ML19336A684

From kanterella
Jump to navigation Jump to search
Structural Integrity Test Rept:Containment Structure.
ML19336A684
Person / Time
Site: Farley Southern Nuclear icon.png
Issue date: 07/31/1980
From:
BECHTEL NATIONAL, INC.
To:
Shared Package
ML19336A679 List:
References
CON-7597 NUDOCS 8010300470
Download: ML19336A684 (115)


Text

{{#Wiki_filter:' -l O H.C..e. \ .-

                                        /                                                     9A f/

Jo-

                                    . h-~Bechtel Power Cor,noration Engineers-Constructors J. C.                  -"

15740 Shady Grove Road j Gaithersburg, Maryland 20760  : 301-258-3000 AUG 2 91980

                                  !                   In reply refer to AP-4763 1    Mr. J. A. Mooney                  l J. M. Farley Nuclear riant construction Post Office Box 430 Ashford, Alabama 36312

Dear Mr. Mooney:

Joseph M. Farley N'2 clear Plant Unit 2 Bechtel Job 7597-26 ,3 Structural Integrity Test Containment g Bechte?. File C-7.1 AP-4763 Enclosed for your information and use are three (3) copies of the Structural Integrity Test Report for the containment structure. Additional copies of the subject report are available and will be forwarded upon request. l If you have any questions or comments, please contact us. Yo rs e truly, j i \ A. . Vizzi Project Engineer i CH: rag l

Enclosures:

As stated above cc: W. G. Hairston, III, w/3 i

0. D. Kingsley, Tr., w/l J J. R. Crane, w/l H. O. Thrash, w/l L. A. Ward, w/1 l

V. C. Valekie ] f@9.

                                                                                         .e -12sg%

5 P * '5 1 6 s. c. t,  ; I 80J0300 qw4

I

'I STRUCTUR AL INTEGRITY TEST I                         REPORT in   CONTAINMENT STRUCTURE i

II 'I INCLUDING REPORTS FOR fl TENDON END ANCHORAGE l g CONCRETE SURVEILLANCE -  ! PHASE 1 AND I STEEL LINER PLATE g SURVEILLANCE - PHASE 1 I JOSEPH M. FARLEY NUCLEAR UNIT 2 i ALABAMA POWER COMPANY JOB NO. 7597 <g il  !

I
I BECHTEL NATIONAL, INC.

SAN FRA SCO , CALIFORNI A

I I JOSEPH M. FARLEY NUCLEAR PLANT l i UNIT NO. 2 ALABAMA POWER COMPANY E l l E l l l I E I I STRUCTURAL INTEGRITY TEST REPORT I CONTAINMENT STRUCTURE UNIT 2 I I I I I I

TABLE OF O1NTENTS PAGE if LIST OF FIGURES I 1. INTRODUCTION 1 2

2. SUTtARY AND 00NCLUSIONS I 3. CDNTAINT.NT STRUCTURE AND PRESSURIZATION 4

l 8

4. TEST PLAN AND PROCEDURES 13 l
5. TEST RESULTS l 5.1 Containment Structure Deflections 13 5.2 Concrete Cracking 15 5.3 Estimated Accuracy of Measurement 16
6. REFERENCES 32 APPENDICES

' l. Deformation Measurements During Structural Integrity Test of Farley Nuclear Plant Unit No. 2

2. Procedure for Structural Integrity Test and l l Tendon Anchorage Concrete Surveillance Program of the Containment Structure - 059-5-004 I l I

I I I i

I I LIST OF FIGURES FIGURE NO. 3-1 Containment Structure 3-2 Containment Structure Pressure Cycle 4-1 Test Wire Extensometer Locations - Wall Radial and Diametral Units 4-2 Taut Wire Extensometer Locations - Vertical Units 4-3 Taut Wire Extensometer Locations - Equipment Hatch Radial Units 4-4 Crack Surveillance Area Locations 5-1 Containment Structure Average Deflections at 62.I psig - Wall and Dome 5-2 Containment Structure Deflections at 62.1 psig - Equipnent Hatch Radial 5-3 Typical Deflection / Pressure History - Wall 5-4 Typical Deflection / Pressure History - Dome 5-5 Typical Deflection / Pressure History - Equipment Hatch Radial 5-6 Concrete Crack Pattern - Location 1 5-7 Concrete Crack Pattern - Location 2 5-8 Concrete Crack Pattern - Location 3 I 5-9 Concrete Crack Pattern - Location 4 5-10 Concrete Crack Pattern - Location 5 5-11 Concrete Crack Pattern - Location 6 5-12 Concrete Crack Pattern - Location 7 5-13 Concrete Crack Pattern - Location 8 5-14 Concrete Crack Pattern - Location 9 5-15 Concrete Crack Pattern - Location 10 11

I I  ; I 1. INTRODUCTION The Unit 2 Structural Integrity Test was conducted during the tire period May 27, 1980 to May 30, 1980. The prinary purpose of the structural integrity test was to verify the design and the structural integrity of the containment structure by imposing an I internal pressure of 115 percent of design pressure for a period of not less than one hour. In order to accomplish the intended test purpcse, specialized measuring devices were employed on and in the containment structure to provide the data needed to evaluate structural response during pressurization and depressurization. The test was conducted in accordance with written procedure 059-5-004 detailing test re-quirements and instructions for acquiring test data (Appendix 2). I I I I I I I I I 1

I l l I

2.

SUMMARY

AND CONCLUSIONS The structural integrity test consisted of (1) proof of the containnent structure ability to contain 115 percent of design pressure and (2) measurement of structural response to changes in l internal pressure. Test measurements included gross structural I deflections and concrete crack growth. Measurement points were l l located along typical sections of the containment structure, at thickened sections and at discontinuities. Tast measurements were recorded at specified stages during the pressurization cycle. The containment structure withstood 115 percent of design pressure with no observable indications of structural distress. All measured structural deflections were less than design allowable values. Concrete cracks observed in the various surveillance areas did not change in neasured width throughout the test. The existing cracks are considered to be within reasonable expectations based on previous tests and do not adversely af fect the structural integrity of the containment structure. Prior to the start of pressurization, several cracks with measured widths equal to or exceeding 0.01 inches were observed in the surveillance areas. In no case did the widths of these cracks change by a measurable amount during the test, indicating that the cracking is a near surface phenorenon resulting from thermal stresses and shrinkage prior to post-tensioning and/or small irregularities in concrete to form contact during placement. I I 2 1

a l > \ l I 1 j I 1he results of the structural integrity test provide direct ex pe ri-nental evidence that the containment structure can contain the design internal pressure with a sufficient margin of safety and

 <g W that the gross response to pressure is predictable.

!I 1

 !I il, 4

lI !I; 4 l 1 I

 !I
I

!I i I 3

I I

3. O)NTAINMENT STRUCTURE AND PRESSURIZATION The containnent is a reinforced and post-tensioned concrete structure designed to contain any accidental release of radio-activity from the reactor coolant system as defined in the Final Safety Analysis Report (Reference 1).

The structure consists of a post-tensioned, reinforced concrete cylinder and dome connected to and supported by a massive rein-forced concrete base slab as shown in Figure 3-1. The cylinder wall thickness is increased at three equally spaced locations to form vertical buttresses for prestressing tendon and anchorage. I Reinforced openings in the cylinder wall are provided for equip-ment and personnel access as well as for electrical and mechanical system feed through. The entire interior surface of the structure is lined with 1/4 inch thick welded steel plate which serves as a leak tight membrane. Principal dimensions of the containment structure are: Inside diameter 130 ft. Inside height (including dome) 183 ft. Vertical wall thickness 3 ft. 9 in. Dome thickness 3 ft. 3 in. 9 ft. Foundation slab thickness E The containment structure was pressurized pneumatically to verify the required structural integrity. The pressure cycle is shown in Figure 3-2. The proof pressure of 62.1 psig, equal to 1.15 times design pressure (Reference 1), was specified to assure that E 4

                                                                                 - I

,i 1 1 !I i i ' the containment structure has sufficient reserve strength. Proof pressure was held for a period of two hours to record structural data. l i l J I i II i il i l J j I i !I 4 4, j !I l l !I 1 'Il

!                                                  5 ll

I s I *

/

I - E

           )   N
  • l
          #                                                         o        -

4

    !~ ~'~

I

                                        \                                                    l is I

l %fp"

   /J                                                    *s            b!               5
                                                         ^
                                                                                        !a I                  g N                            ')

P

                                                     &e
                                                     >s H

s Z o I I # V T l 3e

                      .,                              i,        .s    s O           ,

5 E l '#+ EA es  ; I EE 3 I

                                                            =

l I . . c I E O a

                                                             !                               I I                                                           .:

h

                                                             ~

l 1 I E  ; - g I (33vdunS 31V14 W3 Nil 01) 94*11281

M M M S R S $ H R R 0 0 M H H 4 4 0 0 3 2 7 8 1 1 4 2 S S S R R \ M G I S P S R R H H H 0 H 01 8 8 0 8 1 S R 5 5 6 4 64 4 1 1 Y H 8 9 0 A 0 M

            $ 8                                                    9 M          R H 60 4

1 I 2 1 0 3

     $      1 R      1                                     8 H      0 1

I 6 l 7 6 M 3 2

      -                                                                   I   4          E 2          L g

g C g Y M p i g G I S I 8 1 0 8 C E P R

        $                                     7                                    Y R                                     2                                    A     U H                                                                          M     S 6                                                    G                2          S M      4 1

2 4 IS P 4 I 1 9 2 E E P 1 S T g R N I 6 U G E O M I S P H, M 1 S R S E N I 2 H R H 3 I 4 2 M A 8 4 I T T 5 6 7 4 N 0 6 O M 0 S I 8 1 0 8 Y C R S A 2 H R M - 6 H 8 3 5 1 2 2 M I 0 5 1 E 2 9 1 R U 2 G I 8 I F M 1 I 4 2 S S R R H H M 3 2 7 1 1 8 1 0 8 _ 0 8 0 Y _ - A _ M S 7 R I 2 2 M H 1 1 1 8 1 _ I 8 M - ~ - - - - 0 0 o s 0 3 0 2 0 1 0 7 8 M O- J ge.g ]E:O M w M

I

4. TEST PLAN AND PROCEDURES 1

Test measurements were made at points on the containment structure which represented both the regular areas and the regions of dis-continuity to provide data on structural behavior during the pressure test. The measured parameters consisted of gross struc-tural deflections and concrete crack growth. Gross structural deflections were measured by taut wire extenso-meters which spanned between opposite points at the same elevations on the cylinder and between other measurement points and fixed points within the structure. The extensometers were located to measure: radial displacements along typical wall sections, buttress sections, and around the equipment hatch; vertical displacement along typical wall sections and over the done. The layout ef the extensoneter systen is shown in Figures 4-1 through 4-3. Descrip-tions of the extensometer system and calibration procedures are included in Appendix 1. The deformation measurin/, devices were wired to a scanning digital data acquisition system located ad jacent to the containment structure. Concrete crack patterns were mapped in the areas shown in Figure 4-4. The lengths and widths (measured by optical compar-ator) of all visible cracks within the areas were recorded at I specified pressure levels. I The structural integrity test was conducted in accordance with the procedures in Appendix 2. I i 8 l 1 l

a I i I *5 i' g- , 5 o,* S 3-Z w

                  )  2 ZW J

h 3 h, I eJ 1*

   ?

i, m

                                 -o yb t

a E d g 8 w% I %J J .

  • ZW %W t:

z D J I 4

                                           $.                            w
                                           %D                            4
                                                               )

I ev

                                           .J                            a EW                        . O
                                                                 "*      z k-                                l                       4 M

I I g s4

                            =                                            d I                                 %s yJ*

5 s N o z $ a $ 5 , 9 3 hh 5 e f ' I *

     "t i

b y e 6 s I*I O I II i. -

                                                          %k e;              e
 ,J                  /                  5            RJ
                                                     *
  • z w 2 - E
          .                             d                                 W h

I o E s ID h y

                                                                          =
                          -                 I
                                            ;b5                           u.

I

  • es g
                       $d                   %M Ed (

i w 5 s

                   -   h                                                   $

I x 5 i e . I O N W w I A' 3 s _ % s. U t J 2 I .V z a }\5 I i 1E d . Ii n

42' r 28'.7 , 14'-r o dr.1 r ( (  ! > b I D4 D3 D2 D1 4 i E L 236*.1" I I V1 7*, V2 38 -30', V3126, / V4 185* , V5 218* ,V8 307* E L 156' r j' l - I

  • E L 115' tr*

6 i I SECTION AT 332* l s

       *V6 IS AT EL 145'4' I

FIGURE 4 2 TAUT WIRE EXTENSOMETER LOCATIONS VERTICAL UNITS 4

M Y - 7 6 1 L E 4 # s  : ' M kh p-. X kt o" e,

                      ~

(b - X hbe 0

                      -                                                                                     0 9   )
               .'.                                                                                           1 8

4 - a.

  • Z 9
                                                                   ~

A 4 d - ' . /* 9 1

                                                                                               ,h                Z
                                                                  "                              ,a          N A LY                                                                                              L' T     O 9 I

T 1 Il iI ;I I I I

,- - A 1 S

V E T

                                                                                   ,,       l E   t I
I 7 L l

E N 0 1 2 U 7 s 9 1 1 E 1 L E E E E E A I D A R H C T A H T N E M P I U y Q 1 E E - M S N _ O I s" T 2 A E C

                                                             ,'                                                     O L
                                                         , U 'O R
                                                        .o3.                                                        E 3                     "                    m" "S

N T E E - ' M

                                            -                                 9 1                                     O
                                             -                         "8-                               T-S N
                                              -                        F                                 7          E 6           T
                                              -                        1                                 1
                                              -                                                          L           X
                                                                                               '0                    E
                                              -                            ,s     ,s    >s               E
                                               -                                  ,e             5                   E
                                                                           ,i           si       1       O           R
                                              -                                                          N           I
                                              -                                                          A L

W

                                              -                                                                      T "8-                               P
                                              -                                                                      U
                                             ~

F A 1

                                                                               "                                     T
                                             ~                                 8
                                            -                                 8' 4                  3              Ln1                 "                              3 E

d, o 4 . T 2 4 _ E R U 5 G I

                                                                                  ,s E                                                                                         F S

E ,, M w

I _ I - l .-

                                                                      ,.e u LJ'                                  ""-El-                              l l                                                  .

I I l

            $ -                                                                                   .c 1str.11 x ~                           \-[                        a l
                      ,L                                  .. ,       ~~,
                                                                                        , , z.-

Ll 1 J . 5 6 o . / N g I . I

      -                      n' t

I DEVELOPED EXTERIOR ELEVATION 150* I . I I v. , ,. m I . N.. W sr os~ DOME PLAN I FIGURE 4 4 CRACK SURVEILLANCE AREA LOCATIONS 12

I I

5. TEST RESULTS The intent of the basic design criteria is to provide a contain-nent structure that will meet the postulated design load condi-tions with a low-strain predictable elastic response.

The results of the structural integrity test provide direct experimental evidence that the containment structure can contain I the design internal pressure with an ample margin of safety. Further, the test data confirms the validity of the analytical methods employed to determine the structural effects of loading combinations and to predict the resulting deflections. 5.1 Containment Structure Deflections The measured and predicted outward radial deflections of the containment wall and done deflections with respect to the base slab at maxinun test pressure are shown in Figure 5-1. Radial deflections of the wall were measured at several azimuths at each of the noted elevations. The data are plotted as the average of values recorded for each of these elevations. Vertical deflections I of the dome were measured along one azimuth; therefore, each dome data point represents a single measured value. The measured dome and average wall deflections are consistently less than predicted values. The difference between measurements and the predicted values is probably due to the differences be-tween the elastic material properties of the concrete used in I , j 1 13 l

I I analysis and those existing at the time of the structural integrity test. l The variation in wall deflections at each elevation is due to the rounding out of minor irregularities in the curvature of the concrete cylinder. This behavior is typical for concrete contain-ment structures and is to be expected for any singly curved shell which does not have a perfectly true radius. With the exception of the extensometer to the dome apex, the dome deformations follow a smoother trend. This is typical of containment dome behavior and is characteristic of the doubly curved shell which has a much greater resistance to rounding out of minor irregularities than does the singly curved shell. The 1cu reading of the dome apex extensometer indicates the possi-bility of a kinked invar wire. This is further reinforced by the

 '    fact that at the end of depressurization the reading became negative.

I The measured radial deflections at the equipment hatch are shown in Figure 5-2. The deflections measured along the horizontal center plane of the hatch are approximately symmetrical about the vertical centerline. Measurements along the vertical center plane of the hatch show that the outward movement in the vicinity of the opening increased with elevation. l iI 14

I N Typical deflection-time histories are shown in Figures 5-3 through 4 5-5. Both pressure and deflection are plotted on the u me time base to show correspondence. In all cases, there is a generally I linear relation between pressure and deflections as expected. Complete deflection data is given in Appendix 1. 5.2 Concrete Cracking The patterns of surf ace concrete cracks in the wall of the Unit 2 containment structure at various internal prssures are shown in 1 Figures 5-6 through 5-12. Figures 5-13 through 5-15 show the surface concrete crack patterns on the top of the ring girder at three anchorage locations for vertical tendons. 4 No change in concrete cracking during pressurization and de-pressurization was recorded. In areas 1, 4, 5, 7, 8, 9, and 10, cracks having widths equal to or greater than 0.01 inches were found during the initial inspection. In no case did the widths of these cracks change measurably during the test, indi-1 cating that the cracking is a near surface phenomenon resulting from thermal stresses and shrinkage prior to post-tensioning and/or small irregularities in concrete to form contact during

,         placement.

I I 15

5.3 Estimated Accuracy of Measurement The accuracy of measurement is based on the following items:

1. Calibration of the instrunentation 4 2. Laboratory testing as in the case of invar wire
3. Sluman Factor, i. e. , judgment of the reader.

The crack patterns were measured using optical comparators cali-brated to measure crack width of 0.001 inches and wider. However, since most cracks observed on containments are irregular traces on a coarse textured concrete surface, it is not generally possible to estimate true crack width to better than approximately 0.003 inch. For this reason, reported crack widths are considered to be accurate to 1 0.003 inch. The displacements of the containment structure were measured using taut wire extensometers. Accuracy of the extensometer is 1 0.002 inch so long as wire tension remains constant. When the . direction of pressurization changes, extensometer response lags due to friction in the mechanism. Typical lag is 0.02 inch for a 100 foot long wire. A detailed description of the taut wire system is given in Appendix 1. I I I I g 1e

I I _ _ %g% I d4 g

                                                                                  %I
                                                                                   \l I                                                     e                             g
                                                                                      \
                                                                                        \
                                                                                         \
                                                                                            \

I ~ 'l

                                                                                             \
                                                                                                \

co m

                                                       ,14'. 0",             %                   \

I t

                                                                                                     \

2 8'.0 s,

                                                     .              4 2'.0"                           -

f \. I. WALL 5 , EL MIN. MAX. AVG. PRED.  % SPRING LINE 115*.0" .014 .054 .034 .030 -- \ " k L 141*.0" .078 .207 .127 .151 183'.0" .090 .113 .098 .150 207 6" .081 .116 .094 .151 243.e-DOME

              .002      .o42     .027      .uS
                                                                                                                         \ g DIST.                                                                                                                  g I  FROM k

e.i O" MEAS. 1s7 PRED.

                         .426 f

f EL 207 6" I 14'.0" 2 r.0" 4 2'.7* 411

               .371
               .295 419 385
                         .292
                                                                                                                       ,i f

f f EL 1s3'.0" CONTAINMENT STRUCTURE { I

l. l.l.1 .I i 1 -

g I o .i .2 .s 4 SC ALE. INCHES

                                                 .s l

i

                 .-- PREDICTED DISPLACEMENT                                                                             e         EL 141*.0" g                  9 ME ASURED V ALUE                                                                       .

g

                                                                                                                        /

l -

                                                                                                                 /
                                                                                                                   /

1 E L 115' 0" I . I l_

                                                                                                           -M l

I E f FIGURE 5.1 CONTAINMENT STRUCTURE AVERAGE DEFLECTION AT 62.1 PSIG . WALL & DOME

M M M W m a e g g g g g L r

                                                                                                                                                                       .134 w
                                                                                                                                                                       .128 m e*       y
                                                                                                                             .116                                      .114 -
                    .199 I                                 -            -

b -b

                                                .143                                   .097                                                                                     l                                b 1                               6             N           N n

J , - -

                                            .o;'- '
                                                               --- _.       _..___ - J                                                                                      -

i X X X EL 16Y- 3" i I h b io b ' [4 I b s s t) I ,- o* E e n f.

                                                                                                                                                                       .097 m        t. : * . 3 -              --

10'-6" 10% Sa '*.**? J 16% 6" ,, 18'- 6" , " s

                                                                          , s
                                                                                                                                                                        .0 M -

22' 6" 22'-6"

                                                                            '                                                         )

b  ?

                                                                                                                                                                        .084 w 1500 f-PLAN @ EL 167- 3" ELEVATION @ AZ 1500 FIGURE 5.2-- CONTAINMENT STRUCTURE JEFL'iCTIONS AT 62.1 PSIG-EQUIPMENT HATCH RADI AL

I 'I . 22 r

 'I        , , ,

I "'- 0.16 r <I' 0 I 0,14 -

  '  I 2 3 0.12 i

.I a 0,10

       $ A08 E

i l 8 R06 R04 e' I e j a02 ,,,, 5

                                  ,/                                                 g l

H11, EL 141* 0" # 33'

                                                               ---       H1, E L 115'-0" M I   c     60 r,

I 9

         -                                              /
                                                              /

K 40

                                                  /                            \

g E / k }gi / O 12 24 12 y, 12 24 ' 12 34 28MAYSO 29 MAY 30 30 MAY 80 27 MAY SO TIME - HOURS l! l FIGURE 5.3 - TYPICAL DEFLECTION / PRESSURE HISTORY - WALL 19 1

 !I KM n

I a40 - s

                                                                           \

I ~~

                                                                            \

.l 5 E i' \ l i ,I 0.28 I 5

      =

I '\ j

                                                                /           t                          l E                                                        /             i l
      > a24                                                   1               s                        1 I

I h EM /

                                                    /l    '
                                                             /                 '. T I

5 I ', R16 / = 4,

)                                                s a,2
                                         ,..'                                              \
                                              /                                              \
                                                                                              \

i / nos / 'g d \ E04 -

                                   /_/

r j t' p

                                  /

i / 1 " 0 D2 9 332' 14* 0" RADIUS

                                                              -- - - D4 9 3J2*. 42'-0" R ADIUS 4

I .0 s l / I I i *

                                           /                                              \

I- /

                                   /                                                                   ,

12 24 12 24 12 24 l 12 24 n MAYS 0 2aMAYs0 asMAYSO 30 M AY 80 l TIME - HOURS klGURE 5.4 - TYPICAL DEFLECTION / PRESSURE HISTORY - DOME 20 1

II !I

                             ~                                                                 '
I 1 i 0.18 -

0.16 i L I ,A \

 'l d

0.14

                                                                                          /

i

                                                                                                  ~)\

b 0.12 \ :T 5 ,' 1. g < \' a 0.10 / ,

                        #                                               !      /                             i.

a i 5 O 0,08 -- l / l' \.%

                        $                                               /                                          \

y

                             ""                               / /..                                                  \

i

?                            goa        __
                                                           /

l/ / \

                                                         .I/

I E02

                                                     /. *'
  • I /
                                                     /
  !                             0 E6, EL 163'-0", Ar 1300 I
                                                                          - - E3, EL.163'-W', Ar 141o j

I 30

I 9 SO I 9
/
                                                                                       /

3 40 N

  'I                      E
                                ,0
                                                               /                                               \
                                                  /
                                                     /
I O 12 24 12 24 12 24 12 24 27 MAY SO 28 M AY SO 29 M AY 80 30 M AY 80 1

TWE - HOURS t FIGURE 5.5 - TYPICAL DEFLECTJON/ PRESSURE HISTORY - EQUIPMENT H ATCH R ADI AL l 21

I I m EL. 251'-5" l g I EO E8u i i l. , #t . l

                                                                                                      .01 I                                                                                           /
   '                                                         I                         .

t I l i s I a l t l

                     $                                                    \

N/ Tendon 45FD i EL. 246'-9" g I g I 1 I I i i I .20 l1l _ Tendon face _ TEMP *E STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. 1 0 5-26-80 1600 83 88 JLD/HJC One crack 3 27 5-28-80 1945 84 85 HJC/JLD No change 5 62.1 5-29-80 2240 89.3 83 HJC/JLD No change 10 0 5-30-80 2300 81 82 JLD/DH No chance , I LEGEND Stage No.

                                                                                                   " = 1'-0" 7       Crack width SCALE Crack width                                                                                                          l I    Figure 5 Concrete Crack Pattern - Location 1 I                                       22

I EL. 184'-111" 3 I i I i l I g I I be n i i g .' y 5~ a i EJ w ' Es i

                       $E                                                                                               l 2$                                                                                              i O                                                                                               l l                                                                  ,

f . Tendon face _ l TEie *r STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT, 1 0 5-26-80 1600 B3 88 CH/HGD No cracks 3 27 5-28-80 1900 84 85 CH /HGD No change 5 62.1 5-29-80 89.3 83 No change I 10 0 5-30-80 2155 2300 81 82 CH/HGD CH No change LEGEND Stage No.

                     #                                                                                            SCALE    "= 1'-0" I                 -

g Crack vidtb_ Crack width Figure 5 Concrete Crack Pattern - Location 2 I 23

l I I

                                                                    $                          I i

a i , u , . I '

                                              .                     u
,'# e i I I

. g l l o l )1 - - n N I i l l l l l I ' I l l ' l I rw . I __1 , ) ( i { Tendon IFD EL. 105'-9" , (j l

I 1

i EL. 104'-0" i

'                                                                                                           Tendon face i

TEMP 'E STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. I 1 0 5-26-80 1535 83 88 HC/EM No cracks 3 27 5-28-80 1920 84 85 HC/EM No change i 5 62.1 5-29-80 2215 89.3 83 HC/EM No change 10 0 5-30-80 2315 81 82 HC No change i

   =                 LEGEND                                                Stage No.

7 Crack width SCALE h*' = 1'-0" g Crack width i l Figure 5 Concrete Crack Pattern - I.ocation 3 l I 24

l 1 l 222 I . I

                                              -       -    -=

EL. 177'-8" I .015 E

                                                /

I I TEMP 'F STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. 1 0 5-26-80 1530 83 88 TM/IZ One crack 3 27 5-28-80 1900 84 85 TM/IZ No change 5 62.1 5-29-80 2210 89.3 83 TM/IZ No change 10 0 5-30-80 2310 81 82 TM No change , LEGEND Stage No. i

                    #                                    SCAll   i' = 1'-0" Crack width g    Crack width I

I ris" s-e - c-r < c' c' " " '" - - " " ' l 25

i I

                                                                                 .01                           b
                                                                              %T                                                                                 l
                                              .01                    R                                              .01 I

I 4 . __ ELJ313"

                                 =  _
                                                                     -- -                               -w-                             - - - - - Equip:ne nt i                                                                                                                        j                        Hatch
                                           .01                      L1_I
                                                                                 .01                               h                                             l 4

1

I g TEMP 'f PSIG TIME INITIAL REMARKS l g STAGE DATE INT. EXT.

1 0 5-26-80 1520 83 88 HC,'EM Five cracks 3 27 5-28-80 1910 84 85 HC/EM No change i I j 5 62.1 5-29-80 2205 89.3 83 HC/EM No change ! 10 0 5-30-80 2305 81 82 HC No change , l LEGEND Stage No. 7 I

                                                                                                                                                      "    ~

Crack width g Crack width C.J. indicates a construction joint l Figure 5 Concrete Crack Pattern - Location 5 l 26 i

I

I 1

!I lI l EL 163'-3"

   =

( Equip- r_

                                    - - -    -- -    -~ ~~ y.---~~ ~
                                                                         /
                                                                                       --               -C.J.

ment atch

                                  ,           .01     M/
. .a il lI i
 \g                                               ne *r TIME                                INITIAL        REMARKS 4

lE STAGE PSIG DATE INT. EXT, 1 0 5-26-80 1505 83 88 HC/EM C.J. only 3 27 5-28-80 1855 84 85 HC/EM No change 5 62.1 5-29-80 2155 89.3 83 HC/EM No change 10 0 5-30-80 2300 81 82 HC No change LEGEND Stage No. 7 Crack width

                                                                                                                                 ~ ~
g Crack width

\1 l C.J. indicates a construction joint ! Figure 5 Concrete Crack Pattern - Location 6 27

il  ! il l 1 i it.9

                                                                                          ,     EL. 247'-0"
                                                              ,       .01       h
                                            .01    h
                                                             ,   01 1'\                       b .015 Ar h .015 E                                                     .02              ,

b .015

;3                                                                                   _

7

                                    -      -~ . ~~                          .   .. -

[ .e.,.

l i
                                            .01     R
I e t

in 1

!                                                      TEMP 'F lg       5           STAGE    PSIG    DATE    TIME                          INITIAL           REMARKS INT.       EXT.

1 0 5-26-80 1600 83 88 JLD/DH Eight cracks f 3 27 5-28-80 1915 84 85 JLD/HJC No change 5 62.1 5-29-80 2205 89.3 83 HJC/JLD No change l No change 10 0 5-30-80 2300 81 82 JLD/DH il - LEGEND Stage No. E Crack width SCALE b" = 1'-0" Crack width C.J. indicates a construction joint i Figure 5 Concrete Crack Pattern - Location 7

I I

28

I I E 150' I R .01 .01 k. 1l .01 1_ l .01

                         \                        /       1                                                                                 -

p 01

                                                                               %A                                                    J I

l 1 l .01

           .01     1                     .01                                                                                              p
                                                                                                                                              -{ Tendon V130

( Tendon VI -

                                       )      ---     -
                      .-     T                                                                                                                 R .005
                                         .01 Y
                                                           .01                                             @N \                                        l Til l                                                  !

If I I TEMP 'F I STAGE PSIG DATE TIME INT. EXT. INITIAL REMARKS 1 0 5-26-80 1615 83 88 TM/IZ Ten cracks 3 27 " 28-80

                      -             1926     84         85                           TM/IZ                                             No change 5       62.1 5-29-80       2225      89.3       83                           TM/IZ                                             No change 10        0   5-30-80       2327      81         82                                     TM                                      No change LEGEND                         Stage No.

7 Crack width SCALE " = 1'-0" 4 Crack width . I l 1 Figure 5 Concrete Crack Pattern - Location 8 29

!I lI i

a 35 37' 05"
,g                                                1 R
                                                                                                                          .01 j1l      . 01_

sp

 .I                                                                           -

1 .01 a l1 l .01 j s d Tendon V89  ;

                                                                                )J                                                                      <

I

!I 1

5

!l                                                                                                                             ?;

l $$

                                                                                                                               $O 0

l

!I TEMP 'E f                           PSIG                DATE     TIME                                  INITIAL                  REMARKS
STAGE l INT. EXT.

i Four cracks lI I I 1 3 27 0 5-26-80 5-28-80 1640 1944 83 84 88 85 TM/1Z TM/IZ No change TM/IZ No change 5 62.1 5-29-80 2237 89.3 83 l TM No change t 10 0 5-30-80 2340 81 82 , 'I. LEGEND Stage No. i, SCALE "= l'-0" i

                                                #      Crack width 4     Crack width 1

Figure 5 Concrete Crack Pattern - Location 9 30

I l I 1 76 13' 27" 1 .01 i .01 1

                                                                                   ,f g     .005 l 1 l                     @                       .0:                                                                                      J N                \                                                                                                                  l s

f si 1 l .005

                     .01     M                                  O                                                        {TendonV104
s 9 ()
                              ~f                                                    D R                         .01                                                  l1 l .005 e

1 C E 'E g' 'm E ee i If

;  I STAGE     PSIG   DATE      TIME TEMP 'F INT.      EXT.

INITIAL REMARKS 0 5-26-80 1625 83 88 TM/IZ Eight cracks 1 1935 84 85 TM/IZ No change 3 27 5-28-80 2230 89.3 83 TM/IZ No change 5 62.1 5-29-80 2333 81 82 TM No change 1 10 0 5-30-80 , E LEGEND Stage No. SCALE h" = 1'-0" E & rack width C g Crack width I Figure 5 Concrete Crack Pattern - Location 10 E 31

l l

I i

J l 6. REFERMC M ,i !I l 1. Final Safety Analysis Report, Joseph M. Farley Nuclear i

                                                   >-r c-a r-lI l
                          >1  < " " 2 " s-lI 4

i !I t ,l I i j i I I l !,I II i

!I
;I, I

4 lI !I I I 32

i i i 1 I

I l

!I l it t l !I il l i APPENDIX 1 l l" DEFDRMATION MEASUREMENTS DURING STRUCTURAL l INTEGRITY TEST OF FARLEY NUCLEAR PLANT UNIT NO. 2 1 lI l 1

I I

J !I i I il l .I i I if I I June 23, 1980 I

I 1 I 1 1 DEFDRMATION MEASUREMENTS DURING STRUCTURAL INTEGRITY TEST OF FARLEY NUCLEAR PLANT UNIT No. 2 .I INTRODUCTION Invar wire extensometers were used for measurement of ) displacements of the containment structure during the structural 1 integrity test. The same type of instrumentation had been used previously on eighteen containment structures under conditions comparable to those of Farley Unit 2. The measuring instruments were located entirely within the structure, and were connected to an external power supply and readout equipment by wiring

extending through penetrations in the cylinder wall. Each
I extensometer consisted of an invar wire spanning between selected points, with one end (the " dead" end) fi<ed in position and the
           " live" end attached to a spring-loaded f rame incorporating a linear potentioneter, the entire system spanning the distance to be measured.

,li The springs used were the " negator" type that apply an I essentially constant force independent of extension. The springs selected applied a force of approximately fifteen pounds. The l .I invar wire diameter was 0.050 inch giving a wire stress of approximately 7600 psi. I 1

I I INSTALLATION OF INSTRUMENTATION The dead end of each wire was secured to an eye--bolt welded to the liner plate or internal steel. The opposite end had a one-inch nut welded to the liner plate, internal steel, or an insert set in concrete. The live end, containing the springs and instrumentation, was fitted with a swivel to allow directional adjustment, and was secured by threading the one-inch attachment bolt into the nut previously welded to the structure. I After alignment, the swivel was tightened against movement, but the frame contained a rod-end bearing (effectively another swivel) to avoid eccentric force on the potentiometer. The wire was attached to the frame through a turnbuckle that was adjusted to position the potentiometer at the desired zero setting. I The potentiometers were the infinite resolution type with a total travel of about 1.3 inch. The turnbuckles on each frame were adjusted to provide for about 0.3 inch of shortening and the remainder of the range for elongation. Current was supplied to the potentiometers by a constant voltage power supply providing 10.01 volts through 16 gage cable. The output from the potentiometers was through a separate circuit of 16 gage cable and this output was monitored by a Kaye data acquisition system, incorporating a digital display millivoltmeter and a printing millivolt recorder. I Each instrument was calibrated in the laboratory against a pair of 0.001 inch dial gages, using an input voltage to the 2

l I I potentiometers of approximately 24 volts. Circuitry in the field installation permitted continuous monitoring of the supply voltage and the initial voltage at each potentiometer. Calibration factors, developed in the laboratory, were used to reduce the data on the basis of 0.001 inches per millivolt. This is within one percent of the best-fit data established from the calibration records. I Each recording consisted of a print-out by tha recording millivoltmeter for each instrument, which required approximately twenty seconds. Such readings were repeated three times at each data collection point and repetitive print-outs and manual readings I agreed within one or two millivolts. LOCATION OF INSTRUMENTS Ins t rume nt locations conformed in general with Drawing 7597-020-SK-2A1, sheets 1, 2, and 3. Deviations were necessary because of interference by piping and/or equipment. The actual locations are noted in the text and in Tables I through VI which record the measured displacements. The equipment hatch gages, El through E12, spanned f rom the cylinder wall to the shield wall or rigid structural steel. Invar wire lenths ranged f rom 3 to 32 feet. I Gages H1, H3, (Azimuth 50), H2, H4 (Azimuth 1900), H8 (Azimuth 214 ), H9 (Azimuth 35 ), H10 (Azimuth 215 ), H11 (Azimuth 33 ), H15 (Azimuth 305"), H16 (Azimuth 125 ), H17 (Azimuth 304 ), and H18 I 3 l l

I I

(Azimuth 129 ) spanned from the buttress or cylinder wall to the interior structure with invar wire lengths f rom 8 to 40 feet. I Cages HS (Azimuth 2 /182 ), H6 (Azimuth 4 /1840 ), H7 (Azimuth 5 /185 ), H12 (Azimuth 48 /220 ), H13 (Azimuth 34 /214 ), H14 (Azimuth 35 /215 ), H19, H2O (Azimuth 128 /308 ), and H21 (Azimuth 141 /305 ) span the full diameter between wall sections or between butt ress and wall. H12 and H21 span a chord rather than the full diameter with the H12 end points being at a one foot elevation dif-ference, but meet the intent of Regulatory Guide 1-18. In all cases, the measurements reported represent changes in radial or diametral movements. I Six vertical gages were installed as follows: VI - Cylinder wall at Elevation 236'-1" to Elevation 115'-0" on Azimitth 7 0 V2 - Cylinder wall at Elevation 236'-1" to Elevation 115'-0" on Azimuth 38 30' i E W V3 - Cylinder wall at Elevation 236'-1" to Elevation 115'-0" Ig on Azimuth 126

5 V4 - Cylinder wall at Elevation 236'-1" to Elevation 115'-0"
 ""        on Azimuth 185 0 I    V5 - Cylinder wall at Elevation 236'-1" to Elevation 115'-0" on Azimuth 218

.I I

  • 1

I I V6 - Cylinder wall at Elevation 236'-1" to Elevation 145'-0" on Azimuth 307 . Dome displacements were measured at Azimuth 332 at four locations using approximately equally spaced increments from 10 in, fron the apex (D1) to 42'-0" from the apex (D4). The invar wire terninated at the operating floor (Elevation 155'-0") giving wire lengths f rom 109 to 137 feet. I TEST RESULTS The structural integrity test consisted of pneumatically pressurizing the containment to a maximum pressure of 62.1 psig. Pressurization and depressurization was halted at 14, 27, 41, 62.1, 55, 41, 27, and 14 psig to allow acquisition of the required structural integrity test data, i.e., deflections and crack

!   patterns. The hold at 55 psig was an additional hold to allow I  preliminary leak rate calculations to be carried out. At these plateaus, the pressure was maintained for one hour to determine if indicated displacement lagged the actual pressurization /

depressurization. In addition to data obtained at each plateau, deflection data was obtained at each 5 psig increase and decrease in pressure. i 5 Measured data are presented it, the following tables: TABLE 1 - Radial Displacement - Equipment Hatch TABLE II - Radial Displacement - Equipment Hatch I '

I I TABLE III - Vertical Displacenent TABLE IV - Dome Displacement Referenced to Elevation 155 ft. at Azinuth 312  ; l l TABLE V - Radial Displacement - Cylinder Wall, Nominal Azimuth 35 and 215 TABLE VI - Radial Displacement - Buttress, Nominal Azimuth 125 and 305 TABLE VII - Radial Displacement - Buttress, Nominal Azimuth 5 and 185 . j I Pressurization tegan on May 27, 1980 at 1811 hours, with I peak pressure being reached on May 29, 1980 at 2145 hours. The conclusion of the test was on May 30, 1980 at 2300 hours. I Respectfully submitted, y di.L a. Douglas L. Palner Bechtel National, Inc. , I Registered Professional Engineer, California - 30744 l ( I I I I 6 l B ! g

m W W W W W W W W W W W W W W W W W W TABLE I EQUIPMENT HATOI - RADI AL DISPLACEMENT (INOlES) Gage No. El E2 E3 E4 E5 E6 Elevation 163'-3" 163'-3" 163'-3" 163'-3" 163'-3" 163'-3" Azimuth 170* 164 0 159* 141* 136* 130* DATE TIME PSIG 5-27-80 1811 0 0.000 0.000 0.000 0.000 v.000 0.000 2300 5 0.007 0.000 0.006 0.008 0.013 0.009 5-28-80 0252 10 0.011 0.000 0.010 0.016 0.019 0.021 0611 14 0.018 0.000 0.015 0.023 0.030 0.032 0723* 14 0.018 0.000 0.015 0.023 0.030 0.032 0812 15 0.018 0.000 0.017 0.026 0.030 0.036 1330 20 0.032 0.017 0.029 0.041 0.049 0.052 1715 25 0.043 0.028 0.037 0.053 0.064 0.070 1851 27 0.046 0.032 0.040 0.057 0.068 0.078 1951* 27 0.046 0.032 0.040 0.058 0.068 0.078 2055** 27 0.046 0.032 0.040 0.058 0.068 0.078 2300 30 0.050 0.035 0.043 0.063 0.075 0.086 5-29-80 0228 35 0.057 0.042 0.050 0.074 0.090 0.101 0603 40 0.067 0.049 0.057 0.084 0.101 0.I16 0646 41 0.067 0.051 0.059 0.087 0.106 0.120 ' 0754* 41 0.067 0.051 0.059 0.088 0.106 0.120 1049 45 0.076 0.060 0.068 0.100 0.121 0.136 1355 50 0.090 0.072 0.079 0.115 0.135 0.156 1705 55 0.101 0.082 0.087 0.12o 0.154 0.173 2012 60 0.111 0.090 0.095 0.137 0.167 0.191 2145 62.1 0.116 0.093 0.097 0.141 0.172 0.199 2245* 62.1 0.I16 0.093 0.097 0.143 0.I72 0.199 2351** 62.1 0.116 0.093 0.097 0.143 0.173 0.199 5-30-80 0010 60 0.I16 0.093 0.097 0.143 0.I72 0.199

E E E E E E E E E E E E E E E E E E E TABLE I (Continued) EQUIPMENT HATCil - RADI AL DISPLACEMENT (INCilES) Gage No. El E2 E3 E4 E5 E6 Elevation 163'-3" 163'-3" 163'-3" 163'-3" 163'-3" 163'-3" Azimuth 170* 164* 159' 141* 136* 130' DATE TIME PSIC 5-30-80 0114 55 0.116 0.093 0.091 0.134 0.171 0.192 0200 55 0.116 0.093 0.091 0.134 0.171 0.192 0300 55 0.116 0.093 0.091 0.134 0.171 0.192 0400 55 0.116 0.093 0.090 0.133 0.171 0.192 0500 55 0.116 0.093 0.090 0.133 0.171 0.191 0518** 55 0.116 0.093 0.090 0.133 0.171 0.191 0627 50 0.107 0.088 0.084 0.124 0.159 0.177 0739 45 0.099 0.082 0.079 0.116 0.151 0.164 0846 41 0.094 0.076 0.074 0.110 0.140 0.154 0946* 41 0.094 0.075 0.074 0.I10 0.1,o 0.154 1003 40 0.r74 0.076 0.074 0.110 0.140 0.152 1130 35 0.065 0.071 0.070 0.103 0.132 0.140 1232 30 0.078 0.065 0.065 0.094 0.121 0.127 1310 27 0.075 0.062 0.063 0.090 0.115 0.120 1410* 27 0.076 0.062 0.063 0.090 0.116 0.120 1442 25 0.073 0.060 0.061 0.087 0.110 0.114 1557 20 0.066 0.054 0.055 0.077 0.100 0.101 1655 15 0.058 0.048 0.050 0.068 0.088 0.087 1704 14 0.056 0.047 0.049 0.066 0.084 0.084 1804* 14 0.057 0.046 0.048 0.065 0.085 0.083 1853 10 0.052 0.042 0.044 0.058 0.075 0.072 2001 5 0.043 0.035 0.037 0.048 0.062 0.057 2300 0 0.035 0.026 0.029 0.035 0.047 0.039

  • Readings after I hour hold period ** Readings at end of hold period exceeding I hour

M M m e 2 9* 0 04 1 55863333763662841 4444 001 1 1 1 233333455566788888 1 ' 5 000000000000000000000000 E01 4 000000000000000000000000 m 1 9" 004882088882088864069999 l - 9 000001 222223444456777777 W l ' E41 4 1 4 000000000000000000000000 000000000000000000000000 W ) S 9* 0 - 0 073890081 1 1 531 231 0747777 001 1 1 2334444566678899999 E I 1 ' 5 000000000000000000000000 E21 . O 5 000000000000000000000000 N W I ( 1 T " N 9 050568446771 9701 46304444 E -

  • 001 1 1 1 34444556778901 1 1 1 1 W M E

C A 9' E35 71 1 0 0000.r00000000000001 000000000000000000000000 1 1 1 1 1 L P S W I I I D 6 07 401 4458881 979160858888 001 222455556677891 1 22222 E L 8' 0 000000000000000001 1 1 1 1 1 1 L A E05 . . . . . . . B I 81 000000000000000000000000 A D W T A R 1 9 0393590266687 601 94304444 I

  • 0001 1 1 455555678891 23333'3 O

W T A H 7 ' E65 81 1 0 000000000000000001 1 1 1 1 1 I 000000000000000000000000 T N 1 1 1 m E M P I G I S P 050445057770501 1 50502220 1 1 1 1 222223344445566666 U Q E N *

  • E 1 021 32051 1 5083649552551 0 M 1 051 21 31 55502 0454501 4451 I 83267837 89032667037 01 230 M T 1 200001 1 1 1 2200001 1 1 22220 n
         . o oih        0     0                        0                               0 N t t       8     8                        8                               8 N        evm au E 7 8

9 0 gei T 2 2 2 3 al z A - - - - GEA D 5 5 5 5 M W W

M M M M M M E M M M M M M M M M M M TABLE II (Continued) EQUIPMENT HATCH - RADIAL DISPLACEMENT (INCHES) Gage No. E7 E8 E9 E10 Ell E12 Elevation 186'-9" 180'-6" 173'-9" 152'-9" 144'-9" 140'-9" Azirauth 150* 150* 150* 150* 149* 150* DATE TIME PSIG 5-30-80 0114 55 0.132 0.125 0.110 0.093 0.079 0.083 0200 55 0.132 0.125 0.110 0.093 0.079 0.083 0300 55 0.131 0.124 0.109 0.093 0.079 0.083 0400 55 0.130 0.123 0.108 0.093 0.079 0.083 0500 55 0.129 0.122 0.107 0.093 0.079 0.083 0518** 55 0.129 0.122 0.107 0.093 0.079 0.083 0627 50 0.121 0.115 0.101 0.087 0.076 0.083 0739 45 0.117 0.111 0.096 0.082 0.071 0.078 0846 41 0.113 0.107 0.093 0.078 0.067 9.074 0946* 41 0.113 0.107 0.093 0.078 0.067 0.v74 1003 40 0.113 0.107 0.093 0.078 0.067 0.074 1130 35 0.111 0.106 0.090 0.073 0.061 0.067 1232 30 0.104 0.100 0.084 0.068 0.056 0.062 1310 27 0.100 0.096 0.081 0.065 0.053 0.058 1410* 27  ;.100 0.096 0.080 0.065 0.053 0.058 1442 25 0.097 0.093 0.078 0.062 0.051 0.056 1557 20 0.089 0.086 0.071 0.057 0.045 0.051 1655 15 0.080 0.078 0.064 0.050 0.039 0.046 1704 14 0.078 0.077 0.063 0.049 0.038 0.044 1804* 14 0.076 0.075 0.062 0.049 0.038 0.044 1853 10 0.069 0.069 0.056 0.044 0.033 0.039 2001 5 0.059 0.060 0.049 0.038 0.027 0.033 2300 0 0.045 0.047 0.038 0.030 0.020 0.027

  • Readings after 1 hour hold period ** Readings at end of hold period exceeding I hour

l l l 1 I j i I I

2
          -Q          000000000 OCOOOOOO-NNNNNN0-l lo      C000000C000000000000000C00 I
          =
  • N
       @@mo           Ce Oe eCe O C O.Ce O e        o eO Ce C e O  eOo eOe Oo O O  e oCe Ce C C.Ce Co Ce O    e eO
       >m4m           OCOCOCOOCCOOCCCCCCCCCCCCCC N-I
          ' t
          -O          COOOOO-OCO-COOOOOmC4Com&@@

I to COOOOOOOOOOOOOOOOC--N-----

          = =    M    OOOOOCCOOOOOOOOOOOCCCCOOCO                             o e e   e e e e          o e e W@m-             e e e o e e o e o           e   e    o e o e e
       >m-N           C000C00C00C0000000C00CCC00 N-                                           1 I

1

          -O          OOOOOOOOOCOOOOCCON4@ @ @ @ @ m4 I to      OOOOCOOOOCOOOOOOOCOCOCOOCC
          =
  • m I e m

W 0 z 4ce@

       >m--

N-O O. O. O. O O e eOe O e O Oe O. O. O. C. C COOCOCOCOCOOCCCOOOOOCCCCCC e eO Oe Ce Oe eOeC C. C. C. C. O. I w  : v -O O-COOOOOOOOOOOOOONmemmmmC-I lo OOOOOCOCOOOOCOOOOOOCCCOCOC P = = @ Z m@mN C. 0 e0e 0o 0 0 C 0 0 0 0e e0e 0 0e 0 e e OCOCOCOOCCCOOCCCCCCCCCCCOO e o e 0 0 0 0 0e C e e C 0e e C e e0 e 0 H W >m-- H I N-I H W J m W U J 4 m E 3

          -C-l 1 0 O-OOOOMNComo-44mmmmmOCOONm OOOOOOOC--O------Nmm4444mm P w N=     = m I     C Q

U N

       >@co m-w N-m C. O. O. O. O. O. eC O. C O CCOOCCCCCOOOOOOOCCOCCCCCOO e O  e C e O. O. C. C. C. C  e eC C. C e C e eC O. O. C.

P  : I E W

          -O
       >@mN n-N-

1 1

       -= = o OOOOOOOOOOOOOOOOONmmmmmmC-00000000000000000000000000 Ce Oo eO e O O. O  e C. O.C. O COCCOOOOOCOOCCCCOCCCCCOCOC e C    Oe O O. O. O. eOe C o e                      e eCe C e C C C. O    e oCe C cl                                                                     -- -

m OmC44mCANNNomo--momONNNomm A --- -NNNNNmm4444mm@@ @ @@ mm E * * * * *

  • I au u

C O uD O N I H F

                      -ON-MNOm--mommc4 memNem-040
                      -On-N-m-mmeONC404mO-44m--C mmN@ N@m6TmCmN@ @ N Om60-NMO-N
                      -NOCCC----NNCOCO---NNNNOOO I

C C i e O O l C+MA O O O O , 2M uu w  % W @ < C W D 1 1 I I  ! 0 > > C W W m & C MO WN H N N N m I @HM N < l 6 I l . CWW< C e e e e  ! l l 4 1 1 1

I l l l l I I  : 8 O 1 1o

                                     **Oe OOCCOCOOCCOOOOOOOOOC e === N N - e == NNN==NNN L

3 O I

            @=      = N                                                                         .C
            >@      mO          O.O. O. O. C. O. O. O.C. O. O. O.O.O. C. O. O. C. O. O. O.

M4M N -* CCCCCCOOOCOOOOOOOOOOO - I l 8 l l 1 I i I I i 1 1 1 8 1 et

                                                                                                .C,*
               *
  • T eo cc to co co @ m e @ m n 4 4 m 4 to M N 4 -* m ~* 0 I -I e -*
  • a -* .* *-*-*a* a* a* *e
  • a-* O O O O O O .* W m- cc O
            >@ m                C. O. C. C. C. O. O. O. C. C. C. C. C. O. O. O. C. O. O. O. O. x M -* N N -*

CCCCCCCCCCCOOOCOOOOOC 0 I l 1 T C w I 4

               -O              W e e m M N N M N N -*               e N *
  • O O -* -* N N 0 1 =I o m OCOOOOOOOOOCOOOOOOOOO C I

4*

       ^    >@ e co            O. O. O. O. O. C. O. O. O. O. O. O. O. O. C. O. O. O. O. O. C. T t.n W

M-- COCOOOOOCOOOOCCCCCOCO e-4 Ne i l i o

       %                                                                                         C U

Z W I s O V -* O N N N N O -e -* -= - N N N -= N N M M N M M N i I o Ma = @ OOOOOCOOOCOCOCOOOOOOO T f* C

    ^  2    >@ mN              C. O. O. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. O. O. O. Q N  T  W       M-*-*

O C C O CiOiOlOi Ol O1 Ol O OOOOCQOO M 0 I N -a i i i l i I I l 1 u I H N

  • J sc
 *C C

C U C O W U

       *C
       ,,.3 A

y: s t -

               -* O O l l M CC m @ m@ mWO4NO@@ m m 4 M 4 -= @ M MMMMMNNNNNNe*                         s*  -* O O C O C O -*

te to oc C

                                                                                                 -4 E* U  w    Na     - o                                                                         T v  C    >@ m ac            O. O. O. O. C. O. C. O. O. C. C. C. O. C. O. O. O. O. C. O. O. cc M-M N -*

COOCCCCCCOOCCCCCCCOCe o 2 I I T  %

       *C U
  • w
  • l* I 2 cd -* O N N N N O O -* O - * == N N - N N CC O CO 4 -* C W -a l i O O O O O O O O O O O O O C O O -* O *N M
       >    >=     *
  • T
               @ mW            C. C. O. O. C. O. C. O. O. O. C. O. O. O. C. C. C. O. O. O. O. O M-N-

CCCOOCCCCOOOCCOCOOCCO .* l 1 1 1 1 1 I I I I I I I T L I C N gn m e e e o e -= e omONNeCe44CeO T M O e C. 8% A O O O O 4 4 4 4 (9 m N N N N - e -= == M .C L U O

                                                                                               .C I

E! * -* u O fa3 C O O CC N & @ @ M O N O C N N m 4 4 M -* C Q. u I C O O -* N M 4 4 O M-4 M =* -* 4 m m O O e C C L M 4 IA m @ N 00 m O N f9 4 4 iA @ N CC CC C M W O O O O O O O C C O -* * - -4 - - -e -a - e -* - N N u u .D w C C

             . O O                                                                              te O -4 a 4 .C        O                                                                et 2M M M             00                                                               C CC 10 "          t                                                              are O > > I!

oc e = w W O T i* M cc I EU M -4 N 0 W W *C

                           *C C   m l

C I

M M M M M M M M M M TABLE IV DOME CAGES - VERTICAL DISPLACEMENT (INCHES) REFERENCED TO ELEVATION 155 '-0" AT AZIMUTH 332* Cage No. 01 02 03 D4 Distance f ron Apex 0'-10" 14'-0" 28'-0" 42'-0" Azimuth 332' 332* 332* 332* DATE TIME PSIG 5-27-80 1811 0 0.000 0.000 0.000 0.000 2300 5 0.001 0.013 0.012 0.007 5-28-30 0252 10 0.001 0.035 0.030 0.021 0611 14 0.022 0.056 0.045 0.032 0723* 14 0.022 0.056 0.045 0.032 0812 15 0.022 0.056 0.048 0.034 1330 20 0.040 0.112 0.099 0.074 1715 25 0.060 0.153 0.138 0.106 1851 27 0.064 0.166 0.147 0.113 1951* 27 0.064 0.166 0.147 0.114 2055** 27 0.064 0.166 0.147 0.113 2300 30 0.067 0.173 0.154 0.118 5-29-80 0228 35 0.075 0.198 0.177 0.136 0603 40 0.078 0.222 0.200 0.154 0646 41 0.078 0.228 0.206 0.158 0754* 41 0.079 0.228 0.206 0.159 1049 45 0.096 0.261 0.236 0.183 1355 50 0.119 0.309 0.284 0.222 1705 55 0.145 0.361 0.328 0.259 2012 60 0.171 0.395 0.358 0.282 2145 62.1 0.183 0.411 0.372 0.293 2245* 62.1 0.186 0.411 0.371 0.295 2351** 62.1 0.187 0.411 0.371 0.295 m

m M M M M M TABLE IV (Continued) DOME GAGES - VERTICAL DISPLACEMENT (INCllES) REFERENCED TO ELEVATION 155 '-0 " AT AZI MUTil 3 32' Gage No. D1 02 D3 D4 Distance from Apex 0'-10" 14'-0" 28'-0" 42'-0" Azimuth 332* 332* 332* 332* DATE TIME PSIG 5-30-80 0010 60 0.187 0.411 0.371 0.295 0114 55 0.172 0.391 0.342 0.275 ' 0200 55 0.170 0.391 0.342 0.272 4 0300 55 0.169 0.388 0.340 0.271 0400 52 0.168 0.388 0.338 0.271 0500 55 0.168 0.385 0.337 0.271 0518** 55 0.168 0.385 0.336 0.269 0627 20 0.144 0.349 0.305 0.245 0739 45 0.121 0.317 0.276 0.223 0846 41 0.106 0.291 0.252 0.205 0946* 41 0.106 0.291 0.253 0.203 1003 40 0.105 0.286 0.248 0.201 1130 35 0.092 0.262 0.228 0,115 1232 30 0.076 0.237 0.204 0.'55 1310 27 0.068 o.224 0.192 0.156 1410* 27 0.069 0.225 0.193 0.155 1442 25 0.064 0.216 0.186 0.152 1557 20 0.049 0.190 0.151 0.133 1655 15 0.034 0.161 0.135 0.113 1704 14 0.031 0.155 0.130 0.109 1804* 14 0.032 0.151 0.125 0.107 1853 10 -0.011 0.127 0.103 0.088 2001 5 -0.003 0.093 0.072 0.062 2300 0 -0.014 0.053 0.033 0.033

  • Readings after I hour hold period ** Readings at end of hold period exceeding I hour

M M M M M M M M M TABLE V CYLINDER CAGES - RADIAL DISPLACEMENT (INCHES) Gage No. H8 H9 H10 H11 H12 H13 H14 Elevation 114'-6" 115'-0" 141'-0" 141'-0" 183'/182' 207'-6" 242'-6" Azimuth 214* 35* 215* 33' 48*/220* 34*/214* 35'/215' DATE TIME PSIG 5-27-80 1811 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2300 5 0.000 0.002 0.000 0.012 0.001 0.000 0.001 5-28-80 0252 10 0.003 0.007 0.009 0.026 0.015 0.011 0.000 0611 14 0.005 0.011 0.016 0.042 0.032 0.025 0.000 0723* 14 0.005 0.011 0.016 0.042 0.032 0.025 0.000 0812 15 0.005 0.012 0.017 0.045 0.032 0.025 0.000 1330 20 0.008 0.017 0.025 0.062 0.054 0.053 0.000 1715 25 0.010 0.022 0.033 0.071 0.073 0.078 0.000 1851 27 0.011 0.024 0.037 0.087 0.082 0.085 0.000 1951* 27 0.011 0.024 0.037 0.087 0.082 0.092 0.000 2055** 27 0.011 0.024 0.037 0.087 0.081 0.091 0.000 2300 30 0.012 0.026 0.043 0.096 0.095 0.092 0.000 5-29-80 0228 35 0.014 0.030 0.051 0.114 0.116 0.108 0.000 0603 40 0.017 0.034 0.062 0.131 0.135 0.123 0.000 0646 41 0.017 0.035 0.064 0.135 0.135 0.123 0.000 0754* 41 0.017 0.035 0.064 0.136 0.135 0.124 0.001 1049 45 0.019 0.038 0.071 0.149 0.148 0.147 0.001 1355 50 0.021 0.042 0.080 0.166 0.170 0.168 0.002 1705 55 0.023 0.046 0.092 0.182 0.191 0.197 0.084 2012 60 0.026 0.049 0.103 0.199 0.211 0.225 0.085 2145 62.1 0.027 0.050 0.108 0.207 0.226 0.231 0.085 2245* 62.1 0.027 0.050 0.108 0.207 0.225 0.231 0.084 2351** 62.1 0.027 0.050 0.108 0.207 0.225 0.231 0.084 5-30-80 0010 60 0.027 0.050 0.108 0.204 0.225 0.231 0.084

M M M M M M M M M M M M M M M M M M M TABLE V (Concinued) CYLINDER GAGES - RADIAL DISPLACEMENT (INCHES) Gage No. H8 H9 H10 Hll H12 H13 H14 Elevation 114'-6" 115'-0" 141'-0" 141'-0" 183'/182' 207'-6" 2425-6" Azimuth 214* 35' 215' 33' 48*/220' 34*/214* 35'/215* DATE TIME PSIG 5-30-80 0114 55 0.026 0.048 0.107 0.190 0.222 0.228 0.081 0200 55 0.027 0.048 0.107 0.190 0.224 0.230 0.083 0300 55 0.027 0.048 0.107 0.190 0.224 0.230 0.083 0400 55 0.027 0.048 0.108 0.190 0.224 0.230 0.083 0500 55 0.027 0.048 0.108 0.190 0.224 0.230 0.083 0518** 55 0.027 0.048 0.108 0.190 0.224 0.230 0.083 0627 50 0.025 0.044 0.099 0.174 0.222 0.228 0.081 0739 45 0.022 0.040 0.090 0.158 0.203 0.204 0.080 0846 41 0.020 0.037 0.082 0.145 0.185 0.178 0.080 0946* 41 0.021 0.037 0.083 0.145 0.185 0.179 0.081 1003 40 0.020 0.036 0.0o0 0.141 0.185 0.179 0.080 1130 35 0.018 0.032 0.071 0.124 0.160 0.161 0.080 1232 30 0.015 0.028 0.062 0.107 0.146 0.144 0.079 1310 27 0.014 0.025 0.056 0.097 0.132 0.139 0.079 1410* 27 0.014 0.025 0.056 0.097 0.133 0.134 0.080 1442 25 0.013 0.023 0.052 0.089 0.123 0.133 0.079 1557 20 0.011 0.019 0.043 0.072 0.099 0.111 0.079 1655 15 0.008 0.015 0.033 0.054 0.084 0.092 0.078 1704 14 0.008 0.014 0.032 0.051 0.078 0.085 0.078 1804* 14 0.008 0.014 0.032 0.049 0.080 0.086 0.080 1853 10 0.006 0.010 0.025 0.037 0.061 0.074 0.078 2001 5 0.004 0.006 0.015 0.020 0.042 0.050 0.078 2300 0 0.000 0.001 0.006 0.002 0.019 0.021 0.079

  • Readings after I hour hold period ** Readings at end of hold period exceeding I hour

I I l l l I E M C4 OCOCOOmom444@ -NN-04mc@@@ COOOOOONNNNNNmmM4m@NNNNN Na N 000000000000000000000000 zmo4m O0000000000000000000000C NO I a m

         @N m

o I - 000000@ ~ ~ m----mm@ -m4mmmm OOCCOO- 444444 NNN@Omc@ @@@ O- N 00000000000000000.... --- I N@o

      =Om No m

C0000000000000000000C000

         ' oec I   n
      =-o
         @N
      @ l -
      - ~ %

mm mo 0-Om@N-m&@m@@ @NN@mmWMMMM OOO-mm4@ @ @@N m@ OOM4mNmmmm 00000000000000..~.~.~.~.~..... O00000000000000000000000 I M M W 3 z Co OO@ --NOOee-eOm@@mmomNNNN H v ml @ COONNN4mmD@@ m@@ @-N4m@ @@@

      *
  • N 0 0 0.C.0e .0 0 0 0 0 0e 0. 0 0 0 0. . . . . . e ~. ~.

I m- . H 4 OOOOOOOCOOOC 000000000C00 Z - W W U I t

   <     No      04NNN@ mmmmmm4-NNNMO@ memm 4  N i c      CO----Nmmmmm4mmemcNNNNNN 4  -= O m  = 4-m      C. 0 0 0 0. C. 0 0 0 0 0 0 0 0 0 0 0. C. 0 0 0 0 0 0 H

H C " 000000000000000000000000 I W 4 M 4 H C 4 W I No

      @ l m OOm@@ O4@"--4mommmmmN4444 OOOOOw-M NNNNNmmmm44mmmme F    -- N O. O. O. O. .C..'

O C. Oe C. C. O. O. O. O. O e O. O e O e O. O. Oe O. O. C. I xA-1 - COOOOOOOOOOOOOOCOOOOOOOC m W O

   <     t I   O m

m W E

      =4m de e i m
      ~~ O
         ~

OOOmmmeNNNNm&OOO-Nmm4444 OOC 0000000000-~~--~~~~~~ C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.C. 0 0 0 0 OOOOOOOOOOOOOOOCOOOOOOOC P I b A O w m OmO44mOWNNNomO--momONNNO

                       -e--NNNNNmm4444mm@@@@@

I I -ONwmNon--mommC4@mmNmm-C W

               % -Om-N-m-memONO4m4mo-44m-                                              '

mmN@NemNm@CMN@ @NOmWC-NMC l

                 -  NOOOO----NNOOOO---NNNNO C

I . O Ow4 2U U O >E mow C D W P O m N N 1 O m m N 1 O m N I O m C m I CM N 4 i l l l I OW4 A e e o e I , J

m m M M M M M M M M M M M M M M W TABLE VI (Continised) BUTTRESS GAGES - RADI AL DISPLACEMENT (INCH,ESJ Gage No. 111 5 H16 1117 1118 M19 H2O H21 Elevation 114'-4" 115'-7" 141'-2" 141'-0" 181'-6" 206'-6" 243'-0" Azimuth 305* 125* 304* 129" 308*/128' 308*/128* 305*/141' DATE TIME PSIG 5-30-80 0114 55 0.013 0.054 0.075 0.162 0.180 0.160 0.073 0200 55 0.013 0.054 0.075 0.162 0.181 0.161 0.075 0300 55 0.013 0.054 0.075 0.162 0.181 0.162 0.075 0400 $5 0.013 0.054 0.075 0.162 0.182 0.162 0.075 0500 55 0.013 0.054 0.075 0.162 0.182 0.162 0.075 0518** 55 0.013 0.054 0.075 0.162 0.182 0.162 0.075 0627 50 0.013 0.050 0.069 0.161 0.166 0.160 0.065 0739 45 0.012 0.047 0.063 0.149 0.150 0.159 0.056 0846 41 0.010 0.043 0.057 0.139 0.137 0.158 0.050 0946* 41 0.011 0.044 0.058 0.139 0.137 0.159 0.050 1003 40 0.010 0.043 0.056 0.135 0.136 0.158 0.050 1130 35 0.009 0.039 0.049 0.125 0.121 0.158 0.043 1232 30 0.007 0.035 0.042 0.113 0.106 0.137 0.036 1310 27 0.007 0.033 0.038 0.105 0.095 0.137 0.032 1410* 27 0.007 0.032 0.038 0.105 0.096 0.138 0.032 1442 25 0.006 0.031 0.035 0.100 0.091 0.114 0.030 1557 20 0.005 0.026 0.029 0.087 0.075 0.113 0.024 1655 15 0.003 0.022 0.022 0.073 0.056 0.b?R 0.017 1704 14 0.003 0.021 0.021 0.070 0.052 0.098 0.016 1804* 14 0.003 0.021 0.020 0.059 0.052 0.084 0.016 1853 10 0.002 0.017 0.015 0.059 0.038 0.082 0.010 2001 5 0.006 0.013 0.009 0.045 0.019 0.052 0.002 2300 0 -0.001 0.008 0.003 0.031 0.001 0.025 -0.008

  • Readings after I hour hold period ** Readings at end of hold period exceeding I hour

M M M M M M m m M M M M M M M M M M M TABLE VII BUTTRESS GAGES - RADI AL DISPLACEMENT (INCHES) Gage No. H1 H2 H3 H4 H5 H6 H7 Elevation 115'-0" 115'-0" 140'-9" 140'-6" 183'-6" 208'-6" 243'-6" Azimuth 5* 190* 5* 190* 2*/182* 4*/184* 5*/185* DATE TIME PSIG 5-27-80 1811 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2300 5 0.004 0.000 0.005 0.005 0.000 0.001 0.000 5-28-80 0252 10 0.007 0.003 0.013 0.010 0.000 0.019 0.000 0611 14 0.010 0.003 0.021 0.015 0.017 0.018 0.000 0723* 14 0.010 0.003 0.021 0.015 0.017 0.018 0.000 0812 15 0.010 0.005 0.023 0.016 0.017 0.018 0.000 1330 20 0.014 0.007 0.032 0.024 0.044 0.032 -0.001 1715 25 0.017 0.009 0.042 0.032 0.068 0.055 0.000 1851 27 0.017 0.009 0.045 0.036 0.068 0.055 0.000 1951* 27 0.018 0.011 0.045 0.036 0.068 0.055 0.000 2055** 27 0.018 0.011 0.045 0.036 0.068 0.055 -0.001 2300 30 0.019 0.011 0.050 0.039 0.068 0.055 0.000 5-29-80 0228 35 0.021 0.013 0.060 0.046 0.081 0.084 0.000 0603 40 0.024 0.014 0.070 0.053 0.092 0.084 0.000 0646 41 0.024 0.016 0.072 0.054 0.092 0.084 0.000 0754* 41 0.025 0.016 0.072 0.054 0.092 0.084 0.000 1049 45 0.026 0.018 0.080 0.060 0.118 0.084 0.000 1355 50 0.029 0.020 0.090 0.068 0.133 0.116 0.002 1705 55 0.028 0.022 0.100 0.078 0.158 0.141 0.003 2012 60 0.034 0.025 0.111 0.087 0.171 0.167 0.003 2145 62.1 0.035 0.025 0.115 0.090 0.182 0.167 0.003 2245* 62.1 0.035 0.025 0.116 0.090 0.181 0.167 0.003 2351** 62.1 0.035 0.025 0.116 0.091 0.181 0.167 0.003 5-30-80 0010 60 0.035 0.025 0.115 0.091 0.181 0.167 0.003

I I  ! 1 E o

                        @ in           O .- N N N N O - N.*.e                    NNNd NMM4NM4N I                          CC       CCOOOCCOOCOCoCOOOOOCCCO NI
  • O. O. O. O. O. C. O. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. C.

ZMN 4o OCCCOOCCOOOOOCOOOOOCCOO b N LA i i 1 i 1 i l i l i i 1 1 I i i c O 3 o

                        @4             4 LA @ @ @ @ 4MNMMNNNMN*NNm4NN                                           O mNM
                    @~

1 CC

                              -        @.-.e
                                       -d     @@@@

e ee @ @@@@@@ e .-e e - @444NOOe e- -4 -e. . .

                                                                                                                 . O. O. O.

OC C 2 c0 % oo OCOOOCCCCCCCCCCOOCCCOOC a4 I N4 T C 0 0

o y
                        @N             & O O O O O .-* N N N N @ 4 @ N @ 4 O O -* 4 LA 4                                      0 i CO                                                               O O to N N N LA M -
  • I LA -

XM% e N CO . CO c0 CO e e e e .

                                                                 -e 4.-. 4.-* 4
                                                        - CO. N. LA e . . e e e e N ..*.
                                                                              -*.-e  . - .O.
                                                                                       . . .     .-* OoOe O
                                                                                                   . e     e O O. O    eOo T

O CC o OCCOOCOOOOOOCCCOOOOOOOC a-8 n.e

                        .* N C

I e to W Z U I 1 o 444444 N C in LA 4 N -a co c0 @ O 4 M M @ Nto CO CC CO c0 CO CO N N @ @ @ LA P W 4 4 4 M M M N N . e T O.

                                                                                                                             .-8 O

Z 4- C .c m xOm Ce C . O. O. O. O. C. O. O. O. O. O. C. C. O. O. eC C e eC C. C. O. C e

                              --e      OCCCCCCCCOOCCOOCCCOCCCC                                                               te e 1

v 4* O P T 2: h h.1 m N N N N N N N C0 O O CO CC T N N (O co N LA M N.-a N iA U C C O O O O m cocoCo N @ c iAin 4 M N N N O C u I ^

              <C 3

M-T C in 1 o -e .-* - a --e

                                          . . . e . . e -* O. O. O. O. O. O. C. O. O. C. O. C. C. O. O. O. O.

C 4 T o. 4 CCCCCOCCCCCCCCOOCCCCCOO 2 s W LA ** I CC

       >   *3 N                                                                                                                C C  Q                                                                                                               T d

W w I sc 1 u C =C 3  : C 4 4 4 4 4 4 4 N .-e - O CO @ CU 0

      <C   O  >e           1o          N N N N N N N N N N N -e      -* . e .
  • c0 N iA LA
                                                                                       *.e   a s LA 4 N*   .-e  -* == C C    D' H vU    C     N-        O I          <t    T tn &             O. O. O. O.O. O. O. O. O. O.C. C. O. O. O. O. O. C. C. C. O. O. O.
  • cd -* -* OCCOCCOOCCCCCCOCCOCCCCC
  • I tn T W 8 I O 4 4 4 4 4 4 .em@ N .O*

O -e m @ @ @ LA O @ m N. e *4N k

              <C    .-e                MMMMMMMNNNNNNee                                                 . e -* . e O O O O     % in .i oLA         C. C. O. C. O. O. O. O. O. C.O. O. O. C. O.C. C. O. O. C.0e 0. C.

0 O-th -* OOCCCCCCCCCOCOOCCOOCOOO T th

  • M I

W O cd .C C L w iA LA LA M LA M IA 4 4 4O4toM C M N N NtoNo*in.-* 4 4* C. MC to to LA LA in so O LA -* CC to N N - 3 O.e O

                                                                                                                              .C 1

l

                                                                                                                                -a b

Q

                                                           &              4                   4                 4              u W    4 O O O C co N m @ @ M C N O O.-*N N LA 4 4 M .eO                                     w

'I E s P

                                        -* O O O O .-e N M 4 4 O M -dM -*
                                        == N M 4 to in @ N Cc m C O O O O O O O O O O - * ==

4 to iA O O LA C C N M 4 4 in @ N to cc o M

                                                                                      .-e -a *-a    - -* -= .-e N N tc m

0: C .Cd

                       . O                                                                                                    T

'I i O . 4 .C g 4.s u W > G (C D M O Co O i tc c) D" 00 W a.4 H M 5 (O e-1 N *C I 1 OM< o in I I E

   - - _ _ .      _ - _ s. - u --    m       ___ . - -     _._ - . ...a
  • _._a _. m_

I I I , I I 1 I l 5 APPENDIX 2 PROCEDURE FOR STRUCTURAL INTEGRITY TEST

             / .o TENDON ANCHORAGE (DNCRETE SURVEILLANCE PROGRAM OF THE CONTAINMENT STRUCTURE -

059-5-004 I l l I l 8 I E !I I

15 j 059-5-004 ' Revision 0 !I I lI 4 l II l FARLEY NUCLEAR PLANT UNIT 2 i i il l, it

PROCEDURE FOR STRUCTURAL INTEGRITY TEST I.

AND TENDON ANCHORAGE CONCRETE SURVEILLANCE I

PROGRAM OF THE CONTAINMENT STRUCTURE

'I

I 1

!I i

         '                                                   Prepared By
     ' '                                                                 Research and En.m ,eering Approved By l$

i )g ____m__ __, ,,,___, Farley Project F' ' eering Revision O ddt. g ,_! ,,,__f '__, Date Ig ! W Bechtel National Inc. ! San Francisco, California i !,I

l 059-5-004 Revision 0 lI PROCEDURE FOR STRUCTURAL INTEGRITY TEST PROGRAM OF THE CONTAINMENT STRUCTURE I Table of Contents I tm 1.0 Scope and Objective 1 2.0 Acceptance Criteria 2 iE

3.0 Referenced Documents and Drawings 3 it 4.0 Test Equipment 5 J

W 5.0 Required Data and Documentation 7 6.0 Prerequisites 18 1 7.0 Precautions and Notes 21 1 8.0 Detsiled Test Procedure 22 i 9.0 System 3estoration 27 I e I Appendix e !I I e 11 I

I 059-5-004 Revision 0 1.0 SCOPE AND 010ECTIVE t This procedure, in conjunction with the referenced documents and drawings, covers the conduct of the primary containment structural integrity test and specifies directly or by reference all activities necessary to satisfy the test objective. I The purpose of the containment structural acceptance test is to demonstrate that, when the containment is pressurized to 115% of the design loading, the deflections of the containment's structural elements and the cracks at the exterior surface concrete are within the acteptabic limits. This confirms that the design and construction of the containment are adequate to with-s t se.4 such pressure loading. The structural acceptance test will be performed in conjunction with the containment integrated leak rate test, and complies with Regulatory Guide 1.18. I The tendon end anchorage surveillance and liner surveillance will be conducted concurrently with the structural integrity test. I I I I I I I

059-5-004 Ravision 0 l I 2.0 ACCEPTANCE CRITERIA l J I 2.1 The containment structure shall be capable of withstanding an internal pressure of 1.15 times the design pressure with measured responses l l within the limits predicted by analysis. The calculated stresses, dis-placements, and strains are shown in FSAR Tables 3.8.2 and 3.8.3. 2.2 all cracks that exceed 0.01 inches in width will be evaluated following the test. If any crack increases by more than 0.04 inches in j l width, further pressurization will be suspended until an evaluation of the containment response has determined whether further pressurization is l safe. I I I I l I I I I I 2 I

059-5-004 Revision 0 I 3.0 REFERENCED DOCUMENTS AND DRAWINGS I The following documents and drawings shall be considered a part of this procedure insofar as these are applicable to the structural integrity test. 3.1 Farley Nuclear Plant FSAR, Chapter 3 I 3.2 USNRC Regulatory Guide 1.18, " Structural Acceptance Test for Concrete Primary Reactor Containments" 3.3 Sketch SK-2Al, Sheet 1, Structural Integrity Test, Vertical Displacement Measurements (Appendix A). 3.4 Sketch SK-2A1, Sheet 2, Structural Integrity Test , Radial Displace-ment Measurements at Equipment Hatch ( Appendix A). I 3.5 Sketch SK-2Al, Sheet 3, Taut Wire Displacement Transducer Locations (Appendix A). I 3.6 Sketch SK-2A2, Structural Integrity Test, Concrete Crack Measurement (Appendix A). 3.7 Sketch SK-2A3, Liner Plate Surveillance (Appendix A). I 3.8 Sketch SK-2A4, Tendon End Anchorage Zone Surveillance Measurement ( Appendix A). I 3 I

1 il 059-5-004 l5 Revision 0 I lI a I i 3.9 Integrated Leak Rate Test Procedures, Farley Nuclear Plant, ! Unit 2, Test Procedure No. 059-5-003. l !I 1 I I !I i 'I

'I I

I il .a !I I ,l I lI lI i 4 !I

l I 059-5-004 4.0 TEST EQUIPMENT I 4.1 Structural Deformations I The structural deformations shall be measured with taut wire devices having linear variable differential transformer sensing elements (Schaevitz Model 5000HR-DC or equal). The deformation data shall be recorded with a data acquisition system. The sensing elements and the data acquisition system shall have current calibration certified traceable to the National Bureau of Standards. Serial Numbers, model numbers, and certification dates of-the data acquisition instrumentation and taut wire transducers shall be recorded on the specified data sheet in Appendix A. I 4.2 Concrete Cracks I The width of concrete cracks shall be measured using an optical comparator. The length and position of cracks shall be measured with a steel tape and recorded on the specified data sheets in Appendix A. Neither the comparator nor steel tape need have NBS traceability. The identification of the comparator and the steel tape shall be recorded on the specified data sheet in Appendix A. 4.3 I Liner Plate Curvature The liner plate curvature shall be measured with a dial depth gauge (Starret Model 644J or approved equal). The interior and exterior containment surface temperatures shall be measured with surf ace thermometers (McMaster-Carr Catalog No. 3916Kil or approved equal). The depth gauge and thermometers do E l 5 I

059-5-004 i

Revision 0 lI ! not need NBS traceability. Calibration of surface thermometers is required i and may be performed on site. Identification of dial depth gauge and sur-face thermometer shall be recorded on the specified data sheet in Appendix A.

I 4.4 Pressure and Temperature Measurements
I The equipment for the Integrated Leak Rate Test will be used to measure
I containment air pressures and temperatures.

lI j 4I il 4 i 4 I il,

I d

i I I I I l I 6 1 I

059-5-004 Revison 0 I 5.0 REQUIRED DATA AND DOCUMENTATION I 5.1 Pressurization and Test Plan Summary 1I The primary containment shall be pneumatically pressurized in accordance with the schedule illustrated in Figure 1. The structural response of the primary containment as evidenced by shell dimensional changes and the changes in surface concrete crack patterns shall be recorded at various pressure levels as specified herein. I 5.2 Schedule I The structural integrity test shall be conducted in accordance with es-tablished construction and start-up schedules. However, the test shall II not be conducted under ambient weather conditions which prevent or impair the specified inspections of the containment exterior surface. 5.3 Test Personnel Test personnel shall be designated and briefed on required duties well in advance of the start of the structural integrity test. Test personnel ) shall include: I 3.3.1 A test director designated by design engineering with alternates for shif t coverage; and a Test Supervisor designated by APOD Production. I 7 -I

5 059-5-004 Revision 0

I 5.3.2 Three data acquisition equipment operators - one per shift.

l

I 5.3.3 Eight inspectors for concrete surface crack mapping and tendon end anchorage surveillance.

l 5.4 Data Storage, Reduction and Evaluation l l Data shall be maintained in the test log. Trt.nsducer data shall be reduced to engineering units and plotted along with pressure data. Each point on ) the graphs shall be compared against allowable value ranges. The data points falling outside the allowable value ranges shall be noted and re-ported to the test director or his designated alternate not later than ~ one hour after the data has been recorded.

The Official Test Copy of the complete test procedure, along with the data collected, will be retained by APCD Document Control as part of the
 ,I plant historical record.

I 5.5 Test control l 5.5.1 Structural integrity test activities shall be con-trolled by a Test Supervisor. The Test Supervisor shall be responsible for insuring that all test activities are in conformance to this procedure. The test director shall have the responsability for performing the test procedure and reviewing all 8 l

059-5-004 Ravision 0 I structural integrity test data to insure that containment response to the pressure loading remains within allowable limits. I 5.5.2 The test director shall have the authority to halt pres-surization in the event containment structural response does not remain within those limits. 5.5.3 The test director shall designate an alternate to act in his absence. 5.5.4 The test director shall initial in ink each step in Section 8.0 as it is completed. The signing or initialing of a part of the procedure signifies that, based on personal observation or reports from assigned test personnel, the step has been performed as written and the results are recorded. 5.5.5 The Test Supervisor shall initial in ink each step in Section 6.0 prior to the start of SIT, Section 8.0 as it is completed, and Section 9.0 after the SIT. 5.6 Reporting A test report shall be prepared following the completion of the structural integrity test. The following information will be included in the final test report: I e I

059-5-004 Revision 0

a. A description of the test procedure and the taut wire system
b. A comparison of the test measurements with the allowable limits (predicted response plus tolerance) for deflections I and crack width An evaluation of the estimated accuracy of the measurements c.
d. An evaluation of any deviations (i.e. , test results that exceed the allowable limits), the disposition of the deviations, and the need for corrective measures
e. A discussion of the calculated safety margin provided by the structure as deduced f rom the test results.

I 5.7 Structural Integrity Test Measurements 5.7.1 Type of Measurements. Measurements of structural response to be recorded during the test are: radial and vertical displacements of the containment shell, and changes in the crack patterns on the concrete exterior surface (for both concrete crack measurement and tendon end anchorage surveil-lance), and permanent radial displacement of the liner plate. I 5.7.1.1 The locations and orientations of displacement measuring devices are specified on referenced sketches SK-2A1, Sheet 1; SK-2A1, Sheet 2; and SK-2A1, Sheet 3 (Appendix A). I Some deviation from these locations may be necessary to avoid interference with equipment, piping and/or electrical trays. The new locations of such devices shall be approved by the SlT test director. The measuring devices located inside the containment are connected to an external power supply and t I 10

I 059-5-004 Revision 0 read-out equipment by wiring extending through electrical penetrations in the containment wall. The actual installed i location of the displacement measuring devices shall be recorded with the final results. I The locations and layouts of crack mapping areas are speci-5.7.1.2 fied on referenced sketch SK-2A2. Some deviation from these locations may be necessary to avoid interference with adjacent auxiliary building structure. All new locations of these mapping areas shall be approved by the SlT test director and recorded with the test results. The mapping area shall be at least 40 square feet. I 5.7.1.3 The liner plate surveillance shall be made at four (4) locations. Two of the four areas shall be located at points where the liner has an inward bulge. The remainder of the areas shall have typical outward curvature. I Four areas, in addition to the four areas profiled, shall be surveyed for any indication of strain concentrations. 5.7.1.4 The locations and layouts of the tendon end anchorage zone surveillance grids are shown on referenced sketch SK-2A4 Some deviations f rom r'.ts ; locations may be necessary to avoid interferen-e #$ A jacent auxiliary building structure. m ne. 1ocamons >f these , ping a,eas sha11 ,. app _ ee 11 1

i l 059-5-004 l Revision 0 lI by the S1T test director and recorded with the test re-l sults. The mapping area shall be at least 40 square feet. 5.7.2 Frequency of Measurements. I 5.7.2.1 Deformation data shall be recorded at the following times and pressures. (See paragraph 7.4) 5.7.2.1.1 At four hour intervals for 24 hours prior to the start of pressurization for all installed deformation measuring devices. 5.7.2.1.2 At the start of pressurization. I 5.7.2.1.3 At 5 psi pressure increments during pressuri-zation and depressurization. I 5.7.2.1.4 At the beginning of, end of, and at one hour intervals during constant pressure holds. I 5.7.2.1.5 At the completion of depressurization. 5.7.2.2 Concrete crack patterns and tendon end anchorage data shall be mapped at the following pressure levels. 12

059-5-004 I Revision 0

                                                                           )

5.7.2.2.1 At zero pressure not more than 72 hours prior to the start of pressurization. 5.7.2.2.2 At 27 psig during pressurization. 5.7.2.2.3 At 62.1 psig 5.7.2.2.4 Not more than 24 hours following the completion of depressur:.zation. 5.7.2.3 Liner plate measurements shall be made not more than 72 hours before start of pressurization and again not more than 24 hours following completion of depressurization. Four areas (4 ft. x 4 ft.) to be surveyed for strain concentrations shall be cleaned and marked on the liner plate. The four areas shall be inspected for indications of strain concentrations (such as cracked paint) not more than 72 hours before start of pressurization and again not more than 24 hours following completion of depressurization. If any indication of strain is observed, a mapping of the marked area shall be made showing the locations of and describing the nature of the strain concentration indications. 13

I 059-5-004 Revision 0 5.7.3 Test Data Procedures l 5.7.3.1 Deformation Data. At each pressure level or time as specified in Paragraph 5.7.2, deformation data shall be recorded. Data recordings at each level or time shall be repeated at least three times. The complete data record . g shall include: ! g 5.7.3.1.1 Date and time of data acquisition. 5.7.3.1.2 Internal pressure.  ! I 5.7.3.1.3 Internal temperature. 5.7.3.1.4 Outside air temperature and relative humidity. 5.7.3.1.5 A notation on outside atmospheric conditions. 5.7 . 3 .1. 6 A notation on any unusual circumstances which affect the prescribed schedule for the structural integrity test o. which have a potential effect on t.s dsta. 5.7.3.1.7 Data for all sensing devices. I 5.7.3.2 concrete crac* x .. ins ane reneon ene inchora e surve111ance l

I 059-5-004 I Revision 0 5.7.3.2.1 During the initial crack survey, each square within the gridded areas shall visually ex-amined. The width of every visible crack shall be measured by optical comparator at what is judged to be the widest point on the portion of the crack line lying within the gridded area. If the measured width equals or exceeds .01 in., the crack shall be mapped per the following procedure. 5.7.3.2.1.1 A line shall be drawn alongside of and approxi-mately 1/4 inch away from the crack lying within the gridded area. An arrow shall be drawn pointing to the crack at the location where the width is measured. If the crack ends within the gridded area, a short line ha shall be drawn perpendicular to the crack at its end point. All lines drawn during the initial survey shall be done with blue lumber crayon. 5.7.3.2.1.2 A sketch of the crack shall be made on the data form for the location given in Appendix A. The width of the crack and stage number shall be noted on the data form. The data table line for the appropriate stage number shall be completed. I I 059-5-004 Revision 0 ) I l 5.7.3.2.2 During subsequent crack surveys, the procedure l I described in Paragraph 5.7.3.2.1 shall be

followed with the modifications noted below

i 5.7.3.2.2.1 Cracks existing at a preceding stage may increase or decrease in length and/or width. The width of an existing crack shall be measured and recorded at the point where

I the previous measurement was made. The width of a new crack or an existing crack which has widened to .01 in. shall be measured at what is 5 judged to be the widest point along the length of crack line within the gridded area. The new crack shall be marked per 5.7.3.2.1.1 if the measured width exceeds .01 in. Length increases shall be marked as in 5.7.3.2.1.1 by extending the existing lumber crayon line and
- noting the new end point by a short cross line.

1 I Crack shortening shall be noted only if the portion of the crack becomes totally invisible to the naked eye. When this occurs, the existing crayon line shall be crosshatched along that portion of the crack line which has ceased to be visible. Subsequent reopening of the crack line, if this occurs, shall be marked by a new line on the opposite side of the crack.

I l

i 059-5-004 Revision 0 All crack activity shall be recorded on the data sheet for that location. 5.7.3.2.3 A separate color shall be used to mark crack activity noted at each stage. Lumber crayon colors I shall be: Internal Pressure Color 0 Blue 27 Red 62.1 Yellow 0 Green I 5.7.3.3 Liner Plate Data I The liner plate data shall be recorded on the appropriate data form as shown in Attatchment A. The times for making the measurements are specified in Section 5.7.2.3. The complete ?ata I record shall include: 5.7.3.3.1 Time and date of inspection I 5.7.3.3.2 All dial depth gauge readings. l l I 5.7.3.3.3 Liner plate and exterior surface temperature. l 1 I I 059-3-004 Re.rision 0 Verified Bv ' 6.0 PREREQUISITES Initials Date I 6.1 The containment shall be structurally complete prior to the start of the structural integrity test. ___ ,_ I I 6.2 Requisitions for all test equipment and material should be complete and issued in time to insure delivery of said equipment and material to the construction site. (Scheduled delivery not later than thirty days prior to the start of the structural integrity test is recommended.) 6.3 Field routed instrumentation electrical cable should be completed to the data acquisition equipment area. (Completion not later than 10 days prior to the start of the structural integrity test is recommended.) _ . _ . _ _ _ _ _ _ I 6.4 The data acquisition equipment should be installed and all electrical terminations thereto completed. (Completion not later than 5 days prior to the start of the structural integrity test is recommended.) I 6.5 The primary containment deformation measuring system should be installed. (Completion not later than 48 hours prior to the start of the structural integrity test is recommended . )

I I lI

l 059-5-004 Revision 0 Verified By Initials Date 5 6.6 Grids for concrete surface crack r:cpping and tendon end anchorage surveillance should be laid out and marked. l (Ccmpletion not later than 48 hours prict to the start of l 1 pressurization is recommended.) I 6.7 Installation of accessways to the crack mapping areas and installation of temporary lighting for nighttime crack observation should be completed. (Completion not later than 48 hours prior to the start of the structural integrity test is recommended.) _ 6.8 The liner plate chord bars should be installed. (Completion not later than 48 hours prior to start of q structural integrity test is recommended.) I 6.9 The containment shall be sealed to provide an airtight structure. The structural integrity test will be performed i immediately preceding the integrated leak rate test. The same sealing requirements, equipment removal and venting, and valve lineups as for the ILRT shall apply to the SlT. I Temporary piping for pressurization shall be complete. 6.10 E i 1 059-5-004 Revision 0 I Verified By , Initials Date I 6.11 Compressors and auxiliary equipment required for containment pressurization shall be installed and operable. \ l 6.12 Inspection shall be done to verify that there are no l growth interference problems between the containment structure and adjacent structures prior to the test. _ I I I 6 lI

 \E

'Il

 'I l

I

 'I i

!,I j _20-lI

059-5-004 Revision 0 l R l 7.0 PRECAUTIONS AND NOTES 5 7.1 Persons other than those involved in the test should not be allowed to work in the vicinity of penetrations and openings until the pressure inside the containment has been reduced to zero psig. I 7.2 The atructural acceptance test should be scheduled for a period in which extremely inclement weather is not forecast. Ilowever, due to the state-of-the-art of weather forecasting, and the time involved in the pre-paration and performance of the test, should snow, heavy rain, or strong wind occur during the test, it may be continued and the results considered valid unless evidence indicates otheruise. I 7.3 All temporary alteration will be made in accordance with Startup Standard 17 and all tagging will be done in accordance with Startup Standard 8. I 7.4 The tolerance for all the pressure riadings as specified in I Sections 5.7.2 and section 8.0 shall be + .3 peig.

                                             - 0 I

I l I I I l

059-5-004 Revision 0 I 8.0 DETAILED TEST PROCEDURE Verified By Initials Date Dir./Suprv. 8.1 Log deformation data at four hour intervals for at least 24 hours prior to start of pressurization. / / I 8.2 Perform initial concrete crack mappings not more than 72 hours before start of pressurization with atmospheric pressure inside containment. / / I 8.3 Measure liner plate curvature at four locations and inspect four liner strain survey areas not more than 72 hours before start of pressurization. / / I 8.4 Log deformation data at start of pressurization. /_ / I 8.5 Log deformation data at 5 psig. (See paragraph 7.4) _ / ___

                                                                                / _

I 8.6 Log deformation data at 10 psig. / / 8.7 Hold pressurir.ation at 14 psig for a least one hour. / / I 8.7.1 Log deformaticn data at start of, at one hour intervals during, and at end of 14 psig hold. / / i I 8.8 Log deformation data at 15 psig. / / I

                                  -n-
                                -~.

059-5-004 Revision 0 Verified By Initial _s Date Dir./Suptv. i l 8.9 Log deformation data at 20 psig. __

                                                                     /            /

1 8.10 Log deformation data at 25 psig. / _ / I 8.11 Hold pressurization at 27 psig for a least two hours while concrete crack mappings are performed. __

                                                                     /            /

8.11.1 Log deformation data at start of, at one hour intervals during, and at end of 27 psig hold. / / 8.11.2 Perform concrete crack mappings at 27 psig. / _ ,

                                                                                  /

8.12 Log defor. nation data at 30 psig. /' / I 8.13 Log deformation data at 35 psig. / / 5 8.14 Log deformation data at 40 psig. / / I 8.15 Hold pressurization at 41 psig for at least one hour. / __ / I 8.15.1 Log deformation data at start et, at one 1 hour intervals during, and at end of 41 psig hold. / / I

05's-5-004 Resision 0 I Verified By Initials Date Dir./Suprv. 8.16 Log deformation data at 45 psig.. / / 8.17 Log deformation data at 50 psig. / / 8.lE Log deformation data at 55 psig. / _

                                                                                     /

I 8.19 Log deformation data at 60 psig. / / I

,    8.20 Hold pressurization at 62.1 psig for at least two hours while concrete crack mappings are performed.          /              /

it 8.20.1 Log deformation data at start of, at one hour 1 intervals during. and at end of 62.1 psig hold. / _ / I

'W        8.20.2 Perform concrete crack mappings at 62.1 psig.        /              /
                                                                      /              /

8.21 Begin depressurization. 8.22 Log deformation data at 60 psig. / / I

;    8.23 Log deformation data at 55 psig.                            /             /

8.24 Log deformation data at 50 psig. / _ / ll ll

8 059-5-004 Revision 0 Verified By I Initials y te_ Dir./Suprv. 8.25 Log deformation data at 45 psig. / / I 8.26 Hold depressurization at 41 psig for at least one hour. / / I 8.26.1 Log deformation data at start of, cf. one

                                                                                   /           /

I hour intervals during, and at end of 41 psig hold. 8.27 Log deformation data at 40 psig. / / 8.28 Log deformation data at 35 psig. / / I 8.29 Log deformation data at 30 psig. / / I 8.30 Hold depressurization at 27 psig for at least one hour. / /  ! I 8.30.1 Log deformation data at start of, at one hour intervals during, and at end of 27 psig hold. / / 8.31 Log deformation data at 25 psig. / / I 8.32 Log deformation data at 20 psig. / / I I 059-5-004 Revision 0 Verified By Initials Date D_ir./Suptv. I 8.33 Log deformation data at 15 psig. / / I 8.34 Hold depressurization at 14 psig for at least one hour. / / 8.34.1 Log deformation data at start of, at one hour intervals during, and at end of 14 psig hold. /_ / 8.35 Log deformation data at 10 psig. / _ / 8.36 Log deformation data at 5 psig. / / 8.37 Log deformation data at completion of depressurizatior. / __ / ~ I 8.38 Perform concrete crack mapping not more than 24 hours after completion of depressurization. / / t 8.39 Measure liner plate curvature at fotir locations and j inspect four liner strain survey areas not more than ..~ 24 hours after completion of depressurization. / / I

I

'I ) 059-5-004 Revision 0 9.0 SYSTEM RESTORATION The following shall be emoved af ter completion of the etrtt P. ural interity test: Verified by I a) All taut wire deformation measuring devices and Initials Date associated signal cables, b) Marked areas for all concrete crack measurement areas. , c) Marked areas for tendon end anchorage zone surveillance areas shown on sketch SK-2 A4. d) Fixtures for liner plate curvature measurement (Sketch SK-2A3). __ _ e) Four marked areas for liner plate strain survey. _ f) Restoration of piping, valves, etc. is covered by the Integrated Leak Rate Test procedure (Test Procedure _ I No. 059-5-003). I I I I I I I I Tests To et Penronesso enacn. TENtmm.DisPL. 62 PROOF PRESSURE b 54 DESIGN PRESSURE N EEE c=c overt. 41 c:=m b

                                  $                                                                                                      e==

enAcu. Teseoose, osset. 27 m \

                                                                                                \
                                                                                                 \

14 s TT_

                                                                                                          \                      enacx.Tenoon. uwen N,

enAcu. Tassoon, tessen. O I I I I I NI

  • b b O 10 20 40 b 60 70 90 HOURS FIGURE 1 seere : oserLAestgewT oATA SMALL sE REcoRofo IRIReeotATeLv JOSEPH M. FARLEY NUCLEAR PLANT eneon To Twa stanT or enessonszATiOw: AT s reso pnesoume UNIT NO. 2 NECneteeNTS oUnlage pnegSURIZATION ANo ofPReSEURIZATIO8e AT Twa secesesonno Asso eno or Asso AT oNE (Il MOUn sNTEnVALs ountsoo ALL enessune noto reneOce. Anc. steteso Arely INTERNAL PRESSURE ENVELOPE STRUCTURAL INTEGRITY TEST
                                                                                                                                                    $I e

POLLossleso THe COerLETIOsl or otPREMURIZATION. {

em. . - . m.a_a ___am 2- a _ . . _ _ - - - - - 059 5-004

I 1

lI 1 !I i it i i lI i  ; 1 . !I l !I APPENDIX A ! DATA RECORD FORMS !I .I I lI I 'I i I il id r

  • empens I ,

w ,

                                                          -   -1 i

j\

  • l 1

p ga a g E l ---!! i I; - el a

5 c- 2  ;

4

I l
                                                          --f          n!

g_ si a l g: tg Wu I 8 we 32

g n j
                                                                       $5 55 $$m   i h    l 1  g        t a    ;

l l - 85 C . ! l h SE -- l ! l st

  • l I . W i s 8 n

!g ~ ' 3Ei  ! l &  ! I A

                                    %)
         &       I          i I         -

i l 3 !g I l 3 5 ) ig i

            ~                                           5                                 1 l                                                                        ;

4 I g ' jg l l E I a l  ! lI i i i , il I I I i i , 5 !l

                                       =                !

i h i 46 O

       ~

lI l 8 lg n tr 5 5 5 i i l' ! dl I I I I !I t l

                       -m       .eme-mm*----.m                        e   .

K CR l.mwl. i l -

                                               ~

jli

                                                                                                               =

M I ll

                                                                                                               =-
                                                                                                                                                   =
                                                                                                                                                   =

Il 3 D = S

                                                  'ME T

Yg9 gem 2 Ill T N N E T. q4 E3h - T EM - SH M A L P SR - Il42 - Il1 w o e R E T UH SC l A a 3 v a A E Y T I EA AT -

                                                                                                                                                     - 2 L
n. C RMH K M IlI a o_

e U 2 N O GTT E EENN S T IlI n_ YN N MM Il o.

c. E L

R T I I EP LCI 0 2

t. N AAU 0 A U -

M t a v w F R LQ UPE TST - 7 9 5 i c M CIA 7 s UD _

                                                   -                                                                              H
                                                                                                                  -       e       P     R   L     ll
                                                                                      "                                                 T i
E S A k

M , t S O J I D A R t~ Ill X-3 _ =

                                                                                                                +     -

b  : I lj1 M Aa ~ - M " " Ill; I! g

        '        '         a                             4
                                                         ^

E M r

          -s r          rr                           -

e r

                                                             -          "4 e

r r e t w 1 1 s 4 1 e l i rr 1 t L L L L e E .L s E E e M t t E M M E t ,' t o\ E M E .' s\ e ry d e ,e y _ M , w - y ._ s o 1 1 2 M 7 E E .e t s, ' E 1 t *

                                                                                        - s M

c t a t t - ' - ' ' e t M _ y ~ M s ,w e

                                                                                                                    =
                                                                                                                            ~                                  _

a , = _ y _ M t a s a/ W 1 e t E[ - W . y a f] sn ,

                         ,                 { ]e l l              '1 g l                         lt1]1,$                 q8 W              8                                  1' 3

s ai1.g l

l;I . l i

                                                                                                  -            l
                                                                            =

l N I ,

                                                                            =              T                     3 T                                  N                     T A                                  A                     H
           ]                                   =        O f

f N L P T NS S a T C I

                                                                            =        O     R    E   N            l s
                                                                     ,               l A                     A N                                        E E

t a Y A. t c O-P E L C U2 N O MOI E CT AA L C P O 2 K S W ,! t f O. C. YN E LT RI SL I D ER EC l 0 2

      ' 5          s                                                                   ... A N                   0 2          a         .                                                       8 E. FU   R U                -

w H I D M m 4 T H M

                                                                                             . WS               7 9

TN 5 M c a m H P UA AR TT l 7 u E S

                                                -      W T

O J M [ A f e 0 N8ff I rr I rs 8 I T , e C , r - e E S a o m s M M T M _ A

           ]                                   i 0

0 8 1 a T C E S M M si H s i 2 i H H M _ 8 9 1 1 F 2 E

                                                .      T                                                R
                                                .       A                                               (

M [ N O -- K C e r rr re r r I T C - A T S o e n M T a s t i N E M e , r V g a t w o rr rs - 8 W N'*p M - e r i [ a e s a i - T A N . 8 5

           ]                                     .

O I T .

                                                 . C       .

M E t M ... I . M m s e m a w . i M 8 . 5 . T M [ A s e c u T I n T C o o s M M

               ,a       1                    l              1l                     {

99

                                -!!u]
                                    !                      1i                     l73 M                        4-M66M                   P

gl IIi Il

                                                                                                                   =               _

- IIi

                                                                                =                                                  .

T _ N T

               .                  e,                -
                                                                                -                A          N E      -     2         _

IIi L A e

                                                                                        .        P       TME S

2

                                         **                               II
                                                                                     . o t

R E T R - K 7 . f A U -- S _ 3 . i A E Y S _ 8 . e L T 1 IIi s C l A IIi

                                                                                .       o_.

r t s U 2 NO Y N R GM E E K ll T

                                     /      7J. N                                    o ._ET LI      N C I  A            0 3
                          ,                 rL                                          c_

L E. RN AU F L R AC ~ E (

                .       c                k  1 J.                               -

T M ca M RE UT E T

                                                                                                                     ~

7 9 5 7 C R N rL.

                                                   /                            .        s       H P

E S U C R N TO SC Il O J IIi.. 6A _ . s e c i T p A V E L E

                         ,                               s          R O

s s y l [ I R E T a j X _ E D

                                     ~ \*{-

E P O L E

                                     '                              V                                          )

E H F o - D C E T R ( A , l M , K T , C - f A 8 T E 8 e r t U A, S T N E G V E y e

-                                                                             g t                                                 i A

0, _ c T A A, v ., i , n

                                         #                r M

T _

                     '                                                                  R
                     "                                    e s                              O I                                    .

I

                      ]       j,u                  i,1      l,        ]

1,; t a 1 ,8 9 4 l' e j1 l, 3 lll OD3 lEel e l6h b: Mu a1gl1{ g

WHes ___! I g _il C __1 E i I 3 11 g i 5 p

                                                                                               =

m M I w l

                                                                                                            ~2 m

e I 1, i '

                                                                                               @   5 E.

ll j,. mm  : ~II

                                                                                            ! M~

le b ._ s ! . __. o al . w , e q[ls 1 l $ ' 5 I _

                                                                                         .s 5

f ks!- l i.l l n s' 2'E8!. . ___[ - 4

                                                                =.

5 II . ., i y n.

 !                                            =          eqa i                                              I a            h.d-lI                    -

c- .

                        .e g                I     _.

g l .._ _. _ ._

 ]I
 !       g        /            _._                                 __.-._

J;- i g[ _.._ k _..._: t

                                                                               =

g m jl: g .._ k . g_ _g ... a h i . i

 )l   'g                       .._                                _._.

_k g g \ ___ _..._ 1 .

                               ...=_                              _..
 ;                   \                     m l                    \

lf S,

                                                            )                  'I      "
 ;a                                          If                                                                l i5 l

I" bk l l egg  : E'

 ;g
 ;     e e,
                   ====--===:=====~

e y g g

g A4 i
      '@ w          c3    ..      ..         3

g{

                                                                                                                            ~

I _ = 1,l Il l= T N a _ A E - 4

            .l                                                                  Il L              N T             A O EN M         P                              2

_ = o R Z M K I t l A E EE S 3 A L GR .

n. C 2 AU Il o U RS e
  • OA s

i II n__ o P NO Y N HE CM

                                 /

c E L I T N E _ A C 0 RN 2 L_ AU D N 0-p s i 4i , T c E. H F M NA EL NI L O EV 7 9 5 7 E H N . _ m P E S O D N EU TS R ll _ J Ia f- _ 1& 6

c. i E

K _ R C ASAAR oSC i NE 8 8 a. lOET O e. T R I T 2. A C '

      =

a A 2.CN' V 1OO'" E L sLC" s et ' E O eas T"I"

                       .                                              R O                                 :vAS*
                                                            'n                                        sAS"
                                    ,                                 I EcER*
      .           iu i                 ,                                 R                                            '

wg ToHO" E e m O ~ T X oLTF e pi { 4 - , E D E i P _ O L e r i E n l V

               ~

E r D w e e " e f m r' e' a w .,, F r T E n' w 2-e m e A, R t x c _ u A o T a s T g , w E v t i i _ l_'

  • A 3 ^

A T

                                   ,KN d

A, y _T , V, , _.A,

                   ,                  E, L

E, H T _ R . o o s j ,

                     , i I ,a , }e,)a 8          t3   lI}1*

l } ] ,h lIa'! ! qa] ,g jI _ e

, 059-5-004 .I ie CERTIFICATION DATA APPLICABLE TEST EQUIPMENT ,I PAGE OF I i in- -a ==" $'"'^' """^"" ^" 'I (ID NUMBER) i I I _

                                      ~
I

!I

I
I -

I .I

I I

I I . l A4

059-5-004

I
                      /-

w\ U U

                                                                                 \

I @@@@@@@@@ I I STN ELEVATION AZlMUTH. STAGE DATE TIME INIT INT EXT 1 2 3 4 5 6 7 8 9 I E STN ELEVATION AZIMUTH TEMP, OF DIAL DEPTH GAGE READINGS WSTAGE DATE TIME ' INT EXT 1 2 3 4 5 6 7 8 9 I I STN ELEVATION , AZIMUTH

                                                      '          ^      ^'

I STAGE DATE TIME INT EXT INIT 1 2 3 4 5 6 7 8 9 I STN - ELEVATION AZlMUTH . STAGE DATE TIME INIT 7 8 9 INT EXT 1 2 3 4 5 6 I. I JOSEPH M. FARLEY NUCLEAR PLANT UNIT NO.2

                                                            .INWARD DISPLACEMENT DATA SHEET.

A9

05 % 00 ; LOCATION 1 BUTTRESS AT RING GIRDER I EL 251'5" BUTTRESS AT 3050 w I I \ AREA TO OBSERVED FOR CRACKS E L. 251'5" GRID 1 FT. SOUARES I I I ["] I i N/

                                          /

TENDON 45 FD E L. 246'9" k I I I < TENDON FACE

                                            >                                                i STAGE       PSIG DATE TIME   TEMPoF        INIT    REMARKS INT     EXT I

I I A 10

  • 059-5-0C i LOCATION 2 WALL AT BUTTRESS E L.176'11 1/4" BUTTRESS AT 3050 I \

R I  !==,  ! GRID 1 FT SOUARES I I I EL 176'11 1/4" (+) TENDON 23EF I I I I ' ), TENDON FACE STAGE PSIG DATE TIME TEMPDF INIT REMARKS INT EXT I I I

059+004 LOCATION 3 SUTTRESS AT BASE I E L.104'0 SUTTRESS AT 3050 I k ) I AREA TO OBSERVED FOR CRACKS , eR,,,,1seu eEs I I I I I a (j

                                                            '~~~o EL 105'9" 1 I

E L.104'0" l TENDON FACE J I ,1 oE ,sio o.1E 1,.E 1Euro, iNi1 REo ,RKs INT EXT I I I I A 12

N U UU ' I LOCATION 4 MID HEIGHT OF WALL I 2200 EL 177'8" AZIMUTH 2200 SCALE: %"=1'0" I I EL 177*8" I I I I I sme es,e om 1,. e 1 e.. ., INT EXT

                                  ,~,1    --s I

I - I I ' I

                           ^~

06S5-00e I ~ LOCATION 5 WALL 9 EQUIPMENT HATCH E L.163'3" I SCALE: %"= 1'0" I I  ; I I E L. 163'3" I EQUIPMENT HATCH II I I I I

I sr.o. ,,,o om 1, .e 1E.. ., ,,,1 . ..ms INT EXT I

I I l ..,.

059 5 004 LOCATION 6 WALL @ EQUIPMENT HATCH E L.163'3" SCALE: %"=1'0" I I I I I EL.163*3" EQUIPMENT HATCH I I I I I  ! NIT REMARKS

        ! STAGE   PSIG    DATE TIME   TEMP 0F INT     EXT I

I I I A 15

059-5-004 I LOCATION 7 l WALL AT RING GIRDER 1 EL 247'-0" ' AZIMUTH 1500

                            ,go SCALE: %"=1'0" E L. 24 7'4

I I I I I I I I I I I STAGE PSIG DATE TIME TEMPDF INIT REMARKS INT EXT I I l I A 16

059-5-00 LOCATION 8 DOME @ RING GIRDER

                                            ,y                     E L. 270'6%"

AZIMUTH 1500 151*12'04" 149 41'58" SCALE: %"=1'0"

 !I
 ;I
I I

TENDON V1 TENDON V130 I F 5 il !z

                                                                                  \/b
 .I                                                                                  E 4
                                                                                     ~
 !I lI
I '

STAGE PSIG DATE TIME TEMPDF INIT REMARKS INT EXT

 'I I

I

I A 17

1 0595004l LOCATION 9 TENDON END ANCHORAGE E L. 270'6%" AZIMUTH 350 37'05" M 3ros" SCALE: %" =1'0"

I g

l I

-l=                           U[\ J TENDON V89 I                                                                     &

I i Z N

'I                                                                N/ 8O z

lI ie il I STAGE PSIG DATE TIME TEMP 0F INT EXT INIT REMARKS I

I l
I _

I A-18

I 059-5M l LOCATION 10 I TENDON END ANCHORAGE E L. 270'6%" AZlMUTH 76013'27" I 76'13'27~ TENDON V104 SCALE: %"=1'0" I I I I [ TENDON V104 v I cr' I n b I v i8 I ie I I STAGE PSIG DATE TIME TEMPDF INIT REMARKS INT EXT I I I A-19

059-5404 LOCATION 11 TENDON END ANCHORAGE E L. 261'1 1/8" l

-I                                            AZIMUTH 3050 TENDON D3C16 SCALE: %"=1'0" I

I I I TENDON D3C16 l d[D / st 2si i ita~ I I I I I s1 e ,s,e om 1, . e 1..., INT EXT

                                   ,N,1   ... m s I

I I A-20

059-5-004 LOCATION 12 I TENDON END ANCHORAGE E L 263'101/8" AZIMUTH 264027'07" I 264027 07~ TENDON D3T30 SCALE: %"=1'0" l I l I I I [ TENDON D3T30 (j EL. 263'10 1/8" I I I I I 5 STAGE TIME INIT REMARKS PSIG DATE TEMPDF I i INT EXT I I I A 21

059-5-00 I LOCATION 13 (LEFT SIDE) l i I TENDON END ANCHORAGE E L 188'0" AZIMUTH 3050 I GRID-1FT SOUARES SCALE: %"=1'0" I I I I EL 188'0" I I I I I J I s1.ee e,e om 1, . . 1..., INT EXT

                                           ,~,1   , , _s I

I I I A 22

I 059-5-004 LOCATION 13 (RIGHT SIDE) TENDON END ANCHORAGE E L. 188'0" AZlMUTH 3050 GRID-1FT SOUARES SCALE: %"=1'0" I I I E L. 188'0" I I I I I i 3050 I STAGE PSIG DATE TIME TEMf0F INT 8 EXT INIT REMARKS I I I I l A 23

i LOCATION 14 TENDON END ANCHORAGE lI i E L. 202'2" BUTTRESS AT 3050 I l I , AREA TO BE OBSERVED FOR CRACKS GRID 1 FT SOUARES I I [ TENDON 31EF (j E L 202'2" I I I I < TENDON FACE STAGE PSIG DATE TIME TEMP 0F INIT REMARKS INT EXT I I I A 24

059-5-004 AZIMUTH I I I I ELEVATION I I t_ 1 FT. g r_ 1 FTM I STRAIN DESCRIPTION I I I I l 1 I - l SIGNED JOSEPH M. FARLEY NUCLEAR PLANT UNIT NO.2 'I DATE LINER PLATE STRAIN CONCENTRATIONS I . A 25

1 i, I l l i

                         ,se,e s. ,_ se_ e_

lg UN1T NO. 2 ' ALABAMA POWER COMPANY I

I I resoos ese isceoxice cosc ere sueve1ttisce - eexse 1 l

I 'I l L:28 I

I i E TABLE OF O')NTENTS i t 1 PAGE NO. LIST OF FIGURES 11

1. INTRODUCTION 1 i
2.

SUMMARY

AND CONCLUSIONS 2 3

 'I       3.        TEST PLAN                                                        3 5
4. TEST RESULTS
5. 17

) REFERENCES I I 1 I l i I e, I I l l i l i

l l E LIST OF FIGURES l FIOURE NO. 3-1 Tendon End Anchorage Concrete Zone Surveillance Area Locations 4-1 Concrete Crack Pattern - Location No. 1 4-2 Concrete Crack Pattern - Location No. 2 4-3 Concrete Crack rattern - Location No. 3 4-4 Concrete Crack Pattern - Location No. 8 4-5 Concrete Crack Pattern - Location No. 9 I 4-6 Concrete Crack Pattern - Location No. 10 4-7 Concrete Crack Pattern - Location No. 11 4-8 Concrete Crack Pattern - Location No. 12 4-9 Concrete Crack Pattern - Location No. 13 (Right Side) 1 4-10 Concrete Crack Pattern - Location No. 13 (Left Side) i I 4-11 Concrete Crack Pattern - Location No. 14 i I I I I l I 1 11

4 I I

1. INTRODUCTION The first phase of the Tendon End Anchorage Concrete Surveillance (Ref.

I 1, Sect. 3.8.1.7.4) for Unit 2 was conducted fron May 27, 1980 through May 30,1980, at the same tine as the Containment Structural Integrity i Test. The purpose of the surveillance is to determine whether the concrete near the tendon anchorages shows undue cracking with time or with internal pressurization. To accomplish the test purpose, the concrete cracking near a selected number of tendon anchorage locations was mapped during the structural integrity test. The mapping will be repeated during the first periodic Type A containment leakage rate test to monitor concrete crack growth l

with time.

I

!I il 1

I !I lI !I il

I I

2.

SUMMARY

AND CONCLUSIONS Concrete crack mappings were recorded for ten specified tendon anchorage areas during the structural integrity ter.t. That information can be used

 '     as a reference to determine whether crading is severe with tine.

Two of the ten tendon end anchorage concrete surveillance areas had no concrete cracks wider than 0.010 in., while the remainder had cracking recorded before pressurization but showed no width or length change during the pressurization cycle. The observed concrete cracking is considered as typical for post-tensioned containment structures.

!I i

il il

I
 !f                                                                                .

l

   !I i
!    I i

I I 3. TEST PLNI I Ten tendon end anchorage concrete areas of at least 40 square feet were selected and ruled with grid lines at one foot intervals. Before start of pressurization for the SIT, those areas were inspected, and all concrete cracks were measured with an optical comparator. All cracks with width greater than 0.010 in were recorded. During the SIT, the areas were

.I     inspected with internal pressure of 27 psig and 62.1 psig and again af ter depressurization. New cracks and changes in crack width or length were recorded at each inspection if width equalled or exceeded 0.010 inches.
.I The crack mappings in those gridded areas will be repeated during the

~ first periodic Type A containment leakage rate test to determine how much concrete cracking occurs in that time. 1 The locations of the tendon end anchorage concrete surveillanca crack mapping zones are shown in Figure 3.1. l I

I I

d

354' 27-07' 06 0 150* 195* j I 306' 12 _ l I 251* 5" JJ f '" -l} ii I LJ'

                                  --307 2" 94                                                                            g7 I              i             __

4 _. . .ter.y.

                               ~~

13 __ep ,..,,s-i 2 __ A 163'3"

                                                                                  %J

'g g . .

                                                                            /- N                        a I

104' O n3 I I DEVELOPED EXTERIOR ELEVATION I g 0 r

                                                                  /*
I

.i 10 *% M 13' 27'

                                                                     *\

36' 3 7-06" I 0* l DOMEPLAN 13 l FIGURE 31- TENDON END ANCHOR AGE CONCRETE SURVEILLANCE AREA LOCATIONS _4_

I 1

4. TEST RESULTS The maps of the concrete cracks in the designated tendon anchorage surveillance zones are shown in Figures 4.1-4.11.

I Two of the ten areas had no cracks of width greater than 0.010 in, either before or during the SIT pressurization cycle. The remainder had cracking which was recorded before start of pressurization but showed no width or length increase during the SIT. l I  ! The concrete cracks observed before the SIT and the crack development during the SIT are considered as typical for post-tensioned containment structures. I I I I I I g -s-

I I g

                      =

i EL. 2 51 '-5" t0 i ' EEu i g M 'S O _ l , l 1 ,b 1 o -

             -                                                  i a                                             l 3
                    +

Tendon 45FD ll nN /

                                                                 !l EL. 246'-9"                          l 3

l I i l l

                                                ,                  I
                          .20                      Tendon face 1l L

I TEMe er , l STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. l

                            ~

1 0 5-26-80 1600 83 88 JLD/HJC One crack 3 27 5-28-80 1945 84 85 HJC/JLD No change 5 62.1 5-29-80 2240 89.3 83 HJC/JLD No change 10 0 5-30-80 2300 81 82 JLD/DH No chance LEGEND Stage No. I 7 Crack width g Crack width I 1

          /       -

I Figure 4 Concrete Crack Pattern - Location No. 1 . I 1 g 1

I EL. 184'-11b" I l l i l i I - -

                             -E
  • l i

I l i 65 5.} 85 .l ,

                                   "c                    l t

i I

                                                                                            ?.

oa I

         .                            m                   '

et i

^l 0o
                                  <w I

I l E I YA _ Tendea face TEMP 'E

STAGE PSIG DATE TIME INITIAL REMARKS
   .                                             INT. EXT.

1 0 5-26-80 1600 83 88 CH/HGD No cracks 3 27 5-28-80 1900 84 85 CH/HGD No change 62.1 5-29-80 89.3 83 No change I 5 2155 CH/HGD 10 0 5-30-80 2300 81 82 CH No change LEGEND Stage Eo. 7 SW " = 1'-0" Crack width

                           /     g      Crack vidth i

I Figure 4 Concrete Crack Pattern - Location No. 2

I -

l -,-

I I 1 l $ I l

                        $0"                  l                  l
                         =                   ;                  ;

O l

                         #                   l 2L                       ,                  l t                                                                I
  • I n i ,

_2 . lI a l l l l 3  !  ! i i l l rm I I I.. -I { Tendon 1FD EL. 105'-9" , ( l i EL. 104'-0" . I TEMP *F I STAGE PSIC DATE TIME INT. EXT. INITIAL REMARKS 1 0 5-26-80 1535 83 88 HC/EM No cracks 3 27 5-28-80 1920 84 85 HC/EM No change 5 62.1 5-29-80 2215 89.3 83 HC/EM No change I 10 0 5-30-80 2315 81 62 HC No change LEGEND Stage No. 7 Crack width SCALE " = 1'-0" g Crack width I Figure 4 Concrete Crack Pattern - Location No. 3 I . _ _ _

f l l I I 1 ' E 150 l I l

                                   .01      .01       h,       M         .01    l1l     .01
                          \                                    l             '

fil .01 ( -

                                          ~

LsAs [ . 01

            .01     1                       .01                                   f
                                                                                       -(Tendon V130

( Tendon VI --. -

                        -      )
                                                         '                              [ .005 I

i t/ # [JJ .01

                                                                 .01     R
                                                                          \    \               {

25 g  ; Su I I STAGE ,SIG DATE TIME TEM, 'E INT. EXT. INITIAL REMARKS 1 0 5-26-80 1615 83 88 TM/IZ Ten cracks 3 27 5-28-80 1926 84 85 TM/IZ No change 5 62.1 5-29-80 2225 89.3 83 TM/1Z No change 10 0 5-30-80 2327 81 82 TM No change I LEGEND Stage No. 7 Crack width SCALE b" = l'-0" g Crack vidth E g vis _ 4- - c _ .t. c. .. m .,. - t.c. m.. N . e  : 8 l l .. I 35* 37' 05" \ M .01 A.FR .0i s

                                                                           .01 l1 l   .01 d Tendon V89 s                                                                               9
                                                                                ,s I                                                                              !!

U l I TEMP 'E h W STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT, 1 0 5-26-80 1640 83 88 TM/IZ Four cracks 3 27 5-28-80 1944 84 85 TM/IZ No change 5 62.1 5-29-80 2237 89.3 83 TM/IZ No change 10 0 5-30-80 2340 81 82 TM No change I LEGEND Stage No.

                       #                                           SCALE   1" s   = 1'-0" Crack width I                            Crack width I

Figure 4 Concret; Crack Pattern - Location No. 9 I 8 - I _ 76 13' 27" 1 .01

          .01       1 1                                                             /

I N4 . l l 5Q

                              ~

[7] ,g) N \ l s i 4 xl l l .005 (TendonV104 I

  • I C .01 l 1 l .005 1

I ?E S$ i g es I TEMP 'E I STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. 1 0 5-26-80 1625 83 88 TM/IZ Eight cracks 3 27 5-28-80 1935 84 85 TM/IZ No change 5 62.1 5-29-80 2230 89.3 83 TM/IZ No change 10 0 5-30-80 2333 81 82 TM No change LEGEND Stage No. 7 Crack width S " = 1 -0" I .-

                          .f'      Crack vidth I
     "'""^~'~'"""'"'"'""""~""~'

I I 1 I 1 c 305 I l1l .01 I r /

                       /

I [TendonD3C16 EL. 261'-14" I I I I TEMP 'F I STAGE PSIG DATE TIME INT. EXT. INITIAL REMARKS 5-26-80 1600 One crack I 1 0 83 88 HJC/DH 3 27 5-28-80 1915 84 85 JLD/HJC No change 5 62.1 5-29-80 2250 89.3 83 JLD/DH No change 10 0 5-30-80 2300 81 82 JLD/DH No change LEGEND Stage No. 7 Crack vidth SCALE 1" 5 = 1'-0" Crack width I Figure 4 Concrete Crack Pattern - Location No. 11 3 I

         ~

i I ' 'I 264 27' 07" I $ l1 l .01 l I I s X l (TendonD3T30 ! / \ ' [ EL. 263'-10i"

;I
                         -                 N                      -
                                                                    /                                                                                          \
I

!I .

 ;                                                           TEMP 'E STAGE    PSIG    DATE   TIME                                        INITIAL                                                                                REMARKS
 ;                                                           INT. EXT.

i 1 0 5-26-80 1600 83 88 HJC/JLD One crack 3 27 5-28-80 1930 84 85 HJC/JLD No change 5 62.1 5-29-80 2225 89.3 83 HJC/JLD No change 10 0 5-30-80 2300 81 82 JLD/DH No change LEGEND Stage No. . l 7 SCALE " = 1'-0" J

W g Crack width Crack width ji
           "'""""~'"""'"'""'"~'""""~'

'I

u 8

1 I I i l I I I EL. 190'-0" l I l1l .01 I A

                                                        /

I 305 EW *E '&W STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. ] 1 0 5-26-80 1600 83 88 G/HGD One crack 3 27 5-28-80 1900 84 85 G/HGD No change 5 62.1 5-29-80 2200 89.3 83 G/HGD No change 10 0 5-30-80 2300 81 82 G No change I LEGEND Stage No. 7 Crack vidth SCALE " = 1'-0" g Crack width Figure 4 Concrete Crack Pattern - Location No. 13 (Right Side) il 'I l I I

        .015 l1l x ,L

.g EL. 190'-0" I I I 7 [l1 l .01 305 I TEMP 'F

STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT.

Two cracks 1 0 5-26-80 1600 83 88 G/HGD 3 27 5-28-80 1900 84 85 G/HGD No change 5 62.1 5-29-80 2200 89.3 83 G/HGD No change 10 0 5-30-80 2300 81 82 G No change i LEGEND Stage No. SCALE b" = l'-0" j # g Crack width Crack width 5 il Figure 4 Concrete Crack Pattern - Location No.13 (Lef t Side) 1 8 I I g I I

                                                                 \ :

i

                                                                     !    b   .01 I                                            e l
                                                  .01       b     &  :

i w= I .. . -g u I k l i i d7 82

                                                                                       ~

E

                    .                        ',       O              l                 d i

(> '

  • I I

I I 3

                                              ! .01 M l

l l l $3 i

                                                               \      l i!                       l             _   M/

I . i _ Tendon face _ i . I TEMP 'E STAGE PSIG DATE TIME INITIAL REMARKS INT. EXT. 1 0 5-26-80 1600 83 88 G/HGD Three cracks 3 27 5-28-80 1900 84 85 G/HGD No change 5 62.1 5-29-80 2205 89.3 83 m/HGD No change I, 10 'O 5-30-80 2300 81 82 G No change LEGEND Stage No. 7 ~ ~ I g Crack width Crack width

             /

I  : I Figure 4 Concrete Crack Pattern - Location No. 14 4 4 I i I !I

3. mezemesces
1. ,1.a1 s.t.t, .a1,.1a....m,a... m. ,am.,

l3 Nuclear Plant, Unit 2, Alabama Power Company I

.I I
I 1

4 i I

 .I I

I I I o I n I

,I

,I f i I - - - -

I l l !I i !I i il l !I i !I 1 JOSEPH M. FARLEY NUCLEAR PLANT I J 4 UNIT NO. 2 1 ALABAMA POWER COMPANY 1 !I STEEL LINER PLATE SURVEILLANCE - PHASE I 1,5 i i I l i !I i

                                               )

1 iI 1 I 1 1 i ~I lI 1 4 lI h

i I l

'I I

l l .I i !I 1 I i l tl t !I TABLE OF CONTENTS I ] !.I PAGE NO. l LIST OF FIGURES 11 l >I 1 ] 1. INTRODUCTION ) 2.

SUMMARY

AND CONCLUSIONS 2 f

3. TEST PLAN 3
4. TEST RESULTS 4

{ ll i

3. aErtaENCES to 4
 !I 1

!I ,I

I
!I ll 4

l 1 1 h

l I lI j i lI i II a i !I i LIST OF FIGURES i !I 1 FIGURE NO. i l 4-1 Liner Plate Surveillance I

  !     4-2    Liner Plate Strain Concentration- Location No.                        1 I

i 4-3 Liner Plate Strain Concentration- Location No. 2 l 4-4 Liner Plate Strain Concentration- Location No. 3 4-5 Liner Plate Strain Concentration- Location No. 4 !I j ll 4 lI i ,il l l i l,l i II I,I i.l 4 d 11 \E

I i 1, INTRODUCTION 'I The first phase of the' Steel Liner Plate surveillance for Unit 2 was conducted at the same time as the Containment Structural Integrity Test from May 27, 1980 through May 30, 1980. The purpose of the test is to determine whether the liner plate undergoes any permanent deformations as a result of pressurization for the SIT and the I Integrated Leak Rate Test. I To accomplish the test purpose, the steel liner plate was examined and measured for curvature at two areas where the liner plate has a measurable initial inward curvature and at two areas where the liner plate has an initial outward curvature. In addition to the four areas profiled, four more areas were surveyed for any indication of strain concentrations. The measurements and inspection were done before and following the SlT and are to be repeated during .: the first periodic Type A containment leakage rate test specified W in the plant Final Safety Analysis Report (Ref. 1, Sect. 3.8.1.7.5). I I I lI  ! 1

I  !
                                                                      )

I l

I I

2.

SUMMARY

AND CONCLUSIONS

!   The measured permanent deformations induced in the liner by internal
!=  pressure did not exceed 0.046 in. This is consistent with previous i

test results on other containment structures. The four areas surveyed showed no indications of strain concentrations i either before or after the SIT. lI il

!.I lI lI                                                                          ,

lI il J !I il 'I !I

                                    ,I

I ,

3. TEST PLAN I

The liner plate deformations were measured with respect to fixed i. chords instelled at four loctaions within the containment structure. The locations and fixed chord detafis are given in Figure 4.1. I Distances from the fixed chord to the liner were measured by a vernier indicator prior to the start of SlT pressurization and following the completion of depressurization. I Four liner plate areas were surveyed for indication of strain concentration before and after pressurization for the SIT. Areas surveyed were 4 f t. by 4 ft. with grid lines at one foot intervals. I They were located as follows: Az. 65 , El.159' 0"; 4 Az. 258 , El.159'0"; Az. 138 , El. 133 '-6"; and Az. 335 , El. 159 ' 0". l

                                                                           )

I I I 1 l I I I

I 4 TEST RESULTS t Deformations of the liner plate with respect to fixed chords are listed on the tables in Figure 4.1. The maximum deformation measured was 0.046 in. The magnitudes of the deformations are in line with
;     those measured in other post-tensioned concrete containment structures.

Since the two highest readings were approximately four times and two times the next highest reading, there is a strong possibility of human error in reading the vernier gage. If this is assumed to j be true, the maximum resulting deformation is 0.012 in. For the two high readings being considered accurate, the 0.012 in. deformation i ,g ( is still applicable as the maximum for 94 per cent of the measured values, i5 i None of the four areas surveyed showed any indication of strain concentration eithec before or after the pressurization for the SIT. 1

I
I

!I I I

I ^ Azimuth i

                                     #~                             ^N y                                                        N i                                                                                       x u.

U l U i GG@@@@GGG l

                                                                                                            \

1 AZIMUTH 87 STN ELEVATION 161'-0" TEMP. 0F DIAL DEPTH GAGE READINGS STAGE DATE TIME ' 2 3 4 5 6 7 8 9 INT EXT 1 5-26 1 1173.432 3.28C 1 -80 1700 R7 RR EM 3 2553.426 3.50' 1.611 1 so1 1 Ann 5-30 f 3.253 3.425 3.511 3.621 3.595 3.499 3.3293.438 3.287 10 -80 2300 81 82 cn l l 769 2 ELEVATION 161'-0" AZIMUTH STN - T EM P. 0 F DIAL DEPTH GAGE READINGS STAGE DATE TIME 2 3 4 5 6 7 8 l 9 INT EXT 1 1 $g'n 1700 ' 82 88 EM 3.423 3.707 3.8763.948 3.9853.955 3.792 3.520 3.192 3-30 10 _80 9 tin 81 82 CH 3.401 3.706 3.8803.959 3.9943.956 3.79R 1. s?1 1 14R 160'-0" 220 ELEVATION . AZIMUTH STN ' TEMP. 0F DIAL DEPTH GAGE READINGS STAGE DATE TIME IT 2 3 4 5 6 7 8 9 INT EXT 1 I 1 5-Z6-80 J-JU 17nn R7 99 EM 3.379 3.5983.754 3.871 3.8763.837 3.678 3.512 3.290 3.292 10 -80 2340 81 82 en 1 all 1. Ann a.7A9 '.979 3.882 3.813 3.685.3.52( !' 4 ELEVATION 135'-0" AZlMUTH _52 STN T EMP. 0 F DIAL DEPTH GAGE READINGS STAGE DATE TIME I 3 4 5 6 7 8 9

INT EXT 1 2 82 88 EM 3.289 3.492 3.666 3.771 1 7ss 3.706 3.542 3.31( 1 11s 1 $n 37nn 3.121 2355 g, ca 3.279 3.499 3 .670 3.78C 3.763 3.707 3.551 3.32:

10 -80 g3 i l Figure 4 Liner Plate Surveillance 1 i P 4 Azimuth 65 l l i l 4' EL. 159'-0" I l 1 i )I 1 l STAGE DATE INITIAL STRAIN DESCRIPTION  ; i 1 5-26-80 EM No indication of strain 10 5-30-80 CH No change I ll l Figure 4 Liner Plate Strain Concentration - Location No. 1 I Azimuth 258 1 Paint { Chip i I EL. 159'-0" i Paint Chip 1 i l d ) I STAGE DATE INITIAL STRAIN DESCRIPTION

I i

1 5-26-80 EM Two paint chips as noted il l 10 5-30-80 CH No change l-I Figure 4 Liner Plate Strain Concentration - Location No. 2 I I

i .i I Azimuth 138' i i t l

;                                                                                         EL. 133'-6"

.I J I I STAGE DATE INITIAL STRAIN DESCRIPTION 4 i i 1 5-26-80 EM No indication of strain ' I I 10 5-30-80 CI No change l l 1 i I ' !I 1 l Figure 4 Liner Plate Strain Concentration - Location No. 3

I l

i. I o Azimuth 335 i i k I l i 1 ,

l l

! 1 i 1 i EL. 159'-0" l l 8 i l Paint jg Chip 15 1 1 1 i I J' l 1 STAGE DATE INITIAL STRAIN DESCRIPTION ' i jg 1 5-26-80 EM One paint chip as noted

E 1

l 10 5-30-80 CH No change i .i !I i !I Figure 4 Liner Plate Strain Concentration - Location No. 4 lI l l l L 1 l 1 I L

5. REFERENCES l
1. Final Safety Analysis Report, Joseph M. Farley W Nuclear Plant, Unit 2, Alabama Power Company.

l l I h l l l L F u r-L L r- \ - - - _ . _ _ . --_ __ .-- _}}