ML17309A637: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:CATEGORY1REGULATiINFORMATIONDISTRIBUTIOYSTEM(RIDS)I'ACCESSIONNBR:9807290262DOC.DATE:98/07/21NOTARIZED:YESDOCKETFACIL:50-244RobertEmmetGinnaNuclearPlant,Unit1,RochesterG05000244AUTH.NAME'UTHORAFFILIATIONMECREDY,R.C.RochesterGas5ElectricCorp.RECIP.NAMERECIPIENTAFFILIATIONVISSING,G.S.
{{#Wiki_filter:CATEGORY1REGULATiINFORMATION DISTRIBUTIO YSTEM(RIDS)I'ACCESSION NBR:9807290262 DOC.DATE:
98/07/21NOTARIZED:
YESDOCKETFACIL:50-244 RobertEmmetGinnaNuclearPlant,Unit1,Rochester G05000244AUTH.NAME'UTHORAFFILIATION MECREDY,R.C.
Rochester Gas5ElectricCorp.RECIP.NAME RECIPIENT AFFILIATION VISSING,G.S.


==SUBJECT:==
==SUBJECT:==
ForwardsaddiinforeresponsetoGL96-06,asrequestedin980414ltr.CDISTRIBUTIONCODE:A072DCOPIESRECEIVED:LTRENCLSIZE:TITLE:GL96-06,"AssuranceofEquipOprblty&Contain.Integ.duringDesignT05000244ERECIPIENTIDCODE/NAMENRR/WETZEL,B.VISSING,G.INTERN:FILECER/DSSASCSBEXTERNAL:NOACCOPXESLTTRENCL1111111111RECIPIENTIDCODE/NAMEPD1-1PDNRR/DE/EMEBNRR/DSSA/SPLBNRCPDRCOPIESLTTRENCL111111110DUNNOTETOALL"RIDS"RECIPIENTS:PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATIONREMOVEDFROMDISTRIBUTIONLISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION,CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION415-2083TOTALNUMBEROFCOPIESREQUIRED:LTTR9ENCL9  
ForwardsaddiinforeresponsetoGL96-06,asrequested in980414ltr.CDISTRIBUTION CODE:A072DCOPIESRECEIVED:LTR ENCLSIZE:TITLE:GL96-06,"Assurance ofEquipOprblty&Contain.Integ.
.1I ROCHESTERGASANDELECTRICCORPORATION89EASTAVENUE,ROCHESTER,NY.14649-0001AREACOOE716-546-2700ROBERTC.MECREDYVicePresidentNvdearOperationsJuly21,1998U.S.NuclearRegulatoryCommissionDocumentControlDeskAttn:GuyS.VissingProjectDirectorateI-lWashington,D.C.20555
duringDesignT05000244ERECIPIENT IDCODE/NAME NRR/WETZEL,B.
VISSING,G.INTERN:FILECER/DSSASCSBEXTERNAL:
NOACCOPXESLTTRENCL1111111111RECIPIENT IDCODE/NAME PD1-1PDNRR/DE/EMEB NRR/DSSA/SPLB NRCPDRCOPIESLTTRENCL111111110DUNNOTETOALL"RIDS"RECIPIENTS:
PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATION REMOVEDFROMDISTRIBUTION LISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION, CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION 415-2083TOTALNUMBEROFCOPIESREQUIRED:
LTTR9ENCL9  
.1I ROCHESTER GASANDELECTRICCORPORATION 89EASTAVENUE, ROCHESTER, NY.14649-0001 AREACOOE716-546-2700 ROBERTC.MECREDYVicePresident NvdearOperations July21,1998U.S.NuclearRegulatory Commission DocumentControlDeskAttn:GuyS.VissingProjectDirectorate I-lWashington, D.C.20555


==Subject:==
==Subject:==
ResponsetoRequestforAdditionalInformation(RAI)RelatedtoGenericLetter96-06(TACNo.M96814)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromGuyS.Vissing(NRC)toRobertC.Mecredy(RG&E),
ResponsetoRequestforAdditional Information (RAI)RelatedtoGenericLetter96-06(TACNo.M96814)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromGuyS.Vissing(NRC)toRobertC.Mecredy(RG&E),


==SUBJECT:==
==SUBJECT:==
REQUESTFORADDITIONALINFORMATIONRELATEDTOGENERICLETTER96-06RESPONSEFORR.E.GINNANUCLEARPOWERPLANT(TACNO.M96814),datedApril14,1998
REQUESTFORADDITIONAL INFORMATION RELATEDTOGENERICLETTER96-06RESPONSEFORR.E.GINNANUCLEARPOWERPLANT(TACNO.M96814),datedApril14,1998


==DearMr.Vissing:==
==DearMr.Vissing:==
ByReference1,theNRCstaffrequestedadditionalinformationregardingtheResponsetoGenericLetter96-06fortheR.E.GinnaNuclearPowerPlant.Theattachmenttothisletterprovidestherequestedinformation.Veryyyours,RobertC.MecredyAttachmentSubscribedandsworntobeforemeonthis21stdayofJuly,1998C'.u'otaryPublicMARIEC.VII.I.ENEUVENotaryPublic,StateofNewYoiRMonroeCountyCommissionExltiresOctober31,19m'st8072'st0262'st8072iPDRADQCK05000244PPDR  
ByReference 1,theNRCstaffrequested additional information regarding theResponsetoGenericLetter96-06fortheR.E.GinnaNuclearPowerPlant.Theattachment tothisletterprovidestherequested information.
Veryyyours,RobertC.MecredyAttachment Subscribed andsworntobeforemeonthis21stdayofJuly,1998C'.u'otaryPublicMARIEC.VII.I.ENEUVE NotaryPublic,StateofNewYoiRMonroeCountyCommission ExltiresOctober31,19m'st8072'st0262
'st8072iPDRADQCK05000244PPDR  
~~  
~~  
~~xc:Mr.GuyS.Vissing(MailStop1482)ProjectDirectorateI-lDivisionofReactorProjects-I/IIOfficeofNuclearReactorRegulationU.S.NuclearRegulatoryCommissionWashington,D.C.20555RegionalAdministrator,RegionIU.S.NuclearRegulatoryCommission475AllendaleRoadKingofPrussia,PA19406U.S.NRCGinnaSeniorResidentInspector RESPONSETONRCREQUESTFORADDITIONALINFORMATION(RAI)FORRESOLUTIONOFGENERICLETTER96-06ISSUESATTHER.E.GINNANUCLEARPOWERPLANTI.Ifamethodologyotherthan(orinadditionto)thatdiscussedinNUREGICR-5220,,"DiagnosisofCondensation-InducedWaterhammer",wasusedinevaluatingtheeffectsofwaterhainmer,describethisalternatemethodologyindetaiLAlso,explainwhythismethodologyisapplicableandgivesconservativeresultsfortheGinnaplant(typicallyacco>nplishedthroughrigorousplant-speciJtcmodeling,testing,andanalysis).Response:RochesterGasandElectricCorporation's(RG&E's)analyseswhichwerethebasesoforiginalresponsetoGL96-06evaluatedthatseverewaterhammerhasaverylowprobabilityofoccuringattheSWwaterpipingupstreamanddownstreamoftheContainmentRecirculationFanCoolers(CRFC's)duetothepresenceofheatedwaterthatactsasabufferbetweencoldwatersectionsandsteamthatformedattheCRFC'sduringfancoastdown.TheanalysesalsoconsideredaveryconservativesituationthatwhenwaterhammerdoesoccuratCRFCtubesandSWpiping,usingpredictivemethodssimilartoNUREG/CR-5220,thestructuralintegrityoftheSWpressureboundarywillnotfailinthehoopdirectionwhichhasthedominantstressfield.Furthermore,RG&E'spreliminaryevaluationofeffectsofthefluid/structureinteractionoftheefectsofatravelingpressurepulseassociatedwithasteamvoidcollapsedownstreamoftheCRFCshasindicatedthattheSWpipingwillbeprotectedfromlossofstructuralintegritybytheexistingseismicpipesupportsintheSWpiping.-ThisevaluationutilizedmorerealisticvaluesfortheacousticparametersthanthosepresentedinNUREG/CR-5220.Specifically,theacousticvelocityusedinEquation5.5ofNUREG/CR-5220tocalculatethepressurepulsefromasteamvoidcollapsewasobtainedfromNUREG/CR-6519,"ScreeningReactorSteam/WaterPipingSystemsforWaterHammer".Additionally,thewaterslugvelocityusedinEquation5.5wasbaseduponthemaximumSWvolumetricflowassociatedwiththeoperationoftwoSWpumpsfollowingaLOOPcondition.AssoonasprojectscopeandcostarefinalizedbyEPRI,RG&EwillmakeafinaldecisiontoparticipateinacombinedIndustry/NEI/EPRICollaborativeProjecttodevelopatechnicalbasisdocumenttoaddresswaterhammerissuesofGL96-06,delineatedinaJune5,1998letter(Reference1)fromMr.DavidJ.Modeen(NEI)toMr.LedyardB.Marsh(NRC).RG&EplanstorefinethewaterhammeranalysisoftheCRFC/SWsysteminatimeframeconsistentwiththecompletionofthiscollaborativeproject.
~~xc:Mr.GuyS.Vissing(MailStop1482)ProjectDirectorate I-lDivisionofReactorProjects-I/IIOfficeofNuclearReactorRegulation U.S.NuclearRegulatory Commission Washington, D.C.20555RegionalAdministrator, RegionIU.S.NuclearRegulatory Commission 475Allendale RoadKingofPrussia,PA19406U.S.NRCGinnaSeniorResidentInspector RESPONSETONRCREQUESTFORADDITIONAL INFORMATION (RAI)FORRESOLUTION OFGENERICLETTER96-06ISSUESATTHER.E.GINNANUCLEARPOWERPLANTI.Ifamethodology otherthan(orinadditionto)thatdiscussed inNUREGICR-5220,
RAIResponseGL'96-06'age22.Forboththewaterhanunerandtwo-phaseflowanalyses,providethefollowinginformation:a.Identifyanycomputercodesthatwereusedinthewaterhammerandtwo-phasefloanalysesanddescribethemethodsusedtobenchmarkthecodesforthespecificloadingconditionsinvolved(seeStandardReviewPlanSection3.9.1).Response:Duringanalysesoftwo-phaseflowissues,RG&Ehasutilizedtheresultsofacomputercode,KYPIPE,"ComputerAnalysisofFlowinPipeNetworksIncludingExtendedPeriodSimulations",Rev.2.13whichwasdevelopedbyDr.D.J.Wood,DepartmentofCivilEngineering,UniversityofKentucky.ThiscodehasbeenverifiedandtestedperRG&EProcedureQE330(Reference3).DuringtestsofthenewlyinstalledCRFCsA,B,C,&Din1993,KYPIPEwasutilizedtocheckflowdistributionsforoneandtwoservicewater(SW)pumpoperations(Reference4).Goodagreementbetweentestandanalyticalresultswereobtained.AlthoughKYPIPEmodelsliquidsystems,additionaltwo-phaseflowresistanceswereinputtocalculatetheflowreductionswithflashing.Noothercomputercodeshavebeenusedintheanalysesofthoseeffects.b.Describeandjustifyallassumptionsandinputparameters(includingthose<<sedinanycomputercodes)suchasamplificationduetofluidstructureinteraction,cushioning,speedofsound,forcereductions,andmeshsizes,andexplainwhythevaluesselectedgiveconservativeresults.Also,providejustiflcationforomittinganyeffectsthatmayberelevanttotheanalysis(e.g.,fluidstructureinteraction,flowinducedvibration,erosion).WhiletheJanuary30,submittalwasnotexpectedtobecompleteinthisregard,examplesofinformationthatiscontainedintheJanuary30,submittalthathasnotbeenadequatelyjustifiedinclude:.assumptionthatthecontainmentrecirculationfancoolers(CRFCs)willcoastdownoveraperiodof30seconds; RAIResponseGL'96-06'age3Response:TheCRFCfancoastdowntimewasobtainedbaseduponactualcoastdowntestingoftheGinnafansatambientconditionstoquantifythefan/motorinertialresistance.Thisinertialresistancewasthenusedinacomputermodeltocalculatethefan/motorcoastdownunderaccidentconditions.Thecomputermodelwasverifiedbycomparingmodelpredictionsforfanstart-upunderambientandIntegratedLeakRateTest(ILRT)conditionstoactualfanstart-uptestdatatakenduringtheseconditions.ItshouldbenotedthattheILRTtestconditionscloselymatchtheexpectedpostaccidentconditions.Thecomputermodelcloselymatchedthisdata.Thecomputermodelpredictedafancoastdownof22seconds.RG&Echoosedtouse30secondsintheanalysesforconservatism.applicabilityandvalidityofEPRIinterimanddraftreports(references3.7and3.8oftheJanuary30,submittal;Response:TheconclusionsoftheEPRIreportsreferencedinRG&E'sJanuary30,1997submittalhavebeensupportedbyevaluationsperformedbyRG&EoftheCRFCsteamboilingandsteamgrowthtransientusingGinnaspecificconditions.TheRG&EevaluationsconcludedthatappreciableboilingofsteamintheCRFCswouldoccurfollowingaLOOPcondition.Additionally,consistentwiththeEPRIreports,theRG&EevaluationsconcludedthattheresultingsteamvoidwouldmigratetotheSWinletandoutletpiping.DuetotheUbendconfigurationoftheGinnaSWinletandoutletpipingdescribedintheJanuary30,1997submittal,thesteamgrowthwouldcausesignificantheatingofthewatercontainedintheSWpipingsimilartothatdescribedbytheEPRIreports.othersectionsoftheCRFCswillresisttheeffectsofwaterhammerpeakpressure;Response:AsstatedinRG&E'sJanuary30,1997submittal,thenon-tubesectionsofthenewCRFCsweremanufacturedwithenhancedstructuralcapabilities.TheCRFCdesignoftheplenumboxesincludestheuseofpassribsandspacerswhichareheldtogetherbymultipleboltsthatcanabsorbasubstantialamountofstrainenergy.Thisincombinationwiththeattenuationduetoplenumentrance/exitaffectsofwaterhammerpressurepulsesgeneratedintheCRFCtubesorSWpipinghasbeenevaluatedtobesufficienttomaintainthestructuralfunctionalityoftheplenumboxes.
,"Diagnosis ofCondensation-Induced Waterhammer",
RAIResponseGL'96-06Page4theamountofsteamformedandextentofthesteaInenvelopethatisformedwithintheservicewaterpiping(i.e.,whereisthesteamlwaterinterfaceandwhatisthebasisforwatertemperatureassumptions);andResponse:PreliminaryevaluationsoftheextentofthesteambubbleformedduetotheSWpumpandCRFCfancoastdownandstart-uptransientsfollowingaLOOP,havedeterminedthatthesteamenvelopeonthedischargesideoftheCRFCcouldextendintothe8"and14"SWpipingintheIntermediateBuilding.Consequently,forthepreliminaryfluid/structuralinteractionsdiscussedinresponsetoQuestion1,RGkEevaluatedtheexpectedpressurepulsefromavoidcollapseinboththe8"and14"SWdischargepiping.SincethewaterslugintheSWdischargepipingbeingdrivenbythestart-upoftheSWPumphasbeenheatedbytheCRFCs,theactualtemperatureofthewaterslugdoesnotaffectthepressurepulsegeneratedbythecollapseofthesteamvoid.ThewaterslugvelocityiscontrolledbythevolumetricflowoftheSWpumpswhicharepushingthewaterslugthroughtheSWpipingandcollapsingthesteamvoidgeneratedduetoboilingintheCRFCspriortotherestartoftheSWPumps.Consequently,thepreliminaryevaluationofthefluid/structuralinteractiondiscussedinQuestion1arebaseduponawaterslugvelocityintheCRFCpipingduetothestart-upoftwoSWPumpsfollowingaLOOP.waterte)nperatureassumptionusedforevaluationofwaterhammerintheservicewatersystemdischargepiping.Response:TominimizethetimetoboilingintheCRFCsandtomaximizethevolume'ofthesteamvoidcreatedbyboilingintheCRFCs,alloftheRG&EevaluationshavebeenperformedwithamaximumSWinlettemperatureof85'F.SinceanysteamvoidcollapseisexpectedtobelimitedbythevelocityofthewaterslugbeingdrivenbytheoperatingSWPumps,theSWtemperatureisexpectedtohavelittleeffectonthepressurepulsegeneratedbyasteamvoidcollapse.
wasusedinevaluating theeffectsofwaterhainmer, describethisalternate methodology indetaiLAlso,explainwhythismethodology isapplicable andgivesconservative resultsfortheGinnaplant(typically acco>nplished throughrigorousplant-speci Jtcmodeling, testing,andanalysis).
RAIResponseGL'6-06Page5c.Provideadetaileddescriptionofthe"worstcase"scenariosforwaterhaminerandtwo-phaseflow,takingintoconsiderationthecompleterangeofeventpossibilities,systemconfigurations,andpara>neters.Forexample,allwaterhammertypesandwaterslugscenariosshouldbeconsidered,aswellastemperatures,pressures,flowrates,loadcombinations,andpotentialcomponentfailures.Additionalexamplesinclude:theeffectsofvoidfractiononflowbalanceandheattransfer;theconsequencesofsteamforInation,transport,andaccumulation;cavitation,resonance,andfatigueeffects;anderosionconsiderations.LicenseesmayflndNUREGiCR-6031,"CavitationGuide'orControlValves,"helpfulinaddressingsomeaspectsofthetwo-phaseflowanalysesResponse:c.1:ItemsrelatedtowaterhammerissuesintheaboveRAIwillbedeferreduntilafterdevelopmentofthewaterhammertechnicalbasisdocument(References1,2).Itemsrelatedtotwo-phaseflowareprovidedbelow.c.2:Two-PhaseFlowIssuesTheCRFCsystemforGinnaconsistsoffourCRFCunits,eachunitincludesthemotorfan,coolingcoils,moistureseparators,highefficiencyparticulateairfilter,ductdistributionsystem,andinstrumentationandcontrol.DuringthepostaccidentperiodtwooftheCRFCunitsarerequiredfordepressurizationoftheContainment(Reference5).ThecoolingwaterrequirementsofthefourCRFCunitsaresuppliedbyaservicewater(SW)systemwhichprovidesaheatsinkforremovalofheatduringnormaloraccidentconditions.TheSWsystemconsistsofasingleloopheadersuppliedbytwoseparate,100%capacity,safetyrelatedpumptrains(seeAttachment1Schematic).EachtrainispoweredfromaseparateClass1Eelectricalbusandconsistsoftwo100%capacitypumpsandassociatedcheckandisolationvalves.Duetoredundancyconsiderations,theSWsystemisdesignedsuchthatoneSWpumpcansupplythecoolingwaterrequirementsofthefourCRFCunitsduringdesignbasistransients/accidents.EachofthetwoemergencydieselspowersaSWpumpwhichautomaticallystartsaspartoftheemergency RAIResponseGL'96-06Page6bus-loadingsequenceonlossofnormalacpowercoincidentwitharequirementforengineeredsafetyfeaturesoperation(SIsignal).Duringpostaccidentcondition,eachofthefourCRFCunitswillprovideaminimumheatremovalcapacityof54.6MBtu/hrwithContainmentconditionof74.7psiaand286F(Ref.5).WealsonotethatonlytwooftheCRFCunitsarerequiredfordepressurizationoftheContainmentduringpostaccidentconditions.RGB'asevaluatedthefollowing"worstcase"scenariosasboundingcasesforconsiderationoftwo-phasefloweffectsintheCRFC/SWsystems.ScenarioNo.1:Considerationofone100%capacitySWpump,twoavailableCRFCunits,SWinletwatertemperatureof85F,andadesignfoulingfactorof0.001hr-sqft-oF/Btu(Reference5).ThemaximumfoulinglimitsheattransfercapacityattheCRFCunits,whilethemaximuminletSWtemperatureoptimizestemperaturedistributionattheSWpipingmakingtwo-phaseformationahighpossibilityduringaoneSWpumpmodeofoperation.ScenarioNo.2:Considerationofone100%capacitySWpump,twoavailableCRFCunits,SWinlettemperatureof85F,andcompletelycleantubes,(i.e.,foulingfactorof0.000hr-sqft-F/Btu).CleantubesandaSWinlettemperatureof85FoptimizesthetemperaturefieldattheSWpiping,makingtwo-phaseflow'formationahighpossibilityespeciallyatoutletpipingdownstreamoftheCRFCs,foraoneSWpumpoperation.ScenarioNo.3:Considerationofone100%capacitySWpump,fourCRFCunits,SWinlettemperatureof85F,andcompletelycleantubes(i.e.,foulingfactorof0.000hr-sqft-F/Btu).ThisscenarioprovidesmoreflowpathsfortheSWflowdistributionsystem,andconsequentlyminimizestheSWpressurefieldattheinletandoutletpipingoftheCRFCunits.CleantubesandthemaximumSWtemperatureoptimizesthetemperaturefieldattheSWsystem,especiallyattheCRFCoutletpiping,makingtwo-phaseflowformationahighpossibilityduringaonepumpoperation.
 
RAIResponseGL'96-06'age7Evaluationofthese"worstcase"scenariosaredocumentedinReferences6,7,and8.Incaseswheretwo-phaseflowcanform,RGB'nvestigatedtheeffectsofvoidfractiononflowbalanceandheattransferconsideringtheconsequenceofsteamformation,transport,andaccumulationoftwo-phaseinventory.UtilizingReference9,RG8cEalsoevaluatedtheeffectsoftwo-phaseflowfieldintheerosion,cavitation,resonance,andfatigueofthepipingpressureboundary.Theseeffectsarenegligiblesincethereisnoviolentcollapseofthetwo-phaseflowandthedurationisshortterm.Resultsoftheevaluationaresummarizebelow.1.Forscenarios1,2Ec3two-phaseflowwillnotformattheCRFCcoils.2.Forscenarios1,2and3,twophaseflowcanoccurattheSWdischargepipingdownstreamoftheCRFCsandoutsideofContainment.EffectsofthisconditiononflowbalanceandheattransferwerefurtherinvestigatedandfoundthateachCRFCcanstillprovidetheminimumheatremovalcapacity(References6,7,8)toperformitsdesign-basisfunctionasrequiredintheaccidentanalysisforGinna(Reference13).d.Confirmthattheanalysesincludedacompletefailuremodesandeffectsanalysis(FMEA)forallcomponents(includingelectricalandpneumaticfailures)thatcouldimpactperformanceofthecoolingwatersystemandconPrmthattheFMEAisdocumentedandavailableforreview,orexplainwhyacompleteandfullydocumentedFMEAwasnotperformed.Response:TheanalysesthatwereundertakenbyRG&EtorespondtotheoriginalGL96-06requirementsandthecurrentRAItookintoconsiderationresultsofFMEAanalysis(Reference11)andthesingleactivefailureanalysisoftheGinnaServiceWatersystem(Reference10).Theseanalysesarewelldocumentedandareavailableforreview.
===Response===
RAIResponseGL'6-06'age8e.Explainandjustifyallusesof"engineeringjudgment".Response:Tolimittheextentoftheanalysesneededtobeperformedforassessingtheconsequencesoftwo-phaseflowintheSWdischargepipingonCRFCheatremovalcapability,RGAEusedengineeringjudgementtoestablishboundingcasesthatwouldbeanalyzed.Forexample,theheatremovalcapabilityoftheCRFCwasanalyzedforthetwoboundingCRFCfoulingconditionsofnofouling(cleanCRFCs)anddesignfouling.Theseresultsareexpectedtoenvelopetheresultsobtainedforanyotherfoulingcondition.Consequently,baseduponthisengineeringjudgement,detailedtwo-phaseflowanalyseswereonlyperformedforthesetwocases.Engineringjudgementwasalsousedtoidentifyconservativetwo-phasefrictionalresistancesforSWSystempipingandcomponents.Additionally,baseduponengineeringjudgementitwasdecidedthatminimumlakelevelelevationandmaximumlaketemperaturewouldprovideconservativeresultsfortheoverallCRFCheatremovalcapabilityinthetwo-phaseflowanalysesthatwereperformed.Engineeringjudgementwasalsousedwithinthetwo-phaseflowdesignanalysesformodelingofthosecomponentsandparametersthatarenotexpectedhaveasignificantimpactonthefinaltwo-phaseflowresults.3.Determinetheuncertaintyinthewaterhammerandtwo-phaseflowanalyses,explainhowtheuncertaintywasdetermined,andhowitwasaccountedforintheanalysestoassureconservativeresultsfortheGinnaplant.Response:RG8~Eaddresseduncertaintiesinthetwo-phaseflowanalysesbyusingconservativeinputsandassumptionsasdescribedbeloworbyperformingsensitivitystudieswhenitwasnotcertainoftheconservativenatureofaninputorassumption.Forexample,duringthedeterminationof"worstcase"scenariosforinvestigatingeffectsoftwo-phaseflow,thefollowingconservativecaseswereconsidered:a.TwoandfourCRFCunitoperationswerestudiedseparately.b.Servicewaterinlettemperatureof85Fwasused,althoughthemaximumsystemdesigntemperatureis80F(Reference5).c.OnlyoneoffourSWpumpsisconsideredavailable.
Rochester GasandElectricCorporation's (RG&E's)analyseswhichwerethebasesoforiginalresponsetoGL96-06evaluated thatseverewaterhammer hasaverylowprobability ofoccuringattheSWwaterpipingupstreamanddownstream oftheContainment Recirculation FanCoolers(CRFC's)duetothepresenceofheatedwaterthatactsasabufferbetweencoldwatersectionsandsteamthatformedattheCRFC'sduringfancoastdown.
RAIResponseGL96-06'age9d.Considerationofboundingcasesofcompletelycleanandcompletelyfouledtubesperdesignrequirements.Confirmthatthewaterhammerandtwo-phaseflowloading'conditionsdonotexceedanydesignspecificationsorrecommendedserviceconditionsforthepipingsystemandcomponents,includingthosestatedbyequipmentvendors;andconfiI7nthatthesystemwillcontinuetoperformitsdesign-basisfunctionsasassumedinthesafetyanalysisreportforthefaciltity.Response:Utilizingtheassumptionsasdescribedintheresponsetoquestion1,RG&Eevaluatedtheimpactofwaterhammerandtwo-phaseflowonthepipingsystem,componentsandsupports.StructuralintegrityoftheSWsystempressureboundary(piping,components,andsupports)willbemaintained.RG&EwillperformmoredetailedanalysesofthepotentialwaterhammereffectsbasedupontheresultsoffutureEPRIresearcheffortsasdescribedinquestion1response.Intheevaluationof"worstcase"scenariosforeffectsoftwo-phaseflow,itwasconfirmedthatminimumheattransfercapacityofeachCRFCunitisstillmaintainedat54.6MBtu/hr.Consequently,theCRFCandSWsystemswillcontinuetoperformitsdesignbasisfunctionasconsideredinGinnaaccidentanalysis(Reference13).5.ProvideasimpltJieddiagramofthesystem,showingmajorcomponents,activecomponents,relativeelevations,lengthofpipingruns,andthelocationofanyortJicesandflowrestrictions.Response:SimplifieddiagramsofGinnaCRFC/SWsystemsshowingthoseitemsrequestedintheRAIareattached.Attachment1:SchematicDiagramShowingSWSystemSupplyTrainstoCRFC's.Attachment2:SimplifiedPipingLayoutShowingSWPathsToandFromCRFC's.
Theanalysesalsoconsidered averyconservative situation thatwhenwaterhammer doesoccuratCRFCtubesandSWpiping,usingpredictive methodssimilartoNUREG/CR-5220, thestructural integrity oftheSWpressureboundarywillnotfailinthehoopdirection whichhasthedominantstressfield.Furthermore, RG&E'spreliminary evaluation ofeffectsofthefluid/structure interaction oftheefectsofatraveling pressurepulseassociated withasteamvoidcollapsedownstream oftheCRFCshasindicated thattheSWpipingwillbeprotected fromlossofstructural integrity bytheexistingseismicpipesupportsintheSWpiping.-Thisevaluation utilizedmorerealistic valuesfortheacousticparameters thanthosepresented inNUREG/CR-5220.
RAIResponseGL'6-06'age10RKliX<RKNCE<S1.NEILetter,MrDavid.J.Modeen(NEI)toMr.LedyardB.Marsh(NRC),"ResponsetoGenericLetter96-06RequestsforAdditionalInformation",June5,1998.2.EPRIProposaltoProspectiveUtilityParticipantsinEPRI/IndustryProjecttoDevelopaUtilityGuidanceDocumenttoAddressNRCRAIonWaterhammerIssue;FromAvtarSingh(EPRI)toUtilityParticipants,June9,1998.3.RG&EProcedureNo.QE330,"EngineeringComputerSoftwareDocumentationandControl",Rev.0;EffectiveDate:November21,1990.4.RG&ETestReport,EWR5275,"GinnaStationServiceWaterHeatExchangerPerformanceTestingContainmentRecirculationFanCoolersA,B,C,&D",Rev.0,October15,1993.5.GinnaUFSAR,Section6.2.2,"ContainmentHeatRemovalSystem".6.RG&EDesignAnalysisDA-ME-98-110,"EvaluationofTwo-PhaseFlowinCRFC/SWSystems-TwoUnits/FouledCase",Rev.0.7.RG&EDesignAnalysisDA-ME-98-111,"EvaluationofTwo-PhaseFlowinCRFC/SWSystems-TwoUnits/CleanCase",Rev.0.8.RG&EDesignAnalysisDA-ME-98-112,"EvaluationofTwo-PhaseFlowinCRFC/SWSystems-FourUnits/CleanCase",Rev.0.9.NUREG/CR-6031,"CavitationGuideforControlValves",J.PaulTullis,April1993.10.,RG&EReportNo.9014-NE-001,"SingleActiveFailureAnalysisoftheR..E.GinnaStationServiceWaterSystem",Rev.1,August1,1995.11.RG&EReport,"GinnaStationServiceWaterSystemMaintenanceBasisDocument",,Section4.2,Preparedby:EngineeringSystemsInc.,January14,1991.12.GinnaTechnicalSpecification,Sections3.7.8;B3.7.8.13.RG&EDesignAnalysis,DA-NS-93-012,Rev.2,"GothicModel-ContainmentIntegrity,GinnaStation",1/30/97  
Specifically, theacousticvelocityusedinEquation5.5ofNUREG/CR-5220 tocalculate thepressurepulsefromasteamvoidcollapsewasobtainedfromNUREG/CR-6519, "Screening ReactorSteam/Water PipingSystemsforWaterHammer".Additionally, thewaterslugvelocityusedinEquation5.5wasbaseduponthemaximumSWvolumetric flowassociated withtheoperation oftwoSWpumpsfollowing aLOOPcondition.
~~~~'roCirculatingIVatcrPumpsAndTravcllin$ScrccnsCA~ygO'C$8+OV'~~~RrsIQ$~4130ToSIPumps(LCO33.2)an4SafetyRclstcdPumpRoomCoolersToCCtjtrK(h(LCO3.1.1)andSpentFuelPoolK(AToSAPVPumpCsndSAFWRooatCoolerA(LCO3.73)StYPumpASSYPumpB4602SSYPutnpCSS'tY044603460$4601III461246114623415947394616~413$ToSAPVPumpD~n4SAPVRoomCoolerB9627B9626B9621A26hIINJIIsIN$46)0g4779202$I.c$cnd:S'tYPumpTram(onepumpfromeachelectr[esttrainrcttuired)SSYLoopHcadcrForillustrationonly(NOL---------rTohtotorDrivenAPVPumps(LCO3.1.5)413$y4790ToSlPumps(LCO3$2)andSafetyRentedPumpRoomCoolersIt461$Q-/4734ToCC'tVHXB(LCO371)~n4SpentFociPoolK(BTNNNN~tP]RclatcdLoads(IhComprcssors)ItPs~ToHon.safety6704613(Stattonhir)IaIssIToDieselIM=+GeneratorA47604661(LCD'.()ItIgl6NNIIToDicscl(LCO3.$.1)46638ToIDAPYPump(LCO3.1.5)sIIToCRFCLait*~(LCD3.65)"------sX~IIIToCRFCUnuB(LCO3.5.5)IaIIIIaNg4639sNToCRFC1:mtC(LCD3.651------"X-IToCRFCLnnD(LCD3551r------X->NIII~4663IsUg4133IIyTohronSafcORelatedLoads(Qultcrs) 86464IITTp99ELAP18414'4~/3385I,/PPA8--4114~826F323E28258T'fPICALOUILETPIPINGFROr/'ICFRC'STDDISCHARGECANAL~88+'~FIANCESSeTYPICAL585.I-P311E28758Tpd)168EL25858,)5618'IS24E.U)3PUUI525,UP251,'Ur.I'5.8')PUI//4)~)68682'8,A63~SS8'46684g5erl8'Itr668~443rd958,e.P328/EL258258IP312EI2565erj'!'r9783)$6'56~4Tleh%53"4INLETSTYP3"28,/Tr,)5gb249Wn214T't'FTCAL.'NiETPIPINlCFROMS'P/PUMIPS,TOCFrC'S2313'662ATACHMIENTRESPONSETOGENERICL.rTER-'7---S6RAISlMPLiiIEDA'(0JTOFCRFC/S7,89'YSTEM7}}
Assoonasprojectscopeandcostarefinalized byEPRI,RG&Ewillmakeafinaldecisiontoparticipate inacombinedIndustry/NEI/EPRI Collaborative Projecttodevelopatechnical basisdocumenttoaddresswaterhammer issuesofGL96-06,delineated inaJune5,1998letter(Reference 1)fromMr.DavidJ.Modeen(NEI)toMr.LedyardB.Marsh(NRC).RG&Eplanstorefinethewaterhammer analysisoftheCRFC/SWsysteminatimeframeconsistent withthecompletion ofthiscollaborative project.
RAIResponseGL'96-06'age22.Forboththewaterhanuner andtwo-phase flowanalyses, providethefollowing information:
a.Identifyanycomputercodesthatwereusedinthewaterhammer andtwo-phase floanalysesanddescribethemethodsusedtobenchmarkthecodesforthespecificloadingconditions involved(seeStandardReviewPlanSection3.9.1).Response:
Duringanalysesoftwo-phase flowissues,RG&Ehasutilizedtheresultsofacomputercode,KYPIPE,"Computer AnalysisofFlowinPipeNetworksIncluding ExtendedPeriodSimulations",
Rev.2.13whichwasdeveloped byDr.D.J.Wood,Department ofCivilEngineering, University ofKentucky.
ThiscodehasbeenverifiedandtestedperRG&EProcedure QE330(Reference 3).Duringtestsofthenewlyinstalled CRFCsA,B,C,&Din1993,KYPIPEwasutilizedtocheckflowdistributions foroneandtwoservicewater(SW)pumpoperations (Reference 4).Goodagreement betweentestandanalytical resultswereobtained.
AlthoughKYPIPEmodelsliquidsystems,additional two-phase flowresistances wereinputtocalculate theflowreductions withflashing.
Noothercomputercodeshavebeenusedintheanalysesofthoseeffects.b.Describeandjustifyallassumptions andinputparameters (including those<<sedinanycomputercodes)suchasamplification duetofluidstructure interaction, cushioning, speedofsound,forcereductions, andmeshsizes,andexplainwhythevaluesselectedgiveconservative results.Also,providejustiflcation foromittinganyeffectsthatmayberelevanttotheanalysis(e.g.,fluidstructure interaction, flowinducedvibration, erosion).
WhiletheJanuary30,submittal wasnotexpectedtobecompleteinthisregard,examplesofinformation thatiscontained intheJanuary30,submittal thathasnotbeenadequately justified include:.assumption thatthecontainment recirculation fancoolers(CRFCs)willcoastdownoveraperiodof30seconds; RAIResponseGL'96-06'age3Response:
TheCRFCfancoastdown timewasobtainedbaseduponactualcoastdown testingoftheGinnafansatambientconditions toquantifythefan/motor inertialresistance.
Thisinertialresistance wasthenusedinacomputermodeltocalculate thefan/motor coastdown underaccidentconditions.
Thecomputermodelwasverifiedbycomparing modelpredictions forfanstart-upunderambientandIntegrated LeakRateTest(ILRT)conditions toactualfanstart-uptestdatatakenduringtheseconditions.
ItshouldbenotedthattheILRTtestconditions closelymatchtheexpectedpostaccidentconditions.
Thecomputermodelcloselymatchedthisdata.Thecomputermodelpredicted afancoastdown of22seconds.RG&Echoosedtouse30secondsintheanalysesforconservatism.
applicability andvalidityofEPRIinterimanddraftreports(references 3.7and3.8oftheJanuary30,submittal;
 
===Response===
Theconclusions oftheEPRIreportsreferenced inRG&E'sJanuary30,1997submittal havebeensupported byevaluations performed byRG&EoftheCRFCsteamboilingandsteamgrowthtransient usingGinnaspecificconditions.
TheRG&Eevaluations concluded thatappreciable boilingofsteamintheCRFCswouldoccurfollowing aLOOPcondition.
Additionally, consistent withtheEPRIreports,theRG&Eevaluations concluded thattheresulting steamvoidwouldmigratetotheSWinletandoutletpiping.DuetotheUbendconfiguration oftheGinnaSWinletandoutletpipingdescribed intheJanuary30,1997submittal, thesteamgrowthwouldcausesignificant heatingofthewatercontained intheSWpipingsimilartothatdescribed bytheEPRIreports.othersectionsoftheCRFCswillresisttheeffectsofwaterhammer peakpressure;
 
===Response===
AsstatedinRG&E'sJanuary30,1997submittal, thenon-tubesectionsofthenewCRFCsweremanufactured withenhancedstructural capabilities.
TheCRFCdesignoftheplenumboxesincludestheuseofpassribsandspacerswhichareheldtogetherbymultipleboltsthatcanabsorbasubstantial amountofstrainenergy.Thisincombination withtheattenuation duetoplenumentrance/exit affectsofwaterhammer pressurepulsesgenerated intheCRFCtubesorSWpipinghasbeenevaluated tobesufficient tomaintainthestructural functionality oftheplenumboxes.
RAIResponseGL'96-06Page4theamountofsteamformedandextentofthesteaInenvelopethatisformedwithintheservicewaterpiping(i.e.,whereisthesteamlwater interface andwhatisthebasisforwatertemperature assumptions);
andResponse:
Preliminary evaluations oftheextentofthesteambubbleformedduetotheSWpumpandCRFCfancoastdown andstart-uptransients following aLOOP,havedetermined thatthesteamenvelopeonthedischarge sideoftheCRFCcouldextendintothe8"and14"SWpipingintheIntermediate Building.
Consequently, forthepreliminary fluid/structural interactions discussed inresponsetoQuestion1,RGkEevaluated theexpectedpressurepulsefromavoidcollapseinboththe8"and14"SWdischarge piping.SincethewaterslugintheSWdischarge pipingbeingdrivenbythestart-upoftheSWPumphasbeenheatedbytheCRFCs,theactualtemperature ofthewaterslugdoesnotaffectthepressurepulsegenerated bythecollapseofthesteamvoid.Thewaterslugvelocityiscontrolled bythevolumetric flowoftheSWpumpswhicharepushingthewaterslugthroughtheSWpipingandcollapsing thesteamvoidgenerated duetoboilingintheCRFCspriortotherestartoftheSWPumps.Consequently, thepreliminary evaluation ofthefluid/structural interaction discussed inQuestion1arebaseduponawaterslugvelocityintheCRFCpipingduetothestart-upoftwoSWPumpsfollowing aLOOP.waterte)nperature assumption usedforevaluation ofwaterhammer intheservicewatersystemdischarge piping.Response:
TominimizethetimetoboilingintheCRFCsandtomaximizethevolume'of thesteamvoidcreatedbyboilingintheCRFCs,alloftheRG&Eevaluations havebeenperformed withamaximumSWinlettemperature of85'F.Sinceanysteamvoidcollapseisexpectedtobelimitedbythevelocityofthewaterslugbeingdrivenbytheoperating SWPumps,theSWtemperature isexpectedtohavelittleeffectonthepressurepulsegenerated byasteamvoidcollapse.
RAIResponseGL'6-06Page5c.Provideadetaileddescription ofthe"worstcase"scenarios forwaterhaminer andtwo-phase flow,takingintoconsideration thecompleterangeofeventpossibilities, systemconfigurations, andpara>neters.
Forexample,allwaterhammer typesandwaterslugscenarios shouldbeconsidered, aswellastemperatures, pressures, flowrates,loadcombinations, andpotential component failures.
Additional examplesinclude:theeffectsofvoidfractiononflowbalanceandheattransfer; theconsequences ofsteamforInation, transport, andaccumulation; cavitation, resonance, andfatigueeffects;anderosionconsiderations.
Licensees mayflndNUREGiCR-6031, "Cavitation Guide'orControlValves,"helpfulinaddressing someaspectsofthetwo-phase flowanalysesResponse:
c.1:Itemsrelatedtowaterhammer issuesintheaboveRAIwillbedeferreduntilafterdevelopment ofthewaterhammer technical basisdocument(References 1,2).Itemsrelatedtotwo-phase flowareprovidedbelow.c.2:Two-Phase FlowIssuesTheCRFCsystemforGinnaconsistsoffourCRFCunits,eachunitincludesthemotorfan,coolingcoils,moistureseparators, highefficiency particulate airfilter,ductdistribution system,andinstrumentation andcontrol.DuringthepostaccidentperiodtwooftheCRFCunitsarerequiredfordepressurization oftheContainment (Reference 5).Thecoolingwaterrequirements ofthefourCRFCunitsaresuppliedbyaservicewater(SW)systemwhichprovidesaheatsinkforremovalofheatduringnormaloraccidentconditions.
TheSWsystemconsistsofasingleloopheadersuppliedbytwoseparate, 100%capacity, safetyrelatedpumptrains(seeAttachment 1Schematic).
EachtrainispoweredfromaseparateClass1Eelectrical busandconsistsoftwo100%capacitypumpsandassociated checkandisolation valves.Duetoredundancy considerations, theSWsystemisdesignedsuchthatoneSWpumpcansupplythecoolingwaterrequirements ofthefourCRFCunitsduringdesignbasistransients/accidents.
Eachofthetwoemergency dieselspowersaSWpumpwhichautomatically startsaspartoftheemergency RAIResponseGL'96-06Page6bus-loading sequenceonlossofnormalacpowercoincident witharequirement forengineered safetyfeaturesoperation (SIsignal).Duringpostaccidentcondition, eachofthefourCRFCunitswillprovideaminimumheatremovalcapacityof54.6MBtu/hrwithContainment condition of74.7psiaand286F(Ref.5).WealsonotethatonlytwooftheCRFCunitsarerequiredfordepressurization oftheContainment duringpostaccidentconditions.
RGB'asevaluated thefollowing "worstcase"scenarios asboundingcasesforconsideration oftwo-phase floweffectsintheCRFC/SWsystems.ScenarioNo.1:Consideration ofone100%capacitySWpump,twoavailable CRFCunits,SWinletwatertemperature of85F,andadesignfoulingfactorof0.001hr-sqft-oF/Btu (Reference 5).ThemaximumfoulinglimitsheattransfercapacityattheCRFCunits,whilethemaximuminletSWtemperature optimizes temperature distribution attheSWpipingmakingtwo-phase formation ahighpossibility duringaoneSWpumpmodeofoperation.
ScenarioNo.2:Consideration ofone100%capacitySWpump,twoavailable CRFCunits,SWinlettemperature of85F,andcompletely cleantubes,(i.e.,foulingfactorof0.000hr-sqft-F/Btu).CleantubesandaSWinlettemperature of85Foptimizes thetemperature fieldattheSWpiping,makingtwo-phase flow'formation ahighpossibility especially atoutletpipingdownstream oftheCRFCs,foraoneSWpumpoperation.
ScenarioNo.3:Consideration ofone100%capacitySWpump,fourCRFCunits,SWinlettemperature of85F,andcompletely cleantubes(i.e.,foulingfactorof0.000hr-sqft-F/Btu).ThisscenarioprovidesmoreflowpathsfortheSWflowdistribution system,andconsequently minimizes theSWpressurefieldattheinletandoutletpipingoftheCRFCunits.CleantubesandthemaximumSWtemperature optimizes thetemperature fieldattheSWsystem,especially attheCRFCoutletpiping,makingtwo-phase flowformation ahighpossibility duringaonepumpoperation.
RAIResponseGL'96-06'age7Evaluation ofthese"worstcase"scenarios aredocumented inReferences 6,7,and8.Incaseswheretwo-phase flowcanform,RGB'nvestigated theeffectsofvoidfractiononflowbalanceandheattransferconsidering theconsequence ofsteamformation, transport, andaccumulation oftwo-phase inventory.
Utilizing Reference 9,RG8cEalsoevaluated theeffectsoftwo-phase flowfieldintheerosion,cavitation, resonance, andfatigueofthepipingpressureboundary.
Theseeffectsarenegligible sincethereisnoviolentcollapseofthetwo-phase flowandthedurationisshortterm.Resultsoftheevaluation aresummarize below.1.Forscenarios 1,2Ec3two-phase flowwillnotformattheCRFCcoils.2.Forscenarios 1,2and3,twophaseflowcanoccurattheSWdischarge pipingdownstream oftheCRFCsandoutsideofContainment.
Effectsofthiscondition onflowbalanceandheattransferwerefurtherinvestigated andfoundthateachCRFCcanstillprovidetheminimumheatremovalcapacity(References 6,7,8)toperformitsdesign-basis functionasrequiredintheaccidentanalysisforGinna(Reference 13).d.Confirmthattheanalysesincludedacompletefailuremodesandeffectsanalysis(FMEA)forallcomponents (including electrical andpneumatic failures) thatcouldimpactperformance ofthecoolingwatersystemandconPrmthattheFMEAisdocumented andavailable forreview,orexplainwhyacompleteandfullydocumented FMEAwasnotperformed.
 
===Response===
Theanalysesthatwereundertaken byRG&EtorespondtotheoriginalGL96-06requirements andthecurrentRAItookintoconsideration resultsofFMEAanalysis(Reference 11)andthesingleactivefailureanalysisoftheGinnaServiceWatersystem(Reference 10).Theseanalysesarewelldocumented andareavailable forreview.
RAIResponseGL'6-06'age8e.Explainandjustifyallusesof"engineering judgment".
 
===Response===
Tolimittheextentoftheanalysesneededtobeperformed forassessing theconsequences oftwo-phase flowintheSWdischarge pipingonCRFCheatremovalcapability, RGAEusedengineering judgement toestablish boundingcasesthatwouldbeanalyzed.
Forexample,theheatremovalcapability oftheCRFCwasanalyzedforthetwoboundingCRFCfoulingconditions ofnofouling(cleanCRFCs)anddesignfouling.Theseresultsareexpectedtoenvelopetheresultsobtainedforanyotherfoulingcondition.
Consequently, baseduponthisengineering judgement, detailedtwo-phase flowanalyseswereonlyperformed forthesetwocases.Enginering judgement wasalsousedtoidentifyconservative two-phasefrictional resistances forSWSystempipingandcomponents.
Additionally, baseduponengineering judgement itwasdecidedthatminimumlakelevelelevation andmaximumlaketemperature wouldprovideconservative resultsfortheoverallCRFCheatremovalcapability inthetwo-phase flowanalysesthatwereperformed.
Engineering judgement wasalsousedwithinthetwo-phase flowdesignanalysesformodelingofthosecomponents andparameters thatarenotexpectedhaveasignificant impactonthefinaltwo-phase flowresults.3.Determine theuncertainty inthewaterhammerandtwo-phase flowanalyses, explainhowtheuncertainty wasdetermined, andhowitwasaccounted forintheanalysestoassureconservative resultsfortheGinnaplant.Response:
RG8~Eaddressed uncertainties inthetwo-phase flowanalysesbyusingconservative inputsandassumptions asdescribed beloworbyperforming sensitivity studieswhenitwasnotcertainoftheconservative natureofaninputorassumption.
Forexample,duringthedetermination of"worstcase"scenarios forinvestigating effectsoftwo-phaseflow,thefollowing conservative caseswereconsidered:
a.TwoandfourCRFCunitoperations werestudiedseparately.
b.Servicewaterinlettemperature of85Fwasused,althoughthemaximumsystemdesigntemperature is80F(Reference 5).c.OnlyoneoffourSWpumpsisconsidered available.
RAIResponseGL96-06'age 9d.Consideration ofboundingcasesofcompletely cleanandcompletely fouledtubesperdesignrequirements.
Confirmthatthewaterhammerandtwo-phase flowloading'conditions donotexceedanydesignspecifications orrecommended serviceconditions forthepipingsystemandcomponents, including thosestatedbyequipment vendors;andconfiI7nthatthesystemwillcontinuetoperformitsdesign-basis functions asassumedinthesafetyanalysisreportforthefaciltity.
 
===Response===
Utilizing theassumptions asdescribed intheresponsetoquestion1,RG&Eevaluated theimpactofwaterhammer andtwo-phase flowonthepipingsystem,components andsupports.
Structural integrity oftheSWsystempressureboundary(piping,components, andsupports) willbemaintained.
RG&Ewillperformmoredetailedanalysesofthepotential waterhammer effectsbasedupontheresultsoffutureEPRIresearcheffortsasdescribed inquestion1response.
Intheevaluation of"worstcase"scenarios foreffectsoftwo-phase flow,itwasconfirmed thatminimumheattransfercapacityofeachCRFCunitisstillmaintained at54.6MBtu/hr.Consequently, theCRFCandSWsystemswillcontinuetoperformitsdesignbasisfunctionasconsidered inGinnaaccidentanalysis(Reference 13).5.ProvideasimpltJied diagramofthesystem,showingmajorcomponents, activecomponents, relativeelevations, lengthofpipingruns,andthelocationofanyortJicesandflowrestrictions.
 
===Response===
Simplified diagramsofGinnaCRFC/SWsystemsshowingthoseitemsrequested intheRAIareattached.
Attachment 1:Schematic DiagramShowingSWSystemSupplyTrainstoCRFC's.Attachment 2:Simplified PipingLayoutShowingSWPathsToandFromCRFC's.
RAIResponseGL'6-06'age 10RKliX<RKNCE<S 1.NEILetter,MrDavid.J.Modeen(NEI)toMr.LedyardB.Marsh(NRC),"Response toGenericLetter96-06RequestsforAdditional Information",
June5,1998.2.EPRIProposaltoProspective UtilityParticipants inEPRI/Industry ProjecttoDevelopaUtilityGuidanceDocumenttoAddressNRCRAIonWaterhammer Issue;FromAvtarSingh(EPRI)toUtilityParticipants, June9,1998.3.RG&EProcedure No.QE330,"Engineering ComputerSoftwareDocumentation andControl",
Rev.0;Effective Date:November21,1990.4.RG&ETestReport,EWR5275,"GinnaStationServiceWaterHeatExchanger Performance TestingContainment Recirculation FanCoolersA,B,C,&D",Rev.0,October15,1993.5.GinnaUFSAR,Section6.2.2,"Containment HeatRemovalSystem".6.RG&EDesignAnalysisDA-ME-98-110, "Evaluation ofTwo-Phase FlowinCRFC/SWSystems-TwoUnits/Fouled Case",Rev.0.7.RG&EDesignAnalysisDA-ME-98-111, "Evaluation ofTwo-Phase FlowinCRFC/SWSystems-TwoUnits/Clean Case",Rev.0.8.RG&EDesignAnalysisDA-ME-98-112, "Evaluation ofTwo-Phase FlowinCRFC/SWSystems-FourUnits/Clean Case",Rev.0.9.NUREG/CR-6031,"Cavitation GuideforControlValves",J.PaulTullis,April1993.10.,RG&EReportNo.9014-NE-001, "SingleActiveFailureAnalysisoftheR..E.GinnaStationServiceWaterSystem",Rev.1,August1,1995.11.RG&EReport,"GinnaStationServiceWaterSystemMaintenance BasisDocument",
,Section4.2,Preparedby:Engineering SystemsInc.,January14,1991.12.GinnaTechnical Specification, Sections3.7.8;B3.7.8.13.RG&EDesignAnalysis, DA-NS-93-012, Rev.2,"GothicModel-Containment Integrity, GinnaStation",
1/30/97  
~~~~'roCirculating IVatcrPumpsAndTravcllin$
ScrccnsCA~ygO'C$8+OV'~~~RrsIQ$~4130ToSIPumps(LCO33.2)an4SafetyRclstcdPumpRoomCoolersToCCtjtrK(h(LCO3.1.1)andSpentFuelPoolK(AToSAPVPumpCsndSAFWRooatCoolerA(LCO3.73)StYPumpASSYPumpB4602SSYPutnpCSS'tY044603460$4601III461246114623415947394616~413$ToSAPVPumpD~n4SAPVRoomCoolerB9627B9626B9621A26hIINJIIsIN$46)0g4779202$I.c$cnd:S'tYPumpTram(onepumpfromeachelectr[est trainrcttuired)
SSYLoopHcadcrForillustration only(NOL---------r TohtotorDrivenAPVPumps(LCO3.1.5)413$y4790ToSlPumps(LCO3$2)andSafetyRentedPumpRoomCoolersIt461$Q-/4734ToCC'tVHXB(LCO371)~n4SpentFociPoolK(BTNNNN~tP]RclatcdLoads(IhComprcssors)
ItPs~ToHon.safety 6704613(Stattonhir)
IaIssIToDieselIM=+Generator A47604661(LCD'.()ItIgl6NNIIToDicscl(LCO3.$.1)46638ToIDAPYPump(LCO3.1.5)sIIToCRFCLait*~(LCD3.65)"------sX~
IIIToCRFCUnuB(LCO3.5.5)IaIIIIaNg4639sNToCRFC1:mtC(LCD3.651------"X-IToCRFCLnnD(LCD3551r------X->NIII~4663IsUg4133IIyTohronSafcORelatedLoads(Qultcrs) 86464IITTp99ELAP18414'4~/3385I,/PPA8--4114~826F323E28258T'fPICALOUILETPIPINGFROr/'ICFRC'STDDISCHARGE CANAL~88+'~FIANCESSeTYPICAL585.I-P311E28758Tpd)168EL25858,)5618'IS24E.U)3PUUI525,UP251,'Ur.I'5.8')PUI//4)~)68682'8,A63~SS8'46684g5erl8'Itr668~443rd958,e.P328/EL258258IP312EI2565erj'!'r9783)$6'56~4Tleh%53"4INLETSTYP3"28,/Tr,)5gb249Wn214T't'FTCAL
.'NiETPIPINlCFROMS'P/PUMIPS,TOCFrC'S2313'662ATACHMIENT RESPONSETOGENERICL.rTER-'7---S6RAISlMPLiiIEDA'(0JTOFCRFC/S7,89'YSTEM7}}

Revision as of 11:02, 29 June 2018

Forwards Addl Info Re Response to GL 96-06,as Requested in 980414 Ltr
ML17309A637
Person / Time
Site: Ginna Constellation icon.png
Issue date: 07/21/1998
From: MECREDY R C
ROCHESTER GAS & ELECTRIC CORP.
To: VISSING G S
NRC (Affiliation Not Assigned), NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
GL-96-06, GL-96-6, TAC-M96814, NUDOCS 9807290262
Download: ML17309A637 (17)


Text

CATEGORY1REGULATiINFORMATION DISTRIBUTIO YSTEM(RIDS)I'ACCESSION NBR:9807290262 DOC.DATE:

98/07/21NOTARIZED:

YESDOCKETFACIL:50-244 RobertEmmetGinnaNuclearPlant,Unit1,Rochester G05000244AUTH.NAME'UTHORAFFILIATION MECREDY,R.C.

Rochester Gas5ElectricCorp.RECIP.NAME RECIPIENT AFFILIATION VISSING,G.S.

SUBJECT:

ForwardsaddiinforeresponsetoGL96-06,asrequested in980414ltr.CDISTRIBUTION CODE:A072DCOPIESRECEIVED:LTR ENCLSIZE:TITLE:GL96-06,"Assurance ofEquipOprblty&Contain.Integ.

duringDesignT05000244ERECIPIENT IDCODE/NAME NRR/WETZEL,B.

VISSING,G.INTERN:FILECER/DSSASCSBEXTERNAL:

NOACCOPXESLTTRENCL1111111111RECIPIENT IDCODE/NAME PD1-1PDNRR/DE/EMEB NRR/DSSA/SPLB NRCPDRCOPIESLTTRENCL111111110DUNNOTETOALL"RIDS"RECIPIENTS:

PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATION REMOVEDFROMDISTRIBUTION LISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION, CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION 415-2083TOTALNUMBEROFCOPIESREQUIRED:

LTTR9ENCL9

.1I ROCHESTER GASANDELECTRICCORPORATION 89EASTAVENUE, ROCHESTER, NY.14649-0001 AREACOOE716-546-2700 ROBERTC.MECREDYVicePresident NvdearOperations July21,1998U.S.NuclearRegulatory Commission DocumentControlDeskAttn:GuyS.VissingProjectDirectorate I-lWashington, D.C.20555

Subject:

ResponsetoRequestforAdditional Information (RAI)RelatedtoGenericLetter96-06(TACNo.M96814)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromGuyS.Vissing(NRC)toRobertC.Mecredy(RG&E),

SUBJECT:

REQUESTFORADDITIONAL INFORMATION RELATEDTOGENERICLETTER96-06RESPONSEFORR.E.GINNANUCLEARPOWERPLANT(TACNO.M96814),datedApril14,1998

DearMr.Vissing:

ByReference 1,theNRCstaffrequested additional information regarding theResponsetoGenericLetter96-06fortheR.E.GinnaNuclearPowerPlant.Theattachment tothisletterprovidestherequested information.

Veryyyours,RobertC.MecredyAttachment Subscribed andsworntobeforemeonthis21stdayofJuly,1998C'.u'otaryPublicMARIEC.VII.I.ENEUVE NotaryPublic,StateofNewYoiRMonroeCountyCommission ExltiresOctober31,19m'st8072'st0262

'st8072iPDRADQCK05000244PPDR

~~

~~xc:Mr.GuyS.Vissing(MailStop1482)ProjectDirectorate I-lDivisionofReactorProjects-I/IIOfficeofNuclearReactorRegulation U.S.NuclearRegulatory Commission Washington, D.C.20555RegionalAdministrator, RegionIU.S.NuclearRegulatory Commission 475Allendale RoadKingofPrussia,PA19406U.S.NRCGinnaSeniorResidentInspector RESPONSETONRCREQUESTFORADDITIONAL INFORMATION (RAI)FORRESOLUTION OFGENERICLETTER96-06ISSUESATTHER.E.GINNANUCLEARPOWERPLANTI.Ifamethodology otherthan(orinadditionto)thatdiscussed inNUREGICR-5220,

,"Diagnosis ofCondensation-Induced Waterhammer",

wasusedinevaluating theeffectsofwaterhainmer, describethisalternate methodology indetaiLAlso,explainwhythismethodology isapplicable andgivesconservative resultsfortheGinnaplant(typically acco>nplished throughrigorousplant-speci Jtcmodeling, testing,andanalysis).

Response

Rochester GasandElectricCorporation's (RG&E's)analyseswhichwerethebasesoforiginalresponsetoGL96-06evaluated thatseverewaterhammer hasaverylowprobability ofoccuringattheSWwaterpipingupstreamanddownstream oftheContainment Recirculation FanCoolers(CRFC's)duetothepresenceofheatedwaterthatactsasabufferbetweencoldwatersectionsandsteamthatformedattheCRFC'sduringfancoastdown.

Theanalysesalsoconsidered averyconservative situation thatwhenwaterhammer doesoccuratCRFCtubesandSWpiping,usingpredictive methodssimilartoNUREG/CR-5220, thestructural integrity oftheSWpressureboundarywillnotfailinthehoopdirection whichhasthedominantstressfield.Furthermore, RG&E'spreliminary evaluation ofeffectsofthefluid/structure interaction oftheefectsofatraveling pressurepulseassociated withasteamvoidcollapsedownstream oftheCRFCshasindicated thattheSWpipingwillbeprotected fromlossofstructural integrity bytheexistingseismicpipesupportsintheSWpiping.-Thisevaluation utilizedmorerealistic valuesfortheacousticparameters thanthosepresented inNUREG/CR-5220.

Specifically, theacousticvelocityusedinEquation5.5ofNUREG/CR-5220 tocalculate thepressurepulsefromasteamvoidcollapsewasobtainedfromNUREG/CR-6519, "Screening ReactorSteam/Water PipingSystemsforWaterHammer".Additionally, thewaterslugvelocityusedinEquation5.5wasbaseduponthemaximumSWvolumetric flowassociated withtheoperation oftwoSWpumpsfollowing aLOOPcondition.

Assoonasprojectscopeandcostarefinalized byEPRI,RG&Ewillmakeafinaldecisiontoparticipate inacombinedIndustry/NEI/EPRI Collaborative Projecttodevelopatechnical basisdocumenttoaddresswaterhammer issuesofGL96-06,delineated inaJune5,1998letter(Reference 1)fromMr.DavidJ.Modeen(NEI)toMr.LedyardB.Marsh(NRC).RG&Eplanstorefinethewaterhammer analysisoftheCRFC/SWsysteminatimeframeconsistent withthecompletion ofthiscollaborative project.

RAIResponseGL'96-06'age22.Forboththewaterhanuner andtwo-phase flowanalyses, providethefollowing information:

a.Identifyanycomputercodesthatwereusedinthewaterhammer andtwo-phase floanalysesanddescribethemethodsusedtobenchmarkthecodesforthespecificloadingconditions involved(seeStandardReviewPlanSection3.9.1).Response:

Duringanalysesoftwo-phase flowissues,RG&Ehasutilizedtheresultsofacomputercode,KYPIPE,"Computer AnalysisofFlowinPipeNetworksIncluding ExtendedPeriodSimulations",

Rev.2.13whichwasdeveloped byDr.D.J.Wood,Department ofCivilEngineering, University ofKentucky.

ThiscodehasbeenverifiedandtestedperRG&EProcedure QE330(Reference 3).Duringtestsofthenewlyinstalled CRFCsA,B,C,&Din1993,KYPIPEwasutilizedtocheckflowdistributions foroneandtwoservicewater(SW)pumpoperations (Reference 4).Goodagreement betweentestandanalytical resultswereobtained.

AlthoughKYPIPEmodelsliquidsystems,additional two-phase flowresistances wereinputtocalculate theflowreductions withflashing.

Noothercomputercodeshavebeenusedintheanalysesofthoseeffects.b.Describeandjustifyallassumptions andinputparameters (including those<<sedinanycomputercodes)suchasamplification duetofluidstructure interaction, cushioning, speedofsound,forcereductions, andmeshsizes,andexplainwhythevaluesselectedgiveconservative results.Also,providejustiflcation foromittinganyeffectsthatmayberelevanttotheanalysis(e.g.,fluidstructure interaction, flowinducedvibration, erosion).

WhiletheJanuary30,submittal wasnotexpectedtobecompleteinthisregard,examplesofinformation thatiscontained intheJanuary30,submittal thathasnotbeenadequately justified include:.assumption thatthecontainment recirculation fancoolers(CRFCs)willcoastdownoveraperiodof30seconds; RAIResponseGL'96-06'age3Response:

TheCRFCfancoastdown timewasobtainedbaseduponactualcoastdown testingoftheGinnafansatambientconditions toquantifythefan/motor inertialresistance.

Thisinertialresistance wasthenusedinacomputermodeltocalculate thefan/motor coastdown underaccidentconditions.

Thecomputermodelwasverifiedbycomparing modelpredictions forfanstart-upunderambientandIntegrated LeakRateTest(ILRT)conditions toactualfanstart-uptestdatatakenduringtheseconditions.

ItshouldbenotedthattheILRTtestconditions closelymatchtheexpectedpostaccidentconditions.

Thecomputermodelcloselymatchedthisdata.Thecomputermodelpredicted afancoastdown of22seconds.RG&Echoosedtouse30secondsintheanalysesforconservatism.

applicability andvalidityofEPRIinterimanddraftreports(references 3.7and3.8oftheJanuary30,submittal;

Response

Theconclusions oftheEPRIreportsreferenced inRG&E'sJanuary30,1997submittal havebeensupported byevaluations performed byRG&EoftheCRFCsteamboilingandsteamgrowthtransient usingGinnaspecificconditions.

TheRG&Eevaluations concluded thatappreciable boilingofsteamintheCRFCswouldoccurfollowing aLOOPcondition.

Additionally, consistent withtheEPRIreports,theRG&Eevaluations concluded thattheresulting steamvoidwouldmigratetotheSWinletandoutletpiping.DuetotheUbendconfiguration oftheGinnaSWinletandoutletpipingdescribed intheJanuary30,1997submittal, thesteamgrowthwouldcausesignificant heatingofthewatercontained intheSWpipingsimilartothatdescribed bytheEPRIreports.othersectionsoftheCRFCswillresisttheeffectsofwaterhammer peakpressure;

Response

AsstatedinRG&E'sJanuary30,1997submittal, thenon-tubesectionsofthenewCRFCsweremanufactured withenhancedstructural capabilities.

TheCRFCdesignoftheplenumboxesincludestheuseofpassribsandspacerswhichareheldtogetherbymultipleboltsthatcanabsorbasubstantial amountofstrainenergy.Thisincombination withtheattenuation duetoplenumentrance/exit affectsofwaterhammer pressurepulsesgenerated intheCRFCtubesorSWpipinghasbeenevaluated tobesufficient tomaintainthestructural functionality oftheplenumboxes.

RAIResponseGL'96-06Page4theamountofsteamformedandextentofthesteaInenvelopethatisformedwithintheservicewaterpiping(i.e.,whereisthesteamlwater interface andwhatisthebasisforwatertemperature assumptions);

andResponse:

Preliminary evaluations oftheextentofthesteambubbleformedduetotheSWpumpandCRFCfancoastdown andstart-uptransients following aLOOP,havedetermined thatthesteamenvelopeonthedischarge sideoftheCRFCcouldextendintothe8"and14"SWpipingintheIntermediate Building.

Consequently, forthepreliminary fluid/structural interactions discussed inresponsetoQuestion1,RGkEevaluated theexpectedpressurepulsefromavoidcollapseinboththe8"and14"SWdischarge piping.SincethewaterslugintheSWdischarge pipingbeingdrivenbythestart-upoftheSWPumphasbeenheatedbytheCRFCs,theactualtemperature ofthewaterslugdoesnotaffectthepressurepulsegenerated bythecollapseofthesteamvoid.Thewaterslugvelocityiscontrolled bythevolumetric flowoftheSWpumpswhicharepushingthewaterslugthroughtheSWpipingandcollapsing thesteamvoidgenerated duetoboilingintheCRFCspriortotherestartoftheSWPumps.Consequently, thepreliminary evaluation ofthefluid/structural interaction discussed inQuestion1arebaseduponawaterslugvelocityintheCRFCpipingduetothestart-upoftwoSWPumpsfollowing aLOOP.waterte)nperature assumption usedforevaluation ofwaterhammer intheservicewatersystemdischarge piping.Response:

TominimizethetimetoboilingintheCRFCsandtomaximizethevolume'of thesteamvoidcreatedbyboilingintheCRFCs,alloftheRG&Eevaluations havebeenperformed withamaximumSWinlettemperature of85'F.Sinceanysteamvoidcollapseisexpectedtobelimitedbythevelocityofthewaterslugbeingdrivenbytheoperating SWPumps,theSWtemperature isexpectedtohavelittleeffectonthepressurepulsegenerated byasteamvoidcollapse.

RAIResponseGL'6-06Page5c.Provideadetaileddescription ofthe"worstcase"scenarios forwaterhaminer andtwo-phase flow,takingintoconsideration thecompleterangeofeventpossibilities, systemconfigurations, andpara>neters.

Forexample,allwaterhammer typesandwaterslugscenarios shouldbeconsidered, aswellastemperatures, pressures, flowrates,loadcombinations, andpotential component failures.

Additional examplesinclude:theeffectsofvoidfractiononflowbalanceandheattransfer; theconsequences ofsteamforInation, transport, andaccumulation; cavitation, resonance, andfatigueeffects;anderosionconsiderations.

Licensees mayflndNUREGiCR-6031, "Cavitation Guide'orControlValves,"helpfulinaddressing someaspectsofthetwo-phase flowanalysesResponse:

c.1:Itemsrelatedtowaterhammer issuesintheaboveRAIwillbedeferreduntilafterdevelopment ofthewaterhammer technical basisdocument(References 1,2).Itemsrelatedtotwo-phase flowareprovidedbelow.c.2:Two-Phase FlowIssuesTheCRFCsystemforGinnaconsistsoffourCRFCunits,eachunitincludesthemotorfan,coolingcoils,moistureseparators, highefficiency particulate airfilter,ductdistribution system,andinstrumentation andcontrol.DuringthepostaccidentperiodtwooftheCRFCunitsarerequiredfordepressurization oftheContainment (Reference 5).Thecoolingwaterrequirements ofthefourCRFCunitsaresuppliedbyaservicewater(SW)systemwhichprovidesaheatsinkforremovalofheatduringnormaloraccidentconditions.

TheSWsystemconsistsofasingleloopheadersuppliedbytwoseparate, 100%capacity, safetyrelatedpumptrains(seeAttachment 1Schematic).

EachtrainispoweredfromaseparateClass1Eelectrical busandconsistsoftwo100%capacitypumpsandassociated checkandisolation valves.Duetoredundancy considerations, theSWsystemisdesignedsuchthatoneSWpumpcansupplythecoolingwaterrequirements ofthefourCRFCunitsduringdesignbasistransients/accidents.

Eachofthetwoemergency dieselspowersaSWpumpwhichautomatically startsaspartoftheemergency RAIResponseGL'96-06Page6bus-loading sequenceonlossofnormalacpowercoincident witharequirement forengineered safetyfeaturesoperation (SIsignal).Duringpostaccidentcondition, eachofthefourCRFCunitswillprovideaminimumheatremovalcapacityof54.6MBtu/hrwithContainment condition of74.7psiaand286F(Ref.5).WealsonotethatonlytwooftheCRFCunitsarerequiredfordepressurization oftheContainment duringpostaccidentconditions.

RGB'asevaluated thefollowing "worstcase"scenarios asboundingcasesforconsideration oftwo-phase floweffectsintheCRFC/SWsystems.ScenarioNo.1:Consideration ofone100%capacitySWpump,twoavailable CRFCunits,SWinletwatertemperature of85F,andadesignfoulingfactorof0.001hr-sqft-oF/Btu (Reference 5).ThemaximumfoulinglimitsheattransfercapacityattheCRFCunits,whilethemaximuminletSWtemperature optimizes temperature distribution attheSWpipingmakingtwo-phase formation ahighpossibility duringaoneSWpumpmodeofoperation.

ScenarioNo.2:Consideration ofone100%capacitySWpump,twoavailable CRFCunits,SWinlettemperature of85F,andcompletely cleantubes,(i.e.,foulingfactorof0.000hr-sqft-F/Btu).CleantubesandaSWinlettemperature of85Foptimizes thetemperature fieldattheSWpiping,makingtwo-phase flow'formation ahighpossibility especially atoutletpipingdownstream oftheCRFCs,foraoneSWpumpoperation.

ScenarioNo.3:Consideration ofone100%capacitySWpump,fourCRFCunits,SWinlettemperature of85F,andcompletely cleantubes(i.e.,foulingfactorof0.000hr-sqft-F/Btu).ThisscenarioprovidesmoreflowpathsfortheSWflowdistribution system,andconsequently minimizes theSWpressurefieldattheinletandoutletpipingoftheCRFCunits.CleantubesandthemaximumSWtemperature optimizes thetemperature fieldattheSWsystem,especially attheCRFCoutletpiping,makingtwo-phase flowformation ahighpossibility duringaonepumpoperation.

RAIResponseGL'96-06'age7Evaluation ofthese"worstcase"scenarios aredocumented inReferences 6,7,and8.Incaseswheretwo-phase flowcanform,RGB'nvestigated theeffectsofvoidfractiononflowbalanceandheattransferconsidering theconsequence ofsteamformation, transport, andaccumulation oftwo-phase inventory.

Utilizing Reference 9,RG8cEalsoevaluated theeffectsoftwo-phase flowfieldintheerosion,cavitation, resonance, andfatigueofthepipingpressureboundary.

Theseeffectsarenegligible sincethereisnoviolentcollapseofthetwo-phase flowandthedurationisshortterm.Resultsoftheevaluation aresummarize below.1.Forscenarios 1,2Ec3two-phase flowwillnotformattheCRFCcoils.2.Forscenarios 1,2and3,twophaseflowcanoccurattheSWdischarge pipingdownstream oftheCRFCsandoutsideofContainment.

Effectsofthiscondition onflowbalanceandheattransferwerefurtherinvestigated andfoundthateachCRFCcanstillprovidetheminimumheatremovalcapacity(References 6,7,8)toperformitsdesign-basis functionasrequiredintheaccidentanalysisforGinna(Reference 13).d.Confirmthattheanalysesincludedacompletefailuremodesandeffectsanalysis(FMEA)forallcomponents (including electrical andpneumatic failures) thatcouldimpactperformance ofthecoolingwatersystemandconPrmthattheFMEAisdocumented andavailable forreview,orexplainwhyacompleteandfullydocumented FMEAwasnotperformed.

Response

Theanalysesthatwereundertaken byRG&EtorespondtotheoriginalGL96-06requirements andthecurrentRAItookintoconsideration resultsofFMEAanalysis(Reference 11)andthesingleactivefailureanalysisoftheGinnaServiceWatersystem(Reference 10).Theseanalysesarewelldocumented andareavailable forreview.

RAIResponseGL'6-06'age8e.Explainandjustifyallusesof"engineering judgment".

Response

Tolimittheextentoftheanalysesneededtobeperformed forassessing theconsequences oftwo-phase flowintheSWdischarge pipingonCRFCheatremovalcapability, RGAEusedengineering judgement toestablish boundingcasesthatwouldbeanalyzed.

Forexample,theheatremovalcapability oftheCRFCwasanalyzedforthetwoboundingCRFCfoulingconditions ofnofouling(cleanCRFCs)anddesignfouling.Theseresultsareexpectedtoenvelopetheresultsobtainedforanyotherfoulingcondition.

Consequently, baseduponthisengineering judgement, detailedtwo-phase flowanalyseswereonlyperformed forthesetwocases.Enginering judgement wasalsousedtoidentifyconservative two-phasefrictional resistances forSWSystempipingandcomponents.

Additionally, baseduponengineering judgement itwasdecidedthatminimumlakelevelelevation andmaximumlaketemperature wouldprovideconservative resultsfortheoverallCRFCheatremovalcapability inthetwo-phase flowanalysesthatwereperformed.

Engineering judgement wasalsousedwithinthetwo-phase flowdesignanalysesformodelingofthosecomponents andparameters thatarenotexpectedhaveasignificant impactonthefinaltwo-phase flowresults.3.Determine theuncertainty inthewaterhammerandtwo-phase flowanalyses, explainhowtheuncertainty wasdetermined, andhowitwasaccounted forintheanalysestoassureconservative resultsfortheGinnaplant.Response:

RG8~Eaddressed uncertainties inthetwo-phase flowanalysesbyusingconservative inputsandassumptions asdescribed beloworbyperforming sensitivity studieswhenitwasnotcertainoftheconservative natureofaninputorassumption.

Forexample,duringthedetermination of"worstcase"scenarios forinvestigating effectsoftwo-phaseflow,thefollowing conservative caseswereconsidered:

a.TwoandfourCRFCunitoperations werestudiedseparately.

b.Servicewaterinlettemperature of85Fwasused,althoughthemaximumsystemdesigntemperature is80F(Reference 5).c.OnlyoneoffourSWpumpsisconsidered available.

RAIResponseGL96-06'age 9d.Consideration ofboundingcasesofcompletely cleanandcompletely fouledtubesperdesignrequirements.

Confirmthatthewaterhammerandtwo-phase flowloading'conditions donotexceedanydesignspecifications orrecommended serviceconditions forthepipingsystemandcomponents, including thosestatedbyequipment vendors;andconfiI7nthatthesystemwillcontinuetoperformitsdesign-basis functions asassumedinthesafetyanalysisreportforthefaciltity.

Response

Utilizing theassumptions asdescribed intheresponsetoquestion1,RG&Eevaluated theimpactofwaterhammer andtwo-phase flowonthepipingsystem,components andsupports.

Structural integrity oftheSWsystempressureboundary(piping,components, andsupports) willbemaintained.

RG&Ewillperformmoredetailedanalysesofthepotential waterhammer effectsbasedupontheresultsoffutureEPRIresearcheffortsasdescribed inquestion1response.

Intheevaluation of"worstcase"scenarios foreffectsoftwo-phase flow,itwasconfirmed thatminimumheattransfercapacityofeachCRFCunitisstillmaintained at54.6MBtu/hr.Consequently, theCRFCandSWsystemswillcontinuetoperformitsdesignbasisfunctionasconsidered inGinnaaccidentanalysis(Reference 13).5.ProvideasimpltJied diagramofthesystem,showingmajorcomponents, activecomponents, relativeelevations, lengthofpipingruns,andthelocationofanyortJicesandflowrestrictions.

Response

Simplified diagramsofGinnaCRFC/SWsystemsshowingthoseitemsrequested intheRAIareattached.

Attachment 1:Schematic DiagramShowingSWSystemSupplyTrainstoCRFC's.Attachment 2:Simplified PipingLayoutShowingSWPathsToandFromCRFC's.

RAIResponseGL'6-06'age 10RKliX<RKNCENIII~4663IsUg4133IIyTohronSafcORelatedLoads(Qultcrs) 86464IITTp99ELAP18414'4~/3385I,/PPA8--4114~826F323E28258T'fPICALOUILETPIPINGFROr/'ICFRC'STDDISCHARGE CANAL~88+'~FIANCESSeTYPICAL585.I-P311E28758Tpd)168EL25858,)5618'IS24E.U)3PUUI525,UP251,'Ur.I'5.8')PUI//4)~)68682'8,A63~SS8'46684g5erl8'Itr668~443rd958,e.P328/EL258258IP312EI2565erj'!'r9783)$6'56~4Tleh%53"4INLETSTYP3"28,/Tr,)5gb249Wn214T't'FTCAL

.'NiETPIPINlCFROMS'P/PUMIPS,TOCFrC'S2313'662ATACHMIENT RESPONSETOGENERICL.rTER-'7---S6RAISlMPLiiIEDA'(0JTOFCRFC/S7,89'YSTEM7