ML20071A443
ML20071A443 | |
Person / Time | |
---|---|
Site: | Indian Point, 05000000 |
Issue date: | 04/17/1981 |
From: | PLG, INC. (FORMERLY PICKARD, LOWE & GARRICK, INC.) |
To: | |
Shared Package | |
ML20071A408 | List: |
References | |
FOIA-82-626 PRA-810417-02, NUDOCS 8302240131 | |
Download: ML20071A443 (48) | |
Text
'
Pickard, Lowe and Garrick, Inc. INDIAN POINT PRA April 17, 1981 REVISION 1
- f
[ CL b @lbb.*g :'
INDIAN POINT 3 y Ag C0t'PONENT COOLING SYSTEM A. SUMt'ARY A.1 INTRODUCTION .
The component cooling system (CCS) is evaluated for its ability to perfor.n its heat removal function during the recirculation phase of all LOCAs and during all transient events. The primary function of the system folicwing an accident is to remove residual and sensible heat from residual heat' removal (RHR) heat exchangers, RHR pumps, safety injection pumps, charging sumps, and supply water to the auxiliary component cooling pumps fcr recirculation pump cooling.
The analysis is carried out unoer the following conditions:
e The system was operating in the normal mode of cooling prior to the LOCA or transient. -
e No operator action to recover the system following failure or to correct deficiencies in the system are considered in this analysis for the first hour following an initiating event. ,
o System success is: one of three pumps starts and operates for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; and one heat exchanger continues to operate for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
(
A.2 RE SULTS Table 1 summarizes the results obtained for the ccmpenent cooling system analysis. Two cases of electric power are presented: "No Loss of Offsite Power" and " Loss of Offsite Power." Three boundary conditions for each electric power case are analyzed: power at all 480V buses, loss.
of power at a single bus, and loss of power at two 480V buses.
The analysis has revealed the following dominant contributors to failure of the CCS to supply a sufficient amount of cooled water to time t = 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />s:
e Case 1 - No Loss of Offsite Power. Mean
- Power at all 480V buses e Passive valve f ailure (service water supply) 1.0 x 10-7 (95.5%)
- Pcwer at two 480V buses e Failure of the two operable pump' trains 1.6 x 10-6 (94%).
- Power at one 480V bus e Failure of the operable pump train (99.9%) 8.3 x 10-5
. t ,- -
BLUMO2-626 PDR
~
I 1056A033181/1
e s. -
e Case 2 - Less cf offsite power Mean Pcwer at all 4SOV buses e Random' failures in the pump trains (63%). 1.9 x 10-7 e' . Passive valve failure (service water supply) '
1.0 x 10-7 (31%).
Power at two 480V buses e Failure of the two operable pump trains 3.0 X 10-5 (99.7%)
- Power at one 480V bus e Failure of the operable pump train (99.9%) 1.5 x 10-3 No comparison is made to WASH-1400 results as there is no comparable system analysis in WASH-1400.
A.3 CONCLUSIONS The component cooling system is required to support plant. operations and will be operating at the time of the initiating event. For this reason, this system is unusual in relation to the plant standby emergency systems in that the dominant contributors to system failure, with power-available to all pumps, are passive valve and pipe failures. .
C 9
a e 4
. (,* -
e
, 1056A033181/1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____________u__
O b B. SYSTEM CE SCRIPTION B.1 SYSTEM FUNCTION The CCS is one of three subsystems of the auxiliary coolant system (ACS) of Indian Point 3. It is a closed loop cooling system which is designed to remove residual and sensible heat from various primary plant components during power operations, shutdown operation, and under.
accident and transient conditions. The system also provides a barrier between the primary plant and the environment to prevent radioactive releases to the environce.nt.
A block diagram and a simplified system piping arrangement are presented in Figures 1 and 2. Success of the system is defined as: one of three CCS pumps operating initially, followed by a second pump as power is available; and one of two CCS heat exchangers operating supplying <
postaccident loads.
B.2 EASIC DESCRIPTION The CCS consists of: Three pumps, two CCS heat exchangers which are cooled by service water, two CCS surge tanks, and two supply and return headers. Table 2 presents the normal and emergency flows required to the CCS and the number of pumps and heat exchangers required during various plant conditions.
The CCS pumps are horizontal, centrifugal pumps rated at 3,600 gpm at 150 psi. During normal plant operation, two of the three pumps are recuired to supply the necessry flow for plant cooling loads. During accident conditions, one of three pumps is recuired at the start of the recirculation phase to supply the necessary flow for the plant emergency cooling loads followed by a second pump as pcwer becomes available.
The three CCS pumps are always lined up to the common pump discharge header and pump return header. The pump discharge header _ cross-tie valves and the pump suction header cross-tie valves are normally open during power operation. Both CCS heat exchangers are fed from the common' pump discharge' header. Low discharge pressure on either heat exchanger supply header (which indicates insufficient capacity) is annunciated on the ACS panel in the control room and starts the third CCS pump.
Each CCS pump requires a minimum flow of 500 gpm for the removal of pump heat. A low flow in the CCS supply header of 1,500 gpm is alarmed in
' the control room at the ACS panel.
The'CCS pumps are supplied frem the follo. wing 480V switchgear buses:
o Pump No. 31, Bus No. 5A e Pump Ao. 32, Bus No. 2A e Pump No. 33, Bus' No. 6A 9
9 3
1056A033181/1
__. . ~_-. - .--- - - . __ - . - -- - - .. - -
t
- - ..
- _. ^
Each of these a80V switengear buses is supplied by separate emergency-diesel. generators.. "
- The.CCS surge tanks are-located in~the primary _ auxiliary building (PAB)
'and have a normal working volume'of;1,000 gallons. The surge' tank 5. .
L . accommodate changes'in operating volume of the CCS due to changes in operating temperature. .The free volume of each' tank i's sufficient to 1 , accommodate an in-leakage from a' rupture.of a reactor:. coolant pump.
~
thermal barrier cooling coil forJ three minutes.: Makeup to the tanks for system ~1eakage:is normally provided byf tntflash evaporator through a manual' valve. . The! primary nater storage tank is the alternate makeup. ;
supply for the surge tanks.~:The surge tanks are normally vented to l i atmosphere; however, high radiation detected,at the CCS return headers
, causes automatic closing of the vent ' valves. : Relief valves'on'the surge '
[C.U;,:' ' tanks. discharge to the waste holdup tank to provide pressure relief when the' normal vents are closed...The high radiation condition is. alarmed'in-
" f f, _ the control. room. Surge tank levels are-indicated,and alarmed ir, the control room. .
The two CCS heat exchangers are shell and tube-type heat exchangers which are cooled by the service water system. The heat exchangers are .
designed. to remove 3.14 x 10f Btu /hr at a shell side AT of_120F 'with -
5,320 gpm CCS flow and a tube side AT of 70F with 9,-100 gpm service ,
water flow. Both heat exchangers are lined up on the component _ cooling- -
side.and the service water. side. After recirculation has started, service water is lined up to'both heat.exchangers and the component cooling loops are split into two distinct' subsystems.. Dur_ing accident conditions, only one heat exchanger is required for heat removel. .The i heat exchanger outlet temperature is monitored and alarmed in the- C control room as is header return tsmperature, j The CCS is basically.two distinct systems frcm the heat exchangers back to the CCS pumps._ The necessary cooling lines are tiranched off of these main supply and return headers. Most of'the components cooled by the i CCS receive flow-during al1. plant conditions;. the' exceptions are s discussed in the following:
!! e Reactor coolant pump cooling. Two series, motor-operated,' isolation
. valves'are provided for the reacto_r coolant pump supply:line, the L reactor coolant pump motor cooling return line, and the thermal
. barr_ier_ return line. These valves are' automatically closed upon receipt of a containment isolation phase B signal. Each valve in a single line receives power from a separate 480V MCC (either-36A or 368)<which in. turn receives power.from the vital switchgear r < - buses. FCV-625 in the return line from the reactor coolant pump
- . thermal barriers also closes on a high flow condition.in this returni ,
F line. This high flow condition is indicative of a thermal barrier
., cooling coil failure. Closure of FCV-625 limits the amount of-t in-leakage from this failure. ,
j j .
i-L
!l 4
.1056A040881/1 -
i I -
. . , _ _ ,2, _._._ . _ _ , . _ , _ , _ , _ - ,
9
^
e Excess letdown heat exchanger cooling. The supply line to this heat exchanger contairs two, series, air-operated, normally cpen val.as.
These valves are designed to fail closed on loss of power or loss of air. .These valves receive a containment isolation phase A automatic close signal. .The return line from this heat exchanger contains two series, air-operated valves. One of the valves is normally closed.
In all other respects, the operation of these valves is the same as -
the supply valves.
e Residual heat removal heat exchanger cooling. Each RHR heat exchanger receives component cooling water from a separate CCS supply header. Each RHR heat exchanger has a normally closed motoroperated valve located in the CCS outlet lirl. These valves receive.an automatic open signal from the engineered safeguards actuation system.-
The three safety injection pumps receive flow during all plant conditions. Two safety injection pumps are supplied from one CCS supply l header; the third safety injectivn pump is supplied from the other.CCS supply header. Each pump drives an attached circulating pump wnich .is capable of supplying the cooling requirements for the safety injection -
pump using the water contained in the CCS supply headers. The CCS outlets of the three safety injection pumps are monitored for flow and alarmed in the control room on low flow.
The two RHR pumps also receive flow during all plant conditions, cne from each supply header. Flow from these pumps is incicated locally and alarmed in the control room on low flow.
There are four auxiliary componeht. cooling pumos which are used to supply component cooling water to the engineered safeguarcs system recirculation pumps. Two pumps-supply a single recirculation pump from
- a. single CCS Supply header. These pumps are included in the low pressure recirculation system analysis and, therefore, are excluded from, this analysis.
c B.3 SYSTEM OPERATION OURING EMERCENCY. CONDITIONS As stated previously, two of the three CCS pumps are required to be in operation to support plant power operation and both CCS heat exchangers will be in operation (receiving service water). The-following
! paragraphs discuss the response of this system to various emergency conditions, e Unit Trio, No Blackout and No Safety Injection. When the unit trips and no blackout or safety injection occurs, the systcm will remain I in operation as it was before the event since all power recuirements will have transferred from the unit auxiliary transformer to the -
station auxiliary transformer, and the ".CS pumps will continue to operate.
40 -t-o o
5 l- -
1056A033181/l :
_ e Unit Trio, With Blackcut and No Safety infection. When tnis concition-occurs, all 005 pumps are trippeo. Eiectrical power is reestablished using the emergency diesel generators. CCS pumps are--
automatically started by this.~ event as a function of energized (live) 480V buses.
The CCS pump is started forsth condition to' protect the reactor coolant pumps (RCP) lower radi bearing and-scal ~ package since the chsrging pumps will have trippe land RCP. seal and. lower radial bearing water will be derived rom hot reactor coolant system (RCS) water. .The component cooling water ill cool this hot RCS water as it passes by the thermal barrser heat exchanger.
g o. Unit Trip, With Blackout and With Safety Injection. When this
- ---C condition occurs, all CC5 pumps are tripped. Electrical power is .
reestablished using the emergency diesel generators. The following L
.. ; events will occur ir. the component cooling loop:
- Valves 822A and 8228 (RHR heat exchangers) .are' opened.
- The auxiliary cceponent cooling pumps are started to protect the motors of.the recirculation pumps from the containment accident atmosphere..
- The shaft driven circulating pumps will be running when the' safety injection pumps run and will. supply cooling services for these pumps.
Theseeventsoccurautomatically.asaresultoftheengineehed d safeguards secuence signal. When the injecticn phase safeguards is corrpletec and the recirculation phase is entered into, two CCS pumps or one CCS pump are started by recirculation pnase switenes RS-2 anc RS-5. RS-2 will start one pump; RS-5 another pump if all four 480V buses are energized and a'seco:id service water. pump is running.
Positioning RS-2 to tne "On" position wi.11. start pump 33; if it'
.i failed to start, pump 32 would be started; and if pump 32 failed to start, pump 31 would be started. This aci. ion is independent of the supporting service water system pumps. Pcsitioning switch RS-5 to "On" will (providing power is available and two of the selected
- recirculation phase service. water pumps are running) start pump 32.
If pump 32 fails to start or is running, pump 31 is started.
4 _
- e Unit Trio, No Blackout With Safety Injection. If there is a safety injection signal and tne unit trips witn no blackout, the CCS pumps which were running will continue running and the standby pump will
-start.
B.4 SUPPORT SYSTEMS '
Successful operation'of the CCS recuires operation of the service water system and-the' electric pcwer system. All three CCS pumps receive power
^ from the a80V switchgear buses supplied by the emergency diesel cenerators. Both CCS heat exchangers receive service water from the
' t - conventional service water header.
e 6
1056A040881/1 i
t
,-5.--.e-
,w + , . - , , ,-i.-- y , ,-vvy,m--- w ,-,, ,-. --.-.-nm.,-y m,,.
B .S. INSTRU.'ENTATION AND CONTb OL S Control of the CCS pumps is accomplished by the plant operator from the ACS panel in the control room.
The control switch for each pump breaker is located, at the ACS panel in the control room; status light indications are above each switch. As each pump breaker control circuit is identical, only the circuit for pump no. 31 will be discussed..
The control switch has four positions (spring-return to Auto).
e Pull-out. The pump is disabled from starting by any automatic start signal. 'With the switch in this position, the " Safeguards Equipment locked Open" alarm will be annunciated on the safeguards panel in the control room. ,
e Stop. The pump breaker is tripped open, e Auto. The pump will be started for any one of the following conditions:
- Low discharge header pressure during normal operation.
- Timed start on a " Unit Trip with Blackout or No SI" condition.
- Timed start on a "SI and No Blackout" condition. .c
- Autcmatic start during SI and blackout when snif ting from tne injection phase to the recirculation pnase.
NOTE : The operator must make the switchover, autcmatic starting is a result of recirculation phase switches RS-2 and RS-5 being turned to "On" by the operator.
~
e Start. The pump will be started.
While the pump-is running it can be tripped by:
- Placing the control switch to the Stop or Full-out position
- Undervoltage on the assciated 480V switchgear bus Blackout and SI conditions
- Overload.
- All motor-operated or air-operated valves used for containment isolation are cperated from the containment isolation panel in the en trol room. .
The B R heat exchanger outlet motor-operated valves are erated from the ACS panel in the control room.
Automatic operation of the CCS in retponse to emergency conditions has been discussed in the preceding paragraphs. The standt,y CCS pump will start automatically in response to a low header pressure from either 7
1056A040881/1
supply $4ader (sensec at tne heat exchanger inlet) or in response to a safety injection signal.
During system operation, header pressure, supply and return temperature, header flow, and individual ccmponent flows are monitored in the control room. Abnormal system conditions are alarmed in the. control room on the ACS panel. . .
B.6 TECHNICAL SPECIFICATIONS .
The plant technical specifications recuire that the reactor not be brought above the cold shutdown condition unless:
ep- ] e. Two CCS water pumps together w-ith their associated piping and valves
'are operable. This condition may be modified to allow one-of the.
.- two operable pumps to be out of service provided it is restored to 64 4 an operable status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. <
e Two CCS heat exchangers and associated piping and valves are operable. One CCS heat exchanger or other passive' Component may be out of service for a period not to exceed 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> provided the-system still operates at design accident capability. '
- e. Two auxiliary component cooling pumps, one per each recirculation pump, together with their associated piping and valves are operable.
e Two auxiliary compcnent cooling pumps serving the same recirculation pump may be out of service, provided at least one is restorec.to an .
operable status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and at least one auxiliary componcnt 4 cooling pump serving the other recirculation pump is demonstrated to be operable.
e If the CCS is not restored to meet the above reouirements within the times specified, then:
- If the reactor is critical, it shall be brought to the hot shutdown condition utilizing normal operating procedures. The shutdown shall start no later than at the end of the specified time. period. -
- If the reactor is subtritical, the reactor coolant system temperature and pressure shall not be increased more than 250F and 100 psi, respectively, over existing values.
- In either case, if the requirements for operable components are
- not satisfied within an additional 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />, the reactor shall be brought.to the cold shutdown condition utilizing normal .
operating precedures. Tne shutdown'shall start no later than I. the end of the 48-hour _per'iod.
. 8 ,
. 1056A040881/1
B.7 TESTING AND PAINTENANCE
- 1. Automatic starting of the CCS pumps and the auxiliary component cooling pumps in response to recirculation switchover is performed every refueling cycle.
Periodic testing of the CCS pumps is required by ASFE Section XI.
The required frequency of testing is monthly during normal plant cperation. ASFE Section XI also requires monthly testing of the auxiliary component cooling pumps. Pump cperability is checked annually using 3PT-A9. In addition to the annual operability check, plant operating procedures recuire a weekly shift of operating CCS -
___. pumps.
Routine monitoring of the CCS is performed by the plant operators to determine system status.
- 2. Periodic maintenance is performed as reouired on the components of the CCS system. This maintenance includes such items as -
lubrication, inspection, and adjustment.
- 3. Contribution of Maintenance.
A review of plart work permits revealed two maintenance actions 'on CCS pumps in a-l/2 years of plant operation. (This excludes cold shutdown periods.) Using the data frcm the work permits, we obtain for the probability of pump unavailability due to mainter.arce the following distribution:
Mean: 1.84 x 10-2 Unavailability of a ccmponent cooling' pump due to maintenance Variance: 1.64 x 10-4 Upon completion of pump maintenance, testing is performed to determine pump operability and to ensure' correct system lineup. At the completion of this testing, the pump is returned to its normal lineup (auto or running).
B.8 OPERATOR INTERACTION WITH THE COMPONENT COOLING SYSTEM l
! As this system is recuired to support normal plant operation, most operator errors that affect system operation will be annunciated or indicated in the control room within a short period of time after their .
occurrence. These actions include placing the standby pump switch in the " Pull-Out" position, or mispositioning manual or power operated valves. These errors do not contribute to system unavailability on demand during accident conditions.
.' Operator error after maintenance is precluded by the testing that is a t.* performed at the completion of the maintenartce and the recuirements imposed on system operaDility.
i 9
1056A040881/1
Operator error during the shift frcm injection phase to recirculation phase of LOCA events is possible and is discussed in the recirculation system description.
Operator error during. the splitting of the CCS ~and service water system.
is discussed in Section D.5 of this analysis.
B.9 COMMON CAUSE ANALYSIS ,
Table 3 represents a listing of the components included in the component cooling system analysis, their failure mode, their location, and their susceptibility to various causes of common cause. failure. The contribution of common cause. failures to system failure'is presented in
. . . Section D.6.-
a e
e 4
e 9
10
, 1056A033181/1
C. ' SYSTEM FAULT TREE MODELING AND RESULTS C.1 EVENT TREES
~
In the event trees, the CCS is include'd with failure of the .
recirculation phase events. ,
C.2 SYSTEM FAULT TREES ,
Figure 3 presents .the f ault tree developed for the Indian Point 3 CCS.
The top event, "No or Insufficient Flow (NOIF) from the Component Cooling Water System", may be further defined as flow delivered to the supply heade,rs that is less than tne ca acity of one component cooling pump.
C.3 FAULT TREE CODING Table 3 is a list of basic events, their f ailure modes, the corresponoing codes, and the f ailure rates associated with these events.
C.4 MINIMAL CUTSETS The minimal cutsets for the CCS are identified in Table 4.
The single event cutsets, block F of Figure 1, consist of piping f ailures whicn result in system f ailure and f ailures in the service water supply to the CCS heat exchangers. The piping failure effects &
table, (Table 5) presents the results of the analysis' of' piping failures cn the CCS.
The two event cutsets, blocks 0 and E of Figure 1, consist of f ailures in the two heat exchanger trains, failures in the supply and return headers, and failures of the two surge tanks. Block 0 consists of the following basic events:
e TXV34--C: Service water inlet valve, SWN-34, transfers closed e TXV36--C: Service water outlet valve, SWN-36, transfers closed e *UXV759AC: Heat exchanger 31 inlet valve, 759A, transfers closed e UXV765AC: Heat exchanger 31 outlet valve, 765A, transfers closed a UHE0031L: Heat exchanger 31 loss of cooling capability (rupture, plugging,etc.)
e UTKCO31L: CC surge tank 31 leak or rupture.
Block E consists of the following basic events:
e TXV34-lC: Service water intet valve, SWN-34-1, transfers closed
'e _TXV36-1C: Service water outlet valve, SWN-36-1, transfers closed '
e UXV759BC: Heat exchanger 32 inlet valve, 7598, transfers closed e UXV765BC: Heat exchanger 32 outlet valve, 7658, transfers closed e TXV33--C: ' ,ervice water crossover valve, SWN-33, transfers ,
closed 11
-1056A040881/1
V .l e TXV33-1C: Service aater crossover valve, S'n'N-33-1, transfers closed e UHE0032L: Heat excnanger 32 loss of cooling capability (rupture, plugging, etc.)
e UTK0032L: CC surge tank 32. leak or rupture.
Blocks A, B, and C of Figure.1 identify the components that comprise the three event cutsets. Block A consists of the following basic events:
e JBS-35AD: No power at switchgear bus SA e 485-331D: No control power at switchgear bus SA e UXV760AC: Pump 31 suction valve, 760A, transfers closed e UXV762AC: Pump 31 discharge valve, 762C, transfers closed 3 e.; e. UCV761AQ: Fump 31 discharge check valve, 761A, transfers closed / fails to open
~.. e UPM00315: Pump 31 fails mechanically; start or run J-jh e UM000315: Motor for. pump 31 fails. <
S. e UCC0031F: Control circuit for pump 31 fails.
Block B' consists of the following basic events:
1 e JBS-32AD: No power at switchgear. bus 2A
- e. 485-3330: No control power at switchgear bus 2A e- UXV760BC: Pump 32 suction valve, 7608, transfers closed e UXV762SC: Pump 32 discharge valve, 762B, transfers closed e UCV761BQ: Pump 32 discharge check valve, 761B, transfers closed / fails to open e UPM00325: Pump 32 fails mecnanically; start or run e UM000325: Motor for pump 32 fails
- e UCC0032F: Control circuit for pucp 32 f ails.
Block C consists of the following basic events:
e JBS-33AD: No power at switchgear bus 6A e 485-3330: No control power at switchgear bus 6A e UXV760CC: Pump 33 suction valve, 760C, transfers closed
, e UXV762CC: Pump 33 discharge valve, 762C, transfers closed a UCV761CQ: Pump 33 discharge check valve, 761C, transfers closed / fails to open e UPM00335: Pump 33 fails mechanically; start or run e UM000335: Motor for pump 33 fails e UCC0033F: Control circuit for pump 33 fails.
12 ,
1056A0a0881/1
D. QUANTIFICATION BOUNDARY CCNDITION, OFFSITE POLER AVAILABLE D.1 OUANTIFICATION OF SINGLE FAILURES (BLOCK F) (HARDWARE)
The single event failures consist of piping failures which fail the entire CC system, no flow from the conventional service wat.er header, and service water valve SWN-31 transferring closed.
e No flow from the conventionai service water header. .This failure results in plant shutdown anc is detected upon occurrence. This event is cuantified at the event tree level and is shown here only for completeness.
e Pipe failures. Table 5 identifies the pipe sections whose failure results in CCS failure. The mean and variance for failure in a single section of pipe is:
Mean: 8.60 x 10-10 Probability of failure per hour per section .
Variance: 6.00 x 10-I7 We have determined 17 major sections of CCS piping whose failure results in system failure. This results in the following piping contribution to failure:
Mean: 1.46 x 10-8 Probability of failure per hour -
0 Variance: 1.24 x 10-13, e SWN-31 transfers closed. This valve is normally open and the ,
failure of interest transfers closed. This failure mode results in a loss.of service water flow to the CCS heat exchangers which causes high temperature alarms on the CCS heat exchanger outlet. Recovery from this f ailure during . normal plant operation consists of -
transferring tne service water supply to the CCS heat exchangers to the other service water header. The mean and variance for this event are:
(
Mean: 9.15 x 10-8 Probability of failure per hour Variance: 1.01 x 10-4 i The single event contribution to system failure per hour is now:
l OBlock F
= piping + valve
= 1.06 x 10-7 .
. -(,-
VarianceBlock F
- 1.53 x 10-14 .
7 1
13 o
1056A0a0881/1
The failures described above recuire icediate plant shutdcwn if they occur curing plant cperation. For _this reason, single failures prior to the. initiating event are not considereo in this analysis.
The single failures which' affect this analysis are those which occur; after the initiating event. .The time period of interest is the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the initiating event. After th.e first , hour following an initiating
- event, the CCS is split by procedure into two separate and distinc't subsystems. Operator error during this split is discussed in Section 0.5 of this analysis. After the split, there are no single failures'which can fail the CCS. For these reasons, the single event failure contributions to system failure are those failures which occur during the first hour after an initiating event. The probability of system failure due to single' event failures is described by the following mean and variance:
Mean: 1.06 x 10-7 Variance: 1.53 x 10-14 0.2 OUANTIFICATION OF TWO EVENT CUTSETS (BLOCKS 0 AND E) (HARDWARE)
As stated in Se. tion C.4, the two event cutset contributions to f ailure consist of faisures in blocks D and E of Figure 1. For block D we have:
Manual valve (service water) (2)
(failure per hour)
Mean: 9.15 x 10-8 c Variance: 1.01 x 10-I4 Manual valve (CCW) (2)
(failure per hour) ,
Mean: 9.15 x 10-E Variance: 1.01 x 10-14' Heat exchanger i (failure per hour) l Mean: 9.73 x 10-7 Variance: 3.34 x 10-12
, Surge tank (leak or rupture)
L (failure per hour) '
l (same as pipe rupture)
Mean: 8.60 x 10-10 Variance: 6.00 x h'-I7 ,
l 14 1056A040881/1 9
The probability of failure for block'D is now:
Mean(D): 4 a valve + a neat exchanger + atank
~ = 1.34 x 10-6, .
Variance (0): 2.84 x 10-12, For block E, we have two additional service water valves in the supply line. This results in-the following distribution for the probability of f ailure of block E:
Mean:
1.52 x 10-6 Variance: 3.01 x 10-12, The f ailures described above are f ailures per hour, and we are interested in failures on demand. Note that failures in either component cooling train which occur during plant cperation are immediately detectable. Operator action would then be taken to determine the cause, and repairs would be initiated. These failures are included in the maintenance contribution to system failure. Given that -
the system was operating prior to.the initiating event, the failures that affect this system are those failures which occur from the time of the initiating event to time t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the initiating event.
Approximately I hour after the initiating event, the operator is directed, by procedure, to split the CCS and the service water system into two distinct subsystems. This results in a change in the 3 ccaponents in blocks 0 and E. Block 0 now consists of:
e TXV3a--C e TXV36--C e UXV759AC e UXV765AC e UHE0031L -
e UTK0031L
! e TXV32--C e Ni'ne sections of CCS piping (including pump suction and di.scharge cross-ties).
' Block E consists of:
e TXV34-1C e TXV36-1C e UXV759C e UXV765BC ~
e
- UHE0032L e UTX0032L e TXV31--C e Seven sections of CCS piping. .
15 1056A0a0881/1 2
r- .
NOTE : Af ter the split, CCS' pumps 31 and 32 will be supplying heat exchanger 31 and CCS pump 33 will be supplying neat exchanger 32. The CCS neat exchanger cross-tie will be isolated.
The following equation defines probability of system failure due to random f ailures in blocks D and E:' ,
Q = [(4V3 + V2 +VI) (6V3 + V2 + V1)]
+ 1 - (4V3 + V2 + VI) (6V3 + V2 + V1) x [23(5V3 + V2 + VI + 9V4)] x [23(5V3 + V2 + VI + 7V4)]
- [ where- ,
~'
VI = Probability of surge tank failure-V2 = Probability of heat exchanger failure V3 = Probability of a manual valve transferring closed V4 = Probability of a single pipe section failure Using the above ecuation, the probability of system failure due to random two event failures is:
Mean: 3.52 x 10-9 Variance: 2.91 x 10-16, 0.3 00ANTIFICATION OF THREE EVENT CUTSETS (BLOCKS A, B, C) (HARDWARE FAILURE 5)
As stated in Section C.4, the three event cutset contribution to system f ailure on demand consists of random f ailures in the pump trains, blocks A, B, and C of Figure 1. For block A we have: .
e Pump (including motor and controls)
- Failure 'ot start (on demand)
Mean: 1.36 x 10-3 .
Variance: 1.22 x 10-6,
- - Failure to run (per hour)
'Mean: 3.26 x 10-6 Variance: 2.47 x 10-II.
16- -
1056A0a0881/1
e Manual valve Transfers closed (per hour)
Mean: 9.15 x 10-8 Variance: 1.01 x 10-14 e Check valve Fails to open (on demand)
Mean: 6.91 x 10-5 Variance: 1.03 x 10-8, Blocks B and C consist of similar components. With a safety infection signal and no loss of offsite power, the CCS pumps which were running continue to run. The probability of failure per hour of a running.CCS pump train is described by the following distribution (made up of pump failure to continue running and manual valves transferring closed):
Mean: 3.44 x 10-6 Variance: 2.13 x 10-II.
For a time, t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, we have the following distribution for failure of an operating pump train: '
(
Mean: 8.26 x 10-5 Variance: 1.23 x 10-8, ,
With a loss of offsite power, the CCS pumps are started as a result of ~
the operator action which occurs when entering the recirculation phase of .the accident (with the diesel gercrators available). The probability of failure to start on demand of a previously operating CCS pump train is made up of: Pump failure to start on demand; check valve failure to open on demand; and the valve or-discharge valve, during transferring closed the period of of either time thatthe thepump pumpsuction is idle. For a time, t s one hour, the probability of failure of a single manual valve is:
Mean: 9.15 x 10-8 Variance: 1.01 x 10-I4 4
For a single previously operating pump train, the probability of failure on demand is cescribed by the following distribution:
Mean: 1.43 x 10-3
. C.' Variance: 1.13 x 10-6, .-
17 1056A040881/1 rw e -
Given a successful start, the CCS pump must operate for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The total probability of failure (start and.cperate for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />) for a single previously operating CCS pump train is now:
Mean: 1.51 x 10-3 Variance: 1.03 x 10-6, ,
During p'lant operation, one CCS pump train is normally in standby. Pump failure to start on demand and check valve failure to open on demand remain as'previously defined; however, the manual valves' contribution to pump train failure on demand must be developed. Plant procedures reoutre routine shifting of the CCS pumps weekly. The fault detection
-- time for this event is taken as one-half of the test interval (84 hours9.722222e-4 days <br />0.0233 hours <br />1.388889e-4 weeks <br />3.1962e-5 months <br />).
This results in the following distribution for failure of a single manual valve in the standby pump train:
Mean: 7.69 x 10-6 Variance: 6.74 x 10-11 -
The failure of the standby pump train to start on demand is now.
described by the following mean and variance:
Mean: 1.44 x 10-3 variance: 1.13 x 10-6, Given a successful start, the pump must continue'to run for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, S which results in a total failure probability for the standby pump of:
Mean: 1.53 x 10-3 Variance: 1.03 x 10-6, The following expression defines the probability of failure for the CCS pumps with differing probabilities for the status of tne standby pump.
Q pumps = P(15) ,2)(2 P(OP)2 x P(STBY) + 3P(05) ,2) (2 P(OP)2 l where:
P(IS) = Probability of having one pump in standby which eouals 1 - (probability of maintenance of a single CCS pump) .
P(05) = Probability of having one CCS pump undergoing maintenance. -
P(OP) = Probability of failure of a running (or previously running) pump (to t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />).
P(STBY) =- Probability of failure of the standby pump (to
. %* t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />). -
18 ,
1056A040881/1 l .
-i w
For, the purrp contribution to ' system f ail;re, with no loss of offsite pcwer and power available at all 480V 54itcngear buses, we have the following distribution:
- Mean: 9.15 x 10-10 ,
Variance: 7.99 x 10-16 For the pump contribution to system failure, with a loss of offsiti power and power available at all 480V switchgear buses, we have the following distribution:
Mean: 1.87 x 10-7 Variance: 1.21 x 10-13, a
0.4 0UANTIFICATION OF TEST AND PAINTENANCE 0.4.1 Test Contribution Testing of the CCS consists of starting the standby CCS pump monthly to satisfy AS?E Section XI reautrements and the weekly pump shif t to ,
satisfy plant cperating recuirements.
No system lineup changes are reouired for this testing. Therefore, no contribution of system failure on demand is assigned because of testing.
0.4.2 Maintenance Contribution t The maintenance contribution to system failure is included with the cuantification of the pump trains' effect on system failure.
0.5 00ANTIFICATION OF HUPAN INTERACTION The operator error of iailing to switch from injection to recirculation is presented in the recirculation system analysis and is not quantified here.
1 -
With sufficient electric power, and after the shift to recirculation has b,een successfully completed,' the operator is recuired by plant procedures to shift the CCS and service water system lineups. This l shif t results in splitting the CCS and the service water system into
! distinct subsystems. Af ter the shif t, pumps 31 or 32 of the CCS will be supplying a single header, and pump 33 will be supplying the other
- header. Each CCS neat exchanger will be receiving water from a separate service water heacer. .
No' probability for system failure due to operator errors in this shift are assigned for the following reasons:
e In order to start the shift, plant conditions must be stable, with sufficient electric power available and the shift to recirculation
.successfully completed. Conditions in the co'ntrol room'by this time h-19 1056A040881/1
will be approacnino the conditions in the centrol roem during normal plant operations, e The procedure details by valve number, the 5,ecuence of steps that must be performed to cerrplete the shif t. Verification of each
. significant change is monitored by monitoring the. system conditions; major errors will be immediately detected and corrdcted.
e If problems are encountered, the shift is not made and the system remains or is returned to the normal lineup.
D.6 0UANTIFICATION OF COMMON CAUSE
.M L w.;
Although there are many similar' components sharing common locations in the CC-S, a large portion of these corrponents are not highly susceptible
- to common cause f ailure mechanisms bacause they perform a passive r
function. These items include manual yalves, check valves, tanks, heat '
exchangers, and piping. The active components of the system, the CCS pumps, and various motor-operated valves are more likely candidates for ccrmon cause f ailure and are discussed below. External events such as earthquakes, flooding, etc., are discussed elsewhere in this report,
- a. Fire. The three CCS pumps share a common room in the primary auxiliary building at elevation 68'. The " Review of the Indian Point Station Fire Protection Procrem" described this area as
. having a low fire loading and postulated no fires which could affect all three CCS pumps.
heat exchangers, the CCS surge tank, anc the piping and valves for alignment and isolation of this ecuip:ent. Leakage (spray) from these components is detectacle during plant operation and would be corrected upon occurrence prior to damage occurring.
This common cause failure is not Quantified for the above reason,
- c. Grit. During plant operation, no grit producing activities occur. During plant shutdown, these activities are protected against by plant procedures. This mechanism for common cause
, failure is not cuantified for this analysis.
- d. Other causes - Other common cav n susceptibilities, such as manufacturer, test and maintenance prorecures, etc., are possible contributors to common cause failure of the CCS pumps.
However, the plant test program, maintenance program, and technical specifications combine to (1) aid in discovery of pump problems and (2) limit the effects of common cause failures. No cuantification is performed for these causes of failure. ,
h0TE: The CCS pump breakers are susceptible to the common cause failure mechanisms of fire, moisture and grit due to their common location in the switchgear room. Quantification and discussion of these effects are presented in the event tree analysis as these effects would be felt throughout the plant.
(
l .
20 1056A040881/1 .
t I
D.7 SYSTEM FAILURE GUANTIFICATICN The failure frecuency per demand for.the CCS is made up of the following contributors: single event, double event, and triple event random hardware failures; test and maintenance in conjunction with random hardware f ailures; human error contribution to f ailure; and common cause contribution to failure.
The probability of f ailure of the CCS, given no loss tf offsite power, to time (t a 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />) is characterized by the following mean and variance:
Osystem: a singles + adoubles + atriples + aT8#1 aoperator error + acommon cause 1.11 x 10-7 Variance: 1.54 x 10-18 With a loss of offsite power, we have the following distribution fo'r f ailure cf tne CCS to operate to time, t = 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />s:
Osystem: 2.97 x 10-7 Variance: 1.34 x 10-13,
. /
e
( .
e 21 -
, 1056A040881/1
E. CL'ANTIFICATION BOUNDARY CCNDITION, LOSS OF ONSITE P0tER SUSIES)
- 1. Loss of a single 4E0V bus
- a. No loss of offsite power. The following ecuation defines the probability of failure for the CCS pumps given a loss of a single a80V switchgear bus supply:
Opumps = P(IS) [P(OP) x P(STBY)] + P(05) [P(OP)]
'where the terms of the equation remain as defined in Section 0.3. For conservatism, the failed 480V switchgear bus.is oefined as a bus supplying a running CCS pump. The pump train contribution to system failure under the conditions defined above is:
Mean: 1.64 x 10-6 Variance: 5.72 x 10-12 The probability of system failure under these conditions is:
Osystem: 1.75 x 10-6 variance: 5.72 x 10-12, -
- b. Loss of offsite power. The ecuation defined above is also applicable for this case. The pump trair. ontribution.to system failure under these conditions is: (
Mean: 3.01 x 10-5 Variance: '8.38 x 10-10, The probability of system failure is now:
Osystem: 3.02 x 10-5 Vari,ance: 8.37 x 10-10, l
l 2. Loss of two a80V buses ,
i
! a. No loss of offsite power. Under these conoitions, the
[ contribution to system failure of the CCS pumps is the value l determined for a single CCS pump. From Section 0.3,-the l value for an operating pump to time t =24 hours is:
Mean: 8.26 x 10-5 .
-Variance: 1.23 x 10-8
.N '
. v -
l
[
22 L 1056A040881/1 -
l L
This results in tne following probability of system failure uncer these conditions:
Osystem: 8.27 x 10-5, Variance: 1.22 x 10-8, , ,
~
- b. Loss of offsite power.- Under this condition, the .
contribution to system failure of the CCS pumps is the value determined.for a single, previously operating, CCS pump.
From Section D.3, this value is:
Mean: 1.51 x 10-3 Variance: 1.03 x 10-6 which results in a system probability of failure of:
Osystem: 1.51 x-10-3 Variance: 1.03 x 10-6, 9
e 4
O e
.g .
6 e
e t '
~ 1056A040881/1
TABLE 1
SUMMARY
OF RESULTS--COMPONENT COOLING SYSTEM ANALYSIS
- ase 1--No Loss of Offsite Po.er -
- " V'"I'"C8 Per e tile Pe c tile .Noian .AM- 14M Bouncary Condition
. Po.er at All Buses.
+m - Singles 1.1 a 10-7 1.5 a 10-14 2.0 a 10'8
- 2.6 a 10-7 6.5 a 10-3
~
Heat Esenangers 3.5 a 10-9 2.9 a 10-1* 6.3 a 10-11 1.1 a 10-8 S.1 a 10-10 no ,
Pums Trains 9.1 a 10-10 8.0 a 10-18 4.1 a 10-12 3.3 a 10 ,3 1.2 a 10-10 Comcaraole Test anc ?,44tntenance (nit- sumo trains) Analysis Coerator :rror -
Co-non :ause -
Otner -
System' 1.1 a 10-7 1.5 a 10-14 2.2 a 10-8 2.6 a 10-7 7.5 a 10-8 Bouncary Condition Po=er at T-o Suses .
Singles 1.1 a 10*7 1.5 a 10-14 2.0 a 10-3 2.5 a 10-7 5.5 a 10-3 Heat Ex:nangers 3.5 a 10-3 2.5 a 10-15 6.3 a 10-11 1.1 a 10-3 5.1 a 10-10 No Pueo Trains 1.5 a 10-0 5.7 a 10-12 1.4 a 10-7 4.; a.10-5 '8.5 a 10-7 :::-:arasle D fest an Maintenance (witn pump trains) Analysis 0:erator irror =
lammon ause -
Otne System 1.3 a 10-6 5.7 a 10-12 2.3 a 10-7 4.8 a 10-6 1.0 a 10-6 Bouncary Ccnattion Ps.er at One Bus
~
Singles 1.1 a 10-7 1.5 a 10-14 2.0 a 10-3 2.6.a 10-7 6.5 a 10-8 Heat Eacnangers 3.5 a 10-9 2.9 a 10-16 6.3 a 10-11 1.1 a 10-3 8.1 a 10-10 no Puco Trains. 8.3 a 10.3 1.2 a 10-8 1.2 a 10-5 2.0 a 10-4 4.5 a 10-5 Comparaole-Test anc Maintenance (witn pump trains) Analysis Coerator Error - .
Co-non Cause - -
Otner -
Systes 8.3 a 10-5 1.2 a 10-3 1.1 a 10-5 2.4 a 10-4 4.7 a 10-5 24 1062Aca0881/1
TABLE 1 (continued)
SUMMARY
OF RESULTS--COMPONENT COOLING SYSTEM ANALYSIS Case 2--Less Of Offsite Po-er Mean variance Per tile Median W-1400 Pe e tile Bouncary Condition Po-er at All !uses Singles 1.1 a 10-7 1.5 a 10-14 2.0 a 10-8 2.6 a 10-7 6.6 a 10-8 Heat Eacnangers 3.5 a 10-9 2.9 a 10-16 6.3 a 10-11 1.1 a 10-8 8.1 a 10-10 No Puma Tra195 1.9 a 10-7 1.2 a 10-13 1.0 a 10-9 6.0 a 10-7 7.0 a 10-3 Comcarable Test anc Aalmtenance (witn sumo trains) Analysis Coerster Error - -
Comon Caese -
Otner -
System 3.0 a 10-7 1.3 a 10-13 5.4 a 10-3 7.8 a 10-7 1.9 a 10-7 Bouncary Condition -
Power at Two !uses Singles 1.1 a 10-7 1.5 a 10-14 2.0 a 10-3 2.5 a 10-7 5.5 a 10-8
- Heat Esenangers 3.5 a 10-9 2.9 a 10-16 5.3 a 10-11 1.1 a 10-8 3.1 a 10-10 no (
P;mo Trains 3.0 a 10-5 S.4 a 10-10 5.1 a 10-6 7.3 a 10-5 2.0 a 10-5 .Comearsole '
Test anc Maintenance (=lth ; ump trains) Analysis 0:e-at:e Err:e -
C3.. mon Ca.se -
Otner -
System 3.0 a 10-5 8.4 a 10-10 5.3 a 10-6 7.4 x 10-5 2.0 a 10-5 Boundary Cendition Po-er at One Bus Singles 1.1 a 10-1 1.5 a 10-14 2.0 a 10-8 2.6 a 10-7 6.6 a'10-8 Heat Emenangers 3.5 a 10-9 2.9 a 10-16 6.3 a 10-11 1.1 a 10 3.1 a 10-10 no Pump Trains 1.5 a 10-3 1.0 a-10-6 4.3 a 10-4 3.5 a 10-3 1.2 a 10-3 Comparable Test anc Maintenance (=ltn pump trains) Analysis Ocerator Error -
Comon Cause -
Other -
System 1.5 a 10-3 1.0 a 10-6 4.3 a 10-4 3.4 x 10-3 1.2 a 10-3
- F t.' ,
.d 25 .
. 10624040331/1
- ' - .,7 ,
C.- .
TABLE 2 .
REQUIRED CCS FLOWS FOR PLANT CONDITIONS .
Normal Operation Shutdown Flow Accident Conditions Flow (gpm) (gpm) Flow (gpm)
Components Cooled Component Total Component Total Component Total 45 15/ pump 45 15/ pump 45
- 1. liigh llead Safety 15/ pump Injection Pumps ,
30 15/ pump 30 15/ pump 30 15/ pump
- 2. Residual lleat Removal ,
-Pumps 4000 - 4000
- 3. Residual lleat Exchanger. - - -
- 40/ pump 80
.4. Recirculation Pumps - - -
Spent Fuel Pit lleat 2000 2000 2000 2000 - -
5.
- 6. Reactor Coolant Pumps - -
- a. Upper Motor Dearing ISO / pump 600 - -
lleat Exchanger - -
- b. Lower Motor Bearing 5/ pump 20 - -
lleat Exchanger - -
- c. Pump Thennal Barrier 25/ pump- 100 m 1000
- 7. Letdown licat Exchanger
" m -
11 . Seal Water lleat Exchanger 200 -
- 9. Primary Makeup Water 40) - -
Ileat Exchanger - -
', 10. Boric Acid Regeneration 81 5 3 System -
- 11. Waste Evaporation 155 -
System -
- 12. Charging Pumps 90 270 - - -
- 13. Excess Letdown lleat 230 Exchanger .
- 14. Reactor Vessel Support 50 .
Blocks -
. 15. Miscellaneous Sample 168 .
t lleat Exchangers 6,100 6,075 4,155 Two of Three Pumps ' Two of Three Pumps Two of Three Pumps .
One o' Two lleat One of Two Ikat One of Two lleat i Exchangcrs Exchangers Exchangers
. 1062A .
Q. , .
e TABLE 3 BASIC EVENT DATA COMPONENT COOLING - INDIAN POINT 3 F ,gg Event Description and railure Data Tree Common Cause Data Failure Modd Coding Mean Co.maents 11/ 0 Verlance MilR Reference Locat ion No.*
Susceptibility No Pa.er at 5.Itchgear Dus 2A jus-32A0 - - - - -
Control Bldg. V. 1, it. M see [F No Pa.or at 5.ltcevjear uns 54 Jd5-35AD - -
E l 15'
- Analysis Control Blog.
- See LP No Po.er at Switchgear Bus 6A Jd5-36A0 - El 15' Control Sidg.
- Analysp No Control Power at 5.ItChycar 485-3330 E l 15' see tr y pas la - - -
Control sidg.
- Analysis No Control Power at 5.ltcngear El 15* See LP 405-3310 - -
Analysis Bus SA -
Control Bldg.
- No Control Power at 5=ltchgear El 15' See l'P 405-3320 - -
Analysis sus 6% - - -
Control Bldg. " b No Flow fros Service Water El 15' See [P 15W2N0fL supply stea.ser (Conventional)
- - - - - Analysis NA -
CC Pu.np 31 Does NoL 5 tart i See SW uPr4003ns 1.36 a 10-3 D 1.22 a 10-6 Analysis Does not Continue Running 3.26 a 10-6 1l PAi! EI 4l' CC Pug 32 Does Not Start in 2,47 a 10-11 in lent IS V 11 I poes Not Cont inue Running UP 400HS l.36 a 10-3 D l.22 a 10-6 -
3.26 a 10-6 Il PAS El 4 4' V. II. I CC Pa.y 33 Does Not Start 11 2.41 a 10-13 In. Text 15 UPH00335 1.36 a 10-3 D l.22 a 10-6 Does Not Cont inue Running 3.26 a 10-6 Il PA8 El 41' CC Pira p 31 flotar. Does Not li 2.47 a 10-13 la feat IS V. II. I UH00031N -
5 tart /Run .
Same as Pu.ap CC P np 32 Hotor. Does Not V. 1.15. M Witn Peap UM00032N - -
S t ar t /itua - - -
Sane as Pump CC Pen 33 Motor. Does Not V. I . is. M W 6 tn Puey UMIN)033N - -
St art /itun - - -
Same as Pump
. V. I . II, M With Pump
- Reference niewer rders to ite,e numbers in the plant failure data section of this report .
1062403310'l/l
TABLE 3 (continued)'
DAS'IC EVENT DATA COMPONENT COOLING - INDIAN POINT 3
. t Fault failure Data Commun Cause Data Event Description and Ired Consent s F8 6 3"f 8 M8 Codin9 Mean 11/ 0 variance Milit iteference Location Susceptittlity No.*
Pump 31 Olsenarge Valve, utV162AC 9.45 a 10-8 si 1.01 a 10-34 In Test i Pump Olscharge i Transfers Closed Pump 32 Olscharge Valve, UAV1628C 9.15 a 10-8 is 3,og a 30-14 In Test i Pump Olscharge !
Transfers Closed ,
Pump 33 pischarge Valve, usV162CC 9.15 a 10 8 is g,og , 30-14 in Test i Pump Olsenerge l Iransfers Clnsed eseat Eacnanger 31 Inlet Valve, u1V159AC 9.15 a 10-8 11 1.01 a 10-14 in Test I Near lieat Enchanger i Iransfers Closed y iteet [acnanger 32 Inlet Valve. UIV1598C 9.15 a 10-8 le 4.01 a 10-14 in Test i Near Heat [acnanger i Fransfers Closed '
1144t [si. hanger 31 Outlet Valve, UIV165AC 9.15 a 10-8 :: 1.ul a 10-14 In Tent i Near liest Eacnanger I Transfers Closed pleat [achanger 32 Outlet Valve. UEV1658C 9.15 a 10-8 is i,ol a go-I4 in Test i Near lieat Enchanger i Iransfers Closed SW Inlet tu neat tas.n. 31 Inv034AC 9.15 a 10-8 la 1.01 a 10-14 In Test i PAS Near lleat Iransfers Closed Emensager i SW lalet to iteat Entn. 32 IAV0348C 9.15 a 10-8 18 1.01 a 10-34 in lest i PAS Near lle4L Transfers Closed Enchanger i SW Outlet fru.= neat Enchanger 31, inV035AC 9.15 m 10-8 :: 3,oi , io-14 gn gent i pag gear inedg
- fran6fers Closed EaChanger i SW outlet from Heat EaChanger 32, TIV0358C 9.15 m 10-8 H I.01 a'10-34 la Test i pad Near Heat Transfers Closed Enchanger I 1
- itef erence num,er refers to lies nummers in the plant f ailure data %es.tlon of thls report. '
- 1062A033181/1
o
?
TABLE 3 (continued)
BASIC EVENT DATA COMPONENT COOLING - INDIAN POINT 3 Common Cause Data.
Faugg allure Data Co.neents Esent Description and Tree lieference Location Susceptlbtlity f ailure Modd Var iance MfiA Codin9 Mean 11 / 0 No.*
Wsta Pump
- - - - Sultchgear Bus 54 V. 1. II. M CC Pump 11 Breamer. Does Not Close/ UC800311 Witu Pump transfers open - - - 5 1tchgear 8w5 24 V. 3.18. M CC Pua.p 32 Breamer. Ones Not Close/ UCOOO321 V, l . H. M Witsi Pug franslers open - - - - 5 ltchgear Gus 64 CC Pu.ap 33 Ureamer. Does tiot Close/ UC800331 I fraasters open is 6.00 a 10-31 la Test 4a PAS El Ol' 8.60 m 10-10 PAa E l 81* I CC Surg.t fa.it 31 Leak or Rupture . Ut1003tL D.60 a 10-30 ll 6.00 a 10-31 in fest 40 I
ro CC Surele t ank 32 Leak or Rupture Ut:(003tL u 3.34 a 10-12 la lent 24 PAS El 55 to SI'
'O CC Heat EaChanger }l, tuss Of int (0031L 9.73 m 10-1 PAS El 55 to cl* I Cooling Capaollity (Leam/itupture) J.34 a 10-12 In test 24 CC Heat Enchanger 32. Loss of tal(0032L 9.13 a 10-1 18 i Pump Suction I CoollsgCapability(Leam/ Rupture) 9.15 a 10-8 n 1.03 , 30-14 in Test Pump 3l Suction Valve. Transfers UXV160AC g
Closed 3,og a 30-14 3. geng g p, p.5,cggon usV1608C 9.15 a 10-8 ::
Pump 32 Suction Valve. Transfers I Closed -
la lent i Pump suction URVie0CC 9.15 a-10-8 is 1.01 a 10-14 Pues s 33 5..ction Valve. Transfers I Closed 3 Pump Discharge 6.91 a 10-5 0 1.01 a 10-8 -
Pug 310 scharge Chect Valve. UCV161AQ I
Fails to open 3,03 , in-a . j p.,np Olscharge HCV1688Q 6.95 a 10-5 o Puy 3? Discharge Check Valve. I 3 Pump Olscisarge f alls to Open UCV161CQ 6.98 m 10-5 D l.0) a 10-8 -
Pump J I Discharge Check Valve.
Falls to Open e
- lleference nenher refers to item nenbers in the plant f ailure data section of this report.
1062A033181/4 .
e O
c.-
0
+
N
. ed O 9 g 6
u
.h*
g=
S=
eum e
== me - == == == em OO
=
'9 9
- U g en Q 3 m
G
==
3
^8 u
C k - - - -
~S e E3 8 C2 d a
==
=
3 C
2 3 e
2 e9 w >= >= >= W 7
, O M U O & 9 O *=
O & *L b a -=*k === == ==& se b== Gm A A A Sm E.-e O
L o z W
< .. em ,= Os b e am som
- @O w O b2 E
d I .4 .4 4 .a w e
< = ' ., cc w x x w a .a G G U G t== b q Q >=. >= >= >= i=. o N Z Z D u e "3 m C C C 'o%
g g e= .C.e == == e b-O .a,s en
".a 4 O , e e e e e- -.=
c y a - - - . .a O o i e e e u les o u o o o = c ==
O
%,, g b C
, - . - *== *= ** .
W E === w ~ st ut = M C o
C m z .
6 s - - - g -
O 6 > Q Q O. G.
ed t.6J Co G. . . v J 2- - - = - e o em C3 O
< u g - - .=. - -
- 3,,
>=. _
4 ~
m
>=
< e a as e -
o E C e o e e e - 2=
0 O ,O O ==
b C e - .O= = em
%=
9 Z *1 w w w w w
- u,J y m m - .e m o C es t.aJ . e. em O O @ h @ b 9e d g
< u u u C co e e e u=
e m.,a ==
tyt 8 e e t ==
,ed=cC , = . - N d'=t M M
aC em b
3 sp - M M 4"i La.
as b 2 > >= De 3= Q. D 6 p==
u 0
.M.
M
>= .M=
M
>= :::
h $g C
S b b b b *==
9 U U ' G w w % % O en en en en e6
- lS C C C C C *I , e e en g b b b L ,
>= 4.b = >= to &
h C =
- O C U * *
== M - N 8'"t e b ed C 8"i M f'1 8'1 b
.== e e .- e
- c b D *J U U U 9 C.
> > b ob es
> > ==
se me s= 5
- ,a= ==3 C 4 .
., 85 "O "O 8'S *=
- C -- 3= *t=
. >= 3= *%
as ==*B & ==
aa 6 h h h 6 u C o a g n *? e *? h.= *3 C W
- g "
e *k D "L U % "J G & .
O
\e % A e4 % em f's em e'% == a b T
end "2 O = 9 3 O 3 9 == &
- .= Q en - vt - 4A == et's == b <
%E *J b3 O N
- 'T "2 ed *2 5 u 3 e en en m en u e Q *
,=
30 e
e
4-TABLE 4 .
. 3 e s l a. I .*. i .e '; s*2L 80.5 r: It etN Ps anC 4 COMP 0ilENT COOLING WATER SYSTEM INDIAN POINT 3 MINIMAL CUTSETS ,
illa :- t .: e e. .s i. i i s.
- r.
- C ,Jit! Sts n P ILulAr. PCl68 ) (Sheet 1 of 4) e C L I s.1. .l e e I r: el. e v i l. I S .
, i 18 t. c I L : 'vt il I Av s t--C 38 I s m i t.hl t ,
Ltl . 1. .;*e . c ' It t V ! f. I S .
.s
- 18 u l M". !I l til e "el J.t il DaytS9AC HXV IS atC JI L' GJll LAVIS9aC 48 UXWitSAC UastyerC l.i .s is bi s*1t 8.44/4 Jet tl IA%C) SAC bav/SenL 11 Une/19AC betL OG 32L el UhkOC)ll UhtCL3tl
, !* I es Lov/8 ill I sil uv a st 108 InbO)4&C UHL uu )/L !$1 IAVO) SAC Lill OO S2L 'll t UAvit9&L OF4/LicC l.I e el t.'nt aa. f t t s. A v luS e C 141 UzvinSAC UdvloShC ISI IXV034AC uxW16SbC let I/VO) sac U A V 7 4,t n C '
/ tl ;tt I sb#*ite hyJ),JL kel OliLOCJll Ikvoj4cC 148 b d v it.S a C l xv0 3 41st 2Cl IFv034AC IAv0J4rl l a v : * ..* t '
, 't: .is ievdestC 221 LkW /S SAC IhbusiuC JJ) LHtOC)!L IMv0)SdC 248 UAvibSAC la vL sit t
!:1 .is I n b. * ' u . I AviajarC .lti IA%GJSAC I#v03)HC lil INV)J--C U/VIS9bC /48 I)VI)=lC UNvf)%DC t' l o 'e l I ' v t s -- C t'14JLast 303 4Ab))=lC IHl100 J t t Jll IAdi)--C UAVibShC *38 38V))-AC bMv/t500
$3 sai s es lavil--t 1Avnl4ct 343 naw)J-lc lav0J4aC JSt Ixwj)--C tuv0J5hc )t s ' 1Av)]-IC IAVCJtFC
=el 21: Jr%-etal 4 di-J J 'J u Jul 4 e 5-J 31D 4h5-3JJC 398 UxbItbAC 4d5-J))0 4CI bM00C)l5 4ds- J ))C Sil sll L. A v /* 41 t huS-)Jiu 4t3 UFPb0J45 4 a 5 Ja jls 431 UCbillAL 485-)J)D 443 bC(0 Call 4 ti- i s 10 E s.1 .*l..lle I t. *,1 * '. e :.15 .
, - e is e. * *. t .ae i e v ie.4 8' c UAV/ftAC la uPfluu s J S ha#ttluC UAW/f4AC Ja bLv/tiLO UAVILloC u s W / t. t s t
.st
- u t e . s. ? :
- I / e (e.teC u h v it.la C Si uny/s. TLC t;P.*00 3< 5 lab /L/AC bl UPMOC))5 UPM0L at) umd/t2AC
.e s
- Il e.t g ## l s (Pr,sJg3 LAvs(tsC es ut.tou s 36 urrG0125 Law 7t e AL 91 UmbIt2CC utvittst bav it est res ..s
- e .* :.. : ! )
t sv it s ts u A V t s.t a C lil ' UC v 18 8 8.w UC b 141 miJ UA47t.4AC lit. UCC0C))F UCVittbG u d t / t. < A C s.1 e as f. p b I .' f ( l8.CJGset La4/Ll&C 141 utMbul)5 uCCOGitF hhv/t.14C 153 UCWiblCQ UCC00llf U d v it:2AC
- l le a t.4 8 C6 !!I tClowl/F Uav/t/AC til u s W /s.tL C Udblu/hC UPPUCJ45 Idi UPMOC))$ UKV16 toc UPMDbal5
- 3 s ee Li h ts lea 4atts2dC LvMhG J15 ' 203 uCluta s j F u d y /t.d eC OPPJul!5 288 Unwi(2CC UPMOCiti UPP0b!! 5
!;e ,ea s+* : e '. t.e r.p. s t) U r r t.O ll S til BA v / s. l t 4 LPP0u lt 5 LPPUCali 148 UCCCCl)F UPMOUlt5 UPn0b!!5 7-4 .'l es
- W ie . ' L I L e it. l c . UrPUL)l) 14,1 tr P hbb l J ) uCvrt.lcu UPPOC)li J il LC% / t l C'J . UCvILAst uPP00!!5 lli .* h( f .* . : le I.C b It 4 P 6 brPCCJih trle utV/s.t[C UCLOC]4F HPr00 ll5 108 LPFOC))5 bCCCC)/f. OPPC0]l5
- ..s .38 ', . v d e ; t. . H C t u t. J i r brPdGjl1 Jti UClubjsa 1,CL0b stF UPPOCJ15 )))
- ) 48 UXVit/CC UaV#Ltdl UCvit44C u e P a u f i'. Iaitt4LL LLvihlad 3SI' UC V te. i t.C udt/s. luc UCb/tlAu 368 UCCOCJ)F UAvillbC VCvItla; e.1 ?ts L e v #e.< C C tvrCCJai LJbiblau Jai urh00Bl% uPP00325 LCblLLAJ 191 UCvillCC UP30Lil5 UCV/tLAC iet I t C( ;. :I t*#t .sc s l > LCVit!A1 4: 1 u h y tt ta.C UC v it,l t'd LC%itlA4 428- .Pr.CC))$ UC v it id C utwittac
..I' -:s s. )
- e : r. . I C v tr.l e a UCvit. law 4%) UCCDt. s si bCv/t.lbC UCvitlAd . 4Si UFvit4CC UCCOC)tf UCittl&4 es) %'s 4.'e t e.4 ! !) 4.LCJLati btV itel AC 473 tiLviL!LL UCCUCli> UCvible- Sul UCCCC3)F LCC00)tf UC v it l &".
- ** . o
- o. ,
9 e
~%
. TABLE 4 (continued)
. s:
0;l .i u s .e . . . 8 :. . . .. I .,I. , .., ;, m 4 COMPONENT COOLING WATER SYSTEM INDIAN POINT 3 MINIMAL'CUTSETS .
iliti . . ..r . i s e . : t.: . l e L . .% : t d ), Sit M li.ulan ruini 3 (Sheet 2 of 4) _
t i. i - : -.;. . . l i. ...is.
. I *.I u . D ir., L s uAbIt/tC LCCOL3tF sol U P r.0011) u d v /t.t h C LCLUCJIF Sil. UCVillCC uMVittoC uCLOLill i 'l l ..e a r t f .... l e s alt /*tPC 00000J1F S il u n v f e.t L C brnbo lt) uCLOC Jil $45 UlM6Cl)5 UPMOL)t5 UCL0ull6 1 *I 'I t 4 % I .le L t'P P .,4 8 /1 L*.LOCJtp SLI ULC00 ) JB LPr0G 45 UCCulill $18 uaVit/CC UC'#168bL LCLOL J il 1.~ 13
- l a.IreT.ll% t.C % 7 b i t 'J UCCOLJll S98 L:C V ic.4 LC UCV14&c4 UCCUC J to 608 OCC0C))F UCvihibL UCC00Jil 13: 4 els 4
- s l', J :C UCLJul4F UCCOGJtF 621 UPN0u J' JS UCC0012F LC C oC J 11 .6) OCVillCG UCC00327 uCLCulle l' 1 e48 uts.Cs.ffs oCL06 sit UCCOOJtF 65) umbto/LC u d V /t.thC Je5-) SAL 661 uPPGC))$ udVielbC Jti- JS AL 82 I .ta t.t W /? l L l'an te trC Jd%-J5&D btl ulCbbilF OAviblbC Jui-1)a0 698 uav/t2CC urnac)ts J ui- sis i.
4: .s s. s * . - r .. d 8.r r .L J e g Joh-jbad ill U L b It. 8 LG UPn00Jt5 Jdi 'sS AL Fil UC L'J C ))F UPn0C)t5 JU S- s t si 3 .* . I s es b e r t * . :' C a.L . te. t e w Jui-JSAb 143 UPrdu a si bCitulud jus- IS All PSI bCVitlC3 utVioluG Jd5-stun It' l at 4 t.L l ues t ?l tLtteilL Joi-jhau lit te h V Ir./ L C UCCoultF Jil% - lb a u Fel uPM06135 uCC0C)/f J B! $- J S & e:
1.' t l e el l t t / *. i t. L I Cv)L ait Jd5-J5A0 808 tf CC00 3 JF UCCuul/F Jh%-JSAU Ull uavlttCC UAVIL2tC 42%=lllG I 11 e. .' l 4:r # #,* ! !", 44'le.ttC 4d5-JJ10 d JI UC%IblCC O A V isit e C 4115- 3 31 d 848 UCC0C))F usWittuC 4P5-Jfit l '- 4 *I s. 41- .L OP.* ub s s) Ami-J J 8 0 86) uPt00115. urno014% Sos-)llu ull utvit tCO uP90Lili soi- J ilt.
.. s .le e e V I ii. . t. C % I*. t r L 4J5-sJld 9/8 UClou J Ji UC%lbibo iu%-JJiu 934 bXvittCC UCLOG)(5 A b',- J)l0
, f$
..I 4-3 t e rac J u 4.CC.bstl 4d5-3110 958 uCVILILL UCC0054F 4bS-illb S68 uCC0C)JF UCCOG)ll 40 5- s ilt I.-1 ,ie t.e v te /(( 4:stit.erf unVituaC 9ul UPticul)) ud % ia.t E C bxvItOAC 998 UCVillCJ UAViticC uavJLC&C l-.I ...l . e t e. S' i ll LavlettL uavituAC- toll uavfotLC Urr00)t$ L AvitusC - 102) UPn30335 urn 00 325 04WlLCAC I.I . tl 9 e. s r.. l *l4 6 e n.,L J . s unvitbaC 104 uCLo0 2 38 uPnaujts u d e lt.u AC 405) uxWit/CC utfloidu u a v t e,L a C l t '. ) s.) 8. e t
- ist i L e ts. i n - LA%(LbaC 1014 U L W is. I t u utv ic t mu UAt/tual 1083 blC00)JF OCV ible C ' useteCAC 1- e tv%s i. e s t - i e Clut. s. F UaviswAC 1808 urhholjt bCL9012F LAW 1808C till 4L w it lC L UCC0Citi uaw/fGAC
!* ; s i.s t Cf . . ! Ie 4 LL.ibst> UaVituAC 1838 t?s VI /CC bxVthtcC unbOCJ45 1848 UPndC135 UAVillbC UPLCL J t 5
!*-1 34: 3 o f V is. le.s havie.frL b.1C L Q J 15 146) UC loo l li u s V it.t h C u nt,0 c J 15 !!il Uzvit/CC UPn0 Cit $ uruCCJi%
la la ela a u v
- t. . f 5 e v.' JL s t s undub)l5 1848 1:0Vlf.ito t,Pr.00 s t 5 L 34.00 ) l 5 1201 UCC0Cl)F ' urn 00125 u70cC14%
- #. I l. ;l gs . w l .. e i a:6 9 /s.t r w bitCOL i t ) ttil urrub,4 s % utvi% led UMusCals 12 )) UCV#ttCG UCVillgC. UrbOL115
!; I !.-s off.. 9:3 t.L u te. l e . UNLdbJib 1/58 t.h v ie./ C C LCLJeliF bHLOC)l5 1/68. bPrJC))) UCCOL JsF '. 0rt:0L38%
..'i 1. 18 L.s V /
- s -- 'ListJtt
. UNCOLJi% t/06 Ist L t.u l Ji uC low ) < > U Mil 0L J I S . 4298 udvit/CC JU5-ASAC' J55-1/ AC -
liel I to s up* .b
- r , J d *.- ) 3 i b Jd5-JeAu I Ji a UCV16304 Jnt-)SA0 .Jdi-St:0 IJ28 UCtCC))F Jb5-) SAD Jui-JtAC
- a. 4 a a el 8. e 'e l e /t.1 %.In-JJib Joi-) TAU IJ46 OPNous1% % d %-'J il U Jbi-84AO !)$1 .uCVfLICC 405-J)l0 Jh%-JJAC Ir I e ze I a.C L u u l il 6 :l > - I s l b Ju5-)t&O 1)il- U x b le,ll C UAVIOOAC Jd5-)/AD 1)al UPF3Cl)5 UaVibOAC. JBS-12AC 1-*4 .s.3 t. L V f . i t '. e a b ittait
. J u S- Jt all 1400 a.Cluo j at u A v is.o AC Jd%-Jt&D 141) uuvit/CC. UPUUC )l 5 Jr5-J/ AD
- .!: ;.e t. r ' s .. . ; . 4. h.Lw s i s Jui-3/AU 1931 urvis.It4 . bMLucili Jet %-)t Au 1448 UCC0C))F ur.00C)!$ Jhi-i?*L l *8 l i". B il e t t *. t l J o 'e - h t .1 UadituoC 14 t. 8 urr0LJ 4) J.s k- J ) A D U t b l#,uu C 1418 UCVillCG J35-JSAD .uxvitCcC l'. t .l ..*I e.t.t L : s e J .i', - J 1 A L umbstGbC 1998 . u a v it.sl C 4d%-1910 LAbth0hC $$08 bFrdC))$, 4 d 5-1)lls ' U R % ia. ( b(
sNi ..il utt la li s *ut-i l 8 L UAV14CcC litt OCf uu l el 405-1J60'b4v/t04C 1%JI uayf(TLC udVibOAC 'us%7LCe(
/*.e : :s a est-t l e t - ta 'e li.u s 0 b AV it.uu C .LS$1 .uCVthitu ' ua v it.U A C u d v it te' C 1%61 UCLOC)1F UdvibuaC UnditttL
..eI l t o . t . s 1.t s. t U 9L9b s!% L4vitubC 4)ol UFndolJ5 bih00)t1 L8vitubC IS98 bCWitaC0 UM00Citi umvitCdC J. % 6 8 I us t . +.e LPLJ sl% bAVdeukC lbli UAV/t,tLL JIl%=j$&D UPLOCJt% 1625 UPMCC))5 Jui-) SAL U*oCLJe%
e 1. 8 .
- 18 L . '. f : 1.% JJS-tita u.iCuu J / S - l e.4 8 UClut,lse Jd%-JSA0 uMLOCJt% 16S8 bsvit/CC 4 h i-) )lle ' unedul/5
, l' s i.ee u l t 6 . e s '.
- re % - J l l u b.50 4.u J t S 8418 ' uCv /s.it h 40%-J310 u91,001/5 that HCCOC))F sui-)Jih unuab l4 %
.l.5 *
.e teeft..ti e a % Ie.4 JL . Unuuu't5 J 5108 l ul f.uu 8 3 % undla.JAC Lat;utJsi. . till UCVILI(J UWViLOAC :brLOL)/5
..;) etcs t e t .. . I ;l IabfrJAC Un UC b 'J 4 5 'lijl ti h v it.< L C 09110G 115 L rt'00 ) t 5 %
174) UPPOCl)$ UPU0C li s bruoll/5
. *-0 ;f a e.. s t. I' L e *..s.sts ual,Uu s2 5 lit t uttuusal b t.fsp i t %. bM6uC J. 5 t ill ab)-)SAO J h S 'J/ A 0 Jd %- s l A0
. / /,5 .t*I 4 .- ? ! s s J d ',- s! A u Jot-JJAU 1/98 u d v /s.0 a t J si- J t A,d Je) JJau 1508 untIOC ll 5 Jd5-JtAD Jh% JBAC f: I l Is J** 1 - s.4 % /e.b c 0 J d i- 'l l A U ' 10/1- 4s5-Jilp . baVIbubC Jd%-))AD teJI URVliCAC U A v it odC Jai-JJ8L c **s_ o - 0 _ e = e , .a f n > e* s o 0eW. /m-Nm RnM .. Amh-e -
N
-e* T TABLE.4 (continued) . .
. a
.. lei..i . .,::* o .l...,eAh' ' COMPONENT COOLING WATER SYSTEM INDIAN POINT 3 MINIMAL CUTSETS (Sheet 3 of 4) i niu : i. ..i.i i.stlLt .Aits Sv%Ian laulan Polkl i (si : , -:o . -s el. : ..sn.
. e 18 8.I *. %- : !Il J .s '. - s ! A U bdvItuCC 1911 tuvis.b&C Jh%-It&D LAVtiuCC 1948 ur000)l5 JUS-J2A0 u d v le.L L t
.*a l e ss Je.- .?B t s Is rt b a t is.hC C 1948 $ n %- s J i te b4vtr.0hc casItutt 19tl u s v it c a C. OsvteUJC usvisCL(
.C I i s. s .
- l. .. e* f s t L a 6 te. .I L uavituCC 1918 Ju%-3%au uneJosf5 t a b IL u*.L 19si sui-))l0 us00 Cit 5 UAvitt.t(
8%s i I e .1 e.e v t' ? t 8. "s. lu # 4 % UAVtbOCC tJul uruuull5 UNguult% unwitutL 2011 JB5-3%An Jus-)!&D urbOL ! JS e'*I ...I * * % - 1 : l l. J 8 % - 3 / e s: If14;t,U J J 5 /038 te m v ie.u & C Jos-3/A0 uMb00 3 3% 40%) Urbuusl5 J h % -1/ Als urtsGL J 35 e.-ld
..-3 a r '. " J i a:a v te. c C t rlJG C ) J 5 10tl %d%-JJLD usy7t0EC UNUGL ) J5 2011 un v'/t C A C bay 7tonC' urLOL ) s)
- tl
. a s*
- f .te l 's e a v te e.FC UMLb01J5 2094 Ju%-t>AD B500014% uMb00 ) s5 tibt 40%-3340 Ur00Citi bri,0u i n e+ s .:s Ltv1...?l 4.re:.Ib J s ) ONLOOJJ5 till leuun il 5 UML00825 u"UGC ) )5 21)) UAVttttC Jh%-JSAG Jt!5- J i&D
.' t t l .868 4. r * * . i t *> J Ji- 2 e.u J o ', - J J A D etSI uCvlolic Jo%-SS&O Jo%-)>4D 4861 UCCoo s2F Jbi-JS&L J i? ',- l j a l.
, . te s .ise U * % t e. /.* t *st-lilb J05-JJA0 /Lul HPrGbl25 % I6 5- J 810 J il5- ) J AD #191 utvibikQ 4e5-)ll0 Js%-)ta0
.t%l .4? .!L(e.se/s *dt-Islb Jui-))AO 22l8 ta A's t bluC u n v if.0 AC Jhi-) LAD 2223 Urr.00)25 U Af tbOAr. Jd 5- s t AL e 1. 8 ..si tsit t l. . e;s s te.Cil Jot-))AD /248 astluu lei udvifuaC JUS =) sau 2258 UAVIt20C uM00C)l5 Jui- t J AL
, . t" l ...I *. rot. * / *.
. L.*i Ju s t % Jh%-JJA0 4218 U L v If. l ut udLOU)l5 J t S- 'J J A D 2tal UCCUL)2F uMU0C i t i J ati- i t st i t. s ..of a o#e.re Jut =!1AL U n d it.CL C -(JOB UProujt% J!l 5- S v &;) babtbOLC 2314 OLVIt.100 JOS-))AU u d V 18.0 L (
4: .' ) s.( e...te Ja%-JaAL LawltoCL 4313 ts e v /4.lt C 9u5-1383 LAVito(C 23%) uPMULJ15 485-3)l0 udVILCLC
, hj i -l .?l s. e: s 1. ; . % n- t a lls u a 4 tt.0CC 25tl uttuultF th%-)J10 UAv1t000 t)?) ObvitttC untit0AC usv1LCtt i:si 1I es .4 t / *. udbit.0&C UAvILOCC tJ9) Utv7binu udvtousC ud t ##:0LC 2403 UCluC325 umvitC&C UsvFtCLC
...I
,*le L e v t...e t t.. 000 s l 5 LXVlbOCC 24/l uProusti bnC00)li Labit0LL 2431 bCVf(100 UMOCC315 un'd it C L B v.l **l. e.i t "12.* 1 8 '& 0: 433 uay#e.000 2458 OxvIbtbC Ji's-ISAD uiLOC )'J 5 2468 UPMCCJ25 Je5-)%&L urGCv!J5
/%# 8 .83 i f % l' ! - J o. 5 - , A C t.1Chu)J5 t%88 U(Luults Ja%-JSaa usbOC ))% till udvIttkC 4 3 's - ) ) l 0 u r e.u c l J ',
...I . .. a s. r * . . .i As%-sJiu LMLOCJ)5 1511 L L v ite l u C $o5-3340 LNLOC ) J S /Sta UCLCCJsF $4 5- 15 5 D urbobs2%
b: . 5 . il .s
- V ie . i t t a v #4.u d L bNCOC))5 .2541 tj e t.u b s t 5 UAvtouAC uncu C J 15 JS$1 OC v it it0 uaVILOAC unUOL335
- I . .*i S L C '/. f. 0 LA,/t.04C udlubj)$ tSil te n v it.t h C brb0ull5 UNuuC) J 5 2581 uPMOC)t5 UNuGL)l5 urLOO J a%
?' . s . *. s 'st s te Il s I; 14:QL il) UMLOC))5 2bC, IslLOL lil UNL90)l5 LHCOLJJ5 l6t) uav7LJtC uxvit2AC Jt%-J2AC
, ele ..,B s rs :q s s'. PA%##tAL Ja',-JtAO / *e l l LLvtblL4 u t 's tis t A C Jet-Jlab 2693 uCCou1JF udViltaC Ju%-stil a ; .. g . , 3 . , . g 1.* , , , gsygg glg jg3.} gay f ea t. ) us's no s s% e:Pr00ll5 Jds-) TAU 2614 uCVfilCO UP10Cil5 J2%-st&L fils .. l . . e s. . 3 : e t Pr oG sih Jah-) TAO e6%I O a v Is./ L C utv/bl&G JbS-32tp 4704 OPnCC))5 UCV It.l AL J E S- J e al.
!. 3 .e:s ut s 1 .le L e.Cv te. l A J JJ5-32AD /tti tsC t. uc i Jl . uCvte, LAC JHS-) tab 2 7)$ unwit 2LC UCCOCllF JhS- Alti;
- 'se. .ies e. f r t.s i t ' trCt is. s t r Jus-Jests litt ut v t e.l CL isCLOO J a t Ja%-)l&D 2168 _ utLOC ))F uCC00)lf Je%-isAC
??e I . t 13 t..v/t.Ct i: A % #f.tJ C OaV#LubC tida UPNuOsJS u d v /f.t & C L X % it tid C 4795 UCDit!(C UAvtL/AC U 3 V i f.L L t
- e s . 8 L. . t . !! e a t ie.tge, ua##LonC edil .bsvlellC urn 00115 bxvitbnC 2445 uPMdC))5 UPM00)l5 un v /LCet
'*'l . . .8 8; e s e t !s - e.pr ,u lli untitueC te48 us.L uu l je urrubil5 UAbts.ukr 1653 uayI(/CC utWFLIAC us e T ht t:t
- t *e e r * . s s *. uCvt las usvstuoC ./1/4 utbILIL4 bC//f.las L X b t8.uo C taal bCluCljF UCvibl&C Uav1:CLL i .. t .I t. * * # ?. . t. t I;C f.Ju s t F H Av te:CcC 4908 urhuu s 35 uCCGb J e f UAvibCrC 2913 UCb#LICQ ' UCCUC )ll us)1 CPC 144: ,.,1 ut Le.t.t!I le#.LOUsil bAbtLQdC 493) udvte,t(C uddlLtAC UHuuCjt1 2941 U P r.C C ) J $ UavillAC u"I.0 L l / %
'J 4 - 8 . es s L t . /s.l C C t4vlt(AC UNCoult5 / 9 t, ) UC4 ubl ji u d v Is./ A C UH0003/% 1971 unwit 2CC UPMOC)l5 urboule%
!es! ,.*I .. . t % t. s t a tYr09 81 % 0r 0001/ 5 t-89 3 OC v ide n t.b UP r.00 )l 5 UMt;ou lsi 2004 UCLCCJ)F UPM00 l! $ usLOL!s%
J .1- *.le t. . b s e . ;. 4 CWteit% -LNLCLJtS Jull OP nub s.n OCvibl&C urLOCJtS 3013 UCv 7t lCC - utWit l AC u-LLL3,5
't A l . . .S e l '. t. .* . t e t L *s t a. l J - b.*LCCJts LCLOGilf Ur.LO C ) ti 1068 UPr0C))5 uCC00)!F unuGL3/5 U.B i.II e.' t f. l e . IMt 0L sir HMGUu)2% 30$1 just uttob Au Vtsiis./LC' OCLOU)Le bHbOCiti .3091 uxvit2AC JBS-jt&D JdS-J) l;
- re l : .e s ci.' Cesti Jot-sjau Jd%-))Au Jlli ulvIblad JOS-JtA0 Jd% 'J)AD Alti UCCGC)!F Jb5-32AD Ju%-sl&L .
Inl 4 si t. s t le.< A L LAvtoJet jus-)Jan .JI%) t,rrousl5 unv/cGut Joi-sJAD' J454 OCVfilAC UxvitCoC J e % - s l & L.
!e
- I .*e l 'A .:6 fle 6 4 v #8.o P C J.s%-JtAD )lti Is a v le.t & C UM L3012 % JdS-l)&u 3188. UPnotJni un00Lil5 'J d %- J ! at. ,
- Ll to.I e I k 1 11. , t el. 80 3 / *e Ja%-JJAu JtOS UClou til DubuGsti Ju%-JsAb J238 uxvit. TAC Ju5-32Ap umbteLLL 188 * .a '. r r . . : '. J :s s- S t a b LAsIbu(C stil L C V it. l a b Jd%-stAD ukbteUCC Jt4) UCCCC)lf Jb)-32AD u n w ie.C L t
}#%8 v. p eavse.:e a n'. /..L r C bAvituCC Jttl HPruuJl% utvibukC bxnstuCC 1273 OCVitlAC UAVItCuC u)Vit((C
- tti
.I !.e. ( e ::t u4 t fe.brC U Ae is GLC Jt98 ue b it.t &L tsnU0 ult 5 udyflut.C- ,ljul UPr0C)l5 unuGCit5 umbtoCCC n a
v
.. x ij T,! j ..i- . . ,
+
e
~.
TABLE 4 (continued) m s . l :. i . . . 5 .8 e e.l . i . e t e e ase a COMPONENT COOLING WATER SYSTEM INDIAN POINT 3 MINIMAL CUTSET_S_
, . . e i. i t ....t ilu.. i r. A L > irist a it.ol a re te.1 ) (Sheet 4 of 4) ttI * ! *. , l ' e e :. t.'. 8 C I t i !. 8 % . ' .
- .I .e s L t t e a. I '. t.*tt' iu s t ) ude/s.uCC' 'J il l tsCloulle uttLouJs5 udvitutL 2138 u d v i t. t a C ' Jni-JtAG urLGu s l5
" .I t*a er e * * .
- l , J.i ,- s s A C b.tL6b J s5 Js)I let y le. l a r. Jil5-J/AU uMhut i s% 3488 UCC 0C il F, Jbi-JtAtt ureic u l l5 Je6 :18 a s . t o.. . t saav ie neC Uj'L O G J )) J idi 4:1 hGu J l ) u d V I8su c C L.Mt.'J C ) J S Ji91 tlL W it l A u U N v it C.e C un00L J A
.I =e a e.'*i *. f l e eatte.dkC b luuu l li 1488 u sv /s./ AC uNuo0Jt5 UML,ucJ)% J4/5 urn 0C)l5 unU0 Cit 5 UruC L A s',
- ..I ..el a.ste.it. U r e. it. e s ) t;9C00 J J S J,43 t CConsit u sibou j ti . Uhu00))5 34$1 uMVill8C udviblLC JUS-JIA0
!.*. ese o e;'a t ; , l. . st s'e t..t A C J.s s- 3 J A D 3478 ul% 7 eleiG udVF6 TAC Ju5-)Jau 340) UCC0CitF um v it;ta C Je5-)far 5 : * .I .: . . e .
- f L. r t LI. ! ! 's Jo)-33AD ' lad t t.PNou ts 5 r.PE00 315 Jut-)sau JS1) utvititG HP et 00 ll 5 Jei-jaAC
. II - ee e. ...e t#r,usts Jn5-JJAu Jill U d v it./ t:C UC V it.l a J Jd%-)lau JS48 urn 0 Cat 5 UCV16tAQ- Je5-JIAL 6.-l I e.s h t . t a. s.C h it.l e G J.si-)JA0 3St6 uCLOL)<f t;Cvittau JbS-JJAu J571 usvitttC UCCCCiti Jet- sis c s .: . 8 .rss L, P *.' u '/ s t CL t.9 J ii Jd5-)Jou )$va UCv is,it u UCC00)&F Jil5-)) AD J603 UCCOC)tF UCC0bll> JbS- J J aL s i e.1 ee l l U . s l . :' C s.adthtJC Udv760CC- 3 tel l urr0Gali uuvi6 TAC t,4 b /t ulC J6Ji U C v ite l t:0 udv7htAC b u v it.C C C Sist .: 65 utl k !. I te d'e le.t a C udV740CC J h *J I udvihinC.,orr00)l5 u n b /f.bL C . 3h63 UPn0CJt$' UPn0C)l5 usv/LCLC 4.- B . #1 eress !*L 43PPJL il s 4,4vihuLC -)hbl . bCCue lli L,P NuG il 5 udetLOLC 3691 DavlF/tC UCv1LIAC .unwteCLL
- l s ' s .. I .. e r : .. f , *. e.g. I te. l A J ' tJ 4W it.0 C C J/II u t v ie. l ..u UCV7.elst hMvituLC JF/l UCCULS/F UC v it.l AC U x v it l L f.
Al. a i .' t s t e . te. . - t t.Cs' C J i t L4vif00C Jtti terrouJti ulC0C)lr umvitotC jigt b(vio lt c - uCCot.)ll u x v /e.r t C
, y 6 I t. e t.s t t.. J. l UC t .au ll t 0 4 t it.0L L - Jtil u y v ite tet t 'u a b le.t s C UMLuoJJ5 1768 urn 0C)t5 uAVihtAC UFt.0G)s5 6 .'s I e.s e. I n t.. l . t. a t ts.t & L UML.tlu l l % Juul tit L Ot, S te- u d V it.t &C UPuJO ll% Jdil UEWitthC UPN00'.5 urCLc j M
& riI
.I t e #.* s. ; s.' ) treFuC6lb L 90ht,3 J S id si t 0% f oll;L UPndu ll 5 t.nt?sH. ) M . Jd48 UCC0CliF ur stot .5 unhuulJ5
, *?=8 *n .t. s s e . ..{ .C t /s. l t e. _untuujj) ist l ,uttuutti utv/blAC u.*00C J J S 'Able UCv it I E'1 u t v it . A f, U N.O u t J %
t i e ,I --I so. e . e stetesa, u r t. u t, J ) $ Jn sl. tes h to/e:4. OC s.uu lli be'uut. a s% J108' HPr0LJt5 UCC00)ll u % 4a.JJS
- el .ls .e.ett.1 . t il lL !Il L.'.CCC a j) Jsti' teLLutelti CCluu)lF uN.,JL i s) e E
D -
~
TABLE 5 .
SYSTEM EFFECTS OF PIPE FAILURE - INDIAN P0lHT 3 COMPONENT COOLING SYSTEM Diameter System Potential for Comnents '-
Pipe Section (Inches) Failure Other Systems Impact 14 Yes Systems Cooled by CC May split the system 1 #199 CC Pump Discharge and recover one half lleader to lleat Exchanger 31 System Fall of system. (Opera tor -
action)
Yes Systems Cooled by CC Same As 1 Above
- 2. #211 CC Pump Discharge 14' lleader to lleat Exchanger 32 System Fail 14 Yes . Systems Cooled by CC Same As 1 Above ,
- 3. #209 CC Pumps Discharge System Fall Cross-Tie lleader Systems Cooled by CC Same As 1 Above 5 4. #53 CC lleat Exchangers 12 Yes System Fall ,
Cross-Tie lleader 16 Yes Systems Cooled by CC Same As 1 Above
- 5. #53 Supply licader from lleat Exchanger 31 14' System Fall ~
(Three Sections) 12 16 Systems Cooled by CC .Same As 1 Above
- 6. #53A Supply lleader from lleat Exchanger 32 14 System Fail (Three Sections) 12 12 Yes Systems Cooled by CC Same As 1 Above
- 7. #52 Return.lleader from RilR lleat Exchanger.31 14 System Fail .
(Three Sections) 16 12 Yes Systems Cooled by CC Same As 1 Above
- 8. #52' Return IIcader from RilR '
lleat Exchanger 32 14 System Fail' (Three Sections) 16
- 197 CC Pumps Suction '12 Yes
' Systems Cooled by CC Same As 1 Above 9.
Cross-Tie lleader ' %
1062A032381 "
e TABLE 6 e
INDIAN POINT 3 COMPONENT C00 LING' SYSTEM - CAUSE TABLE Failure Data I$ "
- Basic [ vents Var iance Mean Verlance Haan Variance Mean CA5E I ocuralWtf Cor 01i10ri:
POUtTIKNBU5_T- E
- 1. Single E vents -
- a. HJnual valve 9.15 a 10-0 1.01 m 10-14 -
- b. Service water Supply Falls * - - -
w c. Piping Failure (IF) 1.46 a 10-8 1.24 a 10-33 - -
cn System Fallure 'I.06 a 10-1 1.53 a 10- 34 IUIAL l.06 x 10 # l.53 x 10-44 s
- 2. Deat Enchanger Irales
- a. Tra6n 0 1.34 m 10-6 . 84 a 10-12 - -
- u. Train [ 1.52 a 10- 3.01 x 10-12 - .
'2.91 m 10-16 System Fallure 3.52 a 10-9 I0IAL
- 3. Pianp trains 4 Operating Pu.np 3.44 a 10-6 2.13 m 10-Il
- o. Sta.i.sby Pump - - 1.44 a- 10-3 1.13 x 10-6
- c. Previously Operating Pwnp - - 1.43 a 10-3 1 l3 a 10 6 System Fallure 9.15 a 10-10 7.99 a 10-18 lufAL
- 4. Test and Haintenance (with piang trains)
- 5. n.. nan Error -
- 6. G anon Cause
- 1. Otner -
- e.
- 1.11 a 10-1 1.54 a 10-34 .
SYSTEH TuiAL
- Service water shown for completeness only, quantified at the event tree level.
lu62A011101/1 e
~
e . .,3
s-
- e
@ N N d
b 9 e.=
. ==
o e e
3 V O O O.
O C .= .O
= .- .
g
.e. sa e ,b 9
se a N
- a. *N N
De m .=
e F. .%.
O sn. .A e
== N
- 8 e
e me % cm @ @
9 e e e e Q O .O. .O=
C .O. .-
4 e og b *y su se se 3 Ea n
=
@ N e
- @ ==.
9 O. en. e
.=
% == m .-
en 9 G G u % % %
I AJ G 3 3 3 J ti == eier em O ge,g a5 9 . 9
< 6 b W W H { 3 E w -'. ' .E. - _.
h e e m en e
h h h D m en m U
$ e e e u OO
.E e . --
w e e e e e a e w=
H s
- e .
- D m. m.
J p D n
- = =
G3 3 C
- 9 C L3 .
- Z 8 .
s c MM -
c g 66 3 .
o o C W 4 u o y *J e o e ee a ww .-.
=*
m
.v E .bm "F m -C' Q h,. W. e. as C
= gi - .= b
=
- G L.=J .e L&J J Z ' t, o
O @
< c. . e NN - =.=. & K
% . . W
- m. a.
.p E 3 e .e e o .e e e e
o -
Y CO .O O O o .o W -
o e O.-
g w =
=a w .: am w e e a. o M s &
e == Wm e- M ==
3 *= %
p O. - N. en. E3. O. .
Z -- -- Nm N e
. .h C
9 O b 3
3 O. o @
F Oo C3 % @@
= e e e e O
e e
=se O OO OO h m C
- - * = = - = ' = - a==
==
- B
- *"" "" " ' ' *8 2 en @@ eN e W
e
.p We O. M. en. ,e
==.
. - -- y ed e .G
=
.m.e 1 E
as 5
h A u Ut b h C
= = = 0 CL == .m .=** %
C 9 a* - J 9 .J V C 2 w .J ( b aE C .J nn aC *G a W- e 3 W == b ==
3 C .aC
= 0 te k b == 0 E O es ..
$ O .O- 9 C = t* =v *3= =.O. k 2
= d == K.*
t C 2 h C
> - eA e-g- 9 % T . b W
== I"l* ** at Ut C w. C' C b 'e'4" **
9 % en ene tog
- ecQ C 3. 3 89 6 9 O t.d C =* h3 EO h59 *=
en 9 .
.U.
Cl
- - c 9> .= 9 v ci c., C C
== e 2 C 9 9 *J*= L3 > 3 me
- b == *J Ve
,C b.d C
=P5 an u t.,
7 > = = .ar,
. =, , %,e. C, *=s t e
e s
u
.=i=
@ - 4 s.s .a. .
.s- g O e4 & .e at 9 - -
> M
. ( e. T jeg t
-C'* Tm&
ed m e 3 e((E
=g 6 e f_ == . . . as . . a . . . ..
== = W O w c s., C eneau =gJ A9 au en - et
. . . ~
sA * .
oc 5 c -
=
m W .n @ a.
.C.
e v is m e
37 .
4
4 6 e 1 1 8 8 c - - - -
n 0 0 a 1 1 10 10 i
r a a , a a
v 3 3 ' 2 5 19 2, 2 1
2 I 1 1 9 h 5 n 0 0 a 1 10 10 1 e
M a a a a 6 2 6 1 0 5 2 2 1 3 U 8 I
E
' e e e r r r L I' u u u I
B E l
i l
i i
l A ' a a a T ' f f F E
I' n e
i m n S
Y e e i
S 3 t
s t
s t
U y y ,s y A S S S C
e 66 c - -
M n 100 E i a 1
)
T r . - - - . - aa S a d Y V 33 e S 11 u 1I n G
- i N l.
t I e n L 33 e
v o O n c O a 10u l.
l,
( C H e
. - - - . - a s )
e e n s r 6 T 43 o t N a 44 t a
E E t 1l r t
n L N a t e B O D v A P e sg e T M r u e 4
134 1 122 I p
ni e O 1 1 I h e l
c - - - - - - t C i n 0 100 00 0 ti a a 1 1 11 1 t t 3 F i '
i a
r a - x a xm a - - w a ( d T V 1 43 41 3 e 25 0. o, 1 i N 10, f I 11 23 2 i O t n
P a u
N 8 81 66 6
at A 0 00 00 0 ,
I n 1 11 1 1 1 y D a , l e a- aa aa a - - - - - n N M o I 5 66 42 4 1
40 35 4 s s
9 11 1I 3 e n
e
.
- t l
s e
~ g lp l
n a u m F P o y g c lp1 ) n r s e o p1 n t e f u(L i L at c S A a A rA n L n s ef r f p' ei pu a A w
. t : rr0 T 0 a. n l o n eeul 1 upOl e 0 h
. 'v e 0 N~
l5 sl ai vtl r e
P any e
t a
1 s i5 E t aWa g gPl e M r l nV evl e F n aDE sn s lars t e ic 0 niy.
n
. Mou f t N[ cg h t n le rC ra 5 a
_ cnn ia rr a i. h s Oii E ain a Ch uvi nii ..e nE a n V
S e
w 1
/
U lenrp E aa rr t eae tYT aei gM s P tTT p
pt r iir s
e c 13
- n. O,S P t i 8 a m. n i
n a
. e *e iADD H\ i. i. ti. c.
tc i p i
P u
s
. s a.e e.wt n(f>
r v
e 1
3 0
M00 * .t l S A C
A0 0 5,
. . .. . . 2 2 3 4561
- 6
_ 0.
1 s
gco
r-a i e t
.am e e .a= -m *'s.
==
b Ga e e 3 y e j e O C O
- .O O.= .O. .
g 9 e b W w w or N
3 9
m .= == =,
e id'l 3% ,N 9 o e e
.a .=e N ==
as as %
9 % llre N e o e O e O. O O C .= O.= -
g 9 . .
b 3 e8 m a w
== @ N % %
O nft J3 llpt 9 o e e e
w *= t'4 *= N e
ao u G G %
e h b b w 3
.J w ==
3 =-
a.3m
=
m g, 9 9 9 <
4 g u 6 '6 e e e
=.a* e es
' ee s.e d an ed ad
.n B en A ene h h h 3 m m m z
U 0 W ed u e e C 00 E -
9 L&J b e e e e e e aw
)-=
^
'O d
>=
$ m e=9
. c @ =r ~~
3 $ e L') s -
.C e Z y '
" ~ ~ mm .,
e e C a C 00 -
O C 9 9
9, O C 9 e e e w w - e v v r e e e + b
==
er "9 C -
er g e
@. b . 9 Laj z
y 9
=* I
.ba C
9 D a.J Z O' ,& W C'3 O b
< w r.=i e-e4 N
==
-- a_
>= 3 o -
e e e e e m.e o"E" -
==
u C
e O.- -=
OO .O .O= O. .C.e d.,
U as g . .
.-- 9 -
==
gn g
b ueww ww w a e w
n- - p
=e Do - gm e == est -w h Oe N aft OO *'*
e 4 w e e e
-en h ==eo N fus N == -
.a M .h.
C o b I
k 8 a
= O em e e. e.
z e e o e
=
w c .O. O O.=
. = . O=== O .O
.h as w aww ww w e o e e e <=
c z e o E e.n.e @ eO eN me sne e
e en W wO e e e oe s y gg ==== can C
D
=*
==T
==e.A 9
- e. & u e
h tlFt
===.== C b EL N .4 == 0
* 9 *.
' Q. - C
, 3 ==a .J - .J 9 .J u C en et 1 eC b eC C J em @ == k = = - t'L v == 9 aC 0
E
* ==l b bc e.- O E 13 C *i
9% 3w == 3 S O *= 9 O C C Z an ** ==
- 9 C 4.J
-e #-
an 9- ,b e
4 i. A C
9 - b e.= f" as *3 9 ges C Dn 4 C emC "* A J*- C.s 6 W O 9 C ** h] Z'sQb 3d ==
en
=*
9
===u W
> = u CPt C"8 O nnJ -**2 b 9 .-
E" .g b, =9 - w a ea v
s
= .-
C uC C 9 ,- -
% b = .
-r C d.
,u .a %
9 4sb & tes --9'O m V "5 9 C %
33 bb 1 =* %. C b "."D"
> 9 T- t W ~V W ==C9E M & =**=*= *OM4 **
't "P
- B f3
- D N_ s
' C
== . e e W9Ou g e e
%9O A9Ou
- g 5 6 =Ce
- ==WO b.
en O
aC 4.J 2 %'3 * * * *
- 8%8 ve 4C ~D $3 ==
N P's ec@% e e y c3 eb
-O 39 .
4 TABLE 6 (continued)
INDIAN POINT 3 COMPONENT COOLING SYSTEM - CAUSE TABLE Failure Data 8' "#i# U#'"'"'8 5751** EII*CL
( ' * "'$}
uasic Events Haan variance Hean yarlance #4ean verlance CA5E 2 utninoARY Connlilon:
PJD6TK M W 855 T
- l. Single Events
- a. Man. sal valve 9.85 a 10-0 3,03 , 30-14 . .
O. !,ervice Water Supply Falls * - - - -
$ c. Piping failure (11)
IUTAL 1.46 a 10-8 1.06 a 10-1 1.24 m 10-33 1.53 a 10-34 System Failure 1.06 a 10-1 1.53 a 10-14
- 2. 1844t Enchanger trains g
- 4. Irain 0 1.34 a 10-6 2,04's 30-12 . .
te. train E .1.52 a 10-6
~
3,og a 30-12 . ...
,iOTAL System Fqllure 3.58 a 10-9 2.91 a 10-16 ,
- 3. Panp Trains
- 4. Operat ing Pmnp 3.44 a 10-6 2,33 a lo-11 . .
- b. Standny Pwnp - -
1.44 x 10-3 1.13 a 10-6 G. Prev 60usly Operating Pump - - 1.4 3 a 10-3 1.13 a 10-6 10TAL System f ailure 3.01 a 10-5 3,381 a 10-10
- 4. Test and Maintenance (altn pump trains) 5, numan Error .
- 6. Cmemin Cause -
- 1. Utner . .
e e g,37 h 30-I0
~
5fSIEH l0iAL 3.02 a 10-5
- Service water shown for completeness only, quantified at the event tree level, ,
1062A033881)I k
e -
TABLE 6 (continued)
INDIAN POINT 3 COMPONENT COOLING SYSTEM - CAUSE TABLE Fallure 04t.i System W ect U
- U "N Basic Events Variance Mean Verlance Mean Variance 74ean CA$[ 2 00unuMf OmolI10N:
PUXil AT0iiCEDI
- 1. Slagle i. vents
- a. Mastual Valve 9.45 m 10-8 1.01 a 10-14 - -
A o. Service Water Supply Falls * - - - -
H c. Piplmj f allure (17) 1,46 a 10-0 l .24. a 10- 0 - -
(OfAL 1.06 a 10-1 1.53 m 10-14 System failure 1.06 a 10-1 1.53 a 10-14
- 2. Ileat Enchanger trains
- a. Irelo D 1.34 x 10-6 2.04 x 10-12 - -
- p. Irain E l.52 a 10-6 3.01 x 10-12 . .
[0fAL System fa'llure 3.52 a 10-9 2.91 x 10-16
- 3. Pian Trains 4 Operating Pump 3.44 x 10-6 2.l3 x 10-Il -
- n. $ tan.iny Pump - - 1,44 s- 10-3 1.13 x 10-6
- c. Previously Operating Puay - - 1.4 3 m 10-3 1.13 s 10-6 System Fa,llure 1.51 a 10-3 1.03 a 10-6 I0IAL ,
- 4. i.tst anis Maintenance (wlllepumptrains)
- 5. Hu.aan Errur -
- 6. Cmain ca.ase -
- 7. ntner -
1.51 a 10-3 1.03 a 10-6 SYSIEM 10fAL
- Service water shown for completeness only, quantified at the event tree level. .
IU62A033181/l .
e .
1 O .
f i
COMPONENT COOLING PUMP COMPON EN T COOLING llE AT E XCHA NGEll NO 32 TilA6N COMPONENI COOL 6NG PUMP
' I )l ' '
^
l 3 !
2 f
SYSTEM SE nlES NO. M THMP4 COMPONEN TS FU F COMPONEN T l COOLING llE A T '
1 E XCil ANGE ll COMPor3E TIT NO. 38 THAIN -
Coot Nc PuuP, NO. 32 TH AIN W .
- ~
Figure 1. Indian Point 3 Component, Cooling Water System illock Diagram e
l O
h ' * - - M __ _ _ _ _ _ _ __ _ _ _ _ _ _ _
4 L-
..u.. _ _ p . _' _ _ 2_+ _ .__ !
. _ . . _ _ , _ ,- g_m. _ . _ . _ _ __ . _
l $p -
l~ll-
"T-8~j -
I s-- l Ifl X1 -
1 l
- 'r'I .
r -
._.~.j. - i L..A,. i1 i. , . ,>i .
i r ~~- I -I l e-ri~!d dJ m l
r
-!!!ili
- +Ic' =@ !i, .e i J .T , 9.T , .
m C in
[ N >i
_-ca ' R l! . fil! !! m .-
OO.' II.I
- fi! .5
@M,j, ily, i
' I 11 ; si I r e
, . II o ili- x r
m;j:' ;! i
- i i_:,_; , l'l l + , ,
y! i l II@7 3 i
l 1 %
!![!
l lil, k:r j' 43I *
] -ll
~
l I
e I
5 1
' -,_^,3, =!
l
=: it7 x p' p- i a u^
!J ! '!- t>- I I I N
!,!ttg '*i .- r 4- ji- ; -m 11.; li? I? 14- ! i _
l 'll'**t tg %, j o%
{!.:. li - -
- =a I g
[
l4 lj,fi T] ,i 7T 4 &; ! .s .
h, . i '*J 'T/T9 - h.I : f
- >:i: tii %= '
- ; n 1.9 l I - . .- .
-x-- .
1: ix i i.. .. ,. a. ,
==
II
! r II e '.' i 17 M
.jj r." r ". i' t - I m - -
palll le i, , @ i
.6.."o il Ti. 3!-i vy i.t -! _ ,
3 e . _ . _
- i i s :_ _- .-
- tr'..;
i ,
- r~ ~
is l., **' I I l g ._
. H s.,c -.
a
}
,1; o
$ I'
- r. i i i
- 1 , r.H- - ~, - g _ 4 ,!
- , ,
i I___%' '!
j il v .-i j :i !' ' M . i*
N 1 I i W-~~
- P% e hl L! M .3- -coll;!: r ! i 5.
I*
)4 j 3 i, s. .
.. e .v
- g. I
- ->-.t.i f'l i ~.
s.s.
v m
LA. '
0 I 1l8I "" I. l7, f ,
y;I:'.i .
I,.
l;ig I*'
.s .
! I i -- it!
x+L' ; .
I ;!l '
. .l -s . .
e g .
w.m-L - e, e.- .
e e
43 .
OUIslDE ; INSIDE HEAC101) .
llEAClOn CONTAINMENT
, CON TAINMENT 4 i
l
'%f g
'j TO EXCESS LETOOWN i
ilEAT EXCilANGER 1
I i
'g FROM EXCESS LETDOWN
, l ilEA1 EXCilANGEll j 'g i
FROM HCP SEALS k
=
i FilOM I1CP
'd MOTORS l 770
-l g s TO RCP 8 COOLING (4)
' 753G i'
I
.l l
' [ I1E CIH C PLIMP NO. 32 '
MATCil LINE NO. 31 8188 8tBC NO. 32 i
x ,;
y .
2 n
816 0
[
DM I3A 020A D4d 3
3 8200 818A
-lHl.1F- --
-i H VlF QV ._
l .
! ~ 752G
- l M s 1 l HESIDUAL NEAT EXCilANGERS-OEClitC PtiMI' NO.3 8 ISIS) 76218 4-C*C )
t .
Figure 2. (Sheet 2 Of 2)_
- p. _
O b
, f, * .
NO Oil INSul i ICIEN I tv 7 i- LOW Or COMPON E N I-COOLING WA if R (CCW) 1 10 SAF LGUAHOS SAF ETT INJECTION PUMPS (UCCWSIPSI i
EQUIPMENT 2 #1ESlOUAL ilEAT HEMOVA L PUMPS tuCCWillinP) 3 AUX CCW PUMPS (UCCWACCW) 4 RESIDUAL HEAT REMOVAL HEAT E XCilANGEllS (UCCWHHHX)
FAILURE OF CC CCW PUMPS CCW llE AT -
PIPANG (LE AK On FAIL TO SUPPLY E XCil AN GE R I: AIL , CCW SunGE TANKS -
IlUPTullEl Suri'ICIEN T 10 SUPPL.y LEAK On HUPTURE WATER 00 COOL WATER O -
O O
! UPPLEAKS b
U1 IlE AT E XCHANGlit ilE AT EXCl4 ANGER NO. 3 8 r All.$ 1 O NO. 32 FAILS TO COOL On SUI' PLY COOL On SUPPLY NO.31 LEAK Oil NO 32 LEAK On WATER WATER RUPTunE RUPTUnE 4
DI 02 UTK0031L UTK0032L e
I
- NOlF FilOM NOll' I ROM NOil: FilOM 4 CCW PUMP CCW PtJMP CCW PlJMP NO,31 T R AIN NO. 32 Til AIN NO. 33 Til AIN l
i i
Al A7 A3 Figure 3.
Indian Point 3 COinpOnent Cooling System Fault Tree (Sheet i Of 4)
s .
C .
1
- 1 2 o 3 3 3 i
l 3 3 3 L W c O S e A A A P NU 0 6 2 6 L OO 0 I O l
I TO s 1 2 3 i
T UT 0 4
5 2 2 2 NI M O E C T O
O i.
- i E $ .
7 A D C N S GnS R EG F U lASL iNP 8
3 2
3 3
3 CAn Sl V1 I
DT iO x2 C _
$E D U6 7 E
n I
A 2
A 3 PVS
'A MLO UAL P V. C L F OT S Rl O I
T U )
N O O C CC U E
G .
R A
l ED l VE )
C LS S V 7 4 I A O. Cl G _
DVa C U G7 f
$K S o PC ME l 2
- Ua lA PCF l
t Y.
l e MN Sl e O P AI LA h I C AI S l PMt U8 g$ (
Fi 1
$A
'1 N .
g 0s _
- a
_ 0 o0 Fl oCO W. Pi MC l
NCN l L 3 PM i
e r
u g
i F
G S.
l l
A r Op I
M -
$r PO i
UmS MT .
- UO
- PM ,
S OS CG N FU OSt Tl NP V7 C Al I i X0C -
UTO ST U 16
$ F. D, I S
P v. O Ml U A1 PVC l
f C
W D O
. l' (
V C 3 I
0 S S
_ o pc 0U 4B o
J .
- Ol
. NA e
e g
~
e 1
I alL AI EXCilANGEll g g 7 NO.plAILSlO COOL Oil SUPPLY at 31 A WA I Lil p2 32 0 a
14E AT EXCilANGEll S IIE AT EXCilANGER $ SEnVICE WATEll SERVICE WATER INLET VALVE OUTLET VALVE OUI LET VALVE SUPPLY VALVES TRANSFERS CLOSED in ANSF ERS CLOSED SWN-3S 7 TR ANSf ERS
$ TH ANSF EH CLOSED On PLOGS On PLUGS CLOSED 00 PLUGS uxV Xv TXV k 87 j 769 7 l l 7G67 l l 0357 l NOlF FHOM SEHVICE WATER IfEAT EXCalANGEH
" ^ N IN LE T VALVE SituPTUIIES WSTEM TO IIE AT NO'PI Oft UGs i SWN-34 7 TH ANSFERS EXCalANGER $ CLOSED On PLUGS l
UllE TXV
't
- i M# l { 034 7 i u:
Figure 3. (Sheet 3 of 4) t e, &*
e e
e 4 'I #
f 4
s e
i e
s Q w
w C O wm .a H> U ,
<d a >_
~ 5 $ Xho w> so l V>MN 5 az
.C C2<
aBE; wwup n
T C
C C c w w Q T d w
- eM Gwoa gw O ggeC m
W o
d
->u
<a -> u
< m r>s 4su w=
w>
u a
2 E<. m '< = > .
- x. o 2: < w = <a w > l ;;;
w > "c '
- a } w > 5; g< .
9td E >>, jn w; u w>ux_2-
- 5 ;;: u
>m. > b. z ch5 3: t 2 :E5_
m_
5_-.?- a h, n dM" .=
w 5 C5 3 4w"
- 3 g =,
www- U M b e,
< e *
- a LA.
O w
w C
- ww C.J
>> U
<d a m< C w
>l i w> XAo l
ubMN 5Dz em z<C w3 ww p-l t
i 1 -
e S
O e
- e
. . - - , , -- - e . , _ , ..~ . _. .~, .._~. - . , , , , - . - ..r. - . _ _ _ . ,- . , . . . - . . . - _ . - - . - -