ML18011A541: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 3: Line 3:
| issue date = 08/08/1994
| issue date = 08/08/1994
| title = Cycle 6 Startup Test Rept. W/ 940808 Ltr
| title = Cycle 6 Startup Test Rept. W/ 940808 Ltr
| author name = ROBINSON W R
| author name = Robinson W
| author affiliation = CAROLINA POWER & LIGHT CO.
| author affiliation = CAROLINA POWER & LIGHT CO.
| addressee name =  
| addressee name =  

Revision as of 07:17, 18 June 2019

Cycle 6 Startup Test Rept. W/ 940808 Ltr
ML18011A541
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 08/08/1994
From: Robinson W
CAROLINA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
HNP-94-062, HNP-94-62, NF-94A-0597, NF-94A-597, NUDOCS 9408180204
Download: ML18011A541 (93)


Text

k'MJ.~Mj.'.

'Y 1 (ACCELERATED RIDS PROCESSIN~<'EGULARLY INFORMATION DISTRIBUTI~SYSTEM (RIDS)~-8 ACCESSION NBR: 9408180204 DOC.DATE: 94/08/08 NOTARIZED:

NO FACIL:50-400 Shearon Harris Nuclear Power Plant, Unit 1, Carolina AUTH.NAME AUTHOR AFFILIATION ROBINSON,W.R.

Carolina Power!'ight Co.RECIP.NAME RECIPIENT AFFILIATION DOCKET 05000400

SUBJECT:

"Harris Nuclear Plant Unit l,Cycle 6 Startup Test Rept." W/940808 ltr.DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR J ENCL!SIZE: 5+TITLE: Startup Report/Refueling Report (per Tech Specs+NOTES:Application for permit renewal filed.05000400 C RECIPIENT ID CODE/NAME PD2-1 PD COPIES LTTR ENCL 1 1 RECIPIENT ID CODE/NAME LE,N COPIES LTTR ENCL 2 2 1NTERNAL: ACRS NRR/SRX EG FILE EXTERNAL: NRC PDR 02 5 5 1 1 1 1 1 1 AEOD/DSP/TPAB NUDOCS-ABSTRACT RGN2 FILE 01 NSIC 1 1 1 1 1 1 1 1 NOTE TO ALL'RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE AVASTE!CONTACTTHE DOCUMENT CONTROL DESK, ROOM Pl-37 (EXT.504-2083)TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!TOTAL NUMBER OF COPIES REQUIRED: LTTR 15 ENCL 15 l I k Carolina Power&Light Company PO Box 165 New Hill NC 27562 William R.Robinson Vice President Harris Nuclear Plant AUG os t9%File Number: HO-940352 SERIAL: HNP-94-062 United States Nuclear Regulatory Commission ATTENTION:

Document Control Desk Washington, DC 20555 SHEARON HARRIS NUCLEAR POWER PLANT DOCKET NO.50-400/LICENSE NO.NPF-63 STARTUP TEST REPORT Gentlemen:

In accordance with the reporting requirements for the Shearon Harris Nuclear Power Plant (SHNPP)Technical Specifications, Section 6.9.1.1,Carolina Power 8c Light Company herein submits the Startup Test Report for Cycle 6 operation.

The report is required because the SHNPP core for Cycle 6 contains fuel purchased from a different supplier, Siemens Power Corporation.

Questions regarding this matter may be referred to Mr.R.W.Prunty at (919)362-2030.Sincerely, W.R.Robinson SDC/sdc c: Mr.S.D.Ebneter Mr.N.B.Le Mr.J.E.Tedrow j t'(..t.r.~'uv~b 9408i80204 940808 PDR ADOCK 05000400 R PDR State Road1134 NewHill NC Tel 919362-2502 Fax 919362-6950 P

Serial: NF-94A-0597 Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report The First Reload of a Transition from Westinghouse to Siemens Supplied Fuel NFMLSA File: 908.04 Page 1 of 50 (Rev.0)

Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report Table of Contents 1.Introduction and Cycle Description.......

2.Control and Shutdown Rod Drop Times'.Control and Shutdown Rod Bank Worth Measurements 4.Endpoint Measurements

.5.Isothermal Temperature Coefficients 6.Power Distributions 7.Intermediate Range Detector Setpoint Verification 8.Conclusions

~~~~~~~~~~~9.References

...~....~......~~............

10.Appendix 11.Distribution List..Page 3...9 10 12 13 14 Page 2 of 50 IRev.0)

I s Nuclear Plant Unit 1, Cycle 6 Startu st Report 1.0 Introduction and Cycle Description This report documents the startup test results for Harris Nuclear Plant Unit 1, Cycle 6.This report will focus primarily on the results obtained from the various startup physics tests and on a comparison between measured and predicted data supplied by Siemens Power Corporation (SPC).Note that this report is not intended to be a detailed description of the startup tests;for detailed documentation of the tests, refer to the following procedures:

EPT-069 Initial Criticality EPT-026 Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer Detector EPT-070 EPT-067 EST-707 EST-703 EST-701 EPT-068 EST-724 FMP-101 EST-710 EPT-009 Reactivity Computer Initial Setup and Calibration Boron Endpoint Measurement

-All Rods Out Special Test Exceptions Moderator Temperature Coefficient Measurement BOL After Each Refueling Shutdown Margin Calculation Mode 2 Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique Shutdown and Control Rod Drop Test Using Computer Incore Thermocouple and Flux Mapping Hot Channel Factor Tests Intermediate Range Detector Setpoint Verification Specifically, the following items are addressed:

Control Rod Drop Times Contro'I and Shutdown Bank Worth Measurements Endpoint Measurements Isothermal Temperature Coefficients Power Distributions Intermediate Range Detector Setpoint Verification Conclusions page 3 of 60 (Rev.0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report 1.0 Introduction and Cycle Description (Continued)

Among the items discussed for each of the topics above will be measured data, comparisons to predicted data, and applicable acceptance criteria which must be satisfied for the successful completion of the tests.Harris Unit 1 is a three-loop Westinghouse PWR reactor currently in its sixth cycle of operation.

The rated thermal power is 2775 MWt.The reactor core consists of 157 assemblies grouped into four regions for Cycle 6;with 52 fresh Siemens High Thermal Performance (HTP)assemblies, 96 carryover Westinghouse Vantage-5 assemblies and 9 Westinghouse reinserted LOPAR assemblies.

The 9 reinserted assemblies were used because of the potential to exceed the peak pin burnup limits in the assemblies that they replaced.Tables 1.1, 1.2, 1.3 and 1.4 provide a review of the Cycle 6 core design parameters and a description of each fuel type.Figures 1.1 and 1.2 provide the core loading pattern and the thimble and control rod locations, respectively.

Figure 1.3 provides the gadolinia loading in the fresh fuel assemblies.

There are several new features in Cycle 6.The fresh fuel is now supplied by Siemens Power Corporation (SPC)and the burnable poison in the fresh fuel is gadolinium oxide (Gd~Oa).Additional changes to the Harris Plant include the elimination of the RTD bypass manifold, a T>>reduction of 8'F and the removal of the neutron source assemblies from use in the Cycle 6 core.The predicted full power Cycle 6 length is 420 EFPDs based on a 463 EFPD Cycle 5.Cycle 6 initial criticality was achieved on May 10, 1994;the unit synchronized to the grid on 5I12I94.Following criticality, checkouts of the reactivity computers (connected to Nl-41 and Reactivity Computer Detector)were performed by comparing period measurements to the startup rate indicated by the computer.The six-group constants input to the reactivity computers were provided by SPC and are listed in Table 1.5.After confirming correct operation of the reactivity computers, startup physics testing continued in accordance with the established schedule.The reactivity computer connected to Nl-41 was disconnected since the reactivity computer connected to the Reactivity Computer Detector was performing satisfactorily.

The results of the Low Power Physics tests and the applicable acceptance criteria are provided in Tables 1.6 and 1.7.page 4 of 50 IRev.0)

V is Nuclear Plant Unit 1, Cycle 6 Start~st Report 2.0 Control and Shutdown Rod Drop Times Rod drop tests were performed in accordance with procedure EST-724 at hot full flow coolant conditions.

Briefly, a bank was selected and pulled to the fully withdrawn position.Rods were then dropped by opening the reactor trip breakers, thus interrupting the circuit.Technical Specifications require that the rod drop time from the beginning of the drop to dashpot entry be no greater than 2.7 seconds at full core flow and T, 2 551eF In Cycle 6, all rods met the rod drop acceptance criteria.The summarized results of the rod drop test are presented in Table 2.1~The data for the rods going into the SPC fuel has been italicized.

Page 5 of 50 IRev.0) is Nuclear Plant Unit 1, Cycle 6 Startup est Report 3.0 Control and Shutdown Rod Bank Worth Measurements Rod worthmeasurements were performedin accordance with plant procedure EPT-068.This procedure uses the rod swap technique to measure all banks except for the reference bank;this bank is measured through boron dilution.The purposes of this procedure are as follows: To verify that the reactivity worth of the reference RCC bank, as determined through reactivity computer measurement, is consistent with design predictions.

The reference RCC bank is the bank that has the highest predicted reactivity worth of all control and shutdown banks when inserted into an otherwise unrodded core.In Cycle 6 the Reference Bank is Control Bank B.2.To verify that the reactivity worth of each control and shutdown bank (except for the Reference Bank), as measured in the presence of the Reference Bank in a critical configuration, is consistent with design predictions.

3.To verify by analysis that shutdown margin is consistent with accident analysis assumptions.

4.To determine the critical RCS boron concentration and associated reactivity worth appropriate to an endpoint configuration.

The boron endpoints of interest in this procedure are those with ARO and the reference bank fully inserted.The method used to obtain this data is similar to that used in EPT-067, except that the Reference Bank is manipulated instead of Control Bank D.pege 6 of 60{Rev.0) is Nuclear Plant Unit 1, Cycle 6 Startu st Report 3.0 Control and Shutdown Rod Bank Worth Measurements (Continued)

The review criteria for the rod worths is as follows: 1.The absolute value of the percent difference between measured and predicted integral worth of the Reference Bank is (10o/o.2.For all banks other than the Reference Bank;either 80 b.The absolute value of the percent difference between measured and predicted worths is (15/o, or The absolute value of the reactivity difference between measured and predicted worths is (100 pcm, whichever is greater.The accePtance criteria requires that the sum of the measured worths be greater than 90o/o and less than 110/o of the sum of the predicted worths.Table 3.1 presents the integral and differential worth of Control Bank 8 (Reference Bank).Table 1.6 presents the measured and predicted endpoint data and measured integral worth for all banks.Figures 3.1 and 3.2 graphically compare the predicted and measured integral and differential.

rod worths for Control Bank B.The review and acceptance criteria on bank worths were met.Page 7 of 50 (Rev.Ol

4.0 Endpoint Measurements The ARO boron endpoint measurement was performed in accordance with the procedure EPT-067.The acceptance criterion for the boron endpoint measurement requires that the ARO critical boron concentration be within 500 pcm i71 ppm at Cycle 6 BOC boron worth)of the measured value.For Cycle 6, the ARO endpoint was 16 ppm more than the predicted value (1826 ppm predicted, 1842 ppm measured).

The acceptance criterion for the endpoint was met.Page a of 50 lRev.0)

is Nuclear Plant Unit 1, Cycle 6 Startu est Report~~5.0 Isothermal Temperature Coefficient Isothermal Temperature Coefficient (ITC)measurements were taken, in accordance with EST-703, to insure that Technical Specification requirements limiting the moderator temperature coefficient to less than or equal to+5 pcm/'F at HZP and 0.0 pcm/'F at HFP are met.Should the MTC exceed+5 pcm/'F at HZP, ARO conditions, rod withdrawal limits for startup and power ascension must be established.

The ITC is measured at HZP and operating pressure with rods close to ARO.The ITC is obtained by a uniform cooldown and heatup of the primary system with the resultant reactivity changes monitored by the reactivity computer and recorded on an X-Y plotter.All measurements are made below the nuclear heating range to minimize Doppler feedback effects.Over the temperature range used (558-553'F) the reactivity versus temperature relationship is approximately linear.As such, the coefficients were measured as the slope of the reactivity change versus the temperature change provided on the X-Y plotter.Note that the ITC measurements were taken for two cooldowns and heatups (one cooldown was discarded because of reactivity computer problems during the process)and the results averaged in order to calculate the MTC.The averaging was done to minimize the effect of boron additions to the system during the cooldown (boron additions are caused by concentration mismatches between the RCS and pressurizer).

Calculation of the MTC from the measured ITC is done using the equation below and the SPC predicted HZP Doppler coefficient of-1.60 pcm/'F: Results of the ITC/MTC measurements are presented in Tables 5.1 and 5.2 and the actual test data is provided graphically (obtained from Cycle 6 EST-703)as Figures 5.1, 5.2 and 5.3.The results indicate a negative MTC of-2.2 pcm/'F at HZP, ARO conditions indicating that no rod withdrawal limits would be necessary.

pago 9 of 50{Rov.0)

6.0 Power Distributions The core power distribution measurements are taken to insure correct core loading and to verify compliance with Technical Specification requirements and limits on hot channel factors, quadrant power tilts, power density and allowed power limits.Core power distribution is measured by processing moveable detector data using the INCORE code which evaluates the map quality, flux trace validity, hot channel factors and locations, and allowed power limits..Tables 6.1 and 6.2 provide pertinent statistics for evaluating map quality and core parameters which must be monitored.

Flux maps were taken at power levels of 27.5, 72.6, 93.8 and 99.8/o power (Maps 211, 212, 214 and 215, respectively).

Map 213 was not valid because of detector drift due to axial and radial xenon oscillations induced by rod movement immediately prior to the start of taking thimble data.Figures 6.1 through 6.8 provide pertinent INCORE results for the four flux maps.All Technical Specification limits were met.page 10 of 50 (Rev.Ol 7.0 Intermediate Range Detector Setpoint Verification SPC introduced a new methodology for the adjustment of the Power and Intermediate Range Detectors to account for the flux leakage changes between the end of Cycle 5 and the beginning of Cycle 6.During the power ascension phase of the startup physics testing, the procedure EPT-009 is used to verify that the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are within acceptance limits.Although EPT-009 is not specifically required by Technical Specifications, it is generally performed for each startup to monitor, verify and determine the Intermediate Range Detector Setpoints.

During a reactor startup, the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are verified to be as follows for both N35 and N36: Current equivalent to 15%power 6 Pr,~6 current equivalent to 27%power for N35.Current equivalent to 15%power 6 P7p 6 current equivalent to 27%power for N36.The highest Power Range indicated power at which the bistables engaged for the Intermediate Range Trip was 18.5 and 22A, for N35 and N36 respectively.

The Technical Specification allowed value for the trip setpoint is 30.9%RTP.psga 11 of 50 (Rov.0) h s Nuclear Plant Unit 1, Cycle 6 Startu t Report 8.0 Conclusions The data obtained during the Cycle 6 startup physics testing show acceptable agreement between measured and predicted rod worths, boron endpoints, temperature coefficients.

The flux maps allowed power ascension and then full power operation based on meeting the acceptance criteria as presented in Table 1.7.Since the startup physics predictions were acceptable overall, confidence in both the SPC data and the'FM&SA Section's ability to predict future Cycle 6 core behavior is reasonable.

Page 12 of 50{Rev.0)

Nuclear Plant Unit 1, Cycle 6 Startu t Report 9.0 References 1."Shearon Harris Unit 1, Cycle 6 Startup and Operations Report", EMF-94-025(P), April 1994.2..-Shearon Harris Engineering Periodic Test Procedure EPT-069,"Initial Criticality", Revision 4, May 3,1994, Revision 4, May 3, 1994.3.Shearon Harris Engineering Periodic Test Procedure EPT-070,"Reactivity Computer Initial Setup and Calibration", Revision 3, March 14, 1994.Shearon Harris Engineering Periodic Test Procedure EPT-026,"Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer Detector", Revision 3, April 20, 1994.Shearon Harris Engineering Periodic Test Procedure EPT-067,"Boron Endpoint Measurement

-All Rods Out", Revision 5, May 2, 1994.~6, 7.9.10.Shearon Harris Engineering Surveillance Test Procedure EST-707,"Special Test Exceptions", Revision 4, October 14, 1993.Shearon Harris Engineering Surveillance Test Procedure EST-703,"Moderator Temperature Coefficient Measurement BOL After Each Refueling", Revision 8, May 2, 1994.Shearon Harris Engineering Surveillance Test Procedure EST-701,"Shutdown Margin Calculation Mode 2", Revision 6, November 22, 1993.Shearon Harris Engineering Periodic Test Procedure EPT-068,"Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique", Revision 5, May 2, 1994.Shearon Harris Engineering Surveillance Test Procedure EST-724,"Shutdown and Control Rod Drop Test Using Computer", Revision 0, March 6, 1994.11.Shearon Harris Fuel Management Procedure FMP-101,"Incore Thermocouple and Flux Mapping", Revision 7, May 13,1994.12.Shearon Harris Engineering Surveillance Test Procedure EST-710,"Hot Channel Factor Tests", Revision 10, May 13, 1994.13.Shearon Harris Engineering Periodic Test Procedure EPT-009,"Intermediate Range Detector Setpoint Verification", Revision 4, March 3, 1994.page 13 of 60{Rev.0)

10.Appendix: List of Tables and Figures in Appendix Table 1.1 Table 1.2 Table 1.3 Table 1.4 Table 1.5 Table 1.6 Table 1.7 Figure 1.1 Figure 1.2 Figure 1.3 Table 2.1 Table 3.1 Figure 3.1 Figure 3.2 Table 5.1 Table 5.2 Figure 5.1 Figure 5.2 Figure 5.3 Table 6.1 Table 6.2 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Comparison of Cycles 5 and 6 Fuel Loading Comparison of Cycles 5 and 6 Peaking Factor Limits Fuel Inventory Dimensions Fuel Inventory Enrichment Input Parameters to the Reactivity Computer Startup Test Summary Startup Physics Test Procedures Acceptance Criteria Cycle 6 Loading Pattern Cycle 6 Control Rod and Thimble Locations Cycle 6 Gadolinia Loading Hot Rod Drop Times Rod Worth Measurement:

Control Bank B Control Bank 8 Integral Worth Control Bank B Differential Worth Isothermal Temperature Coefficient Isothermal Temperature Coefficient, Cycles 1-6 ITC, D-212, Cooldown Measured Value ITC, D-212, Heatup¹1 Measured Value ITC, D-212, Heatup¹2 Measured Value Flux Map Summary Flux Map Statistics Assembly Relative Power Map 211 Assembly Relative Power Map 212 Assembly Relative Power Map 214 Assembly Relative Power Map 215 page 14 of 50 (Rev.0)

~4 10.Appendix Continued Figure 6.5 Cycle 6 For"V(z)/K(z) versus Core Elevation, MaP 211 Figure 6.6 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 212 Figure 6.7 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 214 Figure 6.8 Cycle 6 Fc'V(z)/K(z) versus Core Elevation, Map 215 Note: Fc=F~1.05" 1.03 Page 15 of 50 (Rev.0) is Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.1 Comparison of Cycles 5 and 6 Fuel Loading Cycle 5 Cycle 6 As-built Zero Burnup Loading (MTU)Region 1 Region 5A 4 Assy-1.847 13 Assy-5.533 9 Assy-4.161 Region 5B Region 6A Region 6B Region 7A 20 Assy-8.495 32 Assy-13.602 28 Assy-11.917 32 Assy-13.580 12 Assy-5.098 24 Assy-10.213 32 Assy-13.580 Region 7B 28 Assy-11.896 28 Assy-11.896 Region 8 LFA Remainder Region 8 Total (MTU)66.870 8 Assy-3.663 44 Assy-20.046 68.657408 Power Rating (MWt)Rod Out Park Position (steps)2775 228 2775 231 System Pressure (psig)Core Average Moderator Temperature (HZP/HFP'F)Number of Poison Rod/Pins 2250 557/588.8 4096 IFBAs 96 WABAs 2250 557/580.8 40O2 w/o Gd103 63266 w/o Gd~Oa 160O8 w/o Gd~03 Page 16 of 50 (Rev.Ol 8

's Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.2 Comparison of Cycles 5 and 6 Peaking Factor Limits Cycle 5 Cycle 6 Fo Limit 2.45-LOPAR, V5 2.45-LOPAR, V5 2.52 SPC HTP F~Limit 1.62-LOPAR 1.65-V5 1.62-LOPAR'.65-V5 1.73-SPC HTP Page 17 of 50 (Rev.Ol

'4 is Nuclear Plant Unit 1, Cycle 6 Start st Report Table 1.3 Fuel Inventory Dimensions Region Number of Assemblies 6A 12 68 24 7A 32 78 28 52 Fuel Design LOPAR V5 V5 V5 V5 HTP Pellet Density (%TD)Pellet O.D., inches 95.1"'3225 95 4"'5.6"'3088

.3088 95 5"'3088 95.6"'3088 95.0.3215 Clad I.D., inches.329~315.315.315.315.328 Clad O.D., inches.374.360.360.360.360.376 Fill Gas Pressure, psig Region-wise loading, MTU 4.161 5.098 10.213 13.580 11.896 355 23.709 (1)Region 1, 6A, 68, 7A and 78 pellet densities are as built page 1a of 50 IRev.0)

is Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.4 Fuel Inventory Enrichment Nominal Initial Enrichment, w/o U235 Region 6A 6B 7A 7B Top 3 inches 2.10 0.72 0.72 0.74 0.74 0.71 Next 3 inches 2.10 0.72 0.72 0.74 0.74 4.95 Next 6 inches 2.10 4.40 a.8o 4.40 4.80 4.95 Central 120 inches: 0 w/o Gd,O, 2.10 4.40 4.80 4.40 4.80 4.95ru 2 w/o Gd~03 6 w/o Gd,Oa 8 w/o Gd~03 4.85u'.65"'.55'" Next 3 inches 2.10 4.40 4.80 4.ao 4.80 4.95 Next 3 inches Bottom 3 inches 2.10 2.10 0.72 0.72 0.72 0.72 o.7a 0.74 0.74 0.74 4.95 0.71 (1)12,896 rods contain 0 w/o Gd,O, (2)40 rods contain 2 w/o Gda03 (3)632 rods contain 6 w/o Gd,O, (4)160 rods contain 8 w/o Gd~03 page 19 of 60{Rev.0)

M s Nuclear Plant Unit 1, Cycle 6 Startu st Report Table 1.5 Input Parameters to the Reactivity Computer Group Ai (sec').000207.0128.001293.001163.0316.1203.002497.000904.000216.3211 1.4045 3.8696 EPi=0 00628 I=1/"=17.39 0.965 P,=0.006060 Pago 20 of 50 (Rev.OI

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.6 Startup Test Summary Boron Endpoint (ppm)Configuration Measured Predicted Difference (M-P)ARO 1842 1826 16 B-IN 1665 Control Rod Worths (pcm)1637 28 Bank Measured Predicted Wm-Wp Percent Difference

., CBB 1281 1342-61-4.5%CBA 346 371-25-6.7'lo SBC 433 480-47-9.Solo SBB 746 811-65-8.0%SBA 956 1040-84 8 1%CBC 1081 1150-69-6 0%CBD 901 948-47-5 0%Sum of.the., Measured Worth s Sum.of'the.'

..-0.9".Predicted"Predicted',Worths'-"'-,.,'-Worth': '1.10 Predicted Worth 5744 6142 5528 6756 Page 21 of 50 IRev.0)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.6 Continued Startup Test Summary Moderator Temperature Coefficient (pcm/aF)Configuration Measured Predicted Difference CBD-21 2-202-3.37+1.2 Differential Boron Worth (pcm/ppm)Configuration Measured Predicted Percent Difference CBB going in-7.24-7.09-201 Page 22 of 50{Rev.0)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.7 Startup Physics Test Procedures Acceptance Criteria Test Criteria Boron fndpoint Moderator Temperature Coefficient The ARO critical boron concentration should be within 500 pcm (71 ppm)of the measured value.The moderator temperature coefficient during power escalation is less than or equal to+5.0 pcml'F at HZP.Control Rod Worth Review Criteria.The reference bank must be within~10%of b.C.the predicted worth.The absolute value of the percent difference between measured and predicted worths is (15%, or The absolute value of the reactivity difference between measured and predicted worths is (100 pcm, whichever is greater.Acce tance Criteria: The sum of the measured worths are within N10%of the sum of the predicted worths.page 23 of 50 (Aev.01 0

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 1.7 Startup Physics Test Procedures Acceptance Criteria Test Criteria Power Distribution Maps 80 Fg(z)s, p)0,5 Fg"~Z(z)Zg(z)s, p z0,5 R~P*Z(z)Where: P is a fraction of HFP Fo~=2.45 for LOPAR and Vantage 5 fuel F"=2.52 for SPC HTP fuel b.F~S 1.62I1+0.30(1-P)J (LOPAR Fuel)F~6 1.65I1+0.35(1-P)J (Ventege 5Fuel)F~6 1.73I1+0.35f1-P)J (SPC HTP Fuel)c.Quadrant tilts 6 1.02 Control Rod Drop The drop time to dashpot under hot conditions S 2,7 secontls.page 24 of 50 iRev.0) 1~

Figure 1.1 Loading Pattern R P N M L J H G F'0 C 8 R 01 02 F'48 40072 68 F57 F30 H03 4552]38305 0 68 68 SR f'06 4]85]68 G30 2]795 78 14639 68 H02 F'10 F'05 0 37123 00911 SA 6R 68 01 02 03 F33~<038 68 Hl I 0 SB H27 GOB 0 2469]58 78 H33 0 58 G]%H26 246]4 0 7A SB HI 0 0 SB f'39 440]2 68 03'6 05 06 07 08 09 10 f'35 04]88 68 F'51 H12 457]5 0 68 SB F'01 H28 38076 0 68 SB F93 HON Gl 5 45]43 0 24757 68 SR 78 f'09 GOT H30 42289 21260 0 6R 78 SB F'58 HOS G09 407]8 0 20693 68 SR 78 F'23 H29 38395 0 68 SB f'46 H13 45062 0 68 58 HIB 0 58 IH8 0 SB G22 25861 78 G36 22367 78 G27 24857 78 G00 22474 78 G29 26262 7R tH9 0 58 H<7 G25 G35 0 26091 22668 SB 78 78 815 G I I H39 15917 25539 0 IR 78 SB G06 G38 G58 25137 21637 26009 78 78 78 HCO G60 812 0 25835 16234 SB 78 IR G28 G03 H22 25011 23874 0 7R 78 SB Hd]GSN 806 0 26]30 15685 SB 78 IR G13 G52 G53 25629 21562 26002 7R 78 78 835 G]6 H42 16651 25438 0 1R 78 SS G26 20907 78 G23 2S206 78 GS]23961 78 H21 0 SB R39 13475 IR H23 0 58 GOO 23804 78 G24 2512]78 G12 G21 H46 22055 26018 0 78 78 58 H38 G]2 827 0 25083 15916 58 78 IR G57 G<I G03 26068 2]664 25460 78 78 78 824 G55 H37 16217 26118 0 IR 78 58 H24 G46 G32 0 23580 25321 SB 78 78 851 G56 Hdd 16522 26047 0]R 78 58 G59 GNB GOI 25912 21S56 249]5 78 78 78 H03 G04 821 0 25310]62%0 SB 78]A HIT 0 58 H45 0 58 G19 26074 78 GWS 22673 78 G20 24976 78 G39 22090 78 G]7 25850 78 H52 0 SB FCO 43581 68 H09 F'53 0 45423 58 68 H25 f'26 0 38158 58 68 G02 HO]I'49 20805 0 40907 78 SR 68 H36 G%9 f'05 0 21358 4]905 SB 78 6R GI0 HOB F82 24645.0 88395 78 58 68 H32 f'12 0 37397 58 6A H16 F'52 0 45315 SB 68 00 05 0?08 09 10'12 13 F'36 437%6 68 H]9 0 58 F38 43926 68 H]0 0 58 H30 GOS 0 24101 58?8 H50 G30 G37 0 25956 22682 SB 7R 78 G31 248hO 78 H35 0 SB G07 H31 206K 0 78 SB H]S 0 58 G50 G 18 HS I 22686 26113 0 78 78 58 H20 0 SB F37 03870 68 F34 43712 68 RSSEIIBLI 10 BOO EXPOSURE F'UEI.REGlOH 12 13 15 F'50 F'08 H06 451%]37537 0 68 68 58 f4]44746 68 G33 2]438 78 f07 02435 6R H07 F'5 F47 0 38322 55650 58 6R 68 F55 41084 68 15 R P N M J H G F'0 C B R Page 26 of 60 IRev.0)

~~I~e H Nuclear Plant Unit 1, Cycle 6 Startup Report Figure 1.2 Control Rod and Flux Thimble Locations R P N M L K J H G F'0 C 8 R 01 02 03 SR 9 16 SR R 31 SG 10 01 02 03 00 05 06 07 08 09 10 SC 22 SR 33 SA 26 13 SB SB 46 SB 2B SB 23 37 36 SB 20 SB 19 0 15 21 SB l9 SB 47 39 29 B Cl SR SC 17 0 25 R 12 00 05 06 07 08 09 10 35 SC 16 27 ROO BANK f1.uX YHlflBLCS 12 15.30 42 15 R P N M L K J H G F'0 C 8 R Pnge 26 of 60 (Rev.01

's Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 1.3 Gadolinia Loading (ASM and AS represent Asymmetric gadolinia loadings)01 R P N N L K J H G F C 0 C 8 Fi 1 08 F06 FRR 01 02 F57 F30 H03 492 RSM 634 H02 092 RSM F IO%5 02 03 06 f35 H)6 696 RSM H47 2098 F33 Hl I 192RS 496RS H27 2096 GOB H33 G)d 2896 G35 626 G82 H26 2096 G21 H)0 F'39 192AS 496RS H<6 H)7 2098 696 RSM 03 06 05 H)2 HIB R)5 192RS 2098 096RS Gl I H39 G23 H38 2896 2896 G)2 A27 HNS HQ9 2098 192RS 496RS F53 05 FQ)H28 G22 G06 2096 G38 G58 GS)G57 Gl)G03 G)9 H25 2096 F26 06 07 08 09 f83 F09 F'58 HOS 492 RSM Gki H05 492 RSM GIS G36 HHO 2896 G09 G4%H'll 2896 H3%G27 628 2896 G60 GSS F)12 Hzl 2096 H22 R39 2096 H2%2096 R06 H23 RS I 2096 GSS G16 G56 H37 605 G02 2896 G32 G20 H36 2896 H00 G39 G)0 2896 HOI 492 RSM 683 HOB 892 RSM F89 FOS fdz 07 09 10 F23 H29 G29 G)3 2096 G52 G53 GWO G59 GRB GQI G17 H32 2096 F'12 10 12 F46 F36 H19 H50 696 2098 R5M HI 3 H49 R35 192RS 2098 096RS G)6 G30 H42 624 H03 2896 2896 G37 G31 650 G04 GIB H51 H20 2098 696 RSM f34 R21 HS2 H16 2098)92RS%96RS F'52 12 13 15 F38 Hl'I 192RS 196AS FSO H30 2096 FOB G05 H35 G07 2896 H06 G33 H07 492RS%92RS foal F'07 FSS H31 2096 F')5 Hl 5 F'37 RSSEMBL'I 10 192RS AGRO P INS 896AS sGAO PINS F47 13 15 R P N N L K J H G F'0 C B R Page 27 of 60 (Rev.0)

H Nuclear Plant Unit 1, Cycle 6 Startup t Report Table 2.1 Hot Rod Drop Times Time from Time from Initiation of initiation of Drop RCCA Bank and Group RCCA Grid Location Drop to Dashpot Entry (Seconds)to Bottom of Dashpot (Seconds)RCS Tavg t'F)RCS Flow (%)RCS Press (psig)CBA B10 1.485 1.534 1.937 2.043 557 557 100 100 2292 2292 p6 1.613 1.484 2.105 1.934 557 557 100 100 2292 2292 CBA K2 B6 1.485 1.713 1.934 2.178 557 557 100 100 2292 2292 CBB F14 P10 F4 D10 1.479 1.471 1.512 1.488 1.888 1.904 1.928 1.915 557 557 556.8 556.8 100 100 101 101 2292 2292 2221 2221 K12 M6 1.439 1.457 1.896 1.897 556.8 556.8 101 101 2221 2221 CBB K4 D6 F12 1.482 1.469 1.476 1.971 1.906 1.900 556.8 556.8 556.8 101 101 101 2221 2221 2221 M10 1.504 1.944 556.8 101 2221 page 28 of 50 (Rev.0)

~0 H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 2.1 (Continued)

Hot Rod Drop Times RCCA Bank and Group CBC RCCA Grid Location D12 Time from Initiation of Drop to Dashpot Entry (Seconds)1.438 1.431 Time from Initiation of Drop to Bottom of Dashpot (Seconds)1.865 1.864 RCS Tavg ('F)557 557 RCS Flow 100 100 RCS Press (psig)2292 2292 M 12 1.445 1.880 557 100 2292 M4 1.492 1.908 557 100 2292 CBC H6 FB 1.473 1.424 1.925 1.878 557 557 100 100 2292 2292 H10 1.450 1.954 557 100 2292 CBD KB H2 88 1.472 1.482 1.574 1.965 1.947 2.094 557 556.8 556.8 100 101 101 2292 2221 2221 CBD H14 PB F10 1.484 1.448 1.484 1.501 1.970 1.927 1.958 1.970 556.8 556.8 556.8 556.8 101 101 101 101 2221 2221 2221 2221 K10 K6 1.484 1.498 1.927 1.958 556.8 556.8 101 101 2221 2221 Page 29 of 50 IRev.0)

~e H Nuclear Plant Unit 1, Cycle 6 Startup~Report Table 2.1 (Continued)

Hot Rod Drop Times RCCA Time from Initiation of Drop to Group I ocation (Seconds)Bank and RCCA Grid Dashpot Entry Time from Initiation of Drop to Bottom of Dashpot (Seconds)RCS Tavg ('F)RCS Flow (%)RCS Press (pslg)SBA G3 C9 1.482 1.468 1.903 1.883 556.7 556.7 101 2291 101 2291 J13 1.455 1.889 556.7 101 2291 1.461 1.901 556.7 101 2291 SBA J3 C7 1.473 1.484 1.904 1.901 556.7 556.7 101 2291 101 2291 G13 1A78 1.900 556.7 101 2291 N9 1.464 1.895 556.7 101 2291 E5 1.481 1.926 556.8 101 2291 SBB E11 1.465 1.895 556.8 101 2291 L11 1.473 1.958 556.8 101 2291 SBB L5 G7 G9 1.458 1.485 1.481 1.886 1.964 1.920 556.8 556.8 556.8 101 2291 101 2291 101 2291 J9 1.471 1.917 556.8 101 2291 J7 1.464 1.914 556.8 101 2291 Page 30 ot 50 IRev.0) e H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 2.1 (Continued)

Hot Rod Drop Times RCCA Bank and Group RCCA Grid Location Time from Initiation of Drop to Dashpot Entry (Seconds)Time from Initiation of Drop to Bottom of Dashpot (Seconds)RCS Tavg ('F)RCS Flow (%)RCS Press (psig)SBC E3 1.429 1.496 1.865 1.940 556.9 556.9 100 100 2291 2291 L13 N5 1.537 1.475 1.990 1.922 558.9 558.9 100 100 2291 2291 pege 31 of 50{Rev.0)

~)

H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 3.1 Rod Worth Measurement:

Control Bank B RCCA Position (Steps Withdrawn)

RCC Position (Steps Withdrawn)

Reactivity (pcm)Initial Final Average ap/ah 231 217 223.5 19 19 1.3 217 209 213 69 88 8.6 209 206 207.5 31 119 10.3 206 202 204 47 166 11.8 202 199 196 199 196 193 200.5 197.5 194.5 32 33 33 198 231 264 10.7 11.0 11.0 193 189 191 42 306 10.5 189 185 187 40 346 10.0 185 180 1 82.5 47 393 9.4 180 175 177.5 44 437 8.8 175 170 172.5 42 479 8.4 170 165 160 165 160 155 167.5 162.5 157.5 42 40 37 521 561 598 8.4 8.0 7.4 155 149 152 43 641 7.2 149 143 146 41 682 6.8 143 137 140 42 724 7.0 137 131 134 38 762 6.3 Page 32 of 50 (Rev.0) e V H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 3.1 Rod Worth Measurement:

Control Bank B RCCA Position{Steps Withdrawn)

RCC Position (Steps Withdrawn)

Reactivity (pcm)Initial Final Average 131 125 128 37 799 6.2 125 119 122 38 837 6.3 119 113 116 37 874 6.2 113 107 110 40 914 6.7 107 101 104 39 953 6.5 101 95 98 40 S93 6.7 95 89 92 1035 7.0 89 83 86 39 1074 6.5 83 77 80 38 1112 6.3 77 71 74 34 1146 5.7 71 62 66.5 48 1194 5.3 62 57 38 1232 3.8 52 45 48.5 17 1249 2.4 45 22.5 32 1281 0.7 Measured Integral Worth=1281 pcm Predicted Integral Worth=1342 pcm Percent Difference

=-4.5%Page 33 of 50 IRev.0)

Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 3.1 Integral Worth of the Reference Bank (Control Bank B)BOL, HZP, No Xenon-1400-1300-1200-1100-1000 E-goo O-800 O-700 Ch o-600 I-500-400-300-200-100 10 PCM/DiV 0 0 2 SlEPS/DIV 20 40 60 80 100 120 140 160 180 200 220 240 PREDICTED eeeeo MEASURED pege 34 of 60{Rev.0)

s Nuclear Plant Unit 1, Cycle 6 Startu t Report Figure 3.2 Differential Worth of the Reference Bank (Control Bank B)BOL, HZP, No Xenon-14-13-12-10 Q 9 E I 7 Ch O 0'0.1 PCM/DIV 0 0 20 40 60 80 100 120 140 160 180 200 220 240 2 STEPS/DIV STEPS WITHDRAWN PREDICTED ee eel MEASURED Page 35 of 50 (Rev.0)

h~H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 5.1 Isothermal Temperature Coefficient Configuration Cooldown Measured ITC (pcm/'F)Heatup Average Predicted (pcm/'F)Difference (pcm/'F)CBD-21 2-3.7-3.9-3.8-4.97+1.2-3.7 Table 5.2 Isothermal Temperature Coefficient-Temperature.

Coefficients, HZP, BOL Cycle=Configuration Boron (ppm)Measured ITC.-(pcm/'F)'redicted ITC , (pcm/'.F,)

Difference (pcm/'F)Doppler (pcm/'F)ARO 1353-1.50-2.28 0.78-1.9 D-216/21 7 1764-0.82-0.06-0.76-1.6 D-206 1839-0.528-0.79 0.262-1.6 D-214 1718-1.61 5-1.39-0.225-1.69 D-206 1940+1.17+1.43-0.260-1.86 D-212 1835-3.8-4.97+1.2-1.6 page 36 of 50{Rev.0) k Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 5.1 ITC, D-212, Cooldown Measured Value ACCUCHAAT~

eottfd IIIS.CWIStta Oho SII010 II USA~I 2 2 1 S~I~9 10 11 12 12 I~15 10 It I~I~20 21 t2 22 21 22 20 tt 20 20 20 21 tt 21 SI SS 21 0 2 tt 0'"I hf., Ih 10 12 I~IS 0 I" i ltlt I tft I~12 12 10 I fy'I 2 2~S 0 2 0 9 10 11 12 IS 11 I S I~11 I~11 20 21 22 22 tl 2$20 21 20 tt 20 21 St 01 SI 1 20 SI IS pege 37 of 50 (Rev.0) p 4 H Nuclear Plant Unit 1, Cycle 6 Startup Report Figure 5.2 ITC, D-212, Heatup¹1 Measured Value 24 21 I 2 2~S~1 4 ACCVOIAIIZ 04IMI0 041 Orvv>>I Cr<<O IIIVkrd MI U SA~9 20 21 22 22 ti tS 24 21 24 29 20 21 22 21 tr 2$24~9 10 II 12 12 I~IS 14 11 14\>>I ,I M 21 0 M Ill'I IM el tv I lilt I Ir Ill M 14 Vl 14 I I IIM I" 4'll,<<'I<>~I','t I ll>>"f 10 41 ff I vv'4 4 44 44 I 0 IM Ml et<<M I I Mt'tt Sl 0 0 I 2 2~4 4 1~9 10 ll 12 12 I I I~14 11 14 19 20 21 tt 22 21 tS 24 21 24 29 20 21 St St Sr 2$24 21 Pege 38 of 80{Rev.0)

2 rs A.~H Nuclear Plant Unit 1, Cycle 6 Startup Report Figure 5.3 ITC, D-212, Heatup¹2 Measured Value 25 AtccfffAflt to coolo life oorooo0 crso Rroed n U 5 A~I 2 2~5 4 2~0 (~10 11 12 1$1~15 14 11 1~1~20 21 22 2$21 2$24 22 24 20$0 21$2 SS Sl SS$4$1 lst fs sl Ol,l 24 21 10'I~12 14 IS 1~sit II 5 I I'Ills llo so sf lsf,$1 f1's st sl III I'ft>>~I;41 4'ss"'I"'sl I s 0'lsf 0 ifft I 0 5 Is f's 2 s'ss ISI As II I sfr st 41 C,f 1$12 Is Itss Jf f oil fft s*s-I ss I'I sl 10 Crffs o.f r.Is's', I 44 4'Ils~'o tt"I~, I Iff sf I',I I tss II I 4 ff", 1st I st Ist'4 I Is rs 14 44 ,ss Sff st 4 4 4 fs sl 0 1 2 2~5~2 4~10 11 12 1$I~14 I~11~10 20 21 2 2 21 25 24 21 to tl$0 St 22 SS Sl$5$5 Sl$4 Pege 39 of 50{Rev.0) 4 H Nuclear Plant Unit 1, Cycle 6 Startup Report Table 6.1 Flux Map Summary Map'wd/MTU Date PWR%-D Bank Core AO Core Avg FZ Loc 211 212 214 20 5/13/94 61 5/16/94 161 5/18/94 28 73 94 181 190 219 8.73 4.66 5.35 1.269 1.217 1~175 1.857 1.796 1.740 D12 M12 M12 215 344 5/24/94 100 219 3.87 1.154 1.651 D12 Table 6.1 (Continued)

Flux Map Summary Map MWd/-Max;MTU'KW/FT Lim Fc/K(z)'Fc Loc.Fa.,:-Fa'DC3 APL Fz ,LOC Fq 211 20 3.65 2A44 2.372 D12 1.510 89.68 1 416 F6 212 214 215 61 8.94 161 11.03 344 11.52 2.281 2.201 2.176 2.101 2.129 2.004 M12 1.472 M12 1.433 Hj 1.359 96.08 1.345 F10 100.69 1.293 G11 102.93 1.227 J7 Fc includes a 1.03 engineering factor and a 1.05 measurement uncertainty F~includes a 1.04 measurement uncertainty KW/FT includes a 1.03 engineering uncertainty and a 1.05 measurement uncertainty Page 40 of 50 (Rev.0)

H.Nuclear Plant Unit 1, Cycle 6 Startup Report Table 6.1 (Continued)

Flux Map Summary Quadrant Tilt Power Fraction, Fuel Region Map NW SW SE 211 212 0.994 0.993 1.000 1.001 0.998 1.008 1.002 1.004 0.805 0.413 0.829 0.407 1.109 1.122 1.314 1.299 214 0.991 1.004 1.002 1.003 0.840 0.402 1~136 1.285 215 0.990 1.002 1.005 1.003 0.847 0.400 1.138 1.282 Table 6.2 Flux Map Statistics Standard, Deviation, Fuel:Region

'l No.of Useable Central Region , Reaction Rate:Map PWR%'2-'".4 , Thimble'Traces

~:Percent Differences 211 28 6.334 212 73 1.886 5.406 3.836 4.314 1.691 4.457'.983 61 58 5.60 3.02 214 94 1.135 4.044 1.330 1.698 74 2.38 21 5 100 1.629 4.000 1.325 1.827 58 2.45 page 41 af 50{Rev.0)

~All'r

's Nuclear Plant Unit 1, Cycle 6 Startu t Report Figure 6.1 Assembly Relative Power Map 211 Predicted Measured%Difference 0.259.0.294.0.259.e.275.e.Je2.e.267.2'3.2.8S.2.95.e.334 B.J64 9.20 0.497.i.si2 B.SJI.1.395 6,82.6.38 1.4JQ~1.494'.63.O.ddt e.dde.W.Ib.i.eie.1.055.-2.16.1.290.'1.239'.95.0 294.0.859., O.iob.O.879.s.ss.1.15.0.269.S.119..0.27J.1.160.~1.43.3.62.0.53$.0.567.$.94.0.334.e'.Js7.6.95.1.243.1.15S.1.14J.1.247.1.141.1.103.0.35.1.49.-3.45.I.117.I.25ks I.157.I.260.3.63.e.e7.i.Jes.i.tet.1.378.1.179.5.55.1.55.1.312.1.439.1.399.1.507.d.d4.4.70.e.4i7.i.420'.0.537.1.463.8.05.4.39..0.497.: 0'.537.6.05.I.269.1.244.H.44.1.07$.1.072.W.60.B.dd2.0.872.1.16.1.440.t.455.0.98.1.313.I.J24.0.84~e.334,'.327.

-2.27.0.497.1.420.0.535.1.482.7.52.4.JI~6.334.1.313.I F 440.0.355.1.390.I~459.6.28.5.81.I.25.O.S36.1.JOS.1.1d2.O.SS2.1.341.1.165.2.99.2.63.0.30..e.259.t.ssd.I.ss7.1.261.6,260, I.123.1,121.I,ZJQ.e.oJ.0.43.e.37.-1.7e.e.sJS.0.538.0.48.1.38$.1.331.2.84.1.161.1.160.-e.e7.'.876.

t'.edd'.M.97.1.099.1.054.W.17.1.12d.I:e67.'$.40.1.176.t.119.-5.02.1.127.1.076.H.51.1.099.1.070.-2.70.1.080.1.052.-2.54.1.162.1.15d.M.58.1.305.1.275.-2.3'I.0.538.O.S2$.2.12.1.119 1.133 1.2$1.117.1.100.1.58.1.259.1.229.-2.39.1.289.1.207.-5.35'.1.127.1.'04$'.7'2.0.811.8.742.M.45.1.2de.1.172.%.41.0.611.0.752.-7.29.1.128.I.es4'.1.290.1.224.-5.'I 2.1.261.1.244.1.28.1.117.1.18.I~11$.1.13'I.1.11.0.259 0.255 1,77 e.ddQ'.i.tid'.e.s36.'e.334: 0.866.1.143.B.S53.0.346.2,86.2.21.I.243.1.117;1.22'I.1.11d.-1.7d.M.ed.1.158, 1.2d1.1.12Q.'1.245.-2.$4~-1.20.1.143.'1.290.1.070.1.2J4.W.42.W.Jd.I.178.I.128.1.093.1.036.3.07.3.43.S.366.1.313.1.33d.1.348.2.28.2.66.1.152.1.440.1.174.1.478.0.99.2.57.1.050.O.ddt 1.091.0.682.1.05.2.3J.1.099.1.078.1.054~1.OBJET 7.27.W.18.t.280.0.611.I'.t76'e'.746'.

M.18.1.127.1.837.1.34.1.289'.254.7.29.M.41 1.143.1.269.1.078 1.93.0.8d2.1.085.1.218.1.061.-5.07'.-5.46'.-i.dd'.1.158.1.259.'1,1dt.d.875.1.46.i.439'.'1.144.1.258.1.21.M.tt.1.243.1~117.1.270.1.171.2.17.4.85.~~~~1.171.0.67.1.305.1.355.4.65.1.47S.2,70.1.312.1.403.8.91.0.6de.I~119.0.$35.~.334.~.695.1.173.0.502.O.JS2.2.93.4.83.4.97.5.52.~\0.294.~.269.0.29S.0.2b1.1.38.4.4d, I H.12.-7.9d.7.94.2.71.0.638.1.260.1.176.1.143.0.770.1.164.1.BSQ~1.895.-8.19.7.51.7.59.-4.20.I~250.0.611~1.126.1'90.I.I77.e.7se.1.044: 1.253.'.04.

-7.54.7.40.2.dd.I~178.1.127.'1.099.1.088.1.092.1.054.1.050.1.059.0.497.e.S16'.3.62.i.420.e.4i7'.1.4d2.0.519.2.94.4.52.1.439.1.J12.0.334.1.481'.374.0.346.2.M.4.72'.63.1.181.1.305.0.535.1.174.1.350.0.5d5.I.t4.3.44.5.52.1.2SQ.1, 117.1.It9.1.2$6.1.144.1.17$.W.27.2.44.5.25.1.158.1.243.O.dde.1~155.1.27'I~8.916.0.01.2.26.5.52.1.261.1.117.1.118.1.279.1.150.1.168.1.49.2.9d.4.45.1.1d2.1.306.0.53d.1.174.1.343.0.554~1.03.2.6'.23.1.440.1.313.0.334.1.508.1.387.0.357.4.66'.S.dt'.8.99'.1.420.0.497.1.510.0.540>8.32.6.54.0.497.0.$39.6.55.0.269.0.290.7.7e'.0.294.0.312.5.44.0.259.0.274.5.SI.0 Page 42 of 50 (Rev.Oi s

H is Nuclear Plant Unit 1, Cycle 6 Startup st Report Figure 6.2 Assembly Relative Power Map 212 Predicted Measured%Oifference 0 262., 0.261.7.41.0.296.0.320.7,53.0,271.0.291.7.42.t.t25.t.145.1.79, B.SS8.0.911.2.54.I.126.1.157.2.80.e.534: 0.544.1.66.B.331.0.343.3.55.1.118.1.257.t.te7.1.237.M.83.>>1.57.1.246.l.156, 1.235.1.136.M.QS.1.51.1.11S.1.255'.1.122.1.245.0.5d.W.64.1.300.1.156.1.319.1.154.1.46.0.57, 1.303.1.432.1.347.1.4T2.3.39.2.84.0.492.1.410.0.520.1.450.5.54.3.55..0.493..0.520.5.54.I~292 1.251-2.40 1.142 1.117-2.17 1.29t'1.282-2.26 1.061.1.063.0.25.0.6 50.0.677.1.96.1.433.1.458.1.77.1.385.1.32d.i.67.'.332 0.342 3.15 e.331 0.347 4.58 0.492'I.303 0.502.1.322 1.91.1.45 0.493.'1.410.1.432 0.501.1.41S.1.444 t.dd.8.44.B.bd 0.332.1.305.1.433.B.bdb.0.329.1.291.1.417, O.d52.-0.77.-1.02.-t.13.-8.97.0.535.I~302.1.157.1.052 0.531.1.269.1.148.1.873-B.&6.M.QT.M.63.M.TQ B.271.e.29S.e.262.0.268.0.317.0.274.6.42.6.51.4.SS., C e'.534.i.t26.e.dbb.'.t25.

0.535.e.332.0.526.1.145.0.909.'I.15Q.0.550.0.343.-1.15.1.SQ.2.3d.3.85.2.79.3.36.1.300.I~116~1.248.I~115.1.302.1~385.0.493.1.263.1.097.1.225.'1.106.1.300.1.319.8.513.-1.34.1.59~-1.62.W.QI.M.14.1.12.3.99~1.158.1.256~I~158.1~257.1.157.1.433.1.410.1.142.1.229.I~130.1~229.1.147.1.440.1.432.1.26.-2.16.2.23.'2.25.W.dd.0.49.1.57.1.061.1.291.1.142.1.292.1.062.0.850.1.432.t.057.1.241.1.099.1.246.1.078.0.656.1.440.1.24.M.SS.-3.76.3.56.M.40.W.27.0.57.1.121.1.132.1.179'.133, 1.12t.'I.dbt.1.156.1.189.1.104.1.156.1.110.1.127.1.063.1.154.1.10.-2.50.-2.82.-2.06.0.48.0.21.-0.17.1.133.S.di3.1.262.0.813.1.132.1.291.1.25d.1.115.0.796.1.263.8.799.1.12$.1.250.1.242.-I.dl.-2.07.-1.44.1.73.W.31.2.37.t.lb.1.179.1.262.0.639.1.2d2.1.179.1.142.1.155.1.151.1.27d.8.S35.1.265.1.t53.1.'lid.1~'144.-1.59.W.50.M.40.1.21.-1.36.2.31.M.QS.1.132.0.613.1.262.0.613.1.133.1.292.1.257.1.105.0.764.1.253.0.795.1.111.1.256.1.252.-2.40.M.57.-2.25.1.63.1.99.1.63.W.36.1.121~1~lbs.1.179.1.132.1.121~1.062.1.157.1.113.1.104.1.154.1.112.1.115.1.079.1.1dT.W.72'2.60.2.17.1.74.W.42.W.32.0.63.1~082.1~292~1~142.1~291~'I~861~~.MO.'1.433.1.071.1.256.1.114.1.267.1.0bQ.0.652.1.454.1.01,-2.65.2.43.-I.d7.0,73.0.25.1.45.1.'157.1.257.1.156.1.258.1.156.1.432.1.410~I~155.1.233.'1.134.1.241.1.1dl~1.433.1.441~M.22,-1.94.-1,91~-1.20.0,46~0.09.2.22.1.302.1~lld.1.248.t~lid.1.300.1.303.0.492~1.266.1.096.1.239.1.120.1.307.1.301.0.504.-2.57.<<1.65.M.74.0.35.0.55.W.20.2.34.~,535.1.125.8.866, 1.126.0.534.0.331~0.552.1.135.0.907.1.132.O.S40.0.331.3.26.1.01.2.05.0.52.1.17.W.eb..~.262.0.296.0.271..0.271.0.307.0.278.3.61.3.27.2.58.1.'116~1.14t.2.17.1.302.1.326, 2.05e 1.305.1.332.2.11.0.493m 0.508.2.57.1.125.1.172~4.25'.535.0.566.do23~,~.332.~.348.S.bdo d.492.e.584.'.28.

i.3e3'.e.331: 1.320.0.340.1.31.2.56~1.300.8.534.1.312..e.551.0.69.3.25.1.116.I~12d.1.131.1.157.I~36'.73.1.248.0.665.1.252.0.927~1.10.4.41.e.271.e'.262'.4.21.b.296.0.314.5.42.0.252.0~277.5.95.~~Page 43 ef 50 (Rev.0) 0 is Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.3 Assembly Relative Power Map 214 Predicted Measured%Difference 0.269 0.2$9 7,II B,313 e,'33s>.IB.0.279 8.299 7.11-0.70.-1.18.b.bS.b.52.0~17.1.25.%.17.%.20.0.323.1.270.1.402.0.$54.1.092.1.299.1.140.1.29$.0.330.1.290.l.i25.0.872.1.094.1.277.1.123.'1.280.1.96.1.57.1.de 2.09.0.22.1'0.1.48.1.40.~>~I~~~~~~0.477.1.370.1.403.1.141~1.247.l.tio.1.240.0.499.1.414.1.433.t.148.1.223.1.127.1.22Q.4.62.3.20.2.12.0.43.I.QO.1.97.-1.30..0.478.1.272.1.2$3.1.115.1.263.1.115.0.500.1.299.1.258.1.093.1.2il.1.103.0.93.0.19.0.74.2.OS.1.090.0.$54.1.483.1.272.1.108.0.$51.1.41d.1.295, 1.42.W.34.0.94.1.85.~~~~~~~~1.140.1.482.1.370.0.47$~1.14d.1.3Qd.1.393.0.4$$.0.57.W.43.1.65.2.15.1.2$2.1.270.0.477.'l.26$.1.249.0.4$6.4.62.2.14.-1.9$.-1.9i.-1.75.-I.eb.-1.05.-1.7'I.1.77.0.32i~O.S30.1.144.8.953.1.146.0.529.0.323.0.339.0.55S.1.155.0.960.1.131.0.52d.0.320.4.62.4.60.0.99.0.75.1.26.M.57.-1.17.0.269.~.313.0.279..0.2b2.0.321.0.279.4.62.2.41.d.07.8.279.8.313.0.269.0.296.0.332.0.2$2.5.98.5.96.4.61..0.323.8.529.1.146.0.953~1.144.8.530.0.324.: e.'33s.'.'523.'.'s7.'.'966,'1.'72.'.'s47.

'e'.335.'.45.'i.17'e.od.'.st.'.40.'.05.'.51'.

.0.477.1.270.1.282.1.115.1.263.1.115.1.2$3.1.272.O.i7$.0.4$8.1.26$.1.250.1.094.1.23d.1.105.1.2$6.1.2$9.0.497.0.48.-0.21.-2.45.-1.$3.-2.17.-0.87.0.21.1.35.3.9d.0.478.1.370.1.402.1.140.1.246.1.149.1.247.1.141.1.403.1.370.0.477'e.'i79.'.'36i.'.'ies..12s'1.219.

1.12i.'.220.

'I.'147.'.ile.'.'39e.'.'4$

5.0.25.&.43.0.21.-1.27.-2.li.2.20.2.12.0.51.0.49.1.43.1.55.0.324.1.272.1,483.O.b54~1.090.1.29$, 1.14'.299.

1.092.0.8S4.1.402.1.270.0.315.1.233.1.379.0.844.1.07d.1.259.1.10$.'1.2ds.1.101.0.650.1.405.1.271.-2.63.-3.03.-1.69.-1.22.-1.31.-3.03.-2.7$.-2.d3.0.$7.-0.44.0.20.O.OS.0.530.1.283.1.141.1.092.1.19$.1.153.1.1$5.1.1S4.1.19$.1.090.1.140.1.2$2.0.518.1.24$.1.129.1.093.1.196.1.140.1.1$0.1.154.1.231.1.094.1.141.1.2$1.-2.27.-2.69.-1.03.0.10.M.22.-'I.11.M.it.W.04.2.70.0.31.0.Ie.M.03.1.144.1.115.1.247.1.299.1.1S4.0.$23.1.2$9.0.$23.1.'153.1.29$.1.24d.1.115.I.153.1.093.1.224.1.274.1.14$.0.820.1.295.0.$23.1.175.1.2$2.1.230.1.119.0.73.1.94.1.80.1.95.-0.5S.-0.38.0.40.-0.0$.1.92.1.24.-1.25.0.3$.0.9S3.1.263.1.1i9.1.lie.1.1$5.1.2$9.0.$43.1.289.1.1$5.1.140.1.149.1.263.6.964.1.234.1.128.1.121.1.17$.1.30$.0.$57.1.301.1.196.1.12d.1.134.t.2di.i.td'.-2.30'.-I.bt'-1.70'.-e.s7'.1.44: I.do'.e.oe'.e.oe'.-I.tb'.-1.st.'.el..'.146.

1.115.1.246'.29$

.1.153.0.$23.1.2$9.0.823.1.'l5i.1.299.1.247.l.'115.1.160.1.100.1.227.1.272.1.13$.0.815.1.299.0.82d.1.157.1.2$1.1.230.1.13'I.1.23.-1.30.1.4'1.9$.-1.33.1.02.0.73.0.29.0.27.-1~43.1.32.1.46.0.529.'I.2$2.1.140.1.090.1.19$.1.154.1.18S.1.153'.'19$.1.092.1.141.1.2$3 B.S26.1.267.1.140.1.096.1.200.1.140.I.I83.1.150.1.209.1.094.1.149.1.309.1.144.1.183.3.36.e.530'.0.564.0.42.~.324.0.342m 5.70'.0.2d9.0.2$4.5.47.0.323.e.'333'.2.06.0.529.e.sit.2.lb.1.148.0.279.I.IS4.0.2$5.0.72.2.21.e.o53: e.313'.0.97d.0.325.2.41.3.90.Pege 44 of 50 (Rev.0) 4~%

H'uclear Plant Unit 1, Cycle 6 Startup t Report Figure 6A Assembly Relative Power Map 215 Predicted Measured'lo Difference

.e.2be.e.sis.e.271..e.'298'.e'.JJs..264'.

6.44.6.42.5.04..e.324.e.s29.i.$44: e.es4.i.t43.e.s31.e.324.0.333.0.525.1.152.0.964.1.16s.0.549.O.JJ6.2.82.M.75.0.70.1.05.2.lb.3.41.J.S5.0.476.1.265.1.279.1.114.1.26d.1.114.$.26$.1.2dd.0.477.0.476.1.255.1.24S.1.092.1.235.1.104.1.266.1.265.0.495.W.04.-0.74.-2.44.-1.97.-2.44.W.QI.0.57.1.56.J.66.0.324.0.312.-3.65.0.477.1.363.1.396.1.139.1.245.1.150.1.24S.0.474.1.34S.1.393.1.123.1.217.1.123.1.218.M.de.-1.11.W.JS.-$.39.-2.2J.-2.30.-2.25.$.266.1.399.0.657.1.092.$.301.1.141.1.302.1.214.1.365.O.S41.1.074.1.266.1.114.1.274.-4.eQ.-2.44.-I.be.-1.67.-2.71.-2.4e.-2.14.1.140.1.399.1.363.8.476.1.147.1.402.1.375.0.4S2.e.67.'e.22.e.92.i.ta.i.e93: e.ds7.'i.JQS.1.265.1.104.0.850.1.390.1.259.I~Be.W.76.W.sd~W~45.0.324.e.'333.'.es'.

0.531.0.517.-2.61.1.261.1.140.1.093.1.200.1.156.I.242.I.12J.1.BSS.1.199.1.151.-J.BJ.-1.49.-0.46.W.BQ.M.JQ.1.187.1.167.e.e4.1.157.1.200.1.092.1.1JQ.1.279.1.157.$.231.1.091.1.135.1.271.e.ed'.2.54'.-e.t t'.-e.34'.-0.65'.0.529.e.'sJS'.1.57.0.271.I.143 0.292.1.156 7.93.1.09 e.Jis.'e.es4 e'.34e.'0'.Qda 7.90.1.48 0.260.1.144 e.Je2.I.tsa 7.92.1.20 0.529 0.521-1.55 0.324 0.326 1.49 1.114.1.246.1.302.1.157.B.S26.1.293.O.S2S.1.15d.I 301.1.245.1.114.1.094.1.222.1.270.1.154.0.635.1.305.0.82d.1.174.1.2S4.1.231.1.117.-1.82.-1.92.-2.42.-0.20.0.77.0.69.M.26.1.57.-1.33.1.14.0.30.1.266.1.150.1.$41.1.187.1.29J.0.647.1.293.1.187.1.141.1.150.1.2d6.1.23S.1.13$.1.124.I.ISS.I.J34.0.668.1.312.1.285.$.$33.1.1JS.1.265.-2.20.-1.6d.1.50.0.11.J.IS.2.45.'1.44.1.5d.-0.71.1.20.-0.01.1.114.1.245.1.301.1.156.0.62S.1.293.0.828.1.157.'1.382.1.24d.1.114.1.094.1.225.$.27d.1.144.0.625.1.31a.e'.640.1.173.1.269.1.231.1.133.-1.79.-1.59.1.78.-0.96.-0.40.1.74.1.43.1.41.-1.02.1.27.I.de.1.279.1.139.1.892.1.200.1.157.1.167.1.156.1.200.1.893.1.140.1.2dl.1.255.1.141.1.104.1.209.1.146.1.194.1.1d2.1.220.1.099.1.$46.1.307.-I.9 J.0.16.1.12.0.74.W.76.0.59.0.55.1.67.0.53.0.69.2.01.$.265.1.39S.0.657.1.093.1.302.1.141.1.301.$.092.0.657.1.399.1.26d.1.279.1.422.0.661.1.102.1.2SS.1.129.1.290.1.111.0.654.1.4t2.1.266.1.15.1.73.2.90.0.76.-1.25.1.05.W.dd.1.73.W.26.0.91.1.76.0.47S.1.363.1.399.1.140.1.248.1.150.1.245.1.139.1.396.'1.363.0.477.0.49S.1.41$.1.440.1.151.1.225.1.130.1.231.1.147.1.393.1.365.0.467.4.53.3.56.2.96.0.96.'1.67.-1.73.-1.14.0.70.-0.35.1.63.2.09.0.477.1.2S6.1.2SI.1.$14.1.2dS.1.114.1.279.1.265.0.476.0.496.1.303.1.259.1.094.1.243.1.099.1.261.1.239.0.464.4.53.2.94.1.70.1.79.1.80.I.J4.-1.41.1.96.1.6S.l.144.0.260.I: Ise.e.'26s'.0.54.1.91.e.es4.e.sis'.0.949.0.313.W.59.W.64.i.$43.e.27$'.I'.147.0.273'.e.37.e.79.8.531.e.534'.e.aa'.0.324.0.34J.5.7Q.0.324.0.531.1.143.0.954.I.144.0.341.0.556.1.15S.0.961.1.127.5.24.5.20.1.26.0.72.-1.54.0.529.0.324.0.524.0.3$9.M.95.-1.37.0.271.O.J15.0.260.e.'26s.'0.322.'.'279.'.20.

2.45.W.45.Page 45 of 50 (Rev.0)

H'8 Nuclear Plant Unit 1, Cycle 6 Startup t Report Figure 6.5 Fo'V(z)/K(z) versus Core Elevation Map 211 6.0 5.0 h.n 3.0 2.e I.e 0.0 Bor 2 3 h 5 6 7 8 9 18 11 12 13 1h 15 16 17 18 19 28 21 22 2J 2h AXIAL POSITION (NOOES)TOP~~TECH SPEC LIMIT+~FOTov PDC O~FOT(Z)Page 46 of 60{Rev.Ol A i

's Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.6 Fo" Y(z)IK(z)versus Core Elevation Map 212 2.0 l,0 0.0 0 1 2 S 4 5 0 7 b 9 10 11 12 1S 14 1S 10 17 10 19 20 21 22 2S 24 SOT ,AXIAL POSITION (HOOES)TOP~~TECH SPEC LIMIT+a FOTeV POC o-raT(z)Pege 47 of 50 IRev.01 4 l t W Vr

's Nuclear Plant Unit 1, Cycle 6 Startup st Report Figure 6.7 FoT'V(z)/K(z) versus Core Elevation Map 214 3.00".50 2.00 1.50 1.00 0.50 0.00 0 1 2 4 5 6 7 6 9 18 11 12 IS 14 15 16 17 16 19 20 21 22 25 24 AXIAL POSITION (HOOES)TOP~~TECH SPEC LllllT+-rOT.V POC 0~POT(z)Page 48 of 60 lRev.Oi 6'P 1 r is Nuclear Plant Unit 1, Cycle 6 Startu st Report Figure 6.&FQT"V(z)/K(z) versus Core Elevation Map 215 2.58 l.50 8.58 e.ee 8 1 2 5 4 5 8 7 8 9 10 11 12 13 14 15 18 1T 18 10 20 2'I 22 25 24 SOT AXIAL POSITION (HOOES)TOP~~TECH SPEC LIMIT+~FOTov 3X 0~FOT(Z)Page 49 of 50 (Rev.0)

p.

Ha uclear Plant Unit 1, Cycle 6 Startup Report Distribution List NRC Harris Plant Manager-NSSS Manager-Technical Support Manager-Regulatory Affairs Power Ascension Coordinator

-Cycle 6 NFMRSA Section File: S08.04 pege 50 of 50 iRev.0) t~e A