ML20044D522
ML20044D522 | |
Person / Time | |
---|---|
Site: | 05200003 |
Issue date: | 05/11/1993 |
From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20044D508 | List: |
References | |
WCAP-13278, WCAP-13278-R01, WCAP-13278-R1, NUDOCS 9305190254 | |
Download: ML20044D522 (95) | |
Text
WESTINGHOUSE CLASS 3 WCAP-13278R1 WESTINGHOUSE PROPRIETARY CLASS 2 VERSION EXISTS AS WCAP-13277R1 SCALING, DESIGN, AND VERIFICATION OF SPES-2, THE ITALIAN EXPERIMENTAL OF THE AP600; SCALING UPDATE 29 (C) WESTINGHOUSE ELECTRIC CORPORATION 19 33 A license is reserved to the U.S. Govemment under contract DE4CO3-90SF18495.
0 WESTINGHOUSE PROPRIETARY CLASS 2 This document contains informabon propnetary to Westinghouse Electnc Corporanon; it is submrtted in confidence and is to be used soloty for the purpose for whicn st is fumished and retumed upon request. This dacument and such informaton is not to be reproduced, transmitted. disclosed or used otherwise en whole or in part without authonzabon of Wesbnghouse Electne Corporanon, Energy Systems Business Unit, subject to the legends contained hereof.
GOVERNMENT LIMITED RIGHTS:
(A) These data are submrtted with hmited nghts under Govemment Contract No. DE-AC03-90SF18495. These data may be reproduced and used by the Govemment with the express hmitaton that they will not, without wntlen perm:sson of the Contractor, be used for purposes of manufacturer nor dsc60 sed outssde the Govemment except that the Govemment rnay decese these data outado the Govemment for the following purposes, af any, provded that the Govemment makes such dsclosure subject to prohibmon agarnst further use and disdosure:
(I)
This *propnetary data
- may be disdosed for evaluation purposes under the restnebons above.
(!!)
The *propnetary data' may be dscioned to the Electnc Power Researm institute (EPRI), eiectne uthty representatrves and their drect consultants, excludng droct commeraal compentors. and the DOE National Laboratones under the proh bibons and restnctons above.
(B) This notice shall be marked on any reproduchon of these data, in who6e or an part.
@ WESTINGHOUSE CLASS 3 (NON PROPRIETARY)
EPRI CONFIDENTIAUOBLIGATION NOTICES:
NOTICE:
10 20 3 Oa Os O CATEGORY: AOB DC ODDE OF O O DOE CONTP.ACT DELIVERABLES (DELIVERED DATA)
Subject to specified exceptons, d:sclosure of this data is restneted until September 30.1995 or Dessgn cernfeatson under DOE contract DE-ACos-90SF18495, whichever as later.
Westinghouse Electric Corporation Energy Systems Business Unit Nuclear And Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania 15230
@ 1993 Westinghouse Electric Corporation All Rights Reserved 9305190254 9365T1 PDR ADDCK 0520000?
A PDR
WESTINGHOUSE CLASS 3 l
SIET S.P.A.
IMITTENTE: SEZIONE REATTORI SOCIETA' IRFORM A ZION I ESPERIENZE TEREDIDRAULICIE issued by: INNOVATIVI I'
l PIAENZA - MII.AND (ITALY)
~
lCI.IINII: W/ENEA COMMESSA: ENWM31 DISCD:5 RIM 1 PAGINA: I DI: 09 l
)
e !
client -
Job NR.
disk :
page :
of:
lIDENTITICATIYD:
?
i -
CL.ris.: /
A!.I.ILATI :
/
0 0
1 8 5,4rR I
'9 2
jdocumentNR
\\
e I
class enclosured:
}
a
{
TN:
SPES 2: SCALING UPDATE title 4
l REDAnun! :
G.
BIA.N. CONI, M. RIG. AM. O. N. T.I.
pre:are: ty:
J 1
1 i
r..E
.A;O F n C, i t CLA W
- i.
. C..* e (f.!'u1O9e
' ?..Or oj,. ; 07 n.g
,, ef
.- ~, w,,,.,. :..,,.
. ::., nn,....... ~. :.
n' CC* - ' ' ' w, 'O ' <a S*- i.~.
.9-,.0.?c #3 rc: c. *. <j,. nout r t.--. ; + - - *-
"1 r %y.sq:
-l Od
- b
~.
i
' 2_ Evv&M [. Pi?;.gc A l
1 L-i 5
i 3
2 1
a a
o 12/11/92 EMISSIONE hkI6M.NTI Q D g -
PIV.
DATA: DESCRIZIONE:
REllA2IONE ::APPROYAZIONE:'AUTDRI2ZAZIONE:
1
.ev
.:s t e - sesc :pt2on:
treparea by: approvec by ; author 2:stton
- ns erman t ona atrettamente r is e r v ite
.s e vroerseta SIET s.p.e.
Da non uttilzaare per e
scopa diverst da quellt per cus some state fornite.
-ons4Jentas4 a ns c reat s o n presertv s S!E*
2.p.a.
Met to uses for ane purpose other i
- nan.or.nica it is su es s i ca.
tg WESTINGHOUS8E CLASS 3 Sibr Document Rev Page of senaw Rasen lamwauvi 2
gg i
i
~
b.bb NOMENCLATURE
)
4 IhTRODUCilON 6
REFEPENCE DOCUMENTS 7
Pan A SPES 2 SCALING CRITEPJA 8
Pan B AP600 DATABASE B1 - HOT LEG 11 B2 - COLD LEG 12 B3 - SURGE LINE 13 i
B4 - REACTOR VESSEL 14 B5 - PRESSURIZER 15 t
B6-PUh?
i B7 - STEAM GENERATOR 16 B7.1 Inlet plenum 16 B7.2 U-tubes 16 B7.3 Outlet plenum 37 l
B7.4 Secondvy side
- 7 l
B7.5 Companson between Model F and Delta 75 17 i
i B8 - CORE MAKE UP TANK 18 i
B8.1 Cold leg to CMT balance line 18 B8.2 Pressunzer to CMT balance line 18 B83 Dischargeline 19 B9 - PASSIVE RESIDUAL HEAT REMOVAL SYSTEM 20 B9.1 Supply and return line 20 BIO-ACCUMULATOR 21 E10.1 Injectionline 21 B1l-IN CONTAINMENT REFUELLING WATER STORAGE TANK 22 B11.1 injection isne 22 B12 - AUTOMAT 1C DEPRESSURIZATION SYSTEM 23 B13 - PRIMARY SYSTEM
SUMMARY
24
WESTINGHOUSE CLASS 3 SET Document Rev Page of scrx.4 Remen bv vem i
3 89
~
1 Pan CSPES-2 DESCRDTION i
C1 - HOT LEG 25 C2 - COLD LEG 27 C3 - SURGE LINE 28 C4 - PUMP SUCTION 30 C5 REACTOR VESSEL 31 C5.1 Downcomer 31 C6 - PRESSURIZER 34 C7 - PUMP 35 C8 - STEAM GENERATOR 36 C9 - CORE MAKE UP TANK 37 C9.1 Cold leg to CMT btnce ime 37 C9.2 Pressunzer to CMT balance ime 38 C9.3 Dischargeline 38 CIO PASSIVE RESIDUAL HEAT REMOVAL SYSTEM 40 C10.1 HeatexchanFer 40 C10.2 SupplyIme 40 C10.3 retum line 4I C11-ACCUMULATOR 42 Cl1.1 Injection line 42 C12 - IN CONTAINhENT REFUELLING WATER STORAGE TANK 43
[
C12.1 Injecuon line 43 Cl3 - DikECT VESSEL INJECDON L!hE 44 l
Cl4 - AUTOMATIC DEPRESSURIZATION SYSTEM 45 Cl4.1 Stage 1.2 and 3 45 Cid.2 Stage 4 46 CIS - AP600SPES-2 COMPARISON 47 C15.1 Elevation companson 47 C15.2 Volume companson 48 C16-CONCLUSIONS 49 O
- 1. r WESTINGHOUSE CLASS 3 i
i Siti Document l
Rev PaFe of i
sez= p =mn L.n -.
j 4
g9 e
i i
NOMENCLATURE I
f i
A
=
Flow ares P
=
Automatic Depressunzanon System CL
=
Cold leg
+
D
=
Inside diameter DC
=
Dowreomer DVI
=
Direct VesselInjecuon F
=
Scaling factor = 1 S95 f
Pnction factor
=
Fr
=
Froude number Gravity acceleration g
=
h
=
Height i
HL
=
Hot Leg i
=
Heat exchanger IRWST
=
Incontamment Refuelbng Water Star:Fe Tank L
=
Length 4
LE Heat exchanFe total length t
=
LEH
=
Heat exchange honzontallength l
N
=
Rod number Nt
=
Tube number OD Outside Diameter
=
P
=
Pressure i
PC Power Chanrel
=
PRHRS Passive Residual Heat Removal System
=
PRZ
=
Pressuruer Thermal flux q
=
r
=
Radius Re Reynolds number i
=
t RCP
=
Reactor Coolant Pump RV
=
Rextor Vessel 5
=
Exchance surface Thickness s
=
=
=
SurFe Line T
=
Temperature U
=
Heat exchanfe coef6aent LH
=
Upper Head V
=
Volume Fluid velocity v
=
W
=
Power
(
Pressure drop
=
I~
=
Mass nowrate Dengity p
=
[
4 4
4 4
I
WESTINGHOUSE CLASS 3 g7 i
SWT Document Rev Page l of j
"" R==aan laa**m i
l' 5
J 89 SUBSCRIPTS AP&K) f A
=
Avenge a
u ann
=
Annulus b
=
Rod i
d Diameter
=
Exchanged e
=
Hydraulic h
=
h-ann -
=
Annulus hydraulic d:smeter idea!
ad
=
in
=
Inside Length I
L
=
4 LIQ Ligmd i
=
M
=
Maximum I
Model m
=
Protoryge l
p
=
5
=
SPES-2 Straight svecge I
ss
=
=
Tots!
t-SUPERSCRIITS Ed Diameter scalmg coefficient
=
61 Length seshng coefficient
=
i m
s f
f e
i t
I s
.I I
i
WESTINGHOUSE CLASS 3
.p r
l SIET l
Dxument Reu Page of i
seasone Resnan L_ am j
j g
a gg
[
Imm rim a -
ne AP600 is the new 600 MWe Westinghouse Pressurizer Water Rextor, currently being developed.
which is cisxw ud by a
- passive
- Emerfency Core Cochng System.
r SPES-2 (Simulatore Per Esperierne di Sicurezza - 5:rnulator for Safety Expenmental Analisys) is the i
new version of the Italian expenmental test fxility SPES. Originally SPES frility was commissioned by ENEA to simulate the Itaisan version of the Westinghouse PWR 312, the PUN (Progetto Unificato Nu:leare) nu:Icar power plant. Now ti.e SPES frihty is being modified to closely represent the AP600 passive safety features and reactor systems. The SPES 2 frihty will be used to perform integral system tests as part of the AP600 desi n ceraficanon.
F 4
In Part A this document provides the scaling basis on which the SPES-2 frihty is based. In order to perform the senhng analysis the geometrac charrtenstics of the reference textor were established. The informauon regarthng the AP600 plant are reponed in Part B. Part C provides the specific SPES-2 scaled design.
(
)
l t
4 a
I i
e l
i l
- 1. I WESTINGHOUSE CLASS 3 SIET N'"'
Rev Page of i
Sa m h a!=* uvi I 7
gg REFERENCE DOCUMENTS The following sources of infonnatacm have been used in the dermition of the AP600 database.
- AP600 Safeguard Interface Data (NSSS) doc. GWGLCO2 vol.1. REV. 0 d
- Revision to AP600 Safeguard Interface Data doc. SEE-FS (92) 0254 t
AP600 RCS pnmary water volume (wh reactor vessel) doc. afd 2ps -coo 2 rev.1 t
- Transmittal of venfied AP600 IMP component dau
- The following drawings:
~
i Dr"mmt 55-ts Pay.,
}
PLOI V2 001 (1879E02) 1-7 3
j RXS V2 001 (1973E91) 1-3 2
MP01 V2 001 (3D19194) 1-2 5
MV20 VI 001 (6143E63) 12 1
MB01 VI 001 (6143E69) 1-2 2
MB01 V2 001 (2009E60) 1-2 2
MBOI V2 003 (2010ES9) 12 2
MV20 V2 001 (2010E77) 13 2
MP01VI031 (4D01073) 1-2 3
i AFD 2PST-C002 0
AFD 2PST C002 3
- AP600 passive core cooling rystem P 1 ID's doc. RCS M6 001 TO 003 AND DOC. PXS M6 001 TO OO4 LE. Idel' chik - HANDBOOK OF HYDRAULIC RESISTANCE -1966
- A.N. Nohavandi. F.S. Castellans - SCALING LAWS FOR MODELLING NUCLEAR REACTOR SYSTEMS - Nuclear Scienzce and Enpneenng. 72. 75 83 (1979)
- N. Zuber - PROBLEMS IN MODELLING OF SMALL BREAK LOCA NUREG - 0724 (1980)
L 6
I l
WESTINGHOUSE CLASS 3 i
i i
gy Document Rev Page of i
l senoneR r.ninream.
g gg i
facLi f
SPES 2 SCALING j
I ne scaling enteria used for the original SPES facility have been analyzed in order to venfy their applicability to the SPES-2 design.
i he general entena adopted for SPES stre:
1.
Conservation of thermodynamic concations spressure and temperature).
2.
Power over Volume ratio conservation in each crsmponent.
3.
Power over Mass flow rate conservauon.
4 Fluid transit time prezrvation (if entens I,2 and 3 are observed this is a consequence).
[
5.
Heat flux conservauon in heat transfer components teore and steam Feneratori.
{
t 3
6.
Height preservation in heat tr:insfer components.
Because the reference reactor of SPES was the W312 the following similanties simplify the scahng process-la AP500 vessel is the same of W312 but the core posstion within the pressure vessel has been lowered and the power reduced by 30'i:
2a the AP600 fuel assembhes. shbouFh reduced in power. are similar to the W312 fuel assembhes having the same number of rods assembly and the sarne rod diameter pitch and lenght:
3a the steam pencrator is very similar to the W312 with the esception of the lute bundle (length and pitch of the U-tubesl.
The following decisions with reference to SPES were taken on a cost / benefit bas s:
I the SPES reactor vessel will be used. the core height ws!! be adjusted to match nim A.600 by lb a
mserting tubular pieces at flange elevauons:
2b the steam generators will not be moddied:
)
3b the SPES reactor coolant pumps mili not be modified however their position. their suction and their discharge will be modified to facihtste duphcation of the AP600 cold leg layout, and one RCP will be used per loop:
.:b the steam Fenerator elevation is not modified.
De SPES-2 scahng process has been pertormed assurning these boundary condiuons. For coherence.when possibic. the general and specific entena of SPES have been adopted.
i ne most important point is item 22. smce it allows to unhze the same power channel and heated rod bundle.
i i
s
WESTINGHOUSE CLASS 3 L
l Sgy Document Rev Page of 3*= R=1*a l=**M 9
l 89 6
The scaling enterion 5 (heat flux conservaoon) defines the scaling ratio for the core power and. on the basis of entenon 2 (power over volume conservation),the volume scale of SPES-2.
[
9'A s 9'S q*An D N il
- WA b b Wg / W = q*A DbANbA (4'S Db5 NbS)
- 395
{
/
S Therefore the nominal SPES-2 power will be:
f
, fui C.
/395{ juw i
wS = WA The total volume of the facdity is determmed according to scaling cntenon 2:
f 4,A m3 V=V 3
A/ 395 =;,
The remaining tractor and safety system components will be defined to mamtsin this volumetne scalmg ratio with the correspondmg component of the reference reactor to the extent procuca!.
Dunng the scaling process the following M%nant rationales were adoprei the elevations between the bottom of the steam generator tube bundle and the honzontal part of the hot leg. core top and cold leg nozzle centerline were preservei the hot and cold leg are dimensioned accordmg to the Froude number, entenon 3 (power over mass flow rate ration and using maumum available distance between vesset steam l
generator and pumps.
2 Tbc two previous statements and the decision to use key custing components. will cause some deviation from the ideal volumetne scahng therefore:
the pressunzer will be located to preserve the bottom elevation (in SPES the nominal level had been maintainedL because it is imponant to maintam the relative elevanon of the pressunzer and the Core Make-up Tank (CMT) water 1:vels:
the pipe between the steam generator and pump will be designed to compensate for the i
volume denvauons of the descening side of the U-tubes. the SG outlet plenum and the RC pump. The hot leg papmF dom 1: stream of the pressunzer surge line will compensate for the volume devtauons of the SG inlet plenum and the ascending part of the SG j
U-tubes.
The following terms are defined for the SPES-2:
Hot leg:
piping from the reactor ussel nozzle (included) to the SG inlet nozzle (mcluded).
Cold leg:
piping from the pump nozzle (not mcluded) to the reactor vessel downcomer nozzle (included).
annular pornon with descening pipe (ECCS nozzles not included) from A
Downcomer; to c![-
}m and tubular secuan from eL[
}(m to[f,O E, t.
2, C, A
l t
l t
WESTINGHOUSE CLASS 3 1
SIET Documem l
Rev Page of scoone Raauen twevanvi l
go gg i
i rertor vessel volume below elf jm. C.
A L
Lower plenum:
J a,,c.
Riser.
rextor vessel volume between el.
m and the top of the rod plate (el m).
+
%'L l
J m C.
A Upper plenum:
res vessel volume between el.
(el.)por and the separation plate lm
%)..
Upper head-reactor vessel volume above the separacon plate.
For the evaluation of the SPES volumes specific reference to the *SPES Sistem Desenption" have been used.
In parucular the SPES loop piping has been completely changed (hot legs. cold legs and the piping between steam Fenerators and RC pumps).De pump axis has been moved from venical to honzontal to provide a honzontal suction connection and downward discharge.
The reactor vessel will be modified as follows to abtain the proper elevanon between the core and the SGs:
[
4 C.
r m segment of vessel between the core bypass upper nozzle and the hot leg nozzle wn!! te
-a ar'isened g
- a[
> m segment of vessel between the core bottom and the lower downcomer nozzle will be remove The surge line nozzle on the pressunzer will be repired to accommodate the larger SPES-2 surge line.
t ne upper part of the dowcomer will be annular to better simulate the CMT injecuon line break accident.
,The,5G secondary side is unchanged. The smaller heat transfer area (11 m2 versus the ideal value of g[a,t nominal full power conditions. Addinonal analys]rn-)is a forced violation of the F 1 are being performed to determine if reduced nommal heater rod power and RCP flow, allowing higher SG secondary side pressure. will provide better overalltransient initial condinons.
All the emergency systems foreseen in the reference plant will be simulated in the frility with ad hoc components.
[
i a,
e f
(,
WESTINGHOUSE CLASS 3 SIET Doemnent Rev Page of Senow Ramon lanwam i
3g g9
~
eat 2.B i
B1 HOTLEG The AP600 hot leg pipe dimensions are the fouowing:
- ~
4, t.
=
m D
=
m 2
Flow area
=
m
~
r Osb C-The geometry is charactertzed by an honzontal section. a L J bend and an( ] lined pipe to the nozzle in the steam generator inlet plenum. Note. for SPES.2 the hot leg nozzle on the vessel and the pipe traversmg the downcomer are considered part of the hot leg.
In Table B1-1. with reference to fig. Bi-1. BI-2 and BI-3. the hot leg is divided in 5 segments and for each one the length. the elevation change and the bend charsetenstics are given.
The total volume is:
3 V=
m n,e
- TABLE Bl.1 MOT LEG CH AR AC"TERISTICS Section Lenght si r/ angle tml (m)
(m/ degree)
OJ, L r
i 2
3 1
4
_ L.
Total l
l J
i 6
WESTINGHOUSE CLASS 3 t,
SIET Dxument Rev Page of ser one Raanen inne'""'
12 89 B2 COLDLEGS The Iwo cold legs have the following charrtenstics :
' %; O OD
=
m D
=
m m{
Flow an:n of I pipe
=
Row area of 2 pipes a
m-Hydraulic diameter
=
m
_i The vettel norrie it included in the cold leg lenght.
In r r. with reference to fig. B2-1 and B2 2. the cold leg is divided in 5 segments and e
fc-th. the elevation change and the bend data are given:
TABLE B2-1 COLD LCG CH AR ACTERIST1CS i
Section Lenght
.Ah r/ angle (mi (m)
(m / degree) l l
] k d.
1+2 3
l 4
5 Total l
The total volume ( two cold legs ) is :
F
% 0, Vm mI L
O l
WESTINGHOUSE CLASS 3 g,,
SIET Danem Rev Page of _
scrane Resnan inne wv' 13 l
89
~
B3 SURGELINE S, 0-
] pipe with the following charactenstres:
~
'Ihe AP500 surge line is a b)b OD w
D
=
Ilow area
=
Volume
=
Ptpe thickness
=
Elevation start
=
Elevation end
=
Elevation difference
=.
w The length and the geometric charactenutes of the line are 4 s..a in Table B3-1 with referchee to Fig. B3-1:
TABLE B3-1 SURGE LINE CM AR ACTERTSTICS
[
Secuon n*
radius Lenght type (m)
(m)
~
stmght pipe l
g 1
~
m bend W
bend h
f end Inlet nozzle 1
k Total I
d s
f
WESTINGHOUSE CLASS 3 g
SitT Document Rev Page of sez=ne Re==n innove,v6 l
14 g9
~
b B4 REACTOR VESSEL The vessel is subdivided in the following secuons : (fig. B4 1. B4-2)
- downeomer: from the top of the cold leg inlet nozzle to the bottom of the lower core plate:
- lower plenum: from the inside vessel bottom to the bottom of the lower core plate:
- riser: from the bottom of the lower core plate to the top of the upper core plate:
- upper plenum: from the top of the upper core plate to the bottom of the upper support plate:
- upper heat from the bonom of the upper support plate to the top of vessel:
In Table B4-) the key geometric information about the vessel are summartzei TABLE B4-1 PE ACTOR VESSR CH ARAC"ERISilCS Vessel Elevation Elevanon Elevanon Flow area Volume section difference start end 2
3 (m)
- mp (m)
(m )
(m 3
~
A; 0 Downcomer bwer plenum Riser I
- core
- lower non xt
- upper non act.
- core bypass Upper plenum Upper head Bypass DC-UH
)
I I m
-m M l
l l
l i
6
WESTINGHOUSE CLASS 3 i
Sitr Dxument Rev Page of Sam Remian twemwi 15 i
89 l
BS PRESSURIZER The main charactenstics of the AP600 pressuruer are as follows ifig. BS-1):
- LO.
3 Total volume ~
m (without SL nonle)
=
3 Water volume
=
m Inside dsarneter
=
m
^
Outside diameter
=
m FTow area m2
=
~
Cylindncal height
=
m Head radius a
m Nommallevel
=
m inside total height m (without SL nonie)
=
=,
n (without SL nonie)
Inside bottom elevation B6 PUMPS l
Each loop has 2 canned pumps this means that they are completely sealed and do not need seal cooling water (fig. B61). The rhain charactenstics. referred to each smgle pump are:
Lu C.
Internal volume m3 3
Design volumetne flow m /s Head a
'm Mechanical motor power MW Speed a
rpm N m2 Momentum ofinenn Torque '
=
Nr i
f b
i t
t e
I l
4 I
WESTINGHOUSE CLASS 3
$gy Document Rev Page of se=== muen t=**-i 16 I
89 B7 STEAM GENERATORS T
l
?
B7.1 Inlet niennm i
The SG inlet plenum volume is:
9 3
V m
i
~(psC, i
The hei ht is assumed as the difference between the vessel hot leg nozzle centerime and the lower side F
of the steam generator tube sheet minus the hot leg elevarson change (fig. B7.1 1):
Absol. elevation lower tube sheet i S.,, d.,
=
m Absol. elevation hot leg nozzle
=
m Hot leg evation chance
=
m height =
=
. m i
._J B7.2 h The geometnc charactertsues of the Delta 75 SG U-tubes are as follows:
N
=
D
=
- m
'm OD
=
y
=.
3 I
g
+
l The average tube length is-Gr, 0.
~
2 Q = V: /l(G D /4) Ntl =
,m 7
The overall heat transfer area tr O
" 0.i.
2 D D L Nt a m
3 3 The average radius and stra:Fht herF t are:
h t
2hu+Ufa
- L3 1-
" G f.,
f r=
. m 3
hg(
jm The average and mar,imum total height are:
~
Or, L his
- Ta+hu*,
r
" Gs, C, I
hMi m
r The now ares as
~
- 1. f.
5 (D D2/4)Nt=
m r
2
,,e w
t-f t
I
gj WESTIMGHOUSE CLASS 3 SIET Dxumem Rev Page of sem h ham l
17 89 B7.3 Ontfe' niennm i
i The volume is (including pump nozzles)
V =b dm31d The height is sssumed as the difference between the elevation of the lower side of the SG tube sheet and the elevation of pump nozzle, referenced to the vessel HL nozzle:
'l h
mi0 B7.4 Eccendney dde I
Table B7.4-1 provides the key chamctertstscs of the Delta 75 secondary side.
TABLE B7A-1 SECOND ARY SIDE CHARACTERfSTICS Length Elevation Elevation Volume Section start end 3
(m)
(m)
(m)
(m )
Straight tube region-M Bend section tube region From tubes to steam exit 4
l B7.5 rnmnnrknn herween Madet F' and Dete > 'e r
The Delta 75 steam generator (fig. B7.1-1) used for the AP600 is compared with the Model F SG modeled in the SPES facility. in Table B7.5-1.The main difference is the greater heat transfer surface.
in the AP600 model. However the shell diameter in the tube area, the separator area and the U-tube dimensions are the same in the two models.
TABLE BU.1 MODEL F DELTA N COMPARISON PARAhETER MOD. F DELTA 75 2
~
Heat transfer surface tm )
1 6 3
Total height (m)
Nt D of the u-tubes (m)
OD of the u-subes (m)
Tubes thickness (m)
Pitch (m)
Shell diameter at tube elev. (m)
Shell diameter at separ, elev. (m) t Average tube ten th (m)
[
Total volume (m- )
L t
i I
WESTINGHOUSE CLASS 3 SIET Document Rev Page of Sezme Rasuon lanwarm i
jg gg B8 COREMAKEUPTANK Two core make up tanks (fig. BS.1) are installed. Exh one delivers water through a separate ime directly to the reactor vessel. De injection lanes from a:cumulators and IRWST connect to their correspondmg CMT to reactor inyection hnes. The top of each CMT is also connected to a cold leg of loop B and to the pressurtzer. De CMT shape is cylindrical with hemisphereal heads.
The geometne data are:
0
~&s -
3 V
=
m hin
=
m Elevation
=
m (inside bottom)
D
=
m, Flow area
=
m-
~
I B8.1 Cntef lea en F%fT hahnce line The balance ime is the prpe connectmg the top of cold leg to the top of the CMT:
7 (v.C.
=
m D
=
m 2
Flow area
=
m Length m tincluding C czzle )
=
3 Volume
=
m Elevanon bonom
=
m Elevauon top
=
m Elevanon change
=
m B8.2 r%fT mehnere fine The discharge line connects the CMT bottom to the accumulator and IRWST injection lines. and enters the vessel dowrcomer:
- - (Lst OD
=
m i
D
=
m m2 Flow area
=
m i*l Length
=
m3 Volume
=
Elevauon bottom
=
m Elevanon top
=,
m Elevauon change
=
m N ncludmg CMT nozzle. unul ACC tee i
P 9
)
WESTINGHOUSE CLASS 3 Siti Document Rev Page or Sermes Raanon Immtwe j i
gg i
gg t
i ~
Bg.3 Pmenrirer en CMT hnfance line This line connects the pressunzer top to the top of the CL balance line:
- 4. 6 OD
=
m j
D
=
m IIoW Rfes
=
m f
Length m
a m3 Volume
=
Elevanon change (ChfTA)
=
m
=
m l
Elevauon change (CMTB)
~
9 e
a t-I i
i O
e
- g. ;
WESTINGHOUSE CLASS 3 Sita Document Rev Page of sename Armann L_,-;
20 E9 6
B9 PASSIVE RESIDUAL HEAT REMOVAL SYSTEM (PR13M) l The PRHR is the long term heat removal system for the AP600 pnmary system. De system is compnsed of 2 heat exchangers which are used dunng accidental conditions requiring pnmary system j
cooling. The isolation valves can be throttled so that the heat removal rate is controlled even with forced circulanon through the heat exchangers. Only one of two heat exchangers is assumed available.
The system is charactenzed by the following components (fig. B9-1):
r
- 6. f.-
'i a -il b 'nlet header:
]dixchanger; e-d - outlet header; g,4 e-The heat exchanger has the following characteristics (one of twc):
Tube number
=
D
=
m OD
=
m Effective average totallenfth
=
m Honzontal average length
=
m Vertical average length
=
m Effective volume in tubes 3
=
m m3 Total volume in tubes
=
m3 Header volume (each one )
=
}
Header elevation. i/o
=
Total volume of HX
=
m3 Heat transfer surface 2
=
m a
B9.1 Cunntv and return line t
The charactenstics of the two pnmary system connection lines are:
I funniv IMe Refum fine Elev. stan (m)
Elev. end tm) o Elevation (m) 2 Flow area (m 3 Length (m)
Volume (m3)
D im)
OD im1
(
e i
I WESTINGHOUSE CLASS 3 SET Document l
Rev Page of Senaw Rasen lanevervi l
J 2]
l gg BIO ACCUMULATORS Two spherical accumulators are shown in fig. B101:
b3 V
=
m3 V gg
=
t D
=
m Inside bottom elevation
=
m initas! pressure
=
MPs B10.1 Iniminn line
~
, fu i O p
h
~
Each secumulator provides inyection throuF a separate line' directly to the resctor vessel.
These injecuon lines are shared wnh the CMT and IRWST irtJccuan lines
.}bsb
- from ACC to CMT tee:
- N,6 OD lm
=
D
=
- m m) row arts
=
Length = 6.843 m + 0.386 m (*)
=
m 3
3 Volume = 0.3% m + 0.009 m (*)
m3
=
Devauon top
=
m Bevauon bottom
=
m Devauon difference
=
m 2
IK / A + 4 f L / D A2 mt
=
a
- from ACC-CMT tee to RV inlet nonle; 7 's b 6
F-OD
=
m D
=
i m Flow arts a
m Length = 8.68 m + 0.819 m (*)
=
m Volume = 0.204 m3 + 0.019 m3 t.)
m3
=
Bevauon top
=
m Bevauon bottom
=
m Elevanon difference
=
m 2
I K / A + 4 fL / D A2 m-#
=
4
(*) ACC nonle
(*) RV nozzle
~
l
__m i
i w
. l WESTINGHOUSE CLASS 3 i
SIET Dmunent Rev l PaFe of sem a.mion name suvi l
22 89 B11 IN CONTAINMENT REFUELLING WATER STORAGE TANK (IRWST) i The IRWST provides low pressure gnvity infection to each of the two duret vessel injection Connections.
~ (u,6
~
Elevation inside bottom a
m m3 Water volume
=
Heigth a
m Water level a
m 2
Surfxe area
=
m l
Bil.1 Iniectian line The infection lines are shared with the Acc and CMT. The IRWST also provides a heat sink for the PRHR HX and receives the discharge from the first three ADS stages.
&O d
Resistance from IRWST to DVIline tee
=
m m-d Resistance from DVI see to RV noule
=
Internal diameter
=
m Outside diameter
=
m e
b 4
a-
WESTINGHOUSE CLASS 3 SibT Dmunent Rev Page of Senone Rammri hum 23 l
gg i
~
B12 ALTOMATIC DEPRESSURIZER SYSTEM (ADS)
The system is cv.uped of 4 different stages. automatically or manually actuated. Stages I to 3 discharge from the pressutuer into the IRWST: while stage 4 discharges from the top of the hot leg to i
the containment sump. Each st2Fe consists of two paths with two valves in senes*
Stage 1:
T $sC Nominal size
=
2 Max through area
=
m Openmg ume
=
i St3FC 2 3; Nominal size
=
2 Max through area
=
m Opening time
=
Stage 4:
Nominal size
=
1 m2 Max through area -
=
l Opening time
=
i i
p 9
t 4
k i
g, WESTINGHOUSE CLASS 3 SitT Documem Rev Page of sanone Remnon nauwervi i 24
{
gg i
B13 PRBtARY SYSTEM SL%iARY In the following table the geometric information about the AP600 primary system are summartzed.
TABLE B13-1 PRIMRY SYSTEM CHAJLACTERfRTICS Component Length Elevanon Eleva: ion IE -E l Volume 3 e stan end (m)
(m)
(m)
(m)
(m33 i
PRIMARY LOOP
, b d.
Hot leg (5)
Inlet plenum U - tubes Outler plenum (%)
Pumps Cold legs (&)
VESSEL Downcomer Lower plenum Riser Upper plenum Upper head (')
Surge lme Pressunzer i
Tots! pnmary system
~
(5) Includes SG and RV nozzles
(%) locludes pump and PRHR nozzle
(&) includes RV nozzles
(.)
Includes DC - UH bypass i
i l
i
WESTINGHOUSE CLASS 3 -
I SIET Document Rev l Page of l
seuene stesuen imuwsuvi l
25 89 EaILC C1 HOT LEG l
De hot leg diameter is de: ermined by mamtaining the AP600 Froude number:
Fr = v /( g D ) 0.5 FrA = Frs (v / D.5)A = (v / 0 533 0
0 accordsng to the power over volume conservanon, after simple analytical operations :
2/5 Dg/DA=F 9, 0.
l DA=
im D=
mm S
- % C, (AISI 321h The most suitable commerci:tl SS pipe is a
~
OD r
1mm Os 6
=
l D
=
i mm Thickness =
mm 2
Flow area =
Mamtsining the elevatnon change between the upper AP600 SG tube sheet and the AP600 hot leg centerline (4.107 m) arx! sub:rxting the SPES inlet plenum tube sheet height (0308 m) the elevation change of the hot leg as-
-, S 6 i
b The geometncal charactenstics of the hot legs. with reference to fig. Cl-1 and Cl-2. are shown m Tables C 1.C-2.
From pomt A to point E the SP
-2 hor leg duplicates the AP600 one having the same L / D in the horizonta! part and the same angle
}n the inclined part.
The SPES SG inlet plenum and the tube sn don'I mamtsin the lengths of the correspondin components even if the tube sheet top elevation in conserved (fig. Cl-3); the difference {
g AP600
]&,L m)is compensated in the hot seg part from point E to pomt Q.
5
,g WESTINGHOUSE CLASS 3 l
Page of SibT Document Rev Srzanne Resuon lanovum l
3 j
gg TABLE Cl-f HOTIIG A CMaaCTERISTICS F
i SECTION SIZE TYPE LENGTH ELEVATION STARTEND (m)
(m) r AB
GH HI U
JK KL LM MN NO i
OP i
PO L
~
TABLE C1-2 HOT LEG B CH ARACT*RfSTICS SEC' DON SIZE TYPE LENGTH ELEVATION (m)
START END im)
FG GH HI U
I JK KL LM i
hN l
d '
NO r
OP PO The total volume for each hot leg is:
- &,6
(
~
dm3 V=
This volume compensates for the smaller volume of the ascend:ng side of the U-tubes and inlet I
plenum.
i l
.l WESTINGHOUSE CLASS 3 Sier Document Rev Page of sensee Ramnen innovane n
gg i
C2 COLD LEG The SPES 2 RCPs are installed at a higher elevation than the cold leg centerline and the pump discharge is directed down. This is to reproduce the geodetic flow path dunng a cold leg break transient, that the fluid must take from the unbroken cold leg to the broken one (fig.Cl-3). The lay out of the SPES-2 cold legs is shown in fig. C2-1. C2-2.
The cold leg diameter is determined by Froude number scaling:
Ds = DA F2/5 cu c.
s a]m DA=I D =r[
.mm
-fu, C, e
The most suitable commercial SS pipe is a pipe :
g t-OD
=
mm 2
ow aren m
The geometne charactenst2cs of the cold leg with reference to the fig. C2 1. C2-2 are :
TABLE C' 1 COLD LEG A AND COLD LEG B CHAR ACTERISTT 3 SECTION SIZE TYPE LENGTH ELEVATION (m)
START END I
beb
~
i L.,
d in the two cold legs of the loop without the pressunzer the CMT balance hnes are connected just before the honzontal bends. A cahbrated onfice will be insened in each one of the two cold legs to reprodta;e the direevreverse flow resistance of the pump.
The resulting total volume is:
Qs, C.
V=
dm3 The length and the volumes don't include the pump outlet nozzle which is considered pan of the pump.
t
g WESTINGHOUSE CLASS 3 Sita Document Rev Page of senone Rennen wm 28 89
^
C3 SURGELINE j
~
Although its volume is quite small the surge line is of critical imponance dunng ADS depressunzstion from the top of the pressurtzer because,if limited in section. it could limit the maximum mass flow rate that can be discharged by the valves.
The surge line has been designed preserving the elevation change and the friction losses, and a small i
volume dzstoroon was accepted.
The friction losses can be wntren as 2
4=4 (Lpv /2 D Therefore:
2 0
/
S A vs /(CRes.2L 43 4A= C ReA ' L D DVSA I A
The ratio vs / vA. considenng thst the mass flow rate as scaled by F is:
v3 vA = F ( DA/U )
/
S and considenng:
ReA - / Res.2,(pA 'A/D V 3 2 we have:
0 0
Ss D=DA (F-I 8 LA /L )-Ild 8 S
S r ~ 0/, L in order t st reproduce the AP600 surge line incimation we choose a lenght o
.then we obtsm:
D3 mmbb r
- a/, 0 within the commercial SS prpes the most suitable is the (bgC.
OD mm D
mm s
Thickness mm Flow arcs 2
The clevation change is ( considenng as SL startmg pomt the intersection between the HL and SL centerimes ):
43 0-l Aha m
e The geomerncal charscrenstics of the surge ime are reponed in Table C3-1.snd shown in fig. C31.
6
,p,
WESTINGHOUSE CLASS 3 Smi-Documeni l
Rev Page or Serme Resuon i.. --..
l 29 gg i
TABLE Ct-1 SLMGE UNT CH ARA &EST]CS SECTION SIZE TYPE LENGTE ELEVATION START Eht (m)
(m)
= 6,, A v
IK KL LM MN NO OP The total volume is :
l 3.r, 0.
- dm3 V3t=, a 4_
The use of Froude number conservation in the SL sizing would lead to a diameter very close so the one calculated in the above menuoned way. From Cl we would have:
&,6 O'* b D=D F35,
p1'5 =
r S
A mm t
i h
.f WESTINGHOUSE CLASS 3 SmT Document Rev Page cf senser Rasen huwwatm i
30 1
89 i
l C4 PUMPSUCTION The pipe connecting SG and pump (fig. C41 and C4-2)is not present in the AP600 stnce the pumps are directly attached to the SG outlet plena. In the SPES-2 facility this pipe is needed to preserve the pmper elevation change.
Also this pipe has to compensate the volume differences corresponding to the descending portion of the SG U-tubes, the SG outlet plenum, the pump, and the cold legr V=AVU-tubes + AYouti. pl + AYpump + AVCL TABLE C.t.1 PUN @ SUC"70N VOLUNE DNMINATION DESCRIPTION REAL IDEAL DIFFERENCE VOLUhE VOLUhE (dm31 (dm36 (dm3)
I "1
0 3
A V U-tubes a V outlet pl.
A V pump A V CL TABLE C4 2 PUh9 SUCTION A AND B CH ARACTERISTICS SECIlON SIZE l
TYPE I.ENGTH ELEVATION (m)
START END im)
~
~
06 Cs AB 3" sch 160 Str:ught with flange BC 3* sch 160 57.8' bend R = 114 mm CD 3* sch 160 / 8" sch 160 Reduction.
DE 8" sch 160 Sloped straight EF 8* sch 160 / 8* sch 160 Reduction 10 3*sch 160 Sloped straight GH 3* sch 160 41.5' Bend R = 114 mm HI 3" sch 160 45' bend R = I14 mm U
3* sch 160 Sloped strarght with flange JK 3" sch 160 45' Bend R = 123 mm.
KL 3" seh 160 SG outlet nonle dh The total volume is:
g I
k6
~
}fm 3
VI = V2 =
f
. I WESTINGHOUSE CLASS 3 SmT Dwwnent Rev Page of sen== x n n===m i
1 31 gg CS REACTOR VESSEL In Table C5-1 the elevations of the SPES and SPES-2 components are compared to determine the modificauons required for the SPES-2 power channel, see fig. C5-1. C5-2. C5-3. C5-4 and C5 5:
TAPI F C$.1 FT r'VATlONS IN SPct / SPES.2 PRESSUPE VESCEL COMPONENT ELEV. SPES ELEV.SPES2 DIFFERENCE (m) imi (m)
Hot leg nozzle 0.000 0.000 O.000__ b, b Top of core Bottom of core Downcomer inlet Cold lee nozzle P
t.
i SPES(m)
SPES-2 (m)
DIFFERENCE (m)
Hot leg nozzle / Top core 8
Bottom of core / downcomer
- nlet 1
- Cold lee / downcomer nozzle i
F 4
Accordmg to the differences mdicated it is na;essary :
- (k f, i
to msert a se to ehminate (gment of vessel between the core bypass upper nozzle an nozzle.
d,, 0, In order to scale, in the best way. the reference reactor volumes the following modifications will be made to the SPES component:
lowenng of the drilled plate that se end of the annular downcome( parates th upper plenum from the upper h lgi.
is solution increases the upper head volume (and decreases the upper plenum volumey{ ]dm the total length of the upper plenum net volume reduction is 6.3 dm3: ~ J m ) has been reduced by 0.319 m.the the downcomer modifications are dernbed m fig.C51.C5-3.and C5 5 the lower plenum shape and length have been completely modified with a volume reduction of 22.8 dm3 I I l
. t WESTINGHOUSE CLASS 3 l SitT Document l Rev Page of Sa= Raamm tarw=m l 32 g9 f i l t The resulting SPES.2 vessel volumes are compared to ides! values in the following table: TABI C C5.? PIACTOR VC$em VOL1W COVDAPJSON SECTION IDEAL SPES-2 DIFFERENCE VOLUMES VOLUMES 3 3 (dm ) (dm3) (dm ) r Upper head Upper plenum Riser Lower plenum Downcomer + Bypass de-uh Ccre bypass 8-u The SPES-2 reactor vessel is shown in fig. C5 1. Note. that an annular section has been provided where the tubular dowcomer pipe enters the lower plenum, in order to better simulate the AP600 lower plenum mlet condicons. CS-1 D-mer On determming the SPES.2 downcomer des Fn and ses! ng basts. special consideration was given to the simulation of CMT injection ime breaks. On a facility of this scale a potenttal exists for the flow coming from the un-affected infection hne to be expelled directy to the broken DVI nozzle. For example. af the two injection innes stre connected at the same elevation to a tubular downcomer there wuold be a high potentist for excessive ECC bypass. Therefore it has been decided to simulate an annular pornon of the downcomer connected to tubular downcomer below the injection line (and loop piping) nozzle elevation. The basic scaling entens adopted for the design of the downcomer are the same used for the whole loop. Therefore the total volume has been scaled and the elegtspn are preserved. The annular portion as considered from{ m idra total lenFth of 1.506 m. The tubular downcomer is connected to the annular pomo}n by means of 0.5 m sto give flexibility to the vessel) connected to the vernesi portion (from{ l by a 90* bend. G. C. With these boundary conditions, in order to define the annulus width. the linear friction losses in the annular sections was made equal to the fnetion losses in the tubular secnon. This condition s!!ows a smooth transition between the annular and the tubular sections. In this way any liquid accumulation and/or liquid entramment m the annular area will be avoided. i W i
g WESTINGHOUSE CLASS 3 SIET Dennent Rn Page of " h !=m'"' I 33 E9 I It is necessary to impose: (L / D -ann) v,' ann = (L / D :) v,' t h and Vann + Y
- Yid t
SoMag the equations and choosmg the commercial pipe more similar to the theoretical or.ej e have : k' Y ~ ~ Gs,C D -ann =, 1r, *, D. = mm h mm OD=_
- mm D
ann = mm j Eight fins have been inserted in the annular space welded to the inner tute. The size of the fins has been calculated to make the circumferenual pressure drops amund the annulus similar to the AP600 ones in the esse of a break m the CMT inyecuon lines.The SPES-2 downcomer is shomm sn fig. C5-3 P e e i 4 1 i P P H + i t
WESTINGHOUSE CLASS 3 l l i SlhT Documem Rev Page of l sein s.asnonasse etm i 34 gg 6 t C6 PRESSURIZER De folkswmg s:ahng entena are apphcable to the SPES-2 pressunzer: - volume scaling factor = 1B95: -preservanon of bottom elevauon: - level swelling phenomena are reproduced The level swelling phenomenon can occur in the pressunzer because of the flashing of the contained liquid or because of steam inflow from the pnmary circuit. These phenomena have a sigmficant influence on the quality of the fluid discharred through the ADS depressurtzstion valves located of the top of the pressunzer The preservation of the level swellmg will be accomplished by making the average void fraction in the SPES 2 pressunzer equal to the AP600 for similar therma! hydraulic conditions. The void fraction has been calculated using three different Wilson models (1%1.1962.1965) for bubble nse velocity. The models give the values of the exponents (6 I ) used for the scaling of the diameter and length. d I The terms are defined as follows-F = F(6d) ; p,p(61) pd = Dm/D F=Lm/L d g 3 p p : F=Vm/Y "Wm/W *Im /r =1/.95 with : p p p D .2,, 0, f qd,ge, V g[ D= m 2 p m-: L = 4 V /(n Dp )= p - s, c.
- m p
p ~ m*VF( m3 V p The results obtained are: MODEL 6d l Si D.(m) L.(m) L (m) I y T O's O %TLSON (1%1) 0.463 l 0.075 ~ %TLSON (1962) 0.475 { 0.051 ~ WILSON (1965) 0.459 - 0.081 l Where the length required to preserve the solumetne scalmg is-L = 4 V, / (n Dm) y b The pressurtzer of the existing SPES facthry was scaled xcording to the WILSON (1965) model with a scaling factor I / 427 and with the follou ang dimensions. D = 134.510-3 m L = 6.790 m V = 95.410-3m3 he diameter of the existmg pressunzer is scry close to the value obtained by Wilson (1%I) model for i the AP600 with a slight difference in the lenFth (6.608 m msicad of 6.790 m). The difference between ]m )and the volume of the extstmg pressunzer(95.410 3 m3)is + 3 the ideal scaled volume t 3 u l. a,,c fe t a 4
1. WESTINGHOUSE CLASS 3 SIET ] Drument Rev Pye l of senone Resum lanovum L i 35 I 89 4 In order to have the scaled ides! steam volume the nomal m2rer level should be! k.. while to have the ideal scaled liquid mass the normal aster level should be{ }m. The pmssbas is shown in fig. C61. A.1 C7 PUMPS The SPES pump arrangement have been substantially motfied the many differences are: - horizontalsuetion: - delivery directed downwards: - plan position changed; - clevauon moved up of + 476 mm compared to the SPES elevation. The nominal he.ad is preserved, the velocity can be contro!!ed in the range : 190 %. The pump arrangement is shown in fig. C7-1. 4 e
ti WESTINGHOUSE CLASS 3 Sitr Drumem Rev Page of u-Resuon lanwouva ( 36 L $9 C8 STEAM GENERATOR The secondary side of the existing model F OTe steam tenera:or is closely s;:aled to the AP600 Delta 75 SG. Of course,due to the dJferent scahng rano between SPES and SPES.2 the total volume is underestimated by. 4) 9,,s gs Vk id( 5 V However the hear msfer surfre is undersumated because the heat Lansfer surfre m the AP 600 mcreased an cor. panson to the W312 model F SG.: SPES Heat transfer surfre =I( AP600 Heat transfer surfxe = 2 - 3, g J The smaller heat transfer surfre will result m a lower secondary side pressure at nommal full power conditions. As first approumation m order to evaluate this difference. it can be written : W = U S AT /5)=fq;d>O ATs/ATA = Ws U SAA/(WA U 3 ) = (1/395)(S S5 A 3 r -S, c. - a.e T= K P= MPs J The SG is presented in fig. C81. r I { d a t 4 1 J e l
.1. f - WESTINGHOUSE CLASS 3 1 I f Smr Document Rev Page of 5=s=== R==mi tammuvi i 37 ll 89 I t l l t C9 CORE MAKE UP TAhK t 1 Two CMTs mill be mstalled. each of them connected to the primary system with 3 pipes. The volumetric scaling and the elevation change preservation defmes the component. Due to the low mass 1 I 1 flow rate and velocity within the CMT. the incuan can be neglected and therefore the same di.ameter and height of the AP.600 can be provided. The CMT will have the same metal mass to water volume ratio as the AP600 in order to avoid a distorsion in the steam condensation along the tank walls. The conservation of this parameter leads to the arrangement shown in fig. C9-1: the CMT is contamed within a secondary tank pressunzod with air i 4 - 7 MPs. Therefore the masamum CMT wa!! AP is reduced to 8/9 MPs at fulf system operating j pressure.and allows the CMT wall thickness to be reduced. By maintaining the AP600 CMT height. I ~1 the drameter required to achieve the proper scaled volume as: - tk. C r V=V= g + h=hA =f 3'O c. [ ~ x D / 4 (h-D) + 4/3 x (D/2.,)3 =V : D=f s 2 L i m Flow area Im- %Cs ? The other CMT dimensions are: -~g4 OD = m s = ' m Elevanon bottoms m ) Elevation top j = m Cnterion similar to that used for the surFe line will be adopted for the design of the CL to CMT balance lines the CMT discharge hnes. and :he pressunzer to CMT balance lines. C9.1 enta t., en NT st % sim, i This line is iouted from the top of a cold lef to the top of the CMT. Indipenden e lines are f l the RCS toop without the pressunzer. The overall elevatson of these i provided for each of the two CMT's from each of the two CL's just up of the tal bend. in l { CMT location. The line layout will be kept similar to the AP600 layout by perserymg the AP600 CL to l CMT balance line vertical pipe run uhn)s shown in fig. C91 1. The CMT inlet isolation valve wi ps: heat loss and will contain a dram o{n : be in a section of piping sloped at ard the CMT. This piping will be insulated to mmtmize CMT side of the CMT inlet isolation valve to keep the CMT { PRZ balance ime free of water. The pipin; wn!! be sized using the same methodology presented in C3 l to preserve the same inction loss as the AP600. a An estimased averaFe length of SPES-2 Imes could be: 7 On C-l L = Ah + 3 m a jm S so we get: D g,2 = DA (F 38 /L RIM L g,2 S A 4, c l Dg S r mm 1 i n 1 ) i 6
J. WESTINGHOUSE CLASS 0 SitT Document neo Page ef sez.one Roman *==' i 38 i 89 - (u3 1 r Ds: =, )mm r %0 A can be considered- ~ h s 0, D = mm OD = mm Flow area =[ 2 mm C9.2 Preunrher en CMT hntonce line This line is routed from the ADS valve pipmg above the pressunzer and connects to the high point of the cold leg to ChU balance line near the CMT inlet. Indipendent PRZ balance imes are provided for each of the two ChWs. The elevauon of these lines. both at the t and at the CMT. will be preserved. Both lines will include a length of pipmg sloped at[pressung'ard the CM [o'w elevation as the PRZ balance line routmg below the AP600 operat 1g deck as shown in fig. C9.21. This prpmg wn!! be insulated to minimize heat loss and steam condensation. The piptng will be sized using the same methodology presented m C3 to preserve the same.iP as the AP600 i The elevation difference must be:
- ~
~GhCs .ih = 2 so an estimated average length of SPES-2 Imes could be: f A 0, L *p m S,1 DSI.2 = DA (F *I 8Ly,2/L33,2) M8 ru. C, D33 = m t '~ as,C. D; 3 mm dr,6 A n be adopted: CW, G D = mm OD = mm 2 Flow area = mm C9J Dischwe line The CMT discharge lines from the bottom of the ChTs to their corresponding accumulator injection line connection have been moduled to provide a fnetton loss similar to the AP600 by using the methodology in presented C3. The line end pomt elevanons are preserved by the CMT and DVI line i elevations. These piping runs will include a honzontal . contaming the CMT discharge isolation 9.3 1). These horizontal pipe section will also co{ntain valve and " swing disk" type chek valve. that ts below the DVI line elevation (see fig. C
- tee" connection from the normal RJ{R pump i
(NRS) discharge. downstream of the CMT valves-followed by a flow adjustment orifice to js O '~~ i 4 j
- J. : WESTINGHOUSE CLASS 3 SIET Dxument Rev Page ef sex==e Raanen be.vam 39 gg An estimate average length of the SPES.2 line could be: 'W C L = 2 + 2 m =7 . m 3 5 so we have: D33,2 = DA@^ LAl,2 /L I ' S - Os, L D}-f ,,j mm 3 ]mm O. F -S D32 = t gds, C, a can be adopted: ~ Os, C D = mm OD = mm 2 Flow art:a = m 9 l I o k
SET Document Rev. Page of screes Runon lanovum l 40 gg C10 PASSIVE RESIDUAL HEAT REMOVAL SYSTEM (PRHRS) C10.1 Hemt erchanser As in the case of the steam generators and the core, for this component it is important to preserve the total heat transfer surface, the diameter, the !!uckness and the pressure drops. In this case the component volume is not so important even though a large volume distorsion could vary the initial dynamic thermal response of the component. Only o. of the two AP600 heat exchanger (one spare) lth will be simulated mamtaming the same tube. the same
- [a,e heat exchanger surface and scaling the tube number-0,
~ 0); L OD uf SA =! SS i t LE3 q N = NtS LE/Ntr AH3 C10.2 knnte fine The supply line to the single PRHR heat exchanger is routed from the top of the loop I hot leg to the center hne elevation of the PRHR heat exchanger. This hne will be seed to simulate the fnction loss of the longest of the two AP600 PRHR floupaths usmg the methodology presented in section C3. The piping from the loop I hor leg to th( on preoperational testing. The layout of this portion of the PRHR / ADS pipmg will match the d elevations of the AP600. The high point connection at the top of the PRHR heat exchanger will contain a vent to assure that the supply line is full pnor to transient inittation. see fig. C101. The length can be assumed as: - A C., L= m L Equalatng the fnetson pressure drops to the AP600 ones we get: 9fui 6 D = [F 8 I ' m ~ ~ 9 Cu i C. Takmg we have: di 0, a D = mm OD = mm, Flow area = mm-dm3 Volume = Elevanon bottoms m Elevauon top = m
,g WESTINGHOUSE CLASS 3 SIET Dxament r Rev Page or same Rs==n hm 4I 89 C10.3 Return line A rerum line from pe single PRHR heat exchanger is routed to theI 30('6rder to best simulate the AP600 PRHR piping elevations [ Ms line has been sized to simulate the APbOO fnetton losses, using the methodology presented in CP7his line will contain a single ball type valve to represent the PRHR heat exchanger isolation valve and a flow adjustment onfice, see fig. C10-1. The estimated SPES 2 will be: -]h S L= Im ~ s Equalizing the inction pressure drops to the AP600 ones we get: ,A,6 D = [F B l 'm t ~ Ib, 0- ~ Taking f t t have: w hge = "Em s# D = I OD = mm Flow area =; _ mm2 o 1 l l l l
WESTINGHOUSE CLASS 3 i i SitT Document Rev Page of senose Re==n i===m l i 42 89 e i C11 ACCUMULATORS The volume should be scaled by 395, considenng a cylindrical length with two hemispherical heads see i fig.Cll 1 we have: , O's O - d., O. I y 3 Vid with a D=} = m m 2 Row area = m I h = m Volume m3 = Elevauon inside bottom = m i The correct Fas and water volumes will be established to match the AP600 gas water volume ratio. The actual water level elevauon vs. the DVI injection ime does not need to be maintamed. Cll.1 Inieninn line The accumulator injection imes from the bottom of the accumubtors to theire correspondmg CMT discharge line connection have been modeled to provide a inction loss similar to the AP600 using the methodology in C3. The end pomt elevations of these imes are fixed by the DVI line and accumulator elevanons and are consistent with the AP600. The accumubtors discharge imes will each contain one
- swmg disk" type check valve and an isolauon valve and a flow adjustment onfice. see fig. C11.1-1.
An estimated average length of SPES-2 hnes could be: r0JA L = Ah. m S so we have: i F8LA1.2 I / L I '" DSI.2 = DA S p Q,3L i DSI "1 mm
- c 3r, C.
DS2 =~ ~g, A [ mm ~ ~ a can be adopted: ~~ ~ ~y ~ D = mm DO = mm I Now area = rnm .e A 1 I T
g ' WESTINGHOUSE Ct. ASS 3 SitT Dxument l Rev page of ser=.em. m a % =. 1 43 89 I 1 1 C12 IN CONTAINMENT REFUELLING WATER STORAGE TANK The tank has been simulated conserving the water volume. the water level and the elevations see fig. C12-1 .Q! 6 V,= m$ d h, a m, 6,j, A = .m* Elevan'en botton = p 0,,0, ~ C12.1 Iniertion line Two separate injection lines will be routed from the IRWST. one connecting to exh of the two DVI injection lines. The AP600 elevauon at the end points will be preserved and the lines will be sized to provide fnetton losses similar to the AP600. usmF the methodology provided in Section C3. Each line will contam one "sweg disk" type chech valve and a flow adjustment orifice, see fig. C12.1 1. An estimated average length of SPES-2 lines could be: 9 @i C,, ? L =2Q jn S considenng the longer of the two AP600 lines we get: De = DA (F-I 8L /L I ^ A S q O/. 6 = mm l- ~ @gh a can be chosen: i & i t., ~ D =; . mm DO = mm Flow area = mm2 i e 3 i
i l WESTINGHOUSE CLASS 3 r SIET oxument Rev Page of sc==== huen inw==i 44 89 l C13 DIRECT VESSEL INJECTION (DST) LINE This line extends from each of the two CMT discharge and accumulator tee connections to their correspondmg DVI nozzle on the reactor vessel downcomer. These imes will be routed horuontally at the DVI nozzle elevation and will be sized to obtain a friction loss similar to the AP600 using the methodology in C3. These Enes will also contam a tee connection from the IRWST injection line. The SPES 2 estimated length could be L = 1.3 m. so we have: 3 D3 3,2 = DA @' ' lAl.2/L ) S G,t r-D33 . mm =8 jbgb D32 =s mm J g,be chosen: 3 A (can ~ ~ ~ 'm Os s b D = mm DO = imm 2 Flow area = 'mm L ? e e
- 1. I WESTINGHOUSE CLASS 3 SIET Denent Rev Page of scamac it**mn "6 45 i
89 Cl4 AUTOMATIC DEPRESSURIZATION SYSTEM Cl4.1 he t i and 1 ADT The SPES-2 ADS will combine both redundant ADS Stage 1. 2. and 3 trams with a single, pressurizer to ADS valve pipe one ADS staget isolation valve and ortfice: one ADS stage 2 valve and orifice: one ADS stage 3 valve and orifice; and a common discharge line to a condenser and catch tant The common discharge line will be overstred so that the inflividual stage orifices will be the only choke point. The piping from the pressurtzer to the ADS valves will be stzed to represent the two 14. inch pipes provided m the AP 600 and to provide a friction loss similar to the AP600. using the methodologj,sresented in Section C3. The ADS valves will be located to match the elevation of the upper set of ADS valves in the AP600. No simulation of the ADS sparger on IRWST submergence is planned, see fig. Cl4.1-1. The flow areas will be as follows: 2 2 STAGE A4 (m ) A3(m ) D (mm) S l- ~ de, 0., 2 ~ 3 [ ? l The elevation difference between the top of PRZ and the ADS stage posinon is in SPES-2: - @,0, Ah { m D=DA (F-18 L / L )-1/4.8 A S l were: 3 D = diameter contsponding to a two 14" pipe area A L4 = equivalent length 0
- he-D=l
,mm S ~ ~ a,g ~ a can chosen: ~ p 14,0., D = imm L DO = mm Flow area = mm2 ~ i
l 1. WESTINGHOUSE CLASS 3 Sgr Document Rev Page of sem Raman 1===m 46 i g9 j i i C14.2 $1agt,,( ~ l Two stage 4 ADS lines will be provided, one from the top of the loop 2 hot leg and one )he tpp of the loop I hot leg. The layout and discharge elevation of these Innes will ( match the AP600, anchWconnection to the RCS hot legs will be located at the same L / D from the power channel as from the AP600 reactor vessel Esca line will be overstred to provide more than the scaled vent flow area in order to allow the sta.e 4 ADS vent size to by gdjusted, based on I preoperational tesung results. A piping diameter o f2if 6een selected.Each stage 4 line will contain a flow liminng onfice an a full cross sectional area ball type isolation valve, t The discharge of the st2Ee 4 ADS lines will be routed to a condenser and catch tank using large i diameter piptio er inimize backpressure. The stage will be simulated by means of two ball valves with I an onfice of mm diameter. ~ % C., i i I k I e a
1.1 WESTINGHOUSE CLASS 3 SIET Document Rev Page of h Respon hwi 47 gg CIS AP600'SPES.2 COMPARISON AND CONCLUSION C15.1 Dev=tian can nnd<an TABI E C151 1 M FVATTON OF THE MAJOR COMPONENTS ( All elevauons are referred to hot leg center!mel COMPONENT AP400 SPES-2 AELEVATION (m) (m) (m) Bottom Lower plenum 7 %& ~ DowncomerBottom Bottom of heated length Top of heated length Bottom upper head DVI nozzle Hot leg centertme Cold leg centerline Preasurizer Bottom Pressurtzer Top Top of SG tube sheet Top of U-tubes i Bottom CMT Top CMT Bottom Accumulator Top Accumulator Bottom of PRHR (average) Top of PRHR (overage) Bottom oflRWST IRWST Water level e
.g WESTINGHOUSE CLASS 3 i V SIhr Doment Rev l Page of seasone Restaan Innowstm I l 48 i 83 CIS.2 Valnme en=n=rison TABLE C152-1 VOflVICOMPARISON Component AP-600 SPES-2id SPES-2d Volume Volume Volume (m3) (dm3) (dm3) Hot leg O/gb Inlet plenum U-tubes (*) Outlet plenum SG to pump Pumps (2) Cold leg (2) { Total Loop 1.2 Surge line Pressuruer Total i VESSEL: Downcomer Lower plenum Riser Upper plenum Upper head Total veswl Total primary circuit ECCS: Core Make up Tank Cold leg to CMT Balance linei Pressur.to CMT Balance line Discharge line Total Accumulator inyection line To:al PRHR Supply line Return line Total i -~ W (*) incl. tube sheet (") incl. DVI nozzles (*) mcl. DC-UH bypass (") incl. Core bypass i I
g. WESTINGHOUSE CLASS 3 SitT Document Rev Page of sanne R non imemm ^ 49 gg 4 C16 CONCLUSIONS The scaling enteria and the consequent geometncal configuration of SPES-2 have been defined and the design calculauons completed The SPES-2 general scahng entena concern the preservation of the following parameters: - fluid thermodynamic conditions: power to volume ratio: - power,to flowrate ratio transit time of fluid: - heat flux: - venical elevations: pressure drops: The conservation of the Froude number has been imposed in the honzon:al pipes as hot legs and cold legs to preserve the flow pattern transstion. The followmg particular scalmg entena have been adopted m the design of the main corr.ponents: l HOT LEG Until the surge ime nozzle the shape is the same as the AP600 with th - The part downstream of Int!gon conserve 1 ect surge Ime nozzle J' 2/ 6 3 COLD LEG The panicular layout allows to reproduced the thermathydraulic configuration foreseen in a cold leg break transient. SURGE LNE - The friction pressure drops arepped The{ ] drions have the same percentual length compared to the whole length, as the reference line. PUMP SUCTION r - This volume ]lkgd. REACTOR VESSEL - Each section of the reactor vessel preserves the volume. The lower plenum and upper head length aren't conserved, anyway these sections don) influence the natural circulation. - The bundle geometry trod pitch and diameten is preserved 0
g. WESTINGHOUSE CLASS 3 Sitr Dxument Rev Page of som Ruurn hn1 l 50 89 I DowWrOm - The total volume has en scaled. Cu,C 4 - The annular segion _ is connected to the lower plenum by means of a descen&ng pipe ]g,c, - The annulus wic 5 has been calculated to equalize the fnction pressure drops in the annular and in the tubular section. PPSeSUFr7rR - The volume is preserved. - The bottom elevation is preserved. - The level swellmg phenomena will be reproduced STEAM GENERATORS l - The SPES steam generators, simulatmg the model F. have been maintamed this leads to a reduced U tube heat exchange area even if the U tube length, pitch and diameter as the 52**b ]G.O. - The secondary side volume is{ } CORE MAKE UP TANK - The volume is preserved - The metal mass is scaled IRWST - The water volume and level is mamtmned ACCUM'LATORS - The volurne is scaled PRHR - The same tube as the AP600 is used. - The friction pressure drops are mamtmned. - The number of tubes is scaled ADS - The four stages are simulated by means a ball valve perstacc. - The flow arts is scaled. PASSIVE S AFETY SYS"EM LfNFS t - These lines conserve the frienon pressure drops. When necessary the Isy outs reproduce the AP600ones. i e
, g. WESTINGHOUSE CLASS 3 - SIET J - Dm mem Rev l bge of l c3 h Ramaan h i l l 51 89 I 1 i i J L I r o I p i e f i A i O. O-t .J != Z .J O i o U M< ed 't A s m .O i ? h
1.1 WESTINGHOUSE CLASS 3 SItr D==ent Rev Page of i - 5so m Ram on W i I i 52 l 89 S, C k 1 i [ r L i i I I I i t 1 FIG. B1-3 HOT LEG SCHEMATIC k i l } ( I
WESTING' HOUSE CLASS 3 - Siti h - ent Rev Page of - ~
- **"*a h"'
O -1 53 1 89 i m I L i i ? i i Z i tuuW m ) meus A Weul Ow C 1 Z< J C m - s wU ~ ews amme { I i t'" af. a l l t 1 M i e b l-aa i i seu e J t I t
P t WESTINGHOUSE CLASS 3 .l Sitr Document Rev Page-of 'l i " "' i i l 54 I 89 l d A 1 i ? ? h 1 i ) e 6 I f l t 'l f b E ce t an.s .re C t r., t A ame mm.7 s C U P a i N i M e t t t 9 6 i !i b
- 1. I WESTINGHOUSE CLASS 3 SitT he b
Page of
- * * " ' 1 i
( 55 1 89 l i t l j. i P 1 0 O = h ^ F $Ius c 2 C 1 WM fw% ' tune Z 9 aums f,i aume 5 P sm ? %sr I M ? amme one r s 9 I O. Muut a E
==. h. I I h
1. - WESTINGHOUSE CLASS 3 1 SitT h-cm Rev Page of w wa --- 36 l 89 d ~ s 6 I' E T FIG. B4-1 REACTOR ASSEMBLY
,g WESTINGHOUSE CLASS 3 SitT Dxument Rev Page of h R*= !==4 i t i 57 89 4 l A : UPPER HEAD B : UPPER PLENUM C : DOWNCOMER D : RISER ~ E : LOWER PLENUM ~ i ~ l 40 i 2 I i s hN%4>MMM h%Y%%YMNh l 1
7 m l l Fg a
N. wn,r 3 ///// l p g i x s i e i a I i s / s i , ma _ /I \\ NNY NNDb b 4 / / i s' ' l /. / yyy////, / I FIG. B4-2 REACTOR SCHEMATIC
1. WESTINGHOUSE CLASS 3 SitT Drumm Rev hge el samme a*=ma ** 1 58 l 89 E ~ t h ) 4 FIG.B5-1 PRESSURIZER
. 1.' ~ WESTINGHOUSE CLASS 3 - L SitT De mem Rev Page of samens Ramusn immeveuve 59 39 -l i i l d 9 l i f 1 r I ? i-I c i e d I. p i ? P l l i f 1 ) r 4 e I r = l P FIG. B6-1 REACTOR COOLANT PUMP 5 t n-e
. I WESTINGHOUSE CLASS 3 SIET Luem Rev Pne of w a mn w. l I I 60 i 89 5 a e FIG. B7-1 cTra u r.FNFR ATOR
. I WESTINGHOUSE CLASS 3 ) 1 I $n,1 Document Rev -- Page of ss== a-hi l F 61 89 d .l l 1 t I s I P i i ) F e ? e i Z A t M M ac "."* em c [ = amme I e rm W # .m., s I, W [ d I r.- tu. - M mm. A %r e i Sees f i l i t
i. 4 1 -i 8 e + M e 9 6m 9 r 3 h+ IRWST 7 g S TE AM 5 y. GEra. H g' Puiin pasin o' \\gl H*' qj I'x 2 m eRessuRuta g y to
- 9:.
Y E IIL-Cl RCP REACTOR CORE VESSEL FIG.119-1 l'ASSIVE ItIIII IIX \\j
WESTINGHOUSE CLASS 3 Sitr oxumem Rev hre or l 5'" " R* " * "' i 63 1 89 i NUMBER 2 iiPE SPHERICAL TOTAL VOLUME 2000 FT3 DESIGN PRESSURE 800 PSIG DESIGN TEMPERATURE 300 F MATERIAL SS clad, CS SAFETY CLASS 2 e 19' 4' / / = 3' c' '( 8" SCH 40 i I H t t j= J 6' = 3 FIG. B10-1 ACCUMULATOR I
WESTINGHOUSE CLASS 3 I gg Documem Fev l l Page of sex a.m n b =m l 64 i 29 i a, c (dimensions deleted) h g SG-A Nf i \\ %< 9 N'; / c .J s \\, o v- \\ A 4 i j 6 J q ___.s \\ PC >ew V><. 3 N( ~ FIG. Cl-1 HOT LEG A
j, ; WESTINGHOUSE CLASS 3 SitT Do:ument Rev Page l of Sa=== Ra==a *== 1 i I j 65 l 89 a, c (dimensions deleted) 3 i. h [/, j$l-f SG-B / ? y 1 / 3 [/ ~ g / .\\ '/ ~ / \\ ). s lP 7' M .g l-o 1 M N o SPES 2 Hot Leg B f y A !c 5 \\ RfFfRfMCf5 - hat Leg a 9 4 \\ N N wi PC k L i FIG. Cl-2 HOT LEG B i
l WESTINGHOUSE CLASS 3 i 1 .i i Siti i Documem Rev l bge of s===a n m i .j g g, .O 2 1 ( g o m i 1 C 1 U .M i a ~ l 3 I O ..g 1 i Vi i ? ~ a A y m; yQw, l 0 \\,'- s, o _.]d \\ \\ . ' *. *.\\ g -.I.-i.2l..; Uo 5 ~ O ) . s/ \\ z N y s, s !. -. ',, r., m _O WNQ &q h .:. i-b \\ 'y'v'/ f(e 9$ ~ $'.q&_VkI?h:f~ J 3 g 1 ..= n .Z v> \\ l . ~...,.
WESTINGHOUSE CLASS 3 .i gg Documem l Ra l l Page l of j i i i a I c l g i \\ \\ \\ \\ \\ i s [ ,/\\' " s%( f\\,7 4 / I / / g / / / ^ / / / / <_._..g, -= / / e n I 3d b = } [ \\, Ca o 4 \\ ry d iE I
Siti-Dm mem Rev l Page of w a.- s'"""' I i 68 89 a, c (dimensions deleted) l T pump + v 1 y w
- Yd
!d: .-_g; g__: {y'[f: f.R I . n
- +ri 9
\\. \\s ~ z 's ,_i 1 /i\\ ~l [ d l I i N 1 I \\i/ i-i U p FIG. C2-2 COLD LEG VERTICAL SECTION
gmd6,O5m o5E )de y yi. E _? i,. a. t j f e l e d (fi s3 = sno i sne m i d( c~ ~ ,a 1' e-d A LH v__ Q d\\ A P c P '1 l g_ \\" R 1 P G-l G / k e X = n y ~ ~ 3o OY5 OCnp%
t.1 WESTINGHOUSE CLASS 3 9y swr w en nev l ne a s I l l 69 B i 89 m C .e
- =
0 E 5 1 u \\ i l n b. _. Ni z Ud bj ul 1 3 e b t m 6 b a-v l-u b o -+ b) / / b x .e I n 3 9 \\ n s 1 i FIG. C3-1B SURGE LLNE
WESTINGHOUSE CLASS 3 i i SIET W-Rev hge of k=*** R*"*a l""" l i l 70 89 f r a, c (dimensions deleted) l I SG-A. n $fi j 1 i / / 'f i d { L ,y v f# J f l s t \\ i s s N l 1 s s- . / T. 1 j sv ~ i %e pp4 i .a FIG. C4-1 PUMP SUCTION A I i f 9 +
. g, t WESTINGHOUSE CLASS 3 SIET D=== 6 l Ne d l 71 39 3===== Aan=n la==r e i ( i a, c (dimensions deleted). llf / #].) lA d / y~ 4 n c 3 Jh 1 J i / \\ F N i E i k i N Puinp N! 's ,, k_ Sy n \\ k Jf / 1 \\ v Y + FIG. C4-2 PUMP SUCTION B 1 + l l l
WESTINGHOUSE CLASS 3 gg exanau new het d ww-M m 1 1 g S [ s l l f 1 I e a, c (dimensions deleted)- 0 t Cold legs flanges q _ Hot legs flanges _,Q _l, i DC Tube 9 5, g_ _ __E_._ -[ l i s _g Core bypass flange I' l _J_ l i U l A n 1 i 2 ha 1 l k i j g i U _ __ ] i -r j U i 6:g_! . V.. i I
- . + -
g 4 i e i Power Channel FIG. C5-1 h PC PRESSURE VESSEL i i 4
WESTINGHOUSE CLASS 3 ] SIET h Rev Page d s w wi n 39 l t a i ~ a, c (dimensions delet i 1 i l l FIanges ANSI 2500_ /,- / i /. i 7'g/ m -p-r I a i w V M f r } e M iy g u_ l ~ ( -i lI i l ~ -s- - J r t i I i ~i b i FIG. C5-2 PC UPPER HEAD t I
WESTINGHOUSE CLASS 3 SIET Dxmnem Rev wee d Senone Resuoriinnowmivi 74 89 f 9. '\\ Is,amm.3ys .:= ..e. W' i= r NN'$ f:D- - -w. --.g.f g .b ...T.. i 3 g. ~s l- ~~ pl.-- ~2'*Y'"" l ~ u,....... y. q q@ (,..- - Q+ 7_. p,, / /, w_ .v u /' ~ 9 [T... b 's. i dWc$ ll 2 \\ '. ! S' IstaE... l ! .i ""T 1 I -/ \\ l 7-EL5et.1**1 > _ I h.*,'. ~i 4 .1 g% {a-."8- _4_ / f Q> '- &g__I Ib K l l i s y i i ./ ,,fx M i j' I + s m i t-- ML_ L ',;.i.,_._,.,_ s i j so. A. A s e..a n we.m I j M c v/ ~ j . s.ss I,1-P,.fI _.. Ti,t M / // - c.:.. -w < v_asae p - u.s. y - I El W ~ a __L s,: t b;,2_ i W. bg _ _ 1 t I 0 [ I ], " p i t-a _g I 1 -= a 4 m N'S:l L :s ~- @N,l m v n- /. 4.; g ;b .o. i N ne' ,.a s'sy,\\ .....a s g i. 1 v+ -c a ,j .- -m 4 f g; q gg g re- -~ .. x, n i ..w s s. -WFi( i \\ wh'- 1 l 1 , b -,-( \\$ .I i ,s w.,..% j l psxm
- .&w j,
- -i
.,,p m.e <a..w A L ~' M 1 p,,_-_ rb a.- ws 7A . Q ,,,r,,j,..M., n. B P,'\\ '7,.. s.c t w n s 4; + m _. 'h n~ p j.q L._ 3 t- -d-Ti"k 1 Qd 0 I
- c Y.
I t J ,t m / a__._-_._ 1 I T_ L% W d'.8' s I b l x_. Lt..nasee._e*1% 'V* a y c ...........c x_ ,.c ( .,/; ,.u .a w l ..} l
- /
t u
I a, c (dimensions deleted) l es( b. j' %t i -[* N. / s l v _ / iK/ ' N [\\]<_f__.\\ _W, k_ ~^ Q.e-.u i <a: 3i f u- ~ / ~ I \\ N I 1 y> J y% s .e s f} 3 i y I 'S S1 J APERTURE CARD ^',G^T"5$'S! Cl $ l) 5j D 'L b 4 - O ! G j d.- FIG. C5-3 PC UPPER PLENUM AND ANNULAR DOWNCOMER e-= ~'
WESTINGHOUSE CLASS 3 p Sg Documem Rev l Page el Sczmee Resan Wmm l l 75 E9 ~ ~ a, c (dimensions deleted) e %,,._U[ ] [, v c y i_ l i I: I 1 l i c_I: I.a 1 1 I i, I. l I-I 4 i I i 1 It I 4 I; I i 1 I i I; I I li I i i J l' l FIG. C5-4 I I PC ACTIVE ZONE l, l i 4 .a li l l l n it i i: I! 'l l l 0 .I U h_ li 11 6 l
w- -s WESTINGHOUSE CLASS 3 g SET Documem Rev Page of u g w.- Reauen tam-mm 1 I 76 l 89 'i3 "O m C .2 ~ Eo E'5 v O cd &J + 8 b:""%M w,.. .p-i I J l Q ?* ** E k m l 4 km w. ". '///// x I \\ g,,, p q I U .h _J - - . s w i i r s s = y s i, s i 3 i l I s_ / ' \\\\n LN\\\\\\% Nw wNwNNW %N$\\h' \\'j g lllff ll ' ' /;^ 'Y /H/H/U///s////////W8 ._. / s e r, \\.-- / cQ h l D q N i / g/g "]g ek .M 3 V I' if[h e+ly,kh4f' ' t o,7.,, 8 I - l. l 'l, / St.ord L-e a e ClE*. g I f, i e.f V>I
4 i% N .d. I' p, le (( -{ y j"'" i;y-iI.i \\l
- j w ~. -
t ..sw s f ~ m 7Y//> \\. c/hxxxxb.axtMNNN\\N\\\\LNNWNNNSW NN6 r w rAJ. l iT l l lI c. 3*,,w i. <n x s. w y w w M' 1 _ . NN-(xixxx.xww swsxxxNsxLxNW x 4sy L l' s { '-M.A///) 1 r d, l\\. ' V h / '// //// "l %s ti ~ SI b APERTURE E CARD g CD Also Availnble On y4 Aperture Card W4 U d d~N 93 b' 01'5 'h "3 0 t -a
a- .m WESTINGHOUSE CLASS 3 gg _h Rev Page of 5ensor Rcanon Imwwauri l l l 78 89 P5 PS P2 G C P3 PIB 7 / .j l i / 6 e i " r %'_ Eo= pfisee -*q Y -N. f I e. .a m,,,,,,,. m i P1 f, ( y v. w:.mv=r. += u = g 1 s Pil .- F Ah. g. i., I L 3 4 { g P19 ,j l l* pj g P1 ,gj_! ~ .'A 2 r. .1..
- P?e
&.::::4.:::f:d, :-- 1 e 3 t r j,, i i i P16 g. >- ...J.d.: y _g f -c. -g-
- L.1 T
T i 3JL_. _1.g EL Li .L b .i----,, e 44, 4 i ,t i r. i o-ty i _m o s n ~ I i I P34 I I 4 2 .t_ 1 i i I 4-l 1/ l l + -.i..u..fg...]}-f.Q..i5.;, ,..Sjtii.....,.gi., i , a- _, - ~-- .SMw,. p m - ------- y e.-- s + \\ t . i t 7.,3,,.. ~ J.'A t t ~ J fa:b - Wh l N' _' { ,..4 _n.,... .f n y w, w, ({ o m;my K/' / r g-g--s-- ,d il / ,L l 1, J - y--,f-n y---- 1., y y t 4 v ,;// ll lj + \\\\ \\ I ja i i-- 1 1 .+ Ja 1 FIG. C7-1 PUMP ARRANGEM Q' % p*,
a, c (dimensions deleted) F72 P7 53 ns N I e1 ,, - o i ,o hb6,.. M g gy,, y G~T ^ f'i F / ._i re d ,,r i u. di( 5 m pis t /,1 i i l l' py "'S ' b,y. I I l l.. b. f 4 _Al 1 I: LJ
- I /
lI ./ i i H p j j m ..Ni 1 I D-0 e.. it ...r. 0 f ,,,,,.......- m -. x
- m.....e.
l ' j. fa.5(v......,,,,,..,,....... L lJ 31
- t.,. t.
~" ' ' '/ APFsRTURE CARD l C;tentei 5!CT 5.p.R. F:;tDCR nt!!ne clientes h1 l Dcine trthirgtmi Ab0 A e 'I .~m L rrizto !*I4.'TD SPCRIO";LE ILIO 3 ;D::yr bPU l I C se;re TDL"A GI3s D.R. ISSCI D se;rm LIE UKITIT 3C ;RTCInch"De ~ C!sep FDUCI3C GLWie " -1 s,-,ma fr] Frso act:rei N 253 mnm m t,-- 1 ~m m.. -teri-, = l g l, m ura r msn o w C %, tot,3, - n., u,2 3,.i, m i w 4 1 I e r 'Mi \\ N j@, 51-ENT
WESTINGHOUSE CLASS 3 SitT Dxmem Rev Page l d 5s.unes Rasten lamewmevi l i l l 77 l g9 a, c (dimensions deleted) E- -9 %w y Of$$ - 41;% m--y-n uwww ~ep:m
- gf t
,+- b' ~- k -,c.- -pM - 3 4, n S l ) B f 1 13 b d e ,e t-p ll EN- 'f! ll qfgh ~ hb b~ _ i 4 u ~ ,IIs3 I I 4 : . gl gn O-i sp 1 y ,v s A n l 'l s i f E ^ sw:,0 / a i t: s e-a J ) Ic l 1c 1 e 7. N m@ i- ] q' . _,l 'fPI [ b T @ r-k() yr-sp M!; p ,p = I 2 {[e4( \\ ww i p W V ff h fY) Y Q--.y f, u - y =.n,. nn,. 9 d 7,~~ : .b<_- 4 FIG. C56 PRESSURIZER CROSS SECTION
WESTINGHOUSE CLASS 3 SIET Dmunea: l Rev l J Page cf h Asaman wwi i l l 79 gg a, c (dimensions deleted) !_ ) m. 1 l i i \\, \\ . ~ i p i f N I i i i ' !l lj l i: n tI t it I )d "H hwy p .f 1 I l ll y.JM.l, ma. 7 t{ l' li' L'.+[,' I lis .1b. 5-- t i i l 1 l i e> l p t 1 i M i I l l l 1 i l l i i i j j m \\ l l l r I; h. u ? I 1 i 1 j e i J lli r( %wa TP!Iw-Q 2E + =.
- i innis c i.'
.I -El t I__ dh Lilu FIG. C8-1 SG GENERAL ARRANGEMENT
- 1. I WESTINGHOUSE CLASS 3 ggy Documem L
Rev l hge l of so a n u ,.i i 80 i 89 a, c (dimensions deleted) A _I I e Jo4 'I i ,r ",- w. ,,,,,m m W i s N 60Ce8,844m a myou p, O,CVtit:A NdY (ARIA h f.O L&Y' an no n. s v:.,,, aoa a.- I. ~.. n j J' l 1 i w' y u i c U . si .;31. _9*e se se A a c,. / / (( .J-7,,- =: p.,, H (. u,,o w I L_ - t / _ -.-,,
- n.. r..,,
e serws.o j tous, $v,90RTt f 1 O ,e., e ,aan 1 RamomrPAecaec x ..c, a.e.. o . na arru Il i i <r-s s_.....~. g .,;3. x;m-2r ~,.,,,,, 1 e, 3 u_u u: s, uma [,_ '~ sn u - FIG. C9-1 CORE MAKE UP TANK
WESTINGHOUSE CLASS 3 SET Docenem Rev l Page j of ser Ranmnimemni j gg g gg S T "O E .e E E '"3 rA u Z O \\d. Z WU i
- - k.2%,[I[
,-e j \\je x 3 .a +f \\ r' e 4 /k \\ \\/ 4/ [E U d ,/ N y al
- :=
c 's --f<*--> w ~.<> / -h / r! w: 3 p -- f ' r. ci I \\' E "I w, \\ 1 r e' \\. x \\ d 4 1J 3 x, .s/ /* Y ./_ r.,3 \\7 t V V, 1,1
= WESTINGHOUSE CLASS 3 'i SIET h==' Rev Page cf -l sen a.mmaa= = =i l 82 89 o "O n .e l I Eo r E 5 '4 a/ ' l.w.i> g_,yy u ce \\ _\\ L W i \\, [ \\ k b S Z. J 1 i t a a 1 - i s i \\ _ 5' 7 02 4
- net, y
a ~ j f~w o s i, lL/ L' 1 .lH) b { ll > ' ~ i f i U -) / /- E- / ' 5 '\\ \\ i s Y ,/ \\ ]; (.,.] 'N s x. f NC g I . \\ \\ l .j t i
WESTINGHOUSE CLASS 3 SET 5-t l Rev Paga l of ,) 3a" n.- wm l i-83 i 39 .o i 2 l .9 E I o E +' / t O d ' g-im ).. /[ i / // k _ s / / N // [
- [i o
s! hIk / / E, / e ** 1 //. _f / 1 ~ l v 19W j I" /s/, y / gs \\,.\\ -'t / o,z /\\ i 'A \\ \\ C i g 4"""-l , j; \\ \\ \\ ~ 'f Y K e 3d) ?) t ? m e. ,s V n \\ Yh I 7 \\ + h i
a WESTINGHOUSE CLASS 3 r l SET h h Pase d
- s i
s4 39 N / a, c (dimensions deleted) FW5T 4 P8pR syst.e j/ I / g/-l l /f i o .4 ELw-j N.f 9/' < e p e c \\. s. w x l y' l s 1 1 l \\ ~ J' i I N /r" g /. { x hh[.'r' ' [ i-xxi s
- 9. t?'.
T ;# \\ E c, '\\ %)y' j )y/ M* jyf 6 V f n. I N l %z% ., y y
- Y.,-: ~ ~ ~ ~ ~ ::
~~. g FIG. C10-1 PRHR SUPPLY AND RETURN LINES i
" WESTINGHOUSE CLASS 3 SIET l Dx= = l Rn l l Ne l of sconee Runon tamwwwi l l l l 8$ l 89 a, c (dimensions deleted) fa f 'S' :.e I.;. 't I f# -f- . a @llhl. w,- fut -m.. --. s = A dID l E rc e .5 CL b i a V r il ll l i H i lI l C ll l =- ) i I r y w .m.- d i l.' i 64 r i.a a i ~ t1= 7 -
- m,.
i ,o t 2 i Ik s.. ^ i Mg s I s l r% f- &y, j. .7 ~: : = ~-- l 3.ht-a; e FIG. C11 1 ACCUMULATOR- ~
WESTINGHOUSE CLASS 3 l SIET D= aem Rev P se or ---l-1 i s6 s9 l
- s S I I
[ .9 e o .E_ !1 h u rI
- It r
i$ 5 )!_ '- ij: r.,,,, 9 / b l 4 1 i I ' f b i %y, ) \\s s 1 v 3, 3: c s ,g 7 \\ ~dW 4 dZ g-g w r _D l ,E i U U
WESTINGHOUSE CLASS 3 SIhr l Rev Page or -n m I l 87 l 89 ( I i 1 a, c (dimensions deleted) /. j s s 'e /\\ /~ ?,.: ~ 1 d) .I. .i I.: i
- "-)
~ I,l / ii,.*,:
- ,:ii it:
. 13 ,1 l15 ~
- c I
I { t:
- t:
? >: ? !: .n s: 3:
- 3-i.-
i }. ' f' i s-..i !d i // 4 t FIG. C12-1 ~ u, IRWST
k 6AL-.-+- 4 w, a k, w a 4 L- ,Q WESTINGHOUSE CLASS 3 92 SET l Document Rev Page of ] s ammenimmeveuvi l i 88 l! 89 { g U E / . r. 4 y o j i ) y,_ ,+ / i t \\ t 3 \\ \\ 1 \\ i i i / 2 Oi s 4 11i i i
- t'l i.I
/c 4 k \\ s k, ~1 P: d t i ,o (J -7,a,\\ 9 f a Z. \\ N-use g g m 4 t== x N,i N/ g Uw.,. / \\ a h l
WESTINGHOUSE CLASS 3 Sita l De== l Rn hge of se=== an==n w l l i i 89 i 89 i 50 a, c (dimensions deleted) s ,,I 1 J stage 1 i l lf a P l ilF' P 0039 'DE l ,030pl b 030Pl k II l030 P ll7 7 f STAGE: lF ! }030Pl ) / \\ ~ I HEAT EXCHANGER I \\ t \\ / PR 1' CATCH TANK 1, ~ lF j ( 030 p - ~ l /\\ /\\ EDE i e l ~ FIG. C14-1 ~ STAGE 1.2 AND 3 OF ADS}}