _-____' t 2 *% tl | ||
( p.y | ( p.y 74, en N !1 g -_ _ _ _ _ | ||
74, en N !1 g -_ _ _ _ _ | |||
. 1 | . 1 | ||
. ~ _..---- | . ~ _..---- | ||
Q* *.a-. , , . _ . . - - ~< | Q* *.a-. , , . _ . . - - ~< | ||
P-10 p .e__ | |||
P-10 | |||
p .e__ | |||
s l | s l | ||
l | l i' f'L- n y | ||
i' f'L- n y | |||
l | l | ||
( u | ( u | ||
\ a f | \ a f | ||
r~ | r~ | ||
Line 986: | Line 642: | ||
.a a | .a a | ||
i I . - | i I . - | ||
5 l 1 i . | 5 l 1 i . | ||
ll E I U.! . 's !. , , l. i b .!, ) .mlike. . l. 13t,I..,m l i[l. , I h | ll E I U.! . 's !. , , l. i b .!, ) .mlike. . l. 13t,I..,m l i[l. , I h 4 | ||
4 | |||
.. I. . . | .. I. . . | ||
2 . ., m, m | |||
2 . ., m, | |||
m | |||
1._. | 1._. | ||
2... | 2... | ||
..J.,._ | ..J.,._ | ||
me avesse unteese woeta urn ee<= once ese 4.=,m ensavec ...cw .a 69Ff 89 8 | me avesse unteese woeta urn ee<= once ese 4.=,m ensavec ...cw .a 69Ff 89 8 | ||
+. !' s - | +. !' s - | ||
D D D f0 rJ o A #] i . u | D D D f0 rJ o A #] i . u | ||
l =* | l =* | ||
( | ( | ||
Line 1,019: | Line 658: | ||
- = . ". . . | - = . ". . . | ||
s ;- ^y,_ . : A.. . ... | s ;- ^y,_ . : A.. . ... | ||
T,E_ _ _ . .. _ _ _ . _ _ . _ . . ' . . ___ | T,E_ _ _ . .. _ _ _ . _ _ . _ . . ' . . ___ | ||
~____+ N._ _. | ~____+ N._ _. | ||
---",g,*,----- l | ---",g,*,----- l | ||
- b .- I | - b .- I | ||
~ '" ' | ~ '" ' | ||
j ,, o g UNIT NQ 3 | j ,, o g UNIT NQ 3 | ||
Line 1,033: | Line 668: | ||
1 l 1 " **** | 1 l 1 " **** | ||
: n. .g . .. | : n. .g . .. | ||
l I l | |||
l I | |||
l | |||
.* r------ . *'-__ | .* r------ . *'-__ | ||
l | l 3-r- - | ||
3-r- - | |||
1 ... ... | 1 ... ... | ||
-____q____.- _ _ _ _ ___ _ ~. __ _ _ _ _ ._ _ _ .. _ _ _ _ _ _ _ . | -____q____.- _ _ _ _ ___ _ ~. __ _ _ _ _ ._ _ _ .. _ _ _ _ _ _ _ . | ||
si . | si . | ||
qy _-.:-_ p_ . ._ | qy _-.:-_ p_ . ._ | ||
Line 1,051: | Line 678: | ||
.e .2 7. - gr-%.; | .e .2 7. - gr-%.; | ||
I _v- O - | I _v- O - | ||
tuot awam or svesent s. | tuot awam or svesent s. | ||
$ .==.- ... *.. .w . | $ .==.- ... *.. .w . | ||
^ | ^ | ||
.~ | .~ | ||
.A N | .A N | ||
^ | ^ | ||
g- , , , , , , , , , , , , , , , , , , , , , | g- , , , , , , , , , , , , , , , , , , , , , | ||
m | |||
_. _ t 1 _ _ ..____ | _. _ t 1 _ _ ..____ | ||
EU- | EU- | ||
--m.. . .. *$ " * " " " - * " " * * ' ' | --m.. . .. *$ " * " " " - * " " * * ' ' | ||
s s _.- ~ .._--_ . .r r .e t, u ---- _ _ . _ . | s s _.- ~ .._--_ . .r r .e t, u ---- _ _ . _ . | ||
:::,g | :::,g | ||
.aw ~~- - ---% | .aw ~~- - ---% | ||
l | l | ||
. _ _ 7 _ __ .- | . _ _ 7 _ __ .- | ||
~~~T. ~~ l L_ . | ~~~T. ~~ l L_ . | ||
. l | . l | ||
\. N Idl ,_ S. | \. N Idl ,_ S. | ||
7 | 7 | ||
--' + g _h NOTE.S o -Anne.*'se menesseeves, ans a mmat se emessenate missessvss eiese. | --' + g _h NOTE.S o -Anne.*'se menesseeves, ans a mmat se emessenate missessvss eiese. | ||
Line 1,093: | Line 703: | ||
.____p ___ | .____p ___ | ||
___ _ . . _ _ . _ ._ __ _ _. _ p _ . . u_ | ___ _ . . _ _ . _ ._ __ _ _. _ p _ . . u_ | ||
. . _ . . . - . . _ . _ _ . _ _ __ - _ _ . . . . e== ==== | . . _ . . . - . . _ . _ _ . _ _ __ - _ _ . . . . e== ==== | ||
%. .= = = | %. .= = = | ||
...y _ - | ...y _ - | ||
: a. - | : a. - | ||
s , a s. ....~. a.. a. .c. . | s , a s. ....~. a.. a. .c. . | ||
9 9 'g T\ , | 9 9 'g T\ , | ||
+ | + | ||
Juf w.A = | Juf w.A = | ||
h i i Fj l i r; . ! I I. l !U L ,i . | h i i Fj l i r; . ! I I. l !U L ,i . | ||
WASHlHGTOM PUBLIC POWER $UPPLY SYSTEM | WASHlHGTOM PUBLIC POWER $UPPLY SYSTEM | ||
: u. . m, . ,.m .i m . . . . m. | : u. . m, . ,.m .i m . . . . m. | ||
l ypp$$ g,,g,,, p,,;,,, g,,, 3 g $ | l ypp$$ g,,g,,, p,,;,,, g,,, 3 g $ | ||
WNP 3 - lNSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 1 OF 2 FIGURE 5 | WNP 3 - lNSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 1 OF 2 FIGURE 5 | ||
. "K". | . "K". | ||
m A | m A | ||
Line 1,126: | Line 723: | ||
4~- y e , | 4~- y e , | ||
- g | - g | ||
\ = | \ = | ||
\ | \ | ||
Line 1,132: | Line 728: | ||
M4e P-3 A' h&. - - M- MA, -_ _-___ | M4e P-3 A' h&. - - M- MA, -_ _-___ | ||
Q | Q | ||
., u . , , | ., u . , , | ||
- _ l | - _ l e | ||
L ~- * | |||
,e _7 - _- .. _ ,J** @* (* * | ,e _7 - _- .. _ ,J** @* (* * | ||
,v_.-- | ,v_.-- | ||
_-='_ -yc. e p**, e z,.._..9 - | _-='_ -yc. e p**, e z,.._..9 - | ||
W. .~s p.3 m. __"' . | W. .~s p.3 m. __"' . | ||
kaa # | kaa # | ||
A40 _ | A40 _ | ||
9 | 9 g .M | ||
g .M | |||
- m.- . | - m.- . | ||
____ w - | ____ w - | ||
.~~ , | .~~ , | ||
u.e *m-M 96- | u.e *m-M 96- | ||
's.. | 's.. | ||
.n- | .n- | ||
, _.m P-44 P 48 " | , _.m P-44 P 48 " | ||
as S | as S | ||
, = | , = | ||
5 ~x 7' nw | 5 ~x 7' nw W | ||
W | |||
g p.e . D ''N V N- . , . N %s . _ _ . . ,- | g p.e . D ''N V N- . , . N %s . _ _ . . ,- | ||
. =- .. ,, | . =- .. ,, | ||
Line 1,173: | Line 755: | ||
% =__ A- ~. _ :- , | % =__ A- ~. _ :- , | ||
p '- | p '- | ||
.__n w .. - | .__n w .. - | ||
. ..w | . ..w | ||
~/ | ~/ | ||
a'* | a'* | ||
R # | R # | ||
Line 1,190: | Line 764: | ||
.~ r -- .mx - ,. ; | .~ r -- .mx - ,. ; | ||
** 'M ' T2 | ** 'M ' T2 | ||
?"["'<-Q- ,-- | ?"["'<-Q- ,-- | ||
m em ,__ m .. - _ ; | m em ,__ m .. - _ ; | ||
W | W | ||
[nW ' 'W_ .' % "? _ f... .JbQ& . ,- ~- | [nW ' 'W_ .' % "? _ f... .JbQ& . ,- ~- | ||
/ ,&,. J_ _ | / ,&,. J_ _ | ||
g,.,$,s | g,.,$,s | ||
~ | ~ | ||
-. ~ | -. ~ | ||
.. = | .. = | ||
; ; _ | ; ; _ | ||
i e | |||
i | se gg W | ||
gg W | |||
~ | ~ | ||
**M'}$ .g-~ | **M'}$ .g-~ | ||
^ | ^ | ||
~ | ~ | ||
._f t,.', | ._f t,.', | ||
. w wx_ _ . .y. . _ _ _ s _ _ _ - , | . w wx_ _ . .y. . _ _ _ s _ _ _ - , | ||
.c- | .c- | ||
~ | ~ | ||
W e | W e e e 4 | ||
e e as e a e o e se e e & . e w reneses, messe sea 6 use mee me neve, wevessee seeesse 389 ePD S | |||
e e | |||
4 | |||
e | |||
e as e a e o e se e e & . e w reneses, messe sea 6 use mee me neve, wevessee seeesse 389 ePD S | |||
r e | r e | ||
L~ | L~ | ||
Line 1,247: | Line 796: | ||
0 1 | 0 1 | ||
5 | 5 | ||
* d..L k_ 1 | * d..L k_ 1 N | ||
a.l . | |||
I | I | ||
.U. . | .U. . | ||
N t.i a | N t.i a | ||
N SM t, | |||
N | |||
SM t | |||
i M | i M | ||
1 | 1 MW | ||
MW | |||
&WSfSI 1 | &WSfSI 1 | ||
In. | In. | ||
SEPfWWGES | SEPfWWGES | ||
$$fWft L | $$fWft L | ||
oft 80 4 | oft 80 4 | ||
} | } | ||
, , - - ~ . ~ - | , , - - ~ . ~ - | ||
Line 1,278: | Line 815: | ||
m i | m i | ||
I 7"x 1---, | I 7"x 1---, | ||
( " g *..a .. | ( " g *..a .. | ||
d-l f~d e | d-l f~d e | ||
.h Ne~ | .h Ne~ | ||
\ | \ | ||
) | ) | ||
J E M | J E M | ||
UNIT NG 3 | UNIT NG 3 u. | ||
u. | |||
" g, g E X C AVATION | " g, g E X C AVATION | ||
*? .y H "Y Y ' | *? .y H "Y Y ' | ||
Line 1,304: | Line 829: | ||
.m,w | .m,w | ||
--~m,-- | --~m,-- | ||
x | x I | ||
T! g | |||
.o E e .. ... | .o E e .. ... | ||
W | W saa =sure p -y,** EnM a.ato.e or trumAt l | ||
saa =sure | |||
p -y,** EnM a.ato.e or trumAt l | |||
< %mh .., | < %mh .., | ||
.e .e== a ==w | .e .e== a ==w | ||
_ . a.evasus sneaum e, e4 .emasem se merie.newees s a.ea urvie | _ . a.evasus sneaum e, e4 .emasem se merie.newees s a.ea urvie | ||
= | = | ||
-.w. | -.w. | ||
*e metia. ervuem e'.e ae'es,.i | *e metia. ervuem e'.e ae'es,.i m | ||
WM .- | |||
.- C& ** | .- C& ** | ||
, n | , n ft' j .y NOTA - es. mesa.eennees .no a m.mt er mee.e ms passenstee passe- | ||
ft' j .y NOTA - es. mesa.eennees .no a m.mt er mee.e ms passenstee passe- | |||
%f- rs g ng - ~. | %f- rs g ng - ~. | ||
_ g- | _ g- | ||
:===C i;if | :===C i;if | ||
Line 1,340: | Line 848: | ||
x. | x. | ||
I L.e | I L.e | ||
.L ' | .L ' | ||
L., ' | L., ' | ||
.L., .. | .L., .. | ||
L 2. .J - | L 2. .J - | ||
j I ., [.,i ji | j I ., [.,i ji | ||
. . . . . = > | . . . . . = > | ||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Hoclear Project Hen. 3 & 5 | WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Hoclear Project Hen. 3 & 5 | ||
. ..i. | . ..i. | ||
- . = | - . = | ||
l WNP 3 - lNSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 2 OF 2 FIGURE 5 | l WNP 3 - lNSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 2 OF 2 FIGURE 5 | ||
p miroutTER en a | p miroutTER en a | ||
Line 1,362: | Line 863: | ||
j':.C*.'"' ; | j':.C*.'"' ; | ||
.. e- | .. e- | ||
. . - ~..- - | . . - ~..- - | ||
.. . N.-~&-- | .. . N.-~&-- | ||
E-e. t ee '- | E-e. t ee '- | ||
,,, ;- _- :: . , _ _ , _ , | ,,, ;- _- :: . , _ _ , _ , | ||
e | e | ||
, ~ | , ~ | ||
._.. - . %. ; | ._.. - . %. ; | ||
Line 1,375: | Line 873: | ||
.q. - | .q. - | ||
-c _ ,. -g | -c _ ,. -g | ||
.y F. | |||
.y | |||
F. | |||
w , | w , | ||
5 ,, | 5 ,, | ||
Line 1,389: | Line 882: | ||
* s.. - -- | * s.. - -- | ||
.g yp%; , - - = - - - | .g yp%; , - - = - - - | ||
i v l | |||
i v | L ___.._._ . _ _ _ _ _ _ .._____. _____ _ ___ __ _ _ _ _ _ _ . ______ | ||
eu c e l | |||
e h. ~ -[b | |||
eu c e | |||
- ~ ~ ^ | - ~ ~ ^ | ||
r | r | ||
.,' y | .,' y | ||
.y= = x -. | .y= = x -. | ||
,;..-_ _ __ g w~ ~..K." L l | ,;..-_ _ __ g w~ ~..K." L l | ||
Line 1,409: | Line 897: | ||
_ _ _ . _ _ _ _ _ _ _ .. _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _.______ ________.______+ | _ _ _ . _ _ _ _ _ _ _ .. _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _.______ ________.______+ | ||
! I L~ | ! I L~ | ||
t . | t . | ||
~ | ~ | ||
t- se w" | t- se w" | ||
_ __ c._%s N.;, . _ ~ _ . , _..- . , _ . | _ __ c._%s N.;, . _ ~ _ . , _..- . , _ . | ||
l y _I | l y _I | ||
....-- ....=. - - ~e.-.._. | ....-- ....=. - - ~e.-.._. | ||
m_-- | m_-- | ||
. . = | . . = | ||
. m ... | . m ... | ||
s. | s. | ||
Line 1,428: | Line 911: | ||
1 a a.ma . - e y | 1 a a.ma . - e y | ||
! o = - - - - - - - | ! o = - - - - - - - | ||
______t - | ______t - | ||
3h c, - | 3h c, - | ||
= e%.., e - | = e%.., e - | ||
L. . | L. . | ||
. d: | . d: | ||
Line 1,444: | Line 921: | ||
. , , . m____..______ | . , , . m____..______ | ||
. - , 4 o | . - , 4 o | ||
j s 3 - | |||
j s | |||
3 - | |||
__ _ _ = | __ _ _ = | ||
a.t 4s Q | a.t 4s Q | ||
g ~ N.~ w" , ~ _ _ ~ | g ~ N.~ w" , ~ _ _ ~ | ||
_ .c-- .w .g ;._.. , c ..I | _ .c-- .w .g ;._.. , c ..I | ||
% ~~== - " - . . , _ . _ ._. .'. | % ~~== - " - . . , _ . _ ._. .'. | ||
Line 1,461: | Line 932: | ||
._us,,~. _~ ,".- - | ._us,,~. _~ ,".- - | ||
eac. | eac. | ||
i O. - | |||
i | |||
O. - | |||
3 0 | 3 0 | ||
m | m | ||
, _ _ s_ _ _ c. m | , _ _ s_ _ _ c. m | ||
Line 1,477: | Line 942: | ||
. u. _ | . u. _ | ||
.q, ,, ~ :: 1. | .q, ,, ~ :: 1. | ||
g . | g . | ||
q | q | ||
,, %z m s . . . _ . s I | ,, %z m s . . . _ . s I | ||
%g | %g | ||
&m, _ _ . _ _ _s u, .n y_.m | &m, _ _ . _ _ _s u, .n y_.m | ||
,,3.,,, | ,,3.,,, | ||
,., - .s . - - . . . | ,., - .s . - - . . . | ||
,,.y c_ _= __=__ ____.-. - | |||
,,.y | |||
c_ _= __=__ ____.-. - | |||
1_ _ _ ..______ _ _ _ _ _ | 1_ _ _ ..______ _ _ _ _ _ | ||
4 - | 4 - | ||
M.s e | M.s e | ||
R u 3 R | R u 3 R | ||
;. | ;. | ||
r- ( = | r- ( = | ||
! a | ! a | ||
,a i g i - _. - - . . . ._..J. | ,a i g i - _. - - . . . ._..J. | ||
l I i.lY.l .R I !l ri t l l b i k j k(he,. i , lab ti a ll.t .1. l | |||
l I i.lY.l .R I !l ri t l l b i k j k(he,. i , lab ti a | |||
ll.t .1. l | |||
' ~' | ' ~' | ||
Q Q f n | Q Q f n | ||
. 2 h _'. | . 2 h _'. | ||
J. ( - . --_.- %__.w s-A. 3,w. . | J. ( - . --_.- %__.w s-A. 3,w. . | ||
\ _ , .. | \ _ , .. | ||
Line 1,552: | Line 969: | ||
,,,-. g . ., . | ,,,-. g . ., . | ||
. - - - - ..-----_, - _ - _ _ .- - . _ . ..-_ _ ~--.. . - - | . - - - - ..-----_, - _ - _ _ .- - . _ . ..-_ _ ~--.. . - - | ||
a .... | a .... | ||
l' UNIT NO | l' UNIT NO | ||
,.,.,3 | ,.,.,3 lL I... | ||
-s e.. *, S es EXCAVATION | |||
lL I... | |||
-s e.. *, S | |||
es EXCAVATION | |||
------.- - - - - - - - - - - - - -------- .--------..------- ------- ==== .. | ------.- - - - - - - - - - - - - -------- .--------..------- ------- ==== .. | ||
:t p.*= | :t p.*= | ||
b ~l | b ~l | ||
Line 1,572: | Line 979: | ||
~ | ~ | ||
:.fyt =.q=- =-=~=r_;k"M.:-R"'*b ** | :.fyt =.q=- =-=~=r_;k"M.:-R"'*b ** | ||
~ .. . ... | ~ .. . ... | ||
7 | 7 | ||
- - - - - - + . - - - - - -.------ | - - - - - - + . - - - - - -.------ | ||
t | t | ||
# 8. | # 8. | ||
J_ | J_ | ||
-.s. - ~ --.---.: --m .#% --_m-.- . | -.s. - ~ --.---.: --m .#% --_m-.- . | ||
n. | n. | ||
an ua.r . . . | an ua.r . . . | ||
: s. .g . ~ ~ . - | : s. .g . ~ ~ . - | ||
. , , _ . s=- - | . , , _ . s=- - | ||
- - - - - _ ..------j----------------- | - - - - - _ ..------j----------------- | ||
l l | l l | ||
Line 1,607: | Line 997: | ||
., s nmits. | ., s nmits. | ||
. + . .x . | . + . .x . | ||
- b' . . . .. | - b' . . . .. | ||
L - _- I i | L - _- I i | ||
L _ | L _ | ||
l | l | ||
=v-~ . - c' _ ' -~ y ___ | =v-~ . - c' _ ' -~ y ___ | ||
G. | G. | ||
. , - - , *I | . , - - , *I | ||
---( | ---( | ||
.. - - - - - - .. . . . - - - ...----3---.-- | .. - - - - - - .. . . . - - - ...----3---.-- | ||
I I | I I | ||
----.'.. A ~ . _ _ _ . - . - - ,1. . L --. - !." | ----.'.. A ~ . _ _ _ . - . - - ,1. . L --. - !." | ||
W -; | W -; | ||
n n | |||
n | :g p----- | ||
n | |||
:g | |||
p--- | |||
j.e-__.._-- ----:= | j.e-__.._-- ----:= | ||
2 _q . | 2 _q . | ||
Line 1,641: | Line 1,016: | ||
.5 4 ; . . c ; | .5 4 ; . . c ; | ||
. ,4 | . ,4 | ||
} | } | ||
i da. k i, i, t1 )l- h .. | i da. k i, i, t1 )l- h .. | ||
ulld ;b | ulld ;b | ||
..J . .1. | ..J . .1. | ||
.1 | .1 | ||
' .[ | ' .[ | ||
1 ". .?., WASHINGTON FUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 WNP $ - INSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 SHE ET 1 OF 2 FIGURE 6 l: | |||
1 ". .?., WASHINGTON FUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 WNP $ - INSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 SHE ET 1 OF 2 FIGURE 6 | |||
l: | |||
.l PsE 20.sE tt. | .l PsE 20.sE tt. | ||
I. Inviset . | I. Inviset . | ||
.O | .O I | ||
I | |||
k | k | ||
. 6. t .o - - - - - -. -- | . 6. t .o - - - - - -. -- | ||
I | I 40 | ||
.O N | |||
40 | 30 | ||
.O | |||
. n, . 0 | . n, . 0 | ||
** :.,e.. | ** :.,e.. | ||
60 | 60 | ||
=**, s .I | =**, s .I UNIT NO. | ||
UNIT NO. | |||
5 0 | 5 0 | ||
g, ,... EXCAVATION [* s e .... | g, ,... EXCAVATION [* s e .... | ||
_ . . ,. . ... 1 *< | _ . . ,. . ... 1 *< | ||
** m r- . . .. :l.i.=~ | ** m r- . . .. :l.i.=~ | ||
I i. | I i. | ||
Line 1,699: | Line 1,049: | ||
l s . _. _ _ . . . _ _ | l s . _. _ _ . . . _ _ | ||
~ | ~ | ||
~ ;* : | ~ ;* : | ||
,.I = | ,.I = | ||
? .. ,, ,,,, ao ., | ? .. ,, ,,,, ao ., | ||
a.... | a.... | ||
w I " i j l | w I " i j l | ||
Line 1,711: | Line 1,059: | ||
3 7,*, '; .. sg*;';- . g.,.g.. .. . .. ,. | 3 7,*, '; .. sg*;';- . g.,.g.. .. . .. ,. | ||
I | I | ||
.o ~, | .o ~, | ||
p . , _ . . . . . . . . . . . . . | p . , _ . . . . . . . . . . . . . | ||
= | = | ||
1 I u% | 1 I u% | ||
, ..it g .. .. ~'' | , ..it g .. .. ~'' | ||
1 | 1 | ||
.4 2 | .4 2 | ||
q;* | q;* | ||
Line 1,737: | Line 1,078: | ||
t .....S , | t .....S , | ||
If .. | If .. | ||
a | a D rA. | ||
D rA. | |||
.-#S.16.. | .-#S.16.. | ||
.r. | .r. | ||
..r. -m. c ,, ._ - | ..r. -m. c ,, ._ - | ||
so | so 40 _, | ||
40 _, | |||
;_ | ;_ | ||
S 1 | S 1 | ||
1 | 1 W | ||
W | |||
g3 _ .._ _ _. . -. _ _ _ . _. _ _ _ _ . _._. | g3 _ .._ _ _. . -. _ _ _ . _. _ _ _ _ . _._. | ||
t D | t D | ||
Line 1,765: | Line 1,095: | ||
o# . . . . . . . . _ . _ . . . , .. .. _ | o# . . . . . . . . _ . _ . . . , .. .. _ | ||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project Hos. 3 & 5 WNP 5 -INSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 I. SHEET 2 OF 2 FIGURE 6 | WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project Hos. 3 & 5 WNP 5 -INSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 I. SHEET 2 OF 2 FIGURE 6 | ||
W | W i | ||
, b i | |||
i | |||
, b | |||
i | |||
{ RAB-3 | { RAB-3 | ||
(' .. . | (' .. . | ||
7 .. | 7 .. | ||
2 20 s | 2 20 s r- E , | ||
r- E , | |||
g to g 4 | g to g 4 | ||
- s | - s 5 a a 3 J | ||
l10 5 s Et u g- d am a., .. , i | |||
5 a | |||
a 3 J | |||
l10 5 s Et | |||
u g- d | |||
am a., .. , i | |||
. ,, , I i t .t n . , , , . , a . i ,ti .. A | . ,, , I i t .t n . , , , . , a . i ,ti .. A | ||
,.. .. ( | ,.. .. ( | ||
RAB-5 as a to . | RAB-5 as a to . | ||
Line 1,804: | Line 1,112: | ||
5 5 | 5 5 | ||
* 10 3 d | * 10 3 d | ||
t | t | ||
..a. ._ _ | ..a. ._ _ | ||
Line 1,811: | Line 1,118: | ||
o l l ,ll J li i t .i, >. t , .4i.ll . llil{ !,,1f.i. | o l l ,ll J li i t .i, >. t , .4i.ll . llil{ !,,1f.i. | ||
i. | i. | ||
g L (. | |||
g | |||
L (. | |||
I. | I. | ||
l I | l I | ||
N I | N I | ||
.. .. I | .. .. I | ||
'AP 'M I Yl$ | 'AP 'M I Yl$ | ||
g: . t 4 | g: . t 4 | ||
/ %. /\ ' | / %. /\ ' | ||
v ".' M W ** L i' .* | v ".' M W ** L i' .* | ||
. ; | . ; | ||
; eu | ; eu aus I | ||
aus I | |||
\ dia su | \ dia su | ||
/ | / | ||
stocate e? ConsT. ' | stocate e? ConsT. ' | ||
,,, j p { | ,,, j p { | ||
*?ttXyf" | *?ttXyf" | ||
\ , | \ , | ||
A | A s / t A + 4 4#0UIE>WAftR ORAlmaat SYSitti PLAN I l] _h . i 11tNa ! b I l .t t. . | ||
s / t A + 4 4#0UIE>WAftR ORAlmaat SYSitti PLAN I l] _h . i 11tNa ! b I l .t t. . | |||
al [ l i t 1 | al [ l i t 1 | ||
MARCN APRIL MAY JUNE JULY AUGUST MPTERISER l | MARCN APRIL MAY JUNE JULY AUGUST MPTERISER l | ||
Line 1,857: | Line 1,142: | ||
-f stocaso et coast, 1 | -f stocaso et coast, 1 | ||
M NN - | M NN - | ||
ow_ | ow_ | ||
i _ l .1 .6 dall, I L li i 2 . l .. I l III . i. | i _ l .1 .6 dall, I L li i 2 . l .. I l III . i. | ||
MANA AP RIL II AT JUNE JULY AUGUST SEPTEletR | MANA AP RIL II AT JUNE JULY AUGUST SEPTEletR WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPP55 HUcleOr Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION DATA COLLECTED THROUGH DEC 14,109 SLEET 1 OF 2 FIGURE 7 L | ||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPP55 HUcleOr Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION DATA COLLECTED THROUGH DEC 14,109 SLEET 1 OF 2 FIGURE 7 | |||
L | |||
1 | 1 | ||
.g | .g | ||
? | ? | ||
t,. | t,. | ||
f A .. . | |||
A .. . | |||
, ,~ | , ,~ | ||
I L'; | I L'; | ||
Line 1,894: | Line 1,164: | ||
* I 'l | * I 'l | ||
~ | ~ | ||
f'- | f'- | ||
5 2 -- | 5 2 -- | ||
Line 1,904: | Line 1,172: | ||
Q (! | Q (! | ||
's ' f .; | 's ' f .; | ||
O I 0 II ' bf- 3 - 1 (l OCTosEn moygugE R MCEMBER ANUARY.1990 Ff8RUARY M ARCH A,n L I g as e ; | |||
O I 0 II ' bf- 3 - 1 (l OCTosEn moygugE R MCEMBER ANUARY.1990 Ff8RUARY M ARCH A,n L I g | |||
as e ; | |||
i ! | i ! | ||
r= . | r= . | ||
il | il | ||
- 1 | - 1 | ||
: * ; | : * ; | ||
i: | i: | ||
3 E I I ::*, | 3 E I I ::*, | ||
g i. .r. np:: | g i. .r. np:: | ||
y : '. ; | y : '. ; | ||
F =- : :: : , | F =- : :: : , | ||
Line 1,925: | Line 1,188: | ||
i= | i= | ||
so a :- !:" , | so a :- !:" , | ||
q ! !:' , p: | q ! !:' , p: | ||
.,' , :l' ' | .,' , :l' ' | ||
. n k | . n k | ||
e | e | ||
; | ; | ||
,; ---., | ,; ---., | ||
.!. i! >. r o U {/ | |||
.!. i! >. r o | |||
U {/ | |||
}' O 4 | }' O 4 | ||
^ | ^ | ||
d'C-i. | d'C-i. | ||
, m | , m O t. l da Lil- il d. .I l oCro . .vi.. . -C... . . A om. ,, ri u m . A.C,, A,,,t s I.a t '; . | ||
4 ul-4 | |||
O t. l da Lil- il d. .I l oCro . .vi.. . -C... . . A om. ,, ri u m . A.C,, A,,,t s I.a | :; m i | ||
l 4 1 | |||
t '; . | |||
4 | |||
ul-4 | |||
:; m | |||
4 1 | |||
l 1 | l 1 | ||
N | N | ||
! l 6 | ! l 6 | ||
I | |||
.* -~ - | .* -~ - | ||
.1 '- | .1 '- | ||
; ,o se, e s an | |||
; ,o | |||
se, e s an | |||
[ | [ | ||
[L ry./' | [L ry./' | ||
=,.= | =,.= | ||
mm. | mm. | ||
A enoumowartR oRmass systru PLam CSY JUNE JutY AUGUST SEPTEustR OCf00tm IsovElstER DEctuttR g | A enoumowartR oRmass systru PLam CSY JUNE JutY AUGUST SEPTEustR OCf00tm IsovElstER DEctuttR g | ||
LEGEND e os u PIPE UIEER IAAT (0) n.a-se.ci i | LEGEND e os u PIPE UIEER IAAT (0) n.a-se.ci i | ||
j CAY JUNE JULY AUGU S T SEPTEnsetR OCTOGER Novtutta DECEuSER l | j CAY JUNE JULY AUGU S T SEPTEnsetR OCTOGER Novtutta DECEuSER l | ||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION | WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION DATA COLLECTED THROUGH DEC 14, 1979 SHEET 2 0F 2 FIGURE 7 | ||
DATA COLLECTED THROUGH DEC 14, 1979 | |||
SHEET 2 0F 2 FIGURE 7 | |||
N' Y. | N' Y. | ||
Line 2,005: | Line 1,223: | ||
l5 - | l5 - | ||
t a i | t a i | ||
-.2. | -.2. | ||
NORTH FACE , | NORTH FACE , | ||
MCTEIN A& ' | MCTEIN A& ' | ||
~" ' A | ~" ' A | ||
'}e , | '}e , | ||
I | I | ||
- .s_.. | - .s_.. | ||
It I p | It I p | ||
....7...E. | ....7...E. | ||
i i t E-i . . | i i t E-i . . | ||
- 4 SOUTH FACE l j | - 4 SOUTH FACE l j | ||
.i g-' urra aa ; ; | .i g-' urra aa ; ; | ||
a 4 RAMP | |||
^ | ^ | ||
s + s | s + s | ||
* e | * e | ||
* a i e G ....!...... I | * a i e G ....!...... I | ||
.[. h d --- $ 3- | .[. h d --- $ 3- | ||
,l. -t' , | ,l. -t' , | ||
Line 2,040: | Line 1,248: | ||
a l ,_. -k.s ., l | a l ,_. -k.s ., l | ||
.m . . . ..m. | .m . . . ..m. | ||
g yRas seef | g yRas seef I t f I ww & aru - | ||
I t f I ww & aru - | |||
t e | t e | ||
.-4 . es e g g | .-4 . es e g g | ||
Line 2,052: | Line 1,258: | ||
= = = . | = = = . | ||
4j MCTElII FF g | 4j MCTElII FF g | ||
* ,7 | * ,7 g | ||
e a g em e.e h . | |||
e 4 ace er g | e 4 ace er g | ||
* 's 0 | * 's 0 | ||
t (.-e .age.= | t (.-e .age.= | ||
gw,s seem g g se e i | gw,s seem g g se e i | ||
* I e a I | * I e a I | ||
' s. UNIT NOI | ' s. UNIT NOI t | ||
t | |||
.g I.** | .g I.** | ||
e } | e } | ||
3l EXCAVATIC I- 3:.",-. I t # # | |||
3l EXCAVATIC I- 3:.",-. I | |||
t # # | |||
s y , ,1, , b-e .e*-ed a | s y , ,1, , b-e .e*-ed a | ||
...~ | ...~ | ||
1 t , e i | 1 t , e i | ||
' ~ | ' ~ | ||
-e,. .. . .. . | -e,. .. . .. . | ||
s,L-j | s,L-j 3 | ||
3 Le | |||
; e l } , | ; e l } , | ||
g | g L... | ||
L... | |||
4 - | 4 - | ||
g PLAN YlE1 | g PLAN YlE1 | ||
{ - {7 , | { - {7 , | ||
I | I | ||
' 6 - | ' 6 - | ||
. LJ | . LJ ECTM3M it a - - | ||
ECTM3M it a - - | |||
f 4 | f 4 | ||
i | i l i I j ; E .. l . t 8 s . I t A4 8 g g ECT10Il NM l 1 I. - | ||
l i I j ; E .. l . t 8 s . I t A4 8 g g ECT10Il NM l | |||
1 I. - | |||
,r 3 g g | ,r 3 g g | ||
; | ; | ||
Line 2,115: | Line 1,300: | ||
i . | i . | ||
D 9' D D M3h I3 i i | D 9' D D M3h I3 i i | ||
am {\ sA Ql. A l | am {\ sA Ql. A l u[i 1 l | ||
u[i 1 l | |||
: k. ' | : k. ' | ||
EAST FACE K CT!Ost CC ' | EAST FACE K CT!Ost CC ' | ||
t' -..-. [ , . . _ - | t' -..-. [ , . . _ - | ||
Line 2,127: | Line 1,308: | ||
;l .y n. | ;l .y n. | ||
L. . | L. . | ||
west ruz l i i ! . --- L - | west ruz l i i ! . --- L - | ||
' 2. ' | ' 2. ' | ||
Line 2,136: | Line 1,313: | ||
. . . . 1 i, + i t_ m, . tm | . . . . 1 i, + i t_ m, . tm | ||
.,._i l | .,._i l | ||
*1 p.. | *1 p.. | ||
.; -; | .; -; | ||
Line 2,143: | Line 1,319: | ||
f. | f. | ||
; | ; | ||
; la. ! | ; la. ! | ||
; * | ; * | ||
'l :;! | 'l :;! | ||
i 9 I i | i 9 I i | ||
._j 2-e i .i e o Q1. - | ._j 2-e i .i e o Q1. - | ||
._p . . . | ._p . . . | ||
! 8 | ! 8 | ||
\ | \ | ||
l LEGEND ; | l LEGEND ; | ||
I*T t 8 l | I*T t 8 l | ||
* i | * i l ! -~ | ||
l ! -~ | |||
: : .~ | : : .~ | ||
. , _ , r '-* "" "- | . , _ , r '-* "" "- | ||
1 I i . | 1 I i . | ||
l l l .s g g - - | l l l .s g g - - | ||
.l 3.4 '1 - ~ . . ~ m .., ' | .l 3.4 '1 - ~ . . ~ m .., ' | ||
( -- m , | ( -- m , | ||
l | l | ||
, 3.. .,., , | , 3.. .,., , | ||
o- . _ , I . | o- . _ , I . | ||
y n | y n | ||
: ,i .- | : ,i .- | ||
i | i j "+ i l i r r- , | ||
j "+ i l i | |||
r r- , | |||
u:.ib~ | u:.ib~ | ||
t "o- l l | |||
t "o- l | |||
l | |||
, .u i .-. . 1 | , .u i .-. . 1 | ||
,, , 4 8 . | ,, , 4 8 . | ||
Line 2,199: | Line 1,352: | ||
- <~- .- . . _ -m. | - <~- .- . . _ -m. | ||
: t. ] ,/l/ , | : t. ] ,/l/ , | ||
aa.m== =z0 m. | |||
aa.m== =z0 | |||
m. | |||
: ,, s .u .J. . a''{ | : ,, s .u .J. . a''{ | ||
mam u i | mam u i | ||
[*.* =c. -,-4,,, | [*.* =c. -,-4,,, | ||
i i | i i | ||
8 1 t | 8 1 t l | ||
l | |||
"l ll l l | "l ll l l | ||
1 I i | 1 I i | ||
Line 2,221: | Line 1,365: | ||
l l 5 I I i ) | l l 5 I I i ) | ||
i T '- .4 v. WASHINGTON PUB'lc POWER SUPPLY SYSTEM | i T '- .4 v. WASHINGTON PUB'lc POWER SUPPLY SYSTEM | ||
-_}.a | -_}.a F' '~ii WPPSS Hoclear Project Hos. 3 & 5 e 1 3 t l ! PIEZ0 METRIC PROFILES UNIT NO. 3 FIGURE 8 | ||
F' '~ii WPPSS Hoclear Project Hos. 3 & 5 e 1 3 t l ! PIEZ0 METRIC PROFILES UNIT NO. 3 FIGURE 8 | |||
i I | i I | ||
c, - | c, - | ||
i. | |||
.... . - ...x .. -..s. | .... . - ...x .. -..s. | ||
NORTM FACE V j' | NORTM FACE V j' | ||
mCTm a a , | |||
; | ; | ||
i: i | i: i | ||
Line 2,239: | Line 1,378: | ||
, 9 9g i um. :i | , 9 9g i um. :i | ||
'I n_ | 'I n_ | ||
*- ' P | *- ' P | ||
,' e -l i i t i l' i i } i = | ,' e -l i i t i l' i i } i = | ||
l _ | l _ | ||
,7, i | ,7, i | ||
_...j...v. , | _...j...v. , | ||
r- - . . > - 2 | r- - . . > - 2 9 ....[..r_ ; ,, | ||
9 ....[..r_ ; ,, | |||
i.- I i | i.- I i | ||
e e | e e | ||
i l i r, r' = | i l i r, r' = | ||
r ) | r ) | ||
< t, _ | < t, _ | ||
v. | v. | ||
Line 2,264: | Line 1,398: | ||
_S g , , | _S g , , | ||
i e a l l I 1 i - 1 i i - | i e a l l I 1 i - 1 i i - | ||
e i i | e i i | ||
'i l I I f 1 1 | 'i l I I f 1 1 meta a m t | ||
t l f *Cv7 =}. . . . *]. . - . | |||
meta a m | |||
t | |||
l f *Cv7 =}. . . . *]. . - . | |||
""" " '~ | """ " '~ | ||
l 1 : .:v: .:::~ | l 1 : .:v: .:::~ | ||
t %-. | t %-. | ||
m_t tan | m_t tan i p e so w a\ , , | ||
l | l | ||
\ . - | \ . - | ||
Line 2,285: | Line 1,410: | ||
6 | 6 | ||
.. 7 6 | .. 7 6 | ||
uw T wo a 3 | uw T wo a 3 EXCAVATION r- * " ' ** L* 4 E R i | ||
EXCAVATION | |||
r- * " ' ** L* 4 E R i | |||
i . | i . | ||
e | e r | ||
r i " | |||
r | |||
r | |||
i " | |||
* meta s-a , | * meta s-a , | ||
~ | ~ | ||
. } | . } | ||
p, 24 +2 g m , , _ | |||
p, 24 +2 g | |||
m , , _ | |||
PLAN VIEW r | PLAN VIEW r | ||
KCT10m i I | KCT10m i I | ||
't' g, | |||
't' | y: , . . h, . T . ..,h.v. | ||
g . i e a e e 5, h EEten M M g 4 | g . i e a e e 5, h EEten M M g 4 | ||
g , , , | g , , , | ||
Line 2,320: | Line 1,427: | ||
t * , e i | t * , e i | ||
i, s | i, s | ||
I, M t i i se 8 | I, M t i i se 8 | ||
: a. 6 i 8 1 1 1 ! - 1 i - | : a. 6 i 8 1 1 1 ! - 1 i - | ||
0 1 l I j'* I I $ | 0 1 l I j'* I I $ | ||
1 I i t; e . . | 1 I i t; e . . | ||
; " | ; " | ||
_4 L. u w> e ug w)uguwjulNigitt, 1 | |||
_4 | |||
L. u w> e ug w)uguwjulNigitt, 1 | |||
IEST FACE | IEST FACE | ||
'---- ~ ~ ' | '---- ~ ~ ' | ||
* l L29ft.i.fi ' | * l L29ft.i.fi ' | ||
s | s | ||
. 1. ,: . . | . 1. ,: . . | ||
: s. , | : s. , | ||
i+ | i+ | ||
., el | ., el j! | ||
j! | |||
l' | l' | ||
._v - - | ._v - - | ||
i | i OST FACE' - 'e i | ||
te,mn na ' | |||
OST FACE' - 'e | n i i e a , | ||
n i i | |||
e a , | |||
* 1 | * 1 | ||
; - ' | ; - ' | ||
: l | : l | ||
, : f g sii8". I Dl.L 3 b g i | |||
, : f | |||
g sii8". I Dl.L 3 b g i | |||
: r= | : r= | ||
le' | le' | ||
,1 i' | ,1 i' l,42i | ||
l,42i | |||
.! 'I ?? | .! 'I ?? | ||
..,.i. .j_v. | ..,.i. .j_v. | ||
I 4 i I 6 4 8 I s s | I 4 i I 6 4 8 I s s | ||
'j | 'j ba l' t i i T e i LEGEND. | ||
ba l' | |||
t i i T e i LEGEND. | |||
I l t t e t | I l t t e t | ||
' 8 PROFILE Svum0LS- | ' 8 PROFILE Svum0LS- | ||
* I | * I | ||
-este est ekstium EC, ION M- R | -este est ekstium EC, ION M- R g,. ,, ,,, ^ | ||
g,. ,, ,,, ^ | |||
. ;. | . ;. | ||
,,, l | ,,, l I esse 6 g g se+wn. m ass e mme ens.weis see insaamasseusessmewe I '_",9~~ | ||
I esse 6 g g se+wn. m ass e mme ens.weis see insaamasseusessmewe I '_",9~~ | |||
B ee'e# 4evas se e meer es,em | B ee'e# 4evas se e meer es,em | ||
=am u 4 r- , | =am u 4 r- , | ||
i ' ! | i ' ! | ||
.. 'i i f a-os a -l6**) j p- asets'. .sotato l E I l | .. 'i i f a-os a -l6**) j p- asets'. .sotato l E I l | ||
"" "I | "" "I r::. :n F | ||
r::. :n F | |||
F l l PL#e 911m0Lt. | F l l PL#e 911m0Lt. | ||
g , | g , | ||
* | * | ||
* OPEN-etLL Pit 20s.,ERS | * OPEN-etLL Pit 20s.,ERS | ||
.2 _ s - - * | .2 _ s - - * | ||
* _ - ~ ~ _ - - | * _ - ~ ~ _ - - | ||
Line 2,416: | Line 1,479: | ||
,...r...,..g...., | ,...r...,..g...., | ||
4 - | 4 - | ||
: n. .' *'nN 7.y , | : n. .' *'nN 7.y , | ||
+ - | + - | ||
l r | l r | ||
" i e on l | " i e on l | ||
Line 2,430: | Line 1,486: | ||
. ta e l I _2 1 i 1 i e | . ta e l I _2 1 i 1 i e | ||
. .I | . .I | ||
.- l l | .- l l f 1 1 1 nwm u | ||
! .l,.. o 0[ s] i | |||
f 1 1 1 | |||
nwm u | |||
! .l,.. o | |||
0[ s] i | |||
- - [] , | - - [] , | ||
f f i +.- . | f f i +.- . | ||
- ' WASHINGTON PUBLIC POWER SUPPLY SYSTEM l | - ' WASHINGTON PUBLIC POWER SUPPLY SYSTEM l | ||
i e WPP55 Huclear Proled Hos. 3 & 5 | i e WPP55 Huclear Proled Hos. 3 & 5 | ||
Line 2,452: | Line 1,496: | ||
UNIT NO. 5 | UNIT NO. 5 | ||
[ FIGURE 9 | [ FIGURE 9 | ||
C : | C : | ||
Line 2,467: | Line 1,510: | ||
% b,1e, g ,~ , - - - | % b,1e, g ,~ , - - - | ||
M-tm, a- | M-tm, a- | ||
~ | ~ | ||
1 i l' t | 1 i l' t | ||
u. | u. | ||
$5g ?<oll' 5o @gli r+ | $5g ?<oll' 5o @gli r+ | ||
9.%@ . . a. . ,z. | 9.%@ . . a. . ,z. | ||
j ! g s'. ' , . ' , . .. | j ! g s'. ' , . ' , . .. | ||
#' ~ ~ | #' ~ ~ | ||
b , ; : --2 | b , ; : --2 | ||
.g,% | .g,% | ||
'' 7., -e- t - - - - | '' 7., -e- t - - - - | ||
_......... .-~. | _......... .-~. | ||
J . . ... ,..s.. | J . . ... ,..s.. | ||
i, 94 ...- | i, 94 ...- | ||
p i(349), 8A .. ..n j '. ...- | |||
p | |||
i(349), 8A .. ..n j '. ...- | |||
- #-- : ~~Y.n .:.s | - #-- : ~~Y.n .:.s | ||
: 1. ' | : 1. ' | ||
EL 388.00' - -- - | EL 388.00' - -- - | ||
/ ,. . _ | / ,. . _ | ||
,.3 | ,.3 | ||
: c. ROUGH ~-> | : c. ROUGH ~-> | ||
; GRADE m l'' ' ' | ; GRADE m l'' ' ' | ||
4 --o (354), 9A ' -#n(333),8 | 4 --o (354), 9A ' -#n(333),8 | ||
. ' . ' . .,. p Y %-..._,.:.. | . ' . ' . .,. p Y %-..._,.:.. | ||
i ,4 .. | i ,4 .. | ||
. .c .,3. a. -. | . .c .,3. a. -. | ||
Line 2,520: | Line 1,539: | ||
/ | / | ||
- '. g(7.,% | - '. g(7.,% | ||
"~.. - - | "~.. - - | ||
jN . . , " -O,' '.. (348),9 | jN . . , " -O,' '.. (348),9 | ||
.&, N | .&, N | ||
~s | ~s | ||
/, | /, | ||
- ~':" . - _ 4 ,' | - ~':" . - _ 4 ,' | ||
e~ - | e~ - | ||
.s j p,s,s. | .s j p,s,s. | ||
s- | s-g | ||
g | |||
,.r-lW'b, | ,.r-lW'b, | ||
;- -, - 7 | ;- -, - 7 | ||
\ | \ | ||
, , ,- s ;;s,g- | , , ,- s ;;s,g- | ||
,s,.. ,,- | ,s,.. ,,- | ||
'I . ,. | 'I . ,. | ||
s v:. | s v:. | ||
6 'N .- '' % ' ', - ' | 6 'N .- '' % ' ', - ' | ||
j | j | ||
~, | ~, | ||
,'', ,' , ,,,%,'[J, , . S | ,'', ,' , ,,,%,'[J, , . S | ||
, * ~ % .g Ih t. | , * ~ % .g Ih t. | ||
'N,,,,'- | 'N,,,,'- | ||
i-sf K's. o-(335)) | i-sf K's. o-(335)) | ||
.pf -, | .pf -, | ||
.m ~ = ,f r | .m ~ = ,f r | ||
, N, n g ,-r- 's, % s e | , N, n g ,-r- 's, % s e | ||
-b,s,z,- gg1, gb M%gjf. | -b,s,z,- gg1, gb M%gjf. | ||
*A . 4. , 4 N. s -'s , N4,, | *A . 4. , 4 N. s -'s , N4,, | ||
''=ys N q,eg 1 | |||
''=ys N q,eg | 1 p- . g. | ||
p- . g. | |||
. y;;. .. . . s, s.- b,s %, - ;, %w y s ,, , | . y;;. .. . . s, s.- b,s %, - ;, %w y s ,, , | ||
: m. , - - | : m. , - - | ||
r . - . g. . , - | r . - . g. . , - | ||
. '' y % | . '' y % | ||
* ., : . , j;: . ..' . ~ ' .%, s s % | * ., : . , j;: . ..' . ~ ' .%, s s % | ||
-. e.e . | -. e.e . | ||
A., .c ,s- s. | A., .c ,s- s. | ||
T* | T* | ||
s ' ,n, ,., | s ' ,n, ,., | ||
e ;' | e ;' | ||
. - 4't, s.N., - | . - 4't, s.N., - | ||
,N, s | ,N, s | ||
3 , % ~ ,. . - | 3 , % ~ ,. . - | ||
i r- N - | i r- N - | ||
Line 2,607: | Line 1,586: | ||
' . 'h, - | ' . 'h, - | ||
'.'s. | '.'s. | ||
i . | i . | ||
+ | + | ||
EXPLANATION: .N | EXPLANATION: .N | ||
.s s | .s s | ||
[ ' ~ | [ ' ~ | ||
7_ Foult, troce showing ^ | 7_ Foult, troce showing ^ | ||
relative separation - | relative separation - | ||
9,O - | 9,O - | ||
f ' cQ' > s' sa | f ' cQ' > s' sa | ||
.' NN LN | .' NN LN | ||
.._.- Porting along bedding pione . . | .._.- Porting along bedding pione . . | ||
N,f, Joent troce <>- 's i N.N | N,f, Joent troce <>- 's i N.N | ||
~! ,i3 ' | ~! ,i3 ' | ||
,. _4 Foulf splays ' | ,. _4 Foulf splays ' | ||
34, ,I'g | 34, ,I'g l Lithologic unit boundary */ ' '' C'&' .. S < N:4 . .. .I'.T,,,- ' | ||
l Lithologic unit boundary */ ' '' C'&' .. S < N:4 . .. .I'.T,,,- ' | |||
t., | t., | ||
,., L .imonite-stained lenses ^~ | ,., L .imonite-stained lenses ^~ | ||
g T '_ _f %p or seep line -'.8/(3M' l | g T '_ _f %p or seep line -'.8/(3M' l | ||
4 chorocterized by concentrations . | 4 chorocterized by concentrations . | ||
Line 2,646: | Line 1,608: | ||
. Weathered sandstone ' | . Weathered sandstone ' | ||
' l * .' | ' l * .' | ||
4 | 4 | ||
!. ; | !. ; | ||
rnotereal '' - | rnotereal '' - | ||
Fresh sondstone k- ~'' | Fresh sondstone k- ~'' | ||
..~. - . Dif fuse limonite staining | ..~. - . Dif fuse limonite staining | ||
) f; t | ) f; t | ||
..., ..,, Pebble conglomerate lens or coarse sandstone Tuff bed #? Ikj{ '',- - | ..., ..,, Pebble conglomerate lens or coarse sandstone Tuff bed #? Ikj{ '',- - | ||
-1 > ,, | -1 > ,, | ||
~ - q | ~ - q u . | ||
u | |||
.-'1 j" [ | .-'1 j" [ | ||
l ' | l ' | ||
4 n, | 4 n, | ||
l D 9 y) .jj | l D 9 y) .jj D | ||
Et'l'D'( | |||
U Js lvjuut'6'sl n | U Js lvjuut'6'sl n | ||
2 | 2 g | ||
g | |||
La 1 | La 1 | ||
5 t | 5 t | ||
.-- l 2 l R-- ' | .-- l 2 l R-- ' | ||
j'4';% ? | j'4';% ? | ||
Qt9h% | Qt9h% | ||
[N | [N | ||
^?.., | ^?.., | ||
g .# | g .# | ||
Nk g, - - | Nk g, - - | ||
g '% . A., | g '% . A., | ||
1, s 4 (355), 7AQl ., , -h , 7 qhg 3 , | 1, s 4 (355), 7AQl ., , -h , 7 qhg 3 , | ||
, ,' g% g. A,S J'''''_s i , k,. . .9 .Q :. . ~ , *%,,' , . 'N,, | , ,' g% g. A,S J'''''_s i , k,. . .9 .Q :. . ~ , *%,,' , . 'N,, | ||
w N qk | w N qk | ||
~.., 'A | ~.., 'A | ||
.: y -y ~;.w N ' .:,, N C' ,.. | .: y -y ~;.w N ' .:,, N C' ,.. | ||
: f. : 'w . , ' .'4 N | : f. : 'w . , ' .'4 N | ||
.'s | .'s g(343), 7 g ..-~- | ||
g(343), 7 g ..-~- | |||
_yy | _yy | ||
\sN-Ms~a,... *,. - | \sN-Ms~a,... *,. - | ||
N( , . | N( , . | ||
. 4- , ~,h , .. 's ' | . 4- , ~,h , .. 's ' | ||
~,~. 1 | ~,~. 1 s,'- n.s, s'5-' Q 9- % , | ||
s,'- n.s, s'5-' Q 9- % , | |||
j' s s Y~ %. .'g., A .-~ | j' s s Y~ %. .'g., A .-~ | ||
_} | _} | ||
N | N | ||
') .- | ') .- | ||
N d (347), 6A,s % | N d (347), 6A,s % | ||
- ~ d -h',. .:N.s N | - ~ d -h',. .:N.s N | ||
# .[ O (340),'6 ' N s | # .[ O (340),'6 ' N s | ||
,.s, | ,.s, | ||
.N. \"N sx. N. | .N. \"N sx. N. | ||
,x s | ,x s | ||
s.s N g | s.s N g | ||
.. -~ | .. -~ | ||
xs - | xs - | ||
N | N i | ||
s's.SN l | |||
l | |||
'*s\ JA ' x's,, ,.s , | '*s\ JA ' x's,, ,.s , | ||
_-..._s**--' | _-..._s**--' | ||
e g, | e g, | ||
%NN ' | %NN ' | ||
g- /, | g- /, | ||
s.s s A tgc, ,4, 4 , | s.s s A tgc, ,4, 4 , | ||
s i . s ., g | s i . s ., g | ||
,g -- '( M I328)! | ,g -- '( M I328)! | ||
,- ''t b. s -M y----s_ / . .- -s. | ,- ''t b. s -M y----s_ / . .- -s. | ||
g ~ | g ~ | ||
gol,' | gol,' | ||
$8 '55 3~ , | $8 '55 3~ , | ||
(368), 4B O. | (368), 4B O. | ||
x '".-~ ' NN t | x '".-~ ' NN t | ||
$ *,g ~..- # .% s [ | $ *,g ~..- # .% s [ | ||
y------...-~,,y ~ | y------...-~,,y ~ | ||
T.;;-.: , ,,; ~A | T.;;-.: , ,,; ~A | ||
. ; y ..,- " | . ; y ..,- " | ||
~ | ~ | ||
s .; | s .; | ||
Line 2,788: | Line 1,690: | ||
--- .,e- - "~~~~''' | --- .,e- - "~~~~''' | ||
~' | ~' | ||
_ 'o('346), 4A : ''' | _ 'o('346), 4A : ''' | ||
-- -(364), 38 - | -- -(364), 38 - | ||
' '(341), 4 - ' *I-O. - | ' '(341), 4 - ' *I-O. - | ||
Line 2,796: | Line 1,696: | ||
,' _ . . _ . . . - -' ,..** ..~- .p . | ,' _ . . _ . . . - -' ,..** ..~- .p . | ||
- -- . - ( S.r . ,- | - -- . - ( S.r . ,- | ||
/ | / | ||
. [,'[[, '' | . [,'[[, '' | ||
#3D Ab~ " | #3D Ab~ " | ||
- ~ | - ~ | ||
D | D | ||
'' ,:_r***~ '',,' ' '~~~' | '' ,:_r***~ '',,' ' '~~~' | ||
Line 2,818: | Line 1,713: | ||
T,b' kb | T,b' kb | ||
'r6yl --- f6yI g - | 'r6yl --- f6yI g - | ||
( | ( | ||
@ Denotes Plesometric Water Level. | @ Denotes Plesometric Water Level. | ||
) Denotes Pierometric Water Level wb ,e ,- | ) Denotes Pierometric Water Level wb ,e ,- | ||
M(336)' 3 :- Elevation as of August 27, 1979. | M(336)' 3 :- Elevation as of August 27, 1979. | ||
." -% 'h. . | ." -% 'h. . | ||
Line 2,831: | Line 1,722: | ||
# ' ' ' , ... . s - r v - . . +.. e . | # ' ' ' , ... . s - r v - . . +.. e . | ||
10'-0* from excavation face. i | 10'-0* from excavation face. i | ||
. . Piesometer P-6B ond P-8B ore dry. | . . Piesometer P-6B ond P-8B ore dry. | ||
t-[* | t-[* | ||
1 2- | 1 2- | ||
'' WASHINGTOH PUBLIC POWEP SUPPLY SYSTEM L -; , . 05. ..-.- .--. | '' WASHINGTOH PUBLIC POWEP SUPPLY SYSTEM L -; , . 05. ..-.- .--. | ||
.,,2 - - - | .,,2 - - - | ||
WPPSS Hoclear Projeci Hos. 3 & 5 O;# M ISOMETRIC GEOLOGIC MAP AND "Nf1 PIEZOMETER WATER LEVELS | WPPSS Hoclear Projeci Hos. 3 & 5 O;# M ISOMETRIC GEOLOGIC MAP AND "Nf1 PIEZOMETER WATER LEVELS | ||
Line 2,846: | Line 1,732: | ||
i g | i g | ||
m I | m I | ||
J | J | ||
; o r- I | ; o r- I t | ||
t.. | |||
1 9.% _ | 1 9.% _ | ||
.; | .; | ||
; | ; | ||
,_, . re ' ,9 ' | ,_, . re ' ,9 ' | ||
/ | / | ||
\ -cr '~ | \ -cr '~ | ||
: i. n s | : i. n s | ||
,e 910 s . / -L s | ,e 910 s . / -L s | ||
*s ,' | *s ,' | ||
r- ' ** | r- ' ** | ||
.. l a* | .. l a* | ||
; .- | ; .- | ||
y, -- | y, -- | ||
hs " | hs " | ||
(358),2A b l- 'g s<'*-r q, e' s | (358),2A b l- 'g s<'*-r q, e' s | ||
- s /, | - s /, | ||
i | i t, p - ~ a /- | ||
t, p - ~ a /- | |||
~ | ~ | ||
,,,,, in q | ,,,,, in q | ||
Line 2,886: | Line 1,758: | ||
- -s +.. | - -s +.. | ||
? n | ? n | ||
[m '2 MMW, m[ #h, $ ' 'JJ | [m '2 MMW, m[ #h, $ ' 'JJ ROUGH GRADE .P c %% -~~~~~'' | ||
ROUGH GRADE .P c %% -~~~~~'' | |||
* 1a <g f f .. | * 1a <g f f .. | ||
:3 ) | :3 ) | ||
m ',c... [4' | m ',c... [4' | ||
%.wa | %.wa g #%" , | ||
g #%" , | |||
,/. >' M~( .353), I A ; - | ,/. >' M~( .353), I A ; - | ||
I d-T y,~ O(348),'1; f | I d-T y,~ O(348),'1; f | ||
.-D g,. e | .-D g,. e | ||
.g( | .g( | ||
,' ^ | ,' ^ | ||
NW | NW 8__ | ||
u uwso"pa , | |||
* k ggg)AAL W . | |||
8__ | |||
u uwso"pa , | |||
k ggg)AAL W . | |||
.f | .f | ||
%$ *. g | %$ *. g | ||
?, -Nh ., | ?, -Nh ., | ||
~ | ~ | ||
., .( j J | ., .( j J | ||
,f - | ,f - | ||
s | s r | ||
I c.f s . ~ r-r**' .. | |||
/ yj hk N' | / yj hk N' | ||
u m N | u m N | ||
./ ;j "' | ./ ;j "' | ||
}# | }# | ||
' -W., s 'A | ' -W., s 'A fh * | ||
fh * | |||
% tgb'qq b | % tgb'qq b | ||
l , | l , | ||
> N N'g. Q-- (s y Ng | > N N'g. Q-- (s y Ng | ||
%..?*.s | %..?*.s | ||
; | ; | ||
55ts 5-- - tc | 55ts 5-- - tc | ||
Line 2,949: | Line 1,795: | ||
~.' , | ~.' , | ||
. /. | . /. | ||
., , %Q : | ., , %Q : | ||
~ | ~ | ||
{! A- ^' ,% . | {! A- ^' ,% . | ||
( '.. , ( :. | ( '.. , ( :. | ||
J. .m ~- | J. .m ~- | ||
Line 2,961: | Line 1,803: | ||
) k%. ' | ) k%. ' | ||
N | N | ||
~ | ~ | ||
; Foult troce showing D N .. 4 %q | ; Foult troce showing D N .. 4 %q | ||
:~ | :~ | ||
Line 2,970: | Line 1,810: | ||
. . . . . Fbrting along bedding pione N * | . . . . . Fbrting along bedding pione N * | ||
{*" Joint froce %. | {*" Joint froce %. | ||
.; | .; | ||
~ ' Foult soloys N . | ~ ' Foult soloys N . | ||
Line 2,979: | Line 1,817: | ||
3 _ Lithologic unit boundary , | 3 _ Lithologic unit boundary , | ||
V \ 'N .,'. | V \ 'N .,'. | ||
~, Lits.onite-stained lenses :: - | ~, Lits.onite-stained lenses :: - | ||
chorocterized by concentrations % | chorocterized by concentrations % | ||
t f ~ t-t Seep or seep kne of silt,mico ond/or carbonoceous f | t f ~ t-t Seep or seep kne of silt,mico ond/or carbonoceous f | ||
f' '' | f' '' | ||
meterial es e ,e Concretions | meterial es e ,e Concretions | ||
; f" * *: | ; f" * *: | ||
Line 2,991: | Line 1,826: | ||
- +,. | - +,. | ||
or coarse sondstone /,,,,nFresh sandstone N | or coarse sondstone /,,,,nFresh sandstone N | ||
[, | [, | ||
9 t-t-t Seeps through shotcrete _ | 9 t-t-t Seeps through shotcrete _ | ||
Line 2,998: | Line 1,832: | ||
j' l i | j' l i | ||
NOTE: | NOTE: | ||
1 Entire excavot!on in Astoria Formation. | 1 Entire excavot!on in Astoria Formation. | ||
,' @ Denotes Plesometric Water Level. | ,' @ Denotes Plesometric Water Level. | ||
<iW # $ | <iW # $ | ||
( ) Denotes Pierometric Water Level | ( ) Denotes Pierometric Water Level | ||
\ | \ | ||
, Elevation as or August 27,1979. | , Elevation as or August 27,1979. | ||
t Plesometers P 3, 3A, 4 and 4A are approximately a 1. M,< y.d..'.q.'., | t Plesometers P 3, 3A, 4 and 4A are approximately a 1. M,< y.d..'.q.'., | ||
4- - | 4- - | ||
p--- x .- | p--- x .- | ||
k kv s .- | k kv s .- | ||
-- ANi ju' ,%.- #J + - | -- ANi ju' ,%.- #J + - | ||
Line 3,030: | Line 1,851: | ||
R {JR_ | R {JR_ | ||
r ~. , ! .'; ~. | r ~. , ! .'; ~. | ||
-~ | -~ | ||
\\N. Y -N | \\N. Y -N | ||
{?,7 h,. - | {?,7 h,. - | ||
, #g t | , #g t | ||
*2 ' - | *2 ' - | ||
'g e -s s, -s - | |||
'g | |||
e -s s, -s - | |||
.dk,,0 (351), 3A- % - ' - | .dk,,0 (351), 3A- % - ' - | ||
kk s. ' | kk s. ' | ||
%. \ 'N W h .:- Mrlg '',,"'~, Q% '% - | %. \ 'N W h .:- Mrlg '',,"'~, Q% '% - | ||
; | ; | ||
p- ' | p- ' | ||
Line 3,060: | Line 1,865: | ||
'*- (336), 3h (355), 4A e | '*- (336), 3h (355), 4A e | ||
~ .) s, N V " ' | ~ .) s, N V " ' | ||
%y s, %,-h a - | %y s, %,-h a - | ||
~.. Mfv,D . | ~.. Mfv,D . | ||
Line 3,068: | Line 1,871: | ||
. . . , g.x y | . . . , g.x y | ||
( | ( | ||
, .~i 'k.. , | , .~i 'k.. , | ||
,,. .s , | ,,. .s , | ||
1(340), 4 1 ,, j' | 1(340), 4 1 ,, j' | ||
*' gg5 % us,' | *' gg5 % us,' | ||
f,fg b \: i N " | f,fg b \: i N " | ||
k .h | k .h | ||
/ r**is 1 t | / r**is 1 t x g. | ||
O-g \,,,,., | |||
x g. | |||
O- | |||
g \,,,,., | |||
~' - | ~' - | ||
t , | t , | ||
- * ~ ~' | - * ~ ~' | ||
( N [.- | ( N [.- | ||
f ,, ,a - _ | f ,, ,a - _ | ||
7 g,3a _ | |||
7 | $ **' I D) e gj&k jh }.* :t"*' 'ys~ f IQ N, tf | ||
g,3a _ | |||
$ **' I D) e gj&k jh }.* :t"*' 'ys~ f | |||
IQ N, tf | |||
~ | ~ | ||
~ ~ ~ | ~ ~ ~ | ||
Line 3,111: | Line 1,894: | ||
p . + ... . . m .c .:# y | p . + ... . . m .c .:# y | ||
+ | + | ||
rh,e -( y a * *" Ml y y[, | rh,e -( y a * *" Ml y y[, | ||
5-g'' .~ | 5-g'' .~ | ||
i j. 2(337), 6 ,, | i j. 2(337), 6 ,, | ||
. .. .j,WP* ~ ~ | . .. .j,WP* ~ ~ | ||
e | e | ||
% . ? G 55EE $ $ g )p | % . ? G 55EE $ $ g )p | ||
,I4'#4C - :-Er | ,I4'#4C - :-Er | ||
/ qb'<@ | / qb'<@ | ||
5% hp.;g W " | 5% hp.;g W " | ||
~. u. a- r-:C^ | ~. u. a- r-:C^ | ||
O C'.a-- | O C'.a-- | ||
" ' N. | " ' N. | ||
:::@/'' % ~ ~I~ ;p N5.~ '' | :::@/'' % ~ ~I~ ;p N5.~ '' | ||
: w. .-J* | : w. .-J* | ||
Line 3,143: | Line 1,912: | ||
:: . a ti .a a, s - | :: . a ti .a a, s - | ||
.L(gy(335), 7 Iom m D | .L(gy(335), 7 Iom m D | ||
(y | (y | ||
*- 4, ,/ j D D | *- 4, ,/ j D D | ||
.. . W.;,.4 ... , . ...- | .. . W.;,.4 ... , . ...- | ||
3 p | |||
tg- Qs e f _, .a . a , | |||
3 | |||
C. ., | C. ., | ||
3@ WASHINGTON PUBLIC POWER SUPPLY SYSTEM | 3@ WASHINGTON PUBLIC POWER SUPPLY SYSTEM N... lk '' | ||
N... lk ' | |||
(331), 8 ; . ~ | (331), 8 ; . ~ | ||
WPP55 Heclear Project Hos. 3 & 5 | WPP55 Heclear Project Hos. 3 & 5 | ||
: 3. ...(ge- ', | : 3. ...(ge- ', | ||
2 ....~.. ISOMETRIC GEOLOGIC MAP AND 2 1;.;;j' : | 2 ....~.. ISOMETRIC GEOLOGIC MAP AND 2 1;.;;j' : | ||
PIEZOMETER WATER LEVELS | PIEZOMETER WATER LEVELS | ||
.% ',i i 't S'p | .% ',i i 't S'p RABS FIGURE 11 | ||
RABS FIGURE 11 | |||
. _ _ _ _ _ _ _ - -__ -_-- _ -}} | . _ _ _ _ _ _ _ - -__ -_-- _ -}} |
Revision as of 08:33, 1 February 2020
ML19312D799 | |
Person / Time | |
---|---|
Site: | Satsop |
Issue date: | 01/31/1980 |
From: | EBASCO SERVICES, INC. |
To: | |
Shared Package | |
ML19312D796 | List: |
References | |
NUDOCS 8003250347 | |
Download: ML19312D799 (44) | |
Text
{{#Wiki_filter:_ _ I
- i E
I A
! 'g 'I WASHINGTON PUBLIC POWER SUPPLY SYSTEM NUCLEAR PROJECTS NOS. 3 & 5 5
g cROUNo A1ER oEi1 Nice SxSYEm ANALYSIS OF SYSTEM PERFOR%,NCE I i E FINAL REPORT I i 9 EEASc0 SERV 1cES, 1Nc0s,0eA1so g JANUARY 1980 l t i sezsewz -
I WPPSS NUCLEAR PROJECT NOS. 3 & 5 GROUNDWATER DRAINAGE SYSTEM ANALYSIS OF SYSTDi PERFORMANCE I Table of Contents I Introduction II Initial Groundwater Model & Assumptions III Instrumentation IV Groundwater Flow Measurements V Interpretation of Data 3 m Ne. Gr_e.ater me g m ver m oa u.n eroSr..
"~'"""
t " " t 4 I 1 I l I
S 9 9 WPPSS NUCLEAR PROJECTS NOS. 3 & 3 GROUNDWATER DRAINAGE SYSTEM ANALYSIS OF SYSTEM PERFORMANCE I-5 List of Tables
- 1. PREDICTED VS OBSERVED HYDROLOGIC CONDITIONS
- 2.
SUMMARY
OF PACKER PRESSURE TEST AND IN-SITU PERMEABILITY TEST RESULTS
- 3.
SUMMARY
OF CENTRIFUGE TEST RESULTS I
- 4. INSTRUMENTATION LIST WITH STANDPIPE ELEVATIONS E 5. RESULTS OF TIME LAG PERMEABILITY TESTS
- 6. RAB 3 OPEN-WELL PIEZ0 METER WATER LEVELS
.; . 7. RAB 3 INCLINGMETER-PIEZ0 METER WATER LEVELS I :
;i ;
4 1 l 3 l l l lI 1 l
S 5 WPPSS NUCLEAR PROJECTS NOS. 3 '& 3 I GROUNDWATER DRAINAGE SYSTEM j ANAI.YSIS OF SYSTEM PERFORMANCE List of Figures
- 1. GROUNDWATER DRAINAGE SYSTEM PLAN (PSAR FIGURE 3.4.5-1)
- 2. DETAILS OF GROUNDWATER DRAINAGE
- 3. SECTION THROUGH TUNNEL (PSAR FIGURE 3.4.5-3)
- 4. GROUNDWATER DRAINAGE PATTERN 'PSAR FIGURE 3.4.5-4)
- 5. INSTRUMENTATION LOCATIONS & REALINGS (UNIT NO. 3)
- 6. INSTRUMENTATION LOCATIONS"&' READINGS (UNIT NO. 5)
- 7. GRO'JNDWATER FLOW VS PRECIPITATION (WNP-3 & 5) 1 8. PIEZ0 METRIC PROFILES (UNIT NO. 3) l 9. PIEZ0 METRIC PROFILES (UNIT No. 5)
- 10. ISOMETRIC GEOLOGICAL MAP AND PIEZ0 METER WATER LEVELS (RAB 3)
- 11. ISOMETRIC GEOLOGICAL MAP AND PIEZ0 METER WATER LEVELS (RAB 5) 1 I
I f I
t i I. Introduction l The WNP 3 and 5 Projects have a permanent groundwater drainage
\
E system (GWDS), placed around the reactor auxiliary buildings, which l performs solely by gravity drainage. The design parameters are those identified in PSAR Section 3.4.5. The intent of the GWDS is j to uncomplicate construction activities by 1) minimizing excavation quantities, 2) eliminating the use of outside forms on the walls and W waterproofing and 3) permitting placement of concrete directly against the vertical excavated rock faces. The CWDS also permanently lowers the groundwater elevation in the vicinity of the reactor auxiliary building (RAB) thereby minimizing the hydrostatic pressure against the RAB walls. The system consists of vertical half-round drain pipes spaced at nominal I 8.5 ft. intervals around the RAB at the interf ace of the rock face and the building exterior concrete walls. The vertical drains extend from plant grade to the base of the foundation mat and drain the surrounding rock. This drainage is discharged to an 8" diameter horizontal header along the periphery of the mat. The runoff is then routed to 6 ft. diameter drainage tunnels that drain into a small tributary to Workman's Creek, south of the plant island (see Figures 1 through 4). I Installed piezometers are being monitored, and certain te.;ts either have been or are in the process of being performed, to establish the expected performance of the CWDS. 3 .
5 i The results of the engineering review and analysis of the groundwater drainage system for the WNP 3 and 5 Projects are presented in this report. This report presents evidence sufficient to demonstrate the adequacy of the GWDS, since previous reports of analysis of data collected relevant to the expected performance of the GWDS were inconclusive. The report includes an outline of the groundwater drainage system design philosophy as described in the PSAR, the system performance to date, and its effect on adjacent groundwater levels. All per: nt information, descriptions and data have been included to anow for a complete understanding of the drainage system and I groundwater behavior.
The interpretation of this data varies from that presented in previous reports and PSAR sections. Intensive examination of the data gathered prior to and following the installation of the system indicates that the design parameters used to develop the drainage systen, while resulting in an adequate design, do not accurately represent sit.e conditions. The system, however, will function as designed, a dewatering of adjacent rock will occur, and the dravdown radius of influence will develop as originally predicted. The groundwater recharge rate, upon the postulated total failure of the system, will allow sufficient time for remedial action based on the timely inspection requirements established in the PSAR. The conservatism of the GWDS will be verified through a full scale test simulating a total failure of the system as outlined in Section VII of this report. it I I II. Initial Groundwater Model Assumption Th e GWDS will permanently lower the groundwater level near the RAB. If the system should fail, there will be sufficient time for repair before the surrounding groundwater exceeds the design level. The expected performance of the GWDS was originally based on certain assumptions and tests made prior to site excavation. The initial assumptions, used for the prediction of the groundwater drawdown and recharge behavior are compared with observed hydrologic conditions in Table 1. The following pre-excavation tests were performed to quantify the soil property values used to predict the drawdown and recharge time of the groundwater:
- 1) Packer pressure tests were performed at the extreme corners of both units on original borings. Incremental coring and pressure testing was performed in 9 ft. intervals to elevation 300.00. The results are presented in Table 2.
- 2) A falling head permeameter test was then performed and the
~
coefficient of permeability was measured as 5.3 X 10 cm/sec. I (See PSAR Section 3.4.5.6).
- 3) Centrifuge tests were performed to establish the storage constant for the Astoria Sandstone. A summary of the results is presented in Table 3.
The foregoing assumptions were modeled analytically using the following techniques:
- 1) Unsteady, non-linear drainage was solved numerically, s -3 I
I I
- 2) The converging effeet of the groundwater in each quadrant was considered for mass conservation although the system was still assumed to be one dimensional.
- 3) The consideratims of geometry were accounted for by a special form of the Boussineq equation (refer to PSAR section 3.5.4).
The PSAR analysis indicated that the groundwater level adjacent to the RAB walls would depress from the initial plant grade elevation to elevation 330.5 ft. during the 5 year period preceding plant operation (see PSAR Figure 3.4.5-5). The extent of the drawdown varies directly according to the magnitude of the permeability coefficient. The total flow from the GWDS,5 years after excavation was calculated to vary from 8.5 to 46 gpm corresponding to
-0 and 10-5 /s s W alp
- permeability values of 10 I Based on the above assumptions and calculational analysis, if complete clogging of the system were to occur, following the achievement of I a stabilized drawdown condition, the groundwater level would rise slowly up the walls of the Reactor Auxiliary Building. The time required, following such a total failure of the system, for the ground-
- water to reach a level of 20 ' feet above the top of the mat was
-6 cm/sec,
- calculated to vary from 240 days for a permeability of I X 10
-5 Since the actual to 95 days for a permeability of 1 X 10 cm/sec.
site permeability was considered to be less than 1 X Ib" cm/sec, the recharge time was considered to be longer than 240 days. S t
I i I 1 The extent of recharge time is significant in its relationship to drainage system inservice inspection requirements and the ability to avert groundwater levels from exceeding the RAB wall design criteria (a hydrostatic pressure equivalent to 20 feet of water) 'S subsequent to system failure. I III. Instrumentation In order to monitor the performance of the GWDS and to verify its I original design pSrameters, groundwater instrumentation was installed around both the WNP-3 & WNP-5 excavations as shown in Figures 5 and 6. Table 4 lists the locations and top elevations of all the instrumentation. The description of the instrumentation is presented below: a) Inclinometer - Piezometers - consist of continuously perforated inclinometer casings installed to a depth of 85 f t. , we.h pea gravel backfill around the circumference of the casings. There are sixteen in place around each excavation. The casings are located 20 feet and 50 feet away from the edge of the excavation, as shown in Figures 5 and 6. b) Open-Well Piezometers - consist of 2 inch diameter PVC pipe, slotted over the lower 21 feet of length. There are twenty-one in place arourA the WNP 3 excavation and sixteen around the WNP 5 excavation. The pipes were installed 9 feet from l the edge of the excavations to various selected depths, as shown in Figures 5 and 6. The space outside the slotted
;I I
E section is backfilled with pea gravel and the piezometer is '5- sealed from surface inflow by cement grout outside the solid pipe to the surface. The open-well piezometers were install-ed at various elevations to define the piezometric level within the rock at various levels so as to aid in the definition of apparent perched water conditions. Figures 5 and 6 show the groundwater data collected to date from all piezometer installations around the excavations for WP-3 and WP-5, respectively. I IV. Groundwater Flow Measurements Small flows of groundwater exiting from the sandstone walls of the WP-3 and WN -5 excavations are intercepted and diverted by the previously described GWDS. Saturated sandstone beneath the RAB is drained by an 8" diameter perforated under mat drainage system (UMD) as shown in Figure 1. Both systems slope toward and exit into a drainage tunnel. Construction water is now removed from I theexcavationviaa$hirdpipewhichalsoexitsintothetunnel. GWDS flows are measured directly by stop watch and calibrated container at the exit point of the 8" header. Similar measurement of UMD flows has not been possible due to partial inundation of the UMD outlet pipe which exits at floor level of the tunnel. These flows are determined by taking the difference between the total flow from the three outlet pipes (measured at the outfall of the drainage t.unnel) and the sum of GWDS and construction water flows l 1
I J I l I (measured at their exit point at the head of the tunnel). This method of determining UMD flows is inaccurate since construction water flows may vary drastically between the time of measurement at the tunnel outfall and the tunnel head. Plans are currently in progress to extend the construction water pipe the full length of the drainage tunnel to eliminate this variable. 8 Flow measurements obtained through December 14, 1979, are presented on Figure 7. The measured flows that are coincident with significant rainfall periods show rapid increases and decreases illustrative of direct inflow of surface water into the systems. Other short duration higher flows have also been recorded when construction water was in use around the excavation such as the period from late October through mid-November when intermittent flushing and cleanout at the WNP-5 CWDS was accomplished. Direct surf ace inflow to drain systems will be reduced as a result of completion of the construction ramp backfill expected by early summer. Further reduction will be realized with the completion of adjacent plant structures, miscellaneous paving, final plant grading, topsoiling and landscaping. I I I
;
1 I
I I In spite of unsealed drainage systems which allow inflow of surface water and mask the true groundwater flows, close inspection of the data discloses certain baseline flow rates I which are considered valid. The indication is that the increment of the groundwater flow from each excavation is less than 5 gpm. These low yields confirm the low permeabilities determined by the previously described packer tests api the recently performed recharge tests (see Table 5). Considering the 8 inch diameter of the GWDS collector pipe and the UMD, the capacity of WNP-3 & 5 8 drainage systems is significantly greater than required. V. Interpretation of Data Intensive examination of the data collected to date and an analysis
;
I of the Astoria formation reveal variances, as outlined in Table 1, j between obsewed groundwater behavior and that predicted in the PSAR. A detailed discussion of these variances is presented below:
- 1. Actual site conditions were not accurately represented by the original assumption of physical symmetry (item 4 in Table 1). Actual conditions are better represented by preconstruction water levels, as defined by piezometers, which indicate that groundwater and natural discharge respond to the local, generally, northward sloping topography.
Drainage also occurs to the south towards a steep ravine that notches the site. Thus the rate of development and shape of the dewatered sandstone region, adjacent to the RAB walls, is affected by local discharge boundaries. It is I
I I ' expected that the drawdown radius of influence will extend 300 feet beyond the RAB walls approximating that predicted in the PSAR (see PSAR Figure 3.4.5-5).
- 2. The storage constant, a measure of a material's ability to retain water, is determined by evaluating the difference between a material's effective porosity and its specific retention (item 7 in Table 1). The. accuracy of the storage I constant depends much on the reliability of the calculated or measured porosity, the physical condition or represent-ivity of the tested core samples, and the correlation between lab specific retention and field conditions.
The porosity of samples tested by Core Laboratories, Inc. was determined by the Boyle's Law Method. Thus, the porosity calculated was total porosity,not effective porosity. Specific retention was determined using the centrifuge method to avoid the capillarity problem associated with using small laboratory samples. Thus, the specific I retention reported by Core Labs was minimum water retention which may not represent site conditions. The use of effective porosity and the consideration of capillary pressure consistent with site conditions would result in more accurate and representative storage constants. The sensitivity of the CWDS to this parameter is addressed in Section VI of this report. 1 I
I 1 I
- 3. Data obtained during the dry season gives us our best look at the extent of the GWDS drawdown. As seen in Figures 5 l
l and 6,the general trend for groundwater levels has been downward through the summer months as a result of decreased rainfall. Tables 6 and 7, and the shape and slope of the piezometric profiles,following the dry summers of 1978 and 1979, indicate that water levels have stabilized and drainage of the sandstone has reached steady state. i Future water level fluctuations will respond to recharge from rainfall. Some additional drawdown is expected as a result of sealing off recharge areas through final grading, landscaping, and paving.
- 4. The open-well (P-series) piezometers, in Figure 8 and 9 indicate multiple water levels adjacent to the RAB walls.
However, in every instance, the piezometric level in the "P" piezometers decreases with depth of the screened opening. This suggests that either:
- I a) groundwater movement is routed toward excavation faces through joint, bedding planes, and minor lithologic-discontinuity of contrasting permeabilities. This phenomenon is somewhat comparable to a regional aquifer recharge-discharge case wherein heads decrease with increasing depth in the discharge zone. The relative resistance to flow (permeability) determines the magnitude of the head' difference; or, E
I l b) the head on individual minor discontinuities causes drainage of the larger masses of poorly permeable rock to the RAB face and none of these discontinuities are interconnected to more than one of the "P" Piezometers. Consequently, the shallower rock near the RAB faces cyc being locally recharged by surface water infiltration. This effect would not be observed if the rock near the RAB faces were represented by higher permeabilities. 8
- 5. The initial PSAR analysis implies that the Astoria formation is homogeneous and isotropic (item 9 in table 1).
Reanalysis of pre-excavation borings, examination of the excavated rock face, and the interpretation of piezometric water levels in the vicinity of the excavation reveal that the formation consists of indurated beds of poorly sorted tuffaceous sandstone; tuff, thin conglomerate lenses, silt-stone and all gradations in between. Groundwater storage and movement is principally in secondary discontinuities and joints which in turn drain larger masses of poorly permeable rock. This explains why the open-well piezometers (installed to various depths) show multiple water levels with no apparent common source. Figures 10 and 11 show a direct correlation between avenues of flow (sucP as beddiag planes, and minor lithologic-g g I al discontinuities) and observed groundwater levels (see piexometers P-2, 4, 7A, 8, 8A & 9 for Unit 3 and I
I I I piezometers P-2A, 6, 7 & 8 for Unit 5). I Figures 8 and 9 illustrate the various water levels for Units 3 & 5 measured in the piezometers on the date of August 27, 1979. Each drawing has profiles along the excavation I faces and cross-sections perpendicular to the face, with the appropriate water levels indicated. These figures clearly indicate once again the discontinuity between the different water levels. For example, profile A-A on Figure 9 indicates three individual water levels for the north face for piezometers P-3, P-3A and B-10. The locations of these 3 piezometers are within an 11 foot radius and yet they show water elevations varying by as much as 15 feet. The perpendicular cross-sections show the various water levels and discontinuity with respect to the excavation face. For example, cross-section L-L on Figure 8 for piezometers P-4, P-4A and P-4B, all equidistant from the face of the excavation indicate water levels varying by as much as 28 feet. The higher water level corresponds to the piezometer which is slotted from 5 ft. to 26 ft. below grade, while the lowest level is indicated on the piezometer slotted from 45 ft. to 66 ft. below grade. In this same cross-section, piezometer B-8, 20 feet back from the face indicates a water level lower than that of piezameter P-4B which is closer to the face and presumably better able to drain groundwater to the GWDS. I
I I Also shown on Figures a and 9 are the initial groundwater elevations measured by inclometer-piezometeru in October, 1977, after the area had been graded to Elevation 388+ feet but prior to major excavation for the buildings. As indicated on these figures, the initial water levels have lowered in response to the plant excavation and the operation of the groundwater drainage system. The original recharge area of the upper region of sandstone has been significantly altered as a result of plant grading. This data supports the conclusion that groundwater at the site is stored in and moves through joints, minor lithological discontinuities, bedding plane partings, in addition to that stored in the much less permeable blocks of Astoria Formation. Further, the water level and groundwater flow profiles indicate that steady state conditions have been achieved in the Astoria Formation adjacent to the excavation. VI. New Groundwater Model There are three factors important to the development of a model which will accurately predict groundwater drawdown and recharge for the WNP-3/5 site: 1) movement of groundwater in the Astoria Formation and its interactions with the GWDS, 2) the actual permeability of individual beds, and 3) representative storage constants for the formation and These factors are directly related to the following I local conditions. I
I I parameters which influence groundwater behavior at the site: gW l. The natural groundwater levels conform to the local topography.
- 2. Drainage occurs both to the north and south of the site into steep ravines thus effecting the rate of development, size and shape of the dewatering cone. Drawdown does occur as a result of the CWDS. Below the drawdown cone surface, all rock is saturated.
- 3. The horizontal collector pipes surrounding the RAB can be assumed to be at elevation 330.5 ft.
- 4. A percolation rate of 1/10 the uniform annual precipitation rate (assumed to be the maximum annual rainfall of 80.27 inches) is conservatively high.
The above factors and parameters represent a complex hydrologic condition. The validity and accuracy of a revised mathematical model from the model used in the PSAR analysis merely adjusts the sensitivity of certain parameters and would be of little value at this time since the system is installed and operating. The GWDS is performing as required. Groundwater discharges through the system are as predicted and piezometric levels at the RAB walls have been reduced as desired. It is well established that groundwater will continue to flow toward the Chehalis River. I I 1 I . j
Based on observation and detailed analysis of data collected it has been determined that l a) the Astoria formation consists of cemented beds of poorly sorted tuffaccous sandstone, l conglomerate lenses and tuff of varying permeability and is therefore not homogenous and isotropic; b) The Astoria formation has permeabilities of
-5 10 to 10" cm/sec. as documanted by field measurements; and c) f.t is highly probable that the storage constants for the Astoria formation are lower than those values indicated in the PSAR.
The storage constants used in the original drawdown and recharge predictions may have been inappropriate. The net effect, however, on the design of the GWDS is negligibic. Calculated storage constants are sensitive to the value of porosity used in their determination. The laboratory tests actually performed (Table 3) used forces to determine specific retention that may not be consistent with tle capillary pressure that exists above the water table in the Astoria formation at the site. The net effect of a lower empirically determined storage constants would be an increase in the theoretical drawdown radius of influence with ninimal effect on groundwater flow. The expected radius of influence however, will be approximately as predicted in. the PSAR (see PSAR Figure 3.4.5-5) . I I
I I The above factors are important when analyzing the rate of rise of groundwater around the RAB given the extremely unlikely gross
, failure of the GWDS in the most adverse failure mode.
Groundwater will continue to flow through the CWDS at low levels during plant operation, ranging from 1 to 5 gpm. The rate at which groundwater rises and the maximum height that the groundwater will attain in the unlikely event of a complete system failure must be determined. With the existence of the operating system and with sufficient time available during construction, the groundwater recharge behavior can be accurately determined through the implementation of a full scale test and verification program as discussed in the following section. VII. Verification Program A field test will be performed using the existing GWDS to evaluate the consequences of a postulated failure (complete plugging) of the drainage system. This test will determine the rate of water
;
rise (against the RAB exterior wall) vs time. The permanent groundwater monitoring system and frequency of GWDS inspection can be then either verified or re-established. As shown by Figure 7 ( Groundwater Flow vs Precipitation ), there are separate pipe outlets for the GWDS, the undermat drain (UMD), and the construction water drain at the head of the drainage tunnel exiting from each excavation. The GWDS and undermat drain outlets
"" will be capped allowing only groundwater from the surrounding Astoria formation to fill up the half-rounds. The head of water i
l that builds against the RAB walls will be recorded with respect to time by the use of a pressure gauge arrangement at the sealed l GWDS outlet and direct monitoring in selected half-rounds. l I Until the GWDS is sealed from all construction water and surface l rain water inflow, a true measure of strictly groundwater flow in the system cannot be monitored. Inspection of Figure 7, I reveals that during periods of heavy rainfall, surface water infiltration into the GWDS causes all measured flows to increase. Consequently accurate measurements cannot be taken during these periods. The verification field test should therefore be performed during the typical " dry" season lasting from about the middle of March to about the end of September. Also, while the test is being run all extraneous construction water will be isolated from the GWDS. VIII. Conclusion The preceding text supports the conclusion that the GWDS is functioning as predicted, reducing piezometric levels against the RAB walls. Groundwater drawdown has reached a stabilized level and'is responding solely to rainfall infiltrating the system. Groundwater movement is primarily through joints, fractures, bedding planes and through minor lithological discontinuity of contrasting permeabilities, Both units will continue to yield 1 to 5 gpm I during plant operation. I
. i
!I 5 i A full scale test, simulating the unlikely failure of the system as postulated in the PSAR, will be implemented to verify the l
;W actual groundwater behavior. The verification test program and
- I
!I l 8 4 J !I; II !I !I. !I !I !I ll lI lI
M M M M M M M M M M M M M M M M M M M T A B l.E 1 COMPARISON OF WNP 365 PREDICTED VS OBSERVED HYDROI,0GIC CONDITIONS _ ASSUMPTIONS / PREDICTIONS PER PSAR SECTION 3.4.5.4 OBSERVED 71YDR01.0GIC CONDITIONS
- 1. Groundwater level was assumed to be at Elev. 390.00' l. Groudwater levels exceeded Elev. 390.00' prior to site and infinite in all directions. grading. Subsequent to grading, groundwater levels dropped below Elev. 390.00. Initial assumption was conservative.
- 2. Groundwater levels was assumed not to exceed Elev. 390.00' 2. Groundwater levels follow the local north and south-dispite local site topography. ward sloping topography. Initial assumption was conservative.
- 3. The GWDS horizontal collector header pipes surrounding 3. Consistent with initial assumption.
the RAB were assumed to be at Elev. 330.5'.
- 4. Symmetry was assumed such that the situation at each wall 4. Excavation faces are non-symmetrical due to the general face was identical. local north and southward sloping topography. Initial ,
assumption was conservative.
- 5. The assumed percolation rate was 1/10 of the uniform 5. Consistent with initial assumption.
annual precipitation rate of 80.27 inches.
- 6. Sandstone permeability coefficients were considered to 6. Observations and on-site testing confirm permeabilities vary from 1 x 10-5 to 1 x 10-6 cm/sec. of 1 x 10-5 cm/sec and less. Initial assumption was conservative.
- 7. a) Storage constants sxre determined to have an average 7. a) Laboratory data was used incorrectly to determine value of .153 for weathered sandstone, .107 for the fresh storage constants, sandstone and .22 for the tuff. (See FSAR Section 3.4.5.
6.'M
~
b) Initi assumption was conservative. b) The analytical technique for groundwater recharge con-sidered 30 ft. of weathered sandstone 'inder lain by fresh sandstone. The effect of the constant associated with the tuff present was conservatively ignored.
- 3. Groundwater flow from the GWDS would vary from 8.5 to 46 8. Groundwater flow from the CWDS will vary from 1 to 5 gpm corres onding to perneabilities varying f rom 1 x 10-#' gpm over the life of the plant. Initial assumption to 1 x 10- cm/sec, respectively, was conservative.
- 9. Within the parameters is the inherent assumption that the 9. The Astoria formation consists of minor discontinuities.
Astoria formation is homogeneous and isotropic. fractured and cemented beds of poorly sorted turfaceous sandstone, conglomerate lenses, and tuff. l t l
I . TEE 2 3
SUMMARY
OF PACKER PRESSURE TEST RESULTS I Midpoint 14ngth of Test k max Boring Depth Elev Segment em/see Material B-13? 89.7 381.9 2.6
- Weathered sandstone
~7 B-13P 98.7 372.9 2.6 6.1 x 10 Weathered sandstone -6 Weathered sandstone B-13P 99.8 371.8 9.5 7.3 x 10 -6 Weathered sandstone B-13P 113.5 358.1 10.1 6.2 x 10 -7 Weathered sandstone < 1 x 10 B-13P 116.9 354.7 11.2 ~7 B-13P 126.5 345.1 10.9 5.8 x 10 Weathered sandstone -6 Fresh sandstone B-13P 134.8 336.8 9.5 2.1 x 10 ~0 B-13P 144.8 326.8 9.5 2.0 x 10 Fresh sandstone ~b B-13P 153.8 317.8 9.5 2.2 x 10 Fresh sandstone -6 B-13P 163.3 308.3 10.5 1.1 x 10 Fresh sandstone -6 Fresh sandstone B-13P 172.8 298.8 10.5 2.0 10 D-3 P 95.9 384.7 9.4 < 1 x 10" Weathered sandstone ~7 D-3 P 103.9 376.7 9.4 4.7 x 10 Weathered sandstone ~7 D-3 P 113.4 367.2 9.4 < 1 x 10 Weathered sandstone -6 D-3P 122.9 357.7 9.4 2.8 x 10 Fresh sandstone -7 Fresh sandstone D-3T 131.9 348.7 9.4 7.0 x 10 ~
D-3 P 136.4 344.2 9.4 <,1 x 10 Fresh sandstone
~
D-3P 145.4 335.2 9.4 4 1 x 10 Fresh sandstone
~
154.7 325.9 9.4 Fresh sandstone I D-3 P < 1 x 10
-6 Fresh sandstone D 3P 163.3 317.3 9.4 4.6 x 10 -6 D-3 P 174.3 306.3 10.4 2.6 x 10 Fresh sandstone
( < 1 x 10
~
indicates a permeability less than 1 x 10-7 ,,f,,,)
- Not considered valid
SUMMARY
OF IN-SITU PERMEABILITY TEST RESULTS
~
k (cm/sec) Falling Boring Head Bailing l ~7 D-3P 5.1 x 10 -6 -
-6 D-5P 7.5 x 10 -6 6.0 x 10 B-22P 6.4 x 10 6.7 x 10-6 All of these results were obtained from the initial borings in 1975.
E E E E E E E W M M M M M g g g TABLE 3 CENTRIFUCE TEST RESULTS Minimum 4 2
. Sample 1
Sample Total Water Spun Out Water Retained Correction Specific Storage 3 "g" "g" Factor Retention Cbns tant Remarks No. Elevation Porosity @ 1000 @ 1000 (% of Volume) % % (% of Volume) 32.4% 15 17.4 1.00 17.4 15.0 _1_ Weathered Sandstor 1 383 16.9 1.00 16.9 16.0 11 Weathered Sandstor 2 383 32.9% 16 15 16.2 1.00 16.2 15.0 _L Weathered Sandator 3 369 31.2% 17.0 1.00 17.0 -15.0 11 Weathered Sandstoi 4 369 32.0% 15 36.2% 9 27.2 0.90 24.5 11.7 _L_ Fresh Sandstone 5 343 27.9 0.90 2".1 11.8 11 Fresh Sandstone 6 343 36.9% 9 325 35.4% 6 29.4 0.88 25.9 9.5 .1_ Fresh Sandstone 7 27.0 0.90 24.3 9.7 11 Fresh Sandstone 8 325 34.0% 7 16.8% 27.0 9.8 1.15 11.3- 25.5 ..L Tuf f 9 356 1 Samples 1 through 8 taken from boring B-36; sample 9 taken from boring B-34 2 Taken from PSAR Reference 3.4.7. 3 _L_ Denotes sample cut perpendicular to core axis. 11 Denotes sample cut parallel to core axis. 4 Storage constant = total porosity - specific retention. 4 9
,) /\ 0 1
8*%<> .
,p< #&
i IMAGE EVALUATION NN TEST TARGET (MT-3)
~
1.0 l#8M122 m
;; ~ m lg=2.2 =
l,l h,U ff!f!N
\
I I l.8 l-I.25 1.4 1.6
.I I
MICROCOPY RESOLUTION TEST CHART l of 495,,;4 ;
%A# y ; , ,
{
I . ME4 I INSTRUMENTATION LIST WITH STANDPIPE ELEVATIONS m3 MS Piezometer Elevation (f t) Piezometer Elevation (ft) I B-1 B-2 392.6 391.9 B-1 B-2 389.7 389.6 I B-3 B-4 B-5 392.6 393.4 388.8 B-3 B-4 B-5 389.7 389.7 389.6 ' I B-6 B-7
.B-8 389.3 389.9 389.1 B-6 B-7 B-8 389.5 389.5 391.6 B-9 390.9 B-9 389.5 I B-10 B-11 390.3 391.3 B-10 B-11 392.6 389.7 B-12 390.1 B-12 391.7 I B-13 B-14 B-15 390.4 388.2 390.4 B-13 B-14 B-15 389.5 389.6 389.4 B-16 391.7 B-16 389.5 P-1 390.4 P-1 390.0 I P-2 388.6 P-1A P-2 P-2A 389.8 389.6 389.7 P-3 390.0 P-3 389.8 I P-3A P-3B 390.1 .389J P-3A 389.6 P-4 389.0 P-4 389.2 P-4A 389.3 P-4A 388.8 P-4E 389.4 P-5 389.2 P-5 389.9 I P-6 P-6 A 388.5 388.3 P-5A P-6 P-6 A 390.0 390.1 389.9 , P-6B I P-7 P-7A 388.5 389.0 388.8 P-7 P-7A 389.9 390.0 P-7B 389.0 I P-8 P-8A 388.9 389.3 P-8 P-8A 389.7 389.9 P-8B 389.5 -
P-9 389.5 , P-9A 390.1 -- P-10 389.4 I I
- I .
I i ,i TABLE 5 lI RESULTS OF TIME L1G PERMEABILITY TESTS k (cm/sec. ) WHEN PERFORMED PIEZOMETER
-5 12/78 P-2 (RAB 3) 1.3 x 10 ~ " 7.0 x 10 12/78
. P-3A
-5 12/78 P-4 " 1.1 x 10 ~0 " 7.1 x 10 12/78 P-8 -5 12/78 g P-9A " 2.1 x 10 i 'E i ~
1.1 x 10 2/79 P-3 (RAB 3) P-10 " 5.5 x 10"~ 2/79 2/79 4
.P-8A (RAB 5) 1.3 x 10 I P-7A (RAB 3) 5.2 x 10 -5 9/79 I Note: All but one of the permeability determinations were performed from the piezometers around RAB-3, since that excavation exhibited the greatest
, variation in water tables encountered. I I I I -
I I TABLE 6 RAB-3 OPEN-WELL PIEZOMETER WATER LEVELS Piezometer August 1978 August 1979 Difference P-1 57.5 60.6 - 3.1 P-2 56.2 59.0 - 2.8 P-3 52.2 52.3 - .1 ; P-3A 29.0 33.9 - 4.9 j P-3B 22.5 23.6 - 1.1 I P-4 P-4A P-4B 48.9 39.1 18.3 46.8 41.8 19.7
+ 2.1 2.7 1.4 61.6 60.6 + 0.5 I
I P-5 T-6 P-6A 4,8.9 39.0 47.5 41.6
+ 1.4 2.6 P-6B 25.7 25.4 (dry) -
P-7 59.5 44.0 + 15.5 lI l P-7A 38.5 33.3 + 5.2 P-7B 24.9 25.0 (dry) - I 51.9 55.0 3.1 P-8 P-8A 32.6 38.5 - 5.9 P-8B 17.8 24.4 - 6.6 l l g P-9 41.6 40.1 + 1.5 g P-9A 37.7 33.4 + 4.3 P-10 55.9 53.6 + 2.3
I I !I lI lI I 'I I I
I TABLE 7 RAB-3 INCLINOMETER-PIEZ0 METER WATER LEVELS I Piezometer August 1973 August 1979 Difference I B-1 58.2 59 .8 B-2 56.9 58.5 - 1.6 B-3 53.3 55.8 - 2.5 56.5 I 55.4 B-4 - 1.1 B-5 21.7 18.8 + 2.9 B-6 43.5 (Average) 29.3 (Average) +14.2 B-7 32.7 28.1 + 4.6 B-8 44.9 39.8 + 5.1 i B-9 46.9 42.4 (July) + 4.5 B-10 59.8 54.4 + 5.4 I B-11 B-12 33 38.8 36.5 silted in since Jan 1979 39.2
- 3.5 .4 29.4 +18.6 I B-13 B-14 B-15 48 18.5 36.5 37.9 29.3 -19.4 + 7.2 B-16 50 45.0 + 5.0 I
I I l I I I 1 I I
I 7
'N 2 -Til'& 34 SPACES @ 8'-rs = 28'3' o ,
' I. ' n4L (TYP. 2, SIDErp) uu z _
' 1N ,3g ,5 M H 1-Q ' l - -
INV iw n,324,c,7 ct.330.s l NA
/ / 3; ,o l \ 4 i lt El i
3" W PERrotAfro
/*
A ! of 4 l UNotRoaAiN [ e r i n g-e o
* :.9 l
N /' l I x n s i / g j / \ lP
/ \
l: i : I l / \_Y , D l l p* l TEMPORARY CONST. , DRAIN FROM MAT - l *p
/ / )-
g.} l ! y , 3 yl ______________ ___ .
- w R.318.9 -8 p COLLECTOR PIPE I" ' ' 0 g ;
Mu "d \ DET C Get Fica. 2.) l
- N GRAvfL, tADEA I i l- SECT S B WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S 'I GROUNDWATER DRAINAGE SYSTEM PLAN FIGURE 1
8'- 6 [ s'. 6 ' CAULKIN4 (TYP) l . I M'd havewsu%ht _ tve,nv ie v e g@gw e
'[ I" SHOTCRET E h , }
I. f . . i g ' 5
" I A 12 ROUND , G"PIPC TYP. PART PLAN s EL 390.CDQ
- 1. HAWHMMU
- G"4 STL PIPET. ,
It RC)UND G4PtPE MAT _l; _; [TCP EL. 3M Oi:.co I / 1 I [
;' .-- CONC FILL AROUND EL VARIES 2' I
BOT' OF M AT- n 8 p COLLECTOR PIPE gt 326.00 y yN ,
,. , g s m._.__., s,ercarn )
1wm r. ,r., M AT TYR SECTION A-A 1 l WCT by CpMTRAC nos cR 2 G3 : i
'9 \ ; EL.%4.5('l R
[' EL.%4 (4.r<smo
'- Vi h I ;
i j
( TUMWEL O NEAT LNE. N SVABs / COMPOSITE / CROSS PlPE
/ _
i _3 -, W_, "
\
f!?f / i 6 4 DETML C 4 A ste ric,. i> & f MAT f J&AM ': 2S
. 8" DABS PlPE INV. EL.tE 50 2 WORKI% SLA6 NOT 6YCONTf ,4Cf/gg,-h 3 LRfl.M $.50 7CE OR'26 '6 h . a t
- IMV. EL.%? M ^- '
.{bfj ; .
w b6 4/ e - y6;iN {8"$Ab6~
" CO@ SITE PIPt RA6 Ex?AV. NEAT LNE E L.S/23'f;0 ii\9m st! PL AN (H 5) @tRF RATED)
E SECT 10ki D RNV.!L. GEE PLAN'(H5) g4A65 COMPCSITE P!PE Fj ,,p' WORK SLAD EL.(Sif PLAM) 5"$Abi COMPOSITE PIPE (LEVEL) l . [ d (PEMORATED) L _ /, i . .
-lWV.EL.sEE PLAW(H6) f" < . ;s o ki fM WASHlHGTON PUBLIC POWER SUPPLY SYSTEM
% g( WPP55 Huclear Project No. 3& S DETAILS OF GROUNDWATER DRAINAGE 1CTl0M E eicuae 2 ' (ctC fib. t)
I I e ~, l 3 E" kI- - .
)
5
*D \
x .. I
~
i I Ng E ; g$ 8e i c Q I if W e
- 1 4Jy '
! $ .' N "z
- m ,_- 1 s, N y- g o a 5 < R J x a 5
- s $
z'
'O N .
l E 2'f baEg ' I fg N s
&lj %; ,E
_xw E , , dI sd s!. El %. E + $ 6 E~ l I M' n /
}
x w t; 4 I e o r O $ Q* . W I A in j h {3 e a t' I M *- kW$ 4 m ,I i _._ IIl l l l l l l 8 I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project No. 3& S SECTION THROUGH TUNNEL { FIGURE 3 I 1
I I I a a g k REACTOR BLOG (REACTOR BLDG WNP-5 WNP-3 8
- cp-PLANT ISLAND "* - " '
E l l l l I; _ _ _ I '
.I r ; , - -: n-- 4 gM I ss II DRAIN TUNNELS ss h I. \ \\
ll I! b $7gu g a tg \\ jf NT!TlI ll
'g)y }
l cv1 ,. I L ua l r ^ g 'd - x
, %5 -
4
- s g
3 DR AIN WATER TO I W OR K P4 AN CREEK I . I WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Nuclear Project No. 3 & 5
. GROUNDWATER DRAINAGE PAT , 1 {
FIGURE 4
.t a
v y w . i 3 e puzoutren 3 3 '
- m. s
;
s s4,8 ** s___ _ _m_
,. ;.--.. .
____s "---
.. s__ ____
7 ;
~
w t - s s
, ,._y.,__ _ _ _ . _ _____, __
g b-., ,hmA.* dw -- _- ------.-.h- -.,f - m_. _ _ _ _ .
~
e I i u ' !s h- r L -. ._. i D-S,6 eo
; x7.m> - w-- - - - - - x..q g -
3 % s s__ _ _ _ 3 e . . . , _ c.w., -
- I -t - -._,.s_._%.-.-- i ,, , ? n, _/' f g --- 4 n . A----. . -
o F44 **
- g. - -
w_+--_. m c, .. - i , i s _! 3---- - -- _ - - - -
~%.s~~' ..h ... ~ . - _... ; ! y' - l 1 3
o g . _ . . . . . . . . _ ,r .'.'w M "L"acT-- g -
._y__--_ ~._T.,'"'"" ; - , . .e. - .
g* j s____qt t a \ O l
$ t.*1 ,~_.-- ~~ '
A '
- - . - -- n-_ [
h ' $ 'I ' ' ' ' ' - ^ - - ' "' f 3,_ '....'_'J~~'-----
... x' - - _-____' t 2 *% tl
( p.y 74, en N !1 g -_ _ _ _ _
. 1 . ~ _..----
Q* *.a-. , , . _ . . - - ~< P-10 p .e__ s l l i' f'L- n y l ( u
\ a f
r~ i f* a
; - a .a a
i I . - 5 l 1 i . ll E I U.! . 's !. , , l. i b .!, ) .mlike. . l. 13t,I..,m l i[l. , I h 4
.. I. . .
2 . ., m, m 1._. 2...
..J.,._
me avesse unteese woeta urn ee<= once ese 4.=,m ensavec ...cw .a 69Ff 89 8
+. !' s -
D D D f0 rJ o A #] i . u
l =* ( [Q ",;,' ( ,,,.* ..* ,et,'
- = . ". . .
s ;- ^y,_ . : A.. . ... T,E_ _ _ . .. _ _ _ . _ _ . _ . . ' . . ___
~____+ N._ _. ---",g,*,----- l - b .- I ~ '" '
j ,, o g UNIT NQ 3 i g 5 -*== . - - - _ )=h 77 - 2 -- ~c. _ ., p f[5 - t MC AVATION
-t .-
1 l 1 " ****
- n. .g . ..
l I l
.* r------ . *'-__
l 3-r- - 1 ... ... -____q____.- _ _ _ _ ___ _ ~. __ _ _ _ _ ._ _ _ .. _ _ _ _ _ _ _ . si . qy _-.:-_ p_ . ._ l .1m
.e .2 7. - gr-%.;
I _v- O - tuot awam or svesent s.
$ .==.- ... *.. .w . ^ .~ .A N ^
g- , , , , , , , , , , , , , , , , , , , , , m _. _ t 1 _ _ ..____ EU-
--m.. . .. *$ " * " " " - * " " * * ' '
s s _.- ~ .._--_ . .r r .e t, u ---- _ _ . _ .
- ,g
.aw ~~- - ---%
l
. _ _ 7 _ __ .- ~~~T. ~~ l L_ . . l \. N Idl ,_ S.
7
--' + g _h NOTE.S o -Anne.*'se menesseeves, ans a mmat se emessenate missessvss eiese. . h__ _
_m .
.____p ___
___ _ . . _ _ . _ ._ __ _ _. _ p _ . . u_
. . _ . . . - . . _ . _ _ . _ _ __ - _ _ . . . . e== ==== %. .= = = ...y _ -
- a. -
s , a s. ....~. a.. a. .c. . 9 9 'g T\ ,
+
Juf w.A = h i i Fj l i r; . ! I I. l !U L ,i . WASHlHGTOM PUBLIC POWER $UPPLY SYSTEM
- u. . m, . ,.m .i m . . . . m.
l ypp$$ g,,g,,, p,,;,,, g,,, 3 g $ WNP 3 - lNSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 1 OF 2 FIGURE 5
. "K".
m A gg 49 .\~ " ^ se _f f. %. / }_li" _ _ _ . .-~_ _ 4~- y e ,
- g \ = \ * \
M4e P-3 A' h&. - - M- MA, -_ _-___ Q
., u . , , - _ l e
L ~- *
,e _7 - _- .. _ ,J** @* (* * ,v_.--
_-='_ -yc. e p**, e z,.._..9 - W. .~s p.3 m. __"' . kaa # A40 _ 9 g .M
- m.- .
____ w -
.~~ ,
u.e *m-M 96-
's.. .n- , _.m P-44 P 48 "
as S
, =
5 ~x 7' nw W g p.e . D N V N- . , . N %s . _ _ . . ,-
. =- .. ,,
Y -
=
3 *
% =__ A- ~. _ :- ,
p '-
.__n w .. - . ..w ~/
a'* R # y - Y') 'k -
.~ r -- .mx - ,. ; ** 'M ' T2 ?"["'<-Q- ,--
m em ,__ m .. - _ ; W [nW ' 'W_ .' % "? _ f... .JbQ& . ,- ~-
/ ,&,. J_ _
g,.,$,s
~ -. ~ .. = ; ; _
i e se gg W
~ **M'}$ .g-~ ^ ~ ._f t,.', . w wx_ _ . .y. . _ _ _ s _ _ _ - , .c- ~
W e e e 4 e e as e a e o e se e e & . e w reneses, messe sea 6 use mee me neve, wevessee seeesse 389 ePD S r e L~
=
g u 8 k s . I. ed,0
~
0 1 5
- d..L k_ 1 N
a.l . I
.U. .
N t.i a N SM t, i M 1 MW
&WSfSI 1
In. SEPfWWGES
$$fWft L
oft 80 4
} , , - - ~ . ~ -
l i
m i I 7"x 1---, ( " g *..a .. d-l f~d e
.h Ne~ \ )
J E M UNIT NG 3 u.
" g, g E X C AVATION *? .y H "Y Y ' ~ ;~-- - - - - --
- s. .e se es .a.e *
,J .m,w --~m,--
x I T! g
.o E e .. ...
W saa =sure p -y,** EnM a.ato.e or trumAt l < %mh ..,
.e .e== a ==w
_ . a.evasus sneaum e, e4 .emasem se merie.newees s a.ea urvie
= -.w. *e metia. ervuem e'.e ae'es,.i m
WM .-
.- C& ** , n ft' j .y NOTA - es. mesa.eennees .no a m.mt er mee.e ms passenstee passe- %f- rs g ng - ~.
_ g-
- ===C i;if
[ _ . . . x. I L.e
.L '
L., '
.L., ..
L 2. .J - j I ., [.,i ji
. . . . . = >
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Hoclear Project Hen. 3 & 5
. ..i. - . =
l WNP 3 - lNSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12, 1979 SHEET 2 OF 2 FIGURE 5
p miroutTER en a
,k ~~a- / -
j':.C*.'"' ;
.. e- . . - ~..- - .. . N.-~&--
E-e. t ee '-
,,, ;- _- :: . , _ _ , _ ,
e
, ~ ._.. - . %. ;
ee
.q. - -c _ ,. -g .y F.
w , 5 ,,
""*'v q_ f** !
c C e gA e 'N, ,.
-r,.e ' @. l ; , ;
- s.. - --
.g yp%; , - - = - - -
i v l L ___.._._ . _ _ _ _ _ _ .._____. _____ _ ___ __ _ _ _ _ _ _ . ______ eu c e l e h. ~ -[b
- ~ ~ ^
r
.,' y .y= = x -. ,;..-_ _ __ g w~ ~..K." L l ~~'~
i" s.j *e - yf- ~ ~~.-. Z b 4P - -- -___C--
" 'N I _
_ _ _ . _ _ _ _ _ _ _ .. _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _.______ ________.______+ ! I L~ t .
~
t- se w" _ __ c._%s N.;, . _ ~ _ . , _..- . , _ . l y _I
....-- ....=. - - ~e.-.._.
m_--
. . = . m ...
s. v-s., e eu -_ _ ,,,j q,, . _ - + 1 a a.ma . - e y
! o = - - - - - - -
______t - 3h c, -
= e%.., e -
L. .
. d: .\ *-.. ..._=E ': :.% m .,,, . . -WW .s~en -
_f n, . . *7 -,. m,,
. , , . m____..______ . - , 4 o
j s 3 - __ _ _ = a.t 4s Q g ~ N.~ w" , ~ _ _ ~ _ .c-- .w .g ;._.. , c ..I
% ~~== - " - . . , _ . _ ._. .'. . . _ _ . . ~.._ .___.. %--..;-g.". F - ,-
m ,,, n g , , , . , , I
._us,,~. _~ ,".- -
eac. i O. - 3 0 m
, _ _ s_ _ _ c. m
__ l 1 a s s - gg= .;,;.;N;r 4== . - - - _ e cs n- -
.-q:h; . u. _ .q, ,, ~ :: 1.
g . q
,, %z m s . . . _ . s I %g &m, _ _ . _ _ _s u, .n y_.m ,,3.,,, ,., - .s . - - . . . ,,.y c_ _= __=__ ____.-. -
1_ _ _ ..______ _ _ _ _ _ 4 - M.s e R u 3 R
;.
r- ( =
! a ,a i g i - _. - - . . . ._..J.
l I i.lY.l .R I !l ri t l l b i k j k(he,. i , lab ti a ll.t .1. l
' ~'
Q Q f n
. 2 h _'.
J. ( - . --_.- %__.w s-A. 3,w. .
\ _ , .. .ye s .., ... x b-- - - w... ,,,-. g . ., .
. - - - - ..-----_, - _ - _ _ .- - . _ . ..-_ _ ~--.. . - - a .... l' UNIT NO
,.,.,3 lL I... -s e.. *, S es EXCAVATION ------.- - - - - - - - - - - - - -------- .--------..------- ------- ==== ..
- t p.*=
b ~l '~~~':'..'~~.'.r 7 .[~ ~ ~ ' ' ~
~
- .fyt =.q=- =-=~=r_;k"M.:-R"'*b **
~ .. . ...
7 - - - - - - + . - - - - - -.------ t
# 8.
J_
-.s. - ~ --.---.: --m .#% --_m-.- .
n. an ua.r . . .
- s. .g . ~ ~ . -
. , , _ . s=- - - - - - - _ ..------j-----------------
l l I l %.'.". %. VL r- ** * *'*
- t. _,..D.
., s nmits. . + . .x .
- b' . . . .. L - _- I i L _ l
=v-~ . - c' _ ' -~ y ___
G.
. , - - , *I ---( .. - - - - - - .. . . . - - - ...----3---.--
I I
----.'.. A ~ . _ _ _ . - . - - ,1. . L --. - !."
W -; n n
- g p-----
j.e-__.._-- ----:= 2 _q .
.a - ,.. .5 4 ; . . c ; . ,4 }
i da. k i, i, t1 )l- h .. ulld ;b
..J . .1. .1 ' .[
1 ". .?., WASHINGTON FUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 WNP $ - INSTRUMENTATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 SHE ET 1 OF 2 FIGURE 6 l:
.l PsE 20.sE tt.
I. Inviset .
.O I
k
. 6. t .o - - - - - -. --
I 40
.O N
30
. n, . 0 ** :.,e..
60
=**, s .I UNIT NO.
5 0 g, ,... EXCAVATION [* s e .... _ . . ,. . ... 1 *<
** m r- . . .. :l.i.=~
I i. 60 x - w .o ..- . . . . m .. . . . k o
=
ao .c. l s . _. _ _ . . . _ _
~ ~ ;* :
,.I =
? .. ,, ,,,, ao .,
a.... w I " i j l
.o I
O w t 4 o h to rx.i inviou er svunn. <. 3 7,*, '; .. sg*;';- . g.,.g.. .. . .. ,. I
.o ~,
p . , _ . . . . . . . . . . . . .
=
1 I u%
, ..it g .. .. ~
1
.4 2
q;*
~
hetts.
> =:=. . =nm ~ -
g .. to 4 . o ,, ._ ,,.._ - _.- _ _ _ _ _ _ _
....... ~ . . - - - -
g p.g. 0 t-
-s'= j ;-
t .....S , If .. a D rA.
.-#S.16.. .r. ..r. -m. c ,, ._ -
so 40 _,
;_
S 1 1 W g3 _ .._ _ _. . -. _ _ _ . _. _ _ _ _ . _._. t D
- l~D *D n R,A.7h 0 ._ . . . _ _ __ __ _ .
g g 3g g t I
;
w i g g L_... . . . . _ _ .. o# . . . . . . . . _ . _ . . . , .. .. _ WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Huclear Project Hos. 3 & 5 WNP 5 -INSTRUMENT ATION PLAN GROUNDWATER AND PRECIPITATION DATA COLLECTED THROUGH DEC 12,1979 I. SHEET 2 OF 2 FIGURE 6
W i
, b i
{ RAB-3 (' .. . 7 .. 2 20 s r- E , g to g 4
- s 5 a a 3 J
l10 5 s Et u g- d am a., .. , i
. ,, , I i t .t n . , , , . , a . i ,ti .. A ,.. .. (
RAB-5 as a to . E g is g. _= 5 5
- 10 3 d
t
..a. ._ _
0 I .- b
\
o l l ,ll J li i t .i, >. t , .4i.ll . llil{ !,,1f.i. i. g L (. I.
l I N I
.. .. I 'AP 'M I Yl$
g: . t 4
/ %. /\ '
v ".' M W ** L i' .*
. ; ; eu aus I \ dia su /
stocate e? ConsT. '
,,, j p { *?ttXyf" \ ,
A s / t A + 4 4#0UIE>WAftR ORAlmaat SYSitti PLAN I l] _h . i 11tNa ! b I l .t t. . al [ l i t 1 MARCN APRIL MAY JUNE JULY AUGUST MPTERISER l
'STAAf OF KAG-3 \CORBPLE T10110F EXTElttQ WALL PLACEMENT PLACEstut 38373 9-14 T9 mat-e seats -f stocaso et coast, 1
M NN - ow_ i _ l .1 .6 dall, I L li i 2 . l .. I l III . i. MANA AP RIL II AT JUNE JULY AUGUST SEPTEletR WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPP55 HUcleOr Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION DATA COLLECTED THROUGH DEC 14,109 SLEET 1 OF 2 FIGURE 7 L
1
.g ?
t,. f A .. .
, ,~
I L'; 20 .
= =
1 i 1
!. $iS $ .
d 5
= 3 i r- * , ,p l.
40 - 3 -
- I 'l
~
f'- 5 2 --
),- _
y'.Dli. is t s
! ') .\
Q (!
's ' f .;
O I 0 II ' bf- 3 - 1 (l OCTosEn moygugE R MCEMBER ANUARY.1990 Ff8RUARY M ARCH A,n L I g as e ; i ! r= . il
- 1
- * ;
i: 3 E I I ::*, g i. .r. np:: y : '. ; F =- : :: : ,
;; l l} ;;
L; # E '
;
i= so a :- !:" , q ! !:' , p:
.,' , :l' ' . n k
e
; ,; ---., .!. i! >. r o U {/ }' O 4 ^
d'C-i.
, m O t. l da Lil- il d. .I l oCro . .vi.. . -C... . . A om. ,, ri u m . A.C,, A,,,t s I.a t '; .
4 ul-4
- m i
l 4 1
l 1 N
! l 6
I
.* -~ - .1 '- ; ,o se, e s an
[ [L ry./'
=,.=
mm. A enoumowartR oRmass systru PLam CSY JUNE JutY AUGUST SEPTEustR OCf00tm IsovElstER DEctuttR g LEGEND e os u PIPE UIEER IAAT (0) n.a-se.ci i j CAY JUNE JULY AUGU S T SEPTEnsetR OCTOGER Novtutta DECEuSER l WASHINGTON PUBLIC POWER SUPPLY SYSTEM WPPSS Heclear Project Hos. 3 & 5 GROUNDWATER FLOWS AND PRECIPITATION DATA COLLECTED THROUGH DEC 14, 1979 SHEET 2 0F 2 FIGURE 7
N' Y. f-~ . l5 - t a i
-.2.
NORTH FACE , MCTEIN A& '
~" ' A '}e ,
I
- .s_..
It I p
....7...E.
i i t E-i . .
- 4 SOUTH FACE l j .i g-' urra aa ; ;
a 4 RAMP
^
s + s
- e
- a i e G ....!...... I
.[. h d --- $ 3- ,l. -t' ,
4 t 4 [ 3 .t .et . . t 8 C 4 1 MCTEhi t t e , g f a l ,_. -k.s ., l
.m . . . ..m.
g yRas seef I t f I ww & aru - t e
.-4 . es e g g . 4 i ! t t i e e McTInit Na f
3..L. I a% a i p l
- *'*g j ean er* esamen
= = = .
4j MCTElII FF g
* ,7 g
e a g em e.e h . e 4 ace er g
* 's 0
t (.-e .age.= gw,s seem g g se e i
- I e a I
' s. UNIT NOI t .g I.**
e } 3l EXCAVATIC I- 3:.",-. I t # # s y , ,1, , b-e .e*-ed a
...~
1 t , e i
' ~ -e,. .. . .. .
s,L-j 3 3 Le
; e l } ,
g L... 4 - g PLAN YlE1 { - {7 , I
' 6 - . LJ ECTM3M it a - -
f 4 i l i I j ; E .. l . t 8 s . I t A4 8 g g ECT10Il NM l 1 I. -
,r 3 g g ; }= i i 5
, ('. ,I h, I
- a. .x t
I -t---- I i t l -
%. F. - i s s'. t l l_ I t t.
- 1. t e e .
7 {J. ' i
)
i . D 9' D D M3h I3 i i am {\ sA Ql. A l u[i 1 l
- k. '
EAST FACE K CT!Ost CC ' t' -..-. [ , . . _ - q .
;l .y n.
L. . west ruz l i i ! . --- L -
' 2. ' ,, , , J -- ___' ..-_ . -;_ .L.. l 1- . . . . 1 i, + i t_ m, . tm .,._i l *1 p.. .; -; . =1, l = _ " " * *j ,
f.
; ; la. ! ; * 'l :;!
i 9 I i
._j 2-e i .i e o Q1. - ._p . . . ! 8 \
l LEGEND ; I*T t 8 l
- i l ! -~
- : .~
. , _ , r '-* "" "-
1 I i . l l l .s g g - -
.l 3.4 '1 - ~ . . ~ m .., '
( -- m , l
, 3.. .,., ,
o- . _ , I . y n
- ,i .-
i j "+ i l i r r- , u:.ib~ t "o- l l
, .u i .-. . 1
,, , 4 8 . OPEN-WELL P(20.E TER.
. . . i...- '-E!: I- -
- e rr. ,y. im ..-, 2=- -=_'~i--dR.
- <~- .- . . _ -m.
- t. ] ,/l/ ,
aa.m== =z0 m.
- ,, s .u .J. . a{
mam u i [*.* =c. -,-4,,, i i 8 1 t l
"l ll l l
1 I i
" " ' ' O 1 i .
e i 4 I i 1 l l ,... -l
.cu = m, * '
l l 5 I I i ) i T '- .4 v. WASHINGTON PUB'lc POWER SUPPLY SYSTEM
-_}.a F' '~ii WPPSS Hoclear Project Hos. 3 & 5 e 1 3 t l ! PIEZ0 METRIC PROFILES UNIT NO. 3 FIGURE 8
i I c, - i.
.... . - ...x .. -..s.
NORTM FACE V j' mCTm a a ,
;
i: i
- i , 9 9g i um. :i 'I n_ *- ' P ,' e -l i i t i l' i i } i =
l _
,7, i
_...j...v. , r- - . . > - 2 9 ....[..r_ ; ,, i.- I i e e i l i r, r' = r )
< t, _
v. j .. 9 ..; v . .j..= i t 1 I l i 1 i
# s e i e I t g, MCTM EE g g g. . : I i
(-
- um E_i. +, = - i
_S g , , i e a l l I 1 i - 1 i i - e i i
'i l I I f 1 1 meta a m t
t l f *Cv7 =}. . . . *]. . - .
""" " '~
l 1 : .:v: .:::~ t %-. m_t tan i p e so w a\ , , l
\ . -
i s- * '** 6
.. 7 6
uw T wo a 3 EXCAVATION r- * " ' ** L* 4 E R i i . e r r i "
- meta s-a ,
~ . }
p, 24 +2 g m , , _ PLAN VIEW r KCT10m i I
't' g,
y: , . . h, . T . ..,h.v. g . i e a e e 5, h EEten M M g 4 g , , , t 4 ' .{1 s y t * , e i i, s I, M t i i se 8
- a. 6 i 8 1 1 1 ! - 1 i -
0 1 l I j'* I I $ 1 I i t; e . .
; "
_4 L. u w> e ug w)uguwjulNigitt, 1
IEST FACE
'---- ~ ~ '
- l L29ft.i.fi '
s
. 1. ,: . .
- s. ,
i+
., el j!
l'
._v - -
i OST FACE' - 'e i te,mn na ' n i i e a ,
- 1
; - '
- l
, : f g sii8". I Dl.L 3 b g i
- r=
le'
,1 i' l,42i .! 'I ?? ..,.i. .j_v.
I 4 i I 6 4 8 I s s
'j ba l' t i i T e i LEGEND.
I l t t e t
' 8 PROFILE Svum0LS-
- I
-este est ekstium EC, ION M- R g,. ,, ,,, ^ . ;. ,,, l I esse 6 g g se+wn. m ass e mme ens.weis see insaamasseusessmewe I '_",9~~
B ee'e# 4evas se e meer es,em
=am u 4 r- ,
i ' !
.. 'i i f a-os a -l6**) j p- asets'. .sotato l E I l "" "I r::. :n F
F l l PL#e 911m0Lt. g ,
*
- OPEN-etLL Pit 20s.,ERS
.2 _ s - - *
- _ - ~ ~ _ - -
re- . " * > 2e .~__- - " * - ~ _ _ - - -
- * * - - - ' ' ' * - ~ - - - '
,...r...,..g....,
4 -
- n. .' *'nN 7.y ,
+ -
l r
" i e on l
nasn u t ne a
. ta e l I _2 1 i 1 i e . .I .- l l f 1 1 1 nwm u ! .l,.. o 0[ s] i - - [] ,
f f i +.- .
- ' WASHINGTON PUBLIC POWER SUPPLY SYSTEM l
i e WPP55 Huclear Proled Hos. 3 & 5
. i l 0 0 t ' PIEZOMETRIC PROFILES l
UNIT NO. 5 [ FIGURE 9
C : D. s r-
) I 1
1 l
- i. .
} T1 m 'i P 2 /4 h'p ~~~ / " ,h i
- f. { t c ..,-
;
I
% b,1e, g ,~ , - - -
M-tm, a-
~
1 i l' t u.
$5g ?<oll' 5o @gli r+
9.%@ . . a. . ,z. j ! g s'. ' , . ' , . ..
#' ~ ~
b , ; : --2
.g,%
7., -e- t - - - - _......... .-~. J . . ... ,..s.. i, 94 ...- p i(349), 8A .. ..n j '. ...-
- #-- : ~~Y.n .:.s
- 1. '
EL 388.00' - -- -
/ ,. . _ ,.3
- c. ROUGH ~->
; GRADE m l ' '
4 --o (354), 9A ' -#n(333),8
. ' . ' . .,. p Y %-..._,.:..
i ,4 ..
. .c .,3. a. -. ,-+- J. "*' . . . ;~5_ _ .. / - '. g(7.,% "~.. - -
jN . . , " -O,' '.. (348),9
.&, N ~s /, - ~':" . - _ 4 ,'
e~ -
.s j p,s,s.
s-g
,.r-lW'b, ;- -, - 7 \ , , ,- s ;;s,g- ,s,.. ,,- 'I . ,.
s v:. 6 'N .- % ' ', - ' j
~, ,, ,' , ,,,%,'[J, , . S , * ~ % .g Ih t. 'N,,,,'-
i-sf K's. o-(335))
.pf -, .m ~ = ,f r , N, n g ,-r- 's, % s e -b,s,z,- gg1, gb M%gjf. *A . 4. , 4 N. s -'s , N4,, =ys N q,eg 1
1 p- . g.
. y;;. .. . . s, s.- b,s %, - ;, %w y s ,, ,
- m. , - -
r . - . g. . , -
. y % * ., : . , j;: . ..' . ~ ' .%, s s % -. e.e .
A., .c ,s- s. T* s ' ,n, ,., e ;'
. - 4't, s.N., - ,N, s
3 , % ~ ,. . - i r- N -
'. \s%.N ,s' < , - ' . 'h, - '.'s.
i .
+
EXPLANATION: .N
.s s
[ ' ~ 7_ Foult, troce showing ^ relative separation - 9,O - f ' cQ' > s' sa
.' NN LN .._.- Porting along bedding pione . .
N,f, Joent troce <>- 's i N.N
~! ,i3 ' ,. _4 Foulf splays '
34, ,I'g l Lithologic unit boundary */ ' C'&' .. S < N:4 . .. .I'.T,,,- ' t.,
,., L .imonite-stained lenses ^~
g T '_ _f %p or seep line -'.8/(3M' l 4 chorocterized by concentrations . j' fg of silt,mico ond/or carbonoceous s'
. Weathered sandstone ' ' l * .'
4
!. ;
rnotereal - Fresh sondstone k- ~
..~. - . Dif fuse limonite staining ) f; t ..., ..,, Pebble conglomerate lens or coarse sandstone Tuff bed #? Ikj{ ,- - -1 > ,, ~ - q u . .-'1 j" [
l ' 4 n, l D 9 y) .jj D Et'l'D'( U Js lvjuut'6'sl n 2 g La 1
5 t
.-- l 2 l R-- '
j'4';% ? Qt9h% [N
^?..,
g .# Nk g, - - g '% . A., 1, s 4 (355), 7AQl ., , -h , 7 qhg 3 ,
, ,' g% g. A,S J_s i , k,. . .9 .Q :. . ~ , *%,,' , . 'N,,
w N qk
~.., 'A .: y -y ~;.w N ' .:,, N C' ,..
- f. : 'w . , ' .'4 N
.'s g(343), 7 g ..-~-
_yy
\sN-Ms~a,... *,. -
N( , .
. 4- , ~,h , .. 's ' ~,~. 1 s,'- n.s, s'5-' Q 9- % ,
j' s s Y~ %. .'g., A .-~ _} N
') .-
N d (347), 6A,s %
- ~ d -h',. .:N.s N # .[ O (340),'6 ' N s ,.s, .N. \"N sx. N. ,x s
s.s N g
.. -~
xs - N i s's.SN l
'*s\ JA ' x's,, ,.s ,
_-..._s**--' e g,
%NN '
g- /, s.s s A tgc, ,4, 4 , s i . s ., g
,g -- '( M I328)! ,- t b. s -M y----s_ / . .- -s.
g ~ gol,'
$8 '55 3~ ,
(368), 4B O. x '".-~ ' NN t
$ *,g ~..- # .% s [
y------...-~,,y ~ T.;;-.: , ,,; ~A
. ; y ..,- " ~
s .;
.,. y . ,, j - .,
V . . ., L ..
.-..n. . --~
f' #
--- .,e- - "~~~~ ~'
_ 'o('346), 4A :
-- -(364), 38 - ' '(341), 4 - ' *I-O. - ' ,, . ,- y. .. ..-- ._ 4 ,' _ . . _ . . . - -' ,..** ..~- .p . - -- . - ( S.r . ,- / . [,'[[, #3D Ab~ " - ~
D
,:_r***~ ,,' ' '~~~' ',,,,. y JJ 3 --- ;; ~'
(354), 3A . ,
.>- i .;J J Jk{r a < .. ' k ~
g NOTE:
,b. Entire excavation in Astoria Formation.
- l ,. ...-
T,b' kb
'r6yl --- f6yI g -
(
@ Denotes Plesometric Water Level. ) Denotes Pierometric Water Level wb ,e ,-
M(336)' 3 :- Elevation as of August 27, 1979. ." -% 'h. .
, /. / ~ " , -
Pienometers are located approximos ly N'-( N.'*N.v-
# ' ' ' , ... . s - r v - . . +.. e .
10'-0* from excavation face. i
. . Piesometer P-6B ond P-8B ore dry.
t-[* 1 2-
WASHINGTOH PUBLIC POWEP SUPPLY SYSTEM L -; , . 05. ..-.- .--. .,,2 - - -
WPPSS Hoclear Projeci Hos. 3 & 5 O;# M ISOMETRIC GEOLOGIC MAP AND "Nf1 PIEZOMETER WATER LEVELS
- 4. RAB 3 FIGURE 10 t
i g m I J
- o r- I t
t.. 1 9.% _ .;
; ,_, . re ' ,9 ' / \ -cr '~
- i. n s
,e 910 s . / -L s *s ,'
r- ' **
.. l a* ; .-
y, -- hs " (358),2A b l- 'g s<'*-r q, e' s
- s /,
i t, p - ~ a /-
~ ,,,,, in q > AIJecn . W..
EL 388.00, . . . . e. en . . -
- -s +.. ? n
[m '2 MMW, m[ #h, $ ' 'JJ ROUGH GRADE .P c %% -~~~~~
- 1a <g f f ..
- 3 )
m ',c... [4'
%.wa g #%" , ,/. >' M~( .353), I A ; -
I d-T y,~ O(348),'1; f
.-D g,. e .g( ,' ^
NW 8__ u uwso"pa ,
- k ggg)AAL W .
.f %$ *. g ?, -Nh ., ~ ., .( j J ,f -
s r I c.f s . ~ r-r**' ..
/ yj hk N'
u m N
./ ;j "' }# ' -W., s 'A fh * % tgb'qq b
l ,
> N N'g. Q-- (s y Ng %..?*.s ;
55ts 5-- - tc
. b'\ ^ +a ~.' , . /. ., , %Q : ~
{! A- ^' ,% . ( '.. , ( :. J. .m ~- t
) k%. '
N
~ ; Foult troce showing D N .. 4 %q
- ~
s relative separation ,
' N . . . . . Fbrting along bedding pione N *
{*" Joint froce %. .;
~ ' Foult soloys N .
N
,.. k ' - \.
3 _ Lithologic unit boundary , V \ 'N .,'.
~, Lits.onite-stained lenses :: -
chorocterized by concentrations % t f ~ t-t Seep or seep kne of silt,mico ond/or carbonoceous f f' meterial es e ,e Concretions
; f" * *:
m Dif fuse limonite stoining Pebble conglomerate lens ,,. ~ Weathered sandstone j r
- +,.
or coarse sondstone /,,,,nFresh sandstone N [, 9 t-t-t Seeps through shotcrete _ Tuf f bed
------**~ Subunit boundary ,
j' l i
NOTE: 1 Entire excavot!on in Astoria Formation.
,' @ Denotes Plesometric Water Level. <iW # $
( ) Denotes Pierometric Water Level
\ , Elevation as or August 27,1979.
t Plesometers P 3, 3A, 4 and 4A are approximately a 1. M,< y.d..'.q.'., 4- - p--- x .- k kv s .-
-- ANi ju' ,%.- #J + -
2o.. o ,,om . . . .. .,, o,, ,.c o. An o.s.,s ... oppro imoteir io .o r,om e cov tion roce.
' h ,' ' \\. .'s s %% - - % .z \ '. ~ / Y..
R {JR_ r ~. , ! .'; ~.
-~ \\N. Y -N
{?,7 h,. -
, #g t *2 ' - 'g e -s s, -s - .dk,,0 (351), 3A- % - ' -
kk s. '
%. \ 'N W h .:- Mrlg ,,"'~, Q% '% - ;
p- ' J- o _O
'*- (336), 3h (355), 4A e ~ .) s, N V " ' %y s, %,-h a - ~.. Mfv,D .
o.m _. N
. . . , g.x y
(
, .~i 'k.. , ,,. .s ,
1(340), 4 1 ,, j'
*' gg5 % us,'
f,fg b \: i N " k .h
/ r**is 1 t x g.
O-g \,,,,.,
~' -
t ,
- * ~ ~'
( N [.- f ,, ,a - _ 7 g,3a _
$ **' I D) e gj&k jh }.* :t"*' 'ys~ f IQ N, tf ~ ~ ~ ~
x-o
,,7 # .l , f
?N - p . + ... . . m .c .:# y
+
rh,e -( y a * *" Ml y y[, 5-g .~ i j. 2(337), 6 ,,
. .. .j,WP* ~ ~
e
% . ? G 55EE $ $ g )p ,I4'#4C - :-Er / qb'<@
5% hp.;g W "
~. u. a- r-:C^
O C'.a--
" ' N.
- @/ % ~ ~I~ ;p N5.~
- w. .-J*
~~'" , 9 A'o. s
- . a ti .a a, s -
.L(gy(335), 7 Iom m D
(y
*- 4, ,/ j D D .. . W.;,.4 ... , . ...-
3 p tg- Qs e f _, .a . a , C. ., 3@ WASHINGTON PUBLIC POWER SUPPLY SYSTEM N... lk (331), 8 ; . ~ WPP55 Heclear Project Hos. 3 & 5
- 3. ...(ge- ',
2 ....~.. ISOMETRIC GEOLOGIC MAP AND 2 1;.;;j' : PIEZOMETER WATER LEVELS
.% ',i i 't S'p RABS FIGURE 11 . _ _ _ _ _ _ _ - -__ -_-- _ -}}