ML20062E361

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Re Upgrades to Safety Limit Min Critical Power Ratio & Rev to Operating Limit Min Critical Power Ratio
ML20062E361
Person / Time
Site: Pilgrim
Issue date: 11/08/1990
From:
BOSTON EDISON CO.
To:
Shared Package
ML20062E357 List:
References
NUDOCS 9011200135
Download: ML20062E361 (7)


Text

.

p N

i

{

,2K ~'

i i

A q

w I

'. l-

-f 1

o 1

i; i

..t ATTAC4 MENT;C to'BECo 90'136

,u

. ~

.i.

Marked Un Technica1 Soecifications'

)

r

.,e g

i

l 4

er t

i

.i

' ?

i l

e I

k L

r 9

4 r

.y i i t'

i

t. >,

4 3

r, l

u 1,

1:

(,

i j.i;'

i 3

6 Lt

.. i ;

t i

6' i

si.

+tc n

c

.u j

9011200135 901108

'E-m; ADOCK0500g3

}G PDR l, j f j'l,.y V,'

'n ii -

-,l: h ;';fll\\ l

. fi-l }l/,t a,,.'

i g ;.ii )' '. p, a;

.?

' n b.

f;lj 5 ;.1

,, ' _....?.j !.

'O r

r

t i

f ',

n e t,. '1 w 4..

' =

s i

,o

k

,e y

1 1.1 SAFETY LIMIT

- 2 '.1 L TLIMITING SAFETY. SYSTEM SETTING ~

. { 2 '.1FUELCLADDINGINTEGRIE.

lf l'.1 FUEL CLADDING INTEGRITY

'U

' Applicability:

-[

' Applicability:T r

~

Applies to the interrelated

~

Applies' to. trip settings. of the variables associated with fuel instruments and devices'which are-thermal behavior.
provided to prevent:the reactor-

~

' system'_ safety limits'from being-0,

exceeded..

Objectivet Objective:-

l To establish limits-below'which To define thellevel of thel pro cess variables at:which automatic; the integrity.of the fue1~ clad H s c ding-is preserved.

i protective'_ action. is initiated to

. prevent theifuel cladding:inte--

a

=grity safety 111mits from being:

J s

~

exceeded.:

'1

-Specification:

. Specification;-

R A.

Reactor' Pressure >B00 psia and -

'A.-

Neutron FluxLSeram:

Cor Flow >100 of Rated The existente of a minimum,

F Thellimiting safety' system trip 1-

. settings shall be as'specified i

critical pbwer-ratioL(MCPR) h o g lest, than shall consti,

-below:

.tute viola, tion of:the fuel e

cladding. integrity ety?

t-ol.

? Neutron Flux Trip Settings

'~

I 1imiti A MCPR of is here -

V a.A LAPRM Flux" Scram Trip;

.s inafter referred to as the 1, f N Safety Limit'HCPR.

1

Setting (Run Mode):

l' B.

Core Thermal Power Limit (Reac-I Whe'n'the)ModebSwitch"isi 1

tor Pressure 1800 psia and/or

.!L sin (the RUN1 position,>

J

~ Core Flov 110%)

h n

. 3 the'APRM fluxLscram-y

~ trip; setting.shall be:

When'the' reactor pressure is-T S5.58W?+6$p2 loop' y

1 i

.$ 800 psia or' core flow'is less l

u L_

than or equal to'10% of' rated,

[

2

. Where:

U the steady ' state core' thermal, l power shall not. exceed l25% of 3 'e " Setting; in percent 1 design thermal power..

of rated!thermali C.

Power Transtent poweri(1998,MWt)-

p EW =' :PercentL ofudrive -

j e

The safetyLlimit.sball'be as sumed to;be exceeded whan scram

' flow.to produce aH is known to.have been aecomplished' rated coreJflov of'

-69.M Ib/hr.

by a means other than;the~ expected s

Escram signal unless analyses demont

.]

strate.that the fuel cladding J

integrity safety limits defined'.in.

Specifications 1.1A1and 1.1B were,'

[

t'

'not exceeded during the actual l

transient.

n (l;

l

,6

'g, i Amendment.No /l j

w 1:;f f:uy y.g y_

a. a

,.un n

j

.,L

s"

+

r

/

g

<_wu.. - -. - - _ > _, _

//

.....54.

m.-._ __..v.

.w

.y w w w 54.

w

.. ~.

liend e; !;bh 5 1, E:f==,;; 3, th: = _' - ' r& : ef the r:0 y

p u n n;;; li;ted i; 7;ble L 2, %efes.;ee 0,.ud J,.,5 1 dve

. j

tly p;.n df-etribein ete.~a is "ir.. 'r-1 ud bl4 vf

//

i s

-Refere.,;e 0.

Tablee b 2A e d F, ;;.f;; a.n 3, d = ti;

^d"'

. 9 '. eta *d"*'**'. '.

R-f e;n: dinributi:= d;; n: ';

La 1, _. >_. _ _ _, _...... _,..

.m..

nu n.

.u. n

..s w.

.u wu.

- -. w...... w 41stributi:n.- ch- ; ;;; nha ;;n 2; i;;;in.in;; ;f d; f;;l.y 1;.

Th: h::i: fer de re::t ' ti:: 1: d n:: p=r tr: n; ;;i=

t_,

>__a._

....1-,-.y__

.x _ -- _

I

> _ ~., -.m. c. W ~. a._

.un -

1*stea-ie-giveer u "OO-1093S N. _ "h:. ; = n di n tit.;i;;. -

i; b;;;d = ; tf,.i;;1 711 n: " ly.::: i; tid it nd ;;t x

.;; niin;;t-ly-ehees; ;; produ;; ; eks;d van dinr'L.;in. '. ;isp

)

b;p===

z':: ;f = ' lia; n n;. hi,Lan pu a; 1.;.1;.

Tue di::ribustea-in-Pilph Hoch= M;n :::i;; '.';it i dri;;;

)

7 ful ;7
1
=;1d an be es eme..
.L. Ji...ibudvu

.a h l

m

~

3.

Cere Ther a1 Pover' L1=.1: (Reaeter Pressure < BOO psig or Core Tiow

< 100 o f Ra t ed.

The use of the GEC correlation is not valid for the c.riticC i

power calculations at pressures belov 800_psis or core flows less than 10% of rated. Therefore,3the fuel cladding integrity saf ety

'd ' t is established by other.means.

This.is done by establishing a W ring condition of core thermal power operation l

with the following basis.

.l since the pres'sure drop.in the bypass region is essentially all elevation head which is 4.56 psi the core pressure drop at low f

power. and all flows vill always be graaAnalyses show that with a flov 'of 28x10g lbs/hr bundle flow, bundle pressure drop is nearly 1.ndependent of Lbundle power. and has a value of' 3.5 psi. -Thus,'the bund driving head vill be grester ' than.28x10ge now with a,4.56 psi lbs/hr 1rrespective of total core flow and independent of-bundle power for the range j

.of bundle powers of concern.- Full scale Alus test. data' takan at pressures from'14.7 psia' to.800 psia indicate that the' fuel assembly critical power at. this flov f.s approximately 3.35 MWt.

With the design peaking f actors,the - 3.35 MWt bundle power cor-responds, to a core thernal power of-more than 50%. Therefore a core thermal power lir.it of 25% for reactor pressures below 800

- psia', or core flov less than 10% is : cons trvative.

l l

1 h

Amendment No.

12 I

  1. 4 Insert A The statistical analysis used to determine the MCPR safety limit is based on a The model of the BWR core which simulates the process computer function.

reactor core selected for these analyses was a large 764 assembly, 251 inch Results from the large reload core analysis apply for all reload core.

operating reactors for all reload cycles, including equilibrium cycles.

f Random Monte Carlo selections of all operating parameters based on the uncertainty ranges of manufacturing tolerances, uncertainties in measurement l

of core operating parameters, calculational uncertairties, and statistical uncertainty associated with the critical power correlations kre imposed upon i

the analytical representation of the core and the resulting bundle critical Details of this statistical analysis are presented in power ratios.

Reference 2.

\\

l

\\

~

s l

l l-l l

l l

k....._ _.

[

,l y

. a.,. -,

~.

3

.o 3

q 1

1 h

y C.

Pever Transient _

Plant safety analyses have shown that the scrams; caused by'ex-ceeding:any.safsty:*etting' vill; assure that the-Safety Limit of Scrau times Specification 1.1A wr 1.13 vill not be' exceeded.

are checked periodically. to assure' the insertion times are adequate. The ther:nal pover transient resulting.when's scramD J

'is accomplished ;otharl than by the expected scram l signal' (a g.,

m seram from neutron fluz following closuresLof 1 the main turbinef y

J

~

Bovaver,-

stop valves) does not necessarily cause fuel 1 damage.

for this' specification a Safery LimitLviolation will be' assumed

.vben a scram is only; accomplished by maans' of f a backup.- featura -

't of the plant design. ; ne coneapt of not approaching: a Safsty.

~

Limit-provided'sers= -signals are operable is supported by tha

-e extensive p. tant safety analysisi f

ne computeriprcE.ded with Filgrim t1 cit 1 has a:: sequence-annunciation programfvhich v111Jindicate ths sequence in which 1

events such as. scra=, APPM trip' initiation, pressure : scram. Bis programL also > i.I in! tiation, -etei occur.

seram setpoint is cleared. 5 This vill prov$ desinfornation on hov long a scram' condition; exists and thus provida soma _ measure of the anergy = added during. a transient.

SI

' Raactor Water Level (Shutdove Con $1tiotN' L

D.

During periods when the reactor =1s shutdown,?cc didaration naist' also be given to water level requirements due. to J.ha zeffect If rametor water-level:should : drop below the :

of decay heat.

top' of.the' active: fual'during this ; time, thei ability to cool This : reduetion ' in' core cooling. capability.

(

the' core is reducad.

could lead to elevaeed cladding;temperaturas and' clad perforation.

The core can be cooled sufficiently.should the varar level-be-i; reduced to two-thirds the core height.: 1Estab11shment of the safety -

i

~

l limit at 12 inches above the top of. the - fuel provides: adequate r

l This larel will;be continuously. monitored. -

3 margin.

t h'

t References Genaral Ilectric The: mal Analy's'is 3 asis ;(GEIAB): ; ! Data,

'I

' Corralation:and Design Application, tGeneral' Electric Co.

1.

NovemberJ1973 /(NEDO-10958), f 3WR Systems Department, W-

- h -.,

hi-tirn Mnrety, Crotal-n :; :: 0;_p t:r y:rf:

tie.:=i: -0:np :; r? S7:tr 0:7 r9 t, Jre,1?M

-2.

000000"".

l

/

General' Ilectric Beiling Water Reactor Gener1c Reload,

o j

d Tue1~ Application, NEDE-24011-P.

[

13.

m Y

l i

J>

"'**':.'*/f

+.... -

..,(.,)..

ff h b ; jIf ~

^-----2

1 i

TABLE 3.11'l-OPERATING LIMIT.MCPR VALUES-

.A.

MCPR Operating Limit from'Beginning of; Cycle.(BOC)Lto BOC +

MHD/ST.:

P8x8R/BP8x8R L

for all values of t-7,ggy gj,43 f

B.

MCPR Operating Limit from BOC +

MHD/ST to End if'C,scle.

/

_t_.

E h J %iP8x8R

. /. Y l 1 L' 0

+

0.0 <t1 0.1

+- #-

/, M1 hNN 0.1-<t1 0.2

< h /Mb

0. 2 < 1 I '0. 3.

0.3L < t 10.4 h/,8b' O 4,<>t1 0 5_

+r4 7N

'[

+re NY

\\/

4 0.5 < t1 0.6-0.6 < t1.0.7

/N

}<h l

2 0.7 <tS 0.8

-h %

i

  • S^

W

}*A0

[

0.8 <1L 0.9

/

/

LU 0.9 < tI 1.0 h4+-

/, 6"/ --

/

J

/

~

i

.c:.

i s

[

a.

n p

. j ?

~

i!

4(

3 l

.i

'{5

?

-Revisionh

'2058-2' a_wn s,

4

n

.: L,

ci.

f.P.-

.).,, -alha E
.y.

e

.-'i

,1 i

i f

6 u, '

it.

s

.s.

1 a

)

m ETTACRIEN,T.D'to BECo 90-136.

,, =

Supplemental-Reload" Licensing Submitted' forLPilgrim NuclearLPower Station-reload 7 Cycle 8,~23A4800 Rev.'-l1 1

i 11 r

s!

+ '

i g

-')

L

-).'.

~.)

L b

. ! 't. '

i I

\\

b..

-_';i

/1 6=

. \\_

' i+.

N

.3.,

Ti }

m t

t<

g i

t Y

.h' \\

? P t..

1 k

i:

it p

i i t

)

's s

g I, 6 r

N 4

0

.m e

e I

f.

i <:-

h a

m

.[

ra m

b

\\ ',

t, i

i i

t

.t

' { f.

s 4

t l'>

.;lL

3 i

e

,