ML062630473

From kanterella
Jump to navigation Jump to search
Vermont Yankee Hearing - Entergy Exhibit 3, CP&L Updated FSAR, Rev. 18A: Table 1-3; Vermont Yankee Updated FSAR, Rev. 17, Tables 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5 and 1.7.6
ML062630473
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 09/13/2006
From:
Carolina Power & Light Co
To:
Office of Nuclear Reactor Regulation
Byrdsong A T
References
50-271-OLA, Entergy-Licensee-3, RAS 12253
Download: ML062630473 (29)


Text

1-ys /X2&2*

DOCKET NUMBER PROD. &UTIL FAC 0-TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin !.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unit-I A. SITE

1. Location Brunswick Limestone Co., Nemaha Co., Appling Co.,

County, North Alabama Nebraska Georgia Carolina

2. Size of Site (Acres) 1,200 840 1,090 2,100
3. Site Ownership CP&L U.S. Government CPPD GPC
4. Plant Ownership CP&L TVA CPPD GPC
5. Number of Units on Site 2 3 1 2 B. PLANT-REACTOR WARRANTED CONDITIONS
1. Net Electrical Output 821 1,075/unit 770 786 (Mwe)
2. Gross Electrical Output 849 1,098/unit 801 813 (Mwe)
3. Turbine Heat Rate 10,120 10,243 10,187 10,227 (Btu/kW-hr)
4. Gross Plant Heat Rate 9,816 10,231 10,142 10,218 (Btu/kW-hr)
5. Feedwater Temperature 420 376.1 367 387.4 (F ) _ I I I_ _

C. REACTOR PRIMARY VESSEL

1. Inside Diameter (fl-in.) 18-2 20-11 18-2 18-2
2. ?Prall Length Inside (fl- 69-4 72-0 69-4 69-4 V) in.)_
3. <-esign Pressure (psig) 1,250 1,250 1,250 1,250 C:)

LIJ

ý-- C-) all Thickness (in.) 5-17532 6-5/16 5-17/32 5-17/32 CL WCC  : including clad)_"

k*

ýcm ai C-) V)

C:) L c:i LAU 2D Cd) 1R0~ a 11w UJ8OFE I 06 k4I AMU AMWED EaJECMwam~

e/hpla~e =S'rcy- 0 2r

UPDATED FSAR Revision: 18A CP&L APm*mmgyj*T*ipi iNTRODUCTIONAND

SUMMARY

CHAPTER I TABLES Table:

Page:

1-3 2 of 11 TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin 1.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unjt-c D. REACTOR COOLANT - RECIRCULATION LOOPS I. Location of Recirculation Primary Primary Primary Primary Loops Containment Containment Containment Containment System Drywell System Drywell System Drywell System Structure Structure Structure Drywell Structure

2. Number of Recirculation '2 2 2 2 Loops
3. Pipe Size (in.) 28 28 28 28
4. Pump Capacity, each 45,200 45,000 45,200 45,200 (gpm)
5. Number of Jet Pumps 20 20 20 20
6. Location of Jet Pumps Inside Reactor Inside Reactor Inside Reactor Inside Reactor Primary Vessel Primary Vessel Primary Vessel Primary Vessel E. REACTOR
1. Reactor Warranted Conditions
a. Thermal Output (Mwt) 2,436 3,293 2,381 2,436
b. Reactor Operating 1,005 1,005 1,005 1,005 Pressure (psig)
c. Total Reactor Core 77.0 x 106 102.5 x 106 74.5 x 106 78.5 x 106 Flow Rate (lb/hr)
d. Main Steam Flow 10.47 x 106 13.38 x 106 9.81 X 106 10.03 x 106 Rate (lb/hr)
2. Reactor Core Description
a. Lattice 7x7 7x7 7x7 7x7
b. Pitch of Movable 12.0 12.0 12.0 12.0 Control Rods (in.)
c. Number of Fuel 560 764 548 560 Assemblies

UPDATED FSAR Revision: 18A CP&L ANjyC.

INTRODUCTIONANVD

SUMMARY

CHAPTER I TABLES Table:

Page:

1-3 3 of 11 TABLE 1-3 Nuclear Plant Principal Plant Deslgn Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin I.

Units &2 Units 1, 2 &3 Hatch Nuclear Plant Unit-I

d. Number of Movable 137 185 137 137 Control Rods
e. Effective Active Fuel 144 144 144 144 Length (in.)
f. Equivalent Reactor 160.2 178.1 158.5 160.2 Core Diameter (in.)
g. Circumscribed 170.5 198.6 170.5 170.5 Reactor Core Diameter (in.)
h. Total Weight U0 2 272,850 372,373 267,095 272,850
3. Reactor Fuel Description
a. Fuel Material U0O 2 U0 2 U0 2
b. Fuel Density % of 93 93 93 93 Theoretical
c. Fuel Pellet Diameter 0.487 0.487 0.487 0A87 (in.)
d. Fuel Rod Cladding Zircaloy-2 Zircaloy-2 Zircaloy-2 Zircaloy-2 Material
e. Fuel Rod Cladding 0.032 0.032 0.032 0.032 Thickness (in.)
f. Fuel Rod Cladding Free Standing Free Standing Free Standing Free Standing Process Loaded Tubes Loaded Tubes Loaded Tubes Loaded Tubes
g. Fuel Rod Outside 0.563 0.563 0.563 0.563 Diameter (in.)
h. Length of Gas Plenum 16.0 16.0 16.0 16.0 (in.)
i. Fuel Rod Pitch (in.) 0.738 0.738 0.738 0.738
j. Fuel Assembly Zircaloy-4 Zircaloy-4 Zircaloy-4 Zircaloy-4 Channel Material

UPDATED FSAR C" CP&L INTRODUCTION AND

SUMMARY

CHAPTER 1 TABLES TABLE 1-3 Nuclear Plant Principal Plant Deslgn Features Comparison [Historical]

Brunswick Units 1 &2 Units 1, 2Ferry Brown's &3 Cooper HatchL Edwin Nuclear Plant Unit-I

4. 1 Reactor Control 1~

t Control Rods

a. Number 137 185 137 137
b. Shape Cruciform Cruciform Cruciform Cruciform
c. Material B4C Granules B4C Granules B4C Granules B4C Granules Compacted in SS Compacted in SS Compacted in SS Compacted in Tubes Tubes Tubes SS Tubes
d. Pitch (in.) 12.0 12.0 12.0 12.0
e. Poison Length (in.) 143.0 143.0 143.0 143.0
f. Blade Span (in.) 9.75 9.75 9.75 9.75
g. Number of Control 84 84 84 84 Material Tubes for Rod
h. Tube Dimensions (in.) 0.188 0.188 0.188 0.188 ODxO.025-wall ODxO.025-wall ODxO.025-wall ODxO.025-wall
i. Stroke (in.) 144.0 144.0 144.0 144.0
5. Thermal Hydraulic Data
a. Heat Transfer Area 86.513 86.513 86.513 86.513 2

per Assembly (fk )

b. Reactor Core Heat 48,451 66,098 47,409 48,451 Transfer Area (ft2)
c. Maximum Heat Flux' 428,100 425,000 427,820 428,308 (Btu/hr fi2)
d. Average Heat Flux* 164,410 163,200 164,500 164,740 (Btu/hr ft2)
e. Maximum Powerper 18.5 18.4 18.5 18.5 Fuel* Rod Unit Length (kW/ft)
  • These items are shown at design limits ratherthan design point.

UPDA TED FSAR Revision: 18A CPn oNTRODUCTIONANDS

SUMMARY

Table: 1-3 A~~*,*CHAPTER I TABLES Page: 5 of 11 TABLE 1-3 Nuclear Plant Principal Plant Desiln Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin I.

Units 1 & 2 Units 1, 2 &3 Hatch Nuclear Plant Unit-I

f. Average Power per 7.10 7.049 7.079 7.11 Fuel*Rod Unit Length 0kw/ft)
g. Maximum Fuel 4,380 4,380 4,380 4,380 Temperature (7F)
h. Minimum Critical 1.9 1.9 1.9 1.9 Heat Flux Ratio
i. Total Heat Generated 95.0 95.0 95.0 95.0 in Fuel (%)
j. Core Average Exit 13.6 13.2 13.2 13.0 Quality_____ ________ ___
6. Power Distribution Peaking Factors (Peak/Average)
a. Axial 1.50 1.50 1.50 1.50
b. Relative Assembly 1.40 1.40 1.40 1.40
c. Local (within 1.24 1.24 .1.24 1.24 assembly)
d. Total Peaking Factor 2.6 2.6 2.6 2.6
7. Nuclear Design Data
a. Average Discharge 19,000 MWD/ 19,000 MWD/ 19,000 MWD/ 19,000 MWD/

Exposure - lI"core short ton U short ton U short ton U short ton U

b. Moderator to Fuel 2.41 2.41 2.41 2.41 Volume Ratio at Total Core H 20/U0 2 cold
8. In-Core Neutron Instrumentation
a. Number of In-Core 124 172 124 124 Neutron Detectors

'These items areshown at design limits ratherthan design point.

UPDA TED FSAR CP&L INTRODUCTIONAND

SUMMARY

CHAPTER 1 TABLES TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin *.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unlt-I

b. Number of In-Core 31 43 31 31 Detector Strings
c. Number of Detectors 4 4 4 4 per String
d. Number of Flux 4 5 4 4 Mapping Neutron Detectors
e. Range (and Number) of Detectors
1) Source Range Source to 10"3% Source to 10"-% Source to 10"h Source to Monitor power (4) power (4) power (4) 10-3% power (4)
2) Intermediate 10 4 to 10% 10'to 10% power 104to 10% 104 to 10%

Range Monitor power (8) (8) power (8) power (8)

3) Local Power 2.5% to 125% 2.5% to 125% 2.5% to 125% 2.5% to 125%

Range monitor power (124) power (172) power (124) power (124)

4) Average Power 5% to 125% 5% to 125% 5% to 125% 5% to 125%

Range Monitor power (4ý power (4)- power (4) power (4) I

f. Number and Type of 5-Sb-Be 7-Sb-Be 5-Sb-Be 5-Sb-Be In-Core Neutron Sources
9. Reactivity Control
a. Approximate Effective 0.96k 0.96k 0.96k 0.96k Reactivity of Core with all Control Rods in (cold)
b. Effective Reactivity of <0.99k <0.99k <0.99k <0.99k Core with Strongest Control Rod out (cold)
c. Typical Moderator Temperature Coefficient (0k/k F)"

Brown'sFerry Units 2 and 3. I Beginning of core life

UPDA TED FSAR Revision: 18A CP&LINTRODUCNAND

SUMMARY

Table:

Page:

1-3 7 of 11

. , CHAPTER 1 TABLES TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison (Historical]

Brunswick Brown's Ferry Cooper Edwin I.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unit-I

1) Cold (at 68MF) -5.0 x 10-5 -5.0 x 10"' -5.0 x 10"1 -5.0 x 10"O
2) Hot (no voids) -16.0 x l10' .16.0 x 10" -16.0 x 10"s -16.0 x 10"s
d. Typical Moderator Void Coefficient (k/k% void)

-0.9x 10- -0.9x 10-3 -0.9x 10-3 -0.9x 10-3 I) Hot(no voids) 3

-1.05 x 10- _1.05 x.10-3 -1.05 x 10"1 -_.05x 10-

2) At rated output
e. Typical Fuel Temperature (Doppler) Coefficient*
1) Cold (at 68'F) -0.94 x 10"' -0.94 x 10-5 -0.94 x 10"' -0.94 x 10"'
2) Hot (no voids) -0.97 x 10-' -0.97 x 10-5 -0.97 x 1o0" -0.97 x 10"'
3) At rated output 5-0.83 x 10-' 9-0.83 x 10-' <-0.83 x 10" <-0.83 x 10-5 F. CONTAINMENT SYSTEMS
1. Primary Containment
a. Type Pressure Pressure Pressure Pressure Suppression Suppression Suppression Suppression
b. Construction
1) Drywell Light Bulb/ Light Bulb/ Light Bulb/ Light Bulb/

Reinforced Steel Vessel Steel Vessel Steel Vessel Concrete with steel liner

2) Pressure Torus/Reinforced Torus/Steel Tors/Steel Toms/Steel Suppression Concrete with Vessel Vessel Vessel Chamber steel liner
c. Pressure Suppression +62 +56 +56 +56 Chamber-Internal Design Pressure (psig)
  • Beginning of core life

UPDATED FSAR Revision: 18A C P&L APVMEhrgvC,'

INTRODUCTIONAND

SUMMARY

CHAPTER 1 TABLES Table:

Page:

1-3 8 of 11 TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison (Historical]

Brunswick Brown's Ferry Cooper Edwin 1.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant I Unit-I

d. Pressure Suppression +2 +1 +2 +2 Chamber-External Design Pressure (psi)
e. Drywell-Internal +62 +56 +56 +56 Design Pressure (psig) f Drywell-External +2 +1 +2 +2 Design Pressure (psi)
g. Dr well Free Volume 164,100 159,000 145,430 146,240
h. Pressure Suppression 124,000 119,000 109,810 110,950 Chamber Free Volume
i. Pressure Suppression 87,600 85,000 87,660 87,660 Pool Water Volume (f3)
j. Submergence of Vent 4 4 4 3 ft - 8 in.

Pipe Below Pressure Pool Surface (ft)

k. Design Temperature 300 281 281 281 of Drywell (*F)
1. Design Temperature 220 281 281 281 of Pressure Suppression Chamber (OF)
m. Downcomer Vent 6.21 6.21 6.21 6.21 Pressure Loss Factor
n. Break Area/Gross 0.02 0.019 0.019 0.019 Vent Area
o. Drywell Free 1.32 1.33 1.4 1.3 Volume/Pressure Suppression Chamber Free Volume
p. Calculated Maximum 49.4 40 46 46.5 Drywell Pressure after blowdown with no prepurge (psig)

UPDATED FSAR Revision: 18A 1-3 P&L INTRODUC7,ONAND

SUMMARY

Table:

A'P yc" CHAPTER 1 TABLES Page: 9 of 11 TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin I.

Units I & 2 Units I, 2 & 3 Hatch Nuclear Plant UnIt-I

q. Leakage Rate (Percent 0.5 0.5 0.5 1.2 Free Volume per Day)
2. Secondary Containment
a. Type Controlled Controlled 'Controlled Controlled Leakage, Leakage, Elevated Leakage, Leakage, Elevated Release Release Elevated Release Elevated Release
b. Construction
1) Lower Levels Reinforced Reinforced Reinforced Reinforced Concrete Concrete Concrete Concrete
2) Upper Levels Steel Steel Steel Steel Superstructure Superstructure Superstructure Superstructure and Siding and Siding and Siding and Siding
3) Roof Metal Decking Steel Sheeting Steel Sheeting Steel Sheeting with Built-up Roofing
c. Internal Design 0.25 0.25 0.25 0.25 Pressure (psig)
b. Design Inleakage Rate 100 100 100 100 (Percent free volume/day at 0.25 in.

H20

3. Elevated Release Point
a. Type Stack Stack Stack Stack
b. Construction Reinforced Steel Steel Reinforced Concrete Concrete
c. Height (above ground) 100 Meters 200 Meters 100 Meters 150 Meters G. PLANT AUXILIARY SYSTEMS U-,

I I-I.

1. Emergency Core Cooling Systems (number)
a. Reactor Core Spray I Cooling System

UPDATED FSAR Revision: 18A CP&L INTRODUCTIONAND

SUMMARY

Table: 1-3 APmor5 - nC CHAPTER 1 TABLES Page: 10of 11 TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison [Historical]

Brunswick Brown's Ferry Cooper Edwin I.

Units I & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unit-1

b. Reactor Core High I pump I pump 1 pump I pump Pressure Coolant Injection System
c. Auto-Relief System) 1 1 I I
d. Reactor Core Residual Heat Removal System
1) Low Pressure 4 pumps 4 pumps 4 pumps 4 pumps Coolant Injection Subsystem
2) Primary 1 1 1 1 Containment Spray/Cooling Subsystem
3) Reactor Shutdown I I 1 Cooling Subsystem
2. Reactor Auxiliary System (number)
a. Spent Fuel Pool I 1 I I Cooling and Demineralizing System
b. Reactor Cleanup I 1 1 1 Demineralizer System Reactor Core Isolation 1 1 1 1 Cooling System H. PLANT ELECTRICAL POWER SYSTEMS I. Transmission System Outgoing Lines 8-230 kV 4-500 kV 4-345 kV 5-230 kV (number-rating)
2. Auxiliary Power Systems
a. Incoming Lines 8-230 kV 2-161 kV 1-69 kV 5-230 kV (number-rating) 1-115 kV

4.

UPDA TED FSAR Revision: 18A CP&L INTr.ODUCTIONAND

SUMMARY

Table: 1-3 SAwyC*r~* CHAPTER1 TABLES Page: 11 of 11 TABLE 1-3 Nuclear Plant Principal Plant Design Features Comparison (Historical]

Brunswick Brown's Ferry Cooper Edwin 1.

Units 1 & 2 Units 1, 2 & 3 Hatch Nuclear Plant Unit-I

b. Onsite sources 1 2 Transformers
2) -Startup 2 2 1 2 Transformers
3) Shutdown 0 0 1 0 Transformers'
3. Standby Diesel Generator System Number of Diesel 4 3 of 4 4 3 Generators

Table 1.7.1 Comparison of Nuclear System Design Characteristics (Parameters are related to rated power output for a single unit unless otherwise noted.

Values given apply to the originally licensed design).

Browns Ferry Thermal and Hydraulic Design Vermont Yankee Each Unit Hatch Station Monticello Rated Power, MWt 1593 3293 2436 1670 Design power, MWt 1665 3440 2537 1670 Steam flow rate, lb/hr 6.43 X 10, 106 13.38 x 10' 10.03 x 10' 6.77 x 10' Core coolant flow rate, lb/hr 48.0 x 102.5 x 10' 75.5 x 10' 57.6 x 10' Feedwater flow rate, lb/hr 6.40 x 106 13.33 X 106 10.445 x 10' 6.77 x 10' Feedwater temperature, OF 372 376.1 387.4 376.3 System pressure, nominal in steam dome, psia 1020 1020 1020 1020 Average power density, kw/liter 50.94 50.8 51.2 40.6 Maximum thermal output, kw/ft 18.37 18.35 18.3 17.5 Average thermal output, kw/ft 7.079 7.049 7.114 5.7 Maximum heat flux, Btu/hr-ft 22 425,500 425,048 428,308 405,000 Average heat flux, Btu/hr-ft 163,926 163,230 164,734 131,350 Maximum U0 2 temperature, OF 4380 4380 4380 2750 Average volumetric fuel temperature, OF 1100 1100 1100 900 Average fuel rod surface temperature, 'F 558 558 558 558 Minimum critical heat flux ratio (MCHFR) >1.9 >1.9 >1.9 >1.9 Coolant enthalpy at core inlet, Btu/lb 519.8 521.3 526.2 523.0 Core maximum exit voids within assemblies 74.7 79 79 Core average exit quality, % steam 13.3 13.2 13.9 12.1 Design Power Peaking Factor Maximum relative assembly power 1.4 1.4 1.4 1.58 Local peaking factor 1.24 1.24 1.24 1.24 Axial peaking factor 1.5 1.5 1.5 1.57 Total peaking factor 2.60 2.6 2.6 3.08 Nuclear Design (First Core)

Water/UO2 volume ratio (cold) 2.47 2.41 2.41 2.42 Thermal and Hydraulic Design Reactivity with strongest control rod out, keg <0.99 <O. 99 <0.99 <0.99 Moderator temperature coefficient At 68OF, Ak/k - OF water -5.0 x 10"' -5.0 X 10"s -5.0 x 10-5 -8.9 x 10"s Hot, no voids, Ak/k - OF water -39.0 x 10"5 -39.0 X 10-s -39.0 x 10-5 -17.0 x .10-VYNPS UFSAR Revision 17 1.7-5 of 22

Table 1.7.1 (Continued)

Browns Ferry Vermont Yankee Each Unit Hatch Station Monticello Moderator void coefficient Hot, no voids, Ak/k - % void -1.0 x 10-3 -1.0 x 10.3 -1.0 X 10-3 -1.0 x 10-'

At rated output, Ak/k - % void -1.6 x 10-3 -1.6 x 10.' -1.6 X 10-3 -1.4 x 10-3 Fuel temperature doppler coefficient At 68OF, Ak/k - OF fuel -1.3 x 10"5 -1.3 x 10-5 -1.3 x 10-5 -1.2 x 10-5 Hot, no voids, Ak/k - OF fuel -1.2 x 10"s -1.2 x 10-5 -1.2 x 10-" -1.2 x 10"5 At rated output, Ak/k - OF fuel -1.3 x 10-5 -1.3 x 10-5 -1.3 x l0-s -- 1.2 x i0" Initial average U-235 enrichment, W/O 2.50% 2.19% 2.23% 2.25%

Fuel average discharge exposure, MWD/ton 19,085 19,000 19,000 19,000 Core Mechancial Design Fuel Assembly Number of fuel assemblies 368 764 560 484 Fuel rod array 7 x 7 7 x 7 7x7 7 x 7 Overall dimensions, inches 175.83 175.88 175.88 175.88 Weight of U02 per assembly, pounds Undished Undished Undished Undished 490.53 490.35 490.35 492.5 Dished (3%) Dished (3%) Dished Dished 479.35 483.42 483.42 481.7 Weight of fuel assembly, pounds Undished Undished Undished Undished 682.33 681.48 681.48 678.9 Dished (3%) Dished (3%) Dished Dished 671.05 674.55 674.55 668 Fuel Rods Number per fuel assembly 49 49 49 49 Outside diameter, inch 0.563 0.563 0.562 0.563 Clad thickness, inch 0.032 0.032 0.032 0.032 Gap - pellet to clad, inch 0.006 0.0055 0.005 0.005 Length of gas plenum, inches 16 16 16 11.24 Clad material Zircaloy-2 Zircaloy-2 Zircaloy-2 Zircaloy-2 and/or -4 Cladding process Free standing Free standing Free standing Free standing loaded tubes loaded tubes loaded tubes loaded tubes Fuel Pellets Material Uranium dioxide Uranium dioxide Uranium dioxide Uranium dioxide Density, % of theoretical 95% 93% 93% 93%

Diameter, inch 0.487 0.488 0.488 0.488 Length, inch 0.5 0.5 0.5 0.5 VYNPS UFSAR Revision 17 1.7-6 of 22

Table 1.7.1 (Continued)

Browns Ferry Vermont Yankee Each Unit Hatch Station Monticello Fuel Channel Overall dimension, inches (length) 166.875 166.875 166.875 166.875 Thickness, inch 0.08 0.08 0.08 0.08 Cross section dimensions, inches 5.438 x 5.438 5.438 x 5.438 5.438 x 5.438 5.438 x 5.438 Material Zircaloy-4 Zircaloy-4 Zircaloy-4 Zircaloy-4 Core Assembly Fuel weight as U0 2 , pounds 178,145 370,933 272,849 238,370 Zirconium weight, pounds 63,539 131,000 96,370 80,990 (Z-2 + Z-4 Spacers)

Core diameter (equivalent), inches 129.9 187.1 160.2 149 Core height (active fuel), inches 144 144 144 144 Core Mechanical Design Reactor Control System Number of movable control rods 89 185 137 121 Shape of movable control rods Cruciform Cruciform Cruciform Cruciform Pitch of movable control rods 12.0 12.0 12.0 12.0 Control material in movable rods B4 C granules B4 C granules B4 C granules B4 C granules compacted in compacted in compacted in compacted in SS tubes SS tubes SS tubes SS tubes Type of control rod drives Bottom entry, Bottom entry, Bottom entry, Bottom entry, locking piston locking piston locking piston locking piston Number of temporary control curtains 156 372 248 216 Curtain material Flat, boron- Flat, boron- Flat, boron- Flat, boron-stainless steel stainless steel stainless steel stainless steel Method of variation of reactor power Movable control Movable control Movable control Movable control rods and variable rods and variable rods and variable rods and variable coolant pumping coolant pumping coolant pumping coolant pumping Reactor Vessel Design Material Carbon steel-clad Design pressure, psia 1265 1265 1265 1265 Design temperature, OF 575 575 575 575 Inside diameter ft-in. 17 - 2 20 - 11 18 - 2 17 - 2 Inside height, ft-in. 63 - 1.5 72 - 11 1/8 69 - 4 63 - 2 Side thickness (including clad) 5.187 6.313 5.531 5.187 Minimum clad thickness, inches 1/8 1/8 1/8 1/8 VYNPS UFSAR Revision 17 1.7-7 of 22

Table 1.7.1 (Continued)

Browns Ferry Vermont Yankee Each Unit Hatch Station Monticello Reactor Coolant Recirculation Dealn Number of recirculation loops 2 2 2 2 Design pressure Inlet leg, psig 1175 1148 1148 1148 Outlet leg, psig 1274 1326 1274 1248 Design temperature, OF 562 562 562 Pipe diameter, inches 562 28 28 28 28 Pipe material 304/316 304/316 304/316 Recirculation pump flow rate, GPM 304 32,500 45,200 45,200 32,500 Number of jet pumps in reactor 20 20 20 20 Main Steam Lines Number of steam lines 4 4 4 4 Design pressure, psig 1146 1146 1146 1146 Design temperature, OF 563 563 563 563 Pipe diameter, inches 18 26 24 18 Pipe material Carbon Steel (ASTM A155 KC70 or ASTM A106 Grade B)

In-Core Neutron Instrumentation Number of in-core neutron detectors (fixed) 80 172 124 96 Number of in-core detector assemblies 20 43 31 24 Number of detectors per assembly 4 4 4 4 Number of traversing-incore-probe neutron 3 5 4 3 detectors Range (and number) of detectors Source range monitoring subsystem Source to Source to Source to Source to

.001% power (4) .001% power (4) .001% power (4) .001% power (4)

Intermediate range monitoring .0002% to 20% .0001% to 10% .0001% to 10% .0001% to 10%

subsystem power (6) power (8) power (8) power (8)

Local power range monitoring 0.1% to 125% 5% to 125% 5% to 125% 5% to 125%

subsystem power (80) power (172) power (124) power (96)

Average power range monitoring 2.5% to 125% 2.5% to 125% 2.5% to 125% 5% to 125%

subsystem power (6) power (6) power (6) power (6)

Number and type of in-core neutron sources 4 Sb-Be 7 Sb-Be 5 Sb-Be 5 Sb-Be Core Standby Cooling System (These systems are sized on design power.)

Core Spray System Number of loops 2 2 2 2 Flow rate (gpm) 3000 at 120 psid 6250 at 122 paid 4625 at 120 paid 3020 at 307 paid VYNPS UFSAR Revision 17 1.7-8 of 22

Table 1.7.1 (Continued)

Browne Ferry Vermont Yankee Each Unit Hatch Station Monticello .

High Pressure Coolant Injection System (No.) 1 1 1 1 Number of loops 1 1 1 1 Flow rate (gpm) 4250 5000 4250 3000 Automatic Depressurization System (No.) 1 1 1 1 Low Pressure Coolant Injection (No.) 1 1 1 1 Number of pumps 4 4 4 4 Flow rate (gpm/pump) 7,200 at 2(0 p sid 10,000 at 20 pEdid 7,700 at 20 psi(1 4,000 at 20 psid Auxiliary Systems Residual Heat Removal System Reactor shutdown cooling (number of pumps) 4 4 4 4 Flow rate (gpm/pump)l1 7,200 10,000. 7,700 4,000 Capacity (Btu/hr/heat exchanger)' 2 ) 57.5 x 10' 70 x 10' 32 x 10' 24.5 x 10' Number of heat exchangers 2 4 2 2 Primary containment cooling Flow rate (gpm) 28,000 40,000 30,800 16,000 RHR Service Water System Flow rate (gpm/pump) 3,500 2,700 4,500 8,000 Number of pumps 4 B 4 4 Reactor Core Isolation Cooling System Flow rate (gpm/pump) 400 616 at 1120 psid 400 at 1120 psiid 400 Fuel Pool Cooling and Cleanup System Capacity (Btu/hr) 2.37 x 10' 8.8 x 106 3.3 x 10' 2.87 x 10' (1) Capacity during reactor flooding made with 3 of 4 pumps running.

(2) Capacity during post-accident cooling mode with 165OP shell side inlet temperature, maximum service water temperature, and 1 RHR pump and 1 RHR service water pump in operation.

VYNPS UFSAR Revision 17 1.7-9 of 22

TABLE 1.7.2 CoMarison of Power Conversion System Design Characteristics (Values given apply to the originally licensed design.)

Browns Perry Turbine-Generator Vermont Yankee Each Unit Hatch Station Monticello Design power, MWt 1665 3440 2537 1670 Design power, MWe 564 1152 849 543 Generator speed, RPM 1800 1800 1800 1800 Design steam flow, lb/hr 6.721 x 106 14.049 x 10' 10.48 x 106 Turbine inlet pressure, psig 950 965 970 950 Turbine Bypass System Capacity, percent of turbine design steam flow 105 25 25 15 Main Condenser Heat removal capacity, Btu/hr 3605 x 10' 7770 x 106 5800 x 106 3750 x 10' Circulating Water System Number of pumps 3 3. 3 2 Flow rate, gpm/pump 122,000 200,000 185,000 140,000 Condensate and Feedwater Systems 6.4 x 106 13.999 x 10' 10.096 x 10' 6.77 x 106 Design flow rate, lb/hr 2 Number of condensate pumps 3 3 3 Number of condensate booster pumps 3 2 3 3 2 Number feedwater pumps ac power Condensate pump drive ac power ac power ac power Condensate booster pump drive ac power ac power turbine turbine ac power Feedwater pump drive VYNPS UFSAR Revision 17 1.7-10 of 22

TABLE 1.7.3 Comparison of Electrical Power Systems Design Characteristics (Values given avaly to the oriainally licensed design.)

Browns Ferry Transmission System Vermont Yankee Each Unit Hatch Station Monticello Outgoing lines (number-rating) 2-345 kV 6-500 kV 2-230 kV 2-345 kV 2-115 kV 3-115 kV 2-230 kV Normal Auxiliary AC Power Incoming lines (number-rating) 2-345 kV 2-161 kV 2-30 kV 1-345 kV 2-115 kV 1-115 kV 1-4160 V Auxiliary transformers 1 3 1 2 Startup transformers 1 2 2 1 Standby AC Power Supply Number diesel generators 2 4 3 2 Number of 4160 V standby busses 2 4 3 4 Number of 480 V standby busses 2 8 4 (600 V) 4 DC Power Supply Number of 125 V or 250 V batteries 2 4 2 2-125 V 1-250 V Number of 125 V or 250 V busses 3 4 4 2-125 V 1-250 V VYNPS UPSAR Revision 17 1.7-11 of 22

TABLE 1.7.4 Comparison of Containment Design Characteristics (Values given apply to the original licensed design.)

Browns Ferry Primary Containment* Vermont Yankee Each Unit Hatch Station Monticello _

Type Pressure Pressure Pressure Pressure suppression suppression suppression suppression Construction Drywell Light bulb shape; Light bulb shape; Light bulb shape; Light bulb shape; steel vessel steel vessel steel vessel steel vessel Pressure suppression chamber Torus; steel Torus; steel Torus; steel Torus; steel vessel vessel vessel vessel Pressure Suppression Chamber Internal design pressure (psig) 56 56 56 56 External design pressure (psi) 2 2 2 2 Drywell-internal design pressure (psig) 56 56 56 56 Drywell-external design pressure (psi) 2 2 2 2 Drywell free volume (ft3) 134,200 159,000 146,400 134,200 Pressure suppression chamber free volume (ft 3 ) 108,250 119,000 101,410 108,250 Pressure suppression pool water volume (ft 3 ) 77,970 135,000 86,660 77,970 Submergence of vent pipe below pressure 4 4 4 4 pool surface (ft)

Design temperature of drywell (OF) 281 281 281 281 Design temperature of pressure suppression chamber (OF) 281 281 281 281

  • Where applicable, containment parameters are based on design power.

VYNPS UFSAR Revision 17 1.7-12 of 22

TABLE 1.7.4 (continued)

Browns Ferry Primary Containment* Vermont Yankee Each Unit Hatch Station Monticello Downcomer vent pressure loss factor 6.21 6.21 6.21 6.21 Break area/Total vent area 0.019 0.019 0.019 0.019 Calculated maximum pressure after blowdown 35 46.6 45 41 Drywell (psig)

Pressure suppression chamber (psig) 22 27 28 26 Initial pressure suppression pool temperature rise (OF) 35 50 50 50 Leakage rate (% free volume/day at 56 psig 0.5 0.5 0.5 0.5 and 281OF)

Secondary Containment Type Controlled leak Controlled leak Controlled leak Controlled leak age, elevated age, elevated age, elevated age, elevated release release release release Construction Lower levels Reinforced con Reinforced con Reinforced con Reinforced con crete crete crete crete Upper levels Steel super Steel super Steel super Steel super structure and structure and structure and structure and siding siding siding siding Roof Steel sheeting Steel sheeting Steel sheeting Built up on steel decking Internal design pressure (psig) 0.25 0.25 0.25 0.25 Design in leakage rate (% free volume/day 100 100 100 100 at 0.25 inches H20)

Elevated Release Point Type Stack Stack Stack Stack Reinforced con Reinforced con Reinforced con Reinforced con Construction crete crete crete crete 318 feet 600 feet 100 meters 238 feet Height (above ground)

  • Where applicable, containment parameters are based on design power.

VYNPS UFSAR Revision 17 1.7-13 of 22

TABLE 1.7.5 Comparison of Structural Design Characteristics (Values given apply to the original licensed design.)

Browne Ferry Seismic Design Vermont Yankee Nuclear Plant Hatch Station Monticello Design earthquate (horizontal g) 0.07 0.10 0.08 0.06 Maximum earthquake (horizontal g) 0.14 0.20 0.15 0.12 Wind Design Maximum sustained (mph) 80 100 105 100 Tornadoes (mph) 300 300 300 300 VYNPS UFSAR Revision 17 1.7-14 of 22

TABLE 1.7.6 Comparison of Systems Desiqn Characteristics unless otherwise (Parameters are related to rated power output for a single unit noted.) (Values given apply to the originally licensed design.)

Vermont Yankee Dresden 2 Thermal and Hydraulic Design Rated power, MWt 1593 2255 Design power, MWt 1665 2527 Steam flow rate, lb/hr 6.43 x 106 9.945 x 10' Core coolant flow rate, lb/hr 48.0 x 10' 98 x 10' Feedwater flow rate, lb/hr 6.40 x 106 9.94 X 10' Feedwater temperature, OF 372 348 System pressure, nominal in steam dome, psia 1020 1020 Average power density, kw/liter 50.94 41.08 18.37 17.5 Maximum thermal output, kw/ft Average thermal output, kw/ft 7.079 5.7 2 425,500 405,000 Maximum heat flux, Btu/hr-ft 2

Average heat flux, Btu/hr-ft 163,926 131,860 Maximum U02 temperature, OF 4380 3470 Average volumetric fuel temperature, OF 1100 1050 Average fuel rod surface temperature, OF 558 558 Minimum critical heat flux ratio (MCHFR) >1.9 >1 .9 Coolant enthalpy at core inlet, Btu/lb 519.8 522.3 74.7 76 Core maximum exit voids within assemblies 13.3 10.1 Core average exit quality, V steam Design Power PeakFactor Maximum relative assembly power 1.4 1.47 1.24 1.30 Local peaking factor Axial peaking factor 1.5 1.57 Total peaking factor 2.60 3.60 Nuclear Design (First Core)

Water/U0 2 volume ratio (cold) 2.47 2.41

<0.99 <0.99 Reactivity with strongest control rod out, Moderator temperature coefficient

-5.0 x 10"s -8.0 x 10"S At 68OF, Ak/k - OF water

-39.0 x 10"5 -17.0 x 10-5 Hot, no voids, Ak/k - OF water Moderator void coefficient

-1.0 X 10.3 -1.0 x 10.1 Hot, no voids, Ak/k - % void UFSAR VYNPS Revision 17 1.7-15 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2

-1.6 x 10-1 -1.4 x 10-3 At rated output, Ak/k - % void Fuel temperature doppler coefficient

-1.3 x 10-5 -1.2 x 10"s At 68OF, Ak/k 1- F fuel I

-1.2 x 10-5 -1.2 x 10"'

Hot, no vpids, Ak/k - OF fuel

-1.3 x l0-s -1.2 x 10-1 At rated output, Ak/k - % fuel 2.50% 2.12%

Initial average U-235 enrichment, W/O 19,085 19,000 Fuel average discharge exposure, MWD/ton Core Mechanical Design Fuel Assembly Number of fuel assemblies 368 724 Fuel rod array 7 x 7 7x7 175.88 175.88 Overall dimensions, inches Weight of U0 2 per assembly, pounds Undished-490.53 Undished-492.5 Dished Dished-481.7 (3%) -479.35 Weight of fuel assembly, pounds Undished-682.23 Undished-678.9 Dished Dished-668.0 (3%) -671.05 Fuel Rods Number per fuel assembly 49 49 0.563 0.563 Outside diameter, inch Clad thickness, inch 0.032 0.032 Gap - pellet to clad, inch 0.005 0.005 Length of gas plenum, inches 16 11.24 Clad material Zircaloy-2 Zircaloy-2 Free standing Free standing Cladding process loaded tubes loaded tubes Fuel Pellets Material Uranium dioxide Uranium dioxide Density, % of theoretical 95% 93%

Diameter, inch 0.487 0.488 Length, inch 0.5 0.5 Fuel Channel Overall dimension, inches (length) 166.875 166.875 UFSAR VYNPS Revision 17 1.7-16 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 Thickness, inch 0.080 0.080 Cross section dimensions, inches 5.438 x 5.438 5.43S x 5.438 Material Zircaloy-4 Zircaloy-4 Core Assembly Fuel weight as U021 pounds 178,145 351,258 Zirconium weight, pounds (Z-2 + Z-4 Spacers) 63,539 121,154 Core diameter (equivalent), inches 129.9 182.2 144 144 Core height (active fuel), inches Reactor Control System Method of variation of reactor power Movable control Moveable control rods and various rods and various coolant pumping coolant pumping Number of movable control rods 89 177 Shape of movable control rods Cruciform Cruciform Pitch of movable control rods 12.0 12.0 Control material in movable rods B4C granules B4C granules compacted in SS compacted in SS tubes tubes Type of control rod drives Bottom entry, Bottom entry, locking piston locking piston Number of temporary control curtains 156 340 Curtain material Flat, boron- Flat, boron-stainless steel stainless steel Reactor Vessel Design Material Carbon steel Carbon steel clad clad Design pressure, psia 1265 1265 Design temperature, OF 575 575 Inside diameter ft-in. 17 - 2 20 - 11 Inside height ft-in. 63 - 1.5 68 - 7 5/8 5.187 6.125 Side thickness (including clad)

Minimum clad thickness, inches 1/8 1/8 Reactor Coolant Recirculation Design Number of recirculation loops 2 2 Design pressure Inlet leg, psig 1175 1175 VYNPS UFSAR Revision 17 1.7-17 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 Outlet leg, psig 1274 1325 Design temperature, OF 562 565 Pipe diameter, inches 28 28 Pipe material 304/316 304/316 Recirculation pump flow rate, GPM 32,500 45,000 Number of jet pumps in reactor 20 20 Main Steam Lines Number of steam lines 4 4 Design pressure, psig 1146 1146 Design temperature, OF 563 563 Pipe diameter, inches 18 20 Pipe material Carbon steel Carbon steel Core Standby Cooling Systems (These systems are sized on design power.)

Core Spray System Number of loops 2 2 Flow rate (gpm) 3000 at 120 psid 4500 at 90 psid Core Mechanical Design In-Core Neutron Instrumentation 164 Number of in-core neutron detectors (fixed) 80 Number of in-core detector assemblies 20 41 Number of detectors per assembly 4 4 3 3 Number of traversing-iincore-probe neutron detectors Range (and number) of detectors Source range Source to 0.001% Source to 0.001%

monitoring subsystem power (4) power (4)

Intermediate range monitoring subsystem 0.0002% to 20% 0.0003% to 10%

power (6) power (8)

Local power range monitoring subsystem 0.01% to 125% 5% to 125% power power (80) (164)

Average power range monitoring subsystem 2.5% to 125% 5% to 125% power power (6) (6)

Number and type of in-core neutron sources 4 Sb-Be 7 Sb-Be Core Standby Cooling Systems High pressure coolant injection system (No.) 1 1 VYNPS UFSAR Revision 17 1.7-18 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 1 1 Number of loops 4250 5600 Flow rate (gpm) 1 1 Automatic depressurization system (No.)

1 1 Low pressure coolant injection (No.)

4 4 Number of pumps 7200 at 20 paid 4833 at 20 psid Flow rate (gpm/pump)

Auxiliary Systems Residual Heat Removal System 4 3 (3)

Reactor shutdown cooling (number of pumps) 7,200 5, 3501" Flow rate (gpm/pump) (

(2) 57.5 x 106 27 x 106(3)

Capacity (btu/hr/heat exchanger) 2 3 (3)

Number of heat exchangers Primary containment cooling Flow rate (gpm) 28,000 RHR Service Water System 2,700 3,500 Flow rate (gpm/pump) 4 4 Number of pumps Reactor Core Isolation Cooling System 400 None Flow rate (gpm)

Fuel Pool Cooling and Cleanup System 2.37 x 10' 3.65 x 10' Capacity (Btu/hr)

Turbine-Generator 1665 2527 Design power, MWt 564 809 Design power, MWe 1800 1800 Generator speed, RPM 6.721 x 106 9.945 X 10' Design steam flow, lb/hr 950 950 Turbine inlet pressure, psig Turbine Bypass System four pumps running.

(')Capacity during reactor cooling mode with three of shell side inlet

ý2mCapacity during post-accident cooling mode with 165OFone RHR pump and one RHR temperature, maximum service water temperature, and service water pump in operation.

13) Separate shutdown cooling system.

UFSAR VYNPS Revision 17 1.7-19 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 Capacity, percent of turbine design steam 105 40 flow Main Condenser Heat removal capacity, Btu/hr 3605 X 106 Circulating Water System Number of pumps 3 3 Flow rate, gpm/pump 122,000 Condensate and Feedwater Systems Design flow rate, lb/hr 6.4 x 106 9.725 x 106 Number of condensate pumps 3 4 Number of condensate booster pumps 4 Number feedwater pumps 3 3 Condensate pump drive ac power ac power Condensate booster pump drive ac power Feedwater pump drive ac power ac power Transmission System Outgoing lines (number-rating) 2-345 kV 5-345 kV 2-115 kV Normal Auxiliary AC Power Incoming lines (number-rating) 2-345 kV 5-345 kV 2-115 kV 6-138 kV 1-4160 V 1 1 Auxiliary transformers 1 1 Startup transformers Standby AC Power Supply Number diesel generators 2 3 (for 2 units)

Number of 4160V standby busses 2 2 Number of 480V standby busses 2 2 DC Power Supply Number of 125 V or 250 V batteries 2 1-125 V 1-250 V Number of 125 V or 250 V busses 3 2-125 V 2-250 V VI'NPS UFSAR Revision 17 1.7-20 of 22

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 Primary Containment' Type Pressure Pressure suppression suppression Light bulb shape; Light bulb shape; Construction Drywell steel vessel steel vessel Pressure suppression chamber Torus; steel Torus; steel vessel vessel Pressure Suppression Chamber Internal design pressure (psig) 56 62 External design pressure (psi) 2 1 Drywell-internal design pressure (psig) 56 62 2 2 Drywell-external design pressure (psi) 3 134,200 158,236 Drywell free volume (Wt )

Pressure suppression chamber free volume 108,250 117,245 (ft3) 3 Pressure suppression pool water volume (ft ) 77,970 Submergence of vent pipe below pressure pool 4 4 surface (ft)

Design temperature of drywell (OF) 281 281 Design temperature of pressure suppression 281 281 chamber (OF)

Downcomer vent pressure loss factor 6.21 6.21 2 0.019 0.019 Break area total vent area (ft )

35 48 Calculated maximum pressure after blowdown drywell (psig)

Pressure suppression chamber (psig) 22 28 35 50 Initial pressure suppression pool temperature rise (OF)

Leakage rate (V free volume/day at 56 psig 0.5 0.5 (at 62 psig and 281OF) and 281 0 F)

  • Where applicable, containment parameters are based on design power.

UFSAR VYNPS Revision 17 1.7-21 of 22

4.

TABLE 1.7.6 (Continued)

Vermont Yankee Dresden 2 Secondary Containment Type Controlled Controlled leakage elevated leakage elevated release release Construction Reinforced Reinforced Lower levels concrete concrete Steel super Steel super Upper levels structure and structure and siding siding Steel sheeting Concrete slabs Roof 0.25 0.25 Initial design pressure (psig) 100 100 Design in leakage rate (% free volume/day at 0.25 inches H2 0)

Elevated Release Point Stack Stack Type Reinforced Reinforced Construction concrete concrete 318 feet 310 feet Height (above ground)

Seismic Design Design earthquake (horizontal g) 0.07 0.10 0.14 0.20 Maximum earthquake (horizontal g)

Wind Design 80 110 Maximum sustained (mph) 300 300 Tornadoes (mph)

UFSAR VYNPS Revision 17 1.7-22 of 22