ML19077A088: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:fyi- Letter from M-D Count y DERM to FL DEP.
{{#Wiki_filter:TurkeyPoint34SLRNPEm Resource From:                            Faehner, Bryan <bryan_faehner@nps.gov>
Sent:                            Monday, July 30, 2018 5:19 PM To:                              Moser, Michelle Cc:                              Melody Hunt


Melody J. Hunt, Ph.D. HydrologistNational Park ServiceSouth Florida Natural Resources Center 950 North Krome AvenueHomestead, FL 33030PH: 305-224-4211Email: melody_hunt@nps.gov
==Subject:==
[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Attachments:                      Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf FYI. This has bearing on operation of the cooling canals as it relates to water availability for the Turkey Point interceptor ditch.
---------- Forwarded message ----------
From: Melody Hunt <melody_hunt@nps.gov>
Date: Mon, Jul 23, 2018 at 9:34 AM


0 0.5 1 1.5 2 2.5 3 3.5 Prepared in cooperation with Miami-Dade CountyMap of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016
==Subject:==
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!FKS 9 48 FKS 7 98 FKS 6 51 FKS 5 31 FKS 1 57 G-1180 22 G-3167 65 FKS 2 763 G-3976 36 G-3900 31 G-3166 150 G-1603 643 FKS 4 3,150 FKS 3 7,375 G-3342 2,390 G-1264 8,300 FKS 8 10,050 G-3855 7,960 G-3698 2,830 TPGW-9L 25.2 TPGW-8L 46.2 TPGW-7L 2,750 TPGW-6L 7,570 G-3966S 5,610 G-3946D 5,780 G-3699 10,700 TPGW-5L 12,300 TPGW-4L 15,200 TPGW-3L 28,500 TPGW-2L 31,200 TPGW-1L 29,100 SWIM well 130 TPGW-14L 27,800 TPGW-13L 36,800 TPGW-12L 27,100 TPGW-11L 25,300 TPGW-10L 26,400 ACI-MW-15 2,480 ACI-MW-09 30.8 ACI-MW-05 47.4 ACI-MW-04 48.5 ACI-MW-03 17.8 ACI-MW-16 36.9Florida Keys Aqueduct AuthorityLeisure CityFlorida CityWittkop ParkNewtonRedavoHomestead Airforce BaseNaranja ParkHarris ParkEverglades Labor Camp Sec34-MW-02-FS FLORIDAMiami-DadeCountyStudy areaEXPLANATION
Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Theresa Lawrence <joan_lawrence@evergladesrestoration.gov>, Bryan Faehner
!Monitoring well name and chloride concentration, in milligrams per literWell field Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)
<bryan_faehner@nps.gov>
Approximation Dashed where data are insufficient Approximate inland extent of saltwater in 2016 Approximation Dashed where data are insufficient G-3698 2,830 Model Land Area l a n a C 0 1 1-CCard Sound Barnes SoundLittle Card Sound Biscayne Bay Cooling canal systemATLANTIC OCEAN024 MILES024 KILOMETERSScientific Investigations Map 3380U.S. Department of the InteriorU.S. Geological Survey Cover. Map showing the approximate extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016. See https://doi.org/10.3133/sim3380 for map sheet.
fyi- Letter from M-D County DERM to FL DEP.
Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016By Scott T. Prinos Prepared in cooperation with Miami-Dade County Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the InteriorRYAN K. ZINKE, Secretary U.S. Geological SurveyWilliam H. Werkheiser, Acting DirectorU.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGSthe Federal source for science about the Earth, its natural and living resources, natural hazards, and the environmentvisit https://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov
---------- Forwarded message ---------
.Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
From: Grossenbacher, Craig (RER) <Craig.Grossenbacher@miamidade.gov>
Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
Date: Fri, Jul 20, 2018 at 8:57 AM
Suggested citation:Prinos, S.T., 2017, Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model


Land Area of Miami-Dade County, Florida
==Subject:==
: U.S. Geological Survey Scientific Investigations Map 3380, 8-p. pamphlet, 1 sheet, https://doi.org/10.3133/sim3380
[EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Melody Hunt (melody_hunt@nps.gov) <melody_hunt@nps.gov>, David Rudnick
.ISSN 2329-132X (online) iii Acknowledgments The authors would like to acknowledge the organizations that provided data for the study area: EAS Engineering, Inc., Florida Keys Aqueduct Authority, Florida Power & Light Company, Miami-Dade County, and South Florida Water Management District. Without the data provided by these
<david_rudnick@nps.gov>, Agnes McLean (agnes_mclean@nps.gov) <agnes_mclean@nps.gov>,
Sarah_Bellmund@nps.gov <Sarah_Bellmund@nps.gov>, Kevin Kotun (kevin_kotun@nps.gov)
<kevin_kotun@nps.gov>, (erik_stabenau@nps.gov) <erik_stabenau@nps.gov>
I am forwarding this FYI. Please pass it on to the rest of the team.
: Thanks, Craig
-----Original Message-----
From: Rodgers, Frances (RER) On Behalf Of Hefty, Lee (RER)
Sent: Wednesday, July 18, 2018 11:23 AM To: lea.crandall@dep.state.fl.us; timothy.rach@deb.state.fl.us Cc: john.truitt@dep.state.fl.us; emarks@sfwmd.gov; michael.sole@fpl.com; Raffenberg, Matthew; Schwaderer-Raurell, Abbie (CAO); Istambouli, Rashid (RER); Grossenbacher, Craig (RER); Spadafina, Lisa (RER); De Torres, Mayra (RER); Gordon, Donna (RER); Hefty, Lee (RER)


organizations, the map in this report could not have been created.
==Subject:==
Letter - Crandall - Rach 120 Extension Request FPL MAM The attached correspondence is being forwarded to you on behalf of Mr. Lee N. Hefty, Director, Division of 1


v ContentsAcknowledgments  .......................................................................................................................................iiiAbstract  ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1Mapping the Approximate Inland Extent of the Saltwater Interface  ...................................................2 Approximating the Rate of Movement of the Saltwater Interface  .......................................................2 Monitoring Network Improvements  ..........................................................................................................3References Cited ...........................................................................................................................................4Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring..................................................................................................5 Sheet[Available from https://doi.org/10.3133/sim3380
Environmental Resources Management (DERM) Department of Regulatory and Economic Resources. Be advised that the original has been sent certified mail via US Postal Service.
]1.Map of the approximate inland extent of saltwater at the base of the Biscayneaquifer in the Model Land Area of Miami-Dade County, Florida, 2016 Conversion Factors SI to Inch/PoundMultiplyByTo obtain Lengthmeter (m)3.281foot (ft) kilometer (km)0.6214mile (mi)
Frances Rodgers, Senior Executive Secretary Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) Office of the DERM Director 701 NW 1st Court, 4th Floor, Miami, Florida 33136 (305) 372-6754 (305) 372-6759 fax www.miamidade.gov/environment "Delivering Excellence Every Day" Please consider the environment before printing this email
Area square kilometer (km 2)247.1acre square kilometer (km 2)0.3861square mile (mi 2)Volumeliter (L)0.2642gallon (gal) liter (L)61.02cubic inch (in
--
: 3) Flow ratemeter per year (m/yr)3.281foot per year (ft/yr)
Melody J. Hunt, Ph.D.
Massgram (g)0.03527ounce, avoirdupois (oz) kilogram (kg)2.205pound, avoirdupois (lb)
Hydrologist National Park Service South Florida Natural Resources Center 950 North Krome Avenue Homestead, FL 33030 PH: 305-224-4211 Email: melody_hunt@nps.gov The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
Electrical conductivitysiemens per meter (S/m)10,000microsiemens per centimeter vi Electrical conductivity  in microsiemens per centimeter [S/cm] can be converted to electrical resistivity  in ohm-meters [ohm m] as follows:  = 10,000/.Temperature in degrees Celsius (&deg;C) may be converted to degrees Fahrenheit (&deg;F) as follows:
Live feed from the Anhinga Trail Webcam
--
Bryan Faehner National Park Service, Southeast Region Energy & Environmental Protection Specialist MIB Room 2642 202-513-7256 (office) 202-604-5076 (cell)
The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.
2


&deg;F = (1.8 x &deg;C) + 32 Datum Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
Hearing Identifier:    TurkeyPoint34_SLR_NonPublic Email Number:          4 Mail Envelope Properties      (CADXRJ=gmb=JBUqNmAQ0Qn29dPuSe2cwTc8R4MuJ8N39KQqQZcQ)
Supplemental Information Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (&#xb5;S/cm at 25 &deg;C).Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).
Abbreviationsbls below land surface GIS geographic information system TSEMIL time-series electromagnetic-induction log (dataset)
USGS U.S. Geological Survey Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Abstract The inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, was mapped in 2011. Since that time, the saltwater interface has continued to move inland. The


updated approximation of the inland extent of saltwater and
==Subject:==
[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Sent Date:              7/30/2018 5:18:58 PM Received Date:          7/30/2018 5:21:43 PM From:                  Faehner, Bryan Created By:            bryan_faehner@nps.gov Recipients:
"Melody Hunt" <melody_hunt@nps.gov>
Tracking Status: None "Moser, Michelle" <Michelle.Moser@nrc.gov>
Tracking Status: None Post Office:            mail.gmail.com Files                          Size                  Date & Time MESSAGE                        3745                  7/30/2018 5:21:43 PM Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf                  11810831 Options Priority:                      Standard Return Notification:            No Reply Requested:                No Sensitivity:                    Normal Expiration Date:
Recipients Received:


an improved understanding of the rate of movement of the saltwater interface are necessary. A geographic information
$77$&+0(176 Stage (ft NGVD) 0  0.5  1    1.5    2      2.5  3  3.5 1/1/2000 7/1/2000 1/1/2001 7/1/2001 1/1/2002 7/1/2002 1/1/2003 7/1/2003 1/1/2004 7/1/2004 1/1/2005 7/1/2005 1/1/2006 7/1/2006 1/1/2007 7/1/2007 S-20 Stage (ft NGVD) 1/1/2008                                                  L-31E Water Levels 7/1/2008 1/1/2009 7/1/2009 1/1/2010 7/1/2010 1/1/2000 - 6/30/2018 Model Lands Basin 1/1/2011 7/1/2011 1/1/2012 7/1/2012 1/1/2013 Sea Level (0.67 ft NGVD) 7/1/2013 1/1/2014 7/1/2014 1/1/2015 7/1/2015 1/1/2016 7/1/2016 1/1/2017 7/1/2017 1/1/2018


system was used to create a map using the data collected by the organizations that monitor water salinity in this area. An
Prepared in cooperation with Miami-Dade County Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 EXPLANATION Naranja Well field                                                                                                                                Park Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)
Approximation Dashed where data are insufficient G-1180 Approximate inland extent of saltwater in 2016 Homestead          22 Approximation                                                                                                                            Airforce              !
Redavo Dashed where data are insufficient                                                                                                          Base Leisure G-3698 !  Monitoring well name and chloride concentration, in milligrams per liter                                                          City 2,830 Harris Park Wittkop Park G-3698 2,830      !                                                                                      Biscayne Bay Newton G-3976            G-3966S                                                                  TPGW-12L Florida City                          36            5,610 G-3900                      !                              !                                          27,100
                                                                                                                                              !        !                      G-3699        TPGW-6L 31 SWIM well            !            10,700          7,570                                !
                                                                                                                                                                  !        !
130                G-3855                                                                        TPGW-10L Florida Keys                        FKS 9
                                                                                                                                                    !                7,960                                                                    !    26,400 Aqueduct                              48 Authority                            ACI-MW-05 !                      Sec34-MW-02-FS
                                                                                                                                                                      !                                        TPGW-1L 47.4        !                                                        !
29,100 ACI-MW-04              TPGW-7L        G-1264 48.5        !        2,750      ! 8,300 Everglades                                    ACI-MW-03                                !
Labor Camp                                                                                TPGW-5L
                                                                                                                                          ! 17.8 !            !                      12,300 ACI-MW-09                ACI-MW-15
                                                                                                                                !            30.8                    2,480
                                                                                                                                          !      !                              Model G-3166                            ! G-3946D 150              TPGW-8L 46.2 5,780                Land                TPGW-13L ACI-MW-16                                        36,800                                        TPGW-11L
                                                                                                                                            !              36.9 Area                                                                  25,300 !
FKS 8                                                                            !
10,050 TPGW-2L 31,200            Cooling TPGW-9L                                                                                  !          canal FKS 5                                                                                                              system 31              25.2                                FKS 4
                                                                                                            !            !        ! G-3342
                                                                                                                                  !                          3,150          TPGW-4L
                                                                                                                                                          !
FKS 7    2,390                                  ! 15,200 98 C-110 Canal FKS 6
                                                                                    ! 51
                                                                                    !
G-3167 TPGW-14L 65                                                                                                                                                              !      27,800 TPGW-3L FKS 3                                                                28,500 !
7,375                                                                                                            Card Sound
                                                                                                                                          !
FKS 2 G-1603  FKS 1 643  ! 57                              ! 763 FLORIDA Little Card Sound N
EA OC NT Miami-Dade                                                                                                                                                                                                                                                              IC County                                        0                2              4 KILOMETERS AT Study area                                                                                                                                                                                                                                                 LA 0                            2                                4 MILES                                                                Barnes Sound Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey


average rate of saltwater interface movement of 140 meters
Cover. Map showing the approximate extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016. See https://doi.org/10.3133/sim3380 for map sheet.


per year was estimated by dividing the distance between two monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the travel time. The travel time was determined by estimating
Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Prepared in cooperation with Miami-Dade County Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey


the dates of arrival of the saltwater interface at the wells and computing the difference. This estimate assumes that the
U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGSthe Federal source for science about the Earth, its natural and living resources, natural hazards, and the environmentvisit https://www.usgs.gov or call 1-888-ASK-USGS.
For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.
Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
Suggested citation:
Prinos, S.T., 2017, Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida : U.S. Geological Survey Scientific Investigations Map 3380, 8-p. pamphlet, 1 sheet, https://doi.org/10.3133/sim3380.
ISSN 2329-132X (online)


interface is traveling east to west between the two monitoring wells. Although monitoring is spatially limited in this area
iii Acknowledgments The authors would like to acknowledge the organizations that provided data for the study area:
EAS Engineering, Inc., Florida Keys Aqueduct Authority, Florida Power & Light Company, Miami-Dade County, and South Florida Water Management District. Without the data provided by these organizations, the map in this report could not have been created.


and some of the wells are not ideally designed for salinity
v Contents Acknowledgments .......................................................................................................................................iii Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Mapping the Approximate Inland Extent of the Saltwater Interface ...................................................2 Approximating the Rate of Movement of the Saltwater Interface .......................................................2 Monitoring Network Improvements ..........................................................................................................3 References Cited ...........................................................................................................................................4 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring..................................................................................................5 Sheet
[Available from https://doi.org/10.3133/sim3380]
: 1. Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 Conversion Factors SI to Inch/Pound Multiply                                                      By                                                  To obtain Length meter (m)                                                                    3.281                        foot (ft) kilometer (km)                                                                0.6214                        mile (mi)
Area square kilometer (km2)                                                    247.1                            acre square kilometer (km )      2 0.3861                        square mile (mi2)
Volume liter (L)                                                                    0.2642                        gallon (gal) liter (L)                                                                  61.02                          cubic inch (in3)
Flow rate meter per year (m/yr)                                                        3.281                        foot per year (ft/yr)
Mass gram (g)                                                                      0.03527                      ounce, avoirdupois (oz) kilogram (kg)                                                                2.205                        pound, avoirdupois (lb)
Electrical conductivity siemens per meter (S/m)                                              10,000                                microsiemens per centimeter 6FP


monitoring, the monitoring network in this area is improving
vi Electrical conductivity  in microsiemens per centimeter [S/cm] can be converted to electrical resistivity  in ohm-meters [ohm m] as follows:  = 10,000/.
Temperature in degrees Celsius (&deg;C) may be converted to degrees Fahrenheit (&deg;F) as follows:
  &deg;F = (1.8 x &deg;C) + 32 Datum Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
Supplemental Information Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (S/cm at 25 &deg;C).
Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).
Abbreviations bls        below land surface GIS        geographic information system TSEMIL      time-series electromagnetic-induction log (dataset)
USGS        U.S. Geological Survey


in spatial distribution and most of the new wells are well designed for salinity monitoring. The approximation of the  
Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Abstract                                                        kilometers (km2) of the mainland part of the Biscayne aquifer were intruded by saltwater (Prinos and others, 2014). Intrusion The inland extent of saltwater at the base of the          of the Biscayne aquifer by saltwater is a concern because it Biscayne aquifer in the Model Land Area of Miami-Dade            can render the water unpotable in affected parts of the aquifer.
County, Florida, was mapped in 2011. Since that time,            The maximum concentration of chloride allowed in drinking the saltwater interface has continued to move inland. The        ZDWHULVPLOOLJUDPVSHUOLWHU PJ/86(QYLURQPHQWDO
LQWHUIDFHLVQHDUVHYHUDODFWLYHZHOO&#xbf;HOGVWKHUHIRUHDQ      Protection Agency, 2014), whereas saltwater-intruded parts of updated approximation of the inland extent of saltwater and      the aquifer commonly have water with chloride concentrations an improved understanding of the rate of movement of the        of 1,000 mg/L or greater.
saltwater interface are necessary. A geographic information          The inland extent of saltwater at the base of the Biscayne system was used to create a map using the data collected by      aquifer was last mapped by Prinos and others (2014) in 2011.
the organizations that monitor water salinity in this area. An  Since that time, saltwater has continued to intrude beneath average rate of saltwater interface movement of 140 meters      WKH0RGHO/DQG$UHD7KLVDUHDLVDUHODWLYHO\DWDQGSRRUO\
per year was estimated by dividing the distance between two      drained wetland area in southeastern Miami-Dade County that monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the            is bordered on the east and south sides by Biscayne Bay, Card travel time. The travel time was determined by estimating        Sound, Little Card Sound, and Barnes Sound. A system of the dates of arrival of the saltwater interface at the wells and FDQDOVZDWHUFRQWUROVWUXFWXUHVDQGOHYHHVUHJXODWHWKHRZ
computing the difference. This estimate assumes that the        of surface water in this area. There is an extensive system of interface is traveling east to west between the two monitoring  cooling canals in the eastern part of this area that has been wells. Although monitoring is spatially limited in this area    hypersaline at times (Hughes and others, 2010).
and some of the wells are not ideally designed for salinity          In the Model Land Area, the saltwater interface monitoring, the monitoring network in this area is improving    LVQHDUVHYHUDODFWLYHZHOO&#xbf;HOGVWKHUHIRUHDQXSGDWHG
in spatial distribution and most of the new wells are well       approximation of the inland extent of saltwater and an designed for salinity monitoring. The approximation of the       improved understanding of the rate of movement of the inland extent of the saltwater interface and the estimated rate  VDOWZDWHULQWHUIDFHDUHQHFHVVDU\7KH86*HRORJLFDO6XUYH\
of movement of the interface are dependent on existing data.      86*6 LQFRRSHUDWLRQZLWK0LDPL'DGH&RXQW\PDSSHGWKH
Improved estimates could be obtained by installing uniformly    approximate inland extent of saltwater in the Model Land Area designed monitoring wells in systematic transects extending      in 2016 and approximated the average rate of movement of the landward of the advancing saltwater interface.                  saltwater interface in this area based on data collected between 2007 and 2014. This study aligns directly with the strategic VFLHQFHGLUHFWLRQIRUWKH:DWHUGLVFLSOLQHRXWOLQHGLQ86*6
                                                                &LUFXODU 86*HRORJLFDO6XUYH\ E\TXDQWLI\LQJ
Introduction                                                    forecasting, and securing freshwater for Americas future.
The purpose of this report is to provide a map of the saltwater Seawater began intruding the Biscayne aquifer of Miami-    interface (2016), an estimate of the rate of interface movement Dade County early in the 20th century because of a decline in    given the dates of arrival at two wells, and a description of the the fresh groundwater level, estimated to have been 2.9 meters  methodologies used to arrive at these results. The analyses and (m) below predrainage conditions near Miami (Prinos              estimates are based on available data from existing monitoring and others, 2014). By 2011, approximately 1,200 square          wells in the Model Land Area.


inland extent of the saltwater interface and the estimated rate  
2      Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Mapping the Approximate Inland                                    basis, based on the available monitoring wells. The locations of the monitoring wells and the chloride concentration values Extent of the Saltwater Interface                                  are shown on the map (sheet 1, available at https://doi.
org/10.3133/sim3380). The line depicting the approximate The approximate inland extent of saltwater in the            inland extent of saltwater is dashed where the monitoring well Biscayne aquifer was determined by using (1) chloride              GLVWULEXWLRQLVLQVXI&#xbf;FLHQWWRFUHDWHDUHDVRQDEO\DFFXUDWHDQG
FRQFHQWUDWLRQDQGVSHFL&#xbf;FFRQGXFWDQFHRIZDWHUVDPSOHV            precise approximation.
collected from monitoring wells, (2) water conductivity                  7KH76(0,/GHULYHGYHUWLFDOSUR&#xbf;OHVRIEXON
SUR&#xbf;OHVFROOHFWHGLQORQJRSHQLQWHUYDOZHOOVDQG  WLPH      conductivity provide additional qualitative insights for VHULHVHOHFWURPDJQHWLFLQGXFWLRQORJ 76(0,/ GDWDVHWV            PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH
collected in polyvinyl-chloride-cased monitoring wells. This      water that do not correspond to the open interval of the well LQIRUPDWLRQZDVSURYLGHGE\($6(QJLQHHULQJ,QFWKH            and temporal changes in the depth of the top of the saltwater Florida Keys Aqueduct Authority, the Florida Power & Light        LQWHUIDFH:KHUHZDWHUFRQGXFWLYLW\SUR&#xbf;OHVZHUHXVHG
Company, the South Florida Water Management District              for monitoring, chloride concentrations were estimated by 6):0' DQGWKH86*6$OPRVWDOORIWKHGDWDSURYLGHG            using a relation based on a linear regression of the chloride by the SFWMD for this study area had been collected by the        FRQFHQWUDWLRQDQGVSHFL&#xbf;FFRQGXFWDQFHDVGHVFULEHGLQ
other four organizations, so they are mostly redundant. The        appendix 1.
information was entered into a geographic information system            The majority of the monitoring wells used for this (GIS) for analysis and mapping. Data used to make the map          analysis have short open intervals (about 1.5 meters [m] or are available as a data release (Prinos, 2017).                    less), but 37 percent have open intervals of 8 to 40 m (Prinos, Sampling, analysis, and quality assurance procedures of      2017). The long open-interval wells are not ideal for salinity the organizations collecting salinity data in the study area vary. monitoring for the reasons summarized in Prinos (2013) and Procedures used by the Florida Power & Light Company for          Prinos and Valderrama (2015), but they are the only wells sampling and quality assurance are described in the Turkey        available at some locations.
Point Quality Assurance Project Plan (Florida Power & Light Company, 2011). These procedures are likely among the most stringent used by organizations collecting salinity data in the study area. This plan was drafted jointly by the Florida    Approximating the Rate of Movement
'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQWKH)ORULGD3RZHU        of the Saltwater Interface
& Light Company, and the SFWMD and was approved by WKH6):0'3URFHGXUHVIRUVDPSOLQJE\WKH86*6DUH                      The saltwater interface in the study area is advancing JHQHUDOO\EDVHGRQWKRVHGHVFULEHGLQWKH86*6&#xbf;HOGPDQXDO      at an estimated average rate of 140 meters per year (m/yr).
EXWSURFHGXUHVKDYHEHHQPRGL&#xbf;HGIRUH[SHGLHQF\DQG              This estimate is based on limited data because there are few HI&#xbf;FDF\RIURXWLQHORQJWHUPVDOWZDWHULQWUXVLRQPRQLWRULQJ      wells in this area where the date of arrival of the saltwater 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG/HH0DVVH\86        interface can be ascertained. Most wells were installed either
*HRORJLFDO6XUYH\ZULWWHQFRPPXQ0DUFK ($6          after the saltwater interface had already passed the location (QJLQHHULQJ,QFDQGWKH)ORULGD.H\V$TXHGXFW$XWKRULW\        or where the saltwater interface has not yet arrived. The EDVHWKHLUVDPSOLQJRQWKHVSHFL&#xbf;FDWLRQVRIWKH)ORULGD          estimate is based on data from monitoring wells Sec34-
'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ )ORULGD'HSDUWPHQW        0:)6DQG73*:/PRQLWRUHGE\($6(QJLQHHULQJ
RI(QYLURQPHQWDO3URWHFWLRQ 7RHQVXUHWKHTXDOLW\RI      Inc., and the Florida Power & Light Company, respectively.
DQDO\]HGVDPSOHVWKH86*6ODERUDWRU\SDUWLFLSDWHVLQWKH        'DWDIURPZHOO73*:/DQGVHOHFWHGFRQGXFWDQFHSUR&#xbf;OHV
Branch of Quality Systems Standard Reference Sample Semi-          from well Sec34-MW-02-FS are available in Prinos (2017).
$QQXDO3UR&#xbf;FLHQF\7HVWLQJ3URMHFW($6(QJLQHHULQJ,QF        Well TPGW-7L is open to the aquifer from 24 to 26 m and the Florida Power & Light Company use laboratories that        below land surface (bls), which is near the depth of the base DUHFHUWL&#xbf;HGWKURXJKWKH1DWLRQDO(QYLURQPHQWDO/DERUDWRU\        of the Biscayne aquifer at this location (Fish and Stewart, Accreditation Program. Participation in this accreditation        1991). The chloride concentration in water samples from SURJUDPOLNHO\DVVXUHVWKDWVDPSOHDQDO\VHVDUHDFFXUDWH        well TPGW-7L increased from 180 to 825 mg/L between KRZHYHUWKH86*6FDQQRWFRPSOHWHO\YHULI\WKLVDFFXUDF\          December 3, 2013, and March 11, 2014, and from 825 to without reviewing the results of the accreditation testing for    1,300 mg/L between March 11, 2014, and June 9, 2014.
each laboratory used.                                              :DWHUFRQGXFWDQFHSUR&#xbf;OHVZHUHFROOHFWHGIURPZHOO6HF
The approximate saltwater interface is represented by the    0:)67KHPD[LPXPFRQGXFWDQFHRIWKHSUR&#xbf;OHVZDV
1,000-mg/L isochlor at the base of the Biscayne aquifer. The      IRXQGDWDGHSWKRIDERXWPEOV8VLQJHTXDWLRQVDQG
word approximate is used because the spatial distribution        2 (appendix 1), conductance values measured at this depth RIPRQLWRULQJZHOOVLVJHQHUDOO\LQVXI&#xbf;FLHQWWRFUHDWHD          equate to chloride concentrations of about 190, 530, 930, and precise representation. The accuracy and precision of this        PJ/IRU1RYHPEHU-DQXDU\$SULO
approximation is best evaluated on a location-by-location          2008, and May 15, 2008, respectively.


of movement of the interface are dependent on existing data.  
Monitoring Network Improvements        3 The average rate of saltwater interface movement            from the estimated location of the saltwater interface. The was estimated by dividing the distance between the wells          1,000-mg/L isochlor may not arrive at this well until 2023, (830 m) by the difference between the interpolated dates of      if the rate of movement of the saltwater interface proceeds at arrival of chloride concentrations of 250 and 1,000 mg/L at      the average rate estimated in this study. Better estimates of each well. The interpolated dates of arrival at well Sec34-      the rates of movement are needed before 2023, particularly 0:)6ZHUH1RYHPEHUDQG$SULO              because the rate of movement may not be constant.
for concentrations of 250 and 1,000 mg/L, respectively.          Monitoring well FKS 5 is even farther from the approximated The interpolated dates of arrival at well TPGW-7L were            location of the saltwater interface than well FKS 9. The rate December 13, 2013, and April 13, 2014, for concentrations of      and direction of movement of the saltwater interface near well 250 and 1,000 mg/L, respectively. Given these dates and the      FKS 5 are unknown. If the rate of movement were the same distance between these wells, the estimated rate of movement      as that between wells Sec34-MW-02-FS and TPGW-7L, the of the front is 137 m/yr based on a chloride concentration of    1,000-mg/L isochlor may not reach this well for 26 years if 250 mg/L, and the estimated rate based on a concentration of      the interface moves northward, or 17 years if the interface 1,000 mg/L is 138 m/yr. These estimates can be rounded to an      moves westward. Water managers would most likely need to average estimate of 140 m/yr. This rate of movement was used      have a better understanding of the location of the saltwater to help interpolate the location of the 1,000-mg/L isochlor in    interface, its rate of movement, and direction of movement the Model Land Area.                                              than currently provided near FKS 5.
This estimate assumes that the direction of front                Differences in the design, placement, quality of chemical movement is parallel to a line passing through these two well    analyses, and type of monitoring can add uncertainty to this locations, and that the rate of front movement is constant.      analysis. The analysis of the rate of movement of the saltwater 8VHRIWKLVUDWHIRULQWHUSRODWLQJWKHSRVLWLRQRIWKHVDOWZDWHU interface between monitoring wells Sec34-MW-02-FS and interface elsewhere in the study area assumes that (1) effective  TPGW-7L, for example, required a number of estimations, porosity is uniform throughout this area, (2) direction of        LQFOXGLQJWKHUHODWLRQEHWZHHQVSHFL&#xbf;FFRQGXFWDQFHDQG
front movement is east to west, and (3) that the rate of front    chloride, the relation between pumped water samples and movement is the same throughout this area. Additional            in situ measurements of conductance, and the conversion of monitoring is needed to evaluate these assumptions (see          FRQGXFWDQFHWRVSHFL&#xbf;FFRQGXFWDQFH7KHVHUHODWLRQVDQG
0RQLWRULQJ1HWZRUN,PSURYHPHQWVVHFWLRQRIWKLVUHSRUW         conversions increase uncertainty.
Given the stated assumptions, the saltwater interface may              Some monitoring wells, such as well Sec34-MW-PRYHXQGHUWKH1HZWRQZHOO&#xbf;HOGE\7KLVHVWLPDWHRI        02-FS and many of the wells monitored by the Florida Keys future movement may be conservative because withdrawals          Aqueduct Authority, are designed to monitor the depth of the IURPWKHZHOO&#xbf;HOGPD\LQXHQFHWKHUDWHDQGGLUHFWLRQRI        top of the saltwater interface through the collection of water travel.                                                          FRQGXFWLYLW\SUR&#xbf;OHVDQGZDWHUVDPSOHVIURPPXOWLSOHGHSWKV
Because these wells have long open intervals, the sample UHVXOWVPD\EHLQXHQFHGE\RZZLWKLQWKHZHOOERUHGXULQJ
VDPSOLQJRUXQGHUDPELHQWFRQGLWLRQV 3ULQRV3ULQRV
Monitoring Network Improvements                                  and Valderrama, 2015). Although several organizations base their sampling on the Standard Operating Procedures of the Within the map, the line depicting the approximation        )ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ3ULQRV
of the inland extent of the saltwater interface is dashed        (2013) states that these procedures call for sampling of long near the Card Sound Road Canal and in the area around            open-interval wells by pumping from near the top of the water WKH&&DQDOEHFDXVHWKHUHZHUHLQVXI&#xbf;FLHQWGDWDIRU          column or top of the open interval, which could result in an accurate delineation of the interface. These areas were        samples that are not representative of maximum salinity in the previously mapped by using helicopter electromagnetic            DTXLIHU'8QFHUWDLQW\LVDOVRLQFUHDVHGEHFDXVHVRPHDQDO\VHV
surveys (Fitterman and Prinos, 2012) and time-domain              DUHSHUIRUPHGLQWKH&#xbf;HOGDVRSSRVHGWRLQDODERUDWRU\WKDW
electromagnetic soundings (Fitterman and others, 2011).          participates in a quality assurance testing program (see the Monitoring in these areas currently consists of only a few        0DSSLQJWKH$SSUR[LPDWH,QODQG([WHQWRIWKH6DOWZDWHU
wells that are too far from the expected current location of the  Interface section of this report).
interface to provide relevant information. Monitoring near the          (VWLPDWHVRIWKHUDWHRIPRYHPHQWRIWKHLQWHUIDFHFRXOG
edge of the elongated extension of saltwater that had intruded    be improved by placing monitoring wells along a transect, along the Card Sound Road Canal (Prinos and others, 2014) is      spaced at distances that would allow timely detection of any almost nonexistent.                                              variations in the rate of movement of the saltwater interface, Given the rate of movement of the saltwater interface        and parallel to the direction of movement of the interface. If estimated in this investigation, the chloride concentrations      IRXURU&#xbf;YHVXFKWUDQVHFWVZHUHLQVWDOOHGLQWKHFRXQW\WKH
of samples from some of the monitoring wells on the              resulting data could be used to evaluate spatial differences in freshwater side of the interface may not exceed 1,000 mg/L for    the rates of movement of the saltwater interface at locations many years. Monitoring well FKS 9, for example, is 0.86 km        ZKHUHWKHLQWHUIDFHLVHQFURDFKLQJ&ROOHFWLQJ76(0,/


Improved estimates could be obtained by installing uniformly
4      Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 datasets in wells in each transect could provide information on  3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU&#xbf;FLDODTXLIHU
 
KRZWKHGHSWKRIWKHLQWHUIDFHLVFKDQJLQJ8VLQJFRQVLVWHQW      system of the Big Cypress Basin, southwest Florida, monitoring methods at wells in each transect could reduce the       and a proposed plan for improved salinity monitoring:
designed monitoring wells in systematic transects extending
uncertainty in the estimated rate of movement.                     86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-
 
58 p., accessed January 5, 2017, at https://pubs.usgs.gov/
landward of the advancing saltwater interface.
of/2013/1088/.
Introduction Seawater began intruding the Biscayne aquifer of Miami-Dade County early in the 20th century because of a decline in  
References Cited                                                  Prinos, S.T., 2017, Data pertaining to mapping the approximate inland extent of saltwater in the Biscayne
 
)LVK-(DQG6WHZDUW0DUN+\GURJHRORJ\RIWKH          aquifer, in the Model Land Area of Miami-Dade County, VXU&#xbf;FLDODTXLIHUV\VWHP'DGH&RXQW\)ORULGD86            )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH
the fresh groundwater level, estimated to have been 2.9 meters (m)below predrainage conditions near Miami (Prinos and others, 2014). By 2011, approximately 1,200 square kilometers (km
Geological Survey Water-Resources Investigations Report          http://dx.doi.org/10.5066/F7R78CF8.
: 2) of the mainland part of the Biscayne aquifer were intruded by saltwater (Prinos and others, 2014). Intrusion
90-4108, 50 p., 11 sheets.
 
Prinos, S.T., and Valderrama, Robert, 2015, Changes in Fitterman, D.V., Deszcz-Pan, Maria, and Prinos, S.T., 2012,        the saltwater interface corresponding to the installation Helicopter electromagnetic survey of the Model Land              of a seepage barrier near Lake Okeechobee, Florida:
of the Biscayne aquifer by saltwater is a concern because it can render the water unpotable in affected parts of the aquifer.  
  $UHDVRXWKHDVWHUQ0LDPL'DGH&RXQW\)ORULGD86            86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-
 
Geological Survey Open-File Report 2012-1176, 77 p.,             24 p., accessed January 5, 2017, at https://pubs.usgs.gov/
The maximum concentration of chloride allowed in drinking
39 pls., accessed January 5, 2017, at https://pubs.usgs.gov/    of/2014/1256/.
 
of/2012/1176/.
Protection Agency, 2014), whereas saltwater-intruded parts of
Prinos, S.T., Wacker, M.A., Cunningham, K.J., and Fitterman, Fitterman, D.V., and Prinos, S.T., 2011, Results of time-          D.V., 2014, Origins and delineation of saltwater intrusion domain electromagnetic soundings in Miami-Dade and              in the Biscayne aquifer and changes in the distribution of VRXWKHUQ%URZDUG&RXQWLHV)ORULGD86*HRORJLFDO            VDOWZDWHULQ0LDPL'DGH&RXQW\)ORULGD86*HRORJLFDO
 
Survey Open File Report 2011-1299, 289 p., accessed              6XUYH\6FLHQWL&#xbf;F,QYHVWLJDWLRQV5HSRUW+/-S
the aquifer commonly have water with chloride concentrations of 1,000 mg/L or greater.
January 5, 2017, at https://pubs.usgs.gov/of/2011/1299/.        accessed January 5, 2017, at http://dx.doi.org/10.3133/
The inland extent of saltwater at the base of the Biscayne aquifer was last mapped by Prinos and others (2014) in 2011.  
)ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ                    sir20145025.
 
2008, Groundwater sampling: Florida Department of             86(QYLURQPHQWDO3URWHFWLRQ$JHQF\6HFRQGDU\
Since that time, saltwater has continued to intrude beneath
(QYLURQPHQWDO3URWHFWLRQ6WDQGDUG2SHUDWLQJ3URFHGXUHV        drinking water standards: Guidance for nuisance chemicals:
 
  '(3623)6SDSSDFFHVVHG                    86(QYLURQPHQWDO3URWHFWLRQ$JHQF\5HSRUW+/-I+/-+/-
drained wetland area in southeastern Miami-Dade County that is bordered on the east and south sides by Biscayne Bay, Card Sound, Little Card Sound, and Barnes Sound. A system of
February 10, 2017, at KWWSZZZGHSVWDWHXV:DWHUVDV      079, accessed January 26, 2011, at http://water.epa.gov/
 
sop/sops.htm.                                                    drink/contaminants/secondarystandards.cfm.
of surface water in this area. There is an extensive system of
Florida Power & Light Company, 2011, Quality Assurance 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG1DWLRQDO&#xbf;HOGPDQXDO
 
Project PlanTurkey Point Monitoring Project: Florida IRUWKHFROOHFWLRQRIZDWHUTXDOLW\GDWD86*HRORJLFDO
cooling canals in the eastern part of this area that has been
Power & Light Company, 170 p., 9 app., accessed Survey Techniques of Water-Resources Investigations, February 22, 2017, at https://www.sfwmd.gov/documents-book 9, chaps. A1-A9, available online at http://pubs.water.
 
E\WDJISOWSVXUYH\"VRUWBE\ WLWOH VRUWBRUGHU '(6&.
hypersaline at times (Hughes and others, 2010).In the Model Land Area, the saltwater interface
usgs.gov/twri9A.
 
+XJKHV-'/DQJHYLQ&'DQG%UDNH&#xbf;HOG*RVZDPL
approximation of the inland extent of saltwater and an
  /LQ]\(IIHFWRIK\SHUVDOLQHFRROLQJFDQDOVRQDTXLIHU
 
salinization: Hydrogeology Journal, v. 18, p. 25-38.
improved understanding of the rate of movement of the
 
approximate inland extent of saltwater in the Model Land Area
 
in 2016 and approximated the average rate of movement of the
 
saltwater interface in this area based on data collected between 2007 and 2014. This study aligns directly with the strategic
 
forecasting, and securing freshwater for America's future.
 
The purpose of this report is to provide a map of the saltwater
 
interface (2016), an estimate of the rate of interface movement
 
given the dates of arrival at two wells, and a description of the methodologies used to arrive at these results. The analyses and
 
estimates are based on available data from existing monitoring wells in the Model Land Area.
2 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Mapping the Approximate Inland Extent of the Saltwater Interface The approximate inland extent of saltwater in the Biscayne aquifer was determined by using (1) chloride
 
collected from monitoring wells, (2) water conductivity
 
collected in polyvinyl-chloride-cased monitoring wells. This
 
Florida Keys Aqueduct Authority, the Florida Power & Light Company, the South Florida Water Management District
 
by the SFWMD for this study area had been collected by the other four organizations, so they are mostly redundant. The
 
information was entered into a geographic information system (GIS) for analysis and mapping. Data used to make the map
 
are available as a data release (Prinos, 2017).
Sampling, analysis, and quality assurance procedures of the organizations collecting salinity data in the study area vary.
 
Procedures used by the Florida Power & Light Company for sampling and quality assurance are described in the Turkey Point Quality Assurance Project Plan (Florida Power & Light Company, 2011). These procedures are likely among the most stringent used by organizations collecting salinity data in the study area. This plan was drafted jointly by the Florida
 
& Light Company, and the SFWMD and was approved by
 
Branch of Quality Systems Standard Reference Sample Semi-
 
and the Florida Power & Light Company use laboratories that
 
Accreditation Program. Participation in this accreditation
 
without reviewing the results of the accreditation testing for
 
each laboratory used.
The approximate saltwater interface is represented by the 1,000-mg/L isochlor at the base of the Biscayne aquifer. The
 
word "approximate" is used because the spatial distribution
 
precise representation. The accuracy and precision of this
 
approximation is best evaluated on a location-by-location basis, based on the available monitoring wells. The locations of the monitoring wells and the chloride concentration values
 
are shown on the map (sheet 1, available at https://doi.
org/10.3133/sim3380). The line depicting the approximate inland extent of saltwater is dashed where the monitoring well precise approximation. conductivity provide additional qualitative insights for
 
water that do not correspond to the open interval of the well
 
and temporal changes in the depth of the top of the saltwater
 
for monitoring, chloride concentrations were estimated by
 
using a relation based on a linear regression of the chloride
 
appendix 1.
The majority of the monitoring wells used for this analysis have short open intervals (about 1.5 meters [m] or
 
less), but 37 percent have open intervals of 8 to 40 m (Prinos, 2017). The long open-interval wells are not ideal for salinity
 
monitoring for the reasons summarized in Prinos (2013) and Prinos and Valderrama (2015), but they are the only wells
 
available at some locations.
Approximating the Rate of Movement of the Saltwater Interface The saltwater interface in the study area is advancing at an estimated average rate of 140 meters per year (m/yr).  
 
This estimate is based on limited data because there are few
 
wells in this area where the date of arrival of the saltwater
 
interface can be ascertained. Most wells were installed either
 
after the saltwater interface had already passed the location or where the saltwater interface has not yet arrived. The
 
estimate is based on data from monitoring wells Sec34-
 
Inc., and the Florida Power & Light Company, respectively.  
 
from well Sec34-MW-02-FS are available in Prinos (2017).
Well TPGW-7L is open to the aquifer from 24 to 26 m
 
below land surface (bls), which is near the depth of the base
 
of the Biscayne aquifer at this location (Fish and Stewart, 1991). The chloride concentration in water samples from well TPGW-7L increased from 180 to 825 mg/L between December 3, 2013, and March 11, 2014, and from 825 to 1,300 mg/L between March 11, 2014, and June 9, 2014.  
 
2 (appendix 1), conductance values measured at this depth
 
equate to chloride concentrations of about 190, 530, 930, and  
 
2008, and May 15, 2008, respectively.
Monitoring Network Improvements  3 The average rate of saltwater interface movement was estimated by dividing the distance between the wells (830 m) by the difference between the interpolated dates of arrival of chloride concentrations of 250 and 1,000 mg/L at each well. The interpolated dates of arrival at well Sec34-
 
for concentrations of 250 and 1,000 mg/L, respectively.
The interpolated dates of arrival at well TPGW-7L were December 13, 2013, and April 13, 2014, for concentrations of 250 and 1,000 mg/L, respectively. Given these dates and the
 
distance between these wells, the estimated rate of movement
 
of the front is 137 m/yr based on a chloride concentration of
 
250 mg/L, and the estimated rate based on a concentration of 1,000 mg/L is 138 m/yr. These estimates can be rounded to an average estimate of 140 m/yr. This rate of movement was used to help interpolate the location of the 1,000-mg/L isochlor in the Model Land Area.
This estimate assumes that the direction of front movement is parallel to a line passing through these two well
 
locations, and that the rate of front movement is constant.
interface elsewhere in the study area assumes that (1) effective
 
porosity is uniform throughout this area, (2) direction of  
 
front movement is east to west, and (3) that the rate of front movement is the same throughout this area. Additional
 
monitoring is needed to evaluate these assumptions (see
 
Given the stated assumptions, the saltwater interface may
 
future movement may be conservative because withdrawals
 
travel.Monitoring Network ImprovementsWithin the map, the line depicting the approximation of the inland extent of the saltwater interface is dashed
 
near the Card Sound Road Canal and in the area around
 
an accurate delineation of the interface. These areas were
 
previously mapped by using helicopter electromagnetic
 
surveys (Fitterman and Prinos, 2012) and time-domain electromagnetic soundings (Fitterman and others, 2011).  
 
Monitoring in these areas currently consists of only a few
 
wells that are too far from the expected current location of the


interface to provide relevant information. Monitoring near the  
Appendix 1 Appendix 1      5 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring
    $WORFDWLRQVZKHUHZDWHUFRQGXFWLYLW\SUR&#xbf;OHVZHUH        less), but 37 percent have open intervals of 8 to 40 m (Prinos, used for monitoring, chloride concentrations were estimated      2017). The long open-interval wells are not ideal for salinity by using a relation based on a linear regression of the chloride monitoring for the reasons summarized in Prinos (2013) and FRQFHQWUDWLRQDQGVSHFL&#xbf;FFRQGXFWDQFHRIZDWHU          Prinos and Valderrama (2015), but they are the only wells VDPSOHVFROOHFWHGEHWZHHQ1RYHPEHUDQG                available at some locations.
September 26, 2016, from 178 monitoring sites sampled E\WKH86*6LQVRXWKHUQ)ORULGD WDEOH+/- $OORIWKHVH
VDPSOHUHVXOWVDUHDYDLODEOHWKURXJKWKH86*61DWLRQDO:DWHU
,QIRUPDWLRQ6\VWHPZHEVLWH 86*HRORJLFDO6XUYH\       References Cited The relation is expressed as
                                                                &DUOVRQ*OHQQ>QG@6SHFL&#xbf;FFRQGXFWDQFHDVDQRXWSXWIRU
cc = 0.3458sc&#xed;                    FRQGXFWLYLW\UHDGLQJV,Q6LWX,QF7HFKQLFDO1RWHS
accessed March 6, 2017, at https://in-situ.com/wp-content/
where                                                              XSORDGV6SHFL&#xbf;F&RQGXFWDQFHDVDQ2XWSXW8QLW
cc    is the chloride concentration in milligrams per    IRU&RQGXFWLYLW\5HDGLQJV7HFK1RWHSGI.
liter, and sc  LVWKHVSHFL&#xbf;FFRQGXFWDQFHLQPLFURVLHPHQV    3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU&#xbf;FLDODTXLIHU
per centimeter.                                system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring:
&RQGXFWDQFHZDVFRQYHUWHGWRVSHFL&#xbf;FFRQGXFWDQFHXVLQJWKH        86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-
following relation (Carlson, [n.d.]).                              58 p., accessed January 5, 2017, at https://pubs.usgs.gov/
of/2013/1088/.
sc = c/(1 + r(T&#xed;                 
Prinos, S.T., 2017, Data pertaining to mapping the where                                                              approximate inland extent of saltwater in the Biscayne c    is the actual conductance measured in              aquifer, in the Model Land Area of Miami-Dade County, microsiemens per centimeter,                  )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH
T    is the temperature of the sample in degrees        http://dx.doi.org/10.5066/F7R78CF8.
Celsius, and r  LVWKHWHPSHUDWXUHFRUUHFWLRQFRHI&#xbf;FLHQWIRU  Prinos, S.T., and Valderrama, Robert, 2015, Changes in the sample.                                    the saltwater interface corresponding to the installation of a seepage barrier near Lake Okeechobee, Florida:
7KH76(0,/GHULYHGYHUWLFDOSUR&#xbf;OHVRIEXON
86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-
conductivity provide additional qualitative insights for 24 p., accessed January 5, 2017, at https://pubs.usgs.gov/
PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH
of/2014/1256/.
water that do not correspond to the open interval of the well and temporal changes in the depth of the top of the saltwater    86*HRORJLFDO6XUYH\1DWLRQDO:DWHU,QIRUPDWLRQ
interface.                                                          SystemWeb interface, accessed September 28, 2016, at The majority of the monitoring wells used for this            KWWSG[GRLRUJ)3.-1.
analysis have short open intervals (about 1.5 meters [m] or


edge of the elongated extension of saltwater that had intruded
6      Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.
>86*686*HRORJLFDO6XUYH\@
USGS station                                                        USGS station Site name                                                          Site name identifier                                                            identifier 262313080044401      PB -1457                                        255453080110801    G-3978 262209080044702      PB -1669                                        254601080150301    G-3977 261100080140401      G -1212                                        254156080172101    G -3607 261122080083401      G -1232                                        252814080244101    G -3698 260547080105801      G -2352                                        252652080244301    G -3699 260920080092201      G -2898                                        252650080252701    G -3855 260551080111901      G -2957                                        253253080221201    G -3885 261740080054101      G -2893                                        253527080195401    G -3886 255916080090401      G -1435                                        253924080174601    G -3887A 255910080085802      G -2294                                        253924080174602    G -3887B 255919080091202      G -2409                                        254542080145901    G -3888A 255919080091203      G -2410                                        254542080145902    G -3888B 255936080091701      G -2477                                        254542080145903    G -3888C 255936080091702      G -2478                                        253948080250701    G -3897 255916080092001      G -2965                                        254152080282601    G -3898 260037080100700      Hollywood Canal at Hollywood Blvd,              253419080223701    G -3899 Hollywood, FL                                252718080264901    G -3900 260104080101300      Hollywood Canal at Johnson St, Hollywood,      252506080300601    G -3901 FL 252431080261001    G -3946D 260225080095800      +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG
FL                                          252431080261002    G -3946S 260212080112500      +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG        255011080124501    G -3947 FL                                          255515080103601    G -3948D 260132080094900      Hollywood Canal at Taft St, Hollywood, FL      255515080103602    G -3948S 260041080093101      G -2425                                        255733080195601    G -3949D 260041080093102      G -2426                                        255733080195602    G -3949I 260120080093401      G -2441                                        255733080195603    G -3949S 260155080092002      G -2612                                        254824080155301    G -3964 260026080095801      G -2956                                        254500080162801    G -3965 254943080121501      F - 45                                          252719080253601    G -3966D 254841080164401      G - 571                                        252719080253602    G -3966S 255350080105801      G - 894                                        253335080213501    G -3967 254107080165201      G - 896                                        255315080111501    F - 279 254201080173001      G - 901                                        254828080161501    G - 354 254106080174601      G -1009B                                        254335080170501    G - 432 252947080235301      G -1180                                        254855080163701    G - 548 254813080161501      G -1351                                        253652080183701    G - 939 254833080155801      G -1354                                        253202080232601    G -3162 255222080123001      G -3224                                        253831080180204    G -3313C 254457080160301      G -3229                                        253831080180206    *(
254946080172601      G -3250                                        255358080114101    G -3601 252714080260901      G-3976                                          255116080120601    G -3602


along the Card Sound Road Canal (Prinos and others, 2014) is
Appendix 1      7 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued
>86*686*HRORJLFDO6XUYH\@
USGS station                                                        USGS station Site name                                                            Site name identifier                                                            identifier 254908080125201      G -3603                                        260534080110801    G -2904 254722080152201      G -3604                                        262839081503100    L - 735 254629080143101      G -3605                                        262022081464201    L - 738 254341080174001      G -3606                                        263532081592202    L -1136 254108080170601      G -3608                                        263813081552801    L -2640 254005080171601      G -3609                                        263819081585801    L -2701 253819080183201      G -3610                                        263955082083102    L -2820 253710080184701      G -3611                                        263117082051002    L -2821 253457080195501      G -3612                                        264053081572501    L -4820 253024080231001      G -3615                                        262513081472002    L -5668R 253027080234701      G -3700                                        261926081454702    L -5745R 253214080224601      G -3701                                        264123080053801    PB - 809 253334080213601      G -3702                                        263044080035102    PB -1195 254822080125501      G -3704                                        262755080040101    PB -1707 255625080094901      G -3705                                        262803080041101    PB -1714 261302081473901      C - 489                                        263453080031501    PB -1717 261156081475801      C - 516                                        263633080031401    PB -1723 261002081483701      C - 525                                        265550080070701    PB -1732 261018081484101      C - 526                                        265611080080201    PB -1733 261200081483001      C - 528                                        265006081042502    GL - 334I 260549081441901      C - 600                                        265006081042501    GL - 334S 261802081354801      C - 688                                        265006081042503    GL - 334D 261347081351201      C - 953                                        264912081024602    GL -332S 261620081464402      C -1004R                                        264912081024601    GL -332 261604081480901      C -1059                                        264843080591502    GL - 333I 261311081480101      C -1061                                        264843080591501    GL - 333S 260137081375901      C -1063                                        264843080591503    GL - 333D 262228081361902      C -1080                                        264532080545902    +(6 261403080070801      G -2149                                        264532080545901    +(
260342080115902      G -2264                                        264343080511601    PB -1843S 261446080062801      G -2445                                        264343080511602    PB -1843I 261724080054603      G -2693                                        264343080511603    PB -1843D 260242080101101      G -2697                                        264154080480302    PB -1822S 261643080055901      G -2752                                        264154080480301    PB -1822 261740080054101      G -2893                                        264050080435502    PB -1842I 261304080072501      G -2896                                        264050080435501    PB -1842S 261030080083301      G -2897                                        264050080435503    PB -1842D 260804080092701      G -2899                                        264814080414302    PB -1819S 260325080113901      G -2900                                        264814080414301    PB -1819 260638080104801      G -2902                                        264926080394503    PB -1848D 255843080090901      G -2903                                        264930080394703    PB -1847D


almost nonexistent.
8      Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued
Given the rate of movement of the saltwater interface estimated in this investigation, the chloride concentrations
>86*686*HRORJLFDO6XUYH\@
USGS station                                                        USGS station Site name                                                        Site name identifier                                                          identifier 265138080375802      PB -1818S                                      265428080364501    PB -1816 265138080375801      PB -1818                                      265519080364902    PB -1815S 265142080374202      PB -1817S                                      265519080364901    PB -1815 265142080374201      PB -1817                                      265701080363103    PB -1844D 265208080373902      PB -1845I                                      265701080363102    PB -1844I 265208080373901      PB -1845S                                      265701080363101    PB -1844S 265208080373903      PB -1845D                                      265839080365202    M -1369I 265200080373101      PB -1846S                                      265839080365201    M -1369D 265428080364502      PB -1816S For more information about this publication, contact:
Director, Caribbean-Florida Water Science Center U.S. Geological Survey 4446 Pet Lane, Suite 108 Lutz, FL 33559 (813) 498-5000 Or visit the USGS Caribbean-Florida Water Science Center website at:
https://fl.water.usgs.gov Publishing support provided by Lafayette Publishing Service Center


of samples from some of the monitoring wells on the freshwater side of the interface may not exceed 1,000 mg/L for
PrinosMap of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016SIM 3380 ISSN 2329-132X (online) https://doi.org/10.3133/sim3380


many years. Monitoring well FKS 9, for example, is 0.86 km from the estimated location of the saltwater interface. The 1,000-mg/L isochlor may not arrive at this well until 2023, if the rate of movement of the saltwater interface proceeds at the average rate estimated in this study. Better estimates of
WITTKOP PARK HARRIS PARK                                                Miami-Dade County Distance from Coast: 6.5 miles Salt Intrusion Extent NEWTON FLORIDA CITY Florida City Canal FLORIDA KEYS AQUADUCT AUTHORITY EVERGLADES LABOR CAMP S
rd Ca ou R
nd oa db ow orr c an al Salt Intrusion at the Base of the Biscayne Aquifer (1,000 mg/L chlorides)
Distance from US Geological Survey Data Coast: 10.6 miles 2016 Salt Intrusion Line 2011 Salt Intrusion Line 1995 Salt Intrusion Line 0  0.5  1            2            3          4              5    6 Miles Wellfield Protection Areas Saltline_trends_20180430.mxd - GMB - May 7, 2018


the rates of movement are needed before 2023, particularly
DERMClassIPermitRequiredMonitoringinL31ECanal June2015toMay29,2018SummaryofChlorideResults 18000 16000 14000 12000 10000 mg/L 8000 6000 4000 2000 0
TPSWC1B  TPSWC2B    TPSWC3B  MDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)


because the rate of movement may not be constant.  
Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018
                                                                                                                                                                                                                        .
L31E-B L31E-A Depth          SpCond (u/s)
Depth        SpCond (u/s)
T (0.25 m)        4835.1 T (0.41 m)      9100.7 M (1.021m)        9146.1 M (1.45m)        9097.6 B (2.176m)        8642 B (3.477m)        9793 L31E-B L31E-A I-1 I-1 Depth        SpCond (u/s)
I-2                                                                T (0.22 m)      9224.6 M (1.087m)      9245.4 I-2 B (2.117m)      8669.7 Depth          SpCond (u/s)
T (0.49 m)        9336.1 M (1.7m)          9325.9 B (2.499m)        9130.6 L31E-C L31E-C Depth          SpCond (u/s)
T (0.132m)        9462.3 M (1.549m)        9460.6 B (2.951m)        9322.3 L31E-D Depth        SpCond (u/s)
T (0.24m)      21744.3 M (0.891m)    21588.7 B (1.841m)    21612.6 L31E-D I-3 I-3 EEL1                                                                    Depth        SpCond (u/s)
Depth      SpCond (u/s)                                                          T (0.071m)      21529.3 T (0.1m)      5408                                                              M (1.493m)      21528.6 B (2.932m)      45473 EEL1 EEL2                                                                                        L31E-E                                                                  Spec ific Conductance Sampling Points L31E-E EEL2 Depth          SpCond (u/s)                                            Canals Depth        SpCond (u/s)
T (0.079m)        21347 T (0.179m)      5934.9 M (0.956m)      21377.1                                                Miami-Dade EEL Program B (1.956m)      22714.6 SFWMD I-4                                                                                                    Florida Power and Light L31E-F                                                          I-4 L31E-F                                                  Depth        SpCond (u/s)                                                                            Rock mining Lands and Associated Mitigation Depth        SpCond (u/s)                                          T (0.299m)        21580 T (0.179m)    21444.5                                            M (0.939m)        21534.6                                                                              State of Florida M (0.707m)    21424.5                                            B (2.077m)        23692.6 B (1.653m)    31860.2 Federal Private Rock mining Lands and Associated Mitigation Florida Power and Light Miles 0 0.75                  1.5                                          3                                                      4.5                                  6                          Rock mining Lands and Associated Mitigation


Monitoring well FKS 5 is even farther from the approximated location of the saltwater interface than well FKS 9. The rate
Model Lands Hydrology and FPL Everglades Mitigation Bank L-31E Culvert Weir Operation RER-DERM Water Resources Coordination and Education Division February 15, 2018


and direction of movement of the saltwater interface near well
Model Lands Hydrology 3/4 Isolated by Roads/Levees 3/4 No Connection to Regional Canal System 3/4 Rain-driven


FKS 5 are unknown. If the rate of movement were the same as that between wells Sec34-MW-02-FS and TPGW-7L, the 1,000-mg/L isochlor may not reach this well for 26 years if
Interceptor Ditch pumps Model Lands Hydrology 3/4 Palm Drive culverts        S-20 (restoration) 3/4 S-20 3/4 Everglades Mitigation Bank L-31E culvert weirs 3/4 Interceptor Ditch pumps


the interface moves northward, or 17 years if the interface moves westward. Water managers would most likely need to
Model Lands Hydrology and S-20 Operations Central and Southern Florida Project for Flood Control and Other Purposes Master Water Control Manual - East Coast Canals - Volume 5


have a better understanding of the location of the saltwater
Model Lands Hydrology and S-20 Operations C&SF Project Structure Manual, S-20 Section (revised 1/16/2003):


interface, its rate of movement, and direction of movement
Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft                                                                  Optimum S-20 Headwater Elevation (per C&SF Master Manual)
Existing S-20 Operations for Flood Control, Salt 2.0 ft                          Intrusion Control                      Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)
FPL Everglades Mitigation Bank L-31E Culvert Weir Operations    FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):
1.0 ft
* Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft                                                                    water level invert setting of the S-20 structure.
Mean Sea Level
* During the dry season (October -
April), they will be set at 0.1 feet lower than the S-20 control elevation setting.


than currently provided near FKS 5.Differences in the design, placement, quality of chemical analyses, and type of monitoring can add uncertainty to this analysis. The analysis of the rate of movement of the saltwater interface between monitoring wells Sec34-MW-02-FS and TPGW-7L, for example, required a number of estimations,  
Model Lands Groundwater Stages                                                                                                                                                                                                                                                                                                                                                                                                    Healthy Sawgrass Prairie:
Existing Conditions vs. Healthy Ecology                                                                                                                                                                                                                                                                                                                                                                                            8-10 months Hydroperiod#
3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months                                                                                                                            2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mean Sea Level
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        #Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11                                                                                                                                                                                                                                                                          31-Jan-13                                                                                                                          31-Jan-14                                                                                                                                      Trophic Level System Simulation 31-Jul-11                                                                                                                                      31-Jul-12                                                                                                                          31-Jul-13                                                                                                                          31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10  31-Oct-10                                                                          30-Jun-11                                      31-Oct-11                          31-Jan-12                                                  30-Jun-12                                      31-Oct-12                                                                          30-Jun-13                                      31-Oct-13                                                                          30-Jun-14                                      31-Oct-14                          31-Jan-15 31-Aug-10                          30-Nov-10  31-Dec-10  28-Feb-11  31-Mar-11  30-Apr-11  31-May-11                          31-Aug-11  30-Sep-11              30-Nov-11  31-Dec-11              29-Feb-12  31-Mar-12  30-Apr-12  31-May-12                          31-Aug-12  30-Sep-12              30-Nov-12  31-Dec-12  28-Feb-13  31-Mar-13  30-Apr-13  31-May-13                          31-Aug-13  30-Sep-13              30-Nov-13  31-Dec-13  28-Feb-14  31-Mar-14  30-Apr-14  31-May-14                          31-Aug-14  30-Sep-14              30-Nov-14  31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.
Water Level (ft NGVD29)                                                                                                Nearby Wetland Ground Elevation (1.8 ft NGVD)


chloride, the relation between pumped water samples and
C-111 Spreader Canal Western CERP Project 3/4 February 2012 - Project Construction completed under SFWMD state-expedited program 3/4 June 10, 2014 Congressional Authorization (WRDA 2014) 3/4 Features:
9 Frog Pond Detention Area 9 Aerojet Canal Features 9 Plugs in C-110 9 Operational Changes at S-18C 9 Plug at S-20A 9 Operational Changes at S-20


in situ measurements of conductance, and the conversion of
Model Lands Groundwater Control Elevations CERP Restoration Vision vs. Current Water Management 3.5 ft CERP Restoration, per C-111 3.0 ft                        CERP Restoration Vision                      Spreader Canal Western Project FEIS and BBCW Alt O Conceptual Design, Army Corps of Engineers):
* S-20 open and close triggers to be 2.5 ft                                                                        increased 0.5 foot
* 4 pump stations on Florida City Local Wetland        Existing S-20 Operations                      Canal pump up to 150 cfs into the Model Lands 2.0 ft  Ground Elevation 1.5 ft FPL Everglades Mitigation Bank L-31E Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level


conversions increase uncertainty. Some monitoring wells, such as well Sec34-MW-02-FS and many of the wells monitored by the Florida Keys Aqueduct Authority, are designed to monitor the depth of the
C-111 Spreader Canal Western CERP Project Page xii:
OUR CONCLUSION: HYDROPERIOD RESTORATION IS DEPENDENT ON A REDUCTION IN OVERDRAINAGE CAUSED BY CANAL INFRASTRUCTURE


top of the saltwater interface through the collection of water
C-111 Spreader Canal Western CERP Project


Because these wells have long open intervals, the sample
C-111 Spreader Canal Western CERP Project


and Valderrama, 2015). Although several organizations base
C-111 Spreader Canal Western CERP Project Army Corps Permit for construction of the FPL Everglades Mitigation Bank:


their sampling on the Standard Operating Procedures of the  
FPL L-31E Culvert Elevations Gate elevations were raised from 1.8 to 2.2 ft NGVD per DERM Consent Agreement (Condition 17(c)(i):
Raise control elevations in the Everglades Mitigation Bank. Within 30 days of the effective date of this Consent Agreement, FPL shall raise the control elevations of the FPL Everglades Mitigation Bank ("EMB") culvert weirs to no lower than 0.2 feet lower than the 2.4 foot trigger of the S-20 structure and shall maintain this elevation.
After the first year of operation, FPL shall evaluate the change .in control elevation, in regards to improvements in salinity, water quality, and lift in the area, and if FPL determines that the change in control elevations is not effective, or that FPL is negatively impacted in receiving mitigation credits as a result of this action, FPL will consult with DERM and propose potential alternatives.


(2013) states that these procedures "call for sampling of long
FPL EMB L-31E Culvert Elevations FPL Annual Monitoring Report, Everglades Mitigation Bank Phase II (January 2018)


open-interval wells by pumping from near the top of the water
Stage (ft NGVD) 0  0.5  1  1.5        2          2.5  3            3.5                  4 9/1/2010 11/1/2010 1/1/2011 3/1/2011 5/1/2011 7/1/2011 9/1/2011 11/1/2011 1/1/2012 3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013 3/1/2013 5/1/2013 7/1/2013 9/1/2013 11/1/2013 1/1/2014 FPL Everglades Mitigation Bank (EMB) 3/1/2014 5/1/2014 7/1/2014 9/1/2014 11/1/2014 1/1/2015 3/1/2015 5/1/2015 September 1, 2010 to September 30, 2017 7/1/2015 9/1/2015 11/1/2015 1/1/2016 FPL- EMB Culverts raised 3/1/2016 Culvert Elevations and Water Levels in L-31 E Canal 5/1/2016                                              from 1.8 ft NGVD to 2.2 ft NGVD 7/1/2016 9/1/2016                                                    per CA requirement, 11/1/2016 10/22/2015 through 4/30/2017 1/1/2017 3/1/2017                                                (information provided by FPL) 5/1/2017 7/1/2017 9/1/2017


column or top of the open interval, which could result in
Interceptor Ditch Estimated Dry Season Volume Pumped 2011 - 2016 (January through May) 1400 1200 1000 800 Volume Pumped (MG)  600 400 200 0
2011        2012              2013              2014              2015    2016 L-31E culvert gates were raised to 2.2 ft NGVD on October 22, 2015 and remained at 2.2 ft NGVD through April 30, 2017


samples that are not representative of maximum salinity in the
Volume (MG) 0.0  5.0        10.0      15.0      20.0      25.0      30.0                  35.0              40.0 1/1/2017 1/8/2017 1/15/2017 1/22/2017 1/29/2017 2/5/2017 2/12/2017                                                                  FPL- EMB Culverts raised from 1.8 ft 2/19/2017 2/26/2017                                                                NGVD to 2.2 ft NGVD per CA requirement, 3/5/2017 3/12/2017 10/22/2015 through 4/30/2017 3/19/2017 3/26/2017 4/2/2017                                                                    (information provided by FPL) 4/9/2017 4/16/2017 4/23/2017 4/30/2017 L-31E Stage vs. Interceptor Ditch Pumping 5/7/2017 5/14/2017 5/21/2017 ID Daily Pumping Volume (MG) 5/28/2017 6/4/2017 6/11/2017 6/18/2017 6/25/2017 7/2/2017 January 1, 2017 to September 4, 2017 7/9/2017 7/16/2017 7/23/2017 7/30/2017 8/6/2017 8/13/2017 8/20/2017 8/27/2017 9/3/2017 0                        1                              2                                            3 0.5                        1.5                                2.5 Stage (ft NGVD)
 
participates in a quality assurance testing program (see the
 
Interface section of this report).
be improved by placing monitoring wells along a transect, spaced at distances that would allow timely detection of any
 
variations in the rate of movement of the saltwater interface, and parallel to the direction of movement of the interface. If
 
resulting data could be used to evaluate spatial differences in
 
the rates of movement of the saltwater interface at locations
 
4  Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 datasets in wells in each transect could provide information on
 
monitoring methods at wells in each transect could reduce the
 
uncertainty in the estimated rate of movement.
References Cited Geological Survey Water-Resources Investigations Report 90-4108, 50 p., 11 sheets.Fitterman, D.V., Deszcz-Pan, Maria, and Prinos, S.T., 2012, Helicopter electromagnetic survey of the Model Land
 
Geological Survey Open-File Report 2012-1176, 77 p.,
39 pls., accessed January 5, 2017, at https://pubs.usgs.gov/of/2012/1176/
.Fitterman, D.V., and Prinos, S.T., 2011, Results of time-domain electromagnetic soundings in Miami-Dade and
 
Survey Open File Report 2011-1299, 289 p., accessed
 
January 5, 2017, at https://pubs.usgs.gov/of/2011/1299/
.
2008, Groundwater sampling: Florida Department of
 
February 10, 2017, at sop/sops.htm
.Florida Power & Light Company, 2011, Quality Assurance Project Plan-Turkey Point Monitoring Project: Florida Power & Light Company, 170 p., 9 app., accessed
 
February 22, 2017, at https://www.sfwmd.gov/documents-
.
salinization: Hydrogeology Journal, v. 18, p. 25-38.system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring:
 
58 p., accessed January 5, 2017, at https://pubs.usgs.gov/
of/2013/1088/
.Prinos, S.T., 2017, Data pertaining to mapping the approximate inland extent of saltwater in the Biscayne aquifer, in the Model Land Area of Miami-Dade County,
 
http://dx.doi.org/10.5066/F7R78CF8. Prinos, S.T., and Valderrama, Robert, 2015, Changes in the saltwater interface corresponding to the installation
 
of a seepage barrier near Lake Okeechobee, Florida:
 
24 p., accessed January 5, 2017, at https://pubs.usgs.gov/
of/2014/1256/
.Prinos, S.T., Wacker, M.A., Cunningham, K.J., and Fitterman, D.V., 2014, Origins and delineation of saltwater intrusion
 
in the Biscayne aquifer and changes in the distribution of
 
accessed January 5, 2017, at http://dx.doi.org/10.3133/
sir20145025
.drinking water standards: Guidance for nuisance chemicals:
 
079, accessed January 26, 2011, at http://water.epa.gov/
drink/contaminants/secondarystandards.cfm
.
Survey Techniques of Water-Resources Investigations, book 9, chaps. A1-A9, available online at http://pubs.water.
usgs.gov/twri9A
.
Appendix 1 5Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring used for monitoring, chloride concentrations were estimated
 
by using a relation based on a linear regression of the chloride
 
September 26, 2016, from 178 monitoring sites sampled
 
The relation is expressed as cc = 0.3458 scwhere  cc  is the chloride concentration in milligrams per liter, and  scper centimeter.
following relation (Carlson, [n.d.]).
sc = c/(1 + r (Twhere  c  is the actual conductance measured in microsiemens per centimeter,  T  is the temperature of the sample in degrees Celsius, and rthe sample. conductivity provide additional qualitative insights for
 
water that do not correspond to the open interval of the well
 
and temporal changes in the depth of the top of the saltwater
 
interface.
The majority of the monitoring wells used for this analysis have short open intervals (about 1.5 meters [m] or less), but 37 percent have open intervals of 8 to 40 m (Prinos, 2017). The long open-interval wells are not ideal for salinity
 
monitoring for the reasons summarized in Prinos (2013) and Prinos and Valderrama (2015), but they are the only wells
 
available at some locations.
References Cited accessed March 6, 2017, at https://in-situ.com/wp-content/
.system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring:
 
58 p., accessed January 5, 2017, at https://pubs.usgs.gov/
of/2013/1088/
.Prinos, S.T., 2017, Data pertaining to mapping the approximate inland extent of saltwater in the Biscayne aquifer, in the Model Land Area of Miami-Dade County,


http://dx.doi.org/10.5066/F7R78CF8. Prinos, S.T., and Valderrama, Robert, 2015, Changes in the saltwater interface corresponding to the installation
Specific Conductance (S/cm) 0.00  5,000 5.0  10,000 10.0    15,000 15.0    20,000 20.0    25,000 25.0    30,000 30.0    35,000 35.0    40,000 40.0 1/1/2017 1/1/2017 1/8/2017 1/11/2017 1/15/2017 1/21/2017 1/22/2017 1/29/2017 1/31/2017 2/5/2017 2/10/2017 2/12/2017 2/19/2017 2/20/2017 2/26/2017 3/2/2017 3/5/2017 3/12/2017 3/12/2017 TPSWC-1B Avg. Daily Sp. Cond. (uS/cm) 3/19/2017 3/22/2017 3/26/2017 4/1/2017 4/2/2017 4/9/2017 4/11/2017 4/16/2017 4/21/2017 4/23/2017 4/30/2017 5/1/2017 5/7/2017 5/11/2017 5/14/2017 5/21/2017 S-20 Avg. Daily Stage (ft NGVD) 5/21/2017 TPSWC-2B Avg. Daily Sp. Cond. (uS/cm) 5/28/2017 5/31/2017 6/4/2017 6/10/2017 6/11/2017 January 1 to September 4, 2017 6/18/2017 6/20/2017 6/25/2017 6/30/2017 7/2/2017 7/9/2017 7/10/2017 7/16/2017 7/20/2017 7/23/2017 7/30/2017 7/30/2017 8/6/2017 8/9/2017 TPSWC-3B Avg. Daily Sp. Cond. (uS/cm)
L-31E Canal Bottom Specific Conductance vs. Surface Water Stage 8/13/2017 8/19/2017 8/20/2017 8/27/2017 8/29/2017 9/3/2017 0
0.3    0.6      0.9      1.2      1.5      1.8      2.1      2.4 Stage (ft NGVD)


of a seepage barrier near Lake Okeechobee, Florida:
L-31E Canal Uprate and Class I Permit Required Surface Water Monitoring Stations


24 p., accessed January 5, 2017, at https://pubs.usgs.gov/
mg/L 0.00  2,000.00  4,000.00  6,000.00    8,000.00  10,000.00  12,000.00  14,000.00  16,000.00 May 31 & Jun 1, 2015 Jun 15 & 16, 2015 Jun 29 & 30, 2015 Jul 13 & 14, 2015 Jul 27 & 28, 2015 TPSWC-1B August 10 & 11 Aug 24 & 25, 2015 Sept 8 & 9 2015 Sept 21 & 22 2015 Oct 5 to 7, 2015 Oct 19 & 20, 2015 Nov 2 & 4, 2015 TPSWC-2B Nov 16 to 19, 2015 Nov 30 to Dec3, 2015 Dec 14 & 15, 2015 Dec 28 & 29, 2015 Jan 11 & 12, 2016 Jan 25 & 26, 2016 Feb 8 & 9, 2016 TPSWC-3B Feb 22 & 23, 2016 Mar 7 & 8, 2016 Mar 21 & 22, 2016 April 4 & 5, 2016 April 18 & 19, 2016 May 2 & 3, 2016 May 16 & 17, 2016 May 31 to Jun 3, 2016 Jun 13 & 14, 2016 Jun 27 & 28, 2016 Jul 11 & 12, 2016 Jul 25 & 26, 2016 DERM Class I Permit Required Monitoring in L-31E Canal Aug 8 & 9, 2016 Aug 22 & 23, 2016 Sep 6 & 7, 2016 Sept. 19 & 20, 2016 Oct. 3 & 4, 2016 Oct. 17 & 18, 2016 Oct. 31 & Nov 1, 2016 Nov 14 & 15, 2016 Nov 28 & 29, 2016 Dec 12 & 13, 2016 Dec 27 & 28, 2016 June 2015 to January 17, 2018 Jan 9 & 10, 2017 Jan 23 & 24, 2017 Feb 6 & 7, 2017 Feb 20 & 21, 2017 Mar 6 & 7, 2017 Mar 20 & 21, 2017 Apr 3 & 4, 2017 Apr 24 & 25, 2017 May 8 & 9, 2017 May22 & 23, 2017 June 5 to 7, 2017 June 19 & 20, 2017 Jul 5 to 8, 2017 Summary of Chloride Results Jul 17 & 18, 2017 Jul 31 & Aug 1, 2017 Aug 14 & 15, 2017 Aug 28 & 29, 2017 Sep 26 to 28, 2017 9-Oct-17 Oct 23 & 24, 2017 Nov 6 & 7, 2017 MDC Chapter 24 Standard (500 mg/L, waste shall not increase natural background more than 10 percent)
of/2014/1256/
Nov 21 & 22, 2017 Dec 4 & 5, 2017 Dec 18 & 19, 2017 Jan 2 & 3, 2018 Jan 16 & 17, 2018
.System-Web interface, accessed September 28, 2016, at .Appendix 1 6  Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.
USGS station identifier Site name262313080044401PB -1457262209080044702PB -1669 261100080140401G  -1212 261122080083401G  -1232 260547080105801G  -2352 260920080092201G  -2898 260551080111901G  -2957 261740080054101G  -2893 255916080090401G  -1435 255910080085802G  -2294 255919080091202G  -2409 255919080091203G  -2410 255936080091701G  -2477 255936080091702G  -2478 255916080092001G  -2965 260037080100700Hollywood Canal at Hollywood Blvd, Hollywood, FL260104080101300Hollywood Canal at Johnson St, Hollywood, FL 260225080095800FL260212080112500FL260132080094900Hollywood Canal at Taft St, Hollywood, FL260041080093101G  -2425 260041080093102G  -2426 260120080093401G  -2441 260155080092002G  -2612 260026080095801G  -2956 254943080121501F  -  45 254841080164401G  - 571 255350080105801G  - 894 254107080165201G  - 896 254201080173001G  - 901 254106080174601G  -1009B 252947080235301G  -1180 254813080161501G  -1351 254833080155801G  -1354 255222080123001G  -3224 254457080160301G  -3229 254946080172601G  -3250 252714080260901G-3976 USGS station identifier Site name255453080110801G-3978254601080150301G-3977 254156080172101G  -3607 252814080244101G  -3698 252652080244301G  -3699 252650080252701G  -3855 253253080221201G  -3885 253527080195401G  -3886 253924080174601G  -3887A 253924080174602G  -3887B 254542080145901G  -3888A 254542080145902G  -3888B 254542080145903G  -3888C 253948080250701G  -3897 254152080282601G  -3898 253419080223701G  -3899 252718080264901G  -3900 252506080300601G  -3901 252431080261001G  -3946D 252431080261002G  -3946S 255011080124501G  -3947 255515080103601G  -3948D 255515080103602G  -3948S 255733080195601G  -3949D 255733080195602G  -3949I 255733080195603G  -3949S 254824080155301G  -3964 254500080162801G  -3965 252719080253601G  -3966D 252719080253602G  -3966S 253335080213501G  -3967 255315080111501F  - 279 254828080161501G  - 354 254335080170501G  - 432 254855080163701G  - 548 253652080183701G  - 939 253202080232601G  -3162 253831080180204G  -3313C


253831080180206255358080114101G  -3601 255116080120601G  -3602 Appendix 1  7Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued USGS station identifier Site name254908080125201G  -3603254722080152201G  -3604 254629080143101G  -3605 254341080174001G  -3606 254108080170601G  -3608 254005080171601G  -3609 253819080183201G  -3610 253710080184701G  -3611 253457080195501G  -3612 253024080231001G  -3615 253027080234701G  -3700 253214080224601G  -3701 253334080213601G  -3702 254822080125501G  -3704 255625080094901G  -3705 261302081473901C  - 489 261156081475801C  - 516 261002081483701C  - 525 261018081484101C  - 526 261200081483001C  - 528 260549081441901C  - 600 261802081354801C  - 688 261347081351201C  - 953 261620081464402C  -1004R 261604081480901C  -1059 261311081480101C  -1061 260137081375901C  -1063 262228081361902C  -1080 261403080070801G  -2149 260342080115902G  -2264 261446080062801G  -2445 261724080054603G  -2693 260242080101101G  -2697 261643080055901G  -2752 261740080054101G  -2893 261304080072501G  -2896 261030080083301G  -2897 260804080092701G  -2899 260325080113901G  -2900 260638080104801G  -2902 255843080090901G  -2903 USGS station identifier Site name260534080110801G  -2904262839081503100L  - 735 262022081464201L  - 738 263532081592202L  -1136 263813081552801L  -2640 263819081585801L  -2701 263955082083102L  -2820 263117082051002L  -2821 264053081572501L  -4820 262513081472002L  -5668R 261926081454702L  -5745R 264123080053801PB - 809 263044080035102PB -1195 262755080040101PB -1707 262803080041101PB -1714 263453080031501PB -1717 263633080031401PB -1723 265550080070701PB -1732 265611080080201PB -1733 265006081042502GL - 334I 265006081042501GL - 334S 265006081042503GL - 334D 264912081024602GL -332S 264912081024601GL -332 264843080591502GL - 333I 264843080591501GL - 333S 264843080591503GL - 333D
L-31E Canal May 12, 2017 Physical Parameter Surface Water Quality Survey Monitoring sites (20 sites)


264532080545902264532080545901264343080511601PB -1843S 264343080511602PB -1843I 264343080511603PB -1843D 264154080480302PB -1822S 264154080480301PB -1822 264050080435502PB -1842I 264050080435501PB -1842S 264050080435503PB -1842D 264814080414302PB -1819S 264814080414301PB -1819 264926080394503PB -1848D 264930080394703PB -1847D 8  Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued USGS station identifier Site name265138080375802PB -1818S265138080375801PB -1818 265142080374202PB -1817S 265142080374201PB -1817 265208080373902PB -1845I 265208080373901PB -1845S 265208080373903PB -1845D 265200080373101PB -1846S 265428080364502PB -1816S USGS station identifier Site name265428080364501PB -1816265519080364902PB -1815S 265519080364901PB -1815 265701080363103PB -1844D 265701080363102PB -1844I 265701080363101PB -1844S 265839080365202M -1369I 265839080365201M -1369D For more information about this publication, contact:Director, Caribbean-Florida Water Science Center
L-31E Canal Water Column Physical Parameter Survey Salinity Result Summary, May 12, 2017 25.00 20.00 15.00 Salinity (PSU)                                                                                23.41 10.00 19.21 5.00                                                10.65 3.65                4.37      3.65 0.00 0 to 1 ft.                1.01 to 7.99 ft.         8 to 9.25 ft.
Depth Below Surface (ft.)
Min Max


U.S. Geological Survey
L-31E Canal Uprate Monitoring Tritium Results TPSWC-1B, TPSWC-1T, TPSWC-2B, TPSWC-2T, TPSWC-3B & TPSWC-3T 200.0 180.0 160.0 140.0 120.0 100.0 pCi/L 80.0 60.0 40.0 20.0 0.0 Sep-10  Dec-10  Mar-11  Jun-11    Sep-11  Dec-11    Mar-12  Jun-12  Sep-12  Dec-12  Mar-13    Jun-13  Sep-13  Dec-13  Mar-14  Jun-14    Sep-14  Dec-14  Mar-15  Jun-15  Sep-15  Dec-15  Mar-16 Jun/Jul 2010 TPSWC-1B                    TPSWC-1T            TPSWC-2B                  TPSWC-2T            TPSWC-3B                  TPSWC-3T


4446 Pet Lane, Suite 108
L-31E Canal Uprate Monitoring Tritium Result Summary L-31E Canal Top vs. Bottom (N = 84 for each level) 200 180 160 140 120 100 pCi/L 182 80 154 60 40 60.1            57.2 20 8          10.3 0
Min                                      Max                                      Average Top (1 ft. below water surface)  Bottom (1 ft. above canal bottom)  Agencies screening level threshold (20 pCi/L)


Lutz, FL 33559
Model Lands Hydrology and FPL Culvert Operations Summary 3/4 Per CERP, the Model Lands Basin is overdrained by the L-31 E and S-20 water control structure, with water levels occasionally dropping below sea level 3/4 Overdrainage needs to be stopped to restore both wetland stage and hydroperiod per CERP 3/4 The amount of drainage from the L-31 Canal is established by the elevation of the water in the L-31 E Canal. The water in the L-31 E canal is drained through FPLs culverts to the stage established by these adjustable culvert weirs when the S-20 structure is closed.
3/4 FPLs preferred setting for L-31 E canal water level at 1.8 ft NGVD is 1.1 feet lower than the planned CERP open trigger setting and 0.6 feet lower than the planned close trigger.
3/4 EMB culvert weir settings at 2.2 ft NGVD reduces overdrainage of the basin 3/4 CERP authorizes a change in S-20 operations to increase trigger stages by 0.5 ft in order to reduce overdrainage in the Model Lands 3/4 The S-20 operations change has agency support at local, state, and federal levels 3/4 The S-20 operations change is expected to make additional water available for release through the FPL culverts - a win-win for all parties


(813) 498-5000Or visit the USGS Caribbean-Florida Water Science Center website at:https://fl.water.usgs.gov Publishing support provided by Lafayette Publishing Service Center
L31ECanalAverageDailySalinityattheBottom August30,2010toJuly16,2018 30 25 20 15 Salinity(PSU) 10 5
0 TPSWC1BAvgDailySalinity(PSU)  TPSWC2BAvgDailySalinity(PSU)  TPSWC3BAvgDailySalinity(PSU)


PrinosMap of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 SIM 3380 ISSN 2329-132X (online) https://doi.org/10.3133/sim3380 FLORIDA KEYS AQUADUCT AUTHORITYFLORIDA CITYWITTKOP PARKNEWTONHARRIS PARKEVERGLADES LABOR CAMPSaltline_trends_20180430.mxd - GMB - May 7, 2018     Salt Intrusion at the Base of the Biscayne Aquifer (1,000 mg/L chlorides) US Geological Survey Data 2016 Salt Intrusion Line2011 Salt Intrusion Line1995 Salt Intrusion Line Wellfield Protection AreasMiami-Dade CountySalt Intrusion Extent01234560.5MilesFlorida City CanalCard Sound Road borrow canalDistance fromCoast:  10.6 milesDistance fromCoast:  6.5 miles 0200040006000 80001000012000 140001600018000mg/LDERMClassIPermitRequiredMonitoringinL31ECanalJune2015toMay29,2018SummaryofChlorideResultsTPSWC 1BTPSWC 2BTPSWC 3BMDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)
L31ECanalAverageDailySalinityProfiles January1toJuly16,2018 30 25 20 PSU  15 10 5
I-2I-1I-4I-3EEL2EEL1L31E-FL31E-CL31E-BL31E-EL31E-DL31E-A.Specific Conductance Sampling PointsCanalsMiami-Dade EEL ProgramSFWMDFlorida Power and LightRockmining Lands and Associated MitigationState of FloridaFederalPrivateRockmining Lands and Associated MitigationFlorida Power and LightRockmining Lands and Associated MitigationModel Lands Surface Water Specific ConductanceL-31E borrow canal and Model Lands South canal April 2018DepthSpCond (u/s)T (0.41 m)9100.7 M (1.45m)9097.6B (3.477m)9793L31E-ADepthSpCond (u/s)T (0.25 m)4835.1M (1.021m)9146.1B (2.176m)8642L31E-BDepthSpCond (u/s)T (0.22 m)9224.6 M (1.087m)9245.4B (2.117m)8669.7I-1DepthSpCond (u/s)T (0.49 m)9336.1 M (1.7m)9325.9B (2.499m)9130.6I-2DepthSpCond (u/s)T (0.132m)9462.3 M (1.549m)9460.6 B (2.951m)9322.3L31E-CDepthSpCond (u/s)T (0.24m)21744.3 M (0.891m)21588.7 B (1.841m)21612.6L31E-DDepthSpCond (u/s)T (0.071m)21529.3M (1.493m)21528.6B (2.932m)45473I-3DepthSpCond (u/s)T (0.079m)21347M (0.956m)21377.1B (1.956m)22714.6L31E-EDepthSpCond (u/s)T (0.299m)21580M (0.939m)21534.6B (2.077m)23692.6I-4DepthSpCond (u/s)T (0.179m)21444.5 M (0.707m)21424.5 B (1.653m)31860.2L31E-FDepthSpCond (u/s)T (0.179m)5934.9 EEL2DepthSpCond (u/s)T (0.1m)5408 EEL101.534.560.75Miles
0 TPSWC1TAvgDailySalinity(PSU) TPSWC1BAvgDailySalinity(PSU)   TPSWC2TAvgDailySalinity(PSU)
TPSWC2BAvgDailySalinity(PSU) TPSWC3TAvgDailySalinity(PSU)   TPSWC3BAvgDailySalinity(PSU)


00.5 11.5 22.5 33.5 49/1/201011/1/20101/1/20113/1/20115/1/20117/1/20119/1/201111/1/20111/1/20123/1/20125/1/2012 7/1/20129/1/201211/1/20121/1/20133/1/20135/1/20137/1/20139/1/201311/1/20131/1/20143/1/20145/1/20147/1/20149/1/201411/1/20141/1/20153/1/20155/1/20157/1/20159/1/201511/1/20151/1/20163/1/20165/1/2016 7/1/20169/1/201611/1/20161/1/20173/1/20175/1/20177/1/20179/1/2017Stage (ft NGVD)
Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft                                                                  Optimum S-20 Headwater Elevation (per C&SF Master Manual)
September 1, 2010 to September 30, 2017FPL-EMB Culverts raisedfrom 1.8 ftNGVD to 2.2 ftNGVDper CA requirement,10/22/2015 through 4/30/2017 (information provided by FPL) 0 200 400 600 8001000 1200 1400Volume Pumped (MG)Interceptor Ditch Estimated Dry Season Volume Pumped2011 -2016 (January through May) 00.5 1
Existing S-20 Operations for Flood Control, Salt 2.0 ft                          Intrusion Control                      Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)
1.5 2
FPL Everglades Mitigation Bank L-31E Culvert Weir Operations    FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):
2.5 30.05.010.015.0 20.025.030.035.040.01/1/20171/8/20171/15/2017 1/22/2017 1/29/20172/5/20172/12/20172/19/20172/26/20173/5/20173/12/2017 3/19/2017 3/26/20174/2/2017 4/9/20174/16/20174/23/2017 4/30/20175/7/20175/14/2017 5/21/2017 5/28/20176/4/20176/11/20176/18/2017 6/25/20177/2/2017 7/9/20177/16/2017 7/23/2017 7/30/20178/6/20178/13/20178/20/20178/27/20179/3/2017Volume (MG)Stage (ft NGVD)ID Daily Pumping Volume (MG)FPL-EMB Culverts raised from 1.8 ftNGVD to 2.2 ftNGVD per CA requirement,10/22/2015 through 4/30/2017 (information provided by FPL) 00.30.60.9 1.2 1.5 1.8 2.1 2.4 0.0 5.010.0 15.0 20.0 25.0 30.0 35.0 40.01/1/20171/8/20171/15/2017 1/22/2017 1/29/20172/5/20172/12/2017 2/19/20172/26/20173/5/20173/12/2017 3/19/2017 3/26/20174/2/2017 4/9/20174/16/2017 4/23/2017 4/30/20175/7/20175/14/20175/21/2017 5/28/20176/4/20176/11/2017 6/18/2017 6/25/20177/2/2017 7/9/20177/16/20177/23/20177/30/20178/6/20178/13/2017 8/20/2017 8/27/20179/3/2017Stage (ft NGVD) 05,00010,00015,000 20,00025,00030,000 35,00040,000
1.0 ft
* Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft                                                                    water level invert setting of the S-20 structure.
Mean Sea Level
* During the dry season (October -
April), they will be set at 0.1 feet lower than the S-20 control elevation setting.


0 5 10 15 20 25 30Salinity(PSU)L31ECanalAverageDailySalinityattheBottomAugust30,2010toJuly16,2018TPSWC 1BAvgDailySalinity(PSU)TPSWC 2BAvgDailySalinity(PSU)TPSWC 3BAvgDailySalinity(PSU) 0 5 10 15 20 25 30 PSU L 31ECanalAverageDailySalinityProfilesJanuary1toJuly16,2018TPSWC 1TAvgDailySalinity(PSU)TPSWC 1BAvgDailySalinity(PSU)TPSWC 2TAvgDailySalinity(PSU)TPSWC 2BAvgDailySalinity(PSU)TPSWC 3TAvgDailySalinity(PSU)TPSWC 3BAvgDailySalinity(PSU)  
Model Lands Groundwater Stages                                                                                                                                                                                                                                                                                                                                                                                                    Healthy Sawgrass Prairie:
Existing Conditions vs. Healthy Ecology                                                                                                                                                                                                                                                                                                                                                                                            8-10 months Hydroperiod#
3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months                                                                                                                            2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mean Sea Level
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        #Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11                                                                                                                                                                                                                                                                          31-Jan-13                                                                                                                          31-Jan-14                                                                                                                                      Trophic Level System Simulation 31-Jul-11                                                                                                                                      31-Jul-12                                                                                                                          31-Jul-13                                                                                                                          31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10  31-Oct-10                                                                           30-Jun-11                                      31-Oct-11                          31-Jan-12                                                  30-Jun-12                                      31-Oct-12                                                                          30-Jun-13                                      31-Oct-13                                                                          30-Jun-14                                      31-Oct-14                          31-Jan-15 31-Aug-10                          30-Nov-10  31-Dec-10  28-Feb-11  31-Mar-11  30-Apr-11  31-May-11                          31-Aug-11  30-Sep-11              30-Nov-11  31-Dec-11              29-Feb-12  31-Mar-12  30-Apr-12  31-May-12                          31-Aug-12  30-Sep-12              30-Nov-12  31-Dec-12  28-Feb-13  31-Mar-13  30-Apr-13  31-May-13                          31-Aug-13  30-Sep-13              30-Nov-13  31-Dec-13  28-Feb-14  31-Mar-14  30-Apr-14  31-May-14                          31-Aug-14  30-Sep-14              30-Nov-14  31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.
Water Level (ft NGVD29)                                                                                                 Nearby Wetland Ground Elevation (1.8 ft NGVD)


I-4 I-3 EEL2 EEL1 L31E-F L31E-E L31E-D.Specific Conductance Sampling PointsCanalsMiami-Dade EEL ProgramSFWMDFlorida Power and LightRockmining Lands and Associated MitigationState of FloridaFederalPrivateRockmining Lands and Associated MitigationFlorida Power and LightRockmining Lands and Associated MitigationModel Lands Surface Water Specific ConductanceL-31E borrow canal and Model Lands South canal April 2018DepthSpCond (u/s)T (0.179m)5934.9 EEL2DepthSpCond (u/s)T (0.1m)5408 EEL1 00.40.81.21.60.2Miles}}
Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018
                                                                                                                    .
L31E-D I-3 EEL2                                    EEL1 Depth        SpCond (u/s)                Depth          SpCond (u/s)
T (0.179m)     5934.9                   T (0.1m)         5408 EEL2                              EEL1                 L31E-E I-4 L31E-F                                                    Specific Conductance Sampling Points Canals Miami-Dade EEL Program SFWMD Florida Power and Light Rockmining Lands and Associated Mitigation State of Florida Federal Private Rockmining Lands and Associated Mitigation Florida Power and Light Miles 0        0.2      0.4              0.8              1.2                1.6                Rockmining Lands and Associated Mitigation}}

Revision as of 23:54, 19 October 2019

2018/07/30 Turkey Point 3&4 - SLR - (External_Sender) Fwd: (External) FW: Letter - Crandall - Rach 120 Extension Request FPL
ML19077A088
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 07/30/2018
From:
- No Known Affiliation
To:
References
+reviewed
Download: ML19077A088 (63)


Text

TurkeyPoint34SLRNPEm Resource From: Faehner, Bryan <bryan_faehner@nps.gov>

Sent: Monday, July 30, 2018 5:19 PM To: Moser, Michelle Cc: Melody Hunt

Subject:

[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Attachments: Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf FYI. This has bearing on operation of the cooling canals as it relates to water availability for the Turkey Point interceptor ditch.


Forwarded message ----------

From: Melody Hunt <melody_hunt@nps.gov>

Date: Mon, Jul 23, 2018 at 9:34 AM

Subject:

Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Theresa Lawrence <joan_lawrence@evergladesrestoration.gov>, Bryan Faehner

<bryan_faehner@nps.gov>

fyi- Letter from M-D County DERM to FL DEP.


Forwarded message ---------

From: Grossenbacher, Craig (RER) <Craig.Grossenbacher@miamidade.gov>

Date: Fri, Jul 20, 2018 at 8:57 AM

Subject:

[EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL To: Melody Hunt (melody_hunt@nps.gov) <melody_hunt@nps.gov>, David Rudnick

<david_rudnick@nps.gov>, Agnes McLean (agnes_mclean@nps.gov) <agnes_mclean@nps.gov>,

Sarah_Bellmund@nps.gov <Sarah_Bellmund@nps.gov>, Kevin Kotun (kevin_kotun@nps.gov)

<kevin_kotun@nps.gov>, (erik_stabenau@nps.gov) <erik_stabenau@nps.gov>

I am forwarding this FYI. Please pass it on to the rest of the team.

Thanks, Craig

Original Message-----

From: Rodgers, Frances (RER) On Behalf Of Hefty, Lee (RER)

Sent: Wednesday, July 18, 2018 11:23 AM To: lea.crandall@dep.state.fl.us; timothy.rach@deb.state.fl.us Cc: john.truitt@dep.state.fl.us; emarks@sfwmd.gov; michael.sole@fpl.com; Raffenberg, Matthew; Schwaderer-Raurell, Abbie (CAO); Istambouli, Rashid (RER); Grossenbacher, Craig (RER); Spadafina, Lisa (RER); De Torres, Mayra (RER); Gordon, Donna (RER); Hefty, Lee (RER)

Subject:

Letter - Crandall - Rach 120 Extension Request FPL MAM The attached correspondence is being forwarded to you on behalf of Mr. Lee N. Hefty, Director, Division of 1

Environmental Resources Management (DERM) Department of Regulatory and Economic Resources. Be advised that the original has been sent certified mail via US Postal Service.

Frances Rodgers, Senior Executive Secretary Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) Office of the DERM Director 701 NW 1st Court, 4th Floor, Miami, Florida 33136 (305) 372-6754 (305) 372-6759 fax www.miamidade.gov/environment "Delivering Excellence Every Day" Please consider the environment before printing this email

--

Melody J. Hunt, Ph.D.

Hydrologist National Park Service South Florida Natural Resources Center 950 North Krome Avenue Homestead, FL 33030 PH: 305-224-4211 Email: melody_hunt@nps.gov The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.

Live feed from the Anhinga Trail Webcam

--

Bryan Faehner National Park Service, Southeast Region Energy & Environmental Protection Specialist MIB Room 2642 202-513-7256 (office) 202-604-5076 (cell)

The link ed image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. Verify that the link points to the correct file and location.

2

Hearing Identifier: TurkeyPoint34_SLR_NonPublic Email Number: 4 Mail Envelope Properties (CADXRJ=gmb=JBUqNmAQ0Qn29dPuSe2cwTc8R4MuJ8N39KQqQZcQ)

Subject:

[External_Sender] Fwd: [EXTERNAL] FW: Letter - Crandall - Rach 120 Extension Request FPL Sent Date: 7/30/2018 5:18:58 PM Received Date: 7/30/2018 5:21:43 PM From: Faehner, Bryan Created By: bryan_faehner@nps.gov Recipients:

"Melody Hunt" <melody_hunt@nps.gov>

Tracking Status: None "Moser, Michelle" <Michelle.Moser@nrc.gov>

Tracking Status: None Post Office: mail.gmail.com Files Size Date & Time MESSAGE 3745 7/30/2018 5:21:43 PM Letter - Crandall - Rach 120 Extension Request FPL MAM.pdf 11810831 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date:

Recipients Received:

$77$&+0(176 Stage (ft NGVD) 0 0.5 1 1.5 2 2.5 3 3.5 1/1/2000 7/1/2000 1/1/2001 7/1/2001 1/1/2002 7/1/2002 1/1/2003 7/1/2003 1/1/2004 7/1/2004 1/1/2005 7/1/2005 1/1/2006 7/1/2006 1/1/2007 7/1/2007 S-20 Stage (ft NGVD) 1/1/2008 L-31E Water Levels 7/1/2008 1/1/2009 7/1/2009 1/1/2010 7/1/2010 1/1/2000 - 6/30/2018 Model Lands Basin 1/1/2011 7/1/2011 1/1/2012 7/1/2012 1/1/2013 Sea Level (0.67 ft NGVD) 7/1/2013 1/1/2014 7/1/2014 1/1/2015 7/1/2015 1/1/2016 7/1/2016 1/1/2017 7/1/2017 1/1/2018

Prepared in cooperation with Miami-Dade County Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 EXPLANATION Naranja Well field Park Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)

Approximation Dashed where data are insufficient G-1180 Approximate inland extent of saltwater in 2016 Homestead 22 Approximation Airforce  !

Redavo Dashed where data are insufficient Base Leisure G-3698 ! Monitoring well name and chloride concentration, in milligrams per liter City 2,830 Harris Park Wittkop Park G-3698 2,830  ! Biscayne Bay Newton G-3976 G-3966S TPGW-12L Florida City 36 5,610 G-3900  !  ! 27,100

!  ! G-3699 TPGW-6L 31 SWIM well  ! 10,700 7,570  !

!  !

130 G-3855 TPGW-10L Florida Keys FKS 9

! 7,960  ! 26,400 Aqueduct 48 Authority ACI-MW-05 ! Sec34-MW-02-FS

! TPGW-1L 47.4  !  !

29,100 ACI-MW-04 TPGW-7L G-1264 48.5  ! 2,750  ! 8,300 Everglades ACI-MW-03  !

Labor Camp TPGW-5L

! 17.8 !  ! 12,300 ACI-MW-09 ACI-MW-15

! 30.8 2,480

!  ! Model G-3166  ! G-3946D 150 TPGW-8L 46.2 5,780 Land TPGW-13L ACI-MW-16 36,800 TPGW-11L

! 36.9 Area 25,300 !

FKS 8  !

10,050 TPGW-2L 31,200 Cooling TPGW-9L  ! canal FKS 5 system 31 25.2 FKS 4

!  !  ! G-3342

! 3,150 TPGW-4L

!

FKS 7 2,390  ! 15,200 98 C-110 Canal FKS 6

! 51

!

G-3167 TPGW-14L 65  ! 27,800 TPGW-3L FKS 3 28,500 !

7,375 Card Sound

!

FKS 2 G-1603 FKS 1 643  ! 57  ! 763 FLORIDA Little Card Sound N

EA OC NT Miami-Dade IC County 0 2 4 KILOMETERS AT Study area LA 0 2 4 MILES Barnes Sound Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey

Cover. Map showing the approximate extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016. See https://doi.org/10.3133/sim3380 for map sheet.

Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Prepared in cooperation with Miami-Dade County Scientific Investigations Map 3380 U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGSthe Federal source for science about the Earth, its natural and living resources, natural hazards, and the environmentvisit https://www.usgs.gov or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Prinos, S.T., 2017, Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida : U.S. Geological Survey Scientific Investigations Map 3380, 8-p. pamphlet, 1 sheet, https://doi.org/10.3133/sim3380.

ISSN 2329-132X (online)

iii Acknowledgments The authors would like to acknowledge the organizations that provided data for the study area:

EAS Engineering, Inc., Florida Keys Aqueduct Authority, Florida Power & Light Company, Miami-Dade County, and South Florida Water Management District. Without the data provided by these organizations, the map in this report could not have been created.

v Contents Acknowledgments .......................................................................................................................................iii Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Mapping the Approximate Inland Extent of the Saltwater Interface ...................................................2 Approximating the Rate of Movement of the Saltwater Interface .......................................................2 Monitoring Network Improvements ..........................................................................................................3 References Cited ...........................................................................................................................................4 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring..................................................................................................5 Sheet

[Available from https://doi.org/10.3133/sim3380]

1. Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 Conversion Factors SI to Inch/Pound Multiply By To obtain Length meter (m) 3.281 foot (ft) kilometer (km) 0.6214 mile (mi)

Area square kilometer (km2) 247.1 acre square kilometer (km ) 2 0.3861 square mile (mi2)

Volume liter (L) 0.2642 gallon (gal) liter (L) 61.02 cubic inch (in3)

Flow rate meter per year (m/yr) 3.281 foot per year (ft/yr)

Mass gram (g) 0.03527 ounce, avoirdupois (oz) kilogram (kg) 2.205 pound, avoirdupois (lb)

Electrical conductivity siemens per meter (S/m) 10,000 microsiemens per centimeter 6FP

vi Electrical conductivity in microsiemens per centimeter [S/cm] can be converted to electrical resistivity in ohm-meters [ohm m] as follows: = 10,000/.

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 x °C) + 32 Datum Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (S/cm at 25 °C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).

Abbreviations bls below land surface GIS geographic information system TSEMIL time-series electromagnetic-induction log (dataset)

USGS U.S. Geological Survey

Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in the Model Land Area of Miami-Dade County, Florida, 2016 By Scott T. Prinos Abstract kilometers (km2) of the mainland part of the Biscayne aquifer were intruded by saltwater (Prinos and others, 2014). Intrusion The inland extent of saltwater at the base of the of the Biscayne aquifer by saltwater is a concern because it Biscayne aquifer in the Model Land Area of Miami-Dade can render the water unpotable in affected parts of the aquifer.

County, Florida, was mapped in 2011. Since that time, The maximum concentration of chloride allowed in drinking the saltwater interface has continued to move inland. The ZDWHULVPLOOLJUDPVSHUOLWHU PJ/86(QYLURQPHQWDO

LQWHUIDFHLVQHDUVHYHUDODFWLYHZHOO¿HOGVWKHUHIRUHDQ Protection Agency, 2014), whereas saltwater-intruded parts of updated approximation of the inland extent of saltwater and the aquifer commonly have water with chloride concentrations an improved understanding of the rate of movement of the of 1,000 mg/L or greater.

saltwater interface are necessary. A geographic information The inland extent of saltwater at the base of the Biscayne system was used to create a map using the data collected by aquifer was last mapped by Prinos and others (2014) in 2011.

the organizations that monitor water salinity in this area. An Since that time, saltwater has continued to intrude beneath average rate of saltwater interface movement of 140 meters WKH0RGHO/DQG$UHD7KLVDUHDLVDUHODWLYHO\DWDQGSRRUO\

per year was estimated by dividing the distance between two drained wetland area in southeastern Miami-Dade County that monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the is bordered on the east and south sides by Biscayne Bay, Card travel time. The travel time was determined by estimating Sound, Little Card Sound, and Barnes Sound. A system of the dates of arrival of the saltwater interface at the wells and FDQDOVZDWHUFRQWUROVWUXFWXUHVDQGOHYHHVUHJXODWHWKHRZ

computing the difference. This estimate assumes that the of surface water in this area. There is an extensive system of interface is traveling east to west between the two monitoring cooling canals in the eastern part of this area that has been wells. Although monitoring is spatially limited in this area hypersaline at times (Hughes and others, 2010).

and some of the wells are not ideally designed for salinity In the Model Land Area, the saltwater interface monitoring, the monitoring network in this area is improving LVQHDUVHYHUDODFWLYHZHOO¿HOGVWKHUHIRUHDQXSGDWHG

in spatial distribution and most of the new wells are well approximation of the inland extent of saltwater and an designed for salinity monitoring. The approximation of the improved understanding of the rate of movement of the inland extent of the saltwater interface and the estimated rate VDOWZDWHULQWHUIDFHDUHQHFHVVDU\7KH86*HRORJLFDO6XUYH\

of movement of the interface are dependent on existing data. 86*6 LQFRRSHUDWLRQZLWK0LDPL'DGH&RXQW\PDSSHGWKH

Improved estimates could be obtained by installing uniformly approximate inland extent of saltwater in the Model Land Area designed monitoring wells in systematic transects extending in 2016 and approximated the average rate of movement of the landward of the advancing saltwater interface. saltwater interface in this area based on data collected between 2007 and 2014. This study aligns directly with the strategic VFLHQFHGLUHFWLRQIRUWKH:DWHUGLVFLSOLQHRXWOLQHGLQ86*6

&LUFXODU 86*HRORJLFDO6XUYH\ E\TXDQWLI\LQJ

Introduction forecasting, and securing freshwater for Americas future.

The purpose of this report is to provide a map of the saltwater Seawater began intruding the Biscayne aquifer of Miami- interface (2016), an estimate of the rate of interface movement Dade County early in the 20th century because of a decline in given the dates of arrival at two wells, and a description of the the fresh groundwater level, estimated to have been 2.9 meters methodologies used to arrive at these results. The analyses and (m) below predrainage conditions near Miami (Prinos estimates are based on available data from existing monitoring and others, 2014). By 2011, approximately 1,200 square wells in the Model Land Area.

2 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Mapping the Approximate Inland basis, based on the available monitoring wells. The locations of the monitoring wells and the chloride concentration values Extent of the Saltwater Interface are shown on the map (sheet 1, available at https://doi.

org/10.3133/sim3380). The line depicting the approximate The approximate inland extent of saltwater in the inland extent of saltwater is dashed where the monitoring well Biscayne aquifer was determined by using (1) chloride GLVWULEXWLRQLVLQVXI¿FLHQWWRFUHDWHDUHDVRQDEO\DFFXUDWHDQG

FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHRIZDWHUVDPSOHV precise approximation.

collected from monitoring wells, (2) water conductivity 7KH76(0,/GHULYHGYHUWLFDOSUR¿OHVRIEXON

SUR¿OHVFROOHFWHGLQORQJRSHQLQWHUYDOZHOOVDQG  WLPH conductivity provide additional qualitative insights for VHULHVHOHFWURPDJQHWLFLQGXFWLRQORJ 76(0,/ GDWDVHWV PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH

collected in polyvinyl-chloride-cased monitoring wells. This water that do not correspond to the open interval of the well LQIRUPDWLRQZDVSURYLGHGE\($6(QJLQHHULQJ,QFWKH and temporal changes in the depth of the top of the saltwater Florida Keys Aqueduct Authority, the Florida Power & Light LQWHUIDFH:KHUHZDWHUFRQGXFWLYLW\SUR¿OHVZHUHXVHG

Company, the South Florida Water Management District for monitoring, chloride concentrations were estimated by 6):0' DQGWKH86*6$OPRVWDOORIWKHGDWDSURYLGHG using a relation based on a linear regression of the chloride by the SFWMD for this study area had been collected by the FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHDVGHVFULEHGLQ

other four organizations, so they are mostly redundant. The appendix 1.

information was entered into a geographic information system The majority of the monitoring wells used for this (GIS) for analysis and mapping. Data used to make the map analysis have short open intervals (about 1.5 meters [m] or are available as a data release (Prinos, 2017). less), but 37 percent have open intervals of 8 to 40 m (Prinos, Sampling, analysis, and quality assurance procedures of 2017). The long open-interval wells are not ideal for salinity the organizations collecting salinity data in the study area vary. monitoring for the reasons summarized in Prinos (2013) and Procedures used by the Florida Power & Light Company for Prinos and Valderrama (2015), but they are the only wells sampling and quality assurance are described in the Turkey available at some locations.

Point Quality Assurance Project Plan (Florida Power & Light Company, 2011). These procedures are likely among the most stringent used by organizations collecting salinity data in the study area. This plan was drafted jointly by the Florida Approximating the Rate of Movement

'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQWKH)ORULGD3RZHU of the Saltwater Interface

& Light Company, and the SFWMD and was approved by WKH6):0'3URFHGXUHVIRUVDPSOLQJE\WKH86*6DUH The saltwater interface in the study area is advancing JHQHUDOO\EDVHGRQWKRVHGHVFULEHGLQWKH86*6¿HOGPDQXDO at an estimated average rate of 140 meters per year (m/yr).

EXWSURFHGXUHVKDYHEHHQPRGL¿HGIRUH[SHGLHQF\DQG This estimate is based on limited data because there are few HI¿FDF\RIURXWLQHORQJWHUPVDOWZDWHULQWUXVLRQPRQLWRULQJ wells in this area where the date of arrival of the saltwater 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG/HH0DVVH\86 interface can be ascertained. Most wells were installed either

  • HRORJLFDO6XUYH\ZULWWHQFRPPXQ0DUFK ($6 after the saltwater interface had already passed the location (QJLQHHULQJ,QFDQGWKH)ORULGD.H\V$TXHGXFW$XWKRULW\ or where the saltwater interface has not yet arrived. The EDVHWKHLUVDPSOLQJRQWKHVSHFL¿FDWLRQVRIWKH)ORULGD estimate is based on data from monitoring wells Sec34-

'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ )ORULGD'HSDUWPHQW 0:)6DQG73*:/PRQLWRUHGE\($6(QJLQHHULQJ

RI(QYLURQPHQWDO3URWHFWLRQ 7RHQVXUHWKHTXDOLW\RI Inc., and the Florida Power & Light Company, respectively.

DQDO\]HGVDPSOHVWKH86*6ODERUDWRU\SDUWLFLSDWHVLQWKH 'DWDIURPZHOO73*:/DQGVHOHFWHGFRQGXFWDQFHSUR¿OHV

Branch of Quality Systems Standard Reference Sample Semi- from well Sec34-MW-02-FS are available in Prinos (2017).

$QQXDO3UR¿FLHQF\7HVWLQJ3URMHFW($6(QJLQHHULQJ,QF Well TPGW-7L is open to the aquifer from 24 to 26 m and the Florida Power & Light Company use laboratories that below land surface (bls), which is near the depth of the base DUHFHUWL¿HGWKURXJKWKH1DWLRQDO(QYLURQPHQWDO/DERUDWRU\ of the Biscayne aquifer at this location (Fish and Stewart, Accreditation Program. Participation in this accreditation 1991). The chloride concentration in water samples from SURJUDPOLNHO\DVVXUHVWKDWVDPSOHDQDO\VHVDUHDFFXUDWH well TPGW-7L increased from 180 to 825 mg/L between KRZHYHUWKH86*6FDQQRWFRPSOHWHO\YHULI\WKLVDFFXUDF\ December 3, 2013, and March 11, 2014, and from 825 to without reviewing the results of the accreditation testing for 1,300 mg/L between March 11, 2014, and June 9, 2014.

each laboratory used. :DWHUFRQGXFWDQFHSUR¿OHVZHUHFROOHFWHGIURPZHOO6HF

The approximate saltwater interface is represented by the 0:)67KHPD[LPXPFRQGXFWDQFHRIWKHSUR¿OHVZDV

1,000-mg/L isochlor at the base of the Biscayne aquifer. The IRXQGDWDGHSWKRIDERXWPEOV8VLQJHTXDWLRQVDQG

word approximate is used because the spatial distribution 2 (appendix 1), conductance values measured at this depth RIPRQLWRULQJZHOOVLVJHQHUDOO\LQVXI¿FLHQWWRFUHDWHD equate to chloride concentrations of about 190, 530, 930, and precise representation. The accuracy and precision of this PJ/IRU1RYHPEHU-DQXDU\$SULO

approximation is best evaluated on a location-by-location 2008, and May 15, 2008, respectively.

Monitoring Network Improvements 3 The average rate of saltwater interface movement from the estimated location of the saltwater interface. The was estimated by dividing the distance between the wells 1,000-mg/L isochlor may not arrive at this well until 2023, (830 m) by the difference between the interpolated dates of if the rate of movement of the saltwater interface proceeds at arrival of chloride concentrations of 250 and 1,000 mg/L at the average rate estimated in this study. Better estimates of each well. The interpolated dates of arrival at well Sec34- the rates of movement are needed before 2023, particularly 0:)6ZHUH1RYHPEHUDQG$SULO because the rate of movement may not be constant.

for concentrations of 250 and 1,000 mg/L, respectively. Monitoring well FKS 5 is even farther from the approximated The interpolated dates of arrival at well TPGW-7L were location of the saltwater interface than well FKS 9. The rate December 13, 2013, and April 13, 2014, for concentrations of and direction of movement of the saltwater interface near well 250 and 1,000 mg/L, respectively. Given these dates and the FKS 5 are unknown. If the rate of movement were the same distance between these wells, the estimated rate of movement as that between wells Sec34-MW-02-FS and TPGW-7L, the of the front is 137 m/yr based on a chloride concentration of 1,000-mg/L isochlor may not reach this well for 26 years if 250 mg/L, and the estimated rate based on a concentration of the interface moves northward, or 17 years if the interface 1,000 mg/L is 138 m/yr. These estimates can be rounded to an moves westward. Water managers would most likely need to average estimate of 140 m/yr. This rate of movement was used have a better understanding of the location of the saltwater to help interpolate the location of the 1,000-mg/L isochlor in interface, its rate of movement, and direction of movement the Model Land Area. than currently provided near FKS 5.

This estimate assumes that the direction of front Differences in the design, placement, quality of chemical movement is parallel to a line passing through these two well analyses, and type of monitoring can add uncertainty to this locations, and that the rate of front movement is constant. analysis. The analysis of the rate of movement of the saltwater 8VHRIWKLVUDWHIRULQWHUSRODWLQJWKHSRVLWLRQRIWKHVDOWZDWHU interface between monitoring wells Sec34-MW-02-FS and interface elsewhere in the study area assumes that (1) effective TPGW-7L, for example, required a number of estimations, porosity is uniform throughout this area, (2) direction of LQFOXGLQJWKHUHODWLRQEHWZHHQVSHFL¿FFRQGXFWDQFHDQG

front movement is east to west, and (3) that the rate of front chloride, the relation between pumped water samples and movement is the same throughout this area. Additional in situ measurements of conductance, and the conversion of monitoring is needed to evaluate these assumptions (see FRQGXFWDQFHWRVSHFL¿FFRQGXFWDQFH7KHVHUHODWLRQVDQG

0RQLWRULQJ1HWZRUN,PSURYHPHQWVVHFWLRQRIWKLVUHSRUW  conversions increase uncertainty.

Given the stated assumptions, the saltwater interface may Some monitoring wells, such as well Sec34-MW-PRYHXQGHUWKH1HZWRQZHOO¿HOGE\7KLVHVWLPDWHRI 02-FS and many of the wells monitored by the Florida Keys future movement may be conservative because withdrawals Aqueduct Authority, are designed to monitor the depth of the IURPWKHZHOO¿HOGPD\LQXHQFHWKHUDWHDQGGLUHFWLRQRI top of the saltwater interface through the collection of water travel. FRQGXFWLYLW\SUR¿OHVDQGZDWHUVDPSOHVIURPPXOWLSOHGHSWKV

Because these wells have long open intervals, the sample UHVXOWVPD\EHLQXHQFHGE\RZZLWKLQWKHZHOOERUHGXULQJ

VDPSOLQJRUXQGHUDPELHQWFRQGLWLRQV 3ULQRV3ULQRV

Monitoring Network Improvements and Valderrama, 2015). Although several organizations base their sampling on the Standard Operating Procedures of the Within the map, the line depicting the approximation )ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ3ULQRV

of the inland extent of the saltwater interface is dashed (2013) states that these procedures call for sampling of long near the Card Sound Road Canal and in the area around open-interval wells by pumping from near the top of the water WKH&&DQDOEHFDXVHWKHUHZHUHLQVXI¿FLHQWGDWDIRU column or top of the open interval, which could result in an accurate delineation of the interface. These areas were samples that are not representative of maximum salinity in the previously mapped by using helicopter electromagnetic DTXLIHU'8QFHUWDLQW\LVDOVRLQFUHDVHGEHFDXVHVRPHDQDO\VHV

surveys (Fitterman and Prinos, 2012) and time-domain DUHSHUIRUPHGLQWKH¿HOGDVRSSRVHGWRLQDODERUDWRU\WKDW

electromagnetic soundings (Fitterman and others, 2011). participates in a quality assurance testing program (see the Monitoring in these areas currently consists of only a few 0DSSLQJWKH$SSUR[LPDWH,QODQG([WHQWRIWKH6DOWZDWHU

wells that are too far from the expected current location of the Interface section of this report).

interface to provide relevant information. Monitoring near the (VWLPDWHVRIWKHUDWHRIPRYHPHQWRIWKHLQWHUIDFHFRXOG

edge of the elongated extension of saltwater that had intruded be improved by placing monitoring wells along a transect, along the Card Sound Road Canal (Prinos and others, 2014) is spaced at distances that would allow timely detection of any almost nonexistent. variations in the rate of movement of the saltwater interface, Given the rate of movement of the saltwater interface and parallel to the direction of movement of the interface. If estimated in this investigation, the chloride concentrations IRXURU¿YHVXFKWUDQVHFWVZHUHLQVWDOOHGLQWKHFRXQW\WKH

of samples from some of the monitoring wells on the resulting data could be used to evaluate spatial differences in freshwater side of the interface may not exceed 1,000 mg/L for the rates of movement of the saltwater interface at locations many years. Monitoring well FKS 9, for example, is 0.86 km ZKHUHWKHLQWHUIDFHLVHQFURDFKLQJ&ROOHFWLQJ76(0,/

4 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 datasets in wells in each transect could provide information on 3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU¿FLDODTXLIHU

KRZWKHGHSWKRIWKHLQWHUIDFHLVFKDQJLQJ8VLQJFRQVLVWHQW system of the Big Cypress Basin, southwest Florida, monitoring methods at wells in each transect could reduce the and a proposed plan for improved salinity monitoring:

uncertainty in the estimated rate of movement. 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

58 p., accessed January 5, 2017, at https://pubs.usgs.gov/

of/2013/1088/.

References Cited Prinos, S.T., 2017, Data pertaining to mapping the approximate inland extent of saltwater in the Biscayne

)LVK-(DQG6WHZDUW0DUN+\GURJHRORJ\RIWKH aquifer, in the Model Land Area of Miami-Dade County, VXU¿FLDODTXLIHUV\VWHP'DGH&RXQW\)ORULGD86 )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH

Geological Survey Water-Resources Investigations Report http://dx.doi.org/10.5066/F7R78CF8.

90-4108, 50 p., 11 sheets.

Prinos, S.T., and Valderrama, Robert, 2015, Changes in Fitterman, D.V., Deszcz-Pan, Maria, and Prinos, S.T., 2012, the saltwater interface corresponding to the installation Helicopter electromagnetic survey of the Model Land of a seepage barrier near Lake Okeechobee, Florida:

$UHDVRXWKHDVWHUQ0LDPL'DGH&RXQW\)ORULGD86 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

Geological Survey Open-File Report 2012-1176, 77 p., 24 p., accessed January 5, 2017, at https://pubs.usgs.gov/

39 pls., accessed January 5, 2017, at https://pubs.usgs.gov/ of/2014/1256/.

of/2012/1176/.

Prinos, S.T., Wacker, M.A., Cunningham, K.J., and Fitterman, Fitterman, D.V., and Prinos, S.T., 2011, Results of time- D.V., 2014, Origins and delineation of saltwater intrusion domain electromagnetic soundings in Miami-Dade and in the Biscayne aquifer and changes in the distribution of VRXWKHUQ%URZDUG&RXQWLHV)ORULGD86*HRORJLFDO VDOWZDWHULQ0LDPL'DGH&RXQW\)ORULGD86*HRORJLFDO

Survey Open File Report 2011-1299, 289 p., accessed 6XUYH\6FLHQWL¿F,QYHVWLJDWLRQV5HSRUW+/-S

January 5, 2017, at https://pubs.usgs.gov/of/2011/1299/. accessed January 5, 2017, at http://dx.doi.org/10.3133/

)ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ sir20145025.

2008, Groundwater sampling: Florida Department of 86(QYLURQPHQWDO3URWHFWLRQ$JHQF\6HFRQGDU\

(QYLURQPHQWDO3URWHFWLRQ6WDQGDUG2SHUDWLQJ3URFHGXUHV drinking water standards: Guidance for nuisance chemicals:

'(3623)6SDSSDFFHVVHG 86(QYLURQPHQWDO3URWHFWLRQ$JHQF\5HSRUW+/-I+/-+/-

February 10, 2017, at KWWSZZZGHSVWDWHXV:DWHUVDV 079, accessed January 26, 2011, at http://water.epa.gov/

sop/sops.htm. drink/contaminants/secondarystandards.cfm.

Florida Power & Light Company, 2011, Quality Assurance 86*HRORJLFDO6XUYH\YDULRXVO\GDWHG1DWLRQDO¿HOGPDQXDO

Project PlanTurkey Point Monitoring Project: Florida IRUWKHFROOHFWLRQRIZDWHUTXDOLW\GDWD86*HRORJLFDO

Power & Light Company, 170 p., 9 app., accessed Survey Techniques of Water-Resources Investigations, February 22, 2017, at https://www.sfwmd.gov/documents-book 9, chaps. A1-A9, available online at http://pubs.water.

E\WDJISOWSVXUYH\"VRUWBE\ WLWOH VRUWBRUGHU '(6&.

usgs.gov/twri9A.

+XJKHV-'/DQJHYLQ&'DQG%UDNH¿HOG*RVZDPL

/LQ]\(IIHFWRIK\SHUVDOLQHFRROLQJFDQDOVRQDTXLIHU

salinization: Hydrogeology Journal, v. 18, p. 25-38.

Appendix 1 Appendix 1 5 Appendix 1. Estimation of Chloride Concentrations at Wells Where Conductivity Profiles Were Used for Monitoring

$WORFDWLRQVZKHUHZDWHUFRQGXFWLYLW\SUR¿OHVZHUH less), but 37 percent have open intervals of 8 to 40 m (Prinos, used for monitoring, chloride concentrations were estimated 2017). The long open-interval wells are not ideal for salinity by using a relation based on a linear regression of the chloride monitoring for the reasons summarized in Prinos (2013) and FRQFHQWUDWLRQDQGVSHFL¿FFRQGXFWDQFHRIZDWHU Prinos and Valderrama (2015), but they are the only wells VDPSOHVFROOHFWHGEHWZHHQ1RYHPEHUDQG available at some locations.

September 26, 2016, from 178 monitoring sites sampled E\WKH86*6LQVRXWKHUQ)ORULGD WDEOH+/- $OORIWKHVH

VDPSOHUHVXOWVDUHDYDLODEOHWKURXJKWKH86*61DWLRQDO:DWHU

,QIRUPDWLRQ6\VWHPZHEVLWH 86*HRORJLFDO6XUYH\  References Cited The relation is expressed as

&DUOVRQ*OHQQ>QG@6SHFL¿FFRQGXFWDQFHDVDQRXWSXWIRU

cc = 0.3458scí  FRQGXFWLYLW\UHDGLQJV,Q6LWX,QF7HFKQLFDO1RWHS

accessed March 6, 2017, at https://in-situ.com/wp-content/

where XSORDGV6SHFL¿F&RQGXFWDQFHDVDQ2XWSXW8QLW

cc is the chloride concentration in milligrams per IRU&RQGXFWLYLW\5HDGLQJV7HFK1RWHSGI.

liter, and sc LVWKHVSHFL¿FFRQGXFWDQFHLQPLFURVLHPHQV 3ULQRV676DOWZDWHULQWUXVLRQLQWKHVXU¿FLDODTXLIHU

per centimeter. system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring:

&RQGXFWDQFHZDVFRQYHUWHGWRVSHFL¿FFRQGXFWDQFHXVLQJWKH 86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

following relation (Carlson, [n.d.]). 58 p., accessed January 5, 2017, at https://pubs.usgs.gov/

of/2013/1088/.

sc = c/(1 + r(Tí  

Prinos, S.T., 2017, Data pertaining to mapping the where approximate inland extent of saltwater in the Biscayne c is the actual conductance measured in aquifer, in the Model Land Area of Miami-Dade County, microsiemens per centimeter, )ORULGD86*HRORJLFDO6XUYH\GDWDUHOHDVH

T is the temperature of the sample in degrees http://dx.doi.org/10.5066/F7R78CF8.

Celsius, and r LVWKHWHPSHUDWXUHFRUUHFWLRQFRHI¿FLHQWIRU Prinos, S.T., and Valderrama, Robert, 2015, Changes in the sample. the saltwater interface corresponding to the installation of a seepage barrier near Lake Okeechobee, Florida:

7KH76(0,/GHULYHGYHUWLFDOSUR¿OHVRIEXON

86*HRORJLFDO6XUYH\2SHQ)LOH5HSRUW+/-

conductivity provide additional qualitative insights for 24 p., accessed January 5, 2017, at https://pubs.usgs.gov/

PDSSLQJVXFKDVGHWHFWLRQRIDQ\LQX[HVRIFRQGXFWLYH

of/2014/1256/.

water that do not correspond to the open interval of the well and temporal changes in the depth of the top of the saltwater 86*HRORJLFDO6XUYH\1DWLRQDO:DWHU,QIRUPDWLRQ

interface. SystemWeb interface, accessed September 28, 2016, at The majority of the monitoring wells used for this KWWSG[GRLRUJ)3.-1.

analysis have short open intervals (about 1.5 meters [m] or

6 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 262313080044401 PB -1457 255453080110801 G-3978 262209080044702 PB -1669 254601080150301 G-3977 261100080140401 G -1212 254156080172101 G -3607 261122080083401 G -1232 252814080244101 G -3698 260547080105801 G -2352 252652080244301 G -3699 260920080092201 G -2898 252650080252701 G -3855 260551080111901 G -2957 253253080221201 G -3885 261740080054101 G -2893 253527080195401 G -3886 255916080090401 G -1435 253924080174601 G -3887A 255910080085802 G -2294 253924080174602 G -3887B 255919080091202 G -2409 254542080145901 G -3888A 255919080091203 G -2410 254542080145902 G -3888B 255936080091701 G -2477 254542080145903 G -3888C 255936080091702 G -2478 253948080250701 G -3897 255916080092001 G -2965 254152080282601 G -3898 260037080100700 Hollywood Canal at Hollywood Blvd, 253419080223701 G -3899 Hollywood, FL 252718080264901 G -3900 260104080101300 Hollywood Canal at Johnson St, Hollywood, 252506080300601 G -3901 FL 252431080261001 G -3946D 260225080095800 +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG

FL 252431080261002 G -3946S 260212080112500 +ROO\ZRRG&DQDODW1$YH+ROO\ZRRG 255011080124501 G -3947 FL 255515080103601 G -3948D 260132080094900 Hollywood Canal at Taft St, Hollywood, FL 255515080103602 G -3948S 260041080093101 G -2425 255733080195601 G -3949D 260041080093102 G -2426 255733080195602 G -3949I 260120080093401 G -2441 255733080195603 G -3949S 260155080092002 G -2612 254824080155301 G -3964 260026080095801 G -2956 254500080162801 G -3965 254943080121501 F - 45 252719080253601 G -3966D 254841080164401 G - 571 252719080253602 G -3966S 255350080105801 G - 894 253335080213501 G -3967 254107080165201 G - 896 255315080111501 F - 279 254201080173001 G - 901 254828080161501 G - 354 254106080174601 G -1009B 254335080170501 G - 432 252947080235301 G -1180 254855080163701 G - 548 254813080161501 G -1351 253652080183701 G - 939 254833080155801 G -1354 253202080232601 G -3162 255222080123001 G -3224 253831080180204 G -3313C 254457080160301 G -3229 253831080180206 *(

254946080172601 G -3250 255358080114101 G -3601 252714080260901 G-3976 255116080120601 G -3602

Appendix 1 7 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 254908080125201 G -3603 260534080110801 G -2904 254722080152201 G -3604 262839081503100 L - 735 254629080143101 G -3605 262022081464201 L - 738 254341080174001 G -3606 263532081592202 L -1136 254108080170601 G -3608 263813081552801 L -2640 254005080171601 G -3609 263819081585801 L -2701 253819080183201 G -3610 263955082083102 L -2820 253710080184701 G -3611 263117082051002 L -2821 253457080195501 G -3612 264053081572501 L -4820 253024080231001 G -3615 262513081472002 L -5668R 253027080234701 G -3700 261926081454702 L -5745R 253214080224601 G -3701 264123080053801 PB - 809 253334080213601 G -3702 263044080035102 PB -1195 254822080125501 G -3704 262755080040101 PB -1707 255625080094901 G -3705 262803080041101 PB -1714 261302081473901 C - 489 263453080031501 PB -1717 261156081475801 C - 516 263633080031401 PB -1723 261002081483701 C - 525 265550080070701 PB -1732 261018081484101 C - 526 265611080080201 PB -1733 261200081483001 C - 528 265006081042502 GL - 334I 260549081441901 C - 600 265006081042501 GL - 334S 261802081354801 C - 688 265006081042503 GL - 334D 261347081351201 C - 953 264912081024602 GL -332S 261620081464402 C -1004R 264912081024601 GL -332 261604081480901 C -1059 264843080591502 GL - 333I 261311081480101 C -1061 264843080591501 GL - 333S 260137081375901 C -1063 264843080591503 GL - 333D 262228081361902 C -1080 264532080545902 +(6 261403080070801 G -2149 264532080545901 +(

260342080115902 G -2264 264343080511601 PB -1843S 261446080062801 G -2445 264343080511602 PB -1843I 261724080054603 G -2693 264343080511603 PB -1843D 260242080101101 G -2697 264154080480302 PB -1822S 261643080055901 G -2752 264154080480301 PB -1822 261740080054101 G -2893 264050080435502 PB -1842I 261304080072501 G -2896 264050080435501 PB -1842S 261030080083301 G -2897 264050080435503 PB -1842D 260804080092701 G -2899 264814080414302 PB -1819S 260325080113901 G -2900 264814080414301 PB -1819 260638080104801 G -2902 264926080394503 PB -1848D 255843080090901 G -2903 264930080394703 PB -1847D

8 Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016 Table 1-1. Listing of U.S. Geological Survey monitoring sites in southern Florida from which water samples were collected to evaluate specific conductance and chloride concentration.Continued

>86*686*HRORJLFDO6XUYH\@

USGS station USGS station Site name Site name identifier identifier 265138080375802 PB -1818S 265428080364501 PB -1816 265138080375801 PB -1818 265519080364902 PB -1815S 265142080374202 PB -1817S 265519080364901 PB -1815 265142080374201 PB -1817 265701080363103 PB -1844D 265208080373902 PB -1845I 265701080363102 PB -1844I 265208080373901 PB -1845S 265701080363101 PB -1844S 265208080373903 PB -1845D 265839080365202 M -1369I 265200080373101 PB -1846S 265839080365201 M -1369D 265428080364502 PB -1816S For more information about this publication, contact:

Director, Caribbean-Florida Water Science Center U.S. Geological Survey 4446 Pet Lane, Suite 108 Lutz, FL 33559 (813) 498-5000 Or visit the USGS Caribbean-Florida Water Science Center website at:

https://fl.water.usgs.gov Publishing support provided by Lafayette Publishing Service Center

PrinosMap of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer, Miami-Dade County, Florida, 2016SIM 3380 ISSN 2329-132X (online) https://doi.org/10.3133/sim3380

WITTKOP PARK HARRIS PARK Miami-Dade County Distance from Coast: 6.5 miles Salt Intrusion Extent NEWTON FLORIDA CITY Florida City Canal FLORIDA KEYS AQUADUCT AUTHORITY EVERGLADES LABOR CAMP S

rd Ca ou R

nd oa db ow orr c an al Salt Intrusion at the Base of the Biscayne Aquifer (1,000 mg/L chlorides)

Distance from US Geological Survey Data Coast: 10.6 miles 2016 Salt Intrusion Line 2011 Salt Intrusion Line 1995 Salt Intrusion Line 0 0.5 1 2 3 4 5 6 Miles Wellfield Protection Areas Saltline_trends_20180430.mxd - GMB - May 7, 2018

DERMClassIPermitRequiredMonitoringinL31ECanal June2015toMay29,2018SummaryofChlorideResults 18000 16000 14000 12000 10000 mg/L 8000 6000 4000 2000 0

TPSWC1B TPSWC2B TPSWC3B MDCChapter24Standard(500mg/L,wasteshallnotincreasenaturalbackgroundmorethan10percent)

Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018

.

L31E-B L31E-A Depth SpCond (u/s)

Depth SpCond (u/s)

T (0.25 m) 4835.1 T (0.41 m) 9100.7 M (1.021m) 9146.1 M (1.45m) 9097.6 B (2.176m) 8642 B (3.477m) 9793 L31E-B L31E-A I-1 I-1 Depth SpCond (u/s)

I-2 T (0.22 m) 9224.6 M (1.087m) 9245.4 I-2 B (2.117m) 8669.7 Depth SpCond (u/s)

T (0.49 m) 9336.1 M (1.7m) 9325.9 B (2.499m) 9130.6 L31E-C L31E-C Depth SpCond (u/s)

T (0.132m) 9462.3 M (1.549m) 9460.6 B (2.951m) 9322.3 L31E-D Depth SpCond (u/s)

T (0.24m) 21744.3 M (0.891m) 21588.7 B (1.841m) 21612.6 L31E-D I-3 I-3 EEL1 Depth SpCond (u/s)

Depth SpCond (u/s) T (0.071m) 21529.3 T (0.1m) 5408 M (1.493m) 21528.6 B (2.932m) 45473 EEL1 EEL2 L31E-E Spec ific Conductance Sampling Points L31E-E EEL2 Depth SpCond (u/s) Canals Depth SpCond (u/s)

T (0.079m) 21347 T (0.179m) 5934.9 M (0.956m) 21377.1 Miami-Dade EEL Program B (1.956m) 22714.6 SFWMD I-4 Florida Power and Light L31E-F I-4 L31E-F Depth SpCond (u/s) Rock mining Lands and Associated Mitigation Depth SpCond (u/s) T (0.299m) 21580 T (0.179m) 21444.5 M (0.939m) 21534.6 State of Florida M (0.707m) 21424.5 B (2.077m) 23692.6 B (1.653m) 31860.2 Federal Private Rock mining Lands and Associated Mitigation Florida Power and Light Miles 0 0.75 1.5 3 4.5 6 Rock mining Lands and Associated Mitigation

Model Lands Hydrology and FPL Everglades Mitigation Bank L-31E Culvert Weir Operation RER-DERM Water Resources Coordination and Education Division February 15, 2018

Model Lands Hydrology 3/4 Isolated by Roads/Levees 3/4 No Connection to Regional Canal System 3/4 Rain-driven

Interceptor Ditch pumps Model Lands Hydrology 3/4 Palm Drive culverts S-20 (restoration) 3/4 S-20 3/4 Everglades Mitigation Bank L-31E culvert weirs 3/4 Interceptor Ditch pumps

Model Lands Hydrology and S-20 Operations Central and Southern Florida Project for Flood Control and Other Purposes Master Water Control Manual - East Coast Canals - Volume 5

Model Lands Hydrology and S-20 Operations C&SF Project Structure Manual, S-20 Section (revised 1/16/2003):

Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft Optimum S-20 Headwater Elevation (per C&SF Master Manual)

Existing S-20 Operations for Flood Control, Salt 2.0 ft Intrusion Control Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)

FPL Everglades Mitigation Bank L-31E Culvert Weir Operations FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):

1.0 ft

  • Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft water level invert setting of the S-20 structure.

Mean Sea Level

  • During the dry season (October -

April), they will be set at 0.1 feet lower than the S-20 control elevation setting.

Model Lands Groundwater Stages Healthy Sawgrass Prairie:

Existing Conditions vs. Healthy Ecology 8-10 months Hydroperiod#

3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months 2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

  1. Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11 31-Jan-13 31-Jan-14 Trophic Level System Simulation 31-Jul-11 31-Jul-12 31-Jul-13 31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10 31-Oct-10 30-Jun-11 31-Oct-11 31-Jan-12 30-Jun-12 31-Oct-12 30-Jun-13 31-Oct-13 30-Jun-14 31-Oct-14 31-Jan-15 31-Aug-10 30-Nov-10 31-Dec-10 28-Feb-11 31-Mar-11 30-Apr-11 31-May-11 31-Aug-11 30-Sep-11 30-Nov-11 31-Dec-11 29-Feb-12 31-Mar-12 30-Apr-12 31-May-12 31-Aug-12 30-Sep-12 30-Nov-12 31-Dec-12 28-Feb-13 31-Mar-13 30-Apr-13 31-May-13 31-Aug-13 30-Sep-13 30-Nov-13 31-Dec-13 28-Feb-14 31-Mar-14 30-Apr-14 31-May-14 31-Aug-14 30-Sep-14 30-Nov-14 31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.

Water Level (ft NGVD29) Nearby Wetland Ground Elevation (1.8 ft NGVD)

C-111 Spreader Canal Western CERP Project 3/4 February 2012 - Project Construction completed under SFWMD state-expedited program 3/4 June 10, 2014 Congressional Authorization (WRDA 2014) 3/4 Features:

9 Frog Pond Detention Area 9 Aerojet Canal Features 9 Plugs in C-110 9 Operational Changes at S-18C 9 Plug at S-20A 9 Operational Changes at S-20

Model Lands Groundwater Control Elevations CERP Restoration Vision vs. Current Water Management 3.5 ft CERP Restoration, per C-111 3.0 ft CERP Restoration Vision Spreader Canal Western Project FEIS and BBCW Alt O Conceptual Design, Army Corps of Engineers):

  • S-20 open and close triggers to be 2.5 ft increased 0.5 foot
  • 4 pump stations on Florida City Local Wetland Existing S-20 Operations Canal pump up to 150 cfs into the Model Lands 2.0 ft Ground Elevation 1.5 ft FPL Everglades Mitigation Bank L-31E Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

C-111 Spreader Canal Western CERP Project Page xii:

OUR CONCLUSION: HYDROPERIOD RESTORATION IS DEPENDENT ON A REDUCTION IN OVERDRAINAGE CAUSED BY CANAL INFRASTRUCTURE

C-111 Spreader Canal Western CERP Project

C-111 Spreader Canal Western CERP Project

C-111 Spreader Canal Western CERP Project Army Corps Permit for construction of the FPL Everglades Mitigation Bank:

FPL L-31E Culvert Elevations Gate elevations were raised from 1.8 to 2.2 ft NGVD per DERM Consent Agreement (Condition 17(c)(i):

Raise control elevations in the Everglades Mitigation Bank. Within 30 days of the effective date of this Consent Agreement, FPL shall raise the control elevations of the FPL Everglades Mitigation Bank ("EMB") culvert weirs to no lower than 0.2 feet lower than the 2.4 foot trigger of the S-20 structure and shall maintain this elevation.

After the first year of operation, FPL shall evaluate the change .in control elevation, in regards to improvements in salinity, water quality, and lift in the area, and if FPL determines that the change in control elevations is not effective, or that FPL is negatively impacted in receiving mitigation credits as a result of this action, FPL will consult with DERM and propose potential alternatives.

FPL EMB L-31E Culvert Elevations FPL Annual Monitoring Report, Everglades Mitigation Bank Phase II (January 2018)

Stage (ft NGVD) 0 0.5 1 1.5 2 2.5 3 3.5 4 9/1/2010 11/1/2010 1/1/2011 3/1/2011 5/1/2011 7/1/2011 9/1/2011 11/1/2011 1/1/2012 3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013 3/1/2013 5/1/2013 7/1/2013 9/1/2013 11/1/2013 1/1/2014 FPL Everglades Mitigation Bank (EMB) 3/1/2014 5/1/2014 7/1/2014 9/1/2014 11/1/2014 1/1/2015 3/1/2015 5/1/2015 September 1, 2010 to September 30, 2017 7/1/2015 9/1/2015 11/1/2015 1/1/2016 FPL- EMB Culverts raised 3/1/2016 Culvert Elevations and Water Levels in L-31 E Canal 5/1/2016 from 1.8 ft NGVD to 2.2 ft NGVD 7/1/2016 9/1/2016 per CA requirement, 11/1/2016 10/22/2015 through 4/30/2017 1/1/2017 3/1/2017 (information provided by FPL) 5/1/2017 7/1/2017 9/1/2017

Interceptor Ditch Estimated Dry Season Volume Pumped 2011 - 2016 (January through May) 1400 1200 1000 800 Volume Pumped (MG) 600 400 200 0

2011 2012 2013 2014 2015 2016 L-31E culvert gates were raised to 2.2 ft NGVD on October 22, 2015 and remained at 2.2 ft NGVD through April 30, 2017

Volume (MG) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 1/1/2017 1/8/2017 1/15/2017 1/22/2017 1/29/2017 2/5/2017 2/12/2017 FPL- EMB Culverts raised from 1.8 ft 2/19/2017 2/26/2017 NGVD to 2.2 ft NGVD per CA requirement, 3/5/2017 3/12/2017 10/22/2015 through 4/30/2017 3/19/2017 3/26/2017 4/2/2017 (information provided by FPL) 4/9/2017 4/16/2017 4/23/2017 4/30/2017 L-31E Stage vs. Interceptor Ditch Pumping 5/7/2017 5/14/2017 5/21/2017 ID Daily Pumping Volume (MG) 5/28/2017 6/4/2017 6/11/2017 6/18/2017 6/25/2017 7/2/2017 January 1, 2017 to September 4, 2017 7/9/2017 7/16/2017 7/23/2017 7/30/2017 8/6/2017 8/13/2017 8/20/2017 8/27/2017 9/3/2017 0 1 2 3 0.5 1.5 2.5 Stage (ft NGVD)

Specific Conductance (S/cm) 0.00 5,000 5.0 10,000 10.0 15,000 15.0 20,000 20.0 25,000 25.0 30,000 30.0 35,000 35.0 40,000 40.0 1/1/2017 1/1/2017 1/8/2017 1/11/2017 1/15/2017 1/21/2017 1/22/2017 1/29/2017 1/31/2017 2/5/2017 2/10/2017 2/12/2017 2/19/2017 2/20/2017 2/26/2017 3/2/2017 3/5/2017 3/12/2017 3/12/2017 TPSWC-1B Avg. Daily Sp. Cond. (uS/cm) 3/19/2017 3/22/2017 3/26/2017 4/1/2017 4/2/2017 4/9/2017 4/11/2017 4/16/2017 4/21/2017 4/23/2017 4/30/2017 5/1/2017 5/7/2017 5/11/2017 5/14/2017 5/21/2017 S-20 Avg. Daily Stage (ft NGVD) 5/21/2017 TPSWC-2B Avg. Daily Sp. Cond. (uS/cm) 5/28/2017 5/31/2017 6/4/2017 6/10/2017 6/11/2017 January 1 to September 4, 2017 6/18/2017 6/20/2017 6/25/2017 6/30/2017 7/2/2017 7/9/2017 7/10/2017 7/16/2017 7/20/2017 7/23/2017 7/30/2017 7/30/2017 8/6/2017 8/9/2017 TPSWC-3B Avg. Daily Sp. Cond. (uS/cm)

L-31E Canal Bottom Specific Conductance vs. Surface Water Stage 8/13/2017 8/19/2017 8/20/2017 8/27/2017 8/29/2017 9/3/2017 0

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 Stage (ft NGVD)

L-31E Canal Uprate and Class I Permit Required Surface Water Monitoring Stations

mg/L 0.00 2,000.00 4,000.00 6,000.00 8,000.00 10,000.00 12,000.00 14,000.00 16,000.00 May 31 & Jun 1, 2015 Jun 15 & 16, 2015 Jun 29 & 30, 2015 Jul 13 & 14, 2015 Jul 27 & 28, 2015 TPSWC-1B August 10 & 11 Aug 24 & 25, 2015 Sept 8 & 9 2015 Sept 21 & 22 2015 Oct 5 to 7, 2015 Oct 19 & 20, 2015 Nov 2 & 4, 2015 TPSWC-2B Nov 16 to 19, 2015 Nov 30 to Dec3, 2015 Dec 14 & 15, 2015 Dec 28 & 29, 2015 Jan 11 & 12, 2016 Jan 25 & 26, 2016 Feb 8 & 9, 2016 TPSWC-3B Feb 22 & 23, 2016 Mar 7 & 8, 2016 Mar 21 & 22, 2016 April 4 & 5, 2016 April 18 & 19, 2016 May 2 & 3, 2016 May 16 & 17, 2016 May 31 to Jun 3, 2016 Jun 13 & 14, 2016 Jun 27 & 28, 2016 Jul 11 & 12, 2016 Jul 25 & 26, 2016 DERM Class I Permit Required Monitoring in L-31E Canal Aug 8 & 9, 2016 Aug 22 & 23, 2016 Sep 6 & 7, 2016 Sept. 19 & 20, 2016 Oct. 3 & 4, 2016 Oct. 17 & 18, 2016 Oct. 31 & Nov 1, 2016 Nov 14 & 15, 2016 Nov 28 & 29, 2016 Dec 12 & 13, 2016 Dec 27 & 28, 2016 June 2015 to January 17, 2018 Jan 9 & 10, 2017 Jan 23 & 24, 2017 Feb 6 & 7, 2017 Feb 20 & 21, 2017 Mar 6 & 7, 2017 Mar 20 & 21, 2017 Apr 3 & 4, 2017 Apr 24 & 25, 2017 May 8 & 9, 2017 May22 & 23, 2017 June 5 to 7, 2017 June 19 & 20, 2017 Jul 5 to 8, 2017 Summary of Chloride Results Jul 17 & 18, 2017 Jul 31 & Aug 1, 2017 Aug 14 & 15, 2017 Aug 28 & 29, 2017 Sep 26 to 28, 2017 9-Oct-17 Oct 23 & 24, 2017 Nov 6 & 7, 2017 MDC Chapter 24 Standard (500 mg/L, waste shall not increase natural background more than 10 percent)

Nov 21 & 22, 2017 Dec 4 & 5, 2017 Dec 18 & 19, 2017 Jan 2 & 3, 2018 Jan 16 & 17, 2018

L-31E Canal May 12, 2017 Physical Parameter Surface Water Quality Survey Monitoring sites (20 sites)

L-31E Canal Water Column Physical Parameter Survey Salinity Result Summary, May 12, 2017 25.00 20.00 15.00 Salinity (PSU) 23.41 10.00 19.21 5.00 10.65 3.65 4.37 3.65 0.00 0 to 1 ft. 1.01 to 7.99 ft. 8 to 9.25 ft.

Depth Below Surface (ft.)

Min Max

L-31E Canal Uprate Monitoring Tritium Results TPSWC-1B, TPSWC-1T, TPSWC-2B, TPSWC-2T, TPSWC-3B & TPSWC-3T 200.0 180.0 160.0 140.0 120.0 100.0 pCi/L 80.0 60.0 40.0 20.0 0.0 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11 Mar-12 Jun-12 Sep-12 Dec-12 Mar-13 Jun-13 Sep-13 Dec-13 Mar-14 Jun-14 Sep-14 Dec-14 Mar-15 Jun-15 Sep-15 Dec-15 Mar-16 Jun/Jul 2010 TPSWC-1B TPSWC-1T TPSWC-2B TPSWC-2T TPSWC-3B TPSWC-3T

L-31E Canal Uprate Monitoring Tritium Result Summary L-31E Canal Top vs. Bottom (N = 84 for each level) 200 180 160 140 120 100 pCi/L 182 80 154 60 40 60.1 57.2 20 8 10.3 0

Min Max Average Top (1 ft. below water surface) Bottom (1 ft. above canal bottom) Agencies screening level threshold (20 pCi/L)

Model Lands Hydrology and FPL Culvert Operations Summary 3/4 Per CERP, the Model Lands Basin is overdrained by the L-31 E and S-20 water control structure, with water levels occasionally dropping below sea level 3/4 Overdrainage needs to be stopped to restore both wetland stage and hydroperiod per CERP 3/4 The amount of drainage from the L-31 Canal is established by the elevation of the water in the L-31 E Canal. The water in the L-31 E canal is drained through FPLs culverts to the stage established by these adjustable culvert weirs when the S-20 structure is closed.

3/4 FPLs preferred setting for L-31 E canal water level at 1.8 ft NGVD is 1.1 feet lower than the planned CERP open trigger setting and 0.6 feet lower than the planned close trigger.

3/4 EMB culvert weir settings at 2.2 ft NGVD reduces overdrainage of the basin 3/4 CERP authorizes a change in S-20 operations to increase trigger stages by 0.5 ft in order to reduce overdrainage in the Model Lands 3/4 The S-20 operations change has agency support at local, state, and federal levels 3/4 The S-20 operations change is expected to make additional water available for release through the FPL culverts - a win-win for all parties

L31ECanalAverageDailySalinityattheBottom August30,2010toJuly16,2018 30 25 20 15 Salinity(PSU) 10 5

0 TPSWC1BAvgDailySalinity(PSU) TPSWC2BAvgDailySalinity(PSU) TPSWC3BAvgDailySalinity(PSU)

L31ECanalAverageDailySalinityProfiles January1toJuly16,2018 30 25 20 PSU 15 10 5

0 TPSWC1TAvgDailySalinity(PSU) TPSWC1BAvgDailySalinity(PSU) TPSWC2TAvgDailySalinity(PSU)

TPSWC2BAvgDailySalinity(PSU) TPSWC3TAvgDailySalinity(PSU) TPSWC3BAvgDailySalinity(PSU)

Model Lands Groundwater Control Elevations Current Water Management 3.5 ft 3.0 ft Water Levels that Support Environmental Services 2.5 ft Optimum S-20 Headwater Elevation (per C&SF Master Manual)

Existing S-20 Operations for Flood Control, Salt 2.0 ft Intrusion Control Local Wetland Ground Elevation (1.8 ft NGVD at TPGW-4, close to both S-20 and EMB culverts) 1.5 ft Water Elevation (ft NGVD)

FPL Everglades Mitigation Bank L-31E Culvert Weir Operations FPL-EMB culvert operations, per Special Condition 15(d) of FDEP Permit 0193232-001, Mod 055 (June 25, 2013):

1.0 ft

  • Preliminarily, during the wet season (May - September), the L-31-E control structures shall be set at an elevation that is at least 0.2 feet lower than the 0.5 ft water level invert setting of the S-20 structure.

Mean Sea Level

  • During the dry season (October -

April), they will be set at 0.1 feet lower than the S-20 control elevation setting.

Model Lands Groundwater Stages Healthy Sawgrass Prairie:

Existing Conditions vs. Healthy Ecology 8-10 months Hydroperiod#

3.5 ft TPGW-4S, August 31, 2010 - February 2, 2015 2011: <5 months 3.0 ft 2012: <8 months 2013: <4 months 2014: <5 months 2.5 ft Existing S-20 Operations 2.0 ft FPL L-31E 1.5 ft Culvert Weir Operations Water Elevation (ft NGVD) 1.0 ft 0.5 ft Mean Sea Level

  1. Wetzel2001. Plant Community Parameter Estimates and Documentation for the Across 31-Jan-11 31-Jan-13 31-Jan-14 Trophic Level System Simulation 31-Jul-11 31-Jul-12 31-Jul-13 31-Jul-14 (ATLSS). Data Report Prepared for 30-Sep-10 31-Oct-10 30-Jun-11 31-Oct-11 31-Jan-12 30-Jun-12 31-Oct-12 30-Jun-13 31-Oct-13 30-Jun-14 31-Oct-14 31-Jan-15 31-Aug-10 30-Nov-10 31-Dec-10 28-Feb-11 31-Mar-11 30-Apr-11 31-May-11 31-Aug-11 30-Sep-11 30-Nov-11 31-Dec-11 29-Feb-12 31-Mar-12 30-Apr-12 31-May-12 31-Aug-12 30-Sep-12 30-Nov-12 31-Dec-12 28-Feb-13 31-Mar-13 30-Apr-13 31-May-13 31-Aug-13 30-Sep-13 30-Nov-13 31-Dec-13 28-Feb-14 31-Mar-14 30-Apr-14 31-May-14 31-Aug-14 30-Sep-14 30-Nov-14 31-Dec-14 the ATLSS Project Team, University of Tennessee-Knoxville, 59Pp.

Water Level (ft NGVD29) Nearby Wetland Ground Elevation (1.8 ft NGVD)

Model Lands Surface Water Specific Conductance L-31E borrow canal and Model Lands South canal April 2018

.

L31E-D I-3 EEL2 EEL1 Depth SpCond (u/s) Depth SpCond (u/s)

T (0.179m) 5934.9 T (0.1m) 5408 EEL2 EEL1 L31E-E I-4 L31E-F Specific Conductance Sampling Points Canals Miami-Dade EEL Program SFWMD Florida Power and Light Rockmining Lands and Associated Mitigation State of Florida Federal Private Rockmining Lands and Associated Mitigation Florida Power and Light Miles 0 0.2 0.4 0.8 1.2 1.6 Rockmining Lands and Associated Mitigation