ML20073M903

From kanterella
Jump to navigation Jump to search
Analysis of Flow Stratification in the Surge Line of the Comanche Peak Reactor
ML20073M903
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 04/30/1991
From: Sha W, Shen Y, Sun J
ARGONNE NATIONAL LABORATORY
To:
NRC OFFICE FOR ANALYSIS & EVALUATION OF OPERATIONAL DATA (AEOD)
References
CON-FIN-D-2195 ANL-91-6, NUREG-CR-5456, NUDOCS 9105160064
Download: ML20073M903 (58)


Text

i NU R EG/CR-5456

ANL-91/6 l

Ana. ysis 0:: F ow S':rati::1 cation in ae Surge Line 0:? tae Comancae Peax Reactor i

l l

Prejured 19 J. (i Sun, Y.11. Shen. W. T. Sha

Argonne National Laboratory i

l'reparni for U.S. Nuclear llegulatory Commission 9105160064 910430 DR ADOCK 0600 5

_ . _ _ _ - - . _ , . . . . ~ . - _ . . . _ . . - _ _ _ _ . _ . . - . - - _ - - . - _ . _ _ ~ . - . . - . _ _ . - - - . . _ _ _ . . . . __

2 i

i l

^

AVAILAtlillTY N01tCE l

Ava4te of r Reference Materals Cood en h4C Puthatan Most documents cued h NRC put>lications will be aval,atde from one of the following sowces'

t. The NRC Pvt,lic Document Room. 2170 L Street, NW, lower Level. Washington. DC 205$5 t i i  ? The Superhtendent of Documerts, U.S. Government Printing Office, P O Bom 37082. Washhgton, l DC 20013 70M  !

l 3 The National Techrdcalinformation Service, Springfield, VA 22101  !

ANhoug5 the listh; that fetows represents the majority of documents cited in NRC publications, it is not interided to tie es.haustive 4

Referenced documents avarable for htpection and copyhg for a fee from the NRC Public Document Room

! Include NRC correspondence and interna! NRC memoranda; NRC Office of Inspection and inforcement but etins. circulars. Information not6ces, inspection and hvestigation notices; Lk ensee Event Reports; ven.

)I dor reports and correspondence: Comm!ssion par %fs; and appbcant and licensee documents and corre. j spondence  ;

}

The following documents in the NUREO series are avaltab!c for purc.hase from the GPO Sales Program: I formal NRO staff and contractrst reports, NRC. sponsored conference proceedings, and NRC booklets and brochures, Also avahable are Regulatory Guides NRC regulatk>ns b the Code of reaeralllegutahons, and  ;

Nuclear Regulatory Commission Issuances i 1 i Documents ave.Ilable from the Nat6onat Technicat information SerYlCe hClude NUREG series reports and

  • technical reports prepared by other federal agencies and reports prepared by the Atomic Cnergy Commis. l slon, forerunner agency to the Nuclear Regulatuy Commission. I t Documents stallable from public and special technical llbrarles hclude all open bterature items, such as

! bo065. Journal and periodical articles, and transactions. federal Reglster not6ces, federaf and state leg'sla, j tion, and congressional reports can usually be obtained from the6e librartes. +

Documents such as theses, dissertations, foreign reports and translations, and r on+NRC conference pro.  ;

ceedings are available for purchase from the organuation sponsoring the put>kcat6on cited.

i Single cop 6es of NRC draft reports are available free, to the extent of supply, upon written request to the Office of information Resources Management, Distribut6on Section, U.S. Nuclear Regulatory Commission, I Wastungton. DC 20555. '

Copies of hdusar.y codes and standards used b a substantive manner h the NRC regulatory process are  ;

l mahtained at the NRC Library,7920 Norfolk Avenue, Bethesda, Maryland, and are avaBable there for refer, ,

t ence use by the pubhc. Codes and standards are usualty copyrighted and may t>e purchased from the ,

originating organlJation or, if they are American National Standards, from the American National Standards  !

Institute,1430 Broadway, New York, NY 10018. ,

DISCLAIMER NOTICE This report was prepared as an account of work spormored by an agercy of the Unitod States Govemment.

I Neithm the United States Govemment nor any agency thoroof, or any of their employoos, makes any wananty,  ;

crpreced or imphed or assumes any kQal liablisty of responsibit;ty for any third part/s use, or the resutts of such use, of any inf ormation, apparatus, procuct or proans ci$cl%ed in this report, or repr(conts tral its ue.e by such third party would not infange privatory ownod fights.

een,,.r,,.e .w.,- , ,,. - --,-4 n -am ,--nnz,,.e +,- n,..,,--g--.lr , , - - ~ - , , - ~.w c . ,w~ ,m w v~co~~v" ~ v,-" ~'n"*- ,n awn

NURiiG/CR-5456 AN L-91/6 4y .--%-+_-+- .----wa-r_e._ma e._w.m_e-- ouww..e,w.m.- .w.- w enmies.m eu _.,m-_m.,ge. he- ww etws mM a- **e***NW Analysis of Flow Stratification in t le Surge Line of t le Comancie Peax Reactor Manuwript Cornpleted: Januar) 1491

!) ate Pubh(hed. April 1441 Prcpared by J U. hun, Y.11 Shen. W. 'I . Sha a Argonne Nation.il I ahoratory i 4700 South (' tin Asenue f Alfofine, ll, h04,39 1

I

l'repared for i 1)hision of Safety l'rograms
Ollice for Analysis and Evaluation of Operational 1)ata U.S. Nuclear llegulatory Commission i Washington, l>C 20555 NI(C FIN I)2195

.. ...._ . .__,- _ --, __ __.. ,_ . ._ _... - ,,m..._ _. . . - - - . , _ . _ . - - . ._ _ , , -. , , . .

Analysis of Flow Stratification in the Surge Line of the Comanche Peak Reactor J G. Sun, Y. H. Shen, and W. T. Sha Abstract A number of nuclear power plants have reported failure of reactor components due to flow stratification. Therefore, a fundaniental understanding of, and a capability to predict, flow stratification in a tea ((6r system is critically important to reactor performance and safety. The work presented here is the first step in this direction and will contribute to the resolutiot, of the issue of flow stratification.

An analysis is perfortned using the COMMIX-lC cornputer program for the surge line of l the Comanche Peak reactor, A comparison is made between the calculated results from the j COMMlX code and the plant-ineasured data, and the agreement is good.

l l

l I til

__-_]

Contents titrutter Stutun.uy. 1 l 1 Introduction. I

{

2 Objectives.. . 2

.i tirlef I)escription of the COMMIX Code. 2 3.1 It x hun nit hi . 2 3.2 l'quations Solved.. 3 3 3 Unk ue l l'eutun s . 3 3 3.1 COMMIX Pot 00+ Mecitut i l'onnulatlon.. 3 I

3.3 2 Two Solution Algorithins.. 3 3 'l 3 Tile Geotnetty Package. 1 (

3. , Other l'eatun s..

4 i

1 l' low Stratification in a Surge Lilie. S 4.1 Surge Line layout of Cornanche l'eak Reactor.. 0 4.2 l'xperlinctital Measuretnents..

6

-1.3 Nutnerical Situulation Model Used in COMMIX Code. 0 1.1 Initial arid floutula",* Concillions.. O

! 4.4.1 lattial Conditions.. 7 4.4.2 lloundary Conditions. 7 4.5 COMMIX Results.. 8 j 4.6 Coniparison of COMMIX l<esults with Measurernents.. 8

.5 I)isellssloll atal Collellisiolls . .

9 Acknowledginents.

49 References..

49 i

Figuros 1

-l 1 Pressurt/cr Surge Line 1.ayout and Monitoring Locations for the Comanche

} Peak Reactor.. .

.12 i

L 2 Tl Tetuperature Readings. .13 3 T2 Tetuperature Readings. ,

,14 4 T3 Tetnperatute Readblgs. 15 5 T1 Tetuperature Readings. IG G llot-Leg Ternperature Readings. ,

.I7 7 Pressurizer Water lxvel Readings. .18 v

7a Enlarged View of a Portion of Fig. 7 for 17 to 18 h........ . . . . . . . . . . . . . ... .19 j 8 Surge 1.ine Layout Used in COMMIX Code. . .. .. . . . .. .. . . . . .. .20 9 'lypical Cross Section of Surge Line.. . .. ... . . . . . . . .. ,. .. . . . . . .21 1

10 'lypical Elbow. . . . . . . . . . . . . .. . . . . . . . . . . . . ~ . . . . . 22 I 11 Inle t Velocity of S urge Lin e .. . .. . .... . .. . . ... .- ... ... . ... ... . . .. . . . . . . ... . 23 12 Inlet Temperature of Surge Line.. . . . . . . . . . . . . . . . . . ~ . . . . . .. 2 4 13 Velocity Profile at 10 min into Transient, Pipes L1 and L2, . . . . . .. . 25 14 Velocity Profile at 10 min into Transient Pipe L2. . . . . . . .. . .. . 26 15 Velocity Profile at 10 min into Transient, Pipe 12. .. . . . . . . . . . . . .27 16 Velocity Profile at 10 min into Transient, Pipe 12. . ... . ... . . . . . . . . . . . . . . . . .. . 28 17 Velocity Profile at 10 min into Transient, Pipe L3.. . ............................ . . . .20 18 Veh> city Profile at 10 min into Transient, Pipes 12 and L4. .. ......... . . . . . . . . . . . . . . . .30 19 Velocity Profile at 10 min into Transient, Pipe IA ., . . . . . . . . . . . . . . . . . . .. . ... 31 20 Velocity Profile at 10 min into Transient. Pipe IA . .. . . . . . . . .. . .32 21 Temperature Distributions at 10 min into Transient, Pipes L1 and L2..... .. . .33 22 Temperature Distributions at 10 min into Transient, Pipe L2.... . . . . . . . . . 34 23 Temperature Distributions at 10 min into Transient, Pipe 12... ... . ... . .. . . . . . . . . 35 24 Temperature Distributions at 10 min into Transient, Pipe L3.. . . . . . . . . . . . . . . . . . .30 25 Temperature Distributions at 10 min into Transient, Pipe 12... . . . . . . . . . . . . 37

-26 Temperature Distributions at 10 min into Transient, Pipes L3 and 1A.. . . , .. .. . 3 8 27 Temperature Distributions at 10 min into Transient, Pipe IA. .. .. . . ..... . . .. . 3 9 2 8 Temperature Distributions at 10 min into Transient, Pipe IA ... ... . . . . . . .. . , ,' 4 0 29 Temperature Profile at T1.. . . . . . . . . . . . . . . . . . . . . . . . . ., , ..... , , . . .. 4 1 30 Tempemture Profile at T2.. .. , . . . . . . . . . . . . . . . . . . . . 42 l

31 - Temperature Profile at T3.. . . . . . . - . . .. . . . . . . . . . . . . .. . . , ..43 vi

. _ _ - - _ _ _ . _ . . - _ . . _ _ . _ . _ _ _ . _ _ _ __ _ .i _ _ _ _ . _ _ . _ . _ _ _ _ _ _ _

32 Temperature Profile at T4. ,

44 33 COMMIX Ilesults vs. Experirnental Data. T1. 45 34 COMM1X llesults vs. Experirnental Data, '12. .40 i

l 35 COMMIX llesults vs. Experirnental Data. T3.. . .47 i

! 30 COMMIX llesults vs. Expertinental Data, T4., , , .48 Tablo I

1 Pressurizer Water level vs. Volurne.. . .I1 1

l I

l l

1 i

vil l

Executive Summary riow strauhcanon is known to occur in various teactor components during minnal ato!

olf notinal operating conditions of both pressuri/ed water tractors atid boiling water teactors. A large ternperature dificience is nonnally associated with flow sitattheahon

'lhus, when Dow stratification occurs in a teactor cotuponent, it will be subject to an additional thennal sitess resulting frotn the local ternperatute dufetence. A nutuber of nuclear power plants have tcported failure of reactor cornpottents due to Dow strattlicatiott flow strattlication rati not oll}y cause tractor sllutdoWil due to all utlisolable leak tc5Liltitl4 hom failure of a teactor coinponent, but also has significant itnplications to scactor saf ety atul can aller both the sequence and consequence of a teactor accident. Ther ef oi e, it is imperative to utulerstand the causes of How strattheation atul, tuore important, we shouhl be able to predict when atul where Dow stratification will occur a.nl the maglutm!c of the tempetature dif'erence associated with the How stratification. The woth repor ted hete represents the first step in this direction atul will contribute to the resolution of the twuc of flow stratificatlo!L An analysis is performed using the COMMIX-lC computer program for the sutte line of the Cornanche Peak reactor, The COMMIX-lC computer code, which is being developed l atul sponsored by the Office of Nuclear Regulatory Rescatch in the US Nucleat Regulatory i

Comintwlon, is a lluce dimensional transient single-phase computer program for thennal hydraulic analysis of single- and multicomponent engineering systems. It solves equahous of conservation of tuass, momentum, and energy as a boundary value problem in space and as an intital value problem in a titue domain and has been apphed to Dow strattheation and natural circulation duritn! postulated teactor accidents. The major objective of this wor k is f to detnonstrate that the COMMIX code is capable of predicting flow stratification. The j nutoerical results obtained from the COMMlX code for the surge line of the Comanche Peak l reactor presented here have been compared with the measuteinents provided by the i Westinghouse 1:lcettle Corporation and the agreement is good.

i i

1 Introduction Flow stratificattori ts due to the density dillerence of two streatus of a lloid or dif ferent lhiids Dowmg at relatively low velocities with very httle Inixing. The denstly thlfetence is

! attilbuted either to the temperature difference of two streams of a given Duid or to dit lerent lhilds with dliferent intrinsic densities. The scope of this study is limited to flow sitattfication caused by the tetnperatute difference of two sticams of a given Dukl. These

( two siteams Dow at low velocity with very little turbulent intxing between them. The

{ llghter hot Guld stays above and the heavier cold fluid stays below in the Dow domain.

A number of nuclear power plants have reported fadure of Icartor cornponents due to Dow strattheation.1 The most conunon cases of Dow stratification in teactor (omponents during northal operating conditions (inchiding transtents) and off-nonnal conditions occur in the surge line, hot leg, residual heat removal system, feed water line, stratn generator feed water ring, etc. Flow strattheation can not only cause teactor shutdown due to unisohtble leaks caused by failure of teactor components, but also has serious implications

2 for reactor safety, it has been shown that Dow stratification can occur in a hot leg and most hkely in a surge line' during a postulated TI, Mil

  • accident (station blackout).2 one possibility is falhare of the pressure boundary due to flow strutturation prior to bicach of the reactor vessel by the snotten core: should this failure occur cally enough, the reactor system inay depressurtze sufficiently to avoid direct containtnent heating when the core debris is ejected after vessel failure. Thus, flow stratification can alter both the sequence and consequence of a severe accident. l'or these reasons, a fundamental understanding of flow stratification is essential to avoid a possible reactor shutdown or accident. The present work reprtsents the first step in that direction and will provide a teliable predictive capability of flow strattlication in terms of when and where, as well as the magnitude of the ternperature difference. It is to be noted that Dow stratification was not accounted for in the original design of all light water reactors (1,WR1 and it certainly bas signLicant linpact on life e.xtension of all existing 1,WRs.

2 Objectives The two principal objectives of this study are:

1. To demonstrate the capability of the COMMIX computer code in predleting flow stratification la various reactor components.
2. To present results obtained flotn the COMMIX code for the surge line of Comanche Peak reactor and to compare these results with plant-measured data.

3 Brief Description of the COMMIX Code COMMIX is a generahzed computer code for heat transfer and fluid flow analystsA5 Its capabilities include steady-state / transient, three-dimensional, and single-phase analysis of nuclear reactor systems under normal and off-nonnal operating conditions. Recently, the COMMIX code has been and continues to be extended and modified to multiphase applications of various engineering systems.

COMMIX is a well-refined and -tested code. Already, a large number of computations have been perfonned for complex situations, and many organizations, both in the U.S. and abroad, are using the code to simulate Industrial problems. The structure of the code is modular, its many unique features are described below.

3.1 Background

Development of the COMMtX code began in the sununer of 1976. The inillal verston, COMMIX-1,3 was documented and made available to the public (through the U.S. Nuclear g .

! 3 Regulatory Commission) in January 1978. The advanced version, COMMIX-1A.4 with more capability and flexibility, was released in 1983. Developmental work continued to add itnproved models and to expand applications to nonnuclear systems. The extended version.

COMMIX-Ill. was released in December 1985. The latest version is COMMIX-IC.f' which was released very recently (September 1990). Many additional linprovetnents over COMMIX-lit have been incorporated into COMMIX-lC.

3.2 Equations Solved Three-dimensional, time-dependent conservation equations of inass, momentu'n, and energy and transport equations of turbulence parameters, along with the equatloa of state, are solved as a boundary vahr problem in space and an initial value problem in time.

The solution ptovides delatted three-dimensional descriptions of

  • velocity.
  • temperature, and e pressure, along with ancillary infonnation such as heat transfer and resistance correlations. For easy interpretation, the numerical results can be transfonned into graphic fanns (e.g., vector plots, isothenn plots, and video or film showing fluid motion).

3.3 Unique Features -

3.3.1 COMMIX Porous-Medium Formulation COMMIX employs a new porous-medium fannulationG based on h> cal volume-averaging.

This fonnulation uses four parameters-volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink)-to model the effects of internal solid structures. In the conventional porous-medium fonnulation only three parameters

, (volume porosity, distributed resistance, and distributed heat source) are used. The addition of a fourth parameter, directional surface porosity, is a new concept that greatly facilitates modeling of velocity and temperature fields in anisot opic media and, in general, improves resolution and accuracy.

3.3.2 Two Solution Algorithms COMMIX has two solution algorithms for single-phase systems; hoth algorithms are provided as user options:

A semi-implicit algorithm derived from the Los Alamos ICIO Technique.7-0 This algorithm is ideally suited for analyzing fast transients, where one is

_ . . . . . _ _ _ . _ _ _ _ _ , _ _ _ _ _ _ . _ _ _ _ _ _ , . - _ . - - _ . . - _ . _ _ _ . . ~

4 interested in details at sinull titue intervals (on the order of Courant tirne-stept

  • A fully linplicit algorithin nained SIMPLEST-ANL.4 This algorithin is a inodification of the Patankar-Spalaing nuinerical procedure 10 known as SIMPLE / SIMPLER. It is particularly suitable for analyzing slow and nonnal transients.

f These two solution procedures are cornbined litto one fonnulation, but are !!nple-tuented so that a user can switch froin one solution schetne to another at any titue during

the transient stinulation of a problern.

j 3.3.3 The Geornetry Package The geornetty package developed and linpleinented in COMMIX can approxituate any irregular gcornetry. It uses basle coinputational cells as bothling blocks to inodel the geotnetry under consideration. Then, both voluine porosity and directional surface porosity are used to account for the differences between the approxituated and actual configurations.

To reduce cornputer storage, a colupulational cell is defined by a nutuber rather than by its conventional (f. j, k) location, where 1, j, and k are the cornputational cell indices in the three principal axes (e.g., x, y, and z in the Cartesian coordinate systein), With this approach, the storage requirernent depends only on the total number of cornputational cells and not on the dirnensional vahres of (IMAX

  • JMAX
  • KMAX), where IMAX, JMAX, and KMAX denote the tuaxituutu values of coluputational cell indices in the three corresponding pilacipal axes.

t A nonnal three-dirnencional computational cell has six surfaces. !!ut to facilitate true atut proper inodeling of a complex irregular geometry (and most geometries in engineering systems are complex and irregular), we have provided flexibility so that a user can specify an additional seventh surface, called an irregular surface, to a computational cell.

3,4 Other Features

  • For single-phase applications, two turbulence model options are provided:

-Constant turbulent diffusivity tuodel.

-Two-equation (k-r) model, where k is the turbulent kinetic energy and r is the dissipation rate of k.

A flow-modulated skew-upwind ditTerence scheme 5 has been developed and implemented to reduce numerical diffusion, specifically for the case of flow inclitted to grid lines.

  • The final fonn of all of the sets of discretization equations is

.-- -- _ . - _ - . - . - - . _ ~ .- - - - _ - - - . - - - _ - _ _ - - - - _ . _ _ _ -

5 s

it' do -E, ., a,'(, -b,' = 0, where c is a dependent variable and the subscript I stands for neirhboring prints. This general fann of the discretization equation lends itself to various solution schemes, e.g., SOR. Preconditioned Conjugate Gradient Method, and direct matrix inversion.

+ The solution has a decoupled-transient-simulation option that pennits solution of

-tnass-momentum equations only, or

-energy equation only, or

-coupled mass-momentum and energy equations, at any given time-step.

  • The code has an option that allows use of either Cartesian or cylindrical coordinates.
  • COMMIX has built-in properties for liquid sodium and water, with an option pennitting use of simplified property conclations for any fluid.
  • The code also contains:

-A generalized resistance model to pennit specification of resistance due to internal structures (fuel rods, wire wrap, balIles, grid spacers, ete.l.

-A generalized thennal structure fannulation to model thennal interaction between structures (fuel rods, wire wrap, duct wall, baffles, etc.) and surrounding fluid.

The heat source / sink and boundary conditions can be functions of time.

  • The COMMIX code is structured to pennit solution of one , two , or three-dimensional calculations.

4 Flow Stratification in a Surgo Line A detailed three-dimensional and time-dependent analysis is perfonned using the COMMIX-lC code for the surge line of the Comanche peak reactor. Temperature distribu.

tions of both fluid and surge line wall are calculated. The surge line layout of the reactor is described, the experimental measurements provided by Westinghousell are presented, the numerical model used in the COMMIX calculation is outlined, and both initial and boundary conditions based on the limited measurements used in the COMMIX code are fullowed.

Finally the detailed veh> city profiles and temperature distributions of the surge line obtained from the COMMIX code are presented and compared with the experimental measurements.

G 4,1 Surge Line Layout of Comanche Peak Reactor rigate 1 presents the layout of the surge line of the comanche Peak reactor. All pipe thmensions are shown, The temperature monitoring hications, namely T1, '12, T3, and T4, are also shown in the figure; the ternperature inonitors record the outside pipe-wall tem-perature at various clicutnferential locations.

4.2 Experimental Measurements figures 2-5 are ternperature incasurements as a function of titue at T1, T2, T3 atul T4. tespectively, at the various circumferential locations. Temperatures, as a function of time, of the four hot legs are shown in Fig. 0; the hot leg snarked 4 in Fig. 6 is the hot leg with the pressurt/er. The water level of the pressurtzer as a funetton of time is marked 7 in n Fig 7. Figure 7a is an enlarged view of a portion of Fig. 7 from 17 to 18 h. The relationship between water level height of the pressurtzer and volume is presented in Table 1.

4,3 Numerical Simulation Model Used in COMMIX Code The nutnerical Inodels that simulate the surge line of the Comanche Peak reactor are j shown in Figs. H-10. The computational mesh setup along the pipe line is shown in Fig. 8.

l' Figure 9 presents a typical cross section of the surge line, and a typteal cibow is tuodeled as shown in Fig. 10. To avoid inodeling complications, the pipe marked 1.1 in Fig.1 is modeled as a vertical run, as shown in Fig. 8. This simplification will not affect the results l and is discussed in Sec. 5.

The heat-capacity c! feet of the surge line is exphcitly accounted for in the nutnerical calculation. Wall thickness is ecpially divided into two computational grids in the numerical model, and the thennal physical properties of the pipe wall usr in the COMMIX calcula-ttous are p (density) = 7977 0.4107 T (kg/m3),

i k (thermal conductivity) = 14.16 + 0.0131 T (W/m>C).

Cp (specific heat) = 508.67 (J/kg 'C).

T (temperature) in 'C.

4.4 initial and Boundary Conditions A close exatninatian of the experimental measurements shown in Figs. 2-5 reveals that flow stratification with a large temperature difference occurred at approximately 17-1/2 to 21-1/2 h in the transient. One objective of this work is to demonstrate the capability of the COMMIX code to analyze flow stratification. Consideration is also given to the saving of computer running time. We thus decided to start our calculation at 17 h,31 min,10 s into the transient. Because we do not stcrt our calculation at the very beginning of the transient, the initial condition corresponding to the beginning of our calculation must be constructed.

Also, the boundary conditions as a function of time at the inlet of the surge line (from the

l 7

i l

hot leg to the surge line) must be provided. Both initial and boundary conditions used in the COMMIX calculation are described below.

l 4.4.1 Initial Conditions e Velocity distribution based on isothermal steady-state solution with inlet velocity of Oh02 m/s at the inlet of the surge line (from hot leg to surge line).

  • The outside pipe-wall temperature distribution of all horizontal pipes (L2 and L3) based on T2 and T3 readings and linearly interpreted and extrapolated both axially (along the pipe length) and circumferentially. The outside pipe- ,

wall temperatures in L1 and 1A are assumed to be unifonnly distributed according to T1 and T4 readings, respectively. All fluid temperatures next to the pipe wall of L2 and L3 are assumed to be the same and to be stratified.

Temperatures in L1 and L4 are assumed to be uniform at 152.6*F (see Fig. 6) and 440'F (same as surge line wall temperature, Fig. 5), respectively. The assumption of unifonn fluid temperature in L1 and IA'is reasonable because both T1 and T4 readings after we started the calculation appear to support the assumption.

4.4.2 Boundary Conditions

  • At inlet of surge line (from hot leg to surge line):

-Inlet velocity based on water level of pressurtzer (Fig.7), as shown in Fig. I1.

Figure 11 is obtained in the following manner:

Decause water is an incompressible fluid, its level change in the pressurizer is directly related to the water Dow rate from the surge line to the pressurizer, which in tunt, is related to the flow rate from the hot leg to the surge line. Therefore, the instantaneous mean inlet water velocity vin is evaluated from y '" , Qdli

, A dt

  • 1

! where 11 is the water level in the pressurizer (in percent) as shown in Fig. 7,

{ Q is the volume of the water (in gallons) in each percent change of the pres-l surtzer level, as shown in Table 1. A is the cross-sectional area of the surge L line pipe, and t is the time, it is seen from the above equation that the inlet l velocity is proportional to the slope of the water level change. In the i

pressurizer as a function of time. When the experimental data of Fig. 7 for the water level (in percent) is enlarged by many times (see Fig. 7a), it can be seen that the slope becomes positive from about 17 h 31 min and increases to a maximum after about 17 h 3G min. Then the slope decreases, attains ,

i i

4

_ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ . _ m _ _ _ _

8 another maximum, and gradually declines, eventually reaching very small value. The inlet velocity follows the same pattern, as shown in Fig,11.

-Inlet temperature based on the outside pipe-wall temperature reading of the hot leg (near the surge line) with pressurtzer (Fig. 6), as shown in Fig.12.

  • At the outlet of surge line (from surge line to pressurizer):

hv BT

- = - = 0.

Dx Dx 4.5 COMMIX Results A number of assumptions were used in the calculation:

No heat loss through the pipe wall of the surge line.

No pitch (slope) for horizontal pipe.

Calculation started at 17 h,31 min,10 s in the transient.

Using "best estimate

  • initial and boundary conditions based on very limited experimental measurements. These measurements are in graphic plot (see Figs. 2-7), but not in digital form.

Approximating Ll pipe as a vertical run.

Pipe-wall conduction limited to one dimension (radial direction only).

The typical velocity profiles and temperature distributions at 10 min after starting the calculation will be presented. Velocity profiles and temperature distributions at the center-line of the surge line in the vertical planes of L2 and L3 are shown in Figs.13-20 m.1 Figs.

21-28, respectively. The temperature profiles of the surge line cross sections .1 the locations of T1, T2, T3 and T4 are presented in Figs. 29-32, respectively, and bott inside and outside temperatures of the surge line wall corresponding to the measured locations are also shown in these figures.

4,6 Comparison of COMMIX Results with Measurements A comparison of the outside rurge line wall temperatures calculated by the COMMIX code with the measured data provided by the Westinghouse Electric Corp.ll namely T1, T2, T3, and T4, are shown in Figs. 29-32, respectively. The calculated results and the experimental measurements are in reasonable agreement.

. _ _ _ _ _ J

9 5 Discussion and Conclusions Despite large uncertainties in constructing the "best estimate" initial and boundary l conditions on the basis of limited available measurements, it is gratifying that the agree-ment between the calculated results obtained from the COh1 MIX code and the experimental

, data is reasonably good. In our opinion, the agreement can be further improved if both

) initial and boundary conditions can be more accurately quantified.

The wall temperatures of the surge line were calculated by one-dimensional (radial direction only) approximation. The calculated results can be improved if the additional s

conductions from both circumferential and axial directions are incorporated into the COMMIX code. We recommend that this additional capability be implemented into the COMMIX code.

Based on T1 and T4 readings, there appears to be no now stratification in either inclined pipe L1 or vertical run IA very soon after the calculation is begun, as shown in Figs.

2 and 5, respectively. Thus, it seems justifiable to model the inclined pipe L1 as a vertical ru n.

As stated earlier, the nn,jor (nrust of this work is to demonstrate the capability of the i

COMMIX code, which can be used to predict the time, location, and magnitude f a local j temperature diffe ence in a flow-stratified pipe. Based on the comparison between the

) calculated results from COMMIX code and the experimental measurements (Figs. 33-36), it seems reasonable to conclude that the COMMIX code has demonstrated its capability for

, predicting the now stratification in the surge line. Nevertheless, it is desirable to conduct more assessments and validations. In particular, validation must be carried out to compare the COMMIX results with the well-instrumented experiments, which are not limited to temperature measurements but also include velocity data.

Based on th calculated velocity profiles and temperature distributions (Figs. 13-20 and Figs. 21-28, respectively) 10 min after starting the calculation, the following important observations may be summarized below.

?

j

  • The maximum flow stratification or maximum local temperature difference '

{ between the top and bottom of the surge line is located at L2 Immediately after the flow passes through the elbow from L1. This location is different i

from the TI, T2, T3, and T4 locations. From an instrumentation standpoint, it is very desirable to take measurements at or near the point of maximum k Row stratification.

The calculated velocity profiles after 10 min of the transient calculation are similar to those shown in Figs.13-20. The calculated velocity profile in ihe surge line is very compucated. In a large portion of horizontal pipes L2 and L3, the fluid in both the top and bottom of these p; pes Dows in the same direction, while in the iniddle portion, the flulu flows in the opposite direction. It is our belief that the flow pattern is highly sensitive to the geometrical arrangement of a surge line as well as to operating conditions.

- - - - _ - . - - . - . ~ . . . - . - - . - . _ . .. - . - . - - . - - . . . - - . . - . - . . - - . . - - - . - - - . . - . .

=

Thus, it is very difficiill: to pregeneralize botti the Dow pattern and the-temperature distribution in a stratified pipe;

-J

  • The calculated temperature at the top of the e, urge line (0* curve) la slightly ..

higher than the temperature at 60', as shown in Fig. 35 approximately 10 min into the inmstent. This is because the local velocity at O' is higher than that at the 60* location; thus, the corresponding . heat transfer coefficient 'is :

higher. As mentioned earlier, the pipe-wall conduction model used in the COMMIX code is hmited to one dimension (radial direction only, in this cr.sch

therefore, the spread of the calculated temperatures between the O' and 90*

j locations of T3 could be larger if the circumferential conduction of the pipe wall is included. Furthennore, the validity of the assumption of no heat loss e through the surge line wall mtist be examined for future calculations.

l l Finally, it is to be noted that the COMMIX code is a general-purpose, multidimensicnal l computer program that is not limited to flow stratAfication _in a surge line. In fact, the COMMIX code can be applied to flow stratification problems in any reactor component,-

!_ including the high-pressure injection system, steam generator feedwater ring, etc.i under j various reactor operating conditions. The code has also been used extensively for analyzing natural circulation under severe accident conditions. -Recently; the Office of Nuclear Reactor Regulatory in the U.S Nuclear Regulatory Commission expressed some concern about the thennal stripping problem. It is our belief that with some modification of the COMMIX code, we will be in a position to ;ackle this problem.

t ? N ---f -

--r. 4-- - -- -

-r # .vy .- v -a-

11 Table L Pressurizer water level vs. volume (reproclucectfrotn best available source) lxsuctim a. Ei.t:t las f0itJ. IF5nt t>.w!H gi len. 5ts Sti ig+;,

H!!N (T im ULIMil 530.110 IGS UfE Cf IRINCA M@ SLlt0 IGH

1. tut 1610u13 HCiN? M 3f.iH ICMS 1.Wtl IACMin (Mi Af m 5H nts.y .

uiVD U Wl. (!WD LLM'. l.14'JU t t'a t bEIGM VCWi IM. MIC3f MtW.i IM. Ef0nt ,ugg n) t WA U (LM.Ltns) m (IND151 Gr.tCH3) m (lu n (c;dtd) W 31 'c 0 (H.5 t il 45.G2 tif.7 1.t1 iL23 S ,q . s Leg

$3.45 th).I 3.04 61.67 t'.55.2 (.tl is.H 53tg.3 g,y

'/1.11 101.5 6.04 7L32 IML6 7.19 it.54 16 6 .3 6.g; C4.75 1116.9 f.H 91.f7 1916.1 H.it 97,19 2nt,} 1:,q letti 2154.4 12.tl 117.62 2311c6 13.12 112.e4 24u.? H,n 119.16 2n1J 15.14 123.71 26d7.1 16.11 in.W 2312.t it.tt UL71 2G 4 12.41 D3.Y2 3162.5 19.11 }<4,14 3 s7.7 ;Lil 141 36 3J12.9 21.tl 154.57 3433.1 '42.ll 159.71 343,1 gy,l; 16.11 36 1.3 24.91 17L23 351L5 n.fi 176,44 nu,6 25,tg 1SLR 4163.8 27.11 1ES.63 8.1H 9 29.11 191.11 43u,1 p!,c; 19L.31 439.3 33.tl 2M,9 4%4,4 31.ti 716.74 un4 n,gg 2M.9 4314.7 J3.0 217.18 W37.9 34,4) 272.41 y;tsa 33, n 227. 4 Sill.2 35.11 212.0) 915.4 37.48 239.05 545.5 %.H 24L26 55 6 .7 29.11 248.44 5691.4 40.tl 253.73 41,g) 5316.1 29 11 5i41.1 42.II 264.13 61 4 .3 4L C) 26L35 61y1.5 0.0 274.57 L31L 6 277.7i 644UI t$.IO ti.il iSLH 65 % 9 47.11 291.22 H'2.; 48.01 2M.43 Hi?.? 47.H 3H.B 6942.4 SLH 31$.t? 71W.6 Stil 311.1'l 7112.7 5Lil '316.30 ;j t?,t. Stu

) Mt.52 144L C 54.ti M 6.74 7%B,2 %.54 3h.35 76t3,4 n 13 JJ/.t7 7316.5 57.11 142.3? 710 7 51. H 347.61 lilu.1 M.tt h2.02 E!?4.t 61.11 39.54 3317.1 6LM 363. 5 54H 3 6?.li Ja9.47 EMi 5 63.H ,173,6f - (4f4.6 64.tl 3N.91 c50,1 6t.t; 3B4.12 H44.9 ELil SE7.34 1171.1 67.li 3H.% $1n.2 n,13 3i9.77 '9321.4 69.41 414.Y1 145.6 71.11 (10.21 9571.7 n,n 415.42 H75.? 72.11 401.64 M2,1.1 73.11 4 3 .96 nis.2 74,t1 (JLl? U171.3 75.81 434.29 11196.5 76.li M1.it 11321.7 7), Cl 446.73 ll46.8 70. H 451.f4 1%72.1 7?.H 6 7.16 01,11 115 9 .1 464.31 tir(2.3 E1.11 467.5? 11947.4 y;Lil : 02.h 137La M.0 4W.13 11197.0 64.11 453.25 11M2,9 n,n 4a.44 tuag,g n,g 4?L6S 1 573.2 E7.11 478.91 u6fi,4 c:3.11 SM.ti tir23.6 U.H 4

507.33 11943.7 78.11 514. % 12173.9 11.H 519.76 12t?t.1 92.M 524.91 U114.2 93.11 $31.21 1241.1 fi.Gi 548. 0 1267Y.7 TLil 5 E . 4>. 12574.5 ti.H 545.65 12924.s 17.11 nt.t? liitt.) te,Il

%6.'is 13t75.1 it 11 %I.51 13aL3 110,0 TITLE: 2Td.551TRIZF.R y.u pg n n 3

~ ~ ~

scuxct: 1rcxsics; str,rox7 -

0) Y 2h/b '

uv1r,,.3 n. ggg /

g' .,

12 I

l i NES$Wim l TiX-ENU.01

'k%

0v 572 N f g'4 SILIX CffV[MM

p. ,3 g T4 l
  • N*I 1

573 ti, 560

/l3 Tl 2'4 # x.).1.% m elu h 5H \

\

)

60 568 ,

)

90 o

569 l g ,

n. Up{'

}\ fv

\ 1 120 570 m s4 ,,.-

180 571 I t V x.t.tn == 411 I

.-T'b*Yg c'.x i s x .i .t s.- < o, v a.<

4,S .(14i.i.ix.n<nt q-w ic 4 g

\ 60 "

n x.).ts,-s;wu g  ;

T3 90 0 N 0

. { &~  !;f I\ 4 P. g? / 0, 562 L3 */ /4

.f.s / 60 563 k, /

, 90 564 OD = 14" ID = 11,19" N t .,

i,,sN ~ 1.2 120 180, 566 565 h U:':H:

L3 = 9.39 m L4 = 6.92 m n

N

~

V SICTICM AA A g. 1. Pressurizer surge line layout and monitoring locations for the Cornanche Peak Reactor i

1lll

.g S

3 y"

rI i

T '" ,.

n mN

r. $" . . . . .7 . .

, G

_ . .I 2

. . . . . . . 5

. . 2

. . . -w 4

% 1 4

. . .. 2

. . s g 7t . ...

.. .. .. ...i

... 3

.u...s g

. . _ . . - 2

. * ,I, . .

\

. 4 . . g 2

. ,g..** .

..e 2

1

. .. e i s8,

.. . 2 0

2

. . . n i

0

. . . , ( 1

,j!l

. z;. d 7 )

I p

1 S

r FFFF i - _

R

. T CGGGC T ECEC G

I U s I g DEDD O n N 0 5 H i U

1 f 0792 1 C

d 1

9371 e a 1790 v w_. e

- 4 1

r r

- 1 -

1 E

CY 5001 C 1

052 u e 3 M r S0 u N - C 121 1 I

t O H m a IG CT t o .

2 T r e

P - - - - 1 p

TN .

mme t

o  % __ D n RI t Guug B E

r e

TL S mma  !

t SC i i r S 1 R nxe 0 P T Y 7e a vD 1 R

CC PiHDS t I _ 3 L 2 E

RL _

g TR P~FFFF M

CGCGG 0 i F

CM TCECC -.

ER DDDE 0 7 LE 0 3325 EH 0 34G3

- . L :-

L0m H-HeL c-a C- > r.

Pt Mth .- .. C

. . . . . .. . . ta 4 ..,

g9 .

. i. .

4 .

. N 7 .. .

['] e [. d .

1

.. . . . . . .. . rd u, mmm cco c . .

tmmnD .; ...

. u g; ~n u n p ..

.. ...- .- a. , - . . ,

t f.: -.c**o n. .. . .

4.,. .. .

.y f4 vi eCeN . .

-__.~...

. ...~_

5hk" s , .,

N,g.$. .

T %..1g%2;W'.

j.

. b

1. . % y %,7. %. 9. Q. . . . .

VH t il la . .. .

g. . 0 ;0 J c o' g o,

. (4

. . . . . 4 .e- .

. ate e r ..~ "

tri--Ll "

' d. . w . ). .

- ~

t c r t. *a p @_--

x wC ~~

} e**

j t ,9 - r >0 1

, ,[I E C 0 4. 'l * **' '

A i p, (fj 1

j tl M '

C E rLLLL E.'LLLL F w;cJ e d O IJ OUUO .

- 2 v3 H F ,U U w ' ,1 pact F UUUu acua O e 2 ri C .! I n,, I 5'

  • 3 e c. c n c c -mvn .

.! I v 'a r

t;I'n; n n U

- n fd a f*

I T c i .

- Q i> . n. r. e.

rgI N e. n.N'*n i u i l t- 1 n r C y u l 02N-N i t,r!n c e v o k iacON e .n, E .d

=

t!) C- av v n UC

  • g Z .t c. .t c

- f1 (7

~

4 O 09 0F ** N F E ao Li i i i c. iiii .

p R::.

I- Z rre "

d CH O.h r -ne

, 3 .7 IS i . . U 6

r ._, mm 3 3 C. (f) *

--o mm ,

._t j WU re t : =c trexc {, l ~

y. n4- e>c n-e>c

' r ; "' l E

ou 'I'"

s ti i a ' Lj 6 gJ L' 0 1 -

el r LLE I LLLE r i e S b,

} - L7 y poc L ouUU [

Ov9 rsuuu ana s uuuu acca p, _

u u. e a

_j w c iv e, n c N g;ra = N n e vece N N N L:

L1 4

u7. u - i 2

j p N]n. . n. . N r. e. e. v. I l CbOC i 4 A N dIn, p n D V)annew Nosa e ,

M

c a neNvn yc --n u ac _-

Fc,~ c e-

, r

, uw nnst e n11s 4 mv J ste n 4 *~ aste c 3: c U xo e e _r . e 3 etD .D u

gy - t. - -- o l

, uF e .c. x e

.>a D'

N cxc>c Q[ n!%ECC L EE%C@ '

o l

uH C 1b C G

C D

C D

UH r* u in o n a C2 in C

c ZH T * " " N N * *

EC re os

! um (3 D30) 3En1UE3dW31 4

l I

f

15 r; r:

O

>rc L .e -

Vi t

C .a" .e L C1 > I Hc COO " - * *

(

N

.q . M

f tl
.s L L L

}) .

..' . . N p oue tOvvy v

' "; r_ f; ~ ;, . . . . . N rp n n r.

[ . .;-)..... .'.'.

n I r ,i,* , r e c /

  • ' " - e u...~ .. Z f,in C U - *
  • T4 i * *

, g g. , - t e t , ' ' * .-.

i C3 * * * .,..I;b - ' *

.--1.... ...m. rg

- (a} J. 54-h '

t -- E O N j

C-

  • L:

pl[. re O e n

. l DN} * . . j .$"C%

{'Y
i -

g N

./ fr --}

' U Wj ,

}

t L i1 I i Ftt g,M,/ co.h

.s. .#.

. ' ' o**v.f-- u C

C N

! y.'i; D D / ,

  • T h
0. :E 3 t

_ n_[ a# [ 1. [

f C

N!- e>- ft._.~u_,_. 7;A *

. +4 LTECG _ 11 -h -

I l* __

,, n l .. g el r. I i I p, 1ALLL I

{'l -

L.'.9 0 0 0 L'N oOOOLLL C .1

f. --

r, F -.a u u u e- uvuu  !. -- l - s M caco apan ~

i

' O e" 2 f.' , fa y c) ~ v

,~Il * '

( 1 4

  • )

+-

C L C;  ; r P.

C F T 0-t

.= C' N v C _._,

l ,

  • v 4 l p ..N. h. r; I .

V {

g rt n J LO. C. n. a L C I b c c: ~ f C C C' O -

1 D

ta b e *J C e N b nenC 7

.n. 2 O C ra y y Oh -Nn h

,^}I 7 O I '

I t; i H O  : t. i I " c' uFI Ub (

~ N F-

  • LI1 l # l C. 1 l l 1 "

bZ l ..._

{

Q p EH h _)

$$55 CEE W d 55E C EL w l

l l 2 ld d

_. U) bU tl k $ C- k$c __ l b

b

> C:- --

to- r >G N -a>C i gg L 1.~. I C G L T. % C O -- --

[

H l l l h) .

E .J tj I.sk k k k'.1, rd -

9 b_ b. 1.l e 0 e T.k L; OCUU L L L Il C 4

' I hu M L' U P LlWUU

() Z -

! [J E e; c

} } l t i .J U c ra r- u r. re come f i

_ I yy 0 to O - Nnhv _] _

t p C.

i l:e.:

n . c. e. n. ni . n. e. n.

.I, e

! y- N 4 ra 010 e f2 i

+-

?

I C F rs n - n N W(c1 c0Ceet rJ ta I el E Q U C ra v v 00 -yn

-}

f LJ Z .! C .l G l F C OsL Os I _[- V (r) 3 1 1 I C 8 Ii1 i ,_f f  ;

l 5

2 .) 2i c .) EFc

  • j

~~

n Xi O U 3?O U D 0t ,l-n tg. a c e ,- ___ _ _

! 3

[H .-L --L Li n LJ b t N -w>c xc tr N

C* c

-p >n l' O., C LEICG C. Z 1 C C j g U L{ l LJ H Ik . . . . .

U H U ms v 1

, n h

n g,

a g C

n a C

EC -

XE OF UQ

(.d D3G) -~q- TA l~ur: dn> >a l

1G CC C1 yCO L

H .c. -

FeL Cv e t '. >

L p 1.

bgn _ __ tt

. .... N 7,

.. . .4 N

. %x.

. .. ..y. . . .

T p.

.-. . . _. - . ..-..i...... - N

.- g__ -

n

.J f4 .

__A._

4 ~ ...... ..

. . N

,, .. -..._q._.. _ . . .

R g

. ... .4.,g ... ...... , . - . . ..

N N,- pd N

i .

r h  % -J i

s t' u

[- N

{ --

-3 '

g e

_ ~m =*.;.y .. - -

a h~Q : r- ~~

u n n  % n (f) p t)

ELLLL ucOOO

.' . ~ if<

u Q'

O.

H r uvuv aapa

  • O M

.g<.. O

  • 7- C ..

. $. , n.

5 ca.OC .

3 -Coco f)_5 .

V t

, g yi . c. e. v.

.;4-7  ; '

' . y I 1 n., F- OCNO U td, g

u

- v n

.fU M

  • D

, en vvv L . . -.

H h A

f r-i O

1G [

p C Op .

g N O H L3 e i i i c.

j -} - t . ~

y p "7 Ji r E e o

b -A P' {' '

Q .+

CH e3 3 o - i "

id. E g

L.

. ~

I DE Ee }A]4 ,

l U4 ~

mU et -x L O

. )-.' .O

  • 7 s Ni.c. . e>n .

h c.]' I c p .1 1 .

LL U "U c) --:

H .

LJ to.

Ed  ;.,((( '

FE uauoo - {[ '

l *

  • U *"- p L1 U U u --t

-*- 1

.a CJ G C M i .N LJ Cf e Ju c o n s e. /g ,

l U1 Cpn~~' e 4 O p y

  • N. D*N
  • E N n-n L '

Sk nn D O

QQ t1 C eve U .

td Z $' s

  • F. C vb o B'i tii li u E. (

Us

  • u '

n JEEo i, f'o V e 3re3 .D o

g 8 EH --'

t CXe u

ld .r A - m >C .

EE t :rce

.q U .

. i Ld H a

_b 1

M C

M UH v v n D

n M

N C t') C M 7p y v v N = =

C v v v v v v E cc EE O F-um (3 D3G) Idn1EE3dW31

r i

f COMANCHE PERK STERM ELECTRIC STRTION - UNIT 1 S N 'rtrY STRATIFICRTION RND THERMRL CYCLING "*C,.'7"5$ i i

Ci t-05 4 CA-055 C11-05C Ci t-tt .,7 RCS LP1 HL TCttP t l4R ) RCS LP2 itL TEMP ( t tR ) RCG LP3 t rt. TCMP (W) DCS LP4 i t'. TEMP (tJn)

E t muen - (*3GHo occr tv i n s ,num -

id4. tis occr rainimum - i:i4.cao 1;ccr $ . n i mo,. - is2.cT,:r nLcr <

Nextecum - I G 2. *J 2 5 DECF Hextmum - 1G3.100 DEGF Mewtmum - IGO.025 DEGr Mawfmum =

1G3.E25 EEGF Rverage - ,157.502 DECF" Average - 157.303 DCGF ffvernDe -

157.19G DCGF" Overene -

150.214 IEGr  !

SD - 2.400 DCGF SD - 2.332 DECF SD ~ 1.G00 DECT SD -

2.7GD DECT i 1G5.0

.i .

..i.

.. .. . .j.... . .

3 ..

. y g.

1G2.5 -

^

"g c m .. . .

  • . . ... .. .. . y9u . ..; . t. ...

La_ . . .

e ,%

. . . .. .. Ja.

-) s. .

..['..

. . ., ... ... .. - t W 1c0.0 a ,

y . . . .. . ... .. .. J ... .. . .'{ ...

d4 a

. - m

% . w g .. .

t..

... :s!

g.

g d24q . . . .. ... . .. l .. ... ...

  • .. j ...

.., .p .:

o F- " w --*.- *

157.5

" . .m ' (. *~.

3' . -. . >

., e r us . .. ...  :.6 { t e. ...

c w ---+ a --* ,-r -c.,ca  :.) . ,., 41, g {g t.t  :;. ,

[.': ,i.lt ;f .je g . s,.. - . , 7 1-t s .Q p .:  :.: ... 3. i ...

g . . . . . . .. . .e

.g l .-f 23 I y 155.0 '*

r-M' ' i g .j

. . . . .. - .. . .~- {.;.f I ... ...

ig  ; . . . . .. .. ... .. ..

g

... p 4::  ;.. g .:: .

W . . . . ..

r+" ^

3.
i. * .r .. .. .

!f 1:g M.

f-- -

! .j '!' . -

i.,

152.5 .

4

.i ..a i ,

e.,

1.2

. . .4  :: .i ... t, ... ...

.. ' , v.s-

e i

, e 1.'! 0. 0 . .

0 1 2 3 4 5 G 7 0 3 10 11 12 13 14 15 t r. 17 to 19 20 21 22 23 24 25 2G '

ELRPSED TIME CHOURS)

Fig. G. Hot-leg temperature readings

--.-.~~~_.-.-n -- . ~ . ~ - - - -.- . . . - ~ ~ - . - ~ . - - -, .-..-a - ~-

18 M

M W

C O

e.e .to =q Gs f c.

8 d

O

> 0 Fra go 4 Q -

g H.

6 =9 L Ql' ge c > 2.

>- e 1:

b e (1 . . . . . . .. ... =.

. . . . . . .... rg

... . . .3 Vi

. , .. ... ,, .. t) te N g ;. y g

(

i

. . . + -

== . . ..

ygy . y .

n (J

snN. onne m ,n , . . -1,

. . . ........... ... . .. . . . ~

u ,s . . . . - . . . ..

,, iW 6

  • "'M n nn
?: ::...  :
._n. :.. . . . .

n f.

C9 l *G NNN 4- _. . . .. . . .

p[ c ,) g .J.--...L N

.. e eo t e. j. l!4.ps  : , .W.- . . _ . . . ,. -- ..<

i, v.

g yy . e . . .

g u v . . 3.... . . . . . - . - . . . . . . . . . . N

).3 l l l g

J l I II y I.

=..

e!g s .i -L 2r h fh0 s --s ata

,0,, g4 O

te . .i . .

g c {r *  %.- . * .. -j.=* e.

p.; .c eyCre r4 -C*0e4Q

. . wV grggp (. I r c M .\.A t" . * + l * . .

g A g a, _- - _ - gw-m

. . . 6.

  • -9 ,.j ~~ :' am ~.h *' l .

. . ,,{ p p . . .- y -~- m. ) .

b \. . . .r. u .e=-

. . . , . . O ~

G H xxxx anNM M Z CCnn j; * . .- . . . =

g Onen .p. .. . .. ~

3 e. ra e s HmGCv s

v

r. u. n. n. r . . n. o. .; to.

I e.

C

,.y v1 v C WNN "2 "NN O t's N * - ' '

n 1 G C C.

+ . . 1 . "

H b z

o e t ' '

g h 2

U 5 -"- - . -

  • - h.

HC f rels d ti ll . ..

  • Q E k,. v** Ei -

U. m

>,3 g e S EEe . .. . . *=

(L. H L.,3 3 c3 Q 33o .

(,q p _j .J .i E-La J EE*

--L c g OU tczea>c EN -a>0- C*C

] .

m.

C N' y ng I:0 fECC0 I .

UU 0 .I . .

m d y

l

>a I .

t .J g o

b C. )

UI ,. g ;. x

, xxgn 1 . N LJ E l 3 p~* neon eeNo -

>-NGNO ANtO C U1p Z u e. G. C. Q.

H s N. G. ". M.

y oc vnt O QnN= ~

n

+- 0t NNN 02 NN Q Q (2 >. CC . . .

wz b[ U H 45 V

. v J 433 J lIII

@ L' W j '

M Z > ftD > EEC V 3pm W 3DC I MO a --L sse J as. -

N gy ==L

- 2 CM e I .

(d F g, c s-.C kC2 tbsco atrco

>c N -=>n l i

l l .,

U l i t U

td

-e H .

Ab C C 0 d

O Q

U UH n N - o - ra n Z )- 8 8 -'

CC I%

nF

'm (%) 13A37

I9 1

A " U

't he? . ;y 'd %L.- f '

atQ s b ,

t k 3

8 9

s t .

k8 t

4 I  % 4

- o e

$ N h

F/ , f i

?

t

, a w

j 6

c l:

t n '

L 6y 'Q 3.I ,

_z. . . . _ - . . . . _ _ _ . . .. _ _ _ . .

N N di T4 4

-24 equal mesh 22'-8 5/8" L4 6.92 m

- Total Computation Cells = 4947 Radius of Elbow = 0.65 m (25.6")

9 o

h r

~ '

\s s B3 B1 a #/1 p 7'47 j Neo', 4, #Il 9 g .- 7"-2" eft, 232 q\ O: 1 18 " 2 9 I '

3 I e  %  %~ ~ d%

2 g L3 9 */ O y /

Qq o. -

5 equal mesh 9 ,, */

e 0.259 m

?

L2 Fig. 8. Surge line layout used in CO3D11X code

21 l

_I__..........  :*

l .

}. E 7*  :'  :

} A 1

o 4

i o +

.1

...._. . .......4....... - ~. . . . - -  :

o 6

3 I

/ 1 i

5

}

  • l  : 2 @

i  : . O l 4 l 2 o.

  • i I *
o i

. + + . . . . .............. . . .

:. E I  :

I } N 5 -.

i  :

m 3 I M-1
o.

.I o

. . . . .* .j .-o . . *

  • :. I'
t. a i N 4 .

i 1 e "o*

3 4 *
? i  : 1 o

, , . . . . . . . . + .  :  :

.  ! E f

3 i N

  • M
  • , M 4 .  !
  • o.

1

, . . . . .q . . + .

....3.

o

m a

e

\

. e 2

.
  • i g I . .

i ' O

)  :

. I' I

40 t 4

< t  :

.  : 3 I.  : - ,

. o.

.-_.....y-Io I

1 ,' .

i

lD le o
; 4 i.

3 .o.

i. i. i
o 1 2 3 4- 5 6 -7 ag, 9. Typ(cal cross section of surge line

2.!

, -\-

~Y [hl 39 l

^

Y~\

/s s

< s& y

/ h c Y

! / e:/ Pc

. Co

// D~

, U ;j$47 -

~ .

l l j t>u 4/

3 w i i e

v, n. .

A-

~

i 8 2 i /m 3 9 Y g.

k cs C

+

8-e y

D bC "

l i

'o Y

$ 6' oc e

\ k,

// / //\

'oc ' // / / // /\

V////V i //V i

l i

23

. < b

!-. T. .--.: e- -, . ._ :w--t=:== ;_ ,-

. #'"*-- t-p.--4  ;-

. _ - -}.- -~.--.

r s

.:i -- ~+

.--,-r-----+

p .~

-* .3-_ --

- -+

2 -: H t __ __

L-

._2 5 w 6 In1nt=YElMitr,t "

  • -" 4

'~

(mm .

- +

_4

+_ -

-+ =

15 - - ._,-

. _A_ = __-; .

,-.__. c a+- ---

  • _.

,_, - == a ~

10 i -+

+-.

uf - . ,-

il - " % __4 1- -

5__

f' - .

~'(-:

t 0_,

1 %_.

~~ '

1 ,__s --

E. -J -+

5 ~J. -

_. e .+ r

-5 -: " " ~ ~ - - " -

=d I r ~ ~-- " --'

=l .-6

'. ~

__t--- F- - .

,__ r:E :

-10 E .--u

- +

- __ -+

E._E = , : -- . I'--

+ - * ,

i

=. _ = . _ _ ' . ,- -/ ----  ;:= - , a_ _ _._,

,]- -- a~  : ,.__

-15 _

+

_ _ -.- gr/__;__ --i-- -  ;
1- -4_ _ s-_ s r  ;=__ [i._ _r _ . w .-a -=1 r.~i_s ._ t--,

-20 _

c --$ -r

  • .--1 lE r- -: c.n ~ --f  : _-

, _- +

.- t

--*---'-'---'p_----" ._,__l_._,:

-i.- , --

-25 -~~

'---'--'--~~:-- '-

__-- xr = p--- - - --- r. .,_ar:-== r= =

4

._.]

_p==-

t- : r-__1=:t=. r:=:=r=

t=r l= - :p .,h==rs::=: =:=r --- .: p=- g:

= --- . -l- :.=;  ;- r_ e,- = t=.t.=;=j-

.-_ ::a=== =c - p=:p::p.2:=d=_

c- 1 = .p

= I==iru_=l==:4= L=t=l=r_u. =. t

.=1=

r '--

= =:t =' -- jm,=tr =j=t=g.* .j. r1=L._

. _ ,r l j:_=!=

= =._-.j -_ ._ _. g = t_ ----+ _.+, _ : ---_"h=_t i z.--t

=: r,-

n=271.= .u CL=t:

._.._L.___- - t ='a =

_____..:dr,= a __. _:=t==

= = = = ==.l: .. . c=1

===ri t=h==r::;r,=ina m

===1___ = .-.. _; _'l'== r_ i __r:r

= ;-. . -.- .i r.= -

=== =:=}=,= =.h::x= =p.:.= =-= =:= u=l: in:l==1=; r=_[==pr, T w--

,_.=:,= -

- t =r=

t

- x rmtu:

nt= - .:- .g

=r .r r= r- r E i :_{:=:=rn. t=_ __ - I - ---r=t=u.n == =;-.-1l=2:I==L=:q= L. =.

=:: .a=, ==u - r= : =.t= n .tz: ,

=t

.i=
r ::t

=y :l=_.jrr

- c::

17 17.5 18 18.5 19 Time (hr)

Fig. 1 1. litlet velocity of surge line s

-_ ._ _ . . . _ . . _ _ . _ _ _ _ _ _ - _ - . _ . _ . . _ _ _ _ . . _ . _ . . ~ . . . . - . . . . . _ _ _ _ . _ . _ _ _ . _ . _ _ _ _ . _ . . . _ _

24

__.._.a 4+- g =- --

. - + _ . . _ , -

_ .- _i_m --

r._  : _4. -,. s_ -

._4 4__--..- - -_j - .g-.; ;..

- a ._._,.

r.

,_sa__----

4

=: :

_._,_.+~i ._ 9 . -

b-.  ; , _ .

_;_, ; _-+_ _ . : -W-- -- - #

i Z~~'~ h, U". '* b~.-.- "*"

~ _. - . - ~ . ~ - _ ~ . , _ _ =- .. ~.~_*i

- = . = - --- .  ; t --- -; t .-

.__+4- .; _q r . _ _ _ _ _ -._- r-- ;

=:_ y_ -

= ,

m._. . _s _

V_

._. r +

.: r...- - g._.

~._._=' ._._. _,,._

- H a =2_

InIeL G e_mp_.:--2 --_

erature?nt -'

--- ~ h - - - -

g, o1- ,) =__:-

.. c-~-- i ._.{.

~

y- w_,

. . _i_.2:

~ =t __ _

m ---4

~ ~ ._

15 5 F'~~~- ~4' ~-

+,

._.'_ ~a u:: 4

=_._l,_ _ 4 --

p _-..

=: -

l _ ===:,.-

a. _ _ _ _

__. l ._. :

_:,-_.__._+ m _ _; - '

._4__ .___

=Z -4  :-

~

~ - 3 -:--;

I 54 ~~"- - "_ _.2_ _; +--r-

, _ __ a- ._

=:=:

- - _ = ='\--

r m_ ._-_;

+ ... - , . _ . . _

\ ., .

. - ~ - .-

_C._.,_. - -: -+- - : , _. ,f - - - - -

153,=r

'--4----

--"'--W-C m ___. f"_-% '

~

2 _!-~~~_)~\=-;ep"yrr.=:=@~-I

==.__y 2

3:=8~ l~ -

s _., c ; _ .. -- p _ _

- - ~ ~

__, a.2 :=r--: t. --._--_r--_-_.. __.

--+

r r._- - + +- - - - + - --:

r- _-

152 _. - %  : _y r- ~ .- - - ; __ - F *~~+

- - b_. -

1 ,

g . _ tz. - , - - -

_ _ . -- +

__w.__..__.-

2- : __.: . _ t. - _ . . _ ___ -

~ ,___t--- ;_._.-- .

p __.

_. ~'~1_~===E_= .e*j,E'J-i--VEEF:EGn,,i_d_E-L-:

6r'~ r ~

T ~i==

- - ; - - -- r== = p=_ - - _ , _ - . - .

p.-.._.r.= g##'---~ ~ ' _._._-+" g' *_g-t"#- " " ' ~ j ~~~ "

",:: r":'~-'. . r== =:::}=r={"=:=*'-' ' U 151 -

F-"

= e= ._& ^ .

~ -

-..._.= [===p:: = =:=={ =r=t.==g- t -- -, n-- _.- {m.'-- .c=

^

. . _ . .=

L t=-- p=.:=r_ -a =

,___.=

== c p:=_;. _n==3==_ ~1 e. =._-_.['

:. nt

,= p====t=1=r _.___

=t=r :d=y.__.___.._t==_

=.., _i_ _ - i t

=. ::== tr:. p=.=l==.

t k==--[ _ r 1=

r=_.

  • _ E=.::l== u= =n J==u l .22=l=.

.:s.'= == =[=:: . {.==6=r=

= = - l=: e::

-;c - t=.=

=li="=4 _ u . }== I'g_.== ==tr==t=i=lc. =

l =r. . -- 'g: r: .;= j==. . _ .

{r =p::l=f=l=r..=:fu::a

.n . == = =

17 17.5 18 18.5 19 Time (hr)

Ytg.12. Inlet temperature of surge linc

n 9Jt-

. . .t.....

  • .............$.>.... ...... ..$*.- t-

....N....... .......,....N..-

y  : ~v. . . ..E..  :

W  :

...i.. . . . . . . ...m..

. . . . . . . . ........ .M..... ...... ...3.--. . . ....7.... .1 A .. .. .. .: .t. . . . ..:. . . . .

. ..t... ...... ...t.*.. .......t.,

. ...P............: .

....t.*........4.............(._...........t.....:.1,.:

......->...t.... -. > .

--* . . . . . . . . . ..,..e ,. .

,-+.......b...i..........%.........:..+..........>.>

+ -. -. . . . . .!* 4

. ~. . . . ,%. . . . . . . P. . . . N. . . , :,. 4.. :

  • -- 2

.. .. .D. . . . . T. . . . . . b. . ... . . . .b. . . . .-.M,....

% Y. . . . 4. . . .. 4. ?. . .s.'V .; . .

54.-4.4  ; . . ; . 3 .w. 3.. ,.T.: .. ;.

W * * * *f M :

. . . i .:T*: . .

M .N. NN.

. . . N.,.. .3 3.. ,% i

..p.

! : : t * -

M M 9 M N .D ;:

....,...q..,..

+:

4 : : :

u 4 v.w ::v,4 :.:

.2,.3.. ..,,.

yhp { h (. A p.: 4 vverd  : :

4 Pipe L2 (i = 23, 39), B1

  • and L1 (k = 1,-19) i iA*hL:6.t.!{

. .. .. t' .i .

3  : .  :

ii  !

};i/

. ! Ai.hi  :.-:

k*}

J4 -

1:

.4

1 s

i bi Aia} W :4 '

]::

4 0.10 ITl/S 1
.: .::1 T!Ol,l!1;J!T i

?

  • Fig. 13. Vehtih) profile at 10 Inin into transient. Pipes L1 atul L2 1

I

k 4

f t

b t

M M M

.....w - -M . M-- . -d. - 4 ...

4 P.

.. :+ ..-- . . . -- . - P.- ,

- . .- ... .. . . . - -- 4 -s '

. - . ... , - - ~.

-a

. -- . . - ......+ ...  :----- ........... -

e --- >

~. .- w

r. . . e. . . . >--.. o- - -. . . w . r

....A.........e-

. .o. .

..r.- - - -- --

-+.. ........-.....:

.......=

= -

. . . . . . . . . . . ...=.. .

= = = .

J_ Pipe L2 (i = 10, 22) 0.10 m/s w Q .

i Fig. 14. Velocity profde at 10 min into transient. Pipe L2 i

P t

I l

\ - _

27 di

$ I  :' e i

: 6:'

l &

: i
d,

. ..if.

! :. k

; ;a e. 6
h;!

5.t I * '

p: '
4

..g..g...g...Il't','

..I :l d::

" +

k Ik:;I II

]

? . ,

v: . . i, i 4

}.

os t N w A W 4,}.,-
  • e ca

.j-C e

L

, .: a o cg ~

! li i O

^

..,..i.....q,..,

i m $"

9 :  : '< N

. . b 1:.- ' 1.

g E

O
  • 0

~

t,  :. .

.o w

.m C n...,. .

v

..:....i...

. .< . ~

O

. M C:'
l .4 C' L

1k::T: .; . . e a

4 3

?.  : :  : '

L

    • O w
,
g
: k

.g. n .+ y

: ' b i  : ,

f.k.gI'i < :T: . i . O

~

l6 m w

b

.T.  :  :. i i

l'i:13 T5

1:.
. T .: .

. . . .. . ..o.i ,.

315  :

L (/)

g:T:h!'}i.,i

i N
: : :* :o:
:y: :l :

T C g

.: y :.Jn?:. ' .

H

g

+

+

+

+

.g

+

r-

+

+

+

w.

+

y 3

+

e

~....*...,*

e -m: ,.

. ,. --,_: . , -, -- g , , -

--.- :, + .

_~

-- -.- -.-  : +  :  :

- : - ---  : -.- +  : +  : --  : .
. ._. -. -  : + + +.

4 _ _

I* Pipe L3 (j = 22, 31)

=

0.10 m/s ,,

m Fig. 16. Velocity profde at 10 min into transient. Pipe L3

- =. . - . . . - - - - - - - ~ - - -

~ ,

~.4 .. 4 --~ _ ; .

i-~t-.~ ..... .. 4 -4

~ - 2 4

. ...;  : .. .: . - : _*__ , -. _ ' j

-,. -4

~ - _ - - -- : *  : s ,  ; *

.i . F Li ?. -

y -; ,

. --- --i-; +  : . +

...e.

s. . T T-

}. .

.;, i~ ~ Z- ....L.

...~

T-

-~~

i .T 1, w

+

4, ,

n--

4 . .-~:, 4

+ g~ ~ 3 ~

, -4 _4,.,,.. 4 I=4 Pipe L3 (j = 32, 41) u 0.10 m/s to Fig. 17. Velocity profde at 10 min into transient. Pipe L3

_ _ _ _ \

i 30 1

l 8 ii

4

. i l.1siall'.i.4 t i

1 i 1

...:......... l 1 :

1!

Ii-iaisi:4 l .l 1

1 I

l i

i 4

a l 'A.A.i;4!Il  !

4 W

l 1

til
4'J !4'4 i

}

l 4

l r  ;

4 1

I

):4444:.4l Pipe 11 (k a 13, 32), B3 and L3 (j "' 42, 58) "j"l!"

1 l4 4l44:4.) I 4

i i k

d d;d d;$.l lI '

}

)

i1

, 4 r

i d:. M. h >.-

l.  :

..........1.........

3 44.4444 1  :- : :

777'I77

' iii t 2 2"/:X.7

.5 WNYk.x.t l~

t ,

..............n....  ; ;w l' 5 5 N -m . W-c-

._...........................w.....

. . . . .. - . .. . . *. .. . . .: . - . . . . . . . . . . . . . .: . . ... .: .. :: : o.

...s.....

.......................i.............................r.......5......

. . . . . . . . .: . .. .. .. . . . .: . . . .* . . . . . : . . . . . . . . . . . . <. . . . .......% .. ......,3, .: v.. .

. . . . . . . . . . ..:. . . .+  :...........: . . .. ..... :

4

............. ... ........h...3

- _ . . .: . 4..

... . . .. . . . . . . . ~

=

. = ,

A

) 1 L}

L i

0.10 m/s Fig. 18. Velocity proDie at 10 inin into transient, pipes L3 and L4 i

i

VI ad}d '1ualsimJ) 0)Ul U)tu ()[ 1D )llJi))d H;;yyyp,$ .g g .g;3 s/ui0I'0

>=I

?

+

4 -

t!T!T,!T!7!Tl}

i 7

.....y..

i i  :

tiffiffifit i

. .. p.. :. ..

j t{f!T'flTif((

i,,

(IV 'EC = M) y1 ad!d tf:f.fif"fft t ifi;fifi{

i  !-

tf.f.f Tf f i:f.'f5fjff lj i

};fff:fitjt i

hIIIIIf f IC

VI adld -)naisuvil olu) u1w OT 1D DlifoJd til.x>las l *05 613 i.

s/ul 0l'0 i t=I r l

t i f:t' j t' f t  !

l!

.. t.... i: .. . . . !. . .

- i8 I {

I i! i t t t t ttit .-

i

..... .. l.. . -

p tt t t't. t. t (05 'ZV = 1) yt adya "j" -i- ~

! I I, t ;t t..t ,t t t i r

..k.. . .. l ..

i t t t't . t t 't  ;

1 i

i, i i t t t ~t..tt't  ;

l.

2 I

.. l . . . . .

I t I

e t .t t t t t t

. . I. . . . . .

L t t't' tt t t t t t t t t t SC

33

. i,. a.  : u. i o.

..ggg.. . . . g g .. .....

".. g g f . ""

iwa"gg$. ,gg

.y. .

. 3 g..

3g... , ". .jg 4". . ~...m 3, . };.. ". ; . .3,, ,,o

..gg. .

..ns" [ n s '

n 4 ' i ' * *I n ' j n z 1 , ' n

.. . . m -- D6" ip IW

' "g. .'" ',j.o..ygn.... gg

g.h

..g., . . i. . . .y.. '.'.i.'.'

". g . ."~;"

l ". g. D 8 -

..g.. .. ..

og" "e" .g" ..3"'

.7  :  ! .

.". .p i. ". '. u ff. .'. q '.u. '. .~g' 4 0 s, n

g. ,,

"v4" j "ygj"ggi"4( d d'6. '9 "Wi"s4!".ai"..fj"6l'd'6, (9

'91 6% 61 616?696,89

'9 6i 64 64 66 66 6<. 49

'169 69 69 69 6I th 9

; i
4 69 6) 6) 6)(P 6.) '4

..  : I

..t'*1** 1 1*-

ik. th, 6'. 9 6k. 69 616 1 ,

t  :

i i 1

686)6)64616)6 Pipe L2 (i = 23, 39), B1

  • f'-

i and L1 (k = 1, 19) '

1 4 67616!sl616

? :  : - :

4 1

636)636168686 *

. j -  :

=

.: .? .

1 i , .

. 2 2 t

67676?676?6?6 1

67. 67 .

67 67, 6; 67 6 .

N J_

Fig. 21. Temperature distributions at 10 min into transient. pipes L1 and L2

i!iIk, >l 5 5 ,lt" l:l_i[i.!i.I q

IIi1 :lilll'.E . : IIkl: iil > t t> t a f!illlI.

aA i.- .i--

- ~~

y -

m m ,s n s -inwr r

.i'

- .!:i" -

rer -rr o.wasnvv r -

t v- - ~ -

- ~

.'^ -

u, se r- srs 2 t r s n .,e i

.sw L

. e p

. i

. .. P t

- n vnss7 s s.,r-e aiira3s ~-

i s

n a

r t

t o

- n mwe5r2sgr

.- i ur -

t 2 ng v ) i n

2

- - - 2 m

- , 0 1

o i t

-- a

- - = s m isr n o s- n .3esgw i n

-- ^

c i o

t

~ u

~ 2

- t bi t

r

- ~ e

. p i s

srnsg i d aeaia,s rr - - -a r e r

. t u

a r

e q; p m

mnrazrsys e

-r -t -t -

n, .s T

~~~ ~

. ~~~ 2

~ 2

. . . g

- . ... i

- * -rs -

F mni m iss .3sgg -

r .

. w.an Y T aT1 1 y ,r r g .,

. . - ^

- 4gqq .

. u. ,,n r m.,,.,

_ ~-~ 4 3yrv.

a,nrn, ,

2 a

sc0 =

,qq4  :

- T.

- L 1' a .i+ . s '

' i.1i ! s:tt  ; 3IfI.A IA?t . .

,, u n

as inmmnmm s

. ~; j

~

~ -- --

.n r - -a uim,mmi r -

~

~

~

- -~ -

3 r -o ~s s- 5 L a.nmnnnn. - -

2 B e

~ - -

p

~ ~ - - i

~ ~ - * & P

)

. ~ .- --

t n

1

- 2 i e

-t-s s s- ,

n mnmnnmm ~ -

0 1 a r

t

. ~

~ -

=

t o

~

_ .;i-

- - * - j

( i n

- ~- -

3 n

-sr ~~

i

- - L m mnrn: sn e

nrm - - - 0

_ ~~ -

d 1

~~ -

i t

P a

. .!; .*.1 - - s

- n

_ - ~

i o

t wssrs-.nuunmm u

~-=

~

=

bi t

r

~ i s

~ d

~

e r

u ssc - .

t

o. nun *nmg -

a r

. -~

p e

._ -~

. - - . m e

T sr 3 ur.wss,mmy i

- 2 g

i F

rc.

a.mrn.m.mg

. e

w. 9egn .-s q,, n . . .g4

,i

. 3-- -

. wqm rrg3 m ,. 7 3 as . , . ,

, z. :4 q, [

k!e fiI,rh*, C.!I !tI l h ; tilv:t ((; .h,lv lfiI !Ii!> i[ >rs tIi?t t f_

a co

,] -

.i .

= ty 4 54 . , 2

. i 1 1 u n

. u m

A 3

1 Fs ,

z 2 1 4es a nmY  !

3

  • 2 s2 o2 L _

1 u1 4 u n nf e

. i i

p P _

t. -

n i

e s

x1 4 a2 s i t n 41 a 4 uni1 s a r

t t

o

. . - . . i n

) n 1 i s

u s

= at a 3 m .

i- I a 81 nut a .-

, 0 2 1 _

2 t

. . = a s

j n .

. 2 i a

( t o _

.~ s 7 d , l t 4 i aY uuTi 3 u _

L b i

e t r

p i s

i P d e

r w174 2 1

. ie tu u J 1 1 Tnni t

- a r

e p

m e

T e 2 a e

s. YT i. Y 4 n.4 uV f 4

2 g

i F

. 6 a1 .

< 1 4 n 1

uYn -m u j -

. .i^

a, s 4vY.is t6 6 I T 1 nnta 4

=

. . . ,ij 1 i4ilIIid) ja i * *ijI ;I<t1j j ';) i};4 lii<i. 1 Ii" . liik:*1i, k -4  : ai!i

37 6

  • .,C. . *. b.. L ,P E. ,

1

, L i.

- <- - E ,3  ;

! I M

. . . . ..,. J l

.C cJp. .i. c- ($

.2

.E f

1 fr1b4 C*

l E

't f*. n t i

[ .b.

5 I

E

. r ^

E

[

1 4 0

C '. 7, 2 m rcC ,C L-r .

N

  • m C M
  • m @

j l

=

i Z b 5 Y. N U ? .

G

} .TJ I > 7 l 2, .b

.- p y

ll*; O i . l.l.

8 j

'I ,

a l, I. I N,. I. f E b

- - y ,-

I -

I e

t

i. i, 10 og i, .-C, D T. p ?, 2

,. g i

l f r l i

. - . i. e . .,

! I! t^ 7 $J 'J%

i.

Le a.

t Le w. h !c,

< N ? _E ,N O Y &

11

. H l . . .

1 I

i l

38 -

1 i

1 l.

i i: : i 1

2ttr:tutttti 1 1 I.

I ne matsk 6 i

i

?

2;it:tttr: ices 8 '

l

..I.. . .

1 ftontso m .i i

Pipo 1.4 (k a 13, 32'), 11 3 and 1.3 (j = 42, 58) 2)r0Mrpn:tz. 2 1

.. g . .

I 1 2 me:0mowt o l

i ra dapp is ,a fdape m ,oja 91

..... . . ..i...

41 Idl >4 4 4 4) 9) ye e31111.pt3 4 4 s tn3h..

s-

f. if.fiaYlD. iVi{9iV n

! t .

't, '.lV.f M.ITi.fl t% .9 M ,2

_pi/"l*:"ly'l!!1tl))V) et n  :

...4;gy..,),......gg.....g.........

4, .

4,o i"~ 4:4  : "Ifl *" *"19q"15p'ijoitCH 1 2'"

. ..g9 .. .. . ; . ..... . . ..g9 ...y .. . .. .;. .. ....o

. . .o. 3

. . ..... p gy

. .3g.g.. .......

q .. .;

.... ... . g .'.41m

. )... o . n.7 3 '.IW o J 5

,7go3y ,7,

. .. .p , . .. . . . . . . . . . . . p , . . . . ) . . . . . . .p 3 . . . . ) . . .. . . 3,3. . . .; . . . . . . . . g . ,

. . .pp . ,

. ., p .. ... ; . . . . . . 3 3 .. . . ) . . . . . .i p .. . .. ) .o e .... Tn '' ' '"' i n ** * * *'in '*p

..gp .. ,. .... ....g3 .....g.. .

..jg ....g........T U '"' ' ' ' ' m "',

. , . . . 3 p . , . . g . . . . . . . g g . . o . .. ' ' "12T " * i''~ ** TU " ' ' ' ' ' ' ' * '

I=4 Fig. 2 0. Ternperature tlistributions at 10 min into transient, pipes 13 niul IA b - ..._--..-.~.-. -- - -.. - - a -- - - - - - - - - - - - - - - - - ~ - - -

3!!

..)..,.3..,

i i 2.n e t y lep.

.} s 1

i 2;nic;c/clc c 4 i

f 2 o c)t iq c y. e

. . .g.,.

2',t:r;In ir 3; 3 Pi gie 1,4 ( k = 3 3, 41 )

1 i

1 1 .

710 ) 7.' .t h It :r ir 2

..t-2 . C* h Cll') L ). l.: C l

~i

,,3.,

I 2'!)IJT I'I lG' O. 3 2^.9;F.i%'iq M;f. i 1.,

i

? c;rigr.':r. ;r; i 1

i.

t I!

I=4 l'ig. 2 7. Tettiperature dist:ilnitions at 10 tilitt (1110 trargslettt, pijn> l. )

40 2 n c t s z n >

4CC' !M p 4

...,.+..

.. f ..... .

2'UlC1C C!C 'C l pipe 1.4 (k = 42, $0) a

,, , g p ,

a... . . . . . . .

l'O T1'J)3/2?0 $

3 91 92 5 ,t$ 74 9 2 R; C,CIC 5; 5: $

N J

t 1 i'.' 'C@T@ 72 1 2 e s to. ;  ;

} 4 t Ig 1'

'M

.k Fig. 28. Ternperature distribullons at 10 ntus intu transler'L Infe LA .

- . -- ~ - - - - _.-. -

~--- - ~ . - . - - - . . - - - - - - - ,

I 41 6

Surge 1ine Wall Trioperature ( )

3 44 1 ill ill <8)

J (l I Hi (84 - 44,1 ul 'tj (l1 i t.1 41 (8 l (4.1 to 1 ti l na mn ~ **

Nm oaC o e e

@ cce e, MMN 61 1 48 i u.! il1 48 2 a1 - 68 8 o4 me m

@@ VW wv i

(t 1 (b.1 fJ l (l.l (1.1 (J l 68 l 1

e3 at u.l 48 1 6a i ui .3 Tl on Pjipe 1.1 (k = 5)

. . . . . . . . . . . ..f.... ,

la a1 n.: st : 3 l

i K=5 Fi[I. 2 0. Ternperature prqfile at Tl i

I ame., -ew+-+ 9' W "

Frw-W'We - *--'*W-+-rev- -----r -~w+- ---

gw eym--wwywt----,wp,gy- 9  % - +e--e.-==g-yi-.9- rp.- m gp s y, gy-*, 3 y y F- -wwpw- *.

42 S62 (209.6)

(209.4) b."' U" I'I "* U I I T atures ( )

i 61 196.3 193 l 194 6 $44 3

<,b. s .\ O 491J O e 31 18tj til1 18tJ 1909 190 4

. .. . . . . . . . . . . . . . . . . . . . ... . .m . . . . . . . . . . . . . . . . . . . . . . . . . ..

167 6 166 1 163J 165 0 153 1 la 4 167.2

. . . . . . . . . . . . . . . .m.... . . . . . . .

eA ee d/$ 133 5 litt 112J 113 9 134 8 155J 156 6 o .e e.

vv

, , . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . ............4..

lis,1 usJ u6.1 m.: Is4J ga 1214 I 96 6 96J $ 8.0 99 0 99J su fe.o, tnga i

\

6

  1. g.Op /p, \ ... .. . ..I2. .. ...,e .ti p, IJ,..(1 a. 20.). .., . . . . . . . . . . .

& i 91 6 11.6 19 6 18J 2

?

4 I

i (105.6)

I = 20 o n.9) i i

S66 i

1-1 l

Fig. 30. Temperature profile at T2 4

i 4

J l

4

, , .n.~~--,,-,,,-w.r,.,v,,-~- , . w e r , w,.r ,w.e v , .,m,,--,w.- .n-~m., -----,~~n.,-. w, .e,, a ,, g.,e ,

4 '1 567 (213.4) Surge M ne Wall (212.0) Tempn atuses ( )

.42 2tti 151.8 189 4 '49.1

............... . . . . . . .. . !a. .&. . . . f3 2 S t'/'O'sj 3

y 50 184.1 114.2 1843 184.1 184.6 'll.l

...........................4,....................... .. .

111 0 172.1 171.9 111.3 1713 1113 170 8

. . . . . . . . . . .l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mm NO 143.1 143.9 144.s 164 6 144.8 la$,2 e e 144 9 to N CS Ch Ch @

d M La vv 13 2.0 133 3 133.2 1318 13 1.6 132.1 131.9

. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . = .. , , . . . . . . . . . . . .

'a i uti un 1253 lu.s uns .o

! i

.Q

l. q' t  ! S
T. 3....o..n .P. . i. t. e. .1.3. ..(.1. =4.. 2.5..).....

. ~ .

! D ,e

'io t not llu no: .o 3 (131.7)

J~25 (138.0)

S71 Fig. 31. Temperature profile at T3 I

44 S12 (226.5) Sury.e 1.ine Wall (226.3) Temperatures ( )

i JD 2D 0 *B 0

. 2.30 "J o

(

1 Jo 23 0 23 0 2D 0 13 0 23 0 'U D s

l 2D 0 2D0 2D 0 2D 0 2D 0 2D 0 2no I

k 23 0 2B 0 23 0 2D0 23 0 2D 0 2D 0

'30 2D 0 23.0 230 2D 0 2D 0 2D 0

'D 0 3D 0 23 0 2DD 2D 0 2D 0 Jo T4 on Pi pe 1.4 (k r 50) i

'23 0 2'30 23 0 2D 0 30

/

(226.3)

K = 50 (226.3)

S73 Fig. 32. Tempemture profile at T4

45

=+_.n.,==:,. . . . . . - . .

=:= = t- __=.:=_

.- . . ..:=_. =. _

~

=__=.=-a:=_._=_=-.=t.-.=___:-=L.=u===;==_=.-_:=-=r--":=2=.'!=-"JT"==F=_~_-l=-..._. -

~4----.

= T*w -. . C

= = . =1. = s === .

-.a :=. y= = r :9,==

==.=_==,=r

. .- t.x' N=III'=i=n

=: = ' .

== ==== =r== 4. =.=.e_= ; =_ -a m==- - ~

n=

.:4 7:. t ~_= '_.-~.y :~==::==

+

~*2^ .'h_g, t=Y=.:.

~'~.=j=-  :===:=== . -! $ = t:::_1 _*.?=t==;=$=*=i:M=l

- = , = - -W;, =s; ::=_ , _ , _ _

t=: =z=.v-  :. t-'.==r=:-m===,  := T = ?== 2%

_ _ __ 7. _. _ _

.==:===

=

=m :.=== T.;=Q_:_==_

a : ,=.

-: == =s =.2=c=p' ~ * ~=', =* *=*'=~

. '~ 'z=~-' r. = .===

7=L=-'L= = v= =(.===: t====,

= 1:-- == = =3.=_== =::

m:=p=

. == == = : =t.==2=:==4=.t = = t===========:========.

. ::=== == u r:=_. ._ . . .__. _ , _. .a===  :===

=:=.7=.y~==7='==E'~T'"=.==~~~.~T-+-.~=~7*==~~T:*~===7 G~

--=.~..**=_=.~.2.:i=.C*~~.I~

^=: = 1 * ' } ^ : *' . .= Y =' ::-* = =' = \.= = =I -~T:' G :~~

== := = = r-= _u === = =[= :==== = === =-- = *M~$ ~."= : = r ~=~ t.' 't=: = T *

== - - -

- -=_ . ,r. _=_= =t._ : =_ _ _t ==. .= . =_= y = n. = == a=_=_= [===.=_r.=:._=. == = r=m=_= _=;=_ .=_=

- = :== = = z h := ====2= * =1 ^ ~ " ' ' ~~* '^ ~. __==t=1=="::=--_-*.=====

== :a = == -= == m ==u=2 r=:== = ==t=====:==  ;==i.::==:=====t = =m

== r=t.= t=r ==:===bm:

t=== ===== -

= t z u . =: :=

. BEE = t= c.=== :=HE E=:=g==1

=

===trr.~E=t===== ==i=i=E ms =_-=_=_t=._.

.==:_...... 1= .

r==f .

=p=._ *f==.:y====={-

x tuental Data E. pe . =r=a.

V=t=4= =f,_=t=r==t==y

= =. == =====g====.

e.==t==

=n ===:=== ._==a L,OMM =1 X = h. =a u.u l J =n

= : ==r=:

r====; ===u=. ==_tr== 2 = :==* = _=== = g====:f. = :a===: =====t ===;==4=:=:=t=;= == =:. ==..==j

.=.,=._ =-===._,..l.=====._.=;==.--.--.=.

=d=====.= ;r==2

- + -==r=1t - - =====;==:pm = == =a:==p===m

._v-~-=.1==u=====:===. == _._ -

=p==== =j.

- m .

4 0 0 = =. :=.= 1_= : :1==t ===

'~-'r:== ====*===5==F="=_i= ='.=i.="=;==t========='==E.====.==

.= ==:===:= == n======

-- .._ . L-..--.'*=~~ = ==- 4-

=_=

r;= y =.r.t=0;=; a= _=.: ,= =

=. ;=1' ==. =: =_=..=- == 1. =- .= L- -. -- _=.- . -=x'=2.-

r

==

=; _..;=:=r-

===r=2=_=.=._=_=.

t==:=1 =- -=

==n=.===\_==._..=.:=-._..:.,--.u.--.-;==;.= == - - - = . - . . -

= = = - = ====

=~r=====a

==r=r==:= .=_ --

======:==q=:==:=] -

=r===.-. _ .7.

=.1._..

_ -=,.=_:._ = -- .= -

~_

=  : =- ,=. p = =: =__q:;===; L =: ===;==.. =_ m_= == a=:=:u:===u. =:w _. _

.r u,-,=y=.a=:=

= a

_

r =:= =t=:

r.= w 7. ==.e==:= -. . . _

r.=tm

_t__ ~m_ ,_.

===1

= =="-~====1

==:.=r,===. r.=. =~= m.._.

a.

o^ 3 w

5 0 tw.=: _==;---.2==.n.==_.

. _. : :_==_2

. =_..=...r.= ==2

+

- ~rr="

a = ==f.,. = = = =~r~~=~=_.

= = = - - -

=~~=.

..= =. =x".=:=~

-. ='=4:=r ~ ._=.=.

= == ;

r v

====:=:=1====::r====:t_=-

_= 2=_ =.= =:==

=

.._.-c=t.-._.-.-.

a -

r -- 7. =:-=_:===:==a=_~.. r

- ._ = ._ _=a = = =. _ ._ _. .

n=r=r.=:=:==:=

=

_- ==

W e =:

=~=-t.~~==4t===.===== === : = J =Y:=p* =:~=_r* -^'~ T=I~'==r .-

- ---4-- '* ~~~- -' ~~ - -1.~~.77 - - _1 * =~ ~=~~ -==1-u n ===---~;= =: _. =:==p=.=_=.=:==r: , 2== =n__.a

- t = . == \==u=p==_== c :====.:r - =:- x==

w ==;==- u t=1==p. _. .=. a. _ __.- _ _ = =

___--~. m ..:=_==_=_..___=.===t=._=.=_==.:.=1==.=_..r__._2.=_m:=

g 3 ()(3=: ===

._m}=__=_.=.

g 7. _____7.=m_:_=_ . _ _ _ . _ . _

-2.... .-

. . . . =-

=_

. - -- - - ---^ r --

B g =_.=...J;=.-=_:.-.--_t=._.3.=-~

t ====T==

t==.y[==x~:~"*. -- -T ~. - r=-. r

_w *

...=,= = -._a - _r =J = - =.r

=r= - . J= -

[===L ._-

.~._.1. .=~-.+.= = =-.=_;;.

.- ;==

p = === r: ;===

=====.==:-=- =}*=r  ;=; = =2 == :==a. c - .-  :=-- _ - m~~=:== = t=- - -

=t=x-

.c- - n == .==

==

=

== =a ==;== =:= =:== : =_ a===;==_=:=_.= .p== =. 2 ==;=:===

.._ ._ . _ ==r=== =  ;=x== ===r-r =r=: == == r= =r= ====

= _..=--

=_._=._E_=:B=.======,============__r=_: =_=__=_- r. v_ _.=:. == z__ = = .=.=.ut _=.=t=_._ _=_ . _ = =_ - = _ . = _ .

- .. _ :a._ . .

-:.===

=;

= = =._ g:=-_=_L=_=m_r-- . . . . _ . _ _J. ==.  :=.._- _.__ ._ _ .t_._, _ _mf_ =::::.

--_=_=,_=..=._t.._......  ;

r --~._._ ._ _ _._ .--= . _

2 5 0 C_ =.. _.=, _==_=_.=

._.=-_==2 w- - - - - - - . =

,=.==.

=_.._._,_m.__. r =. r.=_~m==r_

=.-., =- _

e

.=t

, ==_==.:==. . . . .:=+.=._,.= h==, .t. n.=.=1 =.:=_ a__ m.=;=_,=-

7_4=_=;===_T_

_.1- - . J.=_1 =.4

._t===t===_*==__=.=._=.._-ix..-.~..._._.._._-_._=.p=_...._g

- _ .. :: _: ..._-=:=;==__r._=.:_-.=_.._=.=..

. t r==__2*._._.-_._..C..rt=..=._.'_.._,_..-_t-=-

. _ =_=_: =:4=_ _:=+_= := =_:_=_r. _ :=._.=_..=._:==.=_2=._.__:'t=_.-s=_.=.=_._._._=n.____

4 ___.___a - - = - - - - - - -

-=====r-._

- -- ==.. _ . =;=

= =y===; r - --=,r==:. .==n=_2_.-

- :2

_-- = . . .p._=

._3._n,=.- == = =r===4 , - _, =.- --

n=== d=2_ - -

-. = = =

200

== vg .=_==r=._.-=x r--- ._2_m:==.- 3 =2 ;._.__.==m;r= : =j =_;==3,_:q_ , _:ar=.__

.- E- m==_==

-- =b- == =:= =t-t =. d==, ==J:==:=t= t= =.

m Er mEriE J=:= ===r.:g_ l_=. == p=.=. :==_t:=p =_ ==_. :._=:d'Z:'i =

. -w:-- =a - =- . . . ._= g=_.=. v='_.~==u . .

i_...__

  • ==t=_a..-*,.*l=__.~t_.__._.

.x_._

=i = =_- .

_ : ~_ t.,= K \ t ._ . . _ _ _-~~.r=.L. L', 1--*'-_

=

.'=_.*W _.-.:7_.._.~_'_=..=._r

,.=: _ .c

=g._=._.>g==.__.=_a.-=_;=._=..==-r_=__=._i=.__+=._4__.-_=.=._t=.-_P_._=_"==:E=-,

r=== t. -

. . - . ._.._ =

, =_ _.

t=. . . I _ -._- . a==

=

t- w =-  ;====t n-t := = r == = i=r= r= .y

=r====w.: = r.1 t= r.=r.:-+r. r=.=[.=:=,!==.  ::= . = n=== t

_.=,,-

=p-- 4. ====I==w=%r rp ..m.j =.M. . _=.., n-=S a..g:

.*- := : ; r 1:*4*k 2  ;

. = k_ . . =. =j =, :=; =. ;=.

-. c .4 =ap:.-

. } =. .u . , .qi . p= . . .. l :2:c: m_ y._ ..

150

+ ---

_. =. = . _e_1=

.,.=_1. :.==

=_ =._ _  :==A . =_ t.=_.t= ru .=:_=-.= . . =_.  ;=:.=- # --.b.=.==,t.

1 p-. c.=.:4.=. . =_n. _. =. J. . - - .r.=n

=. r==;= m = = r- L - ==

== :r :=+ === ;===r= r 12.m .- = n . u: :r =d .= t w.=  := =:=- == = =:- w = 4

.m .an . b_. . .j. . . . .

:

n ..1= - =. :. = -

1.

uc -p= .Mv : . l .- r-= :-; .:,- . s;. :.h=p= ) r.n w m-=  : i - . -

w 17.5 18 18.5 19 19.5 Time (br)

Fig. 33. COMMLX results vs. cxjwrimental data. T1

40

_ - - ' - . . = . _ . . ._..=._.=n_.==.=__==..

y  ;  :

...=_._x.=...-..._.-_=_=._=.._

. . _ . ._..,7..____

_ , .- :un

_ 7f.:: . g 2. .

--p. -.

q.  :

_g

. _- . = -: ...; . =-.. :- . ;;g =:=m:g = ;.q ,, ,

q

=-  :=; . : .:=:- =_ .7 : ., 3-.;

~ ~ Fxperimerit a1 Data

~

E~'l'~  :- :_2=:u = = = m

'ZdETZT.3

.. COMMIX Results - - - = = = = = = =

. . ._ _ .__ _ ..._ _ ._:: = -

~.

==:r m = : 1 4 so }-. _

c'. _ . .:1.. a - D = .

E= =4 E  :-

=1

- - - . ... . _. :.=. . .;..=,_--n.=..=_...=._~.==_.=..._=.-

.m_ . _

__ J 7 . . 7; .;

a. =.. d . - o - 0 -

MT=~E=ar= 1

==-  : - - = -

M M - :-D :- =@y,.=:===-. ==

--. . ..-=-a .- - --

-u ~~ =

.'E"E'

.-..~-~

--3_.

. = = = = = = =_.=.;; y.:=

. , ; __, _ _ _ _ ; 3; _ . 3 . 3 --

_3

. _ r n-_--_..u.y_; - -m-

.,. - - - - - -.. ;-m..

,4_.w,,-  := _:

. _ _ 9 0_p --=.n_  ; _=-n-_;__ry

- - ~ - ' - ;' ;;

4 99 o _.. = = =:.= ------

___.___==c' w31 . . __ -

.=.-_=n-___.A.___~._ .y

_py;3q ;6.',\ :_ y y,9y:--_ ~

ye.

_ _= ~ --

== =

=

L==... T. . -

V.

. l 2 ()O  ::::= . -=. ==.

_= _=.

2 x-.- . -. : . -- _ . g M, -? *
.N . . . -  : :-.. ~ == = : : ~=:- . : === : 1= ==: : = ==.:::::=

%<2 w p\ ?: :._;:A : : x .==.====u-o . = ~ '== ::== ~1

-1:x=--==:.==~~=...~=:=:-~~~'8'0===.====.=.===.==1

  • 1 7 .y =: = == :. . _-. .= = = = - . - _ -w======

>wh -- == ==== u= := == = : = ===:=1

.e- n%-

r

.-&h7@5  :;_ ^-_

=x: =r= -

~--"Ls. -%

.=-_==.^=:=====F~=="..===:L.:.=.===.=-":-~..?~.

~ "*': :'

========:=:======~.==1 T1 u  := .  : - '. __:  ::- =  : = r =. _ _ = L ~ = :r = = = = = r == = = = =3

3. '> 0

-1 3t &t = 41Et :: =_ u..

\ t ' .d : . t .;: -:=-.==.:=:======-

- =- ==- . .:==========-=

. -. . = K=%=:m= ? =i==%=E =
  1. . . .r

^

k.

A :f:s \ : r:=M==\= :- - a:N= = .._ =:====2^5-^ .====:=====:-=======1 =EE=5;2===D 0

w

. ;\:4 V:=V Q=2. - ~ .v: - - -: m~3. =- =.:~-== ====  :.==: == == = =.:= = ~ == ===  :=_ -=:===  ;===:==; == : 1

_ - U; . ._\L. - =.-

u =_=.=.:_.y_:_..._===_=__===_:=__=__.=.:_=..==.=__====__=_....

0  ?.^ -- '.=.$.~= Y N- . . . ~ ?. $ .  ?,.N==~,~.~~;?~$~.='==~. ?N . N

. lL: :fi : .a =

.= : = - $ma =.====:===r=============-

- ==

m : n : - . . : y-t

~.

- p- . ,- ,= =- y =

.::=n:_ z :- -
=: = = = = = = = = = = = = = = -

= === = = = = == = == . . ; ..;==== =- A =~

~n 300 . .

...=___.__u...=.==_==.=_.-.=_=._=..=..=._.=_=__=.=_===_==._=__=:=._.== - .

k

. - =. .4.i L _: . =_..G.._T..':'-~'"=..-

,._.-.,..\,......

~ . .T ==
L^~=~_;=..:...:=_...*,=__'=..*.:=..__'.=.=y::.

.,= = _ : ==m 4 ._

=

y+

1 = A .. =:===-

.x========>=___===:===- .

====== o ==1

=.-

g ry.

y . .. d _. h.

, . - -= =_:,

_, ' .. . _. u_ =. ==L_'..:

c:= =: == == = = =2'.'_:~ =_=_2. _. _

=n.=.. _.=.

_ _ 1.: =_.._==1 _= = =_ .' _.= ..

=;=. =_()_=. _ ._ .J g -- = 1..M l2=l= =3-N

=..-,J _..._4

\

= == =M . _,)_ =]o ===. ;

. :, =. ___.

.. . _ = . ._ . .= =._ z. ==_ -:= . . . ==.= ~ . . :_:=

_= = =..> . : - -- - r = = =:=

.. _ ._ _ _ _ _ _ _ = =;-__

L '. : =. =:: ' :: ^ - '::.  :.=:'T T=*.====='-=*~=~==~"~~* . '^~-~.~:....*'%4,*=.':*,~

?50 =- =.=========_=^====:=:=====================Q'1

=n

. = a

. = ::==%= = ===. n ,- = _ = = = = == -== == = .=__..=====

=:= ======a.

~-

=

. :q . ==: a,======

==$,=.=...==.=====m====q===:.===.=====--======2,

. =. n ==:= .-..._=%..:=y=.~=.-.===.=.=._:==:======= - = == =====_- o

um
=: = = m%= - -- -.=. - - -. = = = = =. . =. , ==..=_ .=.. . . = J.IL==a

=== -

= L= . _ _

_=: r -~

=.. e-.

1============

===========

======_===_=r--_-.==a

====- . ::=--- -- ===---e *

= . . == =: - ~ =.;= -<

' - ' ' : - f:.1--- *::::-. :_ ~;* g= :=^=.=.== = _ =:

'==: ~ =.== = = =.==.========:_* _=X._ _ _ . ; .== a .. _:=.

200 n

=

== c :_= = . =a:===============-=:

'~= =:== _ ,._ 1?k. ~=_'s o:

-_2=:=..=z==:=-~===_======-

. '. ' ~ ': :3 *; =::=' ',.. _ .

^

' ' ' ^ ^ ~

.=:'^~"4'^E E E K -

= =

=E======-'~~~m*~~=7

.a=

=

======.=.========m:=====_=. =r =====%= = . - = = = . . - . . = = =- ===M=G _..=====--r- a==.=P~ =. _. -.:===1

=:~' m

EE9E ru raER=E=EE;EEE'===.__ i ==.EZ_._r===

=

18 0 .=3 o=

= = == := v = u= =====~ - = "-~=.-_.-w--.:

= -_ . -e

===:===='.-

==~========..=,.=~*T'::'~ m= ;.==:~;-Q. _ . = - =w? ===3 150 - = = = = = = = = = = - -72 - = ~ . . . L 3= - " - .=~:-'~.=~ _...-: :=== ===-1 g...._._______...-.___.

@h=. _g qEEjEg 9E~EME-EE3._^]:;_E~rO9=.= =_=-; ._ __ __=_d., _.

E_ .. _:=. ._E. E_E._ E_E_=E__EE_=E.=.=_= =__=_E.E_E_=.E_ =_. EEZZ O=E=H5:3 L. _.=__9 _.

p._. _ . __._ _. _ _ _ . . _ . _ _ _ _ _ _ _ _ _ _ . . _

17.5 18 18.5 19 19.5 Time (br)

Ap. 3 l. COh!hilX results vs. experimental data, T2

47

._a.:_..,.~.._.......

. . _ g. . . . .3, . . - .. _ .

..__.i....-.......,_.._._....._...~3._.

_3__..,.__.._,._....,......,_

y

..-._3_...

u......_..

. _ _.._ ~. . -... -- ~. - _....__..a

.--_._. ~

,=_.=_.=_n_.1.L==._=.=.=====.,.=.=__=.=__=>._._--..r._:._=.r,=---_____=.=q

- _- -__------___.__._.-s.

_--._.....__.)=.___...______::=.._==_=_=_=.=___

- = = = = - ==__.:===----

n

==========.======--.-.=========-=----=-_===------

r=_==_

= = = = = .~.===.m=====.:-__._ --- . . _ . _ . _a

- :=_ _ ._ _ - -

==.=:==.=_=_:-.=. _=.E x pe r i me n t a l Da t a

=;- _

.::E___ -.-.._.___.=.-.=.] _._ : .-. .

====;===e==_==_COHH1 - - = = = X:Rnatd Lan- .r -_

==========:===.==.=_._ .- - _ -

4 450 - -

-=---- = - - - - - - ---

=~ = ==- = L-._

==== . _ _ = = - - = = . = = = . --- . - . = --- ~

. = _ = _ = _ = .=_ = _ = - . - _ = _ = = . . =._-_ .= .= _ . _= = __= _ . = . = = = = _ ... _=_ _ _ _= _ -= _ _ ._ = _ _= _ . ., -

~~

~5. 5__-EM.-EE'WE~E.I._=_4=9-5E=E. .=5.E,EE - _o a .0 _ __. =3

+(==-, ~=r=_ __ __ ._. _- -.--== -__-

wh=

..= = = -s

. g =t=. ~- -- . . _ _ _ = _ = _ . ._.:.~.__--

_=

--- ., g , Qc . _ _ -

t.= -

($. .: ~ = =s. _ _ .~=_=_=__=_====.=_=======.t.,. on o' 4 00 v% _Vr- %, -=- - :==

--#v _4 uq . 2 m _ =- - .,___- ___

._= = .m._A: y.

2 = ==. =====_- _=== - = -A.- , _ _1 2 0

=>a - - ---

- =_.-

-* _ q: --

=.p=%=-_=======.__--

. _ == _ =x===&=:

=

w _ _ =. --

o- =.:;- - ._ _=._ _ -...- _ .- --

g

. --* . 180 -

.1

_=__=L O. .E..=.a_
e=._ = - ="__.__...___ -

p=. - ==q_==_=__.==_.____._____-._x--- . _ _ _ .

+- 3,

,g ,3 5 0 . ':= r:1g: . C. L r=_-d. - ._ - . n._.-__.._ . =.=_====. . . . ---- = - ---- ",-.____._ __ __

,=__ :

_ r ---

r:= m -

c -= g=E QQ ===M. 5:== =~~i_ ; =; r==:f-~ ~ ~~~~ 3 1_____...._

__.,_j. A. . , __ _ _. _ _ _ ._____+. _

._.--v=._-

~

=: : .= --

te 2._.EL_E__ Y==~5

__=_ _ y.== ~ ==n ==_=_- = = g__1 .

~

$ _- .._ ~q'_%_ --

.=-- =W-

=._.:-.

a u, _ . _ . -- __ __ %- ,r _.

w _._._

= c=_ 4-. h . -_ ====e

_. == :-

--==

K, H2=

_. s it._-E_i. . _ 7 a 25.r= = = =;_E ~;E E- - - - 0~

~~

it . --

._ - - _ __- . 0 .: _:_E_

3 0 0 ~=. _= . =_=.,. .c.._3= ~ =_ ~* #~~

F# 6 _--- __._ ._ -m T==\T=====,: . - ~V.:=.h_...

F E_E: t=E._: v ._.

= _ $______.s= _4 _._ _ __ 'V. .=_ ._ ._-_ _ .- __

==g_=_. L.

=~._ .-

== =.1=:=._ =" _\ =. ._ .4 ___ __ . . - _

o=

Tp_== Td - % :=;:==:_. _ .

== . _ - . _ _.

. - 60 ::=.

-== 4=

=Y=_ == _m X.-. ====-

=.--- __

250

==-== w"%m= =r c: _. =e === --

- _ =. _ _ . . -2 . -~ -

q-0o=9 _=- -

====_t_==__=___x_ __W  ::: r_ _._-

~ } =_ _ '~ _

_. ~ " " - * ' '

=. - - --

.---=b====_=._.\=__.____..___

_.,_r== _._z=-o ___ . _. _ __ _-- _a

= p _=.___._==.g

______=== i

. . . _ _ . . _ - _ . _ . . . . _ _2

- = ~- C~~'

120. .a:El 2 -m

..r . ,_% =_ =. _=~_. =.::=_._ :_';_=. '.:m __ .:r----~~L --

200 ------T-s_

= = .. -- = _ _.;_ _.-- ._. ._:ag

_ =. =_. .y

_.=.-_...

-. ..;__ - - . _ ___.g m____.-  :-

.____ _=._ y=_=====..::..%.=_=._=..=._=..=._=.._:.c.=_._e__.,,;___;._..______..____p=__

___==__=:.

=:__.._

,__.s --

=. _..v:

.5.

=:w = =.u: _: ::=- ._ _  : -d

. t =. - - . . n. =. .-.- . _.h. . . _ _ __ .=. _=. ._._= . _ _ . __. _=._ . ,., ._= = . :. _ , 1 8 0.- o ,

r=- .n .-.:.g.=_=.--..=__==r=..,.__t==-..==:..-.-.

..=---.=-==-;t--=*=~=~

150 -

r. - =- =:=: ==s;==:.

-?

.=m==.:---_T_._,r;==---..__.~.,

= = ==C==:E=_=h= =i = == == = i== ==.:= ==-i==.= 5= =M E= == =n

=

==== =_ L:=__ e=.= =.vr-r. =".:. -

.: . mu.  : ;; ==: ;.==== err .=::.= ==_=r--  :==c_umr= t=== ===== =

. =::

m c=. =- =.===.:.  :=.: =

~ .=..=. =:.u =. = = == ~  :==:== y==:. -. _ __ . . . . .

}. r= = N : -

~ = = = w= . < = = == =I =:===.u ::=;f = ..= ._=.== 7=._-. =

17.5 18 18.5 19 19.5 Time (br)

INg. 35. COhlhflX results vs. apertmental data, 73

= _ _ _ _ _ -

48 i ==. [====

=== =e 5 ====n:==,=:r r ,= . = = = = .: n=== u =T. A= ======= ' = =:======s = = :a= ==. :.=. = 2 == = = = = =_

t =:= =

==L

==

h===.4.-====. t~ r ==: =.=,

= c= =_==r =7,== == t=:. =- .:=. -.-. -. m.

====g=.- = ..

=. y. == - '=1- =:=- ~ =:- 2

= = = = = ===  ;

= .: .

=  :. ,

-. . t = l=:cea=m = t., =- p=u:=m = m= =t =x =.== =:= r.=_.: -.== = . rep =r.3==::=._r = > = r= : = _ = u ,..-_.1 .1 . _

= =_._

=! =..

- - =- -

= y =r =- = = = . = = = = = .

,::J=k~~=r='* =.'.; .) =*=,*y=~~~='" 2 "il z .'= f ==: .

r=:. =*

==x=:.~L .. .m . ~ .

=L ~I  :. f - ==.=p*:15~h=.?~^=.~."*

= : = ..u =:r ===_ '= =. . 1;= *_= t.=.:

l e L'

- ~ = =1.=

c ===r= == a

. :==I  : n====.3.=_.  : = ;n= = :

.:= ==== n == = === = r: == += =::= =.r = ;= = ==. =; === ==a

: == = ====n==v===. r= =::====:== = q== = =z======= r = a= = =1 ==== =v,.==1.=

- - 2.=- =. x.==u =-- = : t = ===. = = ===;t======; ==:===  :==----~===== .,

= = =====q = v =t. ==._,m.:====.=. ..== r=t = _==;=: = == ==3

(

%= . t== . = = p==t= =t =. -t==:

= t= t =a== = =.;= = -

=

=:h====::: r. =ter = r=,= == =r=r = :;I:===t=d =tc

a = = = = = = = = ===;========= - = = = = = =

4 5 0~==:== 'b===t= = ; ==_ c- == ..=.-

=== p==.==1: n.= :.=,= ==-.= r. =.. i ====. =~.=,~t =r=:= ===_j

.= . _

_w===,

+

4

%=. . .=m - =h==:t=

== : =

:= == :====i====A = =====4===2=

== ====:= t==== == =:== ==== -- ==

-- m -- = = = ==========

====_=h_..

=====.

.=._=t=_.._=... . ..,

=_: '_ t ===* .=~=. I=. = M % ; 7==I=-I--.

.;
.=

xh -e- .=:.;

==

q. == ru. =i= =======:r=== L=. . ==.~12 :

.=..=-...-~=-- -

=. -= _ -

u=.=~. ==

. . = ,

= ==*= :==:= ==.:. ==c G 2 =I = 1 ~]=='I= 3_ = = } =J-.--- .-. ~ = .i=*==_ n- ,:~

====?= =:

r;. ;r x y! '~ 1

==I' ==u.= ---=: * =*=.

  • C'= =:==== = == tl% = = ' =Jr ===== ::==I =i= {=y== r========:=====. =. - 12.==* ~ ! == 7=C 400 =

t===~===:='=======:=

===+ ======,

====*t=====:=u===========-".i~=~*=="====J=======2======.-_r====== - = -

-== === =

= ==1E====== ==-=:: rr= =t ===== == =p==:== =====  :== rara =::=:=:=,: =======e 4

t==u=  : =:== ===r ==t ==  !

n- . -

===t-.=6=====.=+..-.==n

- = == =
21

=== :=

:==

== 2 = =!=: ===-} = t=: r=z:= _: === =_.7

=

= = r-

=.===:=:: - . - -mq:=. . ~=== _ .. -r-- - ==-

=:= 1=. ======3

t.=;===r =:= m- r - q= ===:====_. = ==u =

====; 3.,=2=l = _=r===_

.. _ ._= .r:=u2= '===_=*==I==m:

===m . - - - .

====~..2.__.--..- =t

l c =: ==+ 3.=========:a.  :== ~ 1= := r=r=y-

== .t===== i=t === =,=== = ===:=====

,,350 g _. = =_==:u=d=:::==:

. = = = t ===3.=====r=== t =r.===} == ::== p == == =: === =t=

0, ==1==._ _====:;======a==_==23=:==

xa

==

==

.= ==t=t

=====-=.=_._=_:_c=:

.= ===,=:_ a .

. .=. __ == :. ===: _= t:

r._ , _= = =

=.=,=-_i =_m:==:=,.=_, ; _a; -.:==z==: - - =m . _ - -

a r

L, k

0

-- =,=_ ==L. =:

'-*=-~...-,

. - .= ==: m=~:= =~ ====T==

"L - - - _ e-...--

t === =v=1

:= u_= .- =~'-  : == ~ == t==t a =

T*~~.=...:~;"'"==~

==,.== =

u ==t=======.=====:===3==_==.._-T._==..._.l_;;_._.:

= t ==t

u_ __=-- =t r :== ====

= = =re_=re== --- ===== : :=====:=u - -t - - : =4=_3 .-

+

1 M

0

.. ._. =a .=

0= _e===-~,1.====,=t===w=3==.

__-=

= m.

=3=~ =- ==. = 1= t .

m -

.,a==c=..=

y.x pe o. menLal I,ata

. .=a - t- t -m=:===.

.- t

=-..

= E===J-+-- t == =:

.=. _.=_a _= =

c=:=r_=. -._ = =

==

?

=

, e ===ta=====4

==== ==f=======I0MM 1L8c s u 1in=2.-t

-t== j=t=_

-=====:=t=====  :=:= : ==

==.= = g..

===: - =: u . . ,. - _ . a

, - = = = == = =====

==---.==r...

=:=p===== t== =t== p=e _ :V-

-t===

. . J. _ =- == =:= --

L -. . ._, . == =

a. .=== :==;==7=5=-~=- ~ ~
= =

==  :==r:==3.:. =.. ======f:--

===r---=t=== = a r_ -

4

=:= :==.3==:=:=2-}m===:=t=c:=__. ==_

t 2 =r .=- +- ~ ==== ==:===r =_=._ =t= r=:= _ . ,_.-. -.  :-s

.-E_-+-- - - ., =.;

4 1

j g -_- _~

=;=t=.=....=___:.:=.=--.r===:;_l._=~_...__...,=.._-*-===.

r -+.,.t .

==.1===-} =- =-.a.=;==;.t _ :t=. = =.m-

--"---r

= .2_ .-

-+

t :.=_ _ = :=._. . . _ _ _ _ =
-...mq._;.=._.--.-.--.

_. _ t

-n-  ;;; . g_- - ; . ~ 7.__-

_._t.___p._.~=,=;==;--.7,._,__=_= =

._-_;: = m._:E_. _ 3= ; ,2=.;

.A = ___ _. :,=__y=

1 . - - . _ _ . - ._. t_2. __ : . p-i

=a;= ==l._== :=====.=_s ==x=_-_:t .

- =:= _= :=_ =_ __=.t=r. _ ,t.__s_._ _

._-_.=_ t.5_3_ _2__ _ ._ _=.__ _ . - _ .

m. ._ . -.f:=_

=:

==._: . . . ._:=,I.=_=._=. = =._

s; = _d _tc:=._ ._ - - . -- .- .. ._ : _,,__a. _ .=.: . - ~__ :: =._:. . ._. _=t .r=- :==_ ,

3 _; .

=. =_ ---w.. ,__

', ===; ===:== :a:===:== =t= == p

= == -. - . p = =,.=_p=t= t=r =_ =3== 2 =p= ,

. =:=:=t= =

=:==r.

=== =::_

l.

200 1==:=w=== t t==: =r==t=== =---. a ===d' t=  ;== = 1 == = u W- ==+<=I:= =., . _ n==r= t= = ==t ===

t ---+.. .=. . . . .s _=_ __ . -._ .m.__-

=+ = r:=_w=t=_ .=. ._ f _ . . ._. . _ .

{_=_ _= 2 = .=. cr..--%.==:=_. _==_. r=. __

4 -

. _=_ n=._ .__. . . _==_=_ _=_4_=  : r. =t=._ p= : =_. =- . . = p. ._ = . _=

- . =. . l . =_ p. .=. r.=_:. .

. . - -  :=,=_== .

e

-= =: . _ i ~

= n= .g=_r_

==: t c t==g=t =r=- v - =. 1- y==. . .,t =. w=.. .= . .+ _. . _. =.ar=m=i nt==7== =: p.r.= _=1

-._=:-....-._.:_.==...

,i -

~.._. - _ . - . ~ . , . . . . _ . . . . - . _ - - u_ . .

=..._=,.==.h~L.=_=._=2.=_===-.,=-. .=.=. =.-- --- - i -= = = r.:. =. . . =- . =. .v,=_ =._ ; =.. . . : . =.-y=~1==._=.=-

..:. =v s.u.:. v == = u =- : : =u= , ==

l =.i-- ==

me= . : . : := = . = = : : -

150 - _- n= ==_ =_ _.! =_==.m r:==t ._ _ - : n :c.;.:.  : .=- .m  : :r:- .:e.av=n..  ::: = m

=_. =. _l _=_  ::=. -. .._. a. r_r..=.=. = ;= =r=. . u::.. . . _ y=. l . . .. ~ .b.. . . . . _..=._t=__-.=:

=_.. =. _ _= =._ t _=. _= r___ =.:i =..- _= - ::. =-

ra ===  := =i =g; =np=l=: r= =r.: :rt =[=t.=h=: = -

E= t :=== 2:==

==t===t  : r= =_. f== tri = :; ==  := = .

n- 1 = == 3

== ;

=3r.=;a=- q. v r =y. M: =.s.tr l=,:; ~ ; !: n .m.

=-.=-

=:ln. H:.= r . :};.y .-I - -

l 2.:b=e p=. u c.: = p. ;-

17.5 18 18.5 19 19.5 Time (br)

Fig. 3 6. COMMIX results vs. cxperimental data. T4

19 Acknowledgments The authors gratefully acknowledge the encouragernent and support of Dts, llarly Kouler, George 1,anik, Jack f(osenthal, and Nelson Su of the Office for Analysis and Evaluation of Operational Data. U.S. Nuclear Regulatory Conunission, Stimulating discussions with our coworkers Drs. Maurteio Dottoni, Tat Chien, and llank Domanus, and the excellent typing of Sally Moll, are also acknowledged.

References

1. Su, N. T.. Special Study Report Reetew of Thertnal Strat(fication opetuting Cxpertence.

AEOD/S902 (March 1990).

2. Doinanus,11. M., and W. T. Sha, Arialysts qf Natural Cormectiori Phetsometta In a Three-Loop PWR Durttty a ThfLD' nunstent Using the COhlhflX Code, N UltCG / Cit-5070.

ANic87-54 (Dec.1987).

3. Sha W. T., et al., COhihflX-1: A Computer Progratn for Three-Dimetastonal, Tratl stent.

Stnyle-Phase Thertnal Hydraulle Analysis, NUl(EG/ClV0183, ANle77-90 (Sept.1978).

4. Sha, W. T., et al., COhlhflX-llh A Three-Dirnensional Trattsletlt Single-Phase Cornputer Progratn for Thertnal flydraulic Analysis qf Sit lgle arid Afulticornpotletal Systerns NUl(EG/ Cit-4348, ANic85-42 (Sept.1985).
5. Domanus, ll, M., et al., COhlhtlX-lC: A Three-Dunenslottal TYattstent Sitlyle-Phase Cornputer Progratn for Thermal Hydraulic Attalysis of Single- and hfulticornponent Enginecruty Systerns, NUllEG/Cib5649, AN1-90/33 (Sept,1990).

G. Sha, W. T.,11. T. Chao, and S.1,. Soo, Conscreation Equations for Finne Cotttrol Volutne Cotstatning Single Phase Fluid with Flted, Dispersed Heat Generating (or Absorbing)

Solids, NUltEG/ClbO945, ANicCT-79-42 (July 1979).

7. liarlow F 11., and A. A. Amsden. A Nurnerical I'lutd Dutiarnics Calculauan hfethodfor All 110m Speeds. J, Computational Phys., 8, p.197 (1971).
8. liarlow F.11., and A. A. Amsden, Nurnerical Caletdatten of Afultiphase Fluid Flow, J.

Computational phys.,17, pp.10-52 (1975).

9. Ilarlow, F,11., and A. A. Amsden,110m of Interpenetrating hfaterial Phases, J.

Computational Phys.,18, pp. 440-464 (1975).

10. Patankar, S. V., Nurnerical Heat 7Tansfer and Iluid flow, in Numerical lleat Transfer, 2, McGraw-Ilill, New York (1979).
11. Coslow W., Westinghouse Power Systems Division. personal conununication,1990.

50 111stribution for NL'ItEG/ Cit- 5150 IANL 91/61 litteInal M. Bottont J.G. Sun ANI, Contract l'11e

11. M. Domanus it A. Valentin TIS Piles (3)

C, A. Malefyt it W. Weeks ANI, Patent Dept.

W. T. Sha (28) liXIIDlal:

NitC, Washington, for distribution per 8'1 ANI.1.lbraries (2)

( Manager, Chicago Operations Ollice, DOE

! Materials and Cornponents Technology Division Iteview Cornmittee:

i 11. Berger, Industrial Quality, Inc., Gaithersburg, MD M. S. Dresselhaus, Massachusetts Institute of Technology, Carnbridge, MA S. J. Green, Electric Power Research lustitute, Palo Alto, CA It A. Greenkorn, Purdue University West 1.afayette, IN C --Y.1.1, Cornell University. Ithaca, NY P. G. Shewinon, Ohio State University, Colurnbus it E Smith, I'lectric Power flesearch Institute, NDE Ctr., Charlotte, NC S. Fable. U.S. Nuclear llegulatory Conunirosten. Washington, DC li, Kaufer, U.S. Noelcar llegulatory Commission, Washington, DC G. Lanik, U.S. Nuclear Itegulatory Cornmission, Washington, DC T. Novak, U.S. Nuclear llegulatory Cominission, Washington, DC

, J. Itosenthal U.S. Nuclear Itegulatory Commission, Washington, DC Y.11. Shen, Sunnyvale, CA i

N. Su, U.S. Nuclear liegulatory Conunission, Washington, DC I

h I

ucevum u a euctr An nt cttAnm cewissm $ noont uuwi n (7 419 t Avgodt'y NHC AM ud, Saw. IJer.

Nw u 11p?.

wsd A.Aw'dum Netwn d n* s )

w. am DIBLIOGRAPHIC DATA SHEET (s,. rue,vcews ai v. iww)

NUREG/CR-545G ANie91/G P llill ANDf.U0ifiti Analysis of Flow Stratification in the Surge Line of the Cornanche Peak ,,,,,_

Reactor 3 out nmcsu miumio num l YE AH anrti 1991 4 muicewn Nuunin D219'i le AUltis s@ $ 1 WL Vi hu'Ou J. G. Sun, Y.11. Shen, and W. T. Sha Tech nleal i euuuo ccat at o onour.+. vaw Sept,1990 - Feb,1991 ,,_

s et nr a4una onoAwAtoN - HAuf AND Atwo ss (n Anc. sm.* tu.wri. cc.c.w n.ven, us Nscw n.vuusy comm..m enst. es eu . smneeuw.

pcvo@ name and maary nMen )

Argonne National Laboratory 9700 South Cass Avenue Argotune, IL 00439 9 LPONr>OHNG OtGAWA10N - N AME AND ADDHi $$ (# NOC tne %ms as store". # contradr. tm#4 NAC Dwam (A e a Aewm u $ Nuds Nevubtwy Cweantos aridma&v a#ess)

Division of Safety Prograins Office for Analysis and Evaluation of Operational Data U. S. Nuclear Regulatory Cotumission Washington, DC 20555 10 tiUPPllMa fM AHf NottS 11 Alb t hACl (?:x; woron tw lms)

A nurnber of nuclear power plants have reported failure of reactor components due to flow stratification.

Therefore, a fundarnental understanding of, and a capability to predict, How stratification in a reactor system is critically important to reactor performance and safety. The work presented here is the first step in this direction and will contribute to the resolution of the issue of Dow stratification.

An analysis is performed using the COMMIX-1O computer program for the surge line of the Comanche Peak reactor. A comparison is made between the calculated results from the COMMIX code and the plant-measured data, and the agreement is good.

1P. KL Y WORDSOr$CRIPtOHS (1st mas cr t@ases (Nel mdt analreAethers ri bcafety th.s regrt) 11 AVAILADLilV si AllMt.NI Flcw stratification Unlimited Solution of Navier Stokes and energy equations is stcu.micfASSW CMON (the raae)

Unclassified (TNs ncve Unclassified 16 NUMDC H Of iMG[ S it. Pf1CE

~

t#O 6 OHM M (7 W)

UN11ED STATES f

"'d/iCf2*;lM if'"

' P NUCLE All F4EGULATOltY COMMISSION WASHINGTON, D.C. 205% *' 5 my s e . t, i ,

O or siaAt tiusa.its Q' F'IN AL1Y f OR l'FCV A1( U$[ $10 e

% L g j fi i

! 's i >

t~

w I t/

5 I

v1 4'

e C

nW Cv-Y Qr od

=Z me

'T >

Yd-Q_ =

CF NV r M

C M

C

  • /

M C

m

=

M k

=

. . . , ,