ML20207D473

From kanterella
Jump to navigation Jump to search

Forwards Supplemental Info Re Evaluation of Superheated Steam Blowdown on Environ Qualification of Facility Equipment,Per 861125 Telcon.Response Provides Addl Info on Computer Codes Utilized in Superheat Evaluation
ML20207D473
Person / Time
Site: Beaver Valley
Issue date: 12/19/1986
From: Carey J
DUQUESNE LIGHT CO.
To: Harold Denton, Tam P
Office of Nuclear Reactor Regulation
References
2NRC-6-126, TAC-62897, NUDOCS 8612310023
Download: ML20207D473 (19)


Text

r h

T4@

2NRC-6-126 Beaver Valley No. 2 Unit Project Organization S.E.G. Building Telecopy ( 12) Ext.160 P.o. Box 328 Dec. 19, 1986 Shippingport, PA 15077 Mr. Harold R. Denton Office of Nuclear Reactor Regulation United States Nuclear Regulatory Commission Washington, DC 20555 ATTENTION: Mr. Peter Tam, Project Manager Division of PWR Licensing - A Office of Nuclear Reactor Regulation

SUBJECT:

Beaver Valley Power Station - Unit No. 2 Docket No. 50-412 Evaluation of Superheated Stean Blowdown on the Environmental Qualification of Equipnent - Supplemental Information

REFERENCE:

2NRC-6-099, dated September 20, 1986 Equipnent Qualification Report - Environmental Qualification of Class 1E Electrical Equipnent Gentlenen:

In response to your infonnation request during a November 25, 1986 telecon between the NRC and BVPS-2 Project, attached are six (6) copies of supplenental information regarding the evaluation of superheated stean blowdown on the Environnental Qualification of BVPS-2 equipnent. This response supplenents Appendix E of the reference and provides 1) additional infonnation on the con-puter codes utilized in the superheat evaluation and 2) a conparison with simi-Iar conputer codes as identified oy the NRC in the Novenber telecon. This infonnation is supplied to the NRR staff to assist in their review of BVPS-2 evaluation of superheated stean blowdown.

Should there be any questions regarding this matter, please contact Mr.

E. T. E11mann at (412) 393-7895.

DUQUESNE LIGHT COMPANY By ,

Sa m mne l

v44 ft b 8612310023 861219 (1 PDR ADOCK 05000412 PDR A

United States Nuclear Regulatory Commission Mr. Harold R.'Denton, Director . _

Evaluation of Superheated Steam Blowdown on the Environnental Qualification of Equipnent - Supplemental Information Page 2 KEW/ijr NR UPL/ INFO At nts AR cc: Mr. P. Tam, Project Manager Mr. J. Bealle, NRC Resident Inspector INP0 Records Center (w/o)

NRC Document Control Desk (w/o)

h

. Supplemental Information Regarding the Evaluation of Superheated Stean Blowdown on the Environmental Qualification of Equipment INTRODUCTION On Novenber 25, a conference call was established anong representatives of the NRC, DLC and SWEC. The purpose of the call was to address several NRC Staff Reviewer questions regarding the environmental qualification of equipment.

A discussion of each question is contained herein.

DISCUSSION THREED Computer Program The THREED computer progran is used for both subcompartment and pipe break outside contairinent analyses. THREED has been benchmarked against RELAP4/ MOD 5 in Reference 2 and against COMPARE /M000 in Reference 3 as part of its qualifi-cation procedure. Results have Deen taken fron both references and are shown in Attachnents 1 and 2, respectively . Note that both pressures and tenper-atures compare very closely in all cases.

Reference 4 calculation perfonns the Main 5tean Valve House (MSVH) pipe break analysis. Seven pages were extracted from Reference 4 and are shown in Attach-ment 3. Pages 9 and 11 show the MSVH model in schenatic form, and Pages 62-66 are the " echo" input to THREED with handwritten explanations of each important input witn eight percent revaporization as shown in tne heat sink section of the input oata. This correlation def aults to natural convection when the par-tial pressure ratio of stean to total pressure is less than 0.013see Attach-ment 4).

TAP-A Computer Program The TAP-A computer progran is a general thermal analyzer. It does not contain

" built-in" convection subroutines as convection must be input as part of the general input data, convection coefficient of four times the maximum Uchida value (1200 Btu /hr-f tp-F*) is used in parallel with a forced convection model up to the time the equipment surf ace reaches the dewpoint. At this point con-densation stops and forced convection continues until blowdown tenninates.

When blowdown enas, forced convection defaults to natural convection.

The following taDie summarizes the results of all equipment that has had tem-perature predictions by thennal analysis:

n l Peak Calculated Surface Qualified Analysis V Item Temp. (*F) Temp. (*F) Reference No. Comment MSIV 273 340 6 Vendor Supplied Trip Solenoids Limit Switches MSIV 193 340 6 Vendor Supplied Terminal Blocks Wire Lugs MSIV Ficxible 350 440 6 Vendor Supplied Conduit Inner Surface Ctble, Rigid Conduit 431 450 7 See Appendix E Inner Surface Terminal Block 352 450 7 See Appendix E Limit Switch 340 365 7 See Appendix E MSIV 136 200 8 Includes Heat Pressure Transducer Generation Attachment 5 shows a typical thermal model of a cable, limit switch housing, and terminal strip and the computer input for all three items. Key inputs Q have been identified on the input sheet.

The THREED and TAP-A computer programs were successfully used for nearly all of the subcompartment., pipe break outside containment (PBOC), and thermal lag analyses for other SWEC designed nuclear units.

REFERENCES 1l 1. SWEC Computer Program, "THREED - A Subcompartment Transient Response Code," NU-092U

2. SWEC Calculation THREED-US(B)-008-0, " Compare Results of THREED and RELAP4/ MODS Computer Codes Using "The Metcalf Run" as a Basic Input Guide," 6-12-79 (Attachment 1)
3. SWEC Calculation THREED-US(B)-011-0, " Comparison of THREED, Rev. 11 (NU-92) and COMPAhE/ MODO Results for NRC Standard Problems," 7-10-79 (Attachment 2)
4. SWEC Calculation No. 12241-US(B)-128-8, "HELB in MSVB for Equipment i Qualification," 8-13-86
5. " TAP-A - A Program for Computing Transient or Steady-State Temperature Distributions," Westinghouse Astronuclear Laboratory, WANL-TME-1872, December 1969 l 6. SWEC Calculation No. 12241-US(B)-202-1, 8-22-86 9627-12241-B4 2

4

7. . SWEC Calculation No. 12241-US(B)-206-0, 8-19-86
8. SWEC Calculation No. 12241-US(B)-196-0, 3-6-86 ATTACHMENTS
1. Page 9 from Reference 2 4.
2. Pages 4 and 5 from Reference 3 4
3. Pages 9, 11, 62-66 from Reference 4
4. Discussion of Uchida Model for Condensation Heat Transfer (2 pages)
5. Pages 10 and 27 from Reference 7 i

1 l

1 I

j

O 9627-12241-B4 3 i

4 4

' ,,, N 7 jf /L o-m stone c3 WEssTER ENGINEERING CCCPO3 ATION cm.cuunow cw:ar mgY,-/

ri KC- B s .

1 4Riem4

$ *'* TNFcEo

((/[ MONK US (B) toestion - No ATTAufMNT f VI J P. No.

j 2 MM Daic /.1f.;g/7' sy /j@

Checirc<l b[L/79 Bv ((hg 4 W R e vise <l By 5

6 7 TAJ'l ( 7_

8 c]MPAKUON Of MAX /V4 ' Ak& LONG R"/.'M TEMPEPAiv/TT 9

10 THREED R5 LAP y/f 11 MAX. T/NE lM 7Ff}f HM 7/Mi L w G 72 % 1 TEuP .T Mc I riuP ~ "f 12 NOPE . 77afs'f_. TEMP 4, P6c 13 l 233.17 ' O.03C?. 277.1 2S3.1. ', 0.03C 277./

14 2 270.yT ' O. 0 'lS' 276.7 277.7 ' O.O 2] 27L$

15 J ,

,17( 0, . _ 27%O ', _

16 V 27f. / 777./

17 J~ , , 27S.0 2 7.2.f la C. 30759 0.pfo ' 2 57.9 ' 10C. J. 0.Oll 29f 5' 19 7 116.9 27ES '

20 5 277.8 2 73. T /

21 .y, _ _ _ .z77 2. 2 72. 2 _ '

22 /0 j j 27T.C .

2 7!.?

O 23 ll 3/Y,16 0.0// 299,3 1/3. 2 ' O. Oll 28C.O 24 Il 275.3 2 7C. 2 25 /i 273.y 27f.O 26 /f _z7),y _ Z 72.0 27 ff- zyy, J . ' 270. 9 28 /c 273,5 ' -

t 7/. ')

29 ?7 27),f ' 2 7/. 5" '

30 iE i 7i. T .

271.3 31 f9 27J.J . Z 7/. C 32 10 L73.T

  • 2 C'. ?

83

_ . . . _2/_ z7/.f. ' 2 (F. 6. .. _

3" 22 27/.7 -

ZC8. 7

35 2] 2 7/.C . 2(&3 38 2V. 27/.7 _ _. Z(?. 2 '

37 2r 2S7.2 ' _ _ . ZTC 7 -

38 *

iC 279.7 - 2T(3 39 27 2C0,1 2MO
  • 29 zco.y ern 2.
  • 1 29 22Y.Z- 22 /. T 30 329.73 ' O. ooc l 3/3.o] ' 32C57 amT JoC99 '

43 44 4'

(lI W/ri'/ : hf f /fi) a) T. '//W A7:$6 ff  : If7l'i, 7 ., '/ ' ' ' .'. . 7.M 1/ .' 'fi f. !

4' i'!M 7(enf/rW"i N,$ 7/C TCPfrKA7vff.M.WAc' i ~ ~.f L w5 / TAN l

48 r? . . .. Anp/ ~ 7/Mli V.

49

6>

l N /EE'/ - / t, # -

g,

. -. : , z, c r.

l *

, e. ,,: t c ,

c ,

t y '

h { ' (- Y ;. $

clu Ii -

ut 't. -

\ g,

< . .- E cc c ,u?'O '.

o y 's ,' c9'.I C C '(. I g, obd ' / / - 6: 1'ot- gp of c C 4EC c ~

T. 6 t 'O ~ ct g,

~~

IWi: ~ 7 t 9C / b "d t

~ o,

/ca C -

/t; c- oc

CbO$ (8e C 4 h0*C b' SC

~ ~~

{ /6'CO / b 'C C C 'O'll ~ ;g j l 7.I y- ) O G 'S ~ 9C i 3hD 0 T': C b z t 'C ~ JJ gg N5 ' E 6 LbTh h 7 '9/7 tC C IC' b - 94h L- EC 69/ ' C J7C G hl 'C C EC h ^9 .' L ' L 9 bl.k9 tC 4 H .5 G anS'O og c,c o e ,c c o,,o c 9 gg e c ' // co l/ Ab'of se ode 2 th e f.) LC b?' - SCO C ( [ o 'o J gg

/ 0 'a i l _. C l 'I sg J LS 'O ~ } LL 'C ~ tC Ch c C C ., C C 9 h0 0 h gg 8 b 'l 8h L 00'8 CC

'tt' C G 2Er 0 15

~'- I T. O .' E C C 'D E OC T*C'$9 ** C E G SO'[9 61 cmo o - c no 'o- et 25C'C Jte C i t C 'C t' It c'*ccl o?'cCI A 9'c o! 9I Li 6 I (66 o- st Lob'O 9CC ; h?C 'o i tt T b 'L 9 t 00 o9%' V8 C 9 C ct a 4 y < ~ ll N t

  • ll @ '14 cf Et a s e c't/rn  : q *' .2 9 cl4 f T _ '" 5 * ) f avfog $ 11 fird J ' 2 5 M a.] A 3 3 ) 3 2 J n 3 hd <* 0 3 23\4 01 i .

6 Mff'cf 8

,y%gr ^ ) */ i/ 'fp. <',f'  ?]"j'W]

  • l /* y
  • Cl5 3 )H L L f f) <^ Q'Q E 1 %I a V, ~

<>~s k

  • T 3 ?() y.L

. e s

de P**Pd5 uo Poseg ,

da pav+u g de aiva saefens g

.s o( on na Joneao mio I z/> z .l.H3W}r>Yuy I/O-(9.7SD'023dHl- -

p ,g 7 mest 133Ms NOIAV7n31V3

"*'d NOI1YHOJMOD ONIH33NION3 M31S83M G 3NOIS erosos v vn esea

  • 6 n eens ic aes* w c SION2 C M3GS13W 3NOIN 73 WIND 3CWdoMY1 ION d"""W

3V1J*.,1V1.ON SM:31 ' lm L.N#nO-nf)9(-o// ynv>riwsm. r r/r .

g am sraep a 3.i- ne- ( o xe-g s"9'"' avi* ed J.%

i, i C o+Pi+P s4 t ee m o" u+9aP ed s

~

9 ,.[, @ D 13 T

  • J* * + ' '- ' * -(

L 8 )' j 201.) n 3 lAiJ 3y a*litnut L.H J3 31:' d ? e ra 6 T***fO'f EV m fO '9 Tic *&

m/t'O H 3nk ~ ~ ~ -

10 )'* lc sp . i 77 < q '

rC

" // n // // //N r eh to 8 c 6' t .c- 86e rs.

tt ) l-t ( O' O LY C'C LO c CL c ts ~I*Qs C V9o

%9 vt8Y'8,T h 8 b ' .T. i T_Cl* 7 E tL ) /-h ( o'oSC o' oSh O ' c J.L ta - l' .5 c 9 c ' S.s B 16

-i 24 h' CE  % 9 ,I go

)!- t ( c'c t i c' o l .7 c' C l E gt H*/85 A ' 6 2 C' '

tc S. 8 .f ~ S'CF S.' 9 (

}-h(

~~ ~~

gC O' O So O' 01W C' O lh-

~ l* 8lh ~ E ' r-F o l 59 CL CS C6 CO tt CE CC CP EE C9 II l C8 C6 tO 91 I >3 PC tt ts i tL t8 -

76 sv I

O *3'3 ST' NB D WECSTEC ENclNEE31NG COGPORATION CALCUL.ATION CHIET Armwr 5 f/7 7 .

i-n 2 ,  ;

U '

12241. 06 US(B) 128 - 7 . egg. 2 5 f/p g f ffyfg h p f. j f f f_. p { f h , f f} $ f f _ _

6 _h _ _ _ _ , _ _ ,

T + +.._ u s._ r . e n ,_., _ _ . . _ . .

8 _ - ,,, r b . _ _. . . _ _ _. _.

9 ._. L' .

..g

  • j.a' -

10 _ a _ w. _. . ' _ _ _ . _ . . , , , , _ T1 . .. . . FL fas 4 11 .c _ _ _ . . .. 2. -

12 1.- ^4 ark I J _

13 I Espyg!g 14 I

,_e.

15 '

){p/g/ ,

g.,g , . >

16 J. 1 ------$----- -------[*" [

17  ; I i .  ! I i .

, . . 7 ,

- ' t 1s - , .

,. i .

19 i l l ' ggf l  !

  • I .

i l i i i ,! ,  ! !

2o 6 -

g -

i i idn4* . i !

: I ! i i 21 l l, , , , .

. L .. . -- . I i , it i i I !  ; -  ! .

< - i !

22 i 4 li i i i wl : : ; ! Jj l ! ! i': i- i j i 23 l ,i g;w : ! i i i ; i i i ! ! j ; I , ; -

,,i '

24 i i . ..  ! i : 1 i ,

! i ! i i i i i i . .

f>')

s n i ; 1 i .  : _; i j ; ii; -

,  ! ! ! ; i 26 i i_ k !  ! l  ! l 1  ! j i ,

i l l 27  ; \? N '

i i t !! : i ! '

if _ , '

28 Nf\ _.

l ! l .  !

/\ '. _M 29 N i .

o. j ~. y w i .

N< ._6 % ,, y

//e%

so .

/ '. y .w .

u

~

31 i

~. , :, . .

~~ -

L' ;

+-~~ (. _y ,

Fr T 1

  • ,b OIb u .

r w-...

. a.

s sc

_f , s 35 r

. _. .. ... .._. 1_.._ '

.L - - , _ . _ .

. . . - . . . . .$b f. . . bA/2.8._ l. . NWff_ }. . ? ,

37 g r y . p A 3a 2 _.J. . . . . ._._ . _ . . .

Nong.jQ 'l . .I. ..a 40 4 _ I l l1 a

,,.-l h.,, _.

. y -.

7 ,

-- i 3 s- .- s - i -- . . - e L.-.r -- ,_ .7-.- , F._ 4--- F-, - , y ;

_.__...-..-_.._....._...p_n_..___...._.

e .s . . . . - . . . . . . - b. $ . . , kl. .. fh l $. f -

. .. . _ . .._ . . ._, _ . ..._.El_186 '- 3 '

Aork : Tu&_.EEcssRE._ABDlEMEELA.2Df_E._aLVciaRG_J.ce mTrs COBLcLE AEA THE . 56_RE_.25._7L4;S_E [2 elFLc PC h ._EC E.

_ _ _ _ .._. ._.~LME..._ Aid _%I. _..iTE._AOA _.y6DJ.E . H005.L so

Sl ONr. 6 wouo s sa. n w.nc t nsn u wunt'OH ATIO N CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER J.O. O R W.O. N O. DIVISION & GROUP CALCUL ATION NO. OPTIONAL TASK CODE PAGE Il 1 7 7 h 1 . n I., ilRt,R) 1. ."),, ,n - 7 V

l. TH12EED DATA cec _K. C)

/

, 27 26

. - 99 %,

i 3  : 1 i Z

, Y @ 'Og ID 7 @4

-c r e a zo 11 22 f :pys. '

A 4D-

. c 5 h e.

i "h h -79e,to,.j

,, 4"-- i -5 13 ( g j l

l , _m v

y 9 g h 7

=4 25 i

,hf k , ,,,-

6 g , .. 7 G

-763'2' I77 4 $2- i (( 40 l

I

_773'6" 32

    • H SWARES AEE NODES F4 ODE 15 74&

CIEcLES AEE JUMcTrotJ3 4TMC75MEEE 35 36

" 0. TEIP_fot! T2ot CA7/_

38 - -----

65ee pacr Es G2 AND W)

" A 4tcxd. pgessogE % GAL lo osco To ,

/>otEL TM MENT PANE-L5 IW nod &5 i,2, AND As PJow oor PANELS. THE G" 6tcr N L SET T-b t N T tes o. {c7 Psi A AND ( 2.

LJ *>

THE CELAV TIME FcR IN ITI ATI NCr A CT10t4 AFTER 12EAcHitICr life SET ibtNT v5 c.o 544.

45 46

,6 o.

  • C0630070 CVPS2 HSVH 14 NDOE HODEL - 1.0 SQUARE FOOT ARES HIGH ENERGY LINE BREAM THREED 19 DEC 1985 13:58:31 PAGE 1 S & H ENGR CORP NU-092 SUSC2PARTHENT ANALYSIS PROGRAH THREED.VER13. LEV 00 CREATED 84.283 10:55 49 UNIT 10 UNIT 55 (SEQ 1) INPUT ECHO 1 2 3 4 5 6 7 8 y 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 BVPS2 HSVH 14 N00E HODEL - 1.0 2QUARE FOOT AREA HIGH ENERGY LINE BREAN 1 q N 2 a 2 g g 3 a 3 q g 4 mPROBLEH DIHENSION CARD 4 5 a 5 6 m 6 7 1 15 5 14
  • 33 1 0 6 0 13 7 O 8 m 8 @

10 0 1 0 100 (NCI 10 11 m 11 y 12 m 12 13 mIIPLICIT/ EXPLICIT COEFFICIENT CARD 13 14 a 14 15 m ,

15 m 16 1.0 s 16 g 17 a 17 w 18 m 18 19 19 eTIHE STEP CONTROL DATA CARDS Q 20 m 20 21 m 21 22 I 22 10 10 0 0 0.0001 0.00001 0.02 23 50 2 0 0 0.001 0.0001 0.5 23 24 50 2 0 0 0.01 0.001 2.0 l 24 M N 25 25 2 0 0 0.02 0.001 4.0 25  % y 26 10 10 0 0 0.05 0.001 10.0 26 A 27 28 10 10 0 0 5 10 0 0 0.1 0.2 0.01 0.01 50.0 100.0 27 28 K 29 10 10 0 0 0.5 0.01 200.0 29 \

30 5 10 0 0 1.0 0.1 1800.0 30 d 31 50 2 0 0 0.01 0.001 1801.0 31 ID Nj 32 33 25 4 0 0 0.02 20 2 0 0 0.05 0.001 1805.0 0.001 1810.0 32 33 g >

q 34 10 2 0 0 0.1 0.01 1820.0 34 35 5 10 0 0 0.5 0.01 1850.0 35 36 20 10 0 0 1.0 0.1 3700.0 36 37 h

37 38 m

  • 38 K

39 mTRIP CONTROL DATA CARDS 39 40 m 40

~

41 a 41 D 42 1 0 0 3600.0 0.0 42 @

43 43 44 1

2 0

1 14 0 0.0 0.15 0.0 0.0 44 ' $

45 2 2 14 0.15 0.0 45 46 2 3 14 0.15 0.0 46 Y 47 m 47 N

-; 48 m 48 49 q

49 mHODAL DATA CAROS 4 7 50 m 50 12345678901234567890123456789012345678901234567890123456789012345678901234567890

y ..

R0630870 CVPS2 HSVH 14 NODE H00EL - 1.0 SQUARE TOOT ARES HIGH ENERGY LINE BREAN THREE3 19 CEC 198513:58:31 PAGE 2 S & H ENGR CORP FU-092 SUSCOMPARTHENT ANALYSIS FROGRAH THREED.VER13. LEV 00 CREATED 84.283 10:55:49 UNIT 10 UNIT 55 (SEQ ll Its'UT ECHO 1 2 3 4 5 6 7 8 '

12345678901234567890123456789012345678901234567890123456789012345678901234567890

, Jeuh (PM d & LM. %

51 e Tewfffl ) g g * ({P) 6pd)

Vf "&ub r Fm%~ 51 M M l 52 q 2 53 14.36 14.36 120.0 120.0 1.0 1.0 1326.0 1326.0 33.25 33.25 8.50 8.50 0.0 0.0 0

0 0.0 0.0 52 53 N

54 14.36 120.0 1.0 1581.0 33.25 0.50 0.0 0 0.0 54 N 55 14.36 120.0 1.0 3642,0 23.33 9.92 0.0 0 0.0 55 M 56 14.36 120.0 1.0 3450.0 23.33 9.92 0.0 0 0.0 56 b-4

/ 57 14.34 120.0 1.0 4444.0 23.33 9.92 0.0 0 0.0 57 .

58 14.34 120.0 1.0 2835.0 14.67 8.66 0.0 0 0.0 58 I 14.36 120.0 1.0 2676.0 14.67 8.66 0.0 g

59 60 14.36 120.0 1.0 3530.0 14.67 8.66 0.0 0

0 0.0 0.0 59 60 O

61 14.36 120.0 1.0 5405.0 0.00 14.67 0.0 0 0.0 61 42 14.36 120.0 1.0 5127.0 0.00 14.67 0.0 0 0.0 42

  • 63 14.34 120.0 1.0 6588.0 0.00 14.67 0.0 0 0.0 63 64 14.36 120.0 1.0 5149.0 0.00 16.00 0.0 0 0.0 64 b M / ** M lI65 14.36 103.0 1.0 1.0E20 0.00 41.75 0.0 0 0.0 65 48 i= HEM ndel JhdW T& $$ $

8""'*

dart # 68

'l 71 eJUNCT{0NDATACARDS

  • YSs 1 0 8

k%)

0 154.

7N

.042 6x 1.396 1.420 e

2 1.0 0 0.0 hih [OO 8l 7.28 1.0 71 3

72 10 11 0 0 95. .051 1.867 1.885 2 1.0 0 0.0 7.28 1.0 72 73 11 12 0 0 154. .045 1.433 1.402 2 1.0 0 0.0 7.28 1.0 73 74 11 12 0 0 95. .053 1.895 1.870 2 1.0 0 0.0 7.28 1.0 74 75 7 10 0 0 222. .029 .801 .001 2 1.0 0 0.0 14.67 1.0 75 76 8 11 0 0 211. .030 .849 .849 2 1.0 0 0.0 14.67 1.0 76 g 77 9 12 0 0 281. .024 .817 .817 2 1.0 0 0.0 14.67 1.0 77 78 12 13 0 0 24. .131 2.387 2.406 2 1.0 0 0.0 3.59 1.0 78 N 79 7 6 0 0 91. .072 1.395 1.419 2 1.0 0 0.0 19.00 1.0 79 Q y 80 7 8 0 0 56. .084 1.822 1.840 2 1.0 0 0.0 19.00 1.0 80 81 8 9 0 0 91. .076 1.433 1.401 2 1.0 0 0.0 19.00 1.0 81 82 8 9 0 0 56. .090 1.848 1.826 2 1.0 0 0.0 19.00 1.0 82 I M 83 84 6

5 9

8 0

0 0

0 339.

265.

.019

.024

.670

.671

.670

.671 2

2 1.0 1.0 0

0 0.0 0.0 23.33 23.33 1.0 1.0 83 84 Q 85 4 7 0 0 280. .023 .670 .670 2 1.0 0 0.0 23.33 1.0 85 86 4 5 0 0 104. .063 1.398 1.421 2 1.0 0 0.0 28.29 1.0 86 87 4 5 0 0 64. .075 1.871 1.888 2 1.0 0 0.0 28.29 1.0 87 88 5 6 0 0 104. .067 1.435 1.404 2 1.0 0 0.0 28.29 1.0 88 89 90 5 6 0 3 6 0 0

0 64.

186.

.079

.033 1.898

.400 1.875 2 1.0

.328 2 1.0 0 0 0.0 0.0 28.29 33.25 1.0 1.0 89 90 d

91 2 5 0 0 156. .040 .366 .314 2 1.0 0 0.0 33.25 1.0 91

~

92 1 4 0 0 156. .040 .392 .325 2 1.0 0 0.0 33.25 1.0 92 Y 93 1 2 0 0 78. .153 .336 .336 2 1.0 0 0.0 38.50 1.0 93 94 2 3 0 0 73. .165 .336 .336 2 1.0 0 0.0 38.50 1.0 94 95 96 3 14 2 14 0

0

-5

-4 48.

40.

.087

.104 2.224 2.226 1.632 1.638 2

2 1.0 1.0 0

0 0.0 39.12 0.0 39.12 1.0 1.0 95 96 A

97 1 14 0 -3 40. .104 2.226 1.638 2 1.0 0 0.0 39.12 1.0 97 98 3 14 0 -5 37. .100 2.226 1.636 2 1.0 0 0.0 39.12 1.0 98 N

~

99 1 14 0 -3 37. .108 2.226 1.636 2 1.0 0 0.0 39.12 1.0 99 1

- 100 3 14 0 -5 48. .087 (2.224 1.632 2 1.0 0 0.a 39.12 1.0 100 12345670901234567890123456789012345678901234567890123456789012345678901234567890 @

W L _ _

L

,,.- p .

) -

C:0630B d BVPS2 HSVH l'4 NODE HODEL - 1.0 SQUARE FOOT AREA HIGH ENERGY E BREAN THREEO 19 DEC 1985 13:58:31 PAGE 3 S & H ENGR CORP NU-092 SUBCOiFARTHENT AriALYSIS PROGRAH THREED.VER13. LEV 00 CREATED 84.283 10:55:49 UNIT 10 UNIT 55 (SE9 1) ItPUT ECHO 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 101 2 14 0 -4 40. .104 2.226 1.638 2 1.0 0 0.0 39.12 1.0 101 102 1 14 0 -3 40. .104 2.226 1.638 2 1.0 0 0.0 39.12 1.0 102 103 0 10 1 0 1.00 0.0 0.0 0.0 0 1.0 0 0.0 7.28 1.0 103 N 104 a 105 e 10%

105 N

106 mH00AL DIFFERENTIAL PRESSURE CARDS} 106 b 107 m 107 5:*

108 a 108 y 109 1 10 14 109 ,

110 2 7 14 110 111 112 3

4 4

12 14 14

( 111 112 g

113 5 9 14 113 @

114 6 6 14 114 115 m 115 116 m / g ) 116 111 117 118 nFILL a TABLE DATA CARDS (wi( E RtiC4 5 c / 118 C 119 120 m

24 h'l 1%g 6 2 -

119 120 ^

M) 121 0.0 1576.0 1.89E6 121 CD 122 5.0 1443.0 1.73E6 122 V 123 10.5 1332.0 1.60E6 123 124 14.0 1661.0 1.99E6 124 125 20.0 1374.0 1.65E6 125 126 25.0 1193.0 1.44E6 126 127 30.0 1071.0 1.29E6 127 128 40.0 904.9 1.09E6 128 129 50.0 807.9 9.73E5 129 130 60.0 748.0 9.01E5 130 N 131 70.0 710.0 8.55ES 131 g 132 77.5 691.2 8.32E5 132 133 85.0 640.8 7.80E5 133 134 90.0 588.4 7.22E5 134  ! ""

135 100.0 437.4 5.45ES 135 136 120.0 101.2 1.30E5 136 137 129.0 34.88 4.50E4 137 g 138 159.0 15.31 1.99E4 138 q 139 200.0 34.82 4.53E4 139 140 500.0 41.28 5.39E4 140 141 142 1000.0 1800.0 41.28 41.27 5.40E4 5.39E4 141 142 Q

143 1800.1 0.0 0.0 143 144 5000.0 0.0 0.0 144 g 145 a 145 146 m 146 N 147 148 mPASSIVE HEAT sit 0( DATA CARDS e

147 148 149 m 149 7 150 SINH 1-NODE 1 150 12345678901234567890123456789012345678901234567890123456789012345678901234567890 D

b

fi q k) p ' **

'i C0630870 BVPS2 HSVH 14 N00E HODEL - 1.0 SQUARE FOOT AREA HIGH ENERGY LINE BREAN THREED 19 OEC 1985 13:58:31 PAGE C C -

g' S & H ENGR CORP ttJ-092 SUDC0tFARTHENT ANALYSIS PROGRAH THREED.VER13. LEV 00 CREATED 84.283 10:55:49 UNIT 10 UNIT 55 (SEQ 1) ItPUT ECHO 1 2 3 4 5 6 7 8

, 12345678901234567890123456789012345678901234567890123456789012345678901234567890 151 13 1 0 0.0 275.0 1 0 151 in 154 l' *

  • F

%u W), typed lg 154

~

N 155 156 1 1 1 .08 0 0 0 1.0 SItH-2 N00E2

[

7 155 156 N

g 157 13 1 0 0.0 258.0 2 0 157 /

158 13 1.0 158 f 159 160 1

F 159 160 161 1 1 1 .08 0 0 0 1.0 161 O pf 162 163 SItH-3 N00E3 13 1 0 0.0 305.0 3 0 162 163 164 13 1.0 164 hg j 165 166 1

F 165 166 1 167 1 1 1 .08 0 0 0 1.0 167 69 168 IPE4-N00E4 168 169 13 1 0 0.0 919.3 4 0 169 m y( ( f

, ): MCbt & Co **f!5 'A 3 0 0 0 1.0 73 174 SIPMS-NODES 174 175 13 1 0 0.0 743.3 5 0 175

l'1c  ;. s.1x niv.I v v. 6k  ::'

178 F 178 >=4 h 179 180 l' 1 .08 0 0 0 1.0 SI E6-NODE 6 179 180 M'

181 13 1 0 0.0 1018.0 6 0 - 181 O

!N 184 F

~ l= [4r/l / reve/W788 184 g ,

185 186 1

SI -t00E7 0 0 1.C 70 185 186 M

187 13 1 0 0.0 603.8 7 0 187 4 188 13 1.0 108 l 189 1 109 190 F 190 NN

~

191 1 1 1 .08 0 0 0 1.0 191 192 Site <S-NODE 8 192 l 193 13 1 0 0.0 450.32 8 0 193 pj 194 13 1.0 194 l 195 195 196 1

F 196 Nl '

197 1 1 1 .08 0 0 0 1.0 197 198 SINH 9-t00E9 198 199 13 1 0 0.0 651.9 9 0 199

- 200 13 1.0 200 12345678901234567890123456789012345678901234567090123456789012345678901234567890 D

se

]' R06308 LVPS2 HSVH l'4 NOCE HDDEL - 1.0 SCUARE FOOT AREA HIGH ENE"GY E BREAM THREED 19 [EC 1985 13:58:31 PAGE 5 U -

5 & H ENGR CORP NU-092 SUSC0lFARTHENT ANALYSIS PROGRAH THREED.VER13. LEV 00 CREATED 84.283 10:55:49 UNIT 10 UtiIT 55 (SEQ 11 ItPUT ECHO 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890

'{f 201 202 1

F 201 p 202

'- 203 1 1 1 .08 0 0 0 1.0 203 N 204 205 SITE 10-N00E10 0.0 1359.6 10 204 N

, p.

~~

206 13 1 0 0 205 y 13 1.0 206 g 207 1 207 208 F *

/ 208 5 209 1 1 1 .08 0 0 0 1.0 209 210 SITE 11-N00E11 210 O 211 13 1 0 0.0 1124.4 11 0 211 @

212 13 1.0 212

... 213 1 213 214 F 214 215 1 1 1 .08 0 0 0 1.0 215 216 SITE 12-N00E12 216 217 13 1 0 0.0 1548.8 12 0 217 218 13 1.0 218 m 219 220 1

F 219 220 W W

221 1 1 1 .08 0 0 0 1.0 221 222 SITE 13-N00E13 222 223 13 1 0 0.0 2682.7 13 0 223 224 13 1.0 224 225 1 225 226 F 226 227 1 1 1 .08 0 0 0 1.0 227 N 228 229 a

a 228 229 N

230 mDATA C0ttION TO HEAT SITES 230 M 231 e 231 232 a 232 I 233 0.0 233 234 0.0 234 N 235 120.0 FF 235 236 0.79 24.93 ' CONCRETE'/ 236 237 [ND OF HEAT SLAB DATA 237 12345678901234567090123456789012345678901234567890123456789012345678901234567890 < EOF) COPIED TO UNIT 5 H/0 CitTS Q N

, N o

} AXAGMwr 4 U2 .,

=

0 Since the mole fraction of steam is equivalent to the pressure fraction of steam, Ps/Pt, where Ps is the partial pressure of steam and Pt is the total pressure of the mixture, a graph of heat transfer coefficient as a function of the pressure fraction of steam can be generated. This graph is presented in Figure 3.2.2B-2 It should be noted in the transformation from Figure 3.2.2B-1 to Figure 3.2.2E-2 that the units of heat transfer coefficient were changed from (Kcal/m2-hr-deg C) to (Btu /f t2-br-deg 7) .

o 300 -

Yu onUC =~.

SY a

(, 100.

9% . .-

0

  1. d e

e~ os .

o 0.2 0 .4. 0.6 0.8 1.o Ps/Ft Fiy ,e 3.2.2B-2 Effoot of Sie::m Fressu-e Fraction Variation on Heat Transfer Coefficient The use of the data presented in Reference (1) is ccnservative.

The reason for this conservatism is that the test sections used in obtaining the heat transfer coefficient were small while the actua) vertical walls in the reactor containment are very large.

(2) shows that for natural convection on short vertical O Reference plates the flow is predominantly laminar, while for large vertical plates , a transformation to turbulence occurs. The occurrence of turbulent flow means that the heat transfer L

- I ATrAd(MEwr 4 2/2. ; -

\ ,

will be greatly increased. Thus, the heat transfer coefficients 10' coefficients presented in Reference (1) must be conservative when applied to large vertical walls, since they do not design In addition, the accountbasisfor l turbulent heat transfer effects. extremely turbulent state in the accident will result in an

'l containment during che time to reach the peak containment 1 pressure.

ccndensation heat transfer Increasing ~ the value of the coefficient means that more energy is absorbed by the containment structure during the DBA. This in turn means that the peak I pressure in the containment will be lowered. '1hus the use of an artificially low natural convection condensation heat transfer coefficient means that the resulting calculated peak pressure l will be artificially high.

curve of heat transfer coefficient shown in Figure 3.2.2B-2 The can be analytically expressed by the following relation:

h= (A/3.25) * (Ps/Pt) If 0.01 5(Ps/Pt) 50.19 or I h= A*exp [-3. 5* (1 - Ps/Pt) ]

where A is the input value for heat transfer coefficient If (Ps/Pt) >0.19 of pure steam (300 in Figure 3.2. 2B-2 above)

If (Ps/Pt) is less than 0.01, the minimum value of heat transfer transfer coefficient that is used is the natural convection heat I coefficient for pure air (about 1. 8) .

References:

' 1. Uchida, H; Ogana and Togo, Y; " Evaluation of Post-Incident Cooling Systems of Light j

Nater Power Reactors," 3rd U.S. International l

' conference en the Peaceful Uses of Atomic Energy, vienne, May, 1964 (Japan p/436) .

l

2. McAdams, W. H., " Heat Transmission,"

3rd ed., McGraw-Hill, New York, 1954.

II h

_ , , w ..

1 STONE & VlEBSTER ENGINEERING CORPOR ATION CALCULATION SHEET Mg7 3 {[2 g

  • A seio es C ALCULATION IDENTIFICATION NUMBER J.O. O R W.O. NO. DIVISION D GROUP CALCUL ATION NO. OPTIONAL TASK CODE O

()

,,- PAGE 12241 IllT 1 LD US(g)-Zof.

3 (EW f ~

W: ( , **11$4 reft l) s /,3/5h(Sit'l fu"1 WN. Ih r .

0 00, i

- ~

, 200l (wpm y ,

+ Tvdt))4 y 012S

y. s / h -
7. (Mind.4) n O.t33--+.

f lE  ! 2.s h -

\J "' M'4 I5

~- f ,,,, pg (D>y E4Ik Tus t' Hou sy T1bc I Guduoh Mlf 241Il T m fip 29, Ccmbc4 yS j oW XLPE Innklim giu s , TiwwlSia h a~f 0.s4f hypalm pe/'ef #I 20 b0

} * *e sn z Font}

mm. " lz Noh,,1 Crn v'd'm Cwerdis-ES t6 Ye / & tJ S ClenVC) (for w }ty siJ hee A Y u lr m e* # I) b e @ Sc /f /s & c Jwdl cst'~

n d Me Y d'de4 , Zf n be s M /A r l

A c em b +>t d i e - d bit 4 cac a6# 6ef< >- l 36

& ~-dd <thu/c u e a res alls aW

&_ W $

% slowt.s. th w&/e s = >>, ode 44 A n 't w 1%fuy th< cr>,4u' M i nw m4' Grwex<>

ll $ V-1nt> W2Y fr.4,.72(hr/rz)g, net //ppHAn7 g3 hb cn4k w ha -/w dixun onk<fnpindle,

n C0430C47"BVPS-2 THERM ANAL, CAOLES/COPSUIT & LIH SMITCH IN HSVBe ISOFTL.EAN S & H ENGR CORP HE-219 TRANSIENT APG STEADY-STATE HEAT TRAN5FER PROGRAN o TAP-A 8 AUG 1984 12:C0803 TAPA.VERet.LEVet CREATED 84.009 14:04:45 PAGE 19 TIT 1

's

~

Q *le% '

1 '

l UNIT 55 (SEQ ll It08UT ECHO 1 2 3 4 5 6 7 8 l 12345678901234567890123456789012345678901234567890123454789012345678901234567890 1

1 BUPS-2 THERH ANAL, CA8LES/COPWUIT & LIH 5 HITCH IN HSVB ISQFT BREAM- 1 2 0.0 400. 1.0 0.01 3. 10. 2000. 2 3 011. 8. 120. 3 4

5 015001.

015002.

120.

120.

IM8be M8 A bY8 -

[8

  • 4 5 M 4 021. 1. 0.0 212. 3000. 212.3 2)cwpe d 788'V V' 4 N j 7 8

023.

023.

1. 0.0 78.

120. 10.

130.

317.

501.

25.

300.

330.

531.

pq bnMP - 7 4 4

i 9 023.

4.

7. 400.

3:5.

514. 700. 212. 1800. 212.

pg ys . 8 7

nnyt 9 1 10 0321 y '/ 0.284 M f/ 10 g

1 ll :'H: u,.'s ::::'" So40%I')

13 0324. 0.098 , i ll 13 My

, 14 0421. 0.11 .000402 19faf f f/ Pff 8f g ggy (jfp/g / s / 14 k 15 0422. 0.24 .0000029 e 15 N.

! le 17 0423.

0424.

0.48 0.21

.0000044

.00275 p4fg (871[/ ggc + - 14 17

.l 18 051. 21. 1. 1. 0.441 3 18 19 052. 21. 1. 1. 0.0333 p 19 l 20 053. 22. 1. 1. 0.757 f9fdf[ k# N 20 l 21 054 23. 1. 1. 0.107 f 3) 21 g D 1

22 055. 21, 1. 1. 0.0425 (pts / 22 D 23 054. 21. 1. 1. 0.0425 23 i 24 057. 24. 1. 1. 24 l 25 058, 23. 1. 1. 0.105 0.375 ) 25 g

! 24 071. 3001. 0.0415 0.0 1. 3.933 A/ht 8MMfC N24 27 071. 2. 0.0415 0.005 1. 3.411 9g g 27 -

072. 3.

28 0.005 1. 1. 3.294 28  %

29 073. 4. 1. 0.045 1. 1.44 g ms Pa 29 i 30 075. 3002. .03125 0.0 1. 1.

bl45 L 30  %

l 31 32 075.

077.

4.

3003.

.03125

.0525

.03125

-0.0 1.

1.

1.

1.

  1. " 31 32 g

g' 33 077. 8. .0525 .1875 1. 1. I 33

! 34 078. 3004. .1875 0.0 1. 1. .d M 34 j

35 34 082.

082.

1.

4.

-400.

400.

0.0231 0.0

.1 0.0231 0.1 0.0}gpQfi( Mf,p 35

)34  %

I 37 084. 1. 0.0 .0000538 14. .0000536 159. .0000047 f*fkn 37

( 38 084. 4. 1800. .0000047 1801. .0000019 3000. .0000019 (,,,*/,gfgg 38 4 9 084. 0.0

! 39 40 084.

1.

4. 1800.

.0000503

.0000031 14.

1801.

.0000503

.0000019 159.

3000.

.0000031 i

.0000019) p ay,g

.yJ 39 40 41 088. 1. 0.0 .0000C19 3000. .0000019 41 3

42 093001. 5001. 2. 1. 1. 42 g l 43 44 093001.

093002.

5002.

5001.

4.

2.

3.

1. 1. $84 MC 43 \

{

45 093002. 5002, b 44 N ,

q l

44 093003, 5001.

4.

2.

3.

1. 1. g 45 44 Q

1 47 093003. 5002. 4. 3. 47 48 093004. 5001. 2. 1. 1. bM /88 5 48 h 1 ";

49 093004. 5002. 8. 3. J 49 N 50 111. 0.0 30. 40. 120. 300. 400. 50 i

} 12345478901g34567890123456789012345678901234567890123456789012345678901234547890 i

i I - ._- -_. . . -