ML20105B891
| ML20105B891 | |
| Person / Time | |
|---|---|
| Site: | Arkansas Nuclear |
| Issue date: | 09/03/1992 |
| From: | Allen R, Miller T ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
| To: | |
| Shared Package | |
| ML20105B870 | List: |
| References | |
| 92-EQ-0002-01, 92-EQ-0002-01-R0(2), 92-EQ-2-1, 92-EQ-2-1-R(2), NUDOCS 9209210270 | |
| Download: ML20105B891 (51) | |
Text
_ _. _ _ _ _ _
7 _ _
_.____.___._m..
m.
v 1
i ARKANSAS NUCLEAR ONE l
CALCULATION COVER SIIEET (Cont.)
l j
4 Calc. No.: _32-EO-0002-01 Units
?
an.= =u n n m. a n = a. = === = = = = a n u w a an =u u m a = = w w w = >. m %,m,_
L
= u a m-Rev. N o. _ 0 1 Ll._,
Verification Method Design Review
'X Alternate Calc.:
Qual. Testing Pages Revised *.nd/or Added:,P_eviSod pI!.gon 17, 39, 4 h 43 l
Purpose of Revision: ltdd note clayi[yltLcLIF _ orrorledue _ selection a.nd_
rhul19.0 VGIi011e Setpm nt S;nq_IJLcI_einent _ tr.0LCfdn.ar21YEtaALiEhoEl 2
400 ESI to the exi s tJJ1cf and __ nore conservative vf.lun of 200 PM, Initiating Documents Resulting-Documents Key Design Input Doc ffP._Cl-2008 Amunds Cale(s):
Supercedes Cale(s):
s Computer Software (Ver.):
ny:
/&y G., A rs
_ / T24 / F 6 41 Rvv'd:,
?---
ChX' d :,(suk;w nw lHu / r (.-n_
Apv'd ] o k ? OT A e IbnL / P-6 -? 7.
f (print name)
(init) (date)
(prin't namei (init) (date )
=== = w m = = u n-n=m an= = n===w= ma = = w-w w a===an ua a n a== aan =e a n a== =.u w ana Rev. No.
0 ( 2 ) _,
Verification Method:
Design Review:
vv Alternate Calc.:
Qual. Testing Pages Revised and/or Added:
R-9, 18-20, 22-25, 27-30, 35-41, 44, 46.,18.
Electrcnic,unlato of rroviom mngal revicicne en r.cn 14. 41-44
'n p,c mw 47. 43.
i All Pacen Repaq1jpfri ~
Purpose of Rcvisio'nT~1evist t.o inccrporate am IR error values and incorp' rate
~
rettino tm lerance associated with Scl and SC.
Initiating Documents Resulting Documents Key Design Input Doc
[Y'P 92-2009 Amends Calc (s) :
supercedes Cale(s):
Computer Software (Ver.):
f Dy:
thus Oie du m
/ i (4 /9-3-4 Rvv'd i
Chk'd:m w C wid:t
/Ji rn /4 5f&
Apv'd:Albc.fe#A3!.< a /4ft / 9-fr' (print name)
(init) ( da te )
(pritt name)
('init) (date' Check if Additional Revisions:
9209210270 920914
.PDR.ADOCK 05000368 POR p
J
,--..,...-..-,,--n.,,.--.
- - - - - - -. - - - -.. - - -,,.. - - - - - - -, ~.
---,c
- - _ ~
.__m__-_m-t i
CALCULATIO!I COVr.R S} LEET i
Cale No.:
12-F2-OR EQ1 Unit
?
Ca t tego ry t O
l p u t,, n - 9 3 Cale Titles _IIsn_fgrei d e.u cing system (s): _E;4 h d yp fGLTiTe P"012Dof_hn0.ll?ls 19r 1,cw P r eJL4u rifRL Mie P aruto
_ Topic (s): __JRt% _ErTC W
f1nyn9re EXffd M ulEETd rjr TVM Mrnn calc Types IC Cr>mponent No(s).I _]PT.-4JZj.-L _ Pit Area: 31dg.
Elev EPT-46?4-2 u2PT-4f.24-3 7PT-4 Q3 ;l Room t
Coordinatec Ab s t. ra ct (Include Purpose /Results): _Tp_ gd c,gla t e_tlna ripIg,_tenpinipa D.llWaUlf YAlMIL.aDildiLC-.D1Pl@.E'1MJe AUD-? LN Pree pnriant Wigg, P a typ E r rrsu nl EAIL.AnLE ELiDit.Iu m"at.M10 a.h?.EEt Th EEE"l%" 3re nhown in the tiir caLeyl3_ tion.
EufmTLESilpJ1 of t
.w-
~ _.- -,-
Rev. No.:
_O._ _
Verification Method:
Dopign Reviews X
Alternato calculation:
Qualification Tonting Pagou Revised and/or Added
.All Purpose of Revision:
Or laLuoj I c ouo(.pp.1_'tf-).
F s,c, 3 k%G.asd3 t >r '-*
a f
.. rte.be) lay nicry.cpuks aW-vttsip + C >audar-C f
initiating Documento Resulting document (s)
Reference Calco
-.DfP _? 2.-I008
~
i Amendo Cale(s):
95-EO-0004-19 Supersedan Calc (o):
4!/ ys ("LT)
( 3.0,lj/3 J_f+4.f (5 d Computer Softwaro (Ver. 1): fLotusS._yprhony (2.21/ Freelance Plus 4
((Lw e 4 t eec: 0idU/.9 2 M* t blMT t !
- 2 f.cDe !. M..WcvDI. tK.3tyjyltL rc. 91.ccc w6 :p/9:Ltc?D ts wP)
AHcuts Ekw NaA)
,f W. L. 6 <t e xt_ Nik 6-Zl"~1 L Rvw d:,2Acui, Ce (/#,__ Q 4-Z M Z sy.
(print name)
(init.)
(date)
(print name)
(init.)
(date) chk'd: M E b af.O I
.) k2 C Apv'd: )./ANeSMIo AD
-l#-3 (print name)
(.tn i t
.(da t e )
(prin't name{ ifinitl)
(date)
Check if additional revisienn _
N Calculation No. 92 EQ 0002-01 Rev. 0(2)
Page 1 of 49 l
t IABLE OF CONTENTS Sec. tina Title hge i
1.0 PURPOSE / SCOPE............
2 t
2.0 I NTR O D U CT IO N..................................... 3 i
T 3.0 ASSUAff'IIONS AND GIVEN CONDITIONS..............
4 I
4.0 P PS FUN CTI O N S..................................... 9 4.1 PRESSURIZER PRESSURE.....
9 PRESSUluZER PRESSURE BILCK DIAGRAM...............
11-14 5.0 CONCLIJSIONS....................
................44 6.0 n E rER EN C Es......................................
45.
1 l'
I i
t Prepared by: lMA Date: 4MZ-Checked by: MCO Date:9'3 %
. ~
a
_.. ~ _. _ _ -
e i
f Calcu!ation No. 92-EQ-0002-01 Rev. 0(2)
Page 2 of 49 1.0 PURPOSFJSCOPE 1.1 PURPOSE i
4 r
i The purpose of this calculation is to determine the uncertaintics, setpoints, allowable values, and time responses of the ANO-2 Low Pressurizer Wide Range Pressure ESFAS and RPS Trip instrumentation loops. This calculation supersedes the Low Pressurizer Pressure portions of all previous ABC/CE setpomt calculations.
t-1.2 SCOPE i
This calculation is applicable to the follcwing instrument loops:
S. rvice IJnit Instrument Loop 3h e
2 2PT-4624-1 Pressurizer Pressure 4
2 2PT-4624-2 Pressurizer Pressure 2
2PT-4624-3 Pressurizer Pressure 2
2PT-4624-4 Pressurizer Pressure Instrument loop uncertainties are calculated for the Reference Condition, Abnormal Condition and Accident Condition, f
t j
Prepared by: /2 EA Date: T-I-9Z Checked by: dO Date: 4-3 %-
men-.-
.s-..me..,.
,.m.m
,.,,,--.mm.m._.,w.c..m
.....w.-w--.w,,n
.,,,wr,,.,-7,-,,..w,.,-
,-.,9-4
,.=
y 9,
.mm
-r-
. w..,---. h b + v.
J Calculation No. 92 EQ-0002 01 Rev,0(2)
Page 3 of 49 i
i
2.0 INTRODUCTION
1 The statistical method of the Square Foot of the Sum of Squares (SRSS)is used to i
determine the random error on a component level and for the loop. Non-random errors are combined algebraically with the random error term to establish total error.
I l
This calculation is done in accordance with the guidelines set forth in the Instrument Loop Error Analysis and Setpoint Methodology Manual (Reference 6.2).
All percentages are expressed in terms of span unless otherwise noted.
All terms are considered random error terms unless noted by a lowercase "b" sufGx to indicate a bias error term, or "t" suffix to indicate the total of the bias and random error terms.
P a
J P
M Date: &~M Z-Checked by:)Cm Date:4 M1 Prepared by:
.7________...__.-...__.__..
Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 4 of 49 i
t 3.0 ASSUMirflONS AND GIVD' CONDITIONS 3.1 Calihtatinnad Testing Environment The uncertainties provided are based on calibrating and testing 'Jie equipment under the following environmental conditions:
A.
Control Room The calibration temperature for PPS Equipment in the control room is assumed to be 75 deg F and the maximum operating temperature for PPS i
Equipment in the control room is assumed to be 84 deg F. All other conditions " normal" for a control room environment, per Reference 6.2.
1 B.
Containment The calibration temperature of the PPS Equipment inside containment is assumed to be 60 deg F and the maximum operating tempeloture of PPS Equipment inside containment is assumed to be 120 deg F. All other i
conditions " normal" for a containment environment, per Reference 6.2.
C.
Outside Containment The calibration temperature is assumed to be 60 F. This is a conservative temperature to envelope the expected ambient at the time of calibration.
See Reference 6.2.
I l
r Prepared by: N/h Date: 4+4L Checked by: Jun c ate: & a a x h
--,-,,,w,-v,,--,e-,.,,-.x,.,---
c
,,.,,..,n
-,,.,--,.,,n,-e,..m----,-,.
,,--Ew,,,*.,,.,-,m
,,,,aw.,,,,,--n_,
,,,-van,-,
,--,vn,,.._,N.
l--,,,,-m,,g,
Calculation No. 92-EQ 0002-01 Rev. 0(2)
Page 5 of 49 3.2
_Cahbralien_and Testing I'attipment The measurement and test equipment (M&TE) used to calibrate and test the PPS
. Equipment will have an accuracy twice as good as the accuracy of the device or loop being tested. For example: if a transmitter has a reference accuracy of +/-
1.0 % span, it's assumed M&TE uncertainty will be +/- 0.5 % of span. This assumed M&TE accuracy applies to all PPS Equipment unless otherwise specified.
See Reference 6.2.
3.3 Calibration and Testing interval A.
The PPS Cabinet (Bistable) will be calibrated and tested on an interval that does not exceed 39 days.
The process instrumentation will be calibrated on an interval that does not 7 '
B.
exceed 22.5 months.
j ANO-2 Technical Specifications, Section 4.0.2, permits a 25% extension of the-monthly (31 days) and refueling (18 months) calibration intervals.
3.4 Eower Supply variation Unless specifically stated otherwise, the variation of the instrument power system is 120 10 VAC and the maximum power supply variation is.t 10% of the nominal power supply. See Section 3.9.7 of Reference 6.2.
3.5 Fischer & Porter 50EK1000 Calibra. tion No calibration is required per Reference 6.21.
1 Prepared by:
4Gr Date: 9 3 Checked by: Jcen Date:& 3 M2_
j
r Calculation No. 92 EQ-0002-01 Rev. 0(2)
Page 6 of 49 l
.I 3.6 Seismic and Post-Scismic Errors i
Seismic and post-seismic errors are not considered with any design basis events
.because ANO-2 will, after each seismic event, determine that the post-seismic error are negligible or will recalibrate all effected PPS equipment, per Reference 6.28.
3.7 Signal Convnter Drift Unless otherwise stated, the drift for the signal converters is assumed to be no worse than its reference accuracy, per Reference 6.27 and 6.2.
3.8 Imasmitter Background Radiation Effect P
Unless otherwise stated, the background radiation effect for the transmitters is assumed negligible because the effect of background radiation is calibrated out each refueling, per Reference 6.2, 3.9 That combination of instrument uncertainties from various sources by the root-sum-square method is realistic and conservative enough when these uncertainties are random and independent of each other.
3.10 That combination of instrument uncertainties from various sources by algebraic -
summation is the most conservative method whenever the errors are non-random.
3.11 The calibration uncertainties for process instrumentation assumes that there are separate calibration devices on the input and output of the instmment being calibrated, per Reference 6.2.
I 3.12 Error terms that are less than 0.05% of SPAN are considered negligible and are not included in the calculation per Reference 6.2.
1 Prepared by:
Af4 Date: 9-M t Checked by: dun Date:9 - 3 410-
-. _. _, ~. _ _.. _.. _... _ -. _ _
V Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 7 of 49 3.13 AssidrALTemperature Effect The temperature that the pressurizer pressure transmitters are exposed to during LOCA and SBLOCA events will be no greater than 200*F, and below 250*F for SLB cvents at time of actuation per Reference 6.34.
3.14 Foxborohnverters Pown_.sspJy Effest The supply voltage for the Foxboro N2AO-V21 and N2AI-12V converters is freni a nest distnbution module (Ref 6.29.e). The nest supply voltage is + 15 and
-15 VDC (Ref 6.31).
The line voltage effect is:
10% line change: 0.2% of rated voltage (6 31) p.
The line voltage variation is:
120 10 VAC or 8.3fc(3.4)
Therefore the power supply variance is:
PS = (Os2%)
=d0.166%
(10.0%)
3,15 Fischer & Porter 50EK1000,_ Current-to-Cyntnt Converter There will be no errors introduced by temperature effect and line voltage effect as long as the instrurnent is operated within the ambient temperature range of 30-130*F and the line voltage is 117 volts 10% per Reference 6.32.
3.16 Accident Radiation Effect i
The radiation effect for the LOCA and SBLOCA events is negligible, as the actual increase in dose prior " trip is not significantly above background in radiation per Reference 6.25. The,_siation effect for the SLB is negligible.
Prepared by-ll&A Date: 9-4 4 Z Checked by:
dem __ Date: Q-3 4~'
1 a
~ _,,
_ _.v. _.__._-. _. _.. --
i Calculation No. 92 EQ4002 01 Rev. 0(2)
Page 8 of 49 i
3.17 XEMk.1ttpcin1Qtd.lirnY TR temperature error used is associated with the pre-trip in the minimum region since it is the most conservative, see Reference 6.18. The calibration error of the variable setpoint card is assumed to be the same as the bistable card since the same MT&E is used.
3.18 Assumption and Given Condition (A&GC) 3.2 states that Measurement and Test Equipment (M&TE) will have an accuracy twice as good as the accuracy (RA) of
]
the device or loop being tested. The calibration tolemnce band or device tolerance (DTOL) for this device incorporates an additional setting tolerance (ST) such that DTOL = RA + ST. Thus, DTOL shallin essence be treated the same as the reference accuracy for this device and it shall conservatively be assumed that M&TE is twice as good as DTOL.
T 3.19 Per A&GC 3.7, drift (DR) is assumed to be no worse than reference accuracy (RA). The calibration tolerance band or device tolerance (DTOL) for this device incorporates an additional setting tolerance (ST) such that DTOL = RA + ST.
s Thus, DTOL shallin essence be treated the same as the reference accuracy for this device and it shall conservatively be assumed that DR is no worse than DTOL.
3.20 Although this is not a calibrated device (see A&GC 3.5), a functional check is performed per the periodic test procedure (Ref. 6.7). Considering the fact that this device cannot 'e calibrated and that the functional check is conducted across both the device and the associated downstream resistor (see Figures 4.1-4.4), a larger required accuracy of i0.5% is incorpomted. Therefore, a setting tolerance (ST) of 0.25% is applied to this device such that with a reference accruacy (RA) of -
0.25% the total device tclerance (DTOL) is 0.50%. This is indeed conservative since the resistor accuracy is again applied in the resitor section of the calculation.
Checked by:__IM Date:4 3 M'L-Prepared by: ALA Date: 9-342 e-w s aw me sn,=.ewsaww ea*~M rr+-tr
-ea rune--n es-a-
ee-r err a
e, w-4--iie w
w-'-1--*-v swT
w=rT-e
-+'u=:ve'-wa----ra wr e w=
ea= w ww-e->w ev etwm w^ s,ww wmt-e-'w wrs e + +
Calculation No. 92 EQ 0002-01 Rev. 0(2)
Page 9 of 49 4.0 PPS FUNCTIONS The PPS function included in this calculation is the Pressurizer Pressure - LOW
. function. The functional requirements of this PPS trip are given below.
4.1 PRESSUIUZER PRESSURE 4.1.1 DLtittjnnal Description The low pressurizer pressure function of the Plant Protection System (PPS) provides a reactor trip, a containment cooling actuation signal (CCAS) and a safety _
injection actuation signal (SIAS) on a Low Pressurizer Pressure trip. The Low I
Pressurizer pressure function provides automatic bypass removal for SIAS and RAS. The reactor trip, CCAS and SIAS, and the bypass removal are initiated by separate bistables. See Figures 4,1 through 4.4 The reactor trip setpoint may be decreased manually, to a minimum of 100 psia, as pressurizer pressure is reduced, provided the margin between the pressurizer ss pressure and the trip setpoint is maintained less than or equal to 200 psi. The trip setpoint will be increased automatically as pressurizer pressure is increased to maintain the margin between pressunzer pressure and the trip setpoint less than or 3
equal to 200 psi until the normal operating trip setpoint is n:act.:d. The 100 psia minimum and 200 psi margin are based on engineering judgement and operating experience at C-E plants.
The pressurizer pressure transmitter is calibrated from 0 to 3000 psia and outputs a 4 to 20 mA signal. A 250 ohm dropping resistor provides a 1 to 5 volt signal to the bistables.
Prepared by:
DA Date: MM Checked by: dCG1 Date:9'3 h
9 2
Calculation No. 92-EQ 0002-01 Rev. 0(2)
Page 10 of 49 l
4.1.2 Design B,vis hnd RgqtdgJntn11 The purpose of the low pressurizer pressure function is to limit core damage during a postulated accident.
The reactor trip and safety injection functicns are credited in the SAR Chapter 6.0 Analysis with limiting the consequences of the Small Break LOCA event. The Chapt:r 6.0 Analysis determines the peak containnient pressures and temperatures following a primary or secondary pipe break. Therefore, the SIAS analysis setpoint cannot be changed without determining the effect of this change on the Chapter 6.0 Analysis.
7' The safety injection funct.on is credited in the SAR Chapter 15.0 LOCA analyses with limiting the consequences of the LOCA events.
The containment cooling function is credited with limiting the post-accident containment pressure during and following LOCA and SLB events. The CCAS analysis setpoint is determined by the SAR Chapter 6.0 Containment Analysis, Ther fore, the analysis setpoint cannot be changed without determining the effect of this change on the Chapter 6.0 Analysis, i
l.
l Prepared by:
/MA Date: 9-MZ. Checked by: dero Date:9-9_2, i
l-
.. -. =. -. -.
.-~.._-..._3.._.-~_.._____
1 Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 11 of 49 FIGURE 4.1 PRESSURIZER PRESSURE Bl.OCK DIAGRAM CHANNEL A a
caeAmatus n
w t.
RPS/ESFAS LOW PRESSURIZER "I
~
'lTi.
- NN **
PRESSURE
==u.ut
.sur em DYPASS wu.. Q w2 ii=,.
un un t'P"Mol gygg fHESSURIZER m.
.g' 3e PRESSURE
=Eams sc.
ns.
ogn.
. iu
.se vs <an s wraan. a su.r*'
w ovtv RPS/ESFAS LOW
-+
SU 1 PRESSURIZER
-U,D " M "
~
PRESSURE
.aut muera G
- 7=1$
c.
19480 WW RPS/ESFAS LOW iviE '["J' PRESSURIZER SU l^
.su1A PRESSURE uuvun
- . CURRLMT ORUF9%G MSNTtA Prepared by:
8-04 Date: N 41 Checked by: Jtm oate: s s s a.
P Calculation No. 92 EQ-0002-01 Rev. 0(2)
Page 12 of 49 FIGURE 4.2 PRESSURIZER PRESSURE BLOCK DIAGRAM CHANNEL B t
G Baut Aall C&dP ARA ttWL waa nu2.
RPS/ESFAS LOW
- wa 5
PRESSURIZER SU 2
+
en.
NN a'n" PRESSURE rmwn eux==
mn 8L2e m.su m.en mwav mm
.su2 BYEASS uww as n amva manow
. O 2cneacus REMOVAL eram2.
Q '/g _
TRX De SC 1 D
SC 2 0%
SC 3 cm Pft' UfC l
sc.1. 7" (tmeintoa 4
annAar i
.ru
. set
. m2
.e.c2 mam m uurc m ana mats:n ni, suli w RPS/ESFAS LOW wr SU 1
' PRESSURIZER sui.
mwaum PRESSURE asui Sul.t mg 2C21tvec M Q
"m'm".$
c =>
2nda0 L*
RPS/ESFAS LOW qusA.
6 IA "7d PRESSURIZER suia.i
.su1A PRESSURE 2CT3+v5M3
- . cunstwi enanwa nrsarm a
Prepared by:
RCA Date: 9 4 L Checked by:
dCrn Date:4-S 9 L
- Calculation No. 92-EQc0002-01 Rev. 0(2)
Page 13 of 49 FIGURE 4.3 PRESSURIZER PRESSURE BLOCK DIAGRAM CHANNEL C 4
G Cowana 26440 et HMOdB 4 pngTR;p A(ARM pg m2 W
g.
640 we scuo n
16xm (SPA R(On R2e SCe 7
f9ESSURIZER Tpx.
W SC
,,f, ni.
y,at FHESSURE sc.
c w aan=
.nu
.sc y
2"**'"
RPS/ESFAS LOW sui.
PRESSURIZER
~
suin PRESSURE
-f,'*, = encme Atanu 3
nacem a
vAmAmJ "r"#
l 31480
'*'v RPS/ESFAS LOW suia.
SU 1 A r s PRESSURlZER suiAa
" **"' ~
PRESSURE
.suiA tcncvsc3
- CURRENT DMCSMNG REGSTOH Prepared by:
4M Date: 4-U4L Checked by: dCE7 Date: 9-S-h L
.- - - -. _. =
Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 14 of 49 FIGURE 4,4 PRESSURIZER PRESSURE BLOCK DIAGRAM CHANNEL D a
osaa its n.a
' RPS/ESFAS LOW su2.
au2a PRESSURIZER 8U
'37,*
, mcme m PRESSURE
~
.su' BYPASS mmur num=
.um.
yn REMOVAL PRESSURIZER ax.
SC g
,, 3 PRESSURE
- 3
8.%
.mx
.w:
zum m uu<
m assu 1
m eoureur RPS/ESFAS LOW SU 1 PRESSURIZER
,y, NmP m PRESSURE
. sui sui., -
xno.co.
G SU cuo naa Low RPS/ESFAS LOW suiu SU1A PRESSURIZER su u.i
.su u PRESSURE acam.on
.cenarut enornsa usesTon
(
t
!~
Prepared by:jA Date: 43 Checked by: dCO Date:CI-E CQ
Ca!culation tJo. 92-EQ-0002-01, Rev. 0(2)
Page 15 of 49 t
4.1.3 Low Pressurizer Pressure Loop Error Calculation 4.1.3.1 Process Measurement Two process measurement errors (PMEs) may influence this measurement:
- 1) sensing line head
- 2) containment ambient pressure The water in the sensing line is assumed to normally be at containment ambient temperature. A change in temperature wi!! result in a change in density of the water, thus, changing the static pressure seen by
+
the transmitter at the high pressure port.
A gauge pressure transmitter is used for absolute pressure measurement. As containment ambient pressure varies from 0 PSIG, an error will be introduced. During an accident condition the transmitter's low pressure port, which is open to containment atmosphere, could sense a pressure of up to 53.4 PSIG per reference 6.38.
Reference 6.34 takes credit for a High Containment Pressure trip at 6.0 PSIG to limit ;he containment enviroment to 250 deg F prior to reactor trip of SIAS or CCAS, the error associated with this calculation may be limited to i
a maximum of 6 0 PSI.
The bypass setpoint associated with this calculation is the only setpoint which considers ABt1 errors.
Per reference 6.38, the PME error for abnormal (ABN) temperature is negligible. Therefore, ABN PME errors will have no affect upon the bypass setpoint and need not be considered further.
The Trip / Actuation setpoint associated with this calculation must consider ACC errors. The PME errors associated with this calculation cause errors in the negative direction. Since the Trip /Actuatulon setpoint is a " low" setpoint, only the positive errors are applicable. Therefore, ACC PME errors will have no af fect upon the Trip / Actuation setpoint and need not be considered.
Y e
Preparer: MA Date: 94M Checker:__ C_OI'\\
Date: 9-3 M 1
Caiculation No. 92-EQ-0002-01, Rev. 0(2)
Page 16 of 49 4.1.3.2 Low Pressuriter Pressure Transmitter p
i COMPONENT ID Source Tag flumbet 2PT-4624-1,2 PT-4624-2,2PT-4624-3,2 PT-4624 -4 (6.22,6.37.b,6.37.g) l Model:
Rosemount 1154GP9RB
' (6.22,6.37.f) f Range iimits:
0 to 3000 PSIG (URL = 3000 PSIG)
(6.20) l Calibrated Range:
0 to
'3000 PSIA (6.7)
}
Calibrated Span:
3000 PSI (6.7)
[
Time Response:
0.2 sec (6.20)
PROCESS / ENVIRONMENTAL CONDITIONS 3.1.b)
(
Amb Cal Temp (AMB):
60 degF Abn Amb Temp (ABN):
120 degF (3.1.b) i Acc Amb Temp (ACC-LOCA):
200 degF (LOCA/SBLOCA)
(3.13)
Acc Amb Temp (ACC-SLB):
250 JegF (SLB)
(3.13) f DT1 (ABN-AMB):
140 degF DT3 (ACC(SLB)-AMB):
190 degF f
Power Supply Voltage:
24 VDC (6.7,6.36)
[
Power Supply Variance:
i
.10.0%
(3.4)
I (DV) 1 2.4 VDC l
i Max Voltage :
26.4 VDC
.{
Calibration interval :
, 22.5 MONTHS (18 months + 25% margin)
(3.3)
Acc Radiation :
3.3E+07 RAD (6.37.a) t ERROR ERROR i
ERROR
SUMMARY
% SPAN PSI l
l
- a. ACCURACY (RA):
i(
. 0.25% SPAN) 1 0.250 % 1.
'7.500 (6.20)
- b. CAllBRATION (CAL):
1(2 TIMES MORE ACCURATE THAN INSTRUMENT) 11 (0.5RA)^2+(0.5RA)^21'0.5
% SPAN i
0.177 % 1 5.303
,(3.2.3.11) t i
's.
Preparer: Md Date: 9-W Checker: dC1Y\\
Date:k "3 -9 ~2__
[
1 Calculation fjL 92-EQ-0002-01, Rev. 0(2)
Page 17 of 49 Source
?
ERROR ERROR
% SPAN PS'
- c. DRIFT (DR):
1(
0.20% URL FOR 30 MOtJTHS) 1 0.200 %
6 000 (6.4)
- d. POWER SUPPLY EFFECT (PS):
(Less than 0.005% SPATJ/ volt) 0.012% SPATJ (NEGUGIBLE) 0.000 0.000 (6.20.3.12)
- c. ABfJORfAAL TEfAPERATURE EFFECT (TE):
1(
0.75% URL +
0.50% SPAtJ)PER 100 degF i
0.750 % i 22.500 (6.20)
- f. ACCIDENT TEfAPERATURE EFFECT (ATE-LOCA):
j 1(
0.75% URL +
0.50% SPAtJ)PER 100 degF 1.750 %
52.500 (6.20) j g ACCIDEtJT TEMPERATURE EFFECT (ATE-SLB):
i(
2.50% URL +
0.50% SPAtJ) i 3.000 %
90.000 (6.20)
- h. ACCIDEtJT RADIATION EFFECT (ARE):
NEGLIGIBLE i
0.000 % i 0.000 (3.16) i Tne transmitter error (eTRX) for Reference (REF) Abnormal (ABN) and Accident (ACC) conditions is given as folfows:
1 REF eTRX =
(RA + CAL) 1 0.427 % i 12.803 l
ABN eTRX =
i ((RA + CAL)*2 + DR*2 + PS 2 + TE*2)'0.5 1
0.886 %
26.574 i
I ACC (LOCA) eTRX =
((RA + CAL)^2 + DR^2 + PS^2 + ATE-LOCA*2 + ARE-2)*0.5 i
1.812 %
54.371 ACC (SLB) elRX =
i ((RA + CAL)^2 + DR*2 + PS*2 + ATE-SLB^2 + ARE'2)'0.5 i
3.037 % i 91.104 9
NfA Date: 4'Ff L Checker:
CIYi Date: k 3 Freparer:
t
i Calculation tJo 92-EQ-0002-01, Rev. 0(2) -
~ Page 18 of 49~
,i The transmitter output error (TRXo) for Reference (REF), Abnormal (ABN) and Accident (ACC) conditions is given as folfows:
- l Source l
ERROR ERROR
(
% SPAN PSI r
REF TRXo =
1 REF eTRX i
0.427 %
12.803 I
L ABN TRXo =
1 ABN eTRX 0.886 % i 26.574 f
ACC (LOCA) TRXo =
1 ACC (LOCA) eTRX i
1.812.
64.371
-[
ACC (SLB) TRXo =
i ACC (SL8) eTRX 3.037 %
91.104 e
i i
4.1.3.3 Insulation Resishnce Tha transmitter is located within the containment building, and as such the ef fects of a harsh environment on the loop signal cabling (i.e. cable, splices, penetrations, etc.) must be considered. The accident environment effects are considered for the cablit g from the transmitter through the containment electrical peneirations.
t t
The error attributed by the insulation resistance (IRb) for LOC A Accident (ACC) conditions (temp = 200*F)
(3.13) j is given as foffows:
h Channel A. C. D (200"F)
IRb:
+
0.09% SPAN
+
0.090% +
2.700-(6.11) j Channel B (200*F) -
[otr3 IRb:
+
0.09% SPAN
+
0.090%. +
2.700 (6.11)
[
The error attributed by the insulation resistance (IRb) for SLB Accident (ACC) conditions (temp = 250*F)
(3.13) f
.is given as followsf
[
Channel A. C. D (250*F)-
1Rb:
+
0.15% SPAN
+ - 0.150% +
4.500'. (6.11)
Channel B (250*F)
IRb:
+
0.15% SPAN
+: 0.150% +
4.500
- (6.11)
., 3 P
HY Checker:
O' Date: 9-bN Preparer:
M Date:
t r
e r
c 4
l Calculation No. 92-EQ-0002-01, Rev. 0(2).
. Page 19 of 49 -
s 4.1.3.4 Pressurizer Pressure Signal Converter COMPONENT ID
. Source
[
Tag Number; 2PY-4624-2C (Channel B only)
(6.22,6.37.b,6.37.g) ;
Model:
Foxboro N-2Al-12V
- (6.22A 37.f) l Input Range:
.4 to 20 mA
'(6.7) i
. Output Range:
0-to -
10 vdc (6.7)
Time Response:
0.05 sec (6.30) -
PROCESSIENVIRONMENTAL CONDITIONS Amb Cal Temp (AMB):
60 de0F (3.1.c) 3 105 degF
. (6.24).
Abn Amb Temp (ABN):
Acc Amb Temp (ACC):
105 degF (6.24)
DT (ABN-AMB):
45 degF
. Power Supply Voltage:
+15 vdc and -15 vdc (6.36)
- Power Supply Variance:
i O.166 %
(3.14)
I ERROR ERROR
-)
ERROR
SUMMARY
% SPAN psi
- a. ACCURACY (RA):
1(
0.25% SPAN) 1 0.250 % i 7.500 (6.36)
SETTING TOLERANCE (ST):
- i(
0.25% SPAN) i 0.250 % i -
7.500 (6.7) c(z)
DEVICE TOLERANCE (DTOL):
0.50% SPAN) 1 0.500 % i 15.000 l
t
- b. CAllBRATION (CAL):
i 1(2 TIMES MORE ACCURATE THAN INSTRUMENT)
'1[(0.5 DTOL)-2+(0.5 DTOL)^2]^0.5
% SPAN i
0.354 % i 10.607.
(3.11,3.18) i C.500% i :15.000.- (3.19)
- c. DRIFT (DR):
i (DTOL)
}
]
Preparer: IEA
~Date: bME Checker:
CfG-Date: 9-3 1 i
(
Calculation No. 92-EQ-0002-01, Rev. 0(2)
Page 19 of 49 4.1.3.4 Pressurizer Pressure Si nal Converter 0
COMPONENT ID Source
-l Tag Number:
2PY-4624-2C (Channel B only)
(6.22,6.37.b,6.37.g)
Model:
Foxboro N-2Al-I2V (6.22,6.37.f) loput RanDe:
4 to 20 mA (6.7)
Output Range:
0 to 10 vdc (6.7)
Time Response:
0.05 sec (6.30) i PROCESS / ENVIRONMENTAL CONDITIONS i
Amb Cal Temp (AMB):
60 degF (3.1.c) j Abn Amb Temp (ABN):
105 degF (6.24)
Acc Amb Temp (ACC):
105 degF (6.24)
]
- DT (ABN-AMB):
45 de0F Power Supply Volta 0e:
+15 vdc and -15 vdc (6.36)
Power Supply Variance:
i 0.166 %
(3.14)
+
ERROR ERROR ERROR
SUMMARY
% SPAN PSI l
- a. ACCURACY (RA):
1(
0.25% SPAN) 1 0.250 % i 7.500 (6.36)
SETTING TOLERANCE (ST):
i(
0.25% SPAN) 1 0.250 %
7.500 (6.7)
\\
DEVICE TOLERANCE (DTOL):
0.50% SPAN) 1 0.500 % i 15.000 e
- b. CAltBRATION (CAL):
1(2 T!MES MORE ACCURATE THAN INSTRUMENT).
1 0.354 %
10.607 (3.11,3.18) i i[(0.5 DTOL)^2+(0.5 DTOL)^2]"0.5 -
% SPAN l
ut)
- (3.19)
- c. DRIFT (DR):
i (DTOL) i 0.500 % i 15.000 i
.I
^)
1 Preparer:
IM
' Date: 9-W Checker: dC O Date: 9-3-I4-
[
r
Calculation f Jo. 92-EQ-0002-01, Rev. 0(2)
Page 19 of 49 l
4.1.3.4 Pressurizer Pressure Signal Converter COMPONENT ID Source Tag iJumber:
2PY-4624-2C (Channel B'only)
(6.22,6.37.b,6 37 9).
Model:
Foxboro N-2Al-12V (6.22,6.37.f)
Input Range:
4 to 20 mA (6.7)
Output Range:
0 to 10 vdc (6.7)
Time Response:
0.05 sec (6.30)
PROCESS / ENVIRONMENTAL CONDITIONS Arnb Cal Temp (AMB):
60 degF (3.1.c)
Abn Amb Temp (ABN):
105 degF (6.24)
Acc Arnb Temp (ACC);
105 degF (6.24)
DT (ABN-AMB):
45 degF Power Supply Voltage:
+15 vdc and -15 Vdc (6.36)
Pawer Supply Variance:
i 0.166 %
(3.14)
ERROR ERROR ERROR
SUMMARY
% SPAN PSI '
- a. ACCURACY (RA):
1(
0.25% SPAN) 1 0.250 % i 7.500 (6.36) -
i SETTING TOLERANCE (ST):
1(
0.25% SPAN) 1 0.250 % 1 7.500'
.(6.7)
>cm I
DEVICE TOLERANCE (DTOL):
. 0.50% SPAN) i 0.500 % i 15.000
- b. CAllBRATION (CAL):
1(2 TIMES MORE ACCURATE THAN INSTRUMENT) i 3.354 % i 10.607 (3.11,3.18).
1[(0.5 DTOL)*2+(0.5 DTOL)^2]'0.5
% SPAN no '
- c. DRIFT (DR):
i (DTOL)-
t 0.500 % i 15.000'
- (3.19)
- I
,. )
Preparer:
$iA Date: 9-W Checker:~ Jcin Date: %-9 2_'
f i
[
i l
- lE
[
il sf 5
i- '
9 4
f o
0 2
e g
a
)
P 2
1 e
3,
)
c 6
6 r
3 3
uo 6
6 S
(
(
0 0
R 7
3 3
9 1
7 0
7 7 2
0.
22 0
9 0
2 6
9 0
9 9 6
0 6 6 0
0 OI 0
5 R S 6 6
6 6
0 3
7 03 7
5 2 7 P5 2
2 8
2 3
2 6 3 6
4 1 6 0
3 R
1 2
3 3
2 4
6 6 6 9
09 1
E i
i t
1 i
i i
+
+ -
i
+
+ -
N%
R 0
5 O A4 7
7 4
2 3
0 3 3 5
0 55 0
0 P 5 8
8 5
0 1
9 01 2
5 7 2 S 8 0
0 9
4 1
0 2 1 2
1 32 0
4 R
0 0
R 0
1 1
0 1
2 0
22 3
0 33 S%
1 i
i i
i 1
+
+ -
i
+
+ -
Fg
)E e
L d
%B 0
0 G 5
0 IL 5
G E
O N
(
r r
e 5
5 e
p p
0 0
)"
)
)
)
)
N 2
2 2
J J
t t A
P E
E' 9
AA PP S
T T
+
+
s 2
2 w
0 7 0
lo 5
2 0 5
S S'
lo 0
5 e
0 0 0
P P
t 0
a f
0
)
+
+
s 2
-o
)
a 2
2 2
n 5
5 1
^
R' R"
C e
0 0
1 v
S C
( (
(
m 1i 1
D D
!g
)'
)'
e S
+
+
2 2
2 2
is
+
e 2
+
1 1
)
J
)'
C C
a
)'
b 2
o 1
)
)
L L
C S
S o
A
)'
L A
A S
e e
l l
A C
C B
C C
C r
(
+
+
C O
S L
S e
r
+
e 2
2 L
S k
+
+
(
+
(
+
c
'o o
o o
t L
L 0 0 e
r
)
L 0 o X
h
(
O O
O e
2 v
X X
X 1 l 1 1 T
T 0
s T
n R
R R
b CC R
b CC C
D D
o T
T T
I SS R
T R
v.
w D
c
(
(
(
(
I SS E
(
(
e o
)
(
(
(
E u
l i
i i
+ -
i i
'+ -
n o
R T a f
a i
i n
3
)
S
(
h s
ig P
T 1
4 t
a s
0
(
Cs T
s 2
E is e
te 0
C F
)
e h
a L
t 0
E F
1 D
r 0
F E
C o
F S
f
=
=
O E
P e
n
=
=
=
(
r b
t E
Y M
e 0
o o
=
r r
b L
E o
t t
1 l
l r
o o
o 2
C C
C A
P T
r r
l l
l 9
P e
o N
L S
S S
C C
C r
o U
A e
r r
S 3
S
)
)
)
M t
=
=
u e
=
=
A A
A S
J
)
)
)
(
n R
R.
e 1
1 1
o o
C C
C B
B B
r tu v
C C
C p
O O
O L
L L
r l
l o
E O
n S
S S
L L
L S
S S
e C
C it W
N o
t r
e e
e u
S S
(
(
(
(
(
(
a lau O
B c
o F
N C
C C
C C
C p
F N
C e
la h
E B
C h
E B
C C
C C
C C
e c
P A
e r
C d
e.
T R
A A
T R
A A
A A
A A
A P
l l'
I j1ii l!!
1lI j
!j.-
! l; et 4
' i
4 Calculation No. 92-EG-0002-01. Rev. 0(2)
Page 21 of 49 - -i lj 4.1.3.5 Piessurizer Pressure Signal Converter COMPONENT ID -
Source Tag Number:
2f'Y-4624-21 (Channel B only)
(6.22,6.37.b.6.37.g).
Model:
Foxboro N-2AO-V21
. (G.22.6.37.f)
Input RanGa:
0 to 10 vdc (0.7)
Output Range:
4 to 20 mA
- (6.7).
Time Response:
0.16 sec (6'.30)
PROCESSIENVIRONMENTAL CONDITIONS
=
Amb Cal Temp (AMB):
60 degF (3.1.c)
Abn Amb Temp (ABN):
105 degF (6.24) f Acc Amb Temp (ACC):
105 degF
' (6.24)
[
DT (ABri-AMB):
45 degF Power Supply Voltage:
+15 vdc and -15 vdc.
(6.35).
-[
Power Supply Variance:
1 0.i66 %
(3.14) l ERROR ERROR j
ERROR
SUMMARY
% SPAN PSI t
- a. ACCURACY (RA):
1(
0.50% SPAN) i 0.500 % i 15.000
- (G 35)
- b. CAllBRATION (CAL):
1(2 TIMES MORE ACCURATE TH AN INSTRUMENT) 1[(0.5 RA)*2+(0.5 RA)'2]"0.5
% SPAN 0.354 % i 10.t c ;
(3.11.3.2) '
l 5
- c. DRIFT (DR):
i (ACCURACY).
i 0.500 % i 15.000 (3.7) 1 I
- d. POWER SUPLLY EFFECT (PS):'
1(
0.50% SPAN) per 5.00 %
i(
0.017% SPAN)
(NEGLIGlBLE) i 0.000 % i 0.000 (6.35,3.12)
- e. ABNORMAL TEMP. EFFECT (TE):
Less than 1(
0.50% SPAN) per 50 degF 1
0.450 % i 13.500 (6.35)
Preparer: 4fA Date:4+
- Checker:_ CA Date:9 6-92.
L 1
Calculation No. 92-EG-0002-01, Rev. 0(2) '
.. Page 22 of 49 i
The converter error (ESC 2)is as follows:
ERROR ERROR Source
% SPAN PSI j
' i (RA + C AL) 1 0.854 % i 25.607 REF ESC 2 =.
ABN ESC 2 =
((RA + C AL)^2 + DD'2. + PS'2 + TE*2) 0 5 i-1.087 % i 32.603 ACC ESC 2 =
i ((R A + C AL)"2 + DR*2 + PS*2 + TE'2)"0.5 1.087 % i 32.603 The output error term for the signal converter (SC2)is given as follows; REF SC2o =
.i (SClo^2 + ESC 2^2)*0.5 i
1.280 %
38.410 ABN SC20 =
i (SClo 2 + ESC 2^2)'O.5 1
1.774 % i 53.217 ACC (LOCA) SC20 =
i (SClo(LOCA)'2 + ESC 2^2)'0.5 1
2.376 %
71.289 c
ACC (LOCA) SC2cb =
1 SC1cb
+
0.090% +
2.700
+ SC20 + SC20b
+
2.466% +
73.989 ACC (LOCA) SC201 =
h
- SC20 2.376 % -
71.289 ACC (SLB) SC2o =
i (SC1o(SLB) 2 + ESC 2 2)"0.5 3.404 %
102.107 ACC (t i.8) SC2cb =
i SClob
+
0.150% +
4.500
)
+ SC2o + SC20b
+
3.554% + 106.607 1
ACC (SLB' SC20. =
- SC20 3.404 % - 102.107 i
j a
.)
Preparer: 'MA Date: 9+ff Checker: dW Date:N@
l 4
Calculation No. 32-EO-0002-01, Rev. 0(2)
Page 23 of 49 1
i 4.1.3.6 Pressurizer Pressure Signal Converter COfAPONENT ID Source l
f 3.
Tag Number; 2PY-4624-1 A,2PY-4624-2A,2PY-4624-3A,2PY-4624-4 A (G.22,6.37.b,6.37.g) '
Model:
Fischer & Porter 50EK1000 (6.22,6.37.f}
i
. Input Range:
4 to 20 mA (6.21,6.7)
Output Range:
4 to 20 mA (6.21,6.7)
Time Response:
0.523 sec (6.33)
=!
PROCESS / ENVIRONMENTAL CONDITIONS Amb Cal Temp (AMB):
60 degF (3.1.c)
Abn Amb Temp (ABN):
105 degF (6.24)
Acc Amb Temp (ACC):
105 degF (6.24) l t
DT (ABN-AMD):
45 degF Line Voltage:
120 VAC (6.37.b)
Line Volt. Variance:
1 10 VAC (3.4)
(DV) i 8.3%
ERROR ERROR j
ERROR
SUMMARY
% SPAN '
PSI i
- a. ACCURACY (RA):
.i(
0.25% ! 'AN) i 0.250 % i
.7.500
- (6.36)
SETTitJG TOLERANCE (ST):
1(
L 0.25% SPAN) 1 0.250 % i 7.500 (3.20)
'5
[ottp DEVICE TOLERANCE (DTOL):
1(
0.50% SPAN) 1 0.500 % i 15.000 t
b CAllBRATION (CAL):
(NONE) 1 0.000 % i 0.000 (3.5) t
- c. DRIFT (DR):
1 (DTCL) 0.500 % i 15.000 (3.19)
/
.d. TEMPERATURE EFFECT (TE):
(tJONE) 1 0.000 % i 0.000'
- (3.15) -
f.
(NONE) 1 0.000 % i 0.000-(3.15)
- e. LINE VOLTAGE EFFECT (LV):
[
t Preparer: MA
' Date: H b Checker: dM Date:9'3-D H
y
a i
Ca!culation No. 92-EO-0002-01. Rev. 0(2)
Page 24'of 49 I
r The converter error (ESC)is as fonows:
ERROR ERROR Source 4
1 (DTOL + CAL) i 0.500 % i 15.000 f
ABN ESC =
- 1. ((DTOL + CAL)'2 + DR'2 4 TE^2 + LV'2)'0.5 1
0.707 %
21.213 t
/
ACC ESC =
i ((DTOL + CAL)*2 + DR'2 + TE"2 + LV 2) 0.5 1
0.707 %
21.213 1
\\
?
\\
The output error terrn for tne s;gnal converter (SC)is given as fcitows for channers A C and D:
i.
REF SCo =
-i (TRXo'2 + ESC'2) 0.5 i
0.657 % i 19.721 i
l l
ABN SCo =
i (TRXe*2 + ESC'2)"0.5 i
1.133 % 1 34.003 4
ACC (LOC A) SCo =
i- (TRXo-(LOCA) 2 + ESC'2)'0.5 1.945 %
58.362 i
i 4
ACC (LOC A) SCob =
IRb
+
0.090% +
2.700 i
ACC (LOC A) Scot =
+ SCo + SCob
+
2.035% +
61.062
- SCo 1.945 % -
58.362 l
7 ACC (SLB) SCo =
i (TRXo(SLB)'2 + ESC 2) 0.5 3.118 %
93.541 ACC (SLB) SCob =
IRb
+
0.150% +
4.500
+ SCO + SCob
+
3.268% +
98.041 ACC (SLB) Scot =
l-
- SCo 3.118 % -
93.541
.t f
t 4
9 l
Preparer:
sed Date: 9-1 dE Checker:__dG%
Date:9'3-D I
- l..
Calculation No. 92--EO-0002-01, Rev. 0(2)
Page 25 of,49 The output error term for the signal converter (SC3)is given as follows for channel B:
ERROR ERROR.
% SPAN PSI REF SC30 =
i (SC20'2 + ESC ^2)-0.5 i
1.374 % i 41.235 ABN SC30 = -
i (SC20^2 + ESC ^2)*0.5 1
1.910 %
57.289 ACC (LOCA) SC30 =
- 1 (SC20(LOC A)^2 + ESC ^2)*0.5 1
2.479 % i 74.378
+
0.090% +
2.700 ACC (LOCA) SC3cb =
i SC20b (TID
+ SC30 + SC3ob
+
2.569% +
77.078
/
ACC (LOCA) SC30t =
- SC30 2.479 % -
74.378 ACC (SLB) SC30 =
i (SC20(SLB) 2 + ESC 2)*0.5 1
3.476 % i 104.237 ACC (SLB) SC3ob =
i SC20b
+
0.150% +
4.500
+ SC30 + SC3cb
+
3.626% + 108. 37 ACC (SLB) SC30t =
- 'SC30-3.476 % - 104.287 3
4 1
,3 Preparer: 'AEA
- Date: 9-7 42 Checker; dCfY\\
Date:9-3-92.
i e
l Calculation f Jo. 92-EO-0002-01, Rev. 0(2)
Page 26 of 49 l
O 4,1.3.7 Pressurizer Pressure Resistors Source COfdPOtJEtJT ID Type:
250 ohm Resistors (6.22,6.37.b) inpt Range:
4 to 20 mA (6.7)
Ouput Range:
1 to 5 vdc (6.7)
L PROCESSIENVIROtJMEtJTAL COf4DITIOt15 Amb Cal Temp (APAB):
60 degF =
15.6 degC (3.1.c)
Abn Amb Temp (ABN):
105 degF =
40.6 degC (6.24) -
Acc Amb Temp (ACC):
105 degF =
40.6 degC (6.24)
~l DT (ABtJ-AMB):
45 degF =
25 degC ERROR ERROR ERROR
SUMMARY
% SPAN PSI
- a. Accurancy (RA):
0.10% SPAT 1 1
0.125 % i 3.750 (6.13) -
i.
- b. Temp. Coeff. (TE):
i 3 ppm /degC 0.009% SPAN (fJEGLIGIBLE) 1 0.000 %
0.000 (6.23,3-.12) l
- c. Stability (DR):
35 ppm / year (22.5 months) 0.008% SP AN (NEGLIGIBLE) 1 0.000 % i 0.000 (6.23.3.12) l i
The f eststor error (eR)is as follows:
REF eR =
1 (RA) i 0.125 % i 3.750 ABN eR =
1 /RA) -
0.125 % 1 3.750 l
4 ACC eR =
i (RA) i 0.125 % i 3.750 r
4 )
t 4
- I iI I
l
.ll 9
4 fo 7
2 eg a
P
=
R 5
9 3
0 33 6'
0 66 1
0 1 1 7
0 8
0 88 OI R S 0 2
4 7
1 4 6
5 1 6 P0 4
8 2
1 8 3
4 8 3 R
2 3
5 6 5 9
9 9 E
i i
+
+ -
i
+
+ -
R N %
C A9 0
9 0
9 9 1
0 1 1 P 6 4
4 9
3 4 2
5 72 R S 6 1
9 0
09 1
1 2 1 R
0 1
1 0
21 3
0 33 E%
i i
+
+ -
+
+ -
1
-2 d
3 9
r e
e t
t a
r e
5 D
vn 0
5 o
^
0
)
c 2
^)
lan 5
5 R
G 2
R' f
ig O
0 e
M s
")
)'
+
e e
2 2
2
+
h
)'
2 R
R b
)'
d e
b t
A r
e e
o e
C B
1 1
k f
+
+
t O
R L
R c
)
a: 2 2
L S
e D 'o
+
b
+
2
(
b h
^
(
)
o d
o o
(
o 0 0 C
1 o
o0 C
C 0
RnC C
C C
i 1
1 1 S
v aS S
S S
RR S
RR e
oC(
S
(
r
(
(
(
R isA.
i
+
+ -
i
+
+ -
T t
s I
1 0
es r le e
2 e n t
0 h n a
0 t
a D
0 roh c
f O
nr E
r o
=
=
=
=
=
r f
e b
t A
2 s
0 o
o
=
u t
t 9
w 0
c 0
E r
1 i
1 oo R
R R
r llo
)
)
)
1 1
1 o
R R
R r
N ef A
A A
)
)
)
n s =
=
u C
C C
B B
B t
- r p a0 0
o O
O O
L L
L e
it t
n1 L
L L
S S
S 1
r
(
(
(
(
(
(
a la u eR R.
p u
o v lc eiF N
C C
C C
C C
e gE B
C C
C C
C C
r C
TisR A
A A
A A
A P
a h
3:!;
i ii llif'l!
l
';ll!!Iis
Calculation tio. 9')-FQ-0002-01, Rev. 0(2)
Psge 38 of 49 j
=L l
The output error terrn for the resistor (R2) af ter the signal converter ERROR ERROR is given as fotows for channels A, C and D:
% SPAN PSI l
REF R2a =
1 (SCo^2 + eR'2)'0.5 0.669 % i. 20.075 i
i I
ABtJ R2.3 =
i (SCo'2 + eR*2) 0.5 i
1.140 % 1 34 209 ACC (LOCA) R20 =
i (SCo(LOCA)^2 + eR'2)^0.5 1.949 % i 58.483
[
t
?
I ACC (LOCA) R2cb' =
+ SCob
+
0.090% +
2.700
+ R20 + R20b
+
2 039% +
61.183
[
ACC (LOCA) R20t =
\\
- R20 1.949 % -
58.483.
T f
ACC (SLB) R20 =
i (SCo(SLB) 2 + eR 2)*0.5 1
3.121 % i 91616
+ SCob
+
0.150% +
4.500 i
ACC (SLB) R20b =
+ R20 + R20b
+
3.271 % +
98.116 r
ACC (SLB) R20t =
- R20 3.121 % -
93.616-j
.l i
t b
l
~
l 4
- I i
1 -
.)
'f Preparer: MA Date:4-IO Checker: dCAW Date:9-3-%
~
~ -
I
Page 29 of 49 Calculation No.' 92-EQ-0002-01, Rev. 0(2)
ERROR ERROR The output error term for the resistor (R1) af ter the signal converter
% SPAN PSI is given as follows for channel B:
6 REF R10 =
i (SC30 2 + eR"2)"O.5 1.380 % i - 41.405 ABN Rio =
i (SC30^2 + eR^2)-0.5 i
1.914 %
57.412 ACC (LOCA) Rio =
i (SC3c(LOCA)-2 + eR'2)"0.5 1
2.482 % i 74.472 t
ACC (LOCA) R1ob =
+ SC30b
+
0.090% +
2.700 Ctt)
+
2.572% +
77.172 4 R10 + R1ob ACC (LOCA) R10t =
- R10 2.482 % -
74.472 ACC (SLB) Rio =
i (SC30(SLB)^2 + cR"2)^0.5 i
3.478 % i 104.355 l
^
e i
+ SC3ob
+
0.150% +
4.500 r
ACC (SLB) Riob =
+ R10 + R10b
+
3.628% + 108.855 ACC (SLB) R101 =
- R10 3.478 % - 104.355 r
i r
>)
i Preparer: [fA Date: 4-W Checker; dm Date:@ 3 -9 2
4 Calculation No. 92-EO-0C02-01, Rev. 0(2)
Page 30 of 49 1
The output error term for the resistcr (R2) after the signal converter ERROR ERROR i
I is G ven as follows for channel B:
% SPAN PSI REF R20 =
i (SC30 2 + eR-2)'O.5 i
1.380 % i 41.105 ABN R20 =
i (SC30'2 + eR'2)'O.5 i
1.914 % 1 57.412-ACC (LOCA) R20 =
i (SC3o(LOCA)'2 + eR'2)'0.5 1
2.482 % i 74.472 4
ACC (LOCA) R2cb =
+ SC30b
+
0.090% +
2.700 j
c10 l
ACC (LOCA) R20t =
+ R20- h20b
+
2.572% +
77.172
- R20 2.482 % -
74.472 1
'I ACC (SLB) R20 =
1 (SC3o(SLB)'2 + eR'2)'0.5 i
3.478 % 1 104.355 t
4 ACC (SLB) R20b =
+ SC3cb
+
0.150% +
4.500 f
}
ACC (SLB) R20t =
+ R2o + R2ob
+
3.628% + 108.855
- R20 3.473 % - 104.355
~
1
)
l j
F';
I I
r t
?
-)
i i
4 Preparer:
8TA Date: 9412 Checker; dM Date:9'3-h l'
i
~
["
I i!5
{
- )
!t Ll~
l!3f 5
k 4
b 4
'to
'1 3
ega P
s t
les i"p u
i t
p b
l n
e u A
nl
)
r a a t
)
e c
1 t
v e m
.la I
r is oh b mw U
e "p ed U
At S
h r e S
o 1
t d
d ct e
U a e s
(
t a
ni
(
e r
e s o d nia ni S h r
r c
s av a po r
d r
r t
ps a
r a e cet es o
n g y p l
e "p t s
r e an r
le y p leb si s a eg in
}
- r b o a
t b
et ne d in1 i lo o
t s cl a
a "e oT a
SU m s r ih s
r t
- i. r sb p
a e
r d 'a e sl b et b i
h t
t le mh na et t
, tod e
s n mt h
t d o o at ios e
ofob t
r M
nt r
i m
pf a ue a s, pble a
b emc t
h ah pne e t
t is e diosh ia s e
oh t
h r u s nr w
t t
of n uit e cd aj ei s p r
ef d
s w ld nt o v l
t a
b at o
s n uat et u o d
i ed af ic nh io al u r e
r tc n
ia luplo e
ct r
a r
"p s C
npn h
o et p
v a o e u
ms u
i ei t
r at c
h a
eb r
t e
ot f
r s t
tn z
a s e
io i"p i m a -
l juh h et o D
o s el c s t h r
Ad u w d
lee uc n
p r
s t
r o "p as yb h t
t
s e o
nf t
e a
i t
. s sl ali ch G
eb S
la cd d wt e pi l
h it r
r n
)
le v po.
nnao u acl et U mlpw J
s t
o od o c a md m
Sis ad p
C ia m w s )1 b
f a
eeU i"p "p igd s n la
( o e
M e
r t
el e2 s n r
r u a A
sTi r
ir n aj r
ib t
is cd m
r t
V sh nS o
.t e "e a t
a r
t s
t tsh m e
t n
r a n a
i eut o k
r
) (
d a
n pthU r r
h nt e o
t r
2 a
yi S o pt si oim A
p pd c c
)
n e
r b wer r a pot dt t
ee h
c d (r d o nt ps s ip e
(0 le r u e
nb S
a oi d mll C
r nF i s b
u o et ejw T
c t
i e ou e
a at r t
p e-w e e eh.
E a
.t sd lo a
e a
p t
o l
r miet cel al r
R is 0
ip u s r
o i"p )
c u
A nl a o
i L
b tat s )t
?
r r B
o b
nf TP ai e od 1
u 1
r Uf ia n r cdA o I
t s
t r ioio a A
is A
s ae y
t o
1 a
Sl ait p 9
b s e 1
aclb l
vd r
e sb U/
l 1
t T
et ea e( a e r t
2 uU U
e al S1 e
d u ed s a r
r 0
e ul ic u
t l
eU s a i h a SS S
h l
a u
l t
r t
pb lp s cvT gmd h ah d(
D J
r S
a G
u s
s r
a t
s ut p et s
s n s
e r
oia s. in u s
r t
r r
O e
p lne a ma oo m o
a r
P l
pind dd in f
yb i
c bf E
r r
Ur or v
r r
mi ieeS e r
repa a oie ov e oh o t
cc t
v 2
r t
e y iz r
9 e
iz t
r et et p
t u
sT i in e
t nt u
r s ri t
a oh p A
c o v r z
r e
u o
i uh lnh s eool h e it e e o u e
r C
t r
t r
i t
p s
Ot sl b pph a
b o 8
N s
t t
,s n s t
, e n
e e ).
g e aee wt e i
nu r
.n n
b ope l
r r
p2 i
pi s s r
r o
P U 'p in a
r s e e
mct b
r it l
n u o e
wvleet mh o eo ec a
wSi m a
la 8
lo(
f r
r u
3 d"
e lo ab bi t
t os c
l t
a a bl r i p
r e
edii p um el a ep c
e et r
r t
j l
t r
la 1
h ah e h n a aed o hi h p o
r C
4 T ct d T av v saf T wt T a P
r i
i l.fl
,l
. :i
,t
Calculation No. 92-EO-0002-01, Rev. 0(2)
' Page 32 of 4 3
..i t
4.1.3.8.a Pressurizer Pressure Trip Bistable Source COMPONENT ID Tag Numbers:
2C23 A-BC-A6. 2C23 B-BC-86,2C23 C-BC-C6,2C23 D-BC-D6 (6.22.6A7.f) 2C23 A-BC-A25,2C23 B-BC-825,2C23 C-BC-C25,2C23 D-BC-D25 Model:
CE Bistabh Comparator Card 26440 -
(6.22,6.37.f)
Instrument Range:
0 to 3000 PSIA (6.7).
Instrument Span:
3000 PSI Operating Range:
1 to 5 VDC (6.7)
T l
Full Range:
0 to 10 VDC (6.18) -
Conversion Factor:
750 psilvolt Time Response:
150 msec (6.18)
ERROR ERROR ERROR SUMM ARY
% SPAN PSI
- a. ACCURACY (RA) i 25 mV i
0.625 % i 18.750 (6.18)
(includes repeatability and resolution)
- b. CAllBRATION (CAL) i 12.50 mV i
0.313 % i 9.375
'(3.2)
- c. DRIFT (DR):
i.
9.0 mV i
0.225 %
6.750 (6[18) l (39 days)
,4
(For a temperature shift of 20 degC)
TE:
i 5.07 mV i
0.127 %
3.803 (6.18)
TEb:
+
1.52 mV
+
0.038% +
1.140-(6.18) 2
?
L W
9 e
Preparer: ' 8fA Date: 9-5-9Z-Checker:
CYG -
Dato:9-3M %
Calculation No. 92-EQ-0002-01, Rev. 0(2).
Page 33 of 49 i
. The Bistable Comparator Card error'(eSU)is as follows:
ERROR ERROR
% SPAN PSI REF eSU =
i (R A + C AL) -
1 0.938 %i 28.125 ABN eSU =
i ((RA + CAL)^2 + DR*2 + TE"2)^0.5 i
0.972 % i 29.173
+
0.038% +
1.140 ABN eSub =
(TEb)
ACC eSU =
I(RA + CAL)^2 + DR'" + TE*2)"0.5 1
0.972 % i 29.173 ACC eSUb =
(TEb) 0.038% +
1.140
+
t i
i
[.
t
.i t
P l'
i 1
!~
l
.)-
4
(
f Preparer: /CA Date: TJ-92 Checker: - d EC Date: 9'3-32.
i L.
.~
i
- Calculation fio 92-EO-0002-01, Rev. 0(2)
Page 34 of 49 '
7..
4.1.2.8.b Pressurizer Pressure Variable Setpoint Card Soutco -
l COMPONENT ID Tag Numbers:
2C23 A-VS-A33,2C23 B-VS-B33,2C23 C-VS-C33,2C23 D-VS-D33 (6.22,6.37.f)-
[
Model:
CE Variable Setpoint Card 26480,31480 (channel C)
(6.22.6.37.f)
{
Instrument Range:
'0 to 3000 PSIA
-(6.7).
f
. instrument Span:
3000 PSI l
Operatin0 Range:
1 to 5 VDC (6.7)
Full Range:
0 to 10 VDC (6.18) i Conversion Factor:
750 psl/ volt i
ERROR ERROR ERROR
SUMMARY
% SPAN PSI
- a. ACCURACY (RA) i
' 25 mV i
0.625 % i 18.750.
(6.18)
(included repeatability and resolution) i
- b. CAltBRATION (CAL) i 12.50 mV 1
0.313 % i 9.375 (3.2) l
- c. DRIFT (DR):
i 9.0 mV 0.225 % i 6.750 (6.18)
(39 days)
- d. WORST CASE NORMAL TEMPERATURE EFFECT (i TE + TEb):
(For a temperature shif t of 20 degC)
TE:
i 5.82 mV i
0.146 % i-4.365' (6.18,3.t ~r) l TEb:
+
3.38 mV
. 0.085% +
2.535 (6.18,3.17) i-t The Variable Setpoint Card error (eSU1 A)is as follows:
REF eSU1 A =
i (RA + CAL) 1 0.938 % i 28.125 i
ABN eSU1 A =
i ((RA + CAL) 2 e DR 2 + TE"2)^0.5' 1
0.975 % i 29.251 t
+
0.085% +
2.535 ABN eSU1 Ab =
(TEb)
ACC eSU1 A =
1 ((RA + CAL)'2 + DR"2 + TE^2)^0.5
.i. 0.975 % i 29.251 ACC eSU1 Ab =
(TEb)
+
0.085% +
2.535 1
{
M Date: 4-I41 Checker: dCm
Date: 9-M A-Preparer:
,.' i
i Page 35 cf 49 Calculation No. 92-EQ-0002-01, Re". 0(2) 4.1.3.8.c Total Output Error Deterrnination SU2 Output Errors The output error term for the bistable card (SU2) for Channels A. C and D ERROR ERROR is given as follows:
% SPAN PSI i
1.152 %
34.554 REF SU20 =
1 (R20'2 + eSU'2)^0.5 1.499 % i 44.959 ABN SU20 =
i (R20'2 + eSU"2)'0.5
+
0.038% +
1.140 ABN SU2cb =
(eSub)
+
1.537% +
46.099 ABN SU20t =
+ SU20 + SU2cb
- SU2a 1.4999b -
44.959 2.178 % 1 65.355 ACC (LOCA) SU20 =
i (R20(LOCA)^2 + eSU'2)'0.5
+
0.128% +
3.840 ACC (LOCA) SU2cb =
(R2cb + eSUb)
+
2.306% +
69.195
+ SU20 + SU20b
'x ACC (LOCA) SU20t =
- SU2o 2.178 % -
65.355 3.269 %
98.056 ACC (SLB) SU2o =
i (R20(SLB;'2 + eSU'2)'0,5
+
0.168% +
5.640 ACC (SLB) SU2cb =
(R2cu + eSUb)
+
3.457% + 103.696 ACC (stb) SU20t =
+ SU2a + SU2cb
- SU20 3.269 % -
98.056
)
/ fA
_ Date: 9-W _ Checker:._ d C f G Date: % dA 2
Preparer:
' Page 36 of 491 l Calculation No. 92-EO-0002-01. Rev. 0(2)
't The output error term for the bistable card (SU2) for Channel 8 ERROR ERROR
- i is given as follows:
% SPAN -
PSJ f
N REF SU20 =
i (R20'2 + eSU'2)'0.5 '
i t.668% i 50.054 otn ABN SU20 =
i (R20'2 + eSU'2)'O.5 1
2.147 % i 64.399 i
l
+
0.038% +
1.140 ABt1 SU2cb =
(eSUb) t ABtJ SU201 =
+ SU2o + SU2cb
+
2.185% +
65.539 i
- SU2o 2.147 % -
64.399 l
ACC (LOCA) SU2o =
1 -(R20(LOCA)'2 + eSU"2)'0.5 i
2.666 % i 79.982
+
0.128% +
3.840 ACC (LOCA) SU20b =
(R2ob + eSUb)
ACC (LOCA) SU20t =
+ SU2o + SU20b
+
2.794% +
83.822
(
- SU2o 2.666 % -
19.982 l
ACC (SLB) SU20 =
i (R2o(SLB)-2 + eSU 2)'0.5 i
3.612 % i 108.356 t
4
+
0.188% +
5.640 ACC (SLB) SU20b =.
(R2ob + eSUb)
ACC (SLB) SU201 =
+ SU20 + SU2cb
+
3.800% + 113.996
- SU20 3.612 % - 108.356 t
I i
q Preparer: NA Date:9-I Checker: dOVY\\
Date:9'3-h
Calculation No. 92-EO-0002-01, Rev. 0(2)
Page 37 of 49 i
SU1/1 A Output Errors r
l i '
PERIODIC TEST ERROR =
i(SU(RA)'2 + SU(DR)'2 + SU(CAL)^2 + SU1 A(RA)'2 + SU1 A(DR)'2 + SU1 A(CAL)'2)^0.5 i
1.038 % i 31.145 i
s The output error term for the bistable card / variable setpoint card (SU1/1 A) for Channels A, ERROR ERROR C and D is given as follows:
% SPAN PSI l
REF SU1/1 Ao =
i (R1o^2 + eSU'2 + eSU1 A*2)"0.5 i
1.485 % i_ 44.554 t'
'ott ABN SU1/1 Ao =
i (R10^2 + eSU'2 + eSU1 A*2)'0.5 i
1.788 %
53.637 ABN SU1/1 Aob.=
(eSub + eSU1 Ab)
+
0.123% +
3.675 ABN SU1/1 Act =
+ SU1/1 Ao + SU1/1 Aob
+
1.910% +
57.312
- SU1/1 Ao 1.788 % -
53.637
. j i
ACC (LOCA) SU1/1 Ao =
i (Rio(LOCA)'2 + eSU'2 + eSU1 A'2)'0.5 i
2.387 % i 71.602 l
ACC (LOCA) SU1/1 Aob =
(Riob + eSUb + eSU1 Ab)
+
0.213% +
6.375 ACC (LOCA) SU1/1 Act =
+ SU1/1 Ao + SU1/1 Aob 4
2.599% +
77.977
\\
- SU1/1 Ao 2.387 % -
71.602 I
r
ACC (SLB) SU1/1 Ao =
i (Rio(SLB)^2 + eSU'2 +eSU1 A*2)'0.5 i
3.411 % i 102.326 ACC (SLB) SU1/1 Aob =
(R1ob + eSUb + eSU1 Ab).
+
0.273% +
8.175 i
ACC (SLB) SU1/1 Act =
.+ SU1/1 Ao + SU1/1 Aob
+
3.683% + 110.501
- SU1/1 Ao 3.411 % - 102.326
- . )
i Preparer: 8EA Date:9-3NE Checker: ' d EYY') - Date: 9-3 h -
f 1
a
ff
![l
- l t i [liI\\!,
JlIe! r-34 f
c 8
3 e
g a
P R
4 0
5 5 0 3
5 8 3 4
5 94 1
3 7
0 3 6
7 3 6 3
7 03 R S 4 7
6 4 7 1
3 51 2
1
- 4. 2 OI P7 0
3 4 0 5
6 1 5 2
8 02 R
5 7
77 8
98 1
2 1 1
1 1 E
i i
+
+ -
i
+
+ -
i
+
+ -
N%
RO A4 8
3 0 8 9
3 1 9 1
3 4 1 1
5 2
8 5 3
1 53 4
7 1 4 S 9 3
1 43 8
2 08 7
2 07 P
R 1
2 0
22 2
0 32 3
0 43 RE%
1
+
+ -
1
+
+ -
i
+
+ -
B t
)
- e s
nna hC A
rc 5
T f
0 5
)A
')
0 3
1 2
)'
/
A' 2
9 1
U 5
5 A'
1 S
O 0
U e
(
)"
1 t
S
)
U a
d 2
2 e
D S
ra A
V
)
)
+
c b
e b
2 A
+
\\.
1 1
t in U
U 1
b 2
b 1
o S
S b
U U
o U
o S
S A
U S
A G
p e
e o
A e
e 1
S a
1 f
t
+
+
)
1 e
/
C b
/
/
e
+
1 s
2 2
+
1 U
b U
+
b U
d A
1 U'
U le 1
b U
S
)'
U S
2 u
S a
S S
A S
+
)'
S
+
r:
S e
e
+
r e
C e
B e
e i
oo k
a
+
+
oo oo L
+
AA c
v
+
O
+
)
2 2
AA L
S e
b 1 1 1 1 b
1 1 b
2 d
(
(
'o o
u o
o o
o h
//
//
//
(
r 1
1 1 1 1 1 C
0 a
1 i
UU 1
1 S
UU UU R
R t
1 c
R R
v R
R e
(
(
(
(
e le
(
(
(
a i
1
+ -
i
+ -
i
+ -
4 R
b 5
t 1
s i
9 0
b 2
e e
t h
' =
=
D a
t r
=
=
o b
t f
o o
c
=
b O
t n
A A
A o
o o'
E n
A A
A 1
1 1
/
/
/
E e :s 1
1 1
1 1
1 '
=
=
U U
U t
/
/
/
w A
1 1
1
=
=
b r
oo S
S S
U U
U f
t e
r l
a o
o o
r lo A
A A
S S
S
)
)
)
N ef A
A A
)
)
)
t 1
1 1
1 C
C C
B B
B n
s
/
/
/
1 u
r O
O O
L L
L io a
1 1
1 1
e p
n U
U U
U L
L L
S S
S r
ta u
t
(
(
(
(
(
(
a e
S S
S S
i F
N N
N C
C C
C C
C p'
tu o
v e
lc eg E
B B
B C
C C
C C
C r
a h
C Ti R
A A
A A
A
. A A
A A
P s
l
. G i
M 0
t' k, j-
,!tl
- l'2;!li,
! l; ;!
i!
k
.l if t;
i!
!!lf!:
Im d P7ge 39 cf 49 Calculation !Jo. 92-EQ-0002-01. Rev. 0(2) 4.1.4 Calculated Trip Setpoints and Attowable Values The tirniting safety analysis setpoints for the Low Pressurizer Pressure are: a reactor inp and safety iryection actuation at 1625 psia for Small Break LOCA event; containment cochng and safety injection acution at 1578 psia for the LOCA, Steam Line Brea( Steam Bypass Ma!! unction ar'd Steam Generator Tube Rupture events. These setpoum-are taken from references 6.39 and 6.19.
4.1.4.1 Trip / Actuation Setpoint The largest chantiel erros s. which are associated with channel B, are utilized in the following analysis.
RPS!SIAS Analysis Setpoint + ACC(LOCA) Sut/1 Act SU1 Trip / Actuation Setpoint
=
+
91.6 PSI 1625.0 PSIA
[s.
1716.6 PS1A
=
=
SlAS/CCAS Analysis Serpoint + ACC(SLB) S!)1/1 Ac' S Trip / Actuation Serpoint
=
q 1578.0 PSIA +
120.5 PSI N
=
/c(n ;
1698.5 PSIA
=
The most limiting (i.e. highest) of the above setpoints is used:
M AX[RPS/ STAS Setpoint. S!ASICCAS Setpoint]
, SUt Trip / Actuation Serpoint
=
1716.6 PSIA
=
Revision 0 of this calcu!ation determined an SUI Trip / Actuation Setposot of 1717.4 PSIA. Subsequently, a Techn! cal Specifications change request was submitted based on the 1717.4 PSI A setpe-nt value. Since the setpoint value calculated per revision 0 is sttti mo h
than the setpoint value calculated per this calculation nedsion (Rev. 0(2)), the enginally calculated value of 1717.4 PSIA shatl The actual SU1 Trip! Actuation Setpoint Thus, this caiculation revision establishes a conservative setpoint margin of 0.8 PSI (1717.4-1716.6).
is established as given below:
1717.4 PSIA SU1 Trfp/ Actuation Setpoint
=
3 4 M2-Preparer:. /2fd Da*e: 9+9E Checker:
Crn
. Date:
!li t
iE}'lj;i j ;ii ; fitIg
,It
[E f l!!
II
.iEfi'lt b!,
9 4
=
fc 0
4 ega P
e c u nlaav nl oa it s
n w
ci u
o em.
n o n j
lle nio i
f t
yaa s
t I
I S
a e s e 4-r S
f i
P P
n at p e
s in o e
r 5
o o
iv eo4 1
t t
f 1
e 4
g h p n
t e
io r
A 7 s
t 3
ed f
e 1
i oSo p
h
/
1 d
t lasM e
t 1
U n
s a
viso S
9 S
o! t tn d
y s
t e
ma5 s
3 1
i E
iop B
i en e la n
y T
4 A d r
P A
e
+
a t
sl o n
t l
s
+
e s aM A
e po
!A u
r a
v t
AA A
)
t AA nI I
b S
ym m laS Da SI I
m e
I ioSS SS v
r b
o oP n
e i
P PP a
pPP c
r c
t la w
iRf m
t g
e0 G
(
5 ta s n 0
o4 3 S 49 7
msi R 5 i
p76 ip p71 6
f d
e1 8 t
i1 9
2 3
ao t
r opg s
T 77 0
r 7 6 e
s t
S 6
8 uy n a
r 1 1 1 1 I
.p e
1 aB e
p' 1
U ed U
c r eh y
n oh w B
h e S
S r i e
f t
r T
r d
d e
r o u e
e k
e f
q f
)
r s v c
2 s e e
iu no e
r t
r 0
n s m
qiom h
(
C et e ea o
r c r'
=
md
=
v
=
n
r ee is e
f u s 2
t i
R ir 7'
f g
n n
s oS s u n io 3
1 qa p
it Aa 0
eh cF p 4
t r C e
nS y
.2 isb s
s u E,b' e
0' e
f t
)
e t
a 0
y m
s en h
n D
0 s
la a a
io slaa p
y t
r ot io r
e s
n ui t
n st t O
u n
a m
a t
t E.
la e
io y s t
p e uh e
(
t u
t t
V la e
n n
r s S
e u io ip io S
p e
P k g l
t 2
t 9
le r
V e
n b
S a la p
p r c i a
4 f
te t
i t
s eer v
o a
le s
6 e
p w
b m
og S
S a
' iz t
u o
2 e
s m
/
r t
s t
s J
p u nn lo a
nn n
m y
s ei e
o A
la i
m n
l w
ew e
B s mn R
it lo A
r r
r r
r a
e o
s e
a o la lA 4
r n
la 2
lA 3
l A
cu r
l r
iad s
P a
eo e
a p
4 u
4 4
t r f l
e e
ens p
1 l
c e
e U
h u
1 e
oa y
la 1
u 1
h r
h C
4 S
4 T
S T
S cb B
P t
h
< g/
.i
- 1
- 1!'
- !i!#
l:1l:
?
- f j
- l
- '!fi1I'lh!
Page 41 cf 49
(
Calcu:ation tio. 92-EG-0002-01. Rev. 0(2) l 4.1.4.5 Variab!c Setpoint Step Increment As discussed in 4.1.1, the variable Setpoint Step increment is a nominal vafue based
/g, on er.gineering judgement and operating expenence at CE plants.
200 PSI Vanao!e Serpoic t Step inctement
=
4.1.4.6 Variable Serpoint Minirnum The variable Setpoint Minimum is a nominal value based on engineering judgement and 1
CE operating expeisence.
i 100 PSIA Variable Setpoint f.iinimum
=
l 4.1.4.7 Low Setpoint Afarm The variable Setpoint card provides an alarm if the setpoint falls befow pressurizer pressure by a set value. This value may be set as required by the field. The current value from Reference 6.26 is:
568.75 PSI Low Serpoint Alarm
=
)
skfG Date:9091 Preparer:_f${.d Date: #-1 12 Checker:
. =
Page 42 of 49 Caiculation fio. 92-EO-0002-01, Rev. 0(2) i -.
4 4.1.5 Voltage Equivalents for Trip Setpoints and Allowabte Values
' The PPS Cabinet input ranges from 1 to 5 volts.
This is equivalent to a process range of 0 to 3000 PStA l
l Based on these endpoints the fo!!owing equation be derived.
f L
I
+
1.00
{ PSIA.
I 750.00 )'
i V(PSIA)
=
j.
V(PSI)
=. ( PSI
/
750.00 )
Value Voltage i
j Trip Serpoints SUt 1717.4 PStA 3.290 volts j
i 7
j Allowable Values
+
SU1 1686.3 PSta 3.249 volts
{
l l
Pretrip Setpoints 1
SU1 1803.75 PS!A 3.405 volts i
t
{
Bypass Setpoints -
I i
St32 500 PSIA 1.666 volts
}
1 l
l Setpoint Step increment 200 PSI 0.266 volts Variable Setpoint Minimum 100 PSIA 1.134 voits i
h J
Low Setpoint Alarm 508.75 PSI 0.785 volts i
(
i a
I l
'i 1
?
k 1i M-72 Checker:dM Date:bO-D Preparer: frA Date:
i l
r
,i l1ll
!llfj}
. t t[t tf!
'l
- lltf
, j t { f!; i ;i I.frtI!
=
9 4
fo 3
4 ega P
e
) )
c 9 9 2
ru 2 2 e
o 66 3
. c S
(
(
3 na le tt b
ie a
v r d T,
ue n
s ir o
s u i
t s uq a uoe
=
coi e
i i v r
t icer r f
a v ee ts er P u pp t
s u
e S nt.F m
g os t
s n
a e..
e in h
icdt t t ne m
a e e n
s em it a
c h amm h
t c
i e
e c
e eBt e s
b e
i.
T ei n
r n
ip M p b ).
29 nqt p
.) s uo o
i 3 oee s
er a c r
t v
ct O
pr u e
t e
6 eieF s nn r
r h Dh S s,
N ee it t
d oi Ac t
t r
n n
sA sE e mnd ao o
v d Ed el encc r
e i
c e
eh a or of l e
eCet v l
f cici s
c ec
, fee e w 0
x h x in s,
eRs pe 3
)
- p ccccc c
c et e s or y m eeee e e
e m( 9. S im e
4 r
s s s s s t
s it e
t e a u s0l h 5 at t
t t
l ed ee p 00030A0 3
eis ece
)
e S 0 562 5 #2 0
yh i s s
o3 mt mrng A2 0 1 5 1 nl n
t apa F
0 1
o at h n o
pns c o d 3 t
L r ur r a i (e 00O00 0
1 r le e
ar S
s a s ep t
pe pas E
ey pT e pa a
s ab O
t ut d nd
(
r t
t n
d eo er mT eiece I
f h d N:
an U
nat r
r s
ose e
o t
oio n
r i e o S
ne nh p c
u nr c
it t
e e
- e. iu t io n
o wot m
>hi h q nt a e
t t t n
e a c
+
momfo c 0
c n
ici t
- 9. byo s r p
c a
f s
f e
etud cccccc c
eeeeee e
e dnl io i ic D
e n e l
h ah pe.
s s s s s s s
t t
eist g p c
t t
ni nua5 h
iwia isS r
r t
et eou -
wle ec S05 6 2. 50/
8 d qel ic O
000300A 3
s ul s t
h ch 3
l t
)
o a f
ei wh a3 P2 0 1 5 1 1 N 1
e en r n n c nc e
t ce a n e i
d e
ml ml ed R000000 mh nS is n p
1 a
h ot otih n i
(
x 1
c nr nt a c
r 1
ei el Ue f
uf ue2 U
Sl a ST t
l r lar d -
S useP lai l
a c
r v ov ou3 r 2 e
c S nRr n o -
r s r sl s
h oh e
enen n3 o ef c O
c f
t r
m n et eis oph e
e N e
n
)
si st e f
st e imA h
i 2
T el ele nb e et mT i
ol
(
C-e r
0 ai e Tf e
mnmn a
mdh h
y t
s o
v.
s it ni n eT od st a )s 9'2-T nt et i
t e
n a
a h eh on
- e yce na e y R
o e
l d o p
h ch c it s
d m
la et oh Dla t
t I
e s cpt e
s es e a
i e
1 e
0 R
et e ic T
- e D 2. e s e led 4:
i h i h. d per u
n e
if m
g l
x r
vi y
iT ne sh e h d D
mom'o s
n 2
le c
a e1 e e n ai a.
t n
0 t i r
e i
n T
- le
- e nhi Tt 0
t r
n u
upp aD t
r e
s at t t
l Ca 0
l o
a y py pes n
h niai Q
C la n le i mla it leGt o
Caeh w Sl h
a n e
t e8 e
ic n
p h ct Ae E
DeDet i m
bh i s
St n n n g
F c t
acb n
h let st n
is iwC R
Rs ie ei S n A
h em s
e P s 2
e le t
t t
t a
e t
M_
t r v s E u 9
m n ana nc a
eeo e n
n oe B S le dl pr t
d q r : : :
t o
e ae a epT T
r r y
eilpa n
e s x p e e r
luh lu s ee r e
J t
s f
u h
i es c c
2 t
t t
e t
e n r e n
ct s
CaCa nr r
t u eer iT a
e gan eg i
n r
r a
v v
e S
Ft FO o v v eb R
J n n v a peinh la pi e
r n
,h o
r it t
l r
oS C
x vt gi x d nSt moo nCt la M
P nS ioEA eCCo cA l
ee an e eu a
RioE l
p r i v ec e
u 6
pepee s
C S aF a
ewet r
t s
lc et e u h in r
P eS o
h op oNI t
a.
1 h eh eh e
/
l PRE T
Th ot s T(
P RI VI l C
4 T sT sTS (j
t!l!l il{
- (!fI'
,1i j b j [ [ f f[I 1i 4 !
!4'
e Calculation flo. 92-EO-0002-01, Rev. 0(2)
Pago 44 of 49 r
5.0 Conclusion - Low Ptoscurizer Prossura:
The most conservativo channel (B) loop errors for instrument loop numbers 2PT-4G24-1 2PT-4024-2,2PT-4042-3 and 2PT-4624-4 are Diven below. Tho negativo ADN and ACC I
errors do not account for the process measurernent errors (sco Section 4.1.3.1) since they do not affcct the sotpoints associated with this calculation.
[
r
% SPAN PSI REF SU1/1 Act =
1.914 %
57.414 ADN SU1/1 Aot a
+
2.480 %
+
74.405 70,730 2.358 %
+
3.051 %
+
91.538 ACC (LOCA) SU1/1 Act =
2.839 %
85.103
+
4.014 %
+
120.409 ACC (SLO) SU1/1 Act =
112.234
\\
3.741 %
)
REF SU2o =
1.068 %
i 50.054
+
2.185 %
+
G5.539 7
AGN SU201 =
64.399 2.147 %
+
2.794 %
+
83.822 ACC (LOCA) SU20t =
79,982 2.066 %
+
3.800 %
+
113.996 ACC (SLD) SU20t =
100.356 3.612 %
The setpoint for these instrument loops is:
SU1 1717.4 PStA 3.290 VOLTS The allowable value for those instrument loops is:
SU1 1686.3 PSIA 3.249 VOLTS The protrip Sotpoint for those instrument loopt is:
SU1 1803.75 PSIA 3.405 VOLTS l
The bypass sotpoint for these instrument loops is:
SU2 500.0 - PSIA 1.666 VOLTS l
Tho variable sotpoint stop increment for those instrument loops is:
I SU2 200.0 PSI 0.266 : VOLTS Tho variable sotpoint minimum for those instrument loops is:
SU2 100.0 PSIA
.1.134 VOLTS The low setpoint alarm for these instrument loops is:
SU2 588.8 PSI 0.785-VOLTO The responso timo for those instrument loops is:
SU1 1.183 sec. (RPS)
SU1 1.103 sec. (ESFAS)
Preparer:___$3 Dato: 4-ME Checker: Jon oaio:+ M2.
u.m..
,._m.
a
e a
l Calculation No. 92-EQ 0002-01 Rev. 0(2)
Page 45 of 49 6.0 REFEP.ENCES
{
6.1 Letter to P. Collette from A. J. Wrape III (ENTERGY), ANO 912-00919, November 12, 1991.
a)
Schematic Block Diagrams E-2205 Sh. 2, Rev. 3 b)
Schematic E-2753 Sh. 22 Rev.10, E-2753 Sh. 29, Rev.10 c)
Internal Connection 2C15: 6600-2-M2001-M1-48, Rev.13 i
6600-2 M2001-M1-50, Rev.16 6600-2-M2001 M1-52, Rev.12 6600-2-M2001-M1-54, Rev.13 6600 2-M2001-M1-55, Rev.12 6600-2 M2001-M1-56, Rev.12 6600-2 M2001-M1-58 Rev,13 6600-2-M2001 M159, Rev.12 4
d)
External Connections: E-2951 Sh.1, Rev.13 E 2951 Sh. 4, Rev.13 E-2951 Sh. 7, Rev. 9 E-2951 Sh. 9, Rev.10 F-2693 Sh. 9, Rev. 2 E 2693 Sh.10, Rev. 2 E-2693 Sh.11, Rev. 2 E-2693 Sh.12, Rev. 2 c)
Fig. 81 Sh. 2 (CE PPS Vol. II TM C490.0850 Vol. 2 of 3) f)
SIMS Component List i
g)
P&lD M-2236 Sh 2, Rev,9 h)
Instrument Data sheets M 2516 Sh. 5, Rev. 4 l
6.2 Instrument Loop Error Analysis and Setpoint Methodology Manual, Design Guide IDG-001-0.
6.3 Rosemount Product Data Sheet 2388, Model 1153, Series D Alphaline Pressure Transmitter for Nuclear Service, Revised 11/87.
(Vendor Manual TM R370.0010, TD R370.0150 Rev. 2; " Installation Manual for Nuclear Service Model 1153 Series D Alphaline")
6.4 Rosemount Report DS900126, Rev A, "30 Month Stability Specification for Rosemount Model 1152,1153 and 1154 Pressure Transmitters "
(Vendor EQ File V43 Item 134) 6.5 Resemount Qualification Report D830040,"1153 Series D Rosemount Pressure Transmitters For Nuclear Service."
(Vendor EQ File V43 Item 90 (Rev. A), Item 131 (Rev. C))
JCrn Date: % Prepared by: 4D1 Date:. 7 +4
Checkcd by:2 F
4c,---.nvsNew-,w.'e4w-,,-w-
- ,.,2,-or y
..e r
,r w-gm.
,,3
,-w
~,,,-em.e,-
-,m#.
ce,-,y.w-.'-w---e,..,',,2.-,,'s e i, w y,,-..w,,
y,.y.,~umy,5:ww
. hwv r r
r e--
r m. - e rw-ar r a*'y
Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 46'of 49 1
6.6 Foxboro General Speci5 cation GS2A 2DI A, Dec 1968.
(Vendor Manual TM F180.0970, TD F180.4930 Rev. 0; " Instruction Book 2008 for Foxboro Current Repeater Model 66B")
6.7 I&C Periodic Test Procedure 2304.041, Rev.13, Plant Protection System Channel A Field Calibration.
I&C Periodic Test Procedure 2304.042, Rev.13, Plant Protection System Channel B Field Calibration.
I&C Periodic Test Procedure 2304.043, Rev.14, Plant Protection System Channel C Field Calibration.
I&C Periodic Test Procedure 2304.044, Rev.14, Plant Protection System Channel D Field Calibration.
6.8 Foxboro Diagram 6600 M2204A 153, Rev 4.
7 6.9 Rangedown Effect on Model 1153 Series B and D transmitters, RAIT Report 108221, Rev. A.
6.10 Type Test Report for Pressure Transmitter Rosemount Models 1153 Series B and D Output Code "R", RMT Report D8300131, Rev. A.
(Vendor EQ File V43, Item 57) 3 6.11 Mpecine IR Effects Calculation", ANO-2 Calculation No. 92-EQ-0003-01, cPhi Rev. 2.
/
6.12
" Control of Calculations", ANO-2 Procedure 5010.015, Rev. O.
6.13 Telecon from D. McQuade (ABB/CE) to W. Cottingham (ENTERGY) 11/27/91, 3:00PM "PPS Loop Uncertainty /Setpoint Calculations" TIC-92-299.
6.14 Telecon from D. McQuade (ABB/CE) to M. Zuber (ENTERGY) 12/3/91, 2:20PM "PPS Loop Uncertainty /Setpoint Calculations-Incontainment Cable Lengths",
TIC-91-1795.
6.15 Letter to C. H. Neuschaefer from R. Baker, 3/17/77, ID-77-125, "PPS Equipment-Uncertainty Errors and Time Delays for AP&L, LP&L, SCE 2, 3."
6.16-
" General Engineering Speci5 cation for a Plant Protection System", ABB/CE Speci6 cation No. 0000-ICE 3001, Rev. 03, May 13,1976.
Prepared by: 404 Date: 44-12 Checked by: Jcm nate:% 62-m
..., r
, '. =,
-...-,vw..-
..wu.
.~wu..-
,,m-....,
..y~.
u.
...,4 r
n.r.,,
-r,',
,. ~, -
~. - -
Calculation No. 92-EQ-0002-01 Rev. 0(2)
' Page 47 of 49 2
6.17 Telecon from Pete Hung to W. Cotdngham, 3/6/92,10:15, "ANO 2 PPS Lmp Uncertainty /Setpoint Calculation", TIC-92-053.
6.18 M. E. Assard, " ANO-2 Misce!!aneous PPS Uncertainty Information",
TIC 92-804, June 22,1992.
6.19 R. C. Thomas, " Data Transmittal for ANO-2 (511920)" Memo A PSA-067, to P. P. Slowik, dated 5/19/77.
6.20 Rosemount Product Data Sheet 2514, Model 1154 Alphaline Nuclear Pressure Transmitters, Revised 4/87.
(Vendor Manual TM R370.0010, TD R370.0160 Rev. 2; "Instru: tion Manual for Rosemount Pressure Transmitters for Nuclear Service, Model 1154 Alphaline".)
r 6.21 Vendor Manual TM F120.0010, TD F120.0450 Rev.1, " Instruction Bulletin for Current to Current Converter Series 50EK1000".
6.22 Letter to P. Collette (ABB/CE) from A. J. Wrape (ANO) dated 2/13/92, 7,
6.23 General Resistance, Inc. "Econistor Types 8E16/8E24" 1982, h
6.24
" Environmental Qualitication Program Manual", NP#71 Rev. 4.
6.25 C.H. Turk, " Radiation Levels Prior to SIAS for LOCAs", ANO 92-00889, to D.W. Cottingham, June 19,1992.
6.26 I&C Periodic Test Procedure 2304.089 Rev. 0; Plant Protection System Channel A Calibration.
I&C Periodic Test Procedure 2304.090 Rev. 0 Plant Protectica System Channel B Calibration.
I&C Periodic Test Procedure 2304.091 Rev. 0; Plant Protection System Channel C Calibration.
I&C Periodic Test Procedure 2304.092 Rev. 0; Plant Protection System Channel D Calibration.
I 6.27 Letter to P. Collette (ABB/CE) from A. J. Wrape (ANO), dated 11/20/91, ANO-91-2-00930.
ip N)j yn 6.28 ANO-2 Plant Protection System Methodology Review, Report 92-R-2014-01 V
Rev. O.
l Prepared by: AfA Date: 4-3-92 Checked by: dro Date: 43M2 l
t_m--,_ _. -... _ _
....._.,___,.m,,,,__...
-..m
Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 48 of 49 6.29 J. C. Winslow, " Response Times of the 13FAS Auxiliary Relay Chinets and Reactor Trip Switch Gear" Memo ID-77-260, to P. P. Slowik, dated 6/16/77.
6.30 Foxboro Quality Assurance Laboratory j
-Type Test Reports: QOAAB35, Rev. A QOAAB50, Rev. A s
(Vendor EQ File V26,1:em 34.)
/y nt 6.31 Foxboro Technical Information, TI-2AX-150, May 1978.
(Vendor Manual TM F180.3240, TD F180.4700, Rev, 0; " Technical Information for Foxboro Single Nest dc Power Supplies,2AX+PS9 Series - Style B.")
6.32 ANO Telecon from Steve Capehart (EOI) to Bob Dunbar (Fischer & Porter Company), 12/11/90, "F&P Senes 50EK1000 Current-to-Current Converters".
APVN-901211-121 6.33
" Time Response Calculation for a Cunent-to-Current Convertet", ABB/CE Calculation No. 6370-ICE-36219,4/24/9' 6.34
" Containment Conditions for Ins;rument Error Calculations", Calculation No.
02 E-0001-02, Rev. O.
6.35 Foxboro Technical Information, TI-2AO-125, September, im '.
(Vendor Manual TM FISO.3240, TD FISO.3280, Rev. 0; " Technical Information for Voltage-to-Current Converter Model 2AO-V21, Isolated 4 to 20 mA DC.")
6.36 Foxboro Technical Information, TI-2Al-130. October,1977.
(Vendor Manual TM F180.3240, TD F180.3260, Rev. 0; ' Technical Information for SPEC 200 Current-to-Voltage Coriverters.")
l 6.37 Letter to P. Collette from A. J. Wrape III (Entergy), ANO 02-2-00207, April 7, i
- 1992, 1
a)
System Component Evaluation Worksheets #2A033-2A036, Rev.1
- 2A021-2A024, Rev. 4
- 2A001-2A002. Rev. 2
's
'$U
- 2A003-2A016, Rev.1 b)
Schematic E-2731, Rev. I1 E-2701-1, Rev.12 E-2701-2, Rev.12 1
E-2701-3, Rev.13 E-2701-4, Rev.15 E-2701-7, Rev. 9 E-2701-b, Rev. 9 I
Prepared by:
4A Date: M -12 Checked by: detD Dateh 3-h
i Calculation No. 92-EQ-0002-01 Rev. 0(2)
Page 49 of 49 E-2701-9, Rev 7 E-2701-10, Rev. 6 E-2701-11, Rev.1 E-2703-1, Rev.15 E-2703-2, Rev.17 E-2703-3, Rev.15 E-2703-4, Rev.16 E 2703-5, Rev.13 E-220510, Rev. 7 E-2258-3, Rev. 8 E-2258-4, Rev. 5 E 2258-5, Rev. 6 c)
Internal Connection: 6600-2-M2001-M1-47, Rev.10 6600-241200141!-48, Rev.13 6600-2-M2001-M1-49, Rev.13 6600-2-M2001-M150, Rev.16 6600-24f20014f151, Rev.13 6600-24120014f1-52, Rev.12 6600-2-M2001-M1-53, Rev.10 6600-2-M2001-M1-54, Rev.13 6600-2-M2001-M1-55, Rev.12 6600-24f2001-M1-56,' Rev.12 6600-2 M2001-M1-58, Rev.13 6600-2-M2001-M1-59, Rev.12 d)
External Connection: E-2951 Sh.1, Rev.14 a
E-2951 Sh. 2, Rev. 8 E-2951 Sh. 3, Rev 8 E-2951 Sh. 4, Rev.13 E-2951 Sh. 5, Rev. 9 E-2951 Sh. 6, Rev. 7 E-2951 Sh. 7, Rev. 9 E-2951 Sh. 8, Rev. 9
= E-2951 Sh. 9, Rev.11 E-2951 Sh.10, Rev. 8 E-2951 Sh. li, Rev 7 -
e)
Fig. 8-1 (CE PPS Vol. II TM C490.0850 Vol. 2 of 3) fj JIMS Component List g)
P&ID: M-2230 Sh. 2, Rev.13 6.38 ANO-2 Calculation No. 85 EQ-0004-10, Rev.- 04.
6.39
" Low Pressurizer Pressure Setpoint for Arkansas Nuclear One Unit 2 FSAR LOCA
-Small Break Analysis", F. Cohen, A LOCA-77-012, June 30,1977.
Prepared by: M/
Date: 'M-12 Checked by: CNA Date: 9 t
~~4 -. a,. n-'.
~ -
.+_.--...,----.,--w.
m--
,--,,L.~.+--,.-e,5w.,,,--4,
-~m-.,
m-v e n,.
~,y,,,
'A.
,-N
-.h--
,s-
-