ML20202G164

From kanterella
Jump to navigation Jump to search
Rev 1 to Design Calculation ANO-109.001.003, MCNP 1-D & 2-D Shielding Analyses for ANO Msb Transfer Cask (Mtc)
ML20202G164
Person / Time
Site: Arkansas Nuclear, 07201007  Entergy icon.png
Issue date: 03/08/1995
From: Pfeifer H, Thompson L
SIERRA NUCLEAR, INC.
To:
Shared Package
ML20202G159 List:
References
ANO-109.001.003, ANO-109.001.003-R01, ANO-109.001.003-R1, NUDOCS 9902050022
Download: ML20202G164 (61)


Text

_.

A CLIENT NO.:

SNC NO.: ANO-109.001.003 DESIGN CALCULATIONS MCNP 1-D and 2-D SHIELDING ANALYSES

.FOR THE ARKANSAS NUCLEAR ONE MSB TRANSFER CASK (MTC)

Prepared by

. SIERRA NUCLEAR, INC.

9902050022 990129 ?

PDR ADOCK 05000313-Y PDR i i

i

~

Y ATTACHMENT U I

, REISION CONTROL SHEET  ;

. FOR DESIGN DOCUMENTS j l

^

Rev. Date Reason Affected Pes. Preparer Checker Proi. Eng Affected Documents / Comments 0 ill!Ih1 Twi L l b l8248 All Le y T VA4 M 544 A M W f44 1.

2Ints 1, corp /MGbdrkl /W n H If ebd 4ke -

/tp//d4 i

SIGNATURES i Responsibility Signature Initials Date l

Putaver 0 amua. LW TEH ll)5}ty 04Lw WWmY / r 11+1 '

VIS/?4'

'I

  • Pmarm h E. h vaa 3 // Nr A.bd&L%ey cd'h ddwkU JPd .t MM idw~

Arae5

'lf A im N7/1s-

.hueassar7

- E 6 . M. , . w +d.

_. u, r h r List Affected documents and action taken (or to be taken) or other comments in this section.

CAP 3.0-2, Rav 1 (10N2)

l

~ 1.0' INTRODUCTION Sierra Nuclear is developing Ventilated Storage Casks (VSC) for dry storage of spent nuclear fuel. The fuel is loaded into a Multi-Assembly Sealed Basket (MSB) which in turn is placed inside j the-VSC. The MSB is carried-to the VSC inside an MSB Transfer 1

' Cask (MTC). . Shielding analyses were performed for the VSC and

' MTC (each containing aul MSB) to ensure adequate shielding and acceptably low radiation dose rates on the cask surfaces. These analyses were performed mainly using the ANISN and QAD shielding codes.

The standard MSB, VSC, and MTC's are designed for the most common types of PWR fuel assemblies which are about 160 inches long.

The standard MSB inside cavity length is 162.5 inches. However, Sierra Nuclear has a contact with the Arkansas Nuclear one This reactor (ANO) to build storage containers for their fuel.  !

reactor has'some longer PWR fuel. They are also interested in storing standard length fuel.with the burnable poison rod assembly (BPRA) inserted.into the fuel assembly. For either case, an MSB with a longer inside cavity is needed. Sierra j Nuclear therefore designed a set of modified casks-(MSB, VSC, and i MTC) based on an MSB inner cavity dimension of 179 inches (vs. '

l 162.5).

In order to make the MTC longer while staying within weight limits, cask shielding had to be reduced. The shielding was made.

slightly thinner along the entire length of the MTC. In l addition, the doors which form the MTC's bottom shield were made l thinner. The doors were also made shorter (in the direction that ,

they move). Finally, a large amount of shielding on the outer l

side of the rails upon which the doors slide was removed.

A new set of shielding analyses is required to verify that the .'

new long MTC design has adequate shielding. This new shielding analysis was performed using the MCNP monte-carlo shielding code.

One-dimensional (infinite cylinder) and two-dimensional (R-Z) models of the long MTC (containing an MSB) were developed. Runs were performed to determine both total gamma dose rates and total neutron dose rates on the MTC surface. The dose rate is found Also, design for several sections of the MTC surface.

modifications-for the ANO MTC were suggested based upon this analysis.

2

\

.s 2.0 'MTC MODEL DESCRIPTION i l

4 Figure 1 illustrates the two-dimensional R-Z model of the MSB and MTC.- As Figure 1 shows,-the new MTC has 3.75. inches of. lead  ;

shielding. The standard MTC had 4 inches of lead. Also, there-wasia 0.25 inch steel shell between the lead and the neutron shielding (RX-277) in'the standard MTC. -The new MTC does not have.this shell. - Also, the bottom plate ~(doors) of the old cask

- was 9.5' inches thick. In the new model, the bottom' shield is

, only 8.0 inches, thick. Shielding was'also removed from the sides j

of.the_ doors. l Both the standard and new (long) shielding models have these.

o common features: a neutron shield (RX-277) thickness of 4.0 inches, a 1.75 inch thick shell of. steel inside the' lead shield

'(which is actually the 1.0 inch MSB outer shell plus the 0.75 inch MTC inner liner), an outer steel shell one inch thick, and an MSB top lid consisting of a 5 inch' steel lower plate, a2 inch 4 RX-277 plug, and a 5.5 inch steel upper plate.

The Arkansas Nuclear One MTC and MSB dimensions are completely-described in the ANO cask design drawings (references 1 and 2).

. Gaps are'not modeled in the new shielding analyses. The shield l region thicknesses are equal to the actual thicknesses. The shield regions are moved inward slightly to eliminate the gaps.

As in the old analyses, the materials inside the MSB (the fuel-

. rods, assembly hardware, and the assembly support sleeves) are Esmeared together over'the entire MSB interior to' form one homogenous material. As with the old. analyses, the model creates

'three (axial) smear. regions. The " fuel" region covers the active j fuel length of the assembly. The " top nozzle" region smears in alllof the assembly hardware and other material that lies above the active fuel region. The " bottom nozzle" region covers all material below the active fuel.

< The smear regions in the old shielding analyses went all of the way out to the inside of the MSB outer shell (a radius of 30.25 l inches). The MSB has three large steel support belts, The each 28 2 l

inches long and 0.5 inches thick (see reference 2). initial shielding analyses, all of which were one-dimensional, did not model these bands. The old analyses also did not add the steel mass of these bands to the smear density inside the MSB. The new analysis explicitly models these bands.

3

+ e ,- - + - , -- _ .- ,. --

l .\

l l

1 1

1 l

l I CLIENT NO. l SNC NO.: ANO-0109.001.003 l l

FIGURE 1 TWO-DIMENSIONAL-(R-Z) McNP MODEL OF THE ANO TRANSFER CASK (WITH MSB)

I" r .. .

w% % NNN W i h '.'.i.?.

.....- . .... . .i --

I ANNN%NNNNNNNNNNME ,

'  ::=:$::g :

5t om n.. i TOP NOZZLE "

!!$l ! o

c' :

I

-: @ ;,g:

02 c:

es so h:

o ,

LEAD  : E:

SHIELD E!

8 or g; um c

ogogogogo;NEUTR. SHIELD I lg

?!* a"*E'E! + FINS  ::

),*2::

i l*

@lgo::

..... PURE RX-277  ::"

,,@l  :

!!@lE! I i  :: gj8 : reoo 8'8"

/

F/////// MTC STEEL u.m FUEL [@;!!

.c:::

' E!

, i (kk% MSB STEEL  %,CF or ii@!!!

c,o:

I DOORS "

STEEL  : $lI

c='c:
E 2:
R *:
@(

!!@ E!

a i: :

C:,c: esm i ':${$

!$ o !

cr ::

,,,-.o 4x , BOTTOM N0ZZLE  ::E3-  : '"

1 T- I su en t7s em DODRS 1 1 I l

,,,, -m..

-4.30 =' ,

w sm -

- 3730

- 40.75

The new analysis uses!the same inner radius for the MSB outer shell as the old analyses (30.25"). The 0.5 inch bands are then explicitly modeled in the region between the radii of 29.75 inches and 30.25 inches. The materials inside the MSB which were smeared over a 30.25 radius region in the old analyses are smeared over a 29.75 inch radius region in the new analysis.

This is slightly more accurate since all of the materials included in the_ smear actually reside inside the 29.75 inch radius. This leads to somewhat higher smear densities in the new

, model (see Chapter 3).

Note'that the model.in Figure 1 has an MSB internal cavity length of only'160 inches whereas the actual ANO MSB has a 179 inch internal cavity. The Exial dimensions of the MSB model match ,

those of the standard (162.5") MSB except near the top, where the  !

2.5" axial gap between the top of the assembly support sleeves and the bottom of the MSB lid is removed. Thus, the lid is moved 4

down 2.5". The cask was axially " shrunk" to conservatively model ,

the fuel assembly ends being pressed against the bottom and top lids simultaneously. This yields conservatively high dose rate ,

predictions for the cask top end.

The ANO casks were to store two types of fuel, standard length ,

fuel with burnable poison rod assemblies included, and longer fuel. For the longer fuel, the assembly top nozzles are near (within a few inches) the bottom of the MSB top lid. The tops of

,' standard fuel assemblies will be about 20 inches below the top lid, but additional activated hardware (the tops of the BPRA's) c will exist above the assembly tops. The BPRA tops, however, have gamma source strengths that are only one fifth of the assembly top nozzle gamma source strengths.

The longer fuel (with its top nozzles up against the MSB top lid) will produce higher cask top and dose rates than will the standard length fuel with BPRA's. Cask shielding analysis experience has shown that moving -one meter away from the cask surface (side or end) reduces dose rates by roughly a factor of  !

two. Therefore, moving the gamma source region away from the 1

cask top end by about 0.5 meters (~ 20 in.) should result in a

~40% reduction in gamma dose rates. Thus, in the BPRA case, the assembly top nozzle contribution will be reduced by ~40% as compared to the non-BPRA case. Since the BPRA top gamma source strength is only 1/5 that of the assembly top nozzle, the BPRA case will only produce gamma dose rates about 80% (100% - 40% +

20%) that of the non-BPRA case, even if shielding by the BPRA top 5- end materials is completely neglected.

As shown in Ref. 7, the longer fuel (CE 16x16) has a lower fuel loading (0.426 MTU) than the standard fuel (B&W 15x15 - 0.467 MTU) despite its greater length. Therefore the fuel loadThus per unit length is much higher in the standard length fuel. the standard fuel will produce higher dose rates on the cask side.

5

l The " shrunk" model will yield worst case dose rates for the cask ends as well as the cask side. The fuel region is modeled as 144 inches long, corresponding to standard length fuel. The standard fuel's loading of 0.467 MTU is assumed. This will give worst case cask side dose rates. However, since the model is " shrunk", ,

the top nozzles of the assemblies are in contact with the MSB top l lid, an they are with the longer fuel. The bottom nozzles are, l of course, in contact with the cask bottom lid (the doors).

Except for the axial " shrinking" and the presence of some suggested design changes (discussed in Chapter 6), the MCNP models exactly represent the MTC and MSB geometries shown in the i ANO design drawings (references 1 and 2). The standard MSB axial dimensions are shown in the original design drawings (reference 6).

Figure 2 illustrates the one-dimensional infinite cylinder model of the ANO MSB and MTC. For each shield material region, the same inner and outer radii that were used in the 2-D analysis are used in the 1-D analysis. The active fuel region materials inside the MSB are smeared over an area with a 29.75 inch radius as in the 2-D model. The 0.5 inch region where the steel support belts exist in the 2-D model is simply modeled as a gap in the 1-D model. This is a correct approach since the hottest axial section of the fuel (peak burnup) occurs under the gap between the bottom and middle support belts. An accurate 1-D measure of the peak surface dose will therefore be based upon the peak source intensity (over the entire infinite length) and the absence of the 0.5 inch of steel shielding.

6

CLIENT NO.

SNC.NO.: ANO-0109.001.003 FIGURE 2 l 1-D TRANSFER CASK MCNP MODEL 40.75 39.75 35.75

'32.00

--- 31.25 30.25 29.75

, m n

.:c ACTIVE

~.: "

' '4 FUEL i a .

, t%

/ s%

AIR

) s% '

- - /

, -s -

/ /%

/

c ..

LEAD

> :' ,e.<. cc . ':

- n .. .. . -

- -s

, ,s . . . . .. . .

ACTIVE FUEL:.:.j

!! '.
.( RE GION ,

: /

'////////4 IRON

/ /\ .

' N

/

kbh3 IRON

!! \

.:1 f sN

/ s%

,o , ,

, #\ ,

, s

/

i l

3.0 REGION MATERIAL DENSITIES The material densities used in each region of the shielding model  ;

are very similar to those used in the previous analyses. Table 8 of reference 3 gives the material densities used in the previous i analyses. Table 1 shows the material densities used in this analysis. There are a few differences in the material densities between the two analyses. These differences are discussed below.

l As mentioned in Chapter 2, the MSB internals are smeared over a region with a 29.75 inch radius, versus the 30.25 inch smear  !

radius used in the previous analyses. Therefore the smear densities for the fuel region, the " top nozzle" region, and the

" bottom nozzle" region are increased by 3.4% in the new analysis to account for this. ,

The new analysis also uses a different material description for the neutron shield region. This region consists primarily of RX-277 neutron shield material. However, several (24) steel heat transfer vanes are also present in this region. Each vane is a steel plate 11 inches wide and 0.25 inches thick. A 90 degree '

bend is made in the center of the plate to form a chevron (with 5.5 inch sides). These chevrons run axially down most of the length of the MTC. The previous analyses ignored these vanes and I

modeled the neutron shield region as pure RX-277.

I have proposed changing the number of vanes so that there will l be minimal streaming between them (see Chapter 6). This allows i the shielding analysis to take credit for their presence in the neutron shield.

To account for the vanes' presence, the neutron shield material description is modified as follows. The vanes take up 6.9% of a the entire cross-sectional area of the neutron shield region in the ANO MTC. Therefore, the density of each element present in the pure RX-277 is reduced by 6.9%. Then we add the smear i density of the steel (iron) in the fins. This density will be the density of pure iron (7.87 g/cc) times the area fraction of 6.9%. This yields an iron smear density of 0.544 g/cc. This is added to the modified RX-277 material densities described above.

The net result is a homogenous neutron shield region material that has a higher density than the original pure RX-277 material (since iron is denser than RX-277).

The new neutron shield region material densities are shown in Table 1. Densities for pure RX-277 are shown in Table 1 as well, since the neutron shield plug in the MSB top lid is still pure RX-277. The material densities are expressed as atom densities in atoms / barn-cm, the material density units that are input into the MCNP code. To convert these densities to g/cc, multiply them by the element's atomic weight and divide by 0.6023. All runs assume that boron consists of 20 atom percent B-10.

8

1 TABLE 1 SHIELDING MATERIAL ELEMENTAL DENSITIES (in a/b-cm)

Active Bottom. ~ Top Neutron Fuel Nozzle Nozzle Shield Pure Element Reaion Reaion Reaion Reaion Rx-277 H 2.58-2 2.77-2 B 1.36-3 1.46-3 0 8.64-3 3.45-2 3.71-2 Na 2.42-4 2.60-4 Mg 1.94-4 2.08-4 Al 8.35-3 8.97-3 Si 1.60-4 6.59-5 7.14-4 7.67-4 Ca 2.08-3 2.23-3 Cr 1.64-3 6.74-4 Mn 1.64-4 6.74-5 Fe 5.27-3 5.48-3 2.25-3 5.91-3 4.89-5 Ni 7.67-4 3.14-4 Zr- 2.63-3 3.02-4 2.98-3 U-235 1.40-4 U-238 4.18-3 s

Total 2.09-2 8.51-3 6.35-3 7.92-2 7.87-2 All-solid steel regions are modeled as pure iron at 8.49 a/b-cm (7.87 g/cc)

-The lead shield region contains pure lead at 3.296 a/b-cm (11.34 g/cc) 9

____________--_1__. ..

There is a small change in the iron density for the fuel region due to a change in the support sleeve dimensions for the ANO MSB. In lthe ANO MSB, the sleeves have an outer width of 9.2 inches and an inner. width of 8.8 inches. The "old" sleeves had an outer width of 9.4 inches and an inner width of 8.9 inches.- This would cause the iron' smear density-of 6.48e-3 (a/b-cm) shown in Table 8 of reference 3 to be reduced to 5.10e-3 (a/b-cm). This density is in

. turn multiplied by 1.034 before being entered into Table 1 (to account for the 29.75 inch smear region).

The' final difference.in regional material densities between the two analyses concerns the smearing of the fuel-support sleeve iron'into

the radiation source regions. Forfdose rates on the top and bottom ends of the cask.there is some question as to whether it is appropriate to smear the support sleeve material in with the fuel assembly material. This is because the radiation going towards the cask ends-is travelling largely parallel to the support sleeves (i.e.. it.is " streaming" through the support sleeves).

For radial radiation transport in the main active fuel section of the cask, it is appropriate to smear in the sleeve material. The sleeves extend the full length of this region. The sleeves surround the fuel so that radiation moving in a radial direction must pass through sleeve material to escape the-MSB interior.

Therefore, smearing sleeve material in the fuel region will give more accurate: cask side dose rates. For dose rates on the cask ends, it will be slightly non-conservative to smear the sleeve material into the fuel region.

A special run was performed.to more accurately calculate cask top and gamma dose rates from the active fuel region. In this run, the support sleeve material was removed from the fuel region smear.

131e results from this run are used for gamma dose rates on the top end of the cask.

The support sleeves only go about 40% of the way up the top nozzle region. Thus, in the top nozzle region, the sleeve material does not interfere much with radiation travelling in the axial direction or.the radial direction. Therefore, in this analysis, the fuel

-support sleeve material is conservatively. neglected in the top tie plate region.

The support sleeves cover the entire length of t.se bottom nozzle region, but they have 3 inch diameter air flow holes in each sleeve

wall. 1Nnas, a large degree of streaming is allowed both in the vertical and horizontal directions. We therefore also conservatively exclude the support sleeve material from the bottom nozzle > region.

10 j

Due to the removal of the sleeve material, the iron densities for i the top and bottom nozzle regions shown in Table 1 will be

- different-from those shown in Table 8 of reference 3. In the new j analysis, the only iron included in the smear is that present in 1 the top and bottom nozzles themselves. Based on the information given in reference 3, the modified iron smear densities will be:

i Bottom Nozzle Density = 5900 (g) X 0.68 X 24 / 1.958e+5 (cm) j

= 0.492 (g/cc) = 5.304e-3 (a/b-cm) 1 Top Nozzle Density = 6850 (g) X 0.68 X 24 / 5.58e+5 (cm) l

= 0.202 (g/cc) = 2.1736-3 (a/b -cm)

I l

The iron densities calculated above, along with all other densities l in the MSB interior regions, are then multiplied by 1.034 (to account for the smaller 29.75 inch smear region) to yield the values shown in Table 1.

In the special fuel region gamma run for the cask top end, the active fuel region smear densities are those shown in Table 1 i except that the iron density goes to 0.0 (the iron present in the  !

Table 1 smear is entirely due to the support sleeves) .

Other than the changes discussed in this section, the analysis presented here uses the same material densities that;were used in the previous analyses. See reference 3 for a more detailed discussion.on how those densities were calculated.

h 11

__.m _ _ _ _ , _ . _ . - _ . _ _ . _ _ . _ - . _ _ _ _ _ _ _ _ _ ._ __

b[

4.0 SOURCE DESCRIPTION The gamma and neutron source strengths used in this analysis are

- the same as those used in the previous analyses described in reference.3. The source _ strengths are based on fuel with an initial uranium loading of 0.467 MTU, a fuel burnup of 33 GWd/MTU, and a cooling time-of 5 years. Analysis results are increased by _

10% to represent dose rates for 35 GWd/MTU fuel.

Tables 2 and 3 show'the gamma and neutron source strengths, respectively, that are used in both the old and new analyses.

' Tables 2 and 3 are taken directly from reference 3. The analysis

= actually uses only the gamma energy lines between 0.575 MeV and 3.5 MeV since the other lines do not significantly contribute to cask surface-dose rates.

Shielding analysis experience has shown that the 0.575 MeV line i contributes _far less than the energy lines just above it (0.85, l 1.25, and 1.75 MeV) to cask external dose rates even though the l 0.575 MeV source strength (gammas /sec) is much higher than those higher energy lines. This is because gammas with energies below

-0.75 MeV are significantly less likely to make it through the cask shielding. Therefore, the lines with energies below 0.575 Mev, which have lower source strer.gths than the 0.575 MeV line (see Table 2), obviously do not contribute significantly to cask.

external dose rates. .

At'the high. energy end, note that the gamma source strength drops I by a' factor of ~2000 (between the 3.5 MeV line and the energy lines above lines above it). Given this large drop off, it is known that the energy 3.5 MeV do not contribute significantly to cask external dose rates.

The fuel region source strengths listed for each energy in Table 2 are multiplied by 0.467 MTU/ assembly and by 24 assemblies to yield the total source strength for the active fuel region of the cask.

Dividing this by the active fuel region volume of 6.784e+6 cc would 4 yield the gamma source density in gammas /cc-s for each. energy level.

L The gamma source strengths for'each energy level are divided by the total' gamma source strength.(for all seven energy levels) to yield a normalized gamma source spectrum for the gamma source.

This analysis differs from the previous analysis in that it models the axial burnup distribution in the fuel. Figure 3 shows the axial-power distribution for a PWR fuel assembly. This figure is

'_taken from Figure 4.4-1 of reference 4. The MCNP runs model this profile by dividing the fuel into 11 axial subsections. Table 4 shows the axial boundaries of each axial subsection along with the fuel burnup level (relative to assembly average) for that axial subsection.

12

+

In this analysis, the neutron and gamma source densities (particles /sec-cc) are assumed to be proportional to the burnup.

level. For the axial burnup profile being used, the peak burnup level is 1.2 times the assembly average burnup level. With the above assumption, this will lead to a 20% increase in neutron and gamma dose rates at the peak dose rate location on the cask sidewall. This agrees exactly with the policy used in the old analysis, which was to increase sidewall dose rate results by 20%

to account for the axial burnup distribution in the fuel.

Table 4 also shows the fraction of the total neutron or gamma source that is generated in each axial subsection. These values are found by taking the length of each subsection, dividing by the total length (144 in.), and multiplying that fraction by the relative burnup level for that subsection. The resulting set of fractional values is then renormalized (so it sums to 1.0).

d 13

CLIENT No.

SNC NO.: ANO-0109.001.003 TABLE 2 GAMMA SOURCE DESCRIPTIONS AeHve %1el Re. ion Top Nazzle Top Nazzle Boaom Nazzle Beace Natzte roi. w roi. w w,=i w.a w =ia w.= Anivui w.a Ami,=ia w ..

r. s sm so so s- s som s ,* s so..a s so
r. 6 . . ,. ..i. . .. ., m.vi. i....i.i r6.....,...,.-i., m. vi...,. . i .i m.vi r.6.....,...muu t m.vi. msmi 9.5000 1.307E+05 1.242E+06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7.0000 1.138E+06 7.966E+06 0.000E+00 ' 0.000E+00 0.000E+00 0.000E+00 5.0000 9.870E+06 4.935E+07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.5000' 1.783E+10 6.241E+10 4.786E-26 1.675E-25 4.407E-23 1.542E-22 2.7500 1.398E+11 3.845E+11 1.308E+04 3.597E+04 6.555E+04 1.803E+05 i 2.2500 4.532E+12 1.020E+13 4.228E+06 9.513E+06 2.118E+07 4.766E+07

. 1.7500 8.031E+12 1.405E+13 2.273E+01 3.978E+01 1.070E+02 1.873E+02 ,

l 1.2500 ' 5.254E+14 6.568E+14 7.979E+11 9.974E+11 ' 3.997E+12 4.996E+12 0.8500 1.071E+15 - 9.104E+14 2.686E+09 2.283E+09 1.317E+10 1.119E+10 1 0.5750 5.018E+15 2.885E+15 1.884E+06 1.083E+06 9.440E+06 5.428E+06 0.3750 2.064E+14 7.740E+13 3.279E+07 1.230E+07 1.643E+08 6.161E+07 1.317E+08 0.2250 3.447E+14 7.756E+13 1.169E+08 2.630E+07 5.855E+08 0.1250 4.132E+14 5.165E+13 3.554E+08 4.443E+07 1.781E+09 2.226E+08

. 0.0850' 4.070E+14 3.460E+13 9.253E+08 7.865E+07 4.636E+09 3.941E+08 0.0575 6.288E+14 3.616E+13 - 2.354E+09 1.354E+08 1.179E+10 6.779E+08 ,

0.0375 7.972E+14 2.990E+13 2.092E+09 _ 7.845E+07 1.048E+10 3.930E+08 -(

9.208E+07 1.844E+10 4.610E+08 j 0.0250: 7.524E+14 1.881E+13 3.683E+09 '

0.0100 3.152E+15 3.152E+13 - 2.198E+10 2.198E+08 1.100E+11 1.100E+09 TOTALS: 1.333E+16 4.835E+15 8.321E+11 1.000E+12 4.168E+12 5.011E+12

l CLIENT NO. l SNC No.: ANO-0109.001.003 l

TABLE 3 NEUTRON SOURCE DESCRIPTION CASK AND ANISN-PC ,

GROUP E upper Source Strength l NUNBER IMeV1 AFG)* In/see-em31 i 1 1.49E+01 4.653 E-04 1.77E-01 2 1.22E+01 1.883E-03 7.15E-01 3 1.00E+01 5.756E-03 2.18E+00 4 8.18E+00 1.924E-02 7.30E+00 5 6.36E+00 4.000E-02 1.52E+01 6 4.96E+00 5.174E-02 1.96E+01 7 4.06E+00 1.094E-01 4.15E+01 8 3.01E+00 8.804E-02 3.34E+01 9 2.46E+00 2.088E-02 7.92E+00 10 2.35E+00 1.156E-01 4.39E+01 11 1.83E+00 2.089E-01 7.93E+01 12 5.50E-01 1.920E-01 7.29E+01 13 1.11E-01 1.327E-01 5.04E+01 14 3.35E-03 1.345E-02 5.10E+00 15 5.83E-04 0.000E+00 0.00E+00 16 1.01E-05 0.000E+00 0.00E+00 17 2.90E-05 0.000E+00 0.00E+00 18 1.01E-05 0.000E+00 0.00E+00 19 3.06E-06 0.000E+00 0.00E+00 20 1.12E-06 0.000E+00 0.00E+00 21 4.14E-07 0.000E+00 0.00E+00 22 1.00E-08 0.000E+00 0.00E+00

  • norrnalized neutron energy distribution for 235U l

sc

, . - . . - . . -- ~ . . . . -. . . - ~ . . - . . . - . . - . . . - . _ . . . . . . . - ~ . . - . .

< l CLIENT NO.

SNC NO.:- ANO-0109.001.003 FIGURE 3' PWR FUEL AXIAL BURNUP DISTRIBUTION l

1 I

f l

l.2 - 7  %

N

'1.1 - ' \ l

\ l l.0 ,

0.9 0.0 /

l

, l o <

u .

Q .U.7 o.

V) n

> 0.6 1

3 m

a

_y 0.5 0.4 l

. 0.3 , , , , , , ,

O ~U. 16 24 32 40 40 56 64 72 00 00 00 104 112 120 120 136 144 Distance from Dottorn of Active Fuel Zone (inches) 4 i

y =, , , , . , - , - , , . , - _ , _ _ - - - . , ,

d TABLE 4 AXIAL SOURCE DISTRIBUTION Distance Relative Fraction From Fuel- Power of Total Bottom (in.) Level' Source l 0-4 0.5 0.0137 4-9 0.7 0.0239 i 9-14 0.9 0.0307 l 14-18 1.0 0.0273 1 0.0750 l 18-28 1.1_

28-80 1.2 0.4260 j 80-108 1.1 0.2102 108-117 1.0 0.0614 117-128 0.9 0.0676 128-135 0.7 0.0334 135-144 0.5 0.0308 The MCNP inputs'use the three pieces of information discussed above,.'the total source strength for the source region, the

.(normalized) source spectrum, and the (normalized) axial source distribution, to completely define the radiation source. Source density is assumed to be invariant with radius. These three pieces i of information are calculated and entered for both the neutron and I gamma.' fuel region sources.

Table 3 gives the neutron source spectrum for the cask fuel'. Also, reference 3-gives a total neutron source strength of-2.297e+8 j (n/sec-MHTM). This value is multiplied by 0.467 and by 24 to yield l the. total neutron source strength for the active fuel region. The

- same axial source strength distribution that was assumed for the ,

gamma. source is also assumed for the neutron source, i Table 2 also gives the gamma source strengths for the top and bottom nozzle regions. The analysis uses the only significant energy'line, 1.25.MeV.- The values shown are multiplied by 24 to

. yield the total source strength (gammas /sec) for each nozzle region. The source' densities are uniform over the bottom and top nozzle regions ~(as defined-in Chapter 2).

3

Four 2-D McNP runs had to be performed to complete the 2-D MTC shielding analysis. One run was performed for each radiation source, the fuel region gammas, the fuel region neutrons, the top nozzle gammas, and the bottom nozzle gammas. The dose rate
contributions from.each source are listed separately in the results.

17 3 .-

-. - ~ . . - ..-. ~ - - - . - .. - . - . - . - . - . . . . - _ _ . - - - - . _

l s

! 5.0 ANALYSIS RESULTS 4

I Figure 4 illustrates the' sections of the cask surface over which

~

1- the dose rates are calculated by the MCNP code. The dose rate results'are the average dose rate over the surface sections shown.

Figure 4 also lists an index number for each surface section. This index number is used in reading Table-5. l 4

!  ? Table 5' lists the index number for each cask surface section shown '

} yin Figure 4.- Beside each index number, Table 5 gives_the dose rate breakdown for that section. The dose. rate contributions from the

[ fuel. gamma source, the' fuel neutron source, and the top and bottom nozzle gamma sources are listed separately.

i The sum of the  ;

. contributions from each source region is listed for each section in 1 J -the " Calculated Total" column of Table.5.

i.

'The dose rate results-from the MCNP runs were all multiplied by'1.1

to reflect 35 GWd/MTU fuel before being entered'in Table 5.

t- Reference-5 shows a comparison between MCNP and ANISN, and MCNP and measured results. The results showed that MCNP overpredicted gamma l~ dose' rates quite a bit on the MTC sidewall. For the MTC sidewall, McNP gave gamma dose rates that were about a factor of three over Eneasurement and 60% over ANISN predictions. For the cask top lid, McNP_underpredicted the measured gamma dose rates by a factor of

1. 8 . - For neutrons, MCNP agreed with measurement relatively well.

[ The. comparisons to measurement were based on an actual cask at the

Palisaides plant.

-.I' The Palisaides cask and'the ANO cask are very similar in overall I geometry and shielding materials. We do not feel that the degree j of overprediction by McNP would vary much if only slight changes-F .are made to the. cask system. We therefore are confident in

applying a factor of three correction to the MCNP sidewall. gamma results. Therefore, although McNP predicts a' peak total dose rate of 266 mR/hr on the MTC sidewall, our best guess value for the actual dose rate would be 126'mR/hr.

2 .

The gamma dose rates for surface sections on the cask side are

! . divided by'three. The resulting set of total dose rates are shown

!in Table 5 under the " Adjusted Total" column. Gamma dose rates on

'- the cask top end are multiplied by 1.8.

1A'few of the entries in Table 5 express the ~ adjusted dose rate as a h These entries correspond to the section of the cask side

-range.

} tdiat lies above the top' of the lead shield, and _ the surface -

sections around-the sides of the doors on the bottom of the cask.

For these~ surface sections, a large fraction of the radiation present may not' pass through the lead shield. Since the shielding j'

materials pertinent.for_these locations are different than those

t. . pertinent for the center of the cask sidewall, we can not confidently assume that the correction factor is still a factor of j three.

18 i

. - ._ _. ~. _ . m .

1 i i l l l l i

1 l

l CLIENT NO. l l

SNC NO.: ANO-0109.001.003  !

1 FIGURE 4 DOSE RATE TALLY REGIONS l

1 1

@@ G @

.hkkhhh\\\\\\\\

....... ... ..r f.-[.!_@ .- -

g MMN$g$[

~=: 8: O i i TOP NOZZLE  !!5l 8:- l

=, c:
  • ,,C' o r,

.g, o l

!!5!

c, o:

e Ci o-s ai o-s;',ai c, c:-

o,

^

LEAD SHIELD

c'

)

,.c=, o,

EE: 2: G ,

-:2, o: i

ogogogogo;NEUTR. SHIELD i )
@ 3:

!!*o ah !*Et + FINS  ::ElE!

c=,o-c= c- *
c:::

'Cc,$ -

1

',5;* :!-

" . * . * . * . * . 'PURE RX-277 i c=,o

..**e,. , -

C::'c:

c=  : g

. i -

C lg- o

/

7/[j///((j MTC STEEL FUEL

,-iC,i

,,-:c=

i  !!

o-i  ::" c=: -

c ,o  :-

kk% MSB STEEL

,c= o-

-,c=,o-t jj

'c=;g DOORS i 5 ; :!@

STEEL  ::@:gi i  ::c= o ,

c=;8:

c o-

-'C , 0;

c-s o-g

,,c:,o;.

~'c= o ,

[EEl8:

2E;8:

e c= ,

I

c  ;
g

,::2 ,0

= 'c:

-,:EEl8;-

IBOTTOM NOZZLE  :;g,o; 0 '

-9

. . . . . . DOORS _

is e @ @G

Y

\

TABLE 5 McNP DOSE RATE PREDICTIONS FOR THE MTC SURFACE BASED ON 35 GWd - 5 YEAR COOLED FUEL (in mR/hr)

Surface Fuel Top Bottom Fuel

- Section Region- Nozzle Nozzle Region Calc. Adj.

' Number. Gamma Gamma Gamma Neutron Total Total 1 22 8 - 23 53 77 2 22 9 - 22 53 78 3 15 7- - 15 37 55 4 25 12 - 4 41 71 5 40 27 - 1 68 23-64 6 25 20 - 3 48 18-47 7 7 11 - 7 25 13 8 61 3 - 23 87 44 9 186 - - 48 234 110

' 10 143 - - 51 194 99 11 210 - - 56 266 126 12 105 -

5 38 148 75 13 36 - 85 20 141 60 14 70 - 324 5 399 136-399 15 43 -

136 4 183 64-183 16 13 - 32 25 70 70 17 59 - 92 61 212 212 l

l 18 297 - 498 161 956 956 19 343 - 577 223 1143 1143 20 364 -

585 223 1172 1172 Peak dose rate 1 meter from cask estimated at ~65 mR/hr (1/r dep.).

l l

20 l

. . . ~ . . -- - . - . . . _ - . _ _ . .- - . - . . - -.--. . .

i i

i i

'For'these regions we assume that the true correction factor lies somewhere between the sidewall correction factor (0.33) and no 1 correction factor (1.0). The dose rate ranges shown for these locations in Table 5 are based on a correction factor range of 0.33 to 1.0' .

l By analyzing Figure 1, one can see that most of the radiation reaching surface section #6 (in Figure 6) passes through the lead shield, even though the surface section itself lies above the top of the shield. We are therefore relatively confident that the true dose rate is closer to the bottom of the dose rate range listed in l Table 5. Our confidence in a lower actual dose rate (for sections

  1. 5-and #6) is further increased by the fact that the fuel support sleeve material was conservatively neglected in'the top nozzle l

i region.

l Looking at Table 5, one can see that for surface sections #14 and

  1. 15 (the area around. the doors) most of the radiation comes from the bottom nozzle region. By inspecting Figure 1, it can be seen that most of this radiation passes underneath the lead shield on its way to surface sections #14 and #15. The radiation passes entirely through steel. Therefore, the real dose rate could be anywhere within the range expressed in Table 5. The range is based j on a correction factor between 0.33 and 1.0. j

.At this point we would like to note, however, that the bottom nozzle dose rate contribution is based upon a very conservative material treatment of the bottom nozzle region. The fuel support sleeves in this region are about 4.2" long and over 8" square.

They have a 3" diameter hole in each wall. For that reason (streaming through-the holes), the sleeve material.was neglected in the bottom nozzle region, even though the holes cover a small i fraction of the sleeve area. Smearing in the sleeve material would l reduce gamma dose rates by ~15%. This (along with correction factor uncertainty) may be reason to believe that the true dose rates will be lower than the ~400 mR/hr upper bound posted in Table

5. Our best guess would be a dose rate of around 200-300 mR/hr.

One'aust keep in mind that. surface section #14 is a relatively small localized area, only about 4" high.

Table 5 shows that the dose rates on the cask bottom end exceed 1 R/hr. We may expect'the actual dose rate to'be somewhat lower due

' to the conservative assumptions concerning the bottom nozzle region smear (adding the sleeve material would reduce the total dose rate to about 1050 mR/hr).

21

On the other hand, one may expect MCNP to underpredict bottom end gamma dose rates the same way it did on the cask top end. Since l

there is less shielding on the bottom end, one would expect less underprediction than on the top end, however. Also, as discussed in. reference 5, the MCNP underprediction on the cask top end is probably due to underestimation of the top. nozzle region source strength. If this is the case, it would mean that MCNP would not necessarily underpredict dose rates on the bottom end.

The high dose rates on the cask bottom end are not thought to be a major concern since it will be in contact with the floor almost all of the time. . Personnel are almost never near the spot, and the floor will absorb radiation emitted from the bottom end, preventing it from contributing to dose rates further away from the cask.

We use a 1/r dose rate fall off assumption to estimate the dose rate one meter from the cask surface. The 1/r dependence would be based on an infinite height cask and is a conservatively slow fall i off assumption. The cask is just over one meter in radius, so the l dose rate one meter from the surface should be just over half the peak surface dose rate (based on the 1/r assumption). This leads to a calculated dose rate at one meter of 133 mR/hr and an adjusted one meter dose rate of about 65 mR/hr.

We present one final cask figure, Figure 5, to visually illustrate the final dose rate results. In Figure 5,-the adjusted total dose L

rate is shown for each cask surface section.

L L The one-dimensional analysis of the ANO MTC yielded a gamma dose

! rate on the MTC side surface of 178 mR/hr. The 1-D neutron dose rate was found to be 47 mR/hr, yielding a total calculated cask side dose rate of 225 mR/hr. This agrees reasonably well (within n

l 20%) with t2Ha 2-D calculated dose rate results.

l The 1-D analyses were also-asked to calculate gamma dose rates Lproduced from neutrons interacting with the shielding material.

The 1-D runs confirmed that these dose rates are insignificant (under 1 mR/hr).

Additional 1-D runs were performed to determine how much the cask l

i side dose rates are reduced if the MSB if filled with water. Most L

of the cask decontamination work will be performed before the MSB is drained in order to reduce personnel doses. The 1-D analyses l

! showed ttat with water present the calculated side gamma dose rate falls to 147 mR/hr (a 17% reduction). The neutron dose rate falls g.

to just 8 mR/hr (a factor of six reduction) . If the effects of j neutron multiplication in the flooded system are accounted for, however, the neutron dose rate reduction is only about a factor of l- two. . Applying these-reduction factors to th'e neutron and gamma dose rates shown in Table 5 would yield an adjusted total dose rate of 86 mR/hr with water present.

22

n  !

t-CLIENT NO.

SNC No.: ANO-0109.001.003 FIGURE 5.- )

SUMMARY

OF DOSE RATE RESULTS l 1

71 76 33 71 i kkkkkkkkkh\

u. . . . .......r-f h. .. . .

_S ,

1 k%\%\\%%M[i:$[  :

=  : 12 ,  !

TOP N0ZZLE -

gg 8!- l E, a: l

?;:: ' I

g! e= o:  : a j l '

C:> o:

c=> o- '

s.ci o-'

.
:c=' o!_

LEAD I

! c=,

$ o!

=

SHIELD  :: c:

,,, o-

-,  : ito
gi a
ogogogogo; NEUTR. SHIELD i
:c=l l:

?!?!?'o ?!? + FINS  :: $l*:

c=, :

l

.,c= o-

,:c= o: -

i ,,c= -

.. PURE RX-277  : $;g c:

g ${

~

c: o i ,

f////(([J MTC STEEL FUEL  :

c o-
c: of

,,.c= j- -

1

..e _

MSB STEEL  :

f k\\\\\\\% ..c=,a.

l c= 'o ;

c=;g -

DOORS  : @;gj m STEEL  :'c: a:

c='c, 8
c=

@ e:

8:

.<c: o-h@', :*!

.e=  :-

Sc= o ,

c: 8:

er o--

cI o i :lhl$

,.c=.o -

73 o

cr c= ;'g:. -
c: o;-

T.

l BOTTOM NOZZLE  ::5'o:

~D0dRS" 150 j (174 ' 1843 - 4S6 III I8 i .

i i

i l 6.0 PROPOSED DESIGN CHANGES FOR MTC J

This analysis w&s performed to verify the adequacy of the ANO MTC shielding design. The 2-D analyses were performed specifically to determine if any_ changes would be needed in the shielding near the

{ cask ends. The analyses found two changes that needed to be made.

The MTC design drawings (reference 1) illustrate the shape of the 1 doors that form the MTC bottom shield. When both doors are i together they form an octagon shape covering the cask bottom f opening. The two doors slide on two rails which are welded to the j cask bottom flange. The insides of the rails are spaced 69.5 inches apart (the width of the doors). The rails are 2 inches wide, making the outer edges of the two rails 73.5 inches apart.

The drawings show that both doors together have a total length (parallel to the rails) that is also about 69.5 inches.

The rails and the doors combined form a large mass of steel that is j 69.5 inches long and 73.5 inches wide.

[ Analysis of Figure 1 shows that the R-Z MCNP runs modeled the door's octagon shape as a cylindrical disk. To be conservative,

this disk must have a radius no longer than the distance between
the door assembly center and the door side surface that is closest to the center. For the doors shown in the drawings, this surface

] would be the ends of the doors (in the direction parallel to the i rails). The disk in the R-Z model would have to have a diameter of l only 69.5 inches.

MCNP analyses showed that the above amount of shielding (a 69.5 inch diameter disk) was inadequate, yielding dose rates around the  ;

i sides of the door assembly between 1 and 2 R/hr. Note that a i person must perform a task (connection of the door hydraulics) j right in this high dose rate area.

3 We therefore performed another McNP run where the disk diameter was increased to 75 inches. This new model gave acceptable dose rates around the door assembly. This new model is the one that is used in this analysis and corresponds to the model shown in Figure 1.

The proposed changes to the door design are as follows. The doors, as shown in reference 1, must each be increased in length by 3 inches (increasing the total length from 35.8" to 38.8"). The length increase need only come in the center of the door. In other words, the flat region on the door side (presently 22.8") need not be lengthened. one may increase the angle on the tapered region of the door. Thus the taper region length of 13" would increase to 16". This would result in a lower weight gain for the doors. In addition, a steel plate, la thick, 18" long, and 8" high must be fastened to the outside of the rails (in the rail center) .

24

Fortunately, the analysis also found that the cask had more lead shielding near the cask top than was necessary. In the MTC as presented in the design drawings, the lead shielding extended over 5 inches above the bottom of the MSB top lid. This was found to be unnecessary, so we propose shortening the lead shield by 2 inches so it extends only about 3 inches above the bottom of the top lid.

The lead shield was reduced by exactly 2 inches for convenience since the shield is actually composed of a stack of 2 inch high lead bricks.

The model shown in Figure 1 conservatively models the lead as extending only 2.5 inches over the lid bottom edge. Also note that the shielding model is very conservative in that it models the top nozzles as being right up against the MSB top lid, and in that it neglects the assembly support sleeve material in the top nozzle source region.

Weight calculations show that the two proposed modifications largely cancel each other out in terms of weight effect. There is a net cask weight gain of only about 100 pounds.

Another proposed MTC modification is the heat transfer fin modification mentioned in Chapter 3. The proposal is to replace l the 24 quarter inch thick vanes with 32 three sixteenths inch .

vanes. This would keep the total weight of the vanes the same l while closing off the streaming paths. This in turn allows the mass of the vanes to be modeled in the shielding analyses. The neutron shield region material description shown in Chapter 3 is based upon the mass of the vanes being smeared into the neutron shield region. Note that this total vane mass is not effected by the proposed change.

25

7.0 MCNP ANALYSIS DETAILS A total of nine McNP runs were performed. For the 2-D analysis, one run was performed for each of the four radiation sources. A special fifth run (a fuel region gamma source run) was performed for cask top end dose rates. Also, four 1-D cases were run, one for the fuel region neutrons and for the gammas, and for the MSB with and without water. The McNP inputs for these runs are shown in APPENDIX A. The MCNP outputs for these runs (which also include the input file in the listing) are listed in Appendix B and i included on disk.

The McNP analyses use volume tallies as opposed to surface tallies to determine the dose rates. One cm thick air filled volumes are defined that cover each of the cask surface regions shown in Figure j

4. MCNP determines the average particle flux levels (as a function l of energy) over each volume. These average flux levels are I converted to average dose rates (over the defined volume) using flux-to-dose conversion factors.

The flux-to-dose conversion factor is the dose rate (in mR/hr) for a particle flux of (1/cm2-sec) at some given energy level. The flux-to-dose conversion factors used in the previous shielding analyses are presented for gammas and neutrons in .

Table 6.

I The factors listed in Table 6 are taken from Tables 4 and 5 of reference 3. The tables in reference 3 break the neutron and gamma fluxes into energy groups and list the flux-to-dose conversion factors for each energy group. These are the official flux-to-dose factors that were developed for use with the ANISN shielding code.

McNP is not a group structure based code, however. For instance, it has point-wise cross sections with respect to energy.

Therefore, MCNP does not ask for a group structure to be input for use with a set of flux-to-dose factors. Instead, it asks for line energy levels to be entered along with flux-to-dose factors that The code then interpolates apply at each exact line energy level.

between the listed flux-to-dose factors for particle energies between the entered line energies.

26

l l TABLE 6 McNP FLUX-TO-DOSE CONVERSION FACTOR DATA (Factors in mR/hr per particle /sec-cm2)

(

1 Gamma Energy Flux to Neutron Energy Flux to l l' Dose Factor (MeV) Dose Factor (MeV) I 9.0 0.009792 13.56 0.2088 7.25 0.008280 11.10 0.1656 5.75 0.006840 9.09 0.1476 4.5 0.005760 7.27 0.1476 l 3.5 0.004752 5.66 0.1404  !

2.75- 0.003960 4.51 0.1332 l 2.25 0.003492 3.54 0.1296 1.83 0.002988 2.74 0.1260 ,

l 1.5 0.002412 2.41 0.-1260 1.17 0.001908 2.09 0.1296 I 1.47 0.1332 l 0.9 0.001602 0.7 0.001260 0.83 'O.1188 l 0.0540 0.5 0.0009216 0.331 0.35' O.0006372 5.72e-2 0.00648 ,

1 0.25 0.0004392 1.97e-3 0.00432 0.15 0.0002376 .

3.42e-4 0.00468 0.075 0.0001404 6.50e-5 0.00468 0.03 0.0003024 1.96e-5 0.00450 6.58e-6 0.004'.'2 2.09e-6 0.00414 7.67e-7 0.00396 i

2.12e-7 0.00378 )

i l

1 i l

l l

l 27

We therefore have to modify the information shown in the reference 3 tables somewhat to convert from group structure. For instance, Table 4 of reference 3 reports a flux-to-dose factor of 9.793e-3 for the gamma energy group between 8.0 and 10.0 MeV. MCNP wants to know an exact energy that the listed conversion factor corresponds to. We must simply assume that the listed factor best corresponds to the center of the energy bin (9.0 MeV in the example case). We therefore find the central energy values for all of the energy bins given in the reference 3 tables (as opposed to the upper energy values which are shown). This list of central energy values along with their corresponding flux-to-dose factors are shown in Table 6.

1 The information shown in Tab]e 6 is directly entered into the MCNP j input. When the flux-to-dose data is input, MCNP will directly l output the average cose rates (in mR/hr) over each cask surface l

region defined in Figure 4.

Upon examining the MCNP inputs, an MCNP user will note that the MCNP cells do not exactly correspond to the material regions shown in Figure 1. More specifically, there is not just one MCNP cell l

I for each material zone shown in Figure 1. The shield regions were subdivided into several " layers". This is done to allow the use of particle splitting as a variance reduction technique. 1 Other variance reduction techniques are used in many of the code l source descriptions. In some runs, certain subsections of the i

source region are statistically favored. In other runs, certai-incident directions are favored for particles generated in the source regions. Also, the code is instructed to spend more time studying source particles of higher energy, since they contribute more to the cask external dose rates. These techniques allow MCNP to obtain much better particle statistics on the cask exterior for the same amount of computer time.

We obtained good statistics (low levels of random statistical All of the error) rates dose with the McNP code calculated for surface for the the studied cask shown sections models.in Figure 4 had random error levels under ~10%. For the peak dose rates on the cask sidewall, the statistics were even better (under 2%).

28

8.0 REFERENCES

1. SNC Drawing #: AMTC-24-001 (Rev. 1), "MSB Transfer Cask (MTC) . "
2. SNC Drawing #: AMSB-24-001 (Rev. 1), "MSB Assembly."
3. SNC Report #: WEP-109.001.1, "VSC-24 Design Basis Radiation Source Strengths, Shielding Geometries, and Material Densities."
4. " Topical Safety Analysis Report for the Ventilated Storage Cask System.", PSN-89-001 (Rev. 2A).

April, 1991.

5. SNC Report'#: ANO-109.001.002, " Validation of MCNP Shielding Code for VSC and MTC Shielding Analyses."
6. PSN Drawing #: MSB-24-004 (Rev. 4), " Storage. Sleeve Assembly."
7. " Characteristics of Spent Fuel, High Level Waste, and  ;

Other Radioactive Wastes Which May Require Long-Term j Isolation.", DOE /RW-0184, Vol. 3, Appendix 2A, " Physical Descriptions of LWR Fuel Assemblies.", December 1987.

I l

l I

i

  • 29

A ae M -e,-- a& 4 4 x .A -- A n- -a - Su a ems-1 1

1 1

l l

1 I

(

l I APPENDIX A  !

4 1

I I

i MCNP CODE INPUTS i

i

)

I l

i l

l l

t I

l l

i i

I I

message:

GAMMA ANALYSIS FOR ANO TRANSFER CASK - R-Z MODEL - FUEL REGION 1 12.086e-2 29 1- S fbel+FSS 2 6 8.513e-3 27 1 $ bottom nozzle 3 7 6.351e-3 35 1 $ top nozzle 4 5 5.352e-5 27 -30 1 -2 S MSB ring gap 5 . 2 8.490c-2 30 -31 1 -2 3 bottom MSB ring 6 5 5.352e-5 31 -32 1 -2 S MSB ring gap 7 -2 8.490e-2 32 -33 1 -2 $ middle MSB ring 8 5 5.352e-5 33 -34 1 -2. S MSB ring gap

.9 2 8.490e-2 34 -36 1 -2 S top MSB ring

10. 5 5.352e-5 36 -37 1 -2 3 MSB ring gap 11 2 8.490e-2 27 -37 2 -3 S MSB wall 12 2 8.490e-2 25 -37. 3 -4 S MTC innerliner 13 3 3.296e-2 28 -38 4 -5 S lead layer 1 14 3 3.296e-2 28 -39 5 -6 S lead layer 2 15 3 3.296e-2 28 -39 6 -7 3 lead layer 3 16 3 3.296e-2 28 -39 7 -8 S lead layer 4

-17 3 3.296e-2 28 -39 8 -9 $ lead layer 5 18 4 7.915e-2 28 -39 9 -12 $ RX-277 19 2 8.4W-2 26 -3912 -13 $ MTC outer shell 20 2 8.490e 2 25 3 S bot. steel L-1 21 2 8.4W-2 24 4 S bot. steel L-2 22 2 8.490e-2 23 5 $ bot. steel L-3 2? 2 8.490e-2 22 6 $ bot. steel L-4 24 2 8.490e-2 21 7- S bot. steel L-5 25 2 8.490e-2 20 8 3 bot. steel L-6

. 26 2 8.490e-2 19 -20 -9 $ bot. steel L-7 27 2 8.490e-2 18 11 $ bot. steel L-8

' 28 2 8.490e-2 37 -38 -4 3 top stee! L-1 29 2 8.4W-2 38 -39 -4 3 top steel L-2 30 2 8.490e-2 39 -40 -4 3 top steel L-3 31 2 8.490e-2 40 -41 -4 S top steel L-4 32 8 7.873e-2 41 -42 -4 $ RX-277 lid plug 33 2 8.4W-2 42 -43 -4 S top steel L-5 34 2 8.490e-2 43 -44 -4 $ top steel L-6 35 2 8.490e-2' 44 -45 -4 S top steel L-7 36 2 8.490e-2 45 12 S top steel L-8 (+fl) 37 2 8.490e-2 46 13 $ top steel L-9 (+fl) 38 3 3.2W-2 38 -39 4 -5 $ top cornerlead

39. 8 7.873e-2 39 -41 4 -5 $ top corner RX-277 40 8 7.873e-2 39 -41 5 -6 3 top corner RX-277 41 8 7.873e-2 39 -41 6 -7 $ top corner RX-277 42 8 7.873e-2 39 -41 7 -8 3 top corner RX-277 1

i

m . .. ___ . __ . . _ _ __ .___ ._ _._~ __ . . _ . . ._..__ _

. 43 l 8 7.873e-2 41. 8 $ top corner RX-277 l.

- 44 L 8 7.873e-2 41 -43 4 -7 $ top corner RX-277 H

45 '.8 7.873e-2 43 -44 4 -7 ' $ top corner RX-277

,46 8 7.873e-2 41 -44 7 $ top corner RX-277 47 8 7.873e-2 '44 -45 4 '-9 $ top corner RX-277

= 48 8 7.873e-2.39 -45 9 -12 $ top corner RX-277 49 L 2 8.490e-2 39 -4612 -13 $ top corner shell 50 2 8.490e-2 24 -28 4 $ bot. corner steel

. 51 2 8.490e-2 23 -28 5 -6 $ bot, corner steel 3

! 52 .2 8.490e-2 22 -28 6 -7 $ bot. corner steel

. 53 2 8.490e-2 21 -28 7 -8 - $ bot. corner steel 54 2 8.490c-2 20 -28 8 -9 $ bot. corner steel

' 55 2 8.490e-2 19 -28.9 -10 $ bot. corner steel 56 2 8.490e-2.19 -2610 -11 $ bot. corner steel

! 5712 8.'490e-2 26 -2810 -12 $ bottom flange 58 5 5.352e-S 18 -2611 -13 $ air around doors 59 5 5.352e-5.18 -3913 -14 ' $ side surface tally 60 5 5.352e-5 17 14 $ bot. surface tally 61' ' S 5.352e-5 47 13 $ top surface tally

- 62 5 5.352e-5. 39 -4813 -14 - $ top corner tally 63 5 5.352e 17 -3914 -15 $ huge side air 64 - 5 5.352e-5 16 15 $ huge bottom air

! ' 65 5 5.352e-5. 48 14. ~ $ huge top air 66 5 5.352e-5 39 -4914 -15 $ top corner air p '67 0 15:49:-16. $ outer void 1 cz 75.565  !

2 cz 76.835 3 cz 79.38

. 4 ' cz 81.28 5 t cz 83.19

-6: cz 85.09 7: cz 87.0.

8 cz 88.9 9 ' cz 90.805.

10 cz 92.71 -.

11 cz95.25 h 12 cz 100.97-13 - cz 103.51

.14 ~ cz 104.51:

- 15 . cz 10000.0 16 ; pz -5000.0 2

~

17 pz-1.0 L 18 pz 0.0.

l-

- 19 pz 2.78 l

- . .. -. - -. - - -.- . -. ... .=. - .-. _

j. l l'

l 4

sp2 ' d 0 0.0137 0.0239 0.0307 0.0273 0.075 0.426 0.2102 0.0614 0.0676 0.0334 0.0308 i

sb2 d 0 0.026 0.029 0.022 0.0210.062 0.375 0.175 0.048

-0.049 0.061 0.132 si3 = 10.575 0.851.251.75 2.25 2.75 3.5 sp3 - 0.757_0.162 0.0793 0.001216.84e-4 2.11e-5 2.69e-6 q sb3 0.05 0.05 0.52 0,15 0.15 0.05 0.03 - l print j

' ~

c fuel i l

ml- 922351.396-4 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 p 26000 5.273e-3 l -c stainless steel l -m2 26000 8.49-2 i c lead l m3 82000 3.296e-2 I c RX-277 w/ fins l i- m4 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 l I

l . I1023 2.42-412000 l'.94-413027 8.35e-314000 7.14e-4 L 20000 2.08-3 26000 5.91e-3

-c air m5 7014 4.1988-5 8016 1.1281-5 18000 2.5135-7

, c bottom nozzle L -m6 14000 1.60-4 24000 1.64-3 25055 1.64-4 26000 5.48-3 28000 7.67-4 40000 3.02-4 )

c top nozzle l

m7 14000 6.59-5 24000 6.74-4 25055 6.74-5 26000 2.25-3 l

28000 3.14-4 40000 2.98-3 c Pure RX-277 m8 1001 2.77-2 5010 2.9-4 5011 1.16-3 8016 3.71-2 11023 2.6-4 12000 2.08-4 13027 8.97-3 14000 7.67-4 l 20000 2.23-3 26000 4.89-5 l I

fc4 PRIMARY GAMMA DOSE RATES ON MTC SIDE l f4:p 59 fs4 26 31 33 36 Lsd4 7260.4 6234.4 10991.9 46476.9 53946.4 46476.9 53946.4 46476.9 12449.2

= fm4 7.428e16 l

de4 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 df4 3.024-4 1.404-4 2.376-4 4.392-4 6.372-4 9.216-4 1.26-3 1.602-3

!' l.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 l 8.28-3 9.792-3 l ?e4 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 l 5.06.58.010.0-

~ fc14 PRIMARY GAMMA DOSE RATES ON MTC BOTTOM i

1 f14:p 60' fsl4 51 ~-1 -11 sd14 706.9 3594.013637.910563.6 5811.2 fml4 7.428e16 del 4 0,03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 df14 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 el4 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0 fc24 PRIMARY GAMMA DOSE RATES ON MTC TOP f24:p 61 fs24 51 -1 sd24 706.9 3594.013637.915721.3 ,

fm24 7.428e16 de24 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 df24 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792 >

e24 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 '

5.06.58.010.0 fc34 PRIMARY GAMMA DOSE RATES ON MTC TOP CORNER D4fp 62 fs34 -42 sd34 ' 7469.5 9782.9 fm34 7.428e16 de34 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.75 3.5~4.5 5.75 7.25 9.0 dD4 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e34 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0 fq0 ef nps 90000000 ctme 2400.0 j

I messa8c:

' NEUTRON ANALYSIS FOR ANO TRANSFER CASK - R-Z MODEL - FUEL REGION

1 12,072e-2 21 -l 3 fuel +FSS 2 6 8.513e-3.19 l $ bottom nozzle 3 7 6.351e-3 27 1 . $ top nozzle ,

2-4 5 5.352e-5 19 -22 1 -2 $ MSB ring gap 5 2 8.490e-2 22 -23 1 -2 $ bottom MSB ring

-6 5 5.352e-5 23 -24 1 -2 $ MSB ring gap 7 2 8.490e-2 24 -25 1 -2 $ middle MSB ring  ;

8 .5 5.352e-5 25 -26 1 -2 $ MSB ring gap l 9 2 8.4h2 26 -28 1 -2 $ top MSB ring 10 5 5.352e-5 28 -29 1 -2 $ MSB ring gap 11 2 8.490e-2 19 -30 2 -3 $ liners 12 3 3.296e-2 20 -30 3 -4 $ lead 13 4 7.915e-2 20 -30 4 -5 ' $ RX-277 14 '4 7.915e-2 20 -30 5 -7 $ RX-277 15 4 7.915e-2 20 -30 7 $ RX-277 16 - 2 8.4h2 18 -35 .8 -9 $ MTC outer shell 17 2 8.490e-2 17 -19 -3 $ bot. steel L-1 18 2 8.490e-2 16 -17 -3 $ bot. steel L-2 1 19 2 8.490e-2 15 -16 -4 $ bot. steel L-3 20 2 8.490e-2 14 -15 -6 $ bot. steel L-4 21 ' 2 8.490e-2 29 -30 -2 $ top steel L-1 22 2 8.490e-2 30 -31 -3 $ top steel L-2 23 8 7.873e-2 31 -32 -2 $ RX-277 lid plug 24 8 7.873e-2 32 -33 -2 $ RX-277 lid plug 25 2 8.4h2 31 -33 2 -3 $ lid plug edge 26 2 8.490e-2 33 3 $ top steel L-3 27 2 8.490e-2 34 3 $ top steel L-4 28 2 8.490e-2 35 9 $ top steel L-5 (+fl) 29 8 7.873e-2 30 -31 3 -4 $ top corner RX-277 30 8 7.873e-2 31 -33 3 -4 $ top corner RX-277 31 8 7.873e-2 30 -33 4 -7 $ top corner RX-277 32 8 7.873e-2 33 -34 3 -8 $ top corner RX-277 33 8 7.873e-2 30 -33 7 S top comer RX-277 34 8 7.873e-2 34 -35 3 -8 $ top corner RX-277 35 2 8.490e-2 .16 -20 3 -4 $ bot, corner steel 36 2 8.490e-2 15 -20 4 -6 $ bot. corner steel 37 2 8.490e-2 18 -20 6 -8 $ bottom flange

, 38 5 5.352e-5 14 -18 6 -9 $ air around doors 39 'S 5.352e-5 37 9 -10 $ side surface tally 40 5 5.352e-5 13 9 $ bot. surface tally 41 5 5.352e-5 36 9 $ top surface tally 42 5 5.352e-5 14 -3810 -11 $ huge side air

l

\

I l

43 5 5.352e-5 12 11 S huge bottom air 44 .5 5.352e-5 37'-38 '-10 $ huge top air 45 5 5.352e-5 13 -14 9 -11 S imp. trans. region 46 0 11:38:-12 $ outer void 1

1 cz 75.565 l 2 cz 76.835 ,

-3 cz 81.28 l

)

! '4 cz 90.805 5 cz 94.19 6 cz 95.25 7 cz 97.58.

8 cz 100.97 9 cz 103.51.

10 cz 104.51 11 cz 10000.0 i 12 pz-5000.0

.13 pz'-1.0 ,

14 . pz 0.0 -

15_' pz 5.93 16 pz 11.85 -

17 pz 17.78 1 18 pz 20.65

( 19 pz 22.225 20 pz 23.19

)

21 pz 32.78 22 pz 34.47 23 pz 108.59 ,

24 pz 191.14

, 25 _ pz 262.26 26 pz344.81 27 pz398.54 28 pz415.93 29 pz428.63 30 pz434.98 31 pz441.33 .

32 pz 443.36 33 . pz 446.41 L ' 34 pz 450.86

. 35 pz 455.3 36 pz460.38 37 pz461,38

l. 38 pz 5461.38 39 cz 15.0 40 ' cz 37.0

~

l

mode n -

. imp:n 19r 2 3 612 24 48 2 3 612 2 4 81212 24 36 54 -

612122424366122424481254481254240 phys:n 15.01.0e sdef cel=1 axs = 0 01 rad =di ext =d2 erg =d3 -

sil10.05.010.015.020.025.030.035.040.045.050.0 55.0 60.0 65.0 70.0 75.565 spl d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569

-0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419 si2 32.78 42.94 55.64 68.34 78.5 103.9 235.98 307.1 329.96 357.9 375.68 398.54 sp2 : d 0 0.0137 0.0239 0.0307 0.0273 0.075 0.426 0.2102 0.0614 0.0676 0.03.i4 0.0308 sb2 d 0 0.0236 0.04110.0264 0.0235 0.0645 0.366 0.1808 0.0528 0.058 0.0574 0.1059

-si3 0.00335 0.111 0.55 1.11 1.83 2.35 2.46 3.01 4.06 4.96, 6.36 8.18 10.0 12.2 14,9

- sp3 0 0.01345 0.1327 0.192 0.2089 0.1156 0.02088 0.08804 0.1094 0.05174 0.04 0.01924 0.005756 0.001883 0.0004563 sb3 0 0.007 0.07 0.110.16 0.139 0.025 0.106 0.183 0.086 0.067 0.088 0.026 0.009 0.002-

'espit:n 0.5 0.10.5 0.010.25 0.001 print ;

c-- fuel ml 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 26000 5.273e-3 c- stainless' steel m2 26000 8.49-2 c lead

'm3 82000 3.296e-2 c RX-277 w/ fins m4 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 20000 2.08-3 26000 5.91e-3 c air m5 ~ 7014 4.1988-5 8016 1.1281-5 18000 2.5135-7

c. bottom nozzle m6 14000 1.60-4 24000 1.64-3 25055 1.64-4 26000 5.48-3 28000 7.67-4 40000 3.02-4 c 1 - top nozzle.

m7 14000 6.59-5 24000 6.74-4 25055'6.74-5 26000 2.25-3

$ 28000 3.14-4 40000 2.98-3.

c ' Pure RX-277 m8- 1001 2.77-2 5010 2.9-4 5011 1.16-3 8016 3.71-2

-11023 2.6-4 12000 2.08-4 13027 8.97-3 14000 7.67-4

T I

20000 2.23-3 26000 4.89-5 fc4 PRIMARY NEUTRON DOSE RATES ON MTC SIDE f4:n 39 fs4 18 23 25 28 33 sd4 ' 7744.0 5750.8 9031.4 46476.9 53946.4 46476.9 53946.4

'46476.9 12449.2 7469.5 9782.9 fm4 2.575e9 de4 2.12-7 7.67-7 2.09-6 6.58-6 1.96-5 6.50-5 3.42-4 1.97-3 5.72-2 0.331 0.83 1.47 2.09 2.41 2.74 3.54 4.51 5.66 7.27 9.09 11.1 13.56 df4 3.78-3 3.96-3 4.14-3 4.32-3 4.50-3 4.68-3 4.68-3 4.32-3 6.48-3 0.054 0.1188 0.1332 0.1296 0.126 0.126 0.1296

~ 0.1332 0.1404 0.1476 0.1476 0.1656 0.2088 e4 4.14-71.12-63.06-61.01-52.9-51.01-45.83-43.35-3 0.111 0.555 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36

.8.18 10.0 12.2 14.92 fc14 PRIMARY NEUTRON DOSE RATES ON MTC BOTTOM f14:n 40 fs14 40 6 sd14 706.9 3594.013637.910563.6 5157.7 fm14 2.575e9 del 4 2.12-7 7.67-7 2.09-6 6.58-61.96-5 6.50-5 3.42-41.97-3 5.72-2 0.331 0.83 1.47 2.09 2.41 2.74 3.54 4.51 5.66

, 7.27 9.09 11.1 13.56

- df14 3.78-3 3.96-3 4.14-3 4.32-3 4.50-3 4.68-3 4.68-3 4.32-3 6.48-3 0.054 0.1188 0.1332 0.1296 0.126 0.126 0.1296 0.1332 0.1404 0.1476 0.1476 0.1656 0.2088 el4 4.14-71.12-63.06-61.01-52.9-51.01-45.83-43.35-3 0.111 0.555 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36 8.18 10.0 12.2 14.92 fc24 PRIMARY NEUTRON DOSE RATES ON MTC TOP

~ f24:n 41

. fs24 40 -1 sd24 706.9 3594.013637.915721.3 fm24 2.575e9 de24 2.12-7 7.67-7 2.09-6 6.58-61.96-5 6.50-5 3.42-41.97-3 5.72-2 M110.831.47 2.09 2.412.74 3.54 4.515.66 7.27 9.09 11.1 13.56 df24 3.78-3 3.96-3 4.14-3 4.32-3 4.50-3 4.68-3 4.68-3 4.32-3 6.48-3 0.054 0.1188 0.1332 0.12 % 0.126 0.126 0.1296 0.1332 0.1404 0.1476 0.1476 0.1656 0.2088 e24 ' 4.14-71.12-6 3.06-61.01-5 2.9-51.01-4 5.83-4 3.35-3 l 0.111 0.555 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36 8.18 10.0 12.2 14.92 fq0 . e f iI g .. .. . .

i nps 14000000 ctme 540.0 1

1 1

1 1

1 i

i l

l 1

l 1

message:-

GAMMA ANALYSIS FOR ANO TRANSFER BELL - R-Z MODEL - TOP NOZZLE 1 12.086e-2 16 l $ fuel +FSS 2 ~ 6 6.351e-3 18 1 $ top nozzle L3 : - 5 5.352e-5 16 -17 1. -2 $ MSB ring gap 4 2 8.4W-2.17 -19 1 '-2 $ top MSB ring )

5 5 5.352e-5 : 19 -20 1 ~-2 $ MSB ring gap ,

6 - 2 8.4W-2 16 -20 2 $ MSB wall 7 2 8.4W-2 16 -21 3 ~ -4 $ MTC innerliner 8 3 3.296e-2: 16 -20 4. -5 $ lead layer 1 9 3 3.2W-2' 16 -22 5 -6 $ lead layer 2 10 3 3.2W-2 16.-22. 6 ' $ lead layer 3 11 3 3.296e-2 16 -22' 7 -8 $ lead layer 4 12 3 3.2W-2 16 -22 8 -9 $ lead layer 5 13 L 4 7.915e-2 16 -22 9 -10 $ RX-277 H

14 2 8.490e-2 16 -2210 $ MTC outer shell 15 2 8.490e-2 20 -21 -3 $ top steel L -

16 2 8.490e-2 21 '-22 -4 $ top steel L-2 17 ? 2 8.490e-2 22'-23 -4: . $ top steel L-3 18 2 8.490e-2 23 -4 $ top steel L-4 19 ~ 7 7.873e-2 24 -25 -4 $ RX-277 lid plug 20 2 8.490e-2 25 4 $ top steel L-5 j I

21' 2 8.490e-2 :26 4, $ top steel L-6

. 22 2 8.490e-2 27 -28 '4 - $ top steel L-7  ;

23 . 2 8.490e-2 28 10 $ top steel L-8 (+fl)

- 24 2 8.490e-2 29 11 $ top steel L-9 (+ft) 25 33.2 %-2 20-22 4 -5 . $ top cornerlead 26 ' 7 7.873e-2.22 -24 4 -6 $ top comer RX-277 27 7 7.873e-2 22 -24 6 -7 $ top corner RX-277 28 ' 7 7.873e-2 22 -24 7 -8 --$ top corner RX-277 29 7 7.873e-2 22 -24 8 -9 $ top corner RX-277 30- 7 7.873e-2 24 -26 4 -7 $ top corner RX-277 31 L 7 7.873e-2 26 -27 4 -7 $ top corner RX-277 32 L 7 7.873e-2 24 -27 7 -9 $ top corner RX-277 33 7 7.873e-2 27 -28 4 -9 $ top corner RX-277

, 34 7 7.873e-2. 22 -28 9 -10 $ top corner RX-277 -

35 2 8.490e-2 22 -2910 -11 $ top corner shell L 36 5 5.352e-5 16 -2211 -12 $ side surface tally 37 5 5.352e-5 22-3111 -12 $ top corner tally 38' 5 5.352e-5 30 11 $ top surface tally

39. 5 5.352e-5 15 -2212 -13 $ huge side air

'40 J 5 5.352e-5 22 -3212 -13 $ top cornerair 41 'S 5.352e-5 31 12 $ huge top air 42.01 15 -16' -12 $ bottout edge void i

, ~ . ,.. . . . . - .. . -. - . . . - . - . . - . . . . . . - - - - . - - . -

! t

. 43 5 5.352e-5.14 13  ; $ huge bottom air

- 44 : 0 13:32:-14 $ outer void

' 1. 'cz 75.565

-: 2 " cz 76.835

. L 3 - cz 79.375 '

  • ' 4., . cz 81.28 ,

5 cz 83.19.

6 cz 85.09

  • 7 cz 87.0

- 8 cz 88.9 -'

9 ~ cz 90.805

, .10 . cz 100.97 i ll - cz 103.51 12 cc 104.51 13 . cz 10000.0 14 . pz -5000.0 15 pz-1.0

'16 pz.0.0 17 p 82.55 18 pz 136.3 19 ;. pz 153.67 20 -' pz 166.37

' 21 pz 169.54  !

22 . pz 172.72 23 pz 175.89.

24 pz 179.07.

25 pz 184.15 -

26 pz 187.11 27 : pz 190.08 - ,

28 pz 193.04

~

29 pz 195.58 30 pz 198.12 31 pz199.12

32. pz 5199.12 :

33 cz 15.0 34 cz 37.0 mode p

imp:p 14r 2 4 8 20 50125 312 7801560 2 618 54162 225 562 1406 2812 5624 16 60 150 300 625 216 625 625 1560 1560 3120 1560 3120 6240 1560 3120 6240 0 1560 0 sdef cel=2 axs = 0 01 rad =dl ext =d2 erg =d3

~

'sil 0.05.010.015.020.025.030.035.040.045.050.0 55.0 60.0 65.0 70.0 75.565

. sp1 d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419 si2 136.3 166.37 sp2 d 01 si3 11.25 sp3 1.0 print c- fuel ml- 922351.396-4 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 26000 5.273e-3 c stainless steel m2 26000 8.49 c . - lead m3 ~ 82000 3.296e-2 c- . RX-277 w/ fins m4 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 20000 2.08-3 26000 5.91e-3 C Rif m5 .7014 4.1988-5 8016 1.1281-5 18000 2.5135-7 c' top nozzle m6- 14000 6.59-5 24000 6.74-4 25055 6.74-5 26000 2.25-3 28000 3.14-4 40000 2.98-3 c Pure RX-277 m7 1001 2.77-2 5010 2.9-4 5011 1.16-3 8016 3.71-2 11023 2.6-4 12000 2.08-4 13027 8.97-3 14000 7.67-4 20000 2.23-3 26000 4.89-5 fc4 PRIMARY GAMMA DOSE RATES ON MTC SIDE f4:p ' 36 fs4 19 sd4 ' 53946.4 46476.912449.2

~ fm4 1.92e13 de4 0.030.0750.150.250.350.50.70.91.171.51.832.252.75 3,54.55.757.259.0 df4 L - 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e4 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0 fc14 PRIMARY GAMMA DOSE RATES ON MTC TOP CORNER f14:p 37 fsl4 -25 sd14 7469.5 9782.9-

. fm14 1.92e13 del 4 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.75

3.54.55.757.259.0 df14 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3

'el4 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0

- fc24 PRIMARY GAMMA DOSE RATES ON MTC TOP f24:p 38 fs24 34 -1 sd24 706.9 3594.013637.915721.3 fm24 1.92el3 de24 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.75 3.54.55.757.259.0 df24 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e24 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0 fq0 e f nps 24000000 ctme 800.0 e

, . _ _ m. ._ , . ._._._ _ _ _ . . - . _ . _ _ _ ._

l message:

l GAMMA ANALYSIS FOR ANO TRANSFER BELL - R-Z MODEL - BOTTOM NOZZLE I

- 1 > 6 8.513e-3. 27 -29 -11 $ bottom nozzle '

]

12.086e-2 29 1< $ fuel +FSS

'3 5 5.352e-5' 27 -30 1 -2 $ MSB ring gap 4 - 2 8.4W-2 30 -31 1 -2 $ bottom MSB ring. ,

. 5 ' 5 5.352e-5 31 -32 'l -2 $ MSB ring gap )

6 2 8.4W-2 27 -32 2 -3 S MSB wall )

7 . 2 8.4W-2 25 -32 3 -4 - S MTC innerliner l 8 3 3.296e-2. 28 -32 4 -5 S lead layer 1 9 .33.2 %-2 28-32 5-6 . S lead layer 2 10 ' 3 3.296e-2 28 -32 6 -7 $ lead layer 3 1 11 - 3 3.296e-2.28 -32 7 -8 $ lead layer 4 lP 12 3 3.2W-2 28 -32 8 -9 $ leadlayer 5

.13 4 7.915e-2 28 -32 9 -12 $ RX-277 14 - 2 8.490e-2 26 -3212 -13 $ MTC outer shell

.15 2 8.490e-2 25 -27. -3 $ bot. steel L-1 l 16 : 2 8.490e-2 24 -25 '4

- $ bot, steel L-2 L 1712 8.490e-2 23 S bot steel L 18 2 8.490e-2 22 -23. -6 $ bot. steel L-4

' 19 ~ 2 8.4W-2 21 -22 -7 ~ $ bot. steell-5 j

~

20 . 2 8.4W-2 20 -21. -8 5 bot. steel L-6 21 ' 2 8.490e-2 19 -20 -9 ' S bot. steel L-7

- 22 2 8.4W-2 18 -19 . -10 S bot steell-8 23 . 2 8.490e-2~ 24 -28 4 -5 $ bot. corner steel -

24 2 8.490e-2 23 -28 5 -6 $ bot. corner steel 25 .2 8.4W-2^22 -28 6 -7 S bot, corner steel'

~

! 26-. 2 8.490e-2 21 -28 7L-8 $ bot. corner steel 27 '.2 8.490e-2 20 -28 8 S bot corner steel 28 - 2 8.490e-2 19 ~-28 9 -10 $ bot. corner steel 29 .2 8.490e-2 18 -2610 -11 $ bot, corner steel 30 2 8.4W-2 26 -2810 -12 $ bottom flange l~ 31 5 5.352e-5 18 -2611 -13 $ air around doors 32 : 5 5.352e-5 18 -3213 -14 S side surface tally P 33 - 5 5.352e-5 17 14- S bot, surface tally L 34 5 5.352e-5 17 -3314 -15

$ huge side air i 35 5 5.352e-5 16'-17 -15 $ huge bottom air 3610- 33 '-14 $ top edge void

' 37 5 5.352e-5 33 15 ' $ huge top air

38. 0 15:34:-16 S outer void II : cz 75.565
2 cz 76.835

_ 3 L cz 79.375 ~

e

<-m

. - . . . . ~._ __ . . . _ . _ . _ _ _ . . _ - _ . _ _ _ . . _ _ _ _ _ _ _

'4 L cz 81'.28 ~

5 cz 83.19 - '

6 cz 85.09 '

~ 7-- cz 87.0 .

8 L cz 88.9 9 cz 90.805

.10 cz 92.71

~ 11: cz 95.25 1 12 ' cz 100,97 13 cz 103.51 j 14 cz 104.51 I 15 cz 10000.0  ;

16 pz-5000.0 1

17 - pz -1.0

18. pz 0.0 19 pz 2.78 -l 20 ' pz 5.56 -

. 21 . pz 8.33

'22 pz 11.11 23 pz 13.89 24 pz 16.67 ,

25 pz 19.45

' 26 pz 20.65 -

27 pz22.225 28.; pz 23.19 29 pz 32.78

.30 L pz 37.47

31. pz 108.59 32; pz 191.14 33 pz 192.14 34 ' pz 5192.1 -

~ 35 - cz 15.0

~ 36 cz 37.0

' mode p E . imp:p 14r 2 4 8 20 50125 312 7801560 2 512 30 75188 470

1175 8 20 50125 312 7801560 3r 117515601175 01560 'O I sdef cel=1 axs = 0 01 rad =d1 ext =d2 erg =d3 J sil 0.05.010.015.020.025.030.035.040.045.050.0 55.0 60.0 65.0 70.0 75.565 sp1 '- d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419 2
:12 22.225 32.78-
sp2 d 01 si3 11.25 r.

i

t

[

I sp3 .1.0 l- print .

c fuel ml' 922351.396-4 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 26000 5.273e I c stainless steel m2 26000 8.49-2 c - lead I m3 ' 82000 3.296e-2
c. RX-277 w/ fins m4 ~ 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 20000 2.08-3 26000 5.91e-3.

c air m5 - 7014 4.1988-5 80161.1281-518000 2.5135-7 ~

c' bottom nozzle ,

m6' 14000 1.60-4 24000 1.64-3 25055 1.64-4 26000 5.48-3 e 28000 7.67-4 40000 3.02-4 i fc4 PRIMARY GAMMA DOSE RATES ON MTC SIDE f4:pu 32

. fs4 26 31 -

sd4 .7260.4 6234.410991.9 46476.9 53946.4 fm4l : 9.6el3 : '

de4. 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0

. df4 3.024-4 1.404-4 2.376-4 4.392-4 6.372-4 9.216-4 1.26-3 .

1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 1 5.76-3'6.84-3 8.28-3 9.792-3 (

e4 5.0-21.0-10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0 .

fc14 l PRIMARY GAMMA DOSE RATES ON MTC BOTTOM

' (14:p 33

. fsl4 36 11

. sd14 706.9 3594.013637.910563.6 5811.2 fml4 9.6e13 .

de14 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 df14 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-3 )

1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3

, -5.76-3 6.84-3 8.28-3 9.792-3 el4 5.0-21.0-10.20.30.40.60.81.01.331.662.02.53,04.0

~

L 5.06.58.010.0

~

L fc24 PRIMARY GAMMA DOSE RATE IN AIR AROUND DOORS (VOL. AVGE) f24:p 31

~

sd24 106507.2.

1 l.

i fm24 - 9.6e13 -.

de24 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 L 2.753.54.55.757.259.0 df24 : 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-3 1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3

5.76-3 6.84-3 8.28-3 9.792-3 ~

e24 - 5.0-21.0-10.2 0.3 0.4 0.6 0.81.01.331.66 2.0 2.5 3.0 4.0 5.06.58.010.0 fq0 e f nps 14000000 ctme 300.0 I

l I

l 1

e  !

r l

l l

l l

l .-

1 e

i I message:

GAMMA ANALYSIS FOR' ANO TRANSFER CASK - R-Z MODEL - FUEL REGION - No Fe

1. I 1.559e-2 29 1 $ fuel +FSS

- 2 ~ 6 8.513e-3 27 -29 -l $ bottom nozzle

, 3 7 6.351e-3 35 -37.- -l $ top nozzle 4' 5 S.352e-5 27 -30 1 -2 $ MSB ring gap 4

' 5 . 2 8.4W-2 30 -31 1 -2. $ bottom MSB ring

~ 6 ,5 5.352e-5. 31'-32 1 -2 .$ MSB ring gap

7. 2 8.4W-2 32 -33 1 -2 $ middle MSB ring 8 5 5.352e-5 33 -34 1 -2 $ MSB ring gap 9: 2 8.490e-2 34 -36 1 -2, $ top MSB ring 10 : 5 5.352e-5 36 -37 1 -2 $ MSB ring gap 11 2 8.4W-2 27 -37 2 -3 $ MSB wall 12 ' 2 8.4W-2 25 -37 3 -4 $ MTC innerliner
13. 3 3.296e-2 28 -38 4 -5 $ lead layer 1 14 3 3.2W-2 28 -39 5 -6 $ lead layer 2 15 3 3.296e-2 28 -39 6 -7 $ lead layer 3 16 3 3.296e-2 28 -39 7 -8 $ lead layer 4

, '17 3 3.296e-2 28 -39 8 -9 $ lead layer 5 18 4 7.915e-2 28 -39 9 -12 $ RX-277 19 2 8.4W-2 26 -3912 -13 $ MTC outer shell 20 2 8.490e-2 25 3 $ bot. steel L-1 21 - 2 8.4W-2 24 4 $ bot. steel L-2

.22 2 8.490e-2 23 5 - $ bot. steel L-3

.23 :. 2 8.490e-2 22 -23 -6 $ bot. steel L-4 24 ! 2 8.490e-2 21 -22 -7 $ bot. steel L-5 25 2 8.490e-2 20 -21 -8 $ bot. steel L-6

~ 26 2 8.4W-2 19 -9 $ bot. steel L-7 27 - 2 8.490e-2 18 11 $ bot. steel L-8 28 - 2 8.4W-2 37 4 $ top steel L-1 29 2 8.4W-2 38 -39 -4 $ top steel L-2

30. 2 8.4W-2 39 -40 -4 $ top steell-3 )

31 2 8.4W-2 40 -41 -4 $ top steel L-4  !

32. 8 7.873e-2 41 -42 -4 $ RX-277 lid plug 33 2 8.4W-2 42 -43 -4 $ top steell-5 34 2 8.490e-2 43 -44 -4 $ top steel L-6 35.L2 8.4W-2 44'-45 -4 $ top steel L-7 36 2 8.490e-2 45 -46 f $ top steel L-8 (+fl) <

37 . 2 8.4W-2. 46 -47. -13 $ top steel L-9 (+fl) 38 3 3.296e-2 38 -39 4 -5 $ top cornerlead 3918 7.873e-2 39 -41 4 -5 $ top corncr RX-277

^ 40 ' 8 7.873e-2 39 -41 5 -6 $ top corner RX-277

41. 8 7.873e-2 39 -41 6 -7 $ top corner RX-277 42 ' 8 7.873e-2 39 -41 7 -8 $ top corner RX-277 E

. .. . - - -. . . - . - _ . . - . . - . - . - - . . ~ - . - . - . - . .. -

l:

43 ' 8 7.873e-2 39 -41 8 $ top corner RX-277 44 ~ 8 7.873e-2 41~-43 4 -7 $ top corner RX-277 :

45 8 7.873e-2 '43 -44 4. -7 $ top corner RX-277 46 8 7.873e-2 41 -44 7 -9  : $ top corner RX-277-47 : 8 7.873e-2 44 -45 ~ 4 -9 $ top corner RX-277 48 : 8 7.873e-2 39 -45 9. $ top corner RX-277

. 49 2 8.4W-2 39 -4612 -13 ' - $ top corner shell 50 2 8.4W-2 24 -28 ' 4 -5 $ bot. corner steel 51 2 8.4W-2 23 -28 5 -6 ~ $ bot. corner steel 52 ' 2 8.490e-2 22 -28 6 -7 $ bot. corner steel '

53 .2 8.490e-2 21 -28 7 -8 $ bot. corner steel 54 .2 8.4W-2 20 -28 8.-9 $ bot. corner steel L 55 2 8.4W-2 19 -28 9 -10 $ bot. corner steel l- 56 2 8.490e-2 19 -2610 ~-11 $ bot. corner steel

. 57 2 8.490e-2 26 -2810 -12 $ bottom flange 58 5 5.352e-5 18 -2611 -13 $ air around doors J 59 5 5.352e-5 18 -3913 -14 $ side surface tally 60 5 5.352e-5 17 14 $ bot. surface tally 61'~ 5 5.352e-5 47 13 $ top surface tally

!. 62 5 5.352e-5 39 -4813 -14 $ top corner tally

, 63 ' 5 5.352e-5 17 -3914 -15 $ huge side air i 64 5 5.352e-5 '16 15 $ huge bottom air ,  !

i 65 5 5.352e-5 48 14 $ huge top air l 66 ~5 5.352e-5 39 -4914 -15 $ top corner air I 67 0 ' 15:49:-16' $ outer void I cz 75.565 2 cz 76.835 3 ' cz 79.38 4 cz 81.28 -

5 cz 83.19 6 cz 85.09 7 cz 87.0 8 cz 88.9 9 cz 90.805 10 cz 92.71 11 cz 95.25 12 cz 100.97 -

13 cz 103.51 14 cz 104.51 15 cz 10000.0 16 pz-5000.0

' 17 pz -1.0 18 . pz 0.0.

19 pz 2.78 M

20 . pz 5.'56

' 21 pz 8.33 22 pz 11.11 23 pz 13.89 24 pz 16.67 25 pe 19.45 26 pz 20.65 27 pz 22.225 28 pz 23.19 29 pz 32.78

' 30 pz 37.47 31 pz 108.59 -

32 pz 191.14 33 pz 262.26 34 pz 344.81 '

35_ pz 398.54 36 pz 415.93 ,

37 pz 428.63 38 pz 431.81 39 pz434.98 40 pz 438.16 41 pz 441.33 1 42: pz446.41 43 pz449.37 1 44 pz452.34 45 pz455.3 46 pz457.84 47 pz460.38 48 pz461.38 i 49 pz 5461.38 50 cz 15.0

. 51 cz 37.0 mode p imp:p 12 2r 14r 2 2 4 8 20 50125 312 7801560 410 25 60150 375 940 2350 4 12 36 108 324 450 1125 2812 5624 11248 24 80 80125 3751125 3201125 Ir 28121r 5624 8 20 50125 312 7301560 3r 235011248 56241560 235011248 5624 0-sdef cel=1 vec = 0 01 axs = 0 01 rad =dl ext =d2 erg =d3 dir=d4 sil.0.05.010.015.020.025.030.035.040.045.050.0

-55.0 60.0 65.0 70,0 75.565 spl d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419

.ri2 32.78 42.94 55.64 68.34 78.5103.9 235.98 307.1329.96 357.9 375.68 398.54 .

I e -

i

. sp2 d 0 0.0137 0.0239 0.0307 0.0273 0.075 0.426 0.2102 .

j, 0.0614 0.0676 0.0334 0.0308 .

~sb21 d 0 0.026 0.029 0.022 0.0210.062 0.375 0.175 0.048 0.049 0.061 0.132 si3' 10.575 0.851.251,752.25 2.753.5' l' sp3 0.757_0.162 0.0793 0.001216.84e-4 2.11e-5 2.69e-6 K . sb3 0.05 0.05 0.52 0.15 0.15 0.05 0.03 si4 J-1.0 0.0 0.70710.92391.0

'sp4' . 0 0.5 0.3536 0.1084 0.038

'o sb4 .' 0 0.10.3 0.35 0.25 4 print

! c' fuel ml 922351.396-4 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 c stainless steel U m2- 26000 8.49-2 c- lead m3 .82000 3.296e-2 ~

.c RX-277 w/ fins L'

.m4 '10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 1 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 20000 2,08-3 26000 5.91,e-3 c ' air m5 7014 4.1988-5 8016 1.'1281-5 18000 2.5135-7 i c- ' bottom nozzle l m6- 14000 1.60-4 24000 1.64-3 25055 1.64-4 26000 5.48-3 u 28000 7.67-4 40000 3.02 l 4

c top nozzle

.m7 .14000 6.59-5 24000 6.74-4 25055 6.74-5 26000 2.25-3 I

28000 3.14-4 40000 2.98-3

c. Pure RX-277 -

m8 1001 2.77-2 5010 2.9-4 5011 1.16-3 8016 3.71-2 11023 2.6-4 12000 2.08-4 13027 8.97-3 14000 7.67-4 20000 2.23-3 26000 4.89-5 l

fc4 PRIMARY GAMMA DOSE RATES ON MTC TOP f4:p 61:

fs4 51 -1 p - sd4 706.9 3594.0 13637.9 15721.3 l fm4 7.428e16 de4 0.030.0750.150.250.350.50.70.91.171.51.832.25 2.753.54.55.757.259.0 df4 - 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-31.602-3 1.908-3 2 312-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e4 0.050.10.20.30.40.60.81.01.331.662.02.53.04.0 5.06.58.010.0

l 1

l l

1

- fq0 ' ~ e f nps 90000000 ctme 840.0 1

I l

l l

l l

l l

l l

l l

l l

l l

i 1

l I

U I <

1 o

message:-

GAMMA SHIELDING ANALYSIS FOR ANO TRANSFER BELL - INF HEIGHT MODEL l 1 ' 12.086e-2 1 ' 2 - -3

- 's fuel +FSS

- 2' : 5 5.352e-5 .1 -2 3 -4 3 gap 3 - 2 8.490e-2 1 -2 4 -5 $ MSB wall

! 4 - 2 8.490e-2' 1 -2 5 -6 $ MTC innerliner L 5 : 3 3.296e-2.1 -2 6 -7 . $ lead layer 1 6 3 3.296e-2 1 -2 : 7 -8 $ lead layer 2 7 3 3.296e-2 1 -2 8 -9 , $ lead layer 3 8 3 3.296e-2 1 -2 9 -10 $ lead layer 4

~ 9 = 3 3.296e-2 1 -210 $ lead layer 5

~ 10 ' 4 7.915e-2 1 -211 -12 ' $ RX-277 11 2 8.490e-2 1 -212 -13 $ outer shell 12 . 5 5.352e-5 ' 1 -213 '-14 $ tally shell .

13 5 5.352e 1 -214 -15. $ air envel.

14: 0' -1:2:15 $ outer void l 1

1

  • 1 pz -10.0 .

2* py 10.0 .

~ 3 cz 75.565 ]

4- cz 76.835 l 5 cz 79.375 6 cz 81.28 =

7 ' cz 83.19 8 cz 85.09 ~

.9 cz 87.0 10 cz 88.9 11 cz90.805 12 cz 100.97 :

'13 cz 103.51 14 cz 104.51 -

,' 15 cz'5000.0 l

mode p imp:p 112 4 8 20 50125 312 7801560 2r 0 sdef cel=1 vec = 0 01 axs = 0 01 rad =dl ext =d2 erg =d3 dir=d4 sil.0.05.010.015.020.025.030.035.040.045.050.0 55.0 60.0 65.0 70.0 76.835

. sp1' d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0,0919 0.1007 0.1095 0.1182 0.1419 l:

i sb1 d 0 0.0010.004 0.008 0.012 0.016 0.02 0.025 0.03 0.036

0.043 0.049 0.056 0.12 0.25 0.33

- si2 -10.010.0 sp2 d 01 i

. - . _ _. . - . ._ . _.. _ __ _ . ._ . . . _. ._. _ . . __ . __. .. _ . . . m .

t si3'10.5750.851.251.752.252.753.5 sp3 0.757 0.162 0.0793 0.001216.84e-4 2.11e-5 2.69e-6

'sb3 0.05 0.05 0.52 0.15 0.15 0.05 0.03 si4' -1.0 -0.866 -0.5 0.5 0.866 1.0 sp4 0 0.067 0.183 0.5 0.183 0.067 l sb4 0 0.015 0.110.75 0.110.015 ,

print-c .

fuel l ml; 922351.396-4 92238 4.177-3 8016 8.644e-3 40000 2.626e-3 26000 5.273'e-3

.c stainless steel m2 26000 8.49-2 c' , lead m3 82000 3.296e-2 c RX-277 m4 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 20000 2.08-3 26000 5.91-3 e air-m5 7014 4.1988-5 8016 1.1281-5 18000 2.5135-7 s > f4:p 12-

'sd4 13070.3

?fm4 4.062e15 de4 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 l

- 2.753.54.55.757,259.0 df4 3.024-4 1.4 % 4 2.376-4 4.392-4 6.372-4 9.216-4 1.26-3 1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3

'8.28-3 9.792-3

~

- e4 . 5.0-21.0-10.20.30.40.60.81.01.331.662.02.53.04.0 l -5.06.58.010.0 ,

'~

I fq0 . c f l nps 1400000 ctme 20.0 l

i:

l T

~

l 1

message:

NEUTRON SHIELDING ANALYSIS FOR ANO TRANSFER BELL -INF HEIGHT MODEL .

+ H2O l l

1 12.072e-2 1 3- $ fuel +FSS 2 ' 5 5.352e-5 ~ 1 -2 3 -4 $ gap-  ;

3 2 8.490e-2 1 -2 4 -5

~

$ inner liners j 4 3 3.296e-2 1 -2 5 -6 $ lead 1

-5 4 7.915e 1 -2 6 -7 - $ ns 1 6 4 7.915e-2 1 -2 7 -8 $ ns 2 7 4 7.915e-2 1 -2. 8 -9 $ ns 3 1

8. 2 8.490e-2 1 -2 9 -10 $ outer shell l 9_ 5 5.352e-5 l1 -210 -11 $ tally shell  !

- 10 5 5.352e-5 1 -211 -12 $ air envel. J 11 0 -1:2:12 $ outer void 1* pz -10.0 2* py 10.0 3 cz 75.565  ;

4 cz 76.835 5 cz 81.28 6 cz 90.805  ;

7 cz 94.19

~8. cz 97.58 9 cz 100.97-10 cz 103.51 11 cz 104.51 12 cz 5000.0 mode n p imp:n_112 3 612 24 48 2r 0 imp:p 0 0 012 4 4r 0 phys:n 15.01.0e-3 sdef cel=1 vec = 0 01 axs = 0 01 rad =dl ext =d2 erg =d3 dir=d4 sil 0.05.010.015.020.025.030.035.040.045.050.055.0 60.0 65.0 70.0 75.565 sp1 d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569

'O.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419 si2 -10.010.0 sp2 d 0 I si3 0.00335 0.111 0.55 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36 8.18 10.0 12.2 14.9 sp3 0 0.01345 0.1327 0.192 0.2089 0.1156 0.02088 0.08804 0.1094 0.05174 0.04 0.01924 0.005756 0.001883 0.0004653 sb3 0 0.007 0.07 0.110.16 0.139 0.025 0.106 0.183 0.086

i i

'j.

  • j_

0.067 0.088 0.026 0.009 0.002 si4 -1.0 -0.866 -0.5 0.5 0.866 1.0 sp4 0 0.067 0.183 0.5 0.183 0.067 sb4 0 0.015 0.110.75 0.110.015 espit:n 0.5 0.10.5 0.010.25 0.001 ~

print .  ;

c fuel ml 92238 4.177-3 8016 8.644e-3 l ' 26000 5.273e-3 40000 2.626e-3 l -c- stainless steel m2 ~ 26000 8.49-2 e lead m3 82000 3.296e-2 c RX-277 l

m4 : 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e 314000 7.14e-4 20000 2.08-3 26000 5.91e-3

'c . air q t-m5 7014 4.1988-5 8016 1.1281-5 18000 2.5135-7 f4:n 9 sd4- 13070.3.

fm4 1.408e8 de4 ; 2.12-7 'i. 7 2.09-6 6.58-61.96-5 6.50-5 3.42-41.97-3 5.72-2 0.331 0.83 1.47 2.09 2.41 2.74 3.54 4.51 5.66 7.27 9.09,11.1 13.36 .

df4 ' 3.78-3 3.96-3 4.14-3 4.32-3 4.5-3 4.68-3 4.68-3 4.32-3 3 6.48-3 0.054 0.1188 0.1332 0.1296 0.126 0.126 0.1296

,E ? 0.1332 0.1404 0.1476 0.1476 0.1656 0.2088 L e4 4.14-71.12-63.06-61.01-52.9-51.01-45.83-43.35-3 0.111 0.55 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36

, gj . 8.18 10.0 12.2 14.92-

_ Ef14:p 9 sd14 13070.3 fm14 1.405e8 del 4 0.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25

2.753.54.55.757.259.0.

! df14 ' 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-3 1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e14 5.0-20.1'0.20.30.40.60.81.01.331.662.02.53.0 4.05.06.58.010.0 fq0 e f.

9 ,

( ,

nps- 1400000

[ ctme ' 16.0 - U ,

f:

p f.q .

x L

. - . . . _ . ..__...-_-.__--_m._. - . _ . _ . _ _ _ __ _ _ . - , . _ .

n r-message:

I

/ GAMMA SHIELDING ANALYSIS FOR ANO TRANSFER BELL - INF HEIGHT MODEL +

lH2O-

  1. 1; il 8.625e-2 1 -2  :-3~ ,

$ fuel +FSS  !

2 5 5.352e 1 -2 3 -4 '$ gap j 3 ' 2 8.490e-2 1 -214 -5 $ MSB wall ,

4 2 8.490e-2 1 -2 5 - $ MTC inner liner ' l 5 3 3.296e-2 ' 1 -2 6. -7

- $ lead layer 1 l 36 3 3.296e-2 1 -2 7 $ lead layer 2 ,

7 3 3.296e-2 l'-2 8 -9 $ lead layer 3' l 8 3 3.296e 1 -2 9 -10 $ lead layer 4 9 . 3 3.296e-2 1 -210 -11 $ lead layer 5 10l 4 7.915e-2 1 -211 . $ RX-277 11 2 8.490e-2 1 -212 -13 $ outer shell 12 ~ 5 5.352e-5 1 -213 -14 $ tally shell 13 5 5.352e-5 1 -214 -15 $ air envel.

' $ outer void 14 - 0 -1:2:15 '  ;

l 1* pz -10.0 -

2* py 10.0

- 3' cz 75.565

4. cz 76.835

'5 cz 79.375 6 cz 81.28 :

- 7 cz 83.19

8. - cz 85.09 9 ' cz 87.0 10 cz 88.9 11 cz 90.805 -

12 cz 100.97 13- cz 103.51 -

141cz 104.51 15 ' cz 5000.0.

mode p .

imp:p 1124 8 20 50125 312 7801560 2r 0 sdd cel=1 vec = 0 01 axs = 0 01 rad =dl ext =d2 erg =d3 dir=d4 sil-0.05.010.015.020.025.030.035.040.045.050.0 55.0 60.0 65.0 70.0 75.565 L sp1 ' d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1414

~s b1 'd 0 0.0010.004 0.008 0.012 0.016 0.02 0.025 0.03 0.036 0.043 0.049 0.056 0.12 0.25 0.33 si2 . -10.010.0

_ sp2 : d 0 l'- .

-si3 .!0.575 0.85 1.25 1.75 2.25 2.75 3.5 sp3 ; 0.757 0.162 0.0793 0.001216.84e-4 2.11e-5 2.69e-6 sb310.05 0.05 0.52 0.15 0.15 0.05 0.03  ;

si4 -1.0 -0.866 -0.5 0.5 0.866 1.0 sp4 _0 0.067 0.183 0.5 0_.183 0.067 -

~ sb4 0 0.015 0.110.75 0.110.015 print c fuel  ;

ml' 92235 1.396-4 92238 4.177-3 8016 3.04-2 1001 4.363-2 26000 5.273-3 40000 2.626 3 c' stainless steel m2 .

26000 8.49-2 e lead m3 82000 3.296e c - RX-277-m4 10012.58-2 5010 2.72e-4 50111.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4 ,

20000 2.08-3 26000 5.91-3 l c- air i m5 7014 4.'1988-5 8016 1.1281-5 18000 2.5135-7 f4:p 12 sd4 13070.3 fm4. 4.062e15 de4 ' O.03 0.075 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 df4 3.024-4 1.404-4 2.376-4 4.392-4 6.372-4 9.216-4 1.26-3 1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3

.8.28-3 9.792-3'

.e4: 5.0-21.0-10.20.30.40.60.81.01.331.662.02.53.04.0

.5.06.58.010.0 j fq0 ef nps 1400000 ctme 30.0 i,

message:

NEUTRON SHIELDING ANALYSIS FOR ANO TRANSFER BELL - INF HEIGHT MODEL

+ H2O

- I 18.611e-2 1 3 $ fuel +FSS 2 '55.352e.5 1-2 3 -4 $ gap 3' : 2 8.490e-2 1 -2 4 -5 $ innerliners 4 ~ - 3 3.296e-2 l'-2 5 -6 $ lead 1 5 4 7.915e-2.1 -2 6 -7 $ ns 1

'6 4 7.915e-2 1 -2 7 -8 $ ns 2 7 4 7.915e-2 1 -2 8 -9 $ ns 3 .

-8 2 8.490e-2 1 -2 9 -10 $ outer shell 9 5 5.352e-5 1 -210 -11 $ tally shell 10 5 5.352e-5 1 -211 -12 $ air envel.

11 0 -1:2:12 $ outer void 1 * ' pz -10.0 2* - py 10.0 -

3 cz 75.565 4 cz 76.835 5 cz 81.28 6 cz 90.805 7- - cz 94.19 8 - 'cz 97.58 -

.9 cz 100.97 10 cz 103.51

. I1 cz 104.51 12 cz 5000,0 mode n p imp:n 112 3 612 24 48 2r 0 imp:p 0 0 012 4 4r 0 phys:n 15.01.0e-3 sdef cel=1 vec = 0 01 axs = 0 01 rad =dl ext =d2 erg =d3 dir=d4 sil 0.05.010.015.020.025.030.035.040.045.050.055.0 60.0 65.0 70.0 76.835 sp1 d 0 0.0044 0.01310.0219 0.0306 0.0394 0.0482 0.0569 0.0657 0.0744 0.0832 0.0919 0.1007 0.1095 0.1182 0.1419 si2 -10.010.0

.sp2 d 01 si3 0.00335 0.111 0.55 1.11 1.83 2.35 2.46 3.01 4.06

... 4.96 6.36 8.18 10.0 12.2 14.9 sp3 0 0.01345 0.1327 0.192 0.2089 0.1156 0.02088 0.08804 0.1094 0.05174 0.04 0.01924 0.005756 0.001883 0.0004653 sb3 0 0.007 0.07 0.110.16 0.139 0.025 0.106 0.183 0.086

s L

0.067 0.088 0.026 0.009 0.002 si4 L1.0 -0.866 -0.5 0.5 0.8661.0 sp4 0 0.067 0._183 0.5 0.183 0.067-L sb4 0 0.015 0.110.75 0.110.015 espit:n 0.5 0.10.5 0.010.25 0.001 L

print

c. fuel ml 92238 4.177-3 8016 3.04e-210014.363-2 L 26000 5.273e-3 40000 2.626e-3 e stainless steel

'm2 26000 8.49 i 'c- lead m3- 82000 3.296e-2 c' . RX-277 l

m4. 10012.58-2 5010 2.72e-4 5011 1.09-3 8016 3.45-2 11023 2.42-4120001.94-413027 8.35e-314000 7.14e-4

. . 20000 2.08-3 26000 5.91e-3

c. air m5 7014 4.1988-5 8016 1.1281-5 18000 2.5135-7 f4:n 9 sd4 13070.3 ,

- fm4 1.'408e8 de4' 2.12-7 7.67-7 2.09-6 6.58-6 1.96-5 6.50-5 3.42-4 1.97-3  ;

.5.72-2 0.331 0.83 1.47 2.09 2.41 2.74 3.54 4.51 5.66 7.27 9.09 11.1 13.56 df4 3.78-33.96-34.14-34.32-34.5-34.68-34.68-34.32-3

.6.48-3 0.054 0.1188 0.1332 0.12 % 0.126 0.126 0.1296 0.1332 0.1404 0.1476 0.1476 0.1656 0.2088

. e4 : ' 4.14-71.12-6 3.06-61.01-5 2.9-51.01-4 5.83-4 3.35-3 0.111 0.55 1.11 1.83 2.35 2.46 3.01 4.06 4.96 6.36 8.18 10.0 12.2 14.92 f14:p ' 9 -

L sd14 ~ 13070.3 -

fml4 - 1.405e8 del 4. 0.03 0.0Y5 0.15 0.25 0.35 0.5 0.7 0.91.171.51.83 2.25 2.753.54.55.757.259.0 '

df14 3.024-41.404-4 2.376-4 4.392-4 6.372-4 9.216-41.26-3 1.602-3 1.908-3 2.412-3 2.988-3 3.492-3 3.96-3 4.752-3 5.76-3 6.84-3 8.28-3 9.792-3 e14 5.0-20.10.20.30.40.60.81.01.331.662.02.53.0 4.05.06.58.010.0 l fq0 ' e f i nps 1400000 l ;). 'ctmeJ 30.0 ym N.; _

l 1 w -

APPENDIX B MCNP Code Outputs Outout Listina Output File Name Description i

jl tb2dg.o Full 2-D (R-Z) cask model - fuel gamma source a

tb2dn.o Full 2-D (R-Z) cask model - fuel neutron source tbtnz.o 2-D cask model - top nozzle gamma' source only

.tbbnz.o 2-D cask model - bottom nozzle gamma source

.ftp.o 2-D_ cask model - fuel region gamma with sleeve iron neglected - for top end dose rates only anoldg.o 1-D (inf. cyl) cask model - fuel gammas anoldn.o 1-D (inf. cyl) cask model - fuel neutrons anowg.o same as anoldg.o but with water filled MSB anown.o same as anoldn.o but with water filled MSB