ML18117A361

From kanterella
Jump to navigation Jump to search
4 to Updated Final Safety Analysis Report, Chapter 3, Figures
ML18117A361
Person / Time
Site: Crane Constellation icon.png
Issue date: 04/06/2018
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML18117A343 List: ... further results
References
TMI-18-047
Download: ML18117A361 (57)


Text

--

A B

c D

E F

I G

w-H 6

K L

I M

N 0

p R

I 2

x I

6 3

5 7

8 7

3 5

4 8

6 2

5 4

2 7

2 7

5 4

2 8

6 2

3 5

4 7

8 7

3 5

I 6

3 4

5 6

7 8

z WORTH-HZP ( /. ~ k/k)

BOC EOC SEE TABLE 3.2-7 D Group Number 5

4 2

2 4

5 9

I 3

8 7

5 3

6 8

I 4

5 2

7 6

-Y 4

5 6

8 I

5 3

8 7

3 I

10 I I 12 13 14 15 Group No.of rods Function I

8 2

8 3

8 4

8 5

12 6

8 7 (TRANSIENT) 9 8

8 TOTAL # 69 Safety Safety Safety Safety Control Control Control APSRs BilUNuole...

Update-12 3/94 p.3.FIG-1 TMI ~tt I Control Rod Locatton and Group Oeatgnatton* For TMl-1,Current Cycl*.

CAD FILE:SIA,SKM.00,0343,000-,0001 Ftg.3.2-1 Rev. 21, 04/12 61

x A

B c

D E

F G

W-H

-Y K

L M

N 0

p R

I 1l21314151+1sH+11~1J1415 RODS IN I. GROUPS 5-7. or. WO

2. GROUP 8 AT HFP NOMINAL POSITION.

BOC AND EOC EJECTED ROD p.J.FIG-2 z

HZP WORTH OF EJECTED ROD ( r. A ldk)

SEE TABLE 3.2-4 BiBINucle...

TMI Untt I Upaote-12 3/94 Elected Rod Locatlon BOC and EOC Co4 File SIA.me.oo.cam.000-.0001 Flg.3.2-2

TMI-1 UFSAR RODS IN HZP WORTH OF STUCK ROD (%k / k)

Groups 1-7, 0% WD See Table 3.2-4 BOC Maximum Worth Stuck Rod EOC Maximum Worth Stuck Rod

p. 3.FIG-3 A

B C

D E

F G

H K

L M

N O

P R

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 TMI-1 UPDATED FINAL SAFETY ANALYSIS REPORT Stuck Rod Location BOC and EOC FIGURE 3.2-3 Rev. 23, 04/16

.28

.18

.16

.14

. 12

~ -

.10 0....

~ -

0 a....

.OI

.O&

  • °'

02 Ct 0

UDIUS S I SLOPE (11 P>

SLOP£ (EIPERllENT>

1t*>

(c-2 a*>

(I 10-2)

(I 10*2) 25

.7143 I 00

0. 11 ~

DI

.25

!10

. 3921 0 83 0 71 ~

DI I 0 19&1 0 71 0.61 ~.05 2.0

.0910 OH 0.&3 ~ 05

--RIP

- - - HELLSTUND. ILOHU;. HORNER r a 1. 0 2

I I I 10 IDG K..rr. JJiO Id ijl I Nuclear TMI Unit 1 I&

r

  • 2. 0 I II 1200 "

Update

  • 5 7/86
p. 3.FIG-4 Fractions of Change in the Reasonance Integral as Function of VT-v'BJ for UO 2 Rod (T in Degrees K)

Fig. 3.2*4

0.00

  • 0.02
  • 0.04

~

  • 0.06
  • 0.08

~ *O. I 0 0

.,..... 0. 12

  • O. 14

. 0. 1 &

  • O. 18
  • 0.20 10
p. 3.FIG-5

~

~ri II 00 PPM 20

"'~ " '\\.

JO

'Void.

40 ld5J11Nuclear TMI Unit 1 50 60 Update - 5 7/86 Uniform Void Coefficient for 177 Assembly Core Fig. 3.2-5

110 100 w

~

u

_J 80 H

~

H M~. 60

  • w ffi d

=- >

~u

~~ 6'0

~~

> H

~i 20

(!)

tjl -

0 0

\\

\\

\\

\\\\

\\\\,

.. V-2.4°/o6k/k(wtth Stuck Rod}

1

\\

\\'-

~...... __ *---. ~

5.4o/o Ak/k y~

I 2

e Ttme.sec p.3.FIG-6 6

7 1 ca:im Nuclear TMI Unit 1 Percent Neutron Power Versus Time Following Trip, BOC 8

Update

  • 9 7/90 Fig. 3.2-6

TMI-1 UFSAR

Core Loading Diagram for TMI-1 Cycle 22

TMI UFSAR Figure 3.2-8 Deleted

~

4 N

~

N t * =

0 *-..,

~

GI:

CD z

Cl

2. 7 2.8 2.5 2.4 2.3 2.2
2. 1 2.0
1. 9
1. 8 50 70 90 110 130 150 Distance fro* notta* at active len1tn. in.
p. 3.FIG-9 Id ijl I Nuclear TMI Unit 1 Update - 6 7181 Typical DNB Ratios (BAW-2) in the Hot Unit Cell (Cycle 5)

Fig. 3.2-9

I.II 1.11 '---"-..

1.21

~

u

  • c: *

~ -

u

  • :a

~-

D.11

~ z::

4 I

D.10 D.40 0.21 D.OG D

""111111 ~

~ '

i\\..

\\

' *~

~'\\

20 30 40 51 10 70 10 P1rc1nt111 1f fuel lods with Mi1h1r P11kin1 F1ct1rs Than Point Values. I ld 5Jl INuclear TMI Unit 1

p. 3.FIG-10 Distribution of Fuel Rod Peaking (Initial Cycle)

~

IO 1DG Update - 5 7/86 Fig. 3.2*10

2.0 1..8 LG 1.4

-;c

~

1.2 l 1..0 J 0.. 8

I

~ 0.. 6 0.. 4 0.. 2 0.0 20 40 60 Active fuei

p. 3.FIG-11 80 100 Len&th, Inches

(?i 5Jl I Nuclear TMI Unit 1 120 Alia I Peaks

1. 7 140 Update - 5 7/86 Maximum Allowable Axial Power Distributions for a Radial-Local Peaking Factor of 1.78 Fig. 3.2*11

2.1 I. I I. I I. 4

~

1.2

.. I. I

-I I.I J I.I

I

~

1.4 1.2 l.D 0

2D A111 I P111L1 41 H

ID IOI 120 141

&ctu1 fuel Len&U*. l*chu

p. 3.FIG-12 1?1 ijl J Nuclear TMI Unit 1 Equivalent Axial Power Distribution for a Radical Local Pe1klng Factor of 1.65 (Initial Cycle)

I. I 1.4 Update - 5 7/16 Fig. 3.2*12

0-nJ u

c m

z Q

0-

'O a.>

u

'O a.>...

a.

~

a.>

c c nJ

.c LI Cl) a.>

0 c -

0 nJ a:

m z

Q 2.0

1. 8 1. 6 1. 4 1. 2 1. 0 0.8 100 99% Confidence Basis I

(114%)

~Design Overpower 110 120 130 140 REFERENCE DESIGI llOWER ( 256 8 II t), %

Id iJJJNuclear TMI Unit 1

p. 3.FIG-13 DNB Ratios (W-3) in Hot Unit Cell Versus Reactor Power (Initial Cycle) 150 Update - 5 7/86 Fig. 3.2-13

20 t8 16 I 4 I 2 I 0

~ -- B

~

Cl 8

4 2

0

  • 2
  • 4 100 2120 ps11 2115 psi e Qu1l 1 ty SuDcooled II 0 120 130 140 150 REFHHCE DESIGll P'OWIR ( 2561 Ml t), \\
p. 3.FIG-14 Id ijl I Nuclear TMI Unit 1 Maximum Hot Channel Exit Quality Versus Reactor Power (Initial Cycle) 15 17 c:..

90 93 - "'

.. Cl.

a Cl Q N

H

.c: -

UN

.c: -

99

.c: -

GI u

c

a..

I 03... _. -..

0

~ -

109 c

u

"""c

.....c:

u

  • c:

116 0

0

... ct 127

.c: -

De c..

144 _.

160 Update - 5 7/86 Fig. 3.2-14

N a

N I

ca. ca.

Ba

s a A.~

g a

GI a m a.....

a..

~

  • CD co N

~

~

A.

z

\\:J M

Cit....

a u z

~

~

DNIR In Hot Channel

p. 3.FIG-15 l?j iJ1 I Nuclear TMI Unit 1 Update - 5 7/86 Hot Channel DNB Ratio (W-3) Versus Power for Partial Pump Operation (Initial Cycle)

Fig. 3.2-15

0.

2 CL E

~

A.

CL a a

~

N I

CL E

~

A.

N 0

0 0

0.

0 S?

8 0

Cft i

0.....

0 co

~

I -

ca.,,

N.

Ck

~

5

~

a w

u

  • w
  • w w
  • Coolant Quality At Point of lini*u* DNIR In Hot Channel
p. 3.FIG-16 lljijJJNuclear TMI Unit 1 Update - 5 7/86 Hot Channel Quality at Point of Minimum DNBR Versus Power for Partial Pump Operation (Initial Cycle)

Fig. 3.2-16

  • .*r-------...... -------..------...... --------..... ------..... ---

I I

  • I N

3.011--..-.-e--_.,. ______ ___,..._ ______ -+-______ _.,. ________...._ __ _.

.. -I..

I

~

~

~

T a.. -

N

... a

-=>>

M c: -.

Q..

u --

a.,, *-

D1t1 l111d On lml.

CEAP*412'

( / k dt

  • 11 */m)

I I

2. *.,_ ___...,_....., __ _,.._,._ _ __. ____,._. ___..._.. _ _.

u I

~

  • a...
1..... ________________..... ______...... ______ __. ________...... __

~

I 2HI

p. 3.FIG-17 1111 1?1 iJl I Nuclear TMI Unit 1 Thermal Conductivity of U02 5080 Update - 5 7186 Fig. 3.2-17

70

&O so

~

c: -

0 A. -

40 0

u a

30 Ii

~

z 20 10 0

0.6 0.8

1. 0
p. 3.FIG-18 Gaussian Distr1but1on
1. 2 1.4 Id ijJ I Nuclear TMI Unit 1
1. 6 Number of Data Points vs. <t>El<t>C
1. 8 Update - 5 7/86 Fig. 3.2-18

'C G.-

u G

~

ca...

A.

c ca

~

CQ

=

Q.

ca A.

100 90 BO 70 60 Inf tnite Sample lOOS Confidence F i n i te S amp I e 90% Confidence Fini te Samp I e 99% Conf tdence 50.........._ ____________ _,_ ______ _,_ ______ _._ ______ -..L ______ __J

1. 0 1. 1
1. 2
p. 3.FIG-19 1. 3 1. 4 DNB Ratio (BAl-2)

Id ijl I Nuclear TMI Unit 1 1. 5 DNB Ratio (BAW-2) vs. Population for Various Confidence Levels

1. 6 Update - 5 7186 Fig. 3.2-19

L 025 i.020 I. 015

1. 010
1. 005 Q -

u ftl w..

I. 000 G1 c c l'Q 0.995

.c

(.) -

Q z 0.990 0.985 0.980 0 975 0.970 0.965 0.960 60 70 80 90 FA (Wall Ammbly Channel)

Population Protected. '

p. 3.FIG-20 Id 5Jl I Nuclear TMI Unit 1 Hot Channel Factors vs. Percent Population Protected 100 FA (Interior A111mbly Channel)

Update - 5 7/86 Fig. 3.2-20

~-

16 14 12 10 8

6

-.......'?

<)

4 CQ 2

~

c 0

. 2,

  • 4

-6

-8 100 Ii th 5 'Yo FI ow Factory /

D i s t r i but i on

/

~.v

/".v

!/

.,. K No Flo*

~

.. V v

0 I s tr I Du t I on Factor

/

I I

v v

I I

/

/

QuaJ1t~

/ //

~

SuDcooled

/

/ /

11 0

p. 3.FIG-21

~

Des I gn o~er power I

120 130 140 Rated Power (2568 MWt). ~

18 iJl I Nuclear TMI Unit 1 Hot Channel and Nominal Channel Exit Qualities Versus Reactor Power (Without Engineering Hot Channel Factors)

(Initial Cycle) 150 Update

  • 5 7/86 Fig: 3.2-21
  • Bundle Burnout Test Conditions Where Stable Operations Were Obaerved

~ Maxi*u* Design Conditions, 11~3 Power

  • MaxiMum Deaign Conditions, 1303 Power

~Most Pr.obable Conditions, 11~1o Power

  • Most Probable Co~itions. 130~ Po\\118r

.. ~

i.s...... ~------'-~--~--'---------+-----~~+-----~--...... ---------t s

I. 0

.s 0

5

p. 3.FIG-22 lubble To Annular Bubble To Slue Baker (laker) 10 15 20 Qual i t1 (lb vapor/t~tal h), ~

Id ijl I Nuclear TMI Unit 1 25 Flow Regime Map for the Hot Unit Cell Update - 5 7/86 Fig. 3.2-22

3.0 2.5 w

I 0

JI(

N.,

2.0

~

I I: -

4 u

~

  • I. 5 s

1.0

. 5

-5 0

+

Bundle Burnout Test Conditions lhere Stable Operations lere Observed.

Maximum Oes1an Cond1t1ons. 110 Power Maximum Oes1an Cond1t1ons, 130' Power \\

Most Probable Cond1t1ons, 110 Power Most Probable Cond1t1ons. 130% Power

+

+

r+

+

+

+

.... * +

++ +~ +..,..

+

+ +

f+.

+

\\

+ +

't ~ +

I+

+ + +

t

't'...

\\

lubbl* To

....i..... +, ~ +

~

+

Annular

+

(laker)

.. + rt++++

+

++

++

... t ** +4A + '

+

+

+

+

+ + +

+

++*

+

N ~

+

lubbl* To SI ug (laker)

.. ~

~

5 10 15 20 25 Quality (lb vapor/total lb),~

Id ijl J Nuclear TMI Unit 1 Update - 5 7186

p. 3.FIG-23 Flow Regime Map for the Hot Control Rod Cell Fig. 3.2-23

3.0 2.5 I 9 llC N..

2.0 I

~

.I:.

~

u 0..

I. 5 s

1.0

.5

-5

  • Bundle Burnout Test Cond1t1ons lhere Stable Operations Were Observed.
  • Mu1111um Des1an Cond1t1ons. 110 Power
  • Maximum Oes1an Cond1t1ons. 130\\ Power

\\

~Most Probable Cond1t1ons. 110 Power

  • Most Probable Cond1t1ons.

13Q~ Poter

\\

I

\\

lunle To Annular (laker)

  • "' ~

lubbl* To J

Slug (laker)

_/

0 5

p. 3.FIG-24 10 15 20 Oualit1 (lb vapor/total lb},~

l?j ijl I Nuclear TMI Unit 1 25 Flow Regime Map tor the Hot Wall Cell 30 Update

  • 5 7/86 Fig. 3.2-24

3.0 2.5

'° I

2 2.0 N....

op I...

.I:. -*

u I. 5 0 u

>........ z 1.0

.5

-5 0

~undle Burnout Test Cood1t1ons Where Stabl!

Were Observed Operations Maximum Oes1an Cond1t1ons. 110 Power Maximum Oes1an Cond1t1ons. 130'\\ Power \\

Most Probable Cond1t1ons. 110 Power Most Probable Cond1t1ons.

130~~ Power

\\

4 Bubble To Annular (Baker)

~-

t Bubble To l J

Slug ( laer)

~

~

5 10 15 20 25 30 Quality (lb vapor/ total lb), '4 11 ijJ I Nuclear TMI Unit 1 Update - 5 7/86

p. 3.FIG-25 Flow Regime Map for the Hot Corner Cell Fig. 3.2-25

150 140

~

0 130

~

s::

.a.

  • 120 0

~

0 -

u....

GI:

110 0....

100 90 2400 Desian Flow Rate

_J_ (

131.32 l 106 lb~

2600

p. 3.FIG-26 I

Desian Overpower

~

(1141 l 2561 llt)

I DNBR (1*3)a 1.30 2800 3000 3200 3400 Reactor Core Power. llt l?j illl 1 Nuclear TMI Unit 1 Reactor Coolant System Flow Versus Power (Initial Cycle) 3600 Update

  • 5 7/86 Fig. 3.2-26

2.4 2.2 2.0

("")

I

  • I. 8 a

~

ftl ac CD

z Q
1. 6 cu c c ftl

.c

~

~

1. 4 a :c
1. 2 1. 0 0 I 100 LINE FLOI MIXING COEFF.

1 1101

.02 cJ 2

1001

.02 u

3 901

.02 ll 4

IOOS

. 06 "

5 1001

. 0 I "

1.30 (1*3) -

110 120 130 140 150 REFERENCE DESIGN llOWER ( 2511 Rt) I

p. 3.FIG-27 i?j ijl I Nuclear TMI Unit 1 Update - 5 7/86 Hot Channel DNB Ratio (W-3) Versus Power with Reactor System Flow and Energy Mixing as Parameters (Initial Cycle)

Fig. 3.2-27

5200 4800 4400

.; 4000

~

u Cl.

E IU t-3600 u..-c u

(.)

u

~

u...

3200 2800 2400 6

uo

~Desi&n r Overpower (114SJ

0. 0095" CI ear a nee

~

100i Power 8

10

'--Maximum Design Clearance Nominal Clearance 12 14 16 18 20 22 linear Heat Rate. kw. ft Id 5JJ I Nuclear TMI Unit 1 24

p. 3.FIG-28 Fuel Center Temperature for Beginning-of-Cycle Conditions (Initial Cycle) 26 28 30 Update - 5 7/86 Fig. 3.2-28

5200 uoo 4400

~ 3600 c:

cu

~

3200 2800 2400 6

~Design Overpower (114%)

.0095" Clearance 8

10 100% Power

"--Maximum Design Clearance Nominal Clearance 12 14 16 18 20 22 Linear Heat Rate. kw/ft

p. 3.FIG-29 Id CIP I Nuclear TMI Unit 1 Fuel Center Temperature for End-of-Cycle Conditions (Initial Cycle) 24 26 28 30 Update - 5 7/86 Fig. 3.2-29

.a -

=i -....

  • Q. *..

=i

-411' 5200 4800 4400 4000*

3600 3200 2800 2401 2000 160D 1200 BOC (100 MID/ITU)

p. 3.FIG-30 Id ijl I Nuclear TMI Unit 1 Update - 6 7/87 Typical Post-Initial Cycle
  • Center Line Fuel Temperature vs. Linear Heat Rate Hot Pin (Cycle 5)

Fig. 3.2-30

u... = -

IW...

u i

5000 4800 4600 u...

c::

u u

u =

""" 4400 u...

a -

IW...

4200 5000 4000 I

u -

c::

u u

3000 2000 0

0 8

4

p. 3.FIG-31 16 17.63 kwlt t Hot Spot ( 1001 Power) 24 32 40 Burnup (ll01ITU a 10*3, I

EDL 110

40. 900 Fu 16 20 L1n11r H11t R1t1. kw/tt C!Iim Nuclear TMI Unit 1 Burnup Effect on Fuel Center Temperature (Initial Cycle) 24 Update - 5 7/86 Fig. 3.2-31

lL

&)

=> -

&)

a.

E

&)

&)

I 2400 2000 1600 0

20

p. 3.FIG-32 40 60 Yolu*e Fraction of Total Fuel. I

<at or aoove Fuel Tnperature)

BE Nuclear TMI Unit 1 80 100 Update - 5 7/86 Fuel Temperature Versus Total Fuel Volume Fraction for Equilibrium Cycle at End-of-Cycle Fig. 3.2-32

1. 012 0.854
p. 3.FIG-33 0.92&
1. 326 18 ijl I Nuclear TMI Unit 1
1. 282
0. 919 Nu*D*r Crcl1s lurned Anl*Dlf P/P Update
  • 5 7/86 Typical Reactor Fuel Assembly Power Distribution at End-of-Cycle Equilibrium Cycle Conditions for 1/8 Core Fig. 3.2-33

0 IU

~ -

"° Cl)

~

E IU to-3200 2400 2000 1600 800 Fu e I 10 kw/ t t 6 k w/t t S80°F-Tav11 Cool8.::i i Cladr-1 I

I 400 --------------~----------------------------------

0. 0 0.04 0.08
p. 3.FIG-34
0. 12
0. 16 fuel Radius, in 18 ijl I Nuclear TMI Unit 1 0.20 0.24 Update - 5 1186 Fuel Rod Temperature Profiles at 6 and 10 KW/Ft Fig. 3.2-34

8 8

~

~b j

I 4

0 1... '*

~

It 0

+

-~*

  • 4

~

4

\\ *

~

(~

__L 4

~" \\ *

\\. Cl>

"'~ '*

~

--~ ~

~ ~

~

"' l"O.

10:

,..., -...... ~ -.....

4 8

8 8

0 0 -

I.,....,--

0 f"t WI N -

I I

I I

._ ~ _,9--

C U

I

'°... 4 u

0*+4- """""

ii n

~

..Ii- ~.,)

0 -

0 0

0

.. §

  • I

.. I...

.. I

~

~ I

I..... -

~ § *

a.

I!

N u....

~ i u.... -

N u..

c

§ N..

I 0

=--

I -

§ I

.. § f i11llft C11 l1l1111d, I

p. 3.FIG-35 ld 51P J Nuclear TMI Unit 1 Update
  • 5 7/86 Percent Fission Gas Released as a Function of the Average Temperature of the U02 Fuel Fig. 3.2-35

1.1 I

..,.__ _ _..,_..,._./_,...'__....£... P/P

  • u

\\I I

\\

J_

I

1. 70 (partial Rod Insertion)
1. 50 (lodif i1d Cosine) 1.4L-----~-----+----~.... --..-...... --~~......

I 3M D1y1*IVIU a-of-Life IU/ii I

~ ~

0.11--~~....... -----oj~--....... -........... --..... +---.... -+-.......... --t Core l*tt*

I 20 40

&O I

.--~ Fu* I lidp I 1n1 I I Core Top 144* ---~

1 --~--__.,....

10 110 120 140 D11t1nc1 tr111 Iott.. of Acti** Full, in.

p. 3.FIG-36 Id ijl )Nuclear TMI Unit 1 Update - 5 7/86 Axial Local to Average Burnup and Instantaneous Power Comparisons Fig. 3.2-36

2400 2200 2000

~

0 1800 I

c-....

I... 1600

=

l -

CD cu 1400 u =

T" 1200 u

)

l:2 c:

0 u

1000

c.

ftl

~

"O 800

~

u 0 -

600 cu

)

400 200 0

0 8

Nomi na I D1a*etra1 Gap 12 16 lax imum Desi i" Di ametral Gap 20 24 l 1 n e a r H e a t A a t e,. k */ f t

p. 3.FIG-37 18 CIP I Nuclear TMI Unit 1 Update - 6 7181 Fuel to Clad Gap Conductance for End-Of-Cycle Conditions (lnltlal Cycle)

Fig. 3.2-37

1::1 u

20 15

~ 10 5

0 D

1.1 A1ial Power and EOL Burnup Snape with Closed Pores 1.7 A1ial Power ana EOL Bu rnup Snape

  • i th Op_ en ~

Pores 1.5 A1i1I Power ana EOL Burnup Snape with C I o sea Po re s 2

4 luimu11 Desi1n Clearance 6

I I

I

~

I I

I Initial Cold Diametral Clearance, in 1 103 18 ijl I Nuclear TMI Unit 1 10 Update - 6 7/87

p. 3.FIG-38 Fission Gas Release for 1.5 and 1.7 Max/Avg. Axial Power Shapes (Initial Cycle)

Fig. 3.2-38

3500 3000 2500

&It

a.

'C u

m 2000

=. -

u

'C -"'

c u -

~

1500 u -

A.

ftl c.a 1000 500 0

Desi an L i11i t 114% Overpower


10H Power C loseo 1. 7 Ax 1 a I Po we r an EOL Bu rnup Snape 1.5 Axial Power and EOL Burnup Snape Pores 1. 7 lxi al Power ana EOL Burnup Snape M111*u* Desi&n Clearance_!_,JI 2

4 6

8 10 Initial Cola Dia.etral Clearance. in x 103

p. 3.FIG-39 18 ijl I Nuclear TMI Unit 1 Update
  • 6 7/87 Maximum Gas Release to Pressure Inside the Fuel Clad for Various Axial Burnup and Power Shapes (Initial Cycle)

Fig. 3.2-39

t-* -

.t I

I

© HOJ UN I J C fl l CD "°'

Ull CELL HO J COINU CELL

© HOT COhUOl IOO

p. 3.FIG-40

, 1 lk 1 n a F 1 ct o r lnttulpf 11111 Factor CHL llj ijllNuclear TMI Unit 1 Update - 6 7/87 Nominal Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (lnltlal Cycle)

Fig. 3.2-40

~--

t I

©

~

v

~

MOT UNIT CELL MOT llll CELL MOT CUNEa CHL MOT CONU OL IUD

p. 3.FJG-41 CH l hclur '""I f1ttor lnt1111u *111 facur Id iJJ I Nuclear TMI Unit 1 Update - 6 7/87 Maximum Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (Initial Cycle)

Fig; 3.2-41

I. I I. 5 1. '

1. 3
1. 2 1. 1 co
1. 0 I Cl N

0.9 I...

a 0.1
0. 7 IC =

~

O.&

z -..

0.5 u

0

~

0.4 0.3 0.2 0 I 1 0

\\

G. 2.21 I 10* lll/ttr-ft2

\\. \\

I\\:

1-3 DNI M11t Flu1

'\\.

(D1111n Li*it)

\\

\\.

lin 111u* DN*

  • 1. 55

\\

\\

\\

\\.

~

\\

/

~

~" \\

~ I

\\

v I

I Calcul1t1d Surt1c1

\\

Miit Flu1 l

J v

540 510 510 600 620 140 110 610 700 720

p. 3.FIG-42 Loc11 Enthalpy, ltu/lb Id ijl J Nuclear TMI Unit 1 Update - 5 7/86 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Most Probable Condition (Initial Cycle)

Fig. 3.2-42

1.1

1. 5
1. 4 1.3
1. 2
1. 1 UI 1.. 0 I

0 -

')(

0.9 N... -I 0.8 s:: '

~

CD

0. 7
I 0.6 o.~

IQ u a

~

0.4 0.3 0.2

0. 1 0

' \\

\\

'. 2.51 I 1 QI lb/tu-f t2

\\.

I I

I I

~ l r

l l 1-3 DNI Hiit Flux

\\

(Du 11n L 1*1 t)

\\ \\

\\

\\

\\

~

lin1~u* DNIR. 1.12

\\ \\

\\ I

/

v I

\\,

J Calculated Surface

\\

Nut F lu1

\\,

~40 560 510 600

&20

&40 6&0 680 700 720 Local Enthalpy, ltu/lb

p. 3.FIG-43 18 ijJ I Nuclear TMI Unit 1 Update
  • 5 7/86 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Maximum Design Condition (Initial Cycle)

Fig. 3.2-43

CONTF,OL ROD ASSEMBLY PLENUM ASSEMBLY OUTLET NOZZLE COPE BAPREL

uRvE ILLANCE SPECIMEN HOLDER TUBE LOWEP, GRI 0 FLOW rJJSTR18UTOR
p. 3.FIG-44 CONTROL p,oo DRIVES STUDS INTERNALS VENT VALVE CONTROL ROD GUIDE TUl3E CORE SUPPORT SHIELD INLET NOZZLE FUEL ASSEMBLY REACTOR VESSEL THERMAL SHIELD GUIDE LUGS INSTRUMENT GUIDE TUBES INSTRUMENT NOZZLES 0il?]Nuclear TMI Unit 1 Update* 5 7/86 Reactor Ve111l 1nd lntem1l1 *Gen. Arnngement Fig. 3.2-44 TMI Unit 1 Updated Final Safety Analysis Report Reactor Vessel and Internals - Gen. Arrangement Figure 3.2-44 Rev. 20, 04/10
p. 3.FlG-45 CONTROL ROD ASSEMBLY LDCATION INCORE INSTRUMENT LOCATION REACTOR VESSEL THERMAL SHIELD CORE BARREL SURVEILLANCE SPECIMEN HOLDER TUIE Id ijJ I Nuclear TMI Unit 1 Reactor Vessel and Internals - Cross Section Update - 5 1186 Fig. 3.2-45
p. 3.FIG-46 l?HJJ I Nuclear TMI Unit 1 Core Flooding Arrangement CORE FLOODING NOZZLE Update - 5 7186 Fig. 3.2-46

z--,

~

....... ~~-+++----t1-~~~1~~~~~-+r-~~-r--

rn

p. 3.FIG-47 Cllf """'

AllLI Id 5JlJNucl*r TMI Unit 1 Internals Vent Valves UllCIH lll

  • uct*

HlllL llU Update

  • 5 7/86 Fig. 3.2-47
p. 3.FIG-48 SEE SECTION BELOW ldijlJNuclear TMI Unit 1 Internals Vent Valve Clearance Gaps Update
  • 5 7/86 Fig. 3.2-48

)

)

p. 3.FIG-49 U~ DID

,.ITTIM LOWER ENO FITTING 1;

I

-*--~

~:

r--'---1 I*~

INST!tUMt:NTATION TUH _J CONNECTION

'. l:

l I\\

I 1r; I

a

.... /-

' i I

I I

I TOP VIEW I INSTRUMENTATION I TUH I

I' I

I T. J

. l COHT!tOl. ROD l(JJ i ;JI.

GUIDE TUH I

l r

A

' I I

I I/

[]

/!.

~ I i

I

~

FUEL ROO ASSf:Mlll.Y i

I i I.

J'I a

a Ci I

  • I I I

I I

I I I I

  • l CltOSS SECTION

[!m!Jtlucleer TMI Unit 1 Fuel Aaembly Update

  • 5 7186 Fig. 3.2-49

TOP VIEW NEUTRON ~llNG MATERIAL CONTROL.ROD

p. 3.FIG-50 COUPL.INt Id 5JJJNuclear TMI Unit 1 Control Rod Assembly Update - 5 7/86 Fig. 3.2-50

COUPLING SPIDER TOP VIEW NEUTRON ABSORltNG MATERIAL~.

CONTROL ROD

p. 3.FIG-51 l<l ijl I Nuclear TMI Unit 1 Axial Power Shaping Rod Assembly Update - 5 7/86 Fig. 3.2-51

SPIDER----

IUftNAILI POISON ft OD TOP VIEW IUftNAILI POllON MATllUAL

p. 3.FIG-52 1?1 ijlJNuclear TMI Unit 1 Burnable Poison Rod Assembly Update
  • 5 1186 Fig. 3.2-52

SPIDER----

TOP VIEW ORIFICE ROD

p. 3.FIG-'53 111 ijl I Nuclear TMI Unit 1 Orifice Rod Assembly Update - 5 7/86 Fig. 3.2-53
p. 3.FIG-54 tOJSJNG ASSY Id C):JJNuclear TMI Unit 1 Side View of BPRA Retainer Update
  • 5 7/86 Fig. 3.2*54
p. 3.FIG-55 UPPER CORE PLAT! ASSY PAO TYP Id iJl J Nuclear TMI Unit 1 Top View of BPRA Retainer During Operation Update - 5 7/86 Fig. 3.2*55

POllTION INDICATOR AllDllLY

p. 3.FIG-56 STATOR AIHMLY l" /

MACTOll VllUL MUD C--:-~

I I

CCUILINI AllDllLY ldijllNuclear TMI Unit 1 Control Rod Drive

  • Gen. Arrangement Update - 5 7/86 Fig. 3.2-56

'\\

)

SECllll J.l SICTlll Y.Y 1 *ITH Jiil llllU ASSEllLY LUI SCHW Hiil 1111111 ucnu T*T SlCllll S.S UCTIH 1111

p. 3.FIG-57 SICllll J.I SICllll l*I LUI SCHI HT USHILY I~~

~~

SlCflll...

L. l,l, HCTlll 11 HCTlll l*I

[!iil!INucl*ar TMI UnH 1 Updltl

  • 5 7111 Fig. 3.2*57 TMI-UNIT 1 REV.

19, APRI L 2008 p.3.FIG-3 Stuck Rod Location BOC and EOC FIGURE 3.2-3