ML18038A078
| ML18038A078 | |
| Person / Time | |
|---|---|
| Site: | Nine Mile Point |
| Issue date: | 07/31/1985 |
| From: | Bennett D GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML18038A077 | List: |
| References | |
| CON-IIT07-450-91, CON-IIT7-450-91 NUREG-1455, NUDOCS 8511070124 | |
| Download: ML18038A078 (142) | |
Text
CONTROL SYSTEMS COMMON SENSOR LINE FAIIURE ANALYSIS EVALUATION REPORT FOR NINE MILE POINT NUCLEAR STATION UNIT 2 JULY 1985 PREPARED FOR NIAGARA MOHAWK POWER COMPANY 852i070i24 85ii04 PDR ADQCK 050004i0 E
CONTROL SYSTEMS COMMON SENSOR LINE FAIIURE ANALYSIS EVALUATION REPORT FOR NINE MILE POINT NUCLEAR STATION UNIT 2 JULY 1985 PREPARED FOR NIAGARA MOHAWK POWER COMPANY PREPARED BY D. E.
BENNETT GENERAL ELECTRlC COMPANY NUCLEAR ENERGY BUSINESS OPERATIONS SAN JOSE, CALIFORNIA 95125 APPROVED BY:
el~~/s-)
A. Koslov, Technical Leader - Regulatory Compliance Engineering Nuclear Services Products Department M. A. Smith, Manager - Regulatory Compliance Engineering Nuclear Services Products Department E+ F g/Md~
E.
C. Echert, Manager - Plant Operational Performance Engineering Plant Performance Engineering C
C..Yin Safety 'n Project Licensing Engineering Xicensing Operation 12-2534 1
CONTROL SYSTEMS COMMON SENSOR LINE FAIIURE ANALYSIS EVALUATION REPORT FOR NINE MILE POINT NUCLEAR STATION UNIT 2 The information contained
- analyses, documents an evaluation of the Nine Mile Point Nuclear Station Unit 2 control systems interaction due to a common sensor line failure.
l.0 PURPOSE The general purpose of the Common Sensor Line Failure Analysis was to review the failure events of non-safety grade Nine Mile Point Nuclear Station Unit 2 (NMP2) control systems which utilize common sensor lines or sensor signals.
The specific purpose of the analysis and this report.
was to supplement the existing NMP2 FSAR Chapter 15 Accident Analyses and respond to the NRC's NMP2 FSAR Question 421.42 concerns pertaining to the failure of,a common sensor line and sensors.
2.0 CONCLUSION
The conclusion of this evaluation is that the limits of minimum critical power ratio (MCPR), peak vessel and main steamline pressures, and peak fuel cladding temperature for the expected operational occurrence category of the identified events would not be exceeded as a result of a common sensor line failure.
Although transient category events have been postulated as a result of this study, the net effects have been determined to be less severe than and bounded by the events in Chapter 15.
3.0 ANAIYSIS METHODOLOGY In conjuction with the NMP-2 Control Systems Common Power Source Failure Analysis (CPA) portion of the overall NMP2 Control Systems Failure Analysis Program, a comprehensive approach was developed and implemented to address the general purpose of the analyses as well as the specific NRC NMP2 FSAR Question 421.42 concerns.
The activity list, Table 1.1, and following descriptions highlight the methodology used to perform the analysis.
It should be noted that this study used the event-consequence logic of the NMP2 FSAR Chapter 15 analysis, but it started the logic chain from a specific source (e.g.,
a single common sensor line failure) rather than a
system condition (e.g.,
feedwater runout).
By approaching the study in this
- manner, a great deal of confidence can be placed in the study conclusions.
The soundness of the total plant design is demonstrated by its being tolerant of these effects.
12-2534 2
-~
3.1 System Identification The scope of control systems to be analyzed was established by first compiling a complete list of the Nine Sile Point Nuclear Station Unit 2 systems and subsystems.
- Next, the list was reviewed to confine the analysis to only those systems which, in their normal (automatic, if available) control mode, have the potential to affect reactor pressure vessel (RPV) pressure, water level, or power level changes.
3.1.1 All the HMP2 plant instrumentation and control systems were identified,
- listed, and agreed upon as complete by the two principal analyzing engineer
- groups, i.e.,
General Electric Company (GE) and Stone and Webster Engineering Corporation (SWEC).
.3.1.2 System and component elimination criteria (see Table 1.4) were 'derived and agreed upon by the principals to delete non-electrical, non-opera-tional, or non-control systems or components (including some previously analyzed systems and components already addressed in FSAR Chapter 15) from the systems identified in 3.1.1 above (see Tables 1.2 and 1.3). If there was.
any uncertainty as to whether or not a
system
- met, the criteria, it was retained for further analysis.
Those systems that met the criteria for elimination were so noted in the complete system list, leaving the remaining control systems to be analyzed.
3.2 Commmon Sensor Line or Sensor Identification The Common Sensor Failuxe Analysis portion of the Control Systems Failure Analyses then identified strategic reactor process sensor lines or sensors commonly shared by two or more plant systems, at least one system of which was a
non-safety grade system identified in Section 3.1.2 above.
3.3 Failure @pe Determination Based on conservative assumptions, a complete and instantaneous sensor line break or plug during normal, full power reactor operation was detexmined to be the bounding failure types for each sensor line analyzed.
3.4 Definitions E
Common Instrument Line:
A line providing a process pressure signal to two or more instrument sensors (pressure to electrical current instru-ment, P/I, transmitters) which serve two or more instrument systems, of which at least one system is a non-safety grade control system, e.g.,
Feedwater Control System (C33).
Common Instrument Sensor:
An instrument sensor which provides inputs to two or more instrument
- systems, of which at least one system is a
non-safety grade system.
12"2534 3
Line Failure Types:
Broken:
An instantaneous instrument line break (guillotine break) that vents to an ambient pressure (near atmospheric pressure) environment.
Plugged:
An instantaneous instrument line plug (complete blockage, pinch) maintaining as-failed line pressure at the instrument sensor and essentially inhibiting any monitoring change, especially actual
- process, vessel, or line parameter changes.
Note:
In the case of differential pressure sensing instruments monitoring reactor pressure vessel water level, a plugged reference or variable line could result in,a more complex response.
The conservative
- response, however, is still an inhibited response, i.e.,
no actions would occur.
Primary Effects:
The direct, instantaneous effects, if any, on the specifically identified sensor or component resulting from the failure.
- Usually, the sensed input signal to the sensor component goes to a
minimum or maximum value or, in the case of a sensor line plug, remains relatively constant at an inaccurate (as-failed) value, insensitive to any actual process changes.
Secondary Effects:
The indirect effect, instantaneous or delayed, if
- any, on the specifically identified sensor or prominent subsequent instrument loop components, i.e., indicators, trip units (trips, permis-
- sives, initiators),
controls
{controllers, valves),
or devices (relays or lights).
RPV Liquid Level Pressure or Power Level Effects:
Any actual or pro-bable reactor pressure vessel liquid level, pressure or power level change directly or indirectly attributable to the identified failure and component actions or inactions.
I Combined Effects:
The systematic evaluation of the identified lines and sensors primary and secondary effects and the resulting action(s), if any, which would most likely result as a direct accumulation of each, or
- all, sensor failures and RPV pressure, liquid, and power level change effects on plant performance.
3.5 Line-Group and Component Tabulation and Failure Analysis The sensor instrumentation directly connected to and receiving an input signal from the identified sensing line or sensor were individually identified,
- grouped, listed, and analyzed to determine what, if any, action would result from the occurrence of each line/sensor failure type described in Section 3.3.
The
- primary, secondary, and RPV parameter change effects, if any, were then identified, analyzed, and tabulated.
Note:
Because signals from these common lines and sensors were fre-quently utilized by components previously deleted as part of.step 3.1.2
- above, for completeness, these and questionable, non-safety or control components were retained in the analysis groups.
12"2534 4
3.6 Combined Failure Effect Analysis The components and their failure effects identified in Section 3.5 were evaluated and reviewed for cumulative effects by the principal parties to identify the prime component and combined component failure event scenarios listed and discussed in the Common Sensor Iine Failure Analy-sis and Evaluation
- Suassary, Table 1.5, and more comprehensively in the
'ommon Sensor Line Failure Analysis load sheets, Appendix A.
3.7 Comparison of Analysis Result to FSAR Chapter 15 The consequences of the postulated failures and their associated process disturbances.
were compared to the consequence of the. events analyses described in NMP2 FSAR Chapter 15.
Where the Chapter 15 event descrip-tion contained consequences of the postulated
- failure, the Chapter 15 event was considered to bound the postulated failures.
4.0 ADDITIONALSINGLE FAIIURE IN AN ACCIDENT MITIGATING SAFETY SYSTEM 4.1 Subsequent to completing the Common Sensor Failure Analysis evaluations, each postulated failure was reviewed to conservatively select a specific sensor line failure which, in combination with an additional single component failure in a reactor accident mitigating safety system, would result in a
"worst case" failure event not previously identified.
Because an RPV Line 3 break, unlike a Line 2 or 4 break (see Table 1.5),
would not normally lead to a relatively prompt reactor
- scram, but like Lines 2
and' interfaces with multiple strategic instruments and
- systems, this line in combination with the additional single component failure described below was postulated as the "worst case" identified failure.
Concurrent with the Line 3 failure event described in Table 1.5, the RPV level sensor B22-N080B is assumed to fail upscale, inhibiting a Divi-sion 2, RPS Channel B low RPV water level 3 reactor scram (see Appen-dix A).
This RPS Channel B inhibit, together with a postulated single upscale failure of the RPV level sensor B22-N080D (on Line 5),
which inhibits a
Division 4, RPS Channel D
low RPV water level 3 reactor
- scram, would preclude the initiation of a low RPV water level 3 reactor scram from occurring as indicated in Table 1.5.
4.1.2 While the actual RPV water level decrease would continue, activating low RPV water level 4 and 3 alarms, the normally expected low water level 4 reactor recirculation pumps and flow runback, being a function of the selected failed Line 3 feedwater control RPV level sensor C33-N004B high level signal, would not occur.
Under these conditions, the NMP2 plant emergency procedures would specifically direct an operator to insert the reactor control rods via manually initiating a
complete RPS trip.
Continued operator inaction would lead to automatic protection when the water level reaches low RPV level 2.
At this level, the Alternate Rod Insertion (ARI) feature will be initiated providing full control rod insertion and reactor shutdown.
12-2534 5
4
4.2 The additional single failure analysis results were evaluated and compared.
with the FSAR Chapter 15 analyses.
No single completely bounding failure was identified.
The postulated double failure, i.e.,
lin>> failure and device failure occurrence, similar to other selected highly unlikely double failure occurrences, was not specifically addressed in Chapter 15.
4.3 While the NMP2 FSAR Chapter 15 did not directly address the above described postulated failure event, the responses to NRC's previous NHP2 FSAR Question 42]
2'I and the RP2 Safety Evaluation (SER)
Section 7.2.2.7 do satisfactorily address similar events.
12-2534 6
P
TABLE I.l CONTRO~. SYSTEMS COMMON SENSOR LINE FAILURE ANALYSIS ACTIVITIES AND ASSIGNMENTS NO.
ACTIVITYDESCRIPTION I.
System Identification 2.
Common Sensor Line or Sensor Identification 3.
Failure Type Determination 4.
Line-Group and Component Tabula-tion and Failure Analysis 5.
Combined Failure Effect Analysis 6.
Comparison of Analysis Results to FSAR Chapter 15, and Exceptions 7.
Additional Siugle Failure in an Accident Mitigating Safety System 8.
Major Event Resolution and Chapter 15 Modification (if required) 9.
Draft and Final Report Compiling SECTION 3.1 3.2 3.3 3.5 3.6 3.7 3.8 4.0 2.0 ASSIGNMENT GE and SWEC GE and SPEC GE and SPEC GE
.GE 12-2493 (1)
J
TABLE 1.2 CONTROL SYSTEMS FAIIURE ANALYSES IDENTIFICATION AND ELIMINATIONOF SYSTEMS FOR THE COMMON POWER SOURCE AND COMMON SENSOR OR SENSOR LINE FAIIURE ANALYSES NUCLEAR STEAM SUPPLY (NSS)
SYSTEMS SCOPE SYSTEM ID B13 B22 B22A B22B B22C B22H B35 C12A C12B C22 C33 C41 C51 C51A C51B C51C C5 1D C72 C88 C91 D13 D24 E12 SYSTEM DESCRIPTION Reactor Nuclear Boiler Process Instrumentation Jet Pump Instrumentation Auto Depressurization Nuclear Steam Supply Shutoff Reactor Recirculation Reactor Manual Control Control Rod Drive Hydraulic Reduadant Reactivity Contzol Feedwater Control Standby Liquid Contxol Neutron Monitoring Startup Range Monitoring Power Range Monitoring Startup Range Detector Drive Tzaversing Incore Probe (TIP) Calibration Reactor Protectioa RPS MG Set Control Engineering Test and Information Performance Monitoring Process Radiation Moaitoring Steam Line Radiatioa Monitoring Post Accident Sampling Residual Heat Removal ELIMINATIONCODE+
Nl, N2 N3, N4 N2 N6 N6 None None None N6 None N6 N3 None N3 N4 N6 N6 N2, N5 N2, N5 None N6 N2> N5
+See Table 1.4 for code criterion explanation.
12-2045 (1)
J 0
SYSTEM ID SYSTEM DESCRIPTION ELIMINATIONCODE+
E21 E22 E31 Fll F12 F13 F14 F15 F16 F17 F24 F41 G33 G36 H13 L12 Low Pressure Core Spray High Pressure Core Spray Leak Detection Steam Teak Detection Reactor Core Isolation Cooling Reactor Fuel Service Equipment Servicing Aids Reactor Vessel Service Equipment In-Vessel Service Equipment Refueling Equipment Storage Equipment Under-Vessel Service Equipment GE/NED Equipment (Vessel Components/Test Equipment)
Startup Equipment Reactor Water Cleanup Filter/Demineralizer (RWCU)
Control Room Panels (Portions)
Local Instrument Panels (Portions)
Fuel (Reactor)
Core Management Services Fuel Design Services N6 N6 N6 N6 N6 N3 N2 N2 N2 N3 N2 N3 N3 N3 N5 N5 All relevant components are included in other identified systems Nl Nl Nl
- See Table 1.4 for code criterion explanation.
12-2045 (2)
T3
I I
TABLE 1.3 CONTROL SYSTEMS FAILURE ANALYSES IDENTIFICATION AND EIIMINATIONOF SYSTEMS FOR THE COMMON POWER SOURCE AND COMMON SENSOR OR SENSOR LINE FAILURE ANALYSES BALANCE OF PLANT (BOP)
SYSTEMS SCOPE SYSTEM ID AAS 12-9 ABD 10-6 ABF 10"2 ABH 13-11 ABM 10"1 ARC 5-1 ASR 3"10 ASS 3-9 CCP 9-1 CCS 9<<7 CES SYSTEM DESCRIPTION Breathing Air Auxiliary Boiler Blowdown Auxiliary Boiler Feedwater and Condensate Auxiliary Boiler Chemical Feed Auxiliary Boiler Steam Annunciator Input Condenser Air Removal Auxiliary Steam - Radwaste Auxliary Steam - Nuclear Battery System Reactor Plant Component Cooling Water Turbine Plant Component Cooling Water Electrical Equipment - Control Room Electrical Equipment - Local ELIMINATIONCODE+
N4 N3, N4 N3, N4 N3, N4 N3) N4 N2 None N3,N4 None None None
- See Table 1.4 For code criterion explanation.
12-2190 (1)
T4
1
SYSTEM ID CMS 33"2 CNA 4-4.1 CND 4-7 CNM 4-1.3 CNO 4-10 CNS 4-3 CPS 22-23 CRS 3"2 CWS 2-1 DCS 28"1 DER 32-9 DET 32-11 DFD 23"11 DFE 23-8 DFM 23-12 DFR 23-6 SYSTEM DESCRIPTION Containment Atmosphere Monitoring Auxiliary Condensate Condensate Demineralizer Condensate Condensate Booster Pump tube Oil System Condensate Makeup/Drawoff Primary Containment Purge Cold Reheat Circulating Vater Decontamination System Reactor Building Equipment Drains Turbine Building Equipment Drains Standby Diesel Generator Building Floor Drains Service Building Equipment Drains Miscellaneous Building Floor Drains Reactor Building Floor Drains ELIMINATIONCODE+
N2 N5 N5 None N5 N5 N3 None None N3 NS N5 N5 N5 N5
- See Table 1.4 for code criterion explanation.
12-2190 (2)
T5
t P
k
SYSTEM ID DPT 23"7 DFM 23-10 SYSTEM DESCRIPTION Turbine Building Floor Drains Radwaste Building Floor Drains ELIMINATIONCODE-N4, N5 DRS 22"22 Drywell Cooling DSM 32-7 Moisture Separator Vents and Drains None DSR 32-6 Moisture Separator Reheater Vents and Drains None DTM 32"5 DWS 23-1 Turbine Building Miscellaneous Drains Domestic Water None N4 EGA 12-4 Standby Diesel Generator Air Startup N4, N6 EGF 8-9 EGP,EGS 24-9 EJS 24-11.2 ENS 24-9 ESS 3-4 Standby Diesel Generator Fuel Standby Diesel Generator Protection Standby Station Service Substation Standby Station Service Supply Breakers Earthquake Recording 'ystem Extraction Steam N4, N6 N7 N7 Nj N2 None EXS FOF 8-10 FPF 15"4 Main Generator Excitation System Diesel Pire Pump Fuel Oil Fire Protection - Foam N5 N4
+See Table 1.4 for code criterion explanation.
12-2190 (3)
T6
SYSTEM ID SYSTEM DESCRIPTION ELIMINATIONCODE*
FPG 15"5 FPL 15-3 Fire Protection - Haloa Fire Protection - CO~
FPM 15-7 Fire Detection FPW 15"1 FWL 7-3 FWP 6-4 Fire Protection - Water FDW Pump Auxiliary tube Oil FDW-Pump Seal and Leakoff N4 N3, N5 N5 FWR 6-3 FDW Pump Recirculation None FWS 6-1 GMC 16-8 GMH 16-7 GML 16-1O GMO 16-6 GSN 14-1 GTS 27-15 HCS 27-13 HDH 6-6 Feedwater System Generator Stator Cooling Water Generator Hs and COg Generator Leads Cooling Geaerator Seal Oil Nitrogen System Standby Gas Treatment Hydrogen Recombiaer High Pressure FDW Heater Drain Noae None None None N5 N4, N6 N6 N6 None
- See Table 1.4 for code criterion explanation.
12-2190 (4)
T7
SYSTEM ID HDL 4-2 SYSTEM DESCRIPTION Low Pr. ssure HN Heater Drain Hot Reheat ELIMINATIONCODE*
None None HVC 22-9 HVE 22"2 HVG 22-17 HVH 22"16 HVI 22-29 HVK 22-12 Control Building A/C Service Building A/C Glycol Heating Hot Water Heating Auxiliary Boiler Room Ventilation Control Building Chilled Water N4 N4 N4 N4 HVL 22-11 HVN 22-14 HVP 22-7 HVR 22-1 HVT 22-3 HVW 22-5 HVY 22"8 IAS 12-1 IHA Auxiliary Service Building Ventilation Ventilation Chilled Water Diesel Generator Building Ventilation Reactor Building Ventilation Turbine Building Ventilation Radwaste Building Ventilation Yard Structure Ventilation Instrument Air Annunciator System N4 N4 N4 N4 N4 N4 N4 None N2
- See Table 1.4 for code criterion explanation.
12"2190 {5)
TS
4
~
0
~
~
SYSTEM ID SYSTEM DESCRIPTION ELIMINATION CODE" IHC ISC 27-19 LMS 33-1 IOS 16-3 LWS 31-1 Computer I/O TSC/CR/EOF-ERF Containment Isolation Containment Leakage Monitoring Turbine Generator Oil Conditioning and Storage Vibration and Loose Parts Monitoring Radioactive Liquidwaste N2 N6 N4 N2 N5 MSS 3-1 Material Handling System Meteorological Monitoring System Mainsteam N3 N2 None MWS 9-15 Makeup Water N5 NJS 24-10 Normal Station Service - Substation NNS 24-8.4 24-8.6 NPS 24"8.2 OFG 31-4 PBS 23-3 Normal Station Service - 4 kV Supply Normal Station Service - 13.8 kV Supply Offgas Sanitary Drains N7 None N4 Radiation Monitoring System Remote Shutdown System N6, N2
- See Table 1.4 for code criterion explanation.
12-2190 (6)
T9 '
SYSTEM ID SAS 12-2 SBPR SCC SCM SFC 34-2 SPF 24"7.1 SPG 24-2.1 SPM 24-3 SPR 24-5 SPS 24-4 SPU 24-1 SPX 24-6.1 SRR 23-2 SRW 23-4 SSP 21-8 SSR 21"2 SYSTEM DESCRIPTION Service Air Steam Bypass and Pressure Regulator Off-Normal Status Indicator Post-Accident Monitoring Fuel Pool Cooling and Purification Res Sta Xfmr Hi-Side Line Protection Main Generator Protection Main Xfmr Protection Res Sta Xfmr Protection Norm Sta Xfmr Protection Unit Protection Station Aux Power Xfmr Protection Roof Drainage Storm and Waste Water Post-Accident Sampling Reactor Plant Sampling ELIMINATION CODE*
N5 None N2 N2, N5 N4, N6 N7 N7 N7 N7 N7 N7 N4 N4 N2, N5 N2, N5
- See Table 1.4 for code criterion explanation.
12-2190 (7)
T10
~
~
I
SYSTEM ID SST 21-1 SSW 21"4 SVH 32-14 SVV 32-8 SYSTEM DESCRIPTION Turbine Plant Sampling Radwaste Building Sampling HN Heater Relief Vents and Drains Main Steam Relief Valves - Vents and Drains EIIMINATIONCODE+
82, 85 N2, N5 N3, N5 N6 SWP 9" 10 SWP 31-6 SWT 9"13 SXS SYD 24-12.3 Service Water Seal Water Radwaste Traveling Screen Wash and Disposal Transient Analysis Synchronizing - Standby Station Service N4 N3, N2 N7 SYG 24-12.1 Synchronizing - Main Generator SYS 24"12.2 TMA 1-4 Synchronizing - Normal Station Service Turbine Trips N7 None TMB 16-5.2 Turbine Generator E.H. Fluid System None TME 16>>1 TMG 16-4 Turbine Generator Gland Seal and Exhaust Turbine Generator Turning Gear None N3 TMI Turbine Generator Supervisory Instrument None TML 16-2 Turbine Generator tube Oil
- See Table 1.4 for code criterion explanation.
12-2190 (8)
J
SYSTEM ID TMR 1"7 TMS 16-9 VTP 32-18 WOS 16-12 WSS 31-3 WTA 13-20 WTH 13-4 WTS 13"1 YUC 24-7.2 YXC 24-7.3 YXL 24-3.2 SYSTEM DESCRIPTION Unit Runback Turbine Generator Exhaust Eood Spray Turbine Plant Equipment Vents Waste Oil Disposal Radioactive Solid Waste Chemical Feed - Acid Chemical Feed - Hypochlorite Water Treating - Raw Water SWYD Supply to Res Station Service 345 kV Motor-Operator Disc Switch 345 kV Line Protection Station Grounding - Instruments and Controls BI,IMINATIONCODE+
None N3, N5 N5 N4 N5 N5 N5 N5 N7 N7
- See Table 1.4 for code criterion explanation.
12-2190 (9)
T12
~
~
TABLE 1.4 CONTROL SYSTEM FAILURE ANALYSES SYSTEM AND COMPONENT ELIMINATIONCRITERIA CODE ELIMINATIONCRITERION+
Nl Non-electrical systems or components, i.e.,
solely mechanical oz software systems or components.
Examples:'he Reactor
- Assembly, vessels,-.
steam turbines.
Note: 'ny. associated electrical control components might be relevant and are to be reviewed.
Examples:
vessel liquid level, pressure and temperature
- controls, and turbine speed controls.
N2 Non-control type electrical systems or components, i.e.,
systems or components having no direct or indizect controlling or controlled
- function, including permissive input and
~ output signals (strictly passive systems and components).
Examples:
the Nuclear Boiler Process Instrumentation
- sensors, transmitter lights, meters or recorders, which
'nly provide pure information, i.e.,
measurement indications, and records.
Note:
Such information, although possibly of interest or importance to acceptable reactor operation and operating personnel's manual control actions is not considered relevant to initiating or prohibiting any automatic electrical contxol actions for the purpose of the control system failure analyses.
N3 Non-operational type electrical control systems or components, i.e.,
systems or components not operating or required to be operable during normal reactor power operations.
Examples:
the Refueling Interlock Control
- System, the startup range portion of the Neutron Monitoring
- System, the turoine generator turning gear controls.
Operational electrical control systems or components which have no direct or indirect interaction with normal reactor operating control systems or components.
Examples:
non-safety related heating and air conditioning contxol systems, lighting controls.
N5 Operational electrical control systems or components which do directly or indirectly interact with reactor operating control systems or components but which can in no way effect changes in the reactor vessel liquid, pressure, or power levels.
Examples:
the Radwaste Control
- System, sump pump level controls.
Operational electzical control systems or components, or portions of systems or components, wh'ich perform direct plant safety functions.
Examples:
the Reactor Protection
- System, the main steam line radiation monitoring portion of the Process Radiation Monitoring System, or the steam leak detection tempezature elements and controls of the Ieak Detection System.
- In some cases, more than one criterion may apply.
12-2044 T13
r
CODE EIININATIONCRITERIO&
Note:
hny related res1 ouse of these safety systems or components to conditions or actions brought about by non-safety related control system or component.actions, resulting directly or indirectly from a
'C'on-safety power source or sensor line failure, are to be xdentxfxe and analyzed.
Example:
a reactor vessel low water level RPS trip and a
subsequent reactor scram resulting from a loss of feedwater flow which was, in turn, directly or indirectly caused by a non-safety power source failure, e.g.,
a feedwater pump motor power failure.
N7 Electrical power systems or components involved in distribution, transformation, or interruption of electrical power.
Example:
The 125 Vdc control power for a condensate pump circuit breaker.
- However, controls for these systems/components might need to be con-sidered if the loss of such control power could lead to the failure of other systems and components.
- In some cases, more than one criterion may apply.
12"2D44 (2)
TABLE 1.5 COMMON SENSOR LINE:-.'AILURE ANALYSIS EVALUATION
SUMMARY
LINE
- NO.
FAIIURE TYPE EVENT DESCRIPTIOP BOUNDING FSAR SEC Broken Plugged None Ndne Broken Plugged (1) I.ow reactor pressure, vessel (RPV) steam dome pressure indication (not actual) trips reactor recirculation pumps A and B runback to the IZMG set.
Core flow and reactor power decrease.
Core void swell increases RPV level, probably to the high level 8 turbine trip and subsequent reactor scram.
(2) If the high level 8 trip is not reached, and if controlling feedwater (FM),
the high RPV level indication (not actual) decreases FV flow and RPV actual level to an eventual low level 3 reactor scram.
Inh'bited response.
Alternate channels provide desired information and required actions, if needed.
15.3 15.2.3 15.2.7 Broken Plugged If controlling feedwater, the high RPV level indication (not actual) decreases feedwater flow and RPV level to an eventual low level 3 reactor scram.
Inhibited response.
Alternate channels provide desired information and required actions, if needed.
15.2.7 Broken Plugged Low reactor steam dome pressure indication (not actual) trips recirculation pumps A and B
runback to IZMG set.
Core flow and reactor power decrease.
Core void swell increases RPV level, probably to high level 8 turbine trip and subsequent reactor scram.
Inhibited response.
Alternate channels available.
15.3 15.2.3 Broken Plugged None None Broken Plugged Low RPV level indication (not actual) trips RPS C and D logic channels causing a low level 3 reactor scram.
Inhibited response.
Alternate channels available.
15.2. 7
- See Appendix A, Common Sensor Iine Load Sheets for complete description.
12-2494 (1)
LINE FAILURE NO.
TYPE 7
Broken Plugged EVENT DESCRIPTION Low RPV level indicatioa (not actual) trips RPS A and B logic channels causing a low level 3 reactor scram.
Inhibited response.
A1.teraate channels available.
BOUNDING FSAR SEC 15.2.7 8
Broken Thru Plugged 12 None None 13 Broken Plugged RPV level decreases and stabilizes at lover level None 14 Broken Plugged High steam line A flow indication (not actual) closes HSIV, reactor scrams.
Inhibited response.
Alternate channels available.
15.2.4 15 Broken Plugged RPV level decreases and stabilizes at lower level None 16 Broken Plugged High steam line B flow indication (not actual) closes MSIV, reactor scrams.
Inhibited response.
Alternate channels available.
15.2.4 17 Broken Plugged RPV level decreases and stabilizes at lower level None 18 Broken Plugged High " earn line C flov indication (not actual) closes HSIV, reactor scrams.
Inhibited response.
Alternate channels available.
15.2.4 19 Broken Plugged RPV level decreases and stabilizes at lover level None 20 Broken Plugged High steam line D flow indication (not actual) closes HSIV, reactor scrams.
Inhibited response.
Alternate channels available.
15.2.4 21 Broken Plugged Low feedwater flow indication (not actual) runs back recirculatioa pumps A aad B to LZMG set.
Core flov and reactor power decrease.
Core void swell aad ZW flow increase.
RPV level iacreases, probably to a high level 8 turbine trip and subsequent reactor scram.
Inhibited response.
Alternate channels available.
- 15. 3 15.2. 3
+See Appendix A, Common Sensor Line I.oad Sheets for complete description.
12-2494 (2)
LINE NO.
FAILURE TYPE Broken Plugged EVENT DESCRIPTION+
High feedwater flow indication (not actual). If controlling feedwater, FV flow and RPV l~vel decrease to an eventual low level 3 reactor scram Inhibited response.
Alternate channels available.
BOUNDING FSAR SEC 15.2.7 23 Broken Plugged Low feedwater flow indication (not actual),
runs back recirculation pumps A and B to LE2!G set.
Core flow and reactor power decrease.
Core void swell and ZV flow increase.
RPV level increases, probably to a high level 8 turbine trip and subsequent reactor scram.
Inhibited response.
Alternate channels available.
15.3 15.2.3 24 Broken Plugged High feedwater flow indication (not actual). If controlling feedwater, PW flow and RPV level decrease to an eventual low level 3 reactor scram.
Inhibited response.
Alternate channels available.
15.2.7 Broken Plugged Slight decrease in RPV level and power None 27 6 28 29 Thru 36 Broken Plugged Broken Plugged Slight power level fluctuation None None None
+See Appendix A, Common Sensor Line Load Sheets for complete description.
12"2494 (3)
T17
APPENDIX h CONTROL SYSTEMS COtSOH SENSOR LIHE FAILURE ANALYSIS NINE NILE POINT 2 SHEET 1
Oi 1
I I LIME I SYS I SENOR I FAILURE MO.
ID ID NO.
I b22 M027 I
PRIHARY EFFECTS lQEIHW DIFFERENTIAL C33 I IMACCllRATE DP SIGNAL I PRESSURE (DP) SIGHAL I
I PLUGGED I INACCURATE DIFFERENTIAL I
I PRESSURE (DP) SIGXAL I
I XOIT I RROEEX I HAXIHNIDIFFERENTIAL I
I PRESSURE (DP) SIGNAL I
I PLUGGED SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR ONER LEVEL EFFECTS I LI-R60S HIGH LEVEL IMDICATIOHIHoNE I
(IHD)
I I LI-R605 INACCURATE SHQFDONH I NONE I LEVEL IHD I
I I
I LI-R608 HIGH LEVEL I
MOME IH.')ICATION (IHD)
I I
I I Ll-R60$ INACCURATE MIDE I
HOME I RAICE LEVEL IHD I
MOXE I
I I
MONE I
I I XONE COMBINED EFFECTS REACTOR PRESSURE VESSEL (RPV) HB TOP HEAD TAP {LEVEL REFERENCE IEG)
CL1 ~ 1
0
APPENDIX h CONTROL SYSTKNS COtSON SENSOR LINE FAILURE ANALYSIS NINE MllE POINT 2 SHEET I
OF 3
I
) LINE ) SYS ID B22 I E22 I
PLUGGED
)
INACCURATN DP SIGNAL X073R BROKEN HAKIMl5 DP SIGNAL PLUGGED j INACCURATE DP SIGHAL M07$C
)
BROXEX HIMIHSI PRESSURE SIGNAL
)
PLUGGED INACCURATE PRESSURE SIGNAL X080C
)
BROKEN
) MAXIHUH DlffKRENTIAL
)
PRESSURE SIGNAL I PLUGGED l INACCURATE DIFFElmllTIAL
)
PRESSURE SIGNAL SENSOR
) FAILURE I ID NO.
TYPE PRIMARY EFFECTS X073L BROKEN I MAXIMUMDP SIGNAL SECOHDARY EFfECTS
) LIS-N673L IHD HIGH LEVEL.
DIV 3 ~ I/2 HPCS UN LEVEL 2
) INITIATlON INHIBITED.
) LS-H674L HIGH LEVEL 8 HPCS I/2 SHUTDOWN.
I
) LIS-X673L, IHD INACCURATE.
) DIV 3, I/2 HPCS UN LEVEL 2
) IHITIATlOH INHIBITED.
) N674L HIGH LEVEL 8 HPCS I/2
) SHUIDOQI INHIBITED.
I
) LIS-M673R IND HIGH LEVEL, I DIV 3, I/2 HPCS IlN LEVEL 2
) IHITIATION IHHIBITED.
l LS-H674R HIGH LEVEL 8 HPCS I/2 SCRAM TRIP.
I
) LIS-N673R IND INACCURATE.
) DIV 3, I/2 HPCS LEVEL 2 IHlTIATIOH IHHIBITKO.
) LS-H674 LEVEL 8 HPCS I/2
)
SCRAH TRIP INHIBITED.
I
( PIS-H678C IHD UN PRESSURE.
I DIV 3e RPS (C) I/2 HIGH
)
PRESSURE SCRAH AND PS-H679C,
) DIV 3, HS4 (C) I/2 RHR ISOLATION INHIBITED.
I
( PIS N678C IHD INACCURATE.
I DIV 3o RPS (C) I/2 HIGH
)
PRESSURE SCRAH INHIBITED.
( MS4 (C)
RHR ISOLATIOH.
I
) LIS-H680C IND HIGH LEVEL.
) DIV 3, I/2 RPS (C) LOV I LEVEL 3 SCRAM TRIP I INHIBITED.
I I LIS-H680C IHD INACCURATE.
I DIV 3s I/2 RPS (C),
LEVEL 3 I SCRAH TRIP INHIBITED.
RPV LIQUID LEVEL PRESSURE OR POVKR LEVEL EFFECTS MONE
)
MOME i
HONE I
t HONE
)
NONE
)
HONE i
NOME I
I XONE' HOME I NONE
)
MONE I HOHE COtSI RED KFFECTS RPV HI4 - 3404 TAP (LEVEL REFEREHCE LKG)
CL2. I
~
~
h
APPENDIX h CONTROL SYSTEHS COHHOM SENSOR LIHE FAILURE ANALYSIS NINE NILE POINT 2 SHEET 2
OF 3
LINE I SYS MO.
ID SENSOR
) FAILURE )
ID MO.
TYPE PRIHARY EfFECTS SECONDARY EFfECTS RPV LIQUID LEVEL PRESSURE OR BNER LEVEL EFFECTS COHBIHED EFFECTS 2
I b22 I MOSIC I BROKEN HAXIHUH D1iiEREMTIAL PRESSURE SIGNAL I PLUGGED I C33
) M004A I BROKEN I INACCURATE DIFFERENTIAL
) PRESSURE SIGNAL I
I I MAXIHUH DIFFERENTIAL
)
PRESSURE SIGNAL PLUGGED I INACCURATE DIFFEREIITIAL I PRESSURE SIGNAL l C33 I M005 BROKEN
) HINIHUH RPV PRESSURE AND
) HIHIHUH RPV DIFFERENTIAL I TEMPERATURE (DT) SIGNALS I PLUGGED I INACCURATE RPV IRESSURE AND I DT SIGNALS I
I LIS-N68IC IND HIGH LEVEL.
) DIV 3, I/2 LEVEL 2 AND
) LS-N684D, I/2 LEVEL I, HS4 t ISOLATION INHIBITED.
I f LIS-N681C IHD INACCURATE.
DIV 3y I/2 NS4 LEVEL-ly2 AMD I BOP ISOLATIOMS INHIBITED.
I I Ll-R606A IND HIGH LEVEL.
LS-K624A LEVEL 8, I/3
( TURBINE AND FEEINATER (W)
(
PUHPS (3) SHUTDONN TRIP.
) IF SELECTED, LI-R608 IND
) HIGH LEVEL, LS-K626h/8 llW
)
LEVEL RECIRC PUHP h/8
)
RUNBACK INHIBITED.
} IF CONTROLLIMG, FH FUN lllLL
)
DECREASE
) Ll-R606A IHD IHACCURATE.
K624A LEVEL 8 ~ I/3 TURBIHE I AND FH PUHPS TRIP INHIBITED.
) IF SELECTED, R608 IHD I
INACCURATE> K626A/8 RECIRC PUMP h/8 RUNBACK IHHIBITED.
IF CONTROLLING:
fV fIlN I CONTROL IHACCURATE I
I Pl-R605 IND LN RPV PRES-I SURE.
833-K6618,
- K6658,
) K6688 RPV TUERHAL SHOCK IHTERLOCKS RECIRC PUHPS h
)
AND 8 HIGH RPV DT START I PERHISSIVE INHIBITED.
I
) Pl-R605 INACCllRATE.
RPV DT I THERHAL SHOCK IHIERMCKS IHHISITED.
I MONE I
I I
)
HOME I RPV LEVEL DECREASES.
LOH I LEVEL 3 SCRAH PROBABLE.
I
)
NONE NONE HOME
)
MONE
)
MONE
)
RPV LOQ LEVEL 3 REACTOR I SCRhll.
I l NOME MOME 12-24VS (3)
RPV N14 340 TAP (CONT'D)
CL2.2
APPENDIX h CONTROL SYSTEMS COHHOH SENSOR LIME FAILURE ANALYSIS NINE NILE POINT 2 SHEET 3
OF 3
LINE I SYS I SENSOR ID NO.
MO.
ID FAILURE TYPE PRIMARY EFfECtS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POWER LEVEL EFFECTS COHBINED EFFECTS 2
I C33 MOOEA I BROEEN MINIMUMPRESSURE SIGHAL I NZImN RPV DT SIGNAL I PLUGGED I INACCURATE PRESSURE SIGNAL LTI15 I BmmEN I IIIHINNDP SIGNAL I
I I PLUGGED I INACCURATE DP SIGNAL I PI-R609 IHD MM STEAM DONE I
PRESSURE
~
RECIRC PUMPS A&B I CAVITATION INTERLOCX RUNBACK I TO LlIIG SET.
I I Pl-R609 IND IHACCURATE.
I RECIRC PIRIPS h&B CAVITATIOH I RUNL<CK TO IFNG SET I IHHll:ITED.
I I LI-IlS IND LOM LEVEL.
I I LI-115 IND IMACCURATK.
I NONE I
I NONE I MONE I
I MONE I
REACTOR POWER DECREASES.
I RPV HIGH LEVEL 8 TURBINE I RPV LEVEL IHCREASES.
I TRIP AMD REACTOR SCRAM.
I PROBABLE HIGH LEVEL b TRIP/
I SCRAH.
I I
MONE I
MOME 12-2477 (4)
RPV H14 340o TAP (CONTEND)
CL2.3
APPENDIX h CONTROL SYSTEttS NtON SENSOR LINE FAILURE ANALYSIS HIRE ttILE POlltT 2 SHEET I
OF 3
LINE I SYS I SENSOR NO.
ID ID NO.
FAILURE I TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POWER LEVEL EFFECTS COttBIHED EFFECTS 3
I B22 I X044B BRtNEX I INEIHtbl DP SIGNAL I
PLUGGED IXACCURATE DP SIGNAL PLUGGED INACCURATE DP SIGNAL I B22 I XOIBB I BROEEX I HIMIHNIPRESSURE SIGNAL I B22 I M062B I NNNEH I HIMIHtbI PRESSURE SIGNAL I LR-R615 IMD HIGH LEVEL IM I XONE I FUEL lADE.
I I
LR-R615 IXD IXACCURATE.
I MOME I
I PR-R623B IHD LOW PRESSe POST I HONE I ACCIDENT ttOXITOR.
I I
I I PR-R623B IND IXACCtmhTE.
I NONE I
I I PIS-N678B IND LOW PRESS.
I MONE I XONE I
I I XONE I
I NQE I MONE E12 I
I PLUGGED 1MACCURATE PRESSURE SIGNAL X058B I BROKN I ttlNIÃltDP SIGNAL I DIV 2, RPS (8) I/2 HIGH I PRESS SCRAH AND PS-H679B I DIV 2, HS4 (D) I/2 RHR I ISOLATION INHIBITED.
I I PIS-N6188 IND IHACCURATE I MONE I DIV 2, RPS (8) I/2 HIGH I PRESS SCRAH INHIBITED.
MS4 (B) RHR ISOLATION.
I I dPIS-N658B IND ttIN DP.
RHR I NONE I INJ VALVE F042B OPENING I PERttlSSIVE.
I MOXE I PLUGGED I IXACCURATE DP SIGNAL E12 I XOSSC I BROKQI I HIXIHtbl DP SIGXAL I PLUGGED I IMACCIIRATE DP SIGXAL I RSS LT112 I RSS I PT113 I BROEEX I
I PLUGGED I
I BROEEM I
I PLUGGED I
I HAXltmH DP SIGNAL I
I IMACClUULTE SIQthL I
I IIINIHtbt PRESSURE SIGNAL I
I INACCURATE PRESSURE SIGNAL I
dPIS-N6588 IND INACCURATE.
I MONE RHR INJ VALVE F0428 OPENING I INHIBITED.
I I dPIS N658C IND HIN DP RHR I NOXE I IHJ VALVE F042C OPEHIKG I PERHISSIVE.
I I dPIS-M658C IND INACCURATE.
I NOHE I
RHR IHJ VALVE F042C OPENING I IXHIBITED.
I I Ll ll2 IXD HIGH LEVEL I
I Ll-112 IND INACCURATE I
I Pl-113 IMD LOM LEVEL I
I Pl-113 IHD INACCURATE I
I NONE I
I MONE I
I XONE I
I NOIE I
RPV Nl4 2004 TAP (LEVEL REFERENCE LEG)
I MONE I NONE I XOIE I XONE I
I MONE I
I MONE I
I XOXE I
CL3.1
APPENDIX A CONTROL SYSTKHS COHHOH SEHSOR LIHE FAILURE AHALYSIS MIHE NILE POINT 2 SHEET 2
OF 3
) LINE I SYS
)
BEMSOR I FAILURE I XO.
ID ID NO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POHKR LEVEL EFFECTS COHBIHKD EFFECTS I B22 I Moaoa l BROKEN I HAEIIaa DP SIGNAL I PLUGGED I INACCURATE DP SIGXAL I
I I
l E22 I MOBIB I BROKEN I IQXuSRI DP SIGNAL I PLUGGED l INACCURATE DP SIGNAL I
I I
$22 I X091B i BROKEN I IQXINN DP SIGXAL
) LIS X680A IHD HIGH LEVEL.
I DIV 2>> I/2 RPS (B) QN
) LEVEL 3 SCRAM INHIBITED.
) LIS N680B IND INACCURATE.
I I LIS-M68)B IHD HIGH LEVEL.
I DIV 2>> 1/2 NS4 LOU LEVEL 2
( AND LS-H684B>> I/2 NS4 UN
( LEVIL I ISOLATIOHS I INHIBITED.
I I LIS-H681B IND IHACCIJRATK.
(
MONE
)
HOWE 1
I
(
NOME
)
MONE I OTHERW]SE>>
SANE AS BROKEN.
)
I I
) LIS-H691B/F IHD HIGH LEVEL.
I NONE 1
MOXE i
MOME I
I NONE I NONE I
l
(
MOHE I M09lf PLUGGED
(
INACCURATE DP SIGNAL I DIV 2, I/2 ADS (h)
RHR (h) ~
I LEVEL I AHD LS"H692B/F I/2
) RCIC LEVEL 2 IHITIATIOH I INHIBITED.
LS-H693B/F
( DIV 2, I/2 RCIC LEVEL 8 I SHUIIuW.
I
) LIS-H691B/F IHD IHACCURATE.
i HONE
(
XONE 3
B22 M095B I BROKEN
) HAXIIRRI DP SIGHAL I PLUGGED i INACCURATE DP SIGNAL PLUGGED I INACCURATE DP SIGHAL B22 I N402B I
BROKEN I IQXIlftRIDP SIGNAL
( X402F I H693B/F DIV 2, I/2 RCIC
) LEVEL 8 SHUTIXNH IHHIBITED>>
I OTHERWISE, SANE AS BROXKH.
I
) LIS-X695B IHD HIGH LEVEL.
)
MOXE I DIV 2>> I/2 ADS DN LEVEL 3 I TRIP PKRHISSIVE INHIBITED.
I
) I.IS-H6958 IMD IHACCURATE.
)
XONE
) OTHKRHISE>> SANE AS BROKEN
) LINE.
t J ATlIS IHD HIGH LEVEL.
DIV 2, i MONE I/2 RRCS LEVEL 2 ARI, SLCS IHITIATIOHAHD RKCIRC PUMP
(
AMD RVCU SHUnOW INHIBITED.
I
) ATlS IHD IHACCURATK, OTHER t
HOWE
) MISE>> SANE AS BROKEN.
l RPV N14 - 200~ TAP (CONT'D)
) XOXE
)
XONE
)
NOME I NOXE CL3.2
APPENDIX h CONTROL SYSTEMS COt0tON SEXSOR LIME FAILURE ANALYSIS NIHE MILE POINT 2 SHEET 3
OF 3
I
) LINE I SYS
)
SEXSOR
) FAILURE I MO.
ID ID MO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR PtNER LEVEL EFfECTS COMBINED EFFECTS 3
I B22 l M403b I
BROKEN I MIMIMWPRIURE SIGNAL I ATMS IND ON PRESSURE DIV 2g I
NONE I/2 RRCS HIGH PRESS RECIRC
I MOME P lRGKD I B22
) R004B BROKEN t PLUGGED I
B22 ROOSB I BROKEN PLUGGED B35 I M040 I BROKEN C33
) X004B BROKEN i INACCURATE PRESSURE SIGNAL I
I I MIMIMlktPRESSURE SIGNAL I
)
INACCURATE PRESSURE SIGNAL MAKIMWDP SIGNAL
)
INACCURATE DP SIGNAL I
I MINIMUM PRESSURE AHD MAKIMW
) RPV DIFFERENTIAL TEMPERATURE (DT) SIGNALS INACCllRATE PRESSURE AXD RPV
) DlFFEREtlTIAL TEMPERATURE I SIGNALS I
I MAKIMWDP SIGNAL i Ll-R606B IHD HIGH LEVEL.
1 LS-K6248 HIGH LEVEL 8, I/3 I TURBlHE AHD FH PUMPS TRIP.
IF SELECTED'I R608 IHD I HIGH LEVEL, LS-K626A/B ON i NONE ATMS IND IHACCURATEs OTHER t
NONE
) MISE SAME AS BROKEN.
I I
I
( Pl tt004B IND MIMIMWPRESS I MORE I
I
) PI-2004B IND INACCURATE I
NOME I
I I DPI R009 IND HIGH LEVEL
)
NOXE I
I I DPI,R009 IND INACCURATE I
NOHE I
I I K667h AXD 668h ON RPV PRESS t
NONE
) TtlERMAL SHOCK INTERLOCKS AND
)
I RECIRC PUMPS h AND B HIGH I RPV DT START PERMISSIVE I INHIBITED.
I
(
SAME AS BROKEN.
)
MONE I MONE l
I
)
HONE I
)
HOME I
I NOME I
I MOME I
)
XONE
)
NOME INACCURATE DP SIGNAL I LEVEL TRIP AHD RECIRC PUMP l RUNBACK TO LFMG SET i -INHIBITED.
I IF COHTROLLIMGs FM FON
( REDUCED.
I
) R606B IHD lltACCURATE.
K624B I LEVEL Bo I/3 TURBINE AHD FH i
PUMPS TRIP INHIBITED. IF
) SELECTED, LI-R608 IHD IHACCURATE, LS-K626h/B FM/
I RECIRC PUMP TRIP/RUHBACK I IlAlIBITED IF COHTROLLIHGe
)
INACCURATE LEVEL CONTROL.
RPV M14 2004 TAP (CONT'D) i RPV LEVEL DECREASES.
EVER-
) RPV LOQ LEVEL 3 REACTOR I TUAL LEVEL 3 SCRAM PROBABLE.
t SCRAM.
I I
]
MOME I HONE CL3.3
I I
APPENDIX h CONTROL SYSTEttS COttttON SEHSOR LIHE FAILURE ANALYSIS HIHE NILE POINT 2 SHEET I
OF 2
I
) LINE ) SYS
)
SENSOR
) FAILURE )
MO.
ID ID NO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POQKR LEVEL EFFECTS COtS IMED EFFECTS I PLUGGED I 1NACCURATE DP SIGNL NO78A
)
BROKEN
) HIMIHUtt PRESSURE SIGNAL l PLUGGED I INCCURATE PRIIIE SIGNAL
)
) LT116
)
BROXKN
)
PLUGGED I
) B22
) NOBDA
)
BROKEN
)
tthElttUtl DP SIGNAL INACCURATE DP SIGNL tthXINRt DP SIGNAL
)
PLUGGED INCCllRATE DP SIGNAL I B22 NORIA BROKEN
) HAKItttN DP SIGNAL 4
) B22
) HO73C
)
BROKEN
) HAIIHUtiDP SIGNAL
) llO730
) LIS N673C/G HIGH LEVEL IHD l HONE
) DIV 3e LEVEL 2o I/2 HPCS I IHITIATIOH IHHIBITEOI
)
LS H674C/G DIV 3y LEVEL 8 ~
) 1/2 HPCS SHUIDOQI TRIP.
I
) N673C/G IHD INACCURATE.
1/2
)
MONE
) LEVEL 2 HPCS INITIATIONAHD I/2 LEVEL 8 HPCS SRUTI' IttHIBITED.
I
) PIS-M67SA IMD LOtt PRESSURE.
)
HONE I DIV II RPS (A) I/2 HIGH
)
PRESS SCRAM AND PS-H679A,
) DIV I HS4 (A) 1/2 TRIP (RHR I/2 ISOLATIOH TRIP)
) INHIBITED.
I l N678A IHD INACCURATE.
DIV I HONE I ~ RPS (h) I/2 SCRAtt AND ttS4 (A) RHR ISOLATION IHHIBITED.
I I LI-116 IMD HIGH LEVEL.
NOHE
)
) Ll-116 IltD INACCURATE.
)
NOHE I
I
) LIS-H6SOA IND HIGH LEVEL I NOHE I DIV lo 1/2 RPS (h) LEVEL 3
)
SCRAM IHHIBITKD.
I
) N6&OA IHD INACCURATK, OTHER
) liONE
) MISE, ShtfE AS BROXEN.
I I
I I LIS M681A IND HIGH LEVEL.
I MOME NONE
)
NOHE
)
NOHE
)
NONE
)
NOME I
)
MOHK I
)
MOHE
)
MOME I
I
)
NONE PLUGGED
)
IHACCURATE DP SIGNAL
) DIV 1, 1/2 HS4 LEVEL 2 AHD
) LS>>H684h DIV 1 ~ 1/2 HS4
) LEVEL I ISOLATIOltS
) INHIBITED.
I I N68lh IMD INACCURATE, OTHER-
) WISE ~ ShtjK AS BROXEH.
HONE
)
NONE RPV H14 160o TAP (LEVEL REFERENCE LKG)
Cl.4. I
APPEHDIX A I
CONTROL SYSTEMS COHHON SENSOR LINE FAILURE ANALYSIS MINE NILE POINT 2 SHEET 2
I I LINE I STS I SENSOR I FAILURE )
in in NO.
TYPE MO.
PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR ONER LEVEL EFFECTS COlBINED EFFECTS C33 M004C BROKEN HAKISBI DP SIGNAL I PLUGGED I INACCURATE DP SIGNAL C33 I NODBC I BROKEN NININQI PRESSURE SIGNAL f MAXIMUMRPV DT SIGNAL PLUGGED I
INACCURATE PRESSURE SIGNAL
) LI-R606C IND HIGH LEVEL.
) LS-K624C I/3 HIGH LEVEI B I TURBINE AMD Bt PUlP TRIPS.
I
) R6O6C IND INACCURATE.
) LS-X624C I/3 HIGH LEVEL B
) TURBINE AHD FH PlÃP TRIPS
) INHIBITED.
I
) K716B RUNS BACK ASB RECIRC I PUMPS AHD FLAN Vlh RECIRC I CAVITATIOH INTERLOCKS.
I I
) K116B RECIRC CAVITATIOX I PREVEHTIOH INTERLOCKS I INHIBITED.
I MOME I HONE I DECREASE IM PSKR LEVELS I
IHCREASE IN RPV LEVEL.
)
PROBABLE RPV HIGH LEVEL I I TURBIHE TRIP/SCRAH.
I
)
NOME
/
MOME
(
RPV HIGH LEVEL B TURBINE t TRIP AND REACTOR SCRAM+
I I
I t
MOHE RPV N14 )6O TAP (CONT'D)
CL4.2
I I
i I
~
I I'
I I
I I
I I
I I; I
'I II I ',
I I'
II I'
II I'
I
~I'I I'I I'
I ~
f I: ll I'. I I'.
II ',
II I.
II I
r: I
~II
ll I
I'l:
I I'
I I
h' I I'
,I I'
I I,
I
.I,I ~
I.
I
I I
I'I I I:
'.I I'
I I
I I
I
'.I' I
I.
I
'I I
1
.I I
I I'
I I
I I:
'I I
,I I II I
I I
I I
I. I I
'I II I
I I I
I I'
I '
11.
t,l:
I I I
I, 1.
I 1, I':
II I
I I
I I
I I
I'
. I I.
I I
~.
I I
I I'1 I'
I I
.I I I I I
'e I I
l tl r
I' I
I'
~ '
I
/
~
APPENDIX h CONTROL SYSTKHS COHHON SEHSOR LINE FAILURE AHALYSIS NINE HILK POINT 2 SHEET 3
OF 3
LIXE XO.
SYS I SENSOR I FAILURE I IO ln XO.
TYPE PRIHARY EFFECTS SECONDARY EFFECTS RPV LIQUID IEVEL PRESSURE OR POVER LEVEL EFFECTS COHBIXED EFFECTS I B22 I
I PLUGGED I I
I M403A I
BROEEM INACCURATE DP SIGNAL HIMIHNI PREBBURE SIMlL PLUGGED I INACCURATE PRESSURE SIGNAL S
I B22 I N402A I BROKEN I HAXIHNIDP SIGNAL I I, I/2 RRCS HIQI RPV DOHE I
PRESS RECIRC PUHPs RVCU SYS I TRIP AHD I/2 ARI ~ SLCS INI-I TIATIOUS INHIBITED.
I I ATHS IND INACCURATE> OTHER-I I 'MISE, SANE AS BROXEH.
NONE I ATHS IND HIGH LEVEL.
DIV I, I XONE I/2 RRCS DN LEVEL I ARI, I SLC'S ~ RECIRC>
AMD RlCU TRIPS I
INHIBITED.
I I
I I ATHS AXD INACCURATE, OTHER-I NONE I MISE, SAHE AS BROXEX.
I I
I I ATHS IHD LOU PRESSURE.
DIV I XONE I XOXE I
I I
MOME I NONE 12-2417 (12)
RPV H14 204 TAP (CONT'D)
CL5.3
APPENDIX h CONTROL SYSmttS COHUON SENSOR LIME FAILURE ANALYSIS HINK MILE POINT 2 SHEET 1
OF 2
I I LINK NO.
SYS ID SENSOR ID HO.
FAILURE TYPE PRltthRY EFFECTS SECONDARY EFfECTS RPV LIQUID LEVEL PRESSURE OR POttER IEVEL EFFECTS COtiBIMKD EFFECTS 6
) l22 ROOS I BROKEN
) ttAIItRBI DP SIGNAL I
I I
I I PLUGGED I IXACCURATE DP SIGNAL I
I RSS I LT11$
I BROKEN ttIHIHW DP SIGNAL I
I PLUGGED I INACCURATE DP SIGNAL I
I I B22 I M080C I BROKEN I ttIMltSBI DP SIGNAL I PLUGGED INACCURATE DP SIGNAL I B22 XOBOD I
BROKEN ttlMltfWDP SIGNAL I PLUGGED IXACCURATE DP SIGNAL
) B22
( M095A
)
BROKEN HIHIHUtt DP SIGNAL PLUGGED I INACCURATE DP SIGNAL I DPI-R005 IXD HIGH LEVEL, I FUEL AREA I
I R005 IND INACCURATE I
I LI-ll5 IXD uN LEVEL LI-115 IMD INACCURATE
) DIV 3, LEVEL 3 RPC (C) 1/2
) SCRhtt.
} NONE I
I
)
HONE I
(
MONE I
I MONE I
I MONE X680C IND INACCURATE.
DIV
)
XONE 3
LEVEL 3 RPS (C) 1/2 SCRhtt I
I INHIBITED; I
I I
LIS-M680D IND UN LEVEL.
)
NOME I DlV 4, LEVEL 3, RPS (D) 1/2
) SCRAN.
I
) H680D IHD INACCURATE.
DIV f
XOHE I hi LEVEL 3e RPS (D) I/2 f SCRhtt INHIBITED.
I
) LIS-H695A IHD IAN LEVEL.
)
NONE I DIV I, 1/2 ADS (A) UN I LEVEL 3 IMITIATIOH-I
) X695h IHD INACCURATE.
DIV f
NONE 1,
LEVEL 3 ~ 1/2 ADS (h)
IHITIATIOHINHIBITED.
)
HOXE I
I
(
NOME I
)
NONE
)
RPV LOM LEVEL 3 REACTOR I
SCRAM lmEX COtSINED VITtt
) B22-M080D 1/2 SCRAM BEUN.
I I
MONE
)
RPV LOM LEVEL 3 REACTOR SCRAM VHBI COtSIMED ttITH I B22-X080C I/2 SCRAtl ABOVE.
I
( NOtm
)
XONE
)
MONE RPV H13 104 TAP (LEVEL VARIABLE LKG)
CL6. 1
APPENDIX h CONTROL SYSTBS COtSON SENSOR LINE FAILURE ANALYSIS NINE NILE POINT 2 SHEET 2
OF 2
I
) I,IXE )
SYS SENSOR
( FAILURE MO.
ID ID NO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POWER LEVEL EFFECTS CONBINED EDICTS 6
C33
) M004A BROKEN PLUGGED
)
MIMISW DP SIGNAL INACCURATE DP SIGNAL i LI-R606h IND lAN LEVEL.
) LS-K624A LEVEL S, 1/3
) TURBIHE AND FW PUMP TRIPS I IHHIBITEO.
) IF SELECTED, LS-K626h/b LOW I LEVEL TRIP RUNS BACK BOTH I RECIRC PUHPS TO LFHG SET.
) IF CQITROLLIXG, FV FuW
)
INCREASES.
I
) R606 )HD IXACCURATE.
) LS-K6?4h AND IF SELECTED, I LS-K626A/B TRIP INHIBITED.
) IF COHTROLLIHG, LEVEL I CONTROL INACCURATE.
)
MONE
(
REACTOR POWER DECREASES.
I RPV LEVEL INCREASES,
)
PROBABLE HIGH LEVEL S I TURBIXE TRIP, REACTOR SCiUuI.
I I
I NONE I
MONE I RPV HIGH LEVEL S TURBINE I TRIP AMD REACTOR SCRAN PRE-I CLUDED BY RPV IlN LEVEL 3
)
REACTOR SCRAH FltON B22-MOSOC
)
AHD XOSOD ABOVE.
I
)
NOME 12-2411 (14)
RPV N13 10 TAP (CONT'D)
CL6.2
APPENDIX h CONTROL SYSTEMS COMMON SENSOR LIHE FAILURE ANALYSIS NINE MlLE POINT 2 SHEET I
OF 2
LIXE XO.
SYS I SENSOR ID HO.
FAILNE I TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFfECTS COMBINED EFFECTS I
I R22 I RSS B22 I
M027 BROEEN I MINIMNIDP SIGNAL I
PLUGGED I INACCURATE DP SIGNAL I
BROEEM I MINIMIS DP SIGXAI I PLUGGED I WLCCURATE DP SIGNAL XOSOB I REDEEM I MIMIMNIDP SIGXAL I PLUGGED INACCURATE DP SIGNAL X095B I
BROEEM I MIMIMNDP SIGNAL PLUGGED I
INACCURATE DP SIGNAL LT116 I BROIEM I MIMIIGBIDP SIGNAL I
I I PLUGGED I INACCURATE DP SIGNAL I LI-R605 IMD LOM LEVEL I
NOME I
I I R605 IMD INACCURATE I
NOHE I
I I LIS-N6SOA IHD LOU LEVEL.
I MOME I DIV le RPS (h) LEVEI 3, l/2 I
SCRAM TRIPS.
I I LIS-H680A IND INACCURATE.
I XONE I DIV I, RPS (A) LEVEL 3 SCRAM I I TRIP INHIBITED.
I I
LIS-H6SOS IHD LSt LEVEL I NOXE DIV 2 ~
RPS (B) LEVEL 3 ~ I/2 I
SCRAM TRIPS.
I I H6SOB IHD IHACCURATE.
DIV I
MORE I
2o RPS (B) LEVEL 3e I/2 I
SCRAM TRIP INHIBITED.
I I LI-116 IHD UW LEVEL I
I LI-116 IND IMACCURATE I
I LIS H695B IHD U% LEVEL.
I DIV 2, I/2 LEVEL 3 AOS (B)
I INITIATIOM.
I I H695B IHD 1HACCURATE.
DIV I HONE I 2o I/2 LEVEL 3 ADS (B) IXI I TIATION IHHISITED.
I HOME I
I XONE I
I RPV LOM LEVEL 3 REACTOR I
SCRAM %HEM COMBINED NITS I B22-HOSOB I/2 SCRAM BEUN.
I I XONE I RPV LOM LEVEL 3 REACTOR I
SCRAM MHEN COMBIHED NITH I B22-HOSOA I/2 SCRAM ABOVE.
I I
NOME I NONE I
I NONE I
I HONE I
HOME RPV Ml3, 1904 TAP (LEVEL VARIABLE LEG)
CL7,1
APPENDIX h CONTROL SYSTEHS COHHOH SENSOR LINE FAILURE ANALYSIS HIRE MlLE POIHT 2 SHEET 2
OF 2
I I LIXK I SYS I SENSOR I FAILURE XO.
ID ID NO.
TYPE 7
I C33 I M0048 BROKEN PRIHARY EFFECTS HINIHtN DP SIGNAL PLUGGED I IXACCURATE DP SIGNAL I C33 I N017 I
I I
PLUGCKD I INACCURATE DP SIGNAL I
I BROKEN I HINIHUH DP SIGXAL I
PLUGGKD I INACCURATE DP SIGNAL C33 I N004C BROKEN I HINIHUH DP SIGNAL SECOXDARY EFFECTS I LI-R606B IHD QN LEVEL.
I lS-K6248o I/3 HIGH LEVEL I TIIRBINE AHD Bt PUHP TRIPS I INHIBITED.
IF SELECTED, LT-K626h/8 flN I LI:VEL TRIP.
BOTH RECIRC PUMPS RUH BACK TO LFHG SET.
lf COHTROLLIHG, FV FLOP I IUrmaSES.
I I R6068 IND INACCURATE.
K6248 I/3 HIGH LEVEL TURBINE AND I
FM PUMP TRIP INHIBITED.
IF SELECTED, K626A/8 UN I LEVEL TRIP AND RECIRC I RUNBACK IHHIBITED.
IF COHTROLLIHG, IHACCURATE LEVEL CONTROL, I
I LI-R606C IND LOM LEVEL.
I LS-K624Co I/3 MICH LEVEL 8 I TURSIHE AHD Rl PUHP TRIPS I IHHISITED.
I I R606C IHD INACCURATE> OTHER-I MISE, SAHE AS BROKEN.
I I LR-R60$ IHD UN LEVEL I
I R608 IHD INACCURATE RPV LIQUID LEVEL PRESSURE OR BNER LEVEL EFFECTS I
MOHE I
REACTOR POVER DECREASES AXD I LEVEL INCREASES.
PROBABLE I RPV HIGH LEVEL 8 REACTOR I SCRAH.
I I
I MONE I
HONE I
I HONE ~
I I
I HONE I
I HONE COHSIMEO EfFECTS I NOXE I RPV HICH LEVEI 8 SCRAH PRE-I CLUDED BY RPV LON LEVEL 3 I
SCRAH FROH 822-MOSOA AND B I TRIPS ABOVE.
I I
I MOME I
MOME I
MOXE I
I I HONE I
I NONE RPV N13 190 TAP (CONT'D)
CL7.2
APPENDIX h COHIROL SYSTEMS COHHOH SEHSOR LIHE FAILURE AHALYSIS HIHE NILE POINT 2 SHEET I OF I
LIME ( SYS
(
SENSOR ID ID NO.
B22 I X013L FAILURE (
PRIMARY EFFECTS HIMNW DP SIGNAL PLUGGED
(
INACCURATE DP SIGNAL B22 X013R I BROKEN HIXIHW DP SIGNAL B22
( M081C I PLUGGED I INACCURATE DP SIGNAL I
I I
I BNNEX I HIXIHlwDP SIGXAL I PLUGGED I INACCURATE DP SIGNAL SECONDARY EFFECTS
( LIS-N673L IXD UN LEVEL.
I DlV 3, I/2 LOM LEVEL 2 HPCS
( IHITIATIOH. LS-H674L HIGH LEVEL 8 HPCS SIIUIIXNM
( INHIBITED.
I
( N673L IHD IHACCURATE.
DIV I 3, I/2 MM LEVEL 2 HPCS IMITIATIOHIHHIBITED, OIHER-I MISE, SAME AS BROIEM.
I
( LIS-N673R IXD LOM LEVEL.
I DIV 3, I/2 LOM LEVEL 2 HPCS
( INITIATION.
LS-M674R, I/2 I LEVEL 8 HPCS TRIP INHIBITED.
I I M613R IHD INACCURATE.
DIV I 3, I/2 LEVEL 2 HPCS IHITIA-I TIOH IHHIBITEDo OTHERMISEs
(
SANE AS BROKEN.
I
( LIS-N681C IXD ON LEVEL.
I DIV 3, I/2 LEVEL 2 NS4 AND
( LS-N684C, I/2 LEVEL I HS4 I ISOLATIOHS.
I/2 STANDBY GAS
( TREATMENT IHITIATIOH.
I
( N681C IHD INACCURATE.
DIV I 3 ~ I/2 LEVEL I AND 2o HS4 I ISODLTIOH TRIP MllBlTED.
RPV LlllUID LEVEL PRESSURE OR POMER LEVEL EFFECTS NONE
(
MONE
(
NONE
(
MONE
(
NOME I
I I
I I
(
MONE I
MOXE I NONE
~
( XONE XONE RPV H12 3404 TAP (LEVEL VARIABLE LEG)
CLS. I
~
~
)
l I
I I
~I' I
I I
I' I
I I
I I:
'I 1
1 ':
H I
I I I; II I
I'I
~
I I
~
I I
I I
l I'
I I
I' l
C
~
(
II,
'sl I
' I
~
I
I I
I. I I
I I
I
'! I' I
I!'I I'
I I I
I I'
.'I I ~
I, I
I I
I I
I I
I't!:
I I
I I
I I
I
' I I:
I I
II I
I'.:
I I
I I I I
~
I I
I I
I I
I I
I I I
I I
I I'
I
'I I
I I
I
~
I
~ I
~
I':
h
'tt':
I I
I I'
I
'tt'i II I:
I
~
I
~
I i
tt I
I I I; I
I It t 'I I'
I I I:
I I
I I
~ '
I':
h II I
I':
I':
h tt
'I I' I
I I
I I'
~
tl: I I':
h I'
II
'I 4.
tt I
I I'
I I I tr. I I':
I I
I II I I
APP h
CONTROL SYSTEHS COtSON SENSOR LINE Fhl LURE ANALYSIS NINE MILE POINT 2 SHEET 1
Oi I
LINE l SYS I SENSOR XO.
ID ID MO.
12 I R22 8032 ihlLURE TYPE RROEEX I
PLUGGED
)
PRItthRY EFFECTS 8AIMkIDP SIGNAL INACCURATE DP SIGNAL I C12 MOOS I C12 l
I I
I E22 E011 I PLUGCED I I
N057 RROKEX I
) PLUGGED
)
INACCURATE DP SIQULL 8AEIHNI DP BIGNAL INACCURATE DP BIQULL NNNEX 8AXIHNI DP SIGNAL PLUOGED l INACCURATE DP SIQULL RROEEM 8AEINW DP SICXAL
) DPI-R009y R602 8108 DP I
I R009e R602 IMACCURATE I
l DPI R005 ~ R603 81GH DP I
) R005, R602 INACCURATE I
I 8657 IND, HIGH DP 8657 IXD MLCCURATE
)
NONE l
)
MONE I
NONE I
)
NONE I
)
NONE I
I MONE RPV LlqUID LEVEL PRESSURE OR POMKR LEVEL EFFECTS SECONDARY EFFECTS I DPI-R613 IXD HIGH DPIFMM I NONE DPI-R613 IND IXACCURATE XONE
)
NOME I
I MONE I
I MOXE I
) NONE I
I MOXE I
f XOXE I
)
NOXE I
(
XONE 12-2477 (21)
RPV Nll BOTTO8 HEAD TAP (LEVEL VARIABLE LEG)
CL12.1
4
APPENDIX A CONTROL SYSTEMS COtSOH SENSOR LINE iAILURE ANALYSIS NINE NILE POINT 2 SHEET 1
Oi I I
I LINE I SYS I
SENSOR I ihlLURE I ID MO.
TYPE NO.
ID PRIMARY EFFECTS SECONDARY EFFECTS RPV LlljUID LEVEL PRESSURE OR POVER LEVEL EFFECTS COHBIRED EFFECTS 13 I C33 K31 I PLUGGED I INACCURATE DP SIGNAL MO86C X086D BROKEN MNIIGBl DP SIGNAL I PLUGGED I
I I
I INACCURATE DP SIGNAL X003l BROKEN NINIIGW DP SIGNAL I il-R603h IHD UN STEAN FLON.
) Ii COHTROLLING, FH FLM I DECREASES.
I
) il-R603A IHD INACCURATE.
) IF COHTROLLIHG, FN HlN I RESPONSE REDUCED.
I
( DPIS.N686C IHD UN FUN.
( DPIS-N686D IMD UN FlAN I STEAN LINE A HIGH FUN HSIVs
( CLOSER INHIBITED.
I i N686C/D IMD INACCURATE, OTHUNISE, SAHE AS BROKEN.
)
NONE I
MOME I
I I
I I
MOME
) RPV LEVEL DECREASES, STABIL- (
NONE 1ZES AT LOMB LEVEL I
I I NOME 12-2477 (22)
HAIN STEAN LINE h, FE HOOSA MICH PRESSURE TAP CL13.1
0-
APPENDIX h CONTROL SYSTEHS COHHOM SENSOR LINE FAILURE ANALYSIS MINE HILE POINT 2 SHEET I
OF I
I I LINE I SYS MO.
ID SENSOR ID MO.
FAILURE I TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POVKR LEVEL EFFECTS 14 C33 X003A l6$m I MAXIHtHDP SIGNAL I
I I
I PLUGGED I INACCURATE DP SIGNAL PLUGGED I INACCURATE DP SIGNAL
) l31
) X086C
( BROEEX
) HAIISW DP SIGNAL i X086D
( FI-R603A IMD HIGH STEAM 1 FUN.
IF CONTROLLIXG, FV FlAN i
INCREASES.
l
) Fl-R603A IND INACCURATE.
li CONTROLLINGi REDUCED EV
) FIAN RESPONSE.
I I DPIS-M686C/D HIGH STEAM I FUNI.
STEAN LINE h HIGH I FLOU HSIVs CLOSURE.
I
( X686C/D IND INACCURATE.
) STEAN LIME h HIGH FUAI HSIVo I CLOSURE INHIBITED.
]
MOME I MONE
) IISIV CLOSURE, SUBSEQUENT I REACTOR SCRAM.
I I
(
MONE I
I HSIV CLOSlmE, REACTOR SCRAM XONE
)
RPV LEVEL INCREASES, STABIL- )
MONE l IZES AT HIGHER LEVEL 12-2471 (23)
HAIN STEAN LINE A, FN-M005h LOU PRESSURE TAP CL14.1
APPENDIX h CONTROL SYSTEMS COHHON SENSOR LINE FAILURE ANALYSIS NINE MILE POINT 2 SHEET I
OF I
LINE I SYS I SENSOR NO.
ID ID NO.
FAILURE TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POVER LEVEL EFFECTS COMBINED EFfECTS I E31 I PLUGGED I INACCURATE DP SIGNAL I
I I
M081C I BROKEN I HINIHW DP SIGNAL Nosm I PLUGGED I INACCURATE DP SIGNAL 1$
I C33 I M03B I
BROKEN I IIIMIHWDP SIGNAL I FI-R6038 IND IAN STEAN FlAN.
I lf CONTROLLIMG, FM FUN I DECREASES.
I I R603B IND INACCURATE.
I If CONTROLLIMG, REDUCED FN I FLOM RESPONSE.
I I DPIS-N618C/D IAN STEAN FLO'M.
I STEAN LINE B HIGH FLOM HSIVa I CLOSURE INHIBITED.
I I N681C(D IMD INACCURATE, I OTHERMISE, SANE As BaokEN.
I RPV LEVEL DECREASES, I STABILIZES AT LOMER LEVEL.
I I
I NONE I
I I
I NONE I
I I
I MoNE I
MoME I
MONE I
I I
I NONE I
NONE 12-2471 (24)
HAIN STEAM LINE B, FE-N0058 HIGH PRESSURE TAP CL15. I
APPENDIX h CONTROL SYSTEMS COtSOM SENSOR LIME FAILURE ANALYSIS NINE NILE POINT 2 SHEET I
OF 1
I
) LINE ( SYS
(
SENSOR ID ID MO.
C33 I N003B FAILURE )
TYPE PRIMARY EFFECTS BROEEN I NAXIHW DP SIGNAL" I PLUGGED i INACCURATE DP SIGNAL I PLUGGED I INACCURATE DP SIGNAL E31
) N087C I BROKEN I NAXIlfQIDP SIGNAL I N087D SECONDARY EifECTS
) FI-R603B HIGH STEAN FuN.
) IF COMTROLLIMG, W FUN I INCREASES.
R603B IHD INACCURATE.
IF COhTROLLIHG, REDUCED FW I FaOV amPOMSE.
I
) DPIS-MCi87C/D HIGH STEAN I FUN.
STEAN LIME B NIGH I FLON ItDIVe CLOSURE.
I
) N687C/D IND IHACCllRATE.
I STEAN LIME B HIGH HlN NSIia
)
CLOSURE INHIBITED.
COMBINED EFFECTS
) NSIV CLOSURE, SUBSEQUEHT
) REhCTOR SCRAM.
I I
I MONE I
J NSIV CLOSURE, REACTOR SCRAII HONE RPV LIQUID LEVEL PRESSURE OR BNER LEVEL EFFECTS
) RPV LEVEL IMCREASESi I
NONE I STABILIZES AT HIGHER LEVEL.
I I
I NONE I NONE 12-2477 (25)
MAIM STEAM LIHE B, FE-H005B 1AN PRESSURE TAP CLI.I
APPENDIX h CONTROL SYSTEMS COSOM SENSOR LINE FAILURE ANALYSIS NINE NILE POINT 2 SHEET I
Oi I
I LIHX ) SYS MO.
ID SENSOR
) FAILURE I ID MO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR HNER LEVEL EffECTS COtSI RED EFFECTS 17 I C33 I
E31 I
MOO3C
) Emm NIMOGN DP SIGNAL I PlljGGED I INACCURATE DP SIGNAL N088C I EROKEM I NIMml DP SIGNAL INACCURATE DP SIGNAL
) If COHTROLLIKG, FN fuN I DECREASES.
I
) R603C IHD INACCURATE.
) lf COHTROLLIHG, REDUCED Rt
) HlN RESPONSE.
I
) DPIS-M688C/D QN SYPH FDN.
i STEAN LINE C HIGH FUN NSIVa I CLOSURr. IMHIalTED.
I
( N688C/D IMD IHACCURATEs I OTNERNISE, SANE AS RROEEH.
I RPV LEVEL DECREASES, I STABILIZES AT GNKR LEVEL.
I I
I MOME
)
NORE I
I I
I MOME I
NONE I
NONE
)
NOHE I
NONE 12-2477 (26)
HAIH STEQl LINE C, FE-HOOSC HIGH PRESSURE TAP CL17.1
APPENDIX A CONTROL SYSTEMS COMMON SEHSOR LIME FAILURE AMALYSIS NINE MILE POINT 2 SHEET 1
OF I
I
) LINE I SYS HO.
ID SENSOR ID NO.
FAILURE TYPE PRIMARY EFFECTS SECOHDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFFECTS COMBINED EFFECTS 14 I C33 M003C I BROKEN
) !QXINRI DP SICHAL
)
PLUGGED
)
1MACCURATE DP SIGNAL
) E31
( MOddC
)
BROKEN
)
MAXIMIZE DP SIGNAL l MObbD
) Fl-R603C HICH STEAM FlAN.
) IF COHTROLLIHG, FN FIAN
)
INCREASES.
I
) R603C IND INACCURATE.
f IF COHTROLLIHG, REDUCED W f FIAW RESPONSE.
( DPIS-M688C/D HIGH STEAM
) FIAT.
STEAM LINE C HIGH
)
FIATS MSIVa CLOSURE.
I
) M688C/D IND INACCURATE.
)
STEAM LIME C HIGH FuN MSIVa
)
CLOSURE INHIBITED.
I MONE
( MSIV CLOSURE.
SUBSEQUENT I REACTOR SCRAM.
I I
)
MOME I
)
NONE
(
RPV LEVEL INCREASES, I
MOME I STABILIZES AT HIGHER LEVEL.
I I
f MONE HAIN STEAM LIHE C, FE-N005C IAN PRESSURE TAP CL18.1
APPENDIX h CONTROL SYSTEMS COtSOM SENSOR LINE FAILURE ANALYSIS NINE NILE POINT 2 SHEET I
OF I
LIME NO.
SYS I SENSOR ID ID NO.
FAILURE TYPE SECONDARY EFfECTS RPV LIQUID LEVEL PRESSURE OR POIKR LEVEL EFfECTS COHBIMED EFFECTS I E31 I N089C I N089D" BROKEN HIMIHtRI DP SIGNAL I PLUGGED IMACCImATE DP SIGNAL 19 I C33 I N003D
)
BROEEN HINIHtRI DP SIGNAL I
I I
I PLINY I 1NACmRATE DP SIGNAL
) FI-R603D IND UN STEAN F lN.
) IF CONTROLLING, FM FllN
) DECREASES.
I
) R603D IND INACCURATE.
) IF CONTROLLING, REDUCED FV I Fue HESPONSE.
I
( DPIS"H689C/D uN STEAM PION.
I STEAU LINE D HIGH fuN HSIVs
( CLOSCIR INHIBITED.
I
) N689C/D IND INACCURATE,
) OTHEIaaSE, SAHE AS BROXEN.
)
RPV LEVEL DECREASES, I STABILIZES AT DNER LEVEL.
I I
i NONE I
NOME I
MOME I
MOME I
MONE l2-2417 (28)
HAIN STEAM LINE D, FE-M005D HIGH PRESSURE TAP CL19.1
APPENDIX A CONTROL SYSTEMS COtSON SENSOR LINE FAILURE ANALYSIS NINE NILE POINT 2 SHEET I
OF I
I
) LIME I SYS NO.
ID SENSOR
) FAILURE )
ID MO.
TYPE PRI NARY EFFECTS SECOHDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR ONER LEVEL EFFECTS 20 C33 PNGGED INACCURATE DP SIGNAL E31 I N089C I
I M089D RROEEM I HAXIISBIDP SIGNAL PLUGGED I INACCURATE DP SIGNAL M003D I
RROKEM I NAXIIRRI DP SIGNAL
) Ff-R603D IND HIGH STEAN I FLOlt.
IF COHTROLLINGo FV
) FLOM INCREASES.
I
) R603D IND INACCURATE.
IF
( CONTROLLING, REDUCED FV FllW
) RESPONSE.
I
) DPIS-M689C/D NIGH STEAN
) FLOlt.
STEAM LINE D NIGH
) FLOM HSIVs CLOSURE.
I
) N689C/D IHD INACCURATE.
I STEAN LINE D MIGS HlN HSIVa I CLOSURE IMRISITED.
I RPV LEVEL IHCREASESo I STABILIZES AT NIGHER LEVEL.
I I
)
NORE I
I
) HSIV CLOSURE, SUBSEQUENT I REACTOR SCRAIl I
I I NOME I
)
MONE I
l I
) HSIV CLOSURE, REACTOR SCRAll I NOME i~ ~eve /col HAIN STEAH LIHE D, FE-H005D LOM PRESSURE TAP CL20. I
~
~
I I
I I
I I'
I I
I I
I I:
I I I I
~ '
I I
I
. I I'I I l I:
I:
I I
I' I
I I
I I
I I
I I
I.I I I
~
~
F I
I I
4 I
I I
I I
I I
I I
'I I:
I I I I' N
I I
I '
I I.
n I'
I
~ I I
I I
'I: ':I
'I I
I'.
! I ~:
I I I
~
~
APPENDIX A CONTROL SYSTEMS COHHOH SENSOR LIME FAILURE ANALYSIS NINE NILE POINT 2 SHEET I
Oi I I
I LINE I SYS
)
SENSOR I FAILURE I MO.
ID ID MO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POOR LEVEL EFFECTS COMBINED EFFECTS 23 I C33 I M0025 I BROKEN I NMINW DP SIGNAL I PLUGGED I
INACCURATE DP SIGNAL
) Fl-R604B IMD ilN FM FUN t FS-K6ISA/B RECIRC PUMPS TRIP
) TO LFIIG SET. Ii CONTROL-I LIMO, FV FUN INCREASED.
I I R-604B IHD INACCURATE.
I K61$h/B FV LINE B LOM FUN I RECIRC PUHPS TRIP INHIBITED.
lf CONTROLLIHG, REDUCED W l YIOQ CHANGE/RESPONSE.
I REACTOR PONER DECREASES, RPV I RPV HIGH LEVEL B TURBINE LEVEL INCREASES, PROBABLE I TRIP AMD REACTOR SCRAM.
) MIGM LEVEL 8 TURBINE TRIP
)
AND SCRAII.
I
(
NOME HAIN FEEWATER LINE B, FE-H001B HIGH PRESSURE TAP CL23. I
APPENDIX h CONTROL SYSTEMS COMMON SENSOR LINE FAILURE ANALYSIS MINE MILE POINT 2 SHEET I
OF 1
) LINE I SYS MO.
ID SEHSOR I FAILURE ID MO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV I.IQUID LEVEL PRESSURE OR POVER LEVEL EFFECTS COMBINED EFFECTS 24 I C33 MOO2B I BROm I MAXIMlNDP SIGNAL l
I PLUGGED I INACCURATE DP SIGNAL
) Fl-R604B IHD HIGH Rf FLtN.
) FS-E618A/B F11 LINE B UN
) FUN RECIRC PUMPS TRIP IHHIBITED IF CONTROLLING'
4 FQN DECREASES ~
I
) R604B IHD INACCURATE.
IF i COHTROLLIHG, FV FIOM CHANGE/
RESPONSE
REDUCED'THERHISE ~
I SAME AS BROEEN
) RPV LEVEL DECREASES, I RPV llW LEVEL 3 REACTOR I PROBABLE llN LEVEL 3 SCRAM.
) SCRAM.
)
MONE I
I 12-2477 (33)
MAIN FKEDVATER LIHE B, FE-HOOlB UN PRESSURE TAP CL2.I
APPENDIX h COHTROL SYSTEMS COHHOM SENSOR LIME FAILURE ANALYSIS MINE NILE POINT 2 SHEET I
OF I
I
) LINE I SYS I
SENSOR I FAILURE I MO.
ID ID MO.
TYPE PRIMARY EFFECTS'ECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POIIER LEVEL EFFECTS COMBINED EFfECTS 2S I CWI I 2CMH-I BROEEM I
Psnh I
) 2CMH-PSIAA I
) lCMH-I PLUGGED I HIMIHW PRESSURE SIGNAL
) 2CNN-PIOA fEED PUHP SUCTION
( SLIGHT DECREASE IM RPV PRESSURE QN ANNUNCIATION,
) LEVEL.
REACTOR POOR IS INDICATIOM STARTS STANDBY
)
- REDUCED, f CONDENSATE BOOSTER
- PUMP,
) TRIPS FEED PUMP 2FNS-PIA,
) FIANT RUNBACK TO 6$ PERCENT
) OF RATED LOAD.
I INACCURATE PRESSURE SIGHAL
)
INDICATOR PIIOA IMACClSATR.
) PUtlP 280-Plh lllLLCOHTIHUE
) TO RUM IF SUCTION PRESSURE l 1$ LM RESUL'IIHG IN PUMP
)
DAMAGE.
STANDBY CONDENSATE I
PUMP START INHIBITED.
)
MONE f
MONE REACTOR FEEDMATER PUMP h SUCTION LIHE TAP Vlbh
) MOTE:
ONLY h LINE INSTRU-( MENTS LISTED, B AHD C LIME IHSTRUHENTS AMD EFFECTS I SIHIMt.
I CL25. I
APPEHDIX A COHTROL SYSTEHS ColQIOH SENSOR LINK FAILURE AHALYSIS HIHK ttILK POINT 2 SHEET
)
Oi I
LINK No.
SYS ID SENSOR I FAILURE I ID NO.
TYPE PRIttARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFFECTS
~
COHBINKD EFFECTS 26 DSR 2DSR LT65A 2DSR-Ls68h 2DSR-LS6lh
) 2DSR-I,T68h
)
BROKEN I
I I
I I
I I
I I
I
) Ii INITIALSTAHDPIPK LEVEL
)
ABOVE BROKEN LIHK, ALL IHSTRUHKHTS OH STANDPIPE I SENSE DN LEVEL.
PLUGGED I ALL IHSIRUHKNTS SENSE I
INACCURATE PRKSBURE.
I BROKEN I li LHITIALSTANDPIPE LEVEL I BKMM BRGKEN LINE, ALL I
IHSTRUHEHTS ON STANDPIPE I SKHSK HIGH LEVEL.
) "HolsTURE sEPARAT0R REHEATER I
I DRAIHS TROUBLE" ANNUNCIATION.I I RKHEATER DRAIH I
I ascslvaa ZDSR-TK6A I
) HORHAL 'MATER LEVEL DRAIN I
CONTROL VALVES 2DSR IVK65hi I
) 2DSR-LVY65h, ZDSR-LVZ65A, I AHD HIGH MATER LEVEL DRAIN I CONTROL VALVE 2DSR-LV68h
) CLOSES.
PARTIAL LOSS Oi I FEEWATER HEATIHG AT 6TH
) POIHT HEATERS 2R5-E6A,
)
I 2R5-E68, AND 285-K6C.
I DRAIH RECEIVER LEVEL MILL I INCREASE.
I
) "ttOISTURK SEPARATOR RKHEATKR I DRAINS TROUBLE" ANNUNCIA I
) TIOH DRAIN VALVES I
) 2DSR-LVX65h, ZDSR-LVY65A)
I I 2DSR-LVZ65A, 2DSR-LV68A
) OPEH.
PARTIAL LOSS OF I
FEKDMATER HEATIHG AT 6TH I POINT HEATERS ZR5-E6hi I
) ZR5-E68, AND 2R5-86C.
) REHEAT STEhtt SUPPLY VALVES
) Rt?SS-AOV92A AND B CLOSE.
) Loss 0F B0TH ttolsTURE
) sEPARATDR REHKATEas.
REHEAT I I STEAN COHTROL VALVE DRAIH I
I VALVES 2HSS ttOV9h AND B OPEN. I I
I I HIGH LEVEL IN DRAIN RECEIVER I
I tthY NOT OPEN DRAIN VALVE I
I 2DSR-LV68h RESULTIHG IN
) MATER BACKUP TO RKHKATER.
SLIGHT DECREASE IN FEEWATKR TKHPERATURE MILL RESULT IH IHCREASE OF CORE POMKR MHICH I MlLL BK CotfPKHSATED BY ttODULATION OF CORE FlAW.
INCREASE IH 2DSR-TK6A LEVEL MILL RESULT IH 'MATER BACKUP To REHEATER.
TEHPERATURE oi I STEAN TO LOM PRESSURE TURBINE MILL REDUCE.
THIS tthY RESULT IN TURBINE VIBRA-TIONS, TRIPi AHD REACTOR 8CRAH.
NONE SLIGHT DECREASE IN iKEWhTKR TEHPERATURE MILL RESULT IN IHcaahse oF coaK POMKR MHlcH I MlLL BE COHPEHSATED BY ttODULATIOH OF CORE FlAN LOSS Oi HOISTURK SEPARATOR REHEATER REDUCES DN PRESS.
TURBINE EFFICIEHCY.
ZHSS-ttOV9h AHD B POSSIBM TURBINE VIBRATIONS~
)
HONK TRIPq AHD REACTOR SCRAM, 12-2477 {35) ttOISTURE SEPARATOR RKHEATER DRAIN RECEIVER TAHX h LEVEL STAHDPIPK I NOTEs ONLY h LINE IHSTI?U-I ttKNTS I,ISTKD, B AND C LINE
)
IHSTRUHKHTS AND EFFECTS I SIHILAR.
I CL2
~ I
APPENDIX h CONTROL SYSTEHS COHHOH SENSOR LIHE FAILURE ANALYSIS HIHE NILE POIHT 2 SHEET I
OF I
I I
I
) LINE
)
SYS
)
SENSOR
) FAILURE )
NO.
ID ID HO.
TYPE PRIMARY EFfECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFFECTS COMBIRED EFFECTS 27 I HDL )
I I
2HDL-LSIA 2HDL-L87A BROKEN I IF INITIALSTANDPiPE LEVEL
)
ABOVE BROKEN LIHE, ALL
)
IHSTRUHEHTS ON STANDPIPE
)
SENSE LOM LEVEI..
I BROKEN I IF INITIALSTANDPIPE LEVEL I
BELOM BROKEH LINE> ALL IHSTRUHENTS ON STANDPIPE I SEHSE HIGH LEVEL.
I PLUGGED I ALL IHSTRUHENTS SEHSE I
INACCURATE PRESSURE
)
NONE IST POIHT HEATER MATER LEVEL I HIGH ANNUNCIATION.
4TH POINT HEATER DRAIN PUHP I 2HDL-Plh TRIP.
LOSS OF FLOM I TO CONDENSATE SYSTEH.
t HOISTURE SEPARATOR DRAIN
) RECEIVER 2DSH-TK4h AND TK4B HORHAL DRAIH VALVES t 2DSH-LVX75h AND 2DSH-LVX75B t CLOSE.
6TH POINT HEATER I HORHAL DRAIN VALVE 2HDH-LV6h CLOSE.
CONDENSATE IiEATER I STRING h OUTLET VALVE 2CNH-HOV32A AHD INLET VALVE 2CNH-HOV33h CLOSE.
I f POSSIBLE CONDENSATE HEATER I STRING "A" ISOLATION LOSS ~
I IAiEH IST POINT HEATER
) 2CHH-Elh LEVEL IS NIGH,
)
MATER INDUCTIOH INTO TURBINE I MILL RESULT IH TURBINE I VIBRATIONS, POSSIBLE TllRBIHE I TRIP LEADIHG TO REACTOR SCRAM.
I
(
NONE I
NONE
)
HONE
)
NONE I LOSS OF CONDENSATE HEATER I
NONE
) STRING A REDUCES FEEDMATER
)
TEHPERATURE TO REACTOR>
CORE
)
POMER IHCRFASES.
REACTOR I RECIRCULATION FLOM DECREASES I
I REESTABLISHIHG POMER LEVEL.
I 12-2477 (36)
IST POIHT CONDENSATE FEEDMATER HEATER h LEVEL STAHDPIPE I HOTE:
ONLY h LINE IHSTRU I HENTS LISTEDi B AND C LINE IHSTRUHEHTS AHD EFFECTS I SIHILAR.
I CL27. I
APPENDIX h COHTROL SYSTEHS COHHOH SENSOR LIHE FAILURE AHALYSIS HIHE NILE POINT 2 SHEET I
OF I
I I
I
) LIHE ) SYS J
SEHSOR
) FAILURE )
HO.
ID ID HO.
TYPE PRIHARY EFFECTS I
28
)
HDL I 2HDL-I BROKEH I HIGH LEVEL SIGNAL LSSA I
PLUGGED I IHACCURATE PRESSURE SIGNAL SECONDARY EFFECTS
( "2ND POINT HEATER WATER I LEVEL HIGH" AHHUNCIATION.
I 4TH POIHT HEATER DRAIN PUHP 2HDL-Plh TRIP.
HOISTURE I SEPARATOR DRAIN RECEIVERS 2DSM-TK4A AND 2DSH-TK4B
)
HORHAL DRAIN VALVES 2DSH-LVX75h AND I 2DSH-LVX75B CLOSE.
6TH I POINT HEATER NORHAL DRAIH VALVE 2HDII-LV6h CLOSES.
CONDENSATE HEATER STRING h J
OUTLET VALVE 2CNH-HOV32h I
AHD INLET VALVE 2ChH-HOV33A I CLOSE.
I POSSIBLE CONDENSATE HEATER
) STRIHG "h" ISOLATION LOSS I
WNEH 2ND POINT HEATER 2CNH-E2A LEVEL IS HIGH.
I HIGH WATER INDUCTIOH INTO I TURBINE WILL RESULT IN
) TURBINE VIBRATIONS, POSSIBLE I TURBINE TRIP, REACTOR SCRAH.
)
HONE I
NONE RPV LIQUID LEVEL PRESSURE OR POWER LEVEL EFFECTS I
LOSS OF CONDEHSATE FEEDWATER I
NONE I HEATER STRING A.
REDUCES I
I FEEDWATER TEHPERATURE TO REACTOR, CORE POWER IHCREASES.)
REACTOR RECIRCULATIOH FLOW I DECREASES, REESTABLISHIHG I
POWER LEVEL.
COHBIHED EFFECTS 12-2477 (37) 2HD POINT CONDEHSATE FEEPWATER HEATER h TAP VISA (LEVEL REFERENCE LEG)
)
NOTE:
ONLY A LINE IHSTRU-I HENTS LISTEDo B AND C LINE INSTRUHEHTS AHD EFFECTS I SIHILAR.
I CL2B.I
APPENDIX h COMIROL SYSTEMS CONHOH SEHSOR LIME FAILURE ANALYSIS MIME MILE POIHT 2 SHEET I
OF I
I
( LIME )
SYS I SENSOR
) FAIUJRE
)
ID lD NO.
TYPE MO.
PRINARY EFFECTS SECONDARY EFFECTS RPV LlqUID LEVEL PRESSURE OR POlKR LEVEL EFFECTS 29 MDL )
2HDL I BROKEN I QW LEVEL SIGNAL I
2HD POINT HKhTER MATER LEVEL I POSSIBLE TURBINE TRIPo i MONE PLUGGED I
(
SANK AS BROXKN LOII ANMUMCIATIOHy OTHKRMISE~
)
REACTOR SCRAM I SHE AS PLUGGED LIME 2S i ABOVE I
INACCURATE PRESSURE SIGNAL I SANE AS BROKEN 12-2477 (38) 2HD POINT COMDEHSATK FEEWATKR HEATER h TAP VI9h (LEVEL VARIABLE LEG) t NOTE:
ONLY h LINE INSTRU-I MENTS LISTED' AND C LIME IHSTRUHENTS AMD EFFECTS I SIMILAR.
I CL29. I
I v
APPENDIX h CONTROL SYSmfS COIDION SENSOR LINE FAILURE ANALYSIS HINE IflLE POINT 2 SHEET I
OF I
I I I,INE ) SYS I SENSOR ID ID NO.
PAILURK )
TTPK PRIMARY KfFECTS SECONDARY EFFECTS RPV LIqUID LEVEL PRESSURE OR POMER LEVEL EffECTS 30 HDL I 2HDL-I LT3A
) 28DL LS9A 2BDLa IS13h I 2HDL LS23A
) 2BDL-LT23A BRDKKM
( IF INITIALSTANDPIPE LEVEL I ABOVE BROKEX LINE, ALL
)
IMSTRNfEHTS OX STANDPIPE
) SKXSK LOM LEVELS BROKEN
) IP INITIALSTANDPIPE LEVEL I
BELOM BROKEM LIME> ALL
(
IHSTRINEHTS OH STANDPIPE I SENSE HIGH LEVELS I
PLUGGED I ALL IMSTRUHEHTS SENSE I INACCURATE PRESSURE I
~'3RD POIHT HEATER MATER I LEVEL PAP AHNUNCIATlOH.
j 3IID POINT HEATER 2CHlf-E3h
) HORlfhL LEVEL DRAIN VALVE
) 2IIDL-LOV3h AHD HIGH LEVEL
( DIIAIM VALVE 2HDL-LV23A I CASK IIEATER MATER LEVEL I Ml!.L INCREASE.
LOSS OF CON-
)
DEHSATK HEATIXG AT 3RD POINT
)
BEATER DRAIN COOM' 2QII-DCL3A.
I
) "3RD POINT BEATER MATER
) LEVEL HIGH" ANNUIICIATIOH.
) DRAIX VALVES 2HDL-LV3A AND
] 2HDL-LV23A OPEN.
3RD POIHT I HEATER 2CHH-E3A EXTRACTION
)
STEAN ISOLATION VALVE I 2ESS-IIOV15A AHD HON-RETURN
( VALVE 2ESS-HRVI6A CLOSE.
(
LOSS Oi CONDENSATE BEATING
) AT 3RD POIHT HEATER 2CIIH-E3A
) AND DRAIN COOLER 2CNII-DCL3A.
I
) HIGH MATER LEVEL HAY NOT ISOLATE HEATER EXTRACTION
) STKhff VALVES.
)
DECREASE IH FEEDMATER t
NONE I TEMPERATURE MILL RESULT IX
)
INCREASE OF CORE POMER
)
t COlfPEHSATED BY IfODULATIOMOP I
)
CORE PLOM.
I I
I I POSSIBLE MATER IHDUCTIOM INTO TURBINE RESULTIHG llf I TURBINE TRIP, REACTOR SCRAIf.
MOME
) SLIGHT DECREASE IN FEEDMATER ]
MOXK
] TEMPERATURE MILL RESULT IN
)
I INCREASE OF CORE POMER I
)
COHPEHSATKD BY IIODULATIOMOF
(
)
CORE FLOM.
INCREASE IH i HEATER MATER LEVEL POSSIBI.Y I MILL LEAD TO MATER INDUCTIOH l INTO TURBINE RKSULTIHG IN I TURBIXE TRIP.
12-2471 (39) 3RD POIHT CONDENSATE FEEDMATER HEATER h LEVEL STANDPIPE
) HOTEi OHLY h LINE IHSTRU-I IfENTS LISTED, B AND C LIXE I INSTRUMENTS AMD EFFECTS
) SIMILAR.
I CL30. 1
APPEXDIX A CONTROL SYSTENS CONNOH SENSOR LINE FAILURE AHALYSIS MIHE NILE POINT 2 SHEET I
OF I
l LIME I SYS I SRHSGR
) FAILURE NO.
ID ID NO.
TYPE PRI NARY EFfECTS SECOHDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFfECTS CONEINED EffECTS 31 XDL I 2HDL-
)
I.T4A I 2HDL-LSIDA
) 2HDL L814A 2HDL-LS24A I 2XDL-LT24A I BROKEN I
I I
I I
I l
I I
I I
BROKEN
( ALL INSTRUMENTS OH STAHDPIPH
)
SENSE uJM LHVEL, IF INITIAL
) STANDPIPE LKVHLABOVE BROXRX i LIME.
) ALL IMSTRUHHMTS ON STANDPIPE t SENSE HIGH LEVHLr IF INITIAL I STAXDPIPH LEVEL BHLOM BROHKX I LINE.
t PLUGGED
( ALL IMSIRUNEMTS SEMSH I CONSTANT PRESSURE
) "4TH POINT HEATER 2CNN-E4h
) MATER LEVEL LOM" AHHUHCIA-
) TIOH, FALSE IHDICATIOH.2HDL
) LIC4h. HORNAL LEVEL DRAIX I VALVE 2HDL-LV4A AMD HIGH I
)
LEVEL DRAIH VALVE 2HDL-LV24h f i CLOSE.
4TH POINT HEATER
)
MATER LEVEL INCREASES.
LOSS
)
) Of HEATER DRAIH PUMP ihfM TO I
)
CONDENSATE SYSTE!l.
I l
I TH POINT HEATER MATER LEVEL HIGH ANNUNCIATION~
I FALSE INDICATION. 2HDL-LIC4A.I I VALVES 2HDL LV4A AHD I
I 2NDL LV24A OPEN ~
LOSS Of I
I 4TH POINT HEATER DRAIN PUNP
)
FLOM TO CONDENSATE SYSTEN.
) 5TH POINT HEATER NORNAL I DRAIH VALVE 2HDL-LV5A CLOSES I
t MOISTURE SEPARATOR DRAIH
) RECEIVER TAHE 2DSN-TX4h AND
) TK4B.
DRAIN VALVES
) 2DSN-LVX75A AND 2DSN-IVX75B
) CLOSE.
EXTRACTIOH STEAN I ISOLATIOH VALVE 2ESS-NOV22A
)
AHD NOM-RETURN VALVE
) 2RSS-NRV23A CLOSE.
LOSS OF I CONDENSATE NRATIXG AT 4TH
) POINT HEATER.
I I HIGH MATER LEVEL IH HEATER I
2CHN-E4A HAY HOT ISOLATE
)
t HEATER EXTRACTION STEAN I
) VALVES.
INCREASE IX HEATER MATER t
LEVEL MILL LEAD TO MATER IHDUCTIOM INTO TURBIHE POSSIBLY RESULTIHG IH TURBINE TRIP, REACTOR SCRAM.
DECREASE IH FEEDMATER
(
NOXH TENPERATlJRE MILL RESULT IH INCREASE OF CORE POMER MHICH I MILL BE CONPENSATED BY INSULATIOH OF CORK FLOll.
POSSIBLE MATER IHDUCTIOH
(
XOXH INTO TlJRBINE RESULTING IH TURBINE TRIP, REACTOR SCRAN.
12-2477 (40) 4TH POINT CONDENSATE FEEDMATER HEATER h LEVEL STANDPIPE i NOTE:
ONLY h LINE IMSTRU-I NEHTS LISTEDr b AND C LINE IHSTRINENTS AND EFFECTS I SINILAR.
I CL31. I
APPENDIX h CONTROL SYSTEttS NtOH SENSOR LINE FAILURE ANALYSIS MIME NILE POINT 2 SHEET I
OF I
I I LINE I SYS I SENSOR I FAILURE I lm.
ID ID MO.
TYPE PRIllARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POMER LEVEL EFFECTS COttBIRED EFFECTS 32 I HDL I 2HDL LTSA 2tmL>>
LSIIA 2HDL LS25i I 2HDL-LT2SA I 2HDL-I BRORRM I
I I
I I
I I
I I
I I
I BROKEN I IF INITIALSTANDPIPE LEVEL I ABOVE BROKEN LINE, ALL I INSTRNIKMTS OX STAXDPIPE I SENSE LOQ LEVEL I IF INITIALSTANDPIPE LEVEL I BELOM BROtmX LINE, ALL I
IMSTRUttEHTS OM STANDPIPE I SENSE HIGH IIVILo I PNGGRD I ALL INSTRlWKXTS SEltSE I
INACCURATE PRESSURE.
I "STH POINT HEATER MATER I LEVEL LOM" AHHttHCIATIOH.
I STH POIHT HEATER XORtthf.
I MATER LEVEL DRAIN VALVE
. I I 2HDL-LVSA AND HIGH MATER I LEVEL DRAIN VALVE 2llDL-LV25A I I CLOSE.
PARTIAL LOSS OF COH-I I DKXSATK HEATINO AT 4TH POIHT I I HEATER 2CNtt-E4h.
ST8 POINT I
I HEATER 2CNH-ESA QATKR LEVEL I
I MILL IltCREASR.
I I
I I "STH POIHT HEATER MATER I
I LEVEL HIGH" ANNUNCIATION.
I I DRAIX VALVES 2HDL-LVSA AND I 2HDL-LV25h OPEH.
PARTIAL LOSS OF CONDENSATE HKATIXG I
I AT 4TH POINT HEATER I 2CNtt-K4A.
STH POINT HEATER I 2CNtt-ESA EXTRACTION STEAN I ISOLATION VALVE 2ESS-ttOV2SA I CLOSES.
LOSS OF CONDENSATE I HEATIHG AT STH POINT HEATER I 2CtOI-RSA.
I I HIGH MATER LEVEL IH HEATER I
2NH-ESA tthY NOT ISOLATE I mama RXTRACTIOX STRAH I
I VALVE.
I SLIGHT DECREASE IN FEKDMATER I XONE TEMPERATURE MILL RESULT IH I
INCREASE OF CORE POMKR MHICH I MILL BE COMPENSATED BY MODULATION OF CORE FLOQ.
INCREASE IM HEATER MATER LEVEL MILL LEAD TO MATER INDUCTIOtl INTO TURBINE RESULTIHG IM TURBINE TRIP, REACTOR SCRhtt.
DECREASE IX FEEDMATER I
MOME TE!fPERATURE MILL RESULT IM I
INCREASE OF CORE POQKR MHICH I MILL BE COtiPKMSATED BY ttODULATIOH OF CORE FLOQ.
POSSIBLE ltATER IHDUCTIOX I XONE lltTO TURBINE RESULTING IM TURBINE TRIP, SCRAM.
12-2477 VII)
STH POINT CONDENSATE FEEDMATER HEATER A LEVEL STAXDPIPE I NOTE!
ONLY A LINK INSTRU-MENTS LISTED' AND C LINK INSTRUttKXTS AXD EFFECTS I SIMILAR.
I CL32. I
APPENDIX h CONTROL SYSTKtlS CotSON SENSOR LINE FAILURE ANALYSIS HIHK NILE POINT 2 SHEET I
OF I
$3 I HDH I 2HM" I BRGKKN LT6A 2HDH-LSIA 2HPga LSSA I 2MDH-I LS26A I I 2MDH-I LT26A I I
I I BRDKKH I IF INITIALSTANDPIPE LEVEL I IS ABOVE BROKEN LIHEi ALL I IHSTRQIKMTS OM STANDPIPE I SENSE llN LEVEL.
I IF INITIALSTANDPIPE LEVEL IS BELOM BROKEN LINE, ALL INSTRUtGUITS OIt STANDPIPE I SKMSK HIGH LEVEL.
PLUGGED I ALL IHSTRWEHTS SKHSK I
IMACCURATK PaKBSURK I
I LINK I sYs I sENsoR I FAILURE. I MO.
ID ID MO.
TYPE PRIHARY EFFECTS SECONDARY EFfECTS I 6TH POINT HEATER MATER I LEVEL UN" ANNUNCIATION.
SIXTH POINT HEATER 2fMS-K6h I NORMAL MATER DRAIH VAI.VE I 2HDH-LV6h AND MICH MATER I LEVEL DRAIH VALVE 2HDH-LV26h I MILL REHAIH FULLY CLOSED' HEATER MATER LEVEL MILL I INCREASE PARTIAL LOSS PF I COHDKMSATK HEATING AT FIFTH I PO'IMT HEATER 2CMH-K5A.
I I 678 POINT HEATER MATER LEVEL I MICH AMHilNCIATION.
DRAIH I VALVES 2HDH-LV6A AMD LV26h I OPEN
,PARTIAL LOSS OF COM I DENSATE 'HKATIMG AT HEATERS I 2CNH-ESA, 2FMS-E6A EXTRAC-I TION STEAN ISOLATIOH VALVE I 2ESS-HOV3ho HON-RKTURH VALVE I 2ESS-MRV34A SCAVENGING STEAN INLET VALVE 2DSR-ADVSIA, AHD I HOISTURE SEPARATOR RKHEATER I DRAIN RECEIVER 2DSR-TK6A AMD I TK68 DRAIN YALYEs I 2DSR-LVX65A AND LVX65B.
I CLOSE.
LOSS OF TOTAL FEED I MATER HEATING AT 2FMS-K6h.
I I MICH MATER LEVEL HAY HOT I
ISOLATE HEATER 2FMS-K6A I EXTRACTIOM STEAtt VALVES.
RPV LIQUID LEVEL PRESSURE OR POMKR LEVEL EFfECTS I SLICHT DECREASE IM FKKDMATKR I MOME I TEttPKRATURE MILL RESULT IN I
INCRKAGK oF coaK PerKR I COMPENSATED BY tiODULATION OF I
I CORE FLOM.
INCREASE IN I HEATER MATER IXVEL MILL LEAD I I TO MATER INDUCTIOH IHTO I TURBINE REsULTING IN TURBINE I I TRIP, aKACToa SCRAH.
I I DECREASE IH FKKDMATKR I
MOME I TEMPERATURE MILL RESULT IN I INcaEASF. oF coaE PeeR I
I coHPKMSATKD BY HGDULATION oF I I coRE FLet.
I I
I I
I I
I I POSSIBLK MATER INDUCTIOM I
IHTO TURBINE RESULTING IN I TURBINE TRIP, REACTOR SCRAH.
6TH POIHT CONDENSATE FEEDMATER HEATER h LEVEL STANDPIPE I MOTE:
ONLY h LINE INSTRU-I HKHTS LISTED, B AND C LINK IHSTRUHENTS AMD EFFECTS I SIHILAR.
I CL33.1
I I
~ I.
I I
I I
I I
I I
.I I
I n
I I
I '
I ~ '
I I I I I'I I
'I I I
I I
I I
I I:
I I
I '
l:
I I
I I
'I' I
I I
.I I '
I I
I I
s,
I:
I.
APPENDIX h COHTROL SYSTEtfS CfHfMON SENSOR LINE FAILURE AHALYSIS MIME NILE POINT 2 SHEET 1
OF 2
f I
) LINE ) SYS
)
SENSOR
) FAILURE )
NO.
ID ID HO.
TYPE PRIMLY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POHER LEVEL EFFECTS COtfBINED EFFECTS 35 I tfSS
) 2MSS-
)
RROEEH PT103
)
) 2tfSS-
)
PTI77
)
I (C33-I R007)
)
tfIMINN PRESSURE SIGNAL
)
OPENS THE POLUNING:
) TUllBIHE STOP VALVE ABOVE
) SEAT DRAIN VALVES, 2MSS-MOV2IA, 2tfSS-MOV2IBg I 2MSS-MOV21C ~ 2MSS-MOV21D I
) MAIH STEAM LIME HEADER DRAIN VALVES'MSS AOV191 ~
) 2MSS-AOV]94> 2MSS-AOV203 ~
) 2tlSS-AOV205) 2tfSS-AOV209 I
) RKHEhT STEAM LOAD COHTROL I AtfD PIPING DRAIN VALVKe
) 2tSS-AOV201; EXTRACTIOM
)
HEADER DRAIN VALVES, 2DTM-AOVI04, 2DIM-AOV1051
)
EXTRACTION LINK DRAIN
) VALVES, 2DIM-AOV2A,
) 2DTM-AOV2B, 2DTN-AOV2C, 2DTM-AOV3A, 2DTM-AOV3B,
) 2DTM-AOV3C, 2DTM-AOVSA>
) 2DTtf-hOVSB, 2'-hOVSC, 2DTM AOVSA~
2DTM AOVBB~
2DTM-AOVSC; AUXILIARYSTEAM
) TO OFFGAS DRAIN VALVE, 2ASS-AOV144 RKBOILER STEAM
) LINK DRAIN VALVES, 2DTM-AOV104~ 2DTM-AOVI281
) TURBINE STEAM IHLET LOft
) POINT DRAIN VALVES, I 2MSS-MOVIOho 2MSS-MOVIOCs
) AUXII.IARYSTEAM LINE DRAIN I VALVES> 2DTM AOV7A~
) 2DTM-AOV7B, 2DTM-AOV30A, 2DTM AOV30Bt 2Dllf AOV3thy
) 2DTM-AOV3IB, 2DTM-AOV101 ~
2DTN-AOV107 > 2DTM-AOV142, I
2DTM AOVI43) 2DTM-AOV156;
) TURBINE GENERATOR GLAND SEAL
) AND EXHAUST STEAM DRAIN VALVE) 2DTM AOV1021 MOISTURE
)
SEPARATOR ASB TO TURBIHK I DRAIN VALVES'DTM MOV79h
)
AHD 2DSM-MOV79B: COLD REHEAT
)
STEAM DRAIN VALVES, 2CRS-MW7h, 2CRS-MOV7B, I
(CONTINUED)
HP TURBINE Tl TAP V92 I DECREASE IM FEEDMATER I
) TEtfPERATURE MILL RESULT IH
)
)
INCREASE OF CORE POftKR
)
COMPENSATED BY MODULATION OF
)
)
CORE FIAN.
INCREASED STEAM
)
FLOM TO MAIN CONDENSER MILL t
REDUCE STEAM BYPASS
) CAPABILITY.
CL35.1
0
APPENDIX A CONTROL SYSTEMS COMttON SENSOR LINK FAILURE AHALYSIS NINE MILE POINT 2 SHEET 2
OF 2
I I LlHE I SYS I SENSOR I FAILURE I HO.
ID ID NO.
TYPE PRIMARY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POVKR LEVKI. EFfECTS COMBINED EFFECTS 35 MSS i 2MSS-PT103 I 2MSS-PTIO4 I 2MSS-
)
PTll7 I (C33-NOOI)
BROKEN
) MINIMUMPRESSURE SIGNAL (CONTINUED)
PLUGGED I INACCURATE PRESSURE SIGNAL I 2CRS-MOVShs 2CRS-MOVSBe 2CRS ttOV9hy 2CRS MOV98 ~
2CRS-MOVIBA, 2CRS-MOVISB; CROSS AROUND PIPIHG DRAIH I VALVES~
2HRS MOVI o 2tmS-MOV2; STEAM LINE DRAIN
( VALVES, 2tlSS-AOV85A, 2MSS AOV85B) 2MSS AOVSSC ~
) 2MSS-AOV85D; AHD REHEATIHG STEAM PIPING DRAIN VALVEi 2MSS-tlOVI99.
FALSE le t!AIN
) TlMINE STEAM FuN INPUT TO RECORDER
( C33-R609.
I I
NONE
)
NONE HONE 12-2411 (45)
HP TURBINE Tl TAP V92 (CONTEND)
CL35.2
C a'
I
'I I '
I
~
I I
I I
~ ',; I I i
'I
~
I I I'
I I
I l
I I'
~
I
I I
I I
I:
I I
I
I I ': I'I r'
I.:
ll I I I I:
~I' I
4 g
APPENDIX h COMTROL SYSTEMS COtutOX SENSOR LIHE FAILURE ANALYSIS XIHE ttILE POINT 2 SHEET I
OF I
I I LINE I SYS I SEXSOR I FAILURE I NO.
ID ID MO.
TYPE PRltthRY EFFECTS SECONDARY EFFECTS RPV LIQUID LEVEL PRESSURE OR POltKR LEVEL EFFECTS COtmINED EFFECTS 2TIUt" PSI30 l I
PLUGGED
) INACCURATE PRESSURE SIGNAL REDEEM I ttlMIHtRI PRESSURE SIGNAL I OPENS THE FOLUNING:
)
NONE
) TURBINE STOP VALVE ABOVE I SKAT DRAIH VALVES, I 2HSS ttOV2IA) 2HSS-ttOV2IB) 2ttSS ttOV2IC) 2ttSS ttOV2ID)
I HAIN STEAN LINE HEADER DRAIN l VALVES) 2ttSS AOV19 1 ~
2HSS AOV194) 2HSS AOV203 ~
2ttSS AOV205, 2HSS-AOV209 ~
I CONTROL VALVE BEFORE SEAT
) DRAIN VALVE, 2ttSS-ttOVI47.
I
)
CLOSE THE FOLLOWING:
)
SCAVENGING STEAN COXDENSER ISOLATION VALVES, l 2DSR-AOV82A) 2DSR-AOV828)
I 2DSR-AOV83h) 2DSR-AOV838, I 2DSR-AOV84h) 2DSR-AOV84B.
I I OPEtt THE FOLUNIHG:
( TURBINE GENERATOR GLAND SEAL
)
I AHD EXHAUST STEhtt DRAIN I VALVE>> 2DTtt AOV102)
I AUXILIARYSTKhtt LIHE DRAIN
) VALVE 2DTtt-hOVI56.
I
)
XONE
)
NOHE
(
NONE
)
XONE 12"2477 {46) ttOISTURE SEPARATOR REHEATER STEAH illN CONTROL VALVES IHSTRUttKHT AIR SUPPLY LIHE CL3
~ I
-1 e
C