ML18117A376
Text
10.
~
I.
I.
1.
Ie 4.
~>-- -
B-5. for.== r/8 VI. fJPt (capped cylinder),,== 0.3 A.-l for.== 0 VI. fJPt (capped cylinder), * -
O.~
+-....,~-
"OOLE SURFACE I
o-*S. for. -
3 r/B VS. {JPG (capped cylinder), * -
0.3
- ro.-..-.r-._-__-r-_---......._-._~-,--r--.....-....--.......--_T"/-.-..""~-=
OUTER' ;,V"""".--_....-'-
./"""
- 2. ~.~-4--... :;...--',.L""
~-_.-
-2. ~-+--+------<i~*-+--~r*~-*-... ~""""'::~ '-
.2 1.0 1.2 1.4 Il 1.4
- *_*1-L2 1.0
./
ouru // ".,. MIDDLE
.1
.2
///""".,.
- 4. t---+---+_.. -. -_.
........... '--. ~ _. /.-
'--f--
t---+--+--+.--P ~:;~ ~'-booooJ'G-......-1-4_~~+_---+ _
.-.-'.-v. V~
INNER SURFACE
.~~-
I.---~~
I. ~-+--+-.t-.+-_.. -- ---
2.
o J.
C-5.. for. - r/4 VI. fJPo (capped cylinder), * - 0.3 NOTE RIEP'ERENCE: "STATE OF STRIESS IN A CIRCULAR CYLINDRICAL SHELL WITH A CIRCULAR HOLE," WELDING RESEARCH COUNCIL au L LET IN 102, 1Ie*.
o 1.0 I.~
E-s. for. - r/2 VI. fJPt (capped cylinder), *== 0.3 t.
v--'"- ---
ou~.....-~
~",,"J.."""'V
..,.~---.
Update -1 7/82 B:imNuclear 1MI Unit-1 Total Stress Concentration Factors for Given Loading Cases MIDDLI 5U,,'ACf I
Ul 1.0 G-Sc at. -
0 for Case III (interna' pressure), *== 0.3 F - s., at. - r/2 for Case II (extension case )vs. {Jpo,,-0.3 o
10 1.4 Il 12 1.0
---1----
.1
-!!IOOL[ SURFACE 4.
~..
o
.2
-2.
-4 t-+---+-
-I ----
i.
- p. 5C.FIG-l Fig. 5C-1
a_cl It t r
'.'32
......,....,.211 C "".t~
.-LII
../2
-1.4030
-1....
-2.4293 S.(M"'~")
- - 0
./10
./6 a./l0 2./6 1.4142 '.*ula 7.1IM 7.2IM 4.7. 0.8424 1.110I *..,.. 7.7141 '.3642 6.8314 0.*23 1.7877 I.IOSI '.4107 '.6211 1.1417 0.7184 2.M38I 2._26 2.94060 3.26287 3.81001 4.08940 4.17027 1.08367 1.82011 8.74228 7.88789 9.02300 10.12243
.2.19372 2.29030 2.48768 2.71811 3.02513 3.38629 3.79024 4.23059 4.70107 1.71403 8.79472 7.91827 9.06741
../8 2.33179 2.47978 2.87011 2.89212 3.13783 3.40128 3.87808 3.98608 4.26968 4.86482 5.48212 8.10374 8.72431
- - 0 2.84701 2.81100 3.03170 3.28670 3.66487 3.83488 4.11911 4.40201 4.87874 6.20121 6.88463 8.0S6I0 8.37120 2.46986 2.86926 2.87286 3.08813 3.26013 3.41823 3.66&81 3.81961 3.81810 4.01661 4.18962 4.29120 4.31120 2.76064 2.14174 3.13210 3.30842 3.46133 3.61032 3.*716 3.72044 3.73868 3.86013 3.441&8 3.01080 2.81198 0.14142 0.21213 0.28284 0.36366 0.42426 0.49497 0.66688 0.83631 0.70710 0.84862 0.98194 1.13137 1.27271 0."14142 0.21213 0.28214 0.36366 0.424.
0.4N1'7 0.66688 0.83831 0.70710 0.14862 0......
1.13137 1.27271 3../8
- 1. 12040 0.80340 1.36627 0.81807 1.68750 0.83819 1.84227 0.88262 2.08948 0.88118 2.34032 0.91183 2.69828 0.16182 2.86882 0.18618 3.12823 1.02243 3.81078 1.10414 4.28678 1.20142 4.91210 1.31961 1.61731 1.48418 (middle.urface)
NOTK RK~KRKNCK: ".TATK O~.TRKa. IN A CIRCUL.AR CYLINDRICAL aHKL.L. WITH A CIRCUL.AR HOLK."..KL.DI.... RK.IEARCH COUNCIL aUL.L.KTIH loa. 'Me.
r v'Rt The.....0.,..t,e** caneentration factar Sc and the total A
.tre.. caneentration factor Sc are, re.pectively, defined by A
large.t of <<(11, (I 2 )
Sc -
la,**t of <<(I 10, (I 20)
(for fixed r, ~)
where N10, ~O ore the nGlftinal principalstre.. resultants and (110, (120 are the nOMinal flexural.tre..es for the shell uncIer the.0.... loading but without the hole. N1 and N2 denote the principal.tre..,e.ultant., (11 and 02 the principal stre**e.,e.pectively. The.t,e.. caneentration factor is calculated a. a func tion af q,.
1.34374 1.29180 1.29114 1.33988 1.42488 1.54~44 1.89818 1.87983 2.08800 2.17771 3.15842 3.81843 4.1501O
-0.14117
-0.43787
-0.74414
-1.01744
-1.40112
-1.77184
-2.11817
-2.18273
-3.43817
-4.3811I
-1.40137
-8.46127 0.48840 0.28087 0.07888
-0.11723
-0.30964
-0.1008I
-0.89263
-0.88871
-1.08337
-1.48249
-1.88293
-2.27291
-2.83894
../20.48812 0.44170 0.41483 0.37473 0.32403 0.28168 0.18814 0.011I1
-0.11836
-0.38071
-o.eaea
-1.03124
../41.56884 1.86386 1.78710 1.90438 2.08304 2.24180 2.43144 2.86648 2.89277 3.42431 4.03612 4.72369 6.48676 1.08342 1.32121 1.17420 1.81.1 2.01720 2.21480 2.12821 2.711I7 3.201.
3.82821 4.02201 4.317'77 1.79314 2.01190 2.23108 2."09 2.70142 2.93778 3.18071 3.43312 3.89754 4.27107 4.91382 6.83074 8.42C80 0.14142 0.21213 0.28284 0.35366 0.42426 0.49497 0.66668 0.83639 0.70710 0.84862 0.98194 1.13137 1.27271 0.14142 0.21213 0.28284 0.36366 0.42428 0.49497 0.66668 0.83831 0.70710 0.84862 0.98884 1.13137 1.27271 0.21213 0.28284 0.36366 0.42426 0.49497 0.66668 0.63131 0.70710 0.84862 0.18IN 1.13137 1.27211 IaimNuclea, TMI Unit-1 Update -1 7/82
- p. 5C.FIG-2 Stress Concentration Factor Variations for Different at Various Angles - Capped Cylinder Fig. 5C-2
STRESS DISTRIBUTION AROUND OPENINGS IN CYLINDRICAL SHELLS o.
1.0 2.0 OUTER (A)
EXTENSION CASE L1KERKKEKER (11)
ERINGEN, NAGHDI AND THIEL (9)
LUR'E (1)
SHEVLlAKOV AND ZIEGEL I (11)
(8)
PURE TORSION CASE 8
6
- 2 I
I I
I I
I IN~
,,/
0--
HOUGHTON AND ROTHWELL (21)
./
/
ERINGEN 'ET AL' (9) l-A FIRL FINITE*ELEMENT
~
~.. "",~'
..~
~
\\
Po2 Sc
- 2.5 [1+0.04 Rt 1 0.1 0.2 0.3 0."
0.5 0.6 0.7 0.8 0.9 1.0 (C)
CAPPED CYLINDER UNDER INTERNAL PRESSURf laiI!I Nuclea, TMI Unit-1 Update -1 7/82 p.5C.FIG-3 Stress 0istribution around Openings in Cylindrical Shells*
Fig.5C-3
49.
4l.
30.
30.
4 CD CD
CD
fi OJ
[]
m OJ
~
[1]
[g]
13 14 15
~
Z REFER&:NC£S:
@)
d NODAL POINT NUM~e.q,
[g]
@ P"'Nt!.~ ~\\JMBe..~
ITl ITJ
[]
OJ
[Z]
[Z]
~
~
~
2S
~
7
[g] P"N.'.. 'T¥PSi:
NUM~'£.~
a NO~:
AJ...L D'ME.NS\\O~S.
A.~e:
~lvE"&
,~
\\ NC.~E.S
[]
ITJ
(§]
E)
~
~
rB WJ
[ill S
S~
~
~
jgQ
~
Ii§
@)~
@)~
IQ-
@(i
@fii
@)~
§~
@~
2 r2Q 70.
70.
70.
30.
30.
30.
I~.
[ffiEJ Nuclea, Update -1 TMI Unit-1 7/82 Grid for Finite Element Analysis of Stresses Around Equipment Hatch in RCB
- p. 5C.FIG-4 Fig.5C-4
STEFL
<D STEEL LINER
@ REINFORCING STEEL CONCRETE CD SJ:.w.. LINER E. = 30,000 KSI E,=30,000 KS' V'2 = 0.3 G,e: 11.301 KS' REINEQRCINQ E,:: 30,000 KSI E2= 30,000 KSI V.2 =O
'12 =0
@~
E.= +000 KS' E2=4000 KSI V,t= 0.15 Kil 612: 1140 KII 3-'.815 19.813 19.150
..~,. -
h "0
- ~"
- 4"'
. ~
- ~:
~~.
-0 d_
4 58.4()3 A
t)
~
A.
0.315
~
c(.
(
~ 0.315 TypICAL SHELL (1' LAYERS) t..
. (;\\
~
.\\!!:
4.000 0.187 SHELL TRANSITION ~
(~LAYERS) 5 r----~~;..*:-.~~6:":':"'~:'".-.,-.-~-.~--.:-;'.-."":""'6----:';:":""""'.-
- .~ --( 4.000 2
- !I\\O.2~O
~. _,"
_A..
_ Q..
~
4 4.000 0.181 SHELL ~ OpENING t4t.AYERS\\
8il!I NucIe8r TMI Unit-1 Update -1 7/82 Layer Thickness and Designation p.5C.FIG-5 Fig.5C-5
EXPERIMENTAL THEORETICAL VAN DICKE, ERINGEN lET ALI FINITE ELEMENT SOLUTION
--~--~-- }
d
& 2r
~--------~
8il!INuclear TMI Unit-1 Update -1 7/82
- p. 5C.FIG-6 Member Stresses around Opening Edge (Vessel Subject to Internal Pressure)
Fig.5C-&
FINITE ELEMENT SOLUTION EXPERIMENTAL THEORETICAL~
VAN DICKE, ERINGEN, lET ALI 123
--t
-+
I'II. I II
. I II
/
)
//j
/
//
/.
/
/.
~
.,.".:;;io'/
d
.:0 2r I-
--+ Outer surface Inner surface ~
5 I
I
'i..
I
~i I :
I BimNuclea, TM' Unit-1 Update -1 7/82 p.5C.FIG-7 Surface Stresses around Opening Edge (Vessel Subject to Internal Pressure)
Fig.5C-7
EX PERIMENTAL PHOTOELASTICITY HUGGENBERGER TENSOMET ER 0 FINITE ELEMENT SOLUTION 2r
--f?;.-J.-
a; 8
(£.
~
f 4 --- \\
\\
\\
\\
3 ---I \\
\\I\\ \\
2
---+~
I
\\
\\
I
\\
~"
\\
-t--,,-
I OUTER SURFACE 0
1 2
4 5
6 sir
~Nucl..r TMI Unit-1 Update -1 7/82 Hoop Stresses along Longitudinal Axis (Vessel Subject to Internal Pressure) p.5C.FIG-8 Fig.5e-8
EXPERIMENTAL PHOTOELASTICITY HUGGENBERGER TENSOMETER 0 FINITE ELEMENT SOLUTION --- --- ---
--i fL as*
---B ~
+
_=-=-=+/-J__-
OUTER SURFACE
-J W
Z<
(l.
u..a ozw----........
0 3
4 5
6 5
r I
I
-~-I-I I II J I I fl
---I ra:im Nuclear TMI Unit-1 Update -1 7/82
- p. 5C.FIG-9 Axial Stresses along Transverse Axis (Vessel Subject to Internal Pressure)
Fig. 5C-9
I LECEND
FUlL FINITE-ELEMENT SOLuTION EXPERlllIENTAL THEORETICAL
- -- FINITE*ELEMENT (TRIANCULAR EL fMfNTSI I( IN.
~
o
~ - ----------.~--......~----_r_--------~
3 so I
I I
I
____~'
~Nucl..r TMI Unit-1 Update -1 7/82
- p. 5C.FIG-l0 Hoop Stress - Resultant NO along Symmetry Axes (Test problem)
Fig. 5C-l 0
SECTION WHERE THE T£R~S ARE IDENTIFIED AS FOLLOWS:
ro
=
JI' -2" t
84-*
t' = VARIABLE LEAsT RAf)IUS OF DRAPEO TENooNS P = RADIAL TENDON FORCE lffim Nuclear 1MI Unit-1 Effect of Tendon Curvature
- p. 5C.FIG-ll Update -1 7/82 Fig. 5C-ll
N 0 0'- \\.
j:)o, ~ r
~~Oo...
':;'cc,S
~
~
I"'c~ L::
~
l6$c-
~
J!I IS."-
I -l.'~
.!!.I 1.'_-
~
J!J
-7."
r-_,**
~71( -
~
~
~-IJ* Z.",-
~
~
,---;Z**-
2W- 'tC
~
~
l r-
-U*
_14.<<
~
~
-A-i
-11.-
-144"r
-44 I(
!!!.J
.!!J
-II"
_.r~.
!!!J
_-ZII-
~
-u.-!
I!!J
-INCr
!!!!I
~. r**
-- -re:t..IOON Bi!l Nuclear 1MI Unit-1 Update -1 7/82
- p. 5C.FIG-12 l-JCOAI.
80 No 0"-.
Nodal Forces Due to Curvature of Tendons in Neighborhood of Opening Fig. 5C-12
o a
o o
('t) o q-am o
ou..o
." It '.
9 0
~
en 10-'
~
~_.
J-z
~
w R
a
~
~
Q!
Z t.!1 uI
';J-w n.
tJ)
~ 0
£ uJ
- J
- r.-
~
t-vz
~
~
z w w 2 '
~
~
~
-~
(l 0
- a Ld -
1Il U'l
~
- J if) l!J W w
Z Z
~
~
~
~
0 u-
~
~
~
I laI iLl
~
~
"(,j Q. Z 0
~
.J
~
..J
~
~ 3
":L
-4
~
0
(\\J
-.....::::::.--+-~--+---+---+---+---+---~~---t-----'O TEMp°,:-
8il!lNuclear TMI Unit-1 Update -1 7/82 p.5C.FIG-13 Normal Winter Operating Temperature Gradient -
84" Thick Wall Near Equipment Opening Fig.5C-13
"0
/I0 4 F 100 90 ao 10 60 50 LLI 0
~
4 30 20
'0
~Q~MAL WINTER QPERATING TEMPERATURE GRADIENT
+/-t' ~ 'W.Au..lliAa EQUIPMENT OPENINg 0
JO 20 gO 40 50 WALL THICI-<NfSS IN INCHES O.3'~. 0 4
Q
~
6-6
<0 4?-
~
6 C.
.~
~
Q LINER
~
rr
~Nuclear TMI Unit-1 Update -1 7/82
- p. 5C.FIG-14 Normal Winter Operating Temperature Gradient -
42" Thick Wall Near Equipment Opening Fig.5C-14
U)
-;)
uJ,
1:.
U oZ n
'1
.~
V z
-,.i
~
cJ) t.
(J) uJ 0
2 te to~
J:
y r-
.-J
~
~
~~
~
Q Q
0 G
0 0
2 0
0
~~
~
e<lZ O~
TEMP OF; m!lNuclea, TMI Unit-1 Update -1 7/82
- p. 5C.FIG-15 Normal Winter Operating Temperature Gradient -
Transition Wan Near Equipment Opening Fig.5C-15
o 6>
l!J
~
I---
2-
~
Z ld Q.
y a 0
~
6 t-(!1 2w
~
Q..
~
- J
~
(J 0(1)
~
W lIlW
'1 I
U W
QI!
Z Q.
~
z
~
UI
~
~
2 0<1>
v\\f)
W
..J Z
0
.J
~
.~
~
Cd
'0
~
- r Q
0"-
(1).J U
.J U
~
~
~
u
~.f
~
J:
w
~
0
~
c-..
~
~
<"()
0 f1
- i a
0 0
~
~
~
0
~
0 0
~
2 0
~
~
{\\I
~
at co
\\J w
t\\I N
2
- J TEMP
- F B:iEl Nuclear 1MI Unit-1 Update -1 7/82
, p. 5C.FIG-16 Winter Accident Temperature Gradient - 84" Thick Wall Near Equipment Opening Fig. 5C-16
~R ACCIQ~NI ~ATU~E GRADIENT
-A2 11 THICK WALL ~EAR EQUIPttfNT OpENING 50 40 gO 20 280 281' 240 220 210 200 t80 160 140 120 tOO 80 60 40 20 0
0 10 WALL THIC~NES5 IN INCHES 0L#,3 N
'E.5-.n-"-1_..P...~t-*-~-' _.........,,_~_.. _'_<:1_",_:~4-..2__"......'_~~*:_'-I__.~._,_._.._o_~J "1:3
<:::;l.
~
,,~,'
.... *'*...... *.0. "0.. -I lai!I Nuclear TM' Unit-1 Update -1 7/82
- p. 5C.FIG-17 Winter Accident Temperature Gradient - 42" Thick Wall Near Equipment Opening Fig.5C-17
W,NT£R Ac.c.IOENT TEMPE~ATU~E §RA.OlENT 2810 T~ANSITION WAW-
~E.AI<
EgutPMENT OF';:NtNg 220 zoo 140 o
o JO 20 30 40 30 WALL-T~ICKNESS IN INC.HES 70 0375-1>. '
- A.'
'.' ~'
"4~".. '.
t>> -:.
- . <::) '.
- I*"
~"
~,'.
c:;:
)'
- ~,
\\
4, r:ai!l Nuclear TMI Unit-l
" "A Update -1 7/82
- p. 5C.FIG-18 Winter Accident Temperature Gradient - Transition Wall Near Equipment Opening Fig.5C-18
INTERACTION DIAGRAM FOR AXIAL COMPRESSION/TENSION AN) BENDING 0.85 f~
tL Cc
£ c=0.OO3 a
0.85 f~
d Ploltic rCentroid C
M I
I-I-
REINFORCED CONCRETE*
MEMBER STRAIN fy DIAGRAM£al= -
Ea SIMPLE BENDING DIAGRAM Mb (P (tenl ion)
-- Po Mo Mo INTERACTION DIAGRAM COMPRESSION AfoI) BENDING Po P (Compre..ion)
Pb Po -t---.Ill
--~-------""-------"'-'Ilr--~M
_ Mo INTERACTION DIAGRAM TENSION AND BENDING
+Mo ta:im Nuclear TMI Unit-1 Update -1 7/82
- p. 5C.FIG-19 Interaction Diagram for Axial Compression/Tension and Bending Fig.5C-19
iQUIP~ ACC'S§'
SYMBOLS ELEM£NT 77 101 DIRECTION HOOP MERI DIONJtJ..
SC~E:
~OR. 1"= 1000 IN*-k/lN.
VE~T: 1".100 I<.liN.
-400
-COMPRESSION 'YltJ.
Update -1 7/82 (439C,JOfC)
(4080,-85)
BimNuclear TMI Unit-1 Equipment Access Interaction Diagram.flements 77
& 101
+~
+TENSION K,!IN.
-+100
+200
-200
+MU,Mc$
-~
- ---8000=-=--=-:!"----7:-0--::00~----<aOOO::-:-:-:+------=-5--::0-=-O~O----4000-=---+/------3=-O-OO~-.....,..-----=-200-:-=-O~--=~
.....~-=--:.--t---~~::::::::::;;~+2~OOO::::::~=-.;~:;:::~--~=!:\\-~
+ PU,NcI>
- p. 5C.FIG-20 Fig.5C-20
19lJ'PMENT Acces9.
SYMBOLS EL~M'NTS 66 o
100 12'B~CT~
HOOP MERIDIONAL SCALE; HOR. 1-=1000 IN-KIlN.
VERT.,":aIOO KIlN.
- COMPQESSION KIlN.
300
(- 6220, -255)
-M IN-KIlN
~
.....1-----4-'-----+1..--
-+-----
9000 BOOO 7000 6000 Update -1 7/82 4000 (3600, -95)
(3310 0) +M IN-K~N ta:il!I Nuclear TMI Unit-1 Equipment Access Interaction Diagram..Elements 66
& 100 300
+TENSION KilN 100 200 200 2000 8000 4000 5000
(-5490,-242)
PU1N¢
~~+hAU)M0 84-Fig. 5C-21
.p. 5C.FIG-21
EQUIPMENT ACCESS
- o ELE.MENT S5
~~
DIRECTION HOOP ME~I DIONA..L SCALE:
HOR
,... 1000 IN-Kj1N.
V£QT.,-. 100 I<'/JN.
- COMPRESSION K;r~.
300 4000 M
IN-I("/
+
i'1~*
200 3000 4000 5000 7000
(-~730.l-235) 8000
(-B270- 145)
- M'N. - k'/i",.
84" r------+-~
100 200 300
+TENSION I<IIN Iai!I Nuclear TMI Unit-1 Equipment Access Interaction 0iagram Elements 55 & 99 Update -1 7/82
- p. 5C.FIG-22 Fig.5C-22
~'iY'PMENI ~ss
~..£J..E.M.oo:. j),RECTION 44 HOoP SCALE:
HOR.,.= fOOO IN-KilN.
VER"t I': tOO KIlN.
-COMPRESSION KilN.
300
~
- MIN-KIlN.
(-1~50,-123)
+M IN - KIlN.*
4000 3000 4000 7000 PU,N~
8000 9000 100 200 Equipment Access Interaction Diagram Element 44 Update -1 7/81-lai!J Nuclear TMI Unit-1 300 +TENSION SHELL REFERENCE SuRI=ACe
- p. 5C.FIG-23 Fig.5C-23
ACCES§ SYMBOL G:L.EMENT DIRECTION 73 HOOP SCALe::
HOR.,tI. 1000 IN. K~N.
VERT. '". 100 KilN.
soo Update -1 7/82 4000 M IN-ty,,,,.
BimNuclear 1MI Unit-1 Equipment Access Interaction Diagram Element 73 200 200 300
+ TE N S ION 'Yit4 100
---+-------+-1-------tl~---_+I------tl----+-I-----+-I-----t------=,.........;;;;;;~~_t_----t______...:=;;;;;;;;:;:::;.-_+_--=-~t....--__+----~--
~OOO 8000 7000
~OOO 5000 4000 3000
+PUJN¢ WI IN-~N.
- p. 5C.FIG-24 Fig.5C-24
EgU'PMENT ACCE6S SYMBOLS* ELEMENT DIRECTION 74 HOOP SCALE:
hOR.
(: 1000 IN - KilN.
VE ~T. ;: '000 KJ IN.
(-6220) - 25 5)
- COMPRESSION KIlN.
roo
(-8140, -145
-M IN KilN.
9000 8000 7000 PU, N~
6000 5000 4000 3000 200 100 (3600, -95)
,00 300
+TENSION
~Nucl..r 1MI Unit-1 Update -1 7/82
~
5~-IELL J=<E~ERENCE 5UR~ACE
- p. 5C.FIG-25 Equipment Access Interaction Diagram Element 74 Fig.5C-25
EQUIPMENT ACCE.SG SYMBOL e*
ELEMENT DIRE.CTIO~
MERIDIONAL M ERI 01 ONAL Update -1 7/82 2000
+M IN.*K/I~.*
(1500,-145)
,soo Equipment Access Interaction Diagram Elements 66& 77
((i[J Nuclear
'M. Unit-l 1000
-COM PRESSION WIN.
100 so ISO
+TEN~\\ON !S/IN.
100 1000 1500
(-2'02,- 217) 2000
~500 3000
+PU,N¢ 3500 4000 4500 SCALE:
HOR.,".500 IN - K';I~.
VERT. I'taSO t<AN.
sooo
- p. 5C.FIG-26 Fig. 5C-26
..DIRECTION M£RIO,ONAL MER\\O,ONAL Update -1 7/82 (1500, -145)
((il!] Nuclear TMI Unit-1 Equipment Access Interaction 0iagram Elements 44 &55
- COMP~E5SI0N KI'N.
50 100 50 150 + TEN SION
'00
(-2102) -211)
~
HOR. 1"= 500 IN-KIlN*
VERt I'~ 50 ~N-KilN.
(-~'30.-235)
(-4510.-'31)
+MIN-KIlN.*
~5~OO~O:---4'5-0-:-0---4"tO-OO---3-5~OO----=-30t-O~O---2-:5t-:O-O---2"O-:-OO---15:i:OO:-:---~-=-~~~:::::F~.-p~==:::2:;r-':--~---J5~OO:-:---:20~OO=-:
PU,N~
~~tMU)M~
84'
- p. 5C.FIG-17 Fig.5C-27
t::.WUIPtv.lii\\j -.f ACC~9~
SYMBOb ELEMENt 01 RECTtON o*
IA 9~
100 101 HOOP HOOP HoOP SCALE:
~OR. III. 1000 IN-~N VERT: 1-. 100 K'/,,,,,
- Co MPRE6SION I</IN.
300 4000
,3000 2000 200 100
(-2102,- 2'7) 2000 3000 4000 5000
-M IN-KIlN.
8000
-+MU,M9 100 200
+TENSlON K'IIN.
£mmNuclea, TMI Unite' Equipment Access Interaction Diagram Elements 99, 100 & 101 Update -,
7/82 Fig.5C-28
- p. 5C.FIG-29 SYM. ABOUT t OUTSIDE ELEVAT10N VIEW EL. ~19'*2 7
IS
~R D~
VARIES IT02~
64-118 A.,
~.
MATERIAL SPEC'F ICATION Ie - A516 SR. 10 BiElNuclear TMI Unit-l Sheer Transfer Plates Update -1 7/82 Fig.5C-29